
MySQL 5.6 Reference Manual

Including MySQL NDB Cluster 7.3-7.4 Reference Guide

Abstract

This is the MySQL Reference Manual. It documents MySQL 5.6 through 5.6.51, as well as NDB Cluster releases
based on versions 7.3 and 7.4 of NDB through 5.6.51-ndb-7.3.33 and 5.6.51-ndb-7.4.39, respectively. It may include
documentation of features of MySQL versions that have not yet been released. For information about which versions
have been released, see the MySQL 5.6 Release Notes.

Note. MySQL 5.6.51 is the last release of the MySQL 5.6 series.

MySQL 5.6 features. This manual describes features that are not included in every edition of MySQL 5.6; such
features may not be included in the edition of MySQL 5.6 licensed to you. If you have any questions about the
features included in your edition of MySQL 5.6, refer to your MySQL 5.6 license agreement or contact your Oracle
sales representative.

For notes detailing the changes in each release, see the MySQL 5.6 Release Notes.

For legal information, including licensing information, see the Preface and Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2023-02-27 (revision: 75058)

https://dev.mysql.com/doc/relnotes/mysql/5.6/en/
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/
http://forums.mysql.com

Table of Contents
Preface and Legal Notices .. xxv
1 General Information ... 1

1.1 About This Manual ... 2
1.2 Overview of the MySQL Database Management System .. 4

1.2.1 What is MySQL? ... 4
1.2.2 The Main Features of MySQL .. 5
1.2.3 History of MySQL .. 8

1.3 What Is New in MySQL 5.6 .. 9
1.4 Server and Status Variables and Options Added, Deprecated, or Removed in MySQL 5.6 22
1.5 How to Report Bugs or Problems .. 37
1.6 MySQL Standards Compliance .. 42

1.6.1 MySQL Extensions to Standard SQL .. 43
1.6.2 MySQL Differences from Standard SQL .. 46
1.6.3 How MySQL Deals with Constraints ... 49

1.7 Credits ... 53
1.7.1 Contributors to MySQL ... 53
1.7.2 Documenters and translators .. 57
1.7.3 Packages that support MySQL ... 59
1.7.4 Tools that were used to create MySQL ... 59
1.7.5 Supporters of MySQL .. 60

2 Installing and Upgrading MySQL .. 61
2.1 General Installation Guidance ... 64

2.1.1 Supported Platforms .. 64
2.1.2 Which MySQL Version and Distribution to Install ... 64
2.1.3 How to Get MySQL ... 65
2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG 65
2.1.5 Installation Layouts .. 82
2.1.6 Compiler-Specific Build Characteristics ... 82

2.2 Installing MySQL on Unix/Linux Using Generic Binaries .. 82
2.3 Installing MySQL on Microsoft Windows .. 85

2.3.1 MySQL Installation Layout on Microsoft Windows .. 88
2.3.2 Choosing an Installation Package ... 89
2.3.3 MySQL Installer for Windows ... 90
2.3.4 Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive 122
2.3.5 Troubleshooting a Microsoft Windows MySQL Server Installation 130
2.3.6 Windows Postinstallation Procedures .. 131
2.3.7 Windows Platform Restrictions .. 133

2.4 Installing MySQL on macOS ... 135
2.4.1 General Notes on Installing MySQL on macOS ... 135
2.4.2 Installing MySQL on macOS Using Native Packages ... 136
2.4.3 Installing a MySQL Launch Daemon ... 141
2.4.4 Installing and Using the MySQL Preference Pane .. 143

2.5 Installing MySQL on Linux .. 148
2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository 149
2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository 153
2.5.3 Installing MySQL on Linux Using the MySQL APT Repository 155
2.5.4 Installing MySQL on Linux Using the MySQL SLES Repository 155
2.5.5 Installing MySQL on Linux Using RPM Packages from Oracle 156
2.5.6 Installing MySQL on Linux Using Debian Packages from Oracle 159
2.5.7 Installing MySQL on Linux from the Native Software Repositories 161
2.5.8 Deploying MySQL on Linux with Docker .. 165

iii

MySQL 5.6 Reference Manual

2.5.9 Installing MySQL on Linux with Juju ... 173
2.6 Installing MySQL Using Unbreakable Linux Network (ULN) ... 173
2.7 Installing MySQL on Solaris .. 173

2.7.1 Installing MySQL on Solaris Using a Solaris PKG .. 174
2.8 Installing MySQL on FreeBSD ... 175
2.9 Installing MySQL from Source ... 176

2.9.1 Source Installation Methods .. 176
2.9.2 Source Installation Prerequisites ... 176
2.9.3 MySQL Layout for Source Installation ... 178
2.9.4 Installing MySQL Using a Standard Source Distribution .. 178
2.9.5 Installing MySQL Using a Development Source Tree ... 182
2.9.6 Configuring SSL Library Support ... 184
2.9.7 MySQL Source-Configuration Options ... 185
2.9.8 Dealing with Problems Compiling MySQL .. 201
2.9.9 MySQL Configuration and Third-Party Tools .. 203

2.10 Postinstallation Setup and Testing ... 203
2.10.1 Initializing the Data Directory .. 204
2.10.2 Starting the Server ... 207
2.10.3 Testing the Server .. 209
2.10.4 Securing the Initial MySQL Accounts .. 211
2.10.5 Starting and Stopping MySQL Automatically .. 216

2.11 Upgrading MySQL .. 217
2.11.1 Before You Begin ... 217
2.11.2 Upgrade Paths ... 218
2.11.3 Changes in MySQL 5.6 .. 218
2.11.4 Upgrading MySQL Binary or Package-based Installations on Unix/Linux 225
2.11.5 Upgrading MySQL with the MySQL Yum Repository .. 227
2.11.6 Upgrading MySQL with the MySQL APT Repository .. 229
2.11.7 Upgrading MySQL with the MySQL SLES Repository .. 229
2.11.8 Upgrading MySQL on Windows .. 229
2.11.9 Upgrade Troubleshooting .. 231
2.11.10 Rebuilding or Repairing Tables or Indexes .. 232
2.11.11 Copying MySQL Databases to Another Machine .. 233

2.12 Downgrading MySQL .. 234
2.12.1 Before You Begin ... 234
2.12.2 Downgrade Paths ... 235
2.12.3 Downgrade Notes .. 235
2.12.4 Downgrading Binary and Package-based Installations on Unix/Linux 237
2.12.5 Downgrade Troubleshooting ... 239

2.13 Perl Installation Notes ... 239
2.13.1 Installing Perl on Unix .. 239
2.13.2 Installing ActiveState Perl on Windows .. 240
2.13.3 Problems Using the Perl DBI/DBD Interface .. 241

3 Tutorial .. 243
3.1 Connecting to and Disconnecting from the Server .. 243
3.2 Entering Queries ... 244
3.3 Creating and Using a Database .. 247

3.3.1 Creating and Selecting a Database ... 248
3.3.2 Creating a Table .. 249
3.3.3 Loading Data into a Table .. 250
3.3.4 Retrieving Information from a Table .. 252

3.4 Getting Information About Databases and Tables ... 265
3.5 Using mysql in Batch Mode .. 266
3.6 Examples of Common Queries .. 267

iv

MySQL 5.6 Reference Manual

3.6.1 The Maximum Value for a Column ... 268
3.6.2 The Row Holding the Maximum of a Certain Column ... 268
3.6.3 Maximum of Column per Group .. 269
3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column 269
3.6.5 Using User-Defined Variables ... 270
3.6.6 Using Foreign Keys .. 270
3.6.7 Searching on Two Keys ... 272
3.6.8 Calculating Visits Per Day .. 273
3.6.9 Using AUTO_INCREMENT ... 273

3.7 Using MySQL with Apache ... 276
4 MySQL Programs .. 277

4.1 Overview of MySQL Programs .. 278
4.2 Using MySQL Programs ... 282

4.2.1 Invoking MySQL Programs ... 282
4.2.2 Specifying Program Options ... 283
4.2.3 Command Options for Connecting to the Server .. 297
4.2.4 Connecting to the MySQL Server Using Command Options 304
4.2.5 Connection Transport Protocols .. 306
4.2.6 Connection Compression Control .. 308
4.2.7 Setting Environment Variables .. 308

4.3 Server and Server-Startup Programs ... 309
4.3.1 mysqld — The MySQL Server .. 310
4.3.2 mysqld_safe — MySQL Server Startup Script .. 310
4.3.3 mysql.server — MySQL Server Startup Script ... 316
4.3.4 mysqld_multi — Manage Multiple MySQL Servers ... 318

4.4 Installation-Related Programs .. 322
4.4.1 comp_err — Compile MySQL Error Message File .. 322
4.4.2 mysqlbug — Generate Bug Report ... 323
4.4.3 mysql_install_db — Initialize MySQL Data Directory .. 323
4.4.4 mysql_plugin — Configure MySQL Server Plugins ... 327
4.4.5 mysql_secure_installation — Improve MySQL Installation Security 329
4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables ... 329
4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables .. 330

4.5 Client Programs .. 337
4.5.1 mysql — The MySQL Command-Line Client .. 337
4.5.2 mysqladmin — A MySQL Server Administration Program ... 365
4.5.3 mysqlcheck — A Table Maintenance Program ... 375
4.5.4 mysqldump — A Database Backup Program ... 384
4.5.5 mysqlimport — A Data Import Program ... 407
4.5.6 mysqlshow — Display Database, Table, and Column Information 415
4.5.7 mysqlslap — A Load Emulation Client .. 422

4.6 Administrative and Utility Programs ... 431
4.6.1 innochecksum — Offline InnoDB File Checksum Utility .. 431
4.6.2 myisam_ftdump — Display Full-Text Index information ... 432
4.6.3 myisamchk — MyISAM Table-Maintenance Utility .. 433
4.6.4 myisamlog — Display MyISAM Log File Contents .. 451
4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables 453
4.6.6 mysql_config_editor — MySQL Configuration Utility ... 459
4.6.7 mysqlaccess — Client for Checking Access Privileges ... 465
4.6.8 mysqlbinlog — Utility for Processing Binary Log Files .. 468
4.6.9 mysqldumpslow — Summarize Slow Query Log Files .. 490
4.6.10 mysqlhotcopy — A Database Backup Program .. 492
4.6.11 mysql_convert_table_format — Convert Tables to Use a Given Storage Engine 495
4.6.12 mysql_find_rows — Extract SQL Statements from Files ... 496

v

MySQL 5.6 Reference Manual

4.6.13 mysql_fix_extensions — Normalize Table File Name Extensions 497
4.6.14 mysql_setpermission — Interactively Set Permissions in Grant Tables 497
4.6.15 mysql_waitpid — Kill Process and Wait for Its Termination 498
4.6.16 mysql_zap — Kill Processes That Match a Pattern .. 499

4.7 Program Development Utilities .. 499
4.7.1 msql2mysql — Convert mSQL Programs for Use with MySQL 500
4.7.2 mysql_config — Display Options for Compiling Clients ... 500
4.7.3 my_print_defaults — Display Options from Option Files ... 501
4.7.4 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols 503

4.8 Miscellaneous Programs ... 503
4.8.1 perror — Display MySQL Error Message Information ... 503
4.8.2 replace — A String-Replacement Utility ... 504
4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa 505

4.9 Environment Variables .. 505
4.10 Unix Signal Handling in MySQL ... 507

5 MySQL Server Administration .. 511
5.1 The MySQL Server ... 512

5.1.1 Configuring the Server ... 512
5.1.2 Server Configuration Defaults ... 514
5.1.3 Server Option, System Variable, and Status Variable Reference 516
5.1.4 Server System Variable Reference ... 550
5.1.5 Server Status Variable Reference ... 566
5.1.6 Server Command Options .. 579
5.1.7 Server System Variables .. 603
5.1.8 Using System Variables ... 704
5.1.9 Server Status Variables .. 719
5.1.10 Server SQL Modes .. 737
5.1.11 Connection Management .. 746
5.1.12 IPv6 Support .. 751
5.1.13 MySQL Server Time Zone Support ... 755
5.1.14 Server-Side Help Support ... 760
5.1.15 The Server Shutdown Process ... 761

5.2 The MySQL Data Directory ... 762
5.3 The mysql System Database ... 763
5.4 MySQL Server Logs ... 765

5.4.1 Selecting General Query Log and Slow Query Log Output Destinations 766
5.4.2 The Error Log .. 768
5.4.3 The General Query Log ... 771
5.4.4 The Binary Log .. 772
5.4.5 The Slow Query Log .. 785
5.4.6 The DDL Log ... 787
5.4.7 Server Log Maintenance .. 787

5.5 MySQL Server Plugins .. 789
5.5.1 Installing and Uninstalling Plugins ... 789
5.5.2 Obtaining Server Plugin Information .. 793
5.5.3 MySQL Enterprise Thread Pool .. 794
5.5.4 MySQL Plugin Services .. 800

5.6 MySQL Server Loadable Functions ... 801
5.6.1 Installing and Uninstalling Loadable Functions ... 801
5.6.2 Obtaining Information About Loadable Functions ... 802

5.7 Running Multiple MySQL Instances on One Machine .. 803
5.7.1 Setting Up Multiple Data Directories .. 804
5.7.2 Running Multiple MySQL Instances on Windows ... 805
5.7.3 Running Multiple MySQL Instances on Unix .. 808

vi

MySQL 5.6 Reference Manual

5.7.4 Using Client Programs in a Multiple-Server Environment .. 809
5.8 Debugging MySQL .. 810

5.8.1 Debugging a MySQL Server ... 810
5.8.2 Debugging a MySQL Client .. 817
5.8.3 The DBUG Package .. 817
5.8.4 Tracing mysqld Using DTrace ... 820

6 Security ... 841
6.1 General Security Issues .. 842

6.1.1 Security Guidelines .. 842
6.1.2 Keeping Passwords Secure .. 844
6.1.3 Making MySQL Secure Against Attackers ... 852
6.1.4 Security-Related mysqld Options and Variables ... 854
6.1.5 How to Run MySQL as a Normal User ... 855
6.1.6 Security Considerations for LOAD DATA LOCAL ... 855
6.1.7 Client Programming Security Guidelines .. 857

6.2 Access Control and Account Management ... 859
6.2.1 Account User Names and Passwords ... 860
6.2.2 Privileges Provided by MySQL ... 862
6.2.3 Grant Tables .. 869
6.2.4 Specifying Account Names ... 875
6.2.5 Access Control, Stage 1: Connection Verification ... 877
6.2.6 Access Control, Stage 2: Request Verification ... 880
6.2.7 Adding Accounts, Assigning Privileges, and Dropping Accounts 882
6.2.8 When Privilege Changes Take Effect .. 885
6.2.9 Assigning Account Passwords .. 886
6.2.10 Server Handling of Expired Passwords .. 887
6.2.11 Pluggable Authentication .. 890
6.2.12 Proxy Users ... 894
6.2.13 Setting Account Resource Limits ... 900
6.2.14 Troubleshooting Problems Connecting to MySQL .. 902
6.2.15 SQL-Based Account Activity Auditing .. 907

6.3 Using Encrypted Connections .. 908
6.3.1 Configuring MySQL to Use Encrypted Connections .. 909
6.3.2 Encrypted Connection TLS Protocols and Ciphers ... 912
6.3.3 Creating SSL and RSA Certificates and Keys .. 916
6.3.4 SSL Library-Dependent Capabilities .. 922
6.3.5 Connecting to MySQL Remotely from Windows with SSH .. 923

6.4 Security Plugins .. 923
6.4.1 Authentication Plugins .. 924
6.4.2 The Connection-Control Plugins .. 954
6.4.3 The Password Validation Plugin ... 960
6.4.4 MySQL Enterprise Audit ... 967
6.4.5 MySQL Enterprise Firewall ... 994

6.5 MySQL Enterprise Encryption .. 1010
6.5.1 MySQL Enterprise Encryption Installation .. 1011
6.5.2 MySQL Enterprise Encryption Usage and Examples .. 1011
6.5.3 MySQL Enterprise Encryption Function Reference ... 1014
6.5.4 MySQL Enterprise Encryption Function Descriptions .. 1014

6.6 SELinux .. 1018
6.6.1 Check if SELinux is Enabled .. 1019
6.6.2 Changing the SELinux Mode .. 1020
6.6.3 MySQL Server SELinux Policies ... 1020
6.6.4 SELinux File Context .. 1020
6.6.5 SELinux TCP Port Context ... 1022

vii

MySQL 5.6 Reference Manual

6.6.6 Troubleshooting SELinux .. 1022
7 Backup and Recovery .. 1025

7.1 Backup and Recovery Types ... 1026
7.2 Database Backup Methods .. 1029
7.3 Example Backup and Recovery Strategy ... 1031

7.3.1 Establishing a Backup Policy .. 1032
7.3.2 Using Backups for Recovery ... 1034
7.3.3 Backup Strategy Summary ... 1034

7.4 Using mysqldump for Backups .. 1035
7.4.1 Dumping Data in SQL Format with mysqldump .. 1035
7.4.2 Reloading SQL-Format Backups ... 1036
7.4.3 Dumping Data in Delimited-Text Format with mysqldump 1037
7.4.4 Reloading Delimited-Text Format Backups .. 1038
7.4.5 mysqldump Tips ... 1038

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log .. 1040
7.5.1 Point-in-Time Recovery Using Event Times ... 1042
7.5.2 Point-in-Time Recovery Using Event Positions ... 1042

7.6 MyISAM Table Maintenance and Crash Recovery .. 1043
7.6.1 Using myisamchk for Crash Recovery ... 1043
7.6.2 How to Check MyISAM Tables for Errors .. 1044
7.6.3 How to Repair MyISAM Tables ... 1045
7.6.4 MyISAM Table Optimization .. 1047
7.6.5 Setting Up a MyISAM Table Maintenance Schedule ... 1048

8 Optimization .. 1049
8.1 Optimization Overview ... 1050
8.2 Optimizing SQL Statements .. 1052

8.2.1 Optimizing SELECT Statements .. 1052
8.2.2 Optimizing Subqueries and Derived Tables ... 1091
8.2.3 Optimizing INFORMATION_SCHEMA Queries .. 1101
8.2.4 Optimizing Data Change Statements ... 1106
8.2.5 Optimizing Database Privileges ... 1108
8.2.6 Other Optimization Tips .. 1108

8.3 Optimization and Indexes .. 1108
8.3.1 How MySQL Uses Indexes ... 1109
8.3.2 Primary Key Optimization ... 1110
8.3.3 Foreign Key Optimization ... 1110
8.3.4 Column Indexes ... 1110
8.3.5 Multiple-Column Indexes .. 1112
8.3.6 Verifying Index Usage .. 1113
8.3.7 InnoDB and MyISAM Index Statistics Collection ... 1113
8.3.8 Comparison of B-Tree and Hash Indexes .. 1115
8.3.9 Use of Index Extensions ... 1116
8.3.10 Indexed Lookups from TIMESTAMP Columns .. 1119

8.4 Optimizing Database Structure .. 1121
8.4.1 Optimizing Data Size .. 1121
8.4.2 Optimizing MySQL Data Types ... 1123
8.4.3 Optimizing for Many Tables .. 1124
8.4.4 Internal Temporary Table Use in MySQL ... 1126
8.4.5 Limits on Number of Databases and Tables .. 1128
8.4.6 Limits on Table Size .. 1128
8.4.7 Limits on Table Column Count and Row Size .. 1129

8.5 Optimizing for InnoDB Tables .. 1132
8.5.1 Optimizing Storage Layout for InnoDB Tables .. 1132
8.5.2 Optimizing InnoDB Transaction Management .. 1133

viii

MySQL 5.6 Reference Manual

8.5.3 Optimizing InnoDB Read-Only Transactions .. 1134
8.5.4 Optimizing InnoDB Redo Logging ... 1134
8.5.5 Bulk Data Loading for InnoDB Tables ... 1135
8.5.6 Optimizing InnoDB Queries .. 1136
8.5.7 Optimizing InnoDB DDL Operations .. 1137
8.5.8 Optimizing InnoDB Disk I/O .. 1137
8.5.9 Optimizing InnoDB Configuration Variables .. 1140
8.5.10 Optimizing InnoDB for Systems with Many Tables .. 1141

8.6 Optimizing for MyISAM Tables .. 1142
8.6.1 Optimizing MyISAM Queries ... 1142
8.6.2 Bulk Data Loading for MyISAM Tables .. 1143
8.6.3 Optimizing REPAIR TABLE Statements .. 1145

8.7 Optimizing for MEMORY Tables .. 1146
8.8 Understanding the Query Execution Plan ... 1146

8.8.1 Optimizing Queries with EXPLAIN ... 1146
8.8.2 EXPLAIN Output Format .. 1147
8.8.3 Extended EXPLAIN Output Format ... 1160
8.8.4 Estimating Query Performance ... 1162

8.9 Controlling the Query Optimizer ... 1163
8.9.1 Controlling Query Plan Evaluation ... 1163
8.9.2 Switchable Optimizations .. 1164
8.9.3 Index Hints .. 1167

8.10 Buffering and Caching ... 1169
8.10.1 InnoDB Buffer Pool Optimization ... 1169
8.10.2 The MyISAM Key Cache .. 1169
8.10.3 The MySQL Query Cache .. 1174
8.10.4 Caching of Prepared Statements and Stored Programs .. 1181

8.11 Optimizing Locking Operations .. 1182
8.11.1 Internal Locking Methods .. 1182
8.11.2 Table Locking Issues .. 1185
8.11.3 Concurrent Inserts .. 1186
8.11.4 Metadata Locking ... 1187
8.11.5 External Locking ... 1190

8.12 Optimizing the MySQL Server ... 1191
8.12.1 System Factors .. 1191
8.12.2 Optimizing Disk I/O .. 1192
8.12.3 Using Symbolic Links ... 1193
8.12.4 Optimizing Memory Use ... 1197

8.13 Measuring Performance (Benchmarking) .. 1200
8.13.1 Measuring the Speed of Expressions and Functions .. 1201
8.13.2 The MySQL Benchmark Suite ... 1201
8.13.3 Using Your Own Benchmarks ... 1202
8.13.4 Measuring Performance with performance_schema .. 1203

8.14 Examining Server Thread (Process) Information ... 1203
8.14.1 Accessing the Process List ... 1203
8.14.2 Thread Command Values ... 1205
8.14.3 General Thread States ... 1207
8.14.4 Delayed-Insert Thread States .. 1213
8.14.5 Query Cache Thread States ... 1214
8.14.6 Replication Source Thread States ... 1215
8.14.7 Replication Replica I/O Thread States ... 1215
8.14.8 Replication Replica SQL Thread States ... 1216
8.14.9 Replication Replica Connection Thread States ... 1217
8.14.10 NDB Cluster Thread States ... 1218

ix

MySQL 5.6 Reference Manual

8.14.11 Event Scheduler Thread States ... 1218
9 Language Structure ... 1221

9.1 Literal Values .. 1221
9.1.1 String Literals ... 1221
9.1.2 Numeric Literals ... 1224
9.1.3 Date and Time Literals ... 1224
9.1.4 Hexadecimal Literals .. 1227
9.1.5 Bit-Value Literals .. 1229
9.1.6 Boolean Literals ... 1230
9.1.7 NULL Values ... 1230

9.2 Schema Object Names ... 1230
9.2.1 Identifier Length Limits ... 1232
9.2.2 Identifier Qualifiers ... 1233
9.2.3 Identifier Case Sensitivity ... 1235
9.2.4 Mapping of Identifiers to File Names ... 1237
9.2.5 Function Name Parsing and Resolution ... 1239

9.3 Keywords and Reserved Words ... 1243
9.4 User-Defined Variables ... 1266
9.5 Expressions .. 1269
9.6 Comments .. 1274

10 Character Sets, Collations, Unicode .. 1277
10.1 Character Sets and Collations in General ... 1278
10.2 Character Sets and Collations in MySQL ... 1279

10.2.1 Character Set Repertoire .. 1281
10.2.2 UTF-8 for Metadata .. 1282

10.3 Specifying Character Sets and Collations ... 1284
10.3.1 Collation Naming Conventions .. 1284
10.3.2 Server Character Set and Collation ... 1285
10.3.3 Database Character Set and Collation ... 1286
10.3.4 Table Character Set and Collation .. 1287
10.3.5 Column Character Set and Collation ... 1287
10.3.6 Character String Literal Character Set and Collation ... 1289
10.3.7 The National Character Set .. 1291
10.3.8 Character Set Introducers ... 1291
10.3.9 Examples of Character Set and Collation Assignment .. 1293
10.3.10 Compatibility with Other DBMSs .. 1294

10.4 Connection Character Sets and Collations ... 1294
10.5 Configuring Application Character Set and Collation ... 1300
10.6 Error Message Character Set .. 1302
10.7 Column Character Set Conversion ... 1303
10.8 Collation Issues .. 1304

10.8.1 Using COLLATE in SQL Statements ... 1304
10.8.2 COLLATE Clause Precedence .. 1305
10.8.3 Character Set and Collation Compatibility .. 1305
10.8.4 Collation Coercibility in Expressions .. 1305
10.8.5 The binary Collation Compared to _bin Collations .. 1307
10.8.6 Examples of the Effect of Collation ... 1309
10.8.7 Using Collation in INFORMATION_SCHEMA Searches .. 1310

10.9 Unicode Support ... 1312
10.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding) 1314
10.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding) 1315
10.9.3 The utf8 Character Set (Alias for utf8mb3) ... 1315
10.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding) .. 1315
10.9.5 The utf16 Character Set (UTF-16 Unicode Encoding) ... 1316

x

MySQL 5.6 Reference Manual

10.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding) 1316
10.9.7 The utf32 Character Set (UTF-32 Unicode Encoding) ... 1316
10.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets 1317

10.10 Supported Character Sets and Collations ... 1319
10.10.1 Unicode Character Sets .. 1320
10.10.2 West European Character Sets ... 1326
10.10.3 Central European Character Sets .. 1327
10.10.4 South European and Middle East Character Sets ... 1328
10.10.5 Baltic Character Sets .. 1329
10.10.6 Cyrillic Character Sets .. 1329
10.10.7 Asian Character Sets .. 1330
10.10.8 The Binary Character Set ... 1333

10.11 Restrictions on Character Sets ... 1334
10.12 Setting the Error Message Language ... 1335
10.13 Adding a Character Set ... 1335

10.13.1 Character Definition Arrays ... 1337
10.13.2 String Collating Support for Complex Character Sets .. 1338
10.13.3 Multi-Byte Character Support for Complex Character Sets 1338

10.14 Adding a Collation to a Character Set .. 1339
10.14.1 Collation Implementation Types ... 1340
10.14.2 Choosing a Collation ID .. 1343
10.14.3 Adding a Simple Collation to an 8-Bit Character Set ... 1344
10.14.4 Adding a UCA Collation to a Unicode Character Set ... 1345

10.15 Character Set Configuration ... 1352
10.16 MySQL Server Locale Support ... 1353

11 Data Types .. 1359
11.1 Numeric Data Types ... 1360

11.1.1 Numeric Data Type Syntax ... 1360
11.1.2 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT,
BIGINT ... 1364
11.1.3 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC 1364
11.1.4 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE 1365
11.1.5 Bit-Value Type - BIT ... 1365
11.1.6 Numeric Type Attributes ... 1365
11.1.7 Out-of-Range and Overflow Handling .. 1366

11.2 Date and Time Data Types ... 1368
11.2.1 Date and Time Data Type Syntax ... 1369
11.2.2 The DATE, DATETIME, and TIMESTAMP Types ... 1372
11.2.3 The TIME Type .. 1373
11.2.4 The YEAR Type ... 1374
11.2.5 2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR 1374
11.2.6 Automatic Initialization and Updating for TIMESTAMP and DATETIME 1377
11.2.7 Fractional Seconds in Time Values ... 1381
11.2.8 Conversion Between Date and Time Types ... 1382
11.2.9 2-Digit Years in Dates .. 1383

11.3 String Data Types ... 1384
11.3.1 String Data Type Syntax ... 1384
11.3.2 The CHAR and VARCHAR Types ... 1387
11.3.3 The BINARY and VARBINARY Types ... 1389
11.3.4 The BLOB and TEXT Types ... 1391
11.3.5 The ENUM Type .. 1392
11.3.6 The SET Type ... 1395

11.4 Spatial Data Types ... 1398
11.4.1 Spatial Data Types ... 1399

xi

MySQL 5.6 Reference Manual

11.4.2 The OpenGIS Geometry Model ... 1400
11.4.3 Supported Spatial Data Formats ... 1406
11.4.4 Creating Spatial Columns ... 1409
11.4.5 Populating Spatial Columns .. 1409
11.4.6 Fetching Spatial Data ... 1410
11.4.7 Optimizing Spatial Analysis ... 1410
11.4.8 Creating Spatial Indexes ... 1411
11.4.9 Using Spatial Indexes ... 1412

11.5 Data Type Default Values ... 1414
11.6 Data Type Storage Requirements .. 1415
11.7 Choosing the Right Type for a Column .. 1420
11.8 Using Data Types from Other Database Engines .. 1420

12 Functions and Operators .. 1423
12.1 Built-In Function and Operator Reference ... 1424
12.2 Loadable Function Reference .. 1442
12.3 Type Conversion in Expression Evaluation ... 1442
12.4 Operators ... 1445

12.4.1 Operator Precedence ... 1446
12.4.2 Comparison Functions and Operators ... 1447
12.4.3 Logical Operators ... 1454
12.4.4 Assignment Operators .. 1456

12.5 Flow Control Functions .. 1457
12.6 Numeric Functions and Operators .. 1459

12.6.1 Arithmetic Operators ... 1460
12.6.2 Mathematical Functions .. 1462

12.7 Date and Time Functions .. 1471
12.8 String Functions and Operators ... 1493

12.8.1 String Comparison Functions and Operators .. 1510
12.8.2 Regular Expressions ... 1513
12.8.3 Character Set and Collation of Function Results .. 1519

12.9 What Calendar Is Used By MySQL? .. 1520
12.10 Full-Text Search Functions .. 1521

12.10.1 Natural Language Full-Text Searches .. 1522
12.10.2 Boolean Full-Text Searches .. 1525
12.10.3 Full-Text Searches with Query Expansion .. 1531
12.10.4 Full-Text Stopwords .. 1532
12.10.5 Full-Text Restrictions .. 1536
12.10.6 Fine-Tuning MySQL Full-Text Search .. 1537
12.10.7 Adding a User-Defined Collation for Full-Text Indexing 1540

12.11 Cast Functions and Operators ... 1541
12.12 XML Functions .. 1548
12.13 Bit Functions and Operators .. 1559
12.14 Encryption and Compression Functions .. 1561
12.15 Locking Functions ... 1571
12.16 Information Functions .. 1572
12.17 Spatial Analysis Functions ... 1583

12.17.1 Spatial Function Reference ... 1583
12.17.2 Argument Handling by Spatial Functions .. 1586
12.17.3 Functions That Create Geometry Values from WKT Values 1587
12.17.4 Functions That Create Geometry Values from WKB Values 1589
12.17.5 MySQL-Specific Functions That Create Geometry Values 1590
12.17.6 Geometry Format Conversion Functions .. 1591
12.17.7 Geometry Property Functions .. 1592
12.17.8 Spatial Operator Functions .. 1600

xii

MySQL 5.6 Reference Manual

12.17.9 Functions That Test Spatial Relations Between Geometry Objects 1601
12.18 Functions Used with Global Transaction IDs ... 1605
12.19 Aggregate Functions ... 1607

12.19.1 Aggregate Function Descriptions ... 1607
12.19.2 GROUP BY Modifiers ... 1612
12.19.3 MySQL Handling of GROUP BY ... 1615

12.20 Miscellaneous Functions .. 1616
12.21 Precision Math .. 1623

12.21.1 Types of Numeric Values .. 1624
12.21.2 DECIMAL Data Type Characteristics ... 1624
12.21.3 Expression Handling ... 1625
12.21.4 Rounding Behavior ... 1627
12.21.5 Precision Math Examples .. 1628

13 SQL Statements .. 1633
13.1 Data Definition Statements .. 1634

13.1.1 ALTER DATABASE Statement .. 1634
13.1.2 ALTER EVENT Statement .. 1635
13.1.3 ALTER FUNCTION Statement .. 1637
13.1.4 ALTER LOGFILE GROUP Statement .. 1637
13.1.5 ALTER PROCEDURE Statement .. 1639
13.1.6 ALTER SERVER Statement .. 1639
13.1.7 ALTER TABLE Statement ... 1639
13.1.8 ALTER TABLESPACE Statement ... 1660
13.1.9 ALTER VIEW Statement ... 1661
13.1.10 CREATE DATABASE Statement ... 1661
13.1.11 CREATE EVENT Statement .. 1662
13.1.12 CREATE FUNCTION Statement .. 1667
13.1.13 CREATE INDEX Statement .. 1667
13.1.14 CREATE LOGFILE GROUP Statement ... 1672
13.1.15 CREATE PROCEDURE and CREATE FUNCTION Statements 1674
13.1.16 CREATE SERVER Statement ... 1679
13.1.17 CREATE TABLE Statement .. 1681
13.1.18 CREATE TABLESPACE Statement ... 1718
13.1.19 CREATE TRIGGER Statement .. 1720
13.1.20 CREATE VIEW Statement .. 1722
13.1.21 DROP DATABASE Statement ... 1726
13.1.22 DROP EVENT Statement ... 1727
13.1.23 DROP FUNCTION Statement ... 1727
13.1.24 DROP INDEX Statement .. 1727
13.1.25 DROP LOGFILE GROUP Statement ... 1728
13.1.26 DROP PROCEDURE and DROP FUNCTION Statements 1728
13.1.27 DROP SERVER Statement ... 1729
13.1.28 DROP TABLE Statement .. 1729
13.1.29 DROP TABLESPACE Statement ... 1730
13.1.30 DROP TRIGGER Statement ... 1730
13.1.31 DROP VIEW Statement .. 1731
13.1.32 RENAME TABLE Statement ... 1731
13.1.33 TRUNCATE TABLE Statement .. 1732

13.2 Data Manipulation Statements ... 1733
13.2.1 CALL Statement ... 1733
13.2.2 DELETE Statement .. 1735
13.2.3 DO Statement .. 1739
13.2.4 HANDLER Statement ... 1739
13.2.5 INSERT Statement ... 1741

xiii

MySQL 5.6 Reference Manual

13.2.6 LOAD DATA Statement .. 1750
13.2.7 LOAD XML Statement .. 1762
13.2.8 REPLACE Statement .. 1769
13.2.9 SELECT Statement .. 1772
13.2.10 Subqueries ... 1788
13.2.11 UPDATE Statement .. 1801

13.3 Transactional and Locking Statements ... 1804
13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Statements 1804
13.3.2 Statements That Cannot Be Rolled Back ... 1807
13.3.3 Statements That Cause an Implicit Commit ... 1808
13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT
Statements ... 1809
13.3.5 LOCK TABLES and UNLOCK TABLES Statements ... 1809
13.3.6 SET TRANSACTION Statement .. 1815
13.3.7 XA Transactions ... 1818

13.4 Replication Statements .. 1822
13.4.1 SQL Statements for Controlling Replication Source Servers 1822
13.4.2 SQL Statements for Controlling Replica Servers .. 1825

13.5 Prepared Statements ... 1835
13.5.1 PREPARE Statement ... 1839
13.5.2 EXECUTE Statement ... 1840
13.5.3 DEALLOCATE PREPARE Statement .. 1840

13.6 Compound Statements .. 1840
13.6.1 BEGIN ... END Compound Statement .. 1840
13.6.2 Statement Labels ... 1841
13.6.3 DECLARE Statement ... 1842
13.6.4 Variables in Stored Programs ... 1842
13.6.5 Flow Control Statements ... 1844
13.6.6 Cursors .. 1848
13.6.7 Condition Handling ... 1850

13.7 Database Administration Statements .. 1875
13.7.1 Account Management Statements ... 1875
13.7.2 Table Maintenance Statements ... 1895
13.7.3 Plugin and Loadable Function Statements ... 1906
13.7.4 SET Statements ... 1909
13.7.5 SHOW Statements ... 1914
13.7.6 Other Administrative Statements ... 1964

13.8 Utility Statements .. 1975
13.8.1 DESCRIBE Statement .. 1975
13.8.2 EXPLAIN Statement ... 1975
13.8.3 HELP Statement .. 1977
13.8.4 USE Statement .. 1979

14 The InnoDB Storage Engine ... 1981
14.1 Introduction to InnoDB ... 1983

14.1.1 Benefits of Using InnoDB Tables .. 1984
14.1.2 Best Practices for InnoDB Tables .. 1985
14.1.3 Checking InnoDB Availability .. 1986
14.1.4 Testing and Benchmarking with InnoDB .. 1986
14.1.5 Turning Off InnoDB .. 1987

14.2 InnoDB and the ACID Model ... 1988
14.3 InnoDB Multi-Versioning .. 1989
14.4 InnoDB Architecture .. 1990
14.5 InnoDB In-Memory Structures .. 1991

14.5.1 Buffer Pool ... 1991

xiv

MySQL 5.6 Reference Manual

14.5.2 Change Buffer .. 1997
14.5.3 Adaptive Hash Index .. 2001
14.5.4 Log Buffer .. 2002

14.6 InnoDB On-Disk Structures .. 2002
14.6.1 Tables ... 2002
14.6.2 Indexes .. 2022
14.6.3 Tablespaces ... 2028
14.6.4 InnoDB Data Dictionary .. 2035
14.6.5 Doublewrite Buffer .. 2035
14.6.6 Redo Log ... 2035
14.6.7 Undo Logs ... 2036

14.7 InnoDB Locking and Transaction Model ... 2037
14.7.1 InnoDB Locking .. 2038
14.7.2 InnoDB Transaction Model .. 2042
14.7.3 Locks Set by Different SQL Statements in InnoDB ... 2050
14.7.4 Phantom Rows ... 2053
14.7.5 Deadlocks in InnoDB .. 2054

14.8 InnoDB Configuration .. 2057
14.8.1 InnoDB Startup Configuration .. 2057
14.8.2 Configuring InnoDB for Read-Only Operation ... 2062
14.8.3 InnoDB Buffer Pool Configuration .. 2063
14.8.4 Configuring the Memory Allocator for InnoDB .. 2070
14.8.5 Configuring Thread Concurrency for InnoDB .. 2070
14.8.6 Configuring the Number of Background InnoDB I/O Threads 2072
14.8.7 Using Asynchronous I/O on Linux ... 2072
14.8.8 Configuring InnoDB I/O Capacity ... 2073
14.8.9 Configuring Spin Lock Polling ... 2074
14.8.10 Purge Configuration .. 2075
14.8.11 Configuring Optimizer Statistics for InnoDB .. 2076
14.8.12 Configuring the Merge Threshold for Index Pages .. 2088

14.9 InnoDB Table Compression ... 2090
14.9.1 Overview of Table Compression ... 2090
14.9.2 Enabling Compression for a Table .. 2091
14.9.3 Tuning Compression for InnoDB Tables .. 2092
14.9.4 Monitoring InnoDB Table Compression at Runtime .. 2096
14.9.5 How Compression Works for InnoDB Tables ... 2097
14.9.6 Compression for OLTP Workloads .. 2100
14.9.7 SQL Compression Syntax Warnings and Errors ... 2101

14.10 InnoDB File-Format Management ... 2103
14.10.1 Enabling File Formats ... 2104
14.10.2 Verifying File Format Compatibility .. 2104
14.10.3 Identifying the File Format in Use .. 2107
14.10.4 Modifying the File Format ... 2108

14.11 InnoDB Row Formats .. 2108
14.12 InnoDB Disk I/O and File Space Management .. 2114

14.12.1 InnoDB Disk I/O ... 2114
14.12.2 File Space Management ... 2115
14.12.3 InnoDB Checkpoints ... 2116
14.12.4 Defragmenting a Table ... 2116
14.12.5 Reclaiming Disk Space with TRUNCATE TABLE ... 2117

14.13 InnoDB and Online DDL .. 2117
14.13.1 Online DDL Operations ... 2118
14.13.2 Online DDL Performance and Concurrency .. 2127
14.13.3 Online DDL Space Requirements .. 2130

xv

MySQL 5.6 Reference Manual

14.13.4 Simplifying DDL Statements with Online DDL .. 2131
14.13.5 Online DDL Failure Conditions .. 2131
14.13.6 Online DDL Limitations ... 2132

14.14 InnoDB Startup Options and System Variables ... 2133
14.15 InnoDB INFORMATION_SCHEMA Tables .. 2205

14.15.1 InnoDB INFORMATION_SCHEMA Tables about Compression 2206
14.15.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Information 2207
14.15.3 InnoDB INFORMATION_SCHEMA System Tables ... 2213
14.15.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables 2219
14.15.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables .. 2222
14.15.6 InnoDB INFORMATION_SCHEMA Metrics Table ... 2226

14.16 InnoDB Integration with MySQL Performance Schema .. 2235
14.16.1 Monitoring InnoDB Mutex Waits Using Performance Schema 2236

14.17 InnoDB Monitors ... 2240
14.17.1 InnoDB Monitor Types .. 2240
14.17.2 Enabling InnoDB Monitors .. 2241
14.17.3 InnoDB Standard Monitor and Lock Monitor Output .. 2244
14.17.4 InnoDB Tablespace Monitor Output ... 2249
14.17.5 InnoDB Table Monitor Output .. 2251

14.18 InnoDB Backup and Recovery ... 2255
14.18.1 InnoDB Backup .. 2255
14.18.2 InnoDB Recovery ... 2256

14.19 InnoDB and MySQL Replication ... 2258
14.20 InnoDB memcached Plugin .. 2260

14.20.1 Benefits of the InnoDB memcached Plugin .. 2260
14.20.2 InnoDB memcached Architecture .. 2261
14.20.3 Setting Up the InnoDB memcached Plugin .. 2265
14.20.4 Security Considerations for the InnoDB memcached Plugin 2271
14.20.5 Writing Applications for the InnoDB memcached Plugin 2273
14.20.6 The InnoDB memcached Plugin and Replication .. 2285
14.20.7 InnoDB memcached Plugin Internals ... 2289
14.20.8 Troubleshooting the InnoDB memcached Plugin .. 2294

14.21 InnoDB Troubleshooting .. 2296
14.21.1 Troubleshooting InnoDB I/O Problems ... 2296
14.21.2 Forcing InnoDB Recovery ... 2297
14.21.3 Troubleshooting InnoDB Data Dictionary Operations .. 2298
14.21.4 InnoDB Error Handling .. 2302

14.22 InnoDB Limits ... 2303
14.23 InnoDB Restrictions and Limitations ... 2304

15 Alternative Storage Engines ... 2307
15.1 Setting the Storage Engine .. 2311
15.2 The MyISAM Storage Engine .. 2311

15.2.1 MyISAM Startup Options .. 2314
15.2.2 Space Needed for Keys ... 2316
15.2.3 MyISAM Table Storage Formats ... 2316
15.2.4 MyISAM Table Problems .. 2319

15.3 The MEMORY Storage Engine .. 2320
15.4 The CSV Storage Engine .. 2325

15.4.1 Repairing and Checking CSV Tables .. 2326
15.4.2 CSV Limitations ... 2326

15.5 The ARCHIVE Storage Engine .. 2326
15.6 The BLACKHOLE Storage Engine ... 2328
15.7 The MERGE Storage Engine ... 2331

15.7.1 MERGE Table Advantages and Disadvantages .. 2333

xvi

MySQL 5.6 Reference Manual

15.7.2 MERGE Table Problems ... 2334
15.8 The FEDERATED Storage Engine ... 2336

15.8.1 FEDERATED Storage Engine Overview .. 2336
15.8.2 How to Create FEDERATED Tables ... 2337
15.8.3 FEDERATED Storage Engine Notes and Tips ... 2340
15.8.4 FEDERATED Storage Engine Resources .. 2341

15.9 The EXAMPLE Storage Engine ... 2341
15.10 Other Storage Engines .. 2342
15.11 Overview of MySQL Storage Engine Architecture ... 2342

15.11.1 Pluggable Storage Engine Architecture .. 2343
15.11.2 The Common Database Server Layer .. 2343

16 High Availability and Scalability .. 2345
16.1 Using ZFS Replication ... 2347

16.1.1 Using ZFS for File System Replication .. 2348
16.1.2 Configuring MySQL for ZFS Replication .. 2349
16.1.3 Handling MySQL Recovery with ZFS .. 2350

16.2 Using MySQL with memcached ... 2350
16.2.1 Installing memcached ... 2351
16.2.2 Using memcached .. 2353
16.2.3 Developing a memcached Application ... 2372
16.2.4 Getting memcached Statistics ... 2397
16.2.5 memcached FAQ ... 2407

17 Replication ... 2411
17.1 Replication Configuration ... 2412

17.1.1 How to Set Up Replication .. 2413
17.1.2 Replication Formats .. 2423
17.1.3 Replication with Global Transaction Identifiers ... 2431
17.1.4 Replication and Binary Logging Options and Variables ... 2440
17.1.5 Common Replication Administration Tasks .. 2506

17.2 Replication Implementation .. 2508
17.2.1 Replication Threads .. 2509
17.2.2 Relay Log and Replication Metadata Repositories .. 2512
17.2.3 How Servers Evaluate Replication Filtering Rules .. 2518

17.3 Replication Solutions ... 2524
17.3.1 Using Replication for Backups .. 2524
17.3.2 Handling an Unexpected Halt of a Replica Server .. 2528
17.3.3 Using Replication with Different Source and Replica Storage Engines 2530
17.3.4 Using Replication for Scale-Out .. 2531
17.3.5 Replicating Different Databases to Different Replicas ... 2533
17.3.6 Improving Replication Performance ... 2534
17.3.7 Switching Sources During Failover .. 2536
17.3.8 Setting Up Replication to Use Encrypted Connections .. 2538
17.3.9 Semisynchronous Replication ... 2540
17.3.10 Delayed Replication .. 2544

17.4 Replication Notes and Tips .. 2545
17.4.1 Replication Features and Issues ... 2545
17.4.2 Replication Compatibility Between MySQL Versions ... 2569
17.4.3 Upgrading a Replication Setup .. 2570
17.4.4 Troubleshooting Replication .. 2572
17.4.5 How to Report Replication Bugs or Problems .. 2573

18 MySQL NDB Cluster 7.3 and NDB Cluster 7.4 .. 2575
18.1 General Information ... 2577
18.2 NDB Cluster Overview .. 2579

18.2.1 NDB Cluster Core Concepts ... 2580

xvii

MySQL 5.6 Reference Manual

18.2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions 2583
18.2.3 NDB Cluster Hardware, Software, and Networking Requirements 2586
18.2.4 What is New in MySQL NDB Cluster ... 2587
18.2.5 NDB: Added, Deprecated, and Removed Options, Variables, and Parameters 2592
18.2.6 MySQL Server Using InnoDB Compared with NDB Cluster 2597
18.2.7 Known Limitations of NDB Cluster .. 2600

18.3 NDB Cluster Installation .. 2612
18.3.1 Installation of NDB Cluster on Linux .. 2614
18.3.2 Installing NDB Cluster on Windows ... 2621
18.3.3 Initial Configuration of NDB Cluster ... 2629
18.3.4 Initial Startup of NDB Cluster .. 2631
18.3.5 NDB Cluster Example with Tables and Data .. 2632
18.3.6 Safe Shutdown and Restart of NDB Cluster ... 2636
18.3.7 Upgrading and Downgrading NDB Cluster ... 2637
18.3.8 The NDB Cluster Auto-Installer (NO LONGER SUPPORTED) 2640

18.4 Configuration of NDB Cluster ... 2640
18.4.1 Quick Test Setup of NDB Cluster .. 2640
18.4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables 2642
18.4.3 NDB Cluster Configuration Files .. 2661
18.4.4 Using High-Speed Interconnects with NDB Cluster ... 2810

18.5 NDB Cluster Programs .. 2811
18.5.1 ndbd — The NDB Cluster Data Node Daemon .. 2811
18.5.2 ndbinfo_select_all — Select From ndbinfo Tables .. 2821
18.5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded) 2827
18.5.4 ndb_mgmd — The NDB Cluster Management Server Daemon 2828
18.5.5 ndb_mgm — The NDB Cluster Management Client .. 2840
18.5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster
Tables .. 2845
18.5.7 ndb_config — Extract NDB Cluster Configuration Information 2852
18.5.8 ndb_cpcd — Automate Testing for NDB Development .. 2864
18.5.9 ndb_delete_all — Delete All Rows from an NDB Table ... 2864
18.5.10 ndb_desc — Describe NDB Tables ... 2869
18.5.11 ndb_drop_index — Drop Index from an NDB Table .. 2877
18.5.12 ndb_drop_table — Drop an NDB Table ... 2882
18.5.13 ndb_error_reporter — NDB Error-Reporting Utility .. 2887
18.5.14 ndb_index_stat — NDB Index Statistics Utility .. 2888
18.5.15 ndb_move_data — NDB Data Copy Utility ... 2897
18.5.16 ndb_print_backup_file — Print NDB Backup File Contents 2902
18.5.17 ndb_print_file — Print NDB Disk Data File Contents ... 2903
18.5.18 ndb_print_frag_file — Print NDB Fragment List File Contents 2903
18.5.19 ndb_print_schema_file — Print NDB Schema File Contents 2904
18.5.20 ndb_print_sys_file — Print NDB System File Contents .. 2905
18.5.21 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log 2905
18.5.22 ndb_restore — Restore an NDB Cluster Backup .. 2908
18.5.23 ndb_select_all — Print Rows from an NDB Table ... 2934
18.5.24 ndb_select_count — Print Row Counts for NDB Tables 2941
18.5.25 ndb_show_tables — Display List of NDB Tables .. 2945
18.5.26 ndb_size.pl — NDBCLUSTER Size Requirement Estimator 2951
18.5.27 ndb_waiter — Wait for NDB Cluster to Reach a Given Status 2954

18.6 Management of NDB Cluster ... 2960
18.6.1 Commands in the NDB Cluster Management Client ... 2961
18.6.2 NDB Cluster Log Messages .. 2966
18.6.3 Event Reports Generated in NDB Cluster .. 2984
18.6.4 Summary of NDB Cluster Start Phases ... 2996

xviii

MySQL 5.6 Reference Manual

18.6.5 Performing a Rolling Restart of an NDB Cluster ... 2997
18.6.6 NDB Cluster Single User Mode ... 2999
18.6.7 Adding NDB Cluster Data Nodes Online .. 3000
18.6.8 Online Backup of NDB Cluster .. 3011
18.6.9 Importing Data Into MySQL Cluster ... 3016
18.6.10 MySQL Server Usage for NDB Cluster .. 3017
18.6.11 NDB Cluster Disk Data Tables .. 3019
18.6.12 Online Operations with ALTER TABLE in NDB Cluster 3026
18.6.13 Distributed Privileges Using Shared Grant Tables .. 3030
18.6.14 NDB API Statistics Counters and Variables .. 3033
18.6.15 ndbinfo: The NDB Cluster Information Database .. 3045
18.6.16 Quick Reference: NDB Cluster SQL Statements .. 3085
18.6.17 NDB Cluster Security Issues ... 3090

18.7 NDB Cluster Replication .. 3098
18.7.1 NDB Cluster Replication: Abbreviations and Symbols ... 3100
18.7.2 General Requirements for NDB Cluster Replication .. 3100
18.7.3 Known Issues in NDB Cluster Replication .. 3101
18.7.4 NDB Cluster Replication Schema and Tables .. 3108
18.7.5 Preparing the NDB Cluster for Replication ... 3115
18.7.6 Starting NDB Cluster Replication (Single Replication Channel) 3117
18.7.7 Using Two Replication Channels for NDB Cluster Replication 3119
18.7.8 Implementing Failover with NDB Cluster Replication .. 3120
18.7.9 NDB Cluster Backups With NDB Cluster Replication .. 3121
18.7.10 NDB Cluster Replication: Bidirectional and Circular Replication 3127
18.7.11 NDB Cluster Replication Conflict Resolution .. 3132

18.8 NDB Cluster Release Notes .. 3145
19 Partitioning .. 3147

19.1 Overview of Partitioning in MySQL ... 3149
19.2 Partitioning Types ... 3152

19.2.1 RANGE Partitioning .. 3154
19.2.2 LIST Partitioning ... 3158
19.2.3 COLUMNS Partitioning ... 3160
19.2.4 HASH Partitioning .. 3168
19.2.5 KEY Partitioning ... 3171
19.2.6 Subpartitioning ... 3173
19.2.7 How MySQL Partitioning Handles NULL .. 3176

19.3 Partition Management ... 3180
19.3.1 Management of RANGE and LIST Partitions .. 3181
19.3.2 Management of HASH and KEY Partitions .. 3187
19.3.3 Exchanging Partitions and Subpartitions with Tables .. 3188
19.3.4 Maintenance of Partitions ... 3194
19.3.5 Obtaining Information About Partitions ... 3195

19.4 Partition Pruning ... 3197
19.5 Partition Selection ... 3200
19.6 Restrictions and Limitations on Partitioning ... 3206

19.6.1 Partitioning Keys, Primary Keys, and Unique Keys ... 3214
19.6.2 Partitioning Limitations Relating to Storage Engines ... 3217
19.6.3 Partitioning Limitations Relating to Functions ... 3218
19.6.4 Partitioning and Locking ... 3220

20 Stored Objects ... 3223
20.1 Defining Stored Programs ... 3224
20.2 Using Stored Routines .. 3225

20.2.1 Stored Routine Syntax .. 3226
20.2.2 Stored Routines and MySQL Privileges ... 3227

xix

MySQL 5.6 Reference Manual

20.2.3 Stored Routine Metadata .. 3227
20.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() 3227

20.3 Using Triggers .. 3227
20.3.1 Trigger Syntax and Examples ... 3228
20.3.2 Trigger Metadata .. 3232

20.4 Using the Event Scheduler .. 3232
20.4.1 Event Scheduler Overview .. 3233
20.4.2 Event Scheduler Configuration .. 3234
20.4.3 Event Syntax .. 3236
20.4.4 Event Metadata .. 3236
20.4.5 Event Scheduler Status .. 3237
20.4.6 The Event Scheduler and MySQL Privileges .. 3237

20.5 Using Views .. 3240
20.5.1 View Syntax ... 3240
20.5.2 View Processing Algorithms .. 3241
20.5.3 Updatable and Insertable Views .. 3242
20.5.4 The View WITH CHECK OPTION Clause .. 3244
20.5.5 View Metadata ... 3244

20.6 Stored Object Access Control .. 3245
20.7 Stored Program Binary Logging ... 3248
20.8 Restrictions on Stored Programs ... 3254
20.9 Restrictions on Views .. 3258

21 INFORMATION_SCHEMA Tables .. 3261
21.1 Introduction ... 3262
21.2 INFORMATION_SCHEMA Table Reference ... 3265
21.3 INFORMATION_SCHEMA General Tables ... 3268

21.3.1 INFORMATION_SCHEMA General Table Reference ... 3268
21.3.2 The INFORMATION_SCHEMA CHARACTER_SETS Table 3269
21.3.3 The INFORMATION_SCHEMA COLLATIONS Table .. 3270
21.3.4 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY
Table .. 3270
21.3.5 The INFORMATION_SCHEMA COLUMNS Table .. 3271
21.3.6 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table 3273
21.3.7 The INFORMATION_SCHEMA ENGINES Table .. 3274
21.3.8 The INFORMATION_SCHEMA EVENTS Table .. 3275
21.3.9 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS
Tables .. 3279
21.3.10 The INFORMATION_SCHEMA GLOBAL_VARIABLES and
SESSION_VARIABLES Tables .. 3279
21.3.11 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table 3279
21.3.12 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table 3281
21.3.13 The INFORMATION_SCHEMA PARAMETERS Table .. 3281
21.3.14 The INFORMATION_SCHEMA PARTITIONS Table ... 3283
21.3.15 The INFORMATION_SCHEMA PLUGINS Table .. 3286
21.3.16 The INFORMATION_SCHEMA PROCESSLIST Table .. 3287
21.3.17 The INFORMATION_SCHEMA PROFILING Table ... 3289
21.3.18 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table 3290
21.3.19 The INFORMATION_SCHEMA ROUTINES Table .. 3291
21.3.20 The INFORMATION_SCHEMA SCHEMATA Table ... 3294
21.3.21 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table 3294
21.3.22 The INFORMATION_SCHEMA STATISTICS Table .. 3295
21.3.23 The INFORMATION_SCHEMA TABLES Table .. 3297
21.3.24 The INFORMATION_SCHEMA TABLESPACES Table 3300
21.3.25 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table 3300

xx

MySQL 5.6 Reference Manual

21.3.26 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table 3301
21.3.27 The INFORMATION_SCHEMA TRIGGERS Table .. 3302
21.3.28 The INFORMATION_SCHEMA USER_PRIVILEGES Table 3304
21.3.29 The INFORMATION_SCHEMA VIEWS Table .. 3304

21.4 INFORMATION_SCHEMA InnoDB Tables .. 3306
21.4.1 INFORMATION_SCHEMA InnoDB Table Reference .. 3306
21.4.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table 3307
21.4.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table 3310
21.4.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table 3313
21.4.5 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables 3317
21.4.6 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables .. 3318
21.4.7 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables ... 3319
21.4.8 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table 3321
21.4.9 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table 3322
21.4.10 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table 3323
21.4.11 The INFORMATION_SCHEMA INNODB_FT_DELETED Table 3324
21.4.12 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table 3325
21.4.13 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table 3326
21.4.14 The INFORMATION_SCHEMA INNODB_LOCKS Table 3328
21.4.15 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table 3329
21.4.16 The INFORMATION_SCHEMA INNODB_METRICS Table 3330
21.4.17 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table 3332
21.4.18 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table 3333
21.4.19 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table 3334
21.4.20 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table 3335
21.4.21 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table 3336
21.4.22 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table 3336
21.4.23 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table 3338
21.4.24 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table 3339
21.4.25 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View 3340
21.4.26 The INFORMATION_SCHEMA INNODB_TRX Table .. 3341

21.5 INFORMATION_SCHEMA NDB Cluster Tables .. 3344
21.5.1 The INFORMATION_SCHEMA FILES Table .. 3344
21.5.2 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table 3350

21.6 INFORMATION_SCHEMA Thread Pool Tables .. 3351
21.6.1 INFORMATION_SCHEMA Thread Pool Table Reference 3352
21.6.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table 3352
21.6.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table 3354
21.6.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table 3356

21.7 INFORMATION_SCHEMA Connection-Control Tables .. 3356
21.7.1 INFORMATION_SCHEMA Connection-Control Table Reference 3356
21.7.2 The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table 3357

21.8 INFORMATION_SCHEMA MySQL Enterprise Firewall Tables ... 3357
21.8.1 INFORMATION_SCHEMA Firewall Table Reference .. 3357
21.8.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table 3358
21.8.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table 3358

21.9 Extensions to SHOW Statements .. 3358
22 MySQL Performance Schema .. 3361

22.1 Performance Schema Quick Start .. 3363
22.2 Performance Schema Build Configuration .. 3369
22.3 Performance Schema Startup Configuration ... 3370

xxi

MySQL 5.6 Reference Manual

22.4 Performance Schema Runtime Configuration ... 3372
22.4.1 Performance Schema Event Timing .. 3373
22.4.2 Performance Schema Event Filtering ... 3376
22.4.3 Event Pre-Filtering .. 3378
22.4.4 Pre-Filtering by Instrument .. 3379
22.4.5 Pre-Filtering by Object .. 3380
22.4.6 Pre-Filtering by Thread ... 3382
22.4.7 Pre-Filtering by Consumer .. 3383
22.4.8 Example Consumer Configurations ... 3385
22.4.9 Naming Instruments or Consumers for Filtering Operations 3390
22.4.10 Determining What Is Instrumented ... 3391

22.5 Performance Schema Queries ... 3391
22.6 Performance Schema Instrument Naming Conventions ... 3392
22.7 Performance Schema Status Monitoring ... 3394
22.8 Performance Schema Atom and Molecule Events ... 3398
22.9 Performance Schema Tables for Current and Historical Events 3398
22.10 Performance Schema Statement Digests .. 3399
22.11 Performance Schema General Table Characteristics ... 3403
22.12 Performance Schema Table Descriptions ... 3404

22.12.1 Performance Schema Table Reference ... 3404
22.12.2 Performance Schema Setup Tables .. 3406
22.12.3 Performance Schema Instance Tables .. 3411
22.12.4 Performance Schema Wait Event Tables ... 3416
22.12.5 Performance Schema Stage Event Tables ... 3421
22.12.6 Performance Schema Statement Event Tables .. 3425
22.12.7 Performance Schema Connection Tables .. 3433
22.12.8 Performance Schema Connection Attribute Tables ... 3436
22.12.9 Performance Schema Summary Tables ... 3439
22.12.10 Performance Schema Miscellaneous Tables .. 3452

22.13 Performance Schema Option and Variable Reference ... 3460
22.14 Performance Schema Command Options ... 3463
22.15 Performance Schema System Variables ... 3464
22.16 Performance Schema Status Variables .. 3476
22.17 Performance Schema and Plugins ... 3479
22.18 Using the Performance Schema to Diagnose Problems ... 3479

22.18.1 Query Profiling Using Performance Schema .. 3480
22.19 Restrictions on Performance Schema ... 3482

23 Connectors and APIs ... 3483
23.1 MySQL Connector/C++ ... 3486
23.2 MySQL Connector/J .. 3486
23.3 MySQL Connector/NET ... 3486
23.4 MySQL Connector/ODBC .. 3486
23.5 MySQL Connector/Python ... 3486
23.6 libmysqld, the Embedded MySQL Server Library .. 3487

23.6.1 Compiling Programs with libmysqld ... 3487
23.6.2 Restrictions When Using the Embedded MySQL Server 3488
23.6.3 Options with the Embedded Server ... 3488
23.6.4 Embedded Server Examples ... 3489

23.7 MySQL C API ... 3492
23.8 MySQL PHP API .. 3492
23.9 MySQL Perl API ... 3492
23.10 MySQL Python API ... 3493
23.11 MySQL Ruby APIs .. 3493

23.11.1 The MySQL/Ruby API .. 3494

xxii

MySQL 5.6 Reference Manual

23.11.2 The Ruby/MySQL API .. 3494
23.12 MySQL Tcl API ... 3494
23.13 MySQL Eiffel Wrapper ... 3494

24 MySQL Enterprise Edition .. 3495
24.1 MySQL Enterprise Monitor Overview .. 3495
24.2 MySQL Enterprise Backup Overview .. 3496
24.3 MySQL Enterprise Security Overview ... 3497
24.4 MySQL Enterprise Encryption Overview ... 3497
24.5 MySQL Enterprise Audit Overview ... 3498
24.6 MySQL Enterprise Firewall Overview ... 3498
24.7 MySQL Enterprise Thread Pool Overview .. 3498
24.8 MySQL Enterprise Data Masking and De-Identification Overview 3498

25 MySQL Workbench .. 3501
A MySQL 5.6 Frequently Asked Questions .. 3503

A.1 MySQL 5.6 FAQ: General ... 3503
A.2 MySQL 5.6 FAQ: Storage Engines .. 3505
A.3 MySQL 5.6 FAQ: Server SQL Mode .. 3505
A.4 MySQL 5.6 FAQ: Stored Procedures and Functions ... 3506
A.5 MySQL 5.6 FAQ: Triggers .. 3510
A.6 MySQL 5.6 FAQ: Views .. 3512
A.7 MySQL 5.6 FAQ: INFORMATION_SCHEMA .. 3513
A.8 MySQL 5.6 FAQ: Migration ... 3514
A.9 MySQL 5.6 FAQ: Security ... 3514
A.10 MySQL 5.6 FAQ: NDB Cluster .. 3515
A.11 MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets 3529
A.12 MySQL 5.6 FAQ: Connectors & APIs .. 3541
A.13 MySQL 5.6 FAQ: C API, libmysql .. 3542
A.14 MySQL 5.6 FAQ: Replication .. 3542
A.15 MySQL 5.6 FAQ: MySQL Enterprise Thread Pool .. 3546
A.16 MySQL 5.6 FAQ: InnoDB Change Buffer ... 3548
A.17 MySQL 5.6 FAQ: Virtualization Support ... 3550

B Error Messages and Common Problems .. 3551
B.1 Error Message Sources and Elements ... 3551
B.2 Error Information Interfaces ... 3553
B.3 Problems and Common Errors .. 3554

B.3.1 How to Determine What Is Causing a Problem .. 3555
B.3.2 Common Errors When Using MySQL Programs .. 3556
B.3.3 Administration-Related Issues ... 3568
B.3.4 Query-Related Issues ... 3576
B.3.5 Optimizer-Related Issues ... 3583
B.3.6 Table Definition-Related Issues .. 3584
B.3.7 Known Issues in MySQL .. 3585

C Indexes ... 3589
MySQL Glossary ... 4199

xxiii

xxiv

Preface and Legal Notices
This is the Reference Manual for the MySQL Database System, version 5.6, through release 5.6.51.
Differences between minor versions of MySQL 5.6 are noted in the present text with reference to release
numbers (5.6.x). For license information, see the Legal Notices.

This manual is not intended for use with older versions of the MySQL software due to the many functional
and other differences between MySQL 5.6 and previous versions. If you are using an earlier release of
the MySQL software, please refer to the appropriate manual. For example, MySQL 5.5 Reference Manual
covers the 5.5 series of MySQL software releases.

If you are using MySQL 5.7, please refer to the MySQL 5.7 Reference Manual.

Licensing information—MySQL 5.6. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 5.6, see the MySQL 5.6 Commercial Release
License Information User Manual for licensing information, including licensing information relating to third-
party software that may be included in this Commercial release. If you are using a Community release
of MySQL 5.6, see the MySQL 5.6 Community Release License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Licensing information—MySQL NDB Cluster 7.3. This product may include third-party software, used
under license. If you are using a Commercial release of NDB Cluster 7.3, see the MySQL NDB Cluster
7.3 Commercial Release License Information User Manual for licensing information relating to third-party
software that may be included in this Commercial release. If you are using a Community release of NDB
Cluster 7.3, see the MySQL NDB Cluster 7.3 Community Release License Information User Manual for
licensing information relating to third-party software that may be included in this Community release.

Licensing information—MySQL NDB Cluster 7.4. This product may include third-party software, used
under license. If you are using a Commercial release of NDB Cluster 7.4, see the MySQL NDB Cluster
7.4 Commercial Release License Information User Manual for licensing information relating to third-party
software that may be included in this Commercial release. If you are using a Community release of NDB
Cluster 7.4, see the MySQL NDB Cluster 7.4 Community Release License Information User Manual for
licensing information relating to third-party software that may be included in this Community release.

Legal Notices
Copyright © 1997, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software

xxv

https://dev.mysql.com/doc/refman/5.5/en/
https://dev.mysql.com/doc/refman/5.7/en/
https://downloads.mysql.com/docs/licenses/mysqld-5.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.6-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.3-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.4-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.4-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.4-gpl-en.pdf

Documentation Accessibility

documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

xxvi

https://www.oracle.com/corporate/accessibility/

Access to Oracle Support for Accessibility

https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

xxvii

https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

xxviii

Chapter 1 General Information

Table of Contents
1.1 About This Manual ... 2
1.2 Overview of the MySQL Database Management System .. 4

1.2.1 What is MySQL? ... 4
1.2.2 The Main Features of MySQL .. 5
1.2.3 History of MySQL .. 8

1.3 What Is New in MySQL 5.6 .. 9
1.4 Server and Status Variables and Options Added, Deprecated, or Removed in MySQL 5.6 22
1.5 How to Report Bugs or Problems .. 37
1.6 MySQL Standards Compliance .. 42

1.6.1 MySQL Extensions to Standard SQL .. 43
1.6.2 MySQL Differences from Standard SQL .. 46
1.6.3 How MySQL Deals with Constraints ... 49

1.7 Credits ... 53
1.7.1 Contributors to MySQL ... 53
1.7.2 Documenters and translators .. 57
1.7.3 Packages that support MySQL ... 59
1.7.4 Tools that were used to create MySQL ... 59
1.7.5 Supporters of MySQL .. 60

The MySQL software delivers a very fast, multithreaded, multi-user, and robust SQL (Structured Query
Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems
as well as for embedding into mass-deployed software. Oracle is a registered trademark of Oracle
Corporation and/or its affiliates. MySQL is a trademark of Oracle Corporation and/or its affiliates, and shall
not be used by Customer without Oracle's express written authorization. Other names may be trademarks
of their respective owners.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an Open Source
product under the terms of the GNU General Public License (http://www.fsf.org/licenses/) or can purchase
a standard commercial license from Oracle. See http://www.mysql.com/company/legal/licensing/ for more
information on our licensing policies.

The following list describes some sections of particular interest in this manual:

• For a discussion of MySQL Database Server capabilities, see Section 1.2.2, “The Main Features of
MySQL”.

• For an overview of new MySQL features, see Section 1.3, “What Is New in MySQL 5.6”. For information
about the changes in each version, see the Release Notes.

• For installation instructions, see Chapter 2, Installing and Upgrading MySQL. For information about
upgrading MySQL, see Section 2.11, “Upgrading MySQL”.

• For a tutorial introduction to the MySQL Database Server, see Chapter 3, Tutorial.

• For information about configuring and administering MySQL Server, see Chapter 5, MySQL Server
Administration.

• For information about security in MySQL, see Chapter 6, Security.

• For information about setting up replication servers, see Chapter 17, Replication.

1

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/

About This Manual

• For information about MySQL Enterprise, the commercial MySQL release with advanced features and
management tools, see Chapter 24, MySQL Enterprise Edition.

• For answers to a number of questions that are often asked concerning the MySQL Database Server and
its capabilities, see Appendix A, MySQL 5.6 Frequently Asked Questions.

• For a history of new features and bug fixes, see the Release Notes.

Important

To report problems or bugs, please use the instructions at Section 1.5,
“How to Report Bugs or Problems”. If you find a security bug in MySQL
Server, please let us know immediately by sending an email message to
<secalert_us@oracle.com>. Exception: Support customers should report all
problems, including security bugs, to Oracle Support.

1.1 About This Manual
This is the Reference Manual for the MySQL Database System, version 5.6, through release 5.6.51.
Differences between minor versions of MySQL 5.6 are noted in the present text with reference to release
numbers (5.6.x). For license information, see the Legal Notices.

This manual is not intended for use with older versions of the MySQL software due to the many functional
and other differences between MySQL 5.6 and previous versions. If you are using an earlier release of
the MySQL software, please refer to the appropriate manual. For example, MySQL 5.5 Reference Manual
covers the 5.5 series of MySQL software releases.

If you are using MySQL 5.7, please refer to the MySQL 5.7 Reference Manual.

Because this manual serves as a reference, it does not provide general instruction on SQL or relational
database concepts. It also does not teach you how to use your operating system or command-line
interpreter.

The MySQL Database Software is under constant development, and the Reference Manual is updated
frequently as well. The most recent version of the manual is available online in searchable form at https://
dev.mysql.com/doc/. Other formats also are available there, including downloadable HTML and PDF
versions.

If you have questions about using MySQL, join the MySQL Community Slack. If you have suggestions
concerning additions or corrections to the manual itself, please send them to the http://www.mysql.com/
company/contact/.

Typographical and Syntax Conventions

This manual uses certain typographical conventions:

• Text in this style is used for SQL statements; database, table, and column names; program
listings and source code; and environment variables. Example: “To reload the grant tables, use the
FLUSH PRIVILEGES statement.”

• Text in this style indicates input that you type in examples.

• Text in this style indicates the names of executable programs and scripts, examples being
mysql (the MySQL command-line client program) and mysqld (the MySQL server executable).

• Text in this style is used for variable input for which you should substitute a value of your own
choosing.

2

https://dev.mysql.com/doc/relnotes/mysql/5.6/en/
https://dev.mysql.com/doc/refman/5.5/en/
https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/
https://dev.mysql.com/doc/
https://mysqlcommunity.slack.com/
http://www.mysql.com/company/contact/
http://www.mysql.com/company/contact/

Typographical and Syntax Conventions

• Text in this style is used for emphasis.

• Text in this style is used in table headings and to convey especially strong emphasis.

• Text in this style is used to indicate a program option that affects how the program is executed,
or that supplies information that is needed for the program to function in a certain way. Example: “The --
host option (short form -h) tells the mysql client program the hostname or IP address of the MySQL
server that it should connect to”.

• File names and directory names are written like this: “The global my.cnf file is located in the /etc
directory.”

• Character sequences are written like this: “To specify a wildcard, use the ‘%’ character.”

When commands or statements are prefixed by a prompt, we use these:

$> type a command here
#> type a command as root here
C:\> type a command here (Windows only)
mysql> type a mysql statement here

Commands are issued in your command interpreter. On Unix, this is typically a program such as sh, csh,
or bash. On Windows, the equivalent program is command.com or cmd.exe, typically run in a console
window. Statements prefixed by mysql are issued in the mysql command-line client.

Note

When you enter a command or statement shown in an example, do not type the
prompt shown in the example.

In some areas different systems may be distinguished from each other to show that commands should be
executed in two different environments. For example, while working with replication the commands might
be prefixed with source and replica:

source> type a mysql statement on the replication source here
replica> type a mysql statement on the replica here

Database, table, and column names must often be substituted into statements. To indicate that such
substitution is necessary, this manual uses db_name, tbl_name, and col_name. For example, you might
see a statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own database, table, and
column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;

SQL keywords are not case-sensitive and may be written in any lettercase. This manual uses uppercase.

In syntax descriptions, square brackets (“[” and “]”) indicate optional words or clauses. For example, in the
following statement, IF EXISTS is optional:

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are separated by vertical bars
(“|”). When one member from a set of choices may be chosen, the alternatives are listed within square
brackets (“[” and “]”):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

3

Manual Authorship

When one member from a set of choices must be chosen, the alternatives are listed within braces (“{” and
“}”):

{DESCRIBE | DESC} tbl_name [col_name | wild]

An ellipsis (...) indicates the omission of a section of a statement, typically to provide a shorter version of
more complex syntax. For example, SELECT ... INTO OUTFILE is shorthand for the form of SELECT
statement that has an INTO OUTFILE clause following other parts of the statement.

An ellipsis can also indicate that the preceding syntax element of a statement may be repeated. In
the following example, multiple reset_option values may be given, with each of those after the first
preceded by commas:

RESET reset_option [,reset_option] ...

Commands for setting shell variables are shown using Bourne shell syntax. For example, the sequence to
set the CC environment variable and run the configure command looks like this in Bourne shell syntax:

$> CC=gcc ./configure

If you are using csh or tcsh, you must issue commands somewhat differently:

$> setenv CC gcc
$> ./configure

Manual Authorship

The Reference Manual source files are written in DocBook XML format. The HTML version and other
formats are produced automatically, primarily using the DocBook XSL stylesheets. For information about
DocBook, see http://docbook.org/

This manual was originally written by David Axmark and Michael “Monty” Widenius. It is maintained by the
MySQL Documentation Team, consisting of Chris Cole, Aijaz Fatima, Edward Gilmore, Stefan Hinz, David
Hollis, Philip Olson, Daniel So, and Jon Stephens.

1.2 Overview of the MySQL Database Management System

1.2.1 What is MySQL?

MySQL, the most popular Open Source SQL database management system, is developed, distributed, and
supported by Oracle Corporation.

The MySQL website (http://www.mysql.com/) provides the latest information about MySQL software.

• MySQL is a database management system.

A database is a structured collection of data. It may be anything from a simple shopping list to a picture
gallery or the vast amounts of information in a corporate network. To add, access, and process data
stored in a computer database, you need a database management system such as MySQL Server.
Since computers are very good at handling large amounts of data, database management systems play
a central role in computing, as standalone utilities, or as parts of other applications.

• MySQL databases are relational.

 A relational database stores data in separate tables rather than putting all the data in one big storeroom.
The database structures are organized into physical files optimized for speed. The logical model,
with objects such as databases, tables, views, rows, and columns, offers a flexible programming
environment. You set up rules governing the relationships between different data fields, such as one-to-

4

http://docbook.org/
http://www.mysql.com/

The Main Features of MySQL

one, one-to-many, unique, required or optional, and “pointers” between different tables. The database
enforces these rules, so that with a well-designed database, your application never sees inconsistent,
duplicate, orphan, out-of-date, or missing data.

The SQL part of “MySQL” stands for “Structured Query Language”. SQL is the most common
standardized language used to access databases. Depending on your programming environment, you
might enter SQL directly (for example, to generate reports), embed SQL statements into code written in
another language, or use a language-specific API that hides the SQL syntax.

SQL is defined by the ANSI/ISO SQL Standard. The SQL standard has been evolving since 1986 and
several versions exist. In this manual, “SQL-92” refers to the standard released in 1992, “SQL:1999”
refers to the standard released in 1999, and “SQL:2003” refers to the current version of the standard. We
use the phrase “the SQL standard” to mean the current version of the SQL Standard at any time.

• MySQL software is Open Source.

 Open Source means that it is possible for anyone to use and modify the software. Anybody can
download the MySQL software from the Internet and use it without paying anything. If you wish, you
may study the source code and change it to suit your needs. The MySQL software uses the GPL (GNU
General Public License), http://www.fsf.org/licenses/, to define what you may and may not do with the
software in different situations. If you feel uncomfortable with the GPL or need to embed MySQL code
into a commercial application, you can buy a commercially licensed version from us. See the MySQL
Licensing Overview for more information (http://www.mysql.com/company/legal/licensing/).

• The MySQL Database Server is very fast, reliable, scalable, and easy to use.

If that is what you are looking for, you should give it a try. MySQL Server can run comfortably on a
desktop or laptop, alongside your other applications, web servers, and so on, requiring little or no
attention. If you dedicate an entire machine to MySQL, you can adjust the settings to take advantage
of all the memory, CPU power, and I/O capacity available. MySQL can also scale up to clusters of
machines, networked together.

MySQL Server was originally developed to handle large databases much faster than existing solutions
and has been successfully used in highly demanding production environments for several years.
Although under constant development, MySQL Server today offers a rich and useful set of functions.
Its connectivity, speed, and security make MySQL Server highly suited for accessing databases on the
Internet.

• MySQL Server works in client/server or embedded systems.

The MySQL Database Software is a client/server system that consists of a multithreaded SQL server
that supports different back ends, several different client programs and libraries, administrative tools, and
a wide range of application programming interfaces (APIs).

We also provide MySQL Server as an embedded multithreaded library that you can link into your
application to get a smaller, faster, easier-to-manage standalone product.

• A large amount of contributed MySQL software is available.

MySQL Server has a practical set of features developed in close cooperation with our users. It is very
likely that your favorite application or language supports the MySQL Database Server.

The official way to pronounce “MySQL” is “My Ess Que Ell” (not “my sequel”), but we do not mind if you
pronounce it as “my sequel” or in some other localized way.

1.2.2 The Main Features of MySQL

5

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/

The Main Features of MySQL

This section describes some of the important characteristics of the MySQL Database Software. In most
respects, the roadmap applies to all versions of MySQL. For information about features as they are
introduced into MySQL on a series-specific basis, see the “In a Nutshell” section of the appropriate Manual:

• MySQL 8.0: What Is New in MySQL 8.0

• MySQL 5.7: What Is New in MySQL 5.7

• MySQL 5.6: Section 1.3, “What Is New in MySQL 5.6”

Internals and Portability

• Written in C and C++.

• Tested with a broad range of different compilers.

• Works on many different platforms. See https://www.mysql.com/support/supportedplatforms/
database.html.

• For portability, configured using CMake.

• Tested with Purify (a commercial memory leakage detector) as well as with Valgrind, a GPL tool (http://
developer.kde.org/~sewardj/).

• Uses multi-layered server design with independent modules.

• Designed to be fully multithreaded using kernel threads, to easily use multiple CPUs if they are available.

• Provides transactional and nontransactional storage engines.

• Uses very fast B-tree disk tables (MyISAM) with index compression.

• Designed to make it relatively easy to add other storage engines. This is useful if you want to provide an
SQL interface for an in-house database.

• Uses a very fast thread-based memory allocation system.

• Executes very fast joins using an optimized nested-loop join.

• Implements in-memory hash tables, which are used as temporary tables.

• Implements SQL functions using a highly optimized class library that should be as fast as possible.
Usually there is no memory allocation at all after query initialization.

• Provides the server as a separate program for use in a client/server networked environment.

Data Types

• Many data types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT, DOUBLE, CHAR,
VARCHAR, BINARY, VARBINARY, TEXT, BLOB, DATE, TIME, DATETIME, TIMESTAMP, YEAR, SET, ENUM,
and OpenGIS spatial types. See Chapter 11, Data Types.

• Fixed-length and variable-length string types.

Statements and Functions

• Full operator and function support in the SELECT list and WHERE clause of queries. For example:

mysql> SELECT CONCAT(first_name, ' ', last_name)
 -> FROM citizen
 -> WHERE income/dependents > 10000 AND age > 30;

6

https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-nutshell.html
https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html
http://developer.kde.org/~sewardj/
http://developer.kde.org/~sewardj/

The Main Features of MySQL

• Full support for SQL GROUP BY and ORDER BY clauses. Support for group functions (COUNT(), AVG(),
STD(), SUM(), MAX(), MIN(), and GROUP_CONCAT()).

• Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard SQL and ODBC syntax.

• Support for aliases on tables and columns as required by standard SQL.

• Support for DELETE, INSERT, REPLACE, and UPDATE to return the number of rows that were changed
(affected), or to return the number of rows matched instead by setting a flag when connecting to the
server.

• Support for MySQL-specific SHOW statements that retrieve information about databases, storage
engines, tables, and indexes. Support for the INFORMATION_SCHEMA database, implemented according
to standard SQL.

• An EXPLAIN statement to show how the optimizer resolves a query.

• Independence of function names from table or column names. For example, ABS is a valid column name.
The only restriction is that for a function call, no spaces are permitted between the function name and
the “(” that follows it. See Section 9.3, “Keywords and Reserved Words”.

• You can refer to tables from different databases in the same statement.

Security

• A privilege and password system that is very flexible and secure, and that enables host-based
verification.

• Password security by encryption of all password traffic when you connect to a server.

Scalability and Limits

• Support for large databases. We use MySQL Server with databases that contain 50 million records. We
also know of users who use MySQL Server with 200,000 tables and about 5,000,000,000 rows.

• Support for up to 64 indexes per table. Each index may consist of 1 to 16 columns or parts of columns.
The maximum index width for InnoDB tables is either 767 bytes or 3072 bytes. See Section 14.22,
“InnoDB Limits”. The maximum index width for MyISAM tables is 1000 bytes. See Section 15.2, “The
MyISAM Storage Engine”. An index may use a prefix of a column for CHAR, VARCHAR, BLOB, or TEXT
column types.

Connectivity

• Clients can connect to MySQL Server using several protocols:

• Clients can connect using TCP/IP sockets on any platform.

• On Windows systems, clients can connect using named pipes if the server is started with the
named_pipe system variable enabled. Windows servers also support shared-memory connections
if started with the shared_memory system variable enabled. Clients can connect through shared
memory by using the --protocol=memory option.

• On Unix systems, clients can connect using Unix domain socket files.

• MySQL client programs can be written in many languages. A client library written in C is available for
clients written in C or C++, or for any language that provides C bindings.

• APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available, enabling MySQL clients to
be written in many languages. See Chapter 23, Connectors and APIs.

7

History of MySQL

• The Connector/ODBC (MyODBC) interface provides MySQL support for client programs that use ODBC
(Open Database Connectivity) connections. For example, you can use MS Access to connect to your
MySQL server. Clients can be run on Windows or Unix. Connector/ODBC source is available. All ODBC
2.5 functions are supported, as are many others. See MySQL Connector/ODBC Developer Guide.

• The Connector/J interface provides MySQL support for Java client programs that use JDBC connections.
Clients can be run on Windows or Unix. Connector/J source is available. See MySQL Connector/J 8.0
Developer Guide.

• MySQL Connector/NET enables developers to easily create .NET applications that require secure,
high-performance data connectivity with MySQL. It implements the required ADO.NET interfaces and
integrates into ADO.NET aware tools. Developers can build applications using their choice of .NET
languages. MySQL Connector/NET is a fully managed ADO.NET driver written in 100% pure C#. See
MySQL Connector/NET Developer Guide.

Localization

• The server can provide error messages to clients in many languages. See Section 10.12, “Setting the
Error Message Language”.

• Full support for several different character sets, including latin1 (cp1252), german, big5, ujis,
several Unicode character sets, and more. For example, the Scandinavian characters “å”, “ä” and “ö” are
permitted in table and column names.

• All data is saved in the chosen character set.

• Sorting and comparisons are done according to the default character set and collation. is possible
to change this when the MySQL server is started (see Section 10.3.2, “Server Character Set and
Collation”). To see an example of very advanced sorting, look at the Czech sorting code. MySQL Server
supports many different character sets that can be specified at compile time and runtime.

• The server time zone can be changed dynamically, and individual clients can specify their own time
zone. See Section 5.1.13, “MySQL Server Time Zone Support”.

Clients and Tools

• MySQL includes several client and utility programs. These include both command-line programs such as
mysqldump and mysqladmin, and graphical programs such as MySQL Workbench.

• MySQL Server has built-in support for SQL statements to check, optimize, and repair tables. These
statements are available from the command line through the mysqlcheck client. MySQL also includes
myisamchk, a very fast command-line utility for performing these operations on MyISAM tables. See
Chapter 4, MySQL Programs.

• MySQL programs can be invoked with the --help or -? option to obtain online assistance.

1.2.3 History of MySQL

We started out with the intention of using the mSQL database system to connect to our tables using our
own fast low-level (ISAM) routines. However, after some testing, we came to the conclusion that mSQL was
not fast enough or flexible enough for our needs. This resulted in a new SQL interface to our database but
with almost the same API interface as mSQL. This API was designed to enable third-party code that was
written for use with mSQL to be ported easily for use with MySQL.

MySQL is named after co-founder Monty Widenius's daughter, My.

The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen from a huge list of names
suggested by users in our “Name the Dolphin” contest. The winning name was submitted by Ambrose

8

https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-j/8.0/en/
https://dev.mysql.com/doc/connector-j/8.0/en/
https://dev.mysql.com/doc/connector-net/en/

What Is New in MySQL 5.6

Twebaze, an Open Source software developer from Eswatini (formerly Swaziland), Africa. According to
Ambrose, the feminine name Sakila has its roots in SiSwati, the local language of Eswatini. Sakila is also
the name of a town in Arusha, Tanzania, near Ambrose's country of origin, Uganda.

1.3 What Is New in MySQL 5.6
This section summarizes what has been added to, deprecated in, and removed from MySQL 5.6. A
companion section lists MySQL server options and variables that have been added, deprecated, or
removed in MySQL 5.6; see Section 1.4, “Server and Status Variables and Options Added, Deprecated, or
Removed in MySQL 5.6”.

• Features Added in MySQL 5.6

• Features Deprecated in MySQL 5.6

• Features Removed in MySQL 5.6

Features Added in MySQL 5.6

The following features have been added to MySQL 5.6:

• Security improvements. These security improvements were made:

• MySQL now provides a method for storing authentication credentials encrypted in an option file named
.mylogin.cnf. To create the file, use the mysql_config_editor utility. The file can be read later
by MySQL client programs to obtain authentication credentials for connecting to a MySQL server.
mysql_config_editor writes the .mylogin.cnf file using encryption so the credentials are not
stored as clear text, and its contents when decrypted by client programs are used only in memory.
In this way, passwords can be stored in a file in non-cleartext format and used later without ever
needing to be exposed on the command line or in an environment variable. For more information, see
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• MySQL now supports stronger encryption for user account passwords, available through an
authentication plugin named sha256_password that implements SHA-256 password hashing. This
plugin is built in, so it is always available and need not be loaded explicitly. For more information,
including instructions for creating accounts that use SHA-256 passwords, see Section 6.4.1.4,
“SHA-256 Pluggable Authentication”.

• The mysql.user system table now has a password_expired column. Its default value is 'N',
but can be set to 'Y' with the new ALTER USER statement. After an account's password has been
expired, all operations performed in subsequent connections to the server using the account result
in an error until the user issues a SET PASSWORD statement to establish a new account password.
For more information, see Section 13.7.1.1, “ALTER USER Statement”, and Section 6.2.10, “Server
Handling of Expired Passwords”.

• MySQL now has provision for checking password security:

• In statements that assign a password supplied as a cleartext value, the value is checked
against the current password policy and rejected if it is weak (the statement returns an
ER_NOT_VALID_PASSWORD error). This affects the CREATE USER, GRANT, and SET PASSWORD
statements. Passwords given as arguments to the PASSWORD() and OLD_PASSWORD() functions
are checked as well.

• The strength of potential passwords can be assessed using the new
VALIDATE_PASSWORD_STRENGTH() SQL function, which takes a password argument and returns
an integer from 0 (weak) to 100 (strong).

9

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_not_valid_password

Features Added in MySQL 5.6

Both capabilities are implemented by the validate_password plugin. For more information, see
Section 6.4.3, “The Password Validation Plugin”.

• mysql_upgrade now produces a warning if it finds user accounts with passwords hashed with
the older pre-4.1 hashing method. Such accounts should be updated to use more secure password
hashing. See Section 6.1.2.4, “Password Hashing in MySQL”

• On Unix platforms, mysql_install_db supports a new option, --random-passwords, that
provides for more secure MySQL installation. Invoking mysql_install_db with --random-
passwords causes it to assign a random password to the MySQL root accounts, set the “password
expired” flag for those accounts, and remove the anonymous-user MySQL accounts. For additional
details, see Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”.

• Logging has been modified so that passwords do not appear in plain text in statements written to the
general query log, slow query log, and binary log. See Section 6.1.2.3, “Passwords and Logging”.

The mysql client no longer logs to its history file statements that refer to passwords. See
Section 4.5.1.3, “mysql Client Logging”.

• START SLAVE syntax has been modified to permit connection parameters to be specified for
connecting to the source. This provides an alternative to storing the password in the master.info
file. See Section 13.4.2.5, “START SLAVE Statement”.

• MySQL now sets the access control granted to clients on the named pipe to the minimum necessary
for successful communication on Windows. Newer MySQL client software can open named pipe
connections without any additional configuration. If older client software cannot be upgraded
immediately, the new named_pipe_full_access_group system variable can be used to give a
Windows group the necessary permissions to open a named pipe connection. Membership in the full-
access group should be restricted and temporary.

• MySQL Enterprise. The format of the file generated by the audit log plugin was changed for better
compatibility with Oracle Audit Vault. See Section 6.4.4, “MySQL Enterprise Audit”, and Section 6.4.4.3,
“Audit Log File Formats”.

The audit log plugin included in MySQL Enterprise Edition now has the capability of filtering audited
events based on user account and event status. Several new system variables provide DBAs with
filtering control. In addition, audit log plugin reporting capability has been improved by the addition

10

Features Added in MySQL 5.6

of several status variables. For more information, see Section 6.4.4.4, “Configuring Audit Logging
Characteristics”, and Audit Log Plugin Status Variables.

MySQL Enterprise Edition now includes a set of encryption functions based on the OpenSSL library
that expose OpenSSL capabilities at the SQL level. These functions enable Enterprise applications to
perform the following operations:

• Implement added data protection using public-key asymmetric cryptography

• Create public and private keys and digital signatures

• Perform asymmetric encryption and decryption

• Use cryptographic hashing for digital signing and data verification and validation

For more information, see Section 6.5, “MySQL Enterprise Encryption”.

MySQL Enterprise Edition now includes MySQL Enterprise Firewall, an application-level firewall that
enables database administrators to permit or deny SQL statement execution based on matching against
allowlists of accepted statement patterns. This helps harden MySQL Server against attacks such as
SQL injection or attempts to exploit applications by using them outside of their legitimate query workload
characteristics. For more information, see Section 6.4.5, “MySQL Enterprise Firewall”.

• Changes to server defaults. Beginning with MySQL 5.6.6, several MySQL Server parameter
defaults differ from the defaults in previous releases. The motivation for these changes is to provide
better out-of-box performance and to reduce the need for database administrators to change settings
manually. For more information, see Section 5.1.2.1, “Changes to Server Defaults”.

• InnoDB enhancements. These InnoDB enhancements were added:

• You can create FULLTEXT indexes on InnoDB tables, and query them using the MATCH() ...
AGAINST syntax. This feature includes a new proximity search operator (@) and several new
configuration options and INFORMATION_SCHEMA tables: See Section 14.6.2.3, “InnoDB Full-Text
Indexes” for more information.

• Several ALTER TABLE operations can be performed without copying the table, without blocking
inserts, updates, and deletes to the table, or both. These enhancements are known collectively as
online DDL. See Section 14.13, “InnoDB and Online DDL” for details.

• InnoDB now supports the DATA DIRECTORY='directory' clause of the CREATE TABLE
statement, which permits creating tables outside of the data directory. This enhancement provides the
flexibility to createtables in locations that better suit your server environment. For example, you can
place busy tables on an SSD device, or large tables on a high-capacity HDD device.

For more information, see Section 14.6.1.2, “Creating Tables Externally”.

• InnoDB now supports the notion of “transportable tablespaces”, allowing file-per-table tablespaces
(.ibd files) to be exported from a running MySQL instance and imported into another running
instance without inconsistencies or mismatches caused by buffered data, in-progress transactions,
and internal bookkeeping details such as the space ID and LSN.

The FOR EXPORT clause of the FLUSH TABLE command writes any unsaved changes from InnoDB
memory buffers to the .ibd file. After copying the .ibd file and a separate metadata file to the

11

Features Added in MySQL 5.6

other server, the DISCARD TABLESPACE and IMPORT TABLESPACE clauses of the ALTER TABLE
statement are used to bring the table data into a different MySQL instance.

This enhancement provides the flexibility to move tables that reside in file-per-table tablespaces
around to better suit your server environment. For example, you could move busy tables to an
SSD device, or move large tables to a high-capacity HDD device. For more information, see
Section 14.6.1.3, “Importing InnoDB Tables”.

• You can now set the InnoDB page size for uncompressed tables to 8KB or 4KB, as an alternative
to the default 16KB. This setting is controlled by the innodb_page_size configuration option. You
specify the size when creating the MySQL instance. All InnoDB tablespaces within an instance share
the same page size. Smaller page sizes can help to avoid redundant or inefficient I/O for certain
combinations of workload and storage devices, particularly SSD devices with small block sizes.

• Improvements to the algorithms for adaptive flushing make I/O operations more efficient and
consistent under a variety of workloads. The new algorithm and default configuration values are
expected to improve performance and concurrency for most users. Advanced users can fine-tune their
I/O responsiveness through several configuration options. See Section 14.8.3.4, “Configuring Buffer
Pool Flushing” for details.

• You can code MySQL applications that access InnoDB tables through a NoSQL-style API. This
feature uses the popular memcached daemon to relay requests such as ADD, SET, and GET for key-
value pairs. These simple operations to store and retrieve data avoid the SQL overhead such as
parsing and constructing a query execution plan. You can access the same data through the NoSQL
API and SQL. For example, you might use the NoSQL API for fast updates and lookups, and SQL for
complex queries and compatibility with existing applications. See Section 14.20, “InnoDB memcached
Plugin” for details.

• Optimizer statistics for InnoDB tables are gathered at more predictable intervals and can persist
across server restarts, for improved plan stability. You can also control the amount of sampling done
for InnoDB indexes, to make the optimizer statistics more accurate and improve the query execution
plan. See Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters” for details.

• New optimizations apply to read-only transactions, improving performance and concurrency for ad-
hoc queries and report-generating applications. These optimizations are applied automatically when
practical, or you can specify START TRANSACTION READ ONLY to ensure the transaction is read-
only. See Section 8.5.3, “Optimizing InnoDB Read-Only Transactions” for details.

• You can move the InnoDB undo log out of the system tablespace into one or more separate
tablespaces. The I/O patterns for the undo log make these new tablespaces good candidates to
move to SSD storage, while keeping the system tablespace on hard disk storage. For details, see
Section 14.6.3.3, “Undo Tablespaces”.

• You can improve the efficiency of the InnoDB checksum feature by specifying the configuration option
innodb_checksum_algorithm=crc32, which turns on a faster checksum algorithm. This option
replaces the innodb_checksums option. Data written using the old checksum algorithm (option
value innodb) is fully upward-compatible; tablespaces modified using the new checksum algorithm
(option value crc32) cannot be downgraded to an earlier version of MySQL that does not support the
innodb_checksum_algorithm option.

• The InnoDB redo log files now have a maximum combined size of 512GB, increased from 4GB. You
can specify the larger values through the innodb_log_file_size option. The startup behavior now
automatically handles the situation where the size of the existing redo log files does not match the size
specified by innodb_log_file_size and innodb_log_files_in_group.

12

Features Added in MySQL 5.6

• The --innodb-read-only option lets you run a MySQL server in read-only mode. You can access
InnoDB tables on read-only media such as a DVD or CD, or set up a data warehouse with multiple
instances all sharing the same data directory. See Section 14.8.2, “Configuring InnoDB for Read-Only
Operation” for usage details.

• A new configuration option, innodb_compression_level, allows you to select a compression
level for InnoDB compressed tables, from the familiar range of 0-9 used by zlib. You can
also control whether compressed pages in the buffer pool are stored in the redo log when an
update operation causes pages to be compressed again. This behavior is controlled by the
innodb_log_compressed_pages configuration option.

• Data blocks in an InnoDB compressed table contain a certain amount of empty space (padding)
to allow DML operations to modify the row data without re-compressing the new values. Too much
padding can increase the chance of a compression failure, requiring a page split, when the data does
need to be re-compressed after extensive changes. The amount of padding can now be adjusted
dynamically, so that DBAs can reduce the rate of compression failures without re-creating the
entire table with new parameters, or re-creating the entire instance with a different page size. The
associated new configuration options are innodb_compression_failure_threshold_pct,
innodb_compression_pad_pct_max.

• Several new InnoDB-related INFORMATION_SCHEMA tables provide information about the InnoDB
buffer pool, metadata about tables, indexes, and foreign keys from the InnoDB data dictionary,
and low-level information about performance metrics that complements the information from the
Performance Schema tables.

• To ease the memory load on systems with huge numbers of tables, InnoDB now frees up the memory
associated with an opened table using an LRU algorithm to select tables that have gone the longest
without being accessed. To reserve more memory to hold metadata for open InnoDB tables, increase
the value of the table_definition_cache configuration option. InnoDB treats this value as a
“soft limit” for the number of open table instances in the InnoDB data dictionary cache. For additional
information, refer to the table_definition_cache documentation.

• InnoDB has several internal performance enhancements, including reducing contention by splitting
the kernel mutex, moving flushing operations from the main thread to a separate thread, enabling
multiple purge threads, and reducing contention for the buffer pool on large-memory systems.

• InnoDB uses a new, faster algorithm to detect deadlocks. Information about all InnoDB deadlocks
can be written to the MySQL server error log, to help diagnose application issues.

• To avoid a lengthy warmup period after restarting the server, particularly for instances with large
InnoDB buffer pools, you can reload pages into the buffer pool immediately after a restart. MySQL
can dump a compact data file at shutdown, then consult that data file to find the pages to reload
on the next restart. You can also manually dump or reload the buffer pool at any time, for example
during benchmarking or after complex report-generation queries. See Section 14.8.3.5, “Saving and
Restoring the Buffer Pool State” for details.

• As of MySQL 5.6.16, innochecksum provides support for files greater than 2GB in size. Previously,
innochecksum only supported files up to 2GB in size.

• As of MySQL 5.6.16, new global configuration parameters, innodb_status_output and
innodb_status_output_locks, allow you to dynamically enable and disable the standard InnoDB
Monitor and InnoDB Lock Monitor for periodic output. Enabling and disabling monitors for periodic
output by creating and dropping specially named tables is deprecated and may be removed in a future
release. For additional information, see Section 14.17, “InnoDB Monitors”.

13

Features Added in MySQL 5.6

• As of MySQL 5.6.17, Online DDL support is extended to the following operations for regular and
partitioned InnoDB tables:

• OPTIMIZE TABLE

• ALTER TABLE ... FORCE

• ALTER TABLE ... ENGINE=INNODB (when run on an InnoDB table)

Online DDL support reduces table rebuild time and permits concurrent DML. See Section 14.13,
“InnoDB and Online DDL”.

• As of MySQL 5.6.42, the zlib library version bundled with MySQL was raised from version 1.2.3 to
version 1.2.11. MySQL implements compression with the help of the zlib library.

If you use InnoDB compressed tables, see Section 2.11.3, “Changes in MySQL 5.6” for related
upgrade implications.

• Partitioning. These table-partitioning enhancements were added:

• The maximum number of partitions is increased to 8192. This number includes all partitions and all
subpartitions of the table.

• It is now possible to exchange a partition of a partitioned table or a subpartition of a subpartitioned
table with a nonpartitioned table that otherwise has the same structure using the ALTER TABLE ...
EXCHANGE PARTITION statement. This can be used, for example, to import and export partitions. For
more information and examples, see Section 19.3.3, “Exchanging Partitions and Subpartitions with
Tables”.

• Explicit selection of one or more partitions or subpartitions is now supported for queries, as well as
for many data modification statements, that act on partitioned tables. For example, assume a table t
with some integer column c has 4 partitions named p0, p1, p2, and p3. Then the query SELECT *
FROM t PARTITION (p0, p1) WHERE c < 5 returns only those rows from partitions p0 and p1
for which c is less than 5.

The following statements support explicit partition selection:

• SELECT

• DELETE

• INSERT

• REPLACE

• UPDATE

• LOAD DATA.

• LOAD XML.

For syntax, see the descriptions of the individual statements. For additional information and examples,
see Section 19.5, “Partition Selection”.

• Partition lock pruning greatly improves performance of many DML and DDL statements acting on
tables with many partitions by helping to eliminate locks on partitions that are not affected by these

14

http://www.zlib.net/

Features Added in MySQL 5.6

statements. Such statements include many SELECT, SELECT ... PARTITION, UPDATE, REPLACE,
INSERT, as well as many other statements. For more information, including a complete listing of
the statements whose performance has thus been improved, see Section 19.6.4, “Partitioning and
Locking”.

• Performance Schema. The Performance Schema includes several new features:

• Instrumentation for table input and output. Instrumented operations include row-level accesses to
persistent base tables or temporary tables. Operations that affect rows are fetch, insert, update, and
delete.

• Event filtering by table, based on schema and/or table names.

• Event filtering by thread. More information is collected for threads.

• Summary tables for table and index I/O, and for table locks.

• Instrumentation for statements and stages within statements.

• Configuration of instruments and consumers at server startup, which previously was possible only at
runtime.

• MySQL NDB Cluster. MySQL NDB Cluster is released as a separate product; the most recent GA
releases are based on MySQL 5.6 and use version 7.3 of the NDB storage engine. Clustering support is
not available in mainline MySQL Server 5.6 releases. For more information about MySQL NDB Cluster
7.3, see Chapter 18, MySQL NDB Cluster 7.3 and NDB Cluster 7.4. The latest current development
version is MySQL NDB Cluster 7.4, based on version 7.4 of the NDB storage engine and MySQL Server
5.6. MySQL NDB Cluster 7.4 is currently available for testing and evaluation. The most recent MySQL
NDB Cluster 7.4 release can be obtained from https://dev.mysql.com/downloads/cluster/.

For more information and an overview of improvements made in MySQL NDB Cluster 7.4, see
Section 18.2.4.2, “What is New in NDB Cluster 7.4”.

MySQL NDB Cluster 7.2, the previous GA release, is based on MySQL Server 5.5, although we
recommend that new deployments use MySQL NDB Cluster 7.3.

• Replication and logging. These replication enhancements were added:

• MySQL now supports transaction-based replication using global transaction identifiers (also known
as “GTIDs”). This makes it possible to identify and track each transaction when it is committed on the
originating server and as it is applied by any replicas.

Enabling of GTIDs in a replication setup is done primarily using the new gtid_mode and
enforce_gtid_consistency system variables. For information about additional options and
variables introduced in support of GTIDs, see Section 17.1.4.5, “Global Transaction ID Options and
Variables”.

When using GTIDs it is not necessary to refer to log files or positions within those files when starting a
new replica or failing over to a new source, which greatly simplifies these tasks. For more information

15

https://dev.mysql.com/downloads/cluster/

Features Added in MySQL 5.6

about provisioning servers for GTID replication with or without referring to binary log files, see
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”.

GTID-based replication is completely transaction-based, which makes it simple to check the
consistency of sources and replicas. If all transactions committed on a given source are also
committed on a given replica, consistency between the two servers is guaranteed.

For more complete information about the implementation and use of GTIDs in MySQL Replication, see
Section 17.1.3, “Replication with Global Transaction Identifiers”.

• MySQL row-based replication now supports row image control. By logging only those columns
required for uniquely identifying and executing changes on each row (as opposed to all columns) for
each row change, it is possible to save disk space, network resources, and memory usage. You can
determine whether full or minimal rows are logged by setting the binlog_row_image server system
variable to one of the values minimal (log required columns only), full (log all columns), or noblob
(log all columns except for unneeded BLOB or TEXT columns). See System Variables Used with Binary
Logging, for more information.

• Binary logs written and read by the MySQL Server are now crash-safe, because only complete events
(or transactions) are logged or read back. By default, the server logs the length of the event as well
as the event itself and uses this information to verify that the event was written correctly. You can
also cause the server to write checksums for the events using CRC32 checksums by setting the
binlog_checksum system variable. To cause the server to read checksums from the binary log, use
the master_verify_checksum system variable. The --slave-sql-verify-checksum system
variable causes the replica SQL thread to read checksums from the relay log.

• MySQL now supports logging of source connection information and of replica relay log
information to tables as well as files. Use of these tables can be controlled independently, by the
master_info_repository and relay_log_info_repository system variable system
variables. Setting master_info_repository to TABLE causes connection information logging to
the slave_master_info table. Setting relay_log_info_repository to TABLE causes relay log
information logging to the slave_relay_log_info table. Both tables are created automatically in
the mysql system database.

In order for replication to be resilient to unexpected halts, the slave_master_info and
slave_relay_log_info tables must each use a transactional storage engine, and beginning with
MySQL 5.6.6, these tables are created using InnoDB for this reason. (Bug #13538891) If you are
using a previous MySQL 5.6 release in which both of these tables use MyISAM, this means that,
prior to starting replication, you must convert both of them to a transactional storage engine (such as
InnoDB) if you wish for replication to be resilient to unexpected halts. You can do this in such cases
by means of the appropriate ALTER TABLE ... ENGINE=... statements. You should not attempt
to change the storage engine used by either of these tables while replication is actually running.

See Section 17.3.2, “Handling an Unexpected Halt of a Replica Server”, for more information.

• mysqlbinlog now has the capability to back up a binary log in its original binary format. When
invoked with the --read-from-remote-server and --raw options, mysqlbinlog connects
to a server, requests the log files, and writes output files in the same format as the originals. See
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”.

16

Features Added in MySQL 5.6

• MySQL now supports delayed replication such that a replica server deliberately lags behind the source
by at least a specified amount of time. The default delay is 0 seconds. Use the new MASTER_DELAY
option for CHANGE MASTER TO to set the delay.

Delayed replication can be used for purposes such as protecting against user mistakes on the source
(a DBA can roll back a delayed replica to the time just before the disaster) or testing how the system
behaves when there is a lag. See Section 17.3.10, “Delayed Replication”.

• A replica having multiple network interfaces can now be caused to use only one of these (to the
exclusion of the others) by using the MASTER_BIND option when issuing a CHANGE MASTER TO
statement.

• The log_bin_basename system variable has been added. This variable contains the complete
filename and path to the binary log file. Whereas the log_bin system variable shows only whether or
not binary logging is enabled, log_bin_basename reflects the name set with the --log-bin server
option.

Similarly, the relay_log_basename system variable shows the filename and complete path to the
relay log file.

• MySQL Replication now supports parallel execution of transactions with multithreading on the replica.
When parallel execution is enabled, the replica SQL thread acts as the coordinator for a number of
replica worker threads as determined by the value of the slave_parallel_workers server system
variable. The current implementation of multithreading on the replica assumes that data and updates
are partitioned on a per-database basis, and that updates within a given database occur in the same
relative order as they do on the source. However, it is not necessary to coordinate transactions
between different databases. Transactions can then also be distributed per database, which means
that a worker thread on the replica can process successive transactions on a given database without
waiting for updates to other databases to complete.

Since transactions on different databases can occur in a different order on the replica than on the
source, simply checking for the most recently executed transaction is not a guarantee that all previous
transactions on the source have been executed on the replica. This has implications for logging and
recovery when using a multithreaded replica. For information about how to interpret binary logging
information when using multithreading on the replica, see Section 13.7.5.35, “SHOW SLAVE STATUS
Statement”.

• Optimizer enhancements. These query optimizer improvements were implemented:

• The optimizer now more efficiently handles queries (and subqueries) of the following form:

SELECT ... FROM single_table ... ORDER BY non_index_column [DESC] LIMIT [M,]N;

That type of query is common in web applications that display only a few rows from a larger result set.
For example:

SELECT col1, ... FROM t1 ... ORDER BY name LIMIT 10;
SELECT col1, ... FROM t1 ... ORDER BY RAND() LIMIT 15;

The sort buffer has a size of sort_buffer_size. If the sort elements for N rows are small enough to
fit in the sort buffer (M+N rows if M was specified), the server can avoid using a merge file and perform
the sort entirely in memory. For details, see Section 8.2.1.16, “LIMIT Query Optimization”.

• The optimizer implements Disk-Sweep Multi-Range Read. Reading rows using a range scan on
a secondary index can result in many random disk accesses to the base table when the table is
large and not stored in the storage engine's cache. With the Disk-Sweep Multi-Range Read (MRR)

17

Features Added in MySQL 5.6

optimization, MySQL tries to reduce the number of random disk access for range scans by first
scanning the index only and collecting the keys for the relevant rows. Then the keys are sorted and
finally the rows are retrieved from the base table using the order of the primary key. The motivation
for Disk-sweep MRR is to reduce the number of random disk accesses and instead achieve a more
sequential scan of the base table data. For more information, see Section 8.2.1.10, “Multi-Range Read
Optimization”.

• The optimizer implements Index Condition Pushdown (ICP), an optimization for the case where
MySQL retrieves rows from a table using an index. Without ICP, the storage engine traverses the
index to locate rows in the base table and returns them to the MySQL server which evaluates the
WHERE condition for the rows. With ICP enabled, and if parts of the WHERE condition can be evaluated
by using only fields from the index, the MySQL server pushes this part of the WHERE condition down to
the storage engine. The storage engine then evaluates the pushed index condition by using the index
entry and only if this is satisfied is base row be read. ICP can reduce the number of accesses the
storage engine has to do against the base table and the number of accesses the MySQL server has to
do against the storage engine. For more information, see Section 8.2.1.5, “Index Condition Pushdown
Optimization”.

• The EXPLAIN statement now provides execution plan information for DELETE, INSERT, REPLACE,
and UPDATE statements. Previously, EXPLAIN provided information only for SELECT statements.
In addition, the EXPLAIN statement now can produce output in JSON format. See Section 13.8.2,
“EXPLAIN Statement”.

• The optimizer more efficiently handles subqueries in the FROM clause (that is, derived tables).
Materialization of subqueries in the FROM clause is postponed until their contents are needed during
query execution, which improves performance. In addition, during query execution, the optimizer
may add an index to a derived table to speed up row retrieval from it. For more information, see
Section 8.2.2.4, “Optimizing Derived Tables”.

• The optimizer uses semijoin and materialization strategies to optimize subquery execution. See
Section 8.2.2.1, “Optimizing Subqueries with Semijoin Transformations”, and Section 8.2.2.2,
“Optimizing Subqueries with Materialization”.

• A Batched Key Access (BKA) join algorithm is now available that uses both index access to the joined
table and a join buffer. The BKA algorithm supports inner join, outer join, and semijoin operations,
including nested outer joins and nested semijoins. Benefits of BKA include improved join performance
due to more efficient table scanning. For more information, see Section 8.2.1.11, “Block Nested-Loop
and Batched Key Access Joins”.

• The optimizer now has a tracing capability, primarily for use by developers. The interface is
provided by a set of optimizer_trace_xxx system variables and the Information Schema
OPTIMIZER_TRACE table. For details, see MySQL Internals: Tracing the Optimizer.

• Condition handling. MySQL now supports the GET DIAGNOSTICS statement. GET DIAGNOSTICS
provides applications a standardized way to obtain information from the diagnostics area, such as

18

https://dev.mysql.com/doc/internals/en/optimizer-tracing.html

Features Added in MySQL 5.6

whether the previous SQL statement produced an exception and what it was. For more information, see
Section 13.6.7.3, “GET DIAGNOSTICS Statement”.

In addition, several deficiencies in condition handler processing rules were corrected so that MySQL
behavior is more like standard SQL:

• Block scope is used in determining which handler to select. Previously, a stored program was treated
as having a single scope for handler selection.

• Condition precedence is more accurately resolved.

• Diagnostics area clearing has changed. Bug #55843 caused handled conditions to be cleared from
the diagnostics area before activating the handler. This made condition information unavailable within
the handler. Now condition information is available to the handler, which can inspect it with the GET
DIAGNOSTICS statement. The condition information is cleared when the handler exits, if it has not
already been cleared during handler execution.

• Previously, handlers were activated as soon as a condition occurred. Now they are not activated until
the statement in which the condition occurred finishes execution, at which point the most appropriate
handler is chosen. This can make a difference for statements that raise multiple conditions, if a
condition raised later during statement execution has higher precedence than an earlier condition and
there are handlers in the same scope for both conditions. Previously, the handler for the first condition
raised would be chosen, even if it had a lower precedence than other handlers. Now the handler
for the condition with highest precedence is chosen, even if it is not the first condition raised by the
statement.

For more information, see Section 13.6.7.6, “Scope Rules for Handlers”.

• Data types. These data type changes have been implemented:

• MySQL now permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision. See Section 11.2.7, “Fractional Seconds in Time Values”.

• Previously, at most one TIMESTAMP column per table could be automatically initialized or updated
to the current date and time. This restriction has been lifted. Any TIMESTAMP column definition can
have any combination of DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP
clauses. In addition, these clauses now can be used with DATETIME column definitions. For
more information, see Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and
DATETIME”.

• In MySQL, the TIMESTAMP data type differs in nonstandard ways from other data types in
terms of default value and assignment of automatic initialization and update attributes. These
behaviors remain the default but now are deprecated, and can be turned off by enabling the
explicit_defaults_for_timestamp system variable at server startup. See Section 11.2.6,
“Automatic Initialization and Updating for TIMESTAMP and DATETIME”, and Section 5.1.7, “Server
System Variables”.

• Host cache. MySQL now provides more information about the causes of errors that occur when
clients connect to the server, as well as improved access to the host cache, which contains client IP

19

Features Deprecated in MySQL 5.6

address and host name information and is used to avoid DNS lookups. These changes have been
implemented:

• New Connection_errors_xxx status variables provide information about connection errors that do
not apply to specific client IP addresses.

• Counters have been added to the host cache to track errors that do apply to specific IP addresses,
and a new host_cache Performance Schema table exposes the contents of the host cache so that
it can be examined using SELECT statements. Access to host cache contents makes it possible to
answer questions such as how many hosts are cached, what kinds of connection errors are occurring
for which hosts, or how close host error counts are to reaching the max_connect_errors system
variable limit.

• The host cache size now is configurable using the host_cache_size system variable.

For more information, see Section 5.1.11.2, “DNS Lookups and the Host Cache”, and
Section 22.12.10.1, “The host_cache Table”.

• OpenGIS. The OpenGIS specification defines functions that test the relationship between two
geometry values. MySQL originally implemented these functions such that they used object bounding
rectangles and returned the same result as the corresponding MBR-based functions. Corresponding
versions are now available that use precise object shapes. These versions are named with an ST_
prefix. For example, Contains() uses object bounding rectangles, whereas ST_Contains() uses
object shapes. For more information, see Section 12.17.9, “Functions That Test Spatial Relations
Between Geometry Objects”.

Features Deprecated in MySQL 5.6

The following features are deprecated in MySQL 5.6; you should expect them to be removed in a future
series. Where alternatives are shown, applications should be updated to use them.

For applications that use features deprecated in MySQL 5.6 that have been removed in a higher MySQL
series, statements may fail when replicated from a MySQL 5.6 source to a higher-series replica, or may
have different effects on source and replica. To avoid such problems, applications that use features
deprecated in 5.6 should be revised to avoid them and use alternatives when possible.

• The ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE SQL modes are
deprecated and setting the sql_mode value to include any of them generates a warning. In MySQL
5.7, these modes do nothing. Instead, their effects are included in the effects of strict SQL mode
(STRICT_ALL_TABLES or STRICT_TRANS_TABLES). The motivation for the change in MySQL 5.7 is to
reduce the number of SQL modes with an effect dependent on strict mode and make them part of strict
mode itself.

To make advance preparation for an upgrade to MySQL 5.7, see SQL Mode Changes in MySQL 5.7.
That discussion provides guidelines to assess whether your applications are affected by the SQL mode
changes in MySQL 5.7.

• Relying on implicit GROUP BY sorting in MySQL 5.6 is deprecated. To achieve a specific sort order of
grouped results, it is preferable to use an explicit ORDER BY clause. GROUP BY sorting is a MySQL
extension that may change in a future release; for example, to make it possible for the optimizer to order
groupings in whatever manner it deems most efficient and to avoid the sorting overhead.

• Pre-4.1 passwords and the mysql_old_password authentication plugin. Passwords stored in
the older hash format used before MySQL 4.1 are less secure than passwords that use the native
password hashing method and should be avoided. Pre-4.1 passwords and the mysql_old_password
authentication plugin are now deprecated. To prevent connections using accounts that have pre-4.1

20

https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sql-mode-changes

Features Removed in MySQL 5.6

password hashes, the secure_auth system variable is now enabled by default. (To permit connections
for accounts that have such password hashes, start the server with --secure_auth=0. However,
because pre-4.1 passwords are deprecated, disabling secure_auth is also deprecated.)

DBAs are advised to convert accounts that use the mysql_old_password authentication plugin to use
mysql_native_password instead. For account upgrade instructions, see Section 6.4.1.3, “Migrating
Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

The OLD_PASSWORD() function generates pre-4.1 password hashes, as does PASSWORD() if
the old_passwords system variable is set to 1. OLD_PASSWORD() and old_passwords=1 are
deprecated.

• The --skip-innodb option and its synonyms (--innodb=OFF, --disable-innodb, and so forth).

• The innodb_locks_unsafe_for_binlog system variable.

• The date_format, datetime_format, and time_format system variables, which are unused.

• The have_profiling, profiling, and profiling_history_size system variables.

• The innodb_use_sys_malloc and innodb_additional_mem_pool_size system variables.

• The timed_mutexes system variable. It does nothing and has no effect.

• The --language option. Use the --lc-messages-dir and --lc-messages options instead.

• The IGNORE clause for ALTER TABLE. ALTER IGNORE TABLE causes problems for replication,
prevents online ALTER TABLE for unique index creation, and causes problems with foreign keys (rows
removed in the parent table).

• The msql2mysql, mysql_convert_table_format, mysql_find_rows,
mysql_fix_extensions, mysql_setpermission, mysql_waitpid, mysql_zap, mysqlaccess,
and mysqlbug utilities.

• The mysqlhotcopy utility. Alternatives include mysqldump and MySQL Enterprise Backup.

Features Removed in MySQL 5.6

The following items are obsolete and have been removed in MySQL 5.6. Where alternatives are shown,
applications should be updated to use them.

For MySQL 5.5 applications that use features removed in MySQL 5.6, statements may fail when replicated
from a MySQL 5.5 source to a MySQL 5.6 replica, or may have different effects on source and replica. To
avoid such problems, applications that use features removed in MySQL 5.6 should be revised to avoid
them and use alternatives when possible.

• The --log server option and the log system variable. Instead, use the general_log system variable
to enable the general query log and the general_log_file system variable to set the general query
log file name.

• The log_slow_queries system variable. Instead, use the slow_query_log system variable to
enable the slow query log and the slow_query_log_file system variable to set the slow query log
file name.

• The --one-thread server option. Use --thread_handling=no-threads instead.

• The --safe-mode server option.

21

Server and Status Variables and Options Added, Deprecated, or Removed in MySQL 5.6

• The --skip-thread-priority server option.

• The --table-cache server option. Use the table_open_cache system variable instead.

• The --init-rpl-role and --rpl-recovery-rank options, the rpl_recovery_rank system
variable, and the Rpl_status status variable.

• The engine_condition_pushdown system variable. Use the engine_condition_pushdown flag
of the optimizer_switch variable instead.

• The have_csv, have_innodb, have_ndbcluster, and have_partitioning system variables. Use
SHOW PLUGINS or query the PLUGINS table in the INFORMATION_SCHEMA database instead.

• The sql_big_tables system variable. Use big_tables instead.

• The sql_low_priority_updates system variable. Use low_priority_updates instead.

• The sql_max_join_size system variable. Use max_join_size instead.

• The max_long_data_size system variable. Use max_allowed_packet instead.

• The FLUSH MASTER and FLUSH SLAVE statements. Use the RESET MASTER and RESET SLAVE
statements instead.

• The SLAVE START and SLAVE STOP statements. Use The START SLAVE and STOP SLAVE
statements.

• The SHOW AUTHORS and SHOW CONTRIBUTORS statements.

• The OPTION and ONE_SHOT modifiers for the SET statement.

• It is explicitly disallowed to assign the value DEFAULT to stored procedure or function parameters or
stored program local variables (for example with a SET var_name = DEFAULT statement). It remains
permissible to assign DEFAULT to system variables, as before.

• Most SHOW ENGINE INNODB MUTEX output is removed in 5.6.14. SHOW ENGINE INNODB MUTEX
output is removed entirely in MySQL 5.7.2. Comparable information can be generated by creating views
on Performance Schema tables.

1.4 Server and Status Variables and Options Added, Deprecated, or
Removed in MySQL 5.6

• Options and Variables Introduced in MySQL 5.6

• Options and Variables Deprecated in MySQL 5.6

• Options and Variables Removed in MySQL 5.6

This section lists server variables, status variables, and options that were added for the first time, have
been deprecated, or have been removed in MySQL 5.6.

Options and Variables Introduced in MySQL 5.6

The following system variables, status variables, and server options have been added in MySQL 5.6.

• Audit_log_current_size: Audit log file current size. Added in MySQL 5.6.20.

22

Options and Variables Introduced in MySQL 5.6

• Audit_log_event_max_drop_size: Size of largest dropped audited event. Added in MySQL 5.6.20.

• Audit_log_events: Number of handled audited events. Added in MySQL 5.6.20.

• Audit_log_events_filtered: Number of filtered audited events. Added in MySQL 5.6.20.

• Audit_log_events_lost: Number of dropped audited events. Added in MySQL 5.6.20.

• Audit_log_events_written: Number of written audited events. Added in MySQL 5.6.20.

• Audit_log_total_size: Combined size of written audited events. Added in MySQL 5.6.20.

• Audit_log_write_waits: Number of write-delayed audited events. Added in MySQL 5.6.20.

• Binlog_stmt_cache_disk_use: Number of nontransactional statements that used temporary file
instead of binary log statement cache. Added in MySQL 5.6.1.

• Binlog_stmt_cache_use: Number of statements that used temporary binary log statement cache.
Added in MySQL 5.6.1.

• Com_alter_user: Count of ALTER USER statements. Added in MySQL 5.6.6.

• Com_get_diagnostics: Count of GET DIAGNOSTICS statements. Added in MySQL 5.6.4.

• Connection_control_delay_generated: How many times server delayed connection request.
Added in MySQL 5.6.35.

• Connection_errors_accept: Number of errors calling accept on listening port. Added in MySQL
5.6.5.

• Connection_errors_internal: Number of connections refused due to internal errors. Added in
MySQL 5.6.5.

• Connection_errors_max_connections: Number of connections refused due to max_connections
limit. Added in MySQL 5.6.5.

• Connection_errors_peer_address: Number of errors searching for connection client IP addresses.
Added in MySQL 5.6.5.

• Connection_errors_select: Number of errors calling select/poll on listening port. Added in MySQL
5.6.5.

• Connection_errors_tcpwrap: Number of connections refused by libwrap. Added in MySQL 5.6.5.

• Firewall_access_denied: Number of statements rejected by MySQL Enterprise Firewall. Added in
MySQL 5.6.24.

• Firewall_access_granted: Number of statements accepted by MySQL Enterprise Firewall. Added
in MySQL 5.6.24.

• Firewall_cached_entries: Number of statements recorded by MySQL Enterprise Firewall. Added
in MySQL 5.6.24.

• Handler_external_lock: Number of locks started while statement executed. Added in MySQL 5.6.2.

• Handler_mrr_init: Number of times storage engine MRR implementation is used for table access.
Added in MySQL 5.6.1.

• Handler_read_last: Number of requests to read last index entry. Added in MySQL 5.6.1.

23

Options and Variables Introduced in MySQL 5.6

• Innodb_available_undo_logs: Total number of InnoDB rollback segments; different from
innodb_rollback_segments, which displays number of active rollback segments. Added in MySQL 5.6.5.

• Innodb_buffer_pool_bytes_data: Number of bytes containing data (dirty or clean) in buffer pool.
Added in MySQL 5.6.10.

• Innodb_buffer_pool_bytes_dirty: Number of bytes currently dirty in buffer pool. Added in MySQL
5.6.10.

• Innodb_buffer_pool_dump_status: Display status of buffer pool recording operation triggered by
innodb_buffer_pool_dump_at_shutdown or innodb_buffer_pool_dump_now. Added in MySQL 5.6.3.

• Innodb_buffer_pool_load_status: Display status of buffer pool warmup operation triggered by
innodb_buffer_pool_load_at_startup or innodb_buffer_pool_load_now. Added in MySQL 5.6.3.

• Innodb_num_open_files: Number of physical files currently opened by InnoDB. Added in MySQL
5.6.2.

• Last_query_partial_plans: Number of iterations in execution plan construction for previous
statement. Added in MySQL 5.6.5.

• Performance_schema_accounts_lost: How many accounts table rows could not be added. Added
in MySQL 5.6.3.

• Performance_schema_digest_lost: How many digests could not be instrumented. Added in
MySQL 5.6.5.

• Performance_schema_hosts_lost: How many hosts table rows could not be added. Added in
MySQL 5.6.3.

• Performance_schema_session_connect_attrs_lost: Number of connections for which attribute
strings could not be created. Added in MySQL 5.6.6.

• Performance_schema_socket_classes_lost: How many socket instruments could not be loaded.
Added in MySQL 5.6.3.

• Performance_schema_socket_instances_lost: How many socket instrument instances could not
be created. Added in MySQL 5.6.3.

• Performance_schema_stage_classes_lost: How many stage instruments could not be loaded.
Added in MySQL 5.6.3.

• Performance_schema_statement_classes_lost: How many statement instruments could not be
loaded. Added in MySQL 5.6.3.

• Performance_schema_users_lost: How many users table rows could not be added. Added in
MySQL 5.6.3.

• Rsa_public_key: sha256_password authentication plugin RSA public key value. Added in MySQL
5.6.6.

• Slave_last_heartbeat: Shows when latest heartbeat signal was received, in TIMESTAMP format.
Added in MySQL 5.6.1.

• Slave_rows_last_search_algorithm_used: Search algorithm most recently used by this replica
to locate rows for row-based replication (index, table, or hash scan). Added in MySQL 5.6.6.

• Ssl_server_not_after: SSL certificate last valid date. Added in MySQL 5.6.3.

24

Options and Variables Introduced in MySQL 5.6

• Ssl_server_not_before: SSL certificate first valid date. Added in MySQL 5.6.3.

• Table_open_cache_hits: Number of hits for open tables cache lookups. Added in MySQL 5.6.6.

• Table_open_cache_misses: Number of misses for open tables cache lookups. Added in MySQL
5.6.6.

• Table_open_cache_overflows: Number of overflows for open tables cache. Added in MySQL 5.6.6.

• audit-log: Whether to activate audit log plugin. Added in MySQL 5.6.10.

• audit_log_buffer_size: Size of audit log buffer. Added in MySQL 5.6.10.

• audit_log_connection_policy: Audit logging policy for connection-related events. Added in
MySQL 5.6.20.

• audit_log_current_session: Whether to audit current session. Added in MySQL 5.6.20.

• audit_log_exclude_accounts: Accounts not to audit. Added in MySQL 5.6.20.

• audit_log_file: Name of audit log file. Added in MySQL 5.6.10.

• audit_log_flush: Close and reopen audit log file. Added in MySQL 5.6.10.

• audit_log_format: Audit log file format. Added in MySQL 5.6.14.

• audit_log_include_accounts: Accounts to audit. Added in MySQL 5.6.20.

• audit_log_policy: Audit logging policy. Added in MySQL 5.6.10.

• audit_log_rotate_on_size: Close and reopen audit log file at this size. Added in MySQL 5.6.10.

• audit_log_statement_policy: Audit logging policy for statement-related events. Added in MySQL
5.6.20.

• audit_log_strategy: Audit logging strategy. Added in MySQL 5.6.10.

• authentication_windows_log_level: Windows authentication plugin logging level. Added in
MySQL 5.6.10.

• authentication_windows_use_principal_name: Whether to use Windows authentication plugin
principal name. Added in MySQL 5.6.10.

• avoid_temporal_upgrade: Whether ALTER TABLE should upgrade pre-5.6.4 temporal columns.
Added in MySQL 5.6.24.

• bind_address: IP address or host name to bind to. Added in MySQL 5.6.1.

• binlog-checksum: Enable/disable binary log checksums. Added in MySQL 5.6.2.

• binlog_checksum: Enable/disable binary log checksums. Added in MySQL 5.6.2.

• binlog_error_action: Controls what happens when server cannot write to binary log. Added in
MySQL 5.6.22.

• binlog_gtid_simple_recovery: Controls how binary logs are iterated during GTID recovery. Added
in MySQL 5.6.23.

• binlog_max_flush_queue_time: How long to read transactions before flushing to binary log. Added
in MySQL 5.6.6.

25

Options and Variables Introduced in MySQL 5.6

• binlog_order_commits: Whether to commit in same order as writes to binary log. Added in MySQL
5.6.6.

• binlog_row_image: Use full or minimal images when logging row changes. Added in MySQL 5.6.2.

• binlog_rows_query_log_events: When enabled, enables logging of rows query log events when
using row-based logging. Disabled by default. Do not enable when producing logs for pre-5.6 replicas/
readers. Added in MySQL 5.6.2.

• binlog_stmt_cache_size: Size of cache to hold nontransactional statements for binary log during
transaction. Added in MySQL 5.6.1.

• binlogging_impossible_mode: Deprecated and later removed. Use binlog_error_action instead.
Added in MySQL 5.6.20.

• block_encryption_mode: Mode for block-based encryption algorithms. Added in MySQL 5.6.17.

• connection_control_failed_connections_threshold: Consecutive failed connection attempts
before delays occur. Added in MySQL 5.6.35.

• connection_control_max_connection_delay: Maximum delay (milliseconds) for server response
to failed connection attempts. Added in MySQL 5.6.35.

• connection_control_min_connection_delay: Minimum delay (milliseconds) for server response
to failed connection attempts. Added in MySQL 5.6.35.

• core_file: Write core file on server crashes. Added in MySQL 5.6.2.

• daemon_memcached_enable_binlog: . Added in MySQL 5.6.6.

• daemon_memcached_engine_lib_name: Shared library implementing InnoDB memcached plugin.
Added in MySQL 5.6.6.

• daemon_memcached_engine_lib_path: Directory which contains shared library implementing
InnoDB memcached plugin. Added in MySQL 5.6.6.

• daemon_memcached_option: Space-separated options which are passed to underlying memcached
daemon on startup. Added in MySQL 5.6.6.

• daemon_memcached_r_batch_size: Specifies how many memcached read operations to perform
before doing COMMIT to start new transaction. Added in MySQL 5.6.6.

• daemon_memcached_w_batch_size: Specifies how many memcached write operations to perform
before doing COMMIT to start new transaction. Added in MySQL 5.6.6.

• default-authentication-plugin: Default authentication plugin. Added in MySQL 5.6.6.

• default_tmp_storage_engine: Default storage engine (table type) for TEMPORARY tables. Added
in MySQL 5.6.3.

• disable-gtid-unsafe-statements: Obsolete: Replaced by enforce_gtid_consistency in MySQL
5.6.9. Added in MySQL 5.6.5.

• disable_gtid_unsafe_statements: Obsolete: Replaced by enforce_gtid_consistency in MySQL
5.6.9. Added in MySQL 5.6.5.

• disconnect_on_expired_password: Whether server disconnects clients with expired passwords if
clients cannot handle such accounts. Added in MySQL 5.6.10.

26

Options and Variables Introduced in MySQL 5.6

• end_markers_in_json: Whether optimizer JSON output should add end markers. Added in MySQL
5.6.5.

• enforce_gtid_consistency: Prevents execution of statements that cannot be logged in
transactionally safe manner. Added in MySQL 5.6.9.

• eq_range_index_dive_limit: Cutoff for switching from index dives to index statistics. Added in
MySQL 5.6.5.

• explicit_defaults_for_timestamp: Whether TIMESTAMP columns are nullable and have
DEFAULT NULL. Added in MySQL 5.6.6.

• gtid_done: Obsolete: Replaced by gtid_executed in MySQL 5.6.9. Added in MySQL 5.6.5.

• gtid_executed: Global: All GTIDs in binary log (global) or current transaction (session). Read-only.
Added in MySQL 5.6.9.

• gtid_lost: Obsolete: Replaced by gtid_purged in MySQL 5.6.9. Added in MySQL 5.6.5.

• gtid_mode: Controls whether GTID based logging is enabled and what type of transactions logs can
contain. Added in MySQL 5.6.5.

• gtid_next: Specifies GTID for next statement to execute; see documentation for details. Added in
MySQL 5.6.5.

• gtid_owned: Set of GTIDs owned by this client (session), or by all clients, together with thread ID of
owner (global). Read-only. Added in MySQL 5.6.5.

• gtid_purged: Set of all GTIDs that have been purged from binary log. Added in MySQL 5.6.9.

• host_cache_size: Size of host cache. Added in MySQL 5.6.5.

• ignore-db-dir: Treat directory as nondatabase directory. Added in MySQL 5.6.3.

• ignore_db_dirs: Directories treated as nondatabase directories. Added in MySQL 5.6.3.

• innodb_adaptive_flushing_lwm: Low water mark representing percentage of redo log capacity at
which adaptive flushing is enabled. Added in MySQL 5.6.6.

• innodb_adaptive_max_sleep_delay: Allows InnoDB to adjust value of innodb_thread_sleep_delay
up or down automatically, according to current workload. Added in MySQL 5.6.3.

• innodb_api_bk_commit_interval: How often to auto-commit idle connections which use InnoDB
memcached interface, in seconds. Added in MySQL 5.6.7.

• innodb_api_disable_rowlock: . Added in MySQL 5.6.6.

• innodb_api_enable_binlog: Allows use of InnoDB memcached plugin with MySQL binary log.
Added in MySQL 5.6.6.

• innodb_api_enable_mdl: Locks table used by InnoDB memcached plugin, so that it cannot be
dropped or altered by DDL through SQL interface. Added in MySQL 5.6.6.

• innodb_api_trx_level: Allows control of transaction isolation level on queries processed by
memcached interface. Added in MySQL 5.6.6.

• innodb_buffer_pool_dump_at_shutdown: Specifies whether to record pages cached in InnoDB
buffer pool when MySQL server is shut down, to shorten warmup process at next restart. Added in
MySQL 5.6.3.

27

Options and Variables Introduced in MySQL 5.6

• innodb_buffer_pool_dump_now: Immediately record pages cached in InnoDB buffer pool. Added in
MySQL 5.6.3.

• innodb_buffer_pool_filename: Specifies file containing list of page numbers produced by
innodb_buffer_pool_dump_at_shutdown or innodb_buffer_pool_dump_now. Added in MySQL 5.6.3.

• innodb_buffer_pool_load_abort: Interrupts process of restoring InnoDB buffer pool contents
triggered by innodb_buffer_pool_load_at_startup or innodb_buffer_pool_load_now. Added in MySQL
5.6.3.

• innodb_buffer_pool_load_at_startup: Specifies that, on MySQL server startup, InnoDB buffer
pool is automatically "warmed up" by loading same pages it held at earlier time. Added in MySQL 5.6.3.

• innodb_buffer_pool_load_now: Immediately "warms up" InnoDB buffer pool by loading set of data
pages, without waiting for server restart. Added in MySQL 5.6.3.

• innodb_change_buffer_max_size: Maximum size for InnoDB change buffer, as percentage of total
size of buffer pool. Added in MySQL 5.6.2.

• innodb_checksum_algorithm: Specifies how to generate and verify checksum stored in each disk
block of each InnoDB tablespace. Added in MySQL 5.6.3.

• innodb_cmp_per_index_enabled: Enables per-index compression-related statistics in
INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX table. Added in MySQL 5.6.7.

• innodb_compression_failure_threshold_pct: Cutoff point at which MySQL begins adding
padding within compressed pages to avoid expensive compression failures. Added in MySQL 5.6.7.

• innodb_compression_level: Level of zlib compression to use for InnoDB compressed tables and
indexes. Added in MySQL 5.6.7.

• innodb_compression_pad_pct_max: Maximum percentage that can be reserved as free space
within each compressed page, to avoid compression failures when tightly packed data is recompressed.
Added in MySQL 5.6.7.

• innodb_disable_sort_file_cache: Disable OS file system cache for merge-sort temporary files.
Added in MySQL 5.6.4.

• innodb_fil_make_page_dirty_debug: Dirties first page of specified tablespace. Added in MySQL
5.6.17.

• innodb_flush_log_at_timeout: Write and flush logs every N seconds. Added in MySQL 5.6.6.

• innodb_flush_neighbors: Specifies whether or not flushing page from InnoDB buffer pool also
flushes other dirty pages in same extent. Added in MySQL 5.6.3.

• innodb_flushing_avg_loops: Number of iterations for which InnoDB keeps previously calculated
snapshot of flushing state, controlling how quickly adaptive flushing responds to changing workloads.
Added in MySQL 5.6.6.

• innodb_force_load_corrupted: Lets InnoDB load tables at startup that are marked as corrupted;
use only during troubleshooting. Added in MySQL 5.6.3.

• innodb_ft_aux_table: Qualified name of InnoDB table containing FULLTEXT index for diagnostic
purposes. Added in MySQL 5.6.4.

• innodb_ft_cache_size: Size of cache holding parsed document in memory while creating InnoDB
FULLTEXT index. Added in MySQL 5.6.4.

28

Options and Variables Introduced in MySQL 5.6

• innodb_ft_enable_diag_print: Whether to enable additional full-text search diagnostic output.
Added in MySQL 5.6.4.

• innodb_ft_enable_stopword: Omit stop words from search index during creation of InnoDB
FULLTEXT index. Added in MySQL 5.6.4.

• innodb_ft_max_token_size: Maximum length of words that are stored in InnoDB FULLTEXT index.
Added in MySQL 5.6.4.

• innodb_ft_min_token_size: Minimum length of words that are stored in InnoDB FULLTEXT index.
Added in MySQL 5.6.4.

• innodb_ft_num_word_optimize: Number of words to process during each OPTIMIZE TABLE
operation on InnoDB FULLTEXT index. Added in MySQL 5.6.4.

• innodb_ft_result_cache_limit: InnoDB FULLTEXT search query result cache limit. Added in
MySQL 5.6.13.

• innodb_ft_server_stopword_table: Specifies table holding list of stopwords
for InnoDB FULLTEXT indexes, overriding default stopword list; can be overridden by
innodb_ft_user_stopword_table. Added in MySQL 5.6.4.

• innodb_ft_sort_pll_degree: Number of threads used to create InnoDB FULLTEXT index in
parallel, when building search index for large table. Added in MySQL 5.6.4.

• innodb_ft_total_cache_size: Total memory allocated for InnoDB FULLTEXT search index cache.
Added in MySQL 5.6.13.

• innodb_ft_user_stopword_table: Specifies table holding list of stopwords for InnoDB FULLTEXT
indexes, overriding default stopword list as well as innodb_ft_server_stopword_table. Added in MySQL
5.6.4.

• innodb_io_capacity_max: Limit up to which InnoDB is allowed to extend innodb_io_capacity setting
in case of emergency. Added in MySQL 5.6.6.

• innodb_large_prefix: Enables longer keys for column prefix indexes. Added in MySQL 5.6.3.

• innodb_log_checkpoint_now: Debug option that forces InnoDB to write checkpoint. Added in
MySQL 5.6.12.

• innodb_log_compressed_pages: Specifies whether images of re-compressed pages are stored in
InnoDB redo logs. Added in MySQL 5.6.11.

• innodb_lru_scan_depth: Influences algorithms and heuristics for flush operation for InnoDB buffer
pool. Added in MySQL 5.6.3.

• innodb_max_dirty_pages_pct_lwm: Low water mark representing percentage of dirty pages where
preflushing is enabled to control dirty page ratio. Added in MySQL 5.6.6.

• innodb_max_purge_lag_delay: Maximum delay in milliseconds for formula calculated using
innodb_max_purge_lag configuration option. Added in MySQL 5.6.5.

• innodb_monitor_disable: Turns off one or more counters in information_schema.innodb_metrics
table. Added in MySQL 5.6.2.

• innodb_monitor_enable: Turns on one or more counters in information_schema.innodb_metrics
table. Added in MySQL 5.6.2.

29

Options and Variables Introduced in MySQL 5.6

• innodb_monitor_reset: Resets count value for one or more counters in
information_schema.innodb_metrics table to zero. Added in MySQL 5.6.2.

• innodb_monitor_reset_all: Resets all values (minimum, maximum, and so on) for one or more
counters in information_schema.innodb_metrics table. Added in MySQL 5.6.2.

• innodb_numa_interleave: Enables NUMA MPOL_INTERLEAVE memory policy for allocation of
InnoDB buffer pool. Added in MySQL 5.6.27.

• innodb_online_alter_log_max_size: Upper limit on size of temporary log files used during online
DDL operations for InnoDB tables. Added in MySQL 5.6.6.

• innodb_optimize_fulltext_only: Causes OPTIMIZE TABLE statement for InnoDB table to
process newly added, deleted, and updated token data for FULLTEXT index, rather than to reorganize
data in clustered index of table. Added in MySQL 5.6.4.

• innodb_page_size: Specifies page size for all InnoDB tablespaces in instance. Added in MySQL
5.6.4.

• innodb_print_all_deadlocks: During shutdown, prints information about all InnoDB deadlocks to
server error log. Added in MySQL 5.6.2.

• innodb_random_read_ahead: Enables random read-ahead technique for optimizing InnoDB I/O.
Added in MySQL 5.6.3.

• innodb_read_only: Starts server in read-only mode. Added in MySQL 5.6.7.

• innodb_rollback_segments: Defines number of rollback segments in system tablespace for InnoDB
to use within transaction. Added in MySQL 5.6.2.

• innodb_saved_page_number_debug: Saves page number. Added in MySQL 5.6.17.

• innodb_sort_buffer_size: Specifies size of buffer used for sorting data during creation of InnoDB
index. Added in MySQL 5.6.4.

• innodb_stats_auto_recalc: Causes InnoDB to recalculate persistent statistics automatically after
table data is changed substantially. Added in MySQL 5.6.6.

• innodb_stats_include_delete_marked: Include delete-marked records when calculating
persistent InnoDB statistics. Added in MySQL 5.6.35.

• innodb_stats_method: Specifies how InnoDB index statistics collection code should treat NULLs.
Added in MySQL 5.6.2.

• innodb_stats_persistent: Turns on InnoDB persistent statistics feature. Added in MySQL 5.6.6.

• innodb_stats_persistent_sample_pages: Number of pages to sample in each InnoDB index,
when persistent statistics feature is also enabled. Added in MySQL 5.6.2.

• innodb_stats_transient_sample_pages: Number of pages to sample in each InnoDB index,
when persistent statistics feature is turned off (default). Added in MySQL 5.6.2.

• innodb_status_output: Used to enable or disable periodic output for standard InnoDB Monitor. Also
used in combination with innodb_status_output_locks to enable and disable periodic output for InnoDB
Lock Monitor. Added in MySQL 5.6.16.

• innodb_status_output_locks: Used to enable or disable periodic output for standard InnoDB
Lock Monitor. innodb_status_output must also be enabled to produce periodic output for InnoDB Lock
Monitor. Added in MySQL 5.6.16.

30

Options and Variables Introduced in MySQL 5.6

• innodb_sync_array_size: Splits internal data structure used to coordinate threads, for higher
concurrency in workloads with large numbers of waiting threads. Added in MySQL 5.6.3.

• innodb_tmpdir: Directory location for temporary table files created during online ALTER TABLE
operations. Added in MySQL 5.6.29.

• innodb_undo_directory: Relative or absolute directory path where InnoDB creates separate
tablespaces for undo logs; typically used to place those logs on different storage device. Added in
MySQL 5.6.3.

• innodb_undo_logs: Number of undo logs (rollback segments) used by InnoDB; alias for
innodb_rollback_segments. Added in MySQL 5.6.3.

• innodb_undo_tablespaces: Number of tablespace files that rollback segments are divided between.
Added in MySQL 5.6.3.

• log-raw: Whether to log queries without rewriting. Added in MySQL 5.6.3.

• log_bin_basename: Path and base name for binary log files. Added in MySQL 5.6.2.

• log_bin_use_v1_row_events: Whether server is using version 1 binary log row events. Added in
MySQL 5.6.6.

• log_slow_admin_statements: Log slow OPTIMIZE, ANALYZE, ALTER and other administrative
statements to slow query log if it is open. Added in MySQL 5.6.11.

• log_slow_slave_statements: Cause slow statements as executed by replica to be written to slow
query log. Added in MySQL 5.6.11.

• log_throttle_queries_not_using_indexes: Throttle write rate to slow log for queries not using
indexes slow query log if it is open. Added in MySQL 5.6.5.

• master_info_repository: Whether to write connection metadata repository, containing source
information and replication I/O thread location in source's binary log, to file or table. Added in MySQL
5.6.2.

• master_verify_checksum: Cause source to examine checksums when reading from binary log.
Added in MySQL 5.6.2.

• max_binlog_stmt_cache_size: Can be used to restrict total size used to cache all nontransactional
statements during transaction. Added in MySQL 5.6.1.

• max_digest_length: Maximum digest size in bytes. Added in MySQL 5.6.24.

• metadata_locks_cache_size: Size of metadata locks cache. Added in MySQL 5.6.4.

• metadata_locks_hash_instances: Number of metadata lock hashes. Added in MySQL 5.6.8.

• mysql_firewall_max_query_size: Maximum size of recorded statements. Added in MySQL 5.6.24.

• mysql_firewall_mode: Whether MySQL Enterprise Firewall is operational. Added in MySQL 5.6.24.

• mysql_firewall_trace: Whether to enable firewall trace. Added in MySQL 5.6.24.

• named_pipe_full_access_group: Name of Windows group granted full access to named pipe.
Added in MySQL 5.6.43.

• optimizer_join_cache_level: How join buffers are used. Added in MySQL 5.6.1.

31

Options and Variables Introduced in MySQL 5.6

• optimizer_trace: Control optimizer tracing. Added in MySQL 5.6.3.

• optimizer_trace_features: Control optimizer tracing. Added in MySQL 5.6.3.

• optimizer_trace_limit: Control optimizer tracing. Added in MySQL 5.6.3.

• optimizer_trace_max_mem_size: Control optimizer tracing. Added in MySQL 5.6.3.

• optimizer_trace_offset: Control optimizer tracing. Added in MySQL 5.6.3.

• performance-schema-consumer-events-stages-current: Configure events-stages-current
consumer. Added in MySQL 5.6.4.

• performance-schema-consumer-events-stages-history: Configure events-stages-history
consumer. Added in MySQL 5.6.4.

• performance-schema-consumer-events-stages-history-long: Configure events-stages-
history-long consumer. Added in MySQL 5.6.4.

• performance-schema-consumer-events-statements-current: Configure events-statements-
current consumer. Added in MySQL 5.6.4.

• performance-schema-consumer-events-statements-history: Configure events-statements-
history consumer. Added in MySQL 5.6.4.

• performance-schema-consumer-events-statements-history-long: Configure events-
statements-history-long consumer. Added in MySQL 5.6.4.

• performance-schema-consumer-events-waits-current: Configure events-waits-current
consumer. Added in MySQL 5.6.4.

• performance-schema-consumer-events-waits-history: Configure events-waits-history
consumer. Added in MySQL 5.6.4.

• performance-schema-consumer-events-waits-history-long: Configure events-waits-history-
long consumer. Added in MySQL 5.6.4.

• performance-schema-consumer-global-instrumentation: Configure global-instrumentation
consumer. Added in MySQL 5.6.4.

• performance-schema-consumer-statements-digest: Configure statements-digest consumer.
Added in MySQL 5.6.5.

• performance-schema-consumer-thread-instrumentation: Configure thread-instrumentation
consumer. Added in MySQL 5.6.4.

• performance-schema-instrument: Configure Performance Schema instrument. Added in MySQL
5.6.4.

• performance_schema_accounts_size: Number of rows in accounts table. Added in MySQL 5.6.3.

• performance_schema_digests_size: Number of rows in events_statements_summary_by_digest
table. Added in MySQL 5.6.5.

• performance_schema_events_stages_history_long_size: Number of rows in
events_stages_history_long table. Added in MySQL 5.6.3.

• performance_schema_events_stages_history_size: Number of rows per thread in
events_stages_history table. Added in MySQL 5.6.3.

32

Options and Variables Introduced in MySQL 5.6

• performance_schema_events_statements_history_long_size: Number of rows in
events_statements_history_long table. Added in MySQL 5.6.3.

• performance_schema_events_statements_history_size: Number of rows per thread in
events_statements_history table. Added in MySQL 5.6.3.

• performance_schema_hosts_size: Number of rows in hosts table. Added in MySQL 5.6.3.

• performance_schema_max_digest_length: Maximum Performance Schema digest size in bytes.
Added in MySQL 5.6.26.

• performance_schema_max_socket_classes: Maximum number of socket instruments. Added in
MySQL 5.6.3.

• performance_schema_max_socket_instances: Maximum number of instrumented socket objects.
Added in MySQL 5.6.3.

• performance_schema_max_stage_classes: Maximum number of stage instruments. Added in
MySQL 5.6.3.

• performance_schema_max_statement_classes: Maximum number of statement instruments.
Added in MySQL 5.6.3.

• performance_schema_session_connect_attrs_size: Size of connection attribute strings buffer
per thread. Added in MySQL 5.6.6.

• performance_schema_setup_actors_size: Number of rows in setup_actors table. Added in
MySQL 5.6.1.

• performance_schema_setup_objects_size: Number of rows in setup_objects table. Added in
MySQL 5.6.1.

• performance_schema_users_size: Number of rows in users table. Added in MySQL 5.6.3.

• plugin-load-add: Add to list of plugins to load at startup. Added in MySQL 5.6.3.

• pseudo_slave_mode: For internal server use. Added in MySQL 5.6.10.

• relay_log_basename: Complete path to relay log, including file name. Added in MySQL 5.6.2.

• relay_log_info_repository: Whether to write location of replication SQL thread in relay logs to file
or table. Added in MySQL 5.6.2.

• rpl_stop_slave_timeout: Number of seconds that STOP REPLICA or STOP SLAVE waits before
timing out. Added in MySQL 5.6.13.

• sha256_password_private_key_path: SHA256 authentication plugin private key path name.
Added in MySQL 5.6.6.

• sha256_password_public_key_path: SHA256 authentication plugin public key path name. Added
in MySQL 5.6.6.

• show_old_temporals: Whether SHOW CREATE TABLE should indicate pre-5.6.4 temporal columns.
Added in MySQL 5.6.24.

• simplified_binlog_gtid_recovery: Renamed to binlog_gtid_simple_recovery. Added in MySQL
5.6.21.

• slave-sql-verify-checksum: Cause replica to examine checksums when reading from relay log.
Added in MySQL 5.6.2.

33

Options and Variables Introduced in MySQL 5.6

• slave_checkpoint_group: Maximum number of transactions processed by multithreaded replica
before checkpoint operation is called to update progress status. Not supported by NDB Cluster. Added in
MySQL 5.6.3.

• slave_checkpoint_period: Update progress status of multithreaded replica and flush relay log info
to disk after this number of milliseconds. Not supported by NDB Cluster. Added in MySQL 5.6.3.

• slave_max_allowed_packet: Maximum size, in bytes, of packet that can be sent from replication
source server to replica; overrides max_allowed_packet. Added in MySQL 5.6.6.

• slave_parallel_workers: Number of applier threads for executing replication transactions in
parallel; 0 or 1 disables replica multithreading. NDB Cluster: see documentation. Added in MySQL 5.6.3.

• slave_pending_jobs_size_max: Maximum size of replica worker queues holding events not yet
applied. Added in MySQL 5.6.3.

• slave_rows_search_algorithms: Determines search algorithms used for replica update batching.
Any 2 or 3 from this list: INDEX_SEARCH, TABLE_SCAN, HASH_SCAN. Added in MySQL 5.6.6.

• slave_sql_verify_checksum: Cause replica to examine checksums when reading from relay log.
Added in MySQL 5.6.2.

• slow-start-timeout: Wait before trying to kill windows service at startup. Added in MySQL 5.6.5.

• ssl_crl: File that contains certificate revocation lists. Added in MySQL 5.6.3.

• ssl_crlpath: Directory that contains certificate revocation list files. Added in MySQL 5.6.3.

• stored_program_cache: Sets "soft" upper limit for number of cached stored routines per connection.
Stored procedures and stored functions are cached separately; this variable sets size for both of these.
Added in MySQL 5.6.5.

• table_open_cache_instances: Number of open tables cache instances. Added in MySQL 5.6.6.

• thread_pool_algorithm: Thread pool algorithm. Added in MySQL 5.6.10.

• thread_pool_high_priority_connection: Whether current session is high priority. Added in
MySQL 5.6.10.

• thread_pool_max_unused_threads: Maximum permissible number of unused threads. Added in
MySQL 5.6.10.

• thread_pool_prio_kickup_timer: How long before statement is moved to high-priority execution.
Added in MySQL 5.6.10.

• thread_pool_size: Number of thread groups in thread pool. Added in MySQL 5.6.10.

• thread_pool_stall_limit: How long before statement is defined as stalled. Added in MySQL
5.6.10.

• transaction-read-only: Default transaction access mode. Added in MySQL 5.6.5.

• tx_read_only: Default transaction access mode. Added in MySQL 5.6.5.

• validate-password: Whether to activate password validation plugin. Added in MySQL 5.6.6.

• validate-user-plugins: Whether to perform additional validation of user plugins. Added in MySQL
5.6.11.

34

Options and Variables Deprecated in MySQL 5.6

• validate_password_dictionary_file: validate_password dictionary file. Added in MySQL 5.6.6.

• validate_password_dictionary_file_last_parsed: When dictionary file was last parsed.
Added in MySQL 5.6.26.

• validate_password_dictionary_file_words_count: Number of words in dictionary file. Added
in MySQL 5.6.26.

• validate_password_length: validate_password required password length. Added in MySQL 5.6.6.

• validate_password_mixed_case_count: validate_password required number of uppercase/
lowercase characters. Added in MySQL 5.6.6.

• validate_password_number_count: validate_password required number of digit characters. Added
in MySQL 5.6.6.

• validate_password_policy: validate_password password policy. Added in MySQL 5.6.6.

• validate_password_special_char_count: validate_password required number of special
characters. Added in MySQL 5.6.6.

Options and Variables Deprecated in MySQL 5.6

The following system variables, status variables, and options have been deprecated in MySQL 5.6.

• Delayed_errors: Number of rows written with INSERT DELAYED for which some error occurred.
Deprecated in MySQL 5.6.7.

• Delayed_insert_threads: Number of INSERT DELAYED thread handlers in use. Deprecated in
MySQL 5.6.7.

• Delayed_writes: Number of INSERT DELAYED rows written. Deprecated in MySQL 5.6.7.

• Not_flushed_delayed_rows: Number of rows waiting to be written in INSERT DELAY queues.
Deprecated in MySQL 5.6.7.

• avoid_temporal_upgrade: Whether ALTER TABLE should upgrade pre-5.6.4 temporal columns.
Deprecated in MySQL 5.6.24.

• binlogging_impossible_mode: Deprecated and later removed. Use binlog_error_action instead.
Deprecated in MySQL 5.6.22.

• delayed_insert_limit: After inserting delayed_insert_limit rows, INSERT DELAYED handler checks
whether there are any SELECT statements pending. If so, it allows these to execute before continuing.
Deprecated in MySQL 5.6.7.

• delayed_insert_timeout: How many seconds INSERT DELAYED thread should wait for INSERT
statements before terminating. Deprecated in MySQL 5.6.7.

• delayed_queue_size: What size queue (in rows) should be allocated for handling INSERT
DELAYED. Deprecated in MySQL 5.6.7.

• explicit_defaults_for_timestamp: Whether TIMESTAMP columns are nullable and have
DEFAULT NULL. Deprecated in MySQL 5.6.6.

• have_profiling: Whether statement profiling capability is available. Deprecated in MySQL 5.6.8.

• innodb: Enable InnoDB (if this version of MySQL supports it). Deprecated in MySQL 5.6.21.

35

Options and Variables Removed in MySQL 5.6

• innodb_additional_mem_pool_size: Size of memory pool InnoDB uses to store data dictionary
information and other internal data structures. Deprecated in MySQL 5.6.3.

• innodb_checksums: Enable InnoDB checksums validation. Deprecated in MySQL 5.6.3.

• innodb_locks_unsafe_for_binlog: Force InnoDB not to use next-key locking. Instead use only
row-level locking. Deprecated in MySQL 5.6.3.

• innodb_stats_sample_pages: Number of index pages to sample for index distribution statistics.
Deprecated in MySQL 5.6.3.

• innodb_use_sys_malloc: Whether InnoDB uses OS or own memory allocator. Deprecated in MySQL
5.6.3.

• language: Client error messages in given language. May be given as full path. Deprecated in MySQL
5.6.1.

• master-retry-count: Number of tries replica makes to connect to source before giving up.
Deprecated in MySQL 5.6.1.

• max_delayed_threads: Do not start more than this number of threads to handle INSERT DELAYED
statements. If set to zero, which means INSERT DELAYED is not used. Deprecated in MySQL 5.6.7.

• max_insert_delayed_threads: Synonym for max_delayed_threads. Deprecated in MySQL 5.6.7.

• max_tmp_tables: Unused. Deprecated in MySQL 5.6.7.

• multi_range_count: Maximum number of ranges to send to table handler at once during range
selects. Deprecated in MySQL 5.6.7.

• profiling: Enable or disable statement profiling. Deprecated in MySQL 5.6.8.

• profiling_history_size: How many statements to maintain profiling information for. Deprecated in
MySQL 5.6.8.

• show_old_temporals: Whether SHOW CREATE TABLE should indicate pre-5.6.4 temporal columns.
Deprecated in MySQL 5.6.24.

• simplified_binlog_gtid_recovery: Renamed to binlog_gtid_simple_recovery. Deprecated in
MySQL 5.6.23.

• thread_concurrency: Permits application to provide hint to threads system for desired number of
threads which should be run at one time. Deprecated in MySQL 5.6.1.

• timed_mutexes: Specify whether to time mutexes (only InnoDB mutexes are currently supported).
Deprecated in MySQL 5.6.20.

Options and Variables Removed in MySQL 5.6

The following system variables, status variables, and options have been removed in MySQL 5.6.

• Com_show_new_master: Count of SHOW NEW MASTER statements. Removed in MySQL 5.6.2.

• bind-address: IP address or host name to bind to. Removed in MySQL 5.6.1.

• disable-gtid-unsafe-statements: Obsolete: Replaced by enforce_gtid_consistency in MySQL
5.6.9. Removed in MySQL 5.6.9.

36

How to Report Bugs or Problems

• disable_gtid_unsafe_statements: Obsolete: Replaced by enforce_gtid_consistency in MySQL
5.6.9. Removed in MySQL 5.6.9.

• engine_condition_pushdown: Push supported query conditions to storage engine. Removed in
MySQL 5.6.1.

• gtid_done: Obsolete: Replaced by gtid_executed in MySQL 5.6.9. Removed in MySQL 5.6.9.

• gtid_lost: Obsolete: Replaced by gtid_purged in MySQL 5.6.9. Removed in MySQL 5.6.9.

• have_csv: Whether mysqld supports csv tables. Removed in MySQL 5.6.1.

• have_innodb: Whether mysqld supports InnoDB tables. Removed in MySQL 5.6.1.

• have_partitioning: Whether mysqld supports partitioning. Removed in MySQL 5.6.1.

• log: Log connections and queries to file. Removed in MySQL 5.6.1.

• log-slow-admin-statements: Log slow OPTIMIZE, ANALYZE, ALTER and other administrative
statements to slow query log if it is open. Removed in MySQL 5.6.11.

• log-slow-slave-statements: Cause slow statements as executed by replica to be written to slow
query log. Removed in MySQL 5.6.11.

• log_slow_queries: Whether to log slow queries. Logging defaults to hostname-slow.log file. Must be
enabled to activate other slow query log options. Removed in MySQL 5.6.1.

• mysql_firewall_max_query_size: Maximum size of recorded statements. Removed in MySQL
5.6.26.

• one-thread: Only use one thread (for debugging under Linux). Removed in MySQL 5.6.1.

• optimizer_join_cache_level: How join buffers are used. Removed in MySQL 5.6.3.

• safe-mode: Skip some optimization stages (for testing). Removed in MySQL 5.6.6.

• skip-thread-priority: Do not give threads different priorities. Removed in MySQL 5.6.1.

• sql_big_tables: This variable is deprecated, and is mapped to big_tables. Removed in MySQL 5.6.1.

• sql_low_priority_updates: This variable is deprecated, and is mapped to low_priority_updates.
Removed in MySQL 5.6.1.

• sql_max_join_size: This variable is deprecated, and is mapped to max_join_size. Removed in
MySQL 5.6.1.

1.5 How to Report Bugs or Problems
Before posting a bug report about a problem, please try to verify that it is a bug and that it has not been
reported already:

• Start by searching the MySQL online manual at https://dev.mysql.com/doc/. We try to keep the manual
up to date by updating it frequently with solutions to newly found problems. In addition, the release
notes accompanying the manual can be particularly useful since it is quite possible that a newer version
contains a solution to your problem. The release notes are available at the location just given for the
manual.

• If you get a parse error for an SQL statement, please check your syntax closely. If you cannot find
something wrong with it, it is extremely likely that your current version of MySQL Server doesn't support

37

https://dev.mysql.com/doc/

How to Report Bugs or Problems

the syntax you are using. If you are using the current version and the manual doesn't cover the syntax
that you are using, MySQL Server doesn't support your statement.

If the manual covers the syntax you are using, but you have an older version of MySQL Server, you
should check the MySQL change history to see when the syntax was implemented. In this case, you
have the option of upgrading to a newer version of MySQL Server.

• For solutions to some common problems, see Section B.3, “Problems and Common Errors”.

• Search the bugs database at http://bugs.mysql.com/ to see whether the bug has been reported and
fixed.

• You can also use http://www.mysql.com/search/ to search all the Web pages (including the manual) that
are located at the MySQL website.

If you cannot find an answer in the manual, the bugs database, or the mailing list archives, check with your
local MySQL expert. If you still cannot find an answer to your question, please use the following guidelines
for reporting the bug.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs
database. This database is public and can be browsed and searched by anyone. If you log in to the
system, you can enter new reports.

Bugs posted in the bugs database at http://bugs.mysql.com/ that are corrected for a given release are
noted in the release notes.

If you find a security bug in MySQL Server, please let us know immediately by sending an email message
to <secalert_us@oracle.com>. Exception: Support customers should report all problems, including
security bugs, to Oracle Support at http://support.oracle.com/.

To discuss problems with other users, you can use the MySQL Community Slack.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix the
bug in the next release. This section helps you write your report correctly so that you do not waste your
time doing things that may not help us much or at all. Please read this section carefully and make sure that
all the information described here is included in your report.

Preferably, you should test the problem using the latest production or development version of MySQL
Server before posting. Anyone should be able to repeat the bug by just using mysql test <
script_file on your test case or by running the shell or Perl script that you include in the bug report.
Any bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

It is most helpful when a good description of the problem is included in the bug report. That is, give a good
example of everything you did that led to the problem and describe, in exact detail, the problem itself.
The best reports are those that include a full example showing how to reproduce the bug or problem. See
Section 5.8, “Debugging MySQL”.

Remember that it is possible for us to respond to a report containing too much information, but not to one
containing too little. People often omit facts because they think they know the cause of a problem and
assume that some details do not matter. A good principle to follow is that if you are in doubt about stating
something, state it. It is faster and less troublesome to write a couple more lines in your report than to wait
longer for the answer if we must ask you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of the MySQL
distribution that you use, and (b) not fully describing the platform on which the MySQL server is installed

38

http://bugs.mysql.com/
http://www.mysql.com/search/
http://bugs.mysql.com/
http://bugs.mysql.com/
http://support.oracle.com/
https://mysqlcommunity.slack.com/

How to Report Bugs or Problems

(including the platform type and version number). These are highly relevant pieces of information, and in
99 cases out of 100, the bug report is useless without them. Very often we get questions like, “Why doesn't
this work for me?” Then we find that the feature requested wasn't implemented in that MySQL version,
or that a bug described in a report has been fixed in newer MySQL versions. Errors often are platform-
dependent. In such cases, it is next to impossible for us to fix anything without knowing the operating
system and the version number of the platform.

If you compiled MySQL from source, remember also to provide information about your compiler if it is
related to the problem. Often people find bugs in compilers and think the problem is MySQL-related.
Most compilers are under development all the time and become better version by version. To determine
whether your problem depends on your compiler, we need to know what compiler you used. Note that
every compiling problem should be regarded as a bug and reported accordingly.

If a program produces an error message, it is very important to include the message in your report. If we try
to search for something from the archives, it is better that the error message reported exactly matches the
one that the program produces. (Even the lettercase should be observed.) It is best to copy and paste the
entire error message into your report. You should never try to reproduce the message from memory.

If you have a problem with Connector/ODBC (MyODBC), please try to generate a trace file and send it with
your report. See How to Report Connector/ODBC Problems or Bugs.

If your report includes long query output lines from test cases that you run with the mysql command-
line tool, you can make the output more readable by using the --vertical option or the \G statement
terminator. The EXPLAIN SELECT example later in this section demonstrates the use of \G.

Please include the following information in your report:

• The version number of the MySQL distribution you are using (for example, MySQL 5.7.10). You can find
out which version you are running by executing mysqladmin version. The mysqladmin program can
be found in the bin directory under your MySQL installation directory.

• The manufacturer and model of the machine on which you experience the problem.

• The operating system name and version. If you work with Windows, you can usually get the name and
version number by double-clicking your My Computer icon and pulling down the “Help/About Windows”
menu. For most Unix-like operating systems, you can get this information by executing the command
uname -a.

• Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include these values.

• The contents of the docs/INFO_BIN file from your MySQL installation. This file contains information
about how MySQL was configured and compiled.

• If you are using a source distribution of the MySQL software, include the name and version number of
the compiler that you used. If you have a binary distribution, include the distribution name.

• If the problem occurs during compilation, include the exact error messages and also a few lines of
context around the offending code in the file where the error occurs.

• If mysqld died, you should also report the statement that caused mysqld to unexpectedly exit. You can
usually get this information by running mysqld with query logging enabled, and then looking in the log
after mysqld exits. See Section 5.8, “Debugging MySQL”.

• If a database table is related to the problem, include the output from the SHOW CREATE TABLE
db_name.tbl_name statement in the bug report. This is a very easy way to get the definition of
any table in a database. The information helps us create a situation matching the one that you have
experienced.

39

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-support-bug-report.html

How to Report Bugs or Problems

• The SQL mode in effect when the problem occurred can be significant, so please report the value of
the sql_mode system variable. For stored procedure, stored function, and trigger objects, the relevant
sql_mode value is the one in effect when the object was created. For a stored procedure or function,
the SHOW CREATE PROCEDURE or SHOW CREATE FUNCTION statement shows the relevant SQL mode,
or you can query INFORMATION_SCHEMA for the information:

SELECT ROUTINE_SCHEMA, ROUTINE_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.ROUTINES;

For triggers, you can use this statement:

SELECT EVENT_OBJECT_SCHEMA, EVENT_OBJECT_TABLE, TRIGGER_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.TRIGGERS;

• For performance-related bugs or problems with SELECT statements, you should always include the
output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT statement produces.
You should also include the output from SHOW CREATE TABLE tbl_name for each table that is
involved. The more information you provide about your situation, the more likely it is that someone can
help you.

The following is an example of a very good bug report. The statements are run using the mysql
command-line tool. Note the use of the \G statement terminator for statements that would otherwise
provide very long output lines that are difficult to read.

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G
 <output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G
 <output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;
 <A short version of the output from SELECT,
 including the time taken to run the query>
mysql> SHOW STATUS;
 <output from SHOW STATUS>

• If a bug or problem occurs while running mysqld, try to provide an input script that reproduces the
anomaly. This script should include any necessary source files. The more closely the script can
reproduce your situation, the better. If you can make a reproducible test case, you should upload it to be
attached to the bug report.

If you cannot provide a script, you should at least include the output from mysqladmin variables
extended-status processlist in your report to provide some information on how your system is
performing.

• If you cannot produce a test case with only a few rows, or if the test table is too big to be included in the
bug report (more than 10 rows), you should dump your tables using mysqldump and create a README
file that describes your problem. Create a compressed archive of your files using tar and gzip or zip.
After you initiate a bug report for our bugs database at http://bugs.mysql.com/, click the Files tab in the
bug report for instructions on uploading the archive to the bugs database.

• If you believe that the MySQL server produces a strange result from a statement, include not only the
result, but also your opinion of what the result should be, and an explanation describing the basis for
your opinion.

• When you provide an example of the problem, it is better to use the table names, variable names, and
so forth that exist in your actual situation than to come up with new names. The problem could be related
to the name of a table or variable. These cases are rare, perhaps, but it is better to be safe than sorry.
After all, it should be easier for you to provide an example that uses your actual situation, and it is by all

40

http://bugs.mysql.com/

How to Report Bugs or Problems

means better for us. If you have data that you do not want to be visible to others in the bug report, you
can upload it using the Files tab as previously described. If the information is really top secret and you do
not want to show it even to us, go ahead and provide an example using other names, but please regard
this as the last choice.

• Include all the options given to the relevant programs, if possible. For example, indicate the options that
you use when you start the mysqld server, as well as the options that you use to run any MySQL client
programs. The options to programs such as mysqld and mysql, and to the configure script, are often
key to resolving problems and are very relevant. It is never a bad idea to include them. If your problem
involves a program written in a language such as Perl or PHP, please include the language processor's
version number, as well as the version for any modules that the program uses. For example, if you have
a Perl script that uses the DBI and DBD::mysql modules, include the version numbers for Perl, DBI,
and DBD::mysql.

• If your question is related to the privilege system, please include the output of mysqladmin reload,
and all the error messages you get when trying to connect. When you test your privileges, you should
execute mysqladmin reload version and try to connect with the program that gives you trouble.

• If you have a patch for a bug, do include it. But do not assume that the patch is all we need, or that we
can use it, if you do not provide some necessary information such as test cases showing the bug that
your patch fixes. We might find problems with your patch or we might not understand it at all. If so, we
cannot use it.

If we cannot verify the exact purpose of the patch, we will not use it. Test cases help us here. Show that
the patch handles all the situations that may occur. If we find a borderline case (even a rare one) where
the patch will not work, it may be useless.

• Guesses about what the bug is, why it occurs, or what it depends on are usually wrong. Even the
MySQL team cannot guess such things without first using a debugger to determine the real cause of a
bug.

• Indicate in your bug report that you have checked the reference manual and mail archive so that others
know you have tried to solve the problem yourself.

• If your data appears corrupt or you get errors when you access a particular table, first check your tables
with CHECK TABLE. If that statement reports any errors:

• The InnoDB crash recovery mechanism handles cleanup when the server is restarted after being
killed, so in typical operation there is no need to “repair” tables. If you encounter an error with
InnoDB tables, restart the server and see whether the problem persists, or whether the error
affected only cached data in memory. If data is corrupted on disk, consider restarting with the
innodb_force_recovery option enabled so that you can dump the affected tables.

• For non-transactional tables, try to repair them with REPAIR TABLE or with myisamchk. See
Chapter 5, MySQL Server Administration.

If you are running Windows, please verify the value of lower_case_table_names using the SHOW
VARIABLES LIKE 'lower_case_table_names' statement. This variable affects how the server
handles lettercase of database and table names. Its effect for a given value should be as described in
Section 9.2.3, “Identifier Case Sensitivity”.

• If you often get corrupted tables, you should try to find out when and why this happens. In this case,
the error log in the MySQL data directory may contain some information about what happened. (This
is the file with the .err suffix in the name.) See Section 5.4.2, “The Error Log”. Please include any
relevant information from this file in your bug report. Normally mysqld should never corrupt a table if
nothing killed it in the middle of an update. If you can find the cause of mysqld dying, it is much easier

41

MySQL Standards Compliance

for us to provide you with a fix for the problem. See Section B.3.1, “How to Determine What Is Causing a
Problem”.

• If possible, download and install the most recent version of MySQL Server and check whether it solves
your problem. All versions of the MySQL software are thoroughly tested and should work without
problems. We believe in making everything as backward-compatible as possible, and you should be able
to switch MySQL versions without difficulty. See Section 2.1.2, “Which MySQL Version and Distribution
to Install”.

1.6 MySQL Standards Compliance
This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server has many
extensions to the SQL standard, and here you can find out what they are and how to use them. You can
also find information about functionality missing from MySQL Server, and how to work around some of the
differences.

The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92”
refers to the standard released in 1992. “SQL:1999”, “SQL:2003”, “SQL:2008”, and “SQL:2011” refer to the
versions of the standard released in the corresponding years, with the last being the most recent version.
We use the phrase “the SQL standard” or “standard SQL” to mean the current version of the SQL Standard
at any time.

One of our main goals with the product is to continue to work toward compliance with the SQL standard,
but without sacrificing speed or reliability. We are not afraid to add extensions to SQL or support for non-
SQL features if this greatly increases the usability of MySQL Server for a large segment of our user base.
The HANDLER interface is an example of this strategy. See Section 13.2.4, “HANDLER Statement”.

We continue to support transactional and nontransactional databases to satisfy both mission-critical 24/7
usage and heavy Web or logging usage.

MySQL Server was originally designed to work with medium-sized databases (10-100 million rows,
or about 100MB per table) on small computer systems. Today MySQL Server handles terabyte-sized
databases, but the code can also be compiled in a reduced version suitable for hand-held and embedded
devices. The compact design of the MySQL server makes development in both directions possible without
any conflicts in the source tree.

We are not targeting real-time support, although MySQL replication capabilities offer significant
functionality.

MySQL supports ODBC levels 0 to 3.51.

MySQL supports high-availability database clustering using the NDBCLUSTER storage engine. See
Chapter 18, MySQL NDB Cluster 7.3 and NDB Cluster 7.4.

We implement XML functionality which supports most of the W3C XPath standard. See Section 12.12,
“XML Functions”.

Selecting SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for different
clients, depending on the value of the sql_mode system variable. DBAs can set the global SQL mode to
match site server operating requirements, and each application can set its session SQL mode to its own
requirements.

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes it
easier to use MySQL in different environments and to use MySQL together with other database servers.

42

Running MySQL in ANSI Mode

For more information on setting the SQL mode, see Section 5.1.10, “Server SQL Modes”.

Running MySQL in ANSI Mode

To run MySQL Server in ANSI mode, start mysqld with the --ansi option. Running the server in ANSI
mode is the same as starting it with the following options:

--transaction-isolation=SERIALIZABLE --sql-mode=ANSI

To achieve the same effect at runtime, execute these two statements:

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET GLOBAL sql_mode = 'ANSI';

You can see that setting the sql_mode system variable to 'ANSI' enables all SQL mode options that are
relevant for ANSI mode as follows:

mysql> SET GLOBAL sql_mode='ANSI';
mysql> SELECT @@GLOBAL.sql_mode;
 -> 'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI'

Running the server in ANSI mode with --ansi is not quite the same as setting the SQL mode to 'ANSI'
because the --ansi option also sets the transaction isolation level.

See Section 5.1.6, “Server Command Options”.

1.6.1 MySQL Extensions to Standard SQL

MySQL Server supports some extensions that you are not likely to find in other SQL DBMSs. Be warned
that if you use them, your code may not be portable to other SQL servers. In some cases, you can write
code that includes MySQL extensions, but is still portable, by using comments of the following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other SQL
statement, but other SQL servers should ignore the extensions. For example, MySQL Server recognizes
the STRAIGHT_JOIN keyword in the following statement, but other servers do not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the ! character, the syntax within the comment is executed only if the
MySQL version is greater than or equal to the specified version number. The KEY_BLOCK_SIZE clause in
the following comment is executed only by servers from MySQL 5.1.10 or higher:

CREATE TABLE t1(a INT, KEY (a)) /*!50110 KEY_BLOCK_SIZE=1024 */;

The following descriptions list MySQL extensions, organized by category.

• Organization of data on disk

MySQL Server maps each database to a directory under the MySQL data directory, and maps tables
within a database to file names in the database directory. This has a few implications:

• Database and table names are case-sensitive in MySQL Server on operating systems that
have case-sensitive file names (such as most Unix systems). See Section 9.2.3, “Identifier Case
Sensitivity”.

• You can use standard system commands to back up, rename, move, delete, and copy tables that
are managed by the MyISAM storage engine. For example, it is possible to rename a MyISAM table
by renaming the .MYD, .MYI, and .frm files to which the table corresponds. (Nevertheless, it is

43

MySQL Extensions to Standard SQL

preferable to use RENAME TABLE or ALTER TABLE ... RENAME and let the server rename the
files.)

• General language syntax

• By default, strings can be enclosed by " as well as '. If the ANSI_QUOTES SQL mode is enabled,
strings can be enclosed only by ' and the server interprets strings enclosed by " as identifiers.

• \ is the escape character in strings.

• In SQL statements, you can access tables from different databases with the db_name.tbl_name
syntax. Some SQL servers provide the same functionality but call this User space. MySQL
Server doesn't support tablespaces such as used in statements like this: CREATE TABLE
ralph.my_table ... IN my_tablespace.

• SQL statement syntax

• The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.

• The CREATE DATABASE, DROP DATABASE, and ALTER DATABASE statements. See Section 13.1.10,
“CREATE DATABASE Statement”, Section 13.1.21, “DROP DATABASE Statement”, and
Section 13.1.1, “ALTER DATABASE Statement”.

• The DO statement.

• EXPLAIN SELECT to obtain a description of how tables are processed by the query optimizer.

• The FLUSH and RESET statements.

• The SET statement. See Section 13.7.4.1, “SET Syntax for Variable Assignment”.

• The SHOW statement. See Section 13.7.5, “SHOW Statements”. The information produced by many of
the MySQL-specific SHOW statements can be obtained in more standard fashion by using SELECT to
query INFORMATION_SCHEMA. See Chapter 21, INFORMATION_SCHEMA Tables.

• Use of LOAD DATA. In many cases, this syntax is compatible with Oracle LOAD DATA. See
Section 13.2.6, “LOAD DATA Statement”.

• Use of RENAME TABLE. See Section 13.1.32, “RENAME TABLE Statement”.

• Use of REPLACE instead of DELETE plus INSERT. See Section 13.2.8, “REPLACE Statement”.

• Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME in ALTER TABLE
statements. Use of multiple ADD, ALTER, DROP, or CHANGE clauses in an ALTER TABLE statement.
See Section 13.1.7, “ALTER TABLE Statement”.

• Use of index names, indexes on a prefix of a column, and use of INDEX or KEY in CREATE TABLE
statements. See Section 13.1.17, “CREATE TABLE Statement”.

• Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.

• Use of IF EXISTS with DROP TABLE and DROP DATABASE.

• The capability of dropping multiple tables with a single DROP TABLE statement.

• The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.

• INSERT INTO tbl_name SET col_name = ... syntax.

44

MySQL Extensions to Standard SQL

• The DELAYED clause of the INSERT and REPLACE statements.

• The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE statements.

• Use of INTO OUTFILE or INTO DUMPFILE in SELECT statements. See Section 13.2.9, “SELECT
Statement”.

• Options such as STRAIGHT_JOIN or SQL_SMALL_RESULT in SELECT statements.

• You don't need to name all selected columns in the GROUP BY clause. This gives better performance
for some very specific, but quite normal queries. See Section 12.19, “Aggregate Functions”.

• You can specify ASC and DESC with GROUP BY, not just with ORDER BY.

• The ability to set variables in a statement with the := assignment operator. See Section 9.4, “User-
Defined Variables”.

• Data types

• The MEDIUMINT, SET, and ENUM data types, and the various BLOB and TEXT data types.

• The AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL data type attributes.

• Functions and operators

• To make it easier for users who migrate from other SQL environments, MySQL Server supports
aliases for many functions. For example, all string functions support both standard SQL syntax and
ODBC syntax.

• MySQL Server understands the || and && operators to mean logical OR and AND, as in the
C programming language. In MySQL Server, || and OR are synonyms, as are && and AND.
Because of this nice syntax, MySQL Server doesn't support the standard SQL || operator for string
concatenation; use CONCAT() instead. Because CONCAT() takes any number of arguments, it is easy
to convert use of the || operator to MySQL Server.

• Use of COUNT(DISTINCT value_list) where value_list has more than one element.

• String comparisons are case-insensitive by default, with sort ordering determined by the collation of
the current character set, which is latin1 (cp1252 West European) by default. To perform case-
sensitive comparisons instead, you should declare your columns with the BINARY attribute or use the
BINARY cast, which causes comparisons to be done using the underlying character code values rather
than a lexical ordering.

• The % operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is supported
for C programmers and for compatibility with PostgreSQL.

• The =, <>, <=, <, >=, >, <<, >>, <=>, AND, OR, or LIKE operators may be used in expressions in the
output column list (to the left of the FROM) in SELECT statements. For example:

mysql> SELECT col1=1 AND col2=2 FROM my_table;

• The LAST_INSERT_ID() function returns the most recent AUTO_INCREMENT value. See
Section 12.16, “Information Functions”.

• LIKE is permitted on numeric values.

• The REGEXP and NOT REGEXP extended regular expression operators.

45

MySQL Differences from Standard SQL

• CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL Server, these
functions can take a variable number of arguments.)

• The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IF(), PASSWORD(), ENCRYPT(),
MD5(), ENCODE(), DECODE(), PERIOD_ADD(), PERIOD_DIFF(), TO_DAYS(), and WEEKDAY()
functions.

• Use of TRIM() to trim substrings. Standard SQL supports removal of single characters only.

• The GROUP BY functions STD(), BIT_OR(), BIT_AND(), BIT_XOR(), and GROUP_CONCAT(). See
Section 12.19, “Aggregate Functions”.

1.6.2 MySQL Differences from Standard SQL

We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard, but MySQL
Server performs operations differently in some cases:

• There are several differences between the MySQL and standard SQL privilege systems. For example, in
MySQL, privileges for a table are not automatically revoked when you delete a table. You must explicitly
issue a REVOKE statement to revoke privileges for a table. For more information, see Section 13.7.1.6,
“REVOKE Statement”.

• The CAST() function does not support cast to REAL or BIGINT. See Section 12.11, “Cast Functions and
Operators”.

1.6.2.1 SELECT INTO TABLE Differences

MySQL Server doesn't support the SELECT ... INTO TABLE Sybase SQL extension. Instead, MySQL
Server supports the INSERT INTO ... SELECT standard SQL syntax, which is basically the same thing.
See Section 13.2.5.1, “INSERT ... SELECT Statement”. For example:

INSERT INTO tbl_temp2 (fld_id)
 SELECT tbl_temp1.fld_order_id
 FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

Alternatively, you can use SELECT ... INTO OUTFILE or CREATE TABLE ... SELECT.

You can use SELECT ... INTO with user-defined variables. The same syntax can also be used inside
stored routines using cursors and local variables. See Section 13.2.9.1, “SELECT ... INTO Statement”.

1.6.2.2 UPDATE Differences

If you access a column from the table to be updated in an expression, UPDATE uses the current value of
the column. The second assignment in the following statement sets col2 to the current (updated) col1
value, not the original col1 value. The result is that col1 and col2 have the same value. This behavior
differs from standard SQL.

UPDATE t1 SET col1 = col1 + 1, col2 = col1;

1.6.2.3 FOREIGN KEY Constraint Differences

The MySQL implementation of foreign key constraints differs from the SQL standard in the following key
respects:

• If there are several rows in the parent table with the same referenced key value, InnoDB performs a
foreign key check as if the other parent rows with the same key value do not exist. For example, if you

46

MySQL Differences from Standard SQL

define a RESTRICT type constraint, and there is a child row with several parent rows, InnoDB does not
permit the deletion of any of the parent rows.

• If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has previously
updated during the same cascade, it acts like RESTRICT. This means that you cannot use self-
referential ON UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent infinite
loops resulting from cascaded updates. A self-referential ON DELETE SET NULL, on the other hand, is
possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not be nested more
than 15 levels deep.

• In an SQL statement that inserts, deletes, or updates many rows, foreign key constraints (like unique
constraints) are checked row-by-row. When performing foreign key checks, InnoDB sets shared row-
level locks on child or parent records that it must examine. MySQL checks foreign key constraints
immediately; the check is not deferred to transaction commit. According to the SQL standard, the
default behavior should be deferred checking. That is, constraints are only checked after the entire SQL
statement has been processed. This means that it is not possible to delete a row that refers to itself
using a foreign key.

• No storage engine, including InnoDB, recognizes or enforces the MATCH clause used in referential-
integrity constraint definitions. Use of an explicit MATCH clause does not have the specified effect, and it
causes ON DELETE and ON UPDATE clauses to be ignored. Specifying the MATCH should be avoided.

The MATCH clause in the SQL standard controls how NULL values in a composite (multiple-column)
foreign key are handled when comparing to a primary key in the referenced table. MySQL essentially
implements the semantics defined by MATCH SIMPLE, which permits a foreign key to be all or partially
NULL. In that case, a (child table) row containing such a foreign key can be inserted even though it does
not match any row in the referenced (parent) table. (It is possible to implement other semantics using
triggers.)

• MySQL requires that the referenced columns be indexed for performance reasons. However, MySQL
does not enforce a requirement that the referenced columns be UNIQUE or be declared NOT NULL.

A FOREIGN KEY constraint that references a non-UNIQUE key is not standard SQL but rather an
InnoDB extension. The NDB storage engine, on the other hand, requires an explicit unique key (or
primary key) on any column referenced as a foreign key.

The handling of foreign key references to nonunique keys or keys that contain NULL values is not well
defined for operations such as UPDATE or DELETE CASCADE. You are advised to use foreign keys that
reference only UNIQUE (including PRIMARY) and NOT NULL keys.

• For storage engines that do not support foreign keys (such as MyISAM), MySQL Server parses and
ignores foreign key specifications.

• MySQL parses but ignores “inline REFERENCES specifications” (as defined in the SQL standard) where
the references are defined as part of the column specification. MySQL accepts REFERENCES clauses
only when specified as part of a separate FOREIGN KEY specification.

Defining a column to use a REFERENCES tbl_name(col_name) clause has no actual effect and
serves only as a memo or comment to you that the column which you are currently defining is intended
to refer to a column in another table. It is important to realize when using this syntax that:

• MySQL does not perform any sort of check to make sure that col_name actually exists in tbl_name
(or even that tbl_name itself exists).

• MySQL does not perform any sort of action on tbl_name such as deleting rows in response to
actions taken on rows in the table which you are defining; in other words, this syntax induces no ON

47

MySQL Differences from Standard SQL

DELETE or ON UPDATE behavior whatsoever. (Although you can write an ON DELETE or ON UPDATE
clause as part of the REFERENCES clause, it is also ignored.)

• This syntax creates a column; it does not create any sort of index or key.

You can use a column so created as a join column, as shown here:

CREATE TABLE person (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 name CHAR(60) NOT NULL,
 PRIMARY KEY (id)
);

CREATE TABLE shirt (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 style ENUM('t-shirt', 'polo', 'dress') NOT NULL,
 color ENUM('red', 'blue', 'orange', 'white', 'black') NOT NULL,
 owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),
 PRIMARY KEY (id)
);

INSERT INTO person VALUES (NULL, 'Antonio Paz');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'polo', 'blue', @last),
(NULL, 'dress', 'white', @last),
(NULL, 't-shirt', 'blue', @last);

INSERT INTO person VALUES (NULL, 'Lilliana Angelovska');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'dress', 'orange', @last),
(NULL, 'polo', 'red', @last),
(NULL, 'dress', 'blue', @last),
(NULL, 't-shirt', 'white', @last);

SELECT * FROM person;
+----+---------------------+
| id | name |
+----+---------------------+
| 1 | Antonio Paz |
| 2 | Lilliana Angelovska |
+----+---------------------+

SELECT * FROM shirt;
+----+---------+--------+-------+
| id | style | color | owner |
+----+---------+--------+-------+
1	polo	blue	1
2	dress	white	1
3	t-shirt	blue	1
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
7	t-shirt	white	2
+----+---------+--------+-------+

SELECT s.* FROM person p INNER JOIN shirt s
 ON s.owner = p.id
 WHERE p.name LIKE 'Lilliana%'
 AND s.color <> 'white';

48

How MySQL Deals with Constraints

+----+-------+--------+-------+
| id | style | color | owner |
+----+-------+--------+-------+
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
+----+-------+--------+-------+

When used in this fashion, the REFERENCES clause is not displayed in the output of SHOW CREATE
TABLE or DESCRIBE:

SHOW CREATE TABLE shirt\G
*************************** 1. row ***************************
Table: shirt
Create Table: CREATE TABLE `shirt` (
`id` smallint(5) unsigned NOT NULL auto_increment,
`style` enum('t-shirt','polo','dress') NOT NULL,
`color` enum('red','blue','orange','white','black') NOT NULL,
`owner` smallint(5) unsigned NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1

For information about foreign key constraints, see Section 13.1.17.5, “FOREIGN KEY Constraints”.

1.6.2.4 '--' as the Start of a Comment

Standard SQL uses the C syntax /* this is a comment */ for comments, and MySQL Server
supports this syntax as well. MySQL also support extensions to this syntax that enable MySQL-specific
SQL to be embedded in the comment, as described in Section 9.6, “Comments”.

Standard SQL uses “--” as a start-comment sequence. MySQL Server uses # as the start comment
character. MySQL Server also supports a variant of the -- comment style. That is, the -- start-comment
sequence must be followed by a space (or by a control character such as a newline). The space is required
to prevent problems with automatically generated SQL queries that use constructs such as the following,
where we automatically insert the value of the payment for payment:

UPDATE account SET credit=credit-payment

Consider about what happens if payment has a negative value such as -1:

UPDATE account SET credit=credit--1

credit--1 is a valid expression in SQL, but -- is interpreted as the start of a comment, part of the
expression is discarded. The result is a statement that has a completely different meaning than intended:

UPDATE account SET credit=credit

The statement produces no change in value at all. This illustrates that permitting comments to start with --
can have serious consequences.

Using our implementation requires a space following the -- for it to be recognized as a start-comment
sequence in MySQL Server. Therefore, credit--1 is safe to use.

1.6.3 How MySQL Deals with Constraints

MySQL enables you to work both with transactional tables that permit rollback and with nontransactional
tables that do not. Because of this, constraint handling is a bit different in MySQL than in other DBMSs. We
must handle the case when you have inserted or updated a lot of rows in a nontransactional table for which
changes cannot be rolled back when an error occurs.

49

How MySQL Deals with Constraints

The basic philosophy is that MySQL Server tries to produce an error for anything that it can detect while
parsing a statement to be executed, and tries to recover from any errors that occur while executing the
statement. We do this in most cases, but not yet for all.

The options MySQL has when an error occurs are to stop the statement in the middle or to recover as well
as possible from the problem and continue. By default, the server follows the latter course. This means, for
example, that the server may coerce invalid values to the closest valid values.

Several SQL mode options are available to provide greater control over handling of bad data values
and whether to continue statement execution or abort when errors occur. Using these options, you can
configure MySQL Server to act in a more traditional fashion that is like other DBMSs that reject improper
input. The SQL mode can be set globally at server startup to affect all clients. Individual clients can
set the SQL mode at runtime, which enables each client to select the behavior most appropriate for its
requirements. See Section 5.1.10, “Server SQL Modes”.

The following sections describe how MySQL Server handles different types of constraints.

1.6.3.1 PRIMARY KEY and UNIQUE Index Constraints

Normally, errors occur for data-change statements (such as INSERT or UPDATE) that would violate
primary-key, unique-key, or foreign-key constraints. If you are using a transactional storage engine such
as InnoDB, MySQL automatically rolls back the statement. If you are using a nontransactional storage
engine, MySQL stops processing the statement at the row for which the error occurred and leaves any
remaining rows unprocessed.

MySQL supports an IGNORE keyword for INSERT, UPDATE, and so forth. If you use it, MySQL ignores
primary-key or unique-key violations and continues processing with the next row. See the section for the
statement that you are using (Section 13.2.5, “INSERT Statement”, Section 13.2.11, “UPDATE Statement”,
and so forth).

You can get information about the number of rows actually inserted or updated with the mysql_info() C
API function. You can also use the SHOW WARNINGS statement. See mysql_info(), and Section 13.7.5.41,
“SHOW WARNINGS Statement”.

Only InnoDB tables support foreign keys. See Section 13.1.17.5, “FOREIGN KEY Constraints”.

1.6.3.2 FOREIGN KEY Constraints

Foreign keys let you cross-reference related data across tables, and foreign key constraints help keep this
spread-out data consistent.

MySQL supports ON UPDATE and ON DELETE foreign key references in CREATE TABLE and ALTER
TABLE statements. The available referential actions are RESTRICT (the default), CASCADE, SET NULL,
and NO ACTION.

Note

NDB does not support ON UPDATE CASCADE actions where the referenced column
is the parent table's primary key.

SET DEFAULT is also supported by the MySQL Server but is currently rejected as invalid by InnoDB and
NDB. Since MySQL does not support deferred constraint checking, NO ACTION is treated as RESTRICT.
For the exact syntax supported by MySQL for foreign keys, see Section 13.1.17.5, “FOREIGN KEY
Constraints”.

MATCH FULL, MATCH PARTIAL, and MATCH SIMPLE are allowed, but their use should be avoided,
as they cause the MySQL Server to ignore any ON DELETE or ON UPDATE clause used in the same

50

https://dev.mysql.com/doc/c-api/5.6/en/mysql-info.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-info.html

How MySQL Deals with Constraints

statement. MATCH options do not have any other effect in MySQL, which in effect enforces MATCH SIMPLE
semantics full-time.

MySQL requires that foreign key columns be indexed; if you create a table with a foreign key constraint but
no index on a given column, an index is created. Exception: NDB Cluster requires an explicit unique key
(or primary key) on the foreign key column.

You can obtain information about foreign keys from the Information Schema KEY_COLUMN_USAGE table.
An example of a query against this table is shown here:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, CONSTRAINT_NAME
 > FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
 > WHERE REFERENCED_TABLE_SCHEMA IS NOT NULL;
+--------------+---------------+-------------+-----------------+
| TABLE_SCHEMA | TABLE_NAME | COLUMN_NAME | CONSTRAINT_NAME |
+--------------+---------------+-------------+-----------------+
fk1	myuser	myuser_id	f
fk1	product_order	customer_id	f2
fk1	product_order	product_id	f1
+--------------+---------------+-------------+-----------------+
3 rows in set (0.01 sec)

Information about foreign keys on InnoDB tables can also be found in the INNODB_SYS_FOREIGN and
INNODB_SYS_FOREIGN_COLS tables, in the INFORMATION_SCHEMA database.

1.6.3.3 Constraints on Invalid Data

By default, MySQL is forgiving of invalid or improper data values and coerces them to valid values for data
entry. However, you can enable strict SQL mode such that the server rejects invalid values and aborts the
statement in which they occur. See Section 5.1.10, “Server SQL Modes”.

This section describes the default (forgiving) behavior of MySQL, as well as the strict SQL mode and how it
differs.

If you are not using strict mode, then whenever you insert an “incorrect” value into a column, such as
a NULL into a NOT NULL column or a too-large numeric value into a numeric column, MySQL sets the
column to the “best possible value” instead of producing an error: The following rules describe in more
detail how this works:

• If you try to store an out of range value into a numeric column, MySQL Server instead stores zero, the
smallest possible value, or the largest possible value, whichever is closest to the invalid value.

• For strings, MySQL stores either the empty string or as much of the string as can be stored in the
column.

• If you try to store a string that does not start with a number into a numeric column, MySQL Server stores
0.

• Invalid values for ENUM and SET columns are handled as described in Section 1.6.3.4, “ENUM and SET
Constraints”.

• MySQL permits you to store certain incorrect date values into DATE and DATETIME columns (such
as '2000-02-31' or '2000-02-00'). In this case, when an application has not enabled strict SQL
mode, it up to the application to validate the dates before storing them. If MySQL can store a date value
and retrieve exactly the same value, MySQL stores it as given. If the date is totally wrong (outside the
server's ability to store it), the special “zero” date value '0000-00-00' is stored in the column instead.

• If you try to store NULL into a column that doesn't take NULL values, an error occurs for single-
row INSERT statements. For multiple-row INSERT statements or for INSERT INTO ... SELECT

51

How MySQL Deals with Constraints

statements, MySQL Server stores the implicit default value for the column data type. In general, this is
0 for numeric types, the empty string ('') for string types, and the “zero” value for date and time types.
Implicit default values are discussed in Section 11.5, “Data Type Default Values”.

• If an INSERT statement specifies no value for a column, MySQL inserts its default value if the column
definition includes an explicit DEFAULT clause. If the definition has no such DEFAULT clause, MySQL
inserts the implicit default value for the column data type.

The reason for using the preceding rules when strict mode is not in effect is that we cannot check these
conditions until the statement has begun executing. We cannot just roll back if we encounter a problem
after updating a few rows, because the storage engine may not support rollback. The option of terminating
the statement is not that good; in this case, the update would be “half done,” which is probably the
worst possible scenario. In this case, it is better to “do the best you can” and then continue as if nothing
happened.

You can select stricter treatment of input values by using the STRICT_TRANS_TABLES or
STRICT_ALL_TABLES SQL modes:

SET sql_mode = 'STRICT_TRANS_TABLES';
SET sql_mode = 'STRICT_ALL_TABLES';

STRICT_TRANS_TABLES enables strict mode for transactional storage engines, and also to some extent
for nontransactional engines. It works like this:

• For transactional storage engines, bad data values occurring anywhere in a statement cause the
statement to abort and roll back.

• For nontransactional storage engines, a statement aborts if the error occurs in the first row to be inserted
or updated. (When the error occurs in the first row, the statement can be aborted to leave the table
unchanged, just as for a transactional table.) Errors in rows after the first do not abort the statement,
because the table has already been changed by the first row. Instead, bad data values are adjusted
and result in warnings rather than errors. In other words, with STRICT_TRANS_TABLES, a wrong value
causes MySQL to roll back all updates done so far, if that can be done without changing the table. But
once the table has been changed, further errors result in adjustments and warnings.

For even stricter checking, enable STRICT_ALL_TABLES. This is the same as STRICT_TRANS_TABLES
except that for nontransactional storage engines, errors abort the statement even for bad data in rows
following the first row. This means that if an error occurs partway through a multiple-row insert or update
for a nontransactional table, a partial update results. Earlier rows are inserted or updated, but those from
the point of the error on are not. To avoid this for nontransactional tables, either use single-row statements
or else use STRICT_TRANS_TABLES if conversion warnings rather than errors are acceptable. To avoid
problems in the first place, do not use MySQL to check column content. It is safest (and often faster) to let
the application ensure that it passes only valid values to the database.

With either of the strict mode options, you can cause errors to be treated as warnings by using INSERT
IGNORE or UPDATE IGNORE rather than INSERT or UPDATE without IGNORE.

1.6.3.4 ENUM and SET Constraints

ENUM and SET columns provide an efficient way to define columns that can contain only a given set of
values. See Section 11.3.5, “The ENUM Type”, and Section 11.3.6, “The SET Type”.

With strict mode enabled (see Section 5.1.10, “Server SQL Modes”), the definition of a ENUM or SET
column acts as a constraint on values entered into the column. An error occurs for values that do not
satisfy these conditions:

52

Credits

• An ENUM value must be one of those listed in the column definition, or the internal numeric equivalent
thereof. The value cannot be the error value (that is, 0 or the empty string). For a column defined as
ENUM('a','b','c'), values such as '', 'd', or 'ax' are invalid and are rejected.

• A SET value must be the empty string or a value consisting only of the values listed in the column
definition separated by commas. For a column defined as SET('a','b','c'), values such as 'd' or
'a,b,c,d' are invalid and are rejected.

Errors for invalid values can be suppressed in strict mode if you use INSERT IGNORE or UPDATE
IGNORE. In this case, a warning is generated rather than an error. For ENUM, the value is inserted as the
error member (0). For SET, the value is inserted as given except that any invalid substrings are deleted.
For example, 'a,x,b,y' results in a value of 'a,b'.

1.7 Credits

The following sections list developers, contributors, and supporters that have helped to make MySQL what
it is today.

1.7.1 Contributors to MySQL

Although Oracle Corporation and/or its affiliates own all copyrights in the MySQL server and the MySQL
manual, we wish to recognize those who have made contributions of one kind or another to the MySQL
distribution. Contributors are listed here, in somewhat random order:

• Gianmassimo Vigazzola <qwerg@mbox.vol.it> or <qwerg@tin.it>

The initial port to Win32/NT.

• Per Eric Olsson

For constructive criticism and real testing of the dynamic record format.

• Irena Pancirov <irena@mail.yacc.it>

Win32 port with Borland compiler. mysqlshutdown.exe and mysqlwatch.exe.

• David J. Hughes

For the effort to make a shareware SQL database. At TcX, the predecessor of MySQL AB, we started
with mSQL, but found that it couldn't satisfy our purposes so instead we wrote an SQL interface to our
application builder Unireg. mysqladmin and mysql client are programs that were largely influenced
by their mSQL counterparts. We have put a lot of effort into making the MySQL syntax a superset of
mSQL. Many of the API's ideas are borrowed from mSQL to make it easy to port free mSQL programs
to the MySQL API. The MySQL software doesn't contain any code from mSQL. Two files in the
distribution (client/insert_test.c and client/select_test.c) are based on the corresponding
(noncopyrighted) files in the mSQL distribution, but are modified as examples showing the changes
necessary to convert code from mSQL to MySQL Server. (mSQL is copyrighted David J. Hughes.)

• Patrick Lynch

For helping us acquire http://www.mysql.com/.

• Fred Lindberg

For setting up qmail to handle the MySQL mailing list and for the incredible help we got in managing the
MySQL mailing lists.

53

http://www.mysql.com/

Contributors to MySQL

• Igor Romanenko <igor@frog.kiev.ua>

mysqldump (previously msqldump, but ported and enhanced by Monty).

• Yuri Dario

For keeping up and extending the MySQL OS/2 port.

• Tim Bunce

Author of mysqlhotcopy.

• Zarko Mocnik <zarko.mocnik@dem.si>

Sorting for Slovenian language.

• "TAMITO" <tommy@valley.ne.jp>

The _MB character set macros and the ujis and sjis character sets.

• Joshua Chamas <joshua@chamas.com>

Base for concurrent insert, extended date syntax, debugging on NT, and answering on the MySQL
mailing list.

• Yves Carlier <Yves.Carlier@rug.ac.be>

mysqlaccess, a program to show the access rights for a user.

• Rhys Jones <rhys@wales.com> (And GWE Technologies Limited)

For one of the early JDBC drivers.

• Dr Xiaokun Kelvin ZHU <X.Zhu@brad.ac.uk>

Further development of one of the early JDBC drivers and other MySQL-related Java tools.

• James Cooper <pixel@organic.com>

For setting up a searchable mailing list archive at his site.

• Rick Mehalick <Rick_Mehalick@i-o.com>

For xmysql, a graphical X client for MySQL Server.

• Doug Sisk <sisk@wix.com>

For providing RPM packages of MySQL for Red Hat Linux.

• Diemand Alexander V. <axeld@vial.ethz.ch>

For providing RPM packages of MySQL for Red Hat Linux-Alpha.

• Antoni Pamies Olive <toni@readysoft.es>

For providing RPM versions of a lot of MySQL clients for Intel and SPARC.

• Jay Bloodworth <jay@pathways.sde.state.sc.us>

For providing RPM versions for MySQL 3.21.

54

Contributors to MySQL

• David Sacerdote <davids@secnet.com>

Ideas for secure checking of DNS host names.

• Wei-Jou Chen <jou@nematic.ieo.nctu.edu.tw>

Some support for Chinese(BIG5) characters.

• Wei He <hewei@mail.ied.ac.cn>

A lot of functionality for the Chinese(GBK) character set.

• Jan Pazdziora <adelton@fi.muni.cz>

Czech sorting order.

• Zeev Suraski <bourbon@netvision.net.il>

FROM_UNIXTIME() time formatting, ENCRYPT() functions, and bison advisor. Active mailing list
member.

• Luuk de Boer <luuk@wxs.nl>

Ported (and extended) the benchmark suite to DBI/DBD. Have been of great help with crash-me and
running benchmarks. Some new date functions. The mysql_setpermission script.

• Alexis Mikhailov <root@medinf.chuvashia.su>

Loadable functions; CREATE FUNCTION and DROP FUNCTION.

• Andreas F. Bobak <bobak@relog.ch>

The AGGREGATE extension to loadable functions.

• Ross Wakelin <R.Wakelin@march.co.uk>

Help to set up InstallShield for MySQL-Win32.

• Jethro Wright III <jetman@li.net>

The libmysql.dll library.

• James Pereria <jpereira@iafrica.com>

Mysqlmanager, a Win32 GUI tool for administering MySQL Servers.

• Curt Sampson <cjs@portal.ca>

Porting of MIT-pthreads to NetBSD/Alpha and NetBSD 1.3/i386.

• Martin Ramsch <m.ramsch@computer.org>

Examples in the MySQL Tutorial.

• Steve Harvey

For making mysqlaccess more secure.

• Konark IA-64 Centre of Persistent Systems Private Limited

55

Contributors to MySQL

Help with the Win64 port of the MySQL server.

• Albert Chin-A-Young.

Configure updates for Tru64, large file support and better TCP wrappers support.

• John Birrell

Emulation of pthread_mutex() for OS/2.

• Benjamin Pflugmann

Extended MERGE tables to handle INSERTS. Active member on the MySQL mailing lists.

• Jocelyn Fournier

Excellent spotting and reporting innumerable bugs (especially in the MySQL 4.1 subquery code).

• Marc Liyanage

Maintaining the OS X packages and providing invaluable feedback on how to create OS X packages.

• Robert Rutherford

Providing invaluable information and feedback about the QNX port.

• Previous developers of NDB Cluster

Lots of people were involved in various ways summer students, master thesis students, employees. In
total more than 100 people so too many to mention here. Notable name is Ataullah Dabaghi who up until
1999 contributed around a third of the code base. A special thanks also to developers of the AXE system
which provided much of the architectural foundations for NDB Cluster with blocks, signals and crash
tracing functionality. Also credit should be given to those who believed in the ideas enough to allocate of
their budgets for its development from 1992 to present time.

• Google Inc.

We wish to recognize Google Inc. for contributions to the MySQL distribution: Mark Callaghan's SMP
Performance patches and other patches.

Other contributors, bugfinders, and testers: James H. Thompson, Maurizio Menghini, Wojciech
Tryc, Luca Berra, Zarko Mocnik, Wim Bonis, Elmar Haneke, <jehamby@lightside>,
<psmith@BayNetworks.com>, <duane@connect.com.au>, Ted Deppner <ted@psyber.com>, Mike
Simons, Jaakko Hyvatti.

And lots of bug report/patches from the folks on the mailing list.

A big tribute goes to those that help us answer questions on the MySQL mailing lists:

• Daniel Koch <dkoch@amcity.com>

Irix setup.

• Luuk de Boer <luuk@wxs.nl>

Benchmark questions.

• Tim Sailer <tps@users.buoy.com>

56

Documenters and translators

DBD::mysql questions.

• Boyd Lynn Gerber <gerberb@zenez.com>

SCO-related questions.

• Richard Mehalick <RM186061@shellus.com>

xmysql-related questions and basic installation questions.

• Zeev Suraski <bourbon@netvision.net.il>

Apache module configuration questions (log & auth), PHP-related questions, SQL syntax-related
questions and other general questions.

• Francesc Guasch <frankie@citel.upc.es>

General questions.

• Jonathan J Smith <jsmith@wtp.net>

Questions pertaining to OS-specifics with Linux, SQL syntax, and other things that might need some
work.

• David Sklar <sklar@student.net>

Using MySQL from PHP and Perl.

• Alistair MacDonald <A.MacDonald@uel.ac.uk>

Is flexible and can handle Linux and perhaps HP-UX.

• John Lyon <jlyon@imag.net>

Questions about installing MySQL on Linux systems, using either .rpm files or compiling from source.

• Lorvid Ltd. <lorvid@WOLFENET.com>

Simple billing/license/support/copyright issues.

• Patrick Sherrill <patrick@coconet.com>

ODBC and VisualC++ interface questions.

• Randy Harmon <rjharmon@uptimecomputers.com>

DBD, Linux, some SQL syntax questions.

1.7.2 Documenters and translators

The following people have helped us with writing the MySQL documentation and translating the
documentation or error messages in MySQL.

• Kim Aldale

Helped to rewrite Monty's and David's early attempts at English into English.

• Michael J. Miller Jr. <mke@terrapin.turbolift.com>

57

Documenters and translators

For the first MySQL manual. And a lot of spelling/language fixes for the FAQ (that turned into the MySQL
manual a long time ago).

• Yan Cailin

First translator of the MySQL Reference Manual into simplified Chinese in early 2000 on which the Big5
and HK coded versions were based.

• Jay Flaherty <fty@mediapulse.com>

Big parts of the Perl DBI/DBD section in the manual.

• Paul Southworth <pauls@etext.org>, Ray Loyzaga <yar@cs.su.oz.au>

Proof-reading of the Reference Manual.

• Therrien Gilbert <gilbert@ican.net>, Jean-Marc Pouyot <jmp@scalaire.fr>

French error messages.

• Petr Snajdr, <snajdr@pvt.net>

Czech error messages.

• Jaroslaw Lewandowski <jotel@itnet.com.pl>

Polish error messages.

• Miguel Angel Fernandez Roiz

Spanish error messages.

• Roy-Magne Mo <rmo@www.hivolda.no>

Norwegian error messages and testing of MySQL 3.21.xx.

• Timur I. Bakeyev <root@timur.tatarstan.ru>

Russian error messages.

• <brenno@dewinter.com> & Filippo Grassilli <phil@hyppo.com>

Italian error messages.

• Dirk Munzinger <dirk@trinity.saar.de>

German error messages.

• Billik Stefan <billik@sun.uniag.sk>

Slovak error messages.

• Stefan Saroiu <tzoompy@cs.washington.edu>

Romanian error messages.

• Peter Feher

Hungarian error messages.

58

Packages that support MySQL

• Roberto M. Serqueira

Portuguese error messages.

• Carsten H. Pedersen

Danish error messages.

• Arjen Lentz

Dutch error messages, completing earlier partial translation (also work on consistency and spelling).

1.7.3 Packages that support MySQL

The following is a list of creators/maintainers of some of the most important API/packages/applications that
a lot of people use with MySQL.

We cannot list every possible package here because the list would then be way to hard to maintain. For
other packages, please refer to the software portal at http://solutions.mysql.com/software/.

• Tim Bunce, Alligator Descartes

For the DBD (Perl) interface.

• Andreas Koenig <a.koenig@mind.de>

For the Perl interface for MySQL Server.

• Jochen Wiedmann <wiedmann@neckar-alb.de>

For maintaining the Perl DBD::mysql module.

• Eugene Chan <eugene@acenet.com.sg>

For porting PHP for MySQL Server.

• Georg Richter

MySQL 4.1 testing and bug hunting. New PHP 5.0 mysqli extension (API) for use with MySQL 4.1 and
up.

• Giovanni Maruzzelli <maruzz@matrice.it>

For porting iODBC (Unix ODBC).

• Xavier Leroy <Xavier.Leroy@inria.fr>

The author of LinuxThreads (used by the MySQL Server on Linux).

1.7.4 Tools that were used to create MySQL

The following is a list of some of the tools we have used to create MySQL. We use this to express our
thanks to those that has created them as without these we could not have made MySQL what it is today.

• Free Software Foundation

From whom we got an excellent compiler (gcc), an excellent debugger (gdb and the libc library (from
which we have borrowed strto.c to get some code working in Linux).

59

http://solutions.mysql.com/software/

Supporters of MySQL

• Free Software Foundation & The XEmacs development team

For a really great editor/environment.

• Julian Seward

Author of valgrind, an excellent memory checker tool that has helped us find a lot of otherwise hard to
find bugs in MySQL.

• Dorothea Lütkehaus and Andreas Zeller

For DDD (The Data Display Debugger) which is an excellent graphical front end to gdb).

1.7.5 Supporters of MySQL

Although Oracle Corporation and/or its affiliates own all copyrights in the MySQL server and the MySQL
manual, we wish to recognize the following companies, which helped us finance the development of the
MySQL server, such as by paying us for developing a new feature or giving us hardware for development
of the MySQL server.

• VA Linux / Andover.net

Funded replication.

• NuSphere

Editing of the MySQL manual.

• Stork Design studio

The MySQL website in use between 1998-2000.

• Intel

Contributed to development on Windows and Linux platforms.

• Compaq

Contributed to Development on Linux/Alpha.

• SWSoft

Development on the embedded mysqld version.

• FutureQuest

The --skip-show-database option.

60

Chapter 2 Installing and Upgrading MySQL

Table of Contents
2.1 General Installation Guidance ... 64

2.1.1 Supported Platforms .. 64
2.1.2 Which MySQL Version and Distribution to Install ... 64
2.1.3 How to Get MySQL ... 65
2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG ... 65
2.1.5 Installation Layouts .. 82
2.1.6 Compiler-Specific Build Characteristics ... 82

2.2 Installing MySQL on Unix/Linux Using Generic Binaries .. 82
2.3 Installing MySQL on Microsoft Windows .. 85

2.3.1 MySQL Installation Layout on Microsoft Windows .. 88
2.3.2 Choosing an Installation Package ... 89
2.3.3 MySQL Installer for Windows ... 90
2.3.4 Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive 122
2.3.5 Troubleshooting a Microsoft Windows MySQL Server Installation 130
2.3.6 Windows Postinstallation Procedures .. 131
2.3.7 Windows Platform Restrictions .. 133

2.4 Installing MySQL on macOS ... 135
2.4.1 General Notes on Installing MySQL on macOS ... 135
2.4.2 Installing MySQL on macOS Using Native Packages ... 136
2.4.3 Installing a MySQL Launch Daemon ... 141
2.4.4 Installing and Using the MySQL Preference Pane .. 143

2.5 Installing MySQL on Linux .. 148
2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository .. 149
2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository 153
2.5.3 Installing MySQL on Linux Using the MySQL APT Repository .. 155
2.5.4 Installing MySQL on Linux Using the MySQL SLES Repository .. 155
2.5.5 Installing MySQL on Linux Using RPM Packages from Oracle .. 156
2.5.6 Installing MySQL on Linux Using Debian Packages from Oracle 159
2.5.7 Installing MySQL on Linux from the Native Software Repositories 161
2.5.8 Deploying MySQL on Linux with Docker ... 165
2.5.9 Installing MySQL on Linux with Juju ... 173

2.6 Installing MySQL Using Unbreakable Linux Network (ULN) ... 173
2.7 Installing MySQL on Solaris .. 173

2.7.1 Installing MySQL on Solaris Using a Solaris PKG .. 174
2.8 Installing MySQL on FreeBSD ... 175
2.9 Installing MySQL from Source ... 176

2.9.1 Source Installation Methods .. 176
2.9.2 Source Installation Prerequisites ... 176
2.9.3 MySQL Layout for Source Installation ... 178
2.9.4 Installing MySQL Using a Standard Source Distribution ... 178
2.9.5 Installing MySQL Using a Development Source Tree ... 182
2.9.6 Configuring SSL Library Support ... 184
2.9.7 MySQL Source-Configuration Options ... 185
2.9.8 Dealing with Problems Compiling MySQL ... 201
2.9.9 MySQL Configuration and Third-Party Tools .. 203

2.10 Postinstallation Setup and Testing ... 203
2.10.1 Initializing the Data Directory .. 204
2.10.2 Starting the Server ... 207

61

2.10.3 Testing the Server ... 209
2.10.4 Securing the Initial MySQL Accounts .. 211
2.10.5 Starting and Stopping MySQL Automatically .. 216

2.11 Upgrading MySQL .. 217
2.11.1 Before You Begin ... 217
2.11.2 Upgrade Paths ... 218
2.11.3 Changes in MySQL 5.6 .. 218
2.11.4 Upgrading MySQL Binary or Package-based Installations on Unix/Linux 225
2.11.5 Upgrading MySQL with the MySQL Yum Repository .. 227
2.11.6 Upgrading MySQL with the MySQL APT Repository .. 229
2.11.7 Upgrading MySQL with the MySQL SLES Repository .. 229
2.11.8 Upgrading MySQL on Windows .. 229
2.11.9 Upgrade Troubleshooting .. 231
2.11.10 Rebuilding or Repairing Tables or Indexes .. 232
2.11.11 Copying MySQL Databases to Another Machine .. 233

2.12 Downgrading MySQL .. 234
2.12.1 Before You Begin ... 234
2.12.2 Downgrade Paths ... 235
2.12.3 Downgrade Notes .. 235
2.12.4 Downgrading Binary and Package-based Installations on Unix/Linux 237
2.12.5 Downgrade Troubleshooting ... 239

2.13 Perl Installation Notes ... 239
2.13.1 Installing Perl on Unix .. 239
2.13.2 Installing ActiveState Perl on Windows .. 240
2.13.3 Problems Using the Perl DBI/DBD Interface .. 241

This chapter describes how to obtain and install MySQL. A summary of the procedure follows and later
sections provide the details. If you plan to upgrade an existing version of MySQL to a newer version rather
than install MySQL for the first time, see Section 2.11, “Upgrading MySQL”, for information about upgrade
procedures and about issues that you should consider before upgrading.

If you are interested in migrating to MySQL from another database system, see Section A.8, “MySQL 5.6
FAQ: Migration”, which contains answers to some common questions concerning migration issues.

Installation of MySQL generally follows the steps outlined here:

1. Determine whether MySQL runs and is supported on your platform.

Please note that not all platforms are equally suitable for running MySQL, and that not all platforms
on which MySQL is known to run are officially supported by Oracle Corporation. For information about
those platforms that are officially supported, see https://www.mysql.com/support/supportedplatforms/
database.html on the MySQL website.

2. Choose which distribution to install.

Several versions of MySQL are available, and most are available in several distribution formats. You
can choose from pre-packaged distributions containing binary (precompiled) programs or source code.
When in doubt, use a binary distribution. Oracle also provides access to the MySQL source code for
those who want to see recent developments and test new code. To determine which version and type
of distribution you should use, see Section 2.1.2, “Which MySQL Version and Distribution to Install”.

3. Download the distribution that you want to install.

For instructions, see Section 2.1.3, “How to Get MySQL”. To verify the integrity of the distribution, use
the instructions in Section 2.1.4, “Verifying Package Integrity Using MD5 Checksums or GnuPG”.

62

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html

4. Install the distribution.

To install MySQL from a binary distribution, use the instructions in Section 2.2, “Installing MySQL on
Unix/Linux Using Generic Binaries”.

To install MySQL from a source distribution or from the current development source tree, use the
instructions in Section 2.9, “Installing MySQL from Source”.

5. Perform any necessary postinstallation setup.

After installing MySQL, see Section 2.10, “Postinstallation Setup and Testing” for information
about making sure the MySQL server is working properly. Also refer to the information provided in
Section 2.10.4, “Securing the Initial MySQL Accounts”. This section describes how to secure the initial
MySQL user accounts, which have no passwords until you assign passwords. The section applies
whether you install MySQL using a binary or source distribution.

6. If you want to run the MySQL benchmark scripts, Perl support for MySQL must be available. See
Section 2.13, “Perl Installation Notes”.

Instructions for installing MySQL on different platforms and environments is available on a platform by
platform basis:

• Unix, Linux, FreeBSD

For instructions on installing MySQL on most Linux and Unix platforms using a generic binary (for
example, a .tar.gz package), see Section 2.2, “Installing MySQL on Unix/Linux Using Generic
Binaries”.

For information on building MySQL entirely from the source code distributions or the source code
repositories, see Section 2.9, “Installing MySQL from Source”

For specific platform help on installation, configuration, and building from source see the corresponding
platform section:

• Linux, including notes on distribution specific methods, see Section 2.5, “Installing MySQL on Linux”.

• Solaris, including PKG and IPS formats, see Section 2.7, “Installing MySQL on Solaris”.

• IBM AIX, see Section 2.7, “Installing MySQL on Solaris”.

• FreeBSD, see Section 2.8, “Installing MySQL on FreeBSD”.

• Microsoft Windows

For instructions on installing MySQL on Microsoft Windows, using either the MySQL Installer or Zipped
binary, see Section 2.3, “Installing MySQL on Microsoft Windows”.

For details and instructions on building MySQL from source code using Microsoft Visual Studio, see
Section 2.9, “Installing MySQL from Source”.

• macOS

For installation on macOS, including using both the binary package and native PKG formats, see
Section 2.4, “Installing MySQL on macOS”.

For information on making use of an macOS Launch Daemon to automatically start and stop MySQL,
see Section 2.4.3, “Installing a MySQL Launch Daemon”.

63

General Installation Guidance

For information on the MySQL Preference Pane, see Section 2.4.4, “Installing and Using the MySQL
Preference Pane”.

2.1 General Installation Guidance

The immediately following sections contain the information necessary to choose, download, and verify your
distribution. The instructions in later sections of the chapter describe how to install the distribution that you
choose. For binary distributions, see the instructions at Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries” or the corresponding section for your platform if available. To build MySQL from source,
use the instructions in Section 2.9, “Installing MySQL from Source”.

2.1.1 Supported Platforms

MySQL platform support evolves over time; please refer to https://www.mysql.com/support/
supportedplatforms/database.html for the latest updates.

2.1.2 Which MySQL Version and Distribution to Install

When preparing to install MySQL, decide which version and distribution format (binary or source) to use.

First, decide whether to install a development release or a General Availability (GA) release. Development
releases have the newest features, but are not recommended for production use. GA releases, also called
production or stable releases, are meant for production use. We recommend using the most recent GA
release.

The naming scheme in MySQL 5.6 uses release names that consist of three numbers and an optional
suffix; for example, mysql-5.6.1-m1. The numbers within the release name are interpreted as follows:

• The first number (5) is the major version number.

• The second number (6) is the minor version number. Taken together, the major and minor numbers
constitute the release series number. The series number describes the stable feature set.

• The third number (1) is the version number within the release series. This is incremented for each new
bugfix release. In most cases, the most recent version within a series is the best choice.

Release names can also include a suffix to indicate the stability level of the release. Releases within a
series progress through a set of suffixes to indicate how the stability level improves. The possible suffixes
are:

• mN (for example, m1, m2, m3, ...) indicates a milestone number. MySQL development uses a milestone
model, in which each milestone introduces a small subset of thoroughly tested features. Following
the releases for one milestone, development proceeds with another small number of releases that
focuses on the next set of features. From one milestone to the next, feature interfaces may change or
features may even be removed, based on feedback provided by community members who try these
early releases. Features within milestone releases may be considered to be of pre-production quality.

• rc indicates a Release Candidate (RC). Release candidates are believed to be stable, having passed all
of MySQL's internal testing. New features may still be introduced in RC releases, but the focus shifts to
fixing bugs to stabilize features introduced earlier within the series.

• Absence of a suffix indicates a General Availability (GA) or Production release. GA releases are stable,
having successfully passed through the earlier release stages, and are believed to be reliable, free of
serious bugs, and suitable for use in production systems.

64

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html

How to Get MySQL

Development within a series begins with milestone releases, followed by RC releases, and finally reaches
GA status releases.

After choosing which MySQL version to install, decide which distribution format to install for your operating
system. For most use cases, a binary distribution is the right choice. Binary distributions are available
in native format for many platforms, such as RPM packages for Linux or DMG packages for macOS.
Distributions are also available in more generic formats such as Zip archives or compressed tar files. On
Windows, you can use the MySQL Installer to install a binary distribution.

Under some circumstances, it may be preferable to install MySQL from a source distribution:

• You want to install MySQL at some explicit location. The standard binary distributions are ready to run at
any installation location, but you might require even more flexibility to place MySQL components where
you want.

• You want to configure mysqld with features that might not be included in the standard binary
distributions. Here is a list of the most common extra options used to ensure feature availability:

• -DWITH_LIBWRAP=1 for TCP wrappers support.

• -DWITH_ZLIB={system|bundled} for features that depend on compression

• -DWITH_DEBUG=1 for debugging support

For additional information, see Section 2.9.7, “MySQL Source-Configuration Options”.

• You want to configure mysqld without some features that are included in the standard binary
distributions. For example, distributions normally are compiled with support for all character sets. If you
want a smaller MySQL server, you can recompile it with support for only the character sets you need.

• You want to read or modify the C and C++ code that makes up MySQL. For this purpose, obtain a
source distribution.

• Source distributions contain more tests and examples than binary distributions.

2.1.3 How to Get MySQL

Check our downloads page at https://dev.mysql.com/downloads/ for information about the current version
of MySQL and for downloading instructions.

For RPM-based Linux platforms that use Yum as their package management system, MySQL can be
installed using the MySQL Yum Repository. See Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository” for details.

For Debian-based Linux platforms, MySQL can be installed using the MySQL APT Repository. See
Section 2.5.3, “Installing MySQL on Linux Using the MySQL APT Repository” for details.

For SUSE Linux Enterprise Server (SLES) platforms, MySQL can be installed using the MySQL SLES
Repository. See Section 2.5.4, “Installing MySQL on Linux Using the MySQL SLES Repository” for details.

To obtain the latest development source, see Section 2.9.5, “Installing MySQL Using a Development
Source Tree”.

2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG

After downloading the MySQL package that suits your needs and before attempting to install it, make sure
that it is intact and has not been tampered with. There are three means of integrity checking:

65

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/repo/suse/

Verifying Package Integrity Using MD5 Checksums or GnuPG

• MD5 checksums

• Cryptographic signatures using GnuPG, the GNU Privacy Guard

• For RPM packages, the built-in RPM integrity verification mechanism

The following sections describe how to use these methods.

If you notice that the MD5 checksum or GPG signatures do not match, first try to download the respective
package one more time, perhaps from another mirror site.

2.1.4.1 Verifying the MD5 Checksum

After you have downloaded a MySQL package, you should make sure that its MD5 checksum matches
the one provided on the MySQL download pages. Each package has an individual checksum that you can
verify against the package that you downloaded. The correct MD5 checksum is listed on the downloads
page for each MySQL product, and you compare it against the MD5 checksum of the file (product) that you
download.

Each operating system and setup offers its own version of tools for checking the MD5 checksum. Typically
the command is named md5sum, or it may be named md5, and some operating systems do not ship it at
all. On Linux, it is part of the GNU Text Utilities package, which is available for a wide range of platforms.
You can also download the source code from http://www.gnu.org/software/textutils/. If you have OpenSSL
installed, you can use the command openssl md5 package_name instead. A Windows implementation
of the md5 command line utility is available from http://www.fourmilab.ch/md5/. winMd5Sum is a graphical
MD5 checking tool that can be obtained from http://www.nullriver.com/index/products/winmd5sum. Our
Microsoft Windows examples assume the name md5.exe.

Linux and Microsoft Windows examples:

$> md5sum mysql-standard-5.6.51-linux-i686.tar.gz
aaab65abbec64d5e907dcd41b8699945 mysql-standard-5.6.51-linux-i686.tar.gz

$> md5.exe mysql-installer-community-5.6.51.msi
aaab65abbec64d5e907dcd41b8699945 mysql-installer-community-5.6.51.msi

You should verify that the resulting checksum (the string of hexadecimal digits) matches the one displayed
on the download page immediately below the respective package.

Note

Make sure to verify the checksum of the archive file (for example, the .zip,
.tar.gz, or .msi file) and not of the files that are contained inside of the archive.
In other words, verify the file before extracting its contents.

2.1.4.2 Signature Checking Using GnuPG

Another method of verifying the integrity and authenticity of a package is to use cryptographic signatures.
This is more reliable than using MD5 checksums, but requires more work.

We sign MySQL downloadable packages with GnuPG (GNU Privacy Guard). GnuPG is an Open Source
alternative to the well-known Pretty Good Privacy (PGP) by Phil Zimmermann. Most Linux distributions ship
with GnuPG installed by default. Otherwise, see http://www.gnupg.org/ for more information about GnuPG
and how to obtain and install it.

To verify the signature for a specific package, you first need to obtain a copy of our public GPG build
key, which you can download from http://pgp.mit.edu/. The key that you want to obtain is named mysql-
build@oss.oracle.com. After obtaining this key, you should compare it with the key shown following,

66

http://www.gnu.org/software/textutils/
http://www.fourmilab.ch/md5/
http://www.nullriver.com/index/products/winmd5sum
http://www.gnupg.org/
http://pgp.mit.edu/

Verifying Package Integrity Using MD5 Checksums or GnuPG

before using it verify MySQL packages. Alternatively, you can copy and paste the key directly from the text
shown here:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: SKS 1.1.6
Comment: Hostname: pgp.mit.edu

mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3RODjQRey
CITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZfw2vOUgCmYv2hW0h
yDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3BqOxRznNCRCRxAuAuVztHRcE
AJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNWhxwR9pRWVArNYJdDRT+rf2RUe3vpquKN
QU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLVK2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sB
gACyP/Vb7hiPwxh6rDZ7ITnEkYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgt
obZX9qnrAXw+uNDIQJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAn
Wqcyefeprv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q2TXlTUUwgUmVs
ZWFzZSBFbmdpbmVlcmluZyA8bXlzcWwtYnVpbGRAb3NzLm9yYWNsZS5jb20+iEYEEBECAAYF
AlldBJ4ACgkQvcMmpx2w8a2MYQCgga9wXfwOe/52xg0RTkhsbDQhvdAAn30njwoLBhKdDBxk
hVmwZQvzdYYNiGYEExECACYCGyMGCwkIBwMCBBUCCAMEFgIDAQIeAQIXgAUCTnc+KgUJE/sC
FQAKCRCMcY07UHLh9SbMAJ4l1+qBz2BZNSGCZwwA6YbhGPC7FwCgp8z5TzIw4YQuL5NGJ/sy
0oSazqmIZgQTEQIAJgUCTnc9dgIbIwUJEPPzpwYLCQgHAwIEFQIIAwQWAgMBAh4BAheAAAoJ
EIxxjTtQcuH1Ut4AoIKjhdf70899d+7JFq3LD7zeeyI0AJ9Z+YyE1HZSnzYi73brScilbIV6
sYhpBBMRAgApAhsjBgsJCAcDAgQVAggDBBYCAwECHgECF4ACGQEFAlGUkToFCRU3IaoACgkQ
jHGNO1By4fWLQACfV6wP8ppZqMz2Z/gPZbPP7sDHE7EAn2kDDatXTZIR9pMgcnN0cff1tsX6
iGkEExECACkCGyMGCwkIBwMCBBUCCAMEFgIDAQIeAQIXgAIZAQUCUwHUZgUJGmbLywAKCRCM
cY07UHLh9V+DAKCjS1gGwgVI/eut+5L+l2v3ybl+ZgCcD7ZoA341HtoroV3U6xRD09fUgeqI
bAQTEQIALAIbIwIeAQIXgAIZAQYLCQgHAwIGFQoJCAIDBRYCAwEABQJYpXsIBQkeKT7NAAoJ
EIxxjTtQcuH1wrMAnRGuZVbriMR077KTGAVhJF2uKJiPAJ9rCpXYFve2IdxST2i7w8nygefV
a4hsBBMRAgAsAhsjAh4BAheAAhkBBgsJCAcDAgYVCgkIAgMFFgIDAQAFAlinBSAFCR4qyRQA
CgkQjHGNO1By4fVXBQCeOqVMlXfAWdq+QqaTAtbZskN3HkYAn1T8LlbIktFREeVlKrQEA7fg
6HrQiGwEExECACwCGyMCHgECF4ACGQEGCwkIBwMCBhUKCQgCAwUWAgMBAAUCXEBY+wUJI87e
5AAKCRCMcY07UHLh9RZPAJ9uvm0zlzfCN+DHxHVaoFLFjdVYTQCfborsC9tmEZYawhhogjeB
kZkorbyJARwEEAECAAYFAlAS6+UACgkQ8aIC+GoXHivrWwf/dtLk/x+NC2VMDlg+vOeM0qgG
1IlhXZfiNsEisvvGaz4m8fSFRGe+1bvvfDoKRhxiGXU48RusjixzvBb6KTMuY6JpOVfz9Dj3
H9spYriHa+i6rYySXZIpOhfLiMnTy7NH2OvYCyNzSS/ciIUACIfH/2NH8zNT5CNF1uPNRs7H
sHzzz7pOlTjtTWiF4cq/Ij6Z6CNrmdj+SiMvjYN9u6sdEKGtoNtpycgD5HGKR+I7Nd/7v56y
haUe4FpuvsNXig86K9tI6MUFS8CUyy7Hj3kVBZOUWVBM053knGdALSygQr50DA3jMGKVl4Zn
Hje2RVWRmFTr5YWoRTMxUSQPMLpBNIkBHAQQAQIABgUCU1B+vQAKCRAohbcD0zcc8dWwCACW
XXWDXIcAWRUw+j3ph8dr9u3SItljn3wBc7clpclKWPuLvTz7lGgzlVB0s8hH4xgkSA+zLzl6
u56mpUzskFl7f1I3Ac9GGpM40M5vmmR9hwlD1HdZtGfbD+wkjlqgitNLoRcGdRf/+U7x09Gh
SS7Bf339sunIX6sMgXSC4L32D3zDjF5icGdb0kj+3lCrRmp853dGyA3ff9yUiBkxcKNawpi7
Vz3D2ddUpOF3BP+8NKPg4P2+srKgkFbd4HidcISQCt3rY4vaTkEkLKg0nNA6U4r0YgOa7wIT
SsxFlntMMzaRg53QtK0+YkH0KuZR3GY8B7pi+tlgycyVR7mIFo7riQEcBBABAgAGBQJcSESc
AAoJENwpi/UwTWr2X/YH/0JLr/qBW7cDIx9admk5+vjPoUl6U6SGzCkIlfK24j90kU0oJxDn
FVwc9tcxGtxK8n6AEc5G0FQzjuXeYQ1SAHXquZ9CeGjidmsrRLVKXwOIcFZPBmfS9JBzdHa9
W1b99NWHOehWWnyIITVZ1KeBLbI7uoyXkvZgVp0REd37XWGgYEhT0JwAXnk4obH6djY3T/Hf
D70piuvFU7w84IRAqevUcaDppU/1QluDiOnViq6MAki85Z+uoM6ojUZtwmqXDSYIPzRHctfx
Vdv3HS423RUvcfpMUGG94r7tTOSXhHS9rcs6lzLnKl84J0xzI5bWS/Fw+5h40Gpd4HTR/kiE
Xu2JARwEEAEIAAYFAlaBV3QACgkQRm7hv+CThQqT0wf9Ge3sRxw+NIkLkKsHYBTktjYOyv49
48ja5s9awR0bzapKOMaluEgfwtKD8/NCgYeIVYyaZlYmS1FP51yAtuzdvZXAI0DAITyM4d1S
RCESjCCiZ028eIEcoeM/j+UXrwo4+I7/abFhiSakzsFZ/eQHnsMnkJOLf8kug3vMXjSoiz+n
T14++fBK2mCVtu1Sftc877X8R7xUfOKYAGibnY+RAi7E2JVTMtWfdtJaqt3l5y6ouTrLOM9d
3ZeEMdYL1PCmXrwZ4+u7oTNC26yLSbpL+weAReqH8jGsVlUmWWMXvkm+ixmrnN66WvSLqQ6K
P5jWnowV9+KEhNnWBOaT4Iu8rYkBIgQQAQIADAUCTndBLgUDABJ1AAAKCRCXELibyletfAnx
B/9t79Q72ap+hzawzKHAyk3j990FbB8uQDXYVdAM5Ay/Af0eyYSOd9SBgpexyFlGL4O4dd7U
/uXwbZpAu5uEGxB/16Mq9EVPO5YxCR0ir7oqi6XG/qh+QJy/d3XG07ZbudvnLFylUE+tF8YU
Z5sm9lrnwPKYI2DIa0BToA7Pi95q82Yjb4YgNCxjrr61gO9n4LHDN1i74cNX0easl9zp14zS
acGftJGOrPEk+ChNCGKFNq/qr9Hn/ank29D8fzg6BLoaOix8ZzZ25QPMI/+SF4xEp/O7IoI4
dA+0m4iPz76B+ke0RTsgNRfVKjdz2fQ92l4G9yWwNulGcI3FBZTiYGi3iQEiBBABAgAMBQJO
iLYZBQMAEnUAAAoJEJcQuJvKV618tkAH/2hGrH40L3xRAP/CXEJHK3O+L8y4+duBBQ8scRqn
XS28SLfdL8f/ENH+1wah9jhyMC+jmyRldd5ar3cC/s8AJRvOSDRfR5KvagvrDLrrF+i/vYDB
K5f6JQrryq0poupEuK0zTbLxo1FX+CAq+3tQy8aY6+znItpiWhvK8ZoULYKV+Q063YyVWdBk
KadgELA6S08aQTGK7bJkyJ9xgbFBykcpUUbn0p4XZwzZ3jFgzwcmqRIYZbfTosVVLJ5HAb7B
u22AukPlsz9PZvd8X8nfmtoJIwtl5qtFOrxrKA+X5czswzZ5H3jprDqOY6yA0EStu+8h1CPo
u50BmP7yKZxdXYqJASIEEAECAAwFAk6Z2dEFAwASdQAACgkQlxC4m8pXrXwC8ggAgQXVkn5H
LtY50oXmh5D/KdphSKDM33Z9b/3MHzK5CWeCQUkaJ1gxtyLW1HWyLOIhUkW6xHdmieoA8Yr9
JS1r1jopYuGZztzlScQeSWr8190xnZZVIjKReVy2rDSxtv7PV5wR3gby72PmKWUw7UHfqtBr
JgA+h5ctfx1jhXIUtUZpDTStZAFgVmunDXoBNZtYYk/ffY1J8KTjNmrqRcRbTurSy3dgGAAA

67

Verifying Package Integrity Using MD5 Checksums or GnuPG

Z01DIR5kJrh3ikFFJfrXz0qODoYOchxqI4Xoc7o8uv19GUuvk5sKBT4b2ASF+JXAMRX0T7v8
Gralhn3CGGQGpZDN2ldM1Mzbi5oSETTUQ87nN4I7bXirqYkBIgQQAQIADAUCTqumAQUDABJ1
AAAKCRCXELibyletfMCHB/9/0733PXrdjkVlUjF7HKpdD8xy324oe5cRWdEVhsDj11AsPhLv
c37M3uCf2MV5BwGjjDypVRX3hT+1r9VsuR201ETKmU8zhdjxgTlZ931t/KDerU9sSJWOT33m
wEX7b5Oj31hgqy2Bc+qOUfSNR8TIOZ7E6P6GynxFzreS+QjHfpUFrg41FgV58YCEoMyKAvZg
CFzVSQa2QZO4uaUIbAhXqW+INkPdEl/nfvlUWdoe/t5d/BDELAT4HEbcJRGuN/GNrExOYw/I
AbauEOnmhNQS+oNg1uSjlTFg6atKO8XgXNfCp6sSVclSRTNKHSmntHEcH/WULEOzsPUXWGWA
VC40iQEiBBABAgAMBQJOvNkcBQMAEnUAAAoJEJcQuJvKV618xSkH/izTt1ERQsgGcDUPqqvd
8exAk1mpsC7IOW+AYYtbOjIQOz7UkwUWVpr4R4sijXfzoZTYNqaYMLbencgHv25CEl4PZnVN
xWDhwDrhJ8X8Idxrlyh5FKt0CK53NT9yAsa1cg/85oVqZeB0zECGWgsVtIc8JmTJvTSmFVrz
7F4hUOsrUcHJmw0hfL9JIrxTbpLY9VnajXh9a8psnUCBrw3oO5Zj8Pw/aaLdEBuK5mB/OSYo
vmJ0f/BIp+cUp1OAnOyx0JzWNkQZWTmsVhxY6skBEd4/+2ydv9TEoESw207t7c3Z7+stWcTK
RUg7TrqHPvFkr9U0FKnHeTeqPhc8rjUgfLaJASIEEAECAAwFAk7Oo7wFAwASdQAACgkQlxC4
m8pXrXza3Af/QjONcvE3jme8h8SMLvlr6L1lIuWpHyWwcvgakRJwUojRrSVPghUAhjZEob4w
CzZ4ebRR8q7AazmOW5Fn1GoqtzrWxjRdBX3/vOdj0NvXqCFfTgmOSc4qz98+Lzuu8qQH9DEl
ZLyptv96tGZb5w82NtHFMU9LkkjAVYcDXqJ4USm90CApXqd+8lVOrWuM8NycgD0Ik3ZKZQXH
1DHdJFzohNtqbWGMWdjqwKHoBSHEsjZ/WarXEf0+oTLjZSbrymtGpPInsijHWD9QMOR55RwC
DtPW+JPPu5elLdaurjPOjjI6lol8sNHekjmDZmRI0ZMyjprJITg4AG3yLU9zU+boCYkBIgQQ
AQIADAUCTvI8VgUDABJ1AAAKCRCXELibyletfNeIB/0Wtd7SWBw8z61g5YwuG/mBcmLZVQFo
vGnJFeb+QlybEicqrUYJ3fIPj8Usc27dlwLP+6SU8BtldYjQ7p7CrQtaxG2SWYmNaJ50f6Eb
JpO/3lWSWiNEgF3ycFonoz3yuWMwEdMXBa+NAVV/gUtElBmoeW+NwKSrYN30FYmkZe+v+Ckq
SYwlg0r9+19lFwKFvfk0jX1ZGk6GP27zTw49yopW9kFw/AUZXlwQHOYAL3gnslwPz5LwiTyJ
QkxAYYvdByZk4GjOi+HzqGPspNIQEeUteXzfbPz0fWEt64tudegYu/fN5QVLGS/WHfkuFkuo
gwNBFcu5TPEYcwGkuE/IZZEniQEiBBABAgAMBQJPBAkXBQMAEnUAAAoJEJcQuJvKV618AG8H
/0LLr1yM6osbLAhOzcKmD//jSOZ2FIBXGKUmK8/onlu5sUcMmVVPHnjUO/mHiFMbYFC655Di
rVUKlIZb6sdx2E/K+ZkZHPWvF1BAaHUO/QGh3Zzc8lVJg9KtFLAJkmQkc61VEF2MriaRlvlo
VPNr5Oiv2THOPgVxdV3goBL6EdAdgdwCvy23Z44vOp0QVNQt4aJKg2f49XO/N1+Gd2mEr7wX
aN9DZQq5zTU7uTRif3FlXHQ4bp8TWBK3Mu/sLlqZYtF3z7GH4w3QbwyA2CWkGgTGwQwyU8Fh
JQdrqXGl0w0y6JusjJWdwT1fxA6Eia3wrSw2f8R1u6V0k0ZhsMu3s7iJASIEEAECAAwFAk8V
1NwFAwASdQAACgkQlxC4m8pXrXzijAf7Bn+4ul7NedLGKB4fWyKDvZARcys13kNUcIl2KDdu
j4rliaY3vXT+bnP7rdcpQRal3r+SdqM5uByROHNZ+014rVJIVAY+ahhk/0RmdJTsv791JSkT
FuPzjYbkthqCsLIwa2XFHLBYSZuLvZMpL8k4rSMuI529XL48etlK7QNNVDtwmHUGY+xvPvPP
GOZwjmX7sHsrtEdkerjmcMughpvANpyPsFe8ErQCOrPhDIkZBSNcLur7zwj6m0+85eUTmcj8
1uIIk4wjp39tY3UrBisLzR9m4VrOd9AVw/JRoPDJFq6f4reQSOLbBd5yr7IyYtQSnTVMqxR4
4vnQcPqEcfTtb4kBIgQQAQIADAUCTzltCwUDABJ1AAAKCRCXELibyletfAo9CACWRtSxOvue
Sr6Fo6TSMqlodYRtEwQYysEjcXsT5EM7pX/zLgm2fTgRgNzwaBkwFqH6Y6B4g2rfLyNExhXm
NW1le/YxZgVRyMyRUEp6qGL+kYSOZR2Z23cOU+/dn58xMxGYChwj3zWJj+Cjw9U+D/6etHpw
UrbHGc5HxNpyKQkEV5J+SQ5GDW0POONi/UHlkgSSmmV6mXlqEkEGrtyliFN1jpiTRLPQnzAR
198tJo3GtG5YutGFbNlTun1sXN9v/s4dzbV0mcHvAq/lW+2AT6OJDD204pp/mFxKBFi4XqF6
74HbmBzlS7zyWjjT2ZnujFDqEMKfske/OHSuGZI34qJ3iQEiBBABAgAMBQJPSpCtBQMAEnUA
AAoJEJcQuJvKV618L1QH/ijaCAlgzQIvESk/QZTxQo6Hf7/ObUM3tB7iRjaIK0XWmUodBpOC
3kWWBEIVqJdxW/tbMbP8WebGidHWV4uX6R9GXDI8+egj8BY8LL807gKXkqeOxKax0NSk5vBn
gpix2KVlHtWIm7azB0AiCdcFTCuVElHsIrhMAqtN6idGBVKtXHxW3//z9xiPvcIuryhj8orS
IeJCtLCjji7KF2IUgCyyPJefr/YT7DTOC897E1I01E4dDymNur41NjobAogaxp6PdRNHBDum
y8pfPzLvF3OY4Cv+SEa/EHmCOTHTamKaN6Jry/rpofqtueiMkwCi81RLgQd0ee6W/iui8Lwp
/2KJASIEEAECAAwFAk9V2xoFAwASdQAACgkQlxC4m8pXrXy9UQgAsVc8HNwA7VKdBqsEvPJg
xVlm6Y+9JcqdQcA77qSMClc8n6oVF1RpI2yFnFUpj1mvJuW7iiX98tRO3QKWJIMjEPovgZcS
bhVhgKXiU87dtWwmcYhMsXBAYczbsSaNWhOIPwKHuQ+rYRevd0xGDOOl3P7pocZJR850tM9e
58O9bzdsRYZpFW5MkrD7Aity5GpD65xYmAkbBwTjN4eNlp0nHVdSbVf4Fsjve6JC6yzKOGFB
VU1TtAR2uPK6xxpn8ffzCNTA1vKXEM8Hgjyq4LWSdDTBIevuAqkz4T2eGJLXimhGpTXy7vz+
wnYxQ9edADrnfcgLbfz8s/wmCoH4GJAFNIkBIgQQAQIADAUCT2eDdwUDABJ1AAAKCRCXELib
yletfFBEB/9RmWSSkUmPWib2EhHPuBL6Xti9NopLOmj5MFzHcLtqoommKvpOUwr1xv0cZMej
ZenU3cW1AvvY287oJwmkFRFu9LJviLSGub9hxtQLhjd5qNaGRFLeJV8Y0Vtz+se2FWLPSvpj
mWFdfXppWQO/kIgVZoXcGJQrQWcetmLLgU9pxRcLASO/e5/wynFXmgSajxWzWHhMvehvJTOq
siYWsQxgT/XaWQTyJHkpYJoXx4XKXnocvc8+X3QkxAFfOHCwWhYI+7CN8znDqxYuX//PKfDG
2Un0JHP1za8rponwNG7c58Eo3WKIRw0TKeSwOc1cSufnFcrPenmlh2p70EvNRAINiQEiBBAB
AgAMBQJPeKdGBQMAEnUAAAoJEJcQuJvKV618YwoIAMn3uqSB4Ge1D61m0pIXJfOcC6BhCZvM
mV3xTp4ZJCdCQzjRV3rZRkt0DwyOVYpLzLgDgvbRwjXjOzm0ob1DvYHFA7DnGTGUsBLDX/xZ
5gRvDtkD6w8b/+r2/eQiSu7ey/riYwB6dm3GzKR7FEbIK6bEuPOUBwvV2tYkZRgTYqXq7NBL
uNv7c80GWhC/PqdvdhFn4KAvL0PjVIgr5+mdXyviKqG7uvguYBDtDUMX1qgZpi+fb7EsbJYf
EkBR63jGQw04unqT1EXWds17gj+yp4IHbkJmEJMS8d2NIZMPbIlHmN+haTA73DwNkbVD1ata
qSLiFIGXRyZy87fikLVIljOJASIEEAECAAwFAk+KdAUFAwASdQAACgkQlxC4m8pXrXwIUQgA
mnkFtxXv4kExFK+ShRwBYOglI/a6D3MbDkUHwn3Q8N58pYIqzlONrJ/ZO8zme2rkMT1IZpdu
WgjBrvgWhmWCqWExngC1j0Gv6jI8nlLzjjCkCZYwVzo2cQ8VodCRD5t0lilFU132XNqAk/br
U/dL5L1PZR4dV04kGBYir0xuziWdnNaydl9DguzPRo+p7jy2RTyHD6d+VvL33iojA06WT+74
j+Uls3PnMNj3WixxdNGXaNXWoGApjDAJfHIHeP1/JWlGX7tCeptNZwIgJUUv665ik/QeN2go
2qHMSC4BRBAs4H2aw9Nd9raEb7fZliDmnMjlXsYIerQo7q7kK2PdMYkBIgQQAQIADAUCT5xA

68

Verifying Package Integrity Using MD5 Checksums or GnuPG

QQUDABJ1AAAKCRCXELibyletfOLsCADHzAnM10PtSWB0qasAr/9ioftqtKyxvfdd/jmxUcOl
RUDjngNd4GtmmL7MS6jTejkGEC5/fxzB9uRXqM3WYLY3QVl+nLi/tHEcotivu2vqv4NGfUvW
CJfnJvEKBjR8sDGTCxxZQoYoAFbGTP1v9t4Rdo7asy37sMFR2kA4/kU1FDxYtFYFwwZCJpNL
hhw0MCI2StI/wIwtA/7TiFCNqHHAKAGeSzKVyKrPdjn8yt7Js2dM6t2NUOwXQ563S4s6JZdR
lXUV9oYh1v+gFAuD57UHvinn6rdoXxgj3uoBmk9rWqJDNYgNfwtf1BcQXJnea+rMavGQWihx
eV40+BZPx9G6iQEiBBABAgAMBQJPrg39BQMAEnUAAAoJEJcQuJvKV618M4YIAIp9yNCVLGta
URSthhmmgE/sMT5h2Uga6a3mXq8GbGa3/k4SGqv51bC6iLILm2b0K8lu5m6nxqdZ8XNNMmY9
E+yYTjPsST7cI0xUzbAjKews63WlEUrj/lE2NEtvAjoS2gJB+ktxkn/9IHnqwrgOgUofbw6T
hymURI+egyoDdBp91IQD8Uuq9lX+I+C1PPu+NCQyCtcAhQzh+8p7eJeQATEZe2aB1cdUWgqY
evEnYNNK8zv/X3OMYl67YyEgofKoSYKTqEuPHIITmkAfn0qVsBA4/VtLbzGVGyQECmbbA34s
5lbMLrYeERF5DnSKcIa665srQ+pRCfJhz6VQXGsWlyWJASIEEAECAAwFAk+/2VUFAwASdQAA
CgkQlxC4m8pXrXwDOAf+JEUUKLiqO+iqOLV+LvI09lU4ww7YfXcqz4B9yNG0e5VprfS7nQ0P
tMf5dB7rJ6tNqkuHdoCb+w0/31pPEi7BFKXIoSgOz3f5dVKBGo8GBsX+/G/TKSiTenov0PEU
7/DlwvwmsGExmgmsSQgEWTA3y1aVxc9EVC9x0Fi/czcNNlSpj5Qec7Ee9LOyX4snRL1dx30L
lu9h9puZgm8bl5FLemPUv/LdrrLDqG9j4m2dACS3TlN14cwiBAf/NvxX3DEPOYTS6fwvKgLY
nHlOmKRCwlJ6PArpvdyjFUGWeCS7r4KoMCKY5tkvDof3FhggrQWgmzuPltBkTBQ7s4sGCNww
6okBIgQQAQIADAUCT9GlzwUDABJ1AAAKCRCXELibyletfDj1B/9N01u6faG1D5xFZquzM7Hw
EsSJb/Ho9XJRClmdX/Sq+ErOUlSMz2FA9wDQCw6OGq0I3oLLwpdsr9O8+b0P82TodbAPU+ib
OslUWTbLAYUi5NH6WW4pKnubObnKbTAmzlw+rvfUibfVFRBTyd2Muur1g5/kVUvw2qZw4BTg
Tx3rwFuZUJALkwyvT3TUUrArOdKF+nLtVg3bn8EBKPx2GfKcFhASupOg4kHoKd0mF1OVt9Hh
KKuoBhlmDdd6oaEHLK0QcTXHsUxZYViF022ycBWFgFtaoDMGzyUX0l0yFp/RVBT/jPXSBWtG
1ctH+LGsKL4/hwz985CSp3qnCpaRpe3qiQEiBBABAgAMBQJP43EgBQMAEnUAAAoJEJcQuJvK
V618UEEIALr7RNQkNw1qo7E4bUpWJjopiD00IvynA0r5Eo0r83VX5YYlAfuoMzBGg6ffKiCs
drHjEh45aIguu8crQ7p2tLUOOzKYiFFKbZdsT/yliYRu4n28eHdv8VMKGZIA7t0ONIp1YPd2
9pjyVKy4MOo91NfwXM5+tcIzbYL9g+DuhQbYDmy8TVv7KKyY/gqZU1YB6kS49lycQw8WCine
FoeD1fb6aP9u0MFivqn2QCAhjXueKC01M2O0jR0wu7jdojN50Jgeo6U0eIHTj2OQmznh8wYG
MX2o+1ybSTjjHIp3X8ldYx01Sa3AqwKEBclLdg5yIyAjHq2phROd2s/gjqrWt+uJASIEEAEC
AAwFAk/1PVUFAwASdQAACgkQlxC4m8pXrXwn3AgAjWUh31IxsQcXo8pdF7XniUSlqnmKYxT+
UZOP71lxeaV/yjY+gwyZvf8TWT4RlRp5IGg6aNLwLaDB3lcXBGuXAANGUr+kblewviHnCY3Z
+PWiuiusle+ofjbs8tFAr3LN3Abj70dME7GOhLyplP2mXIoAlnMDJ0AyrKx5EeA2jS8zCWCu
ziiOj4ZwUZAesXchpSO9V9Q86YiPtp+ikV0hmYgZpIXRNcHOpxnVyEW/95MFwi4gpG+VoN57
kWBXv6csfaco4BEIu9X/7y4OLbNuvzcinnHa0Pde5RnRlbEPQBBZyst2YZviWTFsbG8K2xok
dotdZDabvrRGMhRzBUwQEokBIgQQAQIADAUCUAZhawUDABJ1AAAKCRCXELibyletfDJUCAC+
68SXrK4aSeJY6W+4cS6xS//7YYIGDqpX4gSlW1tMIKCIWNhHkZqxKnWClnmvgGhw6VsZ2N0k
YdOnIrzEPWL7qplZRiE1GDY85dRXNw0SXaGGi7A8s6J9yZPAApTvpMS/cvlJO+IveFaBRHbI
RRndS3QgZVXq48RH2OlHep3o7c964WTB/41oZPJ7iOKgsDLdpjC1kJRfO9iY0s/3QrjL7nJq
5m14uY16rbqaIoL81C7iyc0UKU9sZGMcPV7H0oOIAy206A3hYSruytOtiC1PnfVZjh14ek2C
g+Uc+4B8LQf5Lpha4xuB9xvp1X5Gt3wiPrMzcH89yOaxhR8490+0iQEiBBABAgAMBQJQGC19
BQMAEnUAAAoJEJcQuJvKV618CbcIAJCXDbUt96B3xGYghOx+cUb+x8zcy9lyNV8QC2xjd9Mr
02LJTQHfJfQ9Td6LfuoRb7nQHOqJK1/lWE28t9tlH7I+i7ujYwA/fWardRzqCulNXrgFEiQK
ZFaDjRYyM0jWG/sA3/Rq2CMBNhBeCcTDuZ8VvRdm0xMPpyavP8D2dM9WBkPHOik4yAIILVkr
hWmr0Up0JhRoelfeyqcN/6ClUgeRMIyBYthA55fk2X5+CerommlpDfJJlFQOv64VSzS68NG8
j9yf66uuL3bB0OdzOMW6Yq/P9wskCDlMbYm/UnHfB5wAuxWpDeAvt/u+vU4xqqEjkUQGp03b
0v1xl79maSuJASIEEgEKAAwFAlWg3HIFgweGH4AACgkQSjPs1SbI/EsPUQf/Z6Htrj7wDWU8
vLYv3Fw23ZuJ8t8U/akSNwbq6UGgwqke+5MKC1fpk90ekzu5Q6N78XUII3Qg8HnfdTU0ihYg
qd3A1QmO6CG2hEz5xoxR1jJziRCbb1J7qEw8N/KzBcTkHB4+ag6bjFY9U4f9xU3TjPIu7F2V
Bk1AX+cmDo8yzPjDnP4ro0Yabbg0Q9xzvaK/7pFRz+vL/u/lxW7iE7n6vXTiaY1XnIt5xAXX
dwfLYmWeAgdc9KXFNlt4lfuqrETtNCHme+JI+B2Tz2gHmMVLHiDV59eLC0uU/uVsOXEd26ib
JC4f3KqY9kxuQm325kNzxnMxiwMPCVzsEh7lsYp+OokBMwQQAQgAHRYhBADTXowDFGilEoOK
6kPAyq+7WPawBQJasiYMAAoJEEPAyq+7WPawox0H/i96nkg1ID61ux+i20cOhVZylNJ770Vv
0zfXddWRN/67SuMVjLLiD/WfnDpw6ow6NM7vfEwbmvo1qeFF7rWWTPLm57uZfTk73un3fbaL
JiDZyrUStQKK/yhGAZmwulOQq7XBm+u8G9UcFi4XQxuoc5I/v/lUgbxXBADlxlfzpkIDwOaB
s23RDiMcWZGcosUkYHXlm8scU0tRANVLQ/PHgttlUl3x2PLzrdQm3YUDKUJ9+ynO2jN2sYwt
laSohj4UbLnq6pI4CXWZR7XWQs+NX7P3R359FDtw7OhyKoVuIkRFZljY0i3wQgwl/Sm2DAg9
3lsZDVc/avEUaOO+VuJuvJ+JATMEEAEIAB0WIQQGFx4znGT7HFjpuwT3iPLIbOWZfAUCXJ7Q
KwAKCRD3iPLIbOWZfGoXB/wN0P3m27fY/6UXTl0Ua3H+24ueUdLipsvR8ZTwEfnwkhLrbggE
0Em7ZuhZkzv7j856gv/tOekYYqWGg1CLalD3y371LAGq1tjY3k/g2RWLxLXNdzgXEyFvaNQA
oQa9aC2Q7FOyEMwVkkXrGa4MML7IBkrtMds9QPKtfipachPf6tQOFc12zHRjXMZi0eRWyQue
0sLLiJZPn7N8bBAJyZ9IJEpkhNrKS+9J5D1Refj++DwBKDh04kQXZFEZZhxcungQW5oMBQgr
uW2hULTLeiEV+C516OnwWJOz6XKJpOJp8PY0bO8pGgToGIYHkoX2x64yoROuZasFDv7sFGX6
7QxyiQEzBBABCAAdFiEEEN0MfMPATUAxIpzAoiiOmODCOrwFAlv/EJIACgkQoiiOmODCOrwg
uAf+IVXpOb2S3UQzWJLSQyWG0wQ51go4IBVpHv6hKUhDFj47YdUbYWO+cgGNBjC7FVz54PUM
PIdxImGHE1NHH+DNR8hvvAi+YpnqqdT3g+OgZ6XoYevret5B2b5fRgN1/HWUjaJ/n5g6SMsC
+3DrmdMu1FEDnKv/1HwQvOQXKt/U2rXE1ILOmVdMavRJEwkrk2SVwbdeass2EInZVsmWL+ot
9dU5hrkmLAl6iHUoK6zF6WaI1oi7UU2kgUF2DNyZG/5AumsNhxE608EAs1zEdN8wibXL48vq
Z4Ue9GvImokdlq/r/4BMUdF1qLEZHBkbaklK1zXxl7uMiW3ZIcqpg5HgwYkBMwQQAQgAHRYh
BBTHGHD/tHbAjAF4NhhrZPEl5/iCBQJZ+o/oAAoJEBhrZPEl5/iCyfMH/3YP3ND8jFqIWkmG

69

Verifying Package Integrity Using MD5 Checksums or GnuPG

JaITHP9GhAQda73g7BFIrBHeL033tcLtUbEHXvnIZzulo7jiu9oQBjQvgGgIl5AqH1m7lHaD
iAL3VmuUFZ4wys7SODHvSZUW1aPLEdOoLKeiG9J6elu0d/xWZmj86IaHMHrUEm1itMoo0m+U
MwVNLFNZrAjCn82DiS6sS0A52tOlpq/jR4v9AYfMZSnd1MLm/CZaZpzWq6aqm7ef7CDfsUvU
w7VsL3p1s+Jgo6+8RwQ1W2Lgt5ORthvpjPKE1z0qgDpoXTkPOi8M20taD5UZbpByzMZPJXXr
+LBrRbs48IcPVHx8sxHMh1HsQCiXHDGiTNSaJ1qJATMEEAEIAB0WIQQazDqcUxAL9VrKN9zD
LyvJ+reoRgUCW4YZiAAKCRDDLyvJ+reoRptWCACoIgFrvhbr3c1WVq16LJ8UmQLk/6uFFZPN
CiR6ZbvzOd+a3gk1G8AhDEW2zoNhFg9+I7yqUBGqn+B1nDZ6psyu8d5EoRUFTm3PghqEccy5
KixqoPxBTquzkKGbN8PDLUY5KvpTOLLlYZxlHzSHw4roPsU4rxZtxyu98sSW0cm47VPr069p
91p9rCoHY8Fng7r3w28tVfvLuZ1SK4jtykIvw+M/pVBk9rQVCAJ0JjkAHkTOpkHqsVBYhtu7
mzsXfkQZkeuxdNx6X1fMrbJofzH0GYTT8Knn75Ljhr3hozrsL4Kz4J9gsLHCjkD5XKzLwCFK
R6UhhZZr7uhufbqZIyTLiQEzBBABCAAdFiEELLeCvUfxyJI8qMqHHSPVZ6Jn8NcFAltZjFMA
CgkQHSPVZ6Jn8NfKSggApk065wFrxq2uqkZKfJGw2mdsGeDVjGq9tMKUWeYVxTNxjiYly8Dc
/jrOS3AU6q7X7tAAcmvaXoBfW3xEIXMSH73GeinVG7wnlab6GKPDRKJzXfJ88rF07pX8R1pc
ZH+eikiFsN9bcnEycH82bonS7dzyoo6yg2zBqNtsmWYLDg2hcoTw4UHAPwdX6+n99m3VzOqO
8ThQI9hqpUYGvP5qyYahFf+39HSViof+Kq5KKhvSoiS9NzFzYZ0ZszYt+2jozUpAM6XqtEGu
TMzXHkE+/V4yI3hIsvHNkXKgDrqjwA+UmT1R4/gBoiRhZ8r4mn1gYI08darQmkppf9MEbcDz
U4kBMwQQAQgAHRYhBC1hIxvZohEBMIEUf5vAD7YffmHCBQJcns2XAAoJEJvAD7YffmHCC0UH
/R8c5xY96ntPI2u6hwn5i0BGD/2IdO+VdnBUnyE4k9t2fXKDRtq6LAR2PAD0OehSe4qiR6hw
ldaC8yiyg+zgpZusbCLGxbsBdYEqMwTIeFsa8DyPMANpJ0XLkGGf8oC7+6RuAJvlm6DRlurr
U93/QIG6M2SNsmnPgSZWYV4Y5/G7Xxyj0Fc3gNjjjGGP61CBR01W6rgNPn35sZ9GYCZcGlQA
GGrT8mSVoUhPgPCXKz2dZDzsmDHn7rULB6bXcsHiC/nW/wFBpoVOIFIxND0rb1SYyJzPdPtO
K6S+o+ancZct8ed/4fUJPBGqrBsuFS1SKzvJfPXjHGtZBitqOE7h57SJATMEEAEIAB0WIQQt
9h/1MHY0zPQ0K+NHN096zf0O3AUCXK2H5QAKCRBHN096zf0O3OJtB/wKbQN4IjVNkmWxSaBc
JABRu/WSbNjoTo/auJV6IRUBpwR130izMw239w5suuWx1phjPq3PdglBaKKeQNdeRoiudUjd
hydON1cq2wh9O073wU2GHeZLi48MopUNksrhHfd/XWV//0LcSpERsqIBVIUi+8DHwFvpCzCz
zIRg9lOcQmEtJAFFUtkF9FEeZgO2NPO3fEwkjKDeJYUiB+mD9BliyxhU8apUx/c2zaFGQOCr
MllN/gHztAWDcIadK/tujqRWR4wnJ0+ny/HP+bWd18+YjhcWzUQ8FytG+DA3oylQ1d0w0emt
qfn0zqiFkJQdG0M4qtItJYEYHlYpG2yoQHcCiQEzBBABCAAdFiEERVx3frY8YaOOhcAGjZrN
vi2vIgUFAlnScGAACgkQjZrNvi2vIgW5IQf8DKjeoHF9ChDcb4T01uJJiAUu6lxewSRD7iwD
6MjCsaxgMifTD7Bzvdem4finoOul2YAPtlLfIfVtVRtGG97R/Wvs3yjI9NSzxkDGuuE7/IIi
4dKlcKkvijg7G6A8+MGXaQTw8iOePI/44IyG5yogKjno7L4h0f3WguGzmCRUJcgYm23IsaTh
Pvdq39ARyHAlrk0hXZ+OqsYBrlW7KLyPrbPA3N+/2RkMz6m+T8ZksOrEdF/90nC9Rky4Wbg4
SJqWQNNSMfgT0rQL2Qvne598FKmltrTJuwBtIrSeuL/dbKt+hkLgnRjnmtA5yPaf0gXvMtfU
P9goQMWD+A2BU/bXJokBMwQQAQgAHRYhBFBgHh7ZZZpG0pg7f1ToXvZveJ/LBQJblegpAAoJ
EFToXvZveJ/LS0YH/jpcVprmEGnqlC0mYG2MlRqeK4T8Y6UnHE2zBPc125P4QcQfhgUJ98m4
0B5UkzljreFr9Zebk3pE8r4NBsamlJvi8sGbZONTsX4D3oW9ks0eicKOcTZJgtX5RmSNFh63
+EHbqTneK/NTQIuqRSCOufqCOH6QY1PVsICBlFZUPMfuxRlO7EwHKNIHPVBZNlM7AXxdjCMU
kXvda8V14kActb1w7NWxWxo5q4hkQ2K3FsmbWXvz+YBhJ8FnRjdzWNUoWveggOD6u4H7GuOg
kCyXn1fVnbCyJWsXQT9polJRnIAJMAtykcYVLNS/IS65U+K1cMshcF+Gil9BuGyckbRuNaSJ
ATMEEAEIAB0WIQRh2+o6RdTFb7cSlWG3d+zE2Q5m7gUCWdJutAAKCRC3d+zE2Q5m7rgJB/9k
c+prmrnjsq/Lt6d90LqYoavvIeFkAoDhhWgQeEOAD1wgyHIpS6qoMKgvBlvda2r0bmk1kUL2
xQaiDj36wB5yJHauOnFX+3ZJ6QCYUaeoWtqO2ROHvTiuyUdVKC5NtKaHpM1/lP/jl/1ZRWay
idggH7EnwDMt+9O0xD02n5J29Vp9uPO1GtMVsVSiJCGcOxwNBgNiXX1BpZbN4bRm5F8DAGiN
v4ZI69QZFWbpj8wFVJ/rV4ouvCFPlutVEAuIlKpAj35joXDFJhMvPpnPj84iocGqYPZHKR6j
a90+o8dZw3hXObFowjcxsJuQUTVkPuhzqr6kEu1ampaQ8OGpXCZHiQEzBBABCAAdFiEEZ/mR
TQQxCZjglXUwgzhtKKq2evsFAltbmWkACgkQgzhtKKq2evsdrAgAubfuG1vWX3TTG/VYYrfM
1aS1Roc034ePoJHK5rLT0O/TnnnObw38kJM1juyu4Ebfou+ZAlspiWgHad62R1B29Kys/6uC
qG2Jvbf716da4oLXeLYd9eb+IKVEiSb2yfbsLtLLB0c/kBdcHUp6A1zz0HV8l1HWj1Wx8cFU
MV7aAQoOfnNBbnNWLzNXXLYGHh47/QmjifE5V8r6UJZGsyv/1hP4JHsQ2nqcM8Vfj+K+HEuu
nnxzgWAcQXP/0IhIllVwoWhsJlHW+4kwW02DDopdBfLTzCtzcdOkfBcCg8hsmC4Jpxww5eHm
saY6sIB32keCpikVOGwdGDbRH7+da8knzokBMwQQAQgAHRYhBG4VA/IlW5kLV/VchhLcHkBr
mersBQJaX4N4AAoJEBLcHkBrmersksUH/3M0cypXBnyGIl/yE576MDa0G1xJvciup0ELeyhj
48Y7IAr7XiqDtiPt8tlIiPFF8iaw56vJw5H6UKraOcjZHOH1SwDr5gAWJgMqnqlFX/DxVKif
USt81KX0tHN6t6oMESgm2jRKvcWjh6PvEZlIArxZG4IjrErqWIJjUJR86xzkLyhRVTkUL/Yk
uNl1i013AlaD/0CGuAnjrluUUXypadtNr7/qsBx8dG6B/VMLWToEDEon76b8BzL/Cqr0eRyg
Qz6KWi3hmsK+mE4+2VoDGwuHquM90R0uS9Z+7LUws24mX5QE7fz+AT9F5pthJQzN9BTVgvGc
kpI2sz3PNvzBL5WJATMEEAEIAB0WIQR00X0/mB27LBoNhwQL60sMns+mzQUCWoyYfgAKCRAL
60sMns+mzYgnB/9y+G1B/9tGDC+9pitnVtCL2yCHGpGAg+TKhQsabXzzQfyykTgzCHhvqRQc
XHz5NSgR0Io+kbGMUUqCaen6OlcORVxYIuivZekJOAG+9kiqWRbyTv4aR6zvh8O5wCyEhhyi
ifi65PM7y9lD6i22qTt/JoDnFkP5Ri6Af/fZ9iaIaluQKJCU5xY1Lt/BorGlrGvX5KiZD8xc
AjhJRATZ0CJ21gbxISSxELAfH42KzGAvJw/0hARrMkl/eK0HVDpD47mcmC5h/O/HlwPYi0hn
xB+6/nuwwtRgMDBufNV0StU43njxCYmGI9/I1z5Vs+zhz8ypw/xCr1U7aAPZQdSSsfEViQEz
BBABCAAdFiEEelR8OpStCJs7bhrK1TniJxBsvzsFAlv+8d0ACgkQ1TniJxBsvzsiFwf/a3lt
OuSrFs4M03YVp6LoCM6CwZfvcFl+6B0TAurOiCja9lsNmbusSx0ad7bZy6/kHDXH/eqomXeu
O4hkxxBvGK3gZt7iQsr9vsUSbbJnc1zMyOZKlhdxAOLOskttqtPs6hiJ9kUHFGZe47V3c77G
GMgi/akIU5PkxhK7+/bbAsW0iK60aXCZ5nAbWlzTQLgJnYrlk4b920rzGe8nDTGzGmSjIGnb
YvuD9ZI40DZRWVf1tXqCY643AXFYoOhRxj54uHnMLYhc0I65u2ZGwRiTI0g/en5E8i7WoejA

70

Verifying Package Integrity Using MD5 Checksums or GnuPG

/sR0+cYs7l1IJwlNRwfqmnJWRGREEHcJ3N52k3X7ayq3qmr3K4kBMwQQAQgAHRYhBJSRYHFB
cqf4Tl2vzE+YN4Ly8sn+BQJae/KHAAoJEE+YN4Ly8sn+5ckH/juc2h7bC4OGmRHcZBLAG2vW
WEMTc8dAr9ZyJYXzR25W1/Cz/JXgJgMjSrE6m9ptycpvWc6IRlrQM/IqG+ywYFPwNp3PYsc0
1N33yC15W7DPRDTtJE+9yUbSY9FeYraV4ghxiBxD1cDwtd7DFNGNRvBDH7yQHmXBW0K8x6yX
Mwl1gj2/MvdFUKmz8Lku94OmrbDOi83cnAjUNbN15Wle7hWAIRALt3P1VusjV/XyzxvcSffb
mt3CgBCyK9CNyEr27CVkhZ8pcabITx9afMd1UTEii90+qzgcJwcR46bJPZBdavMt56kVCeC0
kG44O3OOk+OahKXzw4YspZMO046gYRKJATMEEAEIAB0WIQSm5fcyEkLUw6FcN0ZJlMJhNZ28
bgUCXTJMCQAKCRBJlMJhNZ28bsgCB/96PlBUdsKgnh/RpmPB+piFQf6Og+97L4fxHuQbzKOe
UNCSWNF7saVa5VaPxbV/9jDCTPZI5vBtnJebXtkmLoWFSZaXCYb49SijfvRsRAeX5QSqIRd4
3KMuO7nAvbPVYtMChCO/g1T3riF2icC6pgvmNZWm5Nu4pkLzRmQv8U33BAkL7EYIjZZaC/9h
o4Sh4l/gLNItOxMdsD34sJwBLvEi1pQOa1xNJ4kfQSRD/8ufakE5wfSie/s04w/2Cp7RD9H0
VlD+7FwPO1HQ3XJjONvOzj6uVdwCC5fcmbXbb2bbJ/xe4YVL3xmwWz5m2w+kBSpaZ6VHNocB
8S2OmIIPpr7OiQEzBBABCAAdFiEEp6WxZJrn5Z0o967I/htVRVZtQSYFAlqnkGEACgkQ/htV
RVZtQSYV2Af9E7FLIUi8lqOyYyZuX6skkNf5rNSew+7i5NsiNpQzZMdscJh9eJzyLrePLp7q
9HUOhMF/Fc0SgbDtKSWbfSidXkeaQ2twPj4rP1xxYBc0OY0OX4fNVA5O/pTI9nxIVQCDTljl
/WIY+fnj88lCkaKWoRJITaotjFmYt+gbJMBn3MMYf0VODeIRozV7//NdkzFXKmJ3fsCDGXXF
CVWM1Fn3M91o1fh3FSgKd+0sexUDn5afwWCqjGgiXDsE7fEdwsbnz1rDzWvuqCoZyIh1RXQf
QVbiakpzfvtDytC3Vo6F2KzpZ9d69Adhfn2ydAYxL/Xuvk9pWdEBNF4T+HfS9Z30BokBMwQQ
AQgAHRYhBPJCF6TG7RrucA13q1lkfneVsjZHBQJawgLrAAoJEFlkfneVsjZHgNsIAIaSJ3gF
tBtf0WLxYIo5zhNclXOnfgUUNjGrXHm5NxoI4Eulpx9dQYCJ++whMFbxpZQTgFAUq8q342EZ
raLCWwALZEZmkZjv+FX6bk8sgqZESpUOLJAIqpobKpaawOQ7LS+XWO0SchH1oLFAgDyBeIDZ
N/LiTlIdkJe1xpDQDtgUHawksqMCbIaBe60B5xvm1NkhnrmnM1p+e3LUd4j+XxACdcY5LSqV
zVT4OyD1WkKzk8EAASUI8xysNBEeX9/8/EXaAciECQb3MkYxTQZ4WqCLU0GCGl6Sx2fY5zI6
4Y1j/Sfn3JHikJots8eR1D/UxrXOuG5n9VUY/4tTa0UGPuCJAU4EEAEIADgWIQRLXddYAQl0
69GnwU+qS4a3H5yDGgUCX6xjgBoUgAAAAAANAARyZW1AZ251cGcub3JnYW5uaQAKCRCqS4a3
H5yDGkRfB/9z/5MuAWLwoRLJtnJQzEOW7jsfzYpepL3ocT9tdGcs8jJTH3vh2x4Kp2d0Zaxx
Zs7R8ehZO5XJQ/DWdhH+7cifoeXmAEqDnlKSXZQZY/bG054tM6zes3tFTH3dCrn7LF59fQOG
OaZHgbFRQJO6F++90Mj9WAgeqGxyEhAlFIxFw4Cuul8OZAUIfq7YISnpkg2Tm/Q0SRRDJE4i
/7WJE/HVMB0Rf9KJXuk2BJlRIpQz8Cf+GVZ5aGIlXdM58QknprnollxoTKhrE74rAGHW7nRD
xIxOoP8odiXbLzn//g2m123usqncCKWZONDdVupax3RQ7xsIuFc9Kx4OtjwPQftziQFOBBAB
CAA4FiEE6hBKAqPbygqOC7fUwpbDMFwG9MsFAl8u+m8aFIAAAAAADQAEcmVtQGdudXBnLm9y
Z2FubmkACgkQwpbDMFwG9MsIvggAhRfd2Z5WLR6hGxOHu+A+ysjX6xKjcqshCYr8jRuOflFN
vxugQQoFM5pQr15TyhokaU78aDUoIbLnKcxxmH1l4hXxcRtg/9Y22TidOVN4jjNbc69KvCC4
uANYuAJaI3o5fb1jv8Lx82OiRDMhtRqyTdSGdU5//8X5FXCt+HhhzpSNoNtpxyhsKP0PAWao
zuETqvxy7t0uy0f1OTbZLI5nb52DxjBdZlThnJ2L9RwR2nSGhxjhTFg8LrZWgWNtY5HG+vk9
qbCwaC6ovNJ0G98i0DMrlbyGCbxa4Rv332n1xPfl/EPYWmNPlMu0V3bSCqxVa5u3etA5fw3r
qIm333vgFIkBswQQAQoAHRYhBJTatFFgHAZYHkTw9GcRGDP/RljgBQJa7LubAAoJEGcRGDP/
RljgNu8L/jN8j4HSggpnzJ0+3dFjVg7FUHJF6BZ84tv9huhmyrByaIrEfFf9ARn8OizKgdpC
/wJT1+KXarvsxdnEDlYSat3HS/sEw3BmZjAeTwPi0ShloiSjYgYRbg3irDskqUHML4hhvMx0
x9nZIag2XoSSH7kPEd5jOb8cd7jJeoGg6Z9Z9lMHuyqTGi0T/EbnhjQfVTxWkSkcDvdxbSuW
D96mvZrbRnrMebXKkISb0uVUn3/o11iUo9jXs+Q/03Tb9i0H3eOliP1kcB/kggu9xblIPM+J
VaK5Z+zAVLPKTQJi+sP/ayEux0xZzfbZ96WERnzT4E7Wwv8MvaLbybtID28Oy9YoBBYv7CrC
tyfrHh1t4v2AedRSZcTPKAaQ5NtLAvIdex0kOvvofaGi+7nmgV00vCZFBSXetvBMZkCapW09
vF7wcahaXpF+0Spl9vE2JiesST7uQobCUm1EjxJP0vMDcO1vIfJHlbIhB/f3PE3rXZIzYTdL
s3Kb4OONaUfNy9jYtYkCHAQQAQIABgUCVJqcUgAKCRB3MepTnaVyot2+D/9wAQ+p03lVMpYS
gMWMNLgjq3z7QrN0NYNpxUXAonxECjUzZKSUPGci+fPKxl3ZUenk+ruLgtgJmjmUOR6u1Dov
BpDFzhfqbIpjgtMDrnY5sWqxJ+CH2Rb5okEEDJ5qE9DwIMP5iXbf4xjnBOyPiq3sp983PLvy
8ttidWe9FDf8JuhWLHRJHODQjc6LufcHSWKG9fLmCjL2KSPNl696MwR+N95EKCivLL2PlG8c
f08Xd8lW1S0cJLh/6TEuZtAnVeo0NUOGUXOPPyhTPP/xhfLeKbkxjtm6rg/jBaIjuuQgUyNN
hKnP96/GRWWRHvio6eBPalhUcvImSrCHnqLRpdyMxmK67ZzKZS3YsH0ixozJYE0mNevZ2hEY
wB+O5HllqK22YwvJnCLH2ZZWTu2TCUjGZP8hbo2nSoyENlxZio9Gl/v4ypjdlgwrjnnZvxoM
yOFeuc47AuzP5QjhtlrWv12C4hYi3YLZvkLVFD0CxAE/CDuHk/4eFG4UC4Mor6+BXwVG7NEl
4qQWrAHjLQ2/sHMpsUqY/5X7+StG/78PLP0HP+PIBCDDTa7W0+6kf0EaGVHKW43IIkVNI2Ps
b44tTT+Xhc2mHk44LuzL4Axlywv+CxP9NcKLNFwK4Ck1M8Np6cAKlu+Dw6gjOY1aGHgtdsBQ
cIqZj/+ETD0+9NkDXEoeDIkCHAQSAQIABgUCUliwpAAKCRCiKuTrQynFRXZdD/9vb+69OGSR
t456C6wMLgBl+Ocv9XeaCTiJjLgAL2G6bRH2g2VcNHnU/VMTD2YLVu0eP7ubsirVrmR7nAgL
sQ1mKKWvTI+p5aAvn4sL3x3P8vzmGoDAigZ458yGuVpVsBkSPjJBMAkMDfm9kdWxCanzuKXS
b59lfTg4EtcHPDzoSgABntASgfioVxP2TVPfre282cibeYS+RDlaMTVH25yElrWDuF2U1CVW
SMWY9mskr1+XjPnoO2jz0+jhKB7jyMMfSmJqzgcBNgezFbzX2fPmNnMZzEucVFFHmIhNVmL2
rOwc/s1tSHerG5YIdL3HOJek5xJljzjzFfDrdjmMMl+nO6nO78oePoLNdglQQSqn0yW6gZv8
EIIQ/N1nSi/LEW60z8FFxzoO8TqxMMX9QRLbVE6p+7C0nqolhZf6UEiDIIm+PihF1vPFSV54
+7OoLObCshe2g4pbRGWPhIJ4X3ILBQwFMZbn+cIuY3h3B/UpbZE/YSDgRFu5TLtCfBE/lQKX
7QhJknJhQhJ+Dx+Y8h1Cx61Qr0KP5DmOkHYZfAQtdacgrqEr/qNen4QYRdKp0gTne8AV7svB
8eI/8PkzvUPaHrax0g6ZSbeWbvEw6czm0qUGJX7iMlJSauIJPrbOjvXT7qIsaqZRRiUSWXo+
m+jzK5qdeRhEIUmlJI/tU/RsGokCMwQQAQgAHRYhBEW+vuyVCr0Fzw71w1CgTQw7ZRfyBQJd
hy3eAAoJEFCgTQw7ZRfyRf4P/3Igs5dYm0fhposI5iwBGtN5SsxYTZGte2cZ+dXVcnLwLIZc
Ry1nDu/SFXPUS0lQBj7/Bc2kl8934+pUtte+B5KZI2s/28Gn98C2IjxxU+YZ1X1LbUkx0cPA

71

Verifying Package Integrity Using MD5 Checksums or GnuPG

jFWjUh/JSfu6Hif2J0NAG3meySnlmpxl6oZeTojeWo1t39PF4N/ay7S2TqIjGSBfxvD1peIU
bnziKsyM5ULbkMdgHssQvyZvrVzQxacRzPK424jXtKR6B2oA0wqMcP4c69UmVKEKIzJNYrn4
Kjs+An8vZvJYAVbiWEyEseTTo3XJePdBNs1xxK2vWLA5PeLkE8bmzHr8iQ3hA0NaY7jSJp3e
GrhWIdXV+nfclrFUPghYr5z+ljCSK5sow+aRiED39qd1Y+0iUAy94cqY3MQ4ayGgnB/+YuSx
B5jNjCBYJetFWWSJXnkbiYRLjU88dflXCrTbhkSuCu3agOjsBJYUyg/c1Z4eCQgpTWB2cjYQ
0ucKOsWt8U6qsl12qwYLr0RfcP2aCwTTnWIxqIN9F6iMafOsG+za8JY+B8PDJxxwWWz8vCvX
ChTYrfiFei8oUqoHYTbw07cxaxkDd2CgXsQMmOcZSoXZZPAe8AhsUibDl+BZs/vLZT7HrXtt
/ggz8LzVCcyQqwmCHurvgjauwjk6IcyZ5CzHFUTYWUjvFqYfAoN15xUZbvPYiQIzBBABCAAd
FiEERsRGITzmkUU5TZu635zONxKwpCkFAlxFLcAACgkQ35zONxKwpClKVw/+PfrtIVHFsOdl
2crWBSo5Hifvx9Vn2nPiNKErygB+tPWDS4UwzVUnpZfXCM7bKJFFPeKbitYxN3BlDmVhZMkc
1DZMAtIPSstO2oX7Tv/C0WOZPlAWkp5m0DPV3iGbGZjwmy5wz8fNtaWyxtcUeaEXY8j151gm
Wfl1LMvgwnFsQ74xobnCpssLgmogXfoLFQNF/VUfRveJ2Ci8raWyAdXFBdAIrejawAx5MMhO
/lEfQ3W3f9bqtJZ5DzLbxQ3Xtqs+RY1ihv1y12lr9vLpgKKGmZ92KDvjv2UXHd7XZ90aPMj7
Rx0MQ1d+5d/tNQ8rLJGuj1I7NqHmLHMz67TvRtPl4aNP7Mss8OHiEKLYq23kGqXN+6cjG3UM
i290uJZaAnTno65Cgsyn7JFKyXDdTOmp3TSoyVsPFq92qgd/jFBf3dJj8c+mZEVXkUFeeUEK
31EMGFCH+oE8un7nu+XWqFyFSw5wn+PGYDXkSd6z/NyIN5DXa326KV+qpUmIWOlcymm7cmZ4
KJQt7zgWCxh2DuWQzRlTjeQd8Iw62V8tIOBokWP9Thes18Qk2GOUeCnvczLdevT4lqr8IzvV
nSwX/LQyxmmz2/dmPhzJ6kA6KQKGOSF6WnV/WuD4kESFKwtABFi6mYQi1F6CynpVw/nu535C
4fFG4d+A5G6sKJx//hjOCgmJAjMEEAEIAB0WIQRGxEYhPOaRRTlNm7rfnM43ErCkKQUCXa6e
YgAKCRDfnM43ErCkKfNXD/0cTEjvQlgyy3UI3xfhYtRng8fsRXcACjMajnrvYCoRceWwF6D+
Ekvh5hNQqrZsxrD6nozY+iJhkkaQitIj4qw7i4KY03fo613FjeLFXWqf4sfLTANSsRNxawEo
/JxP1JeOToOgYTkikWOkgZWSs/mqvHAxJZrVq/Zhz06OugfOYVGmGZonU7zP12toiwParIZ9
hcZ/byxfNoXEtsQyUHO1Tu8Fdypmk0zYUgZK2kGwXslfOGj5m0M5nfUuVWq5C5mWtOI6ZngT
LPJ32tRW526KIXXZMTc0PzrQqQvTFHEWRLdc3MAOI1gumHzSE9fgIBjvzBUvs665ChAVE7p2
BU6nx1tC4DojuwXWECVMlqLOHKjC5xvmil12QhseV7Da341I0k5TcLRcomkbkv8IhcCI5gO8
1gUq1YwZAMflienJt4zRPVSPyYKa4sfPuIzlPYxXB01lGEpuE5UKJ94ld+BJu04alQJ6jKz2
DUdH/Vg/1L7YJNALV2cHKsis2z9JBaRg/AsFGN139XqoOatJ8yDs+FtSy1t12u1waT33TqJ0
nHZ8nuAfyUmpdG74RC0twbv94EvCebmqVg2lJIxcxaRdU0ZiSDZJNbXjcgVA4gvIRCYbadl9
OTHPTKUYrOZ2hN1LUKVoLmWkpsO4J2D1T5wXgcSH5DfdToMd88RGhkhH7YkCMwQQAQgAHRYh
BH+P4y2Z05oUXOVHZQXCWLGt3v4UBQJhrDYPAAoJEAXCWLGt3v4Uh2oQAMS3sK0MEnTPE+gu
7lLi9rMbD/3O5nlAxBJLX4MzLi2xP1648YV5nq9WMMt6qyp+OVwDXefneYNMgfU2/uu/Wi/o
XTHBJuU36lmFzhRWPj2h/vtfgDIYG2wio0DNJyaUQwLEi6gqPm0AHhKS4td69R+7qyQsbUIa
BFgoytxFzxDb5o2hicEOXa573m4myfAdCx5ucYfq+jlXJW9Wgw7ERnF1v9xQDXiuryXWFRdv
UOOWzVPu9T0gPkcG8NABwqxs28Oc7n9Al9HM2FtDAkD0LIcm/I4ZEhFVqvG6Hj966+FeuICw
OaefFhthOoi3ycO+pkj1IePz/TmnsplTvvZOXH+6XEMPpPRQpvf5IZKJyrvuzoU8vkXYY2h/
gJHi9HiSIIQ/BVEpvp6UjXvIbNP1K31II88qx9EfT/tv434wlZpC6V1FzE2LtxyNcj/+OUvj
9hKOJ7lKOVpsnBbGiWg809s4sCIZ/ifLfWAKOJgxAEk/GcRkkkCqGNx7HA+coteNHqXLa/Lb
2/r8gGn6kH9YhQootJsGhhSsY+6CW5TM5E+FhSRJU7MFHRpA94N7Hn6OFUK2OXtHyRhxE867
R+ChJaZXbtoQJVNv2Rv9yoZrBki3RoQ6/6/fcnR1x2moTMYg7K8AMMv7ZCfaP6AjPOjTVnMV
CpNy1Ao7smOzLAfKbbeXiQIzBBABCAAdFiEEjy2YV7IZJ8NHv36cSrDCiwqTaaEFAmF9XbsA
CgkQSrDCiwqTaaFUGw//WSUO22Csa60I6VN8yJQmf0wCo9sieWDXCdHZ+CB0+gu0I3EMYR2a
gL8lqCd6M79fpP8DiLKOJvn9mhXCsjYjTJQUsuNi5kQ/O9gwarRsr7EjJ7R8u8lpSh9YPlMS
yN6XXfOa4Qy5HOw9idJdb3owKAXSjuRdi/hUExjA8TWliyWrfwiVDQi/aCoLZ4b9p6SfGR3Y
gE8UIZLZtdWgsPJHkvdvntTPi4fwMsadBfa2f+m4Wq2CAU5KSfYsVpKAwSQ1OsdUZUK7g+Ui
jy//ad7eZ+BAc75blHs7ua2iiF8Sc7MC55ZM5ldkv+0lqJ7td5vOCT1LKJg5PKKUC7YTTh9U
PHlERJ/SWcHNES1YhwLvUO2VROlPN9H1QkPnEMBOObpmYkNQyLBfFwioJ3ilptYY0IUX5qBM
5UkwgyqMsdyrL+2ozIYc+/A8KUnZXozOAG9LP8gBE5jBJSIkbqsi9Fumf7Q63++g4ojcYpOZ
F92X6kQMGqBvkvs8UajR5f/n6QH0je4XFPj4l4lVM/PPfZSShNGdOOi4l+KwozICnQ1+fhwh
N0VG4eALSJ6XQEEfJ18PrBRS3sdC7OVEMLevEC8ojSQeZE1lCLe1qAUoEcmgmXjsODaJn2tt
qNYYUxcFOycFnzgWL679C9FVp+DAg9jzDMKsqWo/Lt3IDNF19ZUc93WJAjMEEAEKAB0WIQSC
piWCWP+fBOH/9bx9bbut3FAu7gUCW8ygHQAKCRB9bbut3FAu7mOaD/9QJ1MiyKvw9rYqTvkU
OSDSLu88g6NP5R9ozgGZegInZ/NzT8u5emYccflnLlfvRQZPnT7YIH4+h25CCGQ5HzXUGENx
ndeuG4dm3B10A8hxv+abEM9VYDGqSIvF6z1xObvENOpMgmlmFdDi9O9d6jFFy4Hd6/BWejbU
4M3kfuD39RxaT1OEWfqvTVf4GKiLqM71glNB8WrTqxt2t/Mo2h6UPCF7/wPF/idMAbKEn0ye
b1WDCaZVXxAQETfNo129hPb2qxPGoCWGw24ySpGrM5We4Nd3bbdGItSZ0mATNM1+m9FY9j30
vpePFzzYGZ+23EcpxWU+7jWbjZ42ssCW6kx2/ERLVma7FuneEAqUc3gZr/3ZdZOVMvseg8c0
n66D/NRLgMcpOQK62qJfSrxQj6sJCGRY4dxAfdTZWrcxu8UvvcINezGIToQ0y+Mc5LM1vMOd
srXcaVnuJTfWorOeqnFecnClcOwKNAKBXjE8bSANUBKlrw0RIpye/IilrKGEMaYkP2nnnNZE
GPmumGkejDstWGmnHi5IogN8ibzyywsbNsO+qDdlUFA2bmVhh2uK7M95kyuMH3GnWbz4IiMx
RyUVEyK8yKnEmgOmLG4WiJjksP1jIPf3ztTEVVDJxy1gT3R36lsxd+OabnPOgiz1oFewKaur
aWX1e0E6eBWJ95ufookCMwQQAQoAHRYhBM8z5mfkMwAXdpGlbLdWs0L0i1qEBQJcBMl7AAoJ
ELdWs0L0i1qEmxwP/jDweTwTh1s+7Pp39L6aLB7nuQzdMleTksPGgmtguRBZipbOYOryEozK
9hI3Hq/ymV/loINv6GZhieDoZvxrv9eEKgO2eUE0IletSy7znlhV6MB7PBOc29dbCMf5L4qo
xUG/f+XfHkRZEkjZRWMlitlERlDU5gHAQ3skLuT9bu3aZkGdBgw0U5qjVvGzYxp2LFpNHXlf
TrlN3RZoDbRI+E9BPILqZFIZczp/fxRRNkXyogkrGD+0PANFsjySQKd/rr8/Z4isl3AM8CZ7
s4tMWM4EVJ2OygnrcMuIEJdXVsR0Ln1gJLuQ9HpWehve0d7/cIZkN7a0fqgE7bMvSPyxWL3m
yTA4FwdbrebBr2y7ixlXZ6WtX/rqTvo2HTDFLle0ZwMbbfAtoFX0M0lPtXTLmJAl5w1G8Nj8

72

Verifying Package Integrity Using MD5 Checksums or GnuPG

bthWdN4KVFyOpqPt7OXc/G1YNLzcyYQXX5e8Uskmg40OH5cQV5OFEG8qpxTg53wANDdxXGzs
NUQe84Qkoyk75nwzVfsi00/OhTZmfIC48esXcs0kTrkSPrFcHktSMoYPmHfV3dTF17ifjz5a
C2SL22R+RokWuzGxxpvEaQAWIyCt6izf1a+CjnXPD2Jw3yDC/Oeg68XYiSrbeFdCRzQbS9YP
ipUFIlHuCiNZeGg3rFL2N2JodXg2LGORJz1RKazT7uAfRr5z7W1FtDtNeVNRTCBQYWNrYWdl
IHNpZ25pbmcga2V5ICh3d3cubXlzcWwuY29tKSA8YnVpbGRAbXlzcWwuY29tPohGBBARAgAG
BQI/rOOvAAoJEK/FI0h4g3QP9pYAoNtSISDDAAU2HafyAYlLD/yUC4hKAJ0czMsBLbo0M/xP
aJ6Ox9Q5Hmw2uIhGBBARAgAGBQI/tEN3AAoJEIWWr6swc05mxsMAnRag9X61Ygu1kbfBiqDk
u4czTd9pAJ4q5W8KZ0+2ujTrEPN55NdWtnXj4YhGBBARAgAGBQJDW7PqAAoJEIvYLm8wuUtc
f3QAnRCyqF0CpMCTdIGc7bDO5I7CIMhTAJ0UTGx0O1d/VwvdDiKWj45N2tNbYIhGBBARAgAG
BQJEgG8nAAoJEAssGHlMQ+b1g3AAn0LFZP1xoiExchVUNyEf91re86gTAKDYbKP3F/FVH7Ng
c8T77xkt8vuUPYhGBBARAgAGBQJFMJ7XAAoJEDiOJeizQZWJMhYAmwXMOYCIotEUwybHTYri
Q3LvzT6hAJ4kqvYk2i44BR2W2os1FPGq7FQgeYhGBBARAgAGBQJFoaNrAAoJELvbtoQbsCq+
m48An2u2Sujvl5k9PEsrIOAxKGZyuC/VAKC1oB7mIN+cG2WMfmVE4ffHYhlP5ohGBBMRAgAG
BQJE8TMmAAoJEPZJxPRgk1MMCnEAoIm2pP0sIcVh9Yo0YYGAqORrTOL3AJwIbcy+e8HMNSoN
V5u51RnrVKie34hMBBARAgAMBQJBgcsBBYMGItmLAAoJEBhZ0B9ne6HsQo0AnA/LCTQ3P5kv
JvDhg1DsfVTFnJxpAJ49WFjg/kIcaN5iP1JfaBAITZI3H4hMBBARAgAMBQJBgcs0BYMGItlY
AAoJEIHC9+viE7aSIiMAnRVTVVAfMXvJhV6D5uHfWeeD046TAJ4kjwP2bHyd6DjCymq+BdED
z63axohMBBARAgAMBQJBgctiBYMGItkqAAoJEGtw7Nldw/RzCaoAmwWM6+Rj1zl4D/PIys5n
W48Hql3hAJ0bLOBthv96g+7oUy9Uj09Uh41lF4hMBBARAgAMBQJB0JMkBYMF1BFoAAoJEH0l
ygrBKafCYlUAoIb1r5D6qMLMPMO1krHk3MNbX5b5AJ4vryx5fw6iJctC5GWJ+Y8ytXab34hM
BBARAgAMBQJCK1u6BYMFeUjSAAoJEOYbpIkV67mr8xMAoJMy+UJC0sqXMPSxh3BUsdcmtFS+
AJ9+Z15LpoOnAidTT/K9iODXGViK6ohMBBIRAgAMBQJAKlk6BYMHektSAAoJEDyhHzSU+vhh
JlwAnA/gOdwOThjO8O+dFtdbpKuImfXJAJ0TL53QKp92EzscZSz49lD2YkoEqohMBBIRAgAM
BQJAPfq6BYMHZqnSAAoJEPLXXGPjnGWcst8AoLQ3MJWqttMNHDblxSyzXhFGhRU8AJ4ukRzf
NJqElQHQ00ZM2WnCVNzOUIhMBBIRAgAMBQJBDgqEBYMGlpoIAAoJEDnKK/Q9aopf/N0AniE2
fcCKO1wDIwusuGVlC+JvnnWbAKDDoUSEYuNn5qzRbrzWW5zBno/Nb4hMBBIRAgAMBQJCgKU0
BYMFI/9YAAoJEAQNwIV8g5+o4yQAnA9QOFLV5POCddyUMqB/fnctuO9eAJ4sJbLKP/Z3SAiT
pKrNo+XZRxauqIhMBBMRAgAMBQI+PqPRBYMJZgC7AAoJEElQ4SqycpHyJOEAn1mxHijft00b
KXvucSo/pECUmppiAJ41M9MRVj5VcdH/KN/KjRtW6tHFPYhMBBMRAgAMBQI+QoIDBYMJYiKJ
AAoJELb1zU3GuiQ/lpEAoIhpp6BozKI8p6eaabzF5MlJH58pAKCu/ROofK8JEg2aLos+5zEY
rB/LsohMBBMRAgAMBQI+TU2EBYMJV1cIAAoJEC27dr+t1MkzBQwAoJU+RuTVSn+TI+uWxUpT
82/ds5NkAJ9bnNodffyMMK7GyMiv/TzifiTD+4hMBBMRAgAMBQJB14B2BYMFzSQWAAoJEGbv
28jNgv0+P7wAn13uu8YkhwfNMJJhWdpK2/qM/4AQAJ40drnKW2qJ5EEIJwtxpwapgrzWiYhM
BBMRAgAMBQJCGIEOBYMFjCN+AAoJEHbBAxyiMW6hoO4An0Ith3Kx5/sixbjZR9aEjoePGTNK
AJ94SldLiESaYaJx2lGIlD9bbVoHQYhdBBMRAgAdBQI+PqMMBQkJZgGABQsHCgMEAxUDAgMW
AgECF4AACgkQjHGNO1By4fVxjgCeKVTBNefwxq1A6IbRr9s/Gu8r+AIAniiKdI1lFhOduUKH
AVprO3s8XerMiF0EExECAB0FAkeslLQFCQ0wWKgFCwcKAwQDFQMCAxYCAQIXgAAKCRCMcY07
UHLh9a6SAJ9/PgZQSPNeQ6LvVVzCALEBJOBt7QCffgs+vWP18JutdZc7XiawgAN9vmmIXQQT
EQIAHQUCR6yUzwUJDTBYqAULBwoDBAMVAwIDFgIBAheAAAoJEIxxjTtQcuH1dCoAoLC6RtsD
9K3N7NOxcp3PYOzH2oqzAKCFHn0jSqxk7E8by3sh+Ay8yVv0BYhdBBMRAgAdBQsHCgMEAxUD
AgMWAgECF4AFAkequSEFCQ0ufRUACgkQjHGNO1By4fUdtwCfRNcueXikBMy7tE2BbfwEyTLB
TFAAnifQGbkmcARVS7nqauGhe1ED/vdgiF0EExECAB0FCwcKAwQDFQMCAxYCAQIXgAUCS3Au
ZQUJEPPyWQAKCRCMcY07UHLh9aA+AKCHDkOBKBrGb8tOg9BIub3LFhMvHQCeIOOot1hHHUls
TIXAUrD8+ubIeZaIZQQTEQIAHQUCPj6jDAUJCWYBgAULBwoDBAMVAwIDFgIBAheAABIJEIxx
jTtQcuH1B2VHUEcAAQFxjgCeKVTBNefwxq1A6IbRr9s/Gu8r+AIAniiKdI1lFhOduUKHAVpr
O3s8XerMiGUEExECAB0FAkeslLQFCQ0wWKgFCwcKAwQDFQMCAxYCAQIXgAASCRCMcY07UHLh
9QdlR1BHAAEBrpIAn38+BlBI815Dou9VXMIAsQEk4G3tAJ9+Cz69Y/Xwm611lzteJrCAA32+
aYhlBBMRAgAdBQsHCgMEAxUDAgMWAgECF4AFAktwL8oFCRDz86cAEgdlR1BHAAEBCRCMcY07
UHLh9bDbAJ4mKWARqsvx4TJ8N1hPJF2oTjkeSgCeMVJljxmD+Jd4SscjSvTgFG6Q1WCIbwQw
EQIALwUCTnc9rSgdIGJ1aWxkQG15c3FsLmNvbSB3aWxsIHN0b3Agd29ya2luZyBzb29uAAoJ
EIxxjTtQcuH1tT0An3EMrSjEkUv29OX05JkLiVfQr0DPAJwKtL1ycnLPv15pGMvSzav8JyWN
3Ih7BDARAgA7BQJCdzX1NB0AT29wcy4uLiBzaG91bGQgaGF2ZSBiZWVuIGxvY2FsISBJJ20g
KnNvKiBzdHVwaWQuLi4ACgkQOcor9D1qil/vRwCdFo08f66oKLiuEAqzlf9iDlPozEEAn2Eg
vCYLCCHjfGosrkrU3WK5NFVgiI8EMBECAE8FAkVvAL9IHQBTaG91bGQgaGF2ZSBiZWVuIGEg
bG9jYWwgc2lnbmF0dXJlLCBvciBzb21ldGhpbmcgLSBXVEYgd2FzIEkgdGhpbmtpbmc/AAoJ
EDnKK/Q9aopfoPsAn3BVqKOalJeF0xPSvLR90PsRlnmGAJ44oisY7Tl3NJbPgZal8W32fbqg
bIkBHAQSAQIABgUCS8IiAwAKCRDc9Osew28OLx5CB/91LHRH0qWjPPyIrv3DTQ06x2gljQ1r
Q1MWZNuoeDfRcmgbrZxdiBzf5Mmd36liFiLmDIGLEX8vyT+Q9U/Nf1bRh/AKFkOx9PDSINWY
bE6zCI2PNKjSWFarzr+cQvfQqGX0CEILVcU1HDxZlir1nWpRcccnasMBFp52+koc6PNFjQ13
HpHbM3IcPHaaV8JD3ANyFYS4l0C/S4etDQdX37GruVb9Dcv9XkC5TS2KjDIBsEs89isHrH2+
3ZlxdLsE7LxJ9DWLxbZAND9OiiuThjAGK/pYJb+hyLLuloCg85ZX81/ZLqEOKyl55xuTvCql
tSPmSUObCuWAH+OagBdYSduxiQEiBBABAgAMBQJJKmigBQMAEnUAAAoJEJcQuJvKV618U4wI
AKk/45VnuUf9w1j7fvdzgWdIjT9Lk9dLQAGB13gEVZEVYqtYF5cEZzyxl8c7NUTCTNX3qLId
ul114A4CQQDg5U9bUwwUKaUfGLaz380mtKtM9V9A4fl9H2Gfsdumr8RPDQihfUUqju+d0ycd
mcUScj48Nctx0xhCCWNjOFPERHi9hjRQq7x6RKyFTLjM5ftdInHCo9S+mzyqz9O+iMgX68Mm
+AVgdWSC9L6yGnw6H97GD28oRMGWBTzsmCyqf9I3YutH8mGXRot3QbSJD7/AeZVh1BQwVoJn
CT8Eo1pc/OYZkRRndE1thrX0yjuFwTeOzvqeHlgzEW/FtOCBW7iR0WSJASIEEAECAAwFAkoz

73

Verifying Package Integrity Using MD5 Checksums or GnuPG

TogFAwASdQAACgkQlxC4m8pXrXwXiAf+Ked6Mgd98YyTyNiLHhllPulboCnKgj430jLzkfgv
7ytVCu1xMfKrRWRw3fA9LC19mzNQX/So/o/ywsk0nUG2sfEs5FiMk+aC957Ic/MDagmXqKap
ZROJbzbZ/KNj9rPCG9kXPGa9sUn6vk39nnv4hri30tNKpM0fMxRhpcoNoCrNl4rs/QTpdRpp
7KBuNaMEtDU7R7OjMDL4qT+BcCmYMIYW4dIV7tmaC0VxtcszZcVCkxSigRMPZHwxSx37GdCx
9/+TqlA4vGL6NQSxZKv+Kqa+WTqBngOl6YGO6FxdiXEliNRpf1mafmz6h8XgYXFGpehjuX1n
60Iz0BffuWbpL4kBIgQQAQIADAUCSkRyCgUDABJ1AAAKCRCXELibyletfPaaB/9FCSmYwz7m
vzOfHZOlEAYeLnCS290XGW89o4FYTbw0PBOulygyqj2TMCK68RCNU2KFs/bXBHeS+dDzitMA
fSaULYi7LJuCCmrDM5SX5aLSj6+TxkDQDR1K1ZE3y6qd4Kx3VeeoN7Wu+oLj/3Jjbbe0uYCQ
+/PniRra9f0Z0neTExZ7CGtVBIsKS1CnKBTR26MZMOom2eTRZwGFUX1PzuW/dbZ4Z0+J6XMd
Tm2td7OYYWPbV3noblkUrxyjtGtO3ip3Oe3zSCWHUFMaaEuXOMw8tN51wy6ybcPVAH0hOiBw
b3iCFJ/20QqaZEno6edYzkqf0pwvrcTmiPb+Vj0fnjBJiQEiBBABAgAMBQJKVj5HBQMAEnUA
AAoJEJcQuJvKV61845AH/R3IkGIGOB/7x3fI0gOkOS0uFljDxysiM8FV06BfXbFpRgFMZxAh
NFUdKCDN98MDkFBd5S5aGkvhAHS7PVwQ8/BIyJaJeUG3AXmrpFV/c9kYn1+YW5OQ9E7tKu5l
5UOj1Y/weNtC04u6Rh/nrp6CvMBhH2nvhSBZ+2kO2auqtFOhuK6+wUHGixt5EK8RAKs3Sf6n
kP2EJUHzy1Q8ec5YDiaV24AVkPFBZMCkpD3Z+seIGrL4zUkV7PPY4zd9g34Oqj8JvtnA4AD/
Z1vBLujLixcQdt9aieOySA9DAVgHbe2wVS4zi5nBURsmD5u96CUOwNK1sOV+ACtdIv/T5qSU
VweJASIEEAECAAwFAkpoCoQFAwASdQAACgkQlxC4m8pXrXysfQf+IJyIPhTphk0kGPQY3v9e
3znW30VahyZxoL6q25eeQWGmVeTFlU4JThUEyzgYGip8i9qBsFPJ9XgOL5bxTGv7/WOK7eX8
e+gXHB3A2QYbrM0GFZKN3BCkbA++HmvJXU58tf+aBCB0ObG+rPn6QUNSPibu4tp65TaPVPSV
HjNTTICxu3sneHB+okJcc5z1ubme8nAytKb6x0JM/keNSXAev2ZN7zG5m+Pqw7/DQ/gCogzG
ML1bulP2rSh8bYpJPC3vAVuHTmxsbhRBg4l7j5KiHf4qMBrVzRy+YiHhwpf2p8JbCGF141+H
UD1VMeGeXnNO/9SO+dC2OGUf8WrV4FIpxIkBIgQQAQIADAUCSnkuCgUDABJ1AAAKCRCXELib
yletfBjrCACDd/zvoveoNlNiUUBazelcGXwaxSvUMSROUQNkxkoMzfA+aFpYFHWEwDfLqndp
oJTIkgkESd5fODJT26oLFekLvx3mpzfGz8l39KzDM1i6+7Mtg7DnA3kvfVIuZBNDwqoTS6hH
KcGa0MJDgzZQqJ9Ke/7T7eY+HzktUBLjzUY2kv5VV8Ji0p6xY27jT73xiDov00ZbBFN+xBtx
2iRmjjgnPtjt/zU5sLiv9fUOA+Pb53gBT+mXMNx2tsg07Kmuz7vfjR5ydoY7guyB3X1vUK9y
AmCW1Gq67eRG934SujZFikO/oZUrwRrQu2jj5v8B7xwtcCFCdpZAIRabD4BTglvPiQEiBBAB
AgAMBQJKjl+9BQMAEnUAAAoJEJcQuJvKV618DTwH/3DzIl1zwr6TTtTfTBH9FSDdhvaUEPKC
bLT3WZWzIHREaLEENcQ85cGoYoBeJXVBIwBczZUpGy4pqFjYcWQ9vKFm2Nt1Nrs+v9tKc+9G
ECH0Y1a+9GDYqnepcN2O/3HLASCEpXFwQhVe01G+lupGgqYfMgTG9RByTkMzVXB9ER5gijGC
zjTflYAOFUx2eBBLYa3w/ZZpT+nwRmEUaDpfwq06UPrzMZuhol7SGPZUNz4lz4p2NF8Td9bk
hOiJ3+gORRohbq0HdaRdvSDoP/aGsQltfeF5p0KEcpIHx5B05H1twIkOGFTxyx3nTWqauEJy
2a+Wl5ZBl0hB2TqwAE9Z54KJASIEEAECAAwFAkqgEkcFAwASdQAACgkQlxC4m8pXrXwyXwf/
UPzz+D+n19JWivha7laUxuDzMQCKTcEjFCu4QVZ1rqcBFPoz0Tt74/X75QdmxZizqX1E6lbF
EsbVjL2Mt5zZjedS1vbSbrmn4hV4pHZr08dbflZkNX105g8ZlpsqQ7VyUt5YtWCn0tGNn4B5
Eb6WMeqxQteujV3B7AtMH+CD0ja+A2/p0rHIpqScz8aupksBMCrYqhoT+7/qXNEVkjNmcu2N
mHxfv6dL5Xy/0iJjie2umStu8WTfRTpYmnv2gEhbCdb/zhFvG61GgTBJqv9MvBVGRxnJFd4l
NqlucsadD+UM7WjV3v5VuN2r9KD9wocd/s22ELCRA2wKccvR/nWBkIkBIgQQAQIADAUCSqgQ
AAUDABJ1AAAKCRCXELibyletfAT8B/9cPhH8DlHoiv+cK8rAJMomZqVqOyy4BwsRrakycVlg
7/yvMs74anynSoUf0LgsXADQ29Hmrpf+zC5E5/jPGWNK81x2VBVoB8nZkMSAnkZfOw+mWu9I
Aj2NLcsvt9JYNmAq5R7RrirHsDQ2DIYxRgaE/5CVEVry9YQEj18A13/SYyoB4FWpDI4fRfUW
JbUJrYmfg0p+4zL0YS9F11UhsHUu+g1W1c83N54ozI1v0l3HUwVayzII4E/YNrIkpOaO+o8R
z9g6M6jCg3mwn+OfiZVJO++VOiguJF5KzoZIICMxXE3t5hL87Kroi7UkNwm+YHw3ZaLEBm0B
WAXw4DsJZcpViQEiBBABAgAMBQJKuceJBQMAEnUAAAoJEJcQuJvKV6188KEH/24QK2LV1l42
4Wx3T9G4bJFRWWuuEkTpYJw6ss72lqus9t7BsoGaNLMHQzKAlca9wLTqY826q4nv9anEqwWZ
+Di8kE+UAMUq2BFTL0EvOMJ6i1ZyE8cUFVb1+09tpBWJJS7t3z00uMMMznGuHzSm4MgCnGhA
sOgiuHdPWSlnHnqNJa/SB6UVQxtcDOaqQlLIvhd2HVqrOBRtER3td/YgLO6HSxXpXtz8DBa2
NYQYSwAdlqJAPLBnBsLXwbCswuIDMZZv8BJwUNBEJkokOMv5CXxhPrP5kxWvyBvsIhTk8ph2
GIh/ZRVNDAsChbuU1EJBACpwaMrcgwjPtI7/KTgeZVSJASIEEAECAAwFAkreCMYFAwASdQAA
CgkQlxC4m8pXrXyOQQf7BvRm/3PvFCCksyjBW4EVBW7z/Ps/kBK6bIE9Q7f7QlXFIcGGUIpA
rufXWbV+G4a3Z8LFeFJTovNePfquwpFjneUZn1CG+oVS1AfddvYhAsgkLhQqMbaNJIJ1y4D/
H3xvCna/s7Teufud0JLXoLBedFXeB5Cg2KlEoxINqMo+lm/VGJmbykwqoRvxZLDfnbFag5zG
59+OWw4TC8nzlIQYIBn22YiWRk5zsCJA40O+KL1vwBiFDrREhALQc/YBJKYrRX3ZV4U/EeYD
KB0NCBk1W1tXGCee3uhM0S5VFc1j7Pg58ECuntH5xOy+KMNFljiQwvWfbaFTJvCjFQS+OplX
b4kBIgQQAQIADAUCSu86VAUDABJ1AAAKCRCXELibyletfGs8CACteI2BmKs24GF80JeWTOQI
cvHnCdV7hKZOltbNPBbDv6qTt3iX2GVa10iYhI5Eg3Ojt/hKFJTMlfYZyI1peFodGjv7Lk5l
u7zaNBvT1pBCP+eJspi6rGpSuhtMSb4O5jPclRBmbY+w9wctLyZf1zG+slSdw8adcRXQNFqr
vVIZYOmu2S8FunqLfxpjewiFiDPzAzmbWzMoO2PLCYFhwV6Eh2jO33OGbvBmyHNFZBfX5F/+
kiyeT47MEhrfhytJ6ZOdpxtX8HvbvzPZcDLOI80W6rPTG76KW06ZiZrJ81YCa6a7D01y7BYy
W2HoxzYcuumjRkGF4nqK4Mw+wefCp0H/iQEiBBABAgAMBQJLAF3aBQMAEnUAAAoJEJcQuJvK
V618/q0H/ibXDQG2WQmC1LoT4H+ezXjPgDg8aiuz6f4xibTmrO+L4ScMX+zK0KZVwp6Kau28
Nx+gO0oAUW8mNxhd+cl0ZaY+7RIkxEvkooKKsArBmZT+xrE6CgHlAs3D4Mc+14nfD0aZaUbE
iobWvXlYLl27MELLcWyeMlgbeNoucc473JddvmHSRRM5F9Qp28CvWDEXYqhq1laoaho8+cei
pvzyuO3OTwjuAOqhefOHzAvFrRli99ML8xzF1ZOvBct+36SuYxDXyIhkSd7aG9Us0lW6W5Si
JYt4cDyI0JDhbhZN0tzWYKcKMZMxf8w3jW4sfQL0prhHrARqqPiU8OTUH/VNX5CJASIEEAEC
AAwFAksRgasFAwASdQAACgkQlxC4m8pXrXydogf/a31ofmYFMoE3p9SqGt/v28iyO0j9A1Lm
qKwEhJkxff/X/Qa7pafGQ9J90JQkxYKMxydWPspTbDFMccZWkBK132vZp9Q3FHKpnDPDLK2S

74

Verifying Package Integrity Using MD5 Checksums or GnuPG

25miTReeAAQNgMMFLeyy7ZHi5YsKwLbKxcSo7/m0jlitNYlmt94imFNpg/mHGsy6O+rLeQTA
opuIzP3VwN6ItL5gIFxqWPmf/V0xh/vxTwLqJ66vECD8vyHrHblUzgiXHgyYbZPxAa2SRRd3
4V38phaZ/QsTkss+Sd/QeHChWyU9d6KengWwcr/nDO+K/hhmnO5Oqz02Upwyxrgi6484HQUN
/Smf44VBsSD1DBjaAKjMr4kBIgQQAQIADAUCSyNN1AUDABJ1AAAKCRCXELibyletfCWiB/9c
EZtdFVcsxpE3hJzM6PBPf+1QKuJORve/7MqNEb3TMWFgBxyOfvD7uMpCJyOrqq5AbUQfZfj9
K7qmzWUMuoYceGIlbdmHFBJwtmaF0BiyHaobgY/9RbdCNcbtzrW34feiW9aDZyvCoLHEVkCC
QACSv3FwdYVkkRB5eihvpwJk5tpScdIA12YLqzmVTFdhrZuYvtDdQHjgoLMO8B9s9kok7D2T
SpveVzXXPH68Z3JkVubhHT7cs+n+9PRvcaVJtsX2VTUY5eFVqmGuAUVrvp2aN8cKQ+mVcCQr
VVIhT9o8YB5925MUx2VJml0y0nkBQuMZyzMEOVGkuU/G+pVrRmmAiQEiBBABAgAMBQJLJyaS
BQMAEnUAAAoJEJcQuJvKV618eU0IAKnVh6ymId9C3ZqVyxwTnOB8RMQceJzwCLqk2RT0dPhN
5ZwUcQN7lCp9hymMutC8FdKRK/ESK21vJF2/576Pln4fIeOIbycBAEvqrL14epATj53uBizo
NOTuwb1kximFERuW3MP4XiFUJB0tPws2vR5UU3t6GoQJJwNoIbz9DK2L6X/Qz3Tb9if6bPSK
U6JR1Yn3Hos9ogg21vWCxgMTKUuPAYhmYjSvkqH3BihXi+c17MVvE7W5GJbQHuJo+MgSxu04
4qnvDHZpf4Mzc30XcG1ohjxefNyeiY2bzdI2yCaCtmWOlCW1Sc2oiE0zwO6lD4hY5XmC2Xql
MLsKB5VNXJGJASIEEAECAAwFAks4Ze4FAwASdQAACgkQlxC4m8pXrXyWXggAon2abiNvRzx9
7364Mjx4IlFvM1tVebzNbOkDwZS1ABqTDGgq/ffZA/VZrU+h2eL97cQyGxJEQ5kkm/v1iobE
ZEFMT0pv9WMzfidqzhdKdcpbbxdaErIjD5fBACKdjazAUeH7zce2v+bBN0l9LZoRiXbNugG9
38lkJ2E4ZTYYfvftL/e4RzOgqR9VD/A5MzxfXFbCVharHbeT8OwZy4Oz2UDaDszHsNKoG1WN
pOSf2HTMBPNcsOSY/hIBRWNxnzdYOkWt7laeLNmN1eUEwzk4J7GnlambPIctOdoEUriMSaey
TkLZGejKnwi/PqARyDW1FsReKNHD753ZMViUnAsq2IkBIgQQAQIADAUCS0oyJwUDABJ1AAAK
CRCXELibyletfGodCAC5hjmxwquHSb8ZL0RifIL3j3iU6U7qLK1TQKkTqgELfUzeF9f8NuNR
txLmzNk1T7YI9iji6NAtnuy43v61OMbqlkV8x69qNP36Owv408wXxEt0s5ViZuVOZJAY075c
YRhopgfmhkh4hbkAoKCLajOR0WUEEsDHsqqj8XLJuGRREURy8TJWaB/cotXsgiJf99gt+gIw
In8tyb3+WVIUHWfw2+Drpd3nfcMqgeO54PePJo0BWWjaar+wgC/76Se286IHcYMrml/Adnvx
ZaIKmxZmkTmDMCfMnVjRYSKBGjQ9Uu7dws7SMsbbd34f8Jt9nyuRqMcl4INAXthWY/S3Sdil
iQEiBBABAgAMBQJLW/5mBQMAEnUAAAoJEJcQuJvKV6181L8IAKq3ZOQHzqaOoz5wnvj51YG8
nZoW5RG7HOb3mL1D9b+FTTzaIxsLf7STagPwKtM57rU/7ehHIuO/9QQNQ3Mudw17ZiwD0l5X
7iG8/AflWnc6bXfTz18IplRuqyVc0qQeJZhT7MBpklcS4ZGZHPQdtAh4Aw5YXihrbbq6jV7j
CzUmFz4XcT8CkJHIUGoFR0vTmFqlAt2K1imwGMh2IEamPOJ0wsTbBfZbhmkB03RToEjIipGZ
M+NtKS/NL2RJYWZ+FCCcEMoRgmlVmATWw3natgLWwN4Z6K4rGXONWi/0wyFgxZpmjdHmjcXa
Igz8EroVsLbnaV/8yG7cgK5e6M0Fk1iJASIEEAECAAwFAkttIfgFAwASdQAACgkQlxC4m8pX
rXyR3QgAksvAMfqC+ACUEWSVAlepDFR1xI45UwBa2UeBY7KjOOCiZlkGREvx20IOv1gExyPl
zNxDeqmYsl2mleEoH6QlXaJRd8MxIVfAnjAt8izwU2dfDwflTTWgGQYf8q7qeAv1XC34yNge
0JaTD1C55QpmcO51f2ojMsAi36bBJO4Dr59jhVYiDjQADS/d7FpAznlhH9SGUq6ekYb2jxCS
rvt0wRtMyk6YGgts4xEHcN0wC9VTobaXo9xvsqhtUK44Gdvptq1cBFX8byzD6fN8nXp+v8qh
tlPYDqb4muqTh2UXXiWMtvPXo7kkZQ8CvI3YbZ10F1IDLt20VJWFZaJYL2fzyokCIgQQAQIA
DAUCQYHLhQWDBiLZBwAKCRCq4+bOZqFEaKgvEACCErnaHGyUYa0wETjj6DLEXsqeOiXad4i9
aBQxnD35GUgcFofC/nCY4XcnCMMEnmdQ9ofUuU3OBJ6BNJIbEusAabgLooebP/3KEaiCIiyh
HYU5jarpZAh+Zopgs3Oc11mQ1tIaS69iJxrGTLodkAsAJAeEUwTPq9fHFFzC1eGBysoyFWg4
bIjz/zClI+qyTbFA5g6tRoiXTo8ko7QhY2AA5UGEg+83Hdb6akC04Z2QRErxKAqrphHzj8Xp
jVOsQAdAi/qVKQeNKROlJ+iq6+YesmcWGfzeb87dGNweVFDJIGA0qY27pTb2lExYjsRFN4Cb
13NfodAbMTOxcAWZ7jAPCxAPlHUG++mHMrhQXEToZnBFE4nbnC7vOBNgWdjUgXcpkUCkop4b
17BFpR+k8ZtYLSS8p2LLz4uAeCcSm2/msJxT7rC/FvoH8428oHincqs2ICo9zO/Ud4HmmO0O
+SsZdVKIIjinGyOVWb4OOzkAlnnhEZ3o6hAHcREIsBgPwEYVTj/9ZdC0AO44Nj9cU7awaqgt
rnwwfr/o4V2gl8bLSkltZU27/29HeuOeFGjlFe0YrDd/aRNsxbyb2O28H4sG1CVZmC5uK1iQ
BDiSyA7Q0bbdofCWoQzm5twlpKWnY8Oe0ub9XP5p/sVfck4FceWFHwv+/PC9RzSl33lQ6vM2
wIkCIgQTAQIADAUCQp8KHAWDBQWacAAKCRDYwgoJWiRXzyE+D/9uc7z6fIsalfOYoLN60ajA
bQbI/uRKBFugyZ5RoaItusn9Z2rAtn61WrFhu4uCSJtFN1ny2RERg40f56pTghKrD+YEt+Nz
e6+FKQ5AbGIdFsR/2bUk+ZZRSt83e14Lcb6ii/fJfzkoIox9ltkifQxqY7Tvk4noKu4oLSc8
O1Wsfc/y0B9sYUUCmUfcnq58DEmGie9ovUslmyt5NPnveXxp5UeaRc5Rqt9tK2B4A+7/cqEN
rdZJbAMSunt2+2fkYiRunAFPKPBdJBsY1sxeL/A9aKe0viKEXQdAWqdNZKNCi8rd/oOP99/9
lMbFudAbX6nL2DSb1OG2Z7NWEqgIAzjmpwYYPCKeVz5Q8R+if9/fe5+STY/55OaI33fJ2H3v
+U435VjYqbrerWe36xJItcJeqUzW71fQtXi1CTEl3w2ch7VF5oj/QyjabLnAlHgSlkSi6p7B
y5C2MnbCHlCfPnIinPhFoRcRGPjJe9nFwGs+QblvS/Chzc2WX3s/2SWm4gEUKRX4zsAJ5ocy
fa/vkxCkSxK/erWlCPf/J1T70+i5waXDN/E3enSet/WL7h94pQKpjz8OdGL4JSBHuAVGA+a+
dknqnPF0KMKLhjrgV+L7O84FhbmAP7PXm3xmiMPriXf+el5fZZequQoIagf8rdRHHhRJxQgI
0HNknkaOqs8dtrkCDQQ+PqMdEAgA7+GJfxbMdY4wslPnjH9rF4N2qfWsEN/lxaZoJYc3a6M0
2WCnHl6ahT2/tBK2w1QI4YFteR47gCvtgb6O1JHffOo2HfLmRDRiRjd1DTCHqeyX7CHhcghj
/dNRlW2Z0l5QFEcmV9U0Vhp3aFfWC4Ujfs3LU+hkAWzE7zaD5cH9J7yv/6xuZVw411x0h4Uq
sTcWMu0iM1BzELqX1DY7LwoPEb/O9Rkbf4fmLe11EzIaCa4PqARXQZc4dhSinMt6K3X4BrRs
KTfozBu74F47D8Ilbf5vSYHbuE5p/1oIDznkg/p8kW+3FxuWrycciqFTcNz215yyX39LXFnl
LzKUb/F5GwADBQf+Lwqqa8CGrRfsOAJxim63CHfty5mUc5rUSnTslGYEIOCR1BeQauyPZbPD
sDD9MZ1ZaSafanFvwFG6Llx9xkU7tzq+vKLoWkm4u5xf3vn55VjnSd1aQ9eQnUcXiL4cnBGo
TbOWI39EcyzgslzBdC++MPjcQTcA7p6JUVsP6oAB3FQWg54tuUo0Ec8bsM8b3Ev42LmuQT5N
dKHGwHsXTPtl0klk4bQk4OajHsiy1BMahpT27jWjJlMiJc+IWJ0mghkKHt926s/ymfdf5Hkd
Q1cyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkg0n6KdUOetdZWhe70YGNPw1yjWJT1IhM
BBgRAgAMBQI+PqMdBQkJZgGAAAoJEIxxjTtQcuH17p4An3r1QpVC9yhnW2cSAjq+kr72GX0e

75

Verifying Package Integrity Using MD5 Checksums or GnuPG

AJ4295kl6NxYEuFApmr1+0uUq/SlsYhMBBgRAgAMBQJHrJT8BQkNMFjfAAoJEIxxjTtQcuH1
pc4An0I965H3JY2GTrizp+dCezxbhexaAJ48FhocFYvfhZtgeUWb6aPvgQZHT4hUBBgRAgAM
BQI+PqMdBQkJZgGAABIJEIxxjTtQcuH1B2VHUEcAAQHungCfevVClUL3KGdbZxICOr6SvvYZ
fR4Anjb3mSXo3FgS4UCmavX7S5Sr9KWxiFQEGBECAAwFAk53Pe0FCRP7AbgAEgdlR1BHAAEB
CRCMcY07UHLh9RSbAJsFivb5sESf8vYE5yfD1n9AVa6FEwCgpWAIWbl9p1DcB+L5RCUBw6mG
uck=
=yia9
-----END PGP PUBLIC KEY BLOCK-----

To import the build key into your personal public GPG keyring, use gpg --import. For example, if you
have saved the key in a file named mysql_pubkey.asc, the import command looks like this:

$> gpg --import mysql_pubkey.asc
gpg: key 5072E1F5: public key "MySQL Release Engineering
<mysql-build@oss.oracle.com>" imported
gpg: Total number processed: 1
gpg: imported: 1
gpg: no ultimately trusted keys found

You can also download the key from the public keyserver using the public key id, 5072E1F5:

$> gpg --recv-keys 5072E1F5
gpg: requesting key 5072E1F5 from hkp server keys.gnupg.net
gpg: key 5072E1F5: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
1 new user ID
gpg: key 5072E1F5: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
53 new signatures
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: new user IDs: 1
gpg: new signatures: 53

If you want to import the key into your RPM configuration to validate RPM install packages, you should be
able to import the key directly:

$> rpm --import mysql_pubkey.asc

If you experience problems or require RPM specific information, see Section 2.1.4.4, “Signature Checking
Using RPM”.

After you have downloaded and imported the public build key, download your desired MySQL package
and the corresponding signature, which also is available from the download page. The signature file has
the same name as the distribution file with an .asc extension, as shown by the examples in the following
table.

Table 2.1 MySQL Package and Signature Files for Source files

File Type File Name

Distribution file mysql-standard-5.6.51-linux-
i686.tar.gz

Signature file mysql-standard-5.6.51-linux-
i686.tar.gz.asc

Make sure that both files are stored in the same directory and then run the following command to verify the
signature for the distribution file:

$> gpg --verify package_name.asc

76

Verifying Package Integrity Using MD5 Checksums or GnuPG

If the downloaded package is valid, you should see a Good signature message similar to this one:

$> gpg --verify mysql-standard-5.6.51-linux-i686.tar.gz.asc
gpg: Signature made Tue 01 Feb 2011 02:38:30 AM CST using DSA key ID 5072E1F5
gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"

The Good signature message indicates that the file signature is valid, when compared to the signature
listed on our site. But you might also see warnings, like so:

$> gpg --verify mysql-standard-5.6.51-linux-i686.tar.gz.asc
gpg: Signature made Wed 23 Jan 2013 02:25:45 AM PST using DSA key ID 5072E1F5
gpg: checking the trustdb
gpg: no ultimately trusted keys found
gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: A4A9 4068 76FC BD3C 4567 70C8 8C71 8D3B 5072 E1F5

That is normal, as they depend on your setup and configuration. Here are explanations for these warnings:

• gpg: no ultimately trusted keys found: This means that the specific key is not "ultimately trusted" by you
or your web of trust, which is okay for the purposes of verifying file signatures.

• This key is not certified with a trusted signature! There is no indication that the signature belongs to
the owner.: This refers to your level of trust in your belief that you possess our real public key. This is a
personal decision. Ideally, a MySQL developer would hand you the key in person, but more commonly,
you downloaded it. Was the download tampered with? Probably not, but this decision is up to you.
Setting up a web of trust is one method for trusting them.

See the GPG documentation for more information on how to work with public keys.

2.1.4.3 Signature Checking Using Gpg4win for Windows

The Section 2.1.4.2, “Signature Checking Using GnuPG” section describes how to verify MySQL
downloads using GPG. That guide also applies to Microsoft Windows, but another option is to use a GUI
tool like Gpg4win. You may use a different tool but our examples are based on Gpg4win, and utilize its
bundled Kleopatra GUI.

Download and install Gpg4win, and then load Kleopatra. The dialog should look similar to:

77

http://www.gpg4win.org/

Verifying Package Integrity Using MD5 Checksums or GnuPG

Figure 2.1 Kleopatra: Initial Screen

Next, add the MySQL Release Engineering certificate. Do this by clicking File, Lookup Certificates on
Server. Type "Mysql Release Engineering" into the search box and press Search.

Figure 2.2 Kleopatra: Lookup Certificates on Server Wizard: Finding a Certificate

Select the "MySQL Release Engineering" certificate. The Fingerprint and Key-ID must be "5072E1F5", or
choose Details... to confirm the certificate is valid. Now, import it by clicking Import. An import dialog is
displayed; choose Okay, and this certificate should now be listed under the Imported Certificates tab.

Next, configure the trust level for our certificate. Select our certificate, then from the main menu select
Certificates, Change Owner Trust.... We suggest choosing I believe checks are very accurate for our
certificate, as otherwise you might not be able to verify our signature. Select I believe checks are very
accurate to enable "full trust" and then press OK.

78

Verifying Package Integrity Using MD5 Checksums or GnuPG

Figure 2.3 Kleopatra: Change Trust level for MySQL Release Engineering

Next, verify the downloaded MySQL package file. This requires files for both the packaged file, and the
signature. The signature file must have the same name as the packaged file but with an appended .asc
extension, as shown by the example in the following table. The signature is linked to on the downloads
page for each MySQL product. You must create the .asc file with this signature.

Table 2.2 MySQL Package and Signature Files for MySQL Installer for Microsoft Windows

File Type File Name

Distribution file mysql-installer-community-5.6.51.msi

Signature file mysql-installer-
community-5.6.51.msi.asc

Make sure that both files are stored in the same directory and then run the following command to verify the
signature for the distribution file. Either drag and drop the signature (.asc) file into Kleopatra, or load the
dialog from File, Decrypt/Verify Files..., and then choose either the .msi or .asc file.

79

Verifying Package Integrity Using MD5 Checksums or GnuPG

Figure 2.4 Kleopatra: The Decrypt and Verify Files Dialog

Click Decrypt/Verify to check the file. The two most common results should look like the following,
and although the yellow warning looks problematic, the following means that the file check passed with
success. You may now run this installer.

Figure 2.5 Kleopatra: the Decrypt and Verify Results Dialog: All operations completed

Seeing a red "The signature is bad" error means the file is invalid. Do not execute the MSI file if you see
this error.

80

Verifying Package Integrity Using MD5 Checksums or GnuPG

Figure 2.6 Kleopatra: the Decrypt and Verify Results Dialog: Bad

The Section 2.1.4.2, “Signature Checking Using GnuPG” section explains why you probably don't see a
green Good signature result.

2.1.4.4 Signature Checking Using RPM

For RPM packages, there is no separate signature. RPM packages have a built-in GPG signature and
MD5 checksum. You can verify a package by running the following command:

$> rpm --checksig package_name.rpm

Example:

$> rpm --checksig MySQL-server-5.6.51-0.linux_glibc2.5.i386.rpm
MySQL-server-5.6.51-0.linux_glibc2.5.i386.rpm: md5 gpg OK

Note

If you are using RPM 4.1 and it complains about (GPG) NOT OK (MISSING
KEYS: GPG#5072e1f5), even though you have imported the MySQL public build
key into your own GPG keyring, you need to import the key into the RPM keyring
first. RPM 4.1 no longer uses your personal GPG keyring (or GPG itself). Rather,
RPM maintains a separate keyring because it is a system-wide application and a
user's GPG public keyring is a user-specific file. To import the MySQL public key
into the RPM keyring, first obtain the key, then use rpm --import to import the
key. For example:

$> gpg --export -a 5072e1f5 > 5072e1f5.asc
$> rpm --import 5072e1f5.asc

81

Installation Layouts

Alternatively, rpm also supports loading the key directly from a URL, and you can use this manual page:

$> rpm --import https://dev.mysql.com/doc/refman/5.6/en/checking-gpg-signature.html

If you need to obtain the MySQL public key, see Section 2.1.4.2, “Signature Checking Using GnuPG”.

2.1.5 Installation Layouts

The installation layout differs for different installation types (for example, native packages, binary tarballs,
and source tarballs), which can lead to confusion when managing different systems or using different
installation sources. The individual layouts are given in the corresponding installation type or platform
chapter, as described following. Note that the layout of installations from vendors other than Oracle may
differ from these layouts.

• Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”

• Section 2.9.3, “MySQL Layout for Source Installation”

• Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary Package”

• Table 2.11, “MySQL Installation Layout for Linux RPM Packages from the MySQL Developer Zone”

• Table 2.7, “MySQL Installation Layout on macOS”

2.1.6 Compiler-Specific Build Characteristics

In some cases, the compiler used to build MySQL affects the features available for use. The notes in this
section apply for binary distributions provided by Oracle Corporation or that you compile yourself from
source.

icc (Intel C++ Compiler) Builds

A server built with icc has these characteristics:

• SSL support is not included.

2.2 Installing MySQL on Unix/Linux Using Generic Binaries
Oracle provides a set of binary distributions of MySQL. These include generic binary distributions in the
form of compressed tar files (files with a .tar.gz extension) for a number of platforms, and binaries in
platform-specific package formats for selected platforms.

This section covers the installation of MySQL from a compressed tar file binary distribution on Unix/Linux
platforms. For other platform-specific binary package formats, see the other platform-specific sections
in this manual. For example, for Windows distributions, see Section 2.3, “Installing MySQL on Microsoft
Windows”. See Section 2.1.3, “How to Get MySQL” on how to obtain MySQL in different distribution
formats.

MySQL compressed tar file binary distributions have names of the form mysql-VERSION-OS.tar.gz,
where VERSION is a number (for example, 5.6.51), and OS indicates the type of operating system for
which the distribution is intended (for example, pc-linux-i686 or winx64).

Warnings

• If you have previously installed MySQL using your operating system native
package management system, such as Yum or APT, you may experience
problems installing using a native binary. Make sure your previous MySQL
installation has been removed entirely (using your package management

82

Installing MySQL on Unix/Linux Using Generic Binaries

system), and that any additional files, such as old versions of your data files, have
also been removed. You should also check for configuration files such as /etc/
my.cnf or the /etc/mysql directory and delete them.

For information about replacing third-party packages with official MySQL
packages, see the related APT guide or Yum guide.

• MySQL has a dependency on the libaio library. Data directory initialization
and subsequent server startup steps fail if this library is not installed locally. If
necessary, install it using the appropriate package manager. For example, on
Yum-based systems:

$> yum search libaio # search for info
$> yum install libaio # install library

Or, on APT-based systems:

$> apt-cache search libaio # search for info
$> apt-get install libaio1 # install library

• SLES 11: As of MySQL 5.6.37, the Linux Generic tarball package format is
EL6 instead of EL5. As a side effect, the MySQL client bin/mysql needs
libtinfo.so.5.

A workaround is to create a symlink, such as ln -s libncurses.so.5.6 /
lib64/libtinfo.so.5 on 64-bit systems or ln -s libncurses.so.5.6 /
lib/libtinfo.so.5 on 32-bit systems.

To install a compressed tar file binary distribution, unpack it at the installation location you choose
(typically /usr/local/mysql). This creates the directories shown in the following table.

Table 2.3 MySQL Installation Layout for Generic Unix/Linux Binary Package

Directory Contents of Directory

bin, scripts mysqld server, client and utility programs

data Log files, databases

docs MySQL manual in Info format

include Include (header) files

lib Libraries

mysql-test Test suite

man Unix manual pages

share Error messages, dictionary, and SQL for database
installation

sql-bench Benchmarks

support-files Miscellaneous support files, including sample
configuration files

Debug versions of the mysqld binary are available as mysqld-debug. To compile your own debug
version of MySQL from a source distribution, use the appropriate configuration options to enable
debugging support. See Section 2.9, “Installing MySQL from Source”.

To install and use a MySQL binary distribution, the command sequence looks like this:

$> groupadd mysql

83

http://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/

Create a mysql User and Group

$> useradd -r -g mysql -s /bin/false mysql
$> cd /usr/local
$> tar zxvf /path/to/mysql-VERSION-OS.tar.gz
$> ln -s full-path-to-mysql-VERSION-OS mysql
$> cd mysql
$> scripts/mysql_install_db --user=mysql
$> bin/mysqld_safe --user=mysql &
Next command is optional
$> cp support-files/mysql.server /etc/init.d/mysql.server

Note

This procedure assumes that you have root (administrator) access to your system.
Alternatively, you can prefix each command using the sudo (Linux) or pfexec
(Solaris) command.

Note

The procedure does not assign passwords to MySQL accounts. To do so, use the
instructions in Section 2.10.4, “Securing the Initial MySQL Accounts”.

mysql_install_db creates a default option file named my.cnf in the base installation directory. This
file is created from a template included in the distribution package named my-default.cnf. For more
information, see Section 5.1.2.2, “Using a Sample Default Server Configuration File”.

A more detailed version of the preceding description for installing a binary distribution follows.

Create a mysql User and Group

If your system does not already have a user and group to use for running mysqld, you may need to create
them. The following commands add the mysql group and the mysql user. You might want to call the
user and group something else instead of mysql. If so, substitute the appropriate name in the following
instructions. The syntax for useradd and groupadd may differ slightly on different versions of Unix/Linux,
or they may have different names such as adduser and addgroup.

$> groupadd mysql
$> useradd -r -g mysql -s /bin/false mysql

Note

Because the user is required only for ownership purposes, not login purposes, the
useradd command uses the -r and -s /bin/false options to create a user
that does not have login permissions to your server host. Omit these options if your
useradd does not support them.

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it. The example
here unpacks the distribution under /usr/local. The instructions, therefore, assume that you have
permission to create files and directories in /usr/local. If that directory is protected, you must perform
the installation as root.

$> cd /usr/local

Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”. For a given release,
binary distributions for all platforms are built from the same MySQL source distribution.

Unpack the distribution, which creates the installation directory. tar can uncompress and unpack the
distribution if it has z option support:

84

Perform Postinstallation Setup

$> tar zxvf /path/to/mysql-VERSION-OS.tar.gz

The tar command creates a directory named mysql-VERSION-OS.

To install MySQL from a compressed tar file binary distribution, your system must have GNU gunzip to
uncompress the distribution and a reasonable tar to unpack it. If your tar program supports the z option,
it can both uncompress and unpack the file.

GNU tar is known to work. The standard tar provided with some operating systems is not able to unpack
the long file names in the MySQL distribution. You should download and install GNU tar, or if available,
use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as tar within a GNU
or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU tar is available from
http://www.gnu.org/software/tar/.

If your tar does not have z option support, use gunzip to unpack the distribution and tar to unpack it.
Replace the preceding tar command with the following alternative command to uncompress and extract
the distribution:

$> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -

Next, create a symbolic link to the installation directory created by tar:

$> ln -s full-path-to-mysql-VERSION-OS mysql

The ln command makes a symbolic link to the installation directory. This enables you to refer more easily
to it as /usr/local/mysql. To avoid having to type the path name of client programs always when you
are working with MySQL, you can add the /usr/local/mysql/bin directory to your PATH variable:

$> export PATH=$PATH:/usr/local/mysql/bin

Perform Postinstallation Setup

The remainder of the installation process involves setting distribution ownership and access permissions,
initializing the data directory, starting the MySQL server, and setting up the configuration file. For
instructions, see Section 2.10, “Postinstallation Setup and Testing”.

2.3 Installing MySQL on Microsoft Windows

Important

MySQL Community 5.6 Server requires the Microsoft Visual C++ 2010
Redistributable Package to run on Windows platforms. Users should make sure the
package has been installed on the system before installing the server. The package
is available at the Microsoft Download Center.

MySQL is available for Microsoft Windows, for both 32-bit and 64-bit versions. For supported Windows
platform information, see https://www.mysql.com/support/supportedplatforms/database.html.

There are different methods to install MySQL on Microsoft Windows.

MySQL Installer Method

The simplest and recommended method is to download MySQL Installer (for Windows) and let it install and
configure all of the MySQL products on your system. Here is how:

1. Download MySQL Installer from https://dev.mysql.com/downloads/installer/ and execute it.

85

http://www.gnu.org/software/tar/
http://www.microsoft.com/en-us/download/default.aspx
https://www.mysql.com/support/supportedplatforms/database.html
https://dev.mysql.com/downloads/installer/

Additional Installation Information

Note

Unlike the standard MySQL Installer, the smaller "web-community" version does
not bundle any MySQL applications but rather downloads the MySQL products
you choose to install.

2. Choose the appropriate Setup Type for your system. Typically you should choose Developer Default
to install the MySQL server and other MySQL tools related to MySQL development, and helpful tools
like MySQL Workbench. Or, choose the Custom setup type to select the desired MySQL products
manually.

Note

Multiple versions of MySQL server can exist on a single system. You can
choose one or multiple versions.

3. Complete the installation process by following the instructions. This installs several MySQL products
and starts the MySQL server.

MySQL is now installed. If you configured MySQL as a service, then Windows automatically starts the
MySQL server every time you restart your system.

Note

You probably also installed other helpful MySQL products like MySQL Workbench
on your system. Consider loading Chapter 25, MySQL Workbench to check your
new MySQL server connection. By default, this program automatically start after
installing MySQL.

This process also installs the MySQL Installer application on your system, and later you can use MySQL
Installer to upgrade or reconfigure your MySQL products.

Additional Installation Information

It is possible to run MySQL as a standard application or as a Windows service. By using a service, you can
monitor and control the operation of the server through the standard Windows service management tools.
For more information, see Section 2.3.4.7, “Starting MySQL as a Windows Service”.

Generally, you should install MySQL on Windows using an account that has administrator rights.
Otherwise, you may encounter problems with certain operations such as editing the PATH environment
variable or accessing the Service Control Manager. When installed, MySQL does not need to be
executed using a user with Administrator privileges.

For a list of limitations on the use of MySQL on the Windows platform, see Section 2.3.7, “Windows
Platform Restrictions”.

In addition to the MySQL Server package, you may need or want additional components to use MySQL
with your application or development environment. These include, but are not limited to:

• To connect to the MySQL server using ODBC, you must have a Connector/ODBC driver. For more
information, including installation and configuration instructions, see MySQL Connector/ODBC
Developer Guide.

Note

MySQL Installer installs and configures Connector/ODBC for you.

86

https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-odbc/en/

MySQL on Windows Considerations

• To use MySQL server with .NET applications, you must have the Connector/NET driver. For more
information, including installation and configuration instructions, see MySQL Connector/NET Developer
Guide.

Note

MySQL Installer installs and configures MySQL Connector/NET for you.

MySQL distributions for Windows can be downloaded from https://dev.mysql.com/downloads/. See
Section 2.1.3, “How to Get MySQL”.

MySQL for Windows is available in several distribution formats, detailed here. Generally speaking, you
should use MySQL Installer. It contains more features and MySQL products than the older MSI, is simpler
to use than the compressed file, and you need no additional tools to get MySQL up and running. MySQL
Installer automatically installs MySQL Server and additional MySQL products, creates an options file, starts
the server, and enables you to create default user accounts. For more information on choosing a package,
see Section 2.3.2, “Choosing an Installation Package”.

• A MySQL Installer distribution includes MySQL Server and additional MySQL products, including MySQL
Workbench. MySQL Installer can also be used to upgrade this product in the future.

For instructions on installing MySQL using MySQL Installer, see Section 2.3.3, “MySQL Installer for
Windows”.

• The standard binary distribution (packaged as a compressed file) contains all of the necessary files that
you unpack into your chosen location. This package contains all of the files in the full Windows MSI
Installer package, but does not include an installation program.

For instructions on installing MySQL using the compressed file, see Section 2.3.4, “Installing MySQL on
Microsoft Windows Using a noinstall ZIP Archive”.

• The source distribution format contains all the code and support files for building the executables using
the Visual Studio compiler system.

For instructions on building MySQL from source on Windows, see Section 2.9, “Installing MySQL from
Source”.

MySQL on Windows Considerations

• Large Table Support

If you need tables with a size larger than 4 GB, install MySQL on an NTFS or newer file system. Do not
forget to use MAX_ROWS and AVG_ROW_LENGTH when you create tables. See Section 13.1.17, “CREATE
TABLE Statement”.

Note

InnoDB tablespace files cannot exceed 4 GB on Windows 32-bit systems.

• MySQL and Virus Checking Software

Virus-scanning software such as Norton/Symantec Anti-Virus on directories containing MySQL data and
temporary tables can cause issues, both in terms of the performance of MySQL and the virus-scanning
software misidentifying the contents of the files as containing spam. This is due to the fingerprinting
mechanism used by the virus-scanning software, and the way in which MySQL rapidly updates different
files, which may be identified as a potential security risk.

87

https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/downloads/

MySQL Installation Layout on Microsoft Windows

After installing MySQL Server, it is recommended that you disable virus scanning on the main directory
(datadir) used to store your MySQL table data. There is usually a system built into the virus-scanning
software to enable specific directories to be ignored.

In addition, by default, MySQL creates temporary files in the standard Windows temporary directory.
To prevent the temporary files also being scanned, configure a separate temporary directory for
MySQL temporary files and add this directory to the virus scanning exclusion list. To do this, add a
configuration option for the tmpdir parameter to your my.ini configuration file. For more information,
see Section 2.3.4.2, “Creating an Option File”.

• Running MySQL on a 4K Sector Hard Drive

Running the MySQL server on a 4K sector hard drive on Windows is not supported with
innodb_flush_method=async_unbuffered, which is the default setting. The workaround is to use
innodb_flush_method=normal.

2.3.1 MySQL Installation Layout on Microsoft Windows

For MySQL 5.6 on Windows, the default installation directory is C:\Program Files\MySQL\MySQL
Server 5.6 for installations performed with MySQL Installer. If you use the ZIP archive method to install
MySQL, you may prefer to install in C:\mysql. However, the layout of the subdirectories remains similar
(exceptions are indicated).

All of the files are located within this parent directory, using the structure shown in the following table.

Table 2.4 Default MySQL Installation Layout for Microsoft Windows

Directory Contents of Directory Notes

bin, scripts mysqld server, client and utility
programs

%PROGRAMDATA%\MySQL\MySQL
Server 5.6\

Log files, databases The Windows system variable
%PROGRAMDATA% defaults to C:
\ProgramData.

data Pristine templates

docs Release documentation With MySQL Installer, use the
Modify operation to select this
optional folder.

include Include (header) files

lib Libraries

share Miscellaneous support files,
including error messages,
character set files, sample
configuration files, SQL for
database installation

mysql-test, scripts, and
sql-bench

Debug binaries and test suite ZIP archive only.

The packages create and set up the data directory that the installed server uses and creates a pristine
“template” data directory named data under the installation directory. After an installation has been
performed using this package, the template data directory can be copied to set up additional MySQL
instances. See Section 5.7, “Running Multiple MySQL Instances on One Machine”.

88

Choosing an Installation Package

2.3.2 Choosing an Installation Package

For MySQL 5.6, there are multiple installation package formats to choose from when installing MySQL on
Windows. The package formats described in this section are:

• MySQL Installer

• MySQL noinstall ZIP Archives

• MySQL Docker Images

Program Database (PDB) files (with file name extension pdb) provide information for debugging your
MySQL installation in the event of a problem. These files are included in ZIP Archive distributions (but not
MSI distributions) of MySQL.

MySQL Installer

This package has a file name similar to mysql-installer-community-5.6.51.0.msi or mysql-
installer-commercial-5.6.51.0.msi, and utilizes MSIs to automatically install MySQL server
and other products. MySQL Installer downloads and applies updates to itself, and for each of the installed
products. It also configures the installed MySQL server (including a sandbox InnoDB cluster test setup)
and MySQL Router. MySQL Installer is recommended for most users.

MySQL Installer can install and manage (add, modify, upgrade, and remove) many other MySQL products,
including:

• Applications – MySQL Workbench, MySQL for Visual Studio, MySQL Utilities, MySQL Shell, MySQL
Router

• Connectors – MySQL Connector/C++, MySQL Connector/NET, Connector/ODBC, MySQL Connector/
Python, MySQL Connector/J, MySQL Connector/Node.js

• Documentation – MySQL Manual (PDF format), samples and examples

MySQL Installer operates on all MySQL supported versions of Windows (see https://www.mysql.com/
support/supportedplatforms/database.html).

Note

Because MySQL Installer is not a native component of Microsoft Windows and
depends on .NET, it does not work on minimal installations like the Server Core
version of Windows Server.

For instructions on how to install MySQL using MySQL Installer, see Section 2.3.3, “MySQL Installer for
Windows”.

MySQL noinstall ZIP Archives

These packages contain the files found in the complete MySQL Server installation package, with the
exception of the GUI. This format does not include an automated installer, and must be manually installed
and configured.

The noinstall ZIP archives are split into two separate compressed files. The main package is named
mysql-VERSION-winx64.zip for 64-bit and mysql-VERSION-win32.zip for 32-bit. This contains the
components needed to use MySQL on your system. The optional MySQL test suite, MySQL benchmark
suite, and debugging binaries/information components (including PDB files) are in a separate compressed

89

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html

MySQL Installer for Windows

file named mysql-VERSION-winx64-debug-test.zip for 64-bit and mysql-VERSION-win32-
debug-test.zip for 32-bit.

If you choose to install a noinstall ZIP archive, see Section 2.3.4, “Installing MySQL on Microsoft
Windows Using a noinstall ZIP Archive”.

MySQL Docker Images

For information on using the MySQL Docker images provided by Oracle on Windows platform, see
Section 2.5.8.3, “Deploying MySQL on Windows and Other Non-Linux Platforms with Docker”.

Warning

The MySQL Docker images provided by Oracle are built specifically for Linux
platforms. Other platforms are not supported, and users running the MySQL Docker
images from Oracle on them are doing so at their own risk.

2.3.3 MySQL Installer for Windows

MySQL Installer is a standalone application designed to ease the complexity of installing and configuring
MySQL products that run on Microsoft Windows. It is downloaded with and supports the following MySQL
products:

• MySQL Servers

MySQL Installer can install and manage multiple, separate MySQL server instances on the same host
at the same time. For example, MySQL Installer can install, configure, and upgrade a separate instance
of MySQL 5.6, MySQL 5.7, and MySQL 8.0 on the same host. MySQL Installer does not permit server
upgrades between major and minor version numbers, but does permit upgrades within a release series
(such as 8.0.21 to 8.0.22).

Note

MySQL Installer cannot install both Community and Commercial releases of
MySQL server on the same host. If you require both releases on the same host,
consider using the ZIP archive distribution to install one of the releases.

• MySQL Applications

MySQL Workbench, MySQL Shell, MySQL Router, and MySQL for Visual Studio.

• MySQL Connectors

MySQL Connector/NET, MySQL Connector/Python, MySQL Connector/ODBC, MySQL Connector/
J, and MySQL Connector/C++. To install MySQL Connector/Node.js, see https://dev.mysql.com/
downloads/connector/nodejs/.

Installation Requirements

MySQL Installer requires Microsoft .NET Framework 4.5.2 or later. If this version is not installed on the host
computer, you can download it by visiting the Microsoft website.

To invoke MySQL Installer after a successful installation:

1. Right-click Windows Start, select Run, and then click Browse. Navigate to Program Files (x86) >
MySQL > MySQL Installer for Windows to open the program folder.

90

https://dev.mysql.com/downloads/connector/nodejs/
https://dev.mysql.com/downloads/connector/nodejs/
https://www.microsoft.com/en-us/download/details.aspx?id=42643

MySQL Installer for Windows

2. Select one of the following files:

• MySQLInstaller.exe to open the graphical application.

• MySQLInstallerConsole.exe to open the command-line application.

3. Click Open and then click OK in the Run window. If you are prompted to allow the application to make
changes to the device, select Yes.

Each time you invoke MySQL Installer, the initialization process looks for the presence of an internet
connection and prompts you to enable offline mode if it finds no internet access (and offline mode is
disabled). Select Yes to run MySQL Installer without internet-connection capabilities. MySQL product
availability is limited to only those products currently in the product cache when you enable offline mode.
To download MySQL products, click the offline mode Disable quick action shown on the dashboard.

An internet connection is required to download a manifest containing metadata for the latest MySQL
products that are not part of a full bundle. MySQL Installer attempts to download the manifest when you
start the application for the first time and then periodically in configurable intervals (see MySQL Installer
options). Alternatively, you can retrieve an updated manifest manually by clicking Catalog in the MySQL
Installer dashboard.

Note

If the first-time or subsequent manifest download is unsuccessful, an error is
logged and you may have limited access to MySQL products during your session.
MySQL Installer attempts to download the manifest with each startup until the initial
manifest structure is updated. For help finding a product, see Locating Products to
Install.

MySQL Installer Community Release

Download software from https://dev.mysql.com/downloads/installer/ to install the Community release of all
MySQL products for Windows. Select one of the following MySQL Installer package options:

• Web: Contains MySQL Installer and configuration files only. The web package option downloads only
the MySQL products you select to install, but it requires an internet connection for each download.
The size of this file is approximately 2 MB. The file name has the form mysql-installer-
community-web-VERSION.N.msi in which VERSION is the MySQL server version number such as
8.0 and N is the package number, which begins at 0.

• Full or Current Bundle: Bundles all of the MySQL products for Windows (including the MySQL
server). The file size is over 300 MB, and the name has the form mysql-installer-
community-VERSION.N.msi in which VERSION is the MySQL Server version number such as 8.0 and
N is the package number, which begins at 0.

MySQL Installer Commercial Release

Download software from https://edelivery.oracle.com/ to install the Commercial release (Standard or
Enterprise Edition) of MySQL products for Windows. If you are logged in to your My Oracle Support (MOS)
account, the Commercial release includes all of the current and previous GA versions available in the
Community release, but it excludes development-milestone versions. When you are not logged in, you see
only the list of bundled products that you downloaded already.

The Commercial release also includes the following products:

• Workbench SE/EE

91

https://dev.mysql.com/downloads/installer/
https://edelivery.oracle.com/

MySQL Installer for Windows

• MySQL Enterprise Backup

• MySQL Enterprise Firewall

The Commercial release integrates with your MOS account. For knowledge-base content and patches, see
My Oracle Support.

2.3.3.1 MySQL Installer Initial Setup

• Choosing a Setup Type

• Path Conflicts

• Check Requirements

• MySQL Installer Configuration Files

When you download MySQL Installer for the first time, a setup wizard guides you through the initial
installation of MySQL products. As the following figure shows, the initial setup is a one-time activity in the
overall process. MySQL Installer detects existing MySQL products installed on the host during its initial
setup and adds them to the list of products to be managed.

Figure 2.7 MySQL Installer Process Overview

MySQL Installer extracts configuration files (described later) to the hard drive of the host during the initial
setup. Although MySQL Installer is a 32-bit application, it can install both 32-bit and 64-bit binaries.

The initial setup adds a link to the Start menu under the MySQL folder group. Click Start, MySQL, and
MySQL Installer - [Community | Commercial] to open the community or commercial release of the
graphical tool.

Choosing a Setup Type

During the initial setup, you are prompted to select the MySQL products to be installed on the host. One
alternative is to use a predetermined setup type that matches your setup requirements. By default, both
GA and pre-release products are included in the download and installation with the Developer Default,
Client only, and Full setup types. Select the Only install GA products option to restrict the product set to
include GA products only when using these setup types.

Note

Commercial-only MySQL products, such as MySQL Enterprise Backup, are
available to select and install if you are using the Commercial version of MySQL
Installer (see MySQL Installer Commercial Release).

Choosing one of the following setup types determines the initial installation only and does not limit your
ability to install or update MySQL products for Windows later:

• Developer Default: Install the following products that compliment application development with MySQL:

92

https://support.oracle.com/

MySQL Installer for Windows

• MySQL Server (Installs the version that you selected when you downloaded MySQL Installer.)

• MySQL Shell

• MySQL Router

• MySQL Workbench

• MySQL for Visual Studio

• MySQL Connectors (for .NET, Python, ODBC, Java, and C++)

• MySQL Documentation

• MySQL Samples and Examples

• Server only: Only install the MySQL server. This setup type installs the general availability (GA) or
development release server that you selected when you downloaded MySQL Installer. It uses the default
installation and data paths.

• Client only: Only install the most recent MySQL applications and MySQL connectors. This setup type
is similar to the Developer Default type, except that it does not include MySQL server or the client
programs typically bundled with the server, such as mysql or mysqladmin.

• Full: Install all available MySQL products.

• Custom: The custom setup type enables you to filter and select individual MySQL products from the
MySQL Installer catalog.

Note

For MySQL Server versions 8.0.20 (and earlier), 5.7, and 5.6, the account
you use to run MySQL Installer may not have adequate permission to install
the server data files and this can interrupt the installation because the
ExecSecureObjects MSI action cannot be executed. To proceed, deselect the
Server data files feature before attempting to install the server again. For help,
see Product Features To Install).

The Server data files check box was removed from the feature tree for MySQL
Server 8.0.21 (and higher).

Use the Custom setup type to install:

• A product or product version that is not available from the usual download locations. The catalog
contains all product releases, including the other releases between pre-release (or development) and
GA.

• An instance of MySQL server using an alternative installation path, data path, or both. For instructions
on how to adjust the paths, see Section 2.3.3.2, “Setting Alternative Server Paths with MySQL
Installer”.

• Two or more MySQL server versions on the same host at the same time (for example, 5.6, 5.7, and
8.0).

• A specific combination of products and features not offered as a predetermine setup type. For
example, you can install a single product, such as MySQL Workbench, instead of installing all client
applications for Windows.

93

http://dev.mysql.com/doc/
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/visual-studio/en/
http://dev.mysql.com/doc/index-connectors.html

MySQL Installer for Windows

Path Conflicts

When the default installation or data folder (required by MySQL server) for a product to be installed already
exists on the host, the wizard displays the Path Conflict step to identify each conflict and enable you to
take action to avoid having files in the existing folder overwritten by the new installation. You see this step
in the initial setup only when MySQL Installer detects a conflict.

To resolve the path conflict, do one of the following:

• Select a product from the list to display the conflict options. A warning symbol indicates which path is in
conflict. Use the browse button to choose a new path and then click Next.

• Click Back to choose a different setup type or product version, if applicable. The Custom setup type
enables you to select individual product versions.

• Click Next to ignore the conflict and overwrite files in the existing folder.

• Delete the existing product. Click Cancel to stop the initial setup and close MySQL Installer. Open
MySQL Installer again from the Start menu and delete the installed product from the host using the
Delete operation from the MySQL Installer dashboard.

Check Requirements

MySQL Installer uses entries in the package-rules.xml file to determine whether the prerequisite
software for each product is installed on the host. When the requirements check fails, MySQL Installer
displays the Check Requirements step to help you update the host. Requirements are evaluated each
time you download a new product (or version) for installation. The following figure identifies and describes
the key areas of this step.

Figure 2.8 Check Requirements

94

MySQL Installer for Windows

Description of Check Requirements Elements

1. Shows the current step in the initial setup. Steps in this list may change slightly depending on the
products already installed on the host, the availability of prerequisite software, and the products to be
installed on the host.

2. Lists all pending installation requirements by product and indicates the status as follows:

• A blank space in the Status column means that MySQL Installer can attempt to download and install
the required software for you.

• The word Manual in the Status column means that you must satisfy the requirement manually.
Select each product in the list to see its requirement details.

3. Describes the requirement in detail to assist you with each manual resolution. When possible, a
download URL is provided. After you download and install the required software, click Check to verify
that the requirement has been met.

4. Provides the following set operations to proceed:

• Back – Return to the previous step. This action enables you to select a different the setup type.

• Execute – Have MySQL Installer attempt to download and install the required software for all items
without a manual status. Manual requirements are resolved by you and verified by clicking Check.

• Next – Do not execute the request to apply the requirements automatically and proceed to the
installation without including the products that fail the check requirements step.

• Cancel – Stop the installation of MySQL products. Because MySQL Installer is already installed, the
initial setup begins again when you open MySQL Installer from the Start menu and click Add from
the dashboard. For a description of the available management operations, see Product Catalog.

MySQL Installer Configuration Files

All MySQL Installer files are located within the C:\Program Files (x86) and C:\ProgramData
folders. The following table describes the files and folders that define MySQL Installer as a standalone
application.

Note

Installed MySQL products are neither altered nor removed when you update or
uninstall MySQL Installer.

Table 2.5 MySQL Installer Configuration Files

File or Folder Description Folder Hierarchy

MySQL Installer for
Windows

This folder contains all
of the files needed to
run MySQL Installer and
MySQLInstallerConsole.exe,
a command-line program with
similar functionality.

C:\Program Files (x86)

Templates The Templates folder has one
file for each version of MySQL
server. Template files contain
keys and formulas to calculate
some values dynamically.

C:\ProgramData\MySQL
\MySQL Installer for
Windows\Manifest

95

MySQL Installer for Windows

File or Folder Description Folder Hierarchy

package-rules.xml This file contains the prerequisites
for every product to be installed.

C:\ProgramData\MySQL
\MySQL Installer for
Windows\Manifest

produts.xml The products file (or product
catalog) contains a list of all
products available for download.

C:\ProgramData\MySQL
\MySQL Installer for
Windows\Manifest

Product Cache The Product Cache folder
contains all standalone .msi files
bundled with the full package or
downloaded afterward.

C:\ProgramData\MySQL
\MySQL Installer for
Windows

2.3.3.2 Setting Alternative Server Paths with MySQL Installer

You can change the default installation path, the data path, or both when you install MySQL server. After
you have installed the server, the paths cannot be altered without removing and reinstalling the server
instance.

Note

Starting with MySQL Installer 1.4.39, if you move the data directory of an installed
server manually, MySQL Installer identifies the change and can process a
reconfiguration operation without errors.

To change paths for MySQL server

1. Identify the MySQL server to change and enable the Advanced Options link as follows:

a. Navigate to the Select Products page by doing one of the following:

i. If this is an initial setup of MySQL Installer, select the Custom setup type and click Next.

ii. If MySQL Installer is installed on your computer, click Add from the dashboard.

b. Click Edit to apply a filter on the product list shown in Available Products (see Locating Products
to Install).

c. With the server instance selected, use the arrow to move the selected server to the Products To
Be Installed list.

d. Click the server to select it. When you select the server, the Advanced Options link is enabled
below the list of products to be installed (see the following figure).

2. Click Advanced Options to open a dialog box where you can enter alternative path names. After the
path names are validated, click Next to continue with the configuration steps.

96

MySQL Installer for Windows

Figure 2.9 Change MySQL Server Path

2.3.3.3 Installation Workflows with MySQL Installer

MySQL Installer provides a wizard-like tool to install and configure new MySQL products for Windows.
Unlike the initial setup, which runs only once, MySQL Installer invokes the wizard each time you download
or install a new product. For first-time installations, the steps of the initial setup proceed directly into the
steps of the installation. For assistance with product selection, see Locating Products to Install.

Note

Full permissions are granted to the user executing MySQL Installer to all generated
files, such as my.ini. This does not apply to files and directories for specific
products, such as the MySQL server data directory in %ProgramData% that is
owned by SYSTEM.

Products installed and configured on a host follow a general pattern that might require your input during the
various steps. If you attempt to install a product that is incompatible with the existing MySQL server version
(or a version selected for upgrade), you are alerted about the possible mismatch.

MySQL Installer provides the following sequence of actions that apply to different workflows:

• Select Products. If you selected the Custom setup type during the initial setup or clicked Add from
the MySQL Installer dashboard, MySQL Installer includes this action in the sidebar. From this page, you
can apply a filter to modify the Available Products list and then select one or more products to move
(using arrow keys) to the Products To Be Installed list.

Select the check box on this page to activate the Select Features action where you can customize the
products features after the product is downloaded.

• Download. If you installed the full (not web) MySQL Installer package, all .msi files were loaded
to the Product Cache folder during the initial setup and are not downloaded again. Otherwise, click

97

MySQL Installer for Windows

Execute to begin the download. The status of each product changes from Ready to Download, to
Downloading, and then to Downloaded.

To retry a single unsuccessful download, click the Try Again link.

To retry all unsuccessful downloads, click Try All.

• Select Features To Install (disabled by default). After MySQL Installer downloads a product's .msi
file, you can customize the features if you enabled the optional check box previously during the Select
Products action.

To customize product features after the installation, click Modify in the MySQL Installer dashboard.

• Installation. The status of each product in the list changes from Ready to Install, to
Installing, and lastly to Complete. During the process, click Show Details to view the installation
actions.

If you cancel the installation at this point, the products are installed, but the server (if installed) is not
yet configured. To restart the server configuration, open MySQL Installer from the Start menu and click
Reconfigure next to the appropriate server in the dashboard.

• Product configuration. This step applies to MySQL Server, MySQL Router, and samples only.
The status for each item in the list should indicate Ready to Configure. Click Next to start the
configuration wizard for all items in the list. The configuration options presented during this step are
specific to the version of database or router that you selected to install.

Click Execute to begin applying the configuration options or click Back (repeatedly) to return to each
configuration page.

• Installation complete. This step finalizes the installation for products that do not require
configuration. It enables you to copy the log to a clipboard and to start certain applications, such as
MySQL Workbench and MySQL Shell. Click Finish to open the MySQL Installer dashboard.

MySQL Server Configuration with MySQL Installer

MySQL Installer performs the initial configuration of the MySQL server. For example:

• It creates the configuration file (my.ini) that is used to configure the MySQL server. The values written
to this file are influenced by choices you make during the installation process. Some definitions are host
dependent. For example, query_cache is enabled if the host has fewer than three cores.

Note

Query cache was deprecated in MySQL 5.7 and removed in MySQL 8.0 (and
later).

• By default, a Windows service for the MySQL server is added.

• Provides default installation and data paths for MySQL server. For instructions on how to change the
default paths, see Section 2.3.3.2, “Setting Alternative Server Paths with MySQL Installer”.

• It can optionally create MySQL server user accounts with configurable permissions based on general
roles, such as DB Administrator, DB Designer, and Backup Admin. It optionally creates a Windows user
named MysqlSys with limited privileges, which would then run the MySQL Server.

User accounts may also be added and configured in MySQL Workbench.

98

MySQL Installer for Windows

• Checking Show Advanced Options enables additional Logging Options to be set. This includes
defining custom file paths for the error log, general log, slow query log (including the configuration of
seconds it requires to execute a query), and the binary log.

During the configuration process, click Next to proceed to the next step or Back to return to the previous
step. Click Execute at the final step to apply the server configuration.

The sections that follow describe the server configuration options that apply to MySQL server on Windows.
The server version you installed will determine which steps and options you can configure. Configuring
MySQL server may include some or all of the steps.

Type and Networking

• Server Configuration Type

Choose the MySQL server configuration type that describes your setup. This setting defines the amount
of system resources (memory) to assign to your MySQL server instance.

• Development: A computer that hosts many other applications, and typically this is your personal
workstation. This setting configures MySQL to use the least amount of memory.

• Server: Several other applications are expected to run on this computer, such as a web server. The
Server setting configures MySQL to use a medium amount of memory.

• Dedicated: A computer that is dedicated to running the MySQL server. Because no other major
applications run on this server, this setting configures MySQL to use the majority of available memory.

• Manual

Prevents MySQL Installer from attempting to optimize the server installation, and instead, sets the
default values to the server variables included in the my.ini configuration file. With the Manual
type selected, MySQL Installer uses the default value of 16M for the tmp_table_size variable
assignment.

• Connectivity

Connectivity options control how the connection to MySQL is made. Options include:

• TCP/IP: This option is selected by default. You may disable TCP/IP Networking to permit local host
connections only. With the TCP/IP connection option selected, you can modify the following items:

• Port for classic MySQL protocol connections. The default value is 3306.

• X Protocol Port shown when configuring MySQL 8.0 server only. The default value is 33060

• Open Windows Firewall port for network access, which is selected by default for TCP/IP
connections.

If a port number is in use already, you will see the information icon () next to the default value and
Next is disabled until you provide a new port number.

• Named Pipe: Enable and define the pipe name, similar to setting the named_pipe system variable.
The default name is MySQL.

When you select Named Pipe connectivity, and then proceed to the next step, you are prompted to
set the level of access control granted to client software on named-pipe connections. Some clients

99

MySQL Installer for Windows

require only minimum access control for communication, while other clients require full access to the
named pipe.

You can set the level of access control based on the Windows user (or users) running the client as
follows:

• Minimum access to all users (RECOMMENDED). This level is enabled by default because it is
the most secure.

• Full access to members of a local group. If the minimum-access option is too restrictive for the
client software, use this option to reduce the number of users who have full access on the named
pipe. The group must be established on Windows before you can select it from the list. Membership
in this group should be limited and managed. Windows requires a newly added member to first log
out and then log in again to join a local group.

• Full access to all users (NOT RECOMMENDED). This option is less secure and should be set
only when other safeguards are implemented.

• Shared Memory: Enable and define the memory name, similar to setting the shared_memory
system variable. The default name is MySQL.

• Advanced Configuration

Check Show Advanced and Logging Options to set custom logging and advanced options in later
steps. The Logging Options step enables you to define custom file paths for the error log, general log,
slow query log (including the configuration of seconds it requires to execute a query), and the binary log.
The Advanced Options step enables you to set the unique server ID required when binary logging is
enabled in a replication topology.

• MySQL Enterprise Firewall (Enterprise Edition only)

The Enable MySQL Enterprise Firewall check box is deselected by default. Select this option to
enable a security list that offers protection against certain types of attacks. Additional post-installation
configuration is required (see Section 6.4.5, “MySQL Enterprise Firewall”).

Important

There is an issue for MySQL 8.0.19 that prevents the server from starting if
MySQL Enterprise Firewall is selected during the server configuration steps. If the
server startup operation fails, click Cancel to end the configuration process and
return to the dashboard. You must uninstall the server.

The workaround is to run MySQL Installer without MySQL Enterprise Firewall
selected. (That is, do not select the Enable MySQL Enterprise Firewall check
box.) Then install MySQL Enterprise Firewall afterward using the instructions
for manual installation (see Section 6.4.5.2, “Installing or Uninstalling MySQL
Enterprise Firewall”).

Authentication Method

The Authentication Method step is visible only during the installation or upgrade of MySQL 8.0.4 or
higher. It introduces a choice between two server-side authentication options. The MySQL user accounts
that you create in the next step will use the authentication method that you select in this step.

MySQL 8.0 connectors and community drivers that use libmysqlclient 8.0 now support the
mysql_native_password default authentication plugin. However, if you are unable to update your

100

MySQL Installer for Windows

clients and applications to support this new authentication method, you can configure the MySQL server to
use mysql_native_password for legacy authentication. For more information about the implications of
this change, see caching_sha2_password as the Preferred Authentication Plugin.

If you are installing or upgrading to MySQL 8.0.4 or higher, select one of the following authentication
methods:

• Use Strong Password Encryption for Authentication (RECOMMENDED)

MySQL 8.0 supports a new authentication based on improved, stronger SHA256-based password
methods. It is recommended that all new MySQL server installations use this method going forward.

Important

The caching_sha2_password authentication plugin on the server requires new
versions of connectors and clients, which add support for the new MySQL 8.0
default authentication.

• Use Legacy Authentication Method (Retain MySQL 5.x Compatibility)

Using the old MySQL 5.x legacy authentication method should be considered only in the following cases:

• Applications cannot be updated to use MySQL 8.0 connectors and drivers.

• Recompilation of an existing application is not feasible.

• An updated, language-specific connector or driver is not available yet.

Accounts and Roles

• Root Account Password

Assigning a root password is required and you will be asked for it when performing other MySQL
Installer operations. Password strength is evaluated when you repeat the password in the box provided.
For descriptive information regarding password requirements or status, move your mouse pointer over

the information icon () when it appears.

• MySQL User Accounts (Optional)

Click Add User or Edit User to create or modify MySQL user accounts with predefined roles. Next, enter
the required account credentials:

• User Name: MySQL user names can be up to 32 characters long.

• Host: Select localhost for local connections only or <All Hosts (%)> when remote connections
to the server are required.

• Role: Each predefined role, such as DB Admin, is configured with its own set of privileges. For
example, the DB Admin role has more privileges than the DB Designer role. The Role drop-down
list contains a description of each role.

• Password: Password strength assessment is performed while you type the password. Passwords
must be confirmed. MySQL permits a blank or empty password (considered to be insecure).

MySQL Installer Commercial Release Only: MySQL Enterprise Edition for Windows, a commercial
product, also supports an authentication method that performs external authentication on Windows.

101

https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password

MySQL Installer for Windows

Accounts authenticated by the Windows operating system can access the MySQL server without
providing an additional password.

To create a new MySQL account that uses Windows authentication, enter the user name and then select
a value for Host and Role. Click Windows authentication to enable the authentication_windows
plugin. In the Windows Security Tokens area, enter a token for each Windows user (or group) who can
authenticate with the MySQL user name. MySQL accounts can include security tokens for both local
Windows users and Windows users that belong to a domain. Multiple security tokens are separated by
the semicolon character (;) and use the following format for local and domain accounts:

• Local account

Enter the simple Windows user name as the security token for each local user or group; for example,
finley;jeffrey;admin.

• Domain account

Use standard Windows syntax (domain\domainuser) or MySQL syntax (domain\\domainuser) to
enter Windows domain users and groups.

For domain accounts, you may need to use the credentials of an administrator within the domain if
the account running MySQL Installer lacks the permissions to query the Active Directory. If this is the
case, select Validate Active Directory users with to activate the domain administrator credentials.

Windows authentication permits you to test all of the security tokens each time you add or modify a
token. Click Test Security Tokens to validate (or revalidate) each token. Invalid tokens generate a
descriptive error message along with a red X icon and red token text. When all tokens resolve as valid
(green text without an X icon), you can click OK to save the changes.

Windows Service

On the Windows platform, MySQL server can run as a named service managed by the operating system
and be configured to start up automatically when Windows starts. Alternatively, you can configure MySQL
server to run as an executable program that requires manual configuration.

• Configure MySQL server as a Windows service (Selected by default.)

When the default configuration option is selected, you can also select the following:

• Start the MySQL Server at System Startup

When selected (default), the service startup type is set to Automatic; otherwise, the startup type is set
to Manual.

• Run Windows Service as

When Standard System Account is selected (default), the service logs on as Network Service.

The Custom User option must have privileges to log on to Microsoft Windows as a service. The Next
button will be disabled until this user is configured with the required privileges.

A custom user account is configured in Windows by searching for "local security policy" in the Start
menu. In the Local Security Policy window, select Local Policies, User Rights Assignment, and
then Log On As A Service to open the property dialog. Click Add User or Group to add the custom
user and then click OK in each dialog to save the changes.

• Deselect the Windows Service option.

102

MySQL Installer for Windows

Server File Permissions

Optionally, permissions set on the folders and files located at C:\ProgramData\MySQL\MySQL Server
8.0\Data can be managed during the server configuration operation. You have the following options:

• MySQL Installer can configure the folders and files with full control granted exclusively to the user
running the Windows service, if applicable, and to the Administrators group.

All other groups and users are denied access. This is the default option.

• Have MySQL Installer use a configuration option similar to the one just described, but also have MySQL
Installer show which users could have full control.

You are then able to decide if a group or user should be given full control. If not, you can move the
qualified members from this list to a second list that restricts all access.

• Have MySQL Installer skip making file-permission changes during the configuration operation.

If you select this option, you are responsible for securing the Data folder and its related files manually
after the server configuration finishes.

Logging Options

This step is available if the Show Advanced Configuration check box was selected during the Type and
Networking step. To enable this step now, click Back to return to the Type and Networking step and
select the check box.

Advanced configuration options are related to the following MySQL log files:

• Error Log

• General Log

• Slow Query Log

• Bin Log

Note

The binary log is enabled by default for MySQL 5.7 and higher.

Advanced Options

This step is available if the Show Advanced Configuration check box was selected during the Type and
Networking step. To enable this step now, click Back to return to the Type and Networking step and
select the check box.

The advanced-configuration options include:

• Server ID

Set the unique identifier used in a replication topology. If binary logging is enabled, you must specify a
server ID. The default ID value depends on the server version. For more information, see the description
of the server_id system variable.

• Table Names Case

You can set the following options during the initial and subsequent configuration the server. For the
MySQL 8.0 release series, these options apply only to the initial configuration of the server.

103

MySQL Installer for Windows

• Lower Case

Sets the lower_case_table_names option value to 1 (default), in which table names are stored in
lowercase on disk and comparisons are not case-sensitive.

• Preserve Given Case

Sets the lower_case_table_names option value to 2, in which table names are stored as given but
compared in lowercase.

Apply Server Configuration

All configuration settings are applied to the MySQL server when you click Execute. Use the Configuration
Steps tab to follow the progress of each action; the icon for each toggles from white to green (with a check
mark) on success. Otherwise, the process stops and displays an error message if an individual action
times out. Click the Log tab to view the log.

When the installation completes successfully and you click Finish, MySQL Installer and the installed
MySQL products are added to the Microsoft Windows Start menu under the MySQL group. Opening
MySQL Installer loads the dashboard where installed MySQL products are listed and other MySQL Installer
operations are available.

MySQL Router Configuration with MySQL Installer

MySQL Installer downloads and installs a suite of tools for developing and managing business-critical
applications on Windows. The suite consists of applications, connectors, documentation, and samples.

During the initial setup, choose any predetermined setup type, except Server only, to install the latest
GA version of the tools. Use the Custom setup type to install an individual tool or specific version. If
MySQL Installer is installed on the host already, use the Add operation to select and install tools from the
MySQL Installer dashboard.

MySQL Router Configuration

MySQL Installer provides a configuration wizard that can bootstrap an installed instance of MySQL Router
8.0 to direct traffic between MySQL applications and an InnoDB Cluster. When configured, MySQL Router
runs as a local Windows service.

Note

You are prompted to configure MySQL Router after the initial installation and when
you reconfigure an installed router explicitly. In contrast, the upgrade operation
does not require or prompt you to configure the upgraded product.

To configure MySQL Router, do the following:

1. Set up InnoDB Cluster.

2. Using MySQL Installer, download and install the MySQL Router application. After the installation
finishes, the configuration wizard prompts you for information. Select the Configure MySQL Router for
InnoDB Cluster check box to begin the configuration and provide the following configuration values:

• Hostname: Host name of the primary (seed) server in the InnoDB Cluster (localhost by default).

• Port: The port number of the primary (seed) server in the InnoDB Cluster (3306 by default).

• Management User: An administrative user with root-level privileges.

104

MySQL Installer for Windows

• Password: The password for the management user.

• Classic MySQL protocol connections to InnoDB Cluster

Read/Write: Set the first base port number to one that is unused (between 80 and 65532) and the
wizard will select the remaining ports for you.

The figure that follows shows an example of the MySQL Router configuration page, with the first
base port number specified as 6446 and the remaining ports set by the wizard to 6447, 6448, and
6449.

Figure 2.10 MySQL Router Configuration

3. Click Next and then Execute to apply the configuration. Click Finish to close MySQL Installer or return
to the MySQL Installer dashboard.

After configuring MySQL Router, the root account exists in the user table as root@localhost (local)
only, instead of root@% (remote). Regardless of where the router and client are located, even if both are
located on the same host as the seed server, any connection that passes through the router is viewed by
server as being remote, not local. As a result, a connection made to the server using the local host (see the
example that follows), does not authenticate.

$> \c root@localhost:6446

2.3.3.4 MySQL Installer Product Catalog and Dashboard

This section describes the MySQL Installer product catalog, the dashboard, and other actions related to
product selection and upgrades.

105

MySQL Installer for Windows

• Product Catalog

• MySQL Installer Dashboard

• Locating Products to Install

• Upgrading MySQL Server

• Removing MySQL Server

• Upgrading MySQL Installer

Product Catalog

The product catalog stores the complete list of released MySQL products for Microsoft Windows that are
available to download from MySQL Downloads. By default, and when an Internet connection is present,
MySQL Installer attempts to update the catalog at startup every seven days. You can also update the
catalog manually from the dashboard (described later).

An up-to-date catalog performs the following actions:

• Populates the Available Products pane of the Select Products page. This step appears when you
select:

• The Custom setup type during the initial setup.

• The Add operation from the dashboard.

• Identifies when product updates are available for the installed products listed in the dashboard.

The catalog includes all development releases (Pre-Release), general releases (Current GA), and minor
releases (Other Releases). Products in the catalog will vary somewhat, depending on the MySQL Installer
release that you download.

MySQL Installer Dashboard

The MySQL Installer dashboard is the default view that you see when you start MySQL Installer after the
initial setup finishes. If you closed MySQL Installer before the setup was finished, MySQL Installer resumes
the initial setup before it displays the dashboard.

Note

Products covered under Oracle Lifetime Sustaining Support, if installed, may
appear in the dashboard. These products, such as MySQL for Excel and MySQL
Notifier, can be modified or removed only.

106

https://dev.mysql.com/downloads/

MySQL Installer for Windows

Figure 2.11 MySQL Installer Dashboard Elements

Description of MySQL Installer Dashboard Elements

1. MySQL Installer dashboard operations provide a variety of actions that apply to installed products or
products listed in the catalog. To initiate the following operations, first click the operation link and then
select the product or products to manage:

• Add: This operation opens the Select Products page. From there you can adjust the filter, select one
or more products to download (as needed), and begin the installation. For hints about using the filter,
see Locating Products to Install.

Use the directional arrows to move each product from the Available Products column to the
Products To Be Installed column. To enable the Product Features page where you can customize
features, click the related check box (disabled by default).

Note

For MySQL Server versions 8.0.20 (and earlier), 5.7, and 5.6, the account
you use to run MySQL Installer may not have adequate permission to install
the server data files and this can interrupt the installation because the
ExecSecureObjects MSI action cannot be executed. To proceed, deselect
the Server data files feature before attempting to install the server again.

The Server data files check box was removed from the feature tree for
MySQL Server 8.0.21 (or higher).

• Modify: Use this operation to add or remove the features associated with installed products.
Features that you can modify vary in complexity by product. When the Program Shortcut check box
is selected, the product appears in the Start menu under the MySQL group.

107

MySQL Installer for Windows

• Upgrade: This operation loads the Select Products to Upgrade page and populates it with all the
upgrade candidates. An installed product can have more than one upgrade version and the operation
requires a current product catalog. MySQL Installer upgrades all of the selected products in one
action. Click Show Details to view the actions performed by MySQL Installer.

• Remove: This operation opens the Remove Products page and populates it with the MySQL
products installed on the host. Select the MySQL products you want to remove (uninstall) and then
click Execute to begin the removal process. During the operation, an indicator shows the number of
steps that are executed as a percentage of all steps.

To select products to remove, do one of the following:

• Select the check box for one or more products.

• Select the Product check box to select all products.

2. The Reconfigure link in the Quick Action column next to each installed server loads the current
configuration values for the server and then cycles through all configuration steps enabling you to
change the options and values. You must provide credentials with root privileges to reconfigure these
items. Click the Log tab to show the output of each configuration step performed by MySQL Installer.

On completion, MySQL Installer stops the server, applies the configuration changes, and restarts the
server for you. For a description of each configuration option, see MySQL Server Configuration with
MySQL Installer. Installed Samples and Examples associated with a specific MySQL server version
can be also be reconfigured to apply new feature settings, if any.

3. The Catalog link enables you to download the latest catalog of MySQL products manually and then to
integrate those product changes with MySQL Installer. The catalog-download action does not perform
an upgrade of the products already installed on the host. Instead, it returns to the dashboard and
adds an arrow icon to the Version column for each installed product that has a newer version. Use the
Upgrade operation to install the newer product version.

You can also use the Catalog link to display the current change history of each product without
downloading the new catalog. Select the Do not update at this time check box to view the change
history only.

4.
The MySQL Installer About icon () shows the current version of MySQL Installer and general
information about MySQL. The version number is located above the Back button.

Tip

Always include this version number when reporting a problem with MySQL
Installer.

In addition to the About MySQL information (), you can also select the following icons from the side
panel:

•
License icon () for MySQL Installer.

This product may include third-party software, used under license. If you are using a Commercial
release of MySQL Installer, the icon opens the MySQL Installer Commercial License Information
User Manual for licensing information, including licensing information relating to third-party software
that may be included in this Commercial release. If you are using a Community release of MySQL

108

MySQL Installer for Windows

Installer, the icon opens the MySQL Installer Community License Information User Manual for
licensing information, including licensing information relating to third-party software that may be
included in this Community release.

•
Resource links icon () to the latest MySQL product documentation, blogs, webinars, and more.

5.
The MySQL Installer Options icon () includes the following tabs:

• General: Enables or disables the Offline mode option. If selected, this option configures MySQL
Installer to run without depending on internet-connection capabilities. When running MySQL Installer
in offline mode, you see a warning together with a Disable quick action on the dashboard. The
warning serves to remind you that running MySQL Installer in offline mode prevents you from
downloading the latest MySQL products and product catalog updates. Offline mode persists until you
disable the option.

At startup, MySQL Installer determines whether an internet connection is present, and, if not,
prompts you to enable offline mode to resume working without a connection.

• Product Catalog: Manages the automatic catalog updates. By default, MySQL Installer checks for
catalog updates at startup every seven days. When new products or product versions are available,

MySQL Installer adds them to the catalog and then inserts an arrow icon () next to the version
number of installed products listed in the dashboard.

Use the product catalog option to enable or disable automatic updates and to reset the number of
days between automatic catalog downloads. At startup, MySQL Installer uses the number of days
you set to determine whether a download should be attempted. This action is repeated during next
startup if MySQL Installer encounters an error downloading the catalog.

• Connectivity Settings: Several operations performed by MySQL Installer require internet access.
This option enables you to use a default value to validate the connection or to use a different URL,
one selected from a list or added by you manually. With the Manual option selected, new URLs can
be added and all URLs in the list can be moved or deleted. When the Automatic option is selected,
MySQL Installer attempts to connect to each default URL in the list (in order) until a connection is
made. If no connection can be made, it raises an error.

109

MySQL Installer for Windows

• Proxy: MySQL Installer provides multiple proxy modes that enable you to download MySQL
products, updates, or even the product catalog in most network environments. The mode are:

• No proxy

Select this mode to prevent MySQL Installer from looking for system settings. This mode disables
any proxy settings.

• Automatic

Select this mode to have MySQL Installer look for system settings and to use those settings if
found, or to use no proxy if nothing is found. This mode is the default.

• Manual

Select this mode to have MySQL Installer use your authentication details to configuration proxy
access to the internet. Specifically:

• A proxy-server address (http://address-to-server) and port number

• A user name and password for authentication

Locating Products to Install

MySQL products in the catalog are listed by category: MySQL Servers, Applications, MySQL Connectors,
and Documentation. Only the latest GA versions appear in the Available Products pane by default. If you
are looking for a pre-release or older version of a product, it may not be visible in the default list.

Note

Keep the product catalog up-to-date. Click Catalog on the MySQL Installer
dashboard to download the latest manifest.

To change the default product list, click Add in the dashboard to open the Select Products page, and then
click Edit to open the dialog box shown in the figure that follows. Modify the settings and then click Filter.

Figure 2.12 Filter Available Products

Reset one or more of the following fields to modify the list of available products:

• Text: Filter by text.

• Category: All Software (default), MySQL Servers, Applications, MySQL Connectors, or Documentation
(for samples and documentation).

• Maturity: Current Bundle (appears initially with the full package only), Pre-Release, Current GA, or Other
Releases. If you see a warning, confirm that you have the most recent product manifest by clicking

110

MySQL Installer for Windows

Catalog on the MySQL Installer dashboard. If MySQL Installer is unable to download the manifest,
the range of products you see is limited to bundled products, standalone product MSIs located in the
Product Cache folder already, or both.

Note

The Commercial release of MySQL Installer does not display any MySQL
products when you select the Pre-Release maturity filter. Products in
development are available from the Community release of MySQL Installer only.

• Already Downloaded (the check box is deselected by default). Permits you to view and manage
downloaded products only.

• Architecture: Any (default), 32-bit, or 64-bit.

Upgrading MySQL Server

Important server upgrade conditions:

• MySQL Installer does not permit server upgrades between major release versions or minor release
versions, but does permit upgrades within a release series, such as an upgrade from 5.7.18 to 5.7.19.

• Upgrades between milestone releases (or from a milestone release to a GA release) are not supported.
Significant development changes take place in milestone releases and you may encounter compatibility
issues or problems starting the server.

• For upgrades to MySQL 8.0.16 server and higher, a check box enables you to skip the upgrade check
and process for system tables, while checking and processing data dictionary tables normally. MySQL
Installer does not prompt you with the check box when the previous server upgrade was skipped or
when the server was configured as a sandbox InnoDB Cluster. This behavior represents a change in
how MySQL Server performs an upgrade (see What the MySQL Upgrade Process Upgrades) and it
alters the sequence of steps that MySQL Installer applies to the configuration process.

If you select Skip system tables upgrade check and process. (Not recommended), MySQL Installer
starts the upgraded server with the --upgrade=MINIMAL server option, which upgrades the data
dictionary only. If you stop and then restart the server without the --upgrade=MINIMAL option, the
server upgrades the system tables automatically, if needed.

The following information appears in the Log tab and log file after the upgrade configuration (with system
tables skipped) is complete:

WARNING: The system tables upgrade was skipped after upgrading MySQL Server. The
server will be started now with the --upgrade=MINIMAL option, but then each
time the server is started it will attempt to upgrade the system tables, unless
you modify the Windows service (command line) to add --upgrade=MINIMAL to bypass
the upgrade.

FOR THE BEST RESULTS: Run mysqld.exe --upgrade=FORCE on the command line to upgrade
the system tables manually.

To choose a new server version:

1. Click Upgrade. Confirm that the check box next to product name in the Upgradeable Products pane
has a check mark. Deselect the products that you do not intend to upgrade at this time.

Note

For server milestone releases in the same release series, MySQL Installer
deselects the server upgrade and displays a warning to indicate that the

111

https://dev.mysql.com/doc/refman/8.0/en/upgrading-what-is-upgraded.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_upgrade
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_upgrade

MySQL Installer for Windows

upgrade is not supported, identifies the risks of continuing, and provides a
summary of the steps to perform a logical upgrade manually. You can reselect
server upgrade at your own risk. For instructions on how to perform a logical
upgrade with a milestone release, see Logical Upgrade.

2. Click a product in the list to highlight it. This action populates the Upgradeable Versions pane with
the details of each available version for the selected product: version number, published date, and a
Changes link to open the release notes for that version.

Removing MySQL Server

To remove a local MySQL server:

1. Determine whether the local data directory should be removed. If you retain the data directory, another
server installation can reuse the data. This option is enabled by default (removes the data directory).

2. Click Execute to begin uninstalling the local server. Note that all products that you selected to remove
are also uninstalled at this time.

3. (Optional) Click the Log tab to display the current actions performed by MySQL Installer.

Upgrading MySQL Installer

MySQL Installer remains installed on your computer, and like other software, MySQL Installer can be
upgraded from the previous version. In some cases, other MySQL software may require that you upgrade
MySQL Installer for compatibility. This section describes how to identify the current version of MySQL
Installer and how to upgrade MySQL Installer manually.

To locate the installed version of MySQL Installer:

1. Start MySQL Installer from the search menu. The MySQL Installer dashboard opens.

2.
Click the MySQL Installer About icon (). The version number is located above the Back button.

To initiate an on-demand upgrade of MySQL Installer:

1. Connect the computer with MySQL Installer installed to the internet.

2. Start MySQL Installer from the search menu. The MySQL Installer dashboard opens.

3. Click Catalog on the bottom of the dashboard to open the Update Catalog window.

4. Click Execute to begin the process. If the installed version of MySQL Installer can be upgraded, you
will be prompted to start the upgrade.

5. Click Next to review all changes to the catalog and then click Finish to return to the dashboard.

6. Verify the (new) installed version of MySQL Installer (see the previous procedure).

2.3.3.5 MySQL Installer Console Reference

MySQLInstallerConsole.exe provides command-line functionality that is similar to MySQL Installer.
This reference includes:

• MySQL Product Names

• Command Syntax

• Command Actions

112

MySQL Installer for Windows

The console is installed when MySQL Installer is initially executed and then available within the MySQL
Installer for Windows directory. By default, the directory location is C:\Program Files
(x86)\MySQL\MySQL Installer for Windows. You must run the console as administrator.

To use the console:

1. Open a command prompt with administrative privileges by selecting Windows System from Start, then
right-click Command Prompt, select More, and select Run as administrator.

2. From the command line, optionally change the directory to where the MySQLInstallerConsole.exe
command is located. For example, to use the default installation location:

cd Program Files (x86)\MySQL\MySQL Installer for Windows

3. Type MySQLInstallerConsole.exe (or mysqlinstallerconsole) followed by a command
action to perform a task. For example, to show the console's help:

MySQLInstallerConsole.exe --help

=================== Start Initialization ===================
MySQL Installer is running in Community mode

Attempting to update manifest.
Initializing product requirements.
Loading product catalog.
Checking for product packages in the bundle.
Categorizing product catalog.
Finding all installed packages.
Your product catalog was last updated at 23/08/2022 12:41:05 p. m.
Your product catalog has version number 671.
=================== End Initialization ===================

The following actions are available:

Configure - Configures one or more of your installed programs.
Help - Provides list of available command actions.
Install - Installs and configures one or more available MySQL programs.
List - Lists all available MySQL products.
Modify - Modifies the features of installed products.
Remove - Removes one or more products from your system.
Set - Configures the general options of MySQL Installer.
Status - Shows the status of all installed products.
Update - Updates the current product catalog.
Upgrade - Upgrades one or more of your installed programs.

The basic syntax for using MySQL Installer command actions. Brackets denote optional entities.
Curly braces denote a list of possible entities.

...

MySQL Product Names

Many of the MySQLInstallerConsole command actions accept one or more abbreviated phrases that
can match a MySQL product (or products) in the catalog. The current set of valid short phrases for use with
commands is shown in the following table.

Table 2.6 MySQL Product Phrases for use with the MySQLInstallerConsole.exe command

Phrase MySQL Product

server MySQL Server

workbench MySQL Workbench

113

MySQL Installer for Windows

Phrase MySQL Product

shell MySQL Shell

visual MySQL for Visual Studio

router MySQL Router

backup MySQL Enterprise Backup (requires the commercial
release)

net MySQL Connector/NET

odbc MySQL Connector/ODBC

c++ MySQL Connector/C++

python MySQL Connector/Python

j MySQL Connector/J

documentation MySQL Server Documentation

samples MySQL Samples (sakila and world databases)

Command Syntax

The MySQLInstallerConsole.exe command can be issued with or without the file extension (.exe)
and the command is not case-sensitive.

mysqlinstallerconsole[.exe] [[[--]action] [action_blocks_list] [options_list]]

Description:

action One of the permitted operational actions. If omitted, the default action is
equivalent to the --status action. Using the -- prefix is optional for all
actions.

Possible actions are: [--]configure, [--]help, [--]install, [--]list,
[--]modify, [--]remove, [--]set, [--]status, [--]update, and
[--]upgrade.

action_blocks_list A list of blocks in which each represents a different item depending on
the selected action. Blocks are separated by commas.

The --remove and --upgrade actions permit specifying an asterisk
character (*) to indicate all products. If the * character is detected at the
start of this block, it is assumed all products are to be processed and
the remainder of the block is ignored.

Syntax: *|action_block[,action_block][,action_block]...

action_block: Contains a product selector followed by an indefinite
number of argument blocks that behave differently depending on the
selected action (see Command Actions).

options_list Zero or more options with possible values separated by spaces.
See Command Actions to identify the options permitted for the
corresponding action.

Syntax: option_value_pair[option_value_pair][
option_value_pair]...

114

MySQL Installer for Windows

option_value_pair: A single option (for example, --silent) or
a tuple of a key and a corresponding value with an options prefix. The
key-value pair is in the form of --key[=value].

Command Actions

MySQLInstallerConsole.exe supports the following command actions:

Note

Configuration block (or arguments_block) values that contain a colon character (:)
must be wrapped in quotation marks. For example, install_dir="C:\MySQL
\MySQL Server 8.0".

• [--]configure [product1]:[configuration_argument]=[value], [product2]:
[configuration_argument]=[value], [...]

Configures one or more MySQL products on your system. Multiple configuration_argument=value
pairs can be configured for each product.

Options:

--continue Continues processing the next product when an error is caught while
processing the action blocks containing arguments for each product.
If not specified the whole operation is aborted in case of an error.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

--show-settings Displays the available options for the selected product by passing in
the product name after --show-settings.

--silent Disables confirmation prompts.

Examples:

MySQLInstallerConsole --configure --show-settings server

mysqlinstallerconsole.exe --configure server:port=3307

• [--]help

Displays a help message with usage examples and then exits. Pass in an additional command action to
receive help specific to that action.

Options:

--action=[action] Shows the help for a specific action. Same as using the --help
option with an action.

Permitted values are: all, configure, help (default), install,
list, modify, remove, status, update, upgrade, and set.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

115

MySQL Installer for Windows

Examples:

MySQLInstallerConsole help

MySQLInstallerConsole help --action=install

• [--]install [product1]:[features]:[config block]:[config block], [product2]:
[config block], [...]

Installs one or more MySQL products on your system. If pre-release products are available, both GA and
pre-release products are installed when the value of the --type option value is Developer, Client,
or Full. Use the --only_ga_products option to restrict the product set to GA products only when
using these setup types.

Description:

[product] Each product can be specified by a product phrase with or without a
semicolon-separated version qualifier. Passing in a product keyword
alone selects the latest version of the product. If multiple architectures
are available for that version of the product, the command returns the
first one in the manifest list for interactive confirmation. Alternatively,
you can pass in the exact version and architecture (x86 or x64) after
the product keyword using the --silent option.

[features] All features associated with a MySQL product are installed by default.
The feature block is a semicolon-separated list of features or an
asterisk character (*) that selects all features. To remove a feature,
use the modify command.

[config block] One or more configuration blocks can be specified. Each
configuration block is a semicolon-separated list of key-value pairs. A
block can include either a config or user type key; config is the
default type if one is not defined.

Configuration block values that contain a colon character (:) must be
wrapped in quotation marks. For example, installdir="C:\MySQL
\MySQL Server 8.0". Only one configuration type block can be
defined for each product. A user block should be defined for each
user to be created during the product installation.

Note

The user type key is not supported when a
product is being reconfigured.

Options:

--auto-handle-prereqs If present, MySQL Installer attempts to download and install some
software prerequisites, not currently present. that can be resolved
with minimal intervention. If the --silent option is not present, you
are presented with installation pages for each prerequisite. If the --
auto-handle-prereqs options is omitted, packages with missing
prerequisites are not installed.

116

MySQL Installer for Windows

--continue Continues processing the next product when an error is caught while
processing the action blocks containing arguments for each product.
If not specified the whole operation is aborted in case of an error.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

--mos-password=password Sets the My Oracle Support (MOS) user's password for commercial
versions of the MySQL Installer.

--mos-user=user_name Specifies the My Oracle Support (MOS) user name for access to
the commercial version of MySQL Installer. If not present, only the
products in the bundle, if any, are available to be installed.

--only-ga-products Restricts the product set to include GA products only.

--setup-type=setup_type Installs a predefined set of software. The setup type can be one of the
following:

• Developer: Installs a complete development environment.

• Server: Installs a single MySQL server

• Client: Installs client programs and libraries

• Full: Installs everything

• Custom: Installs user-selected products. This is the default option.

Note

Non-custom setup types are valid only when
no other MySQL products are installed.

--show-settings Displays the available options for the selected product, by passing in
the product name after -showsettings.

--silent Disable confirmation prompts.

Examples:

mysqlinstallerconsole.exe --install j;8.0.29, net;8.0.28 --silent

MySQLInstallerConsole install server;8.0.30:*:port=3307;server_id=2:type=user;user=foo

An example that passes in additional configuration blocks, separated by ^ to fit:

MySQLInstallerConsole --install server;8.0.30;x64:*:type=config;open_win_firewall=true; ^
 general_log=true;bin_log=true;server_id=3306;tcp_ip=true;port=3306;root_passwd=pass; ^
 install_dir="C:\MySQL\MySQL Server 8.0":type=user;user_name=foo;password=bar;role=DBManager

117

MySQL Installer for Windows

• [--]list

When this action is used without options, it activates an interactive list from which all of the available
MySQL products can be searched. Enter MySQLInstallerConsole --list and specify a substring
to search.

Options:

--all Lists all available products. If this option is used, all other options are
ignored.

--arch=architecture Lists that contain the specified architecture. Permitted values are:
x86, x64, and any (default). This option can be combined with the --
name and --version options.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

--name=package_name Lists products that contain the specified name (see product phrase),
This option can be combined with the --version and --arch
options.

--version=version Lists products that contain the specified version, such as 8.0 or 5.7.
This option can be combined with the --name and --arch options.

Examples:

MySQLInstallerConsole --list --name=net --version=8.0

• [--]modify [product1:-removelist|+addlist], [product2:-removelist|+addlist]
[...]

Modifies or displays features of a previously installed MySQL product. To display the features of a
product, append the product keyword to the command, for example:

MySQLInstallerConsole --modify server

Options:

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

--silent Disable confirmation prompts.

Examples:

MySQLInstallerConsole --modify server:+documentation

MySQLInstallerConsole modify server:-debug

118

MySQL Installer for Windows

• [--]remove [product1], [product2] [...]

Removes one ore more products from your system. An asterisk character (*) can be passed in to
remove all MySQL products with one command.

Options:

--continue Continue the operation even if an error occurs.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

--keep-datadir Skips the removal of the data directory when removing MySQL Server
products.

--silent Disable confirmation prompts.

Examples:

mysqlinstallerconsole.exe remove *

MySQLInstallerConsole --remove server --continue

• [--]set

Sets one or more configurable options that affect how the MySQL Installer program connects to the
internet and whether the automatic products-catalog updates feature is activated.

Options:

--catalog-
update=bool_value

Enables (true, default) or disables (false) the automatic products
catalog update. This option requires an active connection to the
internet.

--catalog-update-
days=int_value

Accepts an integer between 1 (default) and 365 to indicate the
number of days between checks for a new catalog update when
MySQL Installer is started. If --catalog-update is false, this
option is ignored.

--connection-
validation=validation_type

Sets how MySQL Installer performs the check for an internet
connection. Permitted values are automatic (default) and manual.

--connection-validation-
urls=url_list

A double-quote enclosed and comma-separated string that defines
the list of URLs to use for checking the internet connection when --
connection-validation is set to manual. Checks are made in

119

MySQL Installer for Windows

the same order provided. If the first URL fails, the next URL in the list
is used and so on.

--offline-
mode=bool_value

Enables MySQL Installer to run with or without internet capabilities.
Valid modes are:

• True to enable offline mode (run without an internet connection).

• False (default) to disable offline mode (run with an internet
connection). Set this mode before downloading the product catalog
or any products to install.

--proxy-mode Specifies the proxy mode. Valid modes are:

• Automatic to automatically identify the proxy based on the system
settings.

• None to ensure that no proxy is configured.

• Manual to set the proxy details manually (--proxy-server, --
proxy-port, --proxy-username, --proxy-password).

--proxy-password The password used to authenticate to the proxy server.

--proxy-port The port used for the proxy server.

--proxy-server The URL that point to the proxy server.

--proxy-username The user name used to authenticate to the proxy server.

--reset-defaults Resets the MySQL Installer options associated with the --set action
to the default values.

Examples:

MySQLIntallerConsole.exe set --reset-defaults

mysqlintallerconsole.exe --set --catalog-update=false

MySQLIntallerConsole --set --catalog-update-days=3

mysqlintallerconsole --set --connection-validation=manual
--connection-validation-urls="https://www.bing.com,http://www.google.com"

• [--]status

Provides a quick overview of the MySQL products that are installed on the system. Information includes
product name and version, architecture, date installed, and install location.

Options:

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

Examples:

MySQLInstallerConsole status

120

MySQL Installer for Windows

• [--]update

Downloads the latest MySQL product catalog to your system. On success, the catalog is applied the next
time either MySQLInstaller or MySQLInstallerConsole.exe is executed.

MySQL Installer automatically checks for product catalog updates when it is started if n days have
passed since the last check. Starting with MySQL Installer 1.6.4, the default value is 1 day. Previously,
the default value was 7 days.

Options:

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

Examples:

MySQLInstallerConsole update

• [--]upgrade [product1:version], [product2:version] [...]

Upgrades one or more products on your system. The following characters are permitted for this action:

* Pass in * to upgrade all products to the latest version, or pass in
specific products.

! Pass in ! as a version number to upgrade the MySQL product to its
latest version.

Options:

--continue Continue the operation even if an error occurs.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is shown,
so other action-related options are ignored as well.

--mos-password=password Sets the My Oracle Support (MOS) user's password for commercial
versions of the MySQL Installer.

--mos-user=user_name Specifies the My Oracle Support (MOS) user name for access to
the commercial version of MySQL Installer. If not present, only the
products in the bundle, if any, are available to be installed.

--silent Disable confirmation prompts.

Examples:

MySQLInstallerConsole upgrade *

MySQLInstallerConsole upgrade workbench:8.0.31

MySQLInstallerConsole upgrade workbench:!

MySQLInstallerConsole --upgrade server;8.0.30:!, j;8.0.29:!

121

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

2.3.4 Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

Users who are installing from the noinstall package can use the instructions in this section to manually
install MySQL. The process for installing MySQL from a ZIP Archive package is as follows:

1. Extract the archive to the desired install directory

2. Create an option file

3. Choose a MySQL server type

4. Start the MySQL server

5. Secure the default user accounts

This process is described in the sections that follow.

2.3.4.1 Extracting the Install Archive

To install MySQL manually, do the following:

1. If you are upgrading from a previous version please refer to Section 2.11.8, “Upgrading MySQL on
Windows”, before beginning the upgrade process.

2. Make sure that you are logged in as a user with administrator privileges.

3. Choose an installation location. Traditionally, the MySQL server is installed in C:\mysql. If you do not
install MySQL at C:\mysql, you must specify the path to the install directory during startup or in an
option file. See Section 2.3.4.2, “Creating an Option File”.

Note

The MySQL Installer installs MySQL under C:\Program Files\MySQL.

4. Extract the install archive to the chosen installation location using your preferred file-compression tool.
Some tools may extract the archive to a folder within your chosen installation location. If this occurs,
you can move the contents of the subfolder into the chosen installation location.

2.3.4.2 Creating an Option File

If you need to specify startup options when you run the server, you can indicate them on the command
line or place them in an option file. For options that are used every time the server starts, you may find it
most convenient to use an option file to specify your MySQL configuration. This is particularly true under
the following circumstances:

• The installation or data directory locations are different from the default locations (C:\Program Files
\MySQL\MySQL Server 5.6 and C:\Program Files\MySQL\MySQL Server 5.6\data).

• You need to tune the server settings, such as memory, cache, or InnoDB configuration information.

When the MySQL server starts on Windows, it looks for option files in several locations, such as
the Windows directory, C:\, and the MySQL installation directory (for the full list of locations, see
Section 4.2.2.2, “Using Option Files”). The Windows directory typically is named something like C:
\WINDOWS. You can determine its exact location from the value of the WINDIR environment variable using
the following command:

C:\> echo %WINDIR%

122

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

MySQL looks for options in each location first in the my.ini file, and then in the my.cnf file. However, to
avoid confusion, it is best if you use only one file. If your PC uses a boot loader where C: is not the boot
drive, your only option is to use the my.ini file. Whichever option file you use, it must be a plain text file.

Note

When using the MySQL Installer to install MySQL Server, it creates my.ini at the
default location. As of MySQL 5.5.27, the user running MySQL Installer is granted
full permissions to this new my.ini.

In other words, be sure that the MySQL Server user has permission to read the
my.ini file.

You can also make use of the example option files included with your MySQL distribution; see
Section 5.1.2, “Server Configuration Defaults”.

An option file can be created and modified with any text editor, such as Notepad. For example, if MySQL
is installed in E:\mysql and the data directory is in E:\mydata\data, you can create an option file
containing a [mysqld] section to specify values for the basedir and datadir options:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=E:/mydata/data

Microsoft Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysqld]
set basedir to your installation path
basedir=E:\\mysql
set datadir to the location of your data directory
datadir=E:\\mydata\\data

The rules for use of backslash in option file values are given in Section 4.2.2.2, “Using Option Files”.

The data directory is located within the AppData directory for the user running MySQL.

If you would like to use a data directory in a different location, you should copy the entire contents of the
data directory to the new location. For example, if you want to use E:\mydata as the data directory
instead, you must do two things:

1. Move the entire data directory and all of its contents from the default location (for example C:
\Program Files\MySQL\MySQL Server 5.6\data) to E:\mydata.

2. Use a --datadir option to specify the new data directory location each time you start the server.

2.3.4.3 Selecting a MySQL Server Type

The following table shows the available servers for Windows in MySQL 5.6.

Binary Description

mysqld Optimized binary with named-pipe support

mysqld-debug Like mysqld, but compiled with full debugging and
automatic memory allocation checking

123

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

All of the preceding binaries are optimized for modern Intel processors, but should work on any Intel i386-
class or higher processor.

Each of the servers in a distribution support the same set of storage engines. The SHOW ENGINES
statement displays which engines a given server supports.

All Windows MySQL 5.6 servers have support for symbolic linking of database directories.

MySQL supports TCP/IP on all Windows platforms. MySQL servers on Windows also support named
pipes, if you start the server with the named_pipe system variable enabled. It is necessary to enable this
variable explicitly because some users have experienced problems with shutting down the MySQL server
when named pipes were used. The default is to use TCP/IP regardless of platform because named pipes
are slower than TCP/IP in many Windows configurations.

2.3.4.4 Starting the Server for the First Time

This section gives a general overview of starting the MySQL server. The following sections provide more
specific information for starting the MySQL server from the command line or as a Windows service.

The information here applies primarily if you installed MySQL using the noinstall version, or if you wish
to configure and test MySQL manually rather than with the GUI tools.

Note

MySQL server starts automatically after using MySQL Installer.

The examples in these sections assume that MySQL is installed under the default location of C:\Program
Files\MySQL\MySQL Server 5.6. Adjust the path names shown in the examples if you have MySQL
installed in a different location.

Clients have two options. They can use TCP/IP, or they can use a named pipe if the server supports
named-pipe connections.

MySQL for Windows also supports shared-memory connections if the server is started with the
shared_memory system variable enabled. Clients can connect through shared memory by using the --
protocol=MEMORY option.

For information about which server binary to run, see Section 2.3.4.3, “Selecting a MySQL Server Type”.

Testing is best done from a command prompt in a console window (or “DOS window”). In this way you can
have the server display status messages in the window where they are easy to see. If something is wrong
with your configuration, these messages make it easier for you to identify and fix any problems.

To start the server, enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld" --console

For a server that includes InnoDB support, you should see the messages similar to those following as it
starts (the path names and sizes may differ):

InnoDB: The first specified datafile c:\ibdata\ibdata1 did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file c:\ibdata\ibdata1 size to 209715200
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file c:\iblogs\ib_logfile0 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile1 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile1 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created

124

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: creating foreign key constraint system tables
InnoDB: foreign key constraint system tables created
011024 10:58:25 InnoDB: Started

When the server finishes its startup sequence, you should see something like this, which indicates that the
server is ready to service client connections:

mysqld: ready for connections
Version: '5.6.51' socket: '' port: 3306

The server continues to write to the console any further diagnostic output it produces. You can open a new
console window in which to run client programs.

If you omit the --console option, the server writes diagnostic output to the error log in the data directory
(C:\Program Files\MySQL\MySQL Server 5.6\data by default). The error log is the file with the
.err extension, and may be set using the --log-error option.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords.
After starting the server, you should set up passwords for them using the
instructions in Section 2.10.4, “Securing the Initial MySQL Accounts”.

2.3.4.5 Starting MySQL from the Windows Command Line

The MySQL server can be started manually from the command line. This can be done on any version of
Windows.

To start the mysqld server from the command line, you should start a console window (or “DOS window”)
and enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld"

The path to mysqld may vary depending on the install location of MySQL on your system.

You can stop the MySQL server by executing this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke mysqladmin
with the -p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to
shut down. The command connects as the MySQL root user, which is the default administrative account
in the MySQL grant system.

Note

Users in the MySQL grant system are wholly independent from any operating
system users under Microsoft Windows.

If mysqld doesn't start, check the error log to see whether the server wrote any messages there to indicate
the cause of the problem. By default, the error log is located in the C:\Program Files\MySQL\MySQL
Server 5.6\data directory. It is the file with a suffix of .err, or may be specified by passing in the --

125

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

log-error option. Alternatively, you can try to start the server with the --console option; in this case,
the server may display some useful information on the screen that may help solve the problem.

The last option is to start mysqld with the --standalone and --debug options. In this case, mysqld
writes a log file C:\mysqld.trace that should contain the reason why mysqld doesn't start. See
Section 5.8.3, “The DBUG Package”.

Use mysqld --verbose --help to display all the options that mysqld supports.

2.3.4.6 Customizing the PATH for MySQL Tools

Warning

You must exercise great care when editing your system PATH by hand; accidental
deletion or modification of any portion of the existing PATH value can leave you with
a malfunctioning or even unusable system.

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory to
your Windows system PATH environment variable:

• On the Windows desktop, right-click the My Computer icon, and select Properties.

• Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

• Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the End
key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter the
complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL\MySQL
Server 5.6\bin)

Note

There must be a semicolon separating this path from any values present in this
field.

Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues that were
opened have been dismissed. The new PATH value should now be available to any new command
shell you open, allowing you to invoke any MySQL executable program by typing its name at the DOS
prompt from any directory on the system, without having to supply the path. This includes the servers,
the mysql client, and all MySQL command-line utilities such as mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple MySQL
servers on the same machine.

2.3.4.7 Starting MySQL as a Windows Service

On Windows, the recommended way to run MySQL is to install it as a Windows service, so that MySQL
starts and stops automatically when Windows starts and stops. A MySQL server installed as a service can
also be controlled from the command line using NET commands, or with the graphical Services utility.
Generally, to install MySQL as a Windows service you should be logged in using an account that has
administrator rights.

The Services utility (the Windows Service Control Manager) can be found in the Windows Control
Panel. To avoid conflicts, it is advisable to close the Services utility while performing server installation or
removal operations from the command line.

126

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

Installing the service

Before installing MySQL as a Windows service, you should first stop the current server if it is running by
using the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqladmin"
 -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke mysqladmin
with the -p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to
shut down. The command connects as the MySQL root user, which is the default administrative account
in the MySQL grant system.

Note

Users in the MySQL grant system are wholly independent from any operating
system users under Windows.

Install the server as a service using this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld" --install

The service-installation command does not start the server. Instructions for that are given later in this
section.

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory to
your Windows system PATH environment variable:

• On the Windows desktop, right-click the My Computer icon, and select Properties.

• Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

• Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the End
key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter the
complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL\MySQL
Server 5.6\bin), and there should be a semicolon separating this path from any values present
in this field. Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues
that were opened have been dismissed. You should now be able to invoke any MySQL executable
program by typing its name at the DOS prompt from any directory on the system, without having to
supply the path. This includes the servers, the mysql client, and all MySQL command-line utilities such
as mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple MySQL
servers on the same machine.

Warning

You must exercise great care when editing your system PATH by hand; accidental
deletion or modification of any portion of the existing PATH value can leave you with
a malfunctioning or even unusable system.

127

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

The following additional arguments can be used when installing the service:

• You can specify a service name immediately following the --install option. The default service name
is MySQL.

• If a service name is given, it can be followed by a single option. By convention, this should be --
defaults-file=file_name to specify the name of an option file from which the server should read
options when it starts.

The use of a single option other than --defaults-file is possible but discouraged. --defaults-
file is more flexible because it enables you to specify multiple startup options for the server by placing
them in the named option file.

• You can also specify a --local-service option following the service name. This causes the server
to run using the LocalService Windows account that has limited system privileges. If both --
defaults-file and --local-service are given following the service name, they can be in any
order.

For a MySQL server that is installed as a Windows service, the following rules determine the service name
and option files that the server uses:

• If the service-installation command specifies no service name or the default service name (MySQL)
following the --install option, the server uses the service name of MySQL and reads options from the
[mysqld] group in the standard option files.

• If the service-installation command specifies a service name other than MySQL following the --install
option, the server uses that service name. It reads options from the [mysqld] group and the group that
has the same name as the service in the standard option files. This enables you to use the [mysqld]
group for options that should be used by all MySQL services, and an option group with the service name
for use by the server installed with that service name.

• If the service-installation command specifies a --defaults-file option after the service name, the
server reads options the same way as described in the previous item, except that it reads options only
from the named file and ignores the standard option files.

As a more complex example, consider the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld"
 --install MySQL --defaults-file=C:\my-opts.cnf

Here, the default service name (MySQL) is given after the --install option. If no --defaults-file
option had been given, this command would have the effect of causing the server to read the [mysqld]
group from the standard option files. However, because the --defaults-file option is present, the
server reads options from the [mysqld] option group, and only from the named file.

Note

On Windows, if the server is started with the --defaults-file and --install
options, --install must be first. Otherwise, mysqld.exe attempts to start the
MySQL server.

You can also specify options as Start parameters in the Windows Services utility before you start the
MySQL service.

Finally, before trying to start the MySQL service, make sure the user variables %TEMP% and %TMP%
(and also %TMPDIR%, if it has ever been set) for the operating system user who is to run the service are
pointing to a folder to which the user has write access. The default user for running the MySQL service
is LocalSystem, and the default value for its %TEMP% and %TMP% is C:\Windows\Temp, a directory

128

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

LocalSystem has write access to by default. However, if there are any changes to that default setup (for
example, changes to the user who runs the service or to the mentioned user variables, or the --tmpdir
option has been used to put the temporary directory somewhere else), the MySQL service might fail to run
because write access to the temporary directory has not been granted to the proper user.

Starting the service

After a MySQL server instance has been installed as a service, Windows starts the service automatically
whenever Windows starts. The service also can be started immediately from the Services utility, or by
using an sc start mysqld_service_name or NET START mysqld_service_name command. SC
and NET commands are not case-sensitive.

When run as a service, mysqld has no access to a console window, so no messages can be seen there. If
mysqld does not start, check the error log to see whether the server wrote any messages there to indicate
the cause of the problem. The error log is located in the MySQL data directory (for example, C:\Program
Files\MySQL\MySQL Server 5.6\data). It is the file with a suffix of .err.

When a MySQL server has been installed as a service, and the service is running, Windows stops
the service automatically when Windows shuts down. The server also can be stopped manually
using the Services utility, the sc stop mysqld_service_name command, the NET STOP
mysqld_service_name command, or the mysqladmin shutdown command.

You also have the choice of installing the server as a manual service if you do not wish for the service to
be started automatically during the boot process. To do this, use the --install-manual option rather
than the --install option:

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld" --install-manual

Removing the service

To remove a server that is installed as a service, first stop it if it is running by executing SC STOP
mysqld_service_name or NET STOP mysqld_service_name. Then use SC DELETE
mysqld_service_name to remove it:

C:\> SC DELETE mysql

Alternatively, use the mysqld --remove option to remove the service.

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld" --remove

If mysqld is not running as a service, you can start it from the command line. For instructions, see
Section 2.3.4.5, “Starting MySQL from the Windows Command Line”.

If you encounter difficulties during installation, see Section 2.3.5, “Troubleshooting a Microsoft Windows
MySQL Server Installation”.

For more information about stopping or removing a Windows service, see Section 5.7.2.2, “Starting
Multiple MySQL Instances as Windows Services”.

2.3.4.8 Testing The MySQL Installation

You can test whether the MySQL server is working by executing any of the following commands:

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqlshow"
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqlshow" -u root mysql
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqladmin" version status proc
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql" test

If mysqld is slow to respond to TCP/IP connections from client programs, there is probably a problem
with your DNS. In this case, start mysqld with the skip_name_resolve system variable enabled and

129

Troubleshooting a Microsoft Windows MySQL Server Installation

use only localhost and IP addresses in the Host column of the MySQL grant tables. (Be sure that an
account exists that specifies an IP address or you may not be able to connect.)

You can force a MySQL client to use a named-pipe connection rather than TCP/IP by specifying the --
pipe or --protocol=PIPE option, or by specifying . (period) as the host name. Use the --socket
option to specify the name of the pipe if you do not want to use the default pipe name.

If you have set a password for the root account, deleted the anonymous account, or created a new user
account, then to connect to the MySQL server you must use the appropriate -u and -p options with the
commands shown previously. See Section 4.2.4, “Connecting to the MySQL Server Using Command
Options”.

For more information about mysqlshow, see Section 4.5.6, “mysqlshow — Display Database, Table, and
Column Information”.

2.3.5 Troubleshooting a Microsoft Windows MySQL Server Installation

When installing and running MySQL for the first time, you may encounter certain errors that prevent the
MySQL server from starting. This section helps you diagnose and correct some of these errors.

Your first resource when troubleshooting server issues is the error log. The MySQL server uses the error
log to record information relevant to the error that prevents the server from starting. The error log is located
in the data directory specified in your my.ini file. The default data directory location is C:\Program
Files\MySQL\MySQL Server 5.6\data, or C:\ProgramData\Mysql on Windows 7 and Windows
Server 2008. The C:\ProgramData directory is hidden by default. You need to change your folder
options to see the directory and contents. For more information on the error log and understanding the
content, see Section 5.4.2, “The Error Log”.

For information regarding possible errors, also consult the console messages displayed when
the MySQL service is starting. Use the SC START mysqld_service_name or NET START
mysqld_service_name command from the command line after installing mysqld as a service to see
any error messages regarding the starting of the MySQL server as a service. See Section 2.3.4.7, “Starting
MySQL as a Windows Service”.

The following examples show other common error messages you might encounter when installing MySQL
and starting the server for the first time:

• If the MySQL server cannot find the mysql privileges database or other critical files, it displays these
messages:

System error 1067 has occurred.
Fatal error: Can't open and lock privilege tables:
Table 'mysql.user' doesn't exist

These messages often occur when the MySQL base or data directories are installed in different locations
than the default locations (C:\Program Files\MySQL\MySQL Server 5.6 and C:\Program
Files\MySQL\MySQL Server 5.6\data, respectively).

This situation can occur when MySQL is upgraded and installed to a new location, but the configuration
file is not updated to reflect the new location. In addition, old and new configuration files might conflict.
Be sure to delete or rename any old configuration files when upgrading MySQL.

If you have installed MySQL to a directory other than C:\Program Files\MySQL\MySQL Server
5.6, ensure that the MySQL server is aware of this through the use of a configuration (my.ini) file. Put
the my.ini file in your Windows directory, typically C:\WINDOWS. To determine its exact location from
the value of the WINDIR environment variable, issue the following command from the command prompt:

C:\> echo %WINDIR%

130

Windows Postinstallation Procedures

You can create or modify an option file with any text editor, such as Notepad. For example, if MySQL is
installed in E:\mysql and the data directory is D:\MySQLdata, you can create the option file and set
up a [mysqld] section to specify values for the basedir and datadir options:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=D:/MySQLdata

Microsoft Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysqld]
set basedir to your installation path
basedir=C:\\Program Files\\MySQL\\MySQL Server 5.6
set datadir to the location of your data directory
datadir=D:\\MySQLdata

The rules for use of backslash in option file values are given in Section 4.2.2.2, “Using Option Files”.

If you change the datadir value in your MySQL configuration file, you must move the contents of the
existing MySQL data directory before restarting the MySQL server.

See Section 2.3.4.2, “Creating an Option File”.

• If you reinstall or upgrade MySQL without first stopping and removing the existing MySQL service and
install MySQL using the MySQL Installer, you might see this error:

Error: Cannot create Windows service for MySql. Error: 0

This occurs when the Configuration Wizard tries to install the service and finds an existing service with
the same name.

One solution to this problem is to choose a service name other than mysql when using the configuration
wizard. This enables the new service to be installed correctly, but leaves the outdated service in place.
Although this is harmless, it is best to remove old services that are no longer in use.

To permanently remove the old mysql service, execute the following command as a user with
administrative privileges, on the command line:

C:\> SC DELETE mysql
[SC] DeleteService SUCCESS

If the SC utility is not available for your version of Windows, download the delsrv utility from http://
www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp and use the delsrv mysql
syntax.

2.3.6 Windows Postinstallation Procedures

GUI tools exist that perform most of the tasks described in this section, including:

• MySQL Installer: Used to install and upgrade MySQL products.

• MySQL Workbench: Manages the MySQL server and edits SQL statements.

On Windows, you need not create the data directory and the grant tables. MySQL distributions for
Windows include the grant tables with a set of preinitialized accounts in the mysql database under the
data directory.

131

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp

Windows Postinstallation Procedures

Regarding passwords, if you installed MySQL using the MySQL Installer, you may have already assigned
passwords to the accounts. (See Section 2.3.3, “MySQL Installer for Windows”.) Otherwise, use the
password-assignment procedure given in Section 2.10.4, “Securing the Initial MySQL Accounts”.

Before assigning passwords, you might want to try running some client programs to make sure that you
can connect to the server and that it is operating properly. Make sure that the server is running (see
Section 2.3.4.4, “Starting the Server for the First Time”). You can also set up a MySQL service that runs
automatically when Windows starts (see Section 2.3.4.7, “Starting MySQL as a Windows Service”).

These instructions assume that your current location is the MySQL installation directory and that it has a
bin subdirectory containing the MySQL programs used here. If that is not true, adjust the command path
names accordingly.

If you installed MySQL using MySQL Installer (see Section 2.3.3, “MySQL Installer for Windows”), the
default installation directory is C:\Program Files\MySQL\MySQL Server 5.6:

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.6"

A common installation location for installation from a ZIP archive is C:\mysql:

C:\> cd C:\mysql

Alternatively, add the bin directory to your PATH environment variable setting. That enables your
command interpreter to find MySQL programs properly, so that you can run a program by typing only its
name, not its path name. See Section 2.3.4.6, “Customizing the PATH for MySQL Tools”.

With the server running, issue the following commands to verify that you can retrieve information from the
server. The output should be similar to that shown here.

Use mysqlshow to see what databases exist:

C:\> bin\mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| test |
+--------------------+

The list of installed databases may vary, but always includes at a minimum mysql and
information_schema.

The preceding command (and commands for other MySQL programs such as mysql) may not work if the
correct MySQL account does not exist. For example, the program may fail with an error, or you may not
be able to view all databases. If you installed MySQL using MySQL Installer, the root user was created
automatically with the password you supplied. In this case, you should use the -u root and -p options.
(You must use those options if you have already secured the initial MySQL accounts.) With -p, the client
program prompts you for the root password. For example:

C:\> bin\mysqlshow -u root -p
Enter password: (enter root password here)
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| test |
+--------------------+

132

Windows Platform Restrictions

If you specify a database name, mysqlshow displays a list of the tables within the database:

C:\> bin\mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| event |
| func |
| general_log |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| innodb_index_stats |
| innodb_table_stats |
| ndb_binlog_index |
| plugin |
| proc |
| procs_priv |
| proxies_priv |
| servers |
| slave_master_info |
| slave_relay_log_info |
| slave_worker_info |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

Use the mysql program to select information from a table in the mysql database:

C:\> bin\mysql -e "SELECT User, Host, plugin FROM mysql.user" mysql
+------+-----------+-----------------------+
| User | Host | plugin |
+------+-----------+-----------------------+
| root | localhost | mysql_native_password |
+------+-----------+-----------------------+

For more information about mysql and mysqlshow, see Section 4.5.1, “mysql — The MySQL Command-
Line Client”, and Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”.

2.3.7 Windows Platform Restrictions

The following restrictions apply to use of MySQL on the Windows platform:

• Process memory

On Windows 32-bit platforms, it is not possible by default to use more than 2GB of RAM within a single
process, including MySQL. This is because the physical address limit on Windows 32-bit is 4GB and
the default setting within Windows is to split the virtual address space between kernel (2GB) and user/
applications (2GB).

Some versions of Windows have a boot time setting to enable larger applications by reducing the kernel
application. Alternatively, to use more than 2GB, use a 64-bit version of Windows.

• File system aliases

133

Windows Platform Restrictions

When using MyISAM tables, you cannot use aliases within Windows link to the data files on another
volume and then link back to the main MySQL datadir location.

This facility is often used to move the data and index files to a RAID or other fast solution, while retaining
the main .frm files in the default data directory configured with the datadir option.

• Limited number of ports

Windows systems have about 4,000 ports available for client connections, and after a connection on
a port closes, it takes two to four minutes before the port can be reused. In situations where clients
connect to and disconnect from the server at a high rate, it is possible for all available ports to be used
up before closed ports become available again. If this happens, the MySQL server appears to be
unresponsive even though it is running. Ports may be used by other applications running on the machine
as well, in which case the number of ports available to MySQL is lower.

For more information about this problem, see https://support.microsoft.com/kb/196271.

• DATA DIRECTORY and INDEX DIRECTORY

The DATA DIRECTORY clause of the CREATE TABLE statement is supported on Windows for InnoDB
tables only, as described in Section 14.6.1.2, “Creating Tables Externally”. For MyISAM and other
storage engines, the DATA DIRECTORY and INDEX DIRECTORY clauses for CREATE TABLE are
ignored on Windows and any other platforms with a nonfunctional realpath() call.

• DROP DATABASE

You cannot drop a database that is in use by another session.

• Case-insensitive names

File names are not case-sensitive on Windows, so MySQL database and table names are also not case-
sensitive on Windows. The only restriction is that database and table names must be specified using the
same case throughout a given statement. See Section 9.2.3, “Identifier Case Sensitivity”.

• Directory and file names

On Windows, MySQL Server supports only directory and file names that are compatible with the current
ANSI code pages. For example, the following Japanese directory name does not work in the Western
locale (code page 1252):

datadir="C:/私たちのプロジェクトのデータ"

The same limitation applies to directory and file names referred to in SQL statements, such as the data
file path name in LOAD DATA.

• The \ path name separator character

Path name components in Windows are separated by the \ character, which is also the escape
character in MySQL. If you are using LOAD DATA or SELECT ... INTO OUTFILE, use Unix-style file
names with / characters:

mysql> LOAD DATA INFILE 'C:/tmp/skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:/tmp/skr.txt' FROM skr;

Alternatively, you must double the \ character:

mysql> LOAD DATA INFILE 'C:\\tmp\\skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:\\tmp\\skr.txt' FROM skr;

134

https://support.microsoft.com/kb/196271

Installing MySQL on macOS

• Problems with pipes

Pipes do not work reliably from the Windows command-line prompt. If the pipe includes the character ^Z
/ CHAR(24), Windows thinks that it has encountered end-of-file and aborts the program.

This is mainly a problem when you try to apply a binary log as follows:

C:\> mysqlbinlog binary_log_file | mysql --user=root

If you have a problem applying the log and suspect that it is because of a ^Z / CHAR(24) character, you
can use the following workaround:

C:\> mysqlbinlog binary_log_file --result-file=/tmp/bin.sql
C:\> mysql --user=root --execute "source /tmp/bin.sql"

The latter command also can be used to reliably read any SQL file that may contain binary data.

2.4 Installing MySQL on macOS
For a list of macOS versions that the MySQL server supports, see https://www.mysql.com/support/
supportedplatforms/database.html.

MySQL for macOS is available in a number of different forms:

• Native Package Installer, which uses the native macOS installer (DMG) to walk you through the
installation of MySQL. For more information, see Section 2.4.2, “Installing MySQL on macOS Using
Native Packages”. You can use the package installer with macOS. The user you use to perform the
installation must have administrator privileges.

• Compressed TAR archive, which uses a file packaged using the Unix tar and gzip commands. To
use this method, you must open a Terminal window. You do not need administrator privileges using
this method, as you can install the MySQL server anywhere using this method. For more information on
using this method, you can use the generic instructions for using a tarball, Section 2.2, “Installing MySQL
on Unix/Linux Using Generic Binaries”.

In addition to the core installation, the Package Installer also includes Section 2.4.3, “Installing a MySQL
Launch Daemon” and Section 2.4.4, “Installing and Using the MySQL Preference Pane”, both of which
simplify the management of your installation.

For additional information on using MySQL on macOS, see Section 2.4.1, “General Notes on Installing
MySQL on macOS”.

2.4.1 General Notes on Installing MySQL on macOS

You should keep the following issues and notes in mind:

• As of MySQL server 5.6.26, the DMG bundles a launchd daemon instead of the deprecated startup
item. Startup items do not function as of macOS 10.10 (Yosemite), so using launchd is preferred.
The available MySQL preference pane under macOS System Preferences was also updated to use
launchd.

• You may need (or want) to create a specific mysql user to own the MySQL directory and data. You can
do this through the Directory Utility, and the mysql user should already exist. For use in single
user mode, an entry for _mysql (note the underscore prefix) should already exist within the system /
etc/passwd file.

• Because the MySQL package installer installs the MySQL contents into a version and platform specific
directory, you can use this to upgrade and migrate your database between versions. You must either

135

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html

Installing MySQL on macOS Using Native Packages

copy the data directory from the old version to the new version, or alternatively specify an alternative
datadir value to set location of the data directory. By default, the MySQL directories are installed under
/usr/local/.

• You might want to add aliases to your shell's resource file to make it easier to access commonly used
programs such as mysql and mysqladmin from the command line. The syntax for bash is:

alias mysql=/usr/local/mysql/bin/mysql
alias mysqladmin=/usr/local/mysql/bin/mysqladmin

For tcsh, use:

alias mysql /usr/local/mysql/bin/mysql
alias mysqladmin /usr/local/mysql/bin/mysqladmin

Even better, add /usr/local/mysql/bin to your PATH environment variable. You can do this by
modifying the appropriate startup file for your shell. For more information, see Section 4.2.1, “Invoking
MySQL Programs”.

• After you have copied over the MySQL database files from the previous installation and have
successfully started the new server, you should consider removing the old installation files to save disk
space. Additionally, you should also remove older versions of the Package Receipt directories located in
/Library/Receipts/mysql-VERSION.pkg.

2.4.2 Installing MySQL on macOS Using Native Packages

Note

Before proceeding with the installation, be sure to stop all running MySQL server
instances by using either the MySQL Manager Application (on macOS Server), the
preference pane, or mysqladmin shutdown on the command line.

To install MySQL using the package installer:

1. Download the disk image (.dmg) file (the community version is available here) that contains the MySQL
package installer. Double-click the file to mount the disk image and see its contents.

Figure 2.13 MySQL Package Installer: DMG Contents

136

https://dev.mysql.com/downloads/mysql/

Installing MySQL on macOS Using Native Packages

2. Double-click the MySQL installer package. It is named according to the MySQL version and the macOS
version you have chosen. For example, if you have downloaded the package for MySQL 5.6.51 and
macOS 10.8, double-click mysql-5.6.51-macos-10.8-x86_64.pkg.

3. You are presented with the opening installer dialog. Click Continue to begin installation.

Figure 2.14 MySQL Package Installer: Introduction

4. If you have downloaded the community version of MySQL, you are shown a copy of the relevant GNU
General Public License. Click Continue and then Agree to continue.

137

Installing MySQL on macOS Using Native Packages

5. From the Installation Type page you can either click Install to execute the installation wizard using
all defaults, click Customize to alter which components to install (MySQL server, Preference Pane,
Launchd Support -- all enabled by default).

Note

Although the Change Install Location option is visible, the installation location
cannot be changed.

Figure 2.15 MySQL Package Installer: Installation Type

138

Installing MySQL on macOS Using Native Packages

Figure 2.16 MySQL Package Installer: Customize

6. Click Install to begin the installation process.

139

Installing MySQL on macOS Using Native Packages

7. Once the installation has been completed successfully, you are shown an Install Succeeded message
with a short summary. Now, Close the wizard and begin using the MySQL server.

Figure 2.17 MySQL Package Installer: Summary

MySQL server is now installed, but it is not loaded (or started) by default. Use either launchctl from the
command line, or start MySQL by clicking "Start" using the MySQL preference pane. For additional
information, see Section 2.4.3, “Installing a MySQL Launch Daemon”, and Section 2.4.4, “Installing and
Using the MySQL Preference Pane”. Use the MySQL Preference Pane or launchd to configure MySQL to
automatically start at bootup.

When installing using the package installer, the files are installed into a directory within /usr/
local matching the name of the installation version and platform. For example, the installer file
mysql-5.6.51-macos10.12-x86_64.dmg installs MySQL into /usr/local/mysql-5.6.51-
macos10.12-x86_64/ . The following table shows the layout of the installation directory.

Table 2.7 MySQL Installation Layout on macOS

Directory Contents of Directory

bin, scripts mysqld server, client and utility programs

data Log files, databases

docs Helper documents, like the Release Notes and build
information

include Include (header) files

lib Libraries

140

Installing a MySQL Launch Daemon

Directory Contents of Directory

man Unix manual pages

mysql-test MySQL test suite

share Miscellaneous support files, including error
messages, sample configuration files, SQL for
database installation

sql-bench Benchmarks

support-files Scripts and sample configuration files

/tmp/mysql.sock Location of the MySQL Unix socket

During the package installer process, a symbolic link from /usr/local/mysql to the version/platform
specific directory created during installation is created automatically.

2.4.3 Installing a MySQL Launch Daemon

macOS uses launch daemons to automatically start, stop, and manage processes and applications such
as MySQL.

Note

Before MySQL 5.6.26, the macOS builds installed startup items instead of launchd
daemons. However, startup items do not function as of OS X 10.10 (Yosemite). The
macOS builds now install launchd daemons.

By default, the installation package (DMG) on macOS installs a launchd file named /Library/
LaunchDaemons/com.oracle.oss.mysql.mysqld.plist that contains a plist definition similar to:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key> <string>com.oracle.oss.mysql.mysqld</string>
 <key>ProcessType</key> <string>Interactive</string>
 <key>Disabled</key> <false/>
 <key>RunAtLoad</key> <true/>
 <key>KeepAlive</key> <true/>
 <key>SessionCreate</key> <true/>
 <key>LaunchOnlyOnce</key> <false/>
 <key>UserName</key> <string>_mysql</string>
 <key>GroupName</key> <string>_mysql</string>
 <key>ExitTimeOut</key> <integer>600</integer>
 <key>Program</key> <string>/usr/local/mysql/bin/mysqld</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/mysql/bin/mysqld</string>
 <string>--user=_mysql</string>
 <string>--basedir=/usr/local/mysql</string>
 <string>--datadir=/usr/local/mysql/data</string>
 <string>--plugin-dir=/usr/local/mysql/lib/plugin</string>
 <string>--log-error=/usr/local/mysql/data/mysqld.local.err</string>
 <string>--pid-file=/usr/local/mysql/data/mysqld.local.pid</string>
 </array>
 <key>WorkingDirectory</key> <string>/usr/local/mysql</string>
</dict>
</plist>

141

Installing a MySQL Launch Daemon

Note

Some users report that adding a plist DOCTYPE declaration causes the launchd
operation to fail, despite it passing the lint check. We suspect it's a copy-
n-paste error. The md5 checksum of a file containing the above snippet is
60d7963a0bb2994b69b8b9c123db09df.

To enable the launchd service, you can either:

• Click Start MySQL Server from the MySQL preference pane.

Figure 2.18 MySQL Preference Pane: Location

142

Installing and Using the MySQL Preference Pane

Figure 2.19 MySQL Preference Pane: Usage

• Or, manually load the launchd file.

$> cd /Library/LaunchDaemons
$> sudo launchctl load -F com.oracle.oss.mysql.mysqld.plist

• To configure MySQL to automatically start at bootup, you can:

$> sudo launchctl load -w com.oracle.oss.mysql.mysqld.plist

Note

When upgrading MySQL server, the launchd installation process removes the old
startup items that were installed with MySQL server 5.6.25 and earlier.

2.4.4 Installing and Using the MySQL Preference Pane

The MySQL Installation Package includes a MySQL preference pane that enables you to start, stop, and
control automated startup during boot of your MySQL installation.

This preference pane is installed by default, and is listed under your system's System Preferences window.

143

Installing and Using the MySQL Preference Pane

Figure 2.20 MySQL Preference Pane: Location

To install the MySQL Preference Pane:

1. Download the disk image (.dmg) file (the community version is available here) that contains the MySQL
package installer. Double-click the file to mount the disk image and see its contents.

144

https://dev.mysql.com/downloads/mysql/

Installing and Using the MySQL Preference Pane

Figure 2.21 MySQL Package Installer: DMG Contents

Note

Before MySQL 5.6.26, macOS packages included the deprecated startup items
instead of launchd daemons, and the preference pane managed that instead of
launchd.

2. Go through the process of installing the MySQL server, as described in the documentation at
Section 2.4.2, “Installing MySQL on macOS Using Native Packages”.

145

Installing and Using the MySQL Preference Pane

3. Click Customize at the Installation Type step. The "Preference Pane" option is listed there and
enabled by default; make sure it is not deselected.

Figure 2.22 MySQL Installer on macOS: Customize

4. Complete the MySQL server installation process.

Note

The MySQL preference pane only starts and stops MySQL installation installed
from the MySQL package installation that have been installed in the default
location.

Once the MySQL preference pane has been installed, you can control your MySQL server instance using
the preference pane. To use the preference pane, open the System Preferences... from the Apple menu.
Select the MySQL preference pane by clicking the MySQL icon within the preference panes list.

146

Installing and Using the MySQL Preference Pane

Figure 2.23 MySQL Preference Pane: Location

147

Installing MySQL on Linux

Figure 2.24 MySQL Preference Pane: Usage

The MySQL Preference Pane shows the current status of the MySQL server, showing stopped (in red)
if the server is not running and running (in green) if the server has already been started. The preference
pane also shows the current setting for whether the MySQL server has been set to start automatically.

• To start the MySQL server using the preference pane:

Click Start MySQL Server. You may be prompted for the username and password of a user with
administrator privileges to start the MySQL server.

• To stop the MySQL server using the preference pane:

Click Stop MySQL Server. You may be prompted for the username and password of a user with
administrator privileges to stop the MySQL server.

• To automatically start the MySQL server when the system boots:

Check the check box next to Automatically Start MySQL Server on Startup.

• To disable automatic MySQL server startup when the system boots:

Uncheck the check box next to Automatically Start MySQL Server on Startup.

You can close the System Preferences... window once you have completed your settings.

2.5 Installing MySQL on Linux
Linux supports a number of different solutions for installing MySQL. We recommend that you use one of
the distributions from Oracle, for which several methods for installation are available:

Table 2.8 Linux Installation Methods and Information

Type Setup Method Additional Information

Apt Enable the MySQL Apt repository Documentation

148

https://dev.mysql.com/downloads/repo/apt/

Installing MySQL on Linux Using the MySQL Yum Repository

Type Setup Method Additional Information

Yum Enable the MySQL Yum
repository

Documentation

Zypper Enable the MySQL SLES
repository

Documentation

RPM Download a specific package Documentation

DEB Download a specific package Documentation

Generic Download a generic package Documentation

Source Compile from source Documentation

Docker Use Docker Hub Documentation

Oracle Unbreakable Linux
Network

Use ULN channels Documentation

As an alternative, you can use the package manager on your system to automatically download and
install MySQL with packages from the native software repositories of your Linux distribution. These native
packages are often several versions behind the currently available release. You are also normally unable
to install development milestone releases (DMRs), as these are not usually made available in the native
repositories. For more information on using the native package installers, see Section 2.5.7, “Installing
MySQL on Linux from the Native Software Repositories”.

Note

For many Linux installations, you may want to set up MySQL to be started
automatically when your machine starts. Many of the native package installations
perform this operation for you, but for source, binary and RPM solutions you may
need to set this up separately. The required script, mysql.server, can be found
in the support-files directory under the MySQL installation directory or in a
MySQL source tree. You can install it as /etc/init.d/mysql for automatic
MySQL startup and shutdown. See Section 4.3.3, “mysql.server — MySQL Server
Startup Script”.

2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository

The MySQL Yum repository for Oracle Linux, Red Hat Enterprise Linux, and CentOS provides RPM
packages for installing the MySQL server, client, MySQL Workbench, MySQL Utilities, MySQL Router,
MySQL Shell, Connector/ODBC, Connector/Python and so on (not all packages are available for all the
distributions; see Installing Additional MySQL Products and Components with Yum for details).

Before You Start

As a popular, open-source software, MySQL, in its original or re-packaged form, is widely installed on
many systems from various sources, including different software download sites, software repositories,
and so on. The following instructions assume that MySQL is not already installed on your system
using a third-party-distributed RPM package; if that is not the case, follow the instructions given in
Section 2.11.5, “Upgrading MySQL with the MySQL Yum Repository” or Section 2.5.2, “Replacing a Third-
Party Distribution of MySQL Using the MySQL Yum Repository”.

Steps for a Fresh Installation of MySQL

Follow the steps below to install the latest GA release of MySQL (from the MySQL 5.7 series currently)
with the MySQL Yum repository:

149

https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/repo/yum/

Installing MySQL on Linux Using the MySQL Yum Repository

1.Adding the MySQL Yum Repository

First, add the MySQL Yum repository to your system's repository list. This is a one-time operation,
which can be performed by installing an RPM provided by MySQL. Follow these steps:

a. Go to the Download MySQL Yum Repository page (https://dev.mysql.com/downloads/repo/yum/) in
the MySQL Developer Zone.

b. Select and download the release package for your platform.

c. Install the downloaded release package with the following command, replacing platform-and-
version-specific-package-name with the name of the downloaded RPM package:

$> sudo yum localinstall platform-and-version-specific-package-name.rpm

For an EL6-based system, the command is in the form of:

$> sudo yum localinstall mysql57-community-release-el6-{version-number}.noarch.rpm

For an EL7-based system:

$> sudo yum localinstall mysql57-community-release-el7-{version-number}.noarch.rpm

The installation command adds the MySQL Yum repository to your system's repository list and
downloads the GnuPG key to check the integrity of the software packages. See Section 2.1.4.2,
“Signature Checking Using GnuPG” for details on GnuPG key checking.

You can check that the MySQL Yum repository has been successfully added by the following
command:

$> yum repolist enabled | grep "mysql.*-community.*"

Note

Once the MySQL Yum repository is enabled on your system, any system-
wide update by the yum update command upgrades MySQL packages on
your system and also replace any native third-party packages, if Yum finds
replacements for them in the MySQL Yum repository; see Section 2.11.5,
“Upgrading MySQL with the MySQL Yum Repository” and, for a discussion on
some possible effects of that on your system, see Upgrading the Shared Client
Libraries.

2.Selecting a Release Series

When using the MySQL Yum repository, the latest GA series (currently MySQL 5.7) is selected for
installation by default. If this is what you want, you can skip to the next step, Installing MySQL.

Within the MySQL Yum repository, different release series of the MySQL Community Server are hosted
in different subrepositories. The subrepository for the latest GA series (currently MySQL 5.7) is enabled
by default, and the subrepositories for all other series (for example, the MySQL 5.6 series) are disabled
by default. Use this command to see all the subrepositories in the MySQL Yum repository, and see
which of them are enabled or disabled:

$> yum repolist all | grep mysql

To install the latest release from the latest GA series, no configuration is needed. To install the latest
release from a specific series other than the latest GA series, disable the subrepository for the latest

150

https://dev.mysql.com/downloads/repo/yum/

Installing MySQL on Linux Using the MySQL Yum Repository

GA series and enable the subrepository for the specific series before running the installation command.
If your platform supports yum-config-manager, you can do that by issuing these commands, which
disable the subrepository for the 5.7 series and enable the one for the 5.6 series:

$> sudo yum-config-manager --disable mysql57-community
$> sudo yum-config-manager --enable mysql56-community

Besides using yum-config-manager command, you can also select a release series by editing
manually the /etc/yum.repos.d/mysql-community.repo file. This is a typical entry for a release
series' subrepository in the file:

[mysql57-community]
name=MySQL 5.7 Community Server
baseurl=http://repo.mysql.com/yum/mysql-5.7-community/el/6/$basearch/
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-mysql

Find the entry for the subrepository you want to configure, and edit the enabled option. Specify
enabled=0 to disable a subrepository, or enabled=1 to enable a subrepository. For example, to
install MySQL 5.6, make sure you have enabled=0 for the above subrepository entry for MySQL 5.7,
and have enabled=1 for the entry for the 5.6 series:

Enable to use MySQL 5.6
[mysql56-community]
name=MySQL 5.6 Community Server
baseurl=http://repo.mysql.com/yum/mysql-5.6-community/el/6/$basearch/
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-mysql

You should only enable subrepository for one release series at any time. When subrepositories for
more than one release series are enabled, the latest series is used by Yum.

Verify that the correct subrepositories have been enabled and disabled by running the following
command and checking its output:

$> yum repolist enabled | grep mysql

3.Disabling the Default MySQL Module

(EL8 systems only) EL8-based systems such as RHEL8 and Oracle Linux 8 include a MySQL module
that is enabled by default. Unless this module is disabled, it masks packages provided by MySQL
repositories. To disable the included module and make the MySQL repository packages visible, use the
following command (for dnf-enabled systems, replace yum in the command with dnf):

$> sudo yum module disable mysql

4.Installing MySQL

Install MySQL by the following command:

$> sudo yum install mysql-community-server

This installs the package for MySQL server (mysql-community-server) and also packages for
the components required to run the server, including packages for the client (mysql-community-
client), the common error messages and character sets for client and server (mysql-community-
common), and the shared client libraries (mysql-community-libs).

151

Installing MySQL on Linux Using the MySQL Yum Repository

5.Starting the MySQL Server

Start the MySQL server with the following command:

$> sudo service mysqld start

This is a sample output of the above command:

Starting mysqld:[OK]

You can check the status of the MySQL server with the following command:

$> sudo service mysqld status

This is a sample output of the above command:

mysqld (pid 3066) is running.

6.Securing the MySQL Installation

The program mysql_secure_installation allows you to perform important operations like setting
the root password, removing anonymous users, and so on. Always run it to secure your MySQL
installation:

$> mysql_secure_installation

It is important to remember the root password you set. See Section 4.4.5, “mysql_secure_installation —
Improve MySQL Installation Security” for details.

For more information on the postinstallation procedures, see Section 2.10, “Postinstallation Setup and
Testing”.

Note

Compatibility Information for EL7-based platforms: The following RPM packages
from the native software repositories of the platforms are incompatible with the
package from the MySQL Yum repository that installs the MySQL server. Once you
have installed MySQL using the MySQL Yum repository, you cannot install these
packages (and vice versa).

• akonadi-mysql

Installing Additional MySQL Products and Components with Yum

You can use Yum to install and manage individual components of MySQL. Some of these components
are hosted in sub-repositories of the MySQL Yum repository: for example, the MySQL Connectors are to
be found in the MySQL Connectors Community sub-repository, and the MySQL Workbench in MySQL
Tools Community. You can use the following command to list the packages for all the MySQL components
available for your platform from the MySQL Yum repository:

$> sudo yum --disablerepo=* --enablerepo='mysql*-community*' list available

Install any packages of your choice with the following command, replacing package-name with name of
the package:

$> sudo yum install package-name

For example, to install MySQL Workbench:

152

Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository

$> sudo yum install mysql-workbench-community

To install the shared client libraries:

$> sudo yum install mysql-community-libs

Updating MySQL with Yum

Besides installation, you can also perform updates for MySQL products and components using the MySQL
Yum repository. See Section 2.11.5, “Upgrading MySQL with the MySQL Yum Repository” for details.

2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum
Repository

For supported Yum-based platforms (see Section 2.5.1, “Installing MySQL on Linux Using the MySQL
Yum Repository”, for a list), you can replace a third-party distribution of MySQL with the latest GA release
(from the MySQL 5.7 series currently) from the MySQL Yum repository. According to how your third-party
distribution of MySQL was installed, there are different steps to follow:

Replacing a Native Third-Party Distribution of MySQL

If you have installed a third-party distribution of MySQL from a native software repository (that is, a
software repository provided by your own Linux distribution), follow these steps:

1.Backing Up Your Database

To avoid loss of data, always back up your database before trying to replace your MySQL installation
using the MySQL Yum repository. See Chapter 7, Backup and Recovery, on how to back up your
database.

2.Adding the MySQL Yum Repository

Add the MySQL Yum repository to your system's repository list by following the instructions given in
Adding the MySQL Yum Repository.

3.Replacing the Native Third-Party Distribution by a Yum Update

By design, the MySQL Yum repository replaces your native third-party MySQL with the latest GA
release (from the MySQL 5.7 series currently) from the MySQL Yum repository when you perform a
yum update command on the system, or a yum update mysql-server.

After updating MySQL using the Yum repository, applications compiled with older versions of the shared
client libraries should continue to work. However, if you want to recompile applications and dynamically
link them with the updated libraries, see Upgrading the Shared Client Libraries, for some special
considerations.

Replacing a Nonnative Third-Party Distribution of MySQL

If you have installed a third-party distribution of MySQL from a nonnative software repository (that is, a
software repository not provided by your own Linux distribution), follow these steps:

1.Backing Up Your Database

To avoid loss of data, always back up your database before trying to replace your MySQL installation
using the MySQL Yum repository. See Chapter 7, Backup and Recovery, on how to back up your
database.

153

Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository

2.Stopping Yum from Receiving MySQL Packages from Third-Party, Nonnative Repositories

Before you can use the MySQL Yum repository for installing MySQL, you must stop your system from
receiving MySQL packages from any third-party, nonnative Yum repositories.

For example, if you have installed MariaDB using their own software repository, get a list of the installed
MariaDB packages using the following command:

$> yum list installed mariadb*

This is a sample output for the command:

MariaDB-common.i686 10.0.4-1 @mariadb
MariaDB-compat.i686 10.0.4-1 @mariadb
MariaDB-server.i686 10.0.4-1 @mariadb

From the command output, we can identify the installed packages (MariaDB-common, MariaDB-
compat, and MariaDB-server) and the source of them (a nonnative software repository named
mariadb).

As another example, if you have installed Percona using their own software repository, get a list of the
installed Percona packages using the following command:

$> yum list installed Percona*

This is a sample output for the command:

Percona-Server-client-55.i686 5.5.39-rel36.0.el6 @percona-release-i386
Percona-Server-server-55.i686 5.5.39-rel36.0.el6 @percona-release-i386
Percona-Server-shared-55.i686 5.5.39-rel36.0.el6 @percona-release-i386
percona-release.noarch 0.1-3 @/percona-release-0.1-3.noarch

From the command output, we can identify the installed packages (Percona-Server-client,
Percona-Server-server, Percona-Server-shared, and percona-release.noarch) and the
source of them (a nonnative software repository named percona-release).

If you are not sure which third-party MySQL fork you have installed, this command should reveal it and
list the RPM packages installed for it, as well as the third-party repository that supplies the packages:

$> yum --disablerepo=* provides mysql*

The next step is to stop Yum from receiving packages from the nonnative repository. If the yum-
config-manager utility is supported on your platform, you can, for example, use this command for
stopping delivery from MariaDB:

$> sudo yum-config-manager --disable mariadb

And use this command for stopping delivery from Percona:

$> sudo yum-config-manager --disable percona-release

You can perform the same task by removing the entry for the software repository existing in one of the
repository files under the /etc/yum.repos.d/ directory. This is how the entry typically looks like for
MariaDB:

[mariadb] name = MariaDB
 baseurl = [base URL for repository]
 gpgkey = [URL for GPG key]

154

Installing MySQL on Linux Using the MySQL APT Repository

 gpgcheck =1

The entry is usually found in the file /etc/yum.repos.d/MariaDB.repo for MariaDB—delete the
file, or remove entry from it (or from the file in which you find the entry).

Note

This step is not necessary for an installation that was configured with a Yum
repository release package (like Percona) if you are going to remove the release
package (percona-release.noarch for Percona), as shown in the uninstall
command for Percona in Step 3 below.

3.Uninstalling the Nonnative Third-Party MySQL Distribution of MySQL

The nonnative third-party MySQL distribution must first be uninstalled before you can use the MySQL
Yum repository to install MySQL. For the MariaDB packages found in Step 2 above, uninstall them with
the following command:

$> sudo yum remove MariaDB-common MariaDB-compat MariaDB-server

For the Percona packages we found in Step 2 above:

$> sudo yum remove Percona-Server-client-55 Percona-Server-server-55 \
 Percona-Server-shared-55.i686 percona-release

4.Installing MySQL with the MySQL Yum Repository

Then, install MySQL with the MySQL Yum repository by following the instructions given in
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”: .

Important

• If you have chosen to replace your third-party MySQL distribution with
a newer version of MySQL from the MySQL Yum repository, remember
to run mysql_upgrade after the server starts, to check and possibly
resolve any incompatibilities between the old data and the upgraded
software. mysql_upgrade also performs other functions; see Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables” for details.

• For EL7-based platforms: See Compatibility Information for EL7-based
platforms [152].

2.5.3 Installing MySQL on Linux Using the MySQL APT Repository

The MySQL APT repository provides deb packages for installing and managing the MySQL server, client,
and other components on Debian and Ubuntu platforms.

Instructions for using the MySQL APT Repository are available in A Quick Guide to Using the MySQL APT
Repository.

2.5.4 Installing MySQL on Linux Using the MySQL SLES Repository

The MySQL SLES repository provides RPM packages for installing and managing the MySQL server,
client, and other components on SUSE Enterprise Linux Server.

Instructions for using the MySQL SLES repository are available in A Quick Guide to Using the MySQL
SLES Repository.

155

https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/

Installing MySQL on Linux Using RPM Packages from Oracle

Note

The MySQL SLES repository is now in development release. We encourage you to
try it and provide us with feedback. Please report any bugs or inconsistencies you
observe to our Bugs Database.

2.5.5 Installing MySQL on Linux Using RPM Packages from Oracle

The recommended way to install MySQL on RPM-based Linux distributions is by using the RPM packages
provided by Oracle. There are two sources for obtaining them, for the Community Edition of MySQL:

• From the MySQL software repositories:

• The MySQL Yum repository (see Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum
Repository” for details).

• The MySQL SLES repository (see Section 2.5.4, “Installing MySQL on Linux Using the MySQL SLES
Repository” for details).

• From the MySQL Downloads page in the MySQL Developer Zone.

Note

RPM distributions of MySQL are also provided by other vendors. Be aware that
they may differ from those built by Oracle in features, capabilities, and conventions
(including communication setup), and that the installation instructions in this manual
do not necessarily apply to them. The vendor's instructions should be consulted
instead.

If you have such a third-party distribution of MySQL running on your system and
now want to migrate to Oracle's distribution using the RPM packages downloaded
from the MySQL Developer Zone, see Compatibility with RPM Packages from Other
Vendors below. The preferred method of migration, however, is to use the MySQL
Yum repository or MySQL SLES repository.

There are two kinds of RPM packages for installing MySQL 5.6 :

• The older kind: Their package names started with MYSQL- . They are available from the MySQL
Downloads page in the MySQL Developer Zone. The instructions given in this section are for using these
packages.

• The newer kind: Their package names started with mysql-community- or mysql-commercial-.
They are available from the MySQL Yum repository and MySQL SLES repository. If, instead
of configuring your system to install these RPM directly from the MySQL repositories (which is
recommended), you are downloading the packages from the repositories and then installing them
manually in separate steps, use the installation commands given for the MySQL 5.7 RPMs in Installing
MySQL on Linux Using RPM Packages from Oracle, but consult this section for information like
installation layout, server initialization, root password, and so on.

RPM packages for MySQL are listed in the following tables:

Table 2.9 RPM Packages for MySQL Community Edition

Package Name Summary

MySQL-server Database server and related tools

MySQL-client MySQL client applications and tools

156

http://bugs.mysql.com
https://dev.mysql.com/downloads/
https://dev.mysql.com/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/
https://dev.mysql.com/doc/refman/5.7/en/linux-installation-rpm.html
https://dev.mysql.com/doc/refman/5.7/en/linux-installation-rpm.html

Installing MySQL on Linux Using RPM Packages from Oracle

Package Name Summary

MySQL-devel Development header files and libraries for MySQL
database client applications

MySQL-shared Shared libraries for MySQL database client
applications

MySQL-shared-compat Shared compatibility libraries for previous MySQL
installations

MySQL-embedded MySQL embedded library

MySQL-test Test suite for the MySQL server

Dependency relationships exist among some of the packages. If you plan to install many of the packages,
you may wish to download the RPM bundle tar file instead, which contains all the RPM packages listed
above, so that you need not download them separately.

The full names for the RPMs have the following syntax:

packagename-version-distribution-arch.rpm

The distribution and arch values indicate the Linux distribution and the processor type for which the
package was built. See the table below for lists of the distribution identifiers:

Table 2.10 MySQL Linux RPM Package Distribution Identifiers

distribution Value Intended Use

el6, el7 Red Hat Enterprise Linux/Oracle Linux/CentOS 5, 6,
or 7

sles11, sles12 SUSE Linux Enterprise Server 11 or 12

linux_glibc2.5 Distribution independent; run on any RPM-based
Linux distribution

To see all files in an RPM package (for example, MySQL-server), use the following command:

$> rpm -qpl MySQL-server-version-distribution-arch.rpm

In most cases, you need to install the MySQL-server and MySQL-client to get a functional, standard
MySQL installation. To perform such a standard, minimal installation, go to the folder that contains all those
packages (and, preferably, no other RPM packages with similar names), and issue the following command
(replace yum with zypper for SLES systems):

$> yum install MySQL-{server,client}-*

While it is much preferable to use a high-level package management tool like yum to install the packages,
users who prefer direct rpm commands can replace the yum install command with the rpm -Uvh
command; however, using rpm -Uvh instead makes the installation process more prone to failure, due to
potential dependency issues the installation process might run into.

To install only the client programs, you can skip installing the MySQL-server package; issue the following
command (replace yum with zypper for SLES systems):

$> yum install MySQL-client-*

A standard installation of MySQL using the RPM packages result in files and resources created under the
system directories, shown in the following table.

157

Installing MySQL on Linux Using RPM Packages from Oracle

Table 2.11 MySQL Installation Layout for Linux RPM Packages from the MySQL Developer Zone

Files or Resources Location

Client programs and scripts /usr/bin

mysqld server /usr/sbin

Data directory /var/lib/mysql

Error log file For RHEL, Oracle Linux, or CentOS: /var/lib/
mysql/host_name.err

For SLES: /var/log/mysql/mysqld.log

System V init script /etc/init.d/mysql

Systemd service mysql

Pid file /var/lib/mysql/host_name.pid

Unix manual pages /usr/share/man

Include (header) files /usr/include/mysql

Libraries /usr/lib/mysql

Socket /var/lib/mysql/mysql.sock

Miscellaneous support files (for example, error
messages, and character set files)

/usr/share/mysql

The installation also creates a user named mysql and a group named mysql on the system.

MySQL is not automatically started at the end of the installation process. Use the following command to
start MySQL:

$> service mysql start

At the initial start up of the server, the server is initialized if the data directory of the server is empty.
mysql_install_db is invoked with the --random-passwords option, which assigns a random
password to the MySQL root accounts and sets the “password expired” flag for those accounts. It
is necessary after installation to start the server, connect as root using the initial random password,
and assign a new root password. Until this is done, root cannot do anything else. This must be
done for each root account you intend to use. To change the password, you can use the SET
PASSWORD statement (for example, with the mysql client). You can also use mysqladmin or
mysql_secure_installation. For additional details (including where to find the assigned random
root password), see Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”. (Install
operations using RPMs for Unbreakable Linux Network are unaffected because they do not run
mysql_install_db.)

During an upgrade installation using RPM packages, if the MySQL server is running when the upgrade
occurs then the MySQL server is stopped, the upgrade occurs, and the MySQL server is restarted. One
exception: if the edition also changes during an upgrade (such as community to commercial, or vice-versa),
then MySQL server is not restarted.

If something goes wrong during installation, you might find debug information in the error log file /var/
lib/mysql/host_name.err.

Compatibility with RPM Packages from Other Vendors. If you have installed packages for MySQL
from your Linux distribution's local software repository, it is much preferable to install the new, directly-
downloaded packages from Oracle using the package management system of your platform (yum or
zypper), as described above. The command replaces old packages with new ones to ensure compatibility

158

Installing MySQL on Linux Using Debian Packages from Oracle

of old applications with the new installation; for example, the old MySQL-shared package is replaced
with the MySQL-shared-compat package, which provides a replacement-compatible client library for
applications that were using your older MySQL installation. If there was an older version of MySQL-
shared-compat on the system, it also gets replaced.

If you have installed third-party packages for MySQL that are NOT from your Linux distribution's local
software repository (for example, packages directly downloaded from a vendor other than Oracle), you
should uninstall all those packages before installing the new, directly-downloaded packages from Oracle.
This is because conflicts may arise between those vendor's RPM packages and Oracle's: for example, a
vendor's convention about which files belong with the server and which belong with the client library may
differ from that used for Oracle packages. Attempts to install an Oracle RPM may then result in messages
saying that files in the RPM to be installed conflict with files from an installed package.

Debug Package. A special variant of MySQL Server compiled with the debug package has been
included in the server RPM packages. It performs debugging and memory allocation checks and produces
a trace file when the server is running. To use that debug version, start MySQL with /usr/sbin/mysqld-
debug, instead of starting it as a service or with /usr/sbin/mysqld. See Section 5.8.3, “The DBUG
Package” for the debug options you can use.

Note

The default plugin directory for debug builds changed from /usr/lib64/mysql/
plugin to /usr/lib64/mysql/plugin/debug in 5.6.39. Previously, it was
necessary to change plugin_dir to /usr/lib64/mysql/plugin/debug for
debug builds.

Rebuilding RPMs from source SRPMs. Source code SRPM packages for MySQL are available for
download. They can be used as-is to rebuild the MySQL RPMs with the standard rpmbuild tool chain.

Important

RPMs for NDB Cluster. Standard MySQL server RPMs built by MySQL do not
provide support for the NDBCLUSTER storage engine. For more information about
installing NDB Cluster from RPMs, see Section 18.3, “NDB Cluster Installation”.

2.5.6 Installing MySQL on Linux Using Debian Packages from Oracle

Oracle provides Debian packages for installing MySQL on Debian or Debian-like Linux systems. The
packages are available through two different channels:

• The MySQL APT Repository, supporting Debian and Ubuntu platforms. For details, see Section 2.5.3,
“Installing MySQL on Linux Using the MySQL APT Repository”.

• The MySQL Developer Zone's Download Area. For details, see Section 2.1.3, “How to Get MySQL”. The
following are some information on the Debian packages available there and the instructions for installing
them:

• You may also need to install the libaio library if it is not already present on your system:

$> sudo apt-get install libaio1

• Various Debian packages are provided in the MySQL Developer Zone for installing different
components of MySQL. The preferred method is to use the tarball bundle, which contains the
packages needed for a basic setup of MySQL. The tarball bundles have names in the format of
mysql-server_MVER-DVER_CPU.deb-bundle.tar. MVER is the MySQL version and DVER is the
Linux distribution version. The CPU value indicates the processor type or family for which the package
is built, as shown in the following table:

159

https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/

Installing MySQL on Linux Using Debian Packages from Oracle

Table 2.12 MySQL Debian and Ubuntu Installation Package CPU Identifiers

CPU Value Intended Processor Type or Family

i386 Pentium processor or better, 32 bit

amd64 64-bit x86 processor

• After downloading the tarball, unpack it with the following command:

$> tar -xvf mysql-server_MVER-DVER_CPU.deb-bundle.tar

• In general, install the deb packages unpacked from the tarball with the command (see explanations
below for the extra steps required for installing the server package):

$> sudo dpkg -i package-name.deb

There are four packages to install:

• The database common files (install this package before the other ones):

$> sudo dpkg -i mysql-common_MVER-DVER_CPU.deb

• The MySQL server:

Install first the package for the database common files (see the last bullet), and then pre-configure
your server installation by the following command:

$> sudo dpkg-preconfigure mysql-community-server_MVER-DVER_CPU.deb

You are asked to provide a password for the root user for your MySQL installation. You might also
be asked other questions regarding the installation.

Important

Make sure you remember the root password you set. Users who want to set
a password later can leave the password field blank in the dialogue box
and just press OK. However, it is very important that you set the password
soon using the program mysql_secure_installation, as people can gain

160

Installing MySQL on Linux from the Native Software Repositories

anonymous access to your MySQL server until you have secured the
database's root account with a password.

Next, install the server package with the following command:

$> sudo dpkg -i mysql-community-server_MVER-DVER_CPU.deb

• The MySQL client:

$> sudo dpkg -i mysql-community-client_MVER-DVER_CPU.deb

• The MySQL shared client library:

$> sudo dpkg -i libmysqlclient18_MVER-DVER_CPU.deb

Here are where the files are installed on the system:

• All configuration files (like my.cnf) are under /etc

• All binaries, libraries, headers, etc., are under /usr

• The data directory is under /var

Note

Debian distributions of MySQL are also provided by other vendors. Be aware that
they may differ from those built by Oracle in features, capabilities, and conventions
(including communication setup), and that the instructions in this manual do not
necessarily apply to installing them. The vendor's instructions should be consulted
instead.

2.5.7 Installing MySQL on Linux from the Native Software Repositories

Many Linux distributions include a version of the MySQL server, client tools, and development components
in their native software repositories and can be installed with the platforms' standard package management
systems. This section provides basic instructions for installing MySQL using those package management
systems.

Important

Native packages are often several versions behind the currently available release.
You are also normally unable to install development milestone releases (DMRs), as
these are not usually made available in the native repositories. Before proceeding,
we recommend that you check out the other installation options described in
Section 2.5, “Installing MySQL on Linux”.

Distribution specific instructions are shown below:

• Red Hat Linux, Fedora, CentOS

Note

For a number of Linux distributions, you can install MySQL using the MySQL
Yum repository instead of the platform's native software repository. See
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository” for
details.

161

Installing MySQL on Linux from the Native Software Repositories

For Red Hat and similar distributions, the MySQL distribution is divided into a number of separate
packages, mysql for the client tools, mysql-server for the server and associated tools, and mysql-
libs for the libraries. The libraries are required if you want to provide connectivity from different
languages and environments such as Perl, Python and others.

To install, use the yum command to specify the packages that you want to install. For example:

#> yum install mysql mysql-server mysql-libs mysql-server
Loaded plugins: presto, refresh-packagekit
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package mysql.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-libs.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-server.x86_64 0:5.1.48-2.fc13 set to be updated
--> Processing Dependency: perl-DBD-MySQL for package: mysql-server-5.1.48-2.fc13.x86_64
--> Running transaction check
---> Package perl-DBD-MySQL.x86_64 0:4.017-1.fc13 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version Repository Size
==
Installing:
 mysql x86_64 5.1.48-2.fc13 updates 889 k
 mysql-libs x86_64 5.1.48-2.fc13 updates 1.2 M
 mysql-server x86_64 5.1.48-2.fc13 updates 8.1 M
Installing for dependencies:
 perl-DBD-MySQL x86_64 4.017-1.fc13 updates 136 k

Transaction Summary
==
Install 4 Package(s)
Upgrade 0 Package(s)

Total download size: 10 M
Installed size: 30 M
Is this ok [y/N]: y
Downloading Packages:
Setting up and reading Presto delta metadata
Processing delta metadata
Package(s) data still to download: 10 M
(1/4): mysql-5.1.48-2.fc13.x86_64.rpm | 889 kB 00:04
(2/4): mysql-libs-5.1.48-2.fc13.x86_64.rpm | 1.2 MB 00:06
(3/4): mysql-server-5.1.48-2.fc13.x86_64.rpm | 8.1 MB 00:40
(4/4): perl-DBD-MySQL-4.017-1.fc13.x86_64.rpm | 136 kB 00:00
--
Total 201 kB/s | 10 MB 00:52
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing : mysql-libs-5.1.48-2.fc13.x86_64 1/4
 Installing : mysql-5.1.48-2.fc13.x86_64 2/4
 Installing : perl-DBD-MySQL-4.017-1.fc13.x86_64 3/4
 Installing : mysql-server-5.1.48-2.fc13.x86_64 4/4

Installed:
 mysql.x86_64 0:5.1.48-2.fc13 mysql-libs.x86_64 0:5.1.48-2.fc13
 mysql-server.x86_64 0:5.1.48-2.fc13

Dependency Installed:
 perl-DBD-MySQL.x86_64 0:4.017-1.fc13

162

Installing MySQL on Linux from the Native Software Repositories

Complete!

MySQL and the MySQL server should now be installed. A sample configuration file is installed into /
etc/my.cnf. An init script, to start and stop the server, is installed into /etc/init.d/mysqld. To
start the MySQL server use service:

#> service mysqld start

To enable the server to be started and stopped automatically during boot, use chkconfig:

#> chkconfig --levels 235 mysqld on

Which enables the MySQL server to be started (and stopped) automatically at the specified the run
levels.

The database tables are automatically created for you, if they do not already exist. You should, however,
run mysql_secure_installation to set the root passwords on your server.

• Debian, Ubuntu, Kubuntu

Note

For Debian, Ubuntu, and Kubuntu, MySQL can be installed using the MySQL
APT Repository instead of the platform's native software repository. See
Section 2.5.3, “Installing MySQL on Linux Using the MySQL APT Repository” for
details.

On Debian and related distributions, there are two packages for MySQL in their software repositories,
mysql-client and mysql-server, for the client and server components respectively. You should
specify an explicit version, for example mysql-client-5.1, to ensure that you install the version of
MySQL that you want.

To download and install, including any dependencies, use the apt-get command, specifying the
packages that you want to install.

Note

Before installing, make sure that you update your apt-get index files to ensure
you are downloading the latest available version.

A sample installation of the MySQL packages might look like this (some sections trimmed for clarity):

#> apt-get install mysql-client-5.1 mysql-server-5.1
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
 linux-headers-2.6.28-11 linux-headers-2.6.28-11-generic
Use 'apt-get autoremove' to remove them.
The following extra packages will be installed:
 bsd-mailx libdbd-mysql-perl libdbi-perl libhtml-template-perl
 libmysqlclient15off libmysqlclient16 libnet-daemon-perl libplrpc-perl mailx
 mysql-common postfix
Suggested packages:
 dbishell libipc-sharedcache-perl tinyca procmail postfix-mysql postfix-pgsql
 postfix-ldap postfix-pcre sasl2-bin resolvconf postfix-cdb
The following NEW packages will be installed
 bsd-mailx libdbd-mysql-perl libdbi-perl libhtml-template-perl
 libmysqlclient15off libmysqlclient16 libnet-daemon-perl libplrpc-perl mailx
 mysql-client-5.1 mysql-common mysql-server-5.1 postfix

163

https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/apt/

Installing MySQL on Linux from the Native Software Repositories

0 upgraded, 13 newly installed, 0 to remove and 182 not upgraded.
Need to get 1907kB/25.3MB of archives.
After this operation, 59.5MB of additional disk space will be used.
Do you want to continue [Y/n]? Y
Get: 1 http://gb.archive.ubuntu.com jaunty-updates/main mysql-common 5.1.30really5.0.75-0ubuntu10.5 [63.6kB]
Get: 2 http://gb.archive.ubuntu.com jaunty-updates/main libmysqlclient15off 5.1.30really5.0.75-0ubuntu10.5 [1843kB]
Fetched 1907kB in 9s (205kB/s)
Preconfiguring packages ...
Selecting previously deselected package mysql-common.
(Reading database ... 121260 files and directories currently installed.)
...
Processing 1 added doc-base file(s)...
Registering documents with scrollkeeper...
Setting up libnet-daemon-perl (0.43-1) ...
Setting up libplrpc-perl (0.2020-1) ...
Setting up libdbi-perl (1.607-1) ...
Setting up libmysqlclient15off (5.1.30really5.0.75-0ubuntu10.5) ...

Setting up libdbd-mysql-perl (4.008-1) ...
Setting up libmysqlclient16 (5.1.31-1ubuntu2) ...

Setting up mysql-client-5.1 (5.1.31-1ubuntu2) ...

Setting up mysql-server-5.1 (5.1.31-1ubuntu2) ...
 * Stopping MySQL database server mysqld
 ...done.
100825 11:46:15 InnoDB: Started; log sequence number 0 46409
100825 11:46:15 InnoDB: Starting shutdown...
100825 11:46:17 InnoDB: Shutdown completed; log sequence number 0 46409
100825 11:46:17 [Warning] Forcing shutdown of 1 plugins
 * Starting MySQL database server mysqld
 ...done.
 * Checking for corrupt, not cleanly closed and upgrade needing tables.
...
Processing triggers for libc6 ...
ldconfig deferred processing now taking place

Note

The apt-get command installs a number of packages, including the MySQL
server, in order to provide the typical tools and application environment. This can
mean that you install a large number of packages in addition to the main MySQL
package.

During installation, the initial database is created, and you are prompted for the MySQL root password
(and confirmation). A configuration file is created in /etc/mysql/my.cnf. An init script is created in
/etc/init.d/mysql.

The server is already started. You can manually start and stop the server using:

#> service mysql [start|stop]

The service is automatically added to run levels 2, 3 and 4,, with stop scripts in the single, shutdown and
restart levels.

164

Deploying MySQL on Linux with Docker

• Gentoo Linux

As a source-based distribution, installing MySQL on Gentoo involves downloading the source, patching
the Gentoo specifics, and then compiling the MySQL server and installing it. This process is handled
automatically by the emerge command.

The MySQL server and client tools are provided within a single package, dev-db/mysql. You can
obtain a list of the versions available to install by looking at the portage directory for the package:

#> ls /usr/portage/dev-db/mysql/mysql-5.6*
mysql-5.6.27.ebuild
mysql-5.6.27-r1.ebuild
mysql-5.6.28.ebuild

To install a specific MySQL version, you must specify the entire atom. For example:

#> emerge =dev-db/mysql-5.6.27-r1

After installation, you should initialize the data directory and set the password for the MySQL root user
(see Section 2.10.1, “Initializing the Data Directory”). Alternatively, use the configuration interface to
perform those tasks:

#> emerge --config =dev-db/mysql-5.6.27-r1

During installation, a sample configuration file is created for you in /etc/mysql/my.cnf, and an init
script is created in /etc/init.d/mysql.

To enable MySQL to start automatically at the normal (default) run levels, use this command:

#> rc-update add mysql default

2.5.8 Deploying MySQL on Linux with Docker

The Docker deployment framework supports easy installation and configuration of MySQL Server. This
section explains how to use a MySQL Server Docker image.

You need to have Docker installed on your system before you can use a MySQL Server Docker image.
See Install Docker for instructions.

Warning

Beware of the security concerns with running Docker containers. See Docker
security for details.

The instructions for using the MySQL Docker container are divided into two sections.

2.5.8.1 Basic Steps for MySQL Server Deployment with Docker

Warning

The MySQL Docker images maintained by the MySQL team are built specifically for
Linux platforms. Other platforms are not supported, and users using these MySQL
Docker images on them are doing so at their own risk. See the discussion here
for some known limitations for running these containers on non-Linux operating
systems.

• Downloading a MySQL Server Docker Image

• Starting a MySQL Server Instance

165

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/security/
https://docs.docker.com/engine/security/

Deploying MySQL on Linux with Docker

• Connecting to MySQL Server from within the Container

• Container Shell Access

• Stopping and Deleting a MySQL Container

• More Topics on Deploying MySQL Server with Docker

Downloading a MySQL Server Docker Image

Downloading the server image in a separate step is not strictly necessary; however, performing this step
before you create your Docker container ensures your local image is up to date. To download the MySQL
Community Server image, run this command:

docker pull mysql/mysql-server:tag

The tag is the label for the image version you want to pull (for example, 5.5, 5.6, 5.7, 8.0, or
latest). If :tag is omitted, the latest label is used, and the image for the latest GA version of MySQL
Community Server is downloaded. Refer to the list of tags for available versions on the mysql/mysql-server
page in the Docker Hub.

You can list downloaded Docker images with this command:

$> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
mysql/mysql-server latest 3157d7f55f8d 4 weeks ago 241MB

Starting a MySQL Server Instance

Start a new Docker container for the MySQL Server with this command:

docker run --name=mysql1 -d mysql/mysql-server:tag

The --name option, for supplying a custom name for your server container (mysql1 in the example), is
optional; if no container name is supplied, a random one is generated. If the Docker image of the specified
name and tag has not been downloaded by an earlier docker pull or docker run command, the
image is now downloaded. After download completes, initialization for the container begins, and the
container appears in the list of running containers when you run the docker ps command; for example:

$> docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
a24888f0d6f4 mysql/mysql-server "/entrypoint.sh my..." 14 seconds ago Up 13 seconds (health: starting) 3306/tcp, 33060/tcp mysql1

The container initialization might take some time. When the server is ready for use, the STATUS of
the container in the output of the docker ps command changes from (health: starting) to
(healthy).

The -d option used in the docker run command above makes the container run in the background. Use
this command to monitor the output from the container:

docker logs mysql1

Once initialization is finished, the command's output is going to contain the random password generated for
the root user; check the password with, for example, this command:

$> docker logs mysql1 2>&1 | grep GENERATED
GENERATED ROOT PASSWORD: Axegh3kAJyDLaRuBemecis&EShOs

166

https://hub.docker.com/r/mysql/mysql-server/tags/
https://hub.docker.com/r/mysql/mysql-server/tags/

Deploying MySQL on Linux with Docker

Connecting to MySQL Server from within the Container

Once the server is ready, you can run the mysql client within the MySQL Server container you just started,
and connect it to the MySQL Server. Use the docker exec -it command to start a mysql client inside
the Docker container you have started, like the following:

docker exec -it mysql1 mysql -uroot -p

When asked, enter the generated root password (see the last step in Starting a MySQL Server Instance
above on how to find the password). Because the MYSQL_ONETIME_PASSWORD option is true by default,
after you have connected a mysql client to the server, you must reset the server root password by issuing
this statement:

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'newpassword';

Substitute newpassword with the password of your choice. Once the password is reset, the server is
ready for use.

Container Shell Access

To have shell access to your MySQL Server container, use the docker exec -it command to start a
bash shell inside the container:

$> docker exec -it mysql1 bash
bash-4.2#

You can then run Linux commands inside the container. For example, to view contents in the server's data
directory inside the container, use this command:

bash-4.2# ls /var/lib/mysql
auto.cnf ca.pem client-key.pem ib_logfile0 ibdata1 mysql mysql.sock.lock private_key.pem server-cert.pem sys
ca-key.pem client-cert.pem ib_buffer_pool ib_logfile1 ibtmp1 mysql.sock performance_schema public_key.pem server-key.pem

Stopping and Deleting a MySQL Container

To stop the MySQL Server container we have created, use this command:

docker stop mysql1

docker stop sends a SIGTERM signal to the mysqld process, so that the server is shut down
gracefully.

Also notice that when the main process of a container (mysqld in the case of a MySQL Server container)
is stopped, the Docker container stops automatically.

To start the MySQL Server container again:

docker start mysql1

To stop and start again the MySQL Server container with a single command:

docker restart mysql1

To delete the MySQL container, stop it first, and then use the docker rm command:

docker stop mysql1

docker rm mysql1

If you want the Docker volume for the server's data directory to be deleted at the same time, add the -v
option to the docker rm command.

167

Deploying MySQL on Linux with Docker

More Topics on Deploying MySQL Server with Docker

For more topics on deploying MySQL Server with Docker like server configuration, persisting data and
configuration, server error log, and container environment variables, see Section 2.5.8.2, “More Topics on
Deploying MySQL Server with Docker”.

2.5.8.2 More Topics on Deploying MySQL Server with Docker

• The Optimized MySQL Installation for Docker

• Configuring the MySQL Server

• Persisting Data and Configuration Changes

• Running Additional Initialization Scripts

• Connect to MySQL from an Application in Another Docker Container

• Server Error Log

• Known Issues

• Docker Environment Variables

The Optimized MySQL Installation for Docker

Docker images for MySQL are optimized for code size, which means they only include crucial components
that are expected to be relevant for the majority of users who run MySQL instances in Docker containers. A
MySQL Docker installation is different from a common, non-Docker installation in the following aspects:

• Included binaries are limited to:

• /usr/bin/my_print_defaults

• /usr/bin/mysql

• /usr/bin/mysql_config

• /usr/bin/mysql_install_db

• /usr/bin/mysql_tzinfo_to_sql

• /usr/bin/mysql_upgrade

• /usr/bin/mysqladmin

• /usr/bin/mysqlcheck

• /usr/bin/mysqldump

• /usr/sbin/mysqld

• All binaries are stripped; they contain no debug information.

Configuring the MySQL Server

When you start the MySQL Docker container, you can pass configuration options to the server through the
docker run command; for example, for the MySQL Server:

168

Deploying MySQL on Linux with Docker

docker run --name mysql1 -d mysql/mysql-server --character-set-server=utf8mb4 --collation-server=utf8mb4_col

The command starts your MySQL Server with utf8mb4 as the default character set and utf8mb4_col as
the default collation for your databases.

Another way to configure the MySQL Server is to prepare a configuration file and mount it at the location
of the server configuration file inside the container. See Persisting Data and Configuration Changes for
details.

Persisting Data and Configuration Changes

Docker containers are in principle ephemeral, and any data or configuration are expected to be lost if the
container is deleted or corrupted (see discussions here). Docker volumes, however, provides a mechanism
to persist data created inside a Docker container. At its initialization, the MySQL Server container creates
a Docker volume for the server data directory. The JSON output for running the docker inspect
command on the container has a Mount key, whose value provides information on the data directory
volume:

$> docker inspect mysql1
...
 "Mounts": [
 {
 "Type": "volume",
 "Name": "4f2d463cfc4bdd4baebcb098c97d7da3337195ed2c6572bc0b89f7e845d27652",
 "Source": "/var/lib/docker/volumes/4f2d463cfc4bdd4baebcb098c97d7da3337195ed2c6572bc0b89f7e845d27652/_data",
 "Destination": "/var/lib/mysql",
 "Driver": "local",
 "Mode": "",
 "RW": true,
 "Propagation": ""
 }
],
...

The output shows that the source folder /var/lib/docker/
volumes/4f2d463cfc4bdd4baebcb098c97d7da3337195ed2c6572bc0b89f7e845d27652/_data,
in which data is persisted on the host, has been mounted at /var/lib/mysql, the server data directory
inside the container.

Another way to preserve data is to bind-mount a host directory using the --mount option when creating
the container. The same technique can be used to persist the configuration of the server. The following
command creates a MySQL Server container and bind-mounts both the data directory and the server
configuration file:

docker run --name=mysql1 \
--mount type=bind,src=/path-on-host-machine/my.cnf,dst=/etc/my.cnf \
--mount type=bind,src=/path-on-host-machine/datadir,dst=/var/lib/mysql \
-d mysql/mysql-server:tag

The command mounts path-on-host-machine/my.cnf at /etc/my.cnf (the server configuration file
inside the container), and path-on-host-machine/datadir at /var/lib/mysql (the data directory
inside the container). The following conditions must be met for the bind-mounting to work:

• The configuration file path-on-host-machine/my.cnf must already exist, and it must contain the
specification for starting the server using the user mysql:

[mysqld]
user=mysql

You can also include other server configuration options in the file.

169

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/reference/commandline/service_create/#add-bind-mounts-or-volumes

Deploying MySQL on Linux with Docker

• The data directory path-on-host-machine/datadir must already exist. For server initialization
to happen, the directory must be empty. You can also mount a directory prepopulated with data and
start the server with it; however, you must make sure you start the Docker container with the same
configuration as the server that created the data, and any host files or directories required are mounted
when starting the container.

Running Additional Initialization Scripts

If there are any .sh or .sql scripts you want to run on the database immediately after it has been
created, you can put them into a host directory and then mount the directory at /docker-entrypoint-
initdb.d/ inside the container. For example, for a MySQL Server container:

docker run --name=mysql1 \
--mount type=bind,src=/path-on-host-machine/scripts/,dst=/docker-entrypoint-initdb.d/ \
-d mysql/mysql-server:tag

Connect to MySQL from an Application in Another Docker Container

By setting up a Docker network, you can allow multiple Docker containers to communicate with each
other, so that a client application in another Docker container can access the MySQL Server in the server
container. First, create a Docker network:

docker network create my-custom-net

Then, when you are creating and starting the server and the client containers, use the --network option
to put them on network you created. For example:

docker run --name=mysql1 --network=my-custom-net -d mysql/mysql-server

docker run --name=myapp1 --network=my-custom-net -d myapp

The myapp1 container can then connect to the mysql1 container with the mysql1 hostname and vice
versa, as Docker automatically sets up a DNS for the given container names. In the following example, we
run the mysql client from inside the myapp1 container to connect to host mysql1 in its own container:

docker exec -it myapp1 mysql --host=mysql1 --user=myuser --password

For other networking techniques for containers, see the Docker container networking section in the Docker
Documentation.

Server Error Log

When the MySQL Server is first started with your server container, a server error log is NOT generated if
either of the following conditions is true:

• A server configuration file from the host has been mounted, but the file does not contain the system
variable log_error (see Persisting Data and Configuration Changes on bind-mounting a server
configuration file).

• A server configuration file from the host has not been mounted, but the Docker environment variable
MYSQL_LOG_CONSOLE is true (the variable's default state for MySQL 5.6 server containers is false).
The MySQL Server's error log is then redirected to stderr, so that the error log goes into the Docker
container's log and is viewable using the docker logs mysqld-container command.

To make MySQL Server generate an error log when either of the two conditions is true, use the --log-
error option to configure the server to generate the error log at a specific location inside the container.
To persist the error log, mount a host file at the location of the error log inside the container as explained in

170

https://docs.docker.com/engine/userguide/networking/

Deploying MySQL on Linux with Docker

Persisting Data and Configuration Changes. However, you must make sure your MySQL Server inside its
container has write access to the mounted host file.

Known Issues

• When using the server system variable audit_log_file to configure the audit log file name, use the
loose option modifier with it, or Docker will be unable to start the server.

Docker Environment Variables

When you create a MySQL Server container, you can configure the MySQL instance by using the --env
option (-e in short) and specifying one or more of the following environment variables.

Notes

• None of the variables below has any effect if the data directory you mount is not
empty, as no server initialization is going to be attempted then (see Persisting
Data and Configuration Changes for more details). Any pre-existing contents in
the folder, including any old server settings, are not modified during the container
startup.

• The boolean variables including MYSQL_RANDOM_ROOT_PASSWORD,
MYSQL_ONETIME_PASSWORD, MYSQL_ALLOW_EMPTY_PASSWORD, and
MYSQL_LOG_CONSOLE are made true by setting them with any strings of nonzero
lengths. Therefore, setting them to, for example, “0”, “false”, or “no” does not
make them false, but actually makes them true. This is a known issue of the
MySQL Server containers.

• MYSQL_RANDOM_ROOT_PASSWORD: When this variable is true (which is its default state, unless
MYSQL_ROOT_PASSWORD or MYSQL_ALLOW_EMPTY_PASSWORD is set to true), a random password
for the server's root user is generated when the Docker container is started. The password is printed
to stdout of the container and can be found by looking at the container’s log (see Starting a MySQL
Server Instance).

• MYSQL_ONETIME_PASSWORD: When the variable is true (which is its default state, unless
MYSQL_ROOT_PASSWORD is set or MYSQL_ALLOW_EMPTY_PASSWORD is set to true), the root user's
password is set as expired and must be changed before MySQL can be used normally.

• MYSQL_DATABASE: This variable allows you to specify the name of a database to be created on image
startup. If a user name and a password are supplied with MYSQL_USER and MYSQL_PASSWORD, the user
is created and granted superuser access to this database (corresponding to GRANT ALL). The specified
database is created by a CREATE DATABASE IF NOT EXIST statement, so that the variable has no
effect if the database already exists.

• MYSQL_USER, MYSQL_PASSWORD: These variables are used in conjunction to create a user and set
that user's password, and the user is granted superuser permissions for the database specified by
the MYSQL_DATABASE variable. Both MYSQL_USER and MYSQL_PASSWORD are required for a user
to be created—if any of the two variables is not set, the other is ignored. If both variables are set but
MYSQL_DATABASE is not, the user is created without any privileges.

Note

There is no need to use this mechanism to create the root superuser,
which is created by default with the password set by either one of the
mechanisms discussed in the descriptions for MYSQL_ROOT_PASSWORD and
MYSQL_RANDOM_ROOT_PASSWORD, unless MYSQL_ALLOW_EMPTY_PASSWORD is
true.

171

Deploying MySQL on Linux with Docker

• MYSQL_ROOT_HOST: By default, MySQL creates the 'root'@'localhost' account. This account
can only be connected to from inside the container as described in Connecting to MySQL Server from
within the Container. To allow root connections from other hosts, set this environment variable. For
example, the value 172.17.0.1, which is the default Docker gateway IP, allows connections from the
host machine that runs the container. The option accepts only one entry, but wildcards are allowed (for
example, MYSQL_ROOT_HOST=172.*.*.* or MYSQL_ROOT_HOST=%).

• MYSQL_LOG_CONSOLE: When the variable is true (the variable's default state for MySQL 5.6 server
containers is false), the MySQL Server's error log is redirected to stderr, so that the error log
goes into the Docker container's log and is viewable using the docker logs mysqld-container
command.

Note

The variable has no effect if a server configuration file from the host has been
mounted (see Persisting Data and Configuration Changes on bind-mounting a
configuration file).

• MYSQL_ROOT_PASSWORD: This variable specifies a password that is set for the MySQL root account.

Warning

Setting the MySQL root user password on the command line is insecure. As
an alternative to specifying the password explicitly, you can set the variable
with a container file path for a password file, and then mount a file from your
host that contains the password at the container file path. This is still not very
secure, as the location of the password file is still exposed. It is preferable
to use the default settings of MYSQL_RANDOM_ROOT_PASSWORD=true and
MYSQL_ONETIME_PASSWORD=true being both true.

• MYSQL_ALLOW_EMPTY_PASSWORD. Set it to true to allow the container to be started with a blank
password for the root user.

Warning

Setting this variable to true is insecure, because it is going to leave
your MySQL instance completely unprotected, allowing anyone
to gain complete superuser access. It is preferable to use the
default settings of MYSQL_RANDOM_ROOT_PASSWORD=true and
MYSQL_ONETIME_PASSWORD=true being both true.

2.5.8.3 Deploying MySQL on Windows and Other Non-Linux Platforms with Docker

Warning

The MySQL Docker images provided by Oracle are built specifically for Linux
platforms. Other platforms are not supported, and users running the MySQL Docker
images from Oracle on them are doing so at their own risk. This section discusses
some known issues for the images when used on non-Linux platforms.

Known Issues for using the MySQL Server Docker images from Oracle on Windows include:

• If you are bind-mounting on the container's MySQL data directory (see Persisting Data and Configuration
Changes for details), you have to set the location of the server socket file with the --socket option to
somewhere outside of the MySQL data directory; otherwise, the server fails to start. This is because the
way Docker for Windows handles file mounting does not allow a host file from being bind-mounted on
the socket file.

172

Installing MySQL on Linux with Juju

2.5.9 Installing MySQL on Linux with Juju

The Juju deployment framework supports easy installation and configuration of MySQL servers. For
instructions, see https://jujucharms.com/mysql/.

2.6 Installing MySQL Using Unbreakable Linux Network (ULN)
Linux supports a number of different solutions for installing MySQL, covered in Section 2.5, “Installing
MySQL on Linux”. One of the methods, covered in this section, is installing from Oracle's Unbreakable
Linux Network (ULN). You can find information about Oracle Linux and ULN under http://linux.oracle.com/.

To use ULN, you need to obtain a ULN login and register the machine used for installation with ULN. This
is described in detail in the ULN FAQ. The page also describes how to install and update packages. The
MySQL packages are in the “MySQL for Oracle Linux 6” and “MySQL for Oracle Linux 7” channels for your
system architecture on ULN.

Note

At the time of this writing, ULN provides MySQL 5.6 for Oracle Linux 6 and Oracle
Linux 7.

Once MySQL has been installed using ULN, you can find information on starting and stopping the
server, and more, in this section, particularly under Section 2.5.5, “Installing MySQL on Linux Using RPM
Packages from Oracle”.

If you're updating an existing MySQL installation to an installation using ULN, the recommended procedure
is to export your data using mysqldump, remove the existing installation, install MySQL from ULN, and
load the exported data into your freshly installed MySQL.

If the existing MySQL installation you're upgrading from is from a previous release series (prior to MySQL
5.6), make sure to read the section on upgrading MySQL, Section 2.11, “Upgrading MySQL”.

2.7 Installing MySQL on Solaris
Note

MySQL 5.6 supports Solaris 10 (Update 11 and later), and Solaris 11 (Update 3 and
later).

MySQL on Solaris is available in a number of different formats.

• For information on installing using the native Solaris PKG format, see Section 2.7.1, “Installing MySQL
on Solaris Using a Solaris PKG”.

• To use a standard tar binary installation, use the notes provided in Section 2.2, “Installing MySQL
on Unix/Linux Using Generic Binaries”. Check the notes and hints at the end of this section for Solaris
specific notes that you may need before or after installation.

To obtain a binary MySQL distribution for Solaris in tarball or PKG format, https://dev.mysql.com/
downloads/mysql/5.6.html.

Additional notes to be aware of when installing and using MySQL on Solaris:

• If you want to use MySQL with the mysql user and group, use the groupadd and useradd commands:

groupadd mysql
useradd -g mysql -s /bin/false mysql

173

https://jujucharms.com/mysql/
http://linux.oracle.com/
https://linux.oracle.com/uln_faq.html
https://dev.mysql.com/downloads/mysql/5.6.html
https://dev.mysql.com/downloads/mysql/5.6.html

Installing MySQL on Solaris Using a Solaris PKG

• If you install MySQL using a binary tarball distribution on Solaris, because the Solaris tar cannot handle
long file names, use GNU tar (gtar) to unpack the distribution. If you do not have GNU tar on your
system, install it with the following command:

pkg install archiver/gnu-tar

• You should mount any file systems on which you intend to store InnoDB files with the forcedirectio
option. (By default mounting is done without this option.) Failing to do so causes a significant drop in
performance when using the InnoDB storage engine on this platform.

• If you would like MySQL to start automatically, you can copy support-files/mysql.server to /
etc/init.d and create a symbolic link to it named /etc/rc3.d/S99mysql.server.

• If too many processes try to connect very rapidly to mysqld, you should see this error in the MySQL log:

Error in accept: Protocol error

You might try starting the server with the --back_log=50 option as a workaround for this.

• To configure the generation of core files on Solaris you should use the coreadm command. Because
of the security implications of generating a core on a setuid() application, by default, Solaris does
not support core files on setuid() programs. However, you can modify this behavior using coreadm.
If you enable setuid() core files for the current user, they are generated using mode 600, and are
owned by the superuser.

2.7.1 Installing MySQL on Solaris Using a Solaris PKG

You can install MySQL on Solaris using a binary package using the native Solaris PKG format instead of
the binary tarball distribution.

To use this package, download the corresponding mysql-VERSION-solaris10-PLATFORM.pkg.gz
file, then uncompress it. For example:

$> gunzip mysql-5.6.51-solaris10-x86_64.pkg.gz

To install a new package, use pkgadd and follow the onscreen prompts. You must have root privileges to
perform this operation:

$> pkgadd -d mysql-5.6.51-solaris10-x86_64.pkg

The following packages are available:
 1 mysql MySQL Community Server (GPL)
 (i86pc) 5.6.51

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]:

The PKG installer installs all of the files and tools needed, and then initializes your database if one does
not exist. To complete the installation, you should set the root password for MySQL as provided in the
instructions at the end of the installation. Alternatively, you can run the mysql_secure_installation
script that comes with the installation.

By default, the PKG package installs MySQL under the root path /opt/mysql. You can change only the
installation root path when using pkgadd, which can be used to install MySQL in a different Solaris zone. If
you need to install in a specific directory, use a binary tar file distribution.

The pkg installer copies a suitable startup script for MySQL into /etc/init.d/mysql. To enable
MySQL to startup and shutdown automatically, you should create a link between this file and the init script

174

Installing MySQL on FreeBSD

directories. For example, to ensure safe startup and shutdown of MySQL you could use the following
commands to add the right links:

$> ln /etc/init.d/mysql /etc/rc3.d/S91mysql
$> ln /etc/init.d/mysql /etc/rc0.d/K02mysql

To remove MySQL, the installed package name is mysql. You can use this in combination with the pkgrm
command to remove the installation.

To upgrade when using the Solaris package file format, you must remove the existing installation before
installing the updated package. Removal of the package does not delete the existing database information,
only the server, binaries and support files. The typical upgrade sequence is therefore:

$> mysqladmin shutdown
$> pkgrm mysql
$> pkgadd -d mysql-5.6.51-solaris10-x86_64.pkg
$> mysqld_safe &
$> mysql_upgrade

You should check the notes in Section 2.11, “Upgrading MySQL” before performing any upgrade.

2.8 Installing MySQL on FreeBSD
This section provides information about installing MySQL on variants of FreeBSD Unix.

You can install MySQL on FreeBSD by using the binary distribution provided by Oracle. For more
information, see Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.

The easiest (and preferred) way to install MySQL is to use the mysql-server and mysql-client ports
available at http://www.freebsd.org/. Using these ports gives you the following benefits:

• A working MySQL with all optimizations enabled that are known to work on your version of FreeBSD.

• Automatic configuration and build.

• Startup scripts installed in /usr/local/etc/rc.d.

• The ability to use pkg_info -L to see which files are installed.

• The ability to use pkg_delete to remove MySQL if you no longer want it on your machine.

The MySQL build process requires GNU make (gmake) to work. If GNU make is not available, you must
install it first before compiling MySQL.

To install using the ports system:

cd /usr/ports/databases/mysql56-server
make
...
cd /usr/ports/databases/mysql56-client
make
...

The standard port installation places the server into /usr/local/libexec/mysqld, with the startup
script for the MySQL server placed in /usr/local/etc/rc.d/mysql-server.

Some additional notes on the BSD implementation:

• To remove MySQL after installation using the ports system:

cd /usr/ports/databases/mysql56-server

175

http://www.freebsd.org/

Installing MySQL from Source

make deinstall
...
cd /usr/ports/databases/mysql56-client
make deinstall
...

• If you get problems with the current date in MySQL, setting the TZ variable should help. See Section 4.9,
“Environment Variables”.

2.9 Installing MySQL from Source
Building MySQL from the source code enables you to customize build parameters, compiler
optimizations, and installation location. For a list of systems on which MySQL is known to run, see https://
www.mysql.com/support/supportedplatforms/database.html.

Before you proceed with an installation from source, check whether Oracle produces a precompiled binary
distribution for your platform and whether it works for you. We put a great deal of effort into ensuring that
our binaries are built with the best possible options for optimal performance. Instructions for installing
binary distributions are available in Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.

If you are interested in building MySQL from a source distribution using build options the same as or similar
to those use by Oracle to produce binary distributions on your platform, obtain a binary distribution, unpack
it, and look in the docs/INFO_BIN file, which contains information about how that MySQL distribution was
configured and compiled.

Warning

Building MySQL with nonstandard options may lead to reduced functionality,
performance, or security.

2.9.1 Source Installation Methods

There are two methods for installing MySQL from source:

• Use a standard MySQL source distribution. To obtain a standard distribution, see Section 2.1.3, “How
to Get MySQL”. For instructions on building from a standard distribution, see Section 2.9.4, “Installing
MySQL Using a Standard Source Distribution”.

Standard distributions are available as compressed tar files, Zip archives, or RPM packages.
Distribution files have names of the form mysql-VERSION.tar.gz, mysql-VERSION.zip, or
mysql-VERSION.rpm, where VERSION is a number like 5.6.51. File names for source distributions
can be distinguished from those for precompiled binary distributions in that source distribution names
are generic and include no platform name, whereas binary distribution names include a platform name
indicating the type of system for which the distribution is intended (for example, pc-linux-i686 or
winx64).

• Use a MySQL development tree. For information on building from one of the development trees, see
Section 2.9.5, “Installing MySQL Using a Development Source Tree”.

2.9.2 Source Installation Prerequisites

Installation of MySQL from source requires several development tools. Some of these tools are needed
no matter whether you use a standard source distribution or a development source tree. Other tool
requirements depend on which installation method you use.

To install MySQL from source, the following system requirements must be satisfied, regardless of
installation method:

176

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html

Source Installation Prerequisites

• CMake, which is used as the build framework on all platforms. CMake can be downloaded from http://
www.cmake.org.

• A good make program. Although some platforms come with their own make implementations, it is highly
recommended that you use GNU make 3.75 or higher. It may already be available on your system as
gmake. GNU make is available from http://www.gnu.org/software/make/.

• A working ANSI C++ compiler. GCC 4.2.1 or later, Sun Studio 12 or later, Visual Studio 2010 or later,
and many current vendor-supplied compilers are known to work.

• An SSL library is required for support of encrypted connections, entropy for random number generation,
and other encryption-related operations. To specify the library explicitly, use the WITH_SSL option when
you invoke CMake. For additional information, see Section 2.9.6, “Configuring SSL Library Support”.

• The ncurses library.

• Sufficient free memory. If you encounter problems such as “internal compiler error” when compiling large
source files, it may be that you have too little memory. If compiling on a virtual machine, try increasing
the memory allocation.

• Perl is needed if you intend to run test scripts. Most Unix-like systems include Perl. On Windows, you
can use a version such as ActiveState Perl.

To install MySQL from a standard source distribution, one of the following tools is required to unpack the
distribution file:

• For a .tar.gz compressed tar file: GNU gunzip to uncompress the distribution and a reasonable
tar to unpack it. If your tar program supports the z option, it can both uncompress and unpack the file.

GNU tar is known to work. The standard tar provided with some operating systems is not able to
unpack the long file names in the MySQL distribution. You should download and install GNU tar, or if
available, use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as tar
within a GNU or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU tar is
available from http://www.gnu.org/software/tar/.

• For a .zip Zip archive: WinZip or another tool that can read .zip files.

• For an .rpm RPM package: The rpmbuild program used to build the distribution unpacks it.

To install MySQL from a development source tree, the following additional tools are required:

• The Git revision control system is required to obtain the development source code. The GitHub
Help provides instructions for downloading and installing Git on different platforms. MySQL officially
joined GitHub in September, 2014. For more information about MySQL's move to GitHub, refer to the
announcement on the MySQL Release Engineering blog: MySQL on GitHub

• bison 2.1 or higher, available from http://www.gnu.org/software/bison/. (Version 1 is no longer
supported.) Use the latest version of bison where possible; if you experience problems, upgrade to a
later version, rather than revert to an earlier one.

bison is available from http://www.gnu.org/software/bison/. bison for Windows can be downloaded
from http://gnuwin32.sourceforge.net/packages/bison.htm. Download the package labeled “Complete
package, excluding sources”. On Windows, the default location for bison is the C:\Program Files
\GnuWin32 directory. Some utilities may fail to find bison because of the space in the directory name.
Also, Visual Studio may simply hang if there are spaces in the path. You can resolve these problems by
installing into a directory that does not contain a space (for example C:\GnuWin32).

• On Solaris Express, m4 must be installed in addition to bison. m4 is available from http://www.gnu.org/
software/m4/.

177

http://www.cmake.org
http://www.cmake.org
http://www.gnu.org/software/make/
https://www.gnu.org/software/ncurses/ncurses.html
http://www.gnu.org/software/tar/
https://help.github.com/
https://help.github.com/
http://mysqlrelease.com/2014/09/mysql-on-github/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://gnuwin32.sourceforge.net/packages/bison.htm
http://www.gnu.org/software/m4/
http://www.gnu.org/software/m4/

MySQL Layout for Source Installation

Note

If you have to install any programs, modify your PATH environment variable to
include any directories in which the programs are located. See Section 4.2.7,
“Setting Environment Variables”.

If you run into problems and need to file a bug report, please use the instructions in Section 1.5, “How to
Report Bugs or Problems”.

2.9.3 MySQL Layout for Source Installation

By default, when you install MySQL after compiling it from source, the installation step installs files under /
usr/local/mysql. The component locations under the installation directory are the same as for binary
distributions. See Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary Package”, and
Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”. To configure installation locations
different from the defaults, use the options described at Section 2.9.7, “MySQL Source-Configuration
Options”.

2.9.4 Installing MySQL Using a Standard Source Distribution

To install MySQL from a standard source distribution:

1. Verify that your system satisfies the tool requirements listed at Section 2.9.2, “Source Installation
Prerequisites”.

2. Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”.

3. Configure, build, and install the distribution using the instructions in this section.

4. Perform postinstallation procedures using the instructions in Section 2.10, “Postinstallation Setup and
Testing”.

MySQL uses CMake as the build framework on all platforms. The instructions given here should enable you
to produce a working installation. For additional information on using CMake to build MySQL, see How to
Build MySQL Server with CMake.

If you start from a source RPM, use the following command to make a binary RPM that you can install. If
you do not have rpmbuild, use rpm instead.

$> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm

The result is one or more binary RPM packages that you install as indicated in Section 2.5.5, “Installing
MySQL on Linux Using RPM Packages from Oracle”.

The sequence for installation from a compressed tar file or Zip archive source distribution is similar to the
process for installing from a generic binary distribution (see Section 2.2, “Installing MySQL on Unix/Linux
Using Generic Binaries”), except that it is used on all platforms and includes steps to configure and compile
the distribution. For example, with a compressed tar file source distribution on Unix, the basic installation
command sequence looks like this:

Preconfiguration setup
$> groupadd mysql
$> useradd -r -g mysql -s /bin/false mysql
Beginning of source-build specific instructions
$> tar zxvf mysql-VERSION.tar.gz
$> cd mysql-VERSION
$> mkdir bld
$> cd bld
$> cmake ..
$> make

178

https://dev.mysql.com/doc/internals/en/cmake.html
https://dev.mysql.com/doc/internals/en/cmake.html

Installing MySQL Using a Standard Source Distribution

$> make install
End of source-build specific instructions
Postinstallation setup
$> cd /usr/local/mysql
$> scripts/mysql_install_db --user=mysql
$> bin/mysqld_safe --user=mysql &
Next command is optional
$> cp support-files/mysql.server /etc/init.d/mysql.server

mysql_install_db creates a default option file named my.cnf in the base installation directory. This
file is created from a template included in the distribution package named my-default.cnf. For more
information, see Section 5.1.2.2, “Using a Sample Default Server Configuration File”.

A more detailed version of the source-build specific instructions is shown following.

Note

The procedure shown here does not set up any passwords for MySQL accounts.
After following the procedure, proceed to Section 2.10, “Postinstallation Setup and
Testing”, for postinstallation setup and testing.

• Perform Preconfiguration Setup

• Obtain and Unpack the Distribution

• Configure the Distribution

• Build the Distribution

• Install the Distribution

• Perform Postinstallation Setup

Perform Preconfiguration Setup

On Unix, set up the mysql user and group that are used to run and execute the MySQL server, and own
the database directory. For details, see Create a mysql User and Group. Then perform the following steps
as the mysql user, except as noted.

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it.

Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”.

Unpack the distribution into the current directory:

• To unpack a compressed tar file, tar can uncompress and unpack the distribution if it has z option
support:

$> tar zxvf mysql-VERSION.tar.gz

If your tar does not have z option support, use gunzip to unpack the distribution and tar to unpack it:

$> gunzip < mysql-VERSION.tar.gz | tar xvf -

Alternatively, CMake can uncompress and unpack the distribution:

$> cmake -E tar zxvf mysql-VERSION.tar.gz

• To unpack a Zip archive, use WinZip or another tool that can read .zip files.

179

Installing MySQL Using a Standard Source Distribution

Unpacking the distribution file creates a directory named mysql-VERSION.

Configure the Distribution

Change location into the top-level directory of the unpacked distribution:

$> cd mysql-VERSION

Build outside of the source tree to keep the tree clean. If the top-level source directory is named mysql-
src under your current working directory, you can build in a directory named bld at the same level. Create
the directory and go there:

$> mkdir bld
$> cd bld

Configure the build directory. The minimum configuration command includes no options to override
configuration defaults:

$> cmake ../mysql-src

The build directory needs not be outside the source tree. For example, you can build in a directory named
bld under the top-level source tree. To do this, starting with mysql-src as your current working directory,
create the directory bld and then go there:

$> mkdir bld
$> cd bld

Configure the build directory. The minimum configuration command includes no options to override
configuration defaults:

$> cmake ..

If you have multiple source trees at the same level (for example, to build multiple versions of MySQL),
the second strategy can be advantageous. The first strategy places all build directories at the same
level, which requires that you choose a unique name for each. With the second strategy, you can use the
same name for the build directory within each source tree. The following instructions assume this second
strategy.

On Windows, specify the development environment. For example, the following commands configure
MySQL for 32-bit or 64-bit builds, respectively:

$> cmake .. -G "Visual Studio 12 2013"
$> cmake .. -G "Visual Studio 12 2013 Win64"

On macOS, to use the Xcode IDE:

$> cmake .. -G Xcode

When you run cmake, you might want to add options to the command line. Here are some examples:

• -DBUILD_CONFIG=mysql_release: Configure the source with the same build options used by Oracle
to produce binary distributions for official MySQL releases.

• -DCMAKE_INSTALL_PREFIX=dir_name: Configure the distribution for installation under a particular
location.

• -DCPACK_MONOLITHIC_INSTALL=1: Cause make package to generate a single installation file rather
than multiple files.

• -DWITH_DEBUG=1: Build the distribution with debugging support.

For a more extensive list of options, see Section 2.9.7, “MySQL Source-Configuration Options”.

180

Installing MySQL Using a Standard Source Distribution

To list the configuration options, use one of the following commands:

$> cmake .. -L # overview
$> cmake .. -LH # overview with help text
$> cmake .. -LAH # all params with help text
$> ccmake .. # interactive display

If CMake fails, you might need to reconfigure by running it again with different options. If you do
reconfigure, take note of the following:

• If CMake is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in CMakeCache.txt. When CMake starts, it looks for
that file and reads its contents if it exists, on the assumption that the information is still correct. That
assumption is invalid when you reconfigure.

• Each time you run CMake, you must run make again to recompile. However, you may want to remove old
object files from previous builds first because they were compiled using different configuration options.

To prevent old object files or configuration information from being used, run these commands in the build
direcotry on Unix before re-running CMake:

$> make clean
$> rm CMakeCache.txt

Or, on Windows:

$> devenv MySQL.sln /clean
$> del CMakeCache.txt

Before asking on the MySQL Community Slack, check the files in the CMakeFiles directory for useful
information about the failure. To file a bug report, please use the instructions in Section 1.5, “How to Report
Bugs or Problems”.

Build the Distribution

On Unix:

$> make
$> make VERBOSE=1

The second command sets VERBOSE to show the commands for each compiled source.

Use gmake instead on systems where you are using GNU make and it has been installed as gmake.

On Windows:

$> devenv MySQL.sln /build RelWithDebInfo

If you have gotten to the compilation stage, but the distribution does not build, see Section 2.9.8, “Dealing
with Problems Compiling MySQL”, for help. If that does not solve the problem, please enter it into our
bugs database using the instructions given in Section 1.5, “How to Report Bugs or Problems”. If you
have installed the latest versions of the required tools, and they crash trying to process our configuration
files, please report that also. However, if you get a command not found error or a similar problem for
required tools, do not report it. Instead, make sure that all the required tools are installed and that your
PATH variable is set correctly so that your shell can find them.

Install the Distribution

On Unix:

$> make install

181

https://mysqlcommunity.slack.com/

Installing MySQL Using a Development Source Tree

This installs the files under the configured installation directory (by default, /usr/local/mysql). You
might need to run the command as root.

To install in a specific directory, add a DESTDIR parameter to the command line:

$> make install DESTDIR="/opt/mysql"

Alternatively, generate installation package files that you can install where you like:

$> make package

This operation produces one or more .tar.gz files that can be installed like generic binary distribution
packages. See Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”. If you run CMake
with -DCPACK_MONOLITHIC_INSTALL=1, the operation produces a single file. Otherwise, it produces
multiple files.

On Windows, generate the data directory, then create a .zip archive installation package:

$> devenv MySQL.sln /build RelWithDebInfo /project initial_database
$> devenv MySQL.sln /build RelWithDebInfo /project package

You can install the resulting .zip archive where you like. See Section 2.3.4, “Installing MySQL on
Microsoft Windows Using a noinstall ZIP Archive”.

Perform Postinstallation Setup

The remainder of the installation process involves setting up the configuration file, creating the core
databases, and starting the MySQL server. For instructions, see Section 2.10, “Postinstallation Setup and
Testing”.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords.
After starting the server, you should set up passwords for them using the
instructions in Section 2.10, “Postinstallation Setup and Testing”.

2.9.5 Installing MySQL Using a Development Source Tree

This section describes how to install MySQL from the latest development source code, which is hosted on
GitHub. To obtain the MySQL Server source code from this repository hosting service, you can set up a
local MySQL Git repository.

On GitHub, MySQL Server and other MySQL projects are found on the MySQL page. The MySQL Server
project is a single repository that contains branches for several MySQL series.

MySQL officially joined GitHub in September, 2014. For more information about MySQL's move to GitHub,
refer to the announcement on the MySQL Release Engineering blog: MySQL on GitHub

• Prerequisites for Installing from Development Source

• Setting Up a MySQL Git Repository

Prerequisites for Installing from Development Source

To install MySQL from a development source tree, your system must satisfy the tool requirements listed at
Section 2.9.2, “Source Installation Prerequisites”.

Setting Up a MySQL Git Repository

To set up a MySQL Git repository on your machine:

182

https://github.com/
https://github.com/
https://github.com/mysql
http://mysqlrelease.com/2014/09/mysql-on-github/

Installing MySQL Using a Development Source Tree

1. Clone the MySQL Git repository to your machine. The following command clones the MySQL Git
repository to a directory named mysql-server. The initial download may take some time to complete,
depending on the speed of your connection.

~$ git clone https://github.com/mysql/mysql-server.git
Cloning into 'mysql-server'...
remote: Counting objects: 1035465, done.
remote: Total 1035465 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (1035465/1035465), 437.48 MiB | 5.10 MiB/s, done.
Resolving deltas: 100% (855607/855607), done.
Checking connectivity... done.
Checking out files: 100% (21902/21902), done.

2. When the clone operation completes, the contents of your local MySQL Git repository appear similar to
the following:

~$ cd mysql-server
~/mysql-server$ ls
client extra mysys storage
cmake include packaging strings
CMakeLists.txt INSTALL plugin support-files
components libbinlogevents README testclients
config.h.cmake libbinlogstandalone router unittest
configure.cmake libmysql run_doxygen.cmake utilities
Docs libservices scripts VERSION
Doxyfile-ignored LICENSE share vio
Doxyfile.in man sql win
doxygen_resources mysql-test sql-common

3. Use the git branch -r command to view the remote tracking branches for the MySQL repository.

~/mysql-server$ git branch -r
 origin/5.5
 origin/5.6
 origin/5.7
 origin/8.0
 origin/HEAD -> origin/8.0
 origin/cluster-7.2
 origin/cluster-7.3
 origin/cluster-7.4
 origin/cluster-7.5
 origin/cluster-7.6

4. To view the branches that are checked out in your local repository, issue the git branch command.
When you clone the MySQL Git repository, the latest MySQL GA branch is checked out automatically.
The asterisk identifies the active branch.

~/mysql-server$ git branch
* 8.0

5. To check out an earlier MySQL branch, run the git checkout command, specifying the branch
name. For example, to check out the MySQL 5.6 branch:

~/mysql-server$ git checkout 5.6
Branch 5.6 set up to track remote branch 5.6 from origin.
Switched to a new branch '5.6'

6. To obtain changes made after your initial setup of the MySQL Git repository, switch to the branch you
want to update and issue the git pull command:

~/mysql-server$ git checkout 5.6
~/mysql-server$ git pull

To examine the commit history, use the git log option:

183

Configuring SSL Library Support

~/mysql-server$ git log

You can also browse commit history and source code on the GitHub MySQL site.

If you see changes or code that you have a question about, ask on the MySQL Community Slack. For
information about contributing a patch, see Contributing to MySQL Server.

7. After you have cloned the MySQL Git repository and have checked out the branch you want to
build, you can build MySQL Server from the source code. Instructions are provided in Section 2.9.4,
“Installing MySQL Using a Standard Source Distribution”, except that you skip the part about obtaining
and unpacking the distribution.

Be careful about installing a build from a distribution source tree on a production machine. The
installation command may overwrite your live release installation. If you already have MySQL
installed and do not want to overwrite it, run CMake with values for the CMAKE_INSTALL_PREFIX,
MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options different from those used by your production
server. For additional information about preventing multiple servers from interfering with each other,
see Section 5.7, “Running Multiple MySQL Instances on One Machine”.

Play hard with your new installation. For example, try to make new features crash. Start by running
make test. See The MySQL Test Suite.

2.9.6 Configuring SSL Library Support

An SSL library is required for support of encrypted connections, entropy for random number generation,
and other encryption-related operations. Your system must support either OpenSSL or yaSSL:

• MySQL Enterprise Edition binary distributions are compiled using OpenSSL. It is not possible to use
yaSSL with MySQL Enterprise Edition.

• MySQL Community Edition binary distributions are compiled using yaSSL.

• MySQL Community Edition source distributions can be compiled using either OpenSSL or yaSSL.

Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.6.46. As of MySQL 5.6.46, support for yaSSL is removed and all
MySQL builds use OpenSSL.

If you compile MySQL from a source distribution, CMake configures the distribution to use the installed
OpenSSL library by default.

To compile using OpenSSL, use this procedure:

1. Ensure that OpenSSL 1.0.1 or higher is installed on your system. If the installed OpenSSL version is
lower than 1.0.1, CMake produces an error at MySQL configuration time. If it is necessary to obtain
OpenSSL, visit http://www.openssl.org.

2. The WITH_SSL CMake option determines which SSL library to use for compiling MySQL (see
Section 2.9.7, “MySQL Source-Configuration Options”). The default is -DWITH_SSL=system, which
uses OpenSSL. To make this explicit, specify that option on the CMake command line. For example:

cmake . -DWITH_SSL=system

That command configures the distribution to use the installed OpenSSL library. Alternatively, to
explicitly specify the path name to the OpenSSL installation, use the following syntax. This can be

184

https://github.com/mysql
https://mysqlcommunity.slack.com/
http://mysqlserverteam.com/contributing-to-mysql-server/
https://dev.mysql.com/doc/extending-mysql/5.6/en/mysql-test-suite.html
http://www.openssl.org

MySQL Source-Configuration Options

useful if you have multiple versions of OpenSSL installed, to prevent CMake from choosing the wrong
one:

cmake . -DWITH_SSL=path_name

3. Compile and install the distribution.

To check whether a mysqld server supports encrypted connections, examine the value of the have_ssl
system variable:

mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |
+---------------+-------+

If the value is YES, the server supports encrypted connections. If the value is DISABLED, the server is
capable of supporting encrypted connections but was not started with the appropriate --ssl-xxx options
to enable encrypted connections to be used; see Section 6.3.1, “Configuring MySQL to Use Encrypted
Connections”.

To determine whether a server was compiled using OpenSSL or yaSSL, check the existence of any of the
system or status variables that are present only for OpenSSL. See Section 6.3.4, “SSL Library-Dependent
Capabilities”.

2.9.7 MySQL Source-Configuration Options

The CMake program provides a great deal of control over how you configure a MySQL source distribution.
Typically, you do this using options on the CMake command line. For information about options supported
by CMake, run either of these commands in the top-level source directory:

cmake . -LH
ccmake .

You can also affect CMake using certain environment variables. See Section 4.9, “Environment Variables”.

For boolean options, the value may be specified as 1 or ON to enable the option, or as 0 or OFF to disable
the option.

Many options configure compile-time defaults that can be overridden at server startup. For example, the
CMAKE_INSTALL_PREFIX, MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options that configure the default
installation base directory location, TCP/IP port number, and Unix socket file can be changed at server
startup with the --basedir, --port, and --socket options for mysqld. Where applicable, configuration
option descriptions indicate the corresponding mysqld startup option.

The following sections provide more information about CMake options.

• CMake Option Reference

• General Options

• Installation Layout Options

• Storage Engine Options

• Feature Options

• Compiler Flags

• CMake Options for Compiling NDB Cluster

185

MySQL Source-Configuration Options

CMake Option Reference

The following table shows the available CMake options. In the Default column, PREFIX stands for the
value of the CMAKE_INSTALL_PREFIX option, which specifies the installation base directory. This value is
used as the parent location for several of the installation subdirectories.

Table 2.13 MySQL Source-Configuration Option Reference (CMake)

Formats Description Default Introduced Removed

BUILD_CONFIG Use same build
options as official
releases

CMAKE_BUILD_TYPEType of build to
produce

RelWithDebInfo

CMAKE_CXX_FLAGS Flags for C++
Compiler

CMAKE_C_FLAGS Flags for C
Compiler

CMAKE_INSTALL_PREFIXInstallation base
directory

/usr/local/
mysql

COMPILATION_COMMENTComment about
compilation
environment

CPACK_MONOLITHIC_INSTALLWhether package
build produces
single file

OFF

DEFAULT_CHARSET The default server
character set

latin1

DEFAULT_COLLATIONThe default server
collation

latin1_swedish_ci

ENABLED_LOCAL_INFILEWhether to enable
LOCAL for LOAD
DATA

OFF

ENABLED_PROFILINGWhether to enable
query profiling code

ON

ENABLE_DEBUG_SYNCWhether to enable
Debug Sync
support

ON 5.6.36

ENABLE_DOWNLOADSWhether to
download optional
files

OFF

ENABLE_DTRACE Whether to include
DTrace support

ENABLE_GCOV Whether to include
gcov support

ENABLE_GPROF Enable gprof
(optimized Linux
builds only)

OFF

186

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

IGNORE_AIO_CHECKWith -
DBUILD_CONFIG=mysql_release,
ignore libaio check

OFF

INNODB_PAGE_ATOMIC_REF_COUNTEnable or disable
atomic page
reference counting

ON 5.6.16

INSTALL_BINDIR User executables
directory

PREFIX/bin

INSTALL_DOCDIR Documentation
directory

PREFIX/docs

INSTALL_DOCREADMEDIRREADME file
directory

PREFIX

INSTALL_INCLUDEDIRHeader file directory PREFIX/include

INSTALL_INFODIR Info file directory PREFIX/docs

INSTALL_LAYOUT Select predefined
installation layout

STANDALONE

INSTALL_LIBDIR Library file directory PREFIX/lib

INSTALL_MANDIR Manual page
directory

PREFIX/man

INSTALL_MYSQLSHAREDIRShared data
directory

PREFIX/share

INSTALL_MYSQLTESTDIRmysql-test directory PREFIX/mysql-
test

INSTALL_PLUGINDIRPlugin directory PREFIX/lib/
plugin

INSTALL_SBINDIR Server executable
directory

PREFIX/bin

INSTALL_SCRIPTDIRScripts directory PREFIX/scripts

INSTALL_SECURE_FILE_PRIVDIRsecure_file_priv
default value

platform
specific

5.6.34

INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIRsecure_file_priv
default value for
libmysqld

5.6.34

INSTALL_SHAREDIRaclocal/mysql.m4
installation directory

PREFIX/share

INSTALL_SQLBENCHDIRsql-bench directory PREFIX

INSTALL_SUPPORTFILESDIRExtra support files
directory

PREFIX/support-
files

MEMCACHED_HOME Path to
memcached;
obsolete

[none] 5.6.51

MYSQL_DATADIR Data directory

MYSQL_MAINTAINER_MODEWhether to
enable MySQL

OFF

187

MySQL Source-Configuration Options

Formats Description Default Introduced Removed
maintainer-specific
development
environment

MYSQL_PROJECT_NAMEWindows/macOS
project name

MySQL

MYSQL_TCP_PORT TCP/IP port number 3306

MYSQL_UNIX_ADDR Unix socket file /tmp/mysql.sock

ODBC_INCLUDES ODBC includes
directory

ODBC_LIB_DIR ODBC library
directory

OPTIMIZER_TRACE Whether to support
optimizer tracing

REPRODUCIBLE_BUILDTake extra care to
create a build result
independent of build
location and time

5.6.37

SUNPRO_CXX_LIBRARYClient link library on
Solaris 10+

5.6.20

SYSCONFDIR Option file directory

TMPDIR tmpdir default value 5.6.16

WITHOUT_SERVER Do not build the
server

OFF

WITHOUT_xxx_STORAGE_ENGINEExclude storage
engine xxx from
build

WITH_ASAN Enable
AddressSanitizer

OFF 5.6.15

WITH_BUNDLED_LIBEVENTUse bundled
libevent
when building
ndbmemcache;
obsolete

ON 5.6.51

WITH_BUNDLED_MEMCACHEDUse bundled
memcached
when building
ndbmemcache;
obsolete

ON 5.6.51

WITH_CLASSPATH Classpath to use
when building
MySQL Cluster
Connector for Java.
Default is an empty
string.

WITH_DEBUG Whether to include
debugging support

OFF

188

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

WITH_DEFAULT_COMPILER_OPTIONSWhether to use
default compiler
options

ON

WITH_DEFAULT_FEATURE_SETWhether to use
default feature set

ON

WITH_EDITLINE Which libedit/
editline library to
use

bundled 5.6.12

WITH_EMBEDDED_SERVERWhether to build
embedded server

OFF

WITH_EMBEDDED_SHARED_LIBRARYWhether to build a
shared embedded
server library

OFF 5.6.17

WITH_ERROR_INSERTEnable error
injection in the NDB
storage engine.
Should not be
used for building
binaries intended
for production.

OFF

WITH_EXTRA_CHARSETSWhich extra
character sets to
include

all

WITH_GMOCK Path to googlemock
distribution

WITH_INNODB_MEMCACHEDWhether to
generate
memcached shared
libraries.

OFF

WITH_LIBEDIT Use bundled libedit
library

ON 5.6.12

WITH_LIBEVENT Which libevent
library to use

bundled

WITH_LIBWRAP Whether to include
libwrap (TCP
wrappers) support

OFF

WITH_NDBAPI_EXAMPLESBuild API example
programs

OFF

WITH_NDBCLUSTER Build the NDB
storage engine

ON

WITH_NDBCLUSTER_STORAGE_ENGINEFor internal use;
may not work as
expected in all
circumstances;
users should
employ

ON

189

MySQL Source-Configuration Options

Formats Description Default Introduced Removed
WITH_NDBCLUSTER
instead

WITH_NDBMTD Build multithreaded
data node.

ON

WITH_NDB_BINLOG Enable binary
logging by default
by mysqld.

ON

WITH_NDB_DEBUG Produce a debug
build for testing or
troubleshooting.

OFF

WITH_NDB_JAVA Enable building of
Java and ClusterJ
support. Enabled by
default. Supported
in MySQL Cluster
only.

ON

WITH_NDB_PORT Default port used
by a management
server built with
this option. If this
option was not
used to build it,
the management
server's default port
is 1186.

[none]

WITH_NDB_TEST Include NDB API
test programs.

OFF

WITH_NUMA Set NUMA memory
allocation policy

5.6.27

WITH_SSL Type of SSL
support

system

WITH_SYMVER16 Whether
libmysqlclient.so.18
contains both
symver 16 and 18
symbols.

OFF 5.6.31

WITH_UNIT_TESTS Compile MySQL
with unit tests

ON

WITH_UNIXODBC Enable unixODBC
support

OFF

WITH_VALGRIND Whether to compile
in Valgrind header
files

OFF

WITH_ZLIB Type of zlib support bundled

WITH_xxx_STORAGE_ENGINECompile storage
engine xxx statically
into server

190

MySQL Source-Configuration Options

General Options

• -DBUILD_CONFIG=mysql_release

This option configures a source distribution with the same build options used by Oracle to produce binary
distributions for official MySQL releases.

• -DCMAKE_BUILD_TYPE=type

The type of build to produce:

• RelWithDebInfo: Enable optimizations and generate debugging information. This is the default
MySQL build type.

• Debug: Disable optimizations and generate debugging information. This build type is also used
if the WITH_DEBUG option is enabled. That is, -DWITH_DEBUG=1 has the same effect as -
DCMAKE_BUILD_TYPE=Debug.

• -DCPACK_MONOLITHIC_INSTALL=bool

This option affects whether the make package operation produces multiple installation package files or
a single file. If disabled, the operation produces multiple installation package files, which may be useful
if you want to install only a subset of a full MySQL installation. If enabled, it produces a single file for
installing everything.

Installation Layout Options

The CMAKE_INSTALL_PREFIX option indicates the base installation directory. Other options with names
of the form INSTALL_xxx that indicate component locations are interpreted relative to the prefix and their
values are relative pathnames. Their values should not include the prefix.

• -DCMAKE_INSTALL_PREFIX=dir_name

The installation base directory.

This value can be set at server startup with the --basedir option.

• -DINSTALL_BINDIR=dir_name

Where to install user programs.

• -DINSTALL_DOCDIR=dir_name

Where to install documentation.

• -DINSTALL_DOCREADMEDIR=dir_name

Where to install README files.

• -DINSTALL_INCLUDEDIR=dir_name

Where to install header files.

• -DINSTALL_INFODIR=dir_name

Where to install Info files.

• -DINSTALL_LAYOUT=name

191

MySQL Source-Configuration Options

Select a predefined installation layout:

• STANDALONE: Same layout as used for .tar.gz and .zip packages. This is the default.

• RPM: Layout similar to RPM packages.

• SVR4: Solaris package layout.

• DEB: DEB package layout (experimental).

You can select a predefined layout but modify individual component installation locations by specifying
other options. For example:

cmake . -DINSTALL_LAYOUT=SVR4 -DMYSQL_DATADIR=/var/mysql/data

• -DINSTALL_LIBDIR=dir_name

Where to install library files.

• -DINSTALL_MANDIR=dir_name

Where to install manual pages.

• -DINSTALL_MYSQLSHAREDIR=dir_name

Where to install shared data files.

• -DINSTALL_MYSQLTESTDIR=dir_name

Where to install the mysql-test directory. As of MySQL 5.6.12, to suppress installation of this
directory, explicitly set the option to the empty value (-DINSTALL_MYSQLTESTDIR=).

• -DINSTALL_PLUGINDIR=dir_name

The location of the plugin directory.

This value can be set at server startup with the --plugin_dir option.

• -DINSTALL_SBINDIR=dir_name

Where to install the mysqld server.

• -DINSTALL_SCRIPTDIR=dir_name

Where to install mysql_install_db.

• -DINSTALL_SECURE_FILE_PRIVDIR=dir_name

The default value for the secure_file_priv system variable. The default value is platform
specific and depends on the value of the INSTALL_LAYOUT CMake option; see the description of the
secure_file_priv system variable in Section 5.1.7, “Server System Variables”.

This option was added in MySQL 5.6.34. To set the value for the libmysqld embedded server, use
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR.

• -DINSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR=dir_name

The default value for the secure_file_priv system variable, for the libmysqld embedded server.
This option was added in MySQL 5.6.34.

192

MySQL Source-Configuration Options

• -DINSTALL_SHAREDIR=dir_name

Where to install aclocal/mysql.m4.

• -DINSTALL_SQLBENCHDIR=dir_name

Where to install the sql-bench directory. To suppress installation of this directory, explicitly set the
option to the empty value (-DINSTALL_SQLBENCHDIR=).

• -DINSTALL_SUPPORTFILESDIR=dir_name

Where to install extra support files.

• -DMYSQL_DATADIR=dir_name

The location of the MySQL data directory.

This value can be set at server startup with the --datadir option.

• -DODBC_INCLUDES=dir_name

The location of the ODBC includes directory, and may be used while configuring Connector/ODBC.

• -DODBC_LIB_DIR=dir_name

The location of the ODBC library directory, and may be used while configuring Connector/ODBC.

• -DSYSCONFDIR=dir_name

The default my.cnf option file directory.

This location cannot be set at server startup, but you can start the server with a given option file using
the --defaults-file=file_name option, where file_name is the full path name to the file.

• -DTMPDIR=dir_name

The default location to use for the tmpdir system variable. If unspecified, the value defaults to
P_tmpdir in <stdio.h>. This option was added in MySQL 5.6.16.

Storage Engine Options

Storage engines are built as plugins. You can build a plugin as a static module (compiled into the server)
or a dynamic module (built as a dynamic library that must be installed into the server using the INSTALL
PLUGIN statement or the --plugin-load option before it can be used). Some plugins might not support
static or dynamic building.

The InnoDB, MyISAM, MERGE, MEMORY, and CSV engines are mandatory (always compiled into the server)
and need not be installed explicitly.

To compile a storage engine statically into the server, use -DWITH_engine_STORAGE_ENGINE=1. Some
permissible engine values are ARCHIVE, BLACKHOLE, EXAMPLE, FEDERATED, PARTITION (partitioning
support), and PERFSCHEMA (Performance Schema). Examples:

-DWITH_ARCHIVE_STORAGE_ENGINE=1
-DWITH_BLACKHOLE_STORAGE_ENGINE=1
-DWITH_PERFSCHEMA_STORAGE_ENGINE=1

To build MySQL with support for NDB Cluster, use the WITH_NDBCLUSTER option.

193

MySQL Source-Configuration Options

Note

WITH_NDBCLUSTER is supported only when building NDB Cluster using the NDB
Cluster sources. It cannot be used to enable clustering support in other MySQL
source trees or distributions. In NDB Cluster source distributions, it is enabled by
default. See Section 18.3.1.4, “Building NDB Cluster from Source on Linux”, and
Section 18.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”,
for more information.

To exclude a storage engine from the build, use -DWITHOUT_engine_STORAGE_ENGINE=1. Examples:

-DWITHOUT_EXAMPLE_STORAGE_ENGINE=1
-DWITHOUT_FEDERATED_STORAGE_ENGINE=1
-DWITHOUT_PARTITION_STORAGE_ENGINE=1

If neither -DWITH_engine_STORAGE_ENGINE nor -DWITHOUT_engine_STORAGE_ENGINE are
specified for a given storage engine, the engine is built as a shared module, or excluded if it cannot be built
as a shared module.

Feature Options

• -DCOMPILATION_COMMENT=string

A descriptive comment about the compilation environment.

• -DDEFAULT_CHARSET=charset_name

The server character set. By default, MySQL uses the latin1 (cp1252 West European) character set.

charset_name may be one of binary, armscii8, ascii, big5, cp1250, cp1251, cp1256,
cp1257, cp850, cp852, cp866, cp932, dec8, eucjpms, euckr, gb2312, gbk, geostd8,
greek, hebrew, hp8, keybcs2, koi8r, koi8u, latin1, latin2, latin5, latin7, macce,
macroman, sjis, swe7, tis620, ucs2, ujis, utf8, utf8mb4, utf16, utf16le, utf32. The
permissible character sets are listed in the cmake/character_sets.cmake file as the value of
CHARSETS_AVAILABLE.

This value can be set at server startup with the --character_set_server option.

• -DDEFAULT_COLLATION=collation_name

The server collation. By default, MySQL uses latin1_swedish_ci. Use the SHOW COLLATION
statement to determine which collations are available for each character set.

This value can be set at server startup with the --collation_server option.

• -DENABLE_DEBUG_SYNC=bool

Note

As of MySQL 5.6.36, ENABLE_DEBUG_SYNC is removed and enabling
WITH_DEBUG enables Debug Sync.

Whether to compile the Debug Sync facility into the server. This facility is used for testing and
debugging. This option is enabled by default, but has no effect unless MySQL is configured
with debugging enabled. If debugging is enabled and you want to disable Debug Sync, use -
DENABLE_DEBUG_SYNC=0.

194

MySQL Source-Configuration Options

When compiled in, Debug Sync is disabled by default at runtime. To enable it, start mysqld with the --
debug-sync-timeout=N option, where N is a timeout value greater than 0. (The default value is 0,
which disables Debug Sync.) N becomes the default timeout for individual synchronization points.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

• -DENABLE_DOWNLOADS=bool

Whether to download optional files. For example, with this option enabled, CMake downloads the Google
Test distribution that is used by the test suite to run unit tests.

• -DENABLE_DTRACE=bool

Whether to include support for DTrace probes. For information about DTrace, wee Section 5.8.4,
“Tracing mysqld Using DTrace”

• -DWITHOUT_SERVER=bool

Whether to build without MySQL Server. The default is OFF, which does build the server.

This is considered an experimental option; it's preferred to build with the server.

• -DENABLE_GCOV=bool

Whether to include gcov support (Linux only).

• -DENABLE_GPROF=bool

Whether to enable gprof (optimized Linux builds only).

• -DENABLED_LOCAL_INFILE=bool

This option controls the compiled-in default LOCAL capability for the MySQL client library. Clients that
make no explicit arrangements therefore have LOCAL capability disabled or enabled according to the
ENABLED_LOCAL_INFILE setting specified at MySQL build time.

By default, the client library in MySQL binary distributions is compiled with ENABLED_LOCAL_INFILE
enabled. If you compile MySQL from source, configure it with ENABLED_LOCAL_INFILE disabled or
enabled based on whether clients that make no explicit arrangements should have LOCAL capability
disabled or enabled, respectively.

ENABLED_LOCAL_INFILE controls the default for client-side LOCAL capability. For the server, the
local_infile system variable controls server-side LOCAL capability. To explicitly cause the server
to refuse or permit LOAD DATA LOCAL statements (regardless of how client programs and libraries
are configured at build time or runtime), start mysqld with local_infile disabled or enabled,
respectively. local_infile can also be set at runtime. See Section 6.1.6, “Security Considerations for
LOAD DATA LOCAL”.

• -DENABLED_PROFILING=bool

Whether to enable query profiling code (for the SHOW PROFILE and SHOW PROFILES statements).

195

https://dev.mysql.com/doc/internals/en/test-synchronization.html
https://dev.mysql.com/doc/internals/en/test-synchronization.html

MySQL Source-Configuration Options

• -DIGNORE_AIO_CHECK=bool

If the -DBUILD_CONFIG=mysql_release option is given on Linux, the libaio library must be linked
in by default. If you do not have libaio or do not want to install it, you can suppress the check for it by
specifying -DIGNORE_AIO_CHECK=1.

• -DINNODB_PAGE_ATOMIC_REF_COUNT=bool

Whether to enable or disable atomic page reference counting. Fetching and releasing pages from the
buffer pool and tracking the page state are expensive and complex operations. Using a page mutex to
track these operations does not scale well. With INNODB_PAGE_ATOMIC_REF_COUNT=ON (default),
fetch and release is tracked using atomics where available. For platforms that do not support atomics,
set INNODB_PAGE_ATOMIC_REF_COUNT=OFF to disable atomic page reference counting.

When atomic page reference counting is enabled (default), “[Note] InnoDB: Using atomics
to ref count buffer pool pages” is printed to the error log at server startup. If atomic page
reference counting is disabled, “[Note] InnoDB: Using mutexes to ref count buffer pool
pages” is printed instead.

INNODB_PAGE_ATOMIC_REF_COUNT was introduced with the fix for MySQL Bug #68079. The option
is removed in MySQL 5.7.5. Support for atomics is required to build MySQL as of MySQL 5.7.5, which
makes the option obsolete.

• -DMYSQL_MAINTAINER_MODE=bool

Whether to enable a MySQL maintainer-specific development environment. If enabled, this option
causes compiler warnings to become errors. It may also cause some minor changes in generated code,
to initialize some variables to 0.

• -DMYSQL_PROJECT_NAME=name

For Windows or macOS, the project name to incorporate into the project file name.

• -DMYSQL_TCP_PORT=port_num

The port number on which the server listens for TCP/IP connections. The default is 3306.

This value can be set at server startup with the --port option.

• -DMYSQL_UNIX_ADDR=file_name

The Unix socket file path on which the server listens for socket connections. This must be an absolute
path name. The default is /tmp/mysql.sock.

This value can be set at server startup with the --socket option.

• -DOPTIMIZER_TRACE=bool

Whether to support optimizer tracing. See MySQL Internals: Tracing the Optimizer.

• -DREPRODUCIBLE_BUILD=bool

For builds on Linux systems, this option controls whether to take extra care to create a build result
independent of build location and time.

This option was added in MySQL 5.6.37.

• -DWITH_ASAN=bool

196

https://dev.mysql.com/doc/internals/en/optimizer-tracing.html

MySQL Source-Configuration Options

Whether to enable AddressSanitizer, for compilers that support it. The default is off. This option was
added in MySQL 5.6.15.

• -DWITH_DEBUG=bool

Whether to include debugging support.

Configuring MySQL with debugging support enables you to use the --debug="d,parser_debug"
option when you start the server. This causes the Bison parser that is used to process SQL statements
to dump a parser trace to the server's standard error output. Typically, this output is written to the error
log.

As of MySQL 5.6.36, enabling WITH_DEBUG also enables Debug Sync. For a description of the Debug
Sync facility and how to use synchronization points, see MySQL Internals: Test Synchronization.

• -DWITH_DEFAULT_FEATURE_SET=bool

Whether to use the flags from cmake/build_configurations/feature_set.cmake.

• -DWITH_EDITLINE=value

Which libedit/editline library to use. The permitted values are bundled (the default) and system.

WITH_EDITLINE was added in MySQL 5.6.12. It replaces WITH_LIBEDIT, which has been removed.

• -DWITH_EMBEDDED_SERVER=bool

Whether to build the libmysqld embedded server library.

• -DWITH_EMBEDDED_SHARED_LIBRARY=bool

Whether to build a shared libmysqld embedded server library. This option was added in MySQL
5.6.17.

• -DWITH_EXTRA_CHARSETS=name

Which extra character sets to include:

• all: All character sets. This is the default.

• complex: Complex character sets.

• none: No extra character sets.

• -DWITH_GMOCK=path_name

The path to the googlemock distribution, for use with Google Test-based unit tests. The option value is
the path to the distribution Zip file. Alternatively, set the WITH_GMOCK environment variable to the path
name. It is also possible to use -DENABLE_DOWNLOADS=1 so that CMake downloads the distribution
from GitHub.

If you build MySQL without the Google Test-based unit tests (by configuring wihout WITH_GMOCK),
CMake displays a message indicating how to download it.

• -DWITH_INNODB_MEMCACHED=bool

Whether to generate memcached shared libraries (libmemcached.so and innodb_engine.so).

197

https://dev.mysql.com/doc/internals/en/test-synchronization.html

MySQL Source-Configuration Options

• -DWITH_LIBEVENT=string

Which libevent library to use. Permitted values are bundled (default), system, and yes. If you
specify system or yes, the system libevent library is used if present. If the system library is not
found, the bundled libevent library is used. The libevent library is required by InnoDB memcached.

• -DWITH_LIBEDIT=bool

Whether to use the libedit library bundled with the distribution.

WITH_LIBEDIT was removed in MySQL 5.6.12. Use WITH_EDITLINE instead.

• -DWITH_LIBWRAP=bool

Whether to include libwrap (TCP wrappers) support.

• -DWITH_NUMA=bool

Explicitly set the NUMA memory allocation policy. CMake sets the default WITH_NUMA value based on
whether the current platform has NUMA support. For platforms without NUMA support, CMake behaves as
follows:

• With no NUMA option (the normal case), CMake continues normally, producing only this warning:
NUMA library missing or required version not available

• With -DWITH_NUMA=ON, CMake aborts with this error: NUMA library missing or required version not
available

This option was added in MySQL 5.6.27.

• -DWITH_SSL={ssl_type|path_name}

For support of encrypted connections, entropy for random number generation, and other encryption-
related operations, MySQL must be built using an SSL library. This option specifies which SSL library to
use.

• ssl_type can be one of the following values:

• no: No SSL support. This is the default before MySQL 5.6.6. As of 5.6.6, this is no longer a
permitted value and the default is bundled.

• yes: Use the system OpenSSL library if present, else the library bundled with the distribution.

• bundled: Use the SSL library bundled with the distribution. This is the default from MySQL 5.6.6
through 5.6.45. As of 5.6.46, this is no longer a permitted value and the default is system.

• system: Use the system OpenSSL library. This is the default as of MySQL 5.6.46.

• path_name, permitted for MySQL 5.6.7 and after, is the path name to the OpenSSL installation to
use. This can be preferable to using the ssl_type value of system because it can prevent CMake
from detecting and using an older or incorrect OpenSSL version installed on the system. (Another
permitted way to do the same thing is to set WITH_SSL to system and set the CMAKE_PREFIX_PATH
option to path_name.)

For additional information about configuring the SSL library, see Section 2.9.6, “Configuring SSL Library
Support”.

• -DWITH_SYMVER16=bool

198

MySQL Source-Configuration Options

If enabled, this option causes the libmysqlclient client library to contain extra symbols to be
compatible with libmysqlclient on RHEL/OEL 5, 6, and 7; and Fedora releases. All symbols present
in libmysqlclient.so.16 are tagged with symver 16 in libmsqlclient.so.18, making those
symbols have both symver 16 and 18. The default is OFF.

This option was added in MySQL 5.6.31.

• -DWITH_UNIT_TESTS={ON|OFF}

If enabled, compile MySQL with unit tests. The default is ON unless the server is not being compiled.

• -DWITH_UNIXODBC=1

Enables unixODBC support, for Connector/ODBC.

• -DWITH_VALGRIND=bool

Whether to compile in the Valgrind header files, which exposes the Valgrind API to MySQL code. The
default is OFF.

To generate a Valgrind-aware debug build, -DWITH_VALGRIND=1 normally is combined with -
DWITH_DEBUG=1. See Building Debug Configurations.

• -DWITH_ZLIB=zlib_type

Some features require that the server be built with compression library support, such as the
COMPRESS() and UNCOMPRESS() functions, and compression of the client/server protocol. The
WITH_ZLIB option indicates the source of zlib support:

• bundled: Use the zlib library bundled with the distribution. This is the default.

• system: Use the system zlib library.

Compiler Flags

• -DCMAKE_C_FLAGS="flags"

Flags for the C Compiler.

• -DCMAKE_CXX_FLAGS="flags"

Flags for the C++ Compiler.

• -DWITH_DEFAULT_COMPILER_OPTIONS=bool

Whether to use the flags from cmake/build_configurations/compiler_options.cmake.

Note

All optimization flags were carefully chosen and tested by the MySQL build team.
Overriding them can lead to unexpected results and is done at your own risk.

• -DSUNPRO_CXX_LIBRARY="lib_name"

Enable linking against libCstd instead of stlport4 on Solaris 10 or later. This works only for client
code because the server depends on C++98.

This option was added in MySQL 5.6.20.

199

https://dev.mysql.com/doc/internals/en/debug-configurations.html

MySQL Source-Configuration Options

To specify your own C and C++ compiler flags, for flags that do not affect optimization, use the
CMAKE_C_FLAGS and CMAKE_CXX_FLAGS CMake options.

When providing your own compiler flags, you might want to specify CMAKE_BUILD_TYPE as well.

For example, to create a 32-bit release build on a 64-bit Linux machine, do this:

mkdir bld
cd bld
cmake .. -DCMAKE_C_FLAGS=-m32 \
 -DCMAKE_CXX_FLAGS=-m32 \
 -DCMAKE_BUILD_TYPE=RelWithDebInfo

If you set flags that affect optimization (-Onumber), you must set the CMAKE_C_FLAGS_build_type
and/or CMAKE_CXX_FLAGS_build_type options, where build_type corresponds
to the CMAKE_BUILD_TYPE value. To specify a different optimization for the default
build type (RelWithDebInfo) set the CMAKE_C_FLAGS_RELWITHDEBINFO and
CMAKE_CXX_FLAGS_RELWITHDEBINFO options. For example, to compile on Linux with -O3 and with
debug symbols, do this:

cmake .. -DCMAKE_C_FLAGS_RELWITHDEBINFO="-O3 -g" \
 -DCMAKE_CXX_FLAGS_RELWITHDEBINFO="-O3 -g"

CMake Options for Compiling NDB Cluster

The following options are for use when building NDB Cluster with the NDB Cluster sources; they are not
currently supported when using sources from the MySQL 5.6 Server tree.

• -DMEMCACHED_HOME=dir_name

NDB support for memcached was removed in NDB 7.3.32 and NDB 7.4.31, and thus this option is no
longer supported for building NDB in these or later versions.

• -DWITH_BUNDLED_LIBEVENT={ON|OFF}

NDB support for memcached was removed in NDB 7.3.32 and NDB 7.4.31, and thus this option is no
longer supported for building NDB in these or later versions.

• -DWITH_BUNDLED_MEMCACHED={ON|OFF}

NDB support for memcached was removed in NDB 7.3.32 and NDB 7.4.31, and thus this option is no
longer supported for building NDB in these or later versions.

• -DWITH_CLASSPATH=path

Sets the classpath for building NDB Cluster Connector for Java. The default is empty. In MySQL NDB
Cluster 7.2.9 and later, this option is ignored if -DWITH_NDB_JAVA=OFF is used.

• -DWITH_ERROR_INSERT={ON|OFF}

Enables error injection in the NDB kernel. For testing only; not intended for use in building production
binaries. The default is OFF.

• -DWITH_NDBAPI_EXAMPLES={ON|OFF}

Build API example programs in storage/ndb/ndbapi-examples/.

• -DWITH_NDBCLUSTER_STORAGE_ENGINE={ON|OFF}

200

Dealing with Problems Compiling MySQL

For internal use only; may not always work as expected. To build with NDB support, use
WITH_NDBCLUSTER instead.

• -DWITH_NDBCLUSTER={ON|OFF}

Build and link in support for the NDB storage engine in mysqld. The default is ON.

• -DWITH_NDBMTD={ON|OFF}

Build the multithreaded data node executable ndbmtd. The default is ON.

• -DWITH_NDB_BINLOG={ON|OFF}

Enable binary logging by default in the mysqld built using this option. ON by default.

• -DWITH_NDB_DEBUG={ON|OFF}

Enable building the debug versions of the NDB Cluster binaries. OFF by default.

• -DWITH_NDB_JAVA={ON|OFF}

Enable building NDB Cluster with Java support, including ClusterJ.

This option was added in MySQL NDB Cluster 7.2.9, and is ON by default. If you do not wish to compile
NDB Cluster with Java support, you must disable it explicitly by specifying -DWITH_NDB_JAVA=OFF
when running CMake. Otherwise, if Java cannot be found, configuration of the build fails.

• -DWITH_NDB_PORT=port

Causes the NDB Cluster management server (ndb_mgmd) that is built to use this port by default. If this
option is unset, the resulting management server tries to use port 1186 by default.

• -DWITH_NDB_TEST={ON|OFF}

If enabled, include a set of NDB API test programs. The default is OFF.

2.9.8 Dealing with Problems Compiling MySQL

The solution to many problems involves reconfiguring. If you do reconfigure, take note of the following:

• If CMake is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in CMakeCache.txt. When CMake starts, it looks for
that file and reads its contents if it exists, on the assumption that the information is still correct. That
assumption is invalid when you reconfigure.

• Each time you run CMake, you must run make again to recompile. However, you may want to remove old
object files from previous builds first because they were compiled using different configuration options.

To prevent old object files or configuration information from being used, run the following commands before
re-running CMake:

On Unix:

$> make clean
$> rm CMakeCache.txt

On Windows:

$> devenv MySQL.sln /clean

201

Dealing with Problems Compiling MySQL

$> del CMakeCache.txt

If you build outside of the source tree, remove and recreate your build directory before re-running CMake.
For instructions on building outside of the source tree, see How to Build MySQL Server with CMake.

On some systems, warnings may occur due to differences in system include files. The following list
describes other problems that have been found to occur most often when compiling MySQL:

• To define which C and C++ compilers to use, you can define the CC and CXX environment variables.
For example:

$> CC=gcc
$> CXX=g++
$> export CC CXX

To specify your own C and C++ compiler flags, use the CMAKE_C_FLAGS and CMAKE_CXX_FLAGS
CMake options. See Compiler Flags.

To see what flags you might need to specify, invoke mysql_config with the --cflags and --
cxxflags options.

• To see what commands are executed during the compile stage, after using CMake to configure MySQL,
run make VERBOSE=1 rather than just make.

• If compilation fails, check whether the MYSQL_MAINTAINER_MODE option is enabled. This mode causes
compiler warnings to become errors, so disabling it may enable compilation to proceed.

• If your compile fails with errors such as any of the following, you must upgrade your version of make to
GNU make:

make: Fatal error in reader: Makefile, line 18:
Badly formed macro assignment

Or:

make: file `Makefile' line 18: Must be a separator (:

Or:

pthread.h: No such file or directory

Solaris and FreeBSD are known to have troublesome make programs.

GNU make 3.75 is known to work.

• The sql_yacc.cc file is generated from sql_yacc.yy. Normally, the build process does not need to
create sql_yacc.cc because MySQL comes with a pregenerated copy. However, if you do need to re-
create it, you might encounter this error:

"sql_yacc.yy", line xxx fatal: default action causes potential...

This is a sign that your version of yacc is deficient. You probably need to install a recent version of
bison (the GNU version of yacc) and use that instead.

Versions of bison older than 1.75 may report this error:

sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded

The maximum table size is not actually exceeded; the error is caused by bugs in older versions of
bison.

202

https://dev.mysql.com/doc/internals/en/cmake.html

MySQL Configuration and Third-Party Tools

For information about acquiring or updating tools, see the system requirements in Section 2.9, “Installing
MySQL from Source”.

2.9.9 MySQL Configuration and Third-Party Tools

Third-party tools that need to determine the MySQL version from the MySQL source can read the
VERSION file in the top-level source directory. The file lists the pieces of the version separately. For
example, if the version is MySQL 5.6.4-m7, the file looks like this:

MYSQL_VERSION_MAJOR=5
MYSQL_VERSION_MINOR=6
MYSQL_VERSION_PATCH=4
MYSQL_VERSION_EXTRA=-m7

If the source is not for a General Availablility (GA) release, the MYSQL_VERSION_EXTRA value is
nonempty. In the preceding example, the value shown corresponds to Milestone 7.

MYSQL_VERSION_EXTRA is also nonempty for NDB Cluster releases (including GA releases of NDB
Cluster), as shown here:

MYSQL_VERSION_MAJOR=5
MYSQL_VERSION_MINOR=6
MYSQL_VERSION_PATCH=50
MYSQL_VERSION_EXTRA=-ndb-7.4.31

To construct a five-digit number from the version components, use this formula:

MYSQL_VERSION_MAJOR*10000 + MYSQL_VERSION_MINOR*100 + MYSQL_VERSION_PATCH

2.10 Postinstallation Setup and Testing
This section discusses tasks that you should perform after installing MySQL:

• If necessary, initialize the data directory and create the MySQL grant tables. For some MySQL
installation methods, data directory initialization may be done for you automatically:

• Installation on Windows

• Installation on Linux using a server RPM or Debian distribution from Oracle.

• Installation using the native packaging system on many platforms, including Debian Linux, Ubuntu
Linux, Gentoo Linux, and others.

• Installation on macOS using a DMG distribution.

For other platforms and installation types, you must initialize the data directory manually. These include
installation from generic binary and source distributions on Unix and Unix-like system, and installation
from a ZIP Archive package on Windows. For instructions, see Section 2.10.1, “Initializing the Data
Directory”.

• For instructions, see Section 2.10.2, “Starting the Server”, and Section 2.10.3, “Testing the Server”.

• Assign passwords to any initial accounts in the grant tables, if that was not already done during data
directory initialization. Passwords prevent unauthorized access to the MySQL server. You may also wish
to restrict access to test databases. For instructions, see Section 2.10.4, “Securing the Initial MySQL
Accounts”.

• Optionally, arrange for the server to start and stop automatically when your system starts and stops. For
instructions, see Section 2.10.5, “Starting and Stopping MySQL Automatically”.

203

Initializing the Data Directory

• Optionally, populate time zone tables to enable recognition of named time zones. For instructions, see
Section 5.1.13, “MySQL Server Time Zone Support”.

When you are ready to create additional user accounts, you can find information on the MySQL access
control system and account management in Section 6.2, “Access Control and Account Management”.

2.10.1 Initializing the Data Directory

After MySQL is installed, the data directory must be initialized, including the tables in the mysql system
database:

• For some MySQL installation methods, data directory initialization is automatic, as described in
Section 2.10, “Postinstallation Setup and Testing”.

• For other installation methods, you must initialize the data directory manually. These include installation
from generic binary and source distributions on Unix and Unix-like systems, and installation from a ZIP
Archive package on Windows.

This section describes how to initialize the data directory manually for MySQL installation methods for
which data directory initialization is not automatic. For some suggested commands that enable testing
whether the server is accessible and working properly, see Section 2.10.3, “Testing the Server”.

In the examples shown here, the server is intended to run under the user ID of the mysql login account.
This assumes that such an account exists. Either create the account if it does not exist (see Create a
mysql User and Group), or substitute the name of a different existing login account that you plan to use for
running the server.

1. Change location to the top-level directory of your MySQL installation, which is typically /usr/local/
mysql (adjust the path name for your system as necessary):

cd /usr/local/mysql

You can find several files and subdirectories inside the directory, including the bin and scripts
subdirectories, which contain the server as well as client and utility programs.

2. Initialize the data directory, including the mysql database containing the initial MySQL grant tables that
determine how users are permitted to connect to the server. For example:

scripts/mysql_install_db --user=mysql

Typically, data directory initialization need be done only after you first install MySQL. (For upgrades to
an existing installation, perform the upgrade procedure instead; see Section 2.11, “Upgrading MySQL”.)
However, the command that initializes the data directory does not overwrite any existing privilege
tables, so it is safe to run in any circumstances.

It is important to make sure that the database directories and files are owned by the mysql login
account so that the server has read and write access to them when you run it later. To ensure this if
you run mysql_install_db as root, include the --user option as shown.

The mysql_install_db command initializes the server's data directory. Under the data directory,
it creates directories for the mysql database that holds the grant tables and the test database that
you can use to test MySQL. The program also creates privilege table entries for the initial account or
accounts. test_. For a complete listing and description of the grant tables, see Section 6.2, “Access
Control and Account Management”.

It might be necessary to specify other options such as --basedir or --datadir if
mysql_install_db cannot identify the correct locations for the installation directory or data directory.
For example (enter the command on a single line):

204

Initializing the Data Directory

scripts/mysql_install_db --user=mysql
 --basedir=/opt/mysql/mysql
 --datadir=/opt/mysql/mysql/data

For a more secure installation, invoke mysql_install_db with the --random-passwords option.
This causes it to assign a random password to the MySQL root accounts, set the “password expired”
flag for those accounts, and remove the anonymous-user MySQL accounts. For additional details, see
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”. (Install operations using RPMs for
Unbreakable Linux Network are unaffected because they do not use mysql_install_db.)

If you do not want to have the test database, you can remove it after starting the server, using the
instructions in Section 2.10.4, “Securing the Initial MySQL Accounts”.

If you have trouble with mysql_install_db at this point, see Section 2.10.1.1, “Problems Running
mysql_install_db”.

3. In the absence of any option files, the server starts with its default settings. (See Section 5.1.2, “Server
Configuration Defaults”.) To specify options that the MySQL server should use at startup, put them in
an option file such as /etc/my.cnf or /etc/mysql/my.cnf. (See Section 4.2.2.2, “Using Option
Files”.) For example, you can use an option file to set the secure_file_priv system variable.

4. To arrange for MySQL to start without manual intervention at system boot time, see Section 2.10.5,
“Starting and Stopping MySQL Automatically”.

5. Data directory initialization creates time zone tables in the mysql database but does not populate
them. To do so, use the instructions in Section 5.1.13, “MySQL Server Time Zone Support”.

2.10.1.1 Problems Running mysql_install_db

The purpose of the mysql_install_db program is to initialize the data directory, including the tables in
the mysql system database. It does not overwrite existing MySQL privilege tables, and it does not affect
any other data.

To re-create your privilege tables, first stop the mysqld server if it is running. Then rename the mysql
directory under the data directory to save it, and run mysql_install_db. Suppose that your current
directory is the MySQL installation directory and that mysql_install_db is located in the bin directory
and the data directory is named data. To rename the mysql database and re-run mysql_install_db,
use these commands.

mv data/mysql data/mysql.old
scripts/mysql_install_db --user=mysql

When you run mysql_install_db, you might encounter the following problems:

• mysql_install_db fails to install the grant tables

You may find that mysql_install_db fails to install the grant tables and terminates after displaying the
following messages:

Starting mysqld daemon with databases from XXXXXX
mysqld ended

In this case, you should examine the error log file very carefully. The log should be located in the
directory XXXXXX named by the error message and should indicate why mysqld did not start. If you do
not understand what happened, include the log when you post a bug report. See Section 1.5, “How to
Report Bugs or Problems”.

• There is a mysqld process running

205

Initializing the Data Directory

This indicates that the server is running, in which case the grant tables have probably been created
already. If so, there is no need to run mysql_install_db at all because it needs to be run only once,
when you first install MySQL.

• Installing a second mysqld server does not work when one server is running

This can happen when you have an existing MySQL installation, but want to put a new installation in a
different location. For example, you might have a production installation, but you want to create a second
installation for testing purposes. Generally the problem that occurs when you try to run a second server
is that it tries to use a network interface that is in use by the first server. In this case, you should see one
of the following error messages:

Can't start server: Bind on TCP/IP port:
Address already in use
Can't start server: Bind on unix socket...

For instructions on setting up multiple servers, see Section 5.7, “Running Multiple MySQL Instances on
One Machine”.

• You do not have write access to the /tmp directory

If you do not have write access to create temporary files or a Unix socket file in the default location (the
/tmp directory) or the TMPDIR environment variable, if it has been set, an error occurs when you run
mysql_install_db or the mysqld server.

You can specify different locations for the temporary directory and Unix socket file by executing these
commands prior to starting mysql_install_db or mysqld, where some_tmp_dir is the full path
name to some directory for which you have write permission:

TMPDIR=/some_tmp_dir/
MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock
export TMPDIR MYSQL_UNIX_PORT

Then you should be able to run mysql_install_db and start the server with these commands:

scripts/mysql_install_db --user=mysql
bin/mysqld_safe --user=mysql &

If mysql_install_db is located in the scripts directory, modify the first command to scripts/
mysql_install_db.

See Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”, and Section 4.9,
“Environment Variables”.

There are some alternatives to running the mysql_install_db program provided in the MySQL
distribution:

• If you want the initial privileges to differ from the standard defaults, use account-management statements
such as CREATE USER, GRANT, and REVOKE to change the privileges after the grant tables have
been set up. In other words, run mysql_install_db, and then use mysql -u root mysql to
connect to the server as the MySQL root user so that you can issue the necessary statements. (See
Section 13.7.1, “Account Management Statements”.)

To install MySQL on several machines with the same privileges, put the CREATE USER, GRANT,
and REVOKE statements in a file and execute the file as a script using mysql after running
mysql_install_db. For example:

scripts/mysql_install_db --user=mysql

206

Starting the Server

bin/mysql -u root < your_script_file

This enables you to avoid issuing the statements manually on each machine.

• It is possible to re-create the grant tables completely after they have previously been created. You might
want to do this if you are just learning how to use CREATE USER, GRANT, and REVOKE and have made
so many modifications after running mysql_install_db that you want to wipe out the tables and start
over.

To re-create the grant tables, stop the server if it is running and remove the mysql database directory.
Then run mysql_install_db again.

2.10.2 Starting the Server

This section describes how start the server on Unix and Unix-like systems. (For Windows, see
Section 2.3.4.4, “Starting the Server for the First Time”.) For some suggested commands that you can use
to test whether the server is accessible and working properly, see Section 2.10.3, “Testing the Server”.

Start the MySQL server like this:

$> bin/mysqld_safe --user=mysql &

It is important that the MySQL server be run using an unprivileged (non-root) login account. To ensure
this if you run mysqld_safe as root, include the --user option as shown. Otherwise, execute the
program while logged in as mysql, in which case you can omit the --user option from the command.

For further instructions for running MySQL as an unprivileged user, see Section 6.1.5, “How to Run MySQL
as a Normal User”.

If the command fails immediately and prints mysqld ended, look for information in the error log (which by
default is the host_name.err file in the data directory).

If the server is unable to access the data directory it starts or read the grant tables in the mysql database,
it writes a message to its error log. Such problems can occur if you neglected to create the grant tables by
initializing the data directory before proceeding to this step, or if you ran the command that initializes the
data directory without the --user option. Remove the data directory and run the command with the --
user option.

If you have other problems starting the server, see Section 2.10.2.1, “Troubleshooting Problems Starting
the MySQL Server”. For more information about mysqld_safe, see Section 4.3.2, “mysqld_safe —
MySQL Server Startup Script”.

2.10.2.1 Troubleshooting Problems Starting the MySQL Server

This section provides troubleshooting suggestions for problems starting the server. For additional
suggestions for Windows systems, see Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL
Server Installation”.

If you have problems starting the server, here are some things to try:

• Check the error log to see why the server does not start. Log files are located in the data directory
(typically C:\Program Files\MySQL\MySQL Server 5.6\data on Windows, /usr/local/
mysql/data for a Unix/Linux binary distribution, and /usr/local/var for a Unix/Linux source
distribution). Look in the data directory for files with names of the form host_name.err and
host_name.log, where host_name is the name of your server host. Then examine the last few lines
of these files. Use tail to display them:

$> tail host_name.err
$> tail host_name.log

207

Starting the Server

• Specify any special options needed by the storage engines you are using. You can create a my.cnf
file and specify startup options for the engines that you plan to use. If you are going to use storage
engines that support transactional tables (InnoDB, NDB), be sure that you have them configured the
way you want before starting the server. If you are using InnoDB tables, see Section 14.8, “InnoDB
Configuration” for guidelines and Section 14.14, “InnoDB Startup Options and System Variables” for
option syntax.

Although storage engines use default values for options that you omit, Oracle recommends that
you review the available options and specify explicit values for any options whose defaults are not
appropriate for your installation.

• Make sure that the server knows where to find the data directory. The mysqld server uses this directory
as its current directory. This is where it expects to find databases and where it expects to write log files.
The server also writes the pid (process ID) file in the data directory.

The default data directory location is hardcoded when the server is compiled. To determine what
the default path settings are, invoke mysqld with the --verbose and --help options. If the data
directory is located somewhere else on your system, specify that location with the --datadir option to
mysqld or mysqld_safe, on the command line or in an option file. Otherwise, the server does not work
properly. As an alternative to the --datadir option, you can specify mysqld the location of the base
directory under which MySQL is installed with the --basedir, and mysqld looks for the data directory
there.

To check the effect of specifying path options, invoke mysqld with those options followed by the --
verbose and --help options. For example, if you change location to the directory where mysqld
is installed and then run the following command, it shows the effect of starting the server with a base
directory of /usr/local:

$> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but --verbose and --help must be the
last options.

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this command:

$> mysqladmin variables

Or:

$> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

• Make sure that the server can access the data directory. The ownership and permissions of the data
directory and its contents must allow the server to read and modify them.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means that
the privileges of the data directory or its contents do not permit server access. In this case, you change

208

Testing the Server

the permissions for the involved files and directories so that the server has the right to use them. You
can also start the server as root, but this raises security issues and should be avoided.

Change location to the data directory and check the ownership of the data directory and its contents to
make sure the server has access. For example, if the data directory is /usr/local/mysql/var, use
this command:

$> ls -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use for
running the server, change their ownership to that account. If the account is named mysql, use these
commands:

$> chown -R mysql /usr/local/mysql/var
$> chgrp -R mysql /usr/local/mysql/var

Even with correct ownership, MySQL might fail to start up if there is other security software running on
your system that manages application access to various parts of the file system. In this case, reconfigure
that software to enable mysqld to access the directories it uses during normal operation.

• Verify that the network interfaces the server wants to use are available.

If either of the following errors occur, it means that some other program (perhaps another mysqld
server) is using the TCP/IP port or Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Use ps to determine whether you have another mysqld server running. If so, shut down the server
before starting mysqld again. (If another server is running, and you really want to run multiple servers,
you can find information about how to do so in Section 5.7, “Running Multiple MySQL Instances on One
Machine”.)

If no other server is running, execute the command telnet your_host_name
tcp_ip_port_number. (The default MySQL port number is 3306.) Then press Enter a couple of
times. If you do not get an error message like telnet: Unable to connect to remote host:
Connection refused, some other program is using the TCP/IP port that mysqld is trying to use.
Track down what program this is and disable it, or tell mysqld to listen to a different port with the --
port option. In this case, specify the same non-default port number for client programs when connecting
to the server using TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks connections
to it. If so, modify the firewall settings to permit access to the port.

If the server starts but you cannot connect to it, make sure that you have an entry in /etc/hosts that
looks like this:

127.0.0.1 localhost

• If you cannot get mysqld to start, try to make a trace file to find the problem by using the --debug
option. See Section 5.8.3, “The DBUG Package”.

2.10.3 Testing the Server

After the data directory is initialized and you have started the server, perform some simple tests to make
sure that it works satisfactorily. This section assumes that your current location is the MySQL installation
directory and that it has a bin subdirectory containing the MySQL programs used here. If that is not true,
adjust the command path names accordingly.

209

Testing the Server

Alternatively, add the bin directory to your PATH environment variable setting. That enables your shell
(command interpreter) to find MySQL programs properly, so that you can run a program by typing only its
name, not its path name. See Section 4.2.7, “Setting Environment Variables”.

Use mysqladmin to verify that the server is running. The following commands provide simple tests to
check whether the server is up and responding to connections:

$> bin/mysqladmin version
$> bin/mysqladmin variables

If you cannot connect to the server, specify a -u root option to connect as root. If you have assigned a
password for the root account already, you'll also need to specify -p on the command line and enter the
password when prompted. For example:

$> bin/mysqladmin -u root -p version
Enter password: (enter root password here)

The output from mysqladmin version varies slightly depending on your platform and version of MySQL,
but should be similar to that shown here:

$> bin/mysqladmin version
mysqladmin Ver 14.12 Distrib 5.6.51, for pc-linux-gnu on i686
...

Server version 5.6.51
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock
Uptime: 14 days 5 hours 5 min 21 sec

Threads: 1 Questions: 366 Slow queries: 0
Opens: 0 Flush tables: 1 Open tables: 19
Queries per second avg: 0.000

To see what else you can do with mysqladmin, invoke it with the --help option.

Verify that you can shut down the server (include a -p option if the root account has a password already):

$> bin/mysqladmin -u root shutdown

Verify that you can start the server again. Do this by using mysqld_safe or by invoking mysqld directly.
For example:

$> bin/mysqld_safe --user=mysql &

If mysqld_safe fails, see Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”.

Run some simple tests to verify that you can retrieve information from the server. The output should be
similar to that shown here.

Use mysqlshow to see what databases exist:

$> bin/mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| test |

210

Securing the Initial MySQL Accounts

+--------------------+

The list of installed databases may vary, but always includes at least mysql and information_schema.

If you specify a database name, mysqlshow displays a list of the tables within the database:

$> bin/mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| event |
| func |
| general_log |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| innodb_index_stats |
| innodb_table_stats |
| ndb_binlog_index |
| plugin |
| proc |
| procs_priv |
| proxies_priv |
| servers |
| slave_master_info |
| slave_relay_log_info |
| slave_worker_info |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

Use the mysql program to select information from a table in the mysql database:

$> bin/mysql -e "SELECT User, Host, plugin FROM mysql.user" mysql
+------+-----------+-----------------------+
| User | Host | plugin |
+------+-----------+-----------------------+
| root | localhost | mysql_native_password |
+------+-----------+-----------------------+

At this point, your server is running and you can access it. To tighten security if you have not yet assigned
passwords to the initial account or accounts, follow the instructions in Section 2.10.4, “Securing the Initial
MySQL Accounts”.

For more information about mysql, mysqladmin, and mysqlshow, see Section 4.5.1, “mysql — The
MySQL Command-Line Client”, Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”,
and Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”.

2.10.4 Securing the Initial MySQL Accounts

The MySQL installation process involves initializing the data directory, including the grant tables in the
mysql system database that define MySQL accounts. For details, see Section 2.10.1, “Initializing the Data
Directory”.

211

Securing the Initial MySQL Accounts

This section describes how to assign passwords to the initial accounts created during the MySQL
installation procedure, if you have not already done so.

The mysql.user grant table defines the initial MySQL user accounts and their access privileges:

• Some accounts have the user name root. These are superuser accounts that have all privileges and
can do anything. If these root accounts have empty passwords, anyone can connect to the MySQL
server as root without a password and be granted all privileges.

• On Windows, root accounts are created that permit connections from the local host only.
Connections can be made by specifying the host name localhost, the IP address 127.0.0.1, or
the IPv6 address ::1. If the user selects the Enable root access from remote machines option
during installation, the Windows installer creates another root account that permits connections from
any host.

• On Unix, each root account permits connections from the local host. Connections can be made by
specifying the host name localhost, the IP address 127.0.0.1, the IPv6 address ::1, or the
actual host name or IP address.

An attempt to connect to the host 127.0.0.1 normally resolves to the localhost account. However,
this fails if the server is run with skip_name_resolve enabled, so the 127.0.0.1 account is useful in
that case. The ::1 account is used for IPv6 connections.

• If accounts for anonymous users were created, these have an empty user name. The anonymous
accounts have no password, so anyone can use them to connect to the MySQL server.

• On Windows, there is one anonymous account that permits connections from the local host.
Connections can be made by specifying a host name of localhost.

• On Unix, each anonymous account permits connections from the local host. Connections can be
made by specifying a host name of localhost for one of the accounts, or the actual host name or IP
address for the other.

• The 'root'@'localhost' account also has a row in the mysql.proxies_priv table that enables
granting the PROXY privilege for ''@'', that is, for all users and all hosts. This enables root to set
up proxy users, as well as to delegate to other accounts the authority to set up proxy users. See
Section 6.2.12, “Proxy Users”.

To display which accounts exist in the mysql.user system table and check whether their passwords are
empty, use the following statement:

mysql> SELECT User, Host, Password FROM mysql.user;
+------+--------------------+----------+
| User | Host | Password |
+------+--------------------+----------+
root	localhost	
root	myhost.example.com	
root	127.0.0.1	
root	::1	
	localhost	
	myhost.example.com	
+------+--------------------+----------+

This output indicates that there are several root and anonymous-user accounts, none of which have
passwords. The output might differ on your system, but the presence of accounts with empty passwords
means that your MySQL installation is unprotected until you do something about it:

• Assign a password to each MySQL root account that does not have one.

212

Securing the Initial MySQL Accounts

• To prevent clients from connecting as anonymous users without a password, either assign a password to
each anonymous account or remove the accounts.

In addition, the mysql.db table contains rows that permit all accounts to access the test database and
other databases with names that start with test_. This is true even for accounts that otherwise have no
special privileges such as the default anonymous accounts. This is convenient for testing but inadvisable
on production servers. Administrators who want database access restricted only to accounts that have
permissions granted explicitly for that purpose should remove these mysql.db table rows.

The following instructions describe how to set up passwords for the initial MySQL accounts, first for the
root accounts, then for the anonymous accounts. The instructions also cover how to remove anonymous
accounts, should you prefer not to permit anonymous access at all, and describe how to remove
permissive access to test databases. Replace new_password in the examples with the password that you
want to use. Replace host_name with the name of the server host. You can determine this name from the
output of the preceding SELECT statement. For the output shown, host_name is myhost.example.com.

You need not remove anonymous entries in the mysql.proxies_priv table, which are used to support
proxy users. See Section 6.2.12, “Proxy Users”.

Note

For additional information about setting passwords, see Section 6.2.9, “Assigning
Account Passwords”. If you forget your root password after setting it, see
Section B.3.3.2, “How to Reset the Root Password”.

To set up additional accounts, see Section 6.2.7, “Adding Accounts, Assigning
Privileges, and Dropping Accounts”.

You might want to defer setting the passwords until later, to avoid the need to specify them while you
perform additional setup or testing. However, be sure to set them before using your installation for
production purposes.

Note

Alternative means for performing the process described in this section:

• On Windows, you can perform the process during installation with MySQL
Installer (see Section 2.3.3, “MySQL Installer for Windows”).

• On all platforms, the MySQL distribution includes
mysql_secure_installation, a command-line utility that automates much of
the process of securing a MySQL installation.

• On all platforms, MySQL Workbench is available and offers the ability to manage
user accounts (see Chapter 25, MySQL Workbench).

• Assigning root Account Passwords

• Assigning Anonymous Account Passwords

• Removing Anonymous Accounts

• Securing Test Databases

Assigning root Account Passwords

A root account password can be set several ways. The following discussion demonstrates three methods:

213

Securing the Initial MySQL Accounts

• Use the SET PASSWORD statement

• Use the UPDATE statement

• Use the mysqladmin command-line client program

To assign passwords using SET PASSWORD, connect to the server as root and issue a SET PASSWORD
statement for each root account listed in the mysql.user system table.

For Windows, do this:

$> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'::1' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'%' = PASSWORD('new_password');

The last statement is unnecessary if the mysql.user table has no root account with a host value of %.

For Unix, do this:

$> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'::1' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'host_name' = PASSWORD('new_password');

You can also use a single statement that assigns a password to all root accounts by using UPDATE to
modify the mysql.user table directly. This method works on any platform:

$> mysql -u root
mysql> UPDATE mysql.user SET Password = PASSWORD('new_password')
 -> WHERE User = 'root';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to re-read the grant tables. Without it, the password change
remains unnoticed by the server until you restart it.

To assign passwords to the root accounts using mysqladmin, execute the following commands:

$> mysqladmin -u root password "new_password"
$> mysqladmin -u root -h host_name password "new_password"

Those commands apply both to Windows and to Unix. The double quotation marks around the password
are not always necessary, but you should use them if the password contains spaces or other characters
that are special to your command interpreter.

The mysqladmin method of setting the root account passwords does not work for the
'root'@'127.0.0.1' or 'root'@'::1' account. Use the SET PASSWORD method shown earlier.

After the root passwords have been set, you must supply the appropriate password whenever you
connect as root to the server. For example, to shut down the server with mysqladmin, use this
command:

$> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

The mysql commands in the following instructions include a -p option based on the assumption that
you have assigned the root account passwords using the preceding instructions and must specify that
password when connecting to the server.

214

Securing the Initial MySQL Accounts

Assigning Anonymous Account Passwords

To assign passwords to the anonymous accounts, connect to the server as root, then use either SET
PASSWORD or UPDATE.

To use SET PASSWORD on Windows, do this:

$> mysql -u root -p
Enter password: (enter root password here)
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('new_password');

To use SET PASSWORD on Unix, do this:

$> mysql -u root -p
Enter password: (enter root password here)
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('new_password');
mysql> SET PASSWORD FOR ''@'host_name' = PASSWORD('new_password');

To set the anonymous-user account passwords with a single UPDATE statement, do this (on any platform):

$> mysql -u root -p
Enter password: (enter root password here)
mysql> UPDATE mysql.user SET Password = PASSWORD('new_password')
 -> WHERE User = '';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to re-read the grant tables. Without it, the password change
remains unnoticed by the server until you restart it.

Removing Anonymous Accounts

If you prefer to remove any anonymous accounts rather than assigning them passwords, do so as follows
on Windows:

$> mysql -u root -p
Enter password: (enter root password here)
mysql> DROP USER ''@'localhost';

On Unix, remove the anonymous accounts like this:

$> mysql -u root -p
Enter password: (enter root password here)
mysql> DROP USER ''@'localhost';
mysql> DROP USER ''@'host_name';

Securing Test Databases

By default, the mysql.db table contains rows that permit access by any user to the test database and
other databases with names that start with test_. (These rows have an empty User column value, which
for access-checking purposes matches any user name.) This means that such databases can be used
even by accounts that otherwise possess no privileges. If you want to remove any-user access to test
databases, do so as follows:

$> mysql -u root -p
Enter password: (enter root password here)
mysql> DELETE FROM mysql.db WHERE Db LIKE 'test%';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to re-read the grant tables. Without it, the privilege change
remains unnoticed by the server until you restart it.

215

Starting and Stopping MySQL Automatically

With the preceding change, only users who have global database privileges or privileges granted explicitly
for the test database can use it. However, if you prefer that the database not exist at all, drop it:

mysql> DROP DATABASE test;

2.10.5 Starting and Stopping MySQL Automatically

This section discusses methods for starting and stopping the MySQL server.

Generally, you start the mysqld server in one of these ways:

• Invoke mysqld directly. This works on any platform.

• On Windows, you can set up a MySQL service that runs automatically when Windows starts. See
Section 2.3.4.7, “Starting MySQL as a Windows Service”.

• On Unix and Unix-like systems, you can invoke mysqld_safe, which tries to determine the proper
options for mysqld and then runs it with those options. See Section 4.3.2, “mysqld_safe — MySQL
Server Startup Script”.

• On systems that use System V-style run directories (that is, /etc/init.d and run-level specific
directories), invoke mysql.server. This script is used primarily at system startup and shutdown. It
usually is installed under the name mysql. The mysql.server script starts the server by invoking
mysqld_safe. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

• On macOS, install a launchd daemon to enable automatic MySQL startup at system startup. The
daemon starts the server by invoking mysqld_safe. For details, see Section 2.4.3, “Installing a MySQL
Launch Daemon”. A MySQL Preference Pane also provides control for starting and stopping MySQL
through the System Preferences. See Section 2.4.4, “Installing and Using the MySQL Preference Pane”.

• On Solaris, use the service management framework (SMF) system to initiate and control MySQL startup.

The mysqld_safe and mysql.server scripts, Solaris SMF, and the macOS Startup Item (or MySQL
Preference Pane) can be used to start the server manually, or automatically at system startup time.
mysql.server and the Startup Item also can be used to stop the server.

The following table shows which option groups the server and startup scripts read from option files.

Table 2.14 MySQL Startup Scripts and Supported Server Option Groups

Script Option Groups

mysqld [mysqld], [server],
[mysqld-major_version]

mysqld_safe [mysqld], [server], [mysqld_safe]

mysql.server [mysqld], [mysql.server], [server]

[mysqld-major_version] means that groups with names like [mysqld-5.5] and [mysqld-5.6]
are read by servers having versions 5.5.x, 5.6.x, and so forth. This feature can be used to specify options
that can be read only by servers within a given release series.

For backward compatibility, mysql.server also reads the [mysql_server] group and mysqld_safe
also reads the [safe_mysqld] group. However, you should update your option files to use the
[mysql.server] and [mysqld_safe] groups instead.

For more information on MySQL configuration files and their structure and contents, see Section 4.2.2.2,
“Using Option Files”.

216

Upgrading MySQL

2.11 Upgrading MySQL
This section describes the steps to upgrade a MySQL installation.

Upgrading is a common procedure, as you pick up bug fixes within the same MySQL release series or
significant features between major MySQL releases. You perform this procedure first on some test systems
to make sure everything works smoothly, and then on the production systems.

Note

In the following discussion, MySQL commands that must be run using a MySQL
account with administrative privileges include -u root on the command line to
specify the MySQL root user. Commands that require a password for root also
include a -p option. Because -p is followed by no option value, such commands
prompt for the password. Type the password when prompted and press Enter.

SQL statements can be executed using the mysql command-line client (connect as
root to ensure that you have the necessary privileges).

2.11.1 Before You Begin

Review the information in this section before upgrading. Perform any recommended actions.

• Protect your data by creating a backup. The backup should include the mysql system database, which
contains the MySQL system tables. See Section 7.2, “Database Backup Methods”.

• Review Section 2.11.2, “Upgrade Paths” to ensure that your intended upgrade path is supported.

• Review Section 2.11.3, “Changes in MySQL 5.6” for changes that you should be aware of before
upgrading. Some changes may require action.

• Review Section 1.3, “What Is New in MySQL 5.6” for deprecated and removed features. An upgrade
may require changes with respect to those features if you use any of them.

• Review Section 1.4, “Server and Status Variables and Options Added, Deprecated, or Removed
in MySQL 5.6”. If you use deprecated or removed variables, an upgrade may require configuration
changes.

• Review the Release Notes for information about fixes, changes, and new features.

• If you use replication, review Section 17.4.3, “Upgrading a Replication Setup”.

• Upgrade procedures vary by platform and how the initial installation was performed. Use the procedure
that applies to your current MySQL installation:

• For binary and package-based installations on non-Windows platforms, refer to Section 2.11.4,
“Upgrading MySQL Binary or Package-based Installations on Unix/Linux”.

• For installations on an Enterprise Linux platform or Fedora using the MySQL Yum Repository, refer to
Section 2.11.5, “Upgrading MySQL with the MySQL Yum Repository”.

• For installations on Ubuntu using the MySQL APT repository, refer to Section 2.11.6, “Upgrading
MySQL with the MySQL APT Repository”.

• For installations on SLES using the MySQL SLES repository, refer to Section 2.11.7, “Upgrading
MySQL with the MySQL SLES Repository”.

• For installations on Windows, refer to Section 2.11.8, “Upgrading MySQL on Windows”.

217

https://dev.mysql.com/doc/relnotes/mysql/5.6/en/

Upgrade Paths

• If your MySQL installation contains a large amount of data that might take a long time to convert after
an in-place upgrade, it may be useful to create a test instance for assessing the conversions that are
required and the work involved to perform them. To create a test instance, make a copy of your MySQL
instance that contains the mysql database and other databases without the data. Run the upgrade
procedure on the test instance to assess the work involved to perform the actual data conversion.

• Rebuilding and reinstalling MySQL language interfaces is recommended when you install or upgrade to
a new release of MySQL. This applies to MySQL interfaces such as PHP mysql extensions and the Perl
DBD::mysql module.

2.11.2 Upgrade Paths

• Upgrade is only supported between General Availability (GA) releases.

• Upgrade from MySQL 5.5 to 5.6 is supported. Upgrading to the latest release is recommended before
upgrading to the next version. For example, upgrade to the latest MySQL 5.5 release before upgrading
to MySQL 5.6.

• Upgrade that skips versions is not supported. For example, upgrading directly from MySQL 5.1 to 5.6 is
not supported.

• Upgrade within a release series is supported. For example, upgrading from MySQL 5.6.x to 5.6.y is
supported. Skipping a release is also supported. For example, upgrading from MySQL 5.6.x to 5.6.z is
supported.

2.11.3 Changes in MySQL 5.6

Before upgrading to MySQL 5.6, review the changes described in this section to identify those that apply to
your current MySQL installation and applications. Perform any recommended actions.

Changes marked as Incompatible change are incompatibilities with earlier versions of MySQL, and
may require your attention before upgrading. Our aim is to avoid these changes, but occasionally they
are necessary to correct problems that would be worse than an incompatibility between releases. If an
upgrade issue applicable to your installation involves an incompatibility, follow the instructions given in the
description. Sometimes this involves dumping and reloading tables, or use of a statement such as CHECK
TABLE or REPAIR TABLE.

For dump and reload instructions, see Section 2.11.10, “Rebuilding or Repairing Tables or Indexes”. Any
procedure that involves REPAIR TABLE with the USE_FRM option must be done before upgrading. Use of
this statement with a version of MySQL different from the one used to create the table (that is, using it after
upgrading) may damage the table. See Section 13.7.2.5, “REPAIR TABLE Statement”.

Note

Beginning with MySQL 5.6.6, several MySQL Server parameters have defaults
that differ from previous releases. See the notes regarding these changes under
Configuration Changes, particularly regarding overriding them to preserve backward
compatibility if that is a concern.

• Configuration Changes

• Server Changes

• InnoDB Changes

• SQL Changes

218

Changes in MySQL 5.6

Configuration Changes

• Beginning with MySQL 5.6.6, several MySQL Server parameters have defaults that differ from previous
releases. The motivation for these changes is to provide better out-of-box performance and to reduce the
need for the database administrator to change settings manually. These changes are subject to possible
revision in future releases as we gain feedback.

In some cases, a parameter has a different static default value. In other cases, the server autosizes a
parameter at startup using a formula based on other related parameters or server host configuration,
rather than using a static value. For example, the setting for back_log now is its previous default of 50,
adjusted up by an amount proportional to the value of max_connections. The idea behind autosizing
is that when the server has information available to make a decision about a parameter setting likely to
be better than a fixed default, it does so.

The following table summarizes changes to defaults. Any of these can be overridden by specifying an
explicit value at server startup.

Parameter Old Default New Default

back_log 50 Autosized using
max_connections

binlog_checksum NONE CRC32

--binlog-row-event-max-
size

1024 8192

flush_time 1800 (on Windows) 0

innodb_autoextend_increment8 64

innodb_buffer_pool_instances1 8 (platform dependent)

innodb_checksum_algorithm INNODB CRC32 (changed back to
INNODB in MySQL 5.6.7)

innodb_concurrency_tickets500 5000

innodb_file_per_table 0 1

innodb_old_blocks_time 0 1000

innodb_open_files 300 Autosized using
innodb_file_per_table,
table_open_cache

innodb_stats_on_metadata ON OFF

join_buffer_size 128KB 256KB

max_allowed_packet 1MB 4MB

max_connect_errors 10 100

sync_master_info 0 10000

sync_relay_log 0 10000

sync_relay_log_info 0 10000

With regard to compatibility with previous releases, the most important changes are:

• innodb_file_per_table is enabled (previously disabled).

• innodb_checksum_algorithm is CRC32 (previously INNODB and changed back to INNODB in
MySQL 5.6.7).

219

Changes in MySQL 5.6

• binlog_checksum is CRC32 (previously NONE).

Therefore, if you are upgrading an existing MySQL installation, have not already changed the values of
these parameters from their previous defaults, and backward compatibility is a concern, you may want
to explicitly set these parameters to their previous defaults. For example, put these lines in the server
option file:

[mysqld]
innodb_file_per_table=0
innodb_checksum_algorithm=INNODB
binlog_checksum=NONE

Those settings preserve compatibility as follows:

• With the new default of innodb_file_per_table enabled, ALTER TABLE operations following
an upgrade move InnoDB tables that are in the system tablespace to individual .ibd files. Using
innodb_file_per_table=0 prevents this from happening.

• Setting innodb_checksum_algorithm=INNODB permits binary downgrades after upgrading to this
release. With a setting of CRC32, InnoDB would use checksumming that older MySQL versions cannot
use.

• With binlog_checksum=NONE, the server can be used as a replication source without causing
failure of older replicas that do not understand binary log checksums.

• As of MySQL 5.6.5, pre-4.1 passwords and the mysql_old_password authentication plugin are
deprecated. Passwords stored in the older hash format used before MySQL 4.1 are less secure
than passwords that use the native password hashing method and should be avoided. To prevent
connections using accounts that have pre-4.1 password hashes, the secure_auth system variable is
now enabled by default. (To permit connections for accounts that have such password hashes, start the
server with --secure_auth=0.)

DBAs are advised to convert accounts that use the mysql_old_password authentication plugin to use
mysql_native_password instead. For account upgrade instructions, see Section 6.4.1.3, “Migrating
Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

In some early development versions of MySQL 5.6 (5.6.6 to 5.6.10), the server could create accounts
with a mismatched password hash and authentication plugin. For example, if the default authentication
plugin is mysql_native_password, this sequence of statements results in an account with a plugin of
mysql_native_password but a pre-4.1 password hash (the format used by mysql_old_password):

SET old_passwords = 1;
CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';

The mismatch produces symptoms such as being unable to connect to the MySQL server and being
unable to use SET PASSWORD with OLD_PASSWORD() or with old_passwords=1.

As of MySQL 5.6.11, this mismatch no longer occurs. Instead, the server produces an error:

mysql> SET old_passwords = 1;
mysql> CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';
ERROR 1827 (HY000): The password hash doesn't have the expected
format. Check if the correct password algorithm is being used with

220

Changes in MySQL 5.6

the PASSWORD() function.

To deal with an account affected by a mismatch, the DBA can modify either the plugin or Password
column in the account's mysql.user system table row to be consistent with the other column:

• Set old_passwords to 0, then assign a new password to the account using SET PASSWORD and
PASSWORD(). This sets the Password column to have a 4.1 password hash, consistent with the
mysql_native_password plugin. This is the preferred method of fixing the account.

• Alternatively, the DBA can change the plugin to mysql_old_password to make the plugin
match the password hash format, then flush the privileges. This is not recommended because the
mysql_old_password plugin and pre-4.1 password hashing are deprecated; expect support for
them to be removed in a future version of MySQL.

Server Changes

• Incompatible change: It is possible for a column DEFAULT value to be valid for the sql_mode value at
table-creation time but invalid for the sql_mode value when rows are inserted or updated. Example:

SET sql_mode = '';
CREATE TABLE t (d DATE DEFAULT 0);
SET sql_mode = 'NO_ZERO_DATE,STRICT_ALL_TABLES';
INSERT INTO t (d) VALUES(DEFAULT);

In this case, 0 should be accepted for the CREATE TABLE but rejected for the INSERT. However, the
server did not evaluate DEFAULT values used for inserts or updates against the current sql_mode. In
the example, the INSERT succeeds and inserts '0000-00-00' into the DATE column.

As of MySQL 5.6.13, the server applies the proper sql_mode checks to generate a warning or error at
insert or update time.

A resulting incompatibility for replication if you use statement-based logging
(binlog_format=STATEMENT) is that if a replica is upgraded, a source which has not been upgraded
executes the preceding example without error, whereas the INSERT fails on the replica and replication
stops.

To deal with this, stop all new statements on the source and wait until the replicas catch up. Then
upgrade the replicas followed by the source. Alternatively, if you cannot stop new statements,
temporarily change to row-based logging on the source (binlog_format=ROW) and wait until all
replicas have processed all binary logs produced up to the point of this change. Then upgrade the
replicas followed by the source and change the source back to statement-based logging.

• Incompatible change: MySQL 5.6.11 and later supports CREATE TABLE ... [SUB]PARTITION BY
ALGORITHM=n [LINEAR] KEY (...), which can be used to create a table whose KEY partitioning is
compatible with a MySQL 5.1 server (n=1). (Bug #14521864, Bug #66462) This syntax is not accepted
by MySQL 5.6.10 and earlier, although it is supported in MySQL 5.5 beginning with MySQL 5.5.31.
mysqldump in MySQL 5.5.31 and later MySQL 5.5 releases includes the ALGORITHM option when
dumping tables using this option, but surrounds it with conditional comments, like this:

CREATE TABLE t1 (a INT)
/*!50100 PARTITION BY KEY */ /*!50531 ALGORITHM = 1 */ /*!50100 ()
 PARTITIONS 3 */

When importing a dump containing such CREATE TABLE statements into a MySQL 5.6.10 or earlier
MySQL 5.6 server, the versioned comment is not ignored, which causes a syntax error. Therefore, prior
to importing such a dump file, you must either change the comments so that the MySQL 5.6 server

221

Changes in MySQL 5.6

ignores them (by removing the string !50531 or replacing it with !50611, wherever it occurs), or remove
them.

This is not an issue with dump files made using MySQL 5.6.11 or later, where the ALGORITHM option is
written using /*!50611 ... */.

• Incompatible change: For TIME, DATETIME, and TIMESTAMP columns, the storage required for tables
created before MySQL 5.6.4 differs from storage required for tables created in 5.6.4 and later. This
is due to a change in 5.6.4 that permits these temporal types to have a fractional part. This change
can affect the output of statements that depend on the row format, such as CHECKSUM TABLE. After
upgrading from MySQL 5.5 to MySQL 5.6.4 or later, it is recommended that you also upgrade from
MySQL 5.5 to MySQL 5.6 TIME, DATETIME, and TIMESTAMP types. ALTER TABLE currently allows
the creation of tables containing temporal columns in both MySQL 5.5 and MySQL 5.6.4 (or later) binary
format but this makes it more difficult to recreate tables in cases where .frm files are not available.
Additionally, as of MySQL 5.6.4, the aforementioned temporal types are more space efficient. For
more information about changes to temporal types in MySQL 5.6.4, see Date and Time Type Storage
Requirements.

As of MySQL 5.6.16, ALTER TABLE upgrades old temporal columns to 5.6 format for ADD COLUMN,
CHANGE COLUMN, MODIFY COLUMN, ADD INDEX, and FORCE operations. Hence, the following
statement upgrades a table containing columns in the old format:

ALTER TABLE tbl_name FORCE;

This conversion cannot be done using the INPLACE algorithm because the table must be rebuilt, so
specifying ALGORITHM=INPLACE in these cases results in an error. Specify ALGORITHM=COPY if
necessary.

When ALTER TABLE does produce a temporal-format conversion, it generates a message that can be
displayed with SHOW WARNINGS: TIME/TIMESTAMP/DATETIME columns of old format have
been upgraded to the new format.

When upgrading to MySQL 5.6.4 or later, be aware that CHECK TABLE ... FOR UPGRADE does not
report temporal columns that use the pre-MySQL 5.6.4 format (Bug #73008, Bug #18985579). In MySQL
5.6.24, two new system variables, avoid_temporal_upgrade and show_old_temporals, were
added to provide control over temporal column upgrades (Bug #72997, Bug #18985760).

• Due to the temporal type changes described in the previous incompatible change item above, importing
pre-MySQL 5.6.4 tables (using ALTER TABLE ... IMPORT TABLESPACE) that contain DATETIME
and TIMESTAMP types into MySQL 5.6.4 (or later) fails. Importing a MySQL 5.5 table with these temporal
types into MySQL 5.6.4 (or later) is the mostly likely scenario for this problem to occur.

The following procedures describe workarounds that use the original pre-MySQL 5.6.4 .frm file to
recreate a table with a row structure that is compatible with 5.6.4 (or later). The procedures involve
changing the original pre-MySQL 5.6.4 .frm file to use the Memory storage engine instead of InnoDB,
copying the .frm file to the data directory of the destination instance, and using ALTER TABLE to
change the table's storage engine type back to InnoDB. Use the first procedure if your tables do not
have foreign keys. Use the second procedure, which has additional steps, if your table includes foreign
keys.

If the table does not have foreign keys:

1. Copy the table's original .frm file to the data directory on the server where you want to import the
tablespace.

222

Changes in MySQL 5.6

2. Modify the table's .frm file to use the Memory storage engine instead of the InnoDB storage engine.
This modification requires changing 7 bytes in the .frm file that define the table's storage engine
type. Using a hexidecimal editing tool:

• Change the byte at offset position 0003, which is the legacy_db_type, from 0c (for InnoDB) to
06 (for Memory), as shown below:

00000000 fe 01 09 06 03 00 00 10 01 00 00 30 00 00 10 00

• The remaining 6 bytes do not have a fixed offset. Search the .frm file for “InnoDB” to locate the
line with the other 6 bytes. The line appears as shown below:

00001010 ff 00 00 00 00 00 00 06 00 49 6e 6e 6f 44 42 00 |.........InnoDB.|

• Modify the bytes so that the line appears as follows:

00001010 ff 00 00 00 00 00 00 06 00 4d 45 4d 4f 52 59 00

3. Run ALTER TABLE ... ENGINE=INNODB to add the table definition to the InnoDB data dictionary.
This creates the InnoDB table with the temporal data types in the new format. For the ALTER TABLE
operation to complete successfully, the .frm file must correspond to the tablespace.

4. Import the table using ALTER TABLE ... IMPORT TABLESPACE.

If table has foreign keys:

1. Recreate the tables with foreign keys using table definitions from SHOW CREATE TABLE output. The
incorrect temporal column formats do not matter at this point.

2. Dump all foreign key definitions to a text file by selecting the foreign key information from the
Information Schema TABLE_CONSTRAINTS and KEY_COLUMN_USAGE tables.

3. Drop all tables and complete the table import process described in steps 1 to 4 in the procedure
described above for tables without foreign keys.

4. After the import operation is complete, add the foreign keys from foreign key definitions that you
saved to a text file.

• Incompatible change: As of MySQL 5.6, the full-text stopword file is loaded and searched using
latin1 if character_set_server is ucs2, utf16, utf16le, or utf32. If any table was created
with FULLTEXT indexes while the server character set was ucs2, utf16, utf16le, or utf32, repair it
using this statement:

REPAIR TABLE tbl_name QUICK;

• Incompatible change: In MySQL 5.6.20, the patch for Bug #69477 limits the size of redo log BLOB
writes to 10% of the redo log file size. As a result of this new limit, innodb_log_file_size should
be set to a value greater than 10 times the largest BLOB data size found in the rows of your tables. No
action is required if your innodb_log_file_size setting is already 10 times the largest BLOB data
size or your tables contain no BLOB data.

In MySQL 5.6.22, the redo log BLOB write limit is relaxed to 10% of the total redo log size
(innodb_log_file_size * innodb_log_files_in_group). (Bug #19498877)

223

Changes in MySQL 5.6

InnoDB Changes

As of MySQL 5.6.42, the zlib library version bundled with MySQL was raised from version 1.2.3 to version
1.2.11.

The zlib compressBound() function in zlib 1.2.11 returns a slightly higher estimate of the buffer size
required to compress a given length of bytes than it did in zlib version 1.2.3. The compressBound()
function is called by InnoDB functions that determine the maximum row size permitted when creating
compressed InnoDB tables or inserting rows into compressed InnoDB tables. As a result, CREATE
TABLE ... ROW_FORMAT=COMPRESSED or INSERT operations with row sizes very close to the maximum
row size that were successful in earlier releases could now fail.

If you have compressed InnoDB tables with large rows, it is recommended that you test compressed table
CREATE TABLE statements on a MySQL 5.6 test instance prior to upgrading.

SQL Changes

• Some keywords may be reserved in MySQL 5.6 that were not reserved in MySQL 5.5. See Section 9.3,
“Keywords and Reserved Words”. This can cause words previously used as identifiers to become illegal.
To fix affected statements, use identifier quoting. See Section 9.2, “Schema Object Names”.

• The YEAR(2) data type has certain issues that you should consider before choosing to use it. As of
MySQL 5.6.6, YEAR(2) is deprecated: YEAR(2) columns in existing tables are treated as before, but
YEAR(2) in new or altered tables is converted to YEAR(4). For more information, see Section 11.2.5,
“2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”.

• As of MySQL 5.6.6, it is explicitly disallowed to assign the value DEFAULT to stored procedure or
function parameters or stored program local variables (for example with a SET var_name = DEFAULT
statement). This was not previously supported, or documented as permitted, but is flagged as an
incompatible change in case existing code inadvertently used this construct. It remains permissible to
assign DEFAULT to system variables, as before, but assigning DEFAULT to parameters or local variables
now results in a syntax error.

After an upgrade to MySQL 5.6.6 or later, existing stored programs that use this construct produce a
syntax error when invoked. If a mysqldump file from 5.6.5 or earlier is loaded into 5.6.6 or later, the load
operation fails and affected stored program definitions must be changed.

• In MySQL, the TIMESTAMP data type differs in nonstandard ways from other data types:

• TIMESTAMP columns not explicitly declared with the NULL attribute are assigned the NOT NULL
attribute. (Columns of other data types, if not explicitly declared as NOT NULL, permit NULL values.)
Setting such a column to NULL sets it to the current timestamp.

• The first TIMESTAMP column in a table, if not declared with the NULL attribute or an explicit DEFAULT
or ON UPDATE clause, is automatically assigned the DEFAULT CURRENT_TIMESTAMP and ON
UPDATE CURRENT_TIMESTAMP attributes.

• TIMESTAMP columns following the first one, if not declared with the NULL attribute or an explicit
DEFAULT clause, are automatically assigned DEFAULT '0000-00-00 00:00:00' (the “zero”
timestamp). For inserted rows that specify no explicit value for such a column, the column is assigned
'0000-00-00 00:00:00' and no warning occurs.

Those nonstandard behaviors remain the default for TIMESTAMP but as of MySQL 5.6.6 are deprecated
and this warning appears at startup:

[Warning] TIMESTAMP with implicit DEFAULT value is deprecated.
Please use --explicit_defaults_for_timestamp server option (see

224

http://www.zlib.net/

Upgrading MySQL Binary or Package-based Installations on Unix/Linux

documentation for more details).

As indicated by the warning, to turn off the nonstandard behaviors, enable the new
explicit_defaults_for_timestamp system variable at server startup. With this variable enabled,
the server handles TIMESTAMP as follows instead:

• TIMESTAMP columns not explicitly declared as NOT NULL permit NULL values. Setting such a column
to NULL sets it to NULL, not the current timestamp.

• No TIMESTAMP column is assigned the DEFAULT CURRENT_TIMESTAMP or ON UPDATE
CURRENT_TIMESTAMP attributes automatically. Those attributes must be explicitly specified.

• TIMESTAMP columns declared as NOT NULL and without an explicit DEFAULT clause are treated as
having no default value. For inserted rows that specify no explicit value for such a column, the result
depends on the SQL mode. If strict SQL mode is enabled, an error occurs. If strict SQL mode is not
enabled, the column is assigned the implicit default of '0000-00-00 00:00:00' and a warning
occurs. This is similar to how MySQL treats other temporal types such as DATETIME.

To upgrade servers used for replication, upgrade the replicas first, then the source. Replication
between the source and its replicas should work provided that all use the same value of
explicit_defaults_for_timestamp:

1. Bring down the replicas, upgrade them, configure them with the desired value of
explicit_defaults_for_timestamp, and bring them back up.

The replicas recognize from the format of the binary logs received from the source that the source is
older (predates the introduction of explicit_defaults_for_timestamp) and that operations on
TIMESTAMP columns coming from the source use the old TIMESTAMP behavior.

2. Bring down the source, upgrade it, configure it with the same
explicit_defaults_for_timestamp value used on the replicas, and bring it back up.

2.11.4 Upgrading MySQL Binary or Package-based Installations on Unix/Linux

This section describes how to upgrade MySQL binary and package-based installations on Unix/Linux. In-
place and logical upgrade methods are described.

Note

A logical upgrade is recommended when upgrading from a previous version. For
example, use this method when upgrading from 5.5 to 5.6.

• In-Place Upgrade

• Logical Upgrade

In-Place Upgrade

An in-place upgrade involves shutting down the old MySQL server, replacing the old MySQL binaries
or packages with the new ones, restarting MySQL on the existing data directory, and upgrading any
remaining parts of the existing installation that require upgrading.

Note

If you upgrade an installation originally produced by installing multiple RPM
packages, upgrade all the packages, not just some. For example, if you previously
installed the server and client RPMs, do not upgrade just the server RPM.

225

Upgrading MySQL Binary or Package-based Installations on Unix/Linux

To perform an in-place upgrade:

1. If you use XA transactions with InnoDB, run XA RECOVER before upgrading to check for uncommitted
XA transactions. If results are returned, either commit or rollback the XA transactions by issuing an XA
COMMIT or XA ROLLBACK statement.

2. If you use InnoDB, configure MySQL to perform a slow shutdown by setting
innodb_fast_shutdown to 0. For example:

mysql -u root -p --execute="SET GLOBAL innodb_fast_shutdown=0"

With a slow shutdown, InnoDB performs a full purge and change buffer merge before shutting down,
which ensures that data files are fully prepared in case of file format differences between releases.

3. Shut down the old MySQL server. For example:

mysqladmin -u root -p shutdown

4. Upgrade the MySQL binary installation or packages. If upgrading a binary installation, unpack the
new MySQL binary distribution package. See Obtain and Unpack the Distribution. For package-based
installations, install the new packages.

5. Start the MySQL 5.6 server, using the existing data directory. For example:

mysqld_safe --user=mysql --datadir=/path/to/existing-datadir &

6. Run mysql_upgrade. For example:

mysql_upgrade -u root -p

mysql_upgrade examines all tables in all databases for incompatibilities with the current version of
MySQL. mysql_upgrade also upgrades the mysql system database so that you can take advantage
of new privileges or capabilities.

Note

mysql_upgrade does not upgrade the contents of the time zone tables or help
tables. For upgrade instructions, see Section 5.1.13, “MySQL Server Time Zone
Support”, and Section 5.1.14, “Server-Side Help Support”.

7. Shut down and restart the MySQL server to ensure that any changes made to the system tables take
effect. For example:

mysqladmin -u root -p shutdown
mysqld_safe --user=mysql --datadir=/path/to/existing-datadir &

Logical Upgrade

A logical upgrade involves exporting SQL from the old MySQL instance using a backup or export utility
such as mysqldump, installing the new MySQL server, and applying the SQL to your new MySQL
instance.

To perform a logical upgrade:

1. Review the information in Section 2.11.1, “Before You Begin”.

2. Export your existing data from the previous MySQL installation:

mysqldump -u root -p
 --add-drop-table --routines --events
 --all-databases --force > data-for-upgrade.sql

226

Upgrading MySQL with the MySQL Yum Repository

Note

Use the --routines and --events options with mysqldump (as shown
above) if your databases include stored programs. The --all-databases
option includes all databases in the dump, including the mysql database that
holds the system tables.

3. Shut down the old MySQL server. For example:

mysqladmin -u root -p shutdown

4. Install MySQL 5.6. For installation instructions, see Chapter 2, Installing and Upgrading MySQL.

5. Initialize a new data directory, as described at Section 2.10.1, “Initializing the Data Directory”. For
example:

scripts/mysql_install_db --user=mysql --datadir=/path/to/5.6-datadir

6. Start the MySQL 5.6 server, using the new data directory. For example:

mysqld_safe --user=mysql --datadir=/path/to/5.6-datadir &

7. Load the previously created dump file into the new MySQL server. For example:

mysql -u root -p --force < data-for-upgrade.sql

Note

It is not recommended to load a dump file when GTIDs are enabled on the
server (gtid_mode=ON), if your dump file includes system tables. mysqldump
issues DML instructions for the system tables which use the non-transactional
MyISAM storage engine, and this combination is not permitted when GTIDs
are enabled. Also be aware that loading a dump file from a server with GTIDs
enabled, into another server with GTIDs enabled, causes different transaction
identifiers to be generated.

8. Run mysql_upgrade. For example:

mysql_upgrade -u root -p

mysql_upgrade examines all tables in all databases for incompatibilities with the current version of
MySQL. mysql_upgrade also upgrades the mysql system database so that you can take advantage
of new privileges or capabilities.

Note

mysql_upgrade does not upgrade the contents of the time zone tables or help
tables. For upgrade instructions, see Section 5.1.13, “MySQL Server Time Zone
Support”, and Section 5.1.14, “Server-Side Help Support”.

9. Shut down and restart the MySQL server to ensure that any changes made to the system tables take
effect. For example:

mysqladmin -u root -p shutdown
mysqld_safe --user=mysql --datadir=/path/to/5.6-datadir &

2.11.5 Upgrading MySQL with the MySQL Yum Repository

227

Upgrading MySQL with the MySQL Yum Repository

For supported Yum-based platforms (see Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum
Repository”, for a list), you can perform an in-place upgrade for MySQL (that is, replacing the old version
and then running the new version using the old data files) with the MySQL Yum repository.

Notes

• Before performing any update to MySQL, follow carefully the instructions in
Section 2.11, “Upgrading MySQL”. Among other instructions discussed there, it is
especially important to back up your database before the update.

• The following instructions assume you have installed MySQL with the MySQL
Yum repository or with an RPM package directly downloaded from MySQL
Developer Zone's MySQL Download page; if that is not the case, following the
instructions in Section 2.5.2, “Replacing a Third-Party Distribution of MySQL
Using the MySQL Yum Repository”.

1.Selecting a Target Series

By default, the MySQL Yum repository updates MySQL to the latest version in the release series you
have chosen during installation (see Selecting a Release Series for details), which means, for example,
a 5.6.x installation is not be updated to a 5.7.x release automatically. To update to another release
series, you need to first disable the subrepository for the series that has been selected (by default, or
by yourself) and enable the subrepository for your target series. To do that, see the general instructions
given in Selecting a Release Series. For upgrading from MySQL 5.6 to 5.7, perform the reverse of the
steps illustrated in Selecting a Release Series, disabling the subrepository for the MySQL 5.6 series
and enabling that for the MySQL 5.7 series.

As a general rule, to upgrade from one release series to another, go to the next series rather than
skipping a series. For example, if you are currently running MySQL 5.5 and wish to upgrade to 5.7,
upgrade to MySQL 5.6 first before upgrading to 5.7.

Important

For important information about upgrading from MySQL 5.6 to 5.7, see
Upgrading from MySQL 5.6 to 5.7.

2.Upgrading MySQL

Upgrade MySQL and its components by the following command, for platforms that are not dnf-enabled:

sudo yum update mysql-server

For platforms that are dnf-enabled:

sudo dnf upgrade mysql-server

Alternatively, you can update MySQL by telling Yum to update everything on your system, which might
take considerably more time. For platforms that are not dnf-enabled:

sudo yum update

For platforms that are dnf-enabled:

sudo dnf upgrade

228

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/doc/refman/5.7/en/upgrading-from-previous-series.html

Upgrading MySQL with the MySQL APT Repository

3.Restarting MySQL

The MySQL server always restarts after an update by Yum. Once the server restarts, run
mysql_upgrade to check and possibly resolve any incompatibilities between the old data and
the upgraded software. mysql_upgrade also performs other functions; see Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables” for details.

You can also update only a specific component. Use the following command to list all the installed
packages for the MySQL components (for dnf-enabled systems, replace yum in the command with dnf):

sudo yum list installed | grep "^mysql"

After identifying the package name of the component of your choice, update the package with the following
command, replacing package-name with the name of the package. For platforms that are not dnf-
enabled:

sudo yum update package-name

For dnf-enabled platforms:

sudo dnf upgrade package-name

Upgrading the Shared Client Libraries

After updating MySQL using the Yum repository, applications compiled with older versions of the shared
client libraries should continue to work.

If you recompile applications and dynamically link them with the updated libraries: As typical with new
versions of shared libraries where there are differences or additions in symbol versioning between the
newer and older libraries (for example, between the newer, standard 5.6 shared client libraries and
some older—prior or variant—versions of the shared libraries shipped natively by the Linux distributions'
software repositories, or from some other sources), any applications compiled using the updated, newer
shared libraries require those updated libraries on systems where the applications are deployed. And, as
expected, if those libraries are not in place, the applications requiring the shared libraries fail. So, be sure
to deploy the packages for the shared libraries from MySQL on those systems. To do this, add the MySQL
Yum repository to the systems (see Adding the MySQL Yum Repository) and install the latest shared
libraries using the instructions given in Installing Additional MySQL Products and Components with Yum.

2.11.6 Upgrading MySQL with the MySQL APT Repository

On Debian and Ubuntu platforms, to perform an in-place upgrade of MySQL and its components, use
the MySQL APT repository. See Upgrading MySQL with the MySQL APT Repository in A Quick Guide to
Using the MySQL APT Repository.

2.11.7 Upgrading MySQL with the MySQL SLES Repository

On the SUSE Linux Enterprise Server (SLES) platform, to perform an in-place upgrade of MySQL and its
components, use the MySQL SLES repository. See Upgrading MySQL with the MySQL SLES Repository
in A Quick Guide to Using the MySQL SLES Repository.

2.11.8 Upgrading MySQL on Windows

There are two approaches for upgrading MySQL on Windows:

• Using MySQL Installer

• Using the Windows ZIP archive distribution

229

https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/index.html#repo-qg-apt-upgrading
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/index.html#repo-qg-sles-upgrading
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/

Upgrading MySQL on Windows

The approach you select depends on how the existing installation was performed. Before proceeding,
review Section 2.11, “Upgrading MySQL” for additional information on upgrading MySQL that is not specific
to Windows.

Note

Whichever approach you choose, always back up your current MySQL installation
before performing an upgrade. See Section 7.2, “Database Backup Methods”.

Upgrades between milestone releases (or from a milestone release to a GA release) are not supported.
Significant development changes take place in milestone releases and you may encounter compatibility
issues or problems starting the server. For instructions on how to perform a logical upgrade with a
milestone release, see Logical Upgrade.

Note

MySQL Installer does not support upgrades between Community releases and
Commercial releases. If you require this type of upgrade, perform it using the ZIP
archive approach.

Upgrading MySQL with MySQL Installer

Performing an upgrade with MySQL Installer is the best approach when the current server installation was
performed with it and the upgrade is within the current release series. MySQL Installer does not support
upgrades between release series, such as from 5.5 to 5.6, and it does not provide an upgrade indicator
to prompt you to upgrade. For instructions on upgrading between release series, see Upgrading MySQL
Using the Windows ZIP Distribution.

To perform an upgrade using MySQL Installer:

1. Start MySQL Installer.

2. From the dashboard, click Catalog to download the latest changes to the catalog. The installed server
can be upgraded only if the dashboard displays an arrow next to the version number of the server.

3. Click Upgrade. All products that have a newer version now appear in a list.

Note

MySQL Installer deselects the server upgrade option for milestone releases
(Pre-Release) in the same release series. In addition, it displays a warning to
indicate that the upgrade is not supported, identifies the risks of continuing, and
provides a summary of the steps to perform a logical upgrade manually. You
can reselect server upgrade and proceed at your own risk.

4. Deselect all but the MySQL server product, unless you intend to upgrade other products at this time,
and click Next.

5. Click Execute to start the download. When the download finishes, click Next to begin the upgrade
operation.

6. Configure the server.

Upgrading MySQL Using the Windows ZIP Distribution

To perform an upgrade using the Windows ZIP archive distribution:

230

Upgrade Troubleshooting

1. Download the latest Windows ZIP Archive distribution of MySQL from https://dev.mysql.com/
downloads/.

2. If the server is running, stop it. If the server is installed as a service, stop the service with the following
command from the command prompt:

C:\> SC STOP mysqld_service_name

Alternatively, use NET STOP mysqld_service_name.

If you are not running the MySQL server as a service, use mysqladmin to stop it. For example, before
upgrading from MySQL 5.5 to 5.6, use mysqladmin from MySQL 5.5 as follows:

C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, invoke mysqladmin with the
-p option and enter the password when prompted.

3. Extract the ZIP archive. You may either overwrite your existing MySQL installation (usually located
at C:\mysql), or install it into a different directory, such as C:\mysql5. Overwriting the existing
installation is recommended. However, for upgrades (as opposed to installing for the first time), you
must remove the data directory from your existing MySQL installation to avoid replacing your current
data files. To do so, follow these steps:

a. Unzip the ZIP archive in some location other than your current MySQL installation.

b. Remove the data directory.

c. Move the data directory from the current MySQL installation to the location of the just-removed data
directory

d. Remove the current MySQL installation

e. Move the unzipped installation to the location of the just-removed installation

4. Restart the server. For example, use the SC START mysqld_service_name or NET START
mysqld_service_name command if you run MySQL as a service, or invoke mysqld directly
otherwise.

5. As Administrator, run mysql_upgrade to check your tables, attempt to repair them if necessary, and
update your grant tables if they have changed so that you can take advantage of any new capabilities.
See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.

6. If you encounter errors, see Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server
Installation”.

2.11.9 Upgrade Troubleshooting

• If problems occur, such as that the new mysqld server does not start or that you cannot connect without
a password, verify that you do not have an old my.cnf file from your previous installation. You can
check this with the --print-defaults option (for example, mysqld --print-defaults). If this
command displays anything other than the program name, you have an active my.cnf file that affects
server or client operation.

• If, after an upgrade, you experience problems with compiled client programs, such as Commands
out of sync or unexpected core dumps, you probably have used old header or library files when

231

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/

Rebuilding or Repairing Tables or Indexes

compiling your programs. In this case, check the date for your mysql.h file and libmysqlclient.a
library to verify that they are from the new MySQL distribution. If not, recompile your programs
with the new headers and libraries. Recompilation might also be necessary for programs compiled
against the shared client library if the library major version number has changed (for example, from
libmysqlclient.so.15 to libmysqlclient.so.16).

• If you have created a loadable function with a given name and upgrade MySQL to a version that
implements a new built-in function with the same name, the loadable function becomes inaccessible.
To correct this, use DROP FUNCTION to drop the loadable function, and then use CREATE FUNCTION
to re-create the loadable function with a different nonconflicting name. The same is true if the new
version of MySQL implements a built-in function with the same name as an existing stored function.
See Section 9.2.5, “Function Name Parsing and Resolution”, for the rules describing how the server
interprets references to different kinds of functions.

2.11.10 Rebuilding or Repairing Tables or Indexes

This section describes how to rebuild or repair tables or indexes, which may be necessitated by:

• Changes to how MySQL handles data types or character sets. For example, an error in a collation might
have been corrected, necessitating a table rebuild to update the indexes for character columns that use
the collation.

• Required table repairs or upgrades reported by CHECK TABLE, mysqlcheck, or mysql_upgrade.

Methods for rebuilding a table include:

• Dump and Reload Method

• ALTER TABLE Method

• REPAIR TABLE Method

Dump and Reload Method

If you are rebuilding tables because a different version of MySQL cannot handle them after a binary
(in-place) upgrade or downgrade, you must use the dump-and-reload method. Dump the tables before
upgrading or downgrading using your original version of MySQL. Then reload the tables after upgrading or
downgrading.

If you use the dump-and-reload method of rebuilding tables only for the purpose of rebuilding indexes,
you can perform the dump either before or after upgrading or downgrading. Reloading still must be done
afterward.

If you need to rebuild an InnoDB table because a CHECK TABLE operation indicates that a table upgrade
is required, use mysqldump to create a dump file and mysql to reload the file. If the CHECK TABLE
operation indicates that there is a corruption or causes InnoDB to fail, refer to Section 14.21.2, “Forcing
InnoDB Recovery” for information about using the innodb_force_recovery option to restart InnoDB.
To understand the type of problem that CHECK TABLE may be encountering, refer to the InnoDB notes in
Section 13.7.2.2, “CHECK TABLE Statement”.

To rebuild a table by dumping and reloading it, use mysqldump to create a dump file and mysql to reload
the file:

mysqldump db_name t1 > dump.sql
mysql db_name < dump.sql

To rebuild all the tables in a single database, specify the database name without any following table name:

232

Copying MySQL Databases to Another Machine

mysqldump db_name > dump.sql
mysql db_name < dump.sql

To rebuild all tables in all databases, use the --all-databases option:

mysqldump --all-databases > dump.sql
mysql < dump.sql

ALTER TABLE Method

To rebuild a table with ALTER TABLE, use a “null” alteration; that is, an ALTER TABLE statement that
“changes” the table to use the storage engine that it already has. For example, if t1 is an InnoDB table,
use this statement:

ALTER TABLE t1 ENGINE = InnoDB;

If you are not sure which storage engine to specify in the ALTER TABLE statement, use SHOW CREATE
TABLE to display the table definition.

REPAIR TABLE Method

The REPAIR TABLE method is only applicable to MyISAM, ARCHIVE, and CSV tables.

You can use REPAIR TABLE if the table checking operation indicates that there is a corruption or that an
upgrade is required. For example, to repair a MyISAM table, use this statement:

REPAIR TABLE t1;

mysqlcheck --repair provides command-line access to the REPAIR TABLE statement. This can
be a more convenient means of repairing tables because you can use the --databases or --all-
databases option to repair all tables in specific databases or all databases, respectively:

mysqlcheck --repair --databases db_name ...
mysqlcheck --repair --all-databases

2.11.11 Copying MySQL Databases to Another Machine

In cases where you need to transfer databases between different architectures, you can use mysqldump
to create a file containing SQL statements. You can then transfer the file to the other machine and feed it
as input to the mysql client.

Note

You can copy the .frm, .MYI, and .MYD files for MyISAM tables between different
architectures that support the same floating-point format. (MySQL takes care of any
byte-swapping issues.) See Section 15.2, “The MyISAM Storage Engine”.

Use mysqldump --help to see what options are available.

The easiest (although not the fastest) way to move a database between two machines is to run the
following commands on the machine on which the database is located:

mysqladmin -h 'other_hostname' create db_name
mysqldump db_name | mysql -h 'other_hostname' db_name

If you want to copy a database from a remote machine over a slow network, you can use these commands:

mysqladmin create db_name
mysqldump -h 'other_hostname' --compress db_name | mysql db_name

233

Downgrading MySQL

You can also store the dump in a file, transfer the file to the target machine, and then load the file into the
database there. For example, you can dump a database to a compressed file on the source machine like
this:

mysqldump --quick db_name | gzip > db_name.gz

Transfer the file containing the database contents to the target machine and run these commands there:

mysqladmin create db_name
gunzip < db_name.gz | mysql db_name

You can also use mysqldump and mysqlimport to transfer the database. For large tables, this is much
faster than simply using mysqldump. In the following commands, DUMPDIR represents the full path name
of the directory you use to store the output from mysqldump.

First, create the directory for the output files and dump the database:

mkdir DUMPDIR
mysqldump --tab=DUMPDIR db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the target machine
and load the files into MySQL there:

mysqladmin create db_name # create database
cat DUMPDIR/*.sql | mysql db_name # create tables in database
mysqlimport db_name DUMPDIR/*.txt # load data into tables

Do not forget to copy the mysql database because that is where the grant tables are stored. You might
have to run commands as the MySQL root user on the new machine until you have the mysql database
in place.

After you import the mysql database on the new machine, execute mysqladmin flush-privileges
so that the server reloads the grant table information.

2.12 Downgrading MySQL
This section describes the steps to downgrade a MySQL installation.

Downgrading is a less common operation than upgrade. Downgrading is typically performed because of a
compatibility or performance issue that occurs on a of some compatibility or performance issue that occurs
on a production system, and was not uncovered during initial upgrade verification on the test systems.
As with the upgrade procedure Section 2.11, “Upgrading MySQL”), perform and verify the downgrade
procedure on some test systems first, before using it on a production system.

Note

In the following discussion, MySQL commands that must be run using a MySQL
account with administrative privileges include -u root on the command line to
specify the MySQL root user. Commands that require a password for root also
include a -p option. Because -p is followed by no option value, such commands
prompt for the password. Type the password when prompted and press Enter.

SQL statements can be executed using the mysql command-line client (connect as
root to ensure that you have the necessary privileges).

2.12.1 Before You Begin

Review the information in this section before downgrading. Perform any recommended actions.

234

Downgrade Paths

• Protect your data by taking a backup. The backup should include the mysql database, which contains
the MySQL system tables. See Section 7.2, “Database Backup Methods”.

• Review Section 2.12.2, “Downgrade Paths” to ensure that your intended downgrade path is supported.

• Review Section 2.12.3, “Downgrade Notes” for items that may require action before downgrading.

Note

The downgrade procedures described in the following sections assume you are
downgrading with data files created or modified by the newer MySQL version.
However, if you did not modify your data after upgrading, downgrading using
backups taken before upgrading to the new MySQL version is recommended.
Many of the changes described in Section 2.12.3, “Downgrade Notes” that
require action are not applicable when downgrading using backups taken before
upgrading to the new MySQL version.

• Use of new features, new configuration options, or new configuration option values that are not
supported by a previous release may cause downgrade errors or failures. Before downgrading, reverse
changes resulting from the use of new features and remove configuration settings that are not supported
by the release you are downgrading to.

2.12.2 Downgrade Paths

• Downgrade is only supported between General Availability (GA) releases.

• Downgrade from MySQL 5.6 to 5.5 is supported using the logical downgrade method.

• Downgrade that skips versions is not supported. For example, downgrading directly from MySQL 5.6 to
5.1 is not supported.

• Downgrade within a release series is supported. For example, downgrading from MySQL 5.6.z to 5.6.y
is supported. Skipping a release is also supported. For example, downgrading from MySQL 5.6.z to
5.6.x is supported.

2.12.3 Downgrade Notes

Before downgrading from MySQL 5.6, review the information in this section. Some items may require
action before downgrading.

System Tables

• The mysql.user system table in MySQL 5.6 has a password_expired column. The mysql.user
table in MySQL 5.5 does not. This means that an account with an expired password in MySQL 5.6 works
normally in MySQL 5.5.

• The mysql.host table was removed in MySQL 5.6.7. When downgrading to a previous release, startup
on the downgraded server fails with an error if the mysql.host table is not present. You can recreate
the table manually or restore it from a backup taken prior to upgrading to MySQL 5.6.7 or higher. To
recreate the table manually, retrieve the table definition from a pre-MySQL 5.6.7 instance using SHOW
CREATE TABLE, or see Bug #73634.

Data Types

• For TIME, DATETIME, and TIMESTAMP columns, the storage required for tables created before MySQL
5.6.4 differs from storage required for tables created in 5.6.4 and later. This is due to a change in 5.6.4

235

Downgrade Notes

that permits these temporal types to have a fractional part. To downgrade to a version older than 5.6.4,
dump affected tables with mysqldump before downgrading, and reload the tables after downgrading.

The following query identifies tables and columns that may be affected by this problem. Some of
them are system tables in the mysql database (such as columns_priv and proxies_priv). This
means that mysql is one of the databases you must dump and reload, or server startup may fail after
downgrading.

SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, DATA_TYPE
FROM INFORMATION_SCHEMA.COLUMNS
WHERE DATA_TYPE IN ('TIME','DATETIME','TIMESTAMP')
ORDER BY TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME;

InnoDB

• InnoDB search indexes (with a type of FULLTEXT), introduced in MySQL 5.6.4, are not compatible
with earlier versions of MySQL, including earlier releases in the 5.6 series. Drop such indexes before
performing a downgrade.

InnoDB tables with FULLTEXT indexes can be identified using an INFORMATION_SCHEMA query. For
example:

SELECT a.NAME AS Table_name, b.NAME AS Index_name
 FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES a,
 INFORMATION_SCHEMA.INNODB_SYS_INDEXES b
 WHERE a.TABLE_ID = b.TABLE_ID
 AND b.TYPE = 32;

• InnoDB small page sizes specified by the innodb_page_size configuration option, introduced in
MySQL 5.6.4, are not compatible with earlier versions of MySQL, including earlier releases in the 5.6
series. Dump all InnoDB tables in instances that use a smaller InnoDB page size, drop the tables, and
re-create and reload them after the downgrade.

• Tables created using persistent statistics table options (STATS_PERSISTENT, STATS_AUTO_RECALC,
and STATS_SAMPLE_PAGES) introduced in MySQL 5.6.6, are not compatible with earlier releases (Bug
#70778). Remove the options from table definitions prior to downgrading. For information about these
options, see Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

• The innodb_log_file_size default and maximum values were increased in MySQL 5.6. Before
downgrading, ensure that the configured log file size is compatible with the previous release.

• In MySQL 5.6.3, the length limit for index prefix keys is increased from 767 bytes to 3072 bytes, for
InnoDB tables using ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED. See Section 14.22,
“InnoDB Limits” for details. This change is also backported to MySQL 5.5.14. If you downgrade from one
of these releases or higher, to an earlier release with a lower length limit, the index prefix keys could be
truncated at 767 bytes or the downgrade could fail. This issue could only occur if the configuration option
innodb_large_prefix was enabled on the server being downgraded.

Replication

• As of MySQL 5.6, the relay-log.info file contains a line count and a replication delay value, so the
file format differs from that in older versions. See Section 17.2.2.2, “Replication Metadata Repositories”.
If you downgrade a replica server to a version older than MySQL 5.6, the older server does not read the
file correctly. To address this, modify the file in a text editor to delete the initial line containing the number
of lines.

• Beginning with MySQL 5.6.6, the MySQL Server employs Version 2 binary log events when writing the
binary log. Binary logs written using Version 2 log events cannot by read by earlier versions of MySQL

236

Downgrading Binary and Package-based Installations on Unix/Linux

Server. To generate a binary log that is written using Version 1 log events readable by older servers,
start the MySQL 5.6.6 or later server using --log-bin-use-v1-row-events=1, which forces the
server to employ Version 1 events when writing the binary log.

• The MySQL 5.6.5 release introduced global transaction identifiers (GTIDs) for MySQL Replication. If you
enabled GTIDs in MySQL 5.6 and want to downgrade to a MySQL release that does not support GTIDs,
you must disable GTIDs before downgrading (see Section 17.1.3.5, “Disabling GTID Transactions”).

2.12.4 Downgrading Binary and Package-based Installations on Unix/Linux

This section describes how to downgrade MySQL binary and package-based installations on Unix/Linux.
In-place and logical downgrade methods are described.

• In-Place Downgrade

• Logical Downgrade

In-Place Downgrade

In-place downgrade involves shutting down the new MySQL version, replacing the new MySQL binaries or
packages with the old ones, and restarting the old MySQL version on the existing data directory.

In-place downgrade is supported for downgrades between GA releases within the same release series.

In-place downgrade is not supported for MySQL APT, SLES, and Yum repository installations.

To perform an in-place downgrade:

1. Review the information in Section 2.12.1, “Before You Begin”.

2. If you use XA transactions with InnoDB, run XA RECOVER before downgrading to check for
uncommitted XA transactions. If results are returned, either commit or rollback the XA transactions by
issuing an XA COMMIT or XA ROLLBACK statement.

3. If you use InnoDB, configure MySQL to perform a slow shutdown by setting
innodb_fast_shutdown to 0. For example:

mysql -u root -p --execute="SET GLOBAL innodb_fast_shutdown=0"

With a slow shutdown, InnoDB performs a full purge and change buffer merge before shutting down,
which ensures that data files are fully prepared in case of file format differences between releases.

4. Shut down the newer MySQL server. For example:

mysqladmin -u root -p shutdown

5. After the slow shutdown, remove the InnoDB redo log files (the ib_logfile* files) from the data
directory to avoid downgrade issues related to redo log file format changes that may have occurred
between releases.

rm ib_logfile*

6. Downgrade the MySQL binaries or packages in-place by replacing the newer binaries or packages with
the older ones.

7. Start the older (downgraded) MySQL server, using the existing data directory. For example:

mysqld_safe --user=mysql --datadir=/path/to/existing-datadir

237

Downgrading Binary and Package-based Installations on Unix/Linux

8. Run mysql_upgrade. For example:

mysql_upgrade -u root -p

9. Shut down and restart the MySQL server to ensure that any changes made to the system tables take
effect. For example:

mysqladmin -u root -p shutdown
mysqld_safe --user=mysql --datadir=/path/to/existing-datadir

Logical Downgrade

Logical downgrade involves using mysqldump to dump all tables from the new MySQL version, and then
loading the dump file into the old MySQL version.

Logical downgrades are supported for downgrades between releases within the same release series and
for downgrades to the previous release level. Only downgrades between General Availability (GA) releases
are supported. Before proceeding, review Section 2.12.1, “Before You Begin”.

Note

For MySQL APT, SLES, and Yum repository installations, only downgrades to the
previous release level are supported. Where the instructions call for initializing
an older instance, use the package management utility to remove MySQL 5.6
packages and install MySQL 5.5 packages.

To perform a logical downgrade:

1. Review the information in Section 2.12.1, “Before You Begin”.

2. Dump all databases. For example:

mysqldump -u root -p
 --add-drop-table --routines --events
 --all-databases --force > data-for-downgrade.sql

3. Shut down the newer MySQL server. For example:

mysqladmin -u root -p shutdown

4. Initialize an older MySQL instance, with a new data directory. For example:

scripts/mysql_install_db --user=mysql

5. Start the older MySQL server, using the new data directory. For example:

mysqld_safe --user=mysql --datadir=/path/to/new-datadir

6. Load the dump file into the older MySQL server. For example:

mysql -u root -p --force < data-for-upgrade.sql

7. Run mysql_upgrade. For example:

mysql_upgrade -u root -p

8. Shut down and restart the MySQL server to ensure that any changes made to the system tables take
effect. For example:

mysqladmin -u root -p shutdown

238

Downgrade Troubleshooting

mysqld_safe --user=mysql --datadir=/path/to/new-datadir

2.12.5 Downgrade Troubleshooting

If you downgrade from one release series to another, there may be incompatibilities in table storage
formats. In this case, use mysqldump to dump your tables before downgrading. After downgrading, reload
the dump file using mysql or mysqlimport to re-create your tables. For examples, see Section 2.11.11,
“Copying MySQL Databases to Another Machine”.

A typical symptom of a downward-incompatible table format change when you downgrade is that you
cannot open tables. In that case, use the following procedure:

1. Stop the older MySQL server that you are downgrading to.

2. Restart the newer MySQL server you are downgrading from.

3. Dump any tables that were inaccessible to the older server by using mysqldump to create a dump file.

4. Stop the newer MySQL server and restart the older one.

5. Reload the dump file into the older server. Your tables should be accessible.

2.13 Perl Installation Notes
The Perl DBI module provides a generic interface for database access. You can write a DBI script that
works with many different database engines without change. To use DBI, you must install the DBI module,
as well as a DataBase Driver (DBD) module for each type of database server you want to access. For
MySQL, this driver is the DBD::mysql module.

Perl, and the DBD::MySQL module for DBI must be installed if you want to run the MySQL benchmark
scripts; see Section 8.13.2, “The MySQL Benchmark Suite”.

Note

Perl support is not included with MySQL distributions. You can obtain the necessary
modules from http://search.cpan.org for Unix, or by using the ActiveState ppm
program on Windows. The following sections describe how to do this.

The DBI/DBD interface requires Perl 5.6.0, and 5.6.1 or later is preferred. DBI does not work if you have
an older version of Perl. You should use DBD::mysql 4.009 or higher. Although earlier versions are
available, they do not support the full functionality of MySQL 5.6.

2.13.1 Installing Perl on Unix

MySQL Perl support requires that you have installed MySQL client programming support (libraries and
header files). Most installation methods install the necessary files. If you install MySQL from RPM files on
Linux, be sure to install the developer RPM as well. The client programs are in the client RPM, but client
programming support is in the developer RPM.

The files you need for Perl support can be obtained from the CPAN (Comprehensive Perl Archive Network)
at http://search.cpan.org.

The easiest way to install Perl modules on Unix is to use the CPAN module. For example:

$> perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

239

http://search.cpan.org
http://search.cpan.org

Installing ActiveState Perl on Windows

The DBD::mysql installation runs a number of tests. These tests attempt to connect to the local MySQL
server using the default user name and password. (The default user name is your login name on Unix,
and ODBC on Windows. The default password is “no password.”) If you cannot connect to the server with
those values (for example, if your account has a password), the tests fail. You can use force install
DBD::mysql to ignore the failed tests.

DBI requires the Data::Dumper module. It may be installed; if not, you should install it before installing
DBI.

It is also possible to download the module distributions in the form of compressed tar archives and build
the modules manually. For example, to unpack and build a DBI distribution, use a procedure such as this:

1. Unpack the distribution into the current directory:

$> gunzip < DBI-VERSION.tar.gz | tar xvf -

This command creates a directory named DBI-VERSION.

2. Change location into the top-level directory of the unpacked distribution:

$> cd DBI-VERSION

3. Build the distribution and compile everything:

$> perl Makefile.PL
$> make
$> make test
$> make install

The make test command is important because it verifies that the module is working. Note that when you
run that command during the DBD::mysql installation to exercise the interface code, the MySQL server
must be running or the test fails.

It is a good idea to rebuild and reinstall the DBD::mysql distribution whenever you install a new release of
MySQL. This ensures that the latest versions of the MySQL client libraries are installed correctly.

If you do not have access rights to install Perl modules in the system directory or if you want to install local
Perl modules, the following reference may be useful: http://learn.perl.org/faq/perlfaq8.html#How-do-I-keep-
my-own-module-library-directory-

2.13.2 Installing ActiveState Perl on Windows

On Windows, you should do the following to install the MySQL DBD module with ActiveState Perl:

1. Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/ and install it.

2. Open a console window.

3. If necessary, set the HTTP_proxy variable. For example, you might try a setting like this:

C:\> set HTTP_proxy=my.proxy.com:3128

4. Start the PPM program:

C:\> C:\perl\bin\ppm.pl

5. If you have not previously done so, install DBI:

ppm> install DBI

240

http://learn.perl.org/faq/perlfaq8.html#How-do-I-keep-my-own-module-library-directory-
http://learn.perl.org/faq/perlfaq8.html#How-do-I-keep-my-own-module-library-directory-
http://www.activestate.com/Products/ActivePerl/

Problems Using the Perl DBI/DBD Interface

6. If this succeeds, run the following command:

ppm> install DBD-mysql

This procedure should work with ActiveState Perl 5.6 or higher.

If you cannot get the procedure to work, you should install the ODBC driver instead and connect to the
MySQL server through ODBC:

use DBI;
$dbh= DBI->connect("DBI:ODBC:$dsn",$user,$password) ||
 die "Got error $DBI::errstr when connecting to $dsn\n";

2.13.3 Problems Using the Perl DBI/DBD Interface

If Perl reports that it cannot find the ../mysql/mysql.so module, the problem is probably that Perl
cannot locate the libmysqlclient.so shared library. You should be able to fix this problem by one of
the following methods:

• Copy libmysqlclient.so to the directory where your other shared libraries are located (probably /
usr/lib or /lib).

• Modify the -L options used to compile DBD::mysql to reflect the actual location of
libmysqlclient.so.

• On Linux, you can add the path name of the directory where libmysqlclient.so is located to the /
etc/ld.so.conf file.

• Add the path name of the directory where libmysqlclient.so is located to the LD_RUN_PATH
environment variable. Some systems use LD_LIBRARY_PATH instead.

You may also need to modify the -L options if there are other libraries that the linker fails to find. For
example, if the linker cannot find libc because it is in /lib and the link command specifies -L/usr/lib,
change the -L option to -L/lib or add -L/lib to the existing link command.

If you get the following errors from DBD::mysql, you are probably using gcc (or using an old binary
compiled with gcc):

/usr/bin/perl: can't resolve symbol '__moddi3'
/usr/bin/perl: can't resolve symbol '__divdi3'

Add -L/usr/lib/gcc-lib/... -lgcc to the link command when the mysql.so library gets built
(check the output from make for mysql.so when you compile the Perl client). The -L option should
specify the path name of the directory where libgcc.a is located on your system.

Another cause of this problem may be that Perl and MySQL are not both compiled with gcc. In this case,
you can solve the mismatch by compiling both with gcc.

241

242

Chapter 3 Tutorial

Table of Contents
3.1 Connecting to and Disconnecting from the Server .. 243
3.2 Entering Queries ... 244
3.3 Creating and Using a Database .. 247

3.3.1 Creating and Selecting a Database ... 248
3.3.2 Creating a Table .. 249
3.3.3 Loading Data into a Table .. 250
3.3.4 Retrieving Information from a Table .. 252

3.4 Getting Information About Databases and Tables ... 265
3.5 Using mysql in Batch Mode .. 266
3.6 Examples of Common Queries .. 267

3.6.1 The Maximum Value for a Column ... 268
3.6.2 The Row Holding the Maximum of a Certain Column ... 268
3.6.3 Maximum of Column per Group .. 269
3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column 269
3.6.5 Using User-Defined Variables ... 270
3.6.6 Using Foreign Keys ... 270
3.6.7 Searching on Two Keys ... 272
3.6.8 Calculating Visits Per Day .. 273
3.6.9 Using AUTO_INCREMENT ... 273

3.7 Using MySQL with Apache ... 276

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql client program
to create and use a simple database. mysql (sometimes referred to as the “terminal monitor” or just
“monitor”) is an interactive program that enables you to connect to a MySQL server, run queries, and view
the results. mysql may also be used in batch mode: you place your queries in a file beforehand, then tell
mysql to execute the contents of the file. Both ways of using mysql are covered here.

To see a list of options provided by mysql, invoke it with the --help option:

$> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is available
to which you can connect. If this is not true, contact your MySQL administrator. (If you are the
administrator, you need to consult the relevant portions of this manual, such as Chapter 5, MySQL Server
Administration.)

This chapter describes the entire process of setting up and using a database. If you are interested only
in accessing an existing database, you may want to skip the sections that describe how to create the
database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant
sections of the manual for more information on the topics covered here.

3.1 Connecting to and Disconnecting from the Server

To connect to the server, you usually need to provide a MySQL user name when you invoke mysql and,
most likely, a password. If the server runs on a machine other than the one where you log in, you also
need to specify a host name. Contact your administrator to find out what connection parameters you

243

Entering Queries

should use to connect (that is, what host, user name, and password to use). Once you know the proper
parameters, you should be able to connect like this:

$> mysql -h host -u user -p
Enter password: ********

host and user represent the host name where your MySQL server is running and the user name of your
MySQL account. Substitute appropriate values for your setup. The ******** represents your password;
enter it when mysql displays the Enter password: prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

$> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 25338 to server version: 5.6.51-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The mysql> prompt tells you that mysql is ready for you to enter SQL statements.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply
use the following:

$> mysql -u user -p

If, when you attempt to log in, you get an error message such as ERROR 2002 (HY000): Can't
connect to local MySQL server through socket '/tmp/mysql.sock' (2), it means that
the MySQL server daemon (Unix) or service (Windows) is not running. Consult the administrator or see the
section of Chapter 2, Installing and Upgrading MySQL that is appropriate to your operating system.

For help with other problems often encountered when trying to log in, see Section B.3.2, “Common Errors
When Using MySQL Programs”.

Some MySQL installations permit users to connect as the anonymous (unnamed) user to the server
running on the local host. If this is the case on your machine, you should be able to connect to that server
by invoking mysql without any options:

$> mysql

After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the mysql>
prompt:

mysql> QUIT
Bye

On Unix, you can also disconnect by pressing Control+D.

Most examples in the following sections assume that you are connected to the server. They indicate this by
the mysql> prompt.

3.2 Entering Queries
Make sure that you are connected to the server, as discussed in the previous section. Doing so does not in
itself select any database to work with, but that is okay. At this point, it is more important to find out a little
about how to issue queries than to jump right in creating tables, loading data into them, and retrieving data
from them. This section describes the basic principles of entering queries, using several queries you can
try out to familiarize yourself with how mysql works.

244

Entering Queries

Here is a simple query that asks the server to tell you its version number and the current date. Type it in as
shown here following the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+--------------+--------------+
| VERSION() | CURRENT_DATE |
+--------------+--------------+
| 5.6.1-m4-log | 2010-08-06 |
+--------------+--------------+
1 row in set (0.01 sec)
mysql>

This query illustrates several things about mysql:

• A query normally consists of an SQL statement followed by a semicolon. (There are some exceptions
where a semicolon may be omitted. QUIT, mentioned earlier, is one of them. We'll get to others later.)

• When you issue a query, mysql sends it to the server for execution and displays the results, then prints
another mysql> prompt to indicate that it is ready for another query.

• mysql displays query output in tabular form (rows and columns). The first row contains labels for
the columns. The rows following are the query results. Normally, column labels are the names of the
columns you fetch from database tables. If you're retrieving the value of an expression rather than a
table column (as in the example just shown), mysql labels the column using the expression itself.

• mysql shows how many rows were returned and how long the query took to execute, which gives you
a rough idea of server performance. These values are imprecise because they represent wall clock time
(not CPU or machine time), and because they are affected by factors such as server load and network
latency. (For brevity, the “rows in set” line is sometimes not shown in the remaining examples in this
chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here is another query. It demonstrates that you can use mysql as a simple calculator:

mysql> SELECT SIN(PI()/4), (4+1)*5;
+------------------+---------+
| SIN(PI()/4) | (4+1)*5 |
+------------------+---------+
| 0.70710678118655 | 25 |
+------------------+---------+
1 row in set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. You can even enter multiple
statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();
+--------------+
| VERSION() |
+--------------+
| 5.6.1-m4-log |
+--------------+
1 row in set (0.00 sec)
+---------------------+
| NOW() |
+---------------------+
| 2010-08-06 12:17:13 |
+---------------------+
1 row in set (0.00 sec)

245

Entering Queries

A query need not be given all on a single line, so lengthy queries that require several lines are not a
problem. mysql determines where your statement ends by looking for the terminating semicolon, not by
looking for the end of the input line. (In other words, mysql accepts free-format input: it collects input lines
but does not execute them until it sees the semicolon.)

Here is a simple multiple-line statement:

mysql> SELECT
 -> USER()
 -> ,
 -> CURRENT_DATE;
+---------------+--------------+
| USER() | CURRENT_DATE |
+---------------+--------------+
| jon@localhost | 2010-08-06 |
+---------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first line of a
multiple-line query. This is how mysql indicates that it has not yet seen a complete statement and is
waiting for the rest. The prompt is your friend, because it provides valuable feedback. If you use that
feedback, you can always be aware of what mysql is waiting for.

If you decide you do not want to execute a query that you are in the process of entering, cancel it by typing
\c:

mysql> SELECT
 -> USER()
 -> \c
mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to indicate
that mysql is ready for a new query.

The following table shows each of the prompts you may see and summarizes what they mean about the
state that mysql is in.

Prompt Meaning

mysql> Ready for new query

-> Waiting for next line of multiple-line query

'> Waiting for next line, waiting for completion of a
string that began with a single quote (')

"> Waiting for next line, waiting for completion of a
string that began with a double quote (")

`> Waiting for next line, waiting for completion of an
identifier that began with a backtick (`)

/*> Waiting for next line, waiting for completion of a
comment that began with /*

Multiple-line statements commonly occur by accident when you intend to issue a query on a single line, but
forget the terminating semicolon. In this case, mysql waits for more input:

mysql> SELECT USER()
 ->

If this happens to you (you think you've entered a statement but the only response is a -> prompt), most
likely mysql is waiting for the semicolon. If you don't notice what the prompt is telling you, you might sit

246

Creating and Using a Database

there for a while before realizing what you need to do. Enter a semicolon to complete the statement, and
mysql executes it:

mysql> SELECT USER()
 -> ;
+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+

The '> and "> prompts occur during string collection (another way of saying that MySQL is waiting
for completion of a string). In MySQL, you can write strings surrounded by either ' or " characters (for
example, 'hello' or "goodbye"), and mysql lets you enter strings that span multiple lines. When
you see a '> or "> prompt, it means that you have entered a line containing a string that begins with a '
or " quote character, but have not yet entered the matching quote that terminates the string. This often
indicates that you have inadvertently left out a quote character. For example:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '>

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead
of wondering why this query takes so long, notice the clue provided by the '> prompt. It tells you that
mysql expects to see the rest of an unterminated string. (Do you see the error in the statement? The string
'Smith is missing the second single quotation mark.)

At this point, what do you do? The simplest thing is to cancel the query. However, you cannot just type \c
in this case, because mysql interprets it as part of the string that it is collecting. Instead, enter the closing
quote character (so mysql knows you've finished the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '> '\c
mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new query.

The `> prompt is similar to the '> and "> prompts, but indicates that you have begun but not completed a
backtick-quoted identifier.

It is important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter an
unterminated string, any further lines you type appear to be ignored by mysql—including a line containing
QUIT. This can be quite confusing, especially if you do not know that you need to supply the terminating
quote before you can cancel the current query.

Note

Multiline statements from this point on are written without the secondary (->
or other) prompts, to make it easier to copy and paste the statements to try for
yourself.

3.3 Creating and Using a Database

Once you know how to enter SQL statements, you are ready to access a database.

Suppose that you have several pets in your home (your menagerie) and you would like to keep track of
various types of information about them. You can do so by creating tables to hold your data and loading
them with the desired information. Then you can answer different sorts of questions about your animals by
retrieving data from the tables. This section shows you how to perform the following operations:

247

Creating and Selecting a Database

• Create a database

• Create a table

• Load data into the table

• Retrieve data from the table in various ways

• Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations
in which a similar type of database might be used. For example, a database like this could be used by
a farmer to keep track of livestock, or by a veterinarian to keep track of patient records. A menagerie
distribution containing some of the queries and sample data used in the following sections can be
obtained from the MySQL website. It is available in both compressed tar file and Zip formats at https://
dev.mysql.com/doc/.

Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
| tmp |
+----------+

The mysql database describes user access privileges. The test database often is available as a
workspace for users to try things out.

The list of databases displayed by the statement may be different on your machine; SHOW DATABASES
does not show databases that you have no privileges for if you do not have the SHOW DATABASES
privilege. See Section 13.7.5.15, “SHOW DATABASES Statement”.

If the test database exists, try to access it:

mysql> USE test
Database changed

USE, like QUIT, does not require a semicolon. (You can terminate such statements with a semicolon if you
like; it does no harm.) The USE statement is special in another way, too: it must be given on a single line.

You can use the test database (if you have access to it) for the examples that follow, but anything you
create in that database can be removed by anyone else with access to it. For this reason, you should
probably ask your MySQL administrator for permission to use a database of your own. Suppose that you
want to call yours menagerie. The administrator needs to execute a statement like this:

mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';

where your_mysql_name is the MySQL user name assigned to you and your_client_host is the host
from which you connect to the server.

3.3.1 Creating and Selecting a Database

If the administrator creates your database for you when setting up your permissions, you can begin using
it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;

248

https://dev.mysql.com/doc/
https://dev.mysql.com/doc/

Creating a Table

Under Unix, database names are case-sensitive (unlike SQL keywords), so you must always refer to
your database as menagerie, not as Menagerie, MENAGERIE, or some other variant. This is also true
for table names. (Under Windows, this restriction does not apply, although you must refer to databases
and tables using the same lettercase throughout a given query. However, for a variety of reasons, the
recommended best practice is always to use the same lettercase that was used when the database was
created.)

Note

If you get an error such as ERROR 1044 (42000): Access denied for user
'micah'@'localhost' to database 'menagerie' when attempting to
create a database, this means that your user account does not have the necessary
privileges to do so. Discuss this with the administrator or see Section 6.2, “Access
Control and Account Management”.

Creating a database does not select it for use; you must do that explicitly. To make menagerie the current
database, use this statement:

mysql> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time you begin a mysql
session. You can do this by issuing a USE statement as shown in the example. Alternatively, you can select
the database on the command line when you invoke mysql. Just specify its name after any connection
parameters that you might need to provide. For example:

$> mysql -h host -u user -p menagerie
Enter password: ********

Important

menagerie in the command just shown is not your password. If you want to supply
your password on the command line after the -p option, you must do so with no
intervening space (for example, as -ppassword, not as -p password). However,
putting your password on the command line is not recommended, because doing so
exposes it to snooping by other users logged in on your machine.

Note

You can see at any time which database is currently selected using SELECT
DATABASE().

3.3.2 Creating a Table

Creating the database is the easy part, but at this point it is empty, as SHOW TABLES tells you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and what
columns should be in each of them.

You want a table that contains a record for each of your pets. This can be called the pet table, and
it should contain, as a bare minimum, each animal's name. Because the name by itself is not very
interesting, the table should contain other information. For example, if more than one person in your
family keeps pets, you might want to list each animal's owner. You might also want to record some basic
descriptive information such as species and sex.

249

Loading Data into a Table

How about age? That might be of interest, but it is not a good thing to store in a database. Age changes
as time passes, which means you'd have to update your records often. Instead, it is better to store a fixed
value such as date of birth. Then, whenever you need age, you can calculate it as the difference between
the current date and the birth date. MySQL provides functions for doing date arithmetic, so this is not
difficult. Storing birth date rather than age has other advantages, too:

• You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If you
think this type of query is somewhat silly, note that it is the same question you might ask in the context
of a business database to identify clients to whom you need to send out birthday greetings in the current
week or month, for that computer-assisted personal touch.)

• You can calculate age in relation to dates other than the current date. For example, if you store death
date in the database, you can easily calculate how old a pet was when it died.

You can probably think of other types of information that would be useful in the pet table, but the ones
identified so far are sufficient: name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
 species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because the column values vary
in length. The lengths in those column definitions need not all be the same, and need not be 20. You can
normally pick any length from 1 to 65535, whatever seems most reasonable to you. If you make a poor
choice and it turns out later that you need a longer field, MySQL provides an ALTER TABLE statement.

Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or
perhaps 'male' and 'female'. It is simplest to use the single characters 'm' and 'f'.

The use of the DATE data type for the birth and death columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| pet |
+---------------------+

To verify that your table was created the way you expected, use a DESCRIBE statement:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

You can use DESCRIBE any time, for example, if you forget the names of the columns in your table or what
types they have.

For more information about MySQL data types, see Chapter 11, Data Types.

3.3.3 Loading Data into a Table

250

Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and INSERT statements are useful for
this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates in
'YYYY-MM-DD' format; this may differ from what you are used to.)

name owner species sex birth death

Fluffy Harold cat f 1993-02-04

Claws Gwen cat m 1994-03-17

Buffy Harold dog f 1989-05-13

Fang Benny dog m 1990-08-27

Bowser Diane dog m 1979-08-31 1995-07-29

Chirpy Gwen bird f 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a text file
containing a row for each of your animals, then load the contents of the file into the table with a single
statement.

You could create a text file pet.txt containing one record per line, with values separated by tabs, and
given in the order in which the columns were listed in the CREATE TABLE statement. For missing values
(such as unknown sexes or death dates for animals that are still living), you can use NULL values. To
represent these in your text file, use \N (backslash, capital-N). For example, the record for Whistler the bird
would look like this (where the whitespace between values is a single tab character):

Whistler Gwen bird \N 1997-12-09 \N

To load the text file pet.txt into the pet table, use this statement:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

If you created the file on Windows with an editor that uses \r\n as a line terminator, you should use this
statement instead:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet
 LINES TERMINATED BY '\r\n';

(On an Apple machine running macOS, you would likely want to use LINES TERMINATED BY '\r'.)

You can specify the column value separator and end of line marker explicitly in the LOAD DATA statement
if you wish, but the defaults are tab and linefeed. These are sufficient for the statement to read the file
pet.txt properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability enabled by
default. See Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”, for information on how to
change this.

When you want to add new records one at a time, the INSERT statement is useful. In its simplest form,
you supply values for each column, in the order in which the columns were listed in the CREATE TABLE
statement. Suppose that Diane gets a new hamster named “Puffball.” You could add a new record using
an INSERT statement like this:

mysql> INSERT INTO pet
 VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);

251

Retrieving Information from a Table

String and date values are specified as quoted strings here. Also, with INSERT, you can insert NULL
directly to represent a missing value. You do not use \N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load your
records initially using several INSERT statements rather than a single LOAD DATA statement.

3.3.4 Retrieving Information from a Table

The SELECT statement is used to pull information from a table. The general form of the statement is:

SELECT what_to_select
FROM which_table
WHERE conditions_to_satisfy;

what_to_select indicates what you want to see. This can be a list of columns, or * to indicate “all
columns.” which_table indicates the table from which you want to retrieve data. The WHERE clause
is optional. If it is present, conditions_to_satisfy specifies one or more conditions that rows must
satisfy to qualify for retrieval.

3.3.4.1 Selecting All Data

The simplest form of SELECT retrieves everything from a table:

mysql> SELECT * FROM pet;
+----------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+--------+---------+------+------------+------------+
Fluffy	Harold	cat	f	1993-02-04	NULL
Claws	Gwen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hamster	f	1999-03-30	NULL
+----------+--------+---------+------+------------+------------+

This form of SELECT uses *, which is shorthand for “select all columns.” This is useful if you want to review
your entire table, for example, after you've just loaded it with your initial data set. For example, you may
happen to think that the birth date for Bowser doesn't seem quite right. Consulting your original pedigree
papers, you find that the correct birth year should be 1989, not 1979.

There are at least two ways to fix this:

• Edit the file pet.txt to correct the error, then empty the table and reload it using DELETE and LOAD
DATA:

mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

• Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = '1989-08-31' WHERE name = 'Bowser';

The UPDATE changes only the record in question and does not require you to reload the table.

3.3.4.2 Selecting Particular Rows

252

Retrieving Information from a Table

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause from
the SELECT statement. But typically you don't want to see the entire table, particularly when it becomes
large. Instead, you're usually more interested in answering a particular question, in which case you specify
some constraints on the information you want. Let's look at some selection queries in terms of questions
about your pets that they answer.

You can select only particular rows from your table. For example, if you want to verify the change that you
made to Bowser's birth date, select Bowser's record like this:

mysql> SELECT * FROM pet WHERE name = 'Bowser';
+--------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+-------+---------+------+------------+------------+
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+-------+---------+------+------------+------------+

The output confirms that the year is correctly recorded as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as 'bowser', 'BOWSER',
and so forth. The query result is the same.

You can specify conditions on any column, not just name. For example, if you want to know which animals
were born during or after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= '1998-1-1';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
+----------+-------+---------+------+------------+-------+

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * FROM pet WHERE species = 'dog' AND sex = 'f';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
+----------+-------+---------+------+------------+-------+

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both operators, it
is a good idea to use parentheses to indicate explicitly how conditions should be grouped:

mysql> SELECT * FROM pet WHERE (species = 'cat' AND sex = 'm')
 OR (species = 'dog' AND sex = 'f');
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |

253

Retrieving Information from a Table

+-------+--------+---------+------+------------+-------+

3.3.4.3 Selecting Particular Columns

If you do not want to see entire rows from your table, just name the columns in which you are interested,
separated by commas. For example, if you want to know when your animals were born, select the name
and birth columns:

mysql> SELECT name, birth FROM pet;
+----------+------------+
| name | birth |
+----------+------------+
Fluffy	1993-02-04
Claws	1994-03-17
Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
+----------+------------+

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
+--------+
| owner |
+--------+
| Harold |
| Gwen |
| Harold |
| Benny |
| Diane |
| Gwen |
| Gwen |
| Benny |
| Diane |
+--------+

Notice that the query simply retrieves the owner column from each record, and some of them appear more
than once. To minimize the output, retrieve each unique output record just once by adding the keyword
DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;
+--------+
| owner |
+--------+
| Benny |
| Diane |
| Gwen |
| Harold |
+--------+

You can use a WHERE clause to combine row selection with column selection. For example, to get birth
dates for dogs and cats only, use this query:

mysql> SELECT name, species, birth FROM pet
 WHERE species = 'dog' OR species = 'cat';
+--------+---------+------------+
| name | species | birth |
+--------+---------+------------+
| Fluffy | cat | 1993-02-04 |
| Claws | cat | 1994-03-17 |

254

Retrieving Information from a Table

Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
+--------+---------+------------+

3.3.4.4 Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no particular order. It
is often easier to examine query output when the rows are sorted in some meaningful way. To sort a result,
use an ORDER BY clause.

Here are animal birthdays, sorted by date:

mysql> SELECT name, birth FROM pet ORDER BY birth;
+----------+------------+
| name | birth |
+----------+------------+
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Claws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
+----------+------------+

On character type columns, sorting—like all other comparison operations—is normally performed in a
case-insensitive fashion. This means that the order is undefined for columns that are identical except for
their case. You can force a case-sensitive sort for a column by using BINARY like so: ORDER BY BINARY
col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order, add
the DESC keyword to the name of the column you are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;
+----------+------------+
| name | birth |
+----------+------------+
Puffball	1999-03-30
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Claws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
+----------+------------+

You can sort on multiple columns, and you can sort different columns in different directions. For example,
to sort by type of animal in ascending order, then by birth date within animal type in descending order
(youngest animals first), use the following query:

mysql> SELECT name, species, birth FROM pet
 ORDER BY species, birth DESC;
+----------+---------+------------+
| name | species | birth |
+----------+---------+------------+
Chirpy	bird	1998-09-11
Whistler	bird	1997-12-09
Claws	cat	1994-03-17
Fluffy	cat	1993-02-04

255

Retrieving Information from a Table

Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hamster	1999-03-30
Slim	snake	1996-04-29
+----------+---------+------------+

The DESC keyword applies only to the column name immediately preceding it (birth); it does not affect
the species column sort order.

3.3.4.5 Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for example, to
calculate ages or extract parts of dates.

To determine how many years old each of your pets is, use the TIMESTAMPDIFF() function. Its
arguments are the unit in which you want the result expressed, and the two dates for which to take the
difference. The following query shows, for each pet, the birth date, the current date, and the age in years.
An alias (age) is used to make the final output column label more meaningful.

mysql> SELECT name, birth, CURDATE(),
 TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 FROM pet;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Fluffy	1993-02-04	2003-08-19	10
Claws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
+----------+------------+------------+------+

The query works, but the result could be scanned more easily if the rows were presented in some order.
This can be done by adding an ORDER BY name clause to sort the output by name:

mysql> SELECT name, birth, CURDATE(),
 TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 FROM pet ORDER BY name;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
Claws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10
Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5
+----------+------------+------------+------+

To sort the output by age rather than name, just use a different ORDER BY clause:

mysql> SELECT name, birth, CURDATE(),
 TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 FROM pet ORDER BY age;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |

256

Retrieving Information from a Table

+----------+------------+------------+------+
Chirpy	1998-09-11	2003-08-19	4
Puffball	1999-03-30	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Claws	1994-03-17	2003-08-19	9
Fluffy	1993-02-04	2003-08-19	10
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
+----------+------------+------------+------+

A similar query can be used to determine age at death for animals that have died. You determine which
animals these are by checking whether the death value is NULL. Then, for those with non-NULL values,
compute the difference between the death and birth values:

mysql> SELECT name, birth, death,
 TIMESTAMPDIFF(YEAR,birth,death) AS age
 FROM pet WHERE death IS NOT NULL ORDER BY age;
+--------+------------+------------+------+
| name | birth | death | age |
+--------+------------+------------+------+
| Bowser | 1989-08-31 | 1995-07-29 | 5 |
+--------+------------+------------+------+

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special value that
cannot be compared using the usual comparison operators. This is discussed later. See Section 3.3.4.6,
“Working with NULL Values”.

What if you want to know which animals have birthdays next month? For this type of calculation, year
and day are irrelevant; you simply want to extract the month part of the birth column. MySQL provides
several functions for extracting parts of dates, such as YEAR(), MONTH(), and DAYOFMONTH(). MONTH()
is the appropriate function here. To see how it works, run a simple query that displays the value of both
birth and MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;
+----------+------------+--------------+
| name | birth | MONTH(birth) |
+----------+------------+--------------+
Fluffy	1993-02-04	2
Claws	1994-03-17	3
Buffy	1989-05-13	5
Fang	1990-08-27	8
Bowser	1989-08-31	8
Chirpy	1998-09-11	9
Whistler	1997-12-09	12
Slim	1996-04-29	4
Puffball	1999-03-30	3
+----------+------------+--------------+

Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is
April. Then the month value is 4 and you can look for animals born in May (month 5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;
+-------+------------+
| name | birth |
+-------+------------+
| Buffy | 1989-05-13 |
+-------+------------+

There is a small complication if the current month is December. You cannot merely add one to the month
number (12) and look for animals born in month 13, because there is no such month. Instead, you look for
animals born in January (month 1).

257

Retrieving Information from a Table

You can write the query so that it works no matter what the current month is, so that you do not have to
use the number for a particular month. DATE_ADD() enables you to add a time interval to a given date.
If you add a month to the value of CURDATE(), then extract the month part with MONTH(), the result
produces the month in which to look for birthdays:

mysql> SELECT name, birth FROM pet
 WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the current one after
using the modulo function (MOD) to wrap the month value to 0 if it is currently 12:

mysql> SELECT name, birth FROM pet
 WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

MONTH() returns a number between 1 and 12. And MOD(something,12) returns a number between 0
and 11. So the addition has to be after the MOD(), otherwise we would go from November (11) to January
(1).

If a calculation uses invalid dates, the calculation fails and produces warnings:

mysql> SELECT '2018-10-31' + INTERVAL 1 DAY;
+-------------------------------+
| '2018-10-31' + INTERVAL 1 DAY |
+-------------------------------+
| 2018-11-01 |
+-------------------------------+
mysql> SELECT '2018-10-32' + INTERVAL 1 DAY;
+-------------------------------+
| '2018-10-32' + INTERVAL 1 DAY |
+-------------------------------+
| NULL |
+-------------------------------+
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '2018-10-32' |
+---------+------+--+

3.3.4.6 Working with NULL Values

The NULL value can be surprising until you get used to it. Conceptually, NULL means “a missing unknown
value” and it is treated somewhat differently from other values.

To test for NULL, use the IS NULL and IS NOT NULL operators, as shown here:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;
+-----------+---------------+
| 1 IS NULL | 1 IS NOT NULL |
+-----------+---------------+
| 0 | 1 |
+-----------+---------------+

You cannot use arithmetic comparison operators such as =, <, or <> to test for NULL. To demonstrate this
for yourself, try the following query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;
+----------+-----------+----------+----------+
| 1 = NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
+----------+-----------+----------+----------+
| NULL | NULL | NULL | NULL |
+----------+-----------+----------+----------+

258

Retrieving Information from a Table

Because the result of any arithmetic comparison with NULL is also NULL, you cannot obtain any meaningful
results from such comparisons.

In MySQL, 0 or NULL means false and anything else means true. The default truth value from a boolean
operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine which
animals are no longer alive using death IS NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and last if you
do ORDER BY ... DESC.

A common error when working with NULL is to assume that it is not possible to insert a zero or an empty
string into a column defined as NOT NULL, but this is not the case. These are in fact values, whereas NULL
means “not having a value.” You can test this easily enough by using IS [NOT] NULL as shown:

mysql> SELECT 0 IS NULL, 0 IS NOT NULL, '' IS NULL, '' IS NOT NULL;
+-----------+---------------+------------+----------------+
| 0 IS NULL | 0 IS NOT NULL | '' IS NULL | '' IS NOT NULL |
+-----------+---------------+------------+----------------+
| 0 | 1 | 0 | 1 |
+-----------+---------------+------------+----------------+

Thus it is entirely possible to insert a zero or empty string into a NOT NULL column, as these are in fact
NOT NULL. See Section B.3.4.3, “Problems with NULL Values”.

3.3.4.7 Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching based on extended
regular expressions similar to those used by Unix utilities such as vi, grep, and sed.

SQL pattern matching enables you to use _ to match any single character and % to match an arbitrary
number of characters (including zero characters). In MySQL, SQL patterns are case-insensitive by default.
Some examples are shown here. Do not use = or <> when you use SQL patterns. Use the LIKE or NOT
LIKE comparison operators instead.

To find names beginning with b:

mysql> SELECT * FROM pet WHERE name LIKE 'b%';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To find names ending with fy:

mysql> SELECT * FROM pet WHERE name LIKE '%fy';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a w:

mysql> SELECT * FROM pet WHERE name LIKE '%w%';

259

Retrieving Information from a Table

+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

To find names containing exactly five characters, use five instances of the _ pattern character:

mysql> SELECT * FROM pet WHERE name LIKE '_____';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The other type of pattern matching provided by MySQL uses extended regular expressions. When you
test for a match for this type of pattern, use the REGEXP and NOT REGEXP operators (or RLIKE and NOT
RLIKE, which are synonyms).

The following list describes some characteristics of extended regular expressions:

• . matches any single character.

• A character class [...] matches any character within the brackets. For example, [abc] matches a, b,
or c. To name a range of characters, use a dash. [a-z] matches any letter, whereas [0-9] matches
any digit.

• * matches zero or more instances of the thing preceding it. For example, x* matches any number of x
characters, [0-9]* matches any number of digits, and .* matches any number of anything.

• A regular expression pattern match succeeds if the pattern matches anywhere in the value being tested.
(This differs from a LIKE pattern match, which succeeds only if the pattern matches the entire value.)

• To anchor a pattern so that it must match the beginning or end of the value being tested, use ^ at the
beginning or $ at the end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously are rewritten
here to use REGEXP.

To find names beginning with b, use ^ to match the beginning of the name:

mysql> SELECT * FROM pet WHERE name REGEXP '^b';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To force a REGEXP comparison to be case-sensitive, use the BINARY keyword to make one of the strings a
binary string. This query matches only lowercase b at the beginning of a name:

SELECT * FROM pet WHERE name REGEXP BINARY '^b';

To find names ending with fy, use $ to match the end of the name:

mysql> SELECT * FROM pet WHERE name REGEXP 'fy$';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |

260

Retrieving Information from a Table

+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a w, use this query:

mysql> SELECT * FROM pet WHERE name REGEXP 'w';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary in the
previous query to put a wildcard on either side of the pattern to get it to match the entire value as would be
true with an SQL pattern.

To find names containing exactly five characters, use ^ and $ to match the beginning and end of the name,
and five instances of . in between:

mysql> SELECT * FROM pet WHERE name REGEXP '^.....$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

You could also write the previous query using the {n} (“repeat-n-times”) operator:

mysql> SELECT * FROM pet WHERE name REGEXP '^.{5}$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

For more information about the syntax for regular expressions, see Section 12.8.2, “Regular Expressions”.

3.3.4.8 Counting Rows

Databases are often used to answer the question, “How often does a certain type of data occur in a table?”
For example, you might want to know how many pets you have, or how many pets each owner has, or you
might want to perform various kinds of census operations on your animals.

Counting the total number of animals you have is the same question as “How many rows are in the pet
table?” because there is one record per pet. COUNT(*) counts the number of rows, so the query to count
your animals looks like this:

mysql> SELECT COUNT(*) FROM pet;
+----------+
| COUNT(*) |
+----------+
| 9 |
+----------+

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want to find
out how many pets each owner has:

261

Retrieving Information from a Table

mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
Benny	2
Diane	2
Gwen	3
Harold	2
+--------+----------+

The preceding query uses GROUP BY to group all records for each owner. The use of COUNT() in
conjunction with GROUP BY is useful for characterizing your data under various groupings. The following
examples show different ways to perform animal census operations.

Number of animals per species:

mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;
+---------+----------+
| species | COUNT(*) |
+---------+----------+
bird	2
cat	2
dog	3
hamster	1
snake	1
+---------+----------+

Number of animals per sex:

mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+------+----------+
| sex | COUNT(*) |
+------+----------+
NULL	1
f	4
m	4
+------+----------+

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	NULL	1
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

You need not retrieve an entire table when you use COUNT(). For example, the previous query, when
performed just on dogs and cats, looks like this:

mysql> SELECT species, sex, COUNT(*) FROM pet
 WHERE species = 'dog' OR species = 'cat'
 GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |

262

Retrieving Information from a Table

+---------+------+----------+
cat	f	1
cat	m	1
dog	f	1
dog	m	2
+---------+------+----------+

Or, if you wanted the number of animals per sex only for animals whose sex is known:

mysql> SELECT species, sex, COUNT(*) FROM pet
 WHERE sex IS NOT NULL
 GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

If you name columns to select in addition to the COUNT() value, a GROUP BY clause should be present
that names those same columns. Otherwise, the following occurs:

• If the ONLY_FULL_GROUP_BY SQL mode is enabled, an error occurs:

mysql> SET sql_mode = 'ONLY_FULL_GROUP_BY';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT()...)
with no GROUP columns is illegal if there is no GROUP BY clause

• If ONLY_FULL_GROUP_BY is not enabled, the query is processed by treating all rows as a single group,
but the value selected for each named column is nondeterministic. The server is free to select the value
from any row:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT owner, COUNT(*) FROM pet;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
| Harold | 8 |
+--------+----------+
1 row in set (0.00 sec)

See also Section 12.19.3, “MySQL Handling of GROUP BY”. See Section 12.19.1, “Aggregate Function
Descriptions” for information about COUNT(expr) behavior and related optimizations.

3.3.4.9 Using More Than one Table

The pet table keeps track of which pets you have. If you want to record other information about them,
such as events in their lives like visits to the vet or when litters are born, you need another table. What
should this table look like? It needs to contain the following information:

• The pet name so that you know which animal each event pertains to.

• A date so that you know when the event occurred.

263

Retrieving Information from a Table

• A field to describe the event.

• An event type field, if you want to be able to categorize events.

Given these considerations, the CREATE TABLE statement for the event table might look like this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
 type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it is easiest to load the initial records by creating a tab-delimited text file containing
the following information.

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 female, 1
male

Buffy 1993-06-23 litter 5 puppies, 2 female, 3
male

Buffy 1994-06-19 litter 3 puppies, 3 female

Chirpy 1999-03-21 vet needed beak
straightened

Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him a new chew
toy

Claws 1998-03-17 birthday Gave him a new flea
collar

Whistler 1998-12-09 birthday First birthday

Load the records like this:

mysql> LOAD DATA LOCAL INFILE 'event.txt' INTO TABLE event;

Based on what you have learned from the queries that you have run on the pet table, you should be able
to perform retrievals on the records in the event table; the principles are the same. But when is the event
table by itself insufficient to answer questions you might ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to
calculate ages from two dates. The litter date of the mother is in the event table, but to calculate her age
on that date you need her birth date, which is stored in the pet table. This means the query requires both
tables:

mysql> SELECT pet.name,
 TIMESTAMPDIFF(YEAR,birth,date) AS age,
 remark
 FROM pet INNER JOIN event
 ON pet.name = event.name
 WHERE event.type = 'litter';
+--------+------+-----------------------------+
| name | age | remark |
+--------+------+-----------------------------+
Fluffy	2	4 kittens, 3 female, 1 male
Buffy	4	5 puppies, 2 female, 3 male
Buffy	5	3 puppies, 3 female
+--------+------+-----------------------------+

264

Getting Information About Databases and Tables

There are several things to note about this query:

• The FROM clause joins two tables because the query needs to pull information from both of them.

• When combining (joining) information from multiple tables, you need to specify how records in one table
can be matched to records in the other. This is easy because they both have a name column. The query
uses an ON clause to match up records in the two tables based on the name values.

The query uses an INNER JOIN to combine the tables. An INNER JOIN permits rows from either table
to appear in the result if and only if both tables meet the conditions specified in the ON clause. In this
example, the ON clause specifies that the name column in the pet table must match the name column in
the event table. If a name appears in one table but not the other, the row does not appear in the result
because the condition in the ON clause fails.

• Because the name column occurs in both tables, you must be specific about which table you mean when
referring to the column. This is done by prepending the table name to the column name.

You need not have two different tables to perform a join. Sometimes it is useful to join a table to itself, if
you want to compare records in a table to other records in that same table. For example, to find breeding
pairs among your pets, you can join the pet table with itself to produce candidate pairs of live males and
females of like species:

mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species
 FROM pet AS p1 INNER JOIN pet AS p2
 ON p1.species = p2.species
 AND p1.sex = 'f' AND p1.death IS NULL
 AND p2.sex = 'm' AND p2.death IS NULL;
+--------+------+-------+------+---------+
| name | sex | name | sex | species |
+--------+------+-------+------+---------+
| Fluffy | f | Claws | m | cat |
| Buffy | f | Fang | m | dog |
+--------+------+-------+------+---------+

In this query, we specify aliases for the table name to refer to the columns and keep straight which
instance of the table each column reference is associated with.

3.4 Getting Information About Databases and Tables
What if you forget the name of a database or table, or what the structure of a given table is (for example,
what its columns are called)? MySQL addresses this problem through several statements that provide
information about the databases and tables it supports.

You have previously seen SHOW DATABASES, which lists the databases managed by the server. To find
out which database is currently selected, use the DATABASE() function:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| menagerie |
+------------+

If you have not yet selected any database, the result is NULL.

To find out what tables the default database contains (for example, when you are not sure about the name
of a table), use this statement:

mysql> SHOW TABLES;
+---------------------+

265

Using mysql in Batch Mode

| Tables_in_menagerie |
+---------------------+
| event |
| pet |
+---------------------+

The name of the column in the output produced by this statement is always Tables_in_db_name, where
db_name is the name of the database. See Section 13.7.5.38, “SHOW TABLES Statement”, for more
information.

If you want to find out about the structure of a table, the DESCRIBE statement is useful; it displays
information about each of a table's columns:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

Field indicates the column name, Type is the data type for the column, NULL indicates whether the
column can contain NULL values, Key indicates whether the column is indexed, and Default specifies the
column's default value. Extra displays special information about columns: If a column was created with
the AUTO_INCREMENT option, the value is auto_increment rather than empty.

DESC is a short form of DESCRIBE. See Section 13.8.1, “DESCRIBE Statement”, for more information.

You can obtain the CREATE TABLE statement necessary to create an existing table using the SHOW
CREATE TABLE statement. See Section 13.7.5.12, “SHOW CREATE TABLE Statement”.

If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about them. See
Section 13.7.5.23, “SHOW INDEX Statement”, for more about this statement.

3.5 Using mysql in Batch Mode

In the previous sections, you used mysql interactively to enter statements and view the results. You can
also run mysql in batch mode. To do this, put the statements you want to run in a file, then tell mysql to
read its input from the file:

$> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that cause
problems, you can do this:

C:\> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like this:

$> mysql -h host -u user -p < batch-file
Enter password: ********

When you use mysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you should use the --
force command-line option.

266

Examples of Common Queries

Why use a script? Here are a few reasons:

• If you run a query repeatedly (say, every day or every week), making it a script enables you to avoid
retyping it each time you execute it.

• You can generate new queries from existing ones that are similar by copying and editing script files.

• Batch mode can also be useful while you're developing a query, particularly for multiple-line statements
or multiple-statement sequences. If you make a mistake, you don't have to retype everything. Just edit
your script to correct the error, then tell mysql to execute it again.

• If you have a query that produces a lot of output, you can run the output through a pager rather than
watching it scroll off the top of your screen:

$> mysql < batch-file | more

• You can catch the output in a file for further processing:

$> mysql < batch-file > mysql.out

• You can distribute your script to other people so that they can also run the statements.

• Some situations do not allow for interactive use, for example, when you run a query from a cron job. In
this case, you must use batch mode.

The default output format is different (more concise) when you run mysql in batch mode than when you
use it interactively. For example, the output of SELECT DISTINCT species FROM pet looks like this
when mysql is run interactively:

+---------+
| species |
+---------+
| bird |
| cat |
| dog |
| hamster |
| snake |
+---------+

In batch mode, the output looks like this instead:

species
bird
cat
dog
hamster
snake

If you want to get the interactive output format in batch mode, use mysql -t. To echo to the output the
statements that are executed, use mysql -v.

You can also use scripts from the mysql prompt by using the source command or \. command:

mysql> source filename;
mysql> \. filename

See Section 4.5.1.5, “Executing SQL Statements from a Text File”, for more information.

3.6 Examples of Common Queries
Here are examples of how to solve some common problems with MySQL.

267

The Maximum Value for a Column

Some of the examples use the table shop to hold the price of each article (item number) for certain traders
(dealers). Supposing that each trader has a single fixed price per article, then (article, dealer) is a
primary key for the records.

Start the command-line tool mysql and select a database:

$> mysql your-database-name

To create and populate the example table, use these statements:

CREATE TABLE shop (
 article INT UNSIGNED DEFAULT '0000' NOT NULL,
 dealer CHAR(20) DEFAULT '' NOT NULL,
 price DECIMAL(16,2) DEFAULT '0.00' NOT NULL,
 PRIMARY KEY(article, dealer));
INSERT INTO shop VALUES
 (1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),
 (3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

After issuing the statements, the table should have the following contents:

SELECT * FROM shop ORDER BY article;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
1	A	3.45
1	B	3.99
2	A	10.99
3	B	1.45
3	C	1.69
3	D	1.25
4	D	19.95
+---------+--------+-------+

3.6.1 The Maximum Value for a Column

“What is the highest item number?”

SELECT MAX(article) AS article FROM shop;

+---------+
| article |
+---------+
| 4 |
+---------+

3.6.2 The Row Holding the Maximum of a Certain Column

Task: Find the number, dealer, and price of the most expensive article.

This is easily done with a subquery:

SELECT article, dealer, price
FROM shop
WHERE price=(SELECT MAX(price) FROM shop);

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0004 | D | 19.95 |
+---------+--------+-------+

Another solution is to use a LEFT JOIN, as shown here:

268

Maximum of Column per Group

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.price < s2.price
WHERE s2.article IS NULL;

You can also do this by sorting all rows descending by price and get only the first row using the MySQL-
specific LIMIT clause, like this:

SELECT article, dealer, price
FROM shop
ORDER BY price DESC
LIMIT 1;

Note

If there were several most expensive articles, each with a price of 19.95, the LIMIT
solution would show only one of them.

3.6.3 Maximum of Column per Group

Task: Find the highest price per article.

SELECT article, MAX(price) AS price
FROM shop
GROUP BY article
ORDER BY article;

+---------+-------+
| article | price |
+---------+-------+
0001	3.99
0002	10.99
0003	1.69
0004	19.95
+---------+-------+

3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column

Task: For each article, find the dealer or dealers with the most expensive price.

This problem can be solved with a subquery like this one:

SELECT article, dealer, price
FROM shop s1
WHERE price=(SELECT MAX(s2.price)
 FROM shop s2
 WHERE s1.article = s2.article)
ORDER BY article;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	B	3.99
0002	A	10.99
0003	C	1.69
0004	D	19.95
+---------+--------+-------+

The preceding example uses a correlated subquery, which can be inefficient (see Section 13.2.10.7,
“Correlated Subqueries”). Other possibilities for solving the problem are to use an uncorrelated subquery in
the FROM clause or a LEFT JOIN.

Uncorrelated subquery:

269

Using User-Defined Variables

SELECT s1.article, dealer, s1.price
FROM shop s1
JOIN (
 SELECT article, MAX(price) AS price
 FROM shop
 GROUP BY article) AS s2
 ON s1.article = s2.article AND s1.price = s2.price
ORDER BY article;

LEFT JOIN:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.article = s2.article AND s1.price < s2.price
WHERE s2.article IS NULL
ORDER BY s1.article;

The LEFT JOIN works on the basis that when s1.price is at its maximum value, there is no s2.price
with a greater value and thus the corresponding s2.article value is NULL. See Section 13.2.9.2, “JOIN
Clause”.

3.6.5 Using User-Defined Variables

You can employ MySQL user variables to remember results without having to store them in temporary
variables in the client. (See Section 9.4, “User-Defined Variables”.)

For example, to find the articles with the highest and lowest price you can do this:

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0003 | D | 1.25 |
| 0004 | D | 19.95 |
+---------+--------+-------+

Note

It is also possible to store the name of a database object such as a table or a
column in a user variable and then to use this variable in an SQL statement;
however, this requires the use of a prepared statement. See Section 13.5,
“Prepared Statements”, for more information.

3.6.6 Using Foreign Keys

MySQL supports foreign keys, which permit cross-referencing related data across tables, and foreign key
constraints, which help keep the related data consistent.

A foreign key relationship involves a parent table that holds the initial column values, and a child table with
column values that reference the parent column values. A foreign key constraint is defined on the child
table.

This following example relates parent and child tables through a single-column foreign key and shows
how a foreign key constraint enforces referential integrity.

Create the parent and child tables:

CREATE TABLE parent (
 id INT NOT NULL,

270

Using Foreign Keys

 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE child (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),
 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
) ENGINE=INNODB;

Insert a row into the parent table:

mysql> INSERT INTO parent (id) VALUES (1);

Verify that the data was inserted:

mysql> SELECT * FROM parent;
+----+
| id |
+----+
| 1 |
+----+

Insert a row into the child table:

mysql> INSERT INTO child (id,parent_id) VALUES (1,1);

The insert operation is successful because parent_id 1 is present in the parent table.

Insert a row into the child table with a parent_id value that is not present in the parent table:

mysql> INSERT INTO child (id,parent_id) VALUES(2,2);
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails
(`test`.`child`, CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`)
REFERENCES `parent` (`id`))

The operation fails because the specified parent_id value does not exist in the parent table.

Try to delete the previously inserted row from the parent table:

mysql> DELETE FROM parent WHERE id VALUES = 1;
ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key constraint fails
(`test`.`child`, CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`)
REFERENCES `parent` (`id`))

This operation fails because the record in the child table contains the referenced id (parent_id) value.

When an operation affects a key value in the parent table that has matching rows in the child table,
the result depends on the referential action specified by ON UPDATE and ON DELETE subclauses of
the FOREIGN KEY clause. Omitting ON DELETE and ON UPDATE clauses (as in the current child table
definition) is the same as specifying the RESTRICT option, which rejects operations that affect a key value
in the parent table that has matching rows in the parent table.

To demonstrate ON DELETE and ON UPDATE referential actions, drop the child table and recreate it
to include ON UPDATE and ON DELETE subclauses with the CASCADE option. The CASCADE option
automatically deletes or updates matching rows in the child table when deleting or updating rows in the
parent table.

DROP TABLE child;

271

Searching on Two Keys

CREATE TABLE child (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),
 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
 ON UPDATE CASCADE
 ON DELETE CASCADE
) ENGINE=INNODB;

Insert the following rows into the child table:

mysql> INSERT INTO child (id,parent_id) VALUES(1,1),(2,1),(3,1);

Verify that the data was inserted:

mysql> SELECT * FROM child;
+------+-----------+
| id | parent_id |
+------+-----------+
1	1
2	1
3	1
+------+-----------+

Update the id in the parent table, changing it from 1 to 2.

mysql> UPDATE parent SET id = 2 WHERE id = 1;

Verify that the update was successful:

mysql> SELECT * FROM parent;
+----+
| id |
+----+
| 2 |
+----+

Verify that the ON UPDATE CASCADE referential action updated the child table:

mysql> SELECT * FROM child;
+------+-----------+
| id | parent_id |
+------+-----------+
1	2
2	2
3	2
+------+-----------+

To demonstrate the ON DELTE CASCADE referential action, delete records from the parent table where the
parent_id = 2, which deletes all records in the parent table.

mysql> DELETE FROM parent WHERE id = 2;

Because all records in the child table are associated with parent_id = 2, the ON DELETE CASCADE
referential action removes all records from the child table:

mysql> SELECT * FROM child;
Empty set (0.00 sec)

For more information about foreign key constraints, see Section 13.1.17.5, “FOREIGN KEY Constraints”.

3.6.7 Searching on Two Keys

272

Calculating Visits Per Day

An OR using a single key is well optimized, as is the handling of AND.

The one tricky case is that of searching on two different keys combined with OR:

SELECT field1_index, field2_index FROM test_table
WHERE field1_index = '1' OR field2_index = '1'

This case is optimized. See Section 8.2.1.3, “Index Merge Optimization”.

You can also solve the problem efficiently by using a UNION that combines the output of two separate
SELECT statements. See Section 13.2.9.3, “UNION Clause”.

Each SELECT searches only one key and can be optimized:

SELECT field1_index, field2_index
 FROM test_table WHERE field1_index = '1'
UNION
SELECT field1_index, field2_index
 FROM test_table WHERE field2_index = '1';

3.6.8 Calculating Visits Per Day

The following example shows how you can use the bit group functions to calculate the number of days per
month a user has visited a Web page.

CREATE TABLE t1 (year YEAR, month INT UNSIGNED,
 day INT UNSIGNED);
INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),
 (2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page. To determine
how many different days in each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1
 GROUP BY year,month;

Which returns:

+------+-------+------+
| year | month | days |
+------+-------+------+
| 2000 | 1 | 3 |
| 2000 | 2 | 2 |
+------+-------+------+

The query calculates how many different days appear in the table for each year/month combination, with
automatic removal of duplicate entries.

3.6.9 Using AUTO_INCREMENT

The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE animals (
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (id)
);

INSERT INTO animals (name) VALUES
 ('dog'),('cat'),('penguin'),

273

Using AUTO_INCREMENT

 ('lax'),('whale'),('ostrich');

SELECT * FROM animals;

Which returns:

+----+---------+
| id | name |
+----+---------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
+----+---------+

No value was specified for the AUTO_INCREMENT column, so MySQL assigned sequence numbers
automatically. You can also explicitly assign 0 to the column to generate sequence numbers, unless the
NO_AUTO_VALUE_ON_ZERO SQL mode is enabled. For example:

INSERT INTO animals (id,name) VALUES(0,'groundhog');

If the column is declared NOT NULL, it is also possible to assign NULL to the column to generate sequence
numbers. For example:

INSERT INTO animals (id,name) VALUES(NULL,'squirrel');

When you insert any other value into an AUTO_INCREMENT column, the column is set to that value and
the sequence is reset so that the next automatically generated value follows sequentially from the largest
column value. For example:

INSERT INTO animals (id,name) VALUES(100,'rabbit');
INSERT INTO animals (id,name) VALUES(NULL,'mouse');
SELECT * FROM animals;
+-----+-----------+
| id | name |
+-----+-----------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
7	groundhog
8	squirrel
100	rabbit
101	mouse
+-----+-----------+

Updating an existing AUTO_INCREMENT column value in an InnoDB table does not reset the
AUTO_INCREMENT sequence as it does for MyISAM and NDB tables.

You can retrieve the most recent automatically generated AUTO_INCREMENT value with the
LAST_INSERT_ID() SQL function or the mysql_insert_id() C API function. These functions are
connection-specific, so their return values are not affected by another connection which is also performing
inserts.

Use the smallest integer data type for the AUTO_INCREMENT column that is large enough to hold the
maximum sequence value you need. When the column reaches the upper limit of the data type, the
next attempt to generate a sequence number fails. Use the UNSIGNED attribute if possible to allow a
greater range. For example, if you use TINYINT, the maximum permissible sequence number is 127. For

274

https://dev.mysql.com/doc/c-api/5.6/en/mysql-insert-id.html

Using AUTO_INCREMENT

TINYINT UNSIGNED, the maximum is 255. See Section 11.1.2, “Integer Types (Exact Value) - INTEGER,
INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT” for the ranges of all the integer types.

Note

For a multiple-row insert, LAST_INSERT_ID() and mysql_insert_id() actually
return the AUTO_INCREMENT key from the first of the inserted rows. This enables
multiple-row inserts to be reproduced correctly on other servers in a replication
setup.

To start with an AUTO_INCREMENT value other than 1, set that value with CREATE TABLE or ALTER
TABLE, like this:

mysql> ALTER TABLE tbl AUTO_INCREMENT = 100;

InnoDB Notes

For information about AUTO_INCREMENT usage specific to InnoDB, see Section 14.6.1.6,
“AUTO_INCREMENT Handling in InnoDB”.

MyISAM Notes

• For MyISAM tables, you can specify AUTO_INCREMENT on a secondary column in a multiple-
column index. In this case, the generated value for the AUTO_INCREMENT column is calculated as
MAX(auto_increment_column) + 1 WHERE prefix=given-prefix. This is useful when you
want to put data into ordered groups.

CREATE TABLE animals (
 grp ENUM('fish','mammal','bird') NOT NULL,
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (grp,id)
) ENGINE=MyISAM;

INSERT INTO animals (grp,name) VALUES
 ('mammal','dog'),('mammal','cat'),
 ('bird','penguin'),('fish','lax'),('mammal','whale'),
 ('bird','ostrich');

SELECT * FROM animals ORDER BY grp,id;

Which returns:

+--------+----+---------+
| grp | id | name |
+--------+----+---------+
fish	1	lax
mammal	1	dog
mammal	2	cat
mammal	3	whale
bird	1	penguin
bird	2	ostrich
+--------+----+---------+

In this case (when the AUTO_INCREMENT column is part of a multiple-column index), AUTO_INCREMENT
values are reused if you delete the row with the biggest AUTO_INCREMENT value in any group. This
happens even for MyISAM tables, for which AUTO_INCREMENT values normally are not reused.

• If the AUTO_INCREMENT column is part of multiple indexes, MySQL generates sequence values using
the index that begins with the AUTO_INCREMENT column, if there is one. For example, if the animals
table contained indexes PRIMARY KEY (grp, id) and INDEX (id), MySQL would ignore the

275

https://dev.mysql.com/doc/c-api/5.6/en/mysql-insert-id.html

Using MySQL with Apache

PRIMARY KEY for generating sequence values. As a result, the table would contain a single sequence,
not a sequence per grp value.

Further Reading

More information about AUTO_INCREMENT is available here:

• How to assign the AUTO_INCREMENT attribute to a column: Section 13.1.17, “CREATE TABLE
Statement”, and Section 13.1.7, “ALTER TABLE Statement”.

• How AUTO_INCREMENT behaves depending on the NO_AUTO_VALUE_ON_ZERO SQL mode:
Section 5.1.10, “Server SQL Modes”.

• How to use the LAST_INSERT_ID() function to find the row that contains the most recent
AUTO_INCREMENT value: Section 12.16, “Information Functions”.

• Setting the AUTO_INCREMENT value to be used: Section 5.1.7, “Server System Variables”.

• Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”

• AUTO_INCREMENT and replication: Section 17.4.1.1, “Replication and AUTO_INCREMENT”.

• Server-system variables related to AUTO_INCREMENT (auto_increment_increment and
auto_increment_offset) that can be used for replication: Section 5.1.7, “Server System Variables”.

3.7 Using MySQL with Apache

There are programs that let you authenticate your users from a MySQL database and also let you write
your log files into a MySQL table.

You can change the Apache logging format to be easily readable by MySQL by putting the following into
the Apache configuration file:

LogFormat \
 "\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\", \
 \"%U\",\"%{Referer}i\",\"%{User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:

LOAD DATA INFILE '/local/access_log' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'

The named table should be created to have columns that correspond to those that the LogFormat line
writes to the log file.

276

Chapter 4 MySQL Programs

Table of Contents
4.1 Overview of MySQL Programs .. 278
4.2 Using MySQL Programs ... 282

4.2.1 Invoking MySQL Programs ... 282
4.2.2 Specifying Program Options ... 283
4.2.3 Command Options for Connecting to the Server .. 297
4.2.4 Connecting to the MySQL Server Using Command Options ... 304
4.2.5 Connection Transport Protocols .. 306
4.2.6 Connection Compression Control .. 308
4.2.7 Setting Environment Variables .. 308

4.3 Server and Server-Startup Programs ... 309
4.3.1 mysqld — The MySQL Server .. 310
4.3.2 mysqld_safe — MySQL Server Startup Script ... 310
4.3.3 mysql.server — MySQL Server Startup Script ... 316
4.3.4 mysqld_multi — Manage Multiple MySQL Servers ... 318

4.4 Installation-Related Programs .. 322
4.4.1 comp_err — Compile MySQL Error Message File .. 322
4.4.2 mysqlbug — Generate Bug Report ... 323
4.4.3 mysql_install_db — Initialize MySQL Data Directory .. 323
4.4.4 mysql_plugin — Configure MySQL Server Plugins ... 327
4.4.5 mysql_secure_installation — Improve MySQL Installation Security 329
4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables ... 329
4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables .. 330

4.5 Client Programs .. 337
4.5.1 mysql — The MySQL Command-Line Client ... 337
4.5.2 mysqladmin — A MySQL Server Administration Program ... 365
4.5.3 mysqlcheck — A Table Maintenance Program ... 375
4.5.4 mysqldump — A Database Backup Program ... 384
4.5.5 mysqlimport — A Data Import Program ... 407
4.5.6 mysqlshow — Display Database, Table, and Column Information 415
4.5.7 mysqlslap — A Load Emulation Client .. 422

4.6 Administrative and Utility Programs ... 431
4.6.1 innochecksum — Offline InnoDB File Checksum Utility .. 431
4.6.2 myisam_ftdump — Display Full-Text Index information ... 432
4.6.3 myisamchk — MyISAM Table-Maintenance Utility .. 433
4.6.4 myisamlog — Display MyISAM Log File Contents .. 451
4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables 453
4.6.6 mysql_config_editor — MySQL Configuration Utility ... 459
4.6.7 mysqlaccess — Client for Checking Access Privileges ... 465
4.6.8 mysqlbinlog — Utility for Processing Binary Log Files .. 468
4.6.9 mysqldumpslow — Summarize Slow Query Log Files .. 490
4.6.10 mysqlhotcopy — A Database Backup Program .. 492
4.6.11 mysql_convert_table_format — Convert Tables to Use a Given Storage Engine 495
4.6.12 mysql_find_rows — Extract SQL Statements from Files ... 496
4.6.13 mysql_fix_extensions — Normalize Table File Name Extensions 497
4.6.14 mysql_setpermission — Interactively Set Permissions in Grant Tables 497
4.6.15 mysql_waitpid — Kill Process and Wait for Its Termination ... 498
4.6.16 mysql_zap — Kill Processes That Match a Pattern .. 499

4.7 Program Development Utilities .. 499

277

Overview of MySQL Programs

4.7.1 msql2mysql — Convert mSQL Programs for Use with MySQL .. 500
4.7.2 mysql_config — Display Options for Compiling Clients ... 500
4.7.3 my_print_defaults — Display Options from Option Files ... 501
4.7.4 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols 503

4.8 Miscellaneous Programs ... 503
4.8.1 perror — Display MySQL Error Message Information ... 503
4.8.2 replace — A String-Replacement Utility ... 504
4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa ... 505

4.9 Environment Variables .. 505
4.10 Unix Signal Handling in MySQL ... 507

This chapter provides a brief overview of the MySQL command-line programs provided by Oracle
Corporation. It also discusses the general syntax for specifying options when you run these programs.
Most programs have options that are specific to their own operation, but the option syntax is similar for all
of them. Finally, the chapter provides more detailed descriptions of individual programs, including which
options they recognize.

4.1 Overview of MySQL Programs
There are many different programs in a MySQL installation. This section provides a brief overview of
them. Later sections provide a more detailed description of each one, with the exception of NDB Cluster
programs. Each program's description indicates its invocation syntax and the options that it supports.
Section 18.5, “NDB Cluster Programs”, describes programs specific to NDB Cluster.

Most MySQL distributions include all of these programs, except for those programs that are platform-
specific. (For example, the server startup scripts are not used on Windows.) The exception is that RPM
distributions are more specialized. There is one RPM for the server, another for client programs, and so
forth. If you appear to be missing one or more programs, see Chapter 2, Installing and Upgrading MySQL,
for information on types of distributions and what they contain. It may be that you have a distribution that
does not include all programs and you need to install an additional package.

Each MySQL program takes many different options. Most programs provide a --help option that you can
use to get a description of the program's different options. For example, try mysql --help.

You can override default option values for MySQL programs by specifying options on the command line or
in an option file. See Section 4.2, “Using MySQL Programs”, for general information on invoking programs
and specifying program options.

The MySQL server, mysqld, is the main program that does most of the work in a MySQL installation. The
server is accompanied by several related scripts that assist you in starting and stopping the server:

• mysqld

The SQL daemon (that is, the MySQL server). To use client programs, mysqld must be running,
because clients gain access to databases by connecting to the server. See Section 4.3.1, “mysqld —
The MySQL Server”.

• mysqld_safe

A server startup script. mysqld_safe attempts to start mysqld. See Section 4.3.2, “mysqld_safe —
MySQL Server Startup Script”.

• mysql.server

A server startup script. This script is used on systems that use System V-style run directories containing
scripts that start system services for particular run levels. It invokes mysqld_safe to start the MySQL
server. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

278

Overview of MySQL Programs

• mysqld_multi

A server startup script that can start or stop multiple servers installed on the system. See Section 4.3.4,
“mysqld_multi — Manage Multiple MySQL Servers”.

Several programs perform setup operations during MySQL installation or upgrading:

• comp_err

This program is used during the MySQL build/installation process. It compiles error message files from
the error source files. See Section 4.4.1, “comp_err — Compile MySQL Error Message File”.

• mysql_install_db

This program initializes the MySQL data directory, creates the mysql database and initializes its grant
tables with default privileges, and sets up the InnoDB system tablespace. It is usually executed only
once, when first installing MySQL on a system. See Section 4.4.3, “mysql_install_db — Initialize MySQL
Data Directory”, and Section 2.10, “Postinstallation Setup and Testing”.

• mysql_plugin

This program configures MySQL server plugins. See Section 4.4.4, “mysql_plugin — Configure MySQL
Server Plugins”.

• mysql_secure_installation

This program enables you to improve the security of your MySQL installation. See Section 4.4.5,
“mysql_secure_installation — Improve MySQL Installation Security”.

• mysql_tzinfo_to_sql

This program loads the time zone tables in the mysql database using the contents of the host system
zoneinfo database (the set of files describing time zones). See Section 4.4.6, “mysql_tzinfo_to_sql —
Load the Time Zone Tables”.

• mysql_upgrade

This program is used after a MySQL upgrade operation. It updates the grant tables with any changes
that have been made in newer versions of MySQL, and checks tables for incompatibilities and repairs
them if necessary. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.

MySQL client programs that connect to the MySQL server:

• mysql

The command-line tool for interactively entering SQL statements or executing them from a file in batch
mode. See Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• mysqladmin

A client that performs administrative operations, such as creating or dropping databases, reloading the
grant tables, flushing tables to disk, and reopening log files. mysqladmin can also be used to retrieve
version, process, and status information from the server. See Section 4.5.2, “mysqladmin — A MySQL
Server Administration Program”.

• mysqlcheck

A table-maintenance client that checks, repairs, analyzes, and optimizes tables. See Section 4.5.3,
“mysqlcheck — A Table Maintenance Program”.

279

Overview of MySQL Programs

• mysqldump

A client that dumps a MySQL database into a file as SQL, text, or XML. See Section 4.5.4, “mysqldump
— A Database Backup Program”.

• mysqlimport

A client that imports text files into their respective tables using LOAD DATA. See Section 4.5.5,
“mysqlimport — A Data Import Program”.

• mysqlshow

A client that displays information about databases, tables, columns, and indexes. See Section 4.5.6,
“mysqlshow — Display Database, Table, and Column Information”.

• mysqlslap

A client that is designed to emulate client load for a MySQL server and report the timing of each stage. It
works as if multiple clients are accessing the server. See Section 4.5.7, “mysqlslap — A Load Emulation
Client”.

MySQL administrative and utility programs:

• innochecksum

An offline InnoDB offline file checksum utility. See Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”.

• myisam_ftdump

A utility that displays information about full-text indexes in MyISAM tables. See Section 4.6.2,
“myisam_ftdump — Display Full-Text Index information”.

• myisamchk

A utility to describe, check, optimize, and repair MyISAM tables. See Section 4.6.3, “myisamchk —
MyISAM Table-Maintenance Utility”.

• myisamlog

A utility that processes the contents of a MyISAM log file. See Section 4.6.4, “myisamlog — Display
MyISAM Log File Contents”.

• myisampack

A utility that compresses MyISAM tables to produce smaller read-only tables. See Section 4.6.5,
“myisampack — Generate Compressed, Read-Only MyISAM Tables”.

• mysql_config_editor

A utility that enables you to store authentication credentials in a secure, encrypted login path file named
.mylogin.cnf. See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• mysqlaccess

A script that checks the access privileges for a host name, user name, and database combination. See
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”.

• mysqlbinlog

280

Overview of MySQL Programs

A utility for reading statements from a binary log. The log of executed statements contained in the
binary log files can be used to help recover from a crash. See Section 4.6.8, “mysqlbinlog — Utility for
Processing Binary Log Files”.

• mysqldumpslow

A utility to read and summarize the contents of a slow query log. See Section 4.6.9, “mysqldumpslow —
Summarize Slow Query Log Files”.

• mysqlhotcopy

A utility that quickly makes backups of MyISAM tables while the server is running. See Section 4.6.10,
“mysqlhotcopy — A Database Backup Program”.

• mysql_convert_table_format

A utility that converts tables in a database to use a given storage engine. See Section 4.6.11,
“mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”.

• mysql_find_rows

A utility that reads files containing SQL statements (such as update logs) and extracts statements that
match a given regular expression. See Section 4.6.12, “mysql_find_rows — Extract SQL Statements
from Files”.

• mysql_fix_extensions

A utility that converts the extensions for MyISAM table files to lowercase. This can be useful after
transferring the files from a system with case-insensitive file names to a system with case-sensitive file
names. See Section 4.6.13, “mysql_fix_extensions — Normalize Table File Name Extensions”.

• mysql_setpermission

A utility for interactively setting permissions in the MySQL grant tables. See Section 4.6.14,
“mysql_setpermission — Interactively Set Permissions in Grant Tables”.

• mysql_waitpid

A utility that kills the process with a given process ID. See Section 4.6.15, “mysql_waitpid — Kill Process
and Wait for Its Termination”.

• mysql_zap

A utility that kills processes that match a pattern. See Section 4.6.16, “mysql_zap — Kill Processes That
Match a Pattern”.

MySQL program-development utilities:

• msql2mysql

A shell script that converts mSQL programs to MySQL. It doesn't handle every case, but it gives a
good start when converting. See Section 4.7.1, “msql2mysql — Convert mSQL Programs for Use with
MySQL”.

• mysql_config

A shell script that produces the option values needed when compiling MySQL programs. See
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”.

281

Using MySQL Programs

• my_print_defaults

A utility that shows which options are present in option groups of option files. See Section 4.7.3,
“my_print_defaults — Display Options from Option Files”.

• resolve_stack_dump

A utility program that resolves a numeric stack trace dump to symbols. See Section 4.7.4,
“resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”.

Miscellaneous utilities:

• perror

A utility that displays the meaning of system or MySQL error codes. See Section 4.8.1, “perror — Display
MySQL Error Message Information”.

• replace

A utility program that performs string replacement in the input text. See Section 4.8.2, “replace — A
String-Replacement Utility”.

• resolveip

A utility program that resolves a host name to an IP address or vice versa. See Section 4.8.3, “resolveip
— Resolve Host name to IP Address or Vice Versa”.

Oracle Corporation also provides the MySQL Workbench GUI tool, which is used to administer MySQL
servers and databases, to create, execute, and evaluate queries, and to migrate schemas and data from
other relational database management systems for use with MySQL.

MySQL client programs that communicate with the server using the MySQL client/server library use the
following environment variables.

Environment Variable Meaning

MYSQL_UNIX_PORT The default Unix socket file; used for connections to
localhost

MYSQL_TCP_PORT The default port number; used for TCP/IP
connections

MYSQL_PWD The default password

MYSQL_DEBUG Debug trace options when debugging

TMPDIR The directory where temporary tables and files are
created

For a full list of environment variables used by MySQL programs, see Section 4.9, “Environment
Variables”.

Use of MYSQL_PWD is insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”.

4.2 Using MySQL Programs

4.2.1 Invoking MySQL Programs

To invoke a MySQL program from the command line (that is, from your shell or command prompt), enter
the program name followed by any options or other arguments needed to instruct the program what you

282

Specifying Program Options

want it to do. The following commands show some sample program invocations. $> represents the prompt
for your command interpreter; it is not part of what you type. The particular prompt you see depends on
your command interpreter. Typical prompts are $ for sh, ksh, or bash, % for csh or tcsh, and C:\> for
the Windows command.com or cmd.exe command interpreters.

$> mysql --user=root test
$> mysqladmin extended-status variables
$> mysqlshow --help
$> mysqldump -u root personnel

Arguments that begin with a single or double dash (-, --) specify program options. Options typically
indicate the type of connection a program should make to the server or affect its operational mode. Option
syntax is described in Section 4.2.2, “Specifying Program Options”.

Nonoption arguments (arguments with no leading dash) provide additional information to the program.
For example, the mysql program interprets the first nonoption argument as a database name, so the
command mysql --user=root test indicates that you want to use the test database.

Later sections that describe individual programs indicate which options a program supports and describe
the meaning of any additional nonoption arguments.

Some options are common to a number of programs. The most frequently used of these are the --host
(or -h), --user (or -u), and --password (or -p) options that specify connection parameters. They
indicate the host where the MySQL server is running, and the user name and password of your MySQL
account. All MySQL client programs understand these options; they enable you to specify which server to
connect to and the account to use on that server. Other connection options are --port (or -P) to specify
a TCP/IP port number and --socket (or -S) to specify a Unix socket file on Unix (or named-pipe name on
Windows). For more information on options that specify connection options, see Section 4.2.4, “Connecting
to the MySQL Server Using Command Options”.

You may find it necessary to invoke MySQL programs using the path name to the bin directory in which
they are installed. This is likely to be the case if you get a “program not found” error whenever you attempt
to run a MySQL program from any directory other than the bin directory. To make it more convenient to
use MySQL, you can add the path name of the bin directory to your PATH environment variable setting.
That enables you to run a program by typing only its name, not its entire path name. For example, if mysql
is installed in /usr/local/mysql/bin, you can run the program by invoking it as mysql, and it is not
necessary to invoke it as /usr/local/mysql/bin/mysql.

Consult the documentation for your command interpreter for instructions on setting your PATH variable.
The syntax for setting environment variables is interpreter-specific. (Some information is given in
Section 4.2.7, “Setting Environment Variables”.) After modifying your PATH setting, open a new console
window on Windows or log in again on Unix so that the setting goes into effect.

4.2.2 Specifying Program Options

There are several ways to specify options for MySQL programs:

• List the options on the command line following the program name. This is common for options that apply
to a specific invocation of the program.

• List the options in an option file that the program reads when it starts. This is common for options that
you want the program to use each time it runs.

• List the options in environment variables (see Section 4.2.7, “Setting Environment Variables”). This
method is useful for options that you want to apply each time the program runs. In practice, option files
are used more commonly for this purpose, but Section 5.7.3, “Running Multiple MySQL Instances on
Unix”, discusses one situation in which environment variables can be very helpful. It describes a handy

283

Specifying Program Options

technique that uses such variables to specify the TCP/IP port number and Unix socket file for the server
and for client programs.

Options are processed in order, so if an option is specified multiple times, the last occurrence takes
precedence. The following command causes mysql to connect to the server running on localhost:

mysql -h example.com -h localhost

There is one exception: For mysqld, the first instance of the --user option is used as a security
precaution, to prevent a user specified in an option file from being overridden on the command line.

If conflicting or related options are given, later options take precedence over earlier options. The following
command runs mysql in “no column names” mode:

mysql --column-names --skip-column-names

MySQL programs determine which options are given first by examining environment variables, then by
processing option files, and then by checking the command line. Because later options take precedence
over earlier ones, the processing order means that environment variables have the lowest precedence and
command-line options the highest.

You can take advantage of the way that MySQL programs process options by specifying default option
values for a program in an option file. That enables you to avoid typing them each time you run the
program while enabling you to override the defaults if necessary by using command-line options.

An option can be specified by writing it in full or as any unambiguous prefix. For example, the --compress
option can be given to mysqldump as --compr, but not as --comp because the latter is ambiguous:

$> mysqldump --comp
mysqldump: ambiguous option '--comp' (compatible, compress)

Be aware that the use of option prefixes can cause problems in the event that new options are
implemented for a program. A prefix that is unambiguous now might become ambiguous in the future.

Note

As of MySQL 5.6.13, unambiguous prefixes are deprecated. If an unambiguous
prefix is given, a warning occurs to provide feedback. Option prefixes are no longer
supported as of MySQL 5.7; only full options are accepted.

4.2.2.1 Using Options on the Command Line

Program options specified on the command line follow these rules:

• Options are given after the command name.

• An option argument begins with one dash or two dashes, depending on whether it is a short form or long
form of the option name. Many options have both short and long forms. For example, -? and --help
are the short and long forms of the option that instructs a MySQL program to display its help message.

• Option names are case-sensitive. -v and -V are both legal and have different meanings. (They are the
corresponding short forms of the --verbose and --version options.)

• Some options take a value following the option name. For example, -h localhost or --
host=localhost indicate the MySQL server host to a client program. The option value tells the
program the name of the host where the MySQL server is running.

• For a long option that takes a value, separate the option name and the value by an = sign. For a
short option that takes a value, the option value can immediately follow the option letter, or there

284

Specifying Program Options

can be a space between: -hlocalhost and -h localhost are equivalent. An exception to this
rule is the option for specifying your MySQL password. This option can be given in long form as --
password=pass_val or as --password. In the latter case (with no password value given), the
program interactively prompts you for the password. The password option also may be given in short
form as -ppass_val or as -p. However, for the short form, if the password value is given, it must follow
the option letter with no intervening space: If a space follows the option letter, the program has no way to
tell whether a following argument is supposed to be the password value or some other kind of argument.
Consequently, the following two commands have two completely different meanings:

mysql -ptest
mysql -p test

The first command instructs mysql to use a password value of test, but specifies no default database.
The second instructs mysql to prompt for the password value and to use test as the default database.

• Within option names, dash (-) and underscore (_) may be used interchangeably in most cases, although
the leading dashes cannot be given as underscores. For example, --skip-grant-tables and --
skip_grant_tables are equivalent.

In this Manual, we use dashes in option names, except where underscores are significant. This is the
case with, for example, --log-bin and --log_bin, which are different options. We encourage you to
do so as well.

• The MySQL server has certain command options that may be specified only at startup, and a set of
system variables, some of which may be set at startup, at runtime, or both. System variable names use
underscores rather than dashes, and when referenced at runtime (for example, using SET or SELECT
statements), must be written using underscores:

SET GLOBAL general_log = ON;
SELECT @@GLOBAL.general_log;

At server startup, the syntax for system variables is the same as for command options, so within variable
names, dashes and underscores may be used interchangeably. For example, --general_log=ON and
--general-log=ON are equivalent. (This is also true for system variables set within option files.)

• For options that take a numeric value, the value can be given with a suffix of K, M, or G (either uppercase
or lowercase) to indicate a multiplier of 1024, 10242 or 10243. For example, the following command tells
mysqladmin to ping the server 1024 times, sleeping 10 seconds between each ping:

mysqladmin --count=1K --sleep=10 ping

• When specifying file names as option values, avoid the use of the ~ shell metacharacter. It might not be
interpreted as you expect.

Option values that contain spaces must be quoted when given on the command line. For example, the
--execute (or -e) option can be used with mysql to pass one or more semicolon-separated SQL
statements to the server. When this option is used, mysql executes the statements in the option value and
exits. The statements must be enclosed by quotation marks. For example:

$> mysql -u root -p -e "SELECT VERSION();SELECT NOW()"
Enter password: ******
+------------+
| VERSION() |
+------------+
| 5.6.47 |
+------------+
+---------------------+
| NOW() |
+---------------------+

285

Specifying Program Options

| 2019-09-03 10:36:01 |
+---------------------+
$>

Note

The long form (--execute) is followed by an equal sign (=).

To use quoted values within a statement, you must either escape the inner quotation marks, or use a
different type of quotation marks within the statement from those used to quote the statement itself. The
capabilities of your command processor dictate your choices for whether you can use single or double
quotation marks and the syntax for escaping quote characters. For example, if your command processor
supports quoting with single or double quotation marks, you can use double quotation marks around the
statement, and single quotation marks for any quoted values within the statement.

4.2.2.2 Using Option Files

Most MySQL programs can read startup options from option files (sometimes called configuration files).
Option files provide a convenient way to specify commonly used options so that they need not be entered
on the command line each time you run a program.

To determine whether a program reads option files, invoke it with the --help option. (For mysqld, use --
verbose and --help.) If the program reads option files, the help message indicates which files it looks for
and which option groups it recognizes.

Note

A MySQL program started with the --no-defaults option reads no option files
other than .mylogin.cnf.

Many option files are plain text files, created using any text editor. The exception is the .mylogin.cnf file
that contains login path options. This is an encrypted file created by the mysql_config_editor utility.
See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”. A “login path” is an option group
that permits only certain options: host, user, password, port and socket. Client programs specify
which login path to read from .mylogin.cnf using the --login-path option.

To specify an alternative login path file name, set the MYSQL_TEST_LOGIN_FILE environment
variable. This variable is used by the mysql-test-run.pl testing utility, but also is recognized by
mysql_config_editor and by MySQL clients such as mysql, mysqladmin, and so forth.

MySQL looks for option files in the order described in the following discussion and reads any that exist. If
an option file you want to use does not exist, create it using the appropriate method, as just discussed.

Note

For information about option files used with NDB Cluster programs, see
Section 18.4, “Configuration of NDB Cluster”.

On Windows, MySQL programs read startup options from the files shown in the following table, in the
specified order (files listed first are read first, files read later take precedence).

Table 4.1 Option Files Read on Windows Systems

File Name Purpose

%WINDIR%\my.ini, %WINDIR%\my.cnf Global options

C:\my.ini, C:\my.cnf Global options

BASEDIR\my.ini, BASEDIR\my.cnf Global options

286

Specifying Program Options

File Name Purpose

defaults-extra-file The file specified with --defaults-extra-file,
if any

%APPDATA%\MySQL\.mylogin.cnf Login path options (clients only)

• Option File Processing Order

• Option File Syntax

• Option File Inclusions

Option File Processing Order

In the preceding table, %WINDIR% represents the location of your Windows directory. This is commonly
C:\WINDOWS. Use the following command to determine its exact location from the value of the WINDIR
environment variable:

C:\> echo %WINDIR%

%APPDATA% represents the value of the Windows application data directory. Use the following command to
determine its exact location from the value of the APPDATA environment variable:

C:\> echo %APPDATA%

BASEDIR represents the MySQL base installation directory. When MySQL 5.6 has been installed using
MySQL Installer, this is typically C:\PROGRAMDIR\MySQL\MySQL Server 5.6 in which PROGRAMDIR
represents the programs directory (usually Program Files for English-language versions of Windows).
See Section 2.3.3, “MySQL Installer for Windows”.

Important

Although MySQL Installer places most files under PROGRAMDIR, it installs my.ini
under the C:\ProgramData\MySQL\MySQL Server 5.6\ directory by default.

On Unix and Unix-like systems, MySQL programs read startup options from the files shown in the following
table, in the specified order (files listed first are read first, files read later take precedence).

Note

On Unix platforms, MySQL ignores configuration files that are world-writable. This is
intentional as a security measure.

Table 4.2 Option Files Read on Unix and Unix-Like Systems

File Name Purpose

/etc/my.cnf Global options

/etc/mysql/my.cnf Global options

SYSCONFDIR/my.cnf Global options

$MYSQL_HOME/my.cnf Server-specific options (server only)

defaults-extra-file The file specified with --defaults-extra-file,
if any

~/.my.cnf User-specific options

~/.mylogin.cnf User-specific login path options (clients only)

287

Specifying Program Options

In the preceding table, ~ represents the current user's home directory (the value of $HOME).

SYSCONFDIR represents the directory specified with the SYSCONFDIR option to CMake when MySQL was
built. By default, this is the etc directory located under the compiled-in installation directory.

MYSQL_HOME is an environment variable containing the path to the directory in which the server-specific
my.cnf file resides. If MYSQL_HOME is not set and you start the server using the mysqld_safe program,
mysqld_safe attempts to set MYSQL_HOME as follows:

• Let BASEDIR and DATADIR represent the path names of the MySQL base directory and data directory,
respectively.

• If there is a my.cnf file in DATADIR but not in BASEDIR, mysqld_safe sets MYSQL_HOME to DATADIR.

• Otherwise, if MYSQL_HOME is not set and there is no my.cnf file in DATADIR, mysqld_safe sets
MYSQL_HOME to BASEDIR.

In MySQL 5.6, use of DATADIR as the location for my.cnf is deprecated.

DATADIR is commonly /usr/local/mysql/data, although this can vary per platform or installation
method. The value is the data directory location built in when MySQL was compiled, not the location
specified with the --datadir option when mysqld starts. Use of --datadir at runtime has no effect on
where the server looks for option files that it reads before processing any options.

If multiple instances of a given option are found, the last instance takes precedence, with one exception:
For mysqld, the first instance of the --user option is used as a security precaution, to prevent a user
specified in an option file from being overridden on the command line.

Option File Syntax

The following description of option file syntax applies to files that you edit manually. This excludes
.mylogin.cnf, which is created using mysql_config_editor and is encrypted.

Any long option that may be given on the command line when running a MySQL program can be given in
an option file as well. To get the list of available options for a program, run it with the --help option. (For
mysqld, use --verbose and --help.)

The syntax for specifying options in an option file is similar to command-line syntax (see Section 4.2.2.1,
“Using Options on the Command Line”). However, in an option file, you omit the leading two dashes
from the option name and you specify only one option per line. For example, --quick and --
host=localhost on the command line should be specified as quick and host=localhost on
separate lines in an option file. To specify an option of the form --loose-opt_name in an option file, write
it as loose-opt_name.

Empty lines in option files are ignored. Nonempty lines can take any of the following forms:

• #comment, ;comment

Comment lines start with # or ;. A # comment can start in the middle of a line as well.

• [group]

group is the name of the program or group for which you want to set options. After a group line, any
option-setting lines apply to the named group until the end of the option file or another group line is
given. Option group names are not case-sensitive.

• opt_name

This is equivalent to --opt_name on the command line.

288

Specifying Program Options

• opt_name=value

This is equivalent to --opt_name=value on the command line. In an option file, you can have spaces
around the = character, something that is not true on the command line. The value optionally can be
enclosed within single quotation marks or double quotation marks, which is useful if the value contains a
comment character.

Leading and trailing spaces are automatically deleted from option names and values.

You can use the escape sequences \b, \t, \n, \r, \\, and \s in option values to represent the
backspace, tab, newline, carriage return, backslash, and space characters. In option files, these escaping
rules apply:

• A backslash followed by a valid escape sequence character is converted to the character represented by
the sequence. For example, \s is converted to a space.

• A backslash not followed by a valid escape sequence character remains unchanged. For example, \S is
retained as is.

The preceding rules mean that a literal backslash can be given as \\, or as \ if it is not followed by a valid
escape sequence character.

The rules for escape sequences in option files differ slightly from the rules for escape sequences in
string literals in SQL statements. In the latter context, if “x” is not a valid escape sequence character, \x
becomes “x” rather than \x. See Section 9.1.1, “String Literals”.

The escaping rules for option file values are especially pertinent for Windows path names, which use \
as a path name separator. A separator in a Windows path name must be written as \\ if it is followed
by an escape sequence character. It can be written as \\ or \ if it is not. Alternatively, / may be used
in Windows path names and are treated as \. Suppose that you want to specify a base directory of C:
\Program Files\MySQL\MySQL Server 5.6 in an option file. This can be done several ways. Some
examples:

basedir="C:\Program Files\MySQL\MySQL Server 5.6"
basedir="C:\\Program Files\\MySQL\\MySQL Server 5.6"
basedir="C:/Program Files/MySQL/MySQL Server 5.6"
basedir=C:\\Program\sFiles\\MySQL\\MySQL\sServer\s5.6

If an option group name is the same as a program name, options in the group apply specifically to that
program. For example, the [mysqld] and [mysql] groups apply to the mysqld server and the mysql
client program, respectively.

The [client] option group is read by all client programs provided in MySQL distributions (but not by
mysqld). To understand how third-party client programs that use the C API can use option files, see the C
API documentation at mysql_options().

The [client] group enables you to specify options that apply to all clients. For example, [client] is
the appropriate group to use to specify the password for connecting to the server. (But make sure that the
option file is accessible only by yourself, so that other people cannot discover your password.) Be sure
not to put an option in the [client] group unless it is recognized by all client programs that you use.
Programs that do not understand the option quit after displaying an error message if you try to run them.

List more general option groups first and more specific groups later. For example, a [client] group is
more general because it is read by all client programs, whereas a [mysqldump] group is read only by
mysqldump. Options specified later override options specified earlier, so putting the option groups in the
order [client], [mysqldump] enables mysqldump-specific options to override [client] options.

289

https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html

Specifying Program Options

Here is a typical global option file:

[client]
port=3306
socket=/tmp/mysql.sock

[mysqld]
port=3306
socket=/tmp/mysql.sock
key_buffer_size=16M
max_allowed_packet=8M

[mysqldump]
quick

Here is a typical user option file:

[client]
The following password is sent to all standard MySQL clients
password="my password"

[mysql]
no-auto-rehash
connect_timeout=2

[mysqlhotcopy]
interactive-timeout

To create option groups to be read only by mysqld servers from specific MySQL release series, use
groups with names of [mysqld-5.5], [mysqld-5.6], and so forth. The following group indicates that
the sql_mode setting should be used only by MySQL servers with 5.6.x version numbers:

[mysqld-5.6]
sql_mode=TRADITIONAL

Option File Inclusions

It is possible to use !include directives in option files to include other option files and !includedir to
search specific directories for option files. For example, to include the /home/mydir/myopt.cnf file, use
the following directive:

!include /home/mydir/myopt.cnf

To search the /home/mydir directory and read option files found there, use this directive:

!includedir /home/mydir

MySQL makes no guarantee about the order in which option files in the directory are read.

Note

Any files to be found and included using the !includedir directive on Unix
operating systems must have file names ending in .cnf. On Windows, this
directive checks for files with the .ini or .cnf extension.

Write the contents of an included option file like any other option file. That is, it should contain groups of
options, each preceded by a [group] line that indicates the program to which the options apply.

While an included file is being processed, only those options in groups that the current program is looking
for are used. Other groups are ignored. Suppose that a my.cnf file contains this line:

!include /home/mydir/myopt.cnf

290

Specifying Program Options

And suppose that /home/mydir/myopt.cnf looks like this:

[mysqladmin]
force

[mysqld]
key_buffer_size=16M

If my.cnf is processed by mysqld, only the [mysqld] group in /home/mydir/myopt.cnf is used. If
the file is processed by mysqladmin, only the [mysqladmin] group is used. If the file is processed by
any other program, no options in /home/mydir/myopt.cnf are used.

The !includedir directive is processed similarly except that all option files in the named directory are
read.

If an option file contains !include or !includedir directives, files named by those directives are
processed whenever the option file is processed, no matter where they appear in the file.

For inclusion directives to work, the file path should not be specified within quotes and should have
no escape sequences. For example, the following statements provided in my.ini read the option file
myopts.ini:

!include C:/ProgramData/MySQL/MySQL Server/myopts.ini
!include C:\ProgramData\MySQL\MySQL Server\myopts.ini
!include C:\\ProgramData\\MySQL\\MySQL Server\\myopts.ini

On Windows, if !include /path/to/extra.ini is the last line in the file, make sure that a newline is
appended at the end or the line is ignored.

4.2.2.3 Command-Line Options that Affect Option-File Handling

Most MySQL programs that support option files handle the following options. Because these options affect
option-file handling, they must be given on the command line and not in an option file. To work properly,
each of these options must be given before other options, with these exceptions:

• --print-defaults may be used immediately after --defaults-file, --defaults-extra-file,
or --login-path.

• On Windows, if the server is started with the --defaults-file and --install options, --install
must be first. See Section 2.3.4.7, “Starting MySQL as a Windows Service”.

When specifying file names as option values, avoid the use of the ~ shell metacharacter because it might
not be interpreted as you expect.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file and (on all
platforms) before the login path file. (For information about the order in which option files are used, see
Section 4.2.2.2, “Using Option Files”.) If the file does not exist or is otherwise inaccessible, an error
occurs. If file_name is not an absolute path name, it is interpreted relative to the current directory.

See the introduction to this section regarding constraints on the position in which this option may be
specified.

• --defaults-file=file_name

Read only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than a
full path name.

291

Specifying Program Options

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

See the introduction to this section regarding constraints on the position in which this option may be
specified.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, the mysql client normally reads the [client] and [mysql] groups. If this option is
given as --defaults-group-suffix=_other, mysql also reads the [client_other] and
[mysql_other] groups.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

A client program reads the option group corresponding to the named login path, in addition to option
groups that the program reads by default. Consider this command:

mysql --login-path=mypath

By default, the mysql client reads the [client] and [mysql] option groups. So for the command
shown, mysql reads [client] and [mysql] from other option files, and [client], [mysql], and
[mypath] from the login path file.

Client programs read the login path file even when the --no-defaults option is used.

To specify an alternate login path file name, set the MYSQL_TEST_LOGIN_FILE environment variable.

See the introduction to this section regarding constraints on the position in which this option may be
specified.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that client programs read the .mylogin.cnf login path file, if it exists, even when --
no-defaults is used. This permits passwords to be specified in a safer way than on the command line
even if --no-defaults is present. To create .mylogin.cnf, use the mysql_config_editor utility.
See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

• --print-defaults

Print the program name and all options that it gets from option files.

See the introduction to this section regarding constraints on the position in which this option may be
specified.

4.2.2.4 Program Option Modifiers

Some options are “boolean” and control behavior that can be turned on or off. For example, the mysql
client supports a --column-names option that determines whether or not to display a row of column
names at the beginning of query results. By default, this option is enabled. However, you may want to

292

Specifying Program Options

disable it in some instances, such as when sending the output of mysql into another program that expects
to see only data and not an initial header line.

To disable column names, you can specify the option using any of these forms:

--disable-column-names
--skip-column-names
--column-names=0

The --disable and --skip prefixes and the =0 suffix all have the same effect: They turn the option off.

The “enabled” form of the option may be specified in any of these ways:

--column-names
--enable-column-names
--column-names=1

The values ON, TRUE, OFF, and FALSE are also recognized for boolean options (not case-sensitive).

If an option is prefixed by --loose, a program does not exit with an error if it does not recognize the
option, but instead issues only a warning:

$> mysql --loose-no-such-option
mysql: WARNING: unknown option '--loose-no-such-option'

The --loose prefix can be useful when you run programs from multiple installations of MySQL on the
same machine and list options in an option file. An option that may not be recognized by all versions of a
program can be given using the --loose prefix (or loose in an option file). Versions of the program that
recognize the option process it normally, and versions that do not recognize it issue a warning and ignore
it.

The --maximum prefix is available for mysqld only and permits a limit to be placed on how large client
programs can set session system variables. To do this, use a --maximum prefix with the variable name.
For example, --maximum-max_heap_table_size=32M prevents any client from making the heap table
size limit larger than 32M.

The --maximum prefix is intended for use with system variables that have a session value. If applied
to a system variable that has only a global value, an error occurs. For example, with --maximum-
back_log=200, the server produces this error:

Maximum value of 'back_log' cannot be set

4.2.2.5 Using Options to Set Program Variables

Many MySQL programs have internal variables that can be set at runtime using the SET statement. See
Section 13.7.4.1, “SET Syntax for Variable Assignment”, and Section 5.1.8, “Using System Variables”.

Most of these program variables also can be set at server startup by using the same syntax that applies
to specifying program options. For example, mysql has a max_allowed_packet variable that controls
the maximum size of its communication buffer. To set the max_allowed_packet variable for mysql to a
value of 16MB, use either of the following commands:

mysql --max_allowed_packet=16777216
mysql --max_allowed_packet=16M

The first command specifies the value in bytes. The second specifies the value in megabytes. For variables
that take a numeric value, the value can be given with a suffix of K, M, or G (either uppercase or lowercase)
to indicate a multiplier of 1024, 10242 or 10243. (For example, when used to set max_allowed_packet,
the suffixes indicate units of kilobytes, megabytes, or gigabytes.)

293

Specifying Program Options

In an option file, variable settings are given without the leading dashes:

[mysql]
max_allowed_packet=16777216

Or:

[mysql]
max_allowed_packet=16M

If you like, underscores in an option name can be specified as dashes. The following option groups are
equivalent. Both set the size of the server's key buffer to 512MB:

[mysqld]
key_buffer_size=512M

[mysqld]
key-buffer-size=512M

A variable can be specified by writing it in full or as any unambiguous prefix. For example, the
max_allowed_packet variable can be set for mysql as --max_a, but not as --max because the latter
is ambiguous:

$> mysql --max=1000000
mysql: ambiguous option '--max=1000000' (max_allowed_packet, max_join_size)

Be aware that the use of variable prefixes can cause problems in the event that new variables are
implemented for a program. A prefix that is unambiguous now might become ambiguous in the future.

Suffixes for specifying a value multiplier can be used when setting a variable at program invocation time,
but not to set the value with SET at runtime. On the other hand, with SET, you can assign a variable's value
using an expression, which is not true when you set a variable at server startup. For example, the first of
the following lines is legal at program invocation time, but the second is not:

$> mysql --max_allowed_packet=16M
$> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

4.2.2.6 Option Defaults, Options Expecting Values, and the = Sign

By convention, long forms of options that assign a value are written with an equals (=) sign, like this:

mysql --host=tonfisk --user=jon

For options that require a value (that is, not having a default value), the equal sign is not required, and so
the following is also valid:

mysql --host tonfisk --user jon

In both cases, the mysql client attempts to connect to a MySQL server running on the host named
“tonfisk” using an account with the user name “jon”.

Due to this behavior, problems can occasionally arise when no value is provided for an option that expects
one. Consider the following example, where a user connects to a MySQL server running on host tonfisk
as user jon:

$> mysql --host 85.224.35.45 --user jon

294

Specifying Program Options

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.6.51 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| jon@% |
+----------------+
1 row in set (0.00 sec)

Omitting the required value for one of these option yields an error, such as the one shown here:

$> mysql --host 85.224.35.45 --user
mysql: option '--user' requires an argument

In this case, mysql was unable to find a value following the --user option because nothing came after it
on the command line. However, if you omit the value for an option that is not the last option to be used, you
obtain a different error that you may not be expecting:

$> mysql --host --user jon
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

Because mysql assumes that any string following --host on the command line is a host name, --host
--user is interpreted as --host=--user, and the client attempts to connect to a MySQL server running
on a host named “--user”.

Options having default values always require an equal sign when assigning a value; failing to do
so causes an error. For example, the MySQL server --log-error option has the default value
host_name.err, where host_name is the name of the host on which MySQL is running. Assume that
you are running MySQL on a computer whose host name is “tonfisk”, and consider the following invocation
of mysqld_safe:

$> mysqld_safe &
[1] 11699
$> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
$>

After shutting down the server, restart it as follows:

$> mysqld_safe --log-error &
[1] 11699
$> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
$>

The result is the same, since --log-error is not followed by anything else on the command line,
and it supplies its own default value. (The & character tells the operating system to run MySQL in the
background; it is ignored by MySQL itself.) Now suppose that you wish to log errors to a file named my-
errors.err. You might try starting the server with --log-error my-errors, but this does not have
the intended effect, as shown here:

$> mysqld_safe --log-error my-errors &
[1] 31357
$> 080111 22:53:31 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080111 22:53:32 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
080111 22:53:34 mysqld_safe mysqld from pid file /usr/local/mysql/var/tonfisk.pid ended

[1]+ Done ./mysqld_safe --log-error my-errors

295

Specifying Program Options

The server attempted to start using /usr/local/mysql/var/tonfisk.err as the error log, but then
shut down. Examining the last few lines of this file shows the reason:

$> tail /usr/local/mysql/var/tonfisk.err
080111 22:53:32 InnoDB: Started; log sequence number 0 46409
/usr/local/mysql/libexec/mysqld: Too many arguments (first extra is 'my-errors').
Use --verbose --help to get a list of available options
080111 22:53:32 [ERROR] Aborting

080111 22:53:32 InnoDB: Starting shutdown...
080111 22:53:34 InnoDB: Shutdown completed; log sequence number 0 46409
080111 22:53:34 [Note] /usr/local/mysql/libexec/mysqld: Shutdown complete

080111 22:53:34 mysqld_safe mysqld from pid file /usr/local/mysql/var/tonfisk.pid ended

Because the --log-error option supplies a default value, you must use an equal sign to assign a
different value to it, as shown here:

$> mysqld_safe --log-error=my-errors &
[1] 31437
$> 080111 22:54:15 mysqld_safe Logging to '/usr/local/mysql/var/my-errors.err'.
080111 22:54:15 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var

$>

Now the server has been started successfully, and is logging errors to the file /usr/local/mysql/var/
my-errors.err.

Similar issues can arise when specifying option values in option files. For example, consider a my.cnf file
that contains the following:

[mysql]

host
user

When the mysql client reads this file, these entries are parsed as --host --user or --host=--user,
with the result shown here:

$> mysql
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

However, in option files, an equal sign is not assumed. Suppose the my.cnf file is as shown here:

[mysql]

user jon

Trying to start mysql in this case causes a different error:

$> mysql
mysql: unknown option '--user jon'

A similar error would occur if you were to write host tonfisk in the option file rather than
host=tonfisk. Instead, you must use the equal sign:

[mysql]

user=jon

Now the login attempt succeeds:

$> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5

296

Command Options for Connecting to the Server

Server version: 5.6.51 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+
1 row in set (0.00 sec)

This is not the same behavior as with the command line, where the equal sign is not required:

$> mysql --user jon --host tonfisk
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6
Server version: 5.6.51 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@tonfisk |
+---------------+
1 row in set (0.00 sec)

Specifying an option requiring a value without a value in an option file causes the server to abort with an
error.

4.2.3 Command Options for Connecting to the Server

This section describes options supported by most MySQL client programs that control how client programs
establish connections to the server and whether connections are encrypted. These options can be given on
the command line or in an option file.

• Command Options for Connection Establishment

• Command Options for Encrypted Connections

Command Options for Connection Establishment

This section describes options that control how client programs establish connections to the server. For
additional information and examples showing how to use them, see Section 4.2.4, “Connecting to the
MySQL Server Using Command Options”.

Table 4.3 Connection-Establishment Option Summary

Option Name Description

--default-auth Authentication plugin to use

--host Host on which MySQL server is located

--password Password to use when connecting to server

--pipe Connect to server using named pipe (Windows only)

--plugin-dir Directory where plugins are installed

--port TCP/IP port number for connection

--protocol Transport protocol to use

297

Command Options for Connecting to the Server

Option Name Description

--secure-auth Do not send passwords to server in old (pre-4.1)
format

--shared-memory-base-name Shared-memory name for shared-memory
connections (Windows only)

--socket Unix socket file or Windows named pipe to use

--user MySQL user name to use when connecting to
server

• --default-auth=plugin

A hint about which client-side authentication plugin to use. See Section 6.2.11, “Pluggable
Authentication”.

• --host=host_name, -h host_name

The host on which the MySQL server is running. The value can be a host name, IPv4 address, or IPv6
address. The default value is localhost.

• --password[=pass_val], -p[pass_val]

The password of the MySQL account used for connecting to the server. The password value is
optional. If not given, the client program prompts for one. If given, there must be no space between --
password= or -p and the password following it. If no password option is specified, the default is to send
no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that the client program should not prompt for one, use
the --skip-password option.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used to
specify an authentication plugin but the client program does not find it. See Section 6.2.11, “Pluggable
Authentication”.

• --port=port_num, -P port_num

For TCP/IP connections, the port number to use. The default port number is 3306.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

This option explicitly specifies which transport protocol to use for connecting to the server. It is useful
when other connection parameters normally result in use of a protocol other than the one you want. For
example, connections on Unix to localhost are made using a Unix socket file by default:

298

Command Options for Connecting to the Server

mysql --host=localhost

To force TCP/IP transport to be used instead, specify a --protocol option:

mysql --host=localhost --protocol=TCP

The following table shows the permissible --protocol option values and indicates the applicable
platforms for each value. The values are not case-sensitive.

--protocol Value Transport Protocol Used Applicable Platforms

TCP TCP/IP transport to local or
remote server

All

SOCKET Unix socket-file transport to local
server

Unix and Unix-like systems

PIPE Named-pipe transport to local
server

Windows

MEMORY Shared-memory transport to local
server

Windows

See also Section 4.2.5, “Connection Transport Protocols”

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option is enabled by default; use --skip-secure-
auth to disable it.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated; expect support for them to be removed in a future
MySQL release. For account upgrade instructions, see Section 6.4.1.3, “Migrating
Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

Note

This option is deprecated; expect it to be removed in a future release. As of
MySQL 5.7.5, it is always enabled and attempting to disable it produces an error.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --socket=path, -S path

On Unix, the name of the Unix socket file to use for connections made using a named pipe to a local
server. The default Unix socket file name is /tmp/mysql.sock.

On Windows, the name of the named pipe to use for connections to a local server. The default Windows
pipe name is MySQL. The pipe name is not case-sensitive.

299

Command Options for Connecting to the Server

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --user=user_name, -u user_name

The user name of the MySQL account to use for connecting to the server. The default user name is
ODBC on Windows or your Unix login name on Unix.

Command Options for Encrypted Connections

This section describes options for client programs that specify whether to use encrypted connections to
the server, the names of certificate and key files, and other parameters related to encrypted-connection
support. For examples of suggested use and how to check whether a connection is encrypted, see
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”.

Note

These options have an effect only for connections that use a transport protocol
subject to encryption; that is, TCP/IP and Unix socket-file connections. See
Section 4.2.5, “Connection Transport Protocols”

For information about using encrypted connections from the MySQL C API, see Support for Encrypted
Connections.

Table 4.4 Connection-Encryption Option Summary

Option Name Description Introduced

--server-public-key-path Path name to file containing RSA
public key

--skip-ssl Disable connection encryption

--ssl Enable connection encryption

--ssl-ca File that contains list of trusted
SSL Certificate Authorities

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher Permissible ciphers for connection
encryption

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation-list files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of
connection to server

5.6.30

--ssl-verify-server-cert Verify host name against server
certificate Common Name identity

• --server-public-key-path=file_name

300

https://dev.mysql.com/doc/c-api/5.6/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/c-api/5.6/en/c-api-encrypted-connections.html

Command Options for Connecting to the Server

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that connect to the
server with the sha256_password authentication plugin. This option is ignored for accounts that do not
authenticate with that plugin. It is also ignored if RSA-based password exchange is not used, as is the
case when the client connects to the server using a secure connection.

This option is available only if MySQL was built using OpenSSL.

For information about the sha256_password plugin, see Section 6.4.1.4, “SHA-256 Pluggable
Authentication”.

• --ssl, --skip-ssl

This option permits but does not require the client to connect to the server using encryption. Therefore,
this option is not sufficient in itself to cause an encrypted connection to be used. For example, if you
specify this option for a client program but the server has not been configured to support encrypted
connections, the client falls back to an unencrypted connection.

--ssl may be implied by other --ssl-xxx options, as indicated in the descriptions for those options.

To specify additional parameters for encrypted connections, consider setting at least the ssl_cert
and ssl_key system variables on the server side and the --ssl-ca option on the client side. See
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”.

The --ssl option in negated form indicates that encryption should not be used and overrides other --
ssl-xxx options. Specify the option as --skip-ssl or a synonym (--ssl=0, --disable-ssl). For
example, you might have options specified in the [client] group of your option file to use encrypted
connections by default when you invoke MySQL client programs. To use an unencrypted connection
instead, invoke the client program with --ssl=0 on the command line to override the options in the
option file.

To require use of encrypted connections by a MySQL account, use a GRANT statement for the account
that includes a REQUIRE SSL clause. This causes connection attempts by clients that use the account
to be rejected unless MySQL supports encrypted connections and an encrypted connection can be
established.

The REQUIRE clause permits other encryption-related options, which can be used to enforce security
requirements stricter than REQUIRE SSL. For additional details about which command options may or
must be specified by clients that connect using accounts configured using the various REQUIRE options,
see the description of REQUIRE in Section 13.7.1.4, “GRANT Statement”.

• --ssl-ca=file_name

The path name of the Certificate Authority (CA) certificate file in PEM format. The file contains a list of
trusted SSL Certificate Authorities. This option implies --ssl.

To tell the client not to authenticate the server certificate when establishing an encrypted connection to
the server, specify neither --ssl-ca nor --ssl-capath. The server still verifies the client according
to any applicable requirements established for the client account, and it still uses any ssl_ca or
ssl_capath system variable values specified on the server side.

To specify the CA file for the server, set the ssl_ca system variable.

301

Command Options for Connecting to the Server

• --ssl-capath=dir_name

The path name of the directory that contains trusted SSL certificate authority (CA) certificate files
in PEM format. Support for this capability depends on the SSL library used to compile MySQL; see
Section 6.3.4, “SSL Library-Dependent Capabilities”. This option implies --ssl.

To tell the client not to authenticate the server certificate when establishing an encrypted connection to
the server, specify neither --ssl-ca nor --ssl-capath. The server still verifies the client according
to any applicable requirements established for the client account, and it still uses any ssl_ca or
ssl_capath system variable values specified on the server side.

To specify the CA directory for the server, set the ssl_capath system variable.

• --ssl-cert=file_name

The path name of the client SSL public key certificate file in PEM format. This option implies --ssl.

To specify the server SSL public key certificate file, set the ssl_cert system variable.

• --ssl-cipher=cipher_list

The list of permissible ciphers for connection encryption. If no cipher in the list is supported, encrypted
connections do not work. This option implies --ssl.

For greatest portability, cipher_list should be a list of one or more cipher names, separated by
colons. This format is understood both by OpenSSL and yaSSL. Examples:

--ssl-cipher=AES128-SHA
--ssl-cipher=DHE-RSA-AES256-SHA:AES128-SHA

OpenSSL supports a more flexible syntax for specifying ciphers, as described in the OpenSSL
documentation at https://www.openssl.org/docs/manmaster/man1/ciphers.html. yaSSL does not, so
attempts to use that extended syntax fail for a MySQL distribution compiled using yaSSL.

For information about which encryption ciphers MySQL supports, see Section 6.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

To specify the encryption ciphers for the server, set the ssl_cipher system variable.

• --ssl-crl=file_name

The path name of the file containing certificate revocation lists in PEM format. Support for revocation-
list capability depends on the SSL library used to compile MySQL. See Section 6.3.4, “SSL Library-
Dependent Capabilities”. This option implies --ssl.

If neither --ssl-crl nor --ssl-crlpath is given, no CRL checks are performed, even if the CA path
contains certificate revocation lists.

To specify the revocation-list file for the server, set the ssl_crl system variable.

• --ssl-crlpath=dir_name

The path name of the directory that contains certificate revocation-list files in PEM format. Support for
revocation-list capability depends on the SSL library used to compile MySQL. See Section 6.3.4, “SSL
Library-Dependent Capabilities”. This option implies --ssl.

If neither --ssl-crl nor --ssl-crlpath is given, no CRL checks are performed, even if the CA path
contains certificate revocation lists.

302

https://www.openssl.org/docs/manmaster/man1/ciphers.html

Command Options for Connecting to the Server

To specify the revocation-list directory for the server, set the ssl_crlpath system variable.

• --ssl-key=file_name

The path name of the client SSL private key file in PEM format. For better security, use a certificate with
an RSA key size of at least 2048 bits. This option implies --ssl.

If the key file is protected by a passphrase, the client program prompts the user for the passphrase.
The password must be given interactively; it cannot be stored in a file. If the passphrase is incorrect, the
program continues as if it could not read the key.

To specify the server SSL private key file, set the ssl_key system variable.

• --ssl-mode=mode

This option specifies the desired security state of the connection to the server:

• If this option is not specified, the default is to establish an unencrypted connection. This is like the --
ssl=0 option or its synonyms (--skip-ssl, --disable-ssl).

• If this option is specified, the only permissible mode value is REQUIRED (establish an encrypted
connection if the server supports encrypted connections). The connection attempt fails if an encrypted
connection cannot be established.

The --ssl-mode option was added in MySQL 5.6.30.

Note

To require encrypted connections in MySQL 5.6, the standard MySQL client
programs check whether the connection is encrypted if --ssl-mode=REQUIRED
was specified. If not, the client exits with an error. Third-party applications that
must be able to require encrypted connections can use the same technique. For
details, see mysql_ssl_set().

Important

--ssl-mode=REQUIRED produces an encrypted connection. However, to help
prevent sophisticated man-in-the-middle attacks, it is also important for the client
to verify the server’s identity. Adding the --ssl-verify-server-cert option
achieves this. To implement that additional option, you must first ensure that the
CA certificate for the server is reliably available to all the clients that use it in your
environment, otherwise availability issues will result.

• --ssl-verify-server-cert

This option causes the client to perform host name identity verification by checking the host name the
client uses for connecting to the server against the identity in the certificate that the server sends to the
client:

• As of MySQL 5.6.41, if the client uses OpenSSL 1.0.2 or higher, the client checks whether the host
name that it uses for connecting matches either the Subject Alternative Name value or the Common
Name value in the server certificate. Host name identity verification also works with certificates that
specify the Common Name using wildcards.

• Otherwise, the client checks whether the host name that it uses for connecting matches the Common
Name value in the server certificate.

303

https://dev.mysql.com/doc/c-api/5.6/en/mysql-ssl-set.html

Connecting to the MySQL Server Using Command Options

The connection fails if there is a mismatch. For encrypted connections, this option helps prevent man-in-
the-middle attacks. Host name identity verification is disabled by default.

4.2.4 Connecting to the MySQL Server Using Command Options

This section describes use of command-line options to specify how to establish connections to the MySQL
server, for clients such as mysql or mysqldump. For additional information if you are unable to connect,
see Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”.

For a client program to connect to the MySQL server, it must use the proper connection parameters, such
as the name of the host where the server is running and the user name and password of your MySQL
account. Each connection parameter has a default value, but you can override default values as necessary
using program options specified either on the command line or in an option file.

The examples here use the mysql client program, but the principles apply to other clients such as
mysqldump, mysqladmin, or mysqlshow.

This command invokes mysql without specifying any explicit connection parameters:

mysql

Because there are no parameter options, the default values apply:

• The default host name is localhost. On Unix, this has a special meaning, as described later.

• The default user name is ODBC on Windows or your Unix login name on Unix.

• No password is sent because neither --password nor -p is given.

• For mysql, the first nonoption argument is taken as the name of the default database. Because there is
no such argument, mysql selects no default database.

To specify the host name and user name explicitly, as well as a password, supply appropriate options on
the command line. To select a default database, add a database-name argument. Examples:

mysql --host=localhost --user=myname --password=password mydb
mysql -h localhost -u myname -ppassword mydb

For password options, the password value is optional:

• If you use a --password or -p option and specify a password value, there must be no space between
--password= or -p and the password following it.

• If you use --password or -p but do not specify a password value, the client program prompts you to
enter the password. The password is not displayed as you enter it. This is more secure than giving the
password on the command line, which might enable other users on your system to see the password line
by executing a command such as ps. See Section 6.1.2.1, “End-User Guidelines for Password Security”.

• To explicitly specify that there is no password and that the client program should not prompt for one, use
the --skip-password option.

As just mentioned, including the password value on the command line is a security risk. To avoid this risk,
specify the --password or -p option without any following password value:

mysql --host=localhost --user=myname --password mydb
mysql -h localhost -u myname -p mydb

304

Connecting to the MySQL Server Using Command Options

When the --password or -p option is given with no password value, the client program prints a prompt
and waits for you to enter the password. (In these examples, mydb is not interpreted as a password
because it is separated from the preceding password option by a space.)

On some systems, the library routine that MySQL uses to prompt for a password automatically limits the
password to eight characters. That limitation is a property of the system library, not MySQL. Internally,
MySQL does not have any limit for the length of the password. To work around the limitation on systems
affected by it, specify your password in an option file (see Section 4.2.2.2, “Using Option Files”). Another
workaround is to change your MySQL password to a value that has eight or fewer characters, but that has
the disadvantage that shorter passwords tend to be less secure.

Client programs determine what type of connection to make as follows:

• If the host is not specified or is localhost, a connection to the local host occurs:

• On Windows, the client connects using shared memory, if the server was started with the
shared_memory system variable enabled to support shared-memory connections.

• On Unix, MySQL programs treat the host name localhost specially, in a way that is likely different
from what you expect compared to other network-based programs: the client connects using a Unix
socket file. The --socket option or the MYSQL_UNIX_PORT environment variable may be used to
specify the socket name.

• On Windows, if host is . (period), or TCP/IP is not enabled and --socket is not specified or the
host is empty, the client connects using a named pipe, if the server was started with the named_pipe
system variable enabled to support named-pipe connections. If named-pipe connections are not
supported or if the user making the connection is not a member of the Windows group specified by the
named_pipe_full_access_group system variable, an error occurs.

• Otherwise, the connection uses TCP/IP.

The --protocol option enables you to use a particular transport protocol even when other options
normally result in use of a different protocol. That is, --protocol specifies the transport protocol explicitly
and overrides the preceding rules, even for localhost.

Only connection options that are relevant to the selected transport protocol are used or checked. Other
connection options are ignored. For example, with --host=localhost on Unix, the client attempts to
connect to the local server using a Unix socket file, even if a --port or -P option is given to specify a
TCP/IP port number.

To ensure that the client makes a TCP/IP connection to the local server, use --host or -h to specify
a host name value of 127.0.0.1 (instead of localhost), or the IP address or name of the local
server. You can also specify the transport protocol explicitly, even for localhost, by using the --
protocol=TCP option. Examples:

mysql --host=127.0.0.1
mysql --protocol=TCP

If the server is configured to accept IPv6 connections, clients can connect to the local server over IPv6
using --host=::1. See Section 5.1.12, “IPv6 Support”.

On Windows, to force a MySQL client to use a named-pipe connection, specify the --pipe or --
protocol=PIPE option, or specify . (period) as the host name. If the server was not started with the
named_pipe system variable enabled to support named-pipe connections or if the user making the
connection is not a member of the Windows group specified by the named_pipe_full_access_group
system variable, an error occurs. Use the --socket option to specify the name of the pipe if you do not
want to use the default pipe name.

305

Connection Transport Protocols

Connections to remote servers use TCP/IP. This command connects to the server running on
remote.example.com using the default port number (3306):

mysql --host=remote.example.com

To specify a port number explicitly, use the --port or -P option:

mysql --host=remote.example.com --port=13306

You can specify a port number for connections to a local server, too. However, as indicated previously,
connections to localhost on Unix use a socket file by default, so unless you force a TCP/IP connection
as previously described, any option that specifies a port number is ignored.

For this command, the program uses a socket file on Unix and the --port option is ignored:

mysql --port=13306 --host=localhost

To cause the port number to be used, force a TCP/IP connection. For example, invoke the program in
either of these ways:

mysql --port=13306 --host=127.0.0.1
mysql --port=13306 --protocol=TCP

For additional information about options that control how client programs establish connections to the
server, see Section 4.2.3, “Command Options for Connecting to the Server”.

It is possible to specify connection parameters without entering them on the command line each time you
invoke a client program:

• Specify the connection parameters in the [client] section of an option file. The relevant section of the
file might look like this:

[client]
host=host_name
user=user_name
password=password

For more information, see Section 4.2.2.2, “Using Option Files”.

• Some connection parameters can be specified using environment variables. Examples:

• To specify the host for mysql, use MYSQL_HOST.

• On Windows, to specify the MySQL user name, use USER.

• To specify the password, use MYSQL_PWD. However, this is insecure; see Section 6.1.2.1, “End-User
Guidelines for Password Security”.

For a list of supported environment variables, see Section 4.9, “Environment Variables”.

4.2.5 Connection Transport Protocols

For programs that use the MySQL client library (for example, mysql and mysqldump), MySQL supports
connections to the server based on several transport protocols: TCP/IP, Unix socket file, named pipe,
and shared memory. This section describes how to select these protocols, and how they are similar and
different.

• Transport Protocol Selection

306

Connection Transport Protocols

• Transport Support for Local and Remote Connections

• Interpretation of localhost

• Encryption and Security Characteristics

• Connection Compression

Transport Protocol Selection

For a given connection, if the transport protocol is not specified explicitly, it is determined implicitly. For
example, connections to localhost result in a socket file connection on Unix and Unix-like systems, and
a TCP/IP connection to 127.0.0.1 otherwise. For additional information, see Section 4.2.4, “Connecting
to the MySQL Server Using Command Options”.

To specify the protocol explicitly, use the --protocol command option. The following table shows the
permissible values for --protocol and indicates the applicable platforms for each value. The values are
not case-sensitive.

--protocol Value Transport Protocol Used Applicable Platforms

TCP TCP/IP All

SOCKET Unix socket file Unix and Unix-like systems

PIPE Named pipe Windows

MEMORY Shared memory Windows

Transport Support for Local and Remote Connections

TCP/IP transport supports connections to local or remote MySQL servers.

Socket-file, named-pipe, and shared-memory transports support connections only to local MySQL servers.
(Named-pipe transport does allow for remote connections, but this capability is not implemented in
MySQL.)

Interpretation of localhost

If the transport protocol is not specified explicitly, localhost is interpreted as follows:

• On Unix and Unix-like systems, a connection to localhost results in a socket-file connection.

• Otherwise, a connection to localhost results in a TCP/IP connection to 127.0.0.1.

If the transport protocol is specified explicitly, localhost is interpreted with respect to that protocol.
For example, with --protocol=TCP, a connection to localhost results in a TCP/IP connection to
127.0.0.1 on all platforms.

Encryption and Security Characteristics

TCP/IP and socket-file transports are subject to TLS/SSL encryption, using the options described in
Command Options for Encrypted Connections. Named-pipe and shared-memory transports are not subject
to TLS/SSL encryption.

A connection is secure by default if made over a transport protocol that is secure by default. Otherwise, for
protocols that are subject to TLS/SSL encryption, a connection may be made secure using encryption:

307

Connection Compression Control

• TCP/IP connections are not secure by default, but can be encrypted to make them secure.

• Socket-file connections are secure by default. They can also be encrypted, but encrypting a socket-file
connection makes it no more secure and increases CPU load.

• Named-pipe connections are not secure by default, and are not subject to encryption to make them
secure. However, the named_pipe_full_access_group system variable is available to control which
MySQL users are permitted to use named-pipe connections.

• Shared-memory connections are secure by default.

Per the preceding remarks, connections that use TCP/IP encrypted using TLS/SSL, a socket file, or shared
memory are secure connections. TCP/IP connections not encrypted using TLS/SSL and named-pipe
connections are not secure.

If the require_secure_transport system variable is enabled, the server permits only connections that
use some form of secure transport.

See also Configuring Encrypted Connections as Mandatory.

Connection Compression

All transport protocols are subject to use of compression on the traffic between the client and server. If both
compression and encryption are used for a given connection, compression occurs before encryption. For
more information, see Section 4.2.6, “Connection Compression Control”.

4.2.6 Connection Compression Control

Connections to the server can use compression on the traffic between client and server to reduce the
number of bytes sent over the connection. By default, connections are uncompressed, but can be
compressed if the server and the client both support compression.

Compressed connections originate on the client side but affect CPU load on both the client and server
sides because both sides perform compression and decompression operations. Because enabling
compression decreases performance, its benefits occur primarily when there is low network bandwidth,
network transfer time dominates the cost of compression and decompression operations, and result sets
are large.

Compression control applies to connections to the server by client programs and by servers participating in
source/replica replication. Compression control does not apply to connections for FEDERATED tables.

These configuration parameters are available for controlling connection compression:

• Client programs support a --compress command-line option to specify use of compression for the
connection to the server.

• For programs that use the MySQL C API, enabling the MYSQL_OPT_COMPRESS option for the
mysql_options() function specifies use of compression for the connection to the server.

• For source/replica replication, enabling the slave_compressed_protocol system variable specifies
use of compression for replica connections to the source.

In each case, when use of compression is specified, the connection uses the zlib compression algorithm
if both sides support it, with fallback to an uncompressed connection otherwise.

4.2.7 Setting Environment Variables

308

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/5.7/en/using-encrypted-connections.html#mandatory-encrypted-connections
https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html

Server and Server-Startup Programs

Environment variables can be set at the command prompt to affect the current invocation of your command
processor, or set permanently to affect future invocations. To set a variable permanently, you can set it in
a startup file or by using the interface provided by your system for this purpose. Consult the documentation
for your command interpreter for specific details. Section 4.9, “Environment Variables”, lists all environment
variables that affect MySQL program operation.

To specify a value for an environment variable, use the syntax appropriate for your command processor.
For example, on Windows, you can set the USER variable to specify your MySQL account name. To do so,
use this syntax:

SET USER=your_name

The syntax on Unix depends on your shell. Suppose that you want to specify the TCP/IP port number using
the MYSQL_TCP_PORT variable. Typical syntax (such as for sh, ksh, bash, zsh, and so on) is as follows:

MYSQL_TCP_PORT=3306
export MYSQL_TCP_PORT

The first command sets the variable, and the export command exports the variable to the shell
environment so that its value becomes accessible to MySQL and other processes.

For csh and tcsh, use setenv to make the shell variable available to the environment:

setenv MYSQL_TCP_PORT 3306

The commands to set environment variables can be executed at your command prompt to take effect
immediately, but the settings persist only until you log out. To have the settings take effect each time you
log in, use the interface provided by your system or place the appropriate command or commands in a
startup file that your command interpreter reads each time it starts.

On Windows, you can set environment variables using the System Control Panel (under Advanced).

On Unix, typical shell startup files are .bashrc or .bash_profile for bash, or .tcshrc for tcsh.

Suppose that your MySQL programs are installed in /usr/local/mysql/bin and that you want to make
it easy to invoke these programs. To do this, set the value of the PATH environment variable to include that
directory. For example, if your shell is bash, add the following line to your .bashrc file:

PATH=${PATH}:/usr/local/mysql/bin

bash uses different startup files for login and nonlogin shells, so you might want to add the setting to
.bashrc for login shells and to .bash_profile for nonlogin shells to make sure that PATH is set
regardless.

If your shell is tcsh, add the following line to your .tcshrc file:

setenv PATH ${PATH}:/usr/local/mysql/bin

If the appropriate startup file does not exist in your home directory, create it with a text editor.

After modifying your PATH setting, open a new console window on Windows or log in again on Unix so that
the setting goes into effect.

4.3 Server and Server-Startup Programs

This section describes mysqld, the MySQL server, and several programs that are used to start the server.

309

mysqld — The MySQL Server

4.3.1 mysqld — The MySQL Server

mysqld, also known as MySQL Server, is a single multithreaded program that does most of the work
in a MySQL installation. It does not spawn additional processes. MySQL Server manages access to the
MySQL data directory that contains databases and tables. The data directory is also the default location for
other information such as log files and status files.

Note

Some installation packages contain a debugging version of the server named
mysqld-debug. Invoke this version instead of mysqld for debugging support,
memory allocation checking, and trace file support (see Section 5.8.1.2, “Creating
Trace Files”).

When MySQL server starts, it listens for network connections from client programs and manages access to
databases on behalf of those clients.

The mysqld program has many options that can be specified at startup. For a complete list of options, run
this command:

mysqld --verbose --help

MySQL Server also has a set of system variables that affect its operation as it runs. System variables
can be set at server startup, and many of them can be changed at runtime to effect dynamic server
reconfiguration. MySQL Server also has a set of status variables that provide information about its
operation. You can monitor these status variables to access runtime performance characteristics.

For a full description of MySQL Server command options, system variables, and status variables, see
Section 5.1, “The MySQL Server”. For information about installing MySQL and setting up the initial
configuration, see Chapter 2, Installing and Upgrading MySQL.

4.3.2 mysqld_safe — MySQL Server Startup Script

mysqld_safe is the recommended way to start a mysqld server on Unix. mysqld_safe adds some
safety features such as restarting the server when an error occurs and logging runtime information to an
error log. A description of error logging is given later in this section.

mysqld_safe tries to start an executable named mysqld. To override the default behavior and specify
explicitly the name of the server you want to run, specify a --mysqld or --mysqld-version option to
mysqld_safe. You can also use --ledir to indicate the directory where mysqld_safe should look for
the server.

Many of the options to mysqld_safe are the same as the options to mysqld. See Section 5.1.6, “Server
Command Options”.

Options unknown to mysqld_safe are passed to mysqld if they are specified on the command line, but
ignored if they are specified in the [mysqld_safe] group of an option file. See Section 4.2.2.2, “Using
Option Files”.

mysqld_safe reads all options from the [mysqld], [server], and [mysqld_safe] sections in option
files. For example, if you specify a [mysqld] section like this, mysqld_safe finds and uses the --log-
error option:

[mysqld]

310

mysqld_safe — MySQL Server Startup Script

log-error=error.log

For backward compatibility, mysqld_safe also reads [safe_mysqld] sections, but to be current you
should rename such sections to [mysqld_safe].

mysqld_safe supports the following options. It also reads option files and supports the options for
processing them described at Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”.

Table 4.5 mysqld_safe Options

Option Name Description

--basedir Path to MySQL installation directory

--core-file-size Size of core file that mysqld should be able to create

--datadir Path to data directory

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--help Display help message and exit

--ledir Path to directory where server is located

--log-error Write error log to named file

--malloc-lib Alternative malloc library to use for mysqld

--mysqld Name of server program to start (in ledir directory)

--mysqld-version Suffix for server program name

--nice Use nice program to set server scheduling priority

--no-defaults Read no option files

--open-files-limit Number of files that mysqld should be able to open

--pid-file Path name of server process ID file

--plugin-dir Directory where plugins are installed

--port Port number on which to listen for TCP/IP
connections

--skip-kill-mysqld Do not try to kill stray mysqld processes

--skip-syslog Do not write error messages to syslog; use error log
file

--socket Socket file on which to listen for Unix socket
connections

--syslog Write error messages to syslog

--syslog-tag Tag suffix for messages written to syslog

--timezone Set TZ time zone environment variable to named
value

--user Run mysqld as user having name user_name or
numeric user ID user_id

• --help

Display a help message and exit.

311

mysqld_safe — MySQL Server Startup Script

• --basedir=dir_name

The path to the MySQL installation directory.

• --core-file-size=size

The size of the core file that mysqld should be able to create. The option value is passed to ulimit -
c.

• --datadir=dir_name

The path to the data directory.

• --defaults-extra-file=file_name

Read this option file in addition to the usual option files. If the file does not exist or is otherwise
inaccessible, the server exits with an error. If file_name is not an absolute path name, it is interpreted
relative to the current directory. This must be the first option on the command line if it is used.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, the server exits with
an error. If file_name is not an absolute path name, it is interpreted relative to the current directory.
This must be the first option on the command line if it is used.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --ledir=dir_name

If mysqld_safe cannot find the server, use this option to indicate the path name to the directory where
the server is located.

As of MySQL 5.6.35, this option is accepted only on the command line, not in option files.

• --log-error=file_name

Write the error log to the given file. See Section 5.4.2, “The Error Log”.

• --malloc-lib=[lib_name]

The name of the library to use for memory allocation instead of the system malloc() library. As of
MySQL 5.6.33, the option value must be one of the directories /usr/lib, /usr/lib64, /usr/lib/
i386-linux-gnu, or /usr/lib/x86_64-linux-gnu. Prior to MySQL 5.6.33, any library can be
used by specifying its path name, but there is a shortcut form to enable use of the tcmalloc library that
is shipped with binary MySQL distributions for Linux in MySQL 5.6. It is possible that the shortcut form
may not work under certain configurations, in which case you should specify a path name instead.

Note

As of MySQL 5.6.31, MySQL distributions no longer include a tcmalloc library.

The --malloc-lib option works by modifying the LD_PRELOAD environment value to affect dynamic
linking to enable the loader to find the memory-allocation library when mysqld runs:

312

mysqld_safe — MySQL Server Startup Script

• If the option is not given, or is given without a value (--malloc-lib=), LD_PRELOAD is not modified
and no attempt is made to use tcmalloc.

• Prior to MySQL 5.6.49, if the option is given as --malloc-lib=tcmalloc, mysqld_safe looks for
a tcmalloc library in /usr/lib and then in the MySQL pkglibdir location (for example, /usr/
local/mysql/lib or whatever is appropriate). If tmalloc is found, its path name is added to the
beginning of the LD_PRELOAD value for mysqld. If tcmalloc is not found, mysqld_safe aborts with
an error.

As of MySQL 5.6.49, tcmalloc is not a permitted value for the --malloc-lib option.

• If the option is given as --malloc-lib=/path/to/some/library, that full path is added to
the beginning of the LD_PRELOAD value. If the full path points to a nonexistent or unreadable file,
mysqld_safe aborts with an error.

• For cases where mysqld_safe adds a path name to LD_PRELOAD, it adds the path to the beginning
of any existing value the variable already has.

Linux users can use the libtcmalloc_minimal.so included in binary packages by adding these lines
to the my.cnf file:

[mysqld_safe]
malloc-lib=tcmalloc

Those lines also suffice for users on any platform who have installed a tcmalloc package in /usr/
lib. To use a specific tcmalloc library, specify its full path name. Example:

[mysqld_safe]
malloc-lib=/opt/lib/libtcmalloc_minimal.so

• --mysqld=prog_name

The name of the server program (in the ledir directory) that you want to start. This option is needed
if you use the MySQL binary distribution but have the data directory outside of the binary distribution. If
mysqld_safe cannot find the server, use the --ledir option to indicate the path name to the directory
where the server is located.

As of MySQL 5.6.33, this option is accepted only on the command line, not in option files.

• --mysqld-version=suffix

This option is similar to the --mysqld option, but you specify only the suffix for the server
program name. The base name is assumed to be mysqld. For example, if you use --mysqld-
version=debug, mysqld_safe starts the mysqld-debug program in the ledir directory. If the
argument to --mysqld-version is empty, mysqld_safe uses mysqld in the ledir directory.

As of MySQL 5.6.33, this option is accepted only on the command line, not in option files.

• --nice=priority

Use the nice program to set the server's scheduling priority to the given value.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read. This must be the first option on the
command line if it is used.

313

mysqld_safe — MySQL Server Startup Script

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --open-files-limit=count

The number of files that mysqld should be able to open. The option value is passed to ulimit -n.

Note

You must start mysqld_safe as root for this to function properly.

• --pid-file=file_name

The path name that mysqld should use for its process ID file.

• --plugin-dir=dir_name

The path name of the plugin directory.

• --port=port_num

The port number that the server should use when listening for TCP/IP connections. The port number
must be 1024 or higher unless the server is started by the root operating system user.

• --skip-kill-mysqld

Do not try to kill stray mysqld processes at startup. This option works only on Linux.

• --socket=path

The Unix socket file that the server should use when listening for local connections.

• --syslog, --skip-syslog

--syslog causes error messages to be sent to syslog on systems that support the logger program.
--skip-syslog suppresses the use of syslog; messages are written to an error log file.

When syslog is used, the daemon.err syslog facility/severity is used for all log messages.

mysqld_safe ignores --syslog if --log-error is also given.

• --syslog-tag=tag

For logging to syslog, messages from mysqld_safe and mysqld are written with identifiers of
mysqld_safe and mysqld, respectively. To specify a suffix for the identifiers, use --syslog-
tag=tag, which modifies the identifiers to be mysqld_safe-tag and mysqld-tag.

• --timezone=timezone

Set the TZ time zone environment variable to the given option value. Consult your operating system
documentation for legal time zone specification formats.

• --user={user_name|user_id}

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

314

mysqld_safe — MySQL Server Startup Script

If you execute mysqld_safe with the --defaults-file or --defaults-extra-file option to name
an option file, the option must be the first one given on the command line or the option file is not used. For
example, this command does not use the named option file:

mysql> mysqld_safe --port=port_num --defaults-file=file_name

Instead, use the following command:

mysql> mysqld_safe --defaults-file=file_name --port=port_num

The mysqld_safe script is written so that it normally can start a server that was installed from either
a source or a binary distribution of MySQL, even though these types of distributions typically install the
server in slightly different locations. (See Section 2.1.5, “Installation Layouts”.) mysqld_safe expects one
of the following conditions to be true:

• The server and databases can be found relative to the working directory (the directory from which
mysqld_safe is invoked). For binary distributions, mysqld_safe looks under its working directory
for bin and data directories. For source distributions, it looks for libexec and var directories. This
condition should be met if you execute mysqld_safe from your MySQL installation directory (for
example, /usr/local/mysql for a binary distribution).

• If the server and databases cannot be found relative to the working directory, mysqld_safe attempts to
locate them by absolute path names. Typical locations are /usr/local/libexec and /usr/local/
var. The actual locations are determined from the values configured into the distribution at the time it
was built. They should be correct if MySQL is installed in the location specified at configuration time.

Because mysqld_safe tries to find the server and databases relative to its own working directory, you
can install a binary distribution of MySQL anywhere, as long as you run mysqld_safe from the MySQL
installation directory:

cd mysql_installation_directory
bin/mysqld_safe &

If mysqld_safe fails, even when invoked from the MySQL installation directory, specify the --ledir
and --datadir options to indicate the directories in which the server and databases are located on your
system.

In MySQL 5.6.5 and later, mysqld_safe tries to use the sleep and date system utilities to determine
how many times it has attempted to start this second, and—if these are present and this is greater than
5 times—is forced to wait 1 full second before starting again. This is intended to prevent excessive CPU
usage in the event of repeated failures. (Bug #11761530, Bug #54035)

When you use mysqld_safe to start mysqld, mysqld_safe arranges for error (and notice) messages
from itself and from mysqld to go to the same destination.

There are several mysqld_safe options for controlling the destination of these messages:

• --log-error=file_name: Write error messages to the named error file.

• --syslog: Write error messages to syslog on systems that support the logger program.

• --skip-syslog: Do not write error messages to syslog. Messages are written to the default error log
file (host_name.err in the data directory), or to a named file if the --log-error option is given.

If none of these options is given, the default is --skip-syslog.

If --log-error and --syslog are both given, a warning is issued and --log-error takes
precedence.

315

mysql.server — MySQL Server Startup Script

When mysqld_safe writes a message, notices go to the logging destination (syslog or the error log file)
and stdout. Errors go to the logging destination and stderr.

4.3.3 mysql.server — MySQL Server Startup Script

MySQL distributions on Unix and Unix-like system include a script named mysql.server, which starts
the MySQL server using mysqld_safe. It can be used on systems such as Linux and Solaris that use
System V-style run directories to start and stop system services. It is also used by the macOS Startup Item
for MySQL.

mysql.server is the script name as used within the MySQL source tree. The installed name might be
different (for example, mysqld or mysql). In the following discussion, adjust the name mysql.server as
appropriate for your system.

To start or stop the server manually using the mysql.server script, invoke it from the command line with
start or stop arguments:

mysql.server start
mysql.server stop

mysql.server changes location to the MySQL installation directory, then invokes mysqld_safe. To run
the server as some specific user, add an appropriate user option to the [mysqld] group of the global /
etc/my.cnf option file, as shown later in this section. (It is possible that you must edit mysql.server if
you've installed a binary distribution of MySQL in a nonstandard location. Modify it to change location into
the proper directory before it runs mysqld_safe. If you do this, your modified version of mysql.server
may be overwritten if you upgrade MySQL in the future; make a copy of your edited version that you can
reinstall.)

mysql.server stop stops the server by sending a signal to it. You can also stop the server manually by
executing mysqladmin shutdown.

To start and stop MySQL automatically on your server, you must add start and stop commands to the
appropriate places in your /etc/rc* files:

• If you use the Linux server RPM package (MySQL-server-VERSION.rpm), or a native Linux package
installation, the mysql.server script may be installed in the /etc/init.d directory with the name
mysqld or mysql. See Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”,
for more information on the Linux RPM packages.

• If you install MySQL from a source distribution or using a binary distribution format that does not install
mysql.server automatically, you can install the script manually. It can be found in the support-
files directory under the MySQL installation directory or in a MySQL source tree. Copy the script to the
/etc/init.d directory with the name mysql and make it executable:

cp mysql.server /etc/init.d/mysql
chmod +x /etc/init.d/mysql

After installing the script, the commands needed to activate it to run at system startup depend on your
operating system. On Linux, you can use chkconfig:

chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable the mysql
script:

chkconfig --level 345 mysql on

316

mysql.server — MySQL Server Startup Script

• On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. Install the
mysql.server script as /usr/local/etc/rc.d/mysql.server.sh to enable automatic startup.
The rc(8) manual page states that scripts in this directory are executed only if their base name
matches the *.sh shell file name pattern. Any other files or directories present within the directory are
silently ignored.

• As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /etc/
init.d/boot.local to start additional services on startup. To start up MySQL using this method,
append a command like the one following to the appropriate startup file:

/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'

• For other systems, consult your operating system documentation to see how to install startup scripts.

mysql.server reads options from the [mysql.server] and [mysqld] sections of option files. For
backward compatibility, it also reads [mysql_server] sections, but to be current you should rename
such sections to [mysql.server].

You can add options for mysql.server in a global /etc/my.cnf file. A typical my.cnf file might look
like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306
user=mysql

[mysql.server]
basedir=/usr/local/mysql

The mysql.server script supports the options shown in the following table. If specified, they must be
placed in an option file, not on the command line. mysql.server supports only start and stop as
command-line arguments.

Table 4.6 mysql.server Option-File Options

Option Name Description Type

basedir Path to MySQL installation
directory

Directory name

datadir Path to MySQL data directory Directory name

pid-file File in which server should write
its process ID

File name

service-startup-timeout How long to wait for server startup Integer

• basedir=dir_name

The path to the MySQL installation directory.

• datadir=dir_name

The path to the MySQL data directory.

• pid-file=file_name

The path name of the file in which the server should write its process ID. The server creates the file in
the data directory unless an absolute path name is given to specify a different directory.

317

mysqld_multi — Manage Multiple MySQL Servers

If this option is not given, mysql.server uses a default value of host_name.pid. The PID file value
passed to mysqld_safe overrides any value specified in the [mysqld_safe] option file group.
Because mysql.server reads the [mysqld] option file group but not the [mysqld_safe] group,
you can ensure that mysqld_safe gets the same value when invoked from mysql.server as when
invoked manually by putting the same pid-file setting in both the [mysqld_safe] and [mysqld]
groups.

• service-startup-timeout=seconds

How long in seconds to wait for confirmation of server startup. If the server does not start within this time,
mysql.server exits with an error. The default value is 900. A value of 0 means not to wait at all for
startup. Negative values mean to wait forever (no timeout).

4.3.4 mysqld_multi — Manage Multiple MySQL Servers

mysqld_multi is designed to manage several mysqld processes that listen for connections on different
Unix socket files and TCP/IP ports. It can start or stop servers, or report their current status.

mysqld_multi searches for groups named [mysqldN] in my.cnf (or in the file named by the --
defaults-file option). N can be any positive integer. This number is referred to in the following
discussion as the option group number, or GNR. Group numbers distinguish option groups from one
another and are used as arguments to mysqld_multi to specify which servers you want to start, stop, or
obtain a status report for. Options listed in these groups are the same that you would use in the [mysqld]
group used for starting mysqld. (See, for example, Section 2.10.5, “Starting and Stopping MySQL
Automatically”.) However, when using multiple servers, it is necessary that each one use its own value
for options such as the Unix socket file and TCP/IP port number. For more information on which options
must be unique per server in a multiple-server environment, see Section 5.7, “Running Multiple MySQL
Instances on One Machine”.

To invoke mysqld_multi, use the following syntax:

mysqld_multi [options] {start|stop|reload|report} [GNR[,GNR] ...]

start, stop, reload (stop and restart), and report indicate which operation to perform. (reload is
available as of MySQL 5.6.3.) You can perform the designated operation for a single server or multiple
servers, depending on the GNR list that follows the option name. If there is no list, mysqld_multi
performs the operation for all servers in the option file.

Each GNR value represents an option group number or range of group numbers. The value should be
the number at the end of the group name in the option file. For example, the GNR for a group named
[mysqld17] is 17. To specify a range of numbers, separate the first and last numbers by a dash. The
GNR value 10-13 represents groups [mysqld10] through [mysqld13]. Multiple groups or group ranges
can be specified on the command line, separated by commas. There must be no whitespace characters
(spaces or tabs) in the GNR list; anything after a whitespace character is ignored.

This command starts a single server using option group [mysqld17]:

mysqld_multi start 17

This command stops several servers, using option groups [mysqld8] and [mysqld10] through
[mysqld13]:

mysqld_multi stop 8,10-13

For an example of how you might set up an option file, use this command:

318

mysqld_multi — Manage Multiple MySQL Servers

mysqld_multi --example

mysqld_multi searches for option files as follows:

• With --no-defaults, no option files are read.

• With --defaults-file=file_name, only the named file is read.

• Otherwise, option files in the standard list of locations are read, including any file named by the --
defaults-extra-file=file_name option, if one is given. (If the option is given multiple times, the
last value is used.)

For additional information about these and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

Option files read are searched for [mysqld_multi] and [mysqldN] option groups. The
[mysqld_multi] group can be used for options to mysqld_multi itself. [mysqldN] groups can be
used for options passed to specific mysqld instances.

The [mysqld] or [mysqld_safe] groups can be used for common options read by all instances of
mysqld or mysqld_safe. You can specify a --defaults-file=file_name option to use a different
configuration file for that instance, in which case the [mysqld] or [mysqld_safe] groups from that file
are used for that instance.

mysqld_multi supports the following options.

• --help

Display a help message and exit.

• --example

Display a sample option file.

• --log=file_name

Specify the name of the log file. If the file exists, log output is appended to it.

• --mysqladmin=prog_name

The mysqladmin binary to be used to stop servers.

• --mysqld=prog_name

The mysqld binary to be used. You can specify mysqld_safe as the value for this option. If you use
mysqld_safe to start the server, you can include the mysqld or ledir options in the corresponding
[mysqldN] option group. These options indicate the name of the server that mysqld_safe should start
and the path name of the directory where the server is located. (See the descriptions for these options in
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.) Example:

[mysqld38]
mysqld = mysqld-debug
ledir = /opt/local/mysql/libexec

• --no-log

Print log information to stdout rather than to the log file. By default, output goes to the log file.

• --password=password

319

mysqld_multi — Manage Multiple MySQL Servers

The password of the MySQL account to use when invoking mysqladmin. The password value is not
optional for this option, unlike for other MySQL programs.

• --silent

Silent mode; disable warnings.

• --tcp-ip

Connect to each MySQL server through the TCP/IP port instead of the Unix socket file. (If a socket file
is missing, the server might still be running, but accessible only through the TCP/IP port.) By default,
connections are made using the Unix socket file. This option affects stop and report operations.

• --user=user_name

The user name of the MySQL account to use when invoking mysqladmin.

• --verbose

Be more verbose.

• --version

Display version information and exit.

Some notes about mysqld_multi:

• Most important: Before using mysqld_multi be sure that you understand the meanings of the options
that are passed to the mysqld servers and why you would want to have separate mysqld processes.
Beware of the dangers of using multiple mysqld servers with the same data directory. Use separate
data directories, unless you know what you are doing. Starting multiple servers with the same data
directory does not give you extra performance in a threaded system. See Section 5.7, “Running Multiple
MySQL Instances on One Machine”.

Important

Make sure that the data directory for each server is fully accessible to the Unix
account that the specific mysqld process is started as. Do not use the Unix root
account for this, unless you know what you are doing. See Section 6.1.5, “How to
Run MySQL as a Normal User”.

• Make sure that the MySQL account used for stopping the mysqld servers (with the mysqladmin
program) has the same user name and password for each server. Also, make sure that the account
has the SHUTDOWN privilege. If the servers that you want to manage have different user names or
passwords for the administrative accounts, you might want to create an account on each server that has
the same user name and password. For example, you might set up a common multi_admin account
by executing the following commands for each server:

$> mysql -u root -S /tmp/mysql.sock -p
Enter password:
mysql> CREATE USER 'multi_admin'@'localhost' IDENTIFIED BY 'multipass';
mysql> GRANT SHUTDOWN ON *.* TO 'multi_admin'@'localhost';

See Section 6.2, “Access Control and Account Management”. You have to do this for each mysqld
server. Change the connection parameters appropriately when connecting to each one. The host name
part of the account name must permit you to connect as multi_admin from the host where you want to
run mysqld_multi.

320

mysqld_multi — Manage Multiple MySQL Servers

• The Unix socket file and the TCP/IP port number must be different for every mysqld. (Alternatively, if the
host has multiple network addresses, you can set the bind_address system variable to cause different
servers to listen to different interfaces.)

• The --pid-file option is very important if you are using mysqld_safe to start mysqld (for example,
--mysqld=mysqld_safe) Every mysqld should have its own process ID file. The advantage of using
mysqld_safe instead of mysqld is that mysqld_safe monitors its mysqld process and restarts it if
the process terminates due to a signal sent using kill -9 or for other reasons, such as a segmentation
fault.

• You might want to use the --user option for mysqld, but to do this you need to run the
mysqld_multi script as the Unix superuser (root). Having the option in the option file doesn't matter;
you just get a warning if you are not the superuser and the mysqld processes are started under your
own Unix account.

The following example shows how you might set up an option file for use with mysqld_multi. The order
in which the mysqld programs are started or stopped depends on the order in which they appear in the
option file. Group numbers need not form an unbroken sequence. The first and fifth [mysqldN] groups
were intentionally omitted from the example to illustrate that you can have “gaps” in the option file. This
gives you more flexibility.

This is an example of a my.cnf file for mysqld_multi.
Usually this file is located in home dir ~/.my.cnf or /etc/my.cnf

[mysqld_multi]
mysqld = /usr/local/mysql/bin/mysqld_safe
mysqladmin = /usr/local/mysql/bin/mysqladmin
user = multi_admin
password = my_password

[mysqld2]
socket = /tmp/mysql.sock2
port = 3307
pid-file = /usr/local/mysql/data2/hostname.pid2
datadir = /usr/local/mysql/data2
language = /usr/local/mysql/share/mysql/english
user = unix_user1

[mysqld3]
mysqld = /path/to/mysqld_safe
ledir = /path/to/mysqld-binary/
mysqladmin = /path/to/mysqladmin
socket = /tmp/mysql.sock3
port = 3308
pid-file = /usr/local/mysql/data3/hostname.pid3
datadir = /usr/local/mysql/data3
language = /usr/local/mysql/share/mysql/swedish
user = unix_user2

[mysqld4]
socket = /tmp/mysql.sock4
port = 3309
pid-file = /usr/local/mysql/data4/hostname.pid4
datadir = /usr/local/mysql/data4
language = /usr/local/mysql/share/mysql/estonia
user = unix_user3

[mysqld6]
socket = /tmp/mysql.sock6
port = 3311
pid-file = /usr/local/mysql/data6/hostname.pid6
datadir = /usr/local/mysql/data6
language = /usr/local/mysql/share/mysql/japanese

321

Installation-Related Programs

user = unix_user4

See Section 4.2.2.2, “Using Option Files”.

4.4 Installation-Related Programs
The programs in this section are used when installing or upgrading MySQL.

4.4.1 comp_err — Compile MySQL Error Message File

comp_err creates the errmsg.sys file that is used by mysqld to determine the error messages to
display for different error codes. comp_err normally is run automatically when MySQL is built. It compiles
the errmsg.sys file from the text-format error information file located at sql/share/errmsg-utf8.txt
in MySQL source distributions.

comp_err also generates the mysqld_error.h, mysqld_ername.h, and sql_state.h header files.

For more information about how error messages are defined, see the MySQL Internals Manual.

Invoke comp_err like this:

comp_err [options]

comp_err supports the following options.

• --help, -?

Display a help message and exit.

• --charset=dir_name, -C dir_name

The character set directory. The default is ../sql/share/charsets.

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:O,file_name. The default is d:t:O,/
tmp/comp_err.trace.

• --debug-info, -T

Print some debugging information when the program exits.

• --header-file=file_name, -H file_name

The name of the error header file. The default is mysqld_error.h.

• --in-file=file_name, -F file_name

The name of the input file that defines error messages. The default is ../sql/share/errmsg-
utf8.txt.

• --name-file=file_name, -N file_name

The name of the error name file. The default is mysqld_ername.h.

• --out-dir=dir_name, -D dir_name

The name of the output base directory. The default is ../sql/share/.

• --out-file=file_name, -O file_name

322

https://dev.mysql.com/doc/internals/en

mysqlbug — Generate Bug Report

The name of the output file. The default is errmsg.sys.

• --state-file=file_name, -S file_name

The name for the SQLSTATE header file. The default is sql_state.h.

• --version, -V

Display version information and exit.

4.4.2 mysqlbug — Generate Bug Report

This program is obsolete. It is deprecated as of MySQL 5.6.19 and is removed in MySQL 5.7.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs
database. This database is public and can be browsed and searched by anyone. If you log in to the
system, you can enter new reports.

4.4.3 mysql_install_db — Initialize MySQL Data Directory

mysql_install_db initializes the MySQL data directory and creates the system tables that it contains,
if they do not exist. It also initializes the system tablespace and related data structures needed to manage
InnoDB tables. As of MySQL 5.6.8, mysql_install_db is a Perl script and can be used on any system
with Perl installed. Before 5.6.8, it is a shell script and is available only on Unix platforms.

As of MySQL 5.6.8, on Unix platforms, mysql_install_db creates a default option file named
my.cnf in the base installation directory. This file is created from a template included in the distribution
package named my-default.cnf. You can find the template in or under the base installation directory.
When started using mysqld_safe, the server uses my.cnf file by default. If my.cnf already exists,
mysql_install_db assumes it to be in use and writes a new file named my-new.cnf instead.

With one exception, the settings in the default option file are commented and have
no effect. The exception is that the file sets the sql_mode system variable to
NO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES. This setting produces a server configuration
that results in errors rather than warnings for bad data in operations that modify transactional tables. See
Section 5.1.10, “Server SQL Modes”.

To invoke mysql_install_db, use the following syntax:

mysql_install_db [options]

Because the MySQL server, mysqld, must access the data directory when it runs later, you should either
run mysql_install_db from the same system account that is used for running mysqld, or run it as
root and specify the --user option to indicate the user name that mysqld runs as. It might be necessary
to specify other options such as --basedir or --datadir if mysql_install_db does not use the
correct locations for the installation directory or data directory. For example:

scripts/mysql_install_db --user=mysql \
 --basedir=/opt/mysql/mysql \
 --datadir=/opt/mysql/mysql/data

Note

After mysql_install_db sets up the InnoDB system tablespace, changes to
some tablespace characteristics require setting up a whole new instance. This
includes the file name of the first file in the system tablespace and the number
of undo logs. If you do not want to use the default values, make sure that the
settings for the innodb_data_file_path and innodb_log_file_size

323

http://bugs.mysql.com/

mysql_install_db — Initialize MySQL Data Directory

configuration parameters are in place in the MySQL configuration file before
running mysql_install_db. Also make sure to specify as necessary other
parameters that affect the creation and location of InnoDB files, such as
innodb_data_home_dir and innodb_log_group_home_dir.

If those options are in your configuration file but that file is not in a location that
MySQL reads by default, specify the file location using the --defaults-extra-
file option when you run mysql_install_db.

Note

If you have set a custom TMPDIR environment variable when performing the
installation, and the specified directory is not accessible, mysql_install_db may
fail. If so, unset TMPDIR or set TMPDIR to point to the system temporary directory
(usually /tmp).

mysql_install_db supports the following options, which can be specified on the command line or in
the [mysql_install_db] group of an option file. (Options that are common to mysqld can also be
specified in the [mysqld] group.) Other options are passed to mysqld. For information about option files
used by MySQL programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.7 mysql_install_db Options

Option Name Description Introduced Deprecated

--basedir Path to base directory

--builddir Path to build directory
(for out-of-source builds)

--cross-bootstrap For internal use

--datadir Path to data directory

--defaults-extra-file Read named option file in
addition to usual option
files

--defaults-file Read only named option
file

--force Run even if DNS does
not work

--help Display help message
and exit

--keep-my-cnf Keep existing my.cnf file,
do not create new one

5.6.20 5.6.20

--ldata Synonym for --datadir

--no-defaults Read no option files

--random-passwords Generate administrative
account random
password

--rpm For internal use

--skip-name-resolve Use IP addresses rather
than host names in grant
tables

--srcdir For internal use

324

mysql_install_db — Initialize MySQL Data Directory

Option Name Description Introduced Deprecated

--user Operating system user
under which to execute
mysqld

--verbose Verbose mode

--windows For internal use

• --help

Display a help message and exit.

• --basedir=dir_name

The path to the MySQL installation directory.

• --builddir=dir_name

For use with --srcdir and out-of-source builds. Set this to the location of the directory where the built
files reside.

• --cross-bootstrap

For internal use. This option is used for building system tables on one host intended for another.

• --datadir=dir_name

The path to the MySQL data directory. Beginning with MySQL 5.6.8, mysql_install_db is more
strict about the option value. Only the last component of the path name is created if it does not exist; the
parent directory must already exist or an error occurs.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --force

Cause mysql_install_db to run even if DNS does not work. Grant table entries normally created
using host names use IP addresses instead.

• --keep-my-cnf

Tell mysql_install_db to preserve any existing my.cnf file and not create a new default my.cnf file.
This option was added in MySQL 5.6.20.

325

mysql_install_db — Initialize MySQL Data Directory

• --ldata=dir_name

A synonym for --datadir.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --random-passwords

On Unix platforms, this option provides for more secure MySQL installation. Invoking
mysql_install_db with --random-passwords causes it to perform the following actions in addition
to its normal operation:

• The installation process creates a random password, assigns it to the initial MySQL root accounts,
and sets the “password expired” flag for those accounts.

• The initial random root password is written to the .mysql_secret file in the directory named by the
HOME environment variable. Depending on operating system, using a command such as sudo may
cause the value of HOME to refer to the home directory of the root system user.

If .mysql_secret already exists, the new password information is appended to it. Each password
entry includes a timestamp so that in the event of multiple install operations it is possible to determine
the password associated with each one.

.mysql_secret is created with mode 600 to be accessible only to the operating system user for
whom it is created.

• No anonymous-user MySQL accounts are created.

As a result of these actions, it is necessary after installation to start the server, connect as root using
the password written to the .mysql_secret file, and specify a new root password. Until this is done,
root cannot do anything else. This must be done for each root account you intend to use. To change
the password, you can use the SET PASSWORD statement (for example, with the mysql client). You can
also use mysqladmin or mysql_secure_installation.

New RPM install operations (not upgrades) invoke mysql_install_db with the --random-
passwords option. (Install operations using RPMs for Unbreakable Linux Network are unaffected
because they do not use mysql_install_db.)

As of MySQL 5.6.9, new Solaris PKG install operations (not upgrades) invoke mysql_install_db with
the --random-passwords option.

For install operations using a binary .tar.gz distribution or a source distribution, you can invoke
mysql_install_db with the --random-passwords option manually to make your MySQL installation
more secure. This is recommended, particularly for sites with sensitive data.

• --rpm

For internal use. This option is used during the MySQL installation process for install operations
performed using RPM packages.

• --skip-name-resolve

326

mysql_plugin — Configure MySQL Server Plugins

Use IP addresses rather than host names when creating grant table entries. This option can be useful if
your DNS does not work.

• --srcdir=dir_name

For internal use. This option specifies the directory under which mysql_install_db looks for support
files such as the error message file and the file for populating the help tables.

• --user=user_name

The system (login) user name to use for running mysqld. Files and directories created by mysqld are
owned by this user. You must be the system root user to use this option. By default, mysqld runs
using your current login name and files and directories that it creates are owned by you.

• --verbose

Verbose mode. Print more information about what the program does.

• --windows

For internal use. This option is used for creating Windows distributions.

4.4.4 mysql_plugin — Configure MySQL Server Plugins

The mysql_plugin utility enables MySQL administrators to manage which plugins a MySQL server
loads. It provides an alternative to manually specifying the --plugin-load option at server startup
or using the INSTALL PLUGIN and UNINSTALL PLUGIN statements at runtime. mysql_plugin is
available as of MySQL 5.6.3.

Depending on whether mysql_plugin is invoked to enable or disable plugins, it inserts or deletes rows
in the mysql.plugin table that serves as a plugin registry. (To perform this operation, mysql_plugin
invokes the MySQL server in bootstrap mode. This means that the server must not already be running.)
For normal server startups, the server loads and enables plugins listed in mysql.plugin automatically.
For additional control over plugin activation, use --plugin_name options named for specific plugins, as
described in Section 5.5.1, “Installing and Uninstalling Plugins”.

Each invocation of mysql_plugin reads a configuration file to determine how to configure the plugins
contained in a single plugin library file. To invoke mysql_plugin, use this syntax:

mysql_plugin [options] plugin {ENABLE|DISABLE}

plugin is the name of the plugin to configure. ENABLE or DISABLE (not case-sensitive) specify whether to
enable or disable components of the plugin library named in the configuration file. The order of the plugin
and ENABLE or DISABLE arguments does not matter.

For example, to configure components of a plugin library file named myplugins.so on Linux or
myplugins.dll on Windows, specify a plugin value of myplugins. Suppose that this plugin library
contains three plugins, plugin1, plugin2, and plugin3, all of which should be configured under
mysql_plugin control. By convention, configuration files have a suffix of .ini and the same base name
as the plugin library, so the default configuration file name for this plugin library is myplugins.ini. The
configuration file contents look like this:

myplugins
plugin1
plugin2
plugin3

327

mysql_plugin — Configure MySQL Server Plugins

The first line in the myplugins.ini file is the name of the library file, without any extension such as .so
or .dll. The remaining lines are the names of the components to be enabled or disabled. Each value in
the file should be on a separate line. Lines on which the first character is '#' are taken as comments and
ignored.

To enable the plugins listed in the configuration file, invoke mysql_plugin this way:

mysql_plugin myplugins ENABLE

To disable the plugins, use DISABLE rather than ENABLE.

An error occurs if mysql_plugin cannot find the configuration file or plugin library file, or if
mysql_plugin cannot start the MySQL server.

mysql_plugin supports the following options, which can be specified on the command line or in
the [mysqld] group of any option file. For options specified in a [mysqld] group, mysql_plugin
recognizes the --basedir, --datadir, and --plugin-dir options and ignores others. For information
about option files used by MySQL programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.8 mysql_plugin Options

Option Name Description

--basedir The server base directory

--datadir The server data directory

--help Display help message and exit

--my-print-defaults Path to my_print_defaults

--mysqld Path to server

--no-defaults Do not read configuration file

--plugin-dir Directory where plugins are installed

--plugin-ini The plugin configuration file

--print-defaults Show configuration file defaults

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --basedir=dir_name, -b dir_name

The server base directory.

• --datadir=dir_name, -d dir_name

The server data directory.

• --my-print-defaults=file_name, -b file_name

The path to the my_print_defaults program.

• --mysqld=file_name, -b file_name

The path to the mysqld server.

328

mysql_secure_installation — Improve MySQL Installation Security

• --no-defaults, -p

Do not read values from the configuration file. This option enables an administrator to skip reading
defaults from the configuration file.

With mysql_plugin, this option need not be given first on the command line, unlike most other MySQL
programs that support --no-defaults.

• --plugin-dir=dir_name, -p dir_name

The server plugin directory.

• --plugin-ini=file_name, -i file_name

The mysql_plugin configuration file. Relative path names are interpreted relative to the current
directory. If this option is not given, the default is plugin.ini in the plugin directory, where plugin is
the plugin argument on the command line.

• --print-defaults, -P

Display the default values from the configuration file. This option causes mysql_plugin to print the
defaults for --basedir, --datadir, and --plugin-dir if they are found in the configuration file. If
no value for a variable is found, nothing is shown.

With mysql_plugin, this option need not be given first on the command line, unlike most other MySQL
programs that support --print-defaults.

• --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used multiple
times to increase the amount of information.

• --version, -V

Display version information and exit.

4.4.5 mysql_secure_installation — Improve MySQL Installation Security

This program enables you to improve the security of your MySQL installation in the following ways:

• You can set a password for root accounts.

• You can remove root accounts that are accessible from outside the local host.

• You can remove anonymous-user accounts.

• You can remove the test database (which by default can be accessed by all users, even anonymous
users), and privileges that permit anyone to access databases with names that start with test_.

mysql_secure_installation helps you implement security recommendations similar to those
described at Section 2.10.4, “Securing the Initial MySQL Accounts”.

Invoke mysql_secure_installation without arguments:

mysql_secure_installation

When executed, the script prompts you to determine which actions to perform.

4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables

329

mysql_upgrade — Check and Upgrade MySQL Tables

The mysql_tzinfo_to_sql program loads the time zone tables in the mysql database. It is used
on systems that have a zoneinfo database (the set of files describing time zones). Examples of such
systems are Linux, FreeBSD, Solaris, and macOS. One likely location for these files is the /usr/share/
zoneinfo directory (/usr/share/lib/zoneinfo on Solaris). If your system does not have a zoneinfo
database, you can use the downloadable package described in Section 5.1.13, “MySQL Server Time Zone
Support”.

mysql_tzinfo_to_sql can be invoked several ways:

mysql_tzinfo_to_sql tz_dir
mysql_tzinfo_to_sql tz_file tz_name
mysql_tzinfo_to_sql --leap tz_file

For the first invocation syntax, pass the zoneinfo directory path name to mysql_tzinfo_to_sql and
send the output into the mysql program. For example:

mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from them.
mysql processes those statements to load the time zone tables.

The second syntax causes mysql_tzinfo_to_sql to load a single time zone file tz_file that
corresponds to a time zone name tz_name:

mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

If your time zone needs to account for leap seconds, invoke mysql_tzinfo_to_sql using the third
syntax, which initializes the leap second information. tz_file is the name of your time zone file:

mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to use
any previously cached time zone data.

4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables

Each time you upgrade MySQL, you should execute mysql_upgrade, which looks for incompatibilities
with the upgraded MySQL server:

• It upgrades the system tables in the mysql schema so that you can take advantage of new privileges or
capabilities that might have been added.

• It upgrades the Performance Schema.

• It examines user schemas.

If mysql_upgrade finds that a table has a possible incompatibility, it performs a table check and,
if problems are found, attempts a table repair. If the table cannot be repaired, see Section 2.11.10,
“Rebuilding or Repairing Tables or Indexes” for manual table repair strategies.

If you install MySQL from RPM packages on Linux, you must install the server and client RPMs.
mysql_upgrade is included in the server RPM but requires the client RPM because the latter includes
mysqlcheck. (See Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”.)

Note

On Windows, you must run mysql_upgrade with administrator privileges. You can
do this by running a Command Prompt as Administrator and running the command.
Failure to do so may result in the upgrade failing to execute correctly.

330

mysql_upgrade — Check and Upgrade MySQL Tables

Caution

You should always back up your current MySQL installation before performing an
upgrade. See Section 7.2, “Database Backup Methods”.

Some upgrade incompatibilities may require special handling before upgrading your
MySQL installation and running mysql_upgrade. See Section 2.11, “Upgrading
MySQL”, for instructions on determining whether any such incompatibilities apply to
your installation and how to handle them.

Use mysql_upgrade like this:

1. Ensure that the server is running.

2. Invoke mysql_upgrade to upgrade the system tables in the mysql schema and check and repair
tables in other schemas:

mysql_upgrade [options]

3. Stop the server and restart it so that any system table changes take effect.

If you have multiple MySQL server instances to upgrade, invoke mysql_upgrade with connection
parameters appropriate for connecting to each of the desired servers. For example, with servers running
on the local host on parts 3306 through 3308, upgrade each of them by connecting to the appropriate port:

mysql_upgrade --protocol=tcp -P 3306 [other_options]
mysql_upgrade --protocol=tcp -P 3307 [other_options]
mysql_upgrade --protocol=tcp -P 3308 [other_options]

For local host connections on Unix, the --protocol=tcp option forces a connection using TCP/IP rather
than the Unix socket file.

By default, mysql_upgrade runs as the MySQL root user. If the root password is expired when you
run mysql_upgrade, you should see a message that your password is expired and that mysql_upgrade
failed as a result. To correct this, reset the root password to unexpire it and run mysql_upgrade again:

$> mysql -u root -p
Enter password: **** <- enter root password here
mysql> SET PASSWORD = PASSWORD('root-password');
mysql> quit

$> mysql_upgrade [options]

mysql_upgrade executes the following commands to check and repair tables and to upgrade the system
tables:

mysqlcheck --no-defaults --databases
 --fix-db-names --fix-table-names mysql
mysqlcheck --no-defaults --check-upgrade --databases
 --auto-repair mysql
mysql < fix_priv_tables
mysqlcheck --no-defaults --all-databases
 --skip-database=mysql --fix-db-names --fix-table-names
mysqlcheck --no-defaults --check-upgrade --all-databases
 --skip-database=mysql --auto-repair

Notes about the preceding commands:

• mysql_upgrade also adds --write-binlog or --skip-write-binlog to the mysqlcheck
commands, depending on whether the --write-binlog option was specified on the mysql_upgrade
command.

331

mysql_upgrade — Check and Upgrade MySQL Tables

• Unless invoked with the --upgrade-system-tables option, mysql_upgrade processes all tables in
all user schemas as necessary. Table checking might take a long time to complete. Each table is locked
and therefore unavailable to other sessions while it is being processed. Check and repair operations can
be time-consuming, particularly for large tables. Table checking uses mysqlcheck with the --all-
databases and --check-upgrade option. For details about what --check-upgrade entails, see the
description of the FOR UPGRADE option of the CHECK TABLE statement in Section 13.7.2.2, “CHECK
TABLE Statement”.

• fix_priv_tables represents a script generated internally by mysql_upgrade that contains SQL
statements to upgrade the tables in the mysql database.

mysql_upgrade marks all checked and repaired tables with the current MySQL version number. This
ensures that the next time you run mysql_upgrade with the same version of the server, it can be
determined whether there is any need to check or repair a given table again.

mysql_upgrade saves the MySQL version number in a file named mysql_upgrade_info in the data
directory. This is used to quickly check whether all tables have been checked for this release so that table-
checking can be skipped. To ignore this file and perform the check regardless, use the --force option.

mysql_upgrade does not upgrade the contents of the time zone tables or help tables. For upgrade
instructions, see Section 5.1.13, “MySQL Server Time Zone Support”, and Section 5.1.14, “Server-Side
Help Support”.

mysql_upgrade supports the following options, which can be specified on the command line or in
the [mysql_upgrade] and [client] groups of an option file. Unrecognized options are passed to
mysqlcheck. For information about option files, see Section 4.2.2.2, “Using Option Files”.

Table 4.9 mysql_upgrade Options

Option Name Description Introduced

--basedir Not used

--character-sets-dir Directory where character sets are
installed

--compress Compress all information sent
between client and server

--datadir Not used

--debug Write debugging log

--debug-check Print debugging information when
program exits

--debug-info Print debugging information,
memory, and CPU statistics when
program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition
to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--force Force execution even if
mysql_upgrade has already been

332

mysql_upgrade — Check and Upgrade MySQL Tables

Option Name Description Introduced
executed for current MySQL
version

--help Display help message and exit

--host Host on which MySQL server is
located

--login-path Read login path options
from .mylogin.cnf

--no-defaults Read no option files

--password Password to use when connecting
to server

--pipe Connect to server using named
pipe (Windows only)

--plugin-dir Directory where plugins are
installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

--shared-memory-base-name Shared-memory name for shared-
memory connections (Windows
only)

--socket Unix socket file or Windows
named pipe to use

--ssl Enable connection encryption

--ssl-ca File that contains list of trusted
SSL Certificate Authorities

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher Permissible ciphers for connection
encryption

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation-list files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of
connection to server

5.6.30

--ssl-verify-server-cert Verify host name against server
certificate Common Name identity

--tmpdir Directory for temporary files

333

mysql_upgrade — Check and Upgrade MySQL Tables

Option Name Description Introduced

--upgrade-system-tables Update only system tables, not
user schemas

--user MySQL user name to use when
connecting to server

--verbose Verbose mode

--version-check Check for proper server version 5.6.12

--write-binlog Write all statements to binary log

• --help

Display a short help message and exit.

• --basedir=dir_name

The path to the MySQL installation directory. This option is accepted for backward compatibility but
ignored. It is removed in MySQL 5.7.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --compress

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --datadir=dir_name

The path to the data directory. This option is accepted for backward compatibility but ignored. It is
removed in MySQL 5.7.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:O,/
tmp/mysql_upgrade.trace.

• --debug-check

Print some debugging information when the program exits.

• --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-auth=plugin

A hint about which client-side authentication plugin to use. See Section 6.2.11, “Pluggable
Authentication”.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.15, “Character Set Configuration”.

334

mysql_upgrade — Check and Upgrade MySQL Tables

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysql_upgrade normally reads the [client] and [mysql_upgrade] groups. If
this option is given as --defaults-group-suffix=_other, mysql_upgrade also reads the
[client_other] and [mysql_upgrade_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --force

Ignore the mysql_upgrade_info file and force execution even if mysql_upgrade has already been
executed for the current version of MySQL.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

335

mysql_upgrade — Check and Upgrade MySQL Tables

• --password[=password], -p[password]

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysql_upgrade prompts for one. If given, there must be no space between --password=
or -p and the password following it. If no password option is specified, the default is to send no
password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysql_upgrade should not prompt for one, use
the --skip-password option.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used to
specify an authentication plugin but mysql_upgrade does not find it. See Section 6.2.11, “Pluggable
Authentication”.

• --port=port_num, -P port_num

For TCP/IP connections, the port number to use.

• --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

336

Client Programs

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --tmpdir=dir_name, -t dir_name

The path name of the directory to use for creating temporary files.

• --upgrade-system-tables, -s

Upgrade only the system tables in the mysql schema, do not upgrade user schemas.

• --user=user_name, -u user_name

The user name of the MySQL account to use for connecting to the server. The default user name is
root.

• --verbose

Verbose mode. Print more information about what the program does.

• --version-check, -k

Check the version of the server to which mysql_upgrade is connecting to verify that it is the same as
the version for which mysql_upgrade was built. If not, mysql_upgrade exits. This option is enabled
by default; to disable the check, use --skip-version-check. This option was added in MySQL
5.6.12.

• --write-binlog

Cause binary logging to be enabled while mysql_upgrade runs. In MySQL 5.6.6 and earlier, this
was the default behavior. (To disable binary logging during the upgrade, it was necessary to use the
inverse of this option, by starting the program with --skip-write-binlog.) Beginning with MySQL
5.6.7, binary logging by mysql_upgrade is disabled by default (Bug #14221043). Invoke the program
explicitly with --write-binlog if you want its actions to be written to the binary log. (Also beginning
with MySQL 5.6.7, the --skip-write-binlog option effectively does nothing.)

When the server is running with global transaction identifiers (GTIDs) enabled (gtid_mode=ON), do not
enable binary logging by mysql_upgrade.

4.5 Client Programs
This section describes client programs that connect to the MySQL server.

4.5.1 mysql — The MySQL Command-Line Client

mysql is a simple SQL shell with input line editing capabilities. It supports interactive and noninteractive
use. When used interactively, query results are presented in an ASCII-table format. When used

337

mysql — The MySQL Command-Line Client

noninteractively (for example, as a filter), the result is presented in tab-separated format. The output format
can be changed using command options.

If you have problems due to insufficient memory for large result sets, use the --quick option. This
forces mysql to retrieve results from the server a row at a time rather than retrieving the entire result
set and buffering it in memory before displaying it. This is done by returning the result set using the
mysql_use_result() C API function in the client/server library rather than mysql_store_result().

Using mysql is very easy. Invoke it from the prompt of your command interpreter as follows:

mysql db_name

Or:

mysql --user=user_name --password db_name

In this case, you'll need to enter your password in response to the prompt that mysql displays:

Enter password: your_password

Then type an SQL statement, end it with ;, \g, or \G and press Enter.

Typing Control+C causes mysql to attempt to kill the current statement. If this cannot be done, or Control
+C is typed again before the statement is killed, mysql exits.

You can execute SQL statements in a script file (batch file) like this:

mysql db_name < script.sql > output.tab

On Unix, the mysql client logs statements executed interactively to a history file. See Section 4.5.1.3,
“mysql Client Logging”.

4.5.1.1 mysql Client Options

mysql supports the following options, which can be specified on the command line or in the [mysql]
and [client] groups of an option file. For information about option files used by MySQL programs, see
Section 4.2.2.2, “Using Option Files”.

Table 4.10 mysql Client Options

Option Name Description Introduced

--auto-rehash Enable automatic rehashing

--auto-vertical-output Enable automatic vertical result
set display

--batch Do not use history file

--binary-as-hex Display binary values in
hexadecimal notation

5.6.37

--binary-mode Disable \r\n - to - \n translation and
treatment of \0 as end-of-query

--bind-address Use specified network interface to
connect to MySQL Server

--character-sets-dir Directory where character sets are
installed

--column-names Write column names in results

--column-type-info Display result set metadata

338

https://dev.mysql.com/doc/c-api/5.6/en/mysql-use-result.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-store-result.html

mysql — The MySQL Command-Line Client

Option Name Description Introduced

--comments Whether to retain or strip
comments in statements sent to
the server

--compress Compress all information sent
between client and server

--connect-expired-password Indicate to server that client can
handle expired-password sandbox
mode

5.6.12

--connect-timeout Number of seconds before
connection timeout

--database The database to use

--debug Write debugging log; supported
only if MySQL was built with
debugging support

--debug-check Print debugging information when
program exits

--debug-info Print debugging information,
memory, and CPU statistics when
program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition
to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--delimiter Set the statement delimiter

--enable-cleartext-plugin Enable cleartext authentication
plugin

--execute Execute the statement and quit

--force Continue even if an SQL error
occurs

--help Display help message and exit

--histignore Patterns specifying which
statements to ignore for logging

--host Host on which MySQL server is
located

--html Produce HTML output

--ignore-spaces Ignore spaces after function
names

--init-command SQL statement to execute after
connecting

--line-numbers Write line numbers for errors

339

mysql — The MySQL Command-Line Client

Option Name Description Introduced

--local-infile Enable or disable for LOCAL
capability for LOAD DATA

--login-path Read login path options
from .mylogin.cnf

--max-allowed-packet Maximum packet length to send to
or receive from server

--max-join-size The automatic limit for rows in a
join when using --safe-updates

--named-commands Enable named mysql commands

--net-buffer-length Buffer size for TCP/IP and socket
communication

--no-auto-rehash Disable automatic rehashing

--no-beep Do not beep when errors occur

--no-defaults Read no option files

--one-database Ignore statements except those
for the default database named on
the command line

--pager Use the given command for
paging query output

--password Password to use when connecting
to server

--pipe Connect to server using named
pipe (Windows only)

--plugin-dir Directory where plugins are
installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--prompt Set the prompt to the specified
format

--protocol Transport protocol to use

--quick Do not cache each query result

--raw Write column values without
escape conversion

--reconnect If the connection to the server is
lost, automatically try to reconnect

--safe-updates, --i-am-a-dummy Allow only UPDATE and DELETE
statements that specify key values

--secure-auth Do not send passwords to server
in old (pre-4.1) format

--select-limit The automatic limit for SELECT
statements when using --safe-
updates

340

mysql — The MySQL Command-Line Client

Option Name Description Introduced

--server-public-key-path Path name to file containing RSA
public key

--shared-memory-base-name Shared-memory name for shared-
memory connections (Windows
only)

--show-warnings Show warnings after each
statement if there are any

--sigint-ignore Ignore SIGINT signals (typically
the result of typing Control+C)

--silent Silent mode

--skip-auto-rehash Disable automatic rehashing

--skip-column-names Do not write column names in
results

--skip-line-numbers Skip line numbers for errors

--skip-named-commands Disable named mysql commands

--skip-pager Disable paging

--skip-reconnect Disable reconnecting

--socket Unix socket file or Windows
named pipe to use

--ssl Enable connection encryption

--ssl-ca File that contains list of trusted
SSL Certificate Authorities

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher Permissible ciphers for connection
encryption

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation-list files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of
connection to server

5.6.30

--ssl-verify-server-cert Verify host name against server
certificate Common Name identity

--table Display output in tabular format

--tee Append a copy of output to named
file

--unbuffered Flush the buffer after each query

341

mysql — The MySQL Command-Line Client

Option Name Description Introduced

--user MySQL user name to use when
connecting to server

--verbose Verbose mode

--version Display version information and
exit

--vertical Print query output rows vertically
(one line per column value)

--wait If the connection cannot be
established, wait and retry instead
of aborting

--xml Produce XML output

• --help, -?

Display a help message and exit.

• --auto-rehash

Enable automatic rehashing. This option is on by default, which enables database, table, and column
name completion. Use --disable-auto-rehash to disable rehashing. That causes mysql to start
faster, but you must issue the rehash command or its \# shortcut if you want to use name completion.

To complete a name, enter the first part and press Tab. If the name is unambiguous, mysql completes
it. Otherwise, you can press Tab again to see the possible names that begin with what you have typed
so far. Completion does not occur if there is no default database.

Note

This feature requires a MySQL client that is compiled with the readline library.
Typically, the readline library is not available on Windows.

• --auto-vertical-output

Cause result sets to be displayed vertically if they are too wide for the current window, and using normal
tabular format otherwise. (This applies to statements terminated by ; or \G.)

• --batch, -B

Print results using tab as the column separator, with each row on a new line. With this option, mysql
does not use the history file.

Batch mode results in nontabular output format and escaping of special characters. Escaping may be
disabled by using raw mode; see the description for the --raw option.

342

mysql — The MySQL Command-Line Client

• --binary-as-hex

When this option is given, mysql displays binary data using hexadecimal notation (0xvalue). This
occurs whether the overall output display format is tabular, vertical, HTML, or XML.

--binary-as-hex when enabled affects display of all binary strings, including those returned by
functions such as CHAR() and UNHEX(). The following example demonistrates this using the ASCII
code for A (65 decimal, 41 hexadecimal):

• --binary-as-hex disabled:

mysql> SELECT CHAR(0x41), UNHEX('41');
+------------+-------------+
| CHAR(0x41) | UNHEX('41') |
+------------+-------------+
| A | A |
+------------+-------------+

• --binary-as-hex enabled:

mysql> SELECT CHAR(0x41), UNHEX('41');
+------------------------+--------------------------+
| CHAR(0x41) | UNHEX('41') |
+------------------------+--------------------------+
| 0x41 | 0x41 |
+------------------------+--------------------------+

To write a binary string expression so that it displays as a character string regardless of whether --
binary-as-hex is enabled, use these techniques:

• The CHAR() function has a USING charset clause:

mysql> SELECT CHAR(0x41 USING utf8mb4);
+--------------------------+
| CHAR(0x41 USING utf8mb4) |
+--------------------------+
| A |
+--------------------------+

• More generally, use CONVERT() to convert an expression to a given character set:

mysql> SELECT CONVERT(UNHEX('41') USING utf8mb4);
+------------------------------------+
| CONVERT(UNHEX('41') USING utf8mb4) |
+------------------------------------+
| A |
+------------------------------------+

This option was added in MySQL 5.6.37.

• --binary-mode

This option helps when processing mysqlbinlog output that may contain BLOB values. By default,
mysql translates \r\n in statement strings to \n and interprets \0 as the statement terminator. --
binary-mode disables both features. It also disables all mysql commands except charset and
delimiter in noninteractive mode (for input piped to mysql or loaded using the source command).

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

343

mysql — The MySQL Command-Line Client

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --column-names

Write column names in results.

• --column-type-info

Display result set metadata. This information corresponds to the contents of C API MYSQL_FIELD data
structures. See C API Basic Data Structures.

• --comments, -c

Whether to strip or preserve comments in statements sent to the server. The default is --skip-
comments (strip comments), enable with --comments (preserve comments).

• --compress, -C

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --connect-expired-password

Indicate to the server that the client can handle sandbox mode if the account used to connect has an
expired password. This can be useful for noninteractive invocations of mysql because normally the
server disconnects noninteractive clients that attempt to connect using an account with an expired
password. (See Section 6.2.10, “Server Handling of Expired Passwords”.) This option was added in
MySQL 5.6.12.

• --connect-timeout=value

The number of seconds before connection timeout. (Default value is 0.)

• --database=db_name, -D db_name

The database to use. This is useful primarily in an option file.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/mysql.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

344

https://dev.mysql.com/doc/c-api/5.6/en/c-api-data-structures.html

mysql — The MySQL Command-Line Client

• --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --default-auth=plugin

A hint about which client-side authentication plugin to use. See Section 6.2.11, “Pluggable
Authentication”.

• --default-character-set=charset_name

Use charset_name as the default character set for the client and connection.

This option can be useful if the operating system uses one character set and the mysql client by default
uses another. In this case, output may be formatted incorrectly. You can usually fix such issues by using
this option to force the client to use the system character set instead.

For more information, see Section 10.4, “Connection Character Sets and Collations”, and Section 10.15,
“Character Set Configuration”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysql normally reads the [client] and [mysql] groups. If this option is given as --
defaults-group-suffix=_other, mysql also reads the [client_other] and [mysql_other]
groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --delimiter=str

Set the statement delimiter. The default is the semicolon character (;).

345

mysql — The MySQL Command-Line Client

• --disable-named-commands

Disable named commands. Use the * form only, or use named commands only at the beginning of
a line ending with a semicolon (;). mysql starts with this option enabled by default. However, even
with this option, long-format commands still work from the first line. See Section 4.5.1.2, “mysql Client
Commands”.

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.5, “Client-Side
Cleartext Pluggable Authentication”.)

• --execute=statement, -e statement

Execute the statement and quit. The default output format is like that produced with --batch. See
Section 4.2.2.1, “Using Options on the Command Line”, for some examples. With this option, mysql
does not use the history file.

• --force, -f

Continue even if an SQL error occurs.

• --histignore

A list of one or more colon-separated patterns specifying statements to ignore for logging purposes.
These patterns are added to the default pattern list ("*IDENTIFIED*:*PASSWORD*"). The value
specified for this option affects logging of statements written to the history file. For more information, see
Section 4.5.1.3, “mysql Client Logging”.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --html, -H

Produce HTML output.

• --ignore-spaces, -i

Ignore spaces after function names. The effect of this is described in the discussion for the
IGNORE_SPACE SQL mode (see Section 5.1.10, “Server SQL Modes”).

• --init-command=str

SQL statement to execute after connecting to the server. If auto-reconnect is enabled, the statement is
executed again after reconnection occurs.

• --line-numbers

Write line numbers for errors. Disable this with --skip-line-numbers.

• --local-infile[={0|1}]

By default, LOCAL capability for LOAD DATA is determined by the default compiled into the MySQL client
library. To enable or disable LOCAL data loading explicitly, use the --local-infile option. When

346

mysql — The MySQL Command-Line Client

given with no value, the option enables LOCAL data loading. When given as --local-infile=0 or --
local-infile=1, the option disables or enables LOCAL data loading.

Successful use of LOCAL load operations within mysql also requires that the server permits local
loading; see Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --max-allowed-packet=value

The maximum size of the buffer for client/server communication. The default is 16MB, the maximum is
1GB.

• --max-join-size=value

The automatic limit for rows in a join when using --safe-updates. (Default value is 1,000,000.)

• --named-commands, -G

Enable named mysql commands. Long-format commands are permitted, not just short-format
commands. For example, quit and \q both are recognized. Use --skip-named-commands to disable
named commands. See Section 4.5.1.2, “mysql Client Commands”.

• --net-buffer-length=value

The buffer size for TCP/IP and socket communication. (Default value is 16KB.)

• --no-auto-rehash, -A

This has the same effect as --skip-auto-rehash. See the description for --auto-rehash.

• --no-beep, -b

Do not beep when errors occur.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

347

mysql — The MySQL Command-Line Client

• --one-database, -o

Ignore statements except those that occur while the default database is the one named on the command
line. This option is rudimentary and should be used with care. Statement filtering is based only on USE
statements.

Initially, mysql executes statements in the input because specifying a database db_name on the
command line is equivalent to inserting USE db_name at the beginning of the input. Then, for each
USE statement encountered, mysql accepts or rejects following statements depending on whether the
database named is the one on the command line. The content of the statements is immaterial.

Suppose that mysql is invoked to process this set of statements:

DELETE FROM db2.t2;
USE db2;
DROP TABLE db1.t1;
CREATE TABLE db1.t1 (i INT);
USE db1;
INSERT INTO t1 (i) VALUES(1);
CREATE TABLE db2.t1 (j INT);

If the command line is mysql --force --one-database db1, mysql handles the input as follows:

• The DELETE statement is executed because the default database is db1, even though the statement
names a table in a different database.

• The DROP TABLE and CREATE TABLE statements are not executed because the default database is
not db1, even though the statements name a table in db1.

• The INSERT and CREATE TABLE statements are executed because the default database is db1,
even though the CREATE TABLE statement names a table in a different database.

• --pager[=command]

Use the given command for paging query output. If the command is omitted, the default pager is the
value of your PAGER environment variable. Valid pagers are less, more, cat [> filename], and
so forth. This option works only on Unix and only in interactive mode. To disable paging, use --skip-
pager. Section 4.5.1.2, “mysql Client Commands”, discusses output paging further.

• --password[=password], -p[password]

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysql prompts for one. If given, there must be no space between --password= or -p and
the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysql should not prompt for one, use the --
skip-password option.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

348

mysql — The MySQL Command-Line Client

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is
used to specify an authentication plugin but mysql does not find it. See Section 6.2.11, “Pluggable
Authentication”.

• --port=port_num, -P port_num

For TCP/IP connections, the port number to use.

• --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --prompt=format_str

Set the prompt to the specified format. The default is mysql>. The special sequences that the prompt
can contain are described in Section 4.5.1.2, “mysql Client Commands”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --quick, -q

Do not cache each query result, print each row as it is received. This may slow down the server if the
output is suspended. With this option, mysql does not use the history file.

• --raw, -r

For tabular output, the “boxing” around columns enables one column value to be distinguished from
another. For nontabular output (such as is produced in batch mode or when the --batch or --silent
option is given), special characters are escaped in the output so they can be identified easily. Newline,
tab, NUL, and backslash are written as \n, \t, \0, and \\. The --raw option disables this character
escaping.

The following example demonstrates tabular versus nontabular output and the use of raw mode to
disable escaping:

% mysql
mysql> SELECT CHAR(92);
+----------+
| CHAR(92) |
+----------+
| \ |
+----------+

% mysql -s
mysql> SELECT CHAR(92);
CHAR(92)
\\

% mysql -s -r
mysql> SELECT CHAR(92);
CHAR(92)
\

349

mysql — The MySQL Command-Line Client

• --reconnect

If the connection to the server is lost, automatically try to reconnect. A single reconnect attempt is made
each time the connection is lost. To suppress reconnection behavior, use --skip-reconnect.

• --safe-updates, --i-am-a-dummy, -U

If this option is enabled, UPDATE and DELETE statements that do not use a key in the WHERE clause or a
LIMIT clause produce an error. In addition, restrictions are placed on SELECT statements that produce
(or are estimated to produce) very large result sets. If you have set this option in an option file, you can
use --skip-safe-updates on the command line to override it. For more information about this option,
see Using Safe-Updates Mode (--safe-updates).

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option is enabled by default; use --skip-secure-
auth to disable it.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated; expect support for them to be removed in a future
MySQL release. For account upgrade instructions, see Section 6.4.1.3, “Migrating
Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

Note

This option is deprecated; expect it to be removed in a future release. As of
MySQL 5.7.5, it is always enabled and attempting to disable it produces an error.

• --select-limit=value

The automatic limit for SELECT statements when using --safe-updates. (Default value is 1,000.)

• --server-public-key-path=file_name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate
with the sha256_password authentication plugin. This option is ignored for accounts that do not
authenticate with that plugin. It is also ignored if RSA-based password exchange is not used, as is the
case when the client connects to the server using a secure connection.

This option is available only if MySQL was built using OpenSSL.

For information about the sha256_password plugin, see Section 6.4.1.4, “SHA-256 Pluggable
Authentication”.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --show-warnings

350

mysql — The MySQL Command-Line Client

Cause warnings to be shown after each statement if there are any. This option applies to interactive and
batch mode.

• --sigint-ignore

Ignore SIGINT signals (typically the result of typing Control+C).

Without this option, typing Control+C interrupts the current statement if there is one, or cancels any
partial input line otherwise.

• --silent, -s

Silent mode. Produce less output. This option can be given multiple times to produce less and less
output.

This option results in nontabular output format and escaping of special characters. Escaping may be
disabled by using raw mode; see the description for the --raw option.

• --skip-column-names, -N

Do not write column names in results.

• --skip-line-numbers, -L

Do not write line numbers for errors. Useful when you want to compare result files that include error
messages.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --table, -t

Display output in table format. This is the default for interactive use, but can be used to produce table
output in batch mode.

• --tee=file_name

Append a copy of output to the given file. This option works only in interactive mode. Section 4.5.1.2,
“mysql Client Commands”, discusses tee files further.

• --unbuffered, -n

Flush the buffer after each query.

• --user=user_name, -u user_name

The user name of the MySQL account to use for connecting to the server.

351

mysql — The MySQL Command-Line Client

• --verbose, -v

Verbose mode. Produce more output about what the program does. This option can be given multiple
times to produce more and more output. (For example, -v -v -v produces table output format even in
batch mode.)

• --version, -V

Display version information and exit.

• --vertical, -E

Print query output rows vertically (one line per column value). Without this option, you can specify
vertical output for individual statements by terminating them with \G.

• --wait, -w

If the connection cannot be established, wait and retry instead of aborting.

• --xml, -X

Produce XML output.

<field name="column_name">NULL</field>

The output when --xml is used with mysql matches that of mysqldump --xml. See Section 4.5.4,
“mysqldump — A Database Backup Program”, for details.

The XML output also uses an XML namespace, as shown here:

$> mysql --xml -uroot -e "SHOW VARIABLES LIKE 'version%'"
<?xml version="1.0"?>

<resultset statement="SHOW VARIABLES LIKE 'version%'" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<row>
<field name="Variable_name">version</field>
<field name="Value">5.0.40-debug</field>
</row>

<row>
<field name="Variable_name">version_comment</field>
<field name="Value">Source distribution</field>
</row>

<row>
<field name="Variable_name">version_compile_machine</field>
<field name="Value">i686</field>
</row>

<row>
<field name="Variable_name">version_compile_os</field>
<field name="Value">suse-linux-gnu</field>
</row>
</resultset>

4.5.1.2 mysql Client Commands

mysql sends each SQL statement that you issue to the server to be executed. There is also a set of
commands that mysql itself interprets. For a list of these commands, type help or \h at the mysql>
prompt:

mysql> help

352

mysql — The MySQL Command-Line Client

List of all MySQL commands:
Note that all text commands must be first on line and end with ';'
? (\?) Synonym for `help'.
clear (\c) Clear the current input statement.
connect (\r) Reconnect to the server. Optional arguments are db and host.
delimiter (\d) Set statement delimiter.
edit (\e) Edit command with $EDITOR.
ego (\G) Send command to mysql server, display result vertically.
exit (\q) Exit mysql. Same as quit.
go (\g) Send command to mysql server.
help (\h) Display this help.
nopager (\n) Disable pager, print to stdout.
notee (\t) Don't write into outfile.
pager (\P) Set PAGER [to_pager]. Print the query results via PAGER.
print (\p) Print current command.
prompt (\R) Change your mysql prompt.
quit (\q) Quit mysql.
rehash (\#) Rebuild completion hash.
source (\.) Execute an SQL script file. Takes a file name as an argument.
status (\s) Get status information from the server.
system (\!) Execute a system shell command.
tee (\T) Set outfile [to_outfile]. Append everything into given
 outfile.
use (\u) Use another database. Takes database name as argument.
charset (\C) Switch to another charset. Might be needed for processing
 binlog with multi-byte charsets.
warnings (\W) Show warnings after every statement.
nowarning (\w) Don't show warnings after every statement.

For server side help, type 'help contents'

If mysql is invoked with the --binary-mode option, all mysql commands are disabled except charset
and delimiter in noninteractive mode (for input piped to mysql or loaded using the source command).

Each command has both a long and short form. The long form is not case-sensitive; the short form is. The
long form can be followed by an optional semicolon terminator, but the short form should not.

The use of short-form commands within multiple-line /* ... */ comments is not supported.

• help [arg], \h [arg], \? [arg], ? [arg]

Display a help message listing the available mysql commands.

If you provide an argument to the help command, mysql uses it as a search string to access server-
side help from the contents of the MySQL Reference Manual. For more information, see Section 4.5.1.4,
“mysql Client Server-Side Help”.

• charset charset_name, \C charset_name

Change the default character set and issue a SET NAMES statement. This enables the character set to
remain synchronized on the client and server if mysql is run with auto-reconnect enabled (which is not
recommended), because the specified character set is used for reconnects.

• clear, \c

Clear the current input. Use this if you change your mind about executing the statement that you are
entering.

• connect [db_name [host_name]], \r [db_name [host_name]]

Reconnect to the server. The optional database name and host name arguments may be given to
specify the default database or the host where the server is running. If omitted, the current values are
used.

353

mysql — The MySQL Command-Line Client

• delimiter str, \d str

Change the string that mysql interprets as the separator between SQL statements. The default is the
semicolon character (;).

The delimiter string can be specified as an unquoted or quoted argument on the delimiter command
line. Quoting can be done with either single quote ('), double quote ("), or backtick (`) characters.
To include a quote within a quoted string, either quote the string with a different quote character or
escape the quote with a backslash (\) character. Backslash should be avoided outside of quoted strings
because it is the escape character for MySQL. For an unquoted argument, the delimiter is read up to the
first space or end of line. For a quoted argument, the delimiter is read up to the matching quote on the
line.

mysql interprets instances of the delimiter string as a statement delimiter anywhere it occurs, except
within quoted strings. Be careful about defining a delimiter that might occur within other words. For
example, if you define the delimiter as X, you cannot use the word INDEX in statements. mysql
interprets this as INDE followed by the delimiter X.

When the delimiter recognized by mysql is set to something other than the default of ;, instances of
that character are sent to the server without interpretation. However, the server itself still interprets ; as
a statement delimiter and processes statements accordingly. This behavior on the server side comes
into play for multiple-statement execution (see Multiple Statement Execution Support), and for parsing
the body of stored procedures and functions, triggers, and events (see Section 20.1, “Defining Stored
Programs”).

• edit, \e

Edit the current input statement. mysql checks the values of the EDITOR and VISUAL environment
variables to determine which editor to use. The default editor is vi if neither variable is set.

The edit command works only in Unix.

• ego, \G

Send the current statement to the server to be executed and display the result using vertical format.

• exit, \q

Exit mysql.

• go, \g

Send the current statement to the server to be executed.

• nopager, \n

Disable output paging. See the description for pager.

The nopager command works only in Unix.

• notee, \t

Disable output copying to the tee file. See the description for tee.

• nowarning, \w

Disable display of warnings after each statement.
354

https://dev.mysql.com/doc/c-api/5.6/en/c-api-multiple-queries.html

mysql — The MySQL Command-Line Client

• pager [command], \P [command]

Enable output paging. By using the --pager option when you invoke mysql, it is possible to browse or
search query results in interactive mode with Unix programs such as less, more, or any other similar
program. If you specify no value for the option, mysql checks the value of the PAGER environment
variable and sets the pager to that. Pager functionality works only in interactive mode.

Output paging can be enabled interactively with the pager command and disabled with nopager. The
command takes an optional argument; if given, the paging program is set to that. With no argument, the
pager is set to the pager that was set on the command line, or stdout if no pager was specified.

Output paging works only in Unix because it uses the popen() function, which does not exist on
Windows. For Windows, the tee option can be used instead to save query output, although it is not as
convenient as pager for browsing output in some situations.

• print, \p

Print the current input statement without executing it.

• prompt [str], \R [str]

Reconfigure the mysql prompt to the given string. The special character sequences that can be used in
the prompt are described later in this section.

If you specify the prompt command with no argument, mysql resets the prompt to the default of
mysql>.

• quit, \q

Exit mysql.

• rehash, \#

Rebuild the completion hash that enables database, table, and column name completion while you are
entering statements. (See the description for the --auto-rehash option.)

• source file_name, \. file_name

Read the named file and executes the statements contained therein. On Windows, specify path name
separators as / or \\.

Quote characters are taken as part of the file name itself. For best results, the name should not include
space characters.

• status, \s

Provide status information about the connection and the server you are using. If you are running with --
safe-updates enabled, status also prints the values for the mysql variables that affect your queries.

• system command, \! command

Execute the given command using your default command interpreter.

The system command works only in Unix.

• tee [file_name], \T [file_name]

By using the --tee option when you invoke mysql, you can log statements and their output. All the
data displayed on the screen is appended into a given file. This can be very useful for debugging

355

mysql — The MySQL Command-Line Client

purposes also. mysql flushes results to the file after each statement, just before it prints its next prompt.
Tee functionality works only in interactive mode.

You can enable this feature interactively with the tee command. Without a parameter, the previous file is
used. The tee file can be disabled with the notee command. Executing tee again re-enables logging.

• use db_name, \u db_name

Use db_name as the default database.

• warnings, \W

Enable display of warnings after each statement (if there are any).

Here are a few tips about the pager command:

• You can use it to write to a file and the results go only to the file:

mysql> pager cat > /tmp/log.txt

You can also pass any options for the program that you want to use as your pager:

mysql> pager less -n -i -S

• In the preceding example, note the -S option. You may find it very useful for browsing wide query
results. Sometimes a very wide result set is difficult to read on the screen. The -S option to less can
make the result set much more readable because you can scroll it horizontally using the left-arrow and
right-arrow keys. You can also use -S interactively within less to switch the horizontal-browse mode on
and off. For more information, read the less manual page:

man less

• The -F and -X options may be used with less to cause it to exit if output fits on one screen, which is
convenient when no scrolling is necessary:

mysql> pager less -n -i -S -F -X

• You can specify very complex pager commands for handling query output:

mysql> pager cat | tee /dr1/tmp/res.txt \
 | tee /dr2/tmp/res2.txt | less -n -i -S

In this example, the command would send query results to two files in two different directories on two
different file systems mounted on /dr1 and /dr2, yet still display the results onscreen using less.

You can also combine the tee and pager functions. Have a tee file enabled and pager set to less, and
you are able to browse the results using the less program and still have everything appended into a file
the same time. The difference between the Unix tee used with the pager command and the mysql built-
in tee command is that the built-in tee works even if you do not have the Unix tee available. The built-
in tee also logs everything that is printed on the screen, whereas the Unix tee used with pager does not
log quite that much. Additionally, tee file logging can be turned on and off interactively from within mysql.
This is useful when you want to log some queries to a file, but not others.

The prompt command reconfigures the default mysql> prompt. The string for defining the prompt can
contain the following special sequences.

Option Description

\c A counter that increments for each statement you
issue

356

mysql — The MySQL Command-Line Client

Option Description

\D The full current date

\d The default database

\h The server host

\l The current delimiter

\m Minutes of the current time

\n A newline character

\O The current month in three-letter format (Jan, Feb,
…)

\o The current month in numeric format

\P am/pm

\p The current TCP/IP port or socket file

\R The current time, in 24-hour military time (0–23)

\r The current time, standard 12-hour time (1–12)

\S Semicolon

\s Seconds of the current time

\t A tab character

\U Your full user_name@host_name account name

\u Your user name

\v The server version

\w The current day of the week in three-letter format
(Mon, Tue, …)

\Y The current year, four digits

\y The current year, two digits

_ A space

\ A space (a space follows the backslash)

\' Single quote

\" Double quote

\\ A literal \ backslash character

\x x, for any “x” not listed above

You can set the prompt in several ways:

• Use an environment variable. You can set the MYSQL_PS1 environment variable to a prompt string. For
example:

export MYSQL_PS1="(\u@\h) [\d]> "

• Use a command-line option. You can set the --prompt option on the command line to mysql. For
example:

$> mysql --prompt="(\u@\h) [\d]> "
(user@host) [database]>

357

mysql — The MySQL Command-Line Client

• Use an option file. You can set the prompt option in the [mysql] group of any MySQL option file, such
as /etc/my.cnf or the .my.cnf file in your home directory. For example:

[mysql]
prompt=(\\u@\\h) [\\d]>_

In this example, note that the backslashes are doubled. If you set the prompt using the prompt option in
an option file, it is advisable to double the backslashes when using the special prompt options. There is
some overlap in the set of permissible prompt options and the set of special escape sequences that are
recognized in option files. (The rules for escape sequences in option files are listed in Section 4.2.2.2,
“Using Option Files”.) The overlap may cause you problems if you use single backslashes. For example,
\s is interpreted as a space rather than as the current seconds value. The following example shows how
to define a prompt within an option file to include the current time in hh:mm:ss> format:

[mysql]
prompt="\\r:\\m:\\s> "

• Set the prompt interactively. You can change your prompt interactively by using the prompt (or \R)
command. For example:

mysql> prompt (\u@\h) [\d]>_
PROMPT set to '(\u@\h) [\d]>_'
(user@host) [database]>
(user@host) [database]> prompt
Returning to default PROMPT of mysql>
mysql>

4.5.1.3 mysql Client Logging

On Unix, the mysql client logs statements executed interactively to a history file. By default, this file
is named .mysql_history in your home directory. To specify a different file, set the value of the
MYSQL_HISTFILE environment variable.

• How Logging Occurs

• Controlling the History File

How Logging Occurs

Statement logging occurs as follows:

• Statements are logged only when executed interactively. Statements are noninteractive, for example,
when read from a file or a pipe. It is also possible to suppress statement logging by using the --batch
or --execute option.

• Statements are ignored and not logged if they match any pattern in the “ignore” list. This list is described
later.

• mysql logs each nonignored, nonempty statement line individually.

• If a nonignored statement spans multiple lines (not including the terminating delimiter), mysql
concatenates the lines to form the complete statement, maps newlines to spaces, and logs the result,
plus a delimiter.

Consequently, an input statement that spans multiple lines can be logged twice. Consider this input:

mysql> SELECT
 -> 'Today is'
 -> ,
 -> CURDATE()
 -> ;

358

mysql — The MySQL Command-Line Client

In this case, mysql logs the “SELECT”, “'Today is'”, “,”, “CURDATE()”, and “;” lines as it reads them. It
also logs the complete statement, after mapping SELECT\n'Today is'\n,\nCURDATE() to SELECT
'Today is' , CURDATE(), plus a delimiter. Thus, these lines appear in logged output:

SELECT
'Today is'
,
CURDATE()
;
SELECT 'Today is' , CURDATE();

mysql ignores for logging purposes statements that match any pattern in the “ignore” list. By default, the
pattern list is "*IDENTIFIED*:*PASSWORD*", to ignore statements that refer to passwords. Pattern
matching is not case-sensitive. Within patterns, two characters are special:

• ? matches any single character.

• * matches any sequence of zero or more characters.

To specify additional patterns, use the --histignore option or set the MYSQL_HISTIGNORE
environment variable. (If both are specified, the option value takes precedence.) The value should be a list
of one or more colon-separated patterns, which are appended to the default pattern list.

Patterns specified on the command line might need to be quoted or escaped to prevent your command
interpreter from treating them specially. For example, to suppress logging for UPDATE and DELETE
statements in addition to statements that refer to passwords, invoke mysql like this:

mysql --histignore="*UPDATE*:*DELETE*"

Controlling the History File

The .mysql_history file should be protected with a restrictive access mode because sensitive
information might be written to it, such as the text of SQL statements that contain passwords. See
Section 6.1.2.1, “End-User Guidelines for Password Security”.

If you do not want to maintain a history file, first remove .mysql_history if it exists. Then use either of
the following techniques to prevent it from being created again:

• Set the MYSQL_HISTFILE environment variable to /dev/null. To cause this setting to take effect each
time you log in, put it in one of your shell's startup files.

• Create .mysql_history as a symbolic link to /dev/null; this need be done only once:

ln -s /dev/null $HOME/.mysql_history

4.5.1.4 mysql Client Server-Side Help

mysql> help search_string

If you provide an argument to the help command, mysql uses it as a search string to access server-side
help from the contents of the MySQL Reference Manual. The proper operation of this command requires
that the help tables in the mysql database be initialized with help topic information (see Section 5.1.14,
“Server-Side Help Support”).

If there is no match for the search string, the search fails:

mysql> help me

Nothing found
Please try to run 'help contents' for a list of all accessible topics

Use help contents to see a list of the help categories:

359

mysql — The MySQL Command-Line Client

mysql> help contents
You asked for help about help category: "Contents"
For more information, type 'help <item>', where <item> is one of the
following categories:
 Account Management
 Administration
 Data Definition
 Data Manipulation
 Data Types
 Functions
 Functions and Modifiers for Use with GROUP BY
 Geographic Features
 Language Structure
 Plugins
 Storage Engines
 Stored Routines
 Table Maintenance
 Transactions
 Triggers

If the search string matches multiple items, mysql shows a list of matching topics:

mysql> help logs
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following topics:
 SHOW
 SHOW BINARY LOGS
 SHOW ENGINE
 SHOW LOGS

Use a topic as the search string to see the help entry for that topic:

mysql> help show binary logs
Name: 'SHOW BINARY LOGS'
Description:
Syntax:
SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as
part of the procedure described in [purge-binary-logs], that shows how
to determine which logs can be purged.

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+

The search string can contain the wildcard characters % and _. These have the same meaning as for
pattern-matching operations performed with the LIKE operator. For example, HELP rep% returns a list of
topics that begin with rep:

mysql> HELP rep%
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following
topics:
 REPAIR TABLE
 REPEAT FUNCTION
 REPEAT LOOP
 REPLACE
 REPLACE FUNCTION

360

mysql — The MySQL Command-Line Client

4.5.1.5 Executing SQL Statements from a Text File

The mysql client typically is used interactively, like this:

mysql db_name

However, it is also possible to put your SQL statements in a file and then tell mysql to read its input from
that file. To do so, create a text file text_file that contains the statements you wish to execute. Then
invoke mysql as shown here:

mysql db_name < text_file

If you place a USE db_name statement as the first statement in the file, it is unnecessary to specify the
database name on the command line:

mysql < text_file

If you are already running mysql, you can execute an SQL script file using the source command or \.
command:

mysql> source file_name
mysql> \. file_name

Sometimes you may want your script to display progress information to the user. For this you can insert
statements like this:

SELECT '<info_to_display>' AS ' ';

The statement shown outputs <info_to_display>.

You can also invoke mysql with the --verbose option, which causes each statement to be displayed
before the result that it produces.

mysql ignores Unicode byte order mark (BOM) characters at the beginning of input files. Previously, it
read them and sent them to the server, resulting in a syntax error. Presence of a BOM does not cause
mysql to change its default character set. To do that, invoke mysql with an option such as --default-
character-set=utf8.

For more information about batch mode, see Section 3.5, “Using mysql in Batch Mode”.

4.5.1.6 mysql Client Tips

This section provides information about techniques for more effective use of mysql and about mysql
operational behavior.

• Input-Line Editing

• Unicode Support on Windows

• Displaying Query Results Vertically

• Using Safe-Updates Mode (--safe-updates)

• Disabling mysql Auto-Reconnect

• mysql Client Parser Versus Server Parser

Input-Line Editing

mysql supports input-line editing, which enables you to modify the current input line in place or recall
previous input lines. For example, the left-arrow and right-arrow keys move horizontally within the current

361

mysql — The MySQL Command-Line Client

input line, and the up-arrow and down-arrow keys move up and down through the set of previously
entered lines. Backspace deletes the character before the cursor and typing new characters enters them
at the cursor position. To enter the line, press Enter.

On Windows, the editing key sequences are the same as supported for command editing in console
windows. On Unix, the key sequences depend on the input library used to build mysql (for example, the
libedit or readline library).

Documentation for the libedit and readline libraries is available online. To change the set of key
sequences permitted by a given input library, define key bindings in the library startup file. This is a file in
your home directory: .editrc for libedit and .inputrc for readline.

For example, in libedit, Control+W deletes everything before the current cursor position and Control
+U deletes the entire line. In readline, Control+W deletes the word before the cursor and Control
+U deletes everything before the current cursor position. If mysql was built using libedit, a user who
prefers the readline behavior for these two keys can put the following lines in the .editrc file (creating
the file if necessary):

bind "^W" ed-delete-prev-word
bind "^U" vi-kill-line-prev

To see the current set of key bindings, temporarily put a line that says only bind at the end of .editrc.
mysql then shows the bindings when it starts.

Unicode Support on Windows

Windows provides APIs based on UTF-16LE for reading from and writing to the console; the mysql client
for Windows is able to use these APIs. The Windows installer creates an item in the MySQL menu named
MySQL command line client - Unicode. This item invokes the mysql client with properties set to
communicate through the console to the MySQL server using Unicode.

To take advantage of this support manually, run mysql within a console that uses a compatible Unicode
font and set the default character set to a Unicode character set that is supported for communication with
the server:

1. Open a console window.

2. Go to the console window properties, select the font tab, and choose Lucida Console or some other
compatible Unicode font. This is necessary because console windows start by default using a DOS
raster font that is inadequate for Unicode.

3. Execute mysql.exe with the --default-character-set=utf8 (or utf8mb4) option. This option
is necessary because utf16le is one of the character sets that cannot be used as the client character
set. See Impermissible Client Character Sets.

With those changes, mysql uses the Windows APIs to communicate with the console using UTF-16LE,
and communicates with the server using UTF-8. (The menu item mentioned previously sets the font and
character set as just described.)

To avoid those steps each time you run mysql, you can create a shortcut that invokes mysql.exe. The
shortcut should set the console font to Lucida Console or some other compatible Unicode font, and pass
the --default-character-set=utf8 (or utf8mb4) option to mysql.exe.

Alternatively, create a shortcut that only sets the console font, and set the character set in the [mysql]
group of your my.ini file:

[mysql]
default-character-set=utf8

362

mysql — The MySQL Command-Line Client

Displaying Query Results Vertically

Some query results are much more readable when displayed vertically, instead of in the usual horizontal
table format. Queries can be displayed vertically by terminating the query with \G instead of a semicolon.
For example, longer text values that include newlines often are much easier to read with vertical output:

mysql> SELECT * FROM mails WHERE LENGTH(txt) < 300 LIMIT 300,1\G
*************************** 1. row ***************************
 msg_nro: 3068
 date: 2000-03-01 23:29:50
time_zone: +0200
mail_from: Jones
 reply: jones@example.com
 mail_to: "John Smith" <smith@example.com>
 sbj: UTF-8
 txt: >>>>> "John" == John Smith writes:

John> Hi. I think this is a good idea. Is anyone familiar
John> with UTF-8 or Unicode? Otherwise, I'll put this on my
John> TODO list and see what happens.

Yes, please do that.

Regards,
Jones
 file: inbox-jani-1
 hash: 190402944
1 row in set (0.09 sec)

Using Safe-Updates Mode (--safe-updates)

For beginners, a useful startup option is --safe-updates (or --i-am-a-dummy, which has the same
effect). Safe-updates mode is helpful for cases when you might have issued an UPDATE or DELETE
statement but forgotten the WHERE clause indicating which rows to modify. Normally, such statements
update or delete all rows in the table. With --safe-updates, you can modify rows only by specifying
the key values that identify them, or a LIMIT clause, or both. This helps prevent accidents. Safe-updates
mode also restricts SELECT statements that produce (or are estimated to produce) very large result sets.

The --safe-updates option causes mysql to execute the following statement when it connects to
the MySQL server, to set the session values of the sql_safe_updates, sql_select_limit, and
max_join_size system variables:

SET sql_safe_updates=1, sql_select_limit=1000, max_join_size=1000000;

The SET statement affects statement processing as follows:

• Enabling sql_safe_updates causes UPDATE and DELETE statements to produce an error if they do
not specify a key constraint in the WHERE clause, or provide a LIMIT clause, or both. For example:

UPDATE tbl_name SET not_key_column=val WHERE key_column=val;

UPDATE tbl_name SET not_key_column=val LIMIT 1;

• Setting sql_select_limit to 1,000 causes the server to limit all SELECT result sets to 1,000 rows
unless the statement includes a LIMIT clause.

• Setting max_join_size to 1,000,000 causes multiple-table SELECT statements to produce an error if
the server estimates it must examine more than 1,000,000 row combinations.

To specify result set limits different from 1,000 and 1,000,000, you can override the defaults by using the
--select-limit and --max-join-size options when you invoke mysql:

363

mysql — The MySQL Command-Line Client

mysql --safe-updates --select-limit=500 --max-join-size=10000

It is possible for UPDATE and DELETE statements to produce an error in safe-updates mode even with a
key specified in the WHERE clause, if the optimizer decides not to use the index on the key column. For
example, if key comparisons require type conversion, the index may not be used (see Section 8.3.1, “How
MySQL Uses Indexes”). Suppose that an indexed string column c1 is compared to a numeric value using
WHERE c1 = 2222. For such comparisons, the string value is converted to a number and the operands
are compared numerically (see Section 12.3, “Type Conversion in Expression Evaluation”), preventing use
of the index. If safe-updates mode is enabled, an error occurs.

Disabling mysql Auto-Reconnect

If the mysql client loses its connection to the server while sending a statement, it immediately and
automatically tries to reconnect once to the server and send the statement again. However, even if mysql
succeeds in reconnecting, your first connection has ended and all your previous session objects and
settings are lost: temporary tables, the autocommit mode, and user-defined and session variables. Also,
any current transaction rolls back. This behavior may be dangerous for you, as in the following example
where the server was shut down and restarted between the first and second statements without you
knowing it:

mysql> SET @a=1;
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t VALUES(@a);
ERROR 2006: MySQL server has gone away
No connection. Trying to reconnect...
Connection id: 1
Current database: test

Query OK, 1 row affected (1.30 sec)

mysql> SELECT * FROM t;
+------+
| a |
+------+
| NULL |
+------+
1 row in set (0.05 sec)

The @a user variable has been lost with the connection, and after the reconnection it is undefined. If it is
important to have mysql terminate with an error if the connection has been lost, you can start the mysql
client with the --skip-reconnect option.

For more information about auto-reconnect and its effect on state information when a reconnection occurs,
see Automatic Reconnection Control.

mysql Client Parser Versus Server Parser

The mysql client uses a parser on the client side that is not a duplicate of the complete parser used by
the mysqld server on the server side. This can lead to differences in treatment of certain constructs.
Examples:

• The server parser treats strings delimited by " characters as identifiers rather than as plain strings if the
ANSI_QUOTES SQL mode is enabled.

The mysql client parser does not take the ANSI_QUOTES SQL mode into account. It treats strings
delimited by ", ', and ` characters the same, regardless of whether ANSI_QUOTES is enabled.

• Within /*! ... */ comments, the mysql client parser interprets short-form mysql commands. The
server parser does not interpret them because these commands have no meaning on the server side.

364

https://dev.mysql.com/doc/c-api/5.6/en/c-api-auto-reconnect.html

mysqladmin — A MySQL Server Administration Program

If it is desirable for mysql not to interpret short-form commands within comments, a partial workaround
is to use the --binary-mode option, which causes all mysql commands to be disabled except \C and
\d in noninteractive mode (for input piped to mysql or loaded using the source command).

4.5.2 mysqladmin — A MySQL Server Administration Program

mysqladmin is a client for performing administrative operations. You can use it to check the server's
configuration and current status, to create and drop databases, and more.

Invoke mysqladmin like this:

mysqladmin [options] command [command-arg] [command [command-arg]] ...

mysqladmin supports the following commands. Some of the commands take an argument following the
command name.

• create db_name

Create a new database named db_name.

• debug

Tell the server to write debug information to the error log. The connected user must have the SUPER
privilege. Format and content of this information is subject to change.

This includes information about the Event Scheduler. See Section 20.4.5, “Event Scheduler Status”.

• drop db_name

Delete the database named db_name and all its tables.

• extended-status

Display the server status variables and their values.

• flush-hosts

Flush all information in the host cache. See Section 5.1.11.2, “DNS Lookups and the Host Cache”.

• flush-logs

Flush all logs.

• flush-privileges

Reload the grant tables (same as reload).

• flush-status

Clear status variables.

• flush-tables

Flush all tables.

• flush-threads

Flush the thread cache.

365

mysqladmin — A MySQL Server Administration Program

• kill id,id,...

Kill server threads. If multiple thread ID values are given, there must be no spaces in the list.

To kill threads belonging to other users, the connected user must have the SUPER privilege.

• old-password new_password

This is like the password command but stores the password using the old (pre-4.1) password-hashing
format. (See Section 6.1.2.4, “Password Hashing in MySQL”.)

• password new_password

Set a new password. This changes the password to new_password for the account that you use with
mysqladmin for connecting to the server. Thus, the next time you invoke mysqladmin (or any other
client program) using the same account, you must specify the new password.

Warning

Setting a password using mysqladmin should be considered insecure. On some
systems, your password becomes visible to system status programs such as ps
that may be invoked by other users to display command lines. MySQL clients
typically overwrite the command-line password argument with zeros during their
initialization sequence. However, there is still a brief interval during which the
value is visible. Also, on some systems this overwriting strategy is ineffective and
the password remains visible to ps. (SystemV Unix systems and perhaps others
are subject to this problem.)

If the new_password value contains spaces or other characters that are special to your command
interpreter, you need to enclose it within quotation marks. On Windows, be sure to use double quotation
marks rather than single quotation marks; single quotation marks are not stripped from the password, but
rather are interpreted as part of the password. For example:

mysqladmin password "my new password"

The new password can be omitted following the password command. In this case, mysqladmin
prompts for the password value, which enables you to avoid specifying the password on the command
line. Omitting the password value should be done only if password is the final command on the
mysqladmin command line. Otherwise, the next argument is taken as the password.

Caution

Do not use this command used if the server was started with the --skip-
grant-tables option. No password change is applied. This is true even if
you precede the password command with flush-privileges on the same
command line to re-enable the grant tables because the flush operation occurs
after you connect. However, you can use mysqladmin flush-privileges
to re-enable the grant table and then use a separate mysqladmin password
command to change the password.

• ping

Check whether the server is available. The return status from mysqladmin is 0 if the server is running,
1 if it is not. This is 0 even in case of an error such as Access denied, because this means that the
server is running but refused the connection, which is different from the server not running.

• processlist

366

mysqladmin — A MySQL Server Administration Program

Show a list of active server threads. This is like the output of the SHOW PROCESSLIST statement.
If the --verbose option is given, the output is like that of SHOW FULL PROCESSLIST. (See
Section 13.7.5.30, “SHOW PROCESSLIST Statement”.)

• reload

Reload the grant tables.

• refresh

Flush all tables and close and open log files.

• shutdown

Stop the server.

• start-slave

Start replication on a replica server.

• status

Display a short server status message.

• stop-slave

Stop replication on a replica server.

• variables

Display the server system variables and their values.

• version

Display version information from the server.

All commands can be shortened to any unique prefix. For example:

$> mysqladmin proc stat
+----+-------+-----------+----+---------+------+-------+------------------+
| Id | User | Host | db | Command | Time | State | Info |
+----+-------+-----------+----+---------+------+-------+------------------+
| 51 | jones | localhost | | Query | 0 | | show processlist |
+----+-------+-----------+----+---------+------+-------+------------------+
Uptime: 1473624 Threads: 1 Questions: 39487
Slow queries: 0 Opens: 541 Flush tables: 1
Open tables: 19 Queries per second avg: 0.0268

The mysqladmin status command result displays the following values:

• Uptime

The number of seconds the MySQL server has been running.

• Threads

The number of active threads (clients).

• Questions

367

mysqladmin — A MySQL Server Administration Program

The number of questions (queries) from clients since the server was started.

• Slow queries

The number of queries that have taken more than long_query_time seconds. See Section 5.4.5, “The
Slow Query Log”.

• Opens

The number of tables the server has opened.

• Flush tables

The number of flush-*, refresh, and reload commands the server has executed.

• Open tables

The number of tables that currently are open.

If you execute mysqladmin shutdown when connecting to a local server using a Unix socket file,
mysqladmin waits until the server's process ID file has been removed, to ensure that the server has
stopped properly.

mysqladmin supports the following options, which can be specified on the command line or in the
[mysqladmin] and [client] groups of an option file. For information about option files used by MySQL
programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.11 mysqladmin Options

Option Name Description Introduced

--bind-address Use specified network interface to
connect to MySQL Server

--compress Compress all information sent
between client and server

--connect-timeout Number of seconds before
connection timeout

--count Number of iterations to make for
repeated command execution

--debug Write debugging log

--debug-check Print debugging information when
program exits

--debug-info Print debugging information,
memory, and CPU statistics when
program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition
to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

368

mysqladmin — A MySQL Server Administration Program

Option Name Description Introduced

--enable-cleartext-plugin Enable cleartext authentication
plugin

--force Continue even if an SQL error
occurs

--help Display help message and exit

--host Host on which MySQL server is
located

--login-path Read login path options
from .mylogin.cnf

--no-beep Do not beep when errors occur

--no-defaults Read no option files

--password Password to use when connecting
to server

--pipe Connect to server using named
pipe (Windows only)

--plugin-dir Directory where plugins are
installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

--relative Show the difference between the
current and previous values when
used with the --sleep option

--secure-auth Do not send passwords to server
in old (pre-4.1) format

5.6.17

--shared-memory-base-name Shared-memory name for shared-
memory connections (Windows
only)

--shutdown-timeout The maximum number of seconds
to wait for server shutdown

--silent Silent mode

--sleep Execute commands repeatedly,
sleeping for delay seconds in
between

--socket Unix socket file or Windows
named pipe to use

--ssl Enable connection encryption

--ssl-ca File that contains list of trusted
SSL Certificate Authorities

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

369

mysqladmin — A MySQL Server Administration Program

Option Name Description Introduced

--ssl-cert File that contains X.509 certificate

--ssl-cipher Permissible ciphers for connection
encryption

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation-list files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of
connection to server

5.6.30

--ssl-verify-server-cert Verify host name against server
certificate Common Name identity

--user MySQL user name to use when
connecting to server

--verbose Verbose mode

--version Display version information and
exit

--vertical Print query output rows vertically
(one line per column value)

--wait If the connection cannot be
established, wait and retry instead
of aborting

• --help, -?

Display a help message and exit.

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --compress, -C

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --connect-timeout=value

The maximum number of seconds before connection timeout. The default value is 43200 (12 hours).

• --count=N, -c N

The number of iterations to make for repeated command execution if the --sleep option is given.

370

mysqladmin — A MySQL Server Administration Program

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/mysqladmin.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --default-auth=plugin

A hint about which client-side authentication plugin to use. See Section 6.2.11, “Pluggable
Authentication”.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.15, “Character Set Configuration”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysqladmin normally reads the [client] and [mysqladmin] groups. If this option is

371

mysqladmin — A MySQL Server Administration Program

given as --defaults-group-suffix=_other, mysqladmin also reads the [client_other] and
[mysqladmin_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.5, “Client-Side
Cleartext Pluggable Authentication”.)

• --force, -f

Do not ask for confirmation for the drop db_name command. With multiple commands, continue even if
an error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-beep, -b

Suppress the warning beep that is emitted by default for errors such as a failure to connect to the server.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

372

mysqladmin — A MySQL Server Administration Program

• --password[=password], -p[password]

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqladmin prompts for one. If given, there must be no space between --password= or
-p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqladmin should not prompt for one, use the
--skip-password option.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqladmin does not find it. See Section 6.2.11, “Pluggable
Authentication”.

• --port=port_num, -P port_num

For TCP/IP connections, the port number to use.

• --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --relative, -r

Show the difference between the current and previous values when used with the --sleep option. This
option works only with the extended-status command.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option is enabled by default; use --skip-secure-
auth to disable it. This option was added in MySQL 5.6.17.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1

373

mysqladmin — A MySQL Server Administration Program

passwords are deprecated; expect support for them to be removed in a future
MySQL release. For account upgrade instructions, see Section 6.4.1.3, “Migrating
Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

Note

This option is deprecated; expect it to be removed in a future release. As of
MySQL 5.7.5, it is always enabled and attempting to disable it produces an error.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --shutdown-timeout=value

The maximum number of seconds to wait for server shutdown. The default value is 3600 (1 hour).

• --silent, -s

Exit silently if a connection to the server cannot be established.

• --sleep=delay, -i delay

Execute commands repeatedly, sleeping for delay seconds in between. The --count option
determines the number of iterations. If --count is not given, mysqladmin executes commands
indefinitely until interrupted.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --user=user_name, -u user_name

The user name of the MySQL account to use for connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

• --vertical, -E

374

mysqlcheck — A Table Maintenance Program

Print output vertically. This is similar to --relative, but prints output vertically.

• --wait[=count], -w[count]

If the connection cannot be established, wait and retry instead of aborting. If a count value is given, it
indicates the number of times to retry. The default is one time.

4.5.3 mysqlcheck — A Table Maintenance Program

The mysqlcheck client performs table maintenance: It checks, repairs, optimizes, or analyzes tables.

Each table is locked and therefore unavailable to other sessions while it is being processed, although
for check operations, the table is locked with a READ lock only (see Section 13.3.5, “LOCK TABLES and
UNLOCK TABLES Statements”, for more information about READ and WRITE locks). Table maintenance
operations can be time-consuming, particularly for large tables. If you use the --databases or --all-
databases option to process all tables in one or more databases, an invocation of mysqlcheck might
take a long time. (This is also true for the MySQL upgrade procedure if it determines that table checking is
needed because it processes tables the same way.)

mysqlcheck is similar in function to myisamchk, but works differently. The main operational difference is
that mysqlcheck must be used when the mysqld server is running, whereas myisamchk should be used
when it is not. The benefit of using mysqlcheck is that you do not have to stop the server to perform table
maintenance.

mysqlcheck uses the SQL statements CHECK TABLE, REPAIR TABLE, ANALYZE TABLE, and
OPTIMIZE TABLE in a convenient way for the user. It determines which statements to use for the
operation you want to perform, and then sends the statements to the server to be executed. For details
about which storage engines each statement works with, see the descriptions for those statements in
Section 13.7.2, “Table Maintenance Statements”.

The MyISAM storage engine supports all four maintenance operations, so mysqlcheck can be used to
perform any of them on MyISAM tables. Other storage engines do not necessarily support all operations. In
such cases, an error message is displayed. For example, if test.t is a MEMORY table, an attempt to check
it produces this result:

$> mysqlcheck test t
test.t
note : The storage engine for the table doesn't support check

If mysqlcheck is unable to repair a table, see Section 2.11.10, “Rebuilding or Repairing Tables or
Indexes” for manual table repair strategies. This is the case, for example, for InnoDB tables, which can be
checked with CHECK TABLE, but not repaired with REPAIR TABLE.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible causes
include but are not limited to file system errors.

There are three general ways to invoke mysqlcheck:

mysqlcheck [options] db_name [tbl_name ...]
mysqlcheck [options] --databases db_name ...
mysqlcheck [options] --all-databases

If you do not name any tables following db_name or if you use the --databases or --all-databases
option, entire databases are checked.

375

mysqlcheck — A Table Maintenance Program

mysqlcheck has a special feature compared to other client programs. The default behavior of checking
tables (--check) can be changed by renaming the binary. If you want to have a tool that repairs tables by
default, you should just make a copy of mysqlcheck named mysqlrepair, or make a symbolic link to
mysqlcheck named mysqlrepair. If you invoke mysqlrepair, it repairs tables.

The names shown in the following table can be used to change mysqlcheck default behavior.

Command Meaning

mysqlrepair The default option is --repair

mysqlanalyze The default option is --analyze

mysqloptimize The default option is --optimize

mysqlcheck supports the following options, which can be specified on the command line or in the
[mysqlcheck] and [client] groups of an option file. For information about option files used by MySQL
programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.12 mysqlcheck Options

Option Name Description Introduced

--all-databases Check all tables in all databases

--all-in-1 Execute a single statement for
each database that names all the
tables from that database

--analyze Analyze the tables

--auto-repair If a checked table is corrupted,
automatically fix it

--bind-address Use specified network interface to
connect to MySQL Server

--character-sets-dir Directory where character sets are
installed

--check Check the tables for errors

--check-only-changed Check only tables that have
changed since the last check

--check-upgrade Invoke CHECK TABLE with the
FOR UPGRADE option

--compress Compress all information sent
between client and server

--databases Interpret all arguments as
database names

--debug Write debugging log

--debug-check Print debugging information when
program exits

--debug-info Print debugging information,
memory, and CPU statistics when
program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

376

mysqlcheck — A Table Maintenance Program

Option Name Description Introduced

--defaults-extra-file Read named option file in addition
to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--enable-cleartext-plugin Enable cleartext authentication
plugin

5.6.28

--extended Check and repair tables

--fast Check only tables that have not
been closed properly

--fix-db-names Convert database names to 5.1
format

--fix-table-names Convert table names to 5.1 format

--force Continue even if an SQL error
occurs

--help Display help message and exit

--host Host on which MySQL server is
located

--login-path Read login path options
from .mylogin.cnf

--medium-check Do a check that is faster than an --
extended operation

--no-defaults Read no option files

--optimize Optimize the tables

--password Password to use when connecting
to server

--pipe Connect to server using named
pipe (Windows only)

--plugin-dir Directory where plugins are
installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

--quick The fastest method of checking

--repair Perform a repair that can fix
almost anything except unique
keys that are not unique

--secure-auth Do not send passwords to server
in old (pre-4.1) format

5.6.17

--shared-memory-base-name Shared-memory name for shared-
memory connections (Windows
only)

377

mysqlcheck — A Table Maintenance Program

Option Name Description Introduced

--silent Silent mode

--skip-database Omit this database from
performed operations

5.6.11

--socket Unix socket file or Windows
named pipe to use

--ssl Enable connection encryption

--ssl-ca File that contains list of trusted
SSL Certificate Authorities

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher Permissible ciphers for connection
encryption

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation-list files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of
connection to server

5.6.30

--ssl-verify-server-cert Verify host name against server
certificate Common Name identity

--tables Overrides the --databases or -B
option

--use-frm For repair operations on MyISAM
tables

--user MySQL user name to use when
connecting to server

--verbose Verbose mode

--version Display version information and
exit

--write-binlog Log ANALYZE, OPTIMIZE,
REPAIR statements to binary
log. --skip-write-binlog adds
NO_WRITE_TO_BINLOG to
these statements

• --help, -?

Display a help message and exit.

• --all-databases, -A

Check all tables in all databases. This is the same as using the --databases option and naming all the
databases on the command line, except that the INFORMATION_SCHEMA and performance_schema

378

mysqlcheck — A Table Maintenance Program

databases are not checked. They can be checked by explicitly naming them with the --databases
option.

• --all-in-1, -1

Instead of issuing a statement for each table, execute a single statement for each database that names
all the tables from that database to be processed.

• --analyze, -a

Analyze the tables.

• --auto-repair

If a checked table is corrupted, automatically fix it. Any necessary repairs are done after all tables have
been checked.

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --check, -c

Check the tables for errors. This is the default operation.

• --check-only-changed, -C

Check only tables that have changed since the last check or that have not been closed properly.

• --check-upgrade, -g

Invoke CHECK TABLE with the FOR UPGRADE option to check tables for incompatibilities with the current
version of the server. This option automatically enables the --fix-db-names and --fix-table-
names options.

• --compress

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --databases, -B

Process all tables in the named databases. Normally, mysqlcheck treats the first name argument on
the command line as a database name and any following names as table names. With this option, it
treats all name arguments as database names.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

379

mysqlcheck — A Table Maintenance Program

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.15, “Character Set Configuration”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysqlcheck normally reads the [client] and [mysqlcheck] groups. If this option is
given as --defaults-group-suffix=_other, mysqlcheck also reads the [client_other] and
[mysqlcheck_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --extended, -e

If you are using this option to check tables, it ensures that they are 100% consistent but takes a long
time.

If you are using this option to repair tables, it runs an extended repair that may not only take a long time
to execute, but may produce a lot of garbage rows also!

• --default-auth=plugin

A hint about which client-side authentication plugin to use. See Section 6.2.11, “Pluggable
Authentication”.

380

mysqlcheck — A Table Maintenance Program

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.5, “Client-Side
Cleartext Pluggable Authentication”.)

This option was added in MySQL 5.6.28.

• --fast, -F

Check only tables that have not been closed properly.

• --fix-db-names

Convert database names to 5.1 format. Only database names that contain special characters are
affected.

• --fix-table-names

Convert table names to 5.1 format. Only table names that contain special characters are affected. This
option also applies to views.

• --force, -f

Continue even if an SQL error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --medium-check, -m

Do a check that is faster than an --extended operation. This finds only 99.99% of all errors, which
should be good enough in most cases.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --optimize, -o

381

mysqlcheck — A Table Maintenance Program

Optimize the tables.

• --password[=password], -p[password]

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqlcheck prompts for one. If given, there must be no space between --password= or
-p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlcheck should not prompt for one, use the
--skip-password option.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlcheck does not find it. See Section 6.2.11, “Pluggable
Authentication”.

• --port=port_num, -P port_num

For TCP/IP connections, the port number to use.

• --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --quick, -q

If you are using this option to check tables, it prevents the check from scanning the rows to check for
incorrect links. This is the fastest check method.

If you are using this option to repair tables, it tries to repair only the index tree. This is the fastest repair
method.

• --repair, -r

Perform a repair that can fix almost anything except unique keys that are not unique.

• --secure-auth

382

mysqlcheck — A Table Maintenance Program

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option is enabled by default; use --skip-secure-
auth to disable it. This option was added in MySQL 5.6.17.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated; expect support for them to be removed in a future
MySQL release. For account upgrade instructions, see Section 6.4.1.3, “Migrating
Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

Note

This option is deprecated; expect support for it to be removed in a future release.
As of MySQL 5.7.5, it is always enabled and attempting to disable it produces an
error.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --silent, -s

Silent mode. Print only error messages.

• --skip-database=db_name

Do not include the named database (case-sensitive) in the operations performed by mysqlcheck. This
option was added in MySQL 5.6.11.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --tables

Override the --databases or -B option. All name arguments following the option are regarded as table
names.

383

mysqldump — A Database Backup Program

• --use-frm

For repair operations on MyISAM tables, get the table structure from the .frm file so that the table can
be repaired even if the .MYI header is corrupted.

• --user=user_name, -u user_name

The user name of the MySQL account to use for connecting to the server.

• --verbose, -v

Verbose mode. Print information about the various stages of program operation.

• --version, -V

Display version information and exit.

• --write-binlog

This option is enabled by default, so that ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE
statements generated by mysqlcheck are written to the binary log. Use --skip-write-binlog to
cause NO_WRITE_TO_BINLOG to be added to the statements so that they are not logged. Use the --
skip-write-binlog when these statements should not be sent to replicas or run when using the
binary logs for recovery from backup.

4.5.4 mysqldump — A Database Backup Program

The mysqldump client utility performs logical backups, producing a set of SQL statements that can be
executed to reproduce the original database object definitions and table data. It dumps one or more
MySQL databases for backup or transfer to another SQL server. The mysqldump command can also
generate output in CSV, other delimited text, or XML format.

• Performance and Scalability Considerations

• Invocation Syntax

• Option Syntax - Alphabetical Summary

• Connection Options

• Option-File Options

• DDL Options

• Debug Options

• Help Options

• Internationalization Options

• Replication Options

• Format Options

• Filtering Options

• Performance Options

• Transactional Options

• Option Groups

384

mysqldump — A Database Backup Program

• Examples

• Restrictions

mysqldump requires at least the SELECT privilege for dumped tables, SHOW VIEW for dumped views,
TRIGGER for dumped triggers, LOCK TABLES if the --single-transaction option is not used, and (as
of MySQL 5.6.49) PROCESS if the --no-tablespaces option is not used. Certain options might require
other privileges as noted in the option descriptions.

To reload a dump file, you must have the privileges required to execute the statements that it contains,
such as the appropriate CREATE privileges for objects created by those statements.

mysqldump output can include ALTER DATABASE statements that change the database collation. These
may be used when dumping stored programs to preserve their character encodings. To reload a dump file
containing such statements, the ALTER privilege for the affected database is required.

Note

A dump made using PowerShell on Windows with output redirection creates a file
that has UTF-16 encoding:

mysqldump [options] > dump.sql

However, UTF-16 is not permitted as a connection character set (see Impermissible
Client Character Sets), so the dump file cannot be loaded correctly. To work around
this issue, use the --result-file option, which creates the output in ASCII
format:

mysqldump [options] --result-file=dump.sql

Performance and Scalability Considerations

mysqldump advantages include the convenience and flexibility of viewing or even editing the output before
restoring. You can clone databases for development and DBA work, or produce slight variations of an
existing database for testing. It is not intended as a fast or scalable solution for backing up substantial
amounts of data. With large data sizes, even if the backup step takes a reasonable time, restoring the data
can be very slow because replaying the SQL statements involves disk I/O for insertion, index creation, and
so on.

For large-scale backup and restore, a physical backup is more appropriate, to copy the data files in their
original format that can be restored quickly:

• If your tables are primarily InnoDB tables, or if you have a mix of InnoDB and MyISAM tables, consider
using the mysqlbackup command of the MySQL Enterprise Backup product. (Available as part of the
Enterprise subscription.) It provides the best performance for InnoDB backups with minimal disruption; it
can also back up tables from MyISAM and other storage engines; and it provides a number of convenient
options to accommodate different backup scenarios. See Section 24.2, “MySQL Enterprise Backup
Overview”.

• If your tables are primarily MyISAM tables, consider using the mysqlhotcopy instead, for better
performance than mysqldump of backup and restore operations. See Section 4.6.10, “mysqlhotcopy —
A Database Backup Program”.

mysqldump can retrieve and dump table contents row by row, or it can retrieve the entire content from a
table and buffer it in memory before dumping it. Buffering in memory can be a problem if you are dumping
large tables. To dump tables row by row, use the --quick option (or --opt, which enables --quick).
The --opt option (and hence --quick) is enabled by default, so to enable memory buffering, use --
skip-quick.

385

mysqldump — A Database Backup Program

If you are using a recent version of mysqldump to generate a dump to be reloaded into a very old MySQL
server, use the --skip-opt option instead of the --opt or --extended-insert option.

For additional information about mysqldump, see Section 7.4, “Using mysqldump for Backups”.

Invocation Syntax

There are in general three ways to use mysqldump—in order to dump a set of one or more tables, a set of
one or more complete databases, or an entire MySQL server—as shown here:

mysqldump [options] db_name [tbl_name ...]
mysqldump [options] --databases db_name ...
mysqldump [options] --all-databases

To dump entire databases, do not name any tables following db_name, or use the --databases or --
all-databases option.

To see a list of the options your version of mysqldump supports, issue the command mysqldump --
help.

Option Syntax - Alphabetical Summary

mysqldump supports the following options, which can be specified on the command line or in the
[mysqldump] and [client] groups of an option file. For information about option files used by MySQL
programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.13 mysqldump Options

Option Name Description Introduced

--add-drop-database Add DROP DATABASE statement
before each CREATE DATABASE
statement

--add-drop-table Add DROP TABLE statement
before each CREATE TABLE
statement

--add-drop-trigger Add DROP TRIGGER statement
before each CREATE TRIGGER
statement

--add-locks Surround each table dump with
LOCK TABLES and UNLOCK
TABLES statements

--all-databases Dump all tables in all databases

--allow-keywords Allow creation of column names
that are keywords

--apply-slave-statements Include STOP SLAVE prior to
CHANGE MASTER statement and
START SLAVE at end of output

--bind-address Use specified network interface to
connect to MySQL Server

--character-sets-dir Directory where character sets are
installed

--comments Add comments to dump file

--compact Produce more compact output

386

mysqldump — A Database Backup Program

Option Name Description Introduced

--compatible Produce output that is more
compatible with other database
systems or with older MySQL
servers

--complete-insert Use complete INSERT statements
that include column names

--compress Compress all information sent
between client and server

--create-options Include all MySQL-specific table
options in CREATE TABLE
statements

--databases Interpret all name arguments as
database names

--debug Write debugging log

--debug-check Print debugging information when
program exits

--debug-info Print debugging information,
memory, and CPU statistics when
program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition
to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--delayed-insert Write INSERT DELAYED
statements rather than INSERT
statements

--delete-master-logs On a replication source server,
delete the binary logs after
performing the dump operation

--disable-keys For each table, surround INSERT
statements with statements to
disable and enable keys

--dump-date Include dump date as "Dump
completed on" comment if --
comments is given

--dump-slave Include CHANGE MASTER
statement that lists binary log
coordinates of replica's source

--enable-cleartext-plugin Enable cleartext authentication
plugin

5.6.28

--events Dump events from dumped
databases

387

mysqldump — A Database Backup Program

Option Name Description Introduced

--extended-insert Use multiple-row INSERT syntax

--fields-enclosed-by This option is used with the --tab
option and has the same meaning
as the corresponding clause for
LOAD DATA

--fields-escaped-by This option is used with the --tab
option and has the same meaning
as the corresponding clause for
LOAD DATA

--fields-optionally-enclosed-by This option is used with the --tab
option and has the same meaning
as the corresponding clause for
LOAD DATA

--fields-terminated-by This option is used with the --tab
option and has the same meaning
as the corresponding clause for
LOAD DATA

--flush-logs Flush MySQL server log files
before starting dump

--flush-privileges Emit a FLUSH PRIVILEGES
statement after dumping mysql
database

--force Continue even if an SQL error
occurs during a table dump

--help Display help message and exit

--hex-blob Dump binary columns using
hexadecimal notation

--host Host on which MySQL server is
located

--ignore-table Do not dump given table

--include-master-host-port Include MASTER_HOST/
MASTER_PORT options in
CHANGE MASTER statement
produced with --dump-slave

--insert-ignore Write INSERT IGNORE rather
than INSERT statements

--lines-terminated-by This option is used with the --tab
option and has the same meaning
as the corresponding clause for
LOAD DATA

--lock-all-tables Lock all tables across all
databases

--lock-tables Lock all tables before dumping
them

388

mysqldump — A Database Backup Program

Option Name Description Introduced

--log-error Append warnings and errors to
named file

--login-path Read login path options
from .mylogin.cnf

--master-data Write the binary log file name and
position to the output

--max-allowed-packet Maximum packet length to send to
or receive from server

--net-buffer-length Buffer size for TCP/IP and socket
communication

--no-autocommit Enclose the INSERT statements
for each dumped table within SET
autocommit = 0 and COMMIT
statements

--no-create-db Do not write CREATE DATABASE
statements

--no-create-info Do not write CREATE TABLE
statements that re-create each
dumped table

--no-data Do not dump table contents

--no-defaults Read no option files

--no-set-names Same as --skip-set-charset

--no-tablespaces Do not write any CREATE
LOGFILE GROUP or CREATE
TABLESPACE statements in
output

--opt Shorthand for --add-drop-table
--add-locks --create-options --
disable-keys --extended-insert --
lock-tables --quick --set-charset

--order-by-primary Dump each table's rows sorted
by its primary key, or by its first
unique index

--password Password to use when connecting
to server

--pipe Connect to server using named
pipe (Windows only)

--plugin-dir Directory where plugins are
installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

389

mysqldump — A Database Backup Program

Option Name Description Introduced

--quick Retrieve rows for a table from the
server a row at a time

--quote-names Quote identifiers within backtick
characters

--replace Write REPLACE statements rather
than INSERT statements

--result-file Direct output to a given file

--routines Dump stored routines (procedures
and functions) from dumped
databases

--secure-auth Do not send passwords to server
in old (pre-4.1) format

5.6.17

--set-charset Add SET NAMES
default_character_set to output

--set-gtid-purged Whether to add SET
@@GLOBAL.GTID_PURGED to
output

--shared-memory-base-name Shared-memory name for shared-
memory connections (Windows
only)

--single-transaction Issue a BEGIN SQL statement
before dumping data from server

--skip-add-drop-table Do not add a DROP TABLE
statement before each CREATE
TABLE statement

--skip-add-locks Do not add locks

--skip-comments Do not add comments to dump file

--skip-compact Do not produce more compact
output

--skip-disable-keys Do not disable keys

--skip-extended-insert Turn off extended-insert

--skip-opt Turn off options set by --opt

--skip-quick Do not retrieve rows for a table
from the server a row at a time

--skip-quote-names Do not quote identifiers

--skip-set-charset Do not write SET NAMES
statement

--skip-triggers Do not dump triggers

--skip-tz-utc Turn off tz-utc

--socket Unix socket file or Windows
named pipe to use

--ssl Enable connection encryption

390

mysqldump — A Database Backup Program

Option Name Description Introduced

--ssl-ca File that contains list of trusted
SSL Certificate Authorities

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher Permissible ciphers for connection
encryption

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation-list files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of
connection to server

5.6.30

--ssl-verify-server-cert Verify host name against server
certificate Common Name identity

--tab Produce tab-separated data files

--tables Override --databases or -B option

--triggers Dump triggers for each dumped
table

--tz-utc Add SET TIME_ZONE='+00:00' to
dump file

--user MySQL user name to use when
connecting to server

--verbose Verbose mode

--version Display version information and
exit

--where Dump only rows selected by given
WHERE condition

--xml Produce XML output

Connection Options

The mysqldump command logs into a MySQL server to extract information. The following options specify
how to connect to the MySQL server, either on the same machine or a remote system.

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --compress, -C

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

391

mysqldump — A Database Backup Program

• --default-auth=plugin

A hint about which client-side authentication plugin to use. See Section 6.2.11, “Pluggable
Authentication”.

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.5, “Client-Side
Cleartext Pluggable Authentication”.)

This option was added in MySQL 5.6.28.

• --host=host_name, -h host_name

Dump data from the MySQL server on the given host. The default host is localhost.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --password[=password], -p[password]

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqldump prompts for one. If given, there must be no space between --password= or -
p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqldump should not prompt for one, use the
--skip-password option.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqldump does not find it. See Section 6.2.11, “Pluggable
Authentication”.

• --port=port_num, -P port_num

For TCP/IP connections, the port number to use.

392

mysqldump — A Database Backup Program

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option is enabled by default; use --skip-secure-
auth to disable it. This option was added in MySQL 5.6.17.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated; expect support for them to be removed in a future
MySQL release. For account upgrade instructions, see Section 6.4.1.3, “Migrating
Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

Note

This option is deprecated; expect it to be removed in a future release. As of
MySQL 5.7.5, it is always enabled and attempting to disable it produces an error.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --user=user_name, -u user_name

The user name of the MySQL account to use for connecting to the server.

Option-File Options

These options are used to control which option files to read.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

393

mysqldump — A Database Backup Program

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqldump normally reads the [client] and [mysqldump] groups. If this option is
given as --defaults-group-suffix=_other, mysqldump also reads the [client_other] and
[mysqldump_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

DDL Options

Usage scenarios for mysqldump include setting up an entire new MySQL instance (including database
tables), and replacing data inside an existing instance with existing databases and tables. The following
options let you specify which things to tear down and set up when restoring a dump, by encoding various
DDL statements within the dump file.

• --add-drop-database

Write a DROP DATABASE statement before each CREATE DATABASE statement. This option is typically
used in conjunction with the --all-databases or --databases option because no CREATE
DATABASE statements are written unless one of those options is specified.

• --add-drop-table

Write a DROP TABLE statement before each CREATE TABLE statement.

• --add-drop-trigger

394

mysqldump — A Database Backup Program

Write a DROP TRIGGER statement before each CREATE TRIGGER statement.

• --all-tablespaces, -Y

Adds to a table dump all SQL statements needed to create any tablespaces used by an NDB table. This
information is not otherwise included in the output from mysqldump. This option is currently relevant
only to NDB Cluster tables.

• --no-create-db, -n

Suppress the CREATE DATABASE statements that are otherwise included in the output if the --
databases or --all-databases option is given.

• --no-create-info, -t

Do not write CREATE TABLE statements that create each dumped table.

Note

This option does not exclude statements creating log file groups or tablespaces
from mysqldump output; however, you can use the --no-tablespaces option
for this purpose.

• --no-tablespaces, -y

This option suppresses all CREATE LOGFILE GROUP and CREATE TABLESPACE statements in the
output of mysqldump.

• --replace

Write REPLACE statements rather than INSERT statements.

Debug Options

The following options print debugging information, encode debugging information in the dump file, or let the
dump operation proceed regardless of potential problems.

• --allow-keywords

Permit creation of column names that are keywords. This works by prefixing each column name with the
table name.

• --comments, -i

Write additional information in the dump file such as program version, server version, and host. This
option is enabled by default. To suppress this additional information, use --skip-comments.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default value is
d:t:o,/tmp/mysqldump.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Print some debugging information when the program exits.

395

mysqldump — A Database Backup Program

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --dump-date

If the --comments option is given, mysqldump produces a comment at the end of the dump of the
following form:

-- Dump completed on DATE

However, the date causes dump files taken at different times to appear to be different, even if the data
are otherwise identical. --dump-date and --skip-dump-date control whether the date is added to
the comment. The default is --dump-date (include the date in the comment). --skip-dump-date
suppresses date printing.

• --force, -f

Continue even if an SQL error occurs during a table dump.

One use for this option is to cause mysqldump to continue executing even when it encounters a view
that has become invalid because the definition refers to a table that has been dropped. Without --
force, mysqldump exits with an error message. With --force, mysqldump prints the error message,
but it also writes an SQL comment containing the view definition to the dump output and continues
executing.

• --log-error=file_name

Log warnings and errors by appending them to the named file. The default is to do no logging.

• --skip-comments

See the description for the --comments option.

• --verbose, -v

Verbose mode. Print more information about what the program does.

Help Options

The following options display information about the mysqldump command itself.

• --help, -?

Display a help message and exit.

• --version, -V

Display version information and exit.

396

mysqldump — A Database Backup Program

Internationalization Options

The following options change how the mysqldump command represents character data with national
language settings.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.15, “Character Set Configuration”. If
no character set is specified, mysqldump uses utf8.

• --no-set-names, -N

Turns off the --set-charset setting, the same as specifying --skip-set-charset.

• --set-charset

Write SET NAMES default_character_set to the output. This option is enabled by default. To
suppress the SET NAMES statement, use --skip-set-charset.

Replication Options

The mysqldump command is frequently used to create an empty instance, or an instance including data,
on a replica server in a replication configuration. The following options apply to dumping and restoring data
on replication source and replica servers.

• --apply-slave-statements

For a replica dump produced with the --dump-slave option, add a STOP SLAVE statement before the
CHANGE MASTER TO statement and a START SLAVE statement at the end of the output.

• --delete-master-logs

On a source replication server, delete the binary logs by sending a PURGE BINARY LOGS statement
to the server after performing the dump operation. This option requires the RELOAD privilege as well as
privileges sufficient to execute that statement. This option automatically enables --master-data.

• --dump-slave[=value]

This option is similar to --master-data except that it is used to dump a replica server to produce a
dump file that can be used to set up another server as a replica that has the same source as the dumped
server. It causes the dump output to include a CHANGE MASTER TO statement that indicates the binary
log coordinates (file name and position) of the dumped replica's source. These are the source server
coordinates from which the replica should start replicating.

--dump-slave causes the coordinates from the source to be used rather than those of the dumped
server, as is done by the --master-data option. In addition, specifiying this option causes the --
master-data option to be overridden, if used, and effectively ignored.

The option value is handled the same way as for --master-data (setting no value or 1 causes a
CHANGE MASTER TO statement to be written to the dump, setting 2 causes the statement to be written
but encased in SQL comments) and has the same effect as --master-data in terms of enabling or
disabling other options and in how locking is handled.

This option causes mysqldump to stop the replica SQL thread before the dump and restart it again after.

397

mysqldump — A Database Backup Program

--dump-slave sends a SHOW SLAVE STATUS statement to the server to obtain information, so it
requires privileges sufficient to execute that statement.

In conjunction with --dump-slave, the --apply-slave-statements and --include-master-
host-port options can also be used.

• --include-master-host-port

For the CHANGE MASTER TO statement in a replica dump produced with the --dump-slave option,
add MASTER_HOST and MASTER_PORT options for the host name and TCP/IP port number of the
replica's source.

• --master-data[=value]

Use this option to dump a source replication server to produce a dump file that can be used to set up
another server as a replica of the source. It causes the dump output to include a CHANGE MASTER TO
statement that indicates the binary log coordinates (file name and position) of the dumped server. These
are the source server coordinates from which the replica should start replicating after you load the dump
file into the replica.

If the option value is 2, the CHANGE MASTER TO statement is written as an SQL comment, and thus is
informative only; it has no effect when the dump file is reloaded. If the option value is 1, the statement is
not written as a comment and takes effect when the dump file is reloaded. If no option value is specified,
the default value is 1.

--master-data sends a SHOW MASTER STATUS statement to the server to obtain information, so it
requires privileges sufficient to execute that statement. This option also requires the RELOAD privilege
and the binary log must be enabled.

The --master-data option automatically turns off --lock-tables. It also turns on --lock-
all-tables, unless --single-transaction also is specified, in which case, a global read lock
is acquired only for a short time at the beginning of the dump (see the description for --single-
transaction). In all cases, any action on logs happens at the exact moment of the dump.

It is also possible to set up a replica by dumping an existing replica of the source, using the --dump-
slave option, which overrides --master-data and causes it to be ignored if both options are used.

• --set-gtid-purged=value

This option enables control over global transaction ID (GTID) information written to the dump file, by
indicating whether to add a SET @@GLOBAL.gtid_purged statement to the output. This option may
also cause a statement to be written to the output that disables binary logging while the dump file is
being reloaded.

The following table shows the permitted option values. The default value is AUTO.

Value Meaning

OFF Add no SET statement to the output.

ON Add a SET statement to the output. An error occurs
if GTIDs are not enabled on the server.

398

mysqldump — A Database Backup Program

Value Meaning

AUTO Add a SET statement to the output if GTIDs are
enabled on the server.

The --set-gtid-purged option has the following effect on binary logging when the dump file is
reloaded:

• --set-gtid-purged=OFF: SET @@SESSION.SQL_LOG_BIN=0; is not added to the output.

• --set-gtid-purged=ON: SET @@SESSION.SQL_LOG_BIN=0; is added to the output.

• --set-gtid-purged=AUTO: SET @@SESSION.SQL_LOG_BIN=0; is added to the output if GTIDs
are enabled on the server you are backing up (that is, if AUTO evaluates to ON).

Using this option with the --single-transaction option can lead to inconsistencies in the output. If
--set-gtid-purged=ON is required, it can be used with --lock-all-tables, but this can prevent
parallel queries while mysqldump is being run.

It is not recommended to load a dump file when GTIDs are enabled on the server (gtid_mode=ON), if
your dump file includes system tables. mysqldump issues DML instructions for the system tables which
use the non-transactional MyISAM storage engine, and this combination is not permitted when GTIDs
are enabled. Also be aware that loading a dump file from a server with GTIDs enabled, into another
server with GTIDs enabled, causes different transaction identifiers to be generated.

Format Options

The following options specify how to represent the entire dump file or certain kinds of data in the dump file.
They also control whether certain optional information is written to the dump file.

• --compact

Produce more compact output. This option enables the --skip-add-drop-table, --skip-add-
locks, --skip-comments, --skip-disable-keys, and --skip-set-charset options.

• --compatible=name

Produce output that is more compatible with other database systems or with older MySQL servers.
The value of name can be ansi, mysql323, mysql40, postgresql, oracle, mssql, db2, maxdb,
no_key_options, no_table_options, or no_field_options. To use several values, separate
them by commas. These values have the same meaning as the corresponding options for setting the
server SQL mode. See Section 5.1.10, “Server SQL Modes”.

This option does not guarantee compatibility with other servers. It only enables those SQL mode
values that are currently available for making dump output more compatible. For example, --
compatible=oracle does not map data types to Oracle types or use Oracle comment syntax.

• --complete-insert, -c

Use complete INSERT statements that include column names.

• --create-options

Include all MySQL-specific table options in the CREATE TABLE statements.

• --fields-terminated-by=..., --fields-enclosed-by=..., --fields-optionally-
enclosed-by=..., --fields-escaped-by=...

399

mysqldump — A Database Backup Program

These options are used with the --tab option and have the same meaning as the corresponding
FIELDS clauses for LOAD DATA. See Section 13.2.6, “LOAD DATA Statement”.

• --hex-blob

Dump binary columns using hexadecimal notation (for example, 'abc' becomes 0x616263). The
affected data types are BINARY, VARBINARY, BLOB types, BIT, all spatial data types, and other non-
binary data types when used with the binary character set.

• --lines-terminated-by=...

This option is used with the --tab option and has the same meaning as the corresponding LINES
clause for LOAD DATA. See Section 13.2.6, “LOAD DATA Statement”.

• --quote-names, -Q

Quote identifiers (such as database, table, and column names) within ` characters. If the ANSI_QUOTES
SQL mode is enabled, identifiers are quoted within " characters. This option is enabled by default. It can
be disabled with --skip-quote-names, but this option should be given after any option such as --
compatible that may enable --quote-names.

• --result-file=file_name, -r file_name

Direct output to the named file. The result file is created and its previous contents overwritten, even if an
error occurs while generating the dump.

This option should be used on Windows to prevent newline \n characters from being converted to \r\n
carriage return/newline sequences.

• --tab=dir_name, -T dir_name

Produce tab-separated text-format data files. For each dumped table, mysqldump creates a
tbl_name.sql file that contains the CREATE TABLE statement that creates the table, and the server
writes a tbl_name.txt file that contains its data. The option value is the directory in which to write the
files.

Note

This option should be used only when mysqldump is run on the same machine
as the mysqld server. Because the server creates *.txt files in the directory
that you specify, the directory must be writable by the server and the MySQL
account that you use must have the FILE privilege. Because mysqldump creates
*.sql in the same directory, it must be writable by your system login account.

By default, the .txt data files are formatted using tab characters between column values and a newline
at the end of each line. The format can be specified explicitly using the --fields-xxx and --lines-
terminated-by options.

Column values are converted to the character set specified by the --default-character-set
option.

• --tz-utc

This option enables TIMESTAMP columns to be dumped and reloaded between servers in different time
zones. mysqldump sets its connection time zone to UTC and adds SET TIME_ZONE='+00:00' to the
dump file. Without this option, TIMESTAMP columns are dumped and reloaded in the time zones local to
the source and destination servers, which can cause the values to change if the servers are in different

400

mysqldump — A Database Backup Program

time zones. --tz-utc also protects against changes due to daylight saving time. --tz-utc is enabled
by default. To disable it, use --skip-tz-utc.

• --xml, -X

Write dump output as well-formed XML.

NULL, 'NULL', and Empty Values: For a column named column_name, the NULL value, an empty
string, and the string value 'NULL' are distinguished from one another in the output generated by this
option as follows.

Value: XML Representation:

NULL (unknown value) <field name="column_name"
xsi:nil="true" />

'' (empty string) <field name="column_name"></field>

'NULL' (string value) <field name="column_name">NULL</
field>

The output from the mysql client when run using the --xml option also follows the preceding rules.
(See Section 4.5.1.1, “mysql Client Options”.)

XML output from mysqldump includes the XML namespace, as shown here:

$> mysqldump --xml -u root world City
<?xml version="1.0"?>
<mysqldump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<database name="world">
<table_structure name="City">
<field Field="ID" Type="int(11)" Null="NO" Key="PRI" Extra="auto_increment" />
<field Field="Name" Type="char(35)" Null="NO" Key="" Default="" Extra="" />
<field Field="CountryCode" Type="char(3)" Null="NO" Key="" Default="" Extra="" />
<field Field="District" Type="char(20)" Null="NO" Key="" Default="" Extra="" />
<field Field="Population" Type="int(11)" Null="NO" Key="" Default="0" Extra="" />
<key Table="City" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="ID"
Collation="A" Cardinality="4079" Null="" Index_type="BTREE" Comment="" />
<options Name="City" Engine="MyISAM" Version="10" Row_format="Fixed" Rows="4079"
Avg_row_length="67" Data_length="273293" Max_data_length="18858823439613951"
Index_length="43008" Data_free="0" Auto_increment="4080"
Create_time="2007-03-31 01:47:01" Update_time="2007-03-31 01:47:02"
Collation="latin1_swedish_ci" Create_options="" Comment="" />
</table_structure>
<table_data name="City">
<row>
<field name="ID">1</field>
<field name="Name">Kabul</field>
<field name="CountryCode">AFG</field>
<field name="District">Kabol</field>
<field name="Population">1780000</field>
</row>

...

<row>
<field name="ID">4079</field>
<field name="Name">Rafah</field>
<field name="CountryCode">PSE</field>
<field name="District">Rafah</field>
<field name="Population">92020</field>
</row>
</table_data>
</database>

401

mysqldump — A Database Backup Program

</mysqldump>

Filtering Options

The following options control which kinds of schema objects are written to the dump file: by category,
such as triggers or events; by name, for example, choosing which databases and tables to dump; or even
filtering rows from the table data using a WHERE clause.

• --all-databases, -A

Dump all tables in all databases. This is the same as using the --databases option and naming all the
databases on the command line.

• --databases, -B

Dump several databases. Normally, mysqldump treats the first name argument on the command line as
a database name and following names as table names. With this option, it treats all name arguments as
database names. CREATE DATABASE and USE statements are included in the output before each new
database.

This option may be used to dump the INFORMATION_SCHEMA and performance_schema databases,
which normally are not dumped even with the --all-databases option. (Also use the --skip-lock-
tables option.)

• --events, -E

Include Event Scheduler events for the dumped databases in the output. This option requires the EVENT
privileges for those databases.

The output generated by using --events contains CREATE EVENT statements to create the events.
However, these statements do not include attributes such as the event creation and modification
timestamps, so when the events are reloaded, they are created with timestamps equal to the reload
time.

If you require events to be created with their original timestamp attributes, do not use --events.
Instead, dump and reload the contents of the mysql.event table directly, using a MySQL account that
has appropriate privileges for the mysql database.

• --ignore-table=db_name.tbl_name

Do not dump the given table, which must be specified using both the database and table names. To
ignore multiple tables, use this option multiple times. This option also can be used to ignore views.

• --no-data, -d

Do not write any table row information (that is, do not dump table contents). This is useful if you want to
dump only the CREATE TABLE statement for the table (for example, to create an empty copy of the table
by loading the dump file).

• --routines, -R

Include stored routines (procedures and functions) for the dumped databases in the output. This option
requires the SELECT privilege for the mysql.proc table.

The output generated by using --routines contains CREATE PROCEDURE and CREATE FUNCTION
statements to create the routines. However, these statements do not include attributes such as the
routine creation and modification timestamps, so when the routines are reloaded, they are created with
timestamps equal to the reload time.

402

mysqldump — A Database Backup Program

If you require routines to be created with their original timestamp attributes, do not use --routines.
Instead, dump and reload the contents of the mysql.proc table directly, using a MySQL account that
has appropriate privileges for the mysql database.

• --tables

Override the --databases or -B option. mysqldump regards all name arguments following the option
as table names.

• --triggers

Include triggers for each dumped table in the output. This option is enabled by default; disable it with --
skip-triggers.

To be able to dump a table's triggers, you must have the TRIGGER privilege for the table.

• --where='where_condition', -w 'where_condition'

Dump only rows selected by the given WHERE condition. Quotes around the condition are mandatory if it
contains spaces or other characters that are special to your command interpreter.

Examples:

--where="user='jimf'"
-w"userid>1"
-w"userid<1"

Performance Options

The following options are the most relevant for the performance particularly of the restore operations. For
large data sets, restore operation (processing the INSERT statements in the dump file) is the most time-
consuming part. When it is urgent to restore data quickly, plan and test the performance of this stage in
advance. For restore times measured in hours, you might prefer an alternative backup and restore solution,
such as MySQL Enterprise Backup for InnoDB-only and mixed-use databases, or mysqlhotcopy for
MyISAM-only databases.

Performance is also affected by the transactional options, primarily for the dump operation.

• --delayed-insert

For those nontransactional tables that support the INSERT DELAYED syntax, use that statement rather
than regular INSERT statements.

As of MySQL 5.6.6, DELAYED inserts are deprecated; expect this option to be removed in a future
release.

• --disable-keys, -K

For each table, surround the INSERT statements with /*!40000 ALTER TABLE tbl_name DISABLE
KEYS */; and /*!40000 ALTER TABLE tbl_name ENABLE KEYS */; statements. This makes
loading the dump file faster because the indexes are created after all rows are inserted. This option is
effective only for nonunique indexes of MyISAM tables.

• --extended-insert, -e

Write INSERT statements using multiple-row syntax that includes several VALUES lists. This results in a
smaller dump file and speeds up inserts when the file is reloaded.

403

mysqldump — A Database Backup Program

• --insert-ignore

Write INSERT IGNORE statements rather than INSERT statements.

• --max-allowed-packet=value

The maximum size of the buffer for client/server communication. The default is 24MB, the maximum is
1GB.

Note

The value of this option is specific to mysqldump and should not be confused
with the MySQL server's max_allowed_packet system variable; the server
value cannot be exceeded by a single packet from mysqldump, regardless of any
setting for the mysqldump option, even if the latter is larger.

• --net-buffer-length=value

The initial size of the buffer for client/server communication. When creating multiple-row INSERT
statements (as with the --extended-insert or --opt option), mysqldump creates rows up to
--net-buffer-length bytes long. If you increase this variable, ensure that the MySQL server
net_buffer_length system variable has a value at least this large.

• --opt

This option, enabled by default, is shorthand for the combination of --add-drop-table --add-locks
--create-options --disable-keys --extended-insert --lock-tables --quick --set-
charset. It gives a fast dump operation and produces a dump file that can be reloaded into a MySQL
server quickly.

Because the --opt option is enabled by default, you only specify its converse, the --skip-opt to
turn off several default settings. See the discussion of mysqldump option groups for information about
selectively enabling or disabling a subset of the options affected by --opt.

• --quick, -q

This option is useful for dumping large tables. It forces mysqldump to retrieve rows for a table from the
server a row at a time rather than retrieving the entire row set and buffering it in memory before writing it
out.

• --skip-opt

See the description for the --opt option.

Transactional Options

The following options trade off the performance of the dump operation, against the reliability and
consistency of the exported data.

• --add-locks

Surround each table dump with LOCK TABLES and UNLOCK TABLES statements. This results in faster
inserts when the dump file is reloaded. See Section 8.2.4.1, “Optimizing INSERT Statements”.

• --flush-logs, -F

Flush the MySQL server log files before starting the dump. This option requires the RELOAD privilege.
If you use this option in combination with the --all-databases option, the logs are flushed for each

404

mysqldump — A Database Backup Program

database dumped. The exception is when using --lock-all-tables, --master-data, or --
single-transaction: In this case, the logs are flushed only once, corresponding to the moment that
all tables are locked by FLUSH TABLES WITH READ LOCK. If you want your dump and the log flush
to happen at exactly the same moment, you should use --flush-logs together with --lock-all-
tables, --master-data, or --single-transaction.

• --flush-privileges

Add a FLUSH PRIVILEGES statement to the dump output after dumping the mysql database. This
option should be used any time the dump contains the mysql database and any other database that
depends on the data in the mysql database for proper restoration.

Because the dump file contains a FLUSH PRIVILEGES statement, reloading the file requires privileges
sufficient to execute that statement.

• --lock-all-tables, -x

Lock all tables across all databases. This is achieved by acquiring a global read lock for the duration of
the whole dump. This option automatically turns off --single-transaction and --lock-tables.

• --lock-tables, -l

For each dumped database, lock all tables to be dumped before dumping them. The tables are locked
with READ LOCAL to permit concurrent inserts in the case of MyISAM tables. For transactional tables
such as InnoDB, --single-transaction is a much better option than --lock-tables because it
does not need to lock the tables at all.

Because --lock-tables locks tables for each database separately, this option does not guarantee
that the tables in the dump file are logically consistent between databases. Tables in different databases
may be dumped in completely different states.

Some options, such as --opt, automatically enable --lock-tables. If you want to override this, use
--skip-lock-tables at the end of the option list.

• --no-autocommit

Enclose the INSERT statements for each dumped table within SET autocommit = 0 and COMMIT
statements.

• --order-by-primary

Dump each table's rows sorted by its primary key, or by its first unique index, if such an index exists.
This is useful when dumping a MyISAM table to be loaded into an InnoDB table, but makes the dump
operation take considerably longer.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --single-transaction

This option sets the transaction isolation mode to REPEATABLE READ and sends a START
TRANSACTION SQL statement to the server before dumping data. It is useful only with transactional

405

mysqldump — A Database Backup Program

tables such as InnoDB, because then it dumps the consistent state of the database at the time when
START TRANSACTION was issued without blocking any applications.

When using this option, you should keep in mind that only InnoDB tables are dumped in a consistent
state. For example, any MyISAM or MEMORY tables dumped while using this option may still change
state.

While a --single-transaction dump is in process, to ensure a valid dump file (correct table
contents and binary log coordinates), no other connection should use the following statements: ALTER
TABLE, CREATE TABLE, DROP TABLE, RENAME TABLE, TRUNCATE TABLE. A consistent read is not
isolated from those statements, so use of them on a table to be dumped can cause the SELECT that is
performed by mysqldump to retrieve the table contents to obtain incorrect contents or fail.

The --single-transaction option and the --lock-tables option are mutually exclusive because
LOCK TABLES causes any pending transactions to be committed implicitly.

Using --single-transaction together with the --set-gtid-purged option is not recommended;
doing so can lead to inconsistencies in the output of mysqldump.

To dump large tables, combine the --single-transaction option with the --quick option.

Option Groups

• The --opt option turns on several settings that work together to perform a fast dump operation. All of
these settings are on by default, because --opt is on by default. Thus you rarely if ever specify --opt.
Instead, you can turn these settings off as a group by specifying --skip-opt, then optionally re-enable
certain settings by specifying the associated options later on the command line.

• The --compact option turns off several settings that control whether optional statements and comments
appear in the output. Again, you can follow this option with other options that re-enable certain settings,
or turn all the settings on by using the --skip-compact form.

When you selectively enable or disable the effect of a group option, order is important because options are
processed first to last. For example, --disable-keys --lock-tables --skip-opt would not have
the intended effect; it is the same as --skip-opt by itself.

Examples

To make a backup of an entire database:

mysqldump db_name > backup-file.sql

To load the dump file back into the server:

mysql db_name < backup-file.sql

Another way to reload the dump file:

mysql -e "source /path-to-backup/backup-file.sql" db_name

mysqldump is also very useful for populating databases by copying data from one MySQL server to
another:

mysqldump --opt db_name | mysql --host=remote_host -C db_name

You can dump several databases with one command:

mysqldump --databases db_name1 [db_name2 ...] > my_databases.sql

To dump all databases, use the --all-databases option:

406

mysqlimport — A Data Import Program

mysqldump --all-databases > all_databases.sql

For InnoDB tables, mysqldump provides a way of making an online backup:

mysqldump --all-databases --master-data --single-transaction > all_databases.sql

This backup acquires a global read lock on all tables (using FLUSH TABLES WITH READ LOCK) at the
beginning of the dump. As soon as this lock has been acquired, the binary log coordinates are read and
the lock is released. If long updating statements are running when the FLUSH statement is issued, the
MySQL server may get stalled until those statements finish. After that, the dump becomes lock free and
does not disturb reads and writes on the tables. If the update statements that the MySQL server receives
are short (in terms of execution time), the initial lock period should not be noticeable, even with many
updates.

For point-in-time recovery (also known as “roll-forward,” when you need to restore an old backup
and replay the changes that happened since that backup), it is often useful to rotate the binary log
(see Section 5.4.4, “The Binary Log”) or at least know the binary log coordinates to which the dump
corresponds:

mysqldump --all-databases --master-data=2 > all_databases.sql

Or:

mysqldump --all-databases --flush-logs --master-data=2 > all_databases.sql

The --master-data and --single-transaction options can be used simultaneously, which provides
a convenient way to make an online backup suitable for use prior to point-in-time recovery if tables are
stored using the InnoDB storage engine.

For more information on making backups, see Section 7.2, “Database Backup Methods”, and Section 7.3,
“Example Backup and Recovery Strategy”.

• To select the effect of --opt except for some features, use the --skip option for each feature. To
disable extended inserts and memory buffering, use --opt --skip-extended-insert --skip-
quick. (Actually, --skip-extended-insert --skip-quick is sufficient because --opt is on by
default.)

• To reverse --opt for all features except index disabling and table locking, use --skip-opt --
disable-keys --lock-tables.

Restrictions

mysqldump does not dump the INFORMATION_SCHEMA or performance_schema database by default.
To dump either of these, name it explicitly on the command line. You can also name it with the --
databases option. Also, use the --skip-lock-tables option.

mysqldump does not dump the NDB Cluster ndbinfo information database.

If you encounter problems backing up views due to insufficient privileges, see Section 20.9, “Restrictions
on Views” for a workaround.

4.5.5 mysqlimport — A Data Import Program

The mysqlimport client provides a command-line interface to the LOAD DATA SQL statement. Most
options to mysqlimport correspond directly to clauses of LOAD DATA syntax. See Section 13.2.6, “LOAD
DATA Statement”.

Invoke mysqlimport like this:

mysqlimport [options] db_name textfile1 [textfile2 ...]

407

mysqlimport — A Data Import Program

For each text file named on the command line, mysqlimport strips any extension from the file name and
uses the result to determine the name of the table into which to import the file's contents. For example, files
named patient.txt, patient.text, and patient all would be imported into a table named patient.

mysqlimport supports the following options, which can be specified on the command line or in the
[mysqlimport] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.14 mysqlimport Options

Option Name Description Introduced

--bind-address Use specified network interface to
connect to MySQL Server

--columns This option takes a comma-
separated list of column names as
its value

--compress Compress all information sent
between client and server

--debug Write debugging log

--debug-check Print debugging information when
program exits

--debug-info Print debugging information,
memory, and CPU statistics when
program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition
to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--delete Empty the table before importing
the text file

--enable-cleartext-plugin Enable cleartext authentication
plugin

5.6.28

--fields-enclosed-by This option has the same meaning
as the corresponding clause for
LOAD DATA

--fields-escaped-by This option has the same meaning
as the corresponding clause for
LOAD DATA

--fields-optionally-enclosed-by This option has the same meaning
as the corresponding clause for
LOAD DATA

--fields-terminated-by This option has the same meaning
as the corresponding clause for
LOAD DATA

--force Continue even if an SQL error
occurs

408

mysqlimport — A Data Import Program

Option Name Description Introduced

--help Display help message and exit

--host Host on which MySQL server is
located

--ignore See the description for the --
replace option

--ignore-lines Ignore the first N lines of the data
file

--lines-terminated-by This option has the same meaning
as the corresponding clause for
LOAD DATA

--local Read input files locally from the
client host

--lock-tables Lock all tables for writing before
processing any text files

--login-path Read login path options
from .mylogin.cnf

--low-priority Use LOW_PRIORITY when
loading the table

--no-defaults Read no option files

--password Password to use when connecting
to server

--pipe Connect to server using named
pipe (Windows only)

--plugin-dir Directory where plugins are
installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

--replace The --replace and --ignore options
control handling of input rows that
duplicate existing rows on unique
key values

--secure-auth Do not send passwords to server
in old (pre-4.1) format

5.6.17

--shared-memory-base-name Shared-memory name for shared-
memory connections (Windows
only)

--silent Produce output only when errors
occur

--socket Unix socket file or Windows
named pipe to use

--ssl Enable connection encryption

409

mysqlimport — A Data Import Program

Option Name Description Introduced

--ssl-ca File that contains list of trusted
SSL Certificate Authorities

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher Permissible ciphers for connection
encryption

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation-list files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of
connection to server

5.6.30

--ssl-verify-server-cert Verify host name against server
certificate Common Name identity

--use-threads Number of threads for parallel file-
loading

--user MySQL user name to use when
connecting to server

--verbose Verbose mode

--version Display version information and
exit

• --help, -?

Display a help message and exit.

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --columns=column_list, -c column_list

This option takes a list of comma-separated column names as its value. The order of the column names
indicates how to match data file columns with table columns.

• --compress, -C

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

410

mysqlimport — A Data Import Program

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.15, “Character Set Configuration”.

• --default-auth=plugin

A hint about which client-side authentication plugin to use. See Section 6.2.11, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysqlimport normally reads the [client] and [mysqlimport] groups. If this option is
given as --defaults-group-suffix=_other, mysqlimport also reads the [client_other] and
[mysqlimport_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

411

mysqlimport — A Data Import Program

• --delete, -D

Empty the table before importing the text file.

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.5, “Client-Side
Cleartext Pluggable Authentication”.)

This option was added in MySQL 5.6.28.

• --fields-terminated-by=..., --fields-enclosed-by=..., --fields-optionally-
enclosed-by=..., --fields-escaped-by=...

These options have the same meaning as the corresponding clauses for LOAD DATA. See
Section 13.2.6, “LOAD DATA Statement”.

• --force, -f

Ignore errors. For example, if a table for a text file does not exist, continue processing any remaining
files. Without --force, mysqlimport exits if a table does not exist.

• --host=host_name, -h host_name

Import data to the MySQL server on the given host. The default host is localhost.

• --ignore, -i

See the description for the --replace option.

• --ignore-lines=N

Ignore the first N lines of the data file.

• --lines-terminated-by=...

This option has the same meaning as the corresponding clause for LOAD DATA. For example, to
import Windows files that have lines terminated with carriage return/linefeed pairs, use --lines-
terminated-by="\r\n". (You might have to double the backslashes, depending on the escaping
conventions of your command interpreter.) See Section 13.2.6, “LOAD DATA Statement”.

• --local, -L

By default, files are read by the server on the server host. With this option, mysqlimport reads input
files locally on the client host.

Successful use of LOCAL load operations within mysqlimport also requires that the server permits
local loading; see Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”

• --lock-tables, -l

Lock all tables for writing before processing any text files. This ensures that all tables are synchronized
on the server.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to

412

mysqlimport — A Data Import Program

authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --low-priority

Use LOW_PRIORITY when loading the table. This affects only storage engines that use only table-level
locking (such as MyISAM, MEMORY, and MERGE).

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --password[=password], -p[password]

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqlimport prompts for one. If given, there must be no space between --password= or
-p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlimport should not prompt for one, use the
--skip-password option.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlimport does not find it. See Section 6.2.11, “Pluggable
Authentication”.

• --port=port_num, -P port_num

For TCP/IP connections, the port number to use.

413

mysqlimport — A Data Import Program

• --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --replace, -r

The --replace and --ignore options control handling of input rows that duplicate existing rows
on unique key values. If you specify --replace, new rows replace existing rows that have the same
unique key value. If you specify --ignore, input rows that duplicate an existing row on a unique key
value are skipped. If you do not specify either option, an error occurs when a duplicate key value is
found, and the rest of the text file is ignored.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option is enabled by default; use --skip-secure-
auth to disable it. This option was added in MySQL 5.6.17.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated; expect support for them to be removed in a future
MySQL release. For account upgrade instructions, see Section 6.4.1.3, “Migrating
Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

Note

This option is deprecated; expect it to be removed in a future release. As of
MySQL 5.7.5, it is always enabled and attempting to disable it produces an error.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --silent, -s

Silent mode. Produce output only when errors occur.

414

mysqlshow — Display Database, Table, and Column Information

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --user=user_name, -u user_name

The user name of the MySQL account to use for connecting to the server.

• --use-threads=N

Load files in parallel using N threads.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

Here is a sample session that demonstrates use of mysqlimport:

$> mysql -e 'CREATE TABLE imptest(id INT, n VARCHAR(30))' test
$> ed
a
100 Max Sydow
101 Count Dracula
.
w imptest.txt
32
q
$> od -c imptest.txt
0000000 1 0 0 \t M a x S y d o w \n 1 0
0000020 1 \t C o u n t D r a c u l a \n
0000040
$> mysqlimport --local test imptest.txt
test.imptest: Records: 2 Deleted: 0 Skipped: 0 Warnings: 0
$> mysql -e 'SELECT * FROM imptest' test
+------+---------------+
| id | n |
+------+---------------+
| 100 | Max Sydow |
| 101 | Count Dracula |
+------+---------------+

4.5.6 mysqlshow — Display Database, Table, and Column Information

The mysqlshow client can be used to quickly see which databases exist, their tables, or a table's columns
or indexes.

415

mysqlshow — Display Database, Table, and Column Information

mysqlshow provides a command-line interface to several SQL SHOW statements. See Section 13.7.5,
“SHOW Statements”. The same information can be obtained by using those statements directly. For
example, you can issue them from the mysql client program.

Invoke mysqlshow like this:

mysqlshow [options] [db_name [tbl_name [col_name]]]

• If no database is given, a list of database names is shown.

• If no table is given, all matching tables in the database are shown.

• If no column is given, all matching columns and column types in the table are shown.

The output displays only the names of those databases, tables, or columns for which you have some
privileges.

If the last argument contains shell or SQL wildcard characters (*, ?, %, or _), only those names that are
matched by the wildcard are shown. If a database name contains any underscores, those should be
escaped with a backslash (some Unix shells require two) to get a list of the proper tables or columns. *
and ? characters are converted into SQL % and _ wildcard characters. This might cause some confusion
when you try to display the columns for a table with a _ in the name, because in this case, mysqlshow
shows you only the table names that match the pattern. This is easily fixed by adding an extra % last on the
command line as a separate argument.

mysqlshow supports the following options, which can be specified on the command line or in the
[mysqlshow] and [client] groups of an option file. For information about option files used by MySQL
programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.15 mysqlshow Options

Option Name Description Introduced

--bind-address Use specified network interface to
connect to MySQL Server

--compress Compress all information sent
between client and server

--count Show the number of rows per
table

--debug Write debugging log

--debug-check Print debugging information when
program exits

--debug-info Print debugging information,
memory, and CPU statistics when
program exits

--default-auth Authentication plugin to use

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition
to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--enable-cleartext-plugin Enable cleartext authentication
plugin

5.6.28

416

mysqlshow — Display Database, Table, and Column Information

Option Name Description Introduced

--help Display help message and exit

--host Host on which MySQL server is
located

--keys Show table indexes

--login-path Read login path options
from .mylogin.cnf

--no-defaults Read no option files

--password Password to use when connecting
to server

--pipe Connect to server using named
pipe (Windows only)

--plugin-dir Directory where plugins are
installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

--secure-auth Do not send passwords to server
in old (pre-4.1) format

5.6.17

--shared-memory-base-name Shared-memory name for shared-
memory connections (Windows
only)

--show-table-type Show a column indicating the
table type

--socket Unix socket file or Windows
named pipe to use

--ssl Enable connection encryption

--ssl-ca File that contains list of trusted
SSL Certificate Authorities

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher Permissible ciphers for connection
encryption

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation-list files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of
connection to server

5.6.30

417

mysqlshow — Display Database, Table, and Column Information

Option Name Description Introduced

--ssl-verify-server-cert Verify host name against server
certificate Common Name identity

--status Display extra information about
each table

--user MySQL user name to use when
connecting to server

--verbose Verbose mode

--version Display version information and
exit

• --help, -?

Display a help message and exit.

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --compress, -C

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --count

Show the number of rows per table. This can be slow for non-MyISAM tables.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

418

mysqlshow — Display Database, Table, and Column Information

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.15, “Character Set Configuration”.

• --default-auth=plugin

A hint about which client-side authentication plugin to use. See Section 6.2.11, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysqlshow normally reads the [client] and [mysqlshow] groups. If the --defaults-
group-suffix=_other, mysqlshow also reads the [client_other] and [mysqlshow_other]
groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.5, “Client-Side
Cleartext Pluggable Authentication”.)

This option was added in MySQL 5.6.28.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --keys, -k

Show table indexes.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

419

mysqlshow — Display Database, Table, and Column Information

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --password[=password], -p[password]

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqlshow prompts for one. If given, there must be no space between --password= or -
p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlshow should not prompt for one, use the
--skip-password option.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlshow does not find it. See Section 6.2.11, “Pluggable
Authentication”.

• --port=port_num, -P port_num

For TCP/IP connections, the port number to use.

• --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

420

mysqlshow — Display Database, Table, and Column Information

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option is enabled by default; use --skip-secure-
auth to disable it. This option was added in MySQL 5.6.17.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated; expect support for them to be removed in a future
MySQL release. For account upgrade instructions, see Section 6.4.1.3, “Migrating
Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

Note

This option is deprecated; expect it to be removed in a future release. As of
MySQL 5.7.5, it is always enabled and attempting to disable it produces an error.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --show-table-type, -t

Show a column indicating the table type, as in SHOW FULL TABLES. The type is BASE TABLE or VIEW.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --status, -i

Display extra information about each table.

• --user=user_name, -u user_name

The user name of the MySQL account to use for connecting to the server.

421

mysqlslap — A Load Emulation Client

• --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used multiple
times to increase the amount of information.

• --version, -V

Display version information and exit.

4.5.7 mysqlslap — A Load Emulation Client

mysqlslap is a diagnostic program designed to emulate client load for a MySQL server and to report the
timing of each stage. It works as if multiple clients are accessing the server.

Invoke mysqlslap like this:

mysqlslap [options]

Some options such as --create or --query enable you to specify a string containing an SQL statement
or a file containing statements. If you specify a file, by default it must contain one statement per line. (That
is, the implicit statement delimiter is the newline character.) Use the --delimiter option to specify
a different delimiter, which enables you to specify statements that span multiple lines or place multiple
statements on a single line. You cannot include comments in a file; mysqlslap does not understand them.

mysqlslap runs in three stages:

1. Create schema, table, and optionally any stored programs or data to use for the test. This stage uses a
single client connection.

2. Run the load test. This stage can use many client connections.

3. Clean up (disconnect, drop table if specified). This stage uses a single client connection.

Examples:

Supply your own create and query SQL statements, with 50 clients querying and 200 selects for each
(enter the command on a single line):

mysqlslap --delimiter=";"
 --create="CREATE TABLE a (b int);INSERT INTO a VALUES (23)"
 --query="SELECT * FROM a" --concurrency=50 --iterations=200

Let mysqlslap build the query SQL statement with a table of two INT columns and three VARCHAR
columns. Use five clients querying 20 times each. Do not create the table or insert the data (that is, use the
previous test's schema and data):

mysqlslap --concurrency=5 --iterations=20
 --number-int-cols=2 --number-char-cols=3
 --auto-generate-sql

Tell the program to load the create, insert, and query SQL statements from the specified files, where the
create.sql file has multiple table creation statements delimited by ';' and multiple insert statements
delimited by ';'. The --query file has multiple queries delimited by ';'. Run all the load statements,
then run all the queries in the query file with five clients (five times each):

mysqlslap --concurrency=5
 --iterations=5 --query=query.sql --create=create.sql
 --delimiter=";"

422

mysqlslap — A Load Emulation Client

mysqlslap supports the following options, which can be specified on the command line or in the
[mysqlslap] and [client] groups of an option file. For information about option files used by MySQL
programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.16 mysqlslap Options

Option Name Description Introduced

--auto-generate-sql Generate SQL statements
automatically when they are not
supplied in files or using command
options

--auto-generate-sql-add-
autoincrement

Add AUTO_INCREMENT column
to automatically generated tables

--auto-generate-sql-execute-
number

Specify how many queries to
generate automatically

--auto-generate-sql-guid-primary Add a GUID-based primary key to
automatically generated tables

--auto-generate-sql-load-type Specify the test load type

--auto-generate-sql-secondary-
indexes

Specify how many secondary
indexes to add to automatically
generated tables

--auto-generate-sql-unique-query-
number

How many different queries to
generate for automatic tests

--auto-generate-sql-unique-write-
number

How many different queries to
generate for --auto-generate-sql-
write-number

--auto-generate-sql-write-number How many row inserts to perform
on each thread

--commit How many statements to execute
before committing

--compress Compress all information sent
between client and server

--concurrency Number of clients to simulate
when issuing the SELECT
statement

--create File or string containing the
statement to use for creating the
table

--create-schema Schema in which to run the tests

--csv Generate output in comma-
separated values format

--debug Write debugging log

--debug-check Print debugging information when
program exits

--debug-info Print debugging information,
memory, and CPU statistics when
program exits

423

mysqlslap — A Load Emulation Client

Option Name Description Introduced

--default-auth Authentication plugin to use

--defaults-extra-file Read named option file in addition
to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--delimiter Delimiter to use in SQL
statements

--detach Detach (close and reopen)
each connection after each N
statements

--enable-cleartext-plugin Enable cleartext authentication
plugin

--engine Storage engine to use for creating
the table

--help Display help message and exit

--host Host on which MySQL server is
located

--iterations Number of times to run the tests

--login-path Read login path options
from .mylogin.cnf

--no-defaults Read no option files

--no-drop Do not drop any schema created
during the test run

--number-char-cols Number of VARCHAR columns
to use if --auto-generate-sql is
specified

--number-int-cols Number of INT columns to use if --
auto-generate-sql is specified

--number-of-queries Limit each client to approximately
this number of queries

--only-print Do not connect to databases.
mysqlslap only prints what it would
have done

--password Password to use when connecting
to server

--pipe Connect to server using named
pipe (Windows only)

--plugin-dir Directory where plugins are
installed

--port TCP/IP port number for
connection

--post-query File or string containing the
statement to execute after the
tests have completed

424

mysqlslap — A Load Emulation Client

Option Name Description Introduced

--post-system String to execute using system()
after the tests have completed

--pre-query File or string containing the
statement to execute before
running the tests

--pre-system String to execute using system()
before running the tests

--print-defaults Print default options

--protocol Transport protocol to use

--query File or string containing the
SELECT statement to use for
retrieving data

--secure-auth Do not send passwords to server
in old (pre-4.1) format

5.6.17

--shared-memory-base-name Shared-memory name for shared-
memory connections (Windows
only)

--silent Silent mode

--socket Unix socket file or Windows
named pipe to use

--ssl Enable connection encryption

--ssl-ca File that contains list of trusted
SSL Certificate Authorities

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher Permissible ciphers for connection
encryption

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation-list files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of
connection to server

5.6.30

--ssl-verify-server-cert Verify host name against server
certificate Common Name identity

--user MySQL user name to use when
connecting to server

--verbose Verbose mode

--version Display version information and
exit

425

mysqlslap — A Load Emulation Client

• --help, -?

Display a help message and exit.

• --auto-generate-sql, -a

Generate SQL statements automatically when they are not supplied in files or using command options.

• --auto-generate-sql-add-autoincrement

Add an AUTO_INCREMENT column to automatically generated tables.

• --auto-generate-sql-execute-number=N

Specify how many queries to generate automatically.

• --auto-generate-sql-guid-primary

Add a GUID-based primary key to automatically generated tables.

• --auto-generate-sql-load-type=type

Specify the test load type. The permissible values are read (scan tables), write (insert into tables),
key (read primary keys), update (update primary keys), or mixed (half inserts, half scanning selects).
The default is mixed.

• --auto-generate-sql-secondary-indexes=N

Specify how many secondary indexes to add to automatically generated tables. By default, none are
added.

• --auto-generate-sql-unique-query-number=N

How many different queries to generate for automatic tests. For example, if you run a key test that
performs 1000 selects, you can use this option with a value of 1000 to run 1000 unique queries, or with a
value of 50 to perform 50 different selects. The default is 10.

• --auto-generate-sql-unique-write-number=N

How many different queries to generate for --auto-generate-sql-write-number. The default is
10.

• --auto-generate-sql-write-number=N

How many row inserts to perform. The default is 100.

• --commit=N

How many statements to execute before committing. The default is 0 (no commits are done).

• --compress, -C

Compress all information sent between the client and the server if possible. See Section 4.2.6,
“Connection Compression Control”.

• --concurrency=N, -c N

The number of parallel clients to simulate.

• --create=value

426

mysqlslap — A Load Emulation Client

The file or string containing the statement to use for creating the table.

• --create-schema=value

The schema in which to run the tests.

Note

If the --auto-generate-sql option is also given, mysqlslap drops the
schema at the end of the test run. To avoid this, use the --no-drop option as
well.

• --csv[=file_name]

Generate output in comma-separated values format. The output goes to the named file, or to the
standard output if no file is given.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/mysqlslap.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --default-auth=plugin

A hint about which client-side authentication plugin to use. See Section 6.2.11, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

427

mysqlslap — A Load Emulation Client

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlslap normally reads the [client] and [mysqlslap] groups. If this option is
given as --defaults-group-suffix=_other, mysqlslap also reads the [client_other] and
[mysqlslap_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --delimiter=str, -F str

The delimiter to use in SQL statements supplied in files or using command options.

• --detach=N

Detach (close and reopen) each connection after each N statements. The default is 0 (connections are
not detached).

• --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.4.1.5, “Client-Side
Cleartext Pluggable Authentication”.)

• --engine=engine_name, -e engine_name

The storage engine to use for creating tables.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --iterations=N, -i N

The number of times to run the tests.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-drop

Prevent mysqlslap from dropping any schema it creates during the test run.

428

mysqlslap — A Load Emulation Client

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --number-char-cols=N, -x N

The number of VARCHAR columns to use if --auto-generate-sql is specified.

• --number-int-cols=N, -y N

The number of INT columns to use if --auto-generate-sql is specified.

• --number-of-queries=N

Limit each client to approximately this many queries. Query counting takes into account the statement
delimiter. For example, if you invoke mysqlslap as follows, the ; delimiter is recognized so that each
instance of the query string counts as two queries. As a result, 5 rows (not 10) are inserted.

mysqlslap --delimiter=";" --number-of-queries=10
 --query="use test;insert into t values(null)"

• --only-print

Do not connect to databases. mysqlslap only prints what it would have done.

• --password[=password], -p[password]

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqlslap prompts for one. If given, there must be no space between --password= or -
p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlslap should not prompt for one, use the
--skip-password option.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

429

mysqlslap — A Load Emulation Client

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlslap does not find it. See Section 6.2.11, “Pluggable
Authentication”.

• --port=port_num, -P port_num

For TCP/IP connections, the port number to use.

• --post-query=value

The file or string containing the statement to execute after the tests have completed. This execution is
not counted for timing purposes.

• --post-system=str

The string to execute using system() after the tests have completed. This execution is not counted for
timing purposes.

• --pre-query=value

The file or string containing the statement to execute before running the tests. This execution is not
counted for timing purposes.

• --pre-system=str

The string to execute using system() before running the tests. This execution is not counted for timing
purposes.

• --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --query=value, -q value

The file or string containing the SELECT statement to use for retrieving data.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option is enabled by default; use --skip-secure-
auth to disable it. This option was added in MySQL 5.6.17.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated; expect support for them to be removed in a future

430

Administrative and Utility Programs

MySQL release. For account upgrade instructions, see Section 6.4.1.3, “Migrating
Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

Note

This option is deprecated; expect it to be removed in a future release. As of
MySQL 5.7.5, it is always enabled and attempting to disable it produces an error.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --silent, -s

Silent mode. No output.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --user=user_name, -u user_name

The user name of the MySQL account to use for connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used multiple
times to increase the amount of information.

• --version, -V

Display version information and exit.

4.6 Administrative and Utility Programs
This section describes administrative programs and programs that perform miscellaneous utility operations.

4.6.1 innochecksum — Offline InnoDB File Checksum Utility

innochecksum prints checksums for InnoDB files. This tool reads an InnoDB tablespace file, calculates
the checksum for each page, compares the calculated checksum to the stored checksum, and reports
mismatches, which indicate damaged pages. It was originally developed to speed up verifying the
integrity of tablespace files after power outages but can also be used after file copies. Because checksum
mismatches cause InnoDB to deliberately shut down a running server, it may be preferable to use this

431

myisam_ftdump — Display Full-Text Index information

tool rather than waiting for an in-production server to encounter the damaged pages. As of MySQL 5.6.16,
innochecksum supports files greater than 2GB in size. Previously, innochecksum only supported files
up to 2GB in size.

innochecksum does not support tablespaces that contain compressed pages.

innochecksum cannot be used on tablespace files that the server already has open. For such files, you
should use CHECK TABLE to check tables within the tablespace.

If checksum mismatches are found, you would normally restore the tablespace from backup or start the
server and attempt to use mysqldump to make a backup of the tables within the tablespace.

Invoke innochecksum like this:

innochecksum [options] file_name

innochecksum supports the following options. For options that refer to page numbers, the numbers are
zero-based.

• -c

Print a count of the number of pages in the file.

• -d

Debug mode; prints checksums for each page.

• -e num

End at this page number.

• -p num

Check only this page number.

• -s num

Start at this page number.

• -v

Verbose mode; print a progress indicator every five seconds.

4.6.2 myisam_ftdump — Display Full-Text Index information

myisam_ftdump displays information about FULLTEXT indexes in MyISAM tables. It reads the
MyISAM index file directly, so it must be run on the server host where the table is located. Before using
myisam_ftdump, be sure to issue a FLUSH TABLES statement first if the server is running.

myisam_ftdump scans and dumps the entire index, which is not particularly fast. On the other hand, the
distribution of words changes infrequently, so it need not be run often.

Invoke myisam_ftdump like this:

myisam_ftdump [options] tbl_name index_num

The tbl_name argument should be the name of a MyISAM table. You can also specify a table by naming
its index file (the file with the .MYI suffix). If you do not invoke myisam_ftdump in the directory where
the table files are located, the table or index file name must be preceded by the path name to the table's
database directory. Index numbers begin with 0.

432

myisamchk — MyISAM Table-Maintenance Utility

Example: Suppose that the test database contains a table named mytexttable that has the following
definition:

CREATE TABLE mytexttable
(
 id INT NOT NULL,
 txt TEXT NOT NULL,
 PRIMARY KEY (id),
 FULLTEXT (txt)
) ENGINE=MyISAM;

The index on id is index 0 and the FULLTEXT index on txt is index 1. If your working directory is the
test database directory, invoke myisam_ftdump as follows:

myisam_ftdump mytexttable 1

If the path name to the test database directory is /usr/local/mysql/data/test, you can
also specify the table name argument using that path name. This is useful if you do not invoke
myisam_ftdump in the database directory:

myisam_ftdump /usr/local/mysql/data/test/mytexttable 1

You can use myisam_ftdump to generate a list of index entries in order of frequency of occurrence like
this on Unix-like systems:

myisam_ftdump -c mytexttable 1 | sort -r

On Windows, use:

myisam_ftdump -c mytexttable 1 | sort /R

myisam_ftdump supports the following options:

• --help, -h -?

Display a help message and exit.

• --count, -c

Calculate per-word statistics (counts and global weights).

• --dump, -d

Dump the index, including data offsets and word weights.

• --length, -l

Report the length distribution.

• --stats, -s

Report global index statistics. This is the default operation if no other operation is specified.

• --verbose, -v

Verbose mode. Print more output about what the program does.

4.6.3 myisamchk — MyISAM Table-Maintenance Utility

The myisamchk utility gets information about your database tables or checks, repairs, or optimizes
them. myisamchk works with MyISAM tables (tables that have .MYD and .MYI files for storing data and
indexes).

433

myisamchk — MyISAM Table-Maintenance Utility

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables.
See Section 13.7.2.2, “CHECK TABLE Statement”, and Section 13.7.2.5, “REPAIR TABLE Statement”.

The use of myisamchk with partitioned tables is not supported.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible causes
include but are not limited to file system errors.

Invoke myisamchk like this:

myisamchk [options] tbl_name ...

The options specify what you want myisamchk to do. They are described in the following sections. You
can also get a list of options by invoking myisamchk --help.

With no options, myisamchk simply checks your table as the default operation. To get more information or
to tell myisamchk to take corrective action, specify options as described in the following discussion.

tbl_name is the database table you want to check or repair. If you run myisamchk somewhere other than
in the database directory, you must specify the path to the database directory, because myisamchk has
no idea where the database is located. In fact, myisamchk does not actually care whether the files you are
working on are located in a database directory. You can copy the files that correspond to a database table
into some other location and perform recovery operations on them there.

You can name several tables on the myisamchk command line if you wish. You can also specify a table
by naming its index file (the file with the .MYI suffix). This enables you to specify all tables in a directory
by using the pattern *.MYI. For example, if you are in a database directory, you can check all the MyISAM
tables in that directory like this:

myisamchk *.MYI

If you are not in the database directory, you can check all the tables there by specifying the path to the
directory:

myisamchk /path/to/database_dir/*.MYI

You can even check all tables in all databases by specifying a wildcard with the path to the MySQL data
directory:

myisamchk /path/to/datadir/*/*.MYI

The recommended way to quickly check all MyISAM tables is:

myisamchk --silent --fast /path/to/datadir/*/*.MYI

If you want to check all MyISAM tables and repair any that are corrupted, you can use the following
command:

myisamchk --silent --force --fast --update-state \
 --key_buffer_size=64M --myisam_sort_buffer_size=64M \
 --read_buffer_size=1M --write_buffer_size=1M \
 /path/to/datadir/*/*.MYI

This command assumes that you have more than 64MB free. For more information about memory
allocation with myisamchk, see Section 4.6.3.6, “myisamchk Memory Usage”.

For additional information about using myisamchk, see Section 7.6, “MyISAM Table Maintenance and
Crash Recovery”.

434

myisamchk — MyISAM Table-Maintenance Utility

Important

You must ensure that no other program is using the tables while you are running
myisamchk. The most effective means of doing so is to shut down the MySQL
server while running myisamchk, or to lock all tables that myisamchk is being
used on.

Otherwise, when you run myisamchk, it may display the following error message:

warning: clients are using or haven't closed the table properly

This means that you are trying to check a table that has been updated by another
program (such as the mysqld server) that hasn't yet closed the file or that has died
without closing the file properly, which can sometimes lead to the corruption of one
or more MyISAM tables.

If mysqld is running, you must force it to flush any table modifications that are still
buffered in memory by using FLUSH TABLES. You should then ensure that no one
is using the tables while you are running myisamchk

However, the easiest way to avoid this problem is to use CHECK TABLE instead of
myisamchk to check tables. See Section 13.7.2.2, “CHECK TABLE Statement”.

myisamchk supports the following options, which can be specified on the command line or in the
[myisamchk] group of an option file. For information about option files used by MySQL programs, see
Section 4.2.2.2, “Using Option Files”.

Table 4.17 myisamchk Options

Option Name Description Deprecated

--analyze Analyze the distribution of key
values

--backup Make a backup of the .MYD file as
file_name-time.BAK

--block-search Find the record that a block at the
given offset belongs to

--check Check the table for errors

--check-only-changed Check only tables that have
changed since the last check

--correct-checksum Correct the checksum information
for the table

--data-file-length Maximum length of the data file
(when re-creating data file when it
is full)

--debug Write debugging log

--decode_bits Decode_bits

--defaults-extra-file Read named option file in addition
to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

435

myisamchk — MyISAM Table-Maintenance Utility

Option Name Description Deprecated

--description Print some descriptive information
about the table

--extend-check Do very thorough table check or
repair that tries to recover every
possible row from the data file

--fast Check only tables that haven't
been closed properly

--force Do a repair operation
automatically if myisamchk finds
any errors in the table

--force Overwrite old temporary files. For
use with the -r or -o option

--ft_max_word_len Maximum word length for
FULLTEXT indexes

--ft_min_word_len Minimum word length for
FULLTEXT indexes

--ft_stopword_file Use stopwords from this file
instead of built-in list

--HELP Display help message and exit

--help Display help message and exit

--information Print informational statistics about
the table that is checked

--key_buffer_size Size of buffer used for index
blocks for MyISAM tables

--keys-used A bit-value that indicates which
indexes to update

--max-record-length Skip rows larger than the given
length if myisamchk cannot
allocate memory to hold them

--medium-check Do a check that is faster than an --
extend-check operation

--myisam_block_size Block size to be used for MyISAM
index pages

--myisam_sort_buffer_size The buffer that is allocated when
sorting the index when doing a
REPAIR or when creating indexes
with CREATE INDEX or ALTER
TABLE

--no-defaults Read no option files

--parallel-recover Uses the same technique as -r
and -n, but creates all the keys in
parallel, using different threads
(beta)

--print-defaults Print default options

436

myisamchk — MyISAM Table-Maintenance Utility

Option Name Description Deprecated

--quick Achieve a faster repair by not
modifying the data file

--read_buffer_size Each thread that does a
sequential scan allocates a buffer
of this size for each table it scans

--read-only Do not mark the table as checked

--recover Do a repair that can fix almost any
problem except unique keys that
aren't unique

--safe-recover Do a repair using an old recovery
method that reads through all
rows in order and updates all
index trees based on the rows
found

--set-auto-increment Force AUTO_INCREMENT
numbering for new records to start
at the given value

--set-collation Specify the collation to use for
sorting table indexes

--silent Silent mode

--sort_buffer_size The buffer that is allocated when
sorting the index when doing a
REPAIR or when creating indexes
with CREATE INDEX or ALTER
TABLE

Yes

--sort-index Sort the index tree blocks in high-
low order

--sort_key_blocks sort_key_blocks

--sort-records Sort records according to a
particular index

--sort-recover Force myisamchk to use sorting
to resolve the keys even if the
temporary files would be very
large

--stats_method Specifies how MyISAM index
statistics collection code should
treat NULLs

--tmpdir Directory to be used for storing
temporary files

--unpack Unpack a table that was packed
with myisampack

--update-state Store information in the .MYI file
to indicate when the table was
checked and whether the table
crashed

437

myisamchk — MyISAM Table-Maintenance Utility

Option Name Description Deprecated

--verbose Verbose mode

--version Display version information and
exit

--write_buffer_size Write buffer size

4.6.3.1 myisamchk General Options

The options described in this section can be used for any type of table maintenance operation performed
by myisamchk. The sections following this one describe options that pertain only to specific operations,
such as table checking or repairing.

• --help, -?

Display a help message and exit. Options are grouped by type of operation.

• --HELP, -H

Display a help message and exit. Options are presented in a single list.

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/myisamchk.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, myisamchk normally reads the [myisamchk] group. If this option is given as --defaults-
group-suffix=_other, myisamchk also reads the [myisamchk_other] group.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-defaults

438

myisamchk — MyISAM Table-Maintenance Utility

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --silent, -s

Silent mode. Write output only when errors occur. You can use -s twice (-ss) to make myisamchk very
silent.

• --verbose, -v

Verbose mode. Print more information about what the program does. This can be used with -d and -e.
Use -v multiple times (-vv, -vvv) for even more output.

• --version, -V

Display version information and exit.

• --wait, -w

Instead of terminating with an error if the table is locked, wait until the table is unlocked before
continuing. If you are running mysqld with external locking disabled, the table can be locked only by
another myisamchk command.

You can also set the following variables by using --var_name=value syntax:

Variable Default Value

decode_bits 9

ft_max_word_len version-dependent

ft_min_word_len 4

ft_stopword_file built-in list

key_buffer_size 523264

myisam_block_size 1024

myisam_sort_key_blocks 16

read_buffer_size 262136

sort_buffer_size 2097144

sort_key_blocks 16

439

myisamchk — MyISAM Table-Maintenance Utility

Variable Default Value

stats_method nulls_unequal

write_buffer_size 262136

The possible myisamchk variables and their default values can be examined with myisamchk --help:

sort_buffer_size is used when the keys are repaired by sorting keys, which is the normal case
when you use --recover. myisam_sort_buffer_size is available as an alternative name to
sort_buffer_size. myisam_sort_buffer_size is preferable to sort_buffer_size because
its name corresponds to the myisam_sort_buffer_size server system variable that has a similar
meaning. sort_buffer_size should be considered deprecated.

key_buffer_size is used when you are checking the table with --extend-check or when the keys are
repaired by inserting keys row by row into the table (like when doing normal inserts). Repairing through the
key buffer is used in the following cases:

• You use --safe-recover.

• The temporary files needed to sort the keys would be more than twice as big as when creating the
key file directly. This is often the case when you have large key values for CHAR, VARCHAR, or TEXT
columns, because the sort operation needs to store the complete key values as it proceeds. If you have
lots of temporary space and you can force myisamchk to repair by sorting, you can use the --sort-
recover option.

Repairing through the key buffer takes much less disk space than using sorting, but is also much slower.

If you want a faster repair, set the key_buffer_size and myisam_sort_buffer_size variables to
about 25% of your available memory. You can set both variables to large values, because only one of them
is used at a time.

myisam_block_size is the size used for index blocks.

stats_method influences how NULL values are treated for index statistics collection when the --
analyze option is given. It acts like the myisam_stats_method system variable. For more information,
see the description of myisam_stats_method in Section 5.1.7, “Server System Variables”, and
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.

ft_min_word_len and ft_max_word_len indicate the minimum and maximum word length for
FULLTEXT indexes on MyISAM tables. ft_stopword_file names the stopword file. These need to be
set under the following circumstances.

If you use myisamchk to perform an operation that modifies table indexes (such as repair or analyze), the
FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum and maximum word
length and the stopword file unless you specify otherwise. This can result in queries failing.

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length
or the stopword file in the server, specify the same ft_min_word_len, ft_max_word_len, and
ft_stopword_file values to myisamchk that you use for mysqld. For example, if you have set the
minimum word length to 3, you can repair a table with myisamchk like this:

myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, you can place
each one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]

440

myisamchk — MyISAM Table-Maintenance Utility

ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE TABLE,
or ALTER TABLE. These statements are performed by the server, which knows the proper full-text
parameter values to use.

4.6.3.2 myisamchk Check Options

myisamchk supports the following options for table checking operations:

• --check, -c

Check the table for errors. This is the default operation if you specify no option that selects an operation
type explicitly.

• --check-only-changed, -C

Check only tables that have changed since the last check.

• --extend-check, -e

Check the table very thoroughly. This is quite slow if the table has many indexes. This option should only
be used in extreme cases. Normally, myisamchk or myisamchk --medium-check should be able to
determine whether there are any errors in the table.

If you are using --extend-check and have plenty of memory, setting the key_buffer_size variable
to a large value helps the repair operation run faster.

See also the description of this option under table repair options.

For a description of the output format, see Section 4.6.3.5, “Obtaining Table Information with
myisamchk”.

• --fast, -F

Check only tables that haven't been closed properly.

• --force, -f

Do a repair operation automatically if myisamchk finds any errors in the table. The repair type is the
same as that specified with the --recover or -r option.

• --information, -i

Print informational statistics about the table that is checked.

• --medium-check, -m

Do a check that is faster than an --extend-check operation. This finds only 99.99% of all errors,
which should be good enough in most cases.

• --read-only, -T

Do not mark the table as checked. This is useful if you use myisamchk to check a table that is in use
by some other application that does not use locking, such as mysqld when run with external locking
disabled.

441

myisamchk — MyISAM Table-Maintenance Utility

• --update-state, -U

Store information in the .MYI file to indicate when the table was checked and whether the table crashed.
This should be used to get full benefit of the --check-only-changed option, but you shouldn't use
this option if the mysqld server is using the table and you are running it with external locking disabled.

4.6.3.3 myisamchk Repair Options

myisamchk supports the following options for table repair operations (operations performed when an
option such as --recover or --safe-recover is given):

• --backup, -B

Make a backup of the .MYD file as file_name-time.BAK

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --correct-checksum

Correct the checksum information for the table.

• --data-file-length=len, -D len

The maximum length of the data file (when re-creating data file when it is “full”).

• --extend-check, -e

Do a repair that tries to recover every possible row from the data file. Normally, this also finds a lot of
garbage rows. Do not use this option unless you are desperate.

See also the description of this option under table checking options.

For a description of the output format, see Section 4.6.3.5, “Obtaining Table Information with
myisamchk”.

• --force, -f

Overwrite old intermediate files (files with names like tbl_name.TMD) instead of aborting.

• --keys-used=val, -k val

For myisamchk, the option value is a bit value that indicates which indexes to update. Each binary bit of
the option value corresponds to a table index, where the first index is bit 0. An option value of 0 disables
updates to all indexes, which can be used to get faster inserts. Deactivated indexes can be reactivated
by using myisamchk -r.

• --no-symlinks, -l

Do not follow symbolic links. Normally myisamchk repairs the table that a symlink points to. This option
does not exist as of MySQL 4.0 because versions from 4.0 on do not remove symlinks during repair
operations.

• --max-record-length=len

Skip rows larger than the given length if myisamchk cannot allocate memory to hold them.

• --parallel-recover, -p

442

myisamchk — MyISAM Table-Maintenance Utility

Use the same technique as -r and -n, but create all the keys in parallel, using different threads. This is
beta-quality code. Use at your own risk!

• --quick, -q

Achieve a faster repair by modifying only the index file, not the data file. You can specify this option twice
to force myisamchk to modify the original data file in case of duplicate keys.

• --recover, -r

Do a repair that can fix almost any problem except unique keys that are not unique (which is an
extremely unlikely error with MyISAM tables). If you want to recover a table, this is the option to try first.
You should try --safe-recover only if myisamchk reports that the table cannot be recovered using
--recover. (In the unlikely case that --recover fails, the data file remains intact.)

If you have lots of memory, you should increase the value of myisam_sort_buffer_size.

• --safe-recover, -o

Do a repair using an old recovery method that reads through all rows in order and updates all index
trees based on the rows found. This is an order of magnitude slower than --recover, but can handle
a couple of very unlikely cases that --recover cannot. This recovery method also uses much less disk
space than --recover. Normally, you should repair first using --recover, and then with --safe-
recover only if --recover fails.

If you have lots of memory, you should increase the value of key_buffer_size.

• --set-collation=name

Specify the collation to use for sorting table indexes. The character set name is implied by the first part of
the collation name.

• --sort-recover, -n

Force myisamchk to use sorting to resolve the keys even if the temporary files would be very large.

• --tmpdir=dir_name, -t dir_name

The path of the directory to be used for storing temporary files. If this is not set, myisamchk uses the
value of the TMPDIR environment variable. --tmpdir can be set to a list of directory paths that are
used successively in round-robin fashion for creating temporary files. The separator character between
directory names is the colon (:) on Unix and the semicolon (;) on Windows.

• --unpack, -u

Unpack a table that was packed with myisampack.

4.6.3.4 Other myisamchk Options

myisamchk supports the following options for actions other than table checks and repairs:

• --analyze, -a

Analyze the distribution of key values. This improves join performance by enabling the join optimizer to
better choose the order in which to join the tables and which indexes it should use. To obtain information
about the key distribution, use a myisamchk --description --verbose tbl_name command or
the SHOW INDEX FROM tbl_name statement.

443

myisamchk — MyISAM Table-Maintenance Utility

• --block-search=offset, -b offset

Find the record that a block at the given offset belongs to.

• --description, -d

Print some descriptive information about the table. Specifying the --verbose option once or twice
produces additional information. See Section 4.6.3.5, “Obtaining Table Information with myisamchk”.

• --set-auto-increment[=value], -A[value]

Force AUTO_INCREMENT numbering for new records to start at the given value (or higher, if there are
existing records with AUTO_INCREMENT values this large). If value is not specified, AUTO_INCREMENT
numbers for new records begin with the largest value currently in the table, plus one.

• --sort-index, -S

Sort the index tree blocks in high-low order. This optimizes seeks and makes table scans that use
indexes faster.

• --sort-records=N, -R N

Sort records according to a particular index. This makes your data much more localized and may speed
up range-based SELECT and ORDER BY operations that use this index. (The first time you use this
option to sort a table, it may be very slow.) To determine a table's index numbers, use SHOW INDEX,
which displays a table's indexes in the same order that myisamchk sees them. Indexes are numbered
beginning with 1.

If keys are not packed (PACK_KEYS=0), they have the same length, so when myisamchk sorts and
moves records, it just overwrites record offsets in the index. If keys are packed (PACK_KEYS=1),
myisamchk must unpack key blocks first, then re-create indexes and pack the key blocks again. (In this
case, re-creating indexes is faster than updating offsets for each index.)

4.6.3.5 Obtaining Table Information with myisamchk

To obtain a description of a MyISAM table or statistics about it, use the commands shown here. The output
from these commands is explained later in this section.

• myisamchk -d tbl_name

Runs myisamchk in “describe mode” to produce a description of your table. If you start the MySQL
server with external locking disabled, myisamchk may report an error for a table that is updated while
it runs. However, because myisamchk does not change the table in describe mode, there is no risk of
destroying data.

• myisamchk -dv tbl_name

Adding -v runs myisamchk in verbose mode so that it produces more information about the table.
Adding -v a second time produces even more information.

• myisamchk -eis tbl_name

Shows only the most important information from a table. This operation is slow because it must read the
entire table.

• myisamchk -eiv tbl_name

This is like -eis, but tells you what is being done.

444

myisamchk — MyISAM Table-Maintenance Utility

The tbl_name argument can be either the name of a MyISAM table or the name of its index file, as
described in Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”. Multiple tbl_name
arguments can be given.

Suppose that a table named person has the following structure. (The MAX_ROWS table option is included
so that in the example output from myisamchk shown later, some values are smaller and fit the output
format more easily.)

CREATE TABLE person
(
 id INT NOT NULL AUTO_INCREMENT,
 last_name VARCHAR(20) NOT NULL,
 first_name VARCHAR(20) NOT NULL,
 birth DATE,
 death DATE,
 PRIMARY KEY (id),
 INDEX (last_name, first_name),
 INDEX (birth)
) MAX_ROWS = 1000000 ENGINE=MYISAM;

Suppose also that the table has these data and index file sizes:

-rw-rw---- 1 mysql mysql 9347072 Aug 19 11:47 person.MYD
-rw-rw---- 1 mysql mysql 6066176 Aug 19 11:47 person.MYI

Example of myisamchk -dvv output:

MyISAM file: person
Record format: Packed
Character set: latin1_swedish_ci (8)
File-version: 1
Creation time: 2009-08-19 16:47:41
Recover time: 2009-08-19 16:47:56
Status: checked,analyzed,optimized keys
Auto increment key: 1 Last value: 306688
Data records: 306688 Deleted blocks: 0
Datafile parts: 306688 Deleted data: 0
Datafile pointer (bytes): 4 Keyfile pointer (bytes): 3
Datafile length: 9347072 Keyfile length: 6066176
Max datafile length: 4294967294 Max keyfile length: 17179868159
Recordlength: 54

table description:
Key Start Len Index Type Rec/key Root Blocksize
1 2 4 unique long 1 99328 1024
2 6 20 multip. varchar prefix 512 3563520 1024
 27 20 varchar 512
3 48 3 multip. uint24 NULL 306688 6065152 1024

Field Start Length Nullpos Nullbit Type
1 1 1
2 2 4 no zeros
3 6 21 varchar
4 27 21 varchar
5 48 3 1 1 no zeros
6 51 3 1 2 no zeros

Explanations for the types of information myisamchk produces are given here. “Keyfile” refers to the index
file. “Record” and “row” are synonymous, as are “field” and “column.”

The initial part of the table description contains these values:

• MyISAM file

445

myisamchk — MyISAM Table-Maintenance Utility

Name of the MyISAM (index) file.

• Record format

The format used to store table rows. The preceding examples use Fixed length. Other possible
values are Compressed and Packed. (Packed corresponds to what SHOW TABLE STATUS reports as
Dynamic.)

• Chararacter set

The table default character set.

• File-version

Version of MyISAM format. Always 1.

• Creation time

When the data file was created.

• Recover time

When the index/data file was last reconstructed.

• Status

Table status flags. Possible values are crashed, open, changed, analyzed, optimized keys, and
sorted index pages.

• Auto increment key, Last value

The key number associated the table's AUTO_INCREMENT column, and the most recently generated
value for this column. These fields do not appear if there is no such column.

• Data records

The number of rows in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this space.
See Section 7.6.4, “MyISAM Table Optimization”.

• Datafile parts

For dynamic-row format, this indicates how many data blocks there are. For an optimized table without
fragmented rows, this is the same as Data records.

• Deleted data

How many bytes of unreclaimed deleted data there are. You can optimize your table to minimize this
space. See Section 7.6.4, “MyISAM Table Optimization”.

• Datafile pointer

The size of the data file pointer, in bytes. It is usually 2, 3, 4, or 5 bytes. Most tables manage with 2
bytes, but this cannot be controlled from MySQL yet. For fixed tables, this is a row address. For dynamic
tables, this is a byte address.

446

myisamchk — MyISAM Table-Maintenance Utility

• Keyfile pointer

The size of the index file pointer, in bytes. It is usually 1, 2, or 3 bytes. Most tables manage with 2 bytes,
but this is calculated automatically by MySQL. It is always a block address.

• Max datafile length

How long the table data file can become, in bytes.

• Max keyfile length

How long the table index file can become, in bytes.

• Recordlength

How much space each row takes, in bytes.

The table description part of the output includes a list of all keys in the table. For each key,
myisamchk displays some low-level information:

• Key

This key's number. This value is shown only for the first column of the key. If this value is missing, the
line corresponds to the second or later column of a multiple-column key. For the table shown in the
example, there are two table description lines for the second index. This indicates that it is a
multiple-part index with two parts.

• Start

Where in the row this portion of the index starts.

• Len

How long this portion of the index is. For packed numbers, this should always be the full length of the
column. For strings, it may be shorter than the full length of the indexed column, because you can index
a prefix of a string column. The total length of a multiple-part key is the sum of the Len values for all key
parts.

• Index

Whether a key value can exist multiple times in the index. Possible values are unique or multip.
(multiple).

• Type

What data type this portion of the index has. This is a MyISAM data type with the possible values
packed, stripped, or empty.

• Root

Address of the root index block.

• Blocksize

The size of each index block. By default this is 1024, but the value may be changed at compile time
when MySQL is built from source.

• Rec/key

447

myisamchk — MyISAM Table-Maintenance Utility

This is a statistical value used by the optimizer. It tells how many rows there are per value for this index.
A unique index always has a value of 1. This may be updated after a table is loaded (or greatly changed)
with myisamchk -a. If this is not updated at all, a default value of 30 is given.

The last part of the output provides information about each column:

• Field

The column number.

• Start

The byte position of the column within table rows.

• Length

The length of the column in bytes.

• Nullpos, Nullbit

For columns that can be NULL, MyISAM stores NULL values as a flag in a byte. Depending on how
many nullable columns there are, there can be one or more bytes used for this purpose. The Nullpos
and Nullbit values, if nonempty, indicate which byte and bit contains that flag indicating whether the
column is NULL.

The position and number of bytes used to store NULL flags is shown in the line for field 1. This is why
there are six Field lines for the person table even though it has only five columns.

• Type

The data type. The value may contain any of the following descriptors:

• constant

All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

448

myisamchk — MyISAM Table-Maintenance Utility

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

The Huff tree and Bits fields are displayed if the table has been compressed with myisampack. See
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”, for an example of this
information.

Example of myisamchk -eiv output:

Checking MyISAM file: person
Data records: 306688 Deleted blocks: 0
- check file-size
- check record delete-chain
No recordlinks
- check key delete-chain
block_size 1024:
- check index reference
- check data record references index: 1
Key: 1: Keyblocks used: 98% Packed: 0% Max levels: 3
- check data record references index: 2
Key: 2: Keyblocks used: 99% Packed: 97% Max levels: 3
- check data record references index: 3
Key: 3: Keyblocks used: 98% Packed: -14% Max levels: 3
Total: Keyblocks used: 98% Packed: 89%

- check records and index references
*** LOTS OF ROW NUMBERS DELETED ***

Records: 306688 M.recordlength: 25 Packed: 83%
Recordspace used: 97% Empty space: 2% Blocks/Record: 1.00
Record blocks: 306688 Delete blocks: 0
Record data: 7934464 Deleted data: 0
Lost space: 256512 Linkdata: 1156096

User time 43.08, System time 1.68
Maximum resident set size 0, Integral resident set size 0
Non-physical pagefaults 0, Physical pagefaults 0, Swaps 0
Blocks in 0 out 7, Messages in 0 out 0, Signals 0
Voluntary context switches 0, Involuntary context switches 0
Maximum memory usage: 1046926 bytes (1023k)

myisamchk -eiv output includes the following information:

• Data records

The number of rows in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this space.
See Section 7.6.4, “MyISAM Table Optimization”.

449

myisamchk — MyISAM Table-Maintenance Utility

• Key

The key number.

• Keyblocks used

What percentage of the keyblocks are used. When a table has just been reorganized with myisamchk,
the values are very high (very near theoretical maximum).

• Packed

MySQL tries to pack key values that have a common suffix. This can only be used for indexes on CHAR
and VARCHAR columns. For long indexed strings that have similar leftmost parts, this can significantly
reduce the space used. In the preceding example, the second key is 40 bytes long and a 97% reduction
in space is achieved.

• Max levels

How deep the B-tree for this key is. Large tables with long key values get high values.

• Records

How many rows are in the table.

• M.recordlength

The average row length. This is the exact row length for tables with fixed-length rows, because all rows
have the same length.

• Packed

MySQL strips spaces from the end of strings. The Packed value indicates the percentage of savings
achieved by doing this.

• Recordspace used

What percentage of the data file is used.

• Empty space

What percentage of the data file is unused.

• Blocks/Record

Average number of blocks per row (that is, how many links a fragmented row is composed of). This is
always 1.0 for fixed-format tables. This value should stay as close to 1.0 as possible. If it gets too large,
you can reorganize the table. See Section 7.6.4, “MyISAM Table Optimization”.

• Recordblocks

How many blocks (links) are used. For fixed-format tables, this is the same as the number of rows.

• Deleteblocks

How many blocks (links) are deleted.

• Recorddata

How many bytes in the data file are used.

450

myisamlog — Display MyISAM Log File Contents

• Deleted data

How many bytes in the data file are deleted (unused).

• Lost space

If a row is updated to a shorter length, some space is lost. This is the sum of all such losses, in bytes.

• Linkdata

When the dynamic table format is used, row fragments are linked with pointers (4 to 7 bytes each).
Linkdata is the sum of the amount of storage used by all such pointers.

4.6.3.6 myisamchk Memory Usage

Memory allocation is important when you run myisamchk. myisamchk uses no more memory than its
memory-related variables are set to. If you are going to use myisamchk on very large tables, you should
first decide how much memory you want it to use. The default is to use only about 3MB to perform repairs.
By using larger values, you can get myisamchk to operate faster. For example, if you have more than
512MB RAM available, you could use options such as these (in addition to any other options you might
specify):

myisamchk --myisam_sort_buffer_size=256M \
 --key_buffer_size=512M \
 --read_buffer_size=64M \
 --write_buffer_size=64M ...

Using --myisam_sort_buffer_size=16M is probably enough for most cases.

Be aware that myisamchk uses temporary files in TMPDIR. If TMPDIR points to a memory file system, out
of memory errors can easily occur. If this happens, run myisamchk with the --tmpdir=dir_name option
to specify a directory located on a file system that has more space.

When performing repair operations, myisamchk also needs a lot of disk space:

• Twice the size of the data file (the original file and a copy). This space is not needed if you do a repair
with --quick; in this case, only the index file is re-created. This space must be available on the same
file system as the original data file, as the copy is created in the same directory as the original.

• Space for the new index file that replaces the old one. The old index file is truncated at the start of the
repair operation, so you usually ignore this space. This space must be available on the same file system
as the original data file.

• When using --recover or --sort-recover (but not when using --safe-recover), you need
space on disk for sorting. This space is allocated in the temporary directory (specified by TMPDIR or --
tmpdir=dir_name). The following formula yields the amount of space required:

(largest_key + row_pointer_length) * number_of_rows * 2

You can check the length of the keys and the row_pointer_length with myisamchk -
dv tbl_name (see Section 4.6.3.5, “Obtaining Table Information with myisamchk”). The
row_pointer_length and number_of_rows values are the Datafile pointer and Data
records values in the table description. To determine the largest_key value, check the Key lines in
the table description. The Len column indicates the number of bytes for each key part. For a multiple-
column index, the key size is the sum of the Len values for all key parts.

If you have a problem with disk space during repair, you can try --safe-recover instead of --recover.

4.6.4 myisamlog — Display MyISAM Log File Contents

451

myisamlog — Display MyISAM Log File Contents

myisamlog processes the contents of a MyISAM log file. To create such a file, start the server with a --
log-isam=log_file option.

Invoke myisamlog like this:

myisamlog [options] [file_name [tbl_name] ...]

The default operation is update (-u). If a recovery is done (-r), all writes and possibly updates and deletes
are done and errors are only counted. The default log file name is myisam.log if no log_file argument
is given. If tables are named on the command line, only those tables are updated.

myisamlog supports the following options:

• -?, -I

Display a help message and exit.

• -c N

Execute only N commands.

• -f N

Specify the maximum number of open files.

• -F filepath/

Specify the file path with a trailing slash.

• -i

Display extra information before exiting.

• -o offset

Specify the starting offset.

• -p N

Remove N components from path.

• -r

Perform a recovery operation.

• -R record_pos_file record_pos

Specify record position file and record position.

• -u

Perform an update operation.

• -v

Verbose mode. Print more output about what the program does. This option can be given multiple times
to produce more and more output.

• -w write_file

Specify the write file.

452

myisampack — Generate Compressed, Read-Only MyISAM Tables

• -V

Display version information.

4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables

The myisampack utility compresses MyISAM tables. myisampack works by compressing each column in
the table separately. Usually, myisampack packs the data file 40% to 70%.

When the table is used later, the server reads into memory the information needed to decompress
columns. This results in much better performance when accessing individual rows, because you only have
to uncompress exactly one row.

MySQL uses mmap() when possible to perform memory mapping on compressed tables. If mmap() does
not work, MySQL falls back to normal read/write file operations.

Please note the following:

• If the mysqld server was invoked with external locking disabled, it is not a good idea to invoke
myisampack if the table might be updated by the server during the packing process. It is safest to
compress tables with the server stopped.

• After packing a table, it becomes read only. This is generally intended (such as when accessing packed
tables on a CD).

• myisampack does not support partitioned tables.

Invoke myisampack like this:

myisampack [options] file_name ...

Each file name argument should be the name of an index (.MYI) file. If you are not in the database
directory, you should specify the path name to the file. It is permissible to omit the .MYI extension.

After you compress a table with myisampack, use myisamchk -rq to rebuild its indexes. Section 4.6.3,
“myisamchk — MyISAM Table-Maintenance Utility”.

myisampack supports the following options. It also reads option files and supports the options for
processing them described at Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”.

• --help, -?

Display a help message and exit.

• --backup, -b

Make a backup of each table's data file using the name tbl_name.OLD.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --force, -f

453

myisampack — Generate Compressed, Read-Only MyISAM Tables

Produce a packed table even if it becomes larger than the original or if the intermediate file from
an earlier invocation of myisampack exists. (myisampack creates an intermediate file named
tbl_name.TMD in the database directory while it compresses the table. If you kill myisampack, the
.TMD file might not be deleted.) Normally, myisampack exits with an error if it finds that tbl_name.TMD
exists. With --force, myisampack packs the table anyway.

• --join=big_tbl_name, -j big_tbl_name

Join all tables named on the command line into a single packed table big_tbl_name. All tables that are
to be combined must have identical structure (same column names and types, same indexes, and so
forth).

big_tbl_name must not exist prior to the join operation. All source tables named on the command line
to be merged into big_tbl_name must exist. The source tables are read for the join operation but not
modified.

• --silent, -s

Silent mode. Write output only when errors occur.

• --test, -t

Do not actually pack the table, just test packing it.

• --tmpdir=dir_name, -T dir_name

Use the named directory as the location where myisampack creates temporary files.

• --verbose, -v

Verbose mode. Write information about the progress of the packing operation and its result.

• --version, -V

Display version information and exit.

• --wait, -w

Wait and retry if the table is in use. If the mysqld server was invoked with external locking disabled, it
is not a good idea to invoke myisampack if the table might be updated by the server during the packing
process.

The following sequence of commands illustrates a typical table compression session:

$> ls -l station.*
-rw-rw-r-- 1 jones my 994128 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 jones my 53248 Apr 17 19:00 station.MYI
-rw-rw-r-- 1 jones my 5767 Apr 17 19:00 station.frm

$> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-02-02 3:06:43
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 2 Keyfile pointer (bytes): 2
Max datafile length: 54657023 Max keyfile length: 33554431
Recordlength: 834

454

myisampack — Generate Compressed, Read-Only MyISAM Tables

Record format: Fixed length

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 1024 1024 1
2 32 30 multip. text 10240 1024 1

Field Start Length Type
1 1 1
2 2 4
3 6 4
4 10 1
5 11 20
6 31 1
7 32 30
8 62 35
9 97 35
10 132 35
11 167 4
12 171 16
13 187 35
14 222 4
15 226 16
16 242 20
17 262 20
18 282 20
19 302 30
20 332 4
21 336 4
22 340 1
23 341 8
24 349 8
25 357 8
26 365 2
27 367 2
28 369 4
29 373 4
30 377 1
31 378 2
32 380 8
33 388 4
34 392 4
35 396 4
36 400 4
37 404 1
38 405 4
39 409 4
40 413 4
41 417 4
42 421 4
43 425 4
44 429 20
45 449 30
46 479 1
47 480 1
48 481 79
49 560 79
50 639 79
51 718 79
52 797 8
53 805 1
54 806 1
55 807 20
56 827 4
57 831 4

$> myisampack station.MYI

455

myisampack — Generate Compressed, Read-Only MyISAM Tables

Compressing station.MYI: (1192 records)
- Calculating statistics

normal: 20 empty-space: 16 empty-zero: 12 empty-fill: 11
pre-space: 0 end-space: 12 table-lookups: 5 zero: 7
Original trees: 57 After join: 17
- Compressing file
87.14%
Remember to run myisamchk -rq on compressed tables

$> myisamchk -rq station
- check record delete-chain
- recovering (with sort) MyISAM-table 'station'
Data records: 1192
- Fixing index 1
- Fixing index 2

$> mysqladmin -uroot flush-tables

$> ls -l station.*
-rw-rw-r-- 1 jones my 127874 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 jones my 55296 Apr 17 19:04 station.MYI
-rw-rw-r-- 1 jones my 5767 Apr 17 19:00 station.frm

$> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-04-17 19:04:26
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 3 Keyfile pointer (bytes): 1
Max datafile length: 16777215 Max keyfile length: 131071
Recordlength: 834
Record format: Compressed

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 10240 1024 1
2 32 30 multip. text 54272 1024 1

Field Start Length Type Huff tree Bits
1 1 1 constant 1 0
2 2 4 zerofill(1) 2 9
3 6 4 no zeros, zerofill(1) 2 9
4 10 1 3 9
5 11 20 table-lookup 4 0
6 31 1 3 9
7 32 30 no endspace, not_always 5 9
8 62 35 no endspace, not_always, no empty 6 9
9 97 35 no empty 7 9
10 132 35 no endspace, not_always, no empty 6 9
11 167 4 zerofill(1) 2 9
12 171 16 no endspace, not_always, no empty 5 9
13 187 35 no endspace, not_always, no empty 6 9
14 222 4 zerofill(1) 2 9
15 226 16 no endspace, not_always, no empty 5 9
16 242 20 no endspace, not_always 8 9
17 262 20 no endspace, no empty 8 9
18 282 20 no endspace, no empty 5 9
19 302 30 no endspace, no empty 6 9
20 332 4 always zero 2 9
21 336 4 always zero 2 9
22 340 1 3 9
23 341 8 table-lookup 9 0
24 349 8 table-lookup 10 0

456

myisampack — Generate Compressed, Read-Only MyISAM Tables

25 357 8 always zero 2 9
26 365 2 2 9
27 367 2 no zeros, zerofill(1) 2 9
28 369 4 no zeros, zerofill(1) 2 9
29 373 4 table-lookup 11 0
30 377 1 3 9
31 378 2 no zeros, zerofill(1) 2 9
32 380 8 no zeros 2 9
33 388 4 always zero 2 9
34 392 4 table-lookup 12 0
35 396 4 no zeros, zerofill(1) 13 9
36 400 4 no zeros, zerofill(1) 2 9
37 404 1 2 9
38 405 4 no zeros 2 9
39 409 4 always zero 2 9
40 413 4 no zeros 2 9
41 417 4 always zero 2 9
42 421 4 no zeros 2 9
43 425 4 always zero 2 9
44 429 20 no empty 3 9
45 449 30 no empty 3 9
46 479 1 14 4
47 480 1 14 4
48 481 79 no endspace, no empty 15 9
49 560 79 no empty 2 9
50 639 79 no empty 2 9
51 718 79 no endspace 16 9
52 797 8 no empty 2 9
53 805 1 17 1
54 806 1 3 9
55 807 20 no empty 3 9
56 827 4 no zeros, zerofill(2) 2 9
57 831 4 no zeros, zerofill(1) 2 9

myisampack displays the following kinds of information:

• normal

The number of columns for which no extra packing is used.

• empty-space

The number of columns containing values that are only spaces. These occupy one bit.

• empty-zero

The number of columns containing values that are only binary zeros. These occupy one bit.

• empty-fill

The number of integer columns that do not occupy the full byte range of their type. These are changed to
a smaller type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT column (one
byte) if all its values are in the range from -128 to 127.

• pre-space

The number of decimal columns that are stored with leading spaces. In this case, each value contains a
count for the number of leading spaces.

• end-space

The number of columns that have a lot of trailing spaces. In this case, each value contains a count for
the number of trailing spaces.

457

myisampack — Generate Compressed, Read-Only MyISAM Tables

• table-lookup

The column had only a small number of different values, which were converted to an ENUM before
Huffman compression.

• zero

The number of columns for which all values are zero.

• Original trees

The initial number of Huffman trees.

• After join

The number of distinct Huffman trees left after joining trees to save some header space.

After a table has been compressed, the Field lines displayed by myisamchk -dvv include additional
information about each column:

• Type

The data type. The value may contain any of the following descriptors:

• constant

All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

458

mysql_config_editor — MySQL Configuration Utility

• Bits

The number of bits used in the Huffman tree.

After you run myisampack, use myisamchk to re-create any indexes. At this time, you can also sort the
index blocks and create statistics needed for the MySQL optimizer to work more efficiently:

myisamchk -rq --sort-index --analyze tbl_name.MYI

After you have installed the packed table into the MySQL database directory, you should execute
mysqladmin flush-tables to force mysqld to start using the new table.

To unpack a packed table, use the --unpack option to myisamchk.

4.6.6 mysql_config_editor — MySQL Configuration Utility

The mysql_config_editor utility enables you to store authentication credentials in an obfuscated login
path file named .mylogin.cnf. The file location is the %APPDATA%\MySQL directory on Windows and
the current user's home directory on non-Windows systems. The file can be read later by MySQL client
programs to obtain authentication credentials for connecting to MySQL Server.

The unobfuscated format of the .mylogin.cnf login path file consists of option groups, similar to other
option files. Each option group in .mylogin.cnf is called a “login path,” which is a group that permits only
certain options: host, user, password, port and socket. Think of a login path option group as a set of
options that specify which MySQL server to connect to and which account to authenticate as. Here is an
unobfuscated example:

[client]
user = mydefaultname
password = mydefaultpass
host = 127.0.0.1
[mypath]
user = myothername
password = myotherpass
host = localhost

When you invoke a client program to connect to the server, the client uses .mylogin.cnf in conjunction
with other option files. Its precedence is higher than other option files, but less than options specified
explicitly on the client command line. For information about the order in which option files are used, see
Section 4.2.2.2, “Using Option Files”.

To specify an alternate login path file name, set the MYSQL_TEST_LOGIN_FILE environment
variable. This variable is recognized by mysql_config_editor, by standard MySQL clients (mysql,
mysqladmin, and so forth), and by the mysql-test-run.pl testing utility.

Programs use groups in the login path file as follows:

• mysql_config_editor operates on the client login path by default if you specify no --login-
path=name option to indicate explicitly which login path to use.

• Without a --login-path option, client programs read the same option groups from the login path file
that they read from other option files. Consider this command:

mysql

By default, the mysql client reads the [client] and [mysql] groups from other option files, so it
reads them from the login path file as well.

• With a --login-path option, client programs additionally read the named login path from the login
path file. The option groups read from other option files remain the same. Consider this command:

459

mysql_config_editor — MySQL Configuration Utility

mysql --login-path=mypath

The mysql client reads [client] and [mysql] from other option files, and [client], [mysql], and
[mypath] from the login path file.

• Client programs read the login path file even when the --no-defaults option is used. This permits
passwords to be specified in a safer way than on the command line even if --no-defaults is present.

mysql_config_editor obfuscates the .mylogin.cnf file so it cannot be read as cleartext, and its
contents when unobfuscated by client programs are used only in memory. In this way, passwords can be
stored in a file in non-cleartext format and used later without ever needing to be exposed on the command
line or in an environment variable. mysql_config_editor provides a print command for displaying the
login path file contents, but even in this case, password values are masked so as never to appear in a way
that other users can see them.

The obfuscation used by mysql_config_editor prevents passwords from appearing in .mylogin.cnf
as cleartext and provides a measure of security by preventing inadvertent password exposure. For
example, if you display a regular unobfuscated my.cnf option file on the screen, any passwords it contains
are visible for anyone to see. With .mylogin.cnf, that is not true. But the obfuscation used does not
deter a determined attacker and you should not consider it unbreakable. A user who can gain system
administration privileges on your machine to access your files could unobfuscate the .mylogin.cnf file
with some effort.

The login path file must be readable and writable to the current user, and inaccessible to other users.
Otherwise, mysql_config_editor ignores it, and client programs do not use it, either.

Invoke mysql_config_editor like this:

mysql_config_editor [program_options] command [command_options]

If the login path file does not exist, mysql_config_editor creates it.

Command arguments are given as follows:

• program_options consists of general mysql_config_editor options.

• command indicates what action to perform on the .mylogin.cnf login path file. For example, set
writes a login path to the file, remove removes a login path, and print displays login path contents.

• command_options indicates any additional options specific to the command, such as the login path
name and the values to use in the login path.

The position of the command name within the set of program arguments is significant. For example, these
command lines have the same arguments, but produce different results:

mysql_config_editor --help set
mysql_config_editor set --help

The first command line displays a general mysql_config_editor help message, and ignores the set
command. The second command line displays a help message specific to the set command.

Suppose that you want to establish a client login path that defines your default connection
parameters, and an additional login path named remote for connecting to the MySQL server the host
remote.example.com. You want to log in as follows:

• By default, to the local server with a user name and password of localuser and localpass

• To the remote server with a user name and password of remoteuser and remotepass

460

mysql_config_editor — MySQL Configuration Utility

To set up the login paths in the .mylogin.cnf file, use the following set commands. Enter each
command on a single line, and enter the appropriate passwords when prompted:

$> mysql_config_editor set --login-path=client
 --host=localhost --user=localuser --password
Enter password: enter password "localpass" here
$> mysql_config_editor set --login-path=remote
 --host=remote.example.com --user=remoteuser --password
Enter password: enter password "remotepass" here

mysql_config_editor uses the client login path by default, so the --login-path=client option
can be omitted from the first command without changing its effect.

To see what mysql_config_editor writes to the .mylogin.cnf file, use the print command:

$> mysql_config_editor print --all
[client]
user = localuser
password = *****
host = localhost
[remote]
user = remoteuser
password = *****
host = remote.example.com

The print command displays each login path as a set of lines beginning with a group header indicating
the login path name in square brackets, followed by the option values for the login path. Password values
are masked and do not appear as cleartext.

If you do not specify --all to display all login paths or --login-path=name to display a named login
path, the print command displays the client login path by default, if there is one.

As shown by the preceding example, the login path file can contain multiple login paths. In this way,
mysql_config_editor makes it easy to set up multiple “personalities” for connecting to different MySQL
servers, or for connecting to a given server using different accounts. Any of these can be selected by name
later using the --login-path option when you invoke a client program. For example, to connect to the
remote server, use this command:

mysql --login-path=remote

Here, mysql reads the [client] and [mysql] option groups from other option files, and the [client],
[mysql], and [remote] groups from the login path file.

To connect to the local server, use this command:

mysql --login-path=client

Because mysql reads the client and mysql login paths by default, the --login-path option does not
add anything in this case. That command is equivalent to this one:

mysql

Options read from the login path file take precedence over options read from other option files. Options
read from login path groups appearing later in the login path file take precedence over options read from
groups appearing earlier in the file.

mysql_config_editor adds login paths to the login path file in the order you create them, so you
should create more general login paths first and more specific paths later. If you need to move a login path
within the file, you can remove it, then recreate it to add it to the end. For example, a client login path
is more general because it is read by all client programs, whereas a mysqldump login path is read only
by mysqldump. Options specified later override options specified earlier, so putting the login paths in the
order client, mysqldump enables mysqldump-specific options to override client options.

461

mysql_config_editor — MySQL Configuration Utility

When you use the set command with mysql_config_editor to create a login path, you need not
specify all possible option values (host name, user name, password, port, socket). Only those values given
are written to the path. Any missing values required later can be specified when you invoke a client path
to connect to the MySQL server, either in other option files or on the command line. Any options specified
on the command line override those specified in the login path file or other option files. For example, if
the credentials in the remote login path also apply for the host remote2.example.com, connect to the
server on that host like this:

mysql --login-path=remote --host=remote2.example.com

mysql_config_editor General Options

mysql_config_editor supports the following general options, which may be used preceding
any command named on the command line. For descriptions of command-specific options, see
mysql_config_editor Commands and Command-Specific Options.

Table 4.18 mysql_config_editor General Options

Option Name Description

--debug Write debugging log

--help Display help message and exit

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a general help message and exit.

To see a command-specific help message, invoke mysql_config_editor as follows, where command
is a command other than help:

mysql_config_editor command --help

• --debug[=debug_options], -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/mysql_config_editor.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --verbose, -v

Verbose mode. Print more information about what the program does. This option may be helpful in
diagnosing problems if an operation does not have the effect you expect.

• --version, -V

Display version information and exit.

mysql_config_editor Commands and Command-Specific Options

This section describes the permitted mysql_config_editor commands, and, for each one, the
command-specific options permitted following the command name on the command line.

In addition, mysql_config_editor supports general options that can be used preceding any command.
For descriptions of these options, see mysql_config_editor General Options.

462

mysql_config_editor — MySQL Configuration Utility

mysql_config_editor supports these commands:

• help

Display a general help message and exit. This command takes no following options.

To see a command-specific help message, invoke mysql_config_editor as follows, where command
is a command other than help:

mysql_config_editor command --help

• print [options]

Print the contents of the login path file in unobfuscated form, with the exception that passwords are
displayed as *****.

The default login path name is client if no login path is named. If both --all and --login-path are
given, --all takes precedence.

The print command permits these options following the command name:

• --help, -?

Display a help message for the print command and exit.

To see a general help message, use mysql_config_editor --help.

• --all

Print the contents of all login paths in the login path file.

• --login-path=name, -G name

Print the contents of the named login path.

• remove [options]

Remove a login path from the login path file, or modify a login path by removing options from it.

This command removes from the login path only such options as are specified with the --host, --
password, --port, --socket, and --user options. If none of those options are given, remove
removes the entire login path. For example, this command removes only the user option from the
mypath login path rather than the entire mypath login path:

mysql_config_editor remove --login-path=mypath --user

This command removes the entire mypath login path:

mysql_config_editor remove --login-path=mypath

The remove command permits these options following the command name:

• --help, -?

Display a help message for the remove command and exit.

To see a general help message, use mysql_config_editor --help.

• --host, -h

463

mysql_config_editor — MySQL Configuration Utility

Remove the host name from the login path.

• --login-path=name, -G name

The login path to remove or modify. The default login path name is client if this option is not given.

• --password, -p

Remove the password from the login path.

• --port, -P

Remove the TCP/IP port number from the login path. This option was added in MySQL 5.6.11.

• --socket, -S

Remove the Unix socket file name from the login path. This option was added in MySQL 5.6.11.

• --user, -u

Remove the user name from the login path.

• --warn, -w

Warn and prompt the user for confirmation if the command attempts to remove the default login path
(client) and --login-path=client was not specified. This option is enabled by default; use --
skip-warn to disable it.

• reset [options]

Empty the contents of the login path file.

The reset command permits these options following the command name:

• --help, -?

Display a help message for the reset command and exit.

To see a general help message, use mysql_config_editor --help.

464

mysqlaccess — Client for Checking Access Privileges

• set [options]

Write a login path to the login path file.

This command writes to the login path only such options as are specified with the --host,
--password, --port, --socket, and --user options. If none of those options are given,
mysql_config_editor writes the login path as an empty group.

The set command permits these options following the command name:

• --help, -?

Display a help message for the set command and exit.

To see a general help message, use mysql_config_editor --help.

• --host=host_name, -h host_name

The host name to write to the login path.

• --login-path=name, -G name

The login path to create. The default login path name is client if this option is not given.

• --password, -p

Prompt for a password to write to the login path. After mysql_config_editor displays the
prompt, type the password and press Enter. To prevent other users from seeing the password,
mysql_config_editor does not echo it.

To specify an empty password, press Enter at the password prompt. The resulting login path written to
the login path file includes a line like this:

password =

• --port=port_num, -P port_num

The TCP/IP port number to write to the login path. This option was added in MySQL 5.6.11.

• --socket=file_name, -S file_name

The Unix socket file name to write to the login path. This option was added in MySQL 5.6.11.

• --user=user_name, -u user_name

The user name to write to the login path.

• --warn, -w

Warn and prompt the user for confirmation if the command attempts to overwrite an existing login
path. This option is enabled by default; use --skip-warn to disable it.

4.6.7 mysqlaccess — Client for Checking Access Privileges

Note

This utility is deprecated in MySQL 5.6.17 and removed in MySQL 5.7
465

mysqlaccess — Client for Checking Access Privileges

mysqlaccess is a diagnostic tool that Yves Carlier has provided for the MySQL distribution. It checks the
access privileges for a host name, user name, and database combination. mysqlaccess checks access
using only the user and db tables. It does not check table, column, or routine privileges specified in the
tables_priv, columns_priv, or procs_priv tables.

Invoke mysqlaccess like this:

mysqlaccess [host_name [user_name [db_name]]] [options]

When mysqlaccess runs, it loads and executes the contents of its configuration file,
mysqlaccess.conf. mysqlaccess looks for the configuration file in these locations, in order:

• The directory named by the SYSCONFDIR option to CMake when MySQL was built. By default, this is the
etc directory located under the compiled-in installation directory.

• The /etc directory.

mysqlaccess supports the options shown in the following table.

Table 4.19 mysqlaccess Options

Option Name Description

--brief Generate reports in single-line tabular format

--commit Copy the new access privileges from the temporary
tables to the original grant tables

--copy Reload the temporary grant tables from original
ones

--db Specify the database name

--debug Specify the debug level

--help Display help message and exit

--host Host on which MySQL server is located

--howto Display some examples that show how to use
mysqlaccess

--old_server Assume that the server is an old MySQL server
(prior to MySQL 3.21)

--password Password to use when connecting to server

--plan Display suggestions and ideas for future releases

--preview Show the privilege differences after making changes
to the temporary grant tables

--relnotes Display release notes

--rhost Host on which MySQL server is located

--rollback Undo the most recent changes to the temporary
grant tables

--spassword Password to use when connecting to server as the
superuser

--superuser Specify the user name for connecting as the
superuser

--table Generate reports in table format

466

mysqlaccess — Client for Checking Access Privileges

Option Name Description

--user MySQL user name to use when connecting to
server

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --brief, -b

Generate reports in single-line tabular format.

• --commit

Copy the new access privileges from the temporary tables to the original grant tables. The grant tables
must be flushed for the new privileges to take effect. (For example, execute a mysqladmin reload
command.)

• --copy

Reload the temporary grant tables from original ones.

• --db=db_name, -d db_name

Specify the database name.

• --debug=N

Specify the debug level. N can be an integer from 0 to 3.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --host=host_name, -h host_name

The host name to use in the access privileges.

• --howto

Display some examples that show how to use mysqlaccess.

• --old_server

Assume that the server is an old MySQL server (before MySQL 3.21) that does not yet know how to
handle full WHERE clauses.

• --password[=password], -p[password]

The password to use when connecting to the server. If you omit the password value following the --
password or -p option on the command line, mysqlaccess prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”.

• --plan

Display suggestions and ideas for future releases.

467

mysqlbinlog — Utility for Processing Binary Log Files

• --preview

Show the privilege differences after making changes to the temporary grant tables.

• --relnotes

Display the release notes.

• --rhost=host_name, -H host_name

Connect to the MySQL server on the given host.

• --rollback

Undo the most recent changes to the temporary grant tables.

• --spassword[=password], -P[password]

The password to use when connecting to the server as the superuser. If you omit the password value
following the --spassword or -p option on the command line, mysqlaccess prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”.

• --superuser=user_name, -U user_name

Specify the user name for connecting as the superuser.

• --table, -t

Generate reports in table format.

• --user=user_name, -u user_name

The user name to use in the access privileges.

• --version, -v

Display version information and exit.

If your MySQL distribution is installed in some nonstandard location, you must change the location where
mysqlaccess expects to find the mysql client. Edit the mysqlaccess script at approximately line 18.
Search for a line that looks like this:

$MYSQL = '/usr/local/bin/mysql'; # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system. If you do not do
this, a Broken pipe error occurs when you run mysqlaccess.

4.6.8 mysqlbinlog — Utility for Processing Binary Log Files

The server's binary log consists of files containing “events” that describe modifications to database
contents. The server writes these files in binary format. To display their contents in text format, use the
mysqlbinlog utility. You can also use mysqlbinlog to display the contents of relay log files written by a
replica server in a replication setup because relay logs have the same format as binary logs. The binary log
and relay log are discussed further in Section 5.4.4, “The Binary Log”, and Section 17.2.2, “Relay Log and
Replication Metadata Repositories”.

Invoke mysqlbinlog like this:

468

mysqlbinlog — Utility for Processing Binary Log Files

mysqlbinlog [options] log_file ...

For example, to display the contents of the binary log file named binlog.000003, use this command:

mysqlbinlog binlog.0000003

The output includes events contained in binlog.000003. For statement-based logging, event information
includes the SQL statement, the ID of the server on which it was executed, the timestamp when the
statement was executed, how much time it took, and so forth. For row-based logging, the event indicates
a row change rather than an SQL statement. See Section 17.1.2, “Replication Formats”, for information
about logging modes.

Events are preceded by header comments that provide additional information. For example:

at 141
#100309 9:28:36 server id 123 end_log_pos 245
 Query thread_id=3350 exec_time=11 error_code=0

In the first line, the number following at indicates the file offset, or starting position, of the event in the
binary log file.

The second line starts with a date and time indicating when the statement started on the server where
the event originated. For replication, this timestamp is propagated to replica servers. server id is the
server_id value of the server where the event originated. end_log_pos indicates where the next event
starts (that is, it is the end position of the current event + 1). thread_id indicates which thread executed
the event. exec_time is the time spent executing the event, on a source server. On a replica, it is the
difference of the end execution time on the replica minus the beginning execution time on the source. The
difference serves as an indicator of how much replication lags behind the source. error_code indicates
the result from executing the event. Zero means that no error occurred.

Note

When using event groups, the file offsets of events may be grouped together and
the comments of events may be grouped together. Do not mistake these grouped
events for blank file offsets.

The output from mysqlbinlog can be re-executed (for example, by using it as input to mysql) to redo
the statements in the log. This is useful for recovery operations after an unexpected server exit. For other
usage examples, see the discussion later in this section and in Section 7.5, “Point-in-Time (Incremental)
Recovery Using the Binary Log”.

Normally, you use mysqlbinlog to read binary log files directly and apply them to the local MySQL
server. It is also possible to read binary logs from a remote server by using the --read-from-remote-
server option. To read remote binary logs, the connection parameter options can be given to indicate how
to connect to the server. These options are --host, --password, --port, --protocol, --socket,
and --user.

When running mysqlbinlog against a large binary log, be careful that the filesystem has enough space
for the resulting files. To configure the directory that mysqlbinlog uses for temporary files, use the
TMPDIR environment variable.

In MySQL 5.6.10 and later, mysqlbinlog sets the value of pseudo_slave_mode to true before
executing any SQL statements.

mysqlbinlog supports the following options, which can be specified on the command line or in the
[mysqlbinlog] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.2.2, “Using Option Files”.

469

mysqlbinlog — Utility for Processing Binary Log Files

Table 4.20 mysqlbinlog Options

Option Name Description Introduced

--base64-output Print binary log entries using
base-64 encoding

--bind-address Use specified network interface to
connect to MySQL Server

--binlog-row-event-max-size Binary log max event size

--character-sets-dir Directory where character sets are
installed

--connection-server-id Used for testing and debugging.
See text for applicable default
values and other particulars

5.6.20

--database List entries for just this database

--debug Write debugging log

--debug-check Print debugging information when
program exits

--debug-info Print debugging information,
memory, and CPU statistics when
program exits

--default-auth Authentication plugin to use

--defaults-extra-file Read named option file in addition
to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--disable-log-bin Disable binary logging

--exclude-gtids Do not show any of the groups in
the GTID set provided

--force-if-open Read binary log files even if open
or not closed properly

--force-read If mysqlbinlog reads a binary log
event that it does not recognize, it
prints a warning

--help Display help message and exit

--hexdump Display a hex dump of the log in
comments

--host Host on which MySQL server is
located

--include-gtids Show only the groups in the GTID
set provided

--local-load Prepare local temporary files
for LOAD DATA in the specified
directory

--login-path Read login path options
from .mylogin.cnf

470

mysqlbinlog — Utility for Processing Binary Log Files

Option Name Description Introduced

--no-defaults Read no option files

--offset Skip the first N entries in the log

open_files_limit Specify the number of open file
descriptors to reserve

--password Password to use when connecting
to server

--plugin-dir Directory where plugins are
installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to use

--raw Write events in raw (binary) format
to output files

--read-from-remote-master Read the binary log from a
MySQL replication source server
rather than reading a local log file

--read-from-remote-server Read binary log from MySQL
server rather than local log file

--result-file Direct output to named file

--secure-auth Do not send passwords to server
in old (pre-4.1) format

5.6.17

--server-id Extract only those events created
by the server having the given
server ID

--server-id-bits Tell mysqlbinlog how to interpret
server IDs in binary log when log
was written by a mysqld having
its server-id-bits set to less than
the maximum; supported only
by MySQL Cluster version of
mysqlbinlog

--set-charset Add a SET NAMES charset_name
statement to the output

--shared-memory-base-name Shared-memory name for shared-
memory connections (Windows
only)

--short-form Display only the statements
contained in the log

--skip-gtids Do not include the GTIDs from the
binary log files in the output dump
file

--socket Unix socket file or Windows
named pipe to use

471

mysqlbinlog — Utility for Processing Binary Log Files

Option Name Description Introduced

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation-list files

--ssl-mode Desired security state of
connection to server

5.6.30

--start-datetime Read binary log from first event
with timestamp equal to or later
than datetime argument

--start-position Decode binary log from first event
with position equal to or greater
than argument

--stop-datetime Stop reading binary log at first
event with timestamp equal to or
greater than datetime argument

--stop-never Stay connected to server after
reading last binary log file

--stop-never-slave-server-id Slave server ID to report when
connecting to server

--stop-position Stop decoding binary log at first
event with position equal to or
greater than argument

--to-last-log Do not stop at the end of
requested binary log from a
MySQL server, but rather continue
printing to end of last binary log

--user MySQL user name to use when
connecting to server

--verbose Reconstruct row events as SQL
statements

--verify-binlog-checksum Verify checksums in binary log

--version Display version information and
exit

• --help, -?

Display a help message and exit.

472

mysqlbinlog — Utility for Processing Binary Log Files

• --base64-output=value

This option determines when events should be displayed encoded as base-64 strings using BINLOG
statements. The option has these permissible values (not case-sensitive):

• AUTO ("automatic") or UNSPEC ("unspecified") displays BINLOG statements automatically when
necessary (that is, for format description events and row events). If no --base64-output option is
given, the effect is the same as --base64-output=AUTO.

Note

Automatic BINLOG display is the only safe behavior if you intend to use the
output of mysqlbinlog to re-execute binary log file contents. The other option
values are intended only for debugging or testing purposes because they may
produce output that does not include all events in executable form.

• NEVER causes BINLOG statements not to be displayed. mysqlbinlog exits with an error if a row
event is found that must be displayed using BINLOG.

• DECODE-ROWS specifies to mysqlbinlog that you intend for row events to be decoded and displayed
as commented SQL statements by also specifying the --verbose option. Like NEVER, DECODE-ROWS
suppresses display of BINLOG statements, but unlike NEVER, it does not exit with an error if a row
event is found.

For examples that show the effect of --base64-output and --verbose on row event output, see
Section 4.6.8.2, “mysqlbinlog Row Event Display”.

• --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --binlog-row-event-max-size=N

Command-Line Format --binlog-row-event-max-size=#

Type Numeric

Default Value 4294967040

Minimum Value 256

Maximum Value 18446744073709547520

Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events
smaller than this size if possible. The value should be a multiple of 256. The default is 4GB.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

473

mysqlbinlog — Utility for Processing Binary Log Files

• --connection-server-id=server_id

This option is used to test a MySQL server for support of the BINLOG_DUMP_NON_BLOCK connection
flag, which was inadvertently removed in MySQL 5.6.5, and restored in MySQL 5.6.20 (Bug #18000079,
Bug #71178). It is not required for normal operation.

The effective default and minimum values for this option depend on whether mysqlbinlog is run in
blocking mode or non-blocking mode. When mysqlbinlog is run in blocking mode, the default (and
minimum) value is 1; when run in non-blocking mode, the default (and minimum) value is 0.

This option was added in MySQL 5.6.20.

• --database=db_name, -d db_name

This option causes mysqlbinlog to output entries from the binary log (local log only) that occur while
db_name is been selected as the default database by USE.

The --database option for mysqlbinlog is similar to the --binlog-do-db option for mysqld, but
can be used to specify only one database. If --database is given multiple times, only the last instance
is used.

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of --binlog-do-db depend on whether statement-based or row-
based logging is in use.

Statement-based logging. The --database option works as follows:

• While db_name is the default database, statements are output whether they modify tables in db_name
or a different database.

• Unless db_name is selected as the default database, statements are not output, even if they modify
tables in db_name.

• There is an exception for CREATE DATABASE, ALTER DATABASE, and DROP DATABASE. The
database being created, altered, or dropped is considered to be the default database when
determining whether to output the statement.

Suppose that the binary log was created by executing these statements using statement-based-logging:

INSERT INTO test.t1 (i) VALUES(100);
INSERT INTO db2.t2 (j) VALUES(200);
USE test;
INSERT INTO test.t1 (i) VALUES(101);
INSERT INTO t1 (i) VALUES(102);
INSERT INTO db2.t2 (j) VALUES(201);
USE db2;
INSERT INTO test.t1 (i) VALUES(103);
INSERT INTO db2.t2 (j) VALUES(202);

474

mysqlbinlog — Utility for Processing Binary Log Files

INSERT INTO t2 (j) VALUES(203);

mysqlbinlog --database=test does not output the first two INSERT statements because there
is no default database. It outputs the three INSERT statements following USE test, but not the three
INSERT statements following USE db2.

mysqlbinlog --database=db2 does not output the first two INSERT statements because there is no
default database. It does not output the three INSERT statements following USE test, but does output
the three INSERT statements following USE db2.

Row-based logging. mysqlbinlog outputs only entries that change tables belonging to db_name.
The default database has no effect on this. Suppose that the binary log just described was created using
row-based logging rather than statement-based logging. mysqlbinlog --database=test outputs
only those entries that modify t1 in the test database, regardless of whether USE was issued or what the
default database is.

If a server is running with binlog_format set to MIXED and you want it to be possible to use
mysqlbinlog with the --database option, you must ensure that tables that are modified are in the
database selected by USE. (In particular, no cross-database updates should be used.)

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/mysqlbinlog.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-check

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --default-auth=plugin

A hint about which client-side authentication plugin to use. See Section 6.2.11, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

475

mysqlbinlog — Utility for Processing Binary Log Files

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysqlbinlog normally reads the [client] and [mysqlbinlog] groups. If this option is
given as --defaults-group-suffix=_other, mysqlbinlog also reads the [client_other] and
[mysqlbinlog_other] groups.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --disable-log-bin, -D

Disable binary logging. This is useful for avoiding an endless loop if you use the --to-last-log option
and are sending the output to the same MySQL server. This option also is useful when restoring after an
unexpected exit to avoid duplication of the statements you have logged.

This option causes mysqlbinlog to include a SET sql_log_bin = 0 statement in its output to
disable binary logging of the remaining output. Manipulating the session value of the sql_log_bin
system variable is a restricted operation, so this option requires that you have privileges sufficient to set
restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

• --exclude-gtids=gtid_set

Do not display any of the groups listed in the gtid_set.

• --force-if-open, -F

Read binary log files even if they are open or were not closed properly.

• --force-read, -f

With this option, if mysqlbinlog reads a binary log event that it does not recognize, it prints a warning,
ignores the event, and continues. Without this option, mysqlbinlog stops if it reads such an event.

• --hexdump, -H

Display a hex dump of the log in comments, as described in Section 4.6.8.1, “mysqlbinlog Hex Dump
Format”. The hex output can be helpful for replication debugging.

• --host=host_name, -h host_name

Get the binary log from the MySQL server on the given host.

• --include-gtids=gtid_set

Display only the groups listed in the gtid_set.

• --local-load=dir_name, -l dir_name

476

mysqlbinlog — Utility for Processing Binary Log Files

For data loading operations corresponding to LOAD DATA statements, mysqlbinlog extracts the files
from the binary log events, writes them as temporary files to the local file system, and writes LOAD DATA
LOCAL statements to cause the files to be loaded. By default, mysqlbinlog writes these temporary files
to an operating system-specific directory. The --local-load option can be used to explicitly specify
the directory where mysqlbinlog should prepare local temporary files.

Important

These temporary files are not automatically removed by mysqlbinlog or any
other MySQL program.

• --login-path=name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits passwords to
be specified in a safer way than on the command line even when --no-defaults is used. To create
.mylogin.cnf, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor —
MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --offset=N, -o N

Skip the first N entries in the log.

• --open-files-limit=N

Specify the number of open file descriptors to reserve.

• --password[=password], -p[password]

The password of the MySQL account used for connecting to the server. The password value is optional.
If not given, mysqlbinlog prompts for one. If given, there must be no space between --password= or
-p and the password following it. If no password option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlbinlog should not prompt for one, use the
--skip-password option.

477

mysqlbinlog — Utility for Processing Binary Log Files

• --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlbinlog does not find it. See Section 6.2.11, “Pluggable
Authentication”.

• --port=port_num, -P port_num

The TCP/IP port number to use for connecting to a remote server.

• --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 4.2.5, “Connection Transport Protocols”.

• --raw

By default, mysqlbinlog reads binary log files and writes events in text format. The --raw option
tells mysqlbinlog to write them in their original binary format. Its use requires that --read-from-
remote-server also be used because the files are requested from a server. mysqlbinlog writes
one output file for each file read from the server. The --raw option can be used to make a backup of a
server's binary log. With the --stop-never option, the backup is “live” because mysqlbinlog stays
connected to the server. By default, output files are written in the current directory with the same names
as the original log files. Output file names can be modified using the --result-file option. For more
information, see Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”.

• --read-from-remote-master=type

Read binary logs from a MySQL server with the COM_BINLOG_DUMP or COM_BINLOG_DUMP_GTID
commands by setting the option value to either BINLOG-DUMP-NON-GTIDS or BINLOG-DUMP-
GTIDS, respectively. If --read-from-remote-master=BINLOG-DUMP-GTIDS is combined with --
exclude-gtids, transactions can be filtered out on the source, avoiding unnecessary network traffic.

The connection parameter options are used with this option or the --read-from-remote-server
option. These options are --host, --password, --port, --protocol, --socket, and --user. If
neither of the remote options is specified, the connection parameter options are ignored.

The REPLICATION SLAVE privilege is required to use this option.

• --read-from-remote-server=file_name, -R

Read the binary log from a MySQL server rather than reading a local log file. This option requires that
the remote server be running. It works only for binary log files on the remote server, not relay log files,
and takes only the binary log file name (including the numeric suffix) as its argument, while ignoring any
path.

The connection parameter options are used with this option or the --read-from-remote-master
option. These options are --host, --password, --port, --protocol, --socket, and --user. If
neither of the remote options is specified, the connection parameter options are ignored.

478

mysqlbinlog — Utility for Processing Binary Log Files

The REPLICATION SLAVE privilege is required to use this option.

This option is like --read-from-remote-master=BINLOG-DUMP-NON-GTIDS.

• --result-file=name, -r name

Without the --raw option, this option indicates the file to which mysqlbinlog writes text output. With
--raw, mysqlbinlog writes one binary output file for each log file transferred from the server, writing
them by default in the current directory using the same names as the original log file. In this case, the --
result-file option value is treated as a prefix that modifies output file names.

• --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format. This option is enabled by default; use --skip-secure-
auth to disable it. This option was added in MySQL 5.6.17.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated; expect support for them to be removed in a future
MySQL release. For account upgrade instructions, see Section 6.4.1.3, “Migrating
Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

Note

This option is deprecated; expect it to be removed in a future release. As of
MySQL 5.7.5, it is always enabled and attempting to disable it produces an error.

• --server-id=id

Display only those events created by the server having the given server ID.

• --server-id-bits=N

Use only the first N bits of the server_id to identify the server. If the binary log was written by a
mysqld with server-id-bits set to less than 32 and user data stored in the most significant bit, running
mysqlbinlog with --server-id-bits set to 32 enables this data to be seen.

This option is supported only by the versions of mysqlbinlog supplied with the NDB Cluster
distribution, or built from the NDB Cluster sources.

• --set-charset=charset_name

Add a SET NAMES charset_name statement to the output to specify the character set to be used for
processing log files.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled to
support shared-memory connections.

• --short-form, -s

479

mysqlbinlog — Utility for Processing Binary Log Files

Display only the statements contained in the log, without any extra information or row-based events. This
is for testing only, and should not be used in production systems.

• --skip-gtids[=(true|false)]

Do not display any GTIDs in the output. This is needed when writing to a dump file from one or more
binary logs containing GTIDs, as shown in this example:

mysqlbinlog --skip-gtids binlog.000001 > /tmp/dump.sql
mysqlbinlog --skip-gtids binlog.000002 >> /tmp/dump.sql
mysql -u root -p -e "source /tmp/dump.sql"

The use of this option is otherwise not normally recommended in production.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be a
member of the Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --start-datetime=datetime

Start reading the binary log at the first event having a timestamp equal to or later than the datetime
argument. The datetime value is relative to the local time zone on the machine where you run
mysqlbinlog. The value should be in a format accepted for the DATETIME or TIMESTAMP data types.
For example:

mysqlbinlog --start-datetime="2005-12-25 11:25:56" binlog.000003

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --start-position=N, -j N

Start reading the binary log at the first event having a position equal to or greater than N. This option
applies to the first log file named on the command line.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --stop-datetime=datetime

Stop reading the binary log at the first event having a timestamp equal to or later than the datetime
argument. This option is useful for point-in-time recovery. See the description of the --start-
datetime option for information about the datetime value.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --stop-never

480

mysqlbinlog — Utility for Processing Binary Log Files

This option is used with --read-from-remote-server. It tells mysqlbinlog to remain connected
to the server. Otherwise mysqlbinlog exits when the last log file has been transferred from the server.
--stop-never implies --to-last-log, so only the first log file to transfer need be named on the
command line.

--stop-never is commonly used with --raw to make a live binary log backup, but also can be used
without --raw to maintain a continuous text display of log events as the server generates them.

• --stop-never-slave-server-id=id

With --stop-never, mysqlbinlog reports a server ID of 65535 when it connects to the server.
--stop-never-slave-server-id explicitly specifies the server ID to report. It can be used to
avoid a conflict with the ID of a replica server or another mysqlbinlog process. See Section 4.6.8.4,
“Specifying the mysqlbinlog Server ID”.

• --stop-position=N

Stop reading the binary log at the first event having a position equal to or greater than N. This option
applies to the last log file named on the command line.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --to-last-log, -t

Do not stop at the end of the requested binary log from a MySQL server, but rather continue printing
until the end of the last binary log. If you send the output to the same MySQL server, this may lead to an
endless loop. This option requires --read-from-remote-server.

• --user=user_name, -u user_name

The user name of the MySQL account to use when connecting to a remote server.

• --verbose, -v

Reconstruct row events and display them as commented SQL statements. If this option is given twice
(by passing in either "-vv" or "--verbose --verbose"), the output includes comments to indicate column
data types and some metadata, and row query log events if so configured.

For examples that show the effect of --base64-output and --verbose on row event output, see
Section 4.6.8.2, “mysqlbinlog Row Event Display”.

• --verify-binlog-checksum, -c

Verify checksums in binary log files.

• --version, -V

Display version information and exit.

Prior to MySQL 5.6.11, the mysqlbinlog version number shown was 3.3. In MySQL 5.6.11 and later,
this is 3.4. (Bug #15894381, Bug #67643)

You can pipe the output of mysqlbinlog into the mysql client to execute the events contained in the
binary log. This technique is used to recover from an unexpected exit when you have an old backup (see
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”). For example:

mysqlbinlog binlog.000001 | mysql -u root -p

481

mysqlbinlog — Utility for Processing Binary Log Files

Or:

mysqlbinlog binlog.[0-9]* | mysql -u root -p

If the statements produced by mysqlbinlog may contain BLOB values, these may cause problems when
mysql processes them. In this case, invoke mysql with the --binary-mode option.

You can also redirect the output of mysqlbinlog to a text file instead, if you need to modify the statement
log first (for example, to remove statements that you do not want to execute for some reason). After editing
the file, execute the statements that it contains by using it as input to the mysql program:

mysqlbinlog binlog.000001 > tmpfile
... edit tmpfile ...
mysql -u root -p < tmpfile

When mysqlbinlog is invoked with the --start-position option, it displays only those events with
an offset in the binary log greater than or equal to a given position (the given position must match the start
of one event). It also has options to stop and start when it sees an event with a given date and time. This
enables you to perform point-in-time recovery using the --stop-datetime option (to be able to say, for
example, “roll forward my databases to how they were today at 10:30 a.m.”).

If you have more than one binary log to execute on the MySQL server, the safe method is to process them
all using a single connection to the server. Here is an example that demonstrates what may be unsafe:

mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

Processing binary logs this way using multiple connections to the server causes problems if the first log file
contains a CREATE TEMPORARY TABLE statement and the second log contains a statement that uses the
temporary table. When the first mysql process terminates, the server drops the temporary table. When the
second mysql process attempts to use the table, the server reports “unknown table.”

To avoid problems like this, use a single mysql process to execute the contents of all binary logs that you
want to process. Here is one way to do so:

mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

Another approach is to write all the logs to a single file and then process the file:

mysqlbinlog binlog.000001 > /tmp/statements.sql
mysqlbinlog binlog.000002 >> /tmp/statements.sql
mysql -u root -p -e "source /tmp/statements.sql"

mysqlbinlog can produce output that reproduces a LOAD DATA operation without the original data file.
mysqlbinlog copies the data to a temporary file and writes a LOAD DATA LOCAL statement that refers
to the file. The default location of the directory where these files are written is system-specific. To specify a
directory explicitly, use the --local-load option.

Because mysqlbinlog converts LOAD DATA statements to LOAD DATA LOCAL statements (that is, it
adds LOCAL), both the client and the server that you use to process the statements must be configured
with the LOCAL capability enabled. See Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”.

Warning

The temporary files created for LOAD DATA LOCAL statements are not
automatically deleted because they are needed until you actually execute those
statements. You should delete the temporary files yourself after you no longer need
the statement log. The files can be found in the temporary file directory and have
names like original_file_name-#-#.

482

mysqlbinlog — Utility for Processing Binary Log Files

4.6.8.1 mysqlbinlog Hex Dump Format

The --hexdump option causes mysqlbinlog to produce a hex dump of the binary log contents:

mysqlbinlog --hexdump master-bin.000001

The hex output consists of comment lines beginning with #, so the output might look like this for the
preceding command:

/*!40019 SET @@SESSION.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
at 4
#051024 17:24:13 server id 1 end_log_pos 98
Position Timestamp Type Master ID Size Master Pos Flags
00000004 9d fc 5c 43 0f 01 00 00 00 5e 00 00 00 62 00 00 00 00 00
00000017 04 00 35 2e 30 2e 31 35 2d 64 65 62 75 67 2d 6c |..5.0.15.debug.l|
00000027 6f 67 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |og..............|
00000037 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000047 00 00 00 00 9d fc 5c 43 13 38 0d 00 08 00 12 00 |.......C.8......|
00000057 04 04 04 04 12 00 00 4b 00 04 1a |.......K...|
Start: binlog v 4, server v 5.0.15-debug-log created 051024 17:24:13
at startup
ROLLBACK;

Hex dump output currently contains the elements in the following list. This format is subject to change. For
more information about binary log format, see MySQL Internals: The Binary Log.

• Position: The byte position within the log file.

• Timestamp: The event timestamp. In the example shown, '9d fc 5c 43' is the representation of
'051024 17:24:13' in hexadecimal.

• Type: The event type code.

• Master ID: The server ID of the source that created the event.

• Size: The size in bytes of the event.

• Master Pos: The position of the next event in the original source log file.

• Flags: Event flag values.

4.6.8.2 mysqlbinlog Row Event Display

The following examples illustrate how mysqlbinlog displays row events that specify data
modifications. These correspond to events with the WRITE_ROWS_EVENT, UPDATE_ROWS_EVENT, and
DELETE_ROWS_EVENT type codes. The --base64-output=DECODE-ROWS and --verbose options may
be used to affect row event output.

Suppose that the server is using row-based binary logging and that you execute the following sequence of
statements:

CREATE TABLE t
(
 id INT NOT NULL,
 name VARCHAR(20) NOT NULL,
 date DATE NULL
) ENGINE = InnoDB;

START TRANSACTION;
INSERT INTO t VALUES(1, 'apple', NULL);

483

https://dev.mysql.com/doc/internals/en/binary-log.html

mysqlbinlog — Utility for Processing Binary Log Files

UPDATE t SET name = 'pear', date = '2009-01-01' WHERE id = 1;
DELETE FROM t WHERE id = 1;
COMMIT;

By default, mysqlbinlog displays row events encoded as base-64 strings using BINLOG statements.
Omitting extraneous lines, the output for the row events produced by the preceding statement sequence
looks like this:

$> mysqlbinlog log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;

To see the row events as comments in the form of “pseudo-SQL” statements, run mysqlbinlog with the
--verbose or -v option. The output contains lines beginning with ###:

$> mysqlbinlog -v log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
INSERT INTO test.t
SET
@1=1
@2='apple'
@3=NULL
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
UPDATE test.t
WHERE
@1=1
@2='apple'
@3=NULL
SET
@1=1

484

mysqlbinlog — Utility for Processing Binary Log Files

@2='pear'
@3='2009:01:01'
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
DELETE FROM test.t
WHERE
@1=1
@2='pear'
@3='2009:01:01'

Specify --verbose or -v twice to also display data types and some metadata for each column. The
output contains an additional comment following each column change:

$> mysqlbinlog -vv log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
INSERT INTO test.t
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
UPDATE test.t
WHERE
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
DELETE FROM test.t
WHERE
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */

You can tell mysqlbinlog to suppress the BINLOG statements for row events by using the --base64-
output=DECODE-ROWS option. This is similar to --base64-output=NEVER but does not exit with an

485

mysqlbinlog — Utility for Processing Binary Log Files

error if a row event is found. The combination of --base64-output=DECODE-ROWS and --verbose
provides a convenient way to see row events only as SQL statements:

$> mysqlbinlog -v --base64-output=DECODE-ROWS log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F
INSERT INTO test.t
SET
@1=1
@2='apple'
@3=NULL
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F
UPDATE test.t
WHERE
@1=1
@2='apple'
@3=NULL
SET
@1=1
@2='pear'
@3='2009:01:01'
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F
DELETE FROM test.t
WHERE
@1=1
@2='pear'
@3='2009:01:01'

Note

You should not suppress BINLOG statements if you intend to re-execute
mysqlbinlog output.

The SQL statements produced by --verbose for row events are much more readable than the
corresponding BINLOG statements. However, they do not correspond exactly to the original SQL
statements that generated the events. The following limitations apply:

• The original column names are lost and replaced by @N, where N is a column number.

• Character set information is not available in the binary log, which affects string column display:

• There is no distinction made between corresponding binary and nonbinary string types (BINARY and
CHAR, VARBINARY and VARCHAR, BLOB and TEXT). The output uses a data type of STRING for fixed-
length strings and VARSTRING for variable-length strings.

• For multibyte character sets, the maximum number of bytes per character is not present in the
binary log, so the length for string types is displayed in bytes rather than in characters. For example,
STRING(4) is used as the data type for values from either of these column types:

CHAR(4) CHARACTER SET latin1
CHAR(2) CHARACTER SET ucs2

• Due to the storage format for events of type UPDATE_ROWS_EVENT, UPDATE statements are displayed
with the WHERE clause preceding the SET clause.

Proper interpretation of row events requires the information from the format description event at the
beginning of the binary log. Because mysqlbinlog does not know in advance whether the rest of the log

486

mysqlbinlog — Utility for Processing Binary Log Files

contains row events, by default it displays the format description event using a BINLOG statement in the
initial part of the output.

If the binary log is known not to contain any events requiring a BINLOG statement (that is, no row events),
the --base64-output=NEVER option can be used to prevent this header from being written.

4.6.8.3 Using mysqlbinlog to Back Up Binary Log Files

By default, mysqlbinlog reads binary log files and displays their contents in text format. This enables you
to examine events within the files more easily and to re-execute them (for example, by using the output as
input to mysql). mysqlbinlog can read log files directly from the local file system, or, with the --read-
from-remote-server option, it can connect to a server and request binary log contents from that server.
mysqlbinlog writes text output to its standard output, or to the file named as the value of the --result-
file=file_name option if that option is given.

• mysqlbinlog Backup Capabilities

• mysqlbinlog Backup Options

• Static and Live Backups

• Output File Naming

• Example: mysqldump + mysqlbinlog for Backup and Restore

• mysqlbinlog Backup Restrictions

mysqlbinlog Backup Capabilities

mysqlbinlog can read binary log files and write new files containing the same content—that is, in binary
format rather than text format. This capability enables you to easily back up a binary log in its original
format. mysqlbinlog can make a static backup, backing up a set of log files and stopping when the end
of the last file is reached. It can also make a continuous (“live”) backup, staying connected to the server
when it reaches the end of the last log file and continuing to copy new events as they are generated. In
continuous-backup operation, mysqlbinlog runs until the connection ends (for example, when the server
exits) or mysqlbinlog is forcibly terminated. When the connection ends, mysqlbinlog does not wait
and retry the connection, unlike a replica server. To continue a live backup after the server has been
restarted, you must also restart mysqlbinlog.

mysqlbinlog Backup Options

Binary log backup requires that you invoke mysqlbinlog with two options at minimum:

• The --read-from-remote-server (or -R) option tells mysqlbinlog to connect to a server and
request its binary log. (This is similar to a replica server connecting to its source server.)

• The --raw option tells mysqlbinlog to write raw (binary) output, not text output.

Along with --read-from-remote-server, it is common to specify other options: --host indicates
where the server is running, and you may also need to specify connection options such as --user and --
password.

Several other options are useful in conjunction with --raw:

• --stop-never: Stay connected to the server after reaching the end of the last log file and continue to
read new events.

487

mysqlbinlog — Utility for Processing Binary Log Files

• --stop-never-slave-server-id=id: The server ID that mysqlbinlog reports to the server
when --stop-never is used. The default is 65535. This can be used to avoid a conflict with the ID of
a replica server or another mysqlbinlog process. See Section 4.6.8.4, “Specifying the mysqlbinlog
Server ID”.

• --result-file: A prefix for output file names, as described later.

Static and Live Backups

To back up a server's binary log files with mysqlbinlog, you must specify file names that actually exist
on the server. If you do not know the names, connect to the server and use the SHOW BINARY LOGS
statement to see the current names. Suppose that the statement produces this output:

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
binlog.000130	27459
binlog.000131	13719
binlog.000132	43268
+---------------+-----------+

With that information, you can use mysqlbinlog to back up the binary log to the current directory as
follows (enter each command on a single line):

• To make a static backup of binlog.000130 through binlog.000132, use either of these commands:

mysqlbinlog --read-from-remote-server --host=host_name --raw
 binlog.000130 binlog.000131 binlog.000132

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --to-last-log binlog.000130

The first command specifies every file name explicitly. The second names only the first file and uses
--to-last-log to read through the last. A difference between these commands is that if the server
happens to open binlog.000133 before mysqlbinlog reaches the end of binlog.000132, the first
command does not read it, but the second command does.

• To make a live backup in which mysqlbinlog starts with binlog.000130 to copy existing log files,
then stays connected to copy new events as the server generates them:

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --stop-never binlog.000130

With --stop-never, it is not necessary to specify --to-last-log to read to the last log file because
that option is implied.

Output File Naming

Without --raw, mysqlbinlog produces text output and the --result-file option, if given, specifies
the name of the single file to which all output is written. With --raw, mysqlbinlog writes one binary
output file for each log file transferred from the server. By default, mysqlbinlog writes the files in the
current directory with the same names as the original log files. To modify the output file names, use the --
result-file option. In conjunction with --raw, the --result-file option value is treated as a prefix
that modifies the output file names.

Suppose that a server currently has binary log files named binlog.000999 and up. If you use
mysqlbinlog --raw to back up the files, the --result-file option produces output file names as
shown in the following table. You can write the files to a specific directory by beginning the --result-

488

mysqlbinlog — Utility for Processing Binary Log Files

file value with the directory path. If the --result-file value consists only of a directory name, the
value must end with the pathname separator character. Output files are overwritten if they exist.

--result-file Option Output File Names

--result-file=x xbinlog.000999 and up

--result-file=/tmp/ /tmp/binlog.000999 and up

--result-file=/tmp/x /tmp/xbinlog.000999 and up

Example: mysqldump + mysqlbinlog for Backup and Restore

The following example describes a simple scenario that shows how to use mysqldump and mysqlbinlog
together to back up a server's data and binary log, and how to use the backup to restore the server if data
loss occurs. The example assumes that the server is running on host host_name and its first binary log
file is named binlog.000999. Enter each command on a single line.

Use mysqlbinlog to make a continuous backup of the binary log:

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --stop-never binlog.000999

Use mysqldump to create a dump file as a snapshot of the server's data. Use --all-databases, --
events, and --routines to back up all data, and --master-data=2 to include the current binary log
coordinates in the dump file.

mysqldump --host=host_name --all-databases --events --routines --master-data=2> dump_file

Execute the mysqldump command periodically to create newer snapshots as desired.

If data loss occurs (for example, if the server unexpectedly exits), use the most recent dump file to restore
the data:

mysql --host=host_name -u root -p < dump_file

Then use the binary log backup to re-execute events that were written after the coordinates listed in the
dump file. Suppose that the coordinates in the file look like this:

-- CHANGE MASTER TO MASTER_LOG_FILE='binlog.001002', MASTER_LOG_POS=27284;

If the most recent backed-up log file is named binlog.001004, re-execute the log events like this:

mysqlbinlog --start-position=27284 binlog.001002 binlog.001003 binlog.001004
 | mysql --host=host_name -u root -p

You might find it easier to copy the backup files (dump file and binary log files) to the server host to make it
easier to perform the restore operation, or if MySQL does not allow remote root access.

mysqlbinlog Backup Restrictions

Binary log backups with mysqlbinlog are subject to these restrictions:

• mysqlbinlog does not automatically reconnect to the MySQL server if the connection is lost (for
example, if a server restart occurs or there is a network outage).

• Prior to MySQL 5.6.37, mysqlbinlog does not get all events as they are committed, even if the server
is configured with sync_binlog=1. This means that some of the most recent events may be missing.
To ensure that mysqlbinlog sees the most recent events, flush the binary log on the server that you
are backing up.

• The delay for a backup is similar to the delay for a replica.

489

mysqldumpslow — Summarize Slow Query Log Files

4.6.8.4 Specifying the mysqlbinlog Server ID

When invoked with the --read-from-remote-server option, mysqlbinlog connects to a MySQL
server, specifies a server ID to identify itself, and requests binary log files from the server. You can use
mysqlbinlog to request log files from a server in several ways:

• Specify an explicitly named set of files: For each file, mysqlbinlog connects and issues a Binlog
dump command. The server sends the file and disconnects. There is one connection per file.

• Specify the beginning file and --to-last-log: mysqlbinlog connects and issues a Binlog dump
command for all files. The server sends all files and disconnects.

• Specify the beginning file and --stop-never (which implies --to-last-log): mysqlbinlog
connects and issues a Binlog dump command for all files. The server sends all files, but does not
disconnect after sending the last one.

With --read-from-remote-server only, mysqlbinlog connects using a server ID of 0, which tells
the server to disconnect after sending the last requested log file.

With --read-from-remote-server and --stop-never, mysqlbinlog connects using a nonzero
server ID, so the server does not disconnect after sending the last log file. The server ID is 65535 by
default, but this can be changed with --stop-never-slave-server-id.

Thus, for the first two ways of requesting files, the server disconnects because mysqlbinlog specifies
a server ID of 0. It does not disconnect if --stop-never is given because mysqlbinlog specifies a
nonzero server ID.

4.6.9 mysqldumpslow — Summarize Slow Query Log Files

The MySQL slow query log contains information about queries that take a long time to execute (see
Section 5.4.5, “The Slow Query Log”). mysqldumpslow parses MySQL slow query log files and
summarizes their contents.

Normally, mysqldumpslow groups queries that are similar except for the particular values of number and
string data values. It “abstracts” these values to N and 'S' when displaying summary output. To modify
value abstracting behavior, use the -a and -n options.

Invoke mysqldumpslow like this:

mysqldumpslow [options] [log_file ...]

Example output with no options given:

Reading mysql slow query log from /usr/local/mysql/data/mysqld56-slow.log
Count: 1 Time=4.32s (4s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t2 select * from t1

Count: 3 Time=2.53s (7s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t2 select * from t1 limit N

Count: 3 Time=2.13s (6s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t1 select * from t1

mysqldumpslow supports the following options.

Table 4.21 mysqldumpslow Options

Option Name Description

-a Do not abstract all numbers to N and strings to 'S'

490

mysqldumpslow — Summarize Slow Query Log Files

Option Name Description

-n Abstract numbers with at least the specified digits

--debug Write debugging information

-g Only consider statements that match the pattern

--help Display help message and exit

-h Host name of the server in the log file name

-i Name of the server instance

-l Do not subtract lock time from total time

-r Reverse the sort order

-s How to sort output

-t Display only first num queries

--verbose Verbose mode

• --help

Display a help message and exit.

• -a

Do not abstract all numbers to N and strings to 'S'.

• --debug, -d

Run in debug mode.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• -g pattern

Consider only queries that match the (grep-style) pattern.

• -h host_name

Host name of MySQL server for *-slow.log file name. The value can contain a wildcard. The default is
* (match all).

• -i name

Name of server instance (if using mysql.server startup script).

• -l

Do not subtract lock time from total time.

• -n N

Abstract numbers with at least N digits within names.

• -r

Reverse the sort order.

• -s sort_type

491

mysqlhotcopy — A Database Backup Program

How to sort the output. The value of sort_type should be chosen from the following list:

• t, at: Sort by query time or average query time

• l, al: Sort by lock time or average lock time

• r, ar: Sort by rows sent or average rows sent

• c: Sort by count

By default, mysqldumpslow sorts by average query time (equivalent to -s at).

• -t N

Display only the first N queries in the output.

• --verbose, -v

Verbose mode. Print more information about what the program does.

4.6.10 mysqlhotcopy — A Database Backup Program

Note

This utility is deprecated in MySQL 5.6.20 and removed in MySQL 5.7

mysqlhotcopy is a Perl script that was originally written and contributed by Tim Bunce. It uses FLUSH
TABLES, LOCK TABLES, and cp or scp to make a database backup. It is a fast way to make a backup of
the database or single tables, but it can be run only on the same machine where the database directories
are located. mysqlhotcopy works only for backing up MyISAM and ARCHIVE tables. It runs on Unix.

To use mysqlhotcopy, you must have read access to the files for the tables that you are backing up, the
SELECT privilege for those tables, the RELOAD privilege (to be able to execute FLUSH TABLES), and the
LOCK TABLES privilege (to be able to lock the tables).

mysqlhotcopy db_name [/path/to/new_directory]

mysqlhotcopy db_name_1 ... db_name_n /path/to/new_directory

Back up tables in the given database that match a regular expression:

mysqlhotcopy db_name./regex/

The regular expression for the table name can be negated by prefixing it with a tilde (~):

mysqlhotcopy db_name./~regex/

mysqlhotcopy supports the following options, which can be specified on the command line or in the
[mysqlhotcopy] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.2.2, “Using Option Files”.

Table 4.22 mysqlhotcopy Options

Option Name Description

--addtodest Do not rename target directory (if it exists); merely
add files to it

492

mysqlhotcopy — A Database Backup Program

Option Name Description

--allowold Do not abort if a target exists; rename it by adding
an _old suffix

--checkpoint Insert checkpoint entries

--chroot Base directory of the chroot jail in which mysqld
operates

--debug Write debugging log

--dryrun Report actions without performing them

--flushlog Flush logs after all tables are locked

--help Display help message and exit

--host Host on which MySQL server is located

--keepold Do not delete previous (renamed) target when done

--method The method for copying files

--noindices Do not include full index files in the backup

--old_server Connect to server that does not support FLUSH
TABLES tbl_list WITH READ LOCK

--password Password to use when connecting to server

--port TCP/IP port number for connection

--quiet Be silent except for errors

--regexp Copy all databases with names that match the given
regular expression

--resetmaster Reset the binary log after locking all the tables

--resetslave Reset the master.info file after locking all the tables

--socket Unix socket file or Windows named pipe to use

--tmpdir The temporary directory

--user MySQL user name to use when connecting to
server

• --help, -?

Display a help message and exit.

• --addtodest

Do not rename target directory (if it exists); merely add files to it.

• --allowold

Do not abort if a target exists; rename it by adding an _old suffix.

• --checkpoint=db_name.tbl_name

Insert checkpoint entries into the specified database db_name and table tbl_name.

• --chroot=dir_name

Base directory of the chroot jail in which mysqld operates. The dir_name value should match that of
the --chroot option given to mysqld.

493

mysqlhotcopy — A Database Backup Program

• --debug

Enable debug output.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries provided
by Oracle are not built using this option.

• --dryrun, -n

Report actions without performing them.

• --flushlog

Flush logs after all tables are locked.

• --host=host_name, -h host_name

The host name of the local host to use for making a TCP/IP connection to the local server. By default,
the connection is made to localhost using a Unix socket file.

• --keepold

Do not delete previous (renamed) target when done.

• --method=command

The method for copying files (cp or scp). The default is cp.

• --noindices

Do not include full index files for MyISAM tables in the backup. This makes the backup smaller and
faster. The indexes for reloaded tables can be reconstructed later with myisamchk -rq.

• --password=password, -ppassword

The password to use when connecting to the server. The password value is not optional for this option,
unlike for other MySQL programs.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

• --port=port_num, -P port_num

The TCP/IP port number to use when connecting to the local server.

• --old_server

In MySQL 5.6, mysqlhotcopy uses FLUSH TABLES tbl_list WITH READ LOCK to flush and lock
tables. Use the --old_server option if the server is older than 5.5.3, which is when that statement was
introduced.

• --quiet, -q

Be silent except for errors.

• --record_log_pos=db_name.tbl_name

Record source and replica status in the specified database db_name and table tbl_name.

494

mysql_convert_table_format — Convert Tables to Use a Given Storage Engine

• --regexp=expr

Copy all databases with names that match the given regular expression.

• --resetmaster

Reset the binary log after locking all the tables.

• --resetslave

Reset the source info repository file or table after locking all the tables.

• --socket=path, -S path

The Unix socket file to use for connections to localhost.

• --suffix=str

The suffix to use for names of copied databases.

• --tmpdir=dir_name

The temporary directory. The default is /tmp.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

Use perldoc for additional mysqlhotcopy documentation, including information about the structure of
the tables needed for the --checkpoint and --record_log_pos options:

perldoc mysqlhotcopy

4.6.11 mysql_convert_table_format — Convert Tables to Use a Given Storage
Engine

Note

This utility is deprecated in MySQL 5.6.17 and removed in MySQL 5.7

mysql_convert_table_format converts the tables in a database to use a particular storage engine
(MyISAM by default). mysql_convert_table_format is written in Perl and requires that the DBI and
DBD::mysql Perl modules be installed (see Section 2.13, “Perl Installation Notes”).

Invoke mysql_convert_table_format like this:

mysql_convert_table_format [options]db_name

The db_name argument indicates the database containing the tables to be converted.

mysql_convert_table_format supports the options described in the following list.

• --help

Display a help message and exit.

• --force

Continue even if errors occur.

495

mysql_find_rows — Extract SQL Statements from Files

• --host=host_name

Connect to the MySQL server on the given host.

• --password=password

The password to use when connecting to the server. The password value is not optional for this option,
unlike for other MySQL programs.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

• --port=port_num

The TCP/IP port number to use for the connection.

• --socket=path

For connections to localhost, the Unix socket file to use.

• --type=engine_name

Specify the storage engine that the tables should be converted to use. The default is MyISAM if this
option is not given.

• --user=user_name

The MySQL user name to use when connecting to the server.

• --verbose

Verbose mode. Print more information about what the program does.

• --version

Display version information and exit.

4.6.12 mysql_find_rows — Extract SQL Statements from Files

Note

This utility is deprecated in MySQL 5.6.17 and removed in MySQL 5.7

mysql_find_rows reads files containing SQL statements and extracts statements that match a given
regular expression or that contain USE db_name or SET statements. The utility expects statements to be
terminated with semicolon (;) characters.

Invoke mysql_find_rows like this:

mysql_find_rows [options] [file_name ...]

Each file_name argument should be the name of file containing SQL statements. If no file names are
given, mysql_find_rows reads the standard input.

Examples:

mysql_find_rows --regexp=problem_table --rows=20 < update.log
mysql_find_rows --regexp=problem_table update-log.1 update-log.2

496

mysql_fix_extensions — Normalize Table File Name Extensions

mysql_find_rows supports the following options:

• --help, --Information

Display a help message and exit.

• --regexp=pattern

Display queries that match the pattern.

• --rows=N

Quit after displaying N queries.

• --skip-use-db

Do not include USE db_name statements in the output.

• --start_row=N

Start output from this row.

4.6.13 mysql_fix_extensions — Normalize Table File Name Extensions

Note

This utility is deprecated in MySQL 5.6.17 and removed in MySQL 5.7

mysql_fix_extensions converts the extensions for MyISAM (or ISAM) table files to their canonical
forms. It looks for files with extensions matching any lettercase variant of .frm, .myd, .myi, .isd, and
.ism and renames them to have extensions of .frm, .MYD, .MYI, .ISD, and .ISM, respectively. This can
be useful after transferring the files from a system with case-insensitive file names (such as Windows) to a
system with case-sensitive file names.

Invoke mysql_fix_extensions like this, where data_dir is the path name to the MySQL data
directory.

mysql_fix_extensions data_dir

4.6.14 mysql_setpermission — Interactively Set Permissions in Grant Tables

Note

This utility is deprecated in MySQL 5.6.17 and removed in MySQL 5.7

mysql_setpermission is a Perl script that was originally written and contributed by Luuk de Boer. It
interactively sets permissions in the MySQL grant tables. mysql_setpermission is written in Perl and
requires that the DBI and DBD::mysql Perl modules be installed (see Section 2.13, “Perl Installation
Notes”).

Invoke mysql_setpermission like this:

mysql_setpermission [options]

options should be either --help to display the help message, or options that indicate how to connect
to the MySQL server. The account used when you connect determines which permissions you have when
attempting to modify existing permissions in the grant tables.

497

mysql_waitpid — Kill Process and Wait for Its Termination

mysql_setpermissions also reads options from the [client] and [perl] groups in the .my.cnf file
in your home directory, if the file exists.

mysql_setpermission supports the following options:

• --help

Display a help message and exit.

• --host=host_name

Connect to the MySQL server on the given host.

• --password=password

The password to use when connecting to the server. The password value is not optional for this option,
unlike for other MySQL programs.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 6.1.2.1, “End-User Guidelines for
Password Security”.

• --port=port_num

The TCP/IP port number to use for the connection.

• --socket=path

For connections to localhost, the Unix socket file to use.

• --user=user_name

The MySQL user name to use when connecting to the server.

4.6.15 mysql_waitpid — Kill Process and Wait for Its Termination

mysql_waitpid signals a process to terminate and waits for the process to exit. It uses the kill()
system call and Unix signals, so it runs on Unix and Unix-like systems.

This program is deprecated as of MySQL 5.6.19 and is removed in MySQL 5.7.

Invoke mysql_waitpid like this:

mysql_waitpid [options] pid wait_time

mysql_waitpid sends signal 0 to the process identified by pid and waits up to wait_time seconds for
the process to terminate. pid and wait_time must be positive integers.

If process termination occurs within the wait time or the process does not exist, mysql_waitpid returns
0. Otherwise, it returns 1.

If the kill() system call cannot handle signal 0, mysql_waitpid() uses signal 1 instead.

mysql_waitpid supports the following options:

• --help, -?, -I

Display a help message and exit.

498

mysql_zap — Kill Processes That Match a Pattern

• --verbose, -v

Verbose mode. Display a warning if signal 0 could not be used and signal 1 is used instead.

• --version, -V

Display version information and exit.

4.6.16 mysql_zap — Kill Processes That Match a Pattern

mysql_zap kills processes that match a pattern. It uses the ps command and Unix signals, so it runs on
Unix and Unix-like systems.

This program is deprecated as of MySQL 5.6.19 and is removed in MySQL 5.7.

Invoke mysql_zap like this:

mysql_zap [-signal] [-?Ift] pattern

A process matches if its output line from the ps command contains the pattern. By default, mysql_zap
asks for confirmation for each process. Respond y to kill the process, or q to exit mysql_zap. For any
other response, mysql_zap does not attempt to kill the process.

If the -signal option is given, it specifies the name or number of the signal to send to each process.
Otherwise, mysql_zap tries first with TERM (signal 15) and then with KILL (signal 9).

mysql_zap supports the following additional options:

• --help, -?, -I

Display a help message and exit.

• -f

Force mode. mysql_zap attempts to kill each process without confirmation.

• -t

Test mode. Display information about each process but do not kill it.

4.7 Program Development Utilities
This section describes some utilities that you may find useful when developing MySQL programs.

In shell scripts, you can use the my_print_defaults program to parse option files and see what options
would be used by a given program. The following example shows the output that my_print_defaults
might produce when asked to show the options found in the [client] and [mysql] groups:

$> my_print_defaults client mysql
--port=3306
--socket=/tmp/mysql.sock
--no-auto-rehash

Note

For developers: Option file handling is implemented in the C client library simply by
processing all options in the appropriate group or groups before any command-line
arguments. This works well for programs that use the last instance of an option that
is specified multiple times. If you have a C or C++ program that handles multiply

499

msql2mysql — Convert mSQL Programs for Use with MySQL

specified options this way but that doesn't read option files, you need add only two
lines to give it that capability. Check the source code of any of the standard MySQL
clients to see how to do this.

Several other language interfaces to MySQL are based on the C client library, and some of them provide a
way to access option file contents. These include Perl and Python. For details, see the documentation for
your preferred interface.

4.7.1 msql2mysql — Convert mSQL Programs for Use with MySQL

Note

This utility is deprecated in MySQL 5.6.17 and removed in MySQL 5.7

Initially, the MySQL C API was developed to be very similar to that for the mSQL database system.
Because of this, mSQL programs often can be converted relatively easily for use with MySQL by changing
the names of the C API functions.

The msql2mysql utility performs the conversion of mSQL C API function calls to their MySQL equivalents.
msql2mysql converts the input file in place, so make a copy of the original before converting it. For
example, use msql2mysql like this:

cp client-prog.c client-prog.c.orig
msql2mysql client-prog.c

Then examine client-prog.c and make any post-conversion revisions that may be necessary.

msql2mysql uses the replace utility to make the function name substitutions. See Section 4.8.2,
“replace — A String-Replacement Utility”.

4.7.2 mysql_config — Display Options for Compiling Clients

mysql_config provides you with useful information for compiling your MySQL client and connecting it to
MySQL. It is a shell script, so it is available only on Unix and Unix-like systems.

mysql_config supports the following options.

• --cflags

C Compiler flags to find include files and critical compiler flags and defines used when compiling the
libmysqlclient library. The options returned are tied to the specific compiler that was used when the
library was created and might clash with the settings for your own compiler. Use --include for more
portable options that contain only include paths.

• --cxxflags

Like --cflags, but for C++ compiler flags. This option was added in MySQL 5.6.4.

• --include

Compiler options to find MySQL include files.

• --libmysqld-libs, --embedded-libs, --embedded

Libraries and options required to link with libmysqld, the MySQL embedded server.

• --libs

500

my_print_defaults — Display Options from Option Files

Libraries and options required to link with the MySQL client library.

• --libs_r

Libraries and options required to link with the thread-safe MySQL client library. In MySQL 5.6, all client
libraries are thread-safe, so this option need not be used. The --libs option can be used in all cases.

• --plugindir

The default plugin directory path name, defined when configuring MySQL.

• --port

The default TCP/IP port number, defined when configuring MySQL.

• --socket

The default Unix socket file, defined when configuring MySQL.

• --variable=var_name

Display the value of the named configuration variable. Permitted var_name values are pkgincludedir
(the header file directory), pkglibdir (the library directory), and plugindir (the plugin directory).

• --version

Version number for the MySQL distribution.

If you invoke mysql_config with no options, it displays a list of all options that it supports, and their
values:

$> mysql_config
Usage: /usr/local/mysql/bin/mysql_config [options]
Options:
 --cflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
 --cxxflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
 --include [-I/usr/local/mysql/include/mysql]
 --libs [-L/usr/local/mysql/lib/mysql -lmysqlclient
 -lpthread -lm -lrt -lssl -lcrypto -ldl]
 --libs_r [-L/usr/local/mysql/lib/mysql -lmysqlclient_r
 -lpthread -lm -lrt -lssl -lcrypto -ldl]
 --plugindir [/usr/local/mysql/lib/plugin]
 --socket [/tmp/mysql.sock]
 --port [3306]
 --version [5.6.11]
 --libmysqld-libs [-L/usr/local/mysql/lib/mysql -lmysqld
 -lpthread -lm -lrt -lssl -lcrypto -ldl -lcrypt]
 --variable=VAR VAR is one of:
 pkgincludedir [/usr/local/mysql/include]
 pkglibdir [/usr/local/mysql/lib]
 plugindir [/usr/local/mysql/lib/plugin]

You can use mysql_config within a command line using backticks to include the output that it produces
for particular options. For example, to compile and link a MySQL client program, use mysql_config as
follows:

gcc -c `mysql_config --cflags` progname.c
gcc -o progname progname.o `mysql_config --libs`

4.7.3 my_print_defaults — Display Options from Option Files

501

my_print_defaults — Display Options from Option Files

my_print_defaults displays the options that are present in option groups of option files. The output
indicates which options are used by programs that read the specified option groups. For example, the
mysqlcheck program reads the [mysqlcheck] and [client] option groups. To see what options are
present in those groups in the standard option files, invoke my_print_defaults like this:

$> my_print_defaults mysqlcheck client
--user=myusername
--password=password
--host=localhost

The output consists of options, one per line, in the form that they would be specified on the command line.

my_print_defaults supports the following options.

• --help, -?

Display a help message and exit.

• --config-file=file_name, --defaults-file=file_name, -c file_name

Read only the given option file.

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/my_print_defaults.trace.

• --defaults-extra-file=file_name, --extra-file=file_name, -e file_name

Read this option file after the global option file but (on Unix) before the user option file.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=suffix, -g suffix

In addition to the groups named on the command line, read groups that have the given suffix.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --login-path=name, -l name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”. This option was added in MySQL
5.6.6.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --no-defaults, -n

Return an empty string.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

502

resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

• --show, -s

As of MySQL 5.6.25, my_print_defaults masks passwords by default. Use this option to display
passwords in cleartext.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

4.7.4 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

resolve_stack_dump resolves a numeric stack dump to symbols.

Invoke resolve_stack_dump like this:

resolve_stack_dump [options] symbols_file [numeric_dump_file]

The symbols file should include the output from the nm --numeric-sort mysqld command. The
numeric dump file should contain a numeric stack track from mysqld. If no numeric dump file is named on
the command line, the stack trace is read from the standard input.

resolve_stack_dump supports the following options.

• --help, -h

Display a help message and exit.

• --numeric-dump-file=file_name, -n file_name

Read the stack trace from the given file.

• --symbols-file=file_name, -s file_name

Use the given symbols file.

• --version, -V

Display version information and exit.

For more information, see Section 5.8.1.5, “Using a Stack Trace”.

4.8 Miscellaneous Programs

4.8.1 perror — Display MySQL Error Message Information

For most system errors, MySQL displays, in addition to an internal text message, the system error code in
one of the following styles:

message ... (errno: #)
message ... (Errcode: #)

You can find out what the error code means by examining the documentation for your system or by using
the perror utility.

perror prints a description for a system error code or for a storage engine (table handler) error code.

503

replace — A String-Replacement Utility

Invoke perror like this:

perror [options] errorcode ...

Examples:

$> perror 1231
MySQL error code 1231 (ER_WRONG_VALUE_FOR_VAR): Variable '%-.64s' can't
be set to the value of '%-.200s'

$> perror 13 64
OS error code 13: Permission denied
OS error code 64: Machine is not on the network

To obtain the error message for an NDB Cluster error code, invoke perror with the --ndb option:

perror --ndb errorcode

The meaning of system error messages may be dependent on your operating system. A given error code
may mean different things on different operating systems.

perror supports the following options.

• --help, --info, -I, -?

Display a help message and exit.

• --ndb

Print the error message for an NDB Cluster error code.

• --silent, -s

Silent mode. Print only the error message.

• --verbose, -v

Verbose mode. Print error code and message. This is the default behavior.

• --version, -V

Display version information and exit.

4.8.2 replace — A String-Replacement Utility

The replace utility program changes strings in place in files or on the standard input.

Invoke replace in one of the following ways:

replace from to [from to] ... -- file_name [file_name] ...
replace from to [from to] ... < file_name

from represents a string to look for and to represents its replacement. There can be one or more pairs of
strings.

Use the -- option to indicate where the string-replacement list ends and the file names begin. In this case,
any file named on the command line is modified in place, so you may want to make a copy of the original
before converting it. replace prints a message indicating which of the input files it actually modifies.

If the -- option is not given, replace reads the standard input and writes to the standard output.

504

resolveip — Resolve Host name to IP Address or Vice Versa

replace uses a finite state machine to match longer strings first. It can be used to swap strings. For
example, the following command swaps a and b in the given files, file1 and file2:

replace a b b a -- file1 file2 ...

The replace program is used by msql2mysql. See Section 4.7.1, “msql2mysql — Convert mSQL
Programs for Use with MySQL”.

replace supports the following options.

• -?, -I

Display a help message and exit.

• -#debug_options

Enable debugging.

• -s

Silent mode. Print less information what the program does.

• -v

Verbose mode. Print more information about what the program does.

• -V

Display version information and exit.

4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa

The resolveip utility resolves host names to IP addresses and vice versa.

Invoke resolveip like this:

resolveip [options] {host_name|ip-addr} ...

resolveip supports the following options.

• --help, --info, -?, -I

Display a help message and exit.

• --silent, -s

Silent mode. Produce less output.

• --version, -V

Display version information and exit.

4.9 Environment Variables
This section lists environment variables that are used directly or indirectly by MySQL. Most of these can
also be found in other places in this manual.

Options on the command line take precedence over values specified in option files and environment
variables, and values in option files take precedence over values in environment variables. In many cases,

505

Environment Variables

it is preferable to use an option file instead of environment variables to modify the behavior of MySQL. See
Section 4.2.2.2, “Using Option Files”.

Variable Description

AUTHENTICATION_PAM_LOG PAM authentication plugin debug logging settings.

CC The name of your C compiler (for running CMake).

CXX The name of your C++ compiler (for running
CMake).

CC The name of your C compiler (for running CMake).

DBI_USER The default user name for Perl DBI.

DBI_TRACE Trace options for Perl DBI.

HOME The default path for the mysql history file is
$HOME/.mysql_history.

LD_RUN_PATH Used to specify the location of
libmysqlclient.so.

LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN Enable mysql_clear_password authentication
plugin; see Section 6.4.1.5, “Client-Side Cleartext
Pluggable Authentication”.

LIBMYSQL_PLUGIN_DIR Directory in which to look for client plugins.

LIBMYSQL_PLUGINS Client plugins to preload.

MYSQL_DEBUG Debug trace options when debugging.

MYSQL_GROUP_SUFFIX Option group suffix value (like specifying --
defaults-group-suffix).

MYSQL_HISTFILE The path to the mysql history file. If this
variable is set, its value overrides the default for
$HOME/.mysql_history.

MYSQL_HISTIGNORE Patterns specifying statements not to log to
$HOME/.mysql_history.

MYSQL_HOME The path to the directory in which the server-specific
my.cnf file resides.

MYSQL_HOST The default host name used by the mysql
command-line client.

MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD Maximum key length for
create_dh_parameters(). See Section 6.5.2,
“MySQL Enterprise Encryption Usage and
Examples”.

MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD Maximum DSA key length for
create_asymmetric_priv_key(). See
Section 6.5.2, “MySQL Enterprise Encryption Usage
and Examples”.

MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD Maximum RSA key length for
create_asymmetric_priv_key(). See
Section 6.5.2, “MySQL Enterprise Encryption Usage
and Examples”.

MYSQL_PS1 The command prompt to use in the mysql
command-line client.

506

Unix Signal Handling in MySQL

Variable Description

MYSQL_PWD The default password when connecting to mysqld.
Using this is insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”.

MYSQL_TCP_PORT The default TCP/IP port number.

MYSQL_TEST_LOGIN_FILE The name of the .mylogin.cnf login path file.

MYSQL_UNIX_PORT The default Unix socket file name; used for
connections to localhost.

PATH Used by the shell to find MySQL programs.

TMPDIR The directory in which temporary files are created.

TZ This should be set to your local time zone. See
Section B.3.3.7, “Time Zone Problems”.

UMASK The user-file creation mode when creating files. See
note following table.

UMASK_DIR The user-directory creation mode when creating
directories. See note following table.

USER The default user name on Windows when
connecting to mysqld.

For information about the mysql history file, see Section 4.5.1.3, “mysql Client Logging”.

MYSQL_TEST_LOGIN_FILE is the path name of the login path file (the file created by
mysql_config_editor). If not set, the default value is %APPDATA%\MySQL\.mylogin.cnf
directory on Windows and $HOME/.mylogin.cnf on non-Windows systems. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

The default UMASK and UMASK_DIR values are 0660 and 0700, respectively. MySQL assumes that the
value for UMASK or UMASK_DIR is in octal if it starts with a zero. For example, setting UMASK=0600 is
equivalent to UMASK=384 because 0600 octal is 384 decimal.

The UMASK and UMASK_DIR variables, despite their names, are used as modes, not masks:

• If UMASK is set, mysqld uses ($UMASK | 0600) as the mode for file creation, so that newly created
files have a mode in the range from 0600 to 0666 (all values octal).

• If UMASK_DIR is set, mysqld uses ($UMASK_DIR | 0700) as the base mode for directory creation,
which then is AND-ed with ~(~$UMASK & 0666), so that newly created directories have a mode in the
range from 0700 to 0777 (all values octal). The AND operation may remove read and write permissions
from the directory mode, but not execute permissions.

See also Section B.3.3.1, “Problems with File Permissions”.

4.10 Unix Signal Handling in MySQL
On Unix and Unix-like systems, a process can be the recipient of signals sent to it by the root system
account or the system account that owns the process. Signals can be sent using the kill command.
Some command interpreters associate certain key sequences with signals, such as Control+C to send a
SIGINT signal. This section describes how the MySQL server and client programs respond to signals.

• Server Response to Signals

• Client Response to Signals

507

Server Response to Signals

Server Response to Signals

mysqld responds to signals as follows:

• SIGTERM causes the server to shut down.

• SIGHUP causes the server to reload the grant tables and to flush tables, logs, the thread cache, and the
host cache. These actions are like various forms of the FLUSH statement. Sending the signal enables
the flush operations to be performed without having to connect to the server, which requires a MySQL
account that has privileges sufficient for those operations. The server also writes a status report to the
error log that has this format:

Status information:

Current dir: /var/mysql/data/
Running threads: 4 Stack size: 262144
Current locks:
lock: 0x7f742c02c0e0:

lock: 0x2cee2a20:
:
lock: 0x207a080:

Key caches:
default
Buffer_size: 8388608
Block_size: 1024
Division_limit: 100
Age_limit: 300
blocks used: 4
not flushed: 0
w_requests: 0
writes: 0
r_requests: 8
reads: 4

handler status:
read_key: 13
read_next: 4
read_rnd 0
read_first: 13
write: 1
delete 0
update: 0

Table status:
Opened tables: 121
Open tables: 114
Open files: 18
Open streams: 0

Memory status:
<malloc version="1">
<heap nr="0">
<sizes>
 <size from="17" to="32" total="32" count="1"/>
 <size from="33" to="48" total="96" count="2"/>
 <size from="33" to="33" total="33" count="1"/>
 <size from="97" to="97" total="6014" count="62"/>
 <size from="113" to="113" total="904" count="8"/>
 <size from="193" to="193" total="193" count="1"/>
 <size from="241" to="241" total="241" count="1"/>
 <size from="609" to="609" total="609" count="1"/>
 <size from="16369" to="16369" total="49107" count="3"/>
 <size from="24529" to="24529" total="98116" count="4"/>

508

Client Response to Signals

 <size from="32689" to="32689" total="32689" count="1"/>
 <unsorted from="241" to="7505" total="7746" count="2"/>
</sizes>
<total type="fast" count="3" size="128"/>
<total type="rest" count="84" size="195652"/>
<system type="current" size="690774016"/>
<system type="max" size="690774016"/>
<aspace type="total" size="690774016"/>
<aspace type="mprotect" size="690774016"/>
</heap>
:
<total type="fast" count="85" size="5520"/>
<total type="rest" count="116" size="316820"/>
<total type="mmap" count="82" size="939954176"/>
<system type="current" size="695717888"/>
<system type="max" size="695717888"/>
<aspace type="total" size="695717888"/>
<aspace type="mprotect" size="695717888"/>
</malloc>

Events status:
LLA = Last Locked At LUA = Last Unlocked At
WOC = Waiting On Condition DL = Data Locked

Event scheduler status:
State : INITIALIZED
Thread id : 0
LLA : n/a:0
LUA : n/a:0
WOC : NO
Workers : 0
Executed : 0
Data locked: NO

Event queue status:
Element count : 0
Data locked : NO
Attempting lock : NO
LLA : init_queue:95
LUA : init_queue:103
WOC : NO
Next activation : never

• SIGINT normally is ignored by the server. Starting the server with the --gdb option installs an interrupt
handler for SIGINT for debugging purposes. See Section 5.8.1.4, “Debugging mysqld under gdb”.

Client Response to Signals

MySQL client programs respond to signals as follows:

• The mysql client interprets SIGINT (typically the result of typing Control+C) as instruction to interrupt
the current statement if there is one, or to cancel any partial input line otherwise. This behavior can be
disabled using the --sigint-ignore option to ignore SIGINT signals.

• Client programs that use the MySQL client library block SIGPIPE signals by default. These variations
are possible:

• Client can install their own SIGPIPE handler to override the default behavior. See Writing C API
Threaded Client Programs.

• Clients can prevent installation of SIGPIPE handlers by specifying the CLIENT_IGNORE_SIGPIPE
option to mysql_real_connect() at connect time. See mysql_real_connect().

509

https://dev.mysql.com/doc/c-api/5.6/en/c-api-threaded-clients.html
https://dev.mysql.com/doc/c-api/5.6/en/c-api-threaded-clients.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-connect.html

510

Chapter 5 MySQL Server Administration

Table of Contents
5.1 The MySQL Server ... 512

5.1.1 Configuring the Server ... 512
5.1.2 Server Configuration Defaults ... 514
5.1.3 Server Option, System Variable, and Status Variable Reference 516
5.1.4 Server System Variable Reference ... 550
5.1.5 Server Status Variable Reference ... 566
5.1.6 Server Command Options .. 579
5.1.7 Server System Variables .. 603
5.1.8 Using System Variables ... 704
5.1.9 Server Status Variables .. 719
5.1.10 Server SQL Modes .. 737
5.1.11 Connection Management .. 746
5.1.12 IPv6 Support .. 751
5.1.13 MySQL Server Time Zone Support ... 755
5.1.14 Server-Side Help Support ... 760
5.1.15 The Server Shutdown Process ... 761

5.2 The MySQL Data Directory ... 762
5.3 The mysql System Database ... 763
5.4 MySQL Server Logs ... 765

5.4.1 Selecting General Query Log and Slow Query Log Output Destinations 766
5.4.2 The Error Log .. 768
5.4.3 The General Query Log ... 771
5.4.4 The Binary Log .. 772
5.4.5 The Slow Query Log .. 785
5.4.6 The DDL Log ... 787
5.4.7 Server Log Maintenance .. 787

5.5 MySQL Server Plugins .. 789
5.5.1 Installing and Uninstalling Plugins ... 789
5.5.2 Obtaining Server Plugin Information .. 793
5.5.3 MySQL Enterprise Thread Pool .. 794
5.5.4 MySQL Plugin Services .. 800

5.6 MySQL Server Loadable Functions ... 801
5.6.1 Installing and Uninstalling Loadable Functions ... 801
5.6.2 Obtaining Information About Loadable Functions ... 802

5.7 Running Multiple MySQL Instances on One Machine .. 803
5.7.1 Setting Up Multiple Data Directories ... 804
5.7.2 Running Multiple MySQL Instances on Windows ... 805
5.7.3 Running Multiple MySQL Instances on Unix .. 808
5.7.4 Using Client Programs in a Multiple-Server Environment .. 809

5.8 Debugging MySQL ... 810
5.8.1 Debugging a MySQL Server ... 810
5.8.2 Debugging a MySQL Client .. 817
5.8.3 The DBUG Package .. 817
5.8.4 Tracing mysqld Using DTrace ... 820

MySQL Server (mysqld) is the main program that does most of the work in a MySQL installation. This
chapter provides an overview of MySQL Server and covers general server administration:

511

The MySQL Server

• Server configuration

• The data directory, particularly the mysql system database

• The server log files

• Management of multiple servers on a single machine

For additional information on administrative topics, see also:

• Chapter 6, Security

• Section 14.8, “InnoDB Configuration”

• Chapter 7, Backup and Recovery

• Chapter 17, Replication

• Chapter 19, Partitioning

5.1 The MySQL Server
mysqld is the MySQL server. The following discussion covers these MySQL server configuration topics:

• Startup options that the server supports. You can specify these options on the command line, through
configuration files, or both.

• Server system variables. These variables reflect the current state and values of the startup options,
some of which can be modified while the server is running.

• Server status variables. These variables contain counters and statistics about runtime operation.

• How to set the server SQL mode. This setting modifies certain aspects of SQL syntax and semantics,
for example for compatibility with code from other database systems, or to control the error handling for
particular situations.

• How the server manages client connections.

• Configuring and using IPv6 support.

• Configuring and using time zone support.

• Server-side help capabilities.

• The server shutdown process. There are performance and reliability considerations depending on the
type of table (transactional or nontransactional) and whether you use replication.

Note

Not all storage engines are supported by all MySQL server binaries and
configurations. To find out how to determine which storage engines your MySQL
server installation supports, see Section 13.7.5.17, “SHOW ENGINES Statement”.

5.1.1 Configuring the Server

The MySQL server, mysqld, has many command options and system variables that can be set at startup
to configure its operation. To determine the default command option and system variable values used by
the server, execute this command:

512

Configuring the Server

$> mysqld --verbose --help

The command produces a list of all mysqld options and configurable system variables. Its output includes
the default option and variable values and looks something like this:

abort-slave-event-count 0
allow-suspicious-udfs FALSE
archive ON
auto-increment-increment 1
auto-increment-offset 1
autocommit TRUE
automatic-sp-privileges TRUE
back-log 80
basedir /home/jon/bin/mysql-5.6/
...
tmpdir /tmp
transaction-alloc-block-size 8192
transaction-isolation REPEATABLE-READ
transaction-prealloc-size 4096
transaction-read-only FALSE
updatable-views-with-limit YES
verbose TRUE
wait-timeout 28800

To see the current system variable values actually used by the server as it runs, connect to it and execute
this statement:

mysql> SHOW VARIABLES;

To see some statistical and status indicators for a running server, execute this statement:

mysql> SHOW STATUS;

System variable and status information also is available using the mysqladmin command:

$> mysqladmin variables
$> mysqladmin extended-status

For a full description of all command options, system variables, and status variables, see these sections:

• Section 5.1.6, “Server Command Options”

• Section 5.1.7, “Server System Variables”

• Section 5.1.9, “Server Status Variables”

More detailed monitoring information is available from the Performance Schema; see Chapter 22, MySQL
Performance Schema.

MySQL uses algorithms that are very scalable, so you can usually run with very little memory. However,
normally better performance results from giving MySQL more memory.

When tuning a MySQL server, the two most important variables to configure are key_buffer_size and
table_open_cache. You should first feel confident that you have these set appropriately before trying to
change any other variables.

The following examples indicate some typical variable values for different runtime configurations.

• If you have at least 1-2GB of memory and many tables and want maximum performance with a
moderate number of clients, use something like this:

513

Server Configuration Defaults

$> mysqld_safe --key_buffer_size=384M --table_open_cache=4000 \
 --sort_buffer_size=4M --read_buffer_size=1M &

• If you have only 256MB of memory and only a few tables, but you still do a lot of sorting, you can use
something like this:

$> mysqld_safe --key_buffer_size=64M --sort_buffer_size=1M

If there are very many simultaneous connections, swapping problems may occur unless mysqld has
been configured to use very little memory for each connection. mysqld performs better if you have
enough memory for all connections.

• With little memory and lots of connections, use something like this:

$> mysqld_safe --key_buffer_size=512K --sort_buffer_size=100K \
 --read_buffer_size=100K &

Or even this:

$> mysqld_safe --key_buffer_size=512K --sort_buffer_size=16K \
 --table_open_cache=32 --read_buffer_size=8K \
 --net_buffer_length=1K &

If you are performing GROUP BY or ORDER BY operations on tables that are much larger than your
available memory, increase the value of read_rnd_buffer_size to speed up the reading of rows
following sorting operations.

You can make use of the example option files included with your MySQL distribution; see Section 5.1.2,
“Server Configuration Defaults”.

If you specify an option on the command line for mysqld or mysqld_safe, it remains in effect only for
that invocation of the server. To use the option every time the server runs, put it in an option file. See
Section 4.2.2.2, “Using Option Files”.

5.1.2 Server Configuration Defaults

The MySQL server has many operating parameters, which you can change at server startup using
command-line options or configuration files (option files). It is also possible to change many parameters at
runtime. For general instructions on setting parameters at startup or runtime, see Section 5.1.6, “Server
Command Options”, and Section 5.1.7, “Server System Variables”.

5.1.2.1 Changes to Server Defaults

In MySQL 5.6, several MySQL Server parameter defaults differ from the defaults in previous releases.
The motivation for these changes is to provide better out-of-box performance and to reduce the need for
database administrators to change settings manually.

In some cases, a parameter has a different fixed default value. In other cases, the server autosizes a
parameter at startup using a formula based on other related parameters or server host configuration, rather
than using a fixed value. For example, the setting for back_log is its previous default of 50, adjusted up
by an amount proportional to the value of max_connections. The idea behind autosizing is that when
the server has information available to make a decision about a parameter setting likely to be better than a
fixed default, it does so.

The following table summarizes changes to defaults. The Version column indicates when each default
changed. For variables that are autosized, the main variable description provides additional detail about
the sizing algorithm. See Section 5.1.7, “Server System Variables”, and Section 14.14, “InnoDB Startup

514

Server Configuration Defaults

Options and System Variables”. Any of these default settings can be overridden by specifying an explicit
value at server startup.

Table 5.1 Changes to Server Defaults in MySQL 5.6

Parameter Old Default New Default Version

back_log 50 Autosized using
max_connections

5.6.6

binlog_checksum NONE CRC32 5.6.6

--binlog-row-event-
max-size

1024 8192 5.6.6

flush_time 1800 (on Windows) 0 5.6.6

host_cache_size 128 Autosized using
max_connections

5.6.8

innodb_autoextend_increment8 64 5.6.6

innodb_buffer_pool_instances1 8 (platform dependent) 5.6.6

innodb_concurrency_tickets500 5000 5.6.6

innodb_data_file_pathibdata1:10M:autoextend ibdata1:12M:autoextend 5.6.7

innodb_file_per_table0 1 5.6.6

innodb_log_file_size5MB 48MB 5.6.8

innodb_old_blocks_time0 1000 5.6.6

innodb_open_files 300 Autosized using
innodb_file_per_table,
table_open_cache

5.6.6

innodb_stats_on_metadataON OFF 5.6.6

join_buffer_size 128KB 256KB 5.6.6

max_allowed_packet 1MB 4MB 5.6.6

max_connect_errors 10 100 5.6.6

open_files_limit 0 Autosized using
max_connections

5.6.8

performance_schema OFF ON 5.6.6

performance_schema_events_waits_history_long_size10000 Autosized 5.6.6

performance_schema_events_waits_history_size10 Autosized 5.6.6

performance_schema_max_cond_instances1000 Autosized 5.6.6

performance_schema_max_file_instances10000 Autosized 5.6.6

performance_schema_max_mutex_instances1000000 Autosized 5.6.6

performance_schema_max_rwlock_instances1000000 Autosized 5.6.6

performance_schema_max_table_handles100000 Autosized 5.6.6

performance_schema_max_table_instances50000 Autosized 5.6.6

performance_schema_max_thread_instances1000 Autosized 5.6.6

query_cache_size 0 1M 5.6.8

query_cache_type ON OFF 5.6.8

secure_auth OFF ON 5.6.7

515

Server Option, System Variable, and Status Variable Reference

Parameter Old Default New Default Version

sql_mode '' (empty string) NO_ENGINE_SUBSTITUTION5.6.6

sync_master_info 0 10000 5.6.6

sync_relay_log 0 10000 5.6.6

sync_relay_log_info 0 10000 5.6.6

table_definition_cache400 Autosized using
table_open_cache

5.6.8

table_open_cache 400 2000 5.6.8

thread_cache_size 0 Autosized using
max_connections

5.6.8

In MySQL 5.6.6, the default for innodb_checksum_algorithm was changed from INNODB to CRC32.
For compatibility reasons, the default was returned in 5.6.7 to INNODB.

5.1.2.2 Using a Sample Default Server Configuration File

On Unix platforms, mysql_install_db creates a default option file named my.cnf in the base
installation directory. This file is created from a template included in the distribution package named my-
default.cnf. You can find the template in or under the base installation directory. When started using
mysqld_safe, the server uses my.cnf file by default. If my.cnf already exists, mysql_install_db
assumes it to be in use and writes a new file named my-new.cnf instead.

With one exception, the settings in the default option file are commented and have no effect. The exception
is that the file changes the sql_mode system variable from its default of NO_ENGINE_SUBSTITUTION to
also include STRICT_TRANS_TABLES:

sql_mode=NO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES

This setting produces a server configuration that results in errors rather than warnings for bad data in
operations that modify transactional tables. See Section 5.1.10, “Server SQL Modes”.

The my-default.cnf template replaces the older sample option files formerly supplied with MySQL
distributions (my-small.cnf, my-medium.cnf, my-large.cnf, and my-huge.cnf).

On Windows, MySQL Installer interacts with the user and creates a file named my.ini in the base
installation directory as the default option file. If you install on Windows from a Zip archive, you can copy
the my-default.ini template file in the base installation directory to my.ini and use the latter as the
default option file.

Note

On Windows, the .ini or .cnf option file extension might not be displayed.

On any platform, after completing the installation process, you can edit the default option file at any time
to modify the parameters used by the server. For example, to use a parameter setting in the file that is
commented with a # character at the beginning of the line, remove the #, and modify the parameter value if
necessary. To disable a To disable a setting, either add a # to the beginning of the line or remove it.

For additional information about option file format and syntax, see Section 4.2.2.2, “Using Option Files”.

5.1.3 Server Option, System Variable, and Status Variable Reference

The following table lists all command-line options, system variables, and status variables applicable within
mysqld.

516

Server Option, System Variable, and Status Variable Reference

The table lists command-line options (Cmd-line), options valid in configuration files (Option file), server
system variables (System Var), and status variables (Status var) in one unified list, with an indication of
where each option or variable is valid. If a server option set on the command line or in an option file differs
from the name of the corresponding system variable, the variable name is noted immediately below the
corresponding option. For system and status variables, the scope of the variable (Var Scope) is Global,
Session, or both. Please see the corresponding item descriptions for details on setting and using the
options and variables. Where appropriate, direct links to further information about the items are provided.

For a version of this table that is specific to NDB Cluster, see Section 18.4.2.5, “NDB Cluster mysqld
Option and Variable Reference”.

Table 5.2 Command-Line Option, System Variable, and Status Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

abort-slave-
event-count

Yes Yes

Aborted_clients Yes Global No

Aborted_connects Yes Global No

allow-
suspicious-
udfs

Yes Yes

ansi Yes Yes

audit-log Yes Yes

audit_log_buffer_sizeYes Yes Yes Global No

audit_log_connection_policyYes Yes Yes Global Yes

audit_log_current_session Yes Both No

Audit_log_current_size Yes Global No

Audit_log_event_max_drop_size Yes Global No

Audit_log_events Yes Global No

Audit_log_events_filtered Yes Global No

Audit_log_events_lost Yes Global No

Audit_log_events_written Yes Global No

audit_log_exclude_accountsYes Yes Yes Global Yes

audit_log_file Yes Yes Yes Global No

audit_log_flush Yes Global Yes

audit_log_formatYes Yes Yes Global No

audit_log_include_accountsYes Yes Yes Global Yes

audit_log_policyYes Yes Yes Global Varies

audit_log_rotate_on_sizeYes Yes Yes Global Yes

audit_log_statement_policyYes Yes Yes Global Yes

audit_log_strategyYes Yes Yes Global No

Audit_log_total_size Yes Global No

Audit_log_write_waits Yes Global No

authentication_windows_log_levelYes Yes Yes Global No

517

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

authentication_windows_use_principal_nameYes Yes Yes Global No

auto_increment_incrementYes Yes Yes Both Yes

auto_increment_offsetYes Yes Yes Both Yes

autocommit Yes Yes Yes Both Yes

automatic_sp_privilegesYes Yes Yes Global Yes

avoid_temporal_upgradeYes Yes Yes Global Yes

back_log Yes Yes Yes Global No

basedir Yes Yes Yes Global No

big_tables Yes Yes Yes Both Yes

bind_address Yes Yes Yes Global No

Binlog_cache_disk_use Yes Global No

binlog_cache_sizeYes Yes Yes Global Yes

Binlog_cache_use Yes Global No

binlog-
checksum

Yes Yes

binlog_checksumYes Yes Yes Global Yes

binlog_direct_non_transactional_updatesYes Yes Yes Both Yes

binlog-do-db Yes Yes

binlog_error_actionYes Yes Yes Global Yes

binlog_format Yes Yes Yes Both Yes

binlog_gtid_simple_recoveryYes Yes Yes Global No

binlog-ignore-
db

Yes Yes

binlog_max_flush_queue_timeYes Yes Yes Global Yes

binlog_order_commitsYes Yes Yes Global Yes

binlog-row-
event-max-
size

Yes Yes

binlog_row_imageYes Yes Yes Both Yes

binlog_rows_query_log_eventsYes Yes Yes Both Yes

Binlog_stmt_cache_disk_use Yes Global No

binlog_stmt_cache_sizeYes Yes Yes Global Yes

Binlog_stmt_cache_use Yes Global No

binlogging_impossible_modeYes Yes Yes Both Yes

block_encryption_modeYes Yes Yes Both Yes

bootstrap Yes Yes

bulk_insert_buffer_sizeYes Yes Yes Both Yes

Bytes_received Yes Both No

Bytes_sent Yes Both No

518

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

character_set_client Yes Both Yes

character-
set-client-
handshake

Yes Yes

character_set_connection Yes Both Yes

character_set_database
(note 1)

Yes Both Yes

character_set_filesystemYes Yes Yes Both Yes

character_set_results Yes Both Yes

character_set_serverYes Yes Yes Both Yes

character_set_system Yes Global No

character_sets_dirYes Yes Yes Global No

chroot Yes Yes

collation_connection Yes Both Yes

collation_database
(note 1)

Yes Both Yes

collation_serverYes Yes Yes Both Yes

Com_admin_commands Yes Both No

Com_alter_db Yes Both No

Com_alter_db_upgrade Yes Both No

Com_alter_event Yes Both No

Com_alter_function Yes Both No

Com_alter_procedure Yes Both No

Com_alter_server Yes Both No

Com_alter_table Yes Both No

Com_alter_tablespace Yes Both No

Com_alter_user Yes Both No

Com_analyze Yes Both No

Com_assign_to_keycache Yes Both No

Com_begin Yes Both No

Com_binlog Yes Both No

Com_call_procedure Yes Both No

Com_change_db Yes Both No

Com_change_master Yes Both No

Com_check Yes Both No

Com_checksum Yes Both No

Com_commit Yes Both No

Com_create_db Yes Both No

Com_create_event Yes Both No

519

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_create_function Yes Both No

Com_create_index Yes Both No

Com_create_procedure Yes Both No

Com_create_server Yes Both No

Com_create_table Yes Both No

Com_create_trigger Yes Both No

Com_create_udf Yes Both No

Com_create_user Yes Both No

Com_create_view Yes Both No

Com_dealloc_sql Yes Both No

Com_delete Yes Both No

Com_delete_multi Yes Both No

Com_do Yes Both No

Com_drop_db Yes Both No

Com_drop_event Yes Both No

Com_drop_function Yes Both No

Com_drop_index Yes Both No

Com_drop_procedure Yes Both No

Com_drop_server Yes Both No

Com_drop_table Yes Both No

Com_drop_trigger Yes Both No

Com_drop_user Yes Both No

Com_drop_view Yes Both No

Com_empty_query Yes Both No

Com_execute_sql Yes Both No

Com_flush Yes Both No

Com_get_diagnostics Yes Both No

Com_grant Yes Both No

Com_ha_close Yes Both No

Com_ha_open Yes Both No

Com_ha_read Yes Both No

Com_help Yes Both No

Com_insert Yes Both No

Com_insert_select Yes Both No

Com_install_plugin Yes Both No

Com_kill Yes Both No

Com_load Yes Both No

Com_lock_tables Yes Both No

520

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_optimize Yes Both No

Com_preload_keys Yes Both No

Com_prepare_sql Yes Both No

Com_purge Yes Both No

Com_purge_before_date Yes Both No

Com_release_savepoint Yes Both No

Com_rename_table Yes Both No

Com_rename_user Yes Both No

Com_repair Yes Both No

Com_replace Yes Both No

Com_replace_select Yes Both No

Com_reset Yes Both No

Com_resignal Yes Both No

Com_revoke Yes Both No

Com_revoke_all Yes Both No

Com_rollback Yes Both No

Com_rollback_to_savepoint Yes Both No

Com_savepoint Yes Both No

Com_select Yes Both No

Com_set_option Yes Both No

Com_show_authors Yes Both No

Com_show_binlog_events Yes Both No

Com_show_binlogs Yes Both No

Com_show_charsets Yes Both No

Com_show_collations Yes Both No

Com_show_contributors Yes Both No

Com_show_create_db Yes Both No

Com_show_create_event Yes Both No

Com_show_create_func Yes Both No

Com_show_create_proc Yes Both No

Com_show_create_table Yes Both No

Com_show_create_trigger Yes Both No

Com_show_databases Yes Both No

Com_show_engine_logs Yes Both No

Com_show_engine_mutex Yes Both No

Com_show_engine_status Yes Both No

Com_show_errors Yes Both No

Com_show_events Yes Both No

521

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_show_fields Yes Both No

Com_show_function_code Yes Both No

Com_show_function_status Yes Both No

Com_show_grants Yes Both No

Com_show_keys Yes Both No

Com_show_master_status Yes Both No

Com_show_ndb_status Yes Both No

Com_show_open_tables Yes Both No

Com_show_plugins Yes Both No

Com_show_privileges Yes Both No

Com_show_procedure_code Yes Both No

Com_show_procedure_status Yes Both No

Com_show_processlist Yes Both No

Com_show_profile Yes Both No

Com_show_profiles Yes Both No

Com_show_relaylog_events Yes Both No

Com_show_slave_hosts Yes Both No

Com_show_slave_status Yes Both No

Com_show_status Yes Both No

Com_show_storage_engines Yes Both No

Com_show_table_status Yes Both No

Com_show_tables Yes Both No

Com_show_triggers Yes Both No

Com_show_variables Yes Both No

Com_show_warnings Yes Both No

Com_signal Yes Both No

Com_slave_start Yes Both No

Com_slave_stop Yes Both No

Com_stmt_close Yes Both No

Com_stmt_execute Yes Both No

Com_stmt_fetch Yes Both No

Com_stmt_prepare Yes Both No

Com_stmt_reprepare Yes Both No

Com_stmt_reset Yes Both No

Com_stmt_send_long_data Yes Both No

Com_truncate Yes Both No

Com_uninstall_plugin Yes Both No

Com_unlock_tables Yes Both No

522

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_update Yes Both No

Com_update_multi Yes Both No

Com_xa_commit Yes Both No

Com_xa_end Yes Both No

Com_xa_prepare Yes Both No

Com_xa_recover Yes Both No

Com_xa_rollback Yes Both No

Com_xa_start Yes Both No

completion_typeYes Yes Yes Both Yes

Compression Yes Session No

concurrent_insertYes Yes Yes Global Yes

connect_timeoutYes Yes Yes Global Yes

Connection_control_delay_generated Yes Global No

connection_control_failed_connections_thresholdYes Yes Yes Global Yes

connection_control_max_connection_delayYes Yes Yes Global Yes

connection_control_min_connection_delayYes Yes Yes Global Yes

Connection_errors_accept Yes Global No

Connection_errors_internal Yes Global No

Connection_errors_max_connections Yes Global No

Connection_errors_peer_address Yes Global No

Connection_errors_select Yes Global No

Connection_errors_tcpwrap Yes Global No

Connections Yes Global No

console Yes Yes

core-file Yes Yes

core_file Yes Global No

create_old_temporalsYes Yes Yes Global No

Created_tmp_disk_tables Yes Both No

Created_tmp_files Yes Global No

Created_tmp_tables Yes Both No

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

datadir Yes Yes Yes Global No

date_format Yes Global No

523

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

datetime_format Yes Global No

debug Yes Yes Yes Both Yes

debug_sync Yes Session Yes

debug-sync-
timeout

Yes Yes

default-
authentication-
plugin

Yes Yes

default_storage_engineYes Yes Yes Both Yes

default-time-
zone

Yes Yes

default_tmp_storage_engineYes Yes Yes Both Yes

default_week_formatYes Yes Yes Both Yes

defaults-
extra-file

Yes

defaults-file Yes

defaults-
group-suffix

Yes

delay_key_writeYes Yes Yes Global Yes

Delayed_errors Yes Global No

delayed_insert_limitYes Yes Yes Global Yes

Delayed_insert_threads Yes Global No

delayed_insert_timeoutYes Yes Yes Global Yes

delayed_queue_sizeYes Yes Yes Global Yes

Delayed_writes Yes Global No

des-key-file Yes Yes

disconnect_on_expired_passwordYes Yes Yes Global No

disconnect-
slave-event-
count

Yes Yes

div_precision_incrementYes Yes Yes Both Yes

end_markers_in_jsonYes Yes Yes Both Yes

enforce_gtid_consistencyYes Yes Yes Global No

eq_range_index_dive_limitYes Yes Yes Both Yes

error_count Yes Session No

event_schedulerYes Yes Yes Global Yes

exit-info Yes Yes

expire_logs_daysYes Yes Yes Global Yes

explicit_defaults_for_timestampYes Yes Yes Both Yes

524

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

external-
locking

Yes Yes

- Variable:
skip_external_locking

external_user Yes Session No

federated Yes Yes

Firewall_access_denied Yes Global No

Firewall_access_granted Yes Global No

Firewall_cached_entries Yes Global No

flush Yes Yes Yes Global Yes

Flush_commands Yes Global No

flush_time Yes Yes Yes Global Yes

foreign_key_checks Yes Both Yes

ft_boolean_syntaxYes Yes Yes Global Yes

ft_max_word_lenYes Yes Yes Global No

ft_min_word_lenYes Yes Yes Global No

ft_query_expansion_limitYes Yes Yes Global No

ft_stopword_fileYes Yes Yes Global No

gdb Yes Yes

general_log Yes Yes Yes Global Yes

general_log_fileYes Yes Yes Global Yes

group_concat_max_lenYes Yes Yes Both Yes

gtid_executed Yes Both No

gtid_mode Yes Yes Yes Global No

gtid_next Yes Session Yes

gtid_owned Yes Both No

gtid_purged Yes Global Yes

Handler_commit Yes Both No

Handler_delete Yes Both No

Handler_discover Yes Both No

Handler_external_lock Yes Both No

Handler_mrr_init Yes Both No

Handler_prepare Yes Both No

Handler_read_first Yes Both No

Handler_read_key Yes Both No

Handler_read_last Yes Both No

Handler_read_next Yes Both No

Handler_read_prev Yes Both No

525

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Handler_read_rnd Yes Both No

Handler_read_rnd_next Yes Both No

Handler_rollback Yes Both No

Handler_savepoint Yes Both No

Handler_savepoint_rollback Yes Both No

Handler_update Yes Both No

Handler_write Yes Both No

have_compress Yes Global No

have_crypt Yes Global No

have_dynamic_loading Yes Global No

have_geometry Yes Global No

have_openssl Yes Global No

have_profiling Yes Global No

have_query_cache Yes Global No

have_rtree_keys Yes Global No

have_ssl Yes Global No

have_symlink Yes Global No

help Yes Yes

host_cache_sizeYes Yes Yes Global Yes

hostname Yes Global No

identity Yes Session Yes

ignore_builtin_innodbYes Yes Yes Global No

ignore-db-dir Yes Yes

ignore_db_dirs Yes Global No

init_connect Yes Yes Yes Global Yes

init_file Yes Yes Yes Global No

init_slave Yes Yes Yes Global Yes

innodb Yes Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

innodb_additional_mem_pool_sizeYes Yes Yes Global No

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_levelYes Yes Yes Global Yes

526

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

Innodb_available_undo_logs Yes Global No

Innodb_buffer_pool_bytes_data Yes Global No

Innodb_buffer_pool_bytes_dirty Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

Innodb_buffer_pool_dump_status Yes Global No

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

Innodb_buffer_pool_load_status Yes Global No

Innodb_buffer_pool_pages_data Yes Global No

Innodb_buffer_pool_pages_dirty Yes Global No

Innodb_buffer_pool_pages_flushed Yes Global No

Innodb_buffer_pool_pages_free Yes Global No

Innodb_buffer_pool_pages_latched Yes Global No

Innodb_buffer_pool_pages_misc Yes Global No

Innodb_buffer_pool_pages_total Yes Global No

Innodb_buffer_pool_read_ahead Yes Global No

Innodb_buffer_pool_read_ahead_evicted Yes Global No

Innodb_buffer_pool_read_ahead_rnd Yes Global No

Innodb_buffer_pool_read_requests Yes Global No

Innodb_buffer_pool_reads Yes Global No

innodb_buffer_pool_sizeYes Yes Yes Global No

Innodb_buffer_pool_wait_free Yes Global No

Innodb_buffer_pool_write_requests Yes Global No

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_change_buffering_debugYes Yes Yes Global Yes

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_checksumsYes Yes Yes Global No

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

527

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

Innodb_data_fsyncs Yes Global No

innodb_data_home_dirYes Yes Yes Global No

Innodb_data_pending_fsyncs Yes Global No

Innodb_data_pending_reads Yes Global No

Innodb_data_pending_writes Yes Global No

Innodb_data_read Yes Global No

Innodb_data_reads Yes Global No

Innodb_data_writes Yes Global No

Innodb_data_written Yes Global No

Innodb_dblwr_pages_written Yes Global No

Innodb_dblwr_writes Yes Global No

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

innodb_doublewriteYes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_fil_make_page_dirty_debugYes Yes Yes Global Yes

innodb_file_formatYes Yes Yes Global Yes

innodb_file_format_checkYes Yes Yes Global No

innodb_file_format_maxYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_flush_log_at_timeoutYes Yes Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_ft_aux_table Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

innodb_ft_enable_stopwordYes Yes Yes Both Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

528

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

Innodb_have_atomic_builtins Yes Global No

innodb_io_capacityYes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

innodb_large_prefixYes Yes Yes Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_checkpoint_nowYes Yes Yes Global Yes

innodb_log_compressed_pagesYes Yes Yes Global Yes

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

Innodb_log_waits Yes Global No

Innodb_log_write_requests Yes Global No

Innodb_log_writes Yes Global No

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_mirrored_log_groupsYes Yes Yes Global No

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

innodb_monitor_reset_allYes Yes Yes Global Yes

Innodb_num_open_files Yes Global No

innodb_numa_interleaveYes Yes Yes Global No

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_filesYes Yes Yes Global No

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

Innodb_os_log_fsyncs Yes Global No

Innodb_os_log_pending_fsyncs Yes Global No

529

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_os_log_pending_writes Yes Global No

Innodb_os_log_written Yes Global No

Innodb_page_size Yes Global No

innodb_page_sizeYes Yes Yes Global No

Innodb_pages_created Yes Global No

Innodb_pages_read Yes Global No

Innodb_pages_written Yes Global No

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_onlyYes Yes Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

Innodb_row_lock_current_waits Yes Global No

Innodb_row_lock_time Yes Global No

Innodb_row_lock_time_avg Yes Global No

Innodb_row_lock_time_max Yes Global No

Innodb_row_lock_waits Yes Global No

Innodb_rows_deleted Yes Global No

Innodb_rows_inserted Yes Global No

Innodb_rows_read Yes Global No

Innodb_rows_updated Yes Global No

innodb_saved_page_number_debugYes Yes Yes Global Yes

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_include_delete_markedYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_persistentYes Yes Yes Global Yes

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

innodb_stats_sample_pagesYes Yes Yes Global Yes

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

530

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb-
status-file

Yes Yes

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_modeYes Yes Yes Both Yes

innodb_support_xaYes Yes Yes Both Yes

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locksYes Yes Yes Both Yes

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_tmpdir Yes Yes Yes Both Yes

Innodb_truncated_status_writes Yes Global No

innodb_trx_purge_view_update_only_debugYes Yes Yes Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes Global Yes

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_logsYes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global No

innodb_use_native_aioYes Yes Yes Global No

innodb_use_sys_mallocYes Yes Yes Global No

innodb_version Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

insert_id Yes Session Yes

install Yes

install-manual Yes

interactive_timeoutYes Yes Yes Both Yes

join_buffer_sizeYes Yes Yes Both Yes

keep_files_on_createYes Yes Yes Both Yes

Key_blocks_not_flushed Yes Global No

Key_blocks_unused Yes Global No

Key_blocks_used Yes Global No

key_buffer_sizeYes Yes Yes Global Yes

key_cache_age_thresholdYes Yes Yes Global Yes

key_cache_block_sizeYes Yes Yes Global Yes

key_cache_division_limitYes Yes Yes Global Yes

Key_read_requests Yes Global No

Key_reads Yes Global No

Key_write_requests Yes Global No

531

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Key_writes Yes Global No

language Yes Yes Yes Global No

large_files_support Yes Global No

large_page_size Yes Global No

large_pages Yes Yes Yes Global No

last_insert_id Yes Session Yes

Last_query_cost Yes Session No

Last_query_partial_plans Yes Session No

lc_messages Yes Yes Yes Both Yes

lc_messages_dirYes Yes Yes Global No

lc_time_namesYes Yes Yes Both Yes

license Yes Global No

local_infile Yes Yes Yes Global Yes

local-service Yes

lock_wait_timeoutYes Yes Yes Both Yes

locked_in_memory Yes Global No

log-bin Yes Yes

log_bin Yes Global No

log_bin_basename Yes Global No

log_bin_index Yes Yes Yes Global No

log_bin_trust_function_creatorsYes Yes Yes Global Yes

log_bin_use_v1_row_eventsYes Yes Yes Global Yes

log_error Yes Yes Yes Global No

log-isam Yes Yes

log_output Yes Yes Yes Global Yes

log_queries_not_using_indexesYes Yes Yes Global Yes

log-raw Yes Yes

log-short-
format

Yes Yes

log_slave_updatesYes Yes Yes Global No

log-slow-
admin-
statements

Yes Yes

log_slow_admin_statementsYes Yes Yes Global Yes

log-slow-
slave-
statements

Yes Yes

log_slow_slave_statementsYes Yes Yes Global Yes

log-tc Yes Yes

532

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

log-tc-size Yes Yes

log_throttle_queries_not_using_indexesYes Yes Yes Global Yes

log_warnings Yes Yes Yes Varies Yes

long_query_timeYes Yes Yes Both Yes

low_priority_updatesYes Yes Yes Both Yes

lower_case_file_system Yes Global No

lower_case_table_namesYes Yes Yes Global No

master-info-
file

Yes Yes

master_info_repositoryYes Yes Yes Global Yes

master-retry-
count

Yes Yes

master_verify_checksumYes Yes Yes Global Yes

max_allowed_packetYes Yes Yes Both Yes

max_binlog_cache_sizeYes Yes Yes Global Yes

max-binlog-
dump-events

Yes Yes

max_binlog_sizeYes Yes Yes Global Yes

max_binlog_stmt_cache_sizeYes Yes Yes Global Yes

max_connect_errorsYes Yes Yes Global Yes

max_connectionsYes Yes Yes Global Yes

max_delayed_threadsYes Yes Yes Both Yes

max_digest_lengthYes Yes Yes Global No

max_error_countYes Yes Yes Both Yes

max_heap_table_sizeYes Yes Yes Both Yes

max_insert_delayed_threads Yes Both Yes

max_join_size Yes Yes Yes Both Yes

max_length_for_sort_dataYes Yes Yes Both Yes

max_prepared_stmt_countYes Yes Yes Global Yes

max_relay_log_sizeYes Yes Yes Global Yes

max_seeks_for_keyYes Yes Yes Both Yes

max_sort_lengthYes Yes Yes Both Yes

max_sp_recursion_depthYes Yes Yes Both Yes

max_tmp_tables Yes Both Yes

Max_used_connections Yes Global No

max_user_connectionsYes Yes Yes Both Yes

max_write_lock_countYes Yes Yes Global Yes

memlock Yes Yes

533

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

- Variable:
locked_in_memory

metadata_locks_cache_sizeYes Yes Yes Global No

metadata_locks_hash_instancesYes Yes Yes Global No

min_examined_row_limitYes Yes Yes Both Yes

multi_range_countYes Yes Yes Both Yes

myisam-
block-size

Yes Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam_recover_optionsYes Yes Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

myisam_use_mmapYes Yes Yes Global Yes

mysql_firewall_max_query_sizeYes Yes Yes Global No

mysql_firewall_modeYes Yes Yes Global Yes

mysql_firewall_traceYes Yes Yes Global Yes

named_pipe Yes Yes Yes Global No

named_pipe_full_access_groupYes Yes Yes Global No

Ndb_api_adaptive_send_deferred_count Yes Global No

Ndb_api_adaptive_send_deferred_count_session Yes Global No

Ndb_api_adaptive_send_deferred_count_slave Yes Global No

Ndb_api_adaptive_send_forced_count Yes Global No

Ndb_api_adaptive_send_forced_count_session Yes Global No

Ndb_api_adaptive_send_forced_count_slave Yes Global No

Ndb_api_adaptive_send_unforced_count Yes Global No

Ndb_api_adaptive_send_unforced_count_session Yes Global No

Ndb_api_adaptive_send_unforced_count_slave Yes Global No

Ndb_api_bytes_received_count Yes Global No

Ndb_api_bytes_received_count_session Yes Session No

Ndb_api_bytes_received_count_slave Yes Global No

Ndb_api_bytes_sent_count Yes Global No

Ndb_api_bytes_sent_count_session Yes Session No

Ndb_api_bytes_sent_count_slave Yes Global No

Ndb_api_event_bytes_count Yes Global No

Ndb_api_event_bytes_count_injector Yes Global No

534

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Ndb_api_event_data_count Yes Global No

Ndb_api_event_data_count_injector Yes Global No

Ndb_api_event_nondata_count Yes Global No

Ndb_api_event_nondata_count_injector Yes Global No

Ndb_api_pk_op_count Yes Global No

Ndb_api_pk_op_count_session Yes Session No

Ndb_api_pk_op_count_slave Yes Global No

Ndb_api_pruned_scan_count Yes Global No

Ndb_api_pruned_scan_count_session Yes Session No

Ndb_api_pruned_scan_count_slave Yes Global No

Ndb_api_range_scan_count Yes Global No

Ndb_api_range_scan_count_session Yes Session No

Ndb_api_range_scan_count_slave Yes Global No

Ndb_api_read_row_count Yes Global No

Ndb_api_read_row_count_session Yes Session No

Ndb_api_read_row_count_slave Yes Global No

Ndb_api_scan_batch_count Yes Global No

Ndb_api_scan_batch_count_session Yes Session No

Ndb_api_scan_batch_count_slave Yes Global No

Ndb_api_table_scan_count Yes Global No

Ndb_api_table_scan_count_session Yes Session No

Ndb_api_table_scan_count_slave Yes Global No

Ndb_api_trans_abort_count Yes Global No

Ndb_api_trans_abort_count_session Yes Session No

Ndb_api_trans_abort_count_slave Yes Global No

Ndb_api_trans_close_count Yes Global No

Ndb_api_trans_close_count_session Yes Session No

Ndb_api_trans_close_count_slave Yes Global No

Ndb_api_trans_commit_count Yes Global No

Ndb_api_trans_commit_count_session Yes Session No

Ndb_api_trans_commit_count_slave Yes Global No

Ndb_api_trans_local_read_row_count Yes Global No

Ndb_api_trans_local_read_row_count_session Yes Session No

Ndb_api_trans_local_read_row_count_slave Yes Global No

Ndb_api_trans_start_count Yes Global No

Ndb_api_trans_start_count_session Yes Session No

Ndb_api_trans_start_count_slave Yes Global No

Ndb_api_uk_op_count Yes Global No

535

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Ndb_api_uk_op_count_session Yes Session No

Ndb_api_uk_op_count_slave Yes Global No

Ndb_api_wait_exec_complete_count Yes Global No

Ndb_api_wait_exec_complete_count_session Yes Session No

Ndb_api_wait_exec_complete_count_slave Yes Global No

Ndb_api_wait_meta_request_count Yes Global No

Ndb_api_wait_meta_request_count_session Yes Session No

Ndb_api_wait_meta_request_count_slave Yes Global No

Ndb_api_wait_nanos_count Yes Global No

Ndb_api_wait_nanos_count_session Yes Session No

Ndb_api_wait_nanos_count_slave Yes Global No

Ndb_api_wait_scan_result_count Yes Global No

Ndb_api_wait_scan_result_count_session Yes Session No

Ndb_api_wait_scan_result_count_slave Yes Global No

ndb_autoincrement_prefetch_szYes Yes Yes Both Yes

ndb_batch_sizeYes Yes Yes Global No

ndb_blob_read_batch_bytesYes Yes Yes Both Yes

ndb_blob_write_batch_bytesYes Yes Yes Both Yes

ndb_cache_check_timeYes Yes Yes Global Yes

ndb_clear_apply_statusYes Yes Global Yes

ndb_cluster_connection_poolYes Yes Yes Global No

Ndb_cluster_node_id Yes Global No

Ndb_config_from_host Yes Both No

Ndb_config_from_port Yes Both No

Ndb_conflict_fn_epoch Yes Global No

Ndb_conflict_fn_epoch_trans Yes Global No

Ndb_conflict_fn_epoch2 Yes Global No

Ndb_conflict_fn_epoch2_trans Yes Global No

Ndb_conflict_fn_max Yes Global No

Ndb_conflict_fn_max_del_win Yes Global No

Ndb_conflict_fn_old Yes Global No

Ndb_conflict_last_conflict_epoch Yes Global No

Ndb_conflict_last_stable_epoch Yes Global No

Ndb_conflict_reflected_op_discard_count Yes Global No

Ndb_conflict_reflected_op_prepare_count Yes Global No

Ndb_conflict_refresh_op_count Yes Global No

Ndb_conflict_trans_conflict_commit_count Yes Global No

Ndb_conflict_trans_detect_iter_count Yes Global No

536

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Ndb_conflict_trans_reject_count Yes Global No

Ndb_conflict_trans_row_conflict_count Yes Global No

Ndb_conflict_trans_row_reject_count Yes Global No

ndb-
connectstring

Yes Yes

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb_distributionYes Yes Yes Global Yes

ndb_distributionYes Yes Yes Global Yes

Ndb_epoch_delete_delete_count Yes Global No

ndb_eventbuffer_free_percentYes Yes Yes Global Yes

ndb_eventbuffer_max_allocYes Yes Yes Global Yes

Ndb_execute_count Yes Global No

ndb_extra_loggingYes Yes Yes Global Yes

ndb_force_sendYes Yes Yes Both Yes

ndb_index_stat_cache_entriesYes Yes Yes Both Yes

ndb_index_stat_enableYes Yes Yes Both Yes

ndb_index_stat_optionYes Yes Yes Both Yes

ndb_index_stat_update_freqYes Yes Yes Both Yes

ndb_join_pushdown Yes Both Yes

Ndb_last_commit_epoch_server Yes Global No

Ndb_last_commit_epoch_session Yes Session No

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_bin Yes Yes Both No

ndb_log_binlog_indexYes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb_log_empty_updateYes Yes Yes Global Yes

ndb_log_empty_updateYes Yes Yes Global Yes

ndb_log_exclusive_readsYes Yes Yes Both Yes

ndb_log_exclusive_readsYes Yes Yes Both Yes

ndb_log_fail_terminateYes Yes Yes Global No

ndb_log_orig Yes Yes Yes Global No

ndb_log_orig Yes Yes Yes Global No

ndb_log_transaction_idYes Yes Yes Global No

ndb_log_transaction_id Yes Global No

ndb_log_update_as_writeYes Yes Yes Global Yes

537

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

ndb_log_update_minimalYes Yes Yes Global Yes

ndb_log_updated_onlyYes Yes Yes Global Yes

ndb-mgmd-
host

Yes Yes

ndb_nodeid Yes Yes Yes Global No

Ndb_number_of_data_nodes Yes Global No

ndb_optimization_delayYes Yes Yes Global Yes

ndb-
optimized-
node-
selection

Yes

ndb_optimized_node_selectionYes Yes Yes Global No

Ndb_pruned_scan_count Yes Global No

Ndb_pushed_queries_defined Yes Global No

Ndb_pushed_queries_dropped Yes Global No

Ndb_pushed_queries_executed Yes Global No

Ndb_pushed_reads Yes Global No

ndb_recv_thread_activation_thresholdYes Yes Yes Global Yes

ndb_recv_thread_cpu_maskYes Yes Yes Global Yes

ndb_report_thresh_binlog_epoch_slipYes Yes Yes Global Yes

ndb_report_thresh_binlog_mem_usageYes Yes Yes Global Yes

Ndb_scan_count Yes Global No

ndb_show_foreign_key_mock_tablesYes Yes Yes Global Yes

ndb_slave_conflict_roleYes Yes Yes Global Yes

Ndb_slave_max_replicated_epoch Yes Global No

ndb_table_no_logging Yes Session Yes

ndb_table_temporary Yes Session Yes

ndb-transid-
mysql-
connection-
map

Yes

ndb_use_copying_alter_table Yes Both No

ndb_use_exact_count Yes Both Yes

ndb_use_transactionsYes Yes Yes Both Yes

ndb_version Yes Global No

ndb_version_string Yes Global No

ndb_wait_connectedYes Yes Yes Global No

ndb_wait_setupYes Yes Yes Global No

ndbcluster Yes Yes

ndbinfo_database Yes Global No

538

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

ndbinfo_max_bytesYes Yes Both Yes

ndbinfo_max_rowsYes Yes Both Yes

ndbinfo_offline Yes Global Yes

ndbinfo_show_hiddenYes Yes Both Yes

ndbinfo_table_prefix Yes Global No

ndbinfo_version Yes Global No

net_buffer_lengthYes Yes Yes Both Yes

net_read_timeoutYes Yes Yes Both Yes

net_retry_countYes Yes Yes Both Yes

net_write_timeoutYes Yes Yes Both Yes

new Yes Yes Yes Both Yes

no-defaults Yes

Not_flushed_delayed_rows Yes Global No

old Yes Yes Yes Global No

old_alter_table Yes Yes Yes Both Yes

old_passwordsYes Yes Yes Both Yes

old-style-
user-limits

Yes Yes

Open_files Yes Global No

open_files_limitYes Yes Yes Global No

Open_streams Yes Global No

Open_table_definitions Yes Global No

Open_tables Yes Both No

Opened_files Yes Global No

Opened_table_definitions Yes Both No

Opened_tables Yes Both No

optimizer_prune_levelYes Yes Yes Both Yes

optimizer_search_depthYes Yes Yes Both Yes

optimizer_switchYes Yes Yes Both Yes

optimizer_traceYes Yes Yes Both Yes

optimizer_trace_featuresYes Yes Yes Both Yes

optimizer_trace_limitYes Yes Yes Both Yes

optimizer_trace_max_mem_sizeYes Yes Yes Both Yes

optimizer_trace_offsetYes Yes Yes Both Yes

partition Yes Yes

performance_schemaYes Yes Yes Global No

Performance_schema_accounts_lost Yes Global No

performance_schema_accounts_sizeYes Yes Yes Global No

539

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Performance_schema_cond_classes_lost Yes Global No

Performance_schema_cond_instances_lost Yes Global No

performance-
schema-
consumer-
events-
stages-
current

Yes Yes

performance-
schema-
consumer-
events-
stages-history

Yes Yes

performance-
schema-
consumer-
events-
stages-
history-long

Yes Yes

performance-
schema-
consumer-
events-
statements-
current

Yes Yes

performance-
schema-
consumer-
events-
statements-
history

Yes Yes

performance-
schema-
consumer-
events-
statements-
history-long

Yes Yes

performance-
schema-
consumer-
events-waits-
current

Yes Yes

performance-
schema-
consumer-
events-waits-
history

Yes Yes

540

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance-
schema-
consumer-
events-waits-
history-long

Yes Yes

performance-
schema-
consumer-
global-
instrumentation

Yes Yes

performance-
schema-
consumer-
statements-
digest

Yes Yes

performance-
schema-
consumer-
thread-
instrumentation

Yes Yes

Performance_schema_digest_lost Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

Performance_schema_file_classes_lost Yes Global No

Performance_schema_file_handles_lost Yes Global No

Performance_schema_file_instances_lost Yes Global No

Performance_schema_hosts_lost Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

performance-
schema-
instrument

Yes Yes

Performance_schema_locker_lost Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_digest_lengthYes Yes Yes Global No

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

541

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

Performance_schema_mutex_classes_lost Yes Global No

Performance_schema_mutex_instances_lost Yes Global No

Performance_schema_rwlock_classes_lost Yes Global No

Performance_schema_rwlock_instances_lost Yes Global No

Performance_schema_session_connect_attrs_lost Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

Performance_schema_socket_classes_lost Yes Global No

Performance_schema_socket_instances_lost Yes Global No

Performance_schema_stage_classes_lost Yes Global No

Performance_schema_statement_classes_lost Yes Global No

Performance_schema_table_handles_lost Yes Global No

Performance_schema_table_instances_lost Yes Global No

Performance_schema_thread_classes_lost Yes Global No

Performance_schema_thread_instances_lost Yes Global No

Performance_schema_users_lost Yes Global No

performance_schema_users_sizeYes Yes Yes Global No

pid_file Yes Yes Yes Global No

plugin_dir Yes Yes Yes Global No

plugin-load Yes Yes

plugin-load-
add

Yes Yes

plugin-xxx Yes Yes

port Yes Yes Yes Global No

542

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

port-open-
timeout

Yes Yes

preload_buffer_sizeYes Yes Yes Both Yes

Prepared_stmt_count Yes Global No

print-defaults Yes

profiling Yes Both Yes

profiling_history_sizeYes Yes Yes Both Yes

protocol_version Yes Global No

proxy_user Yes Session No

pseudo_slave_mode Yes Session Yes

pseudo_thread_id Yes Session Yes

Qcache_free_blocks Yes Global No

Qcache_free_memory Yes Global No

Qcache_hits Yes Global No

Qcache_inserts Yes Global No

Qcache_lowmem_prunes Yes Global No

Qcache_not_cached Yes Global No

Qcache_queries_in_cache Yes Global No

Qcache_total_blocks Yes Global No

Queries Yes Both No

query_alloc_block_sizeYes Yes Yes Both Yes

query_cache_limitYes Yes Yes Global Yes

query_cache_min_res_unitYes Yes Yes Global Yes

query_cache_sizeYes Yes Yes Global Yes

query_cache_typeYes Yes Yes Both Yes

query_cache_wlock_invalidateYes Yes Yes Both Yes

query_prealloc_sizeYes Yes Yes Both Yes

Questions Yes Both No

rand_seed1 Yes Session Yes

rand_seed2 Yes Session Yes

range_alloc_block_sizeYes Yes Yes Both Yes

read_buffer_sizeYes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_sizeYes Yes Yes Both Yes

relay_log Yes Yes Yes Global No

relay_log_basename Yes Global No

relay_log_indexYes Yes Yes Global No

relay_log_info_fileYes Yes Yes Global No

543

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

relay_log_info_repositoryYes Yes Yes Global Yes

relay_log_purgeYes Yes Yes Global Yes

relay_log_recoveryYes Yes Yes Global Varies

relay_log_space_limitYes Yes Yes Global No

remove Yes

replicate-do-
db

Yes Yes

replicate-do-
table

Yes Yes

replicate-
ignore-db

Yes Yes

replicate-
ignore-table

Yes Yes

replicate-
rewrite-db

Yes Yes

replicate-
same-server-
id

Yes Yes

replicate-wild-
do-table

Yes Yes

replicate-wild-
ignore-table

Yes Yes

report_host Yes Yes Yes Global No

report_passwordYes Yes Yes Global No

report_port Yes Yes Yes Global No

report_user Yes Yes Yes Global No

Rpl_semi_sync_master_clients Yes Global No

rpl_semi_sync_master_enabledYes Yes Yes Global Yes

Rpl_semi_sync_master_net_avg_wait_time Yes Global No

Rpl_semi_sync_master_net_wait_time Yes Global No

Rpl_semi_sync_master_net_waits Yes Global No

Rpl_semi_sync_master_no_times Yes Global No

Rpl_semi_sync_master_no_tx Yes Global No

Rpl_semi_sync_master_status Yes Global No

Rpl_semi_sync_master_timefunc_failures Yes Global No

rpl_semi_sync_master_timeoutYes Yes Yes Global Yes

rpl_semi_sync_master_trace_levelYes Yes Yes Global Yes

Rpl_semi_sync_master_tx_avg_wait_time Yes Global No

Rpl_semi_sync_master_tx_wait_time Yes Global No

Rpl_semi_sync_master_tx_waits Yes Global No

544

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

rpl_semi_sync_master_wait_no_slaveYes Yes Yes Global Yes

Rpl_semi_sync_master_wait_pos_backtraverse Yes Global No

Rpl_semi_sync_master_wait_sessions Yes Global No

Rpl_semi_sync_master_yes_tx Yes Global No

rpl_semi_sync_slave_enabledYes Yes Yes Global Yes

Rpl_semi_sync_slave_status Yes Global No

rpl_semi_sync_slave_trace_levelYes Yes Yes Global Yes

rpl_stop_slave_timeoutYes Yes Yes Global Yes

Rsa_public_key Yes Global No

safe-user-
create

Yes Yes

secure_auth Yes Yes Yes Global Yes

secure_file_privYes Yes Yes Global No

Select_full_join Yes Both No

Select_full_range_join Yes Both No

Select_range Yes Both No

Select_range_check Yes Both No

Select_scan Yes Both No

server_id Yes Yes Yes Global Yes

server_id_bits Yes Yes Yes Global No

server_uuid Yes Global No

sha256_password_private_key_pathYes Yes Yes Global No

sha256_password_public_key_pathYes Yes Yes Global No

shared_memoryYes Yes Yes Global No

shared_memory_base_nameYes Yes Yes Global No

show_old_temporalsYes Yes Yes Both Yes

show-slave-
auth-info

Yes Yes

simplified_binlog_gtid_recoveryYes Yes Yes Global No

skip-
character-
set-client-
handshake

Yes Yes

skip_external_lockingYes Yes Yes Global No

skip-grant-
tables

Yes Yes

skip-host-
cache

Yes Yes

skip_name_resolveYes Yes Yes Global No

545

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

skip-
ndbcluster

Yes Yes

skip_networkingYes Yes Yes Global No

skip-new Yes Yes

skip-partition Yes Yes

skip_show_databaseYes Yes Yes Global No

skip_slave_startYes Yes Yes Global No

skip-ssl Yes Yes

skip-stack-
trace

Yes Yes

slave_allow_batchingYes Yes Yes Global Yes

slave_checkpoint_groupYes Yes Yes Global Yes

slave_checkpoint_periodYes Yes Yes Global Yes

slave_compressed_protocolYes Yes Yes Global Yes

slave_exec_modeYes Yes Yes Global Yes

Slave_heartbeat_period Yes Global No

Slave_last_heartbeat Yes Global No

slave_load_tmpdirYes Yes Yes Global No

slave_max_allowed_packetYes Yes Yes Global Yes

slave_net_timeoutYes Yes Yes Global Yes

Slave_open_temp_tables Yes Global No

slave_parallel_workersYes Yes Yes Global Yes

slave_pending_jobs_size_maxYes Yes Yes Global Yes

Slave_received_heartbeats Yes Global No

Slave_retried_transactions Yes Global No

Slave_rows_last_search_algorithm_used Yes Global No

slave_rows_search_algorithmsYes Yes Yes Global Yes

Slave_running Yes Global No

slave_skip_errorsYes Yes Yes Global No

slave-sql-
verify-
checksum

Yes Yes

slave_sql_verify_checksumYes Yes Yes Global Yes

slave_transaction_retriesYes Yes Yes Global Yes

slave_type_conversionsYes Yes Yes Global Yes

Slow_launch_threads Yes Both No

slow_launch_timeYes Yes Yes Global Yes

Slow_queries Yes Both No

slow_query_logYes Yes Yes Global Yes

546

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

slow_query_log_fileYes Yes Yes Global Yes

slow-start-
timeout

Yes Yes

socket Yes Yes Yes Global No

sort_buffer_sizeYes Yes Yes Both Yes

Sort_merge_passes Yes Both No

Sort_range Yes Both No

Sort_rows Yes Both No

Sort_scan Yes Both No

sporadic-
binlog-dump-
fail

Yes Yes

sql_auto_is_null Yes Both Yes

sql_big_selects Yes Both Yes

sql_buffer_result Yes Both Yes

sql_log_bin Yes Session Yes

sql_log_off Yes Both Yes

sql_mode Yes Yes Yes Both Yes

sql_notes Yes Both Yes

sql_quote_show_create Yes Both Yes

sql_safe_updates Yes Both Yes

sql_select_limit Yes Both Yes

sql_slave_skip_counter Yes Global Yes

sql_warnings Yes Both Yes

ssl Yes Yes

Ssl_accept_renegotiates Yes Global No

Ssl_accepts Yes Global No

ssl_ca Yes Yes Yes Global No

Ssl_callback_cache_hits Yes Global No

ssl_capath Yes Yes Yes Global No

ssl_cert Yes Yes Yes Global No

Ssl_cipher Yes Both No

ssl_cipher Yes Yes Yes Global No

Ssl_cipher_list Yes Both No

Ssl_client_connects Yes Global No

Ssl_connect_renegotiates Yes Global No

ssl_crl Yes Yes Yes Global No

ssl_crlpath Yes Yes Yes Global No

Ssl_ctx_verify_depth Yes Global No

547

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Ssl_ctx_verify_mode Yes Global No

Ssl_default_timeout Yes Both No

Ssl_finished_accepts Yes Global No

Ssl_finished_connects Yes Global No

ssl_key Yes Yes Yes Global No

Ssl_server_not_after Yes Both No

Ssl_server_not_before Yes Both No

Ssl_session_cache_hits Yes Global No

Ssl_session_cache_misses Yes Global No

Ssl_session_cache_mode Yes Global No

Ssl_session_cache_overflows Yes Global No

Ssl_session_cache_size Yes Global No

Ssl_session_cache_timeouts Yes Global No

Ssl_sessions_reused Yes Session No

Ssl_used_session_cache_entries Yes Global No

Ssl_verify_depth Yes Both No

Ssl_verify_mode Yes Both No

Ssl_version Yes Both No

standalone Yes Yes

storage_engine Yes Both Yes

stored_program_cacheYes Yes Yes Global Yes

super-large-
pages

Yes Yes

symbolic-links Yes Yes

sync_binlog Yes Yes Yes Global Yes

sync_frm Yes Yes Yes Global Yes

sync_master_infoYes Yes Yes Global Yes

sync_relay_logYes Yes Yes Global Yes

sync_relay_log_infoYes Yes Yes Global Yes

sysdate-is-
now

Yes Yes

system_time_zone Yes Global No

table_definition_cacheYes Yes Yes Global Yes

Table_locks_immediate Yes Global No

Table_locks_waited Yes Global No

table_open_cacheYes Yes Yes Global Yes

Table_open_cache_hits Yes Both No

table_open_cache_instancesYes Yes Yes Global No

548

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Table_open_cache_misses Yes Both No

Table_open_cache_overflows Yes Both No

tc-heuristic-
recover

Yes Yes

Tc_log_max_pages_used Yes Global No

Tc_log_page_size Yes Global No

Tc_log_page_waits Yes Global No

temp-pool Yes Yes

thread_cache_sizeYes Yes Yes Global Yes

thread_concurrencyYes Yes Yes Global No

thread_handlingYes Yes Yes Global No

thread_pool_algorithmYes Yes Yes Global No

thread_pool_high_priority_connectionYes Yes Yes Both Yes

thread_pool_max_unused_threadsYes Yes Yes Global Yes

thread_pool_prio_kickup_timerYes Yes Yes Global Yes

thread_pool_sizeYes Yes Yes Global No

thread_pool_stall_limitYes Yes Yes Global Yes

thread_stack Yes Yes Yes Global No

Threads_cached Yes Global No

Threads_connected Yes Global No

Threads_created Yes Global No

Threads_running Yes Global No

time_format Yes Global No

time_zone Yes Both Yes

timed_mutexesYes Yes Yes Global Yes

timestamp Yes Session Yes

tmp_table_sizeYes Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

transaction_alloc_block_sizeYes Yes Yes Both Yes

transaction_allow_batching Yes Session Yes

transaction-
isolation

Yes Yes

- Variable:
tx_isolation

transaction_prealloc_sizeYes Yes Yes Both Yes

transaction-
read-only

Yes Yes

- Variable:
tx_read_only

549

Server System Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

tx_isolation Yes Both Yes

tx_read_only Yes Both Yes

unique_checks Yes Both Yes

updatable_views_with_limitYes Yes Yes Both Yes

Uptime Yes Global No

Uptime_since_flush_status Yes Global No

user Yes Yes

validate-
password

Yes Yes

validate_password_dictionary_fileYes Yes Yes Global Varies

validate_password_dictionary_file_last_parsed Yes Global No

validate_password_dictionary_file_words_count Yes Global No

validate_password_lengthYes Yes Yes Global Yes

validate_password_mixed_case_countYes Yes Yes Global Yes

validate_password_number_countYes Yes Yes Global Yes

validate_password_policyYes Yes Yes Global Yes

validate_password_special_char_countYes Yes Yes Global Yes

validate-user-
plugins

Yes Yes

verbose Yes Yes

version Yes Global No

version_comment Yes Global No

version_compile_machine Yes Global No

version_compile_os Yes Global No

wait_timeout Yes Yes Yes Both Yes

warning_count Yes Session No

Notes:

1. This option is dynamic, but should be set only by server. You should not set this variable manually.

5.1.4 Server System Variable Reference

The following table lists all system variables applicable within mysqld.

The table lists command-line options (Cmd-line), options valid in configuration files (Option file), server
system variables (System Var), and status variables (Status var) in one unified list, with an indication of
where each option or variable is valid. If a server option set on the command line or in an option file differs
from the name of the corresponding system variable, the variable name is noted immediately below the
corresponding option. The scope of the variable (Var Scope) is Global, Session, or both. Please see the
corresponding item descriptions for details on setting and using the variables. Where appropriate, direct
links to further information about the items are provided.

550

Server System Variable Reference

Table 5.3 System Variable Summary

Name Cmd-Line Option File System Var Var Scope Dynamic

audit_log_buffer_sizeYes Yes Yes Global No

audit_log_connection_policyYes Yes Yes Global Yes

audit_log_current_session Yes Both No

audit_log_exclude_accountsYes Yes Yes Global Yes

audit_log_file Yes Yes Yes Global No

audit_log_flush Yes Global Yes

audit_log_format Yes Yes Yes Global No

audit_log_include_accountsYes Yes Yes Global Yes

audit_log_policy Yes Yes Yes Global Varies

audit_log_rotate_on_sizeYes Yes Yes Global Yes

audit_log_statement_policyYes Yes Yes Global Yes

audit_log_strategyYes Yes Yes Global No

authentication_windows_log_levelYes Yes Yes Global No

authentication_windows_use_principal_nameYes Yes Yes Global No

auto_increment_incrementYes Yes Yes Both Yes

auto_increment_offsetYes Yes Yes Both Yes

autocommit Yes Yes Yes Both Yes

automatic_sp_privilegesYes Yes Yes Global Yes

avoid_temporal_upgradeYes Yes Yes Global Yes

back_log Yes Yes Yes Global No

basedir Yes Yes Yes Global No

big_tables Yes Yes Yes Both Yes

bind_address Yes Yes Yes Global No

binlog_cache_sizeYes Yes Yes Global Yes

binlog_checksum Yes Yes Yes Global Yes

binlog_direct_non_transactional_updatesYes Yes Yes Both Yes

binlog_error_actionYes Yes Yes Global Yes

binlog_format Yes Yes Yes Both Yes

binlog_gtid_simple_recoveryYes Yes Yes Global No

binlog_max_flush_queue_timeYes Yes Yes Global Yes

binlog_order_commitsYes Yes Yes Global Yes

binlog_row_imageYes Yes Yes Both Yes

binlog_rows_query_log_eventsYes Yes Yes Both Yes

binlog_stmt_cache_sizeYes Yes Yes Global Yes

binlogging_impossible_modeYes Yes Yes Both Yes

block_encryption_modeYes Yes Yes Both Yes

bulk_insert_buffer_sizeYes Yes Yes Both Yes

551

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

character_set_client Yes Both Yes

character_set_connection Yes Both Yes

character_set_database
(note 1)

Yes Both Yes

character_set_filesystemYes Yes Yes Both Yes

character_set_results Yes Both Yes

character_set_serverYes Yes Yes Both Yes

character_set_system Yes Global No

character_sets_dirYes Yes Yes Global No

collation_connection Yes Both Yes

collation_database
(note 1)

Yes Both Yes

collation_server Yes Yes Yes Both Yes

completion_type Yes Yes Yes Both Yes

concurrent_insert Yes Yes Yes Global Yes

connect_timeout Yes Yes Yes Global Yes

connection_control_failed_connections_thresholdYes Yes Yes Global Yes

connection_control_max_connection_delayYes Yes Yes Global Yes

connection_control_min_connection_delayYes Yes Yes Global Yes

core_file Yes Global No

create_old_temporalsYes Yes Yes Global No

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

datadir Yes Yes Yes Global No

date_format Yes Global No

datetime_format Yes Global No

debug Yes Yes Yes Both Yes

debug_sync Yes Session Yes

default_storage_engineYes Yes Yes Both Yes

default_tmp_storage_engineYes Yes Yes Both Yes

default_week_formatYes Yes Yes Both Yes

delay_key_write Yes Yes Yes Global Yes

delayed_insert_limitYes Yes Yes Global Yes

delayed_insert_timeoutYes Yes Yes Global Yes

552

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

delayed_queue_sizeYes Yes Yes Global Yes

disconnect_on_expired_passwordYes Yes Yes Global No

div_precision_incrementYes Yes Yes Both Yes

end_markers_in_jsonYes Yes Yes Both Yes

enforce_gtid_consistencyYes Yes Yes Global No

eq_range_index_dive_limitYes Yes Yes Both Yes

error_count Yes Session No

event_scheduler Yes Yes Yes Global Yes

expire_logs_daysYes Yes Yes Global Yes

explicit_defaults_for_timestampYes Yes Yes Both Yes

external_user Yes Session No

flush Yes Yes Yes Global Yes

flush_time Yes Yes Yes Global Yes

foreign_key_checks Yes Both Yes

ft_boolean_syntaxYes Yes Yes Global Yes

ft_max_word_len Yes Yes Yes Global No

ft_min_word_len Yes Yes Yes Global No

ft_query_expansion_limitYes Yes Yes Global No

ft_stopword_file Yes Yes Yes Global No

general_log Yes Yes Yes Global Yes

general_log_file Yes Yes Yes Global Yes

group_concat_max_lenYes Yes Yes Both Yes

gtid_executed Yes Both No

gtid_mode Yes Yes Yes Global No

gtid_next Yes Session Yes

gtid_owned Yes Both No

gtid_purged Yes Global Yes

have_compress Yes Global No

have_crypt Yes Global No

have_dynamic_loading Yes Global No

have_geometry Yes Global No

have_openssl Yes Global No

have_profiling Yes Global No

have_query_cache Yes Global No

have_rtree_keys Yes Global No

have_ssl Yes Global No

have_symlink Yes Global No

host_cache_size Yes Yes Yes Global Yes

553

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

hostname Yes Global No

identity Yes Session Yes

ignore_builtin_innodbYes Yes Yes Global No

ignore_db_dirs Yes Global No

init_connect Yes Yes Yes Global Yes

init_file Yes Yes Yes Global No

init_slave Yes Yes Yes Global Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

innodb_additional_mem_pool_sizeYes Yes Yes Global No

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_levelYes Yes Yes Global Yes

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

innodb_buffer_pool_sizeYes Yes Yes Global No

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_change_buffering_debugYes Yes Yes Global Yes

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_checksumsYes Yes Yes Global No

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

554

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_data_file_pathYes Yes Yes Global No

innodb_data_home_dirYes Yes Yes Global No

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

innodb_doublewriteYes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_fil_make_page_dirty_debugYes Yes Yes Global Yes

innodb_file_formatYes Yes Yes Global Yes

innodb_file_format_checkYes Yes Yes Global No

innodb_file_format_maxYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_flush_log_at_timeoutYes Yes Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_ft_aux_table Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

innodb_ft_enable_stopwordYes Yes Yes Both Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

innodb_io_capacityYes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

innodb_large_prefixYes Yes Yes Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_checkpoint_nowYes Yes Yes Global Yes

innodb_log_compressed_pagesYes Yes Yes Global Yes

555

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_mirrored_log_groupsYes Yes Yes Global No

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

innodb_monitor_reset_allYes Yes Yes Global Yes

innodb_numa_interleaveYes Yes Yes Global No

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_filesYes Yes Yes Global No

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

innodb_page_sizeYes Yes Yes Global No

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_onlyYes Yes Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

innodb_saved_page_number_debugYes Yes Yes Global Yes

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_include_delete_markedYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_persistentYes Yes Yes Global Yes

556

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

innodb_stats_sample_pagesYes Yes Yes Global Yes

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_modeYes Yes Yes Both Yes

innodb_support_xaYes Yes Yes Both Yes

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locksYes Yes Yes Both Yes

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_tmpdir Yes Yes Yes Both Yes

innodb_trx_purge_view_update_only_debugYes Yes Yes Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes Global Yes

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_logsYes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global No

innodb_use_native_aioYes Yes Yes Global No

innodb_use_sys_mallocYes Yes Yes Global No

innodb_version Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

insert_id Yes Session Yes

interactive_timeoutYes Yes Yes Both Yes

join_buffer_size Yes Yes Yes Both Yes

keep_files_on_createYes Yes Yes Both Yes

key_buffer_size Yes Yes Yes Global Yes

key_cache_age_thresholdYes Yes Yes Global Yes

key_cache_block_sizeYes Yes Yes Global Yes

key_cache_division_limitYes Yes Yes Global Yes

language Yes Yes Yes Global No

large_files_support Yes Global No

large_page_size Yes Global No

large_pages Yes Yes Yes Global No

last_insert_id Yes Session Yes

lc_messages Yes Yes Yes Both Yes

lc_messages_dir Yes Yes Yes Global No

lc_time_names Yes Yes Yes Both Yes

557

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

license Yes Global No

local_infile Yes Yes Yes Global Yes

lock_wait_timeoutYes Yes Yes Both Yes

locked_in_memory Yes Global No

log_bin Yes Global No

log_bin_basename Yes Global No

log_bin_index Yes Yes Yes Global No

log_bin_trust_function_creatorsYes Yes Yes Global Yes

log_bin_use_v1_row_eventsYes Yes Yes Global Yes

log_error Yes Yes Yes Global No

log_output Yes Yes Yes Global Yes

log_queries_not_using_indexesYes Yes Yes Global Yes

log_slave_updatesYes Yes Yes Global No

log_slow_admin_statementsYes Yes Yes Global Yes

log_slow_slave_statementsYes Yes Yes Global Yes

log_throttle_queries_not_using_indexesYes Yes Yes Global Yes

log_warnings Yes Yes Yes Varies Yes

long_query_time Yes Yes Yes Both Yes

low_priority_updatesYes Yes Yes Both Yes

lower_case_file_system Yes Global No

lower_case_table_namesYes Yes Yes Global No

master_info_repositoryYes Yes Yes Global Yes

master_verify_checksumYes Yes Yes Global Yes

max_allowed_packetYes Yes Yes Both Yes

max_binlog_cache_sizeYes Yes Yes Global Yes

max_binlog_size Yes Yes Yes Global Yes

max_binlog_stmt_cache_sizeYes Yes Yes Global Yes

max_connect_errorsYes Yes Yes Global Yes

max_connectionsYes Yes Yes Global Yes

max_delayed_threadsYes Yes Yes Both Yes

max_digest_lengthYes Yes Yes Global No

max_error_count Yes Yes Yes Both Yes

max_heap_table_sizeYes Yes Yes Both Yes

max_insert_delayed_threads Yes Both Yes

max_join_size Yes Yes Yes Both Yes

max_length_for_sort_dataYes Yes Yes Both Yes

max_prepared_stmt_countYes Yes Yes Global Yes

max_relay_log_sizeYes Yes Yes Global Yes

558

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

max_seeks_for_keyYes Yes Yes Both Yes

max_sort_length Yes Yes Yes Both Yes

max_sp_recursion_depthYes Yes Yes Both Yes

max_tmp_tables Yes Both Yes

max_user_connectionsYes Yes Yes Both Yes

max_write_lock_countYes Yes Yes Global Yes

metadata_locks_cache_sizeYes Yes Yes Global No

metadata_locks_hash_instancesYes Yes Yes Global No

min_examined_row_limitYes Yes Yes Both Yes

multi_range_countYes Yes Yes Both Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam_recover_optionsYes Yes Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

myisam_use_mmapYes Yes Yes Global Yes

mysql_firewall_max_query_sizeYes Yes Yes Global No

mysql_firewall_modeYes Yes Yes Global Yes

mysql_firewall_traceYes Yes Yes Global Yes

named_pipe Yes Yes Yes Global No

named_pipe_full_access_groupYes Yes Yes Global No

ndb_autoincrement_prefetch_szYes Yes Yes Both Yes

ndb_batch_size Yes Yes Yes Global No

ndb_blob_read_batch_bytesYes Yes Yes Both Yes

ndb_blob_write_batch_bytesYes Yes Yes Both Yes

ndb_cache_check_timeYes Yes Yes Global Yes

ndb_clear_apply_statusYes Yes Global Yes

ndb_cluster_connection_poolYes Yes Yes Global No

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb_distribution Yes Yes Yes Global Yes

ndb_distribution Yes Yes Yes Global Yes

ndb_eventbuffer_free_percentYes Yes Yes Global Yes

ndb_eventbuffer_max_allocYes Yes Yes Global Yes

ndb_extra_loggingYes Yes Yes Global Yes

ndb_force_send Yes Yes Yes Both Yes

559

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

ndb_index_stat_cache_entriesYes Yes Yes Both Yes

ndb_index_stat_enableYes Yes Yes Both Yes

ndb_index_stat_optionYes Yes Yes Both Yes

ndb_index_stat_update_freqYes Yes Yes Both Yes

ndb_join_pushdown Yes Both Yes

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_bin Yes Yes Both No

ndb_log_binlog_indexYes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb_log_empty_updateYes Yes Yes Global Yes

ndb_log_empty_updateYes Yes Yes Global Yes

ndb_log_exclusive_readsYes Yes Yes Both Yes

ndb_log_exclusive_readsYes Yes Yes Both Yes

ndb_log_fail_terminateYes Yes Yes Global No

ndb_log_orig Yes Yes Yes Global No

ndb_log_orig Yes Yes Yes Global No

ndb_log_transaction_idYes Yes Yes Global No

ndb_log_transaction_id Yes Global No

ndb_log_update_as_writeYes Yes Yes Global Yes

ndb_log_update_minimalYes Yes Yes Global Yes

ndb_log_updated_onlyYes Yes Yes Global Yes

ndb_optimization_delayYes Yes Yes Global Yes

ndb_optimized_node_selectionYes Yes Yes Global No

ndb_recv_thread_activation_thresholdYes Yes Yes Global Yes

ndb_recv_thread_cpu_maskYes Yes Yes Global Yes

ndb_report_thresh_binlog_epoch_slipYes Yes Yes Global Yes

ndb_report_thresh_binlog_mem_usageYes Yes Yes Global Yes

ndb_show_foreign_key_mock_tablesYes Yes Yes Global Yes

ndb_slave_conflict_roleYes Yes Yes Global Yes

ndb_table_no_logging Yes Session Yes

ndb_table_temporary Yes Session Yes

ndb_use_copying_alter_table Yes Both No

ndb_use_exact_count Yes Both Yes

ndb_use_transactionsYes Yes Yes Both Yes

ndb_version Yes Global No

ndb_version_string Yes Global No

560

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

ndb_wait_connectedYes Yes Yes Global No

ndb_wait_setup Yes Yes Yes Global No

ndbinfo_database Yes Global No

ndbinfo_max_bytesYes Yes Both Yes

ndbinfo_max_rowsYes Yes Both Yes

ndbinfo_offline Yes Global Yes

ndbinfo_show_hiddenYes Yes Both Yes

ndbinfo_table_prefix Yes Global No

ndbinfo_version Yes Global No

net_buffer_lengthYes Yes Yes Both Yes

net_read_timeoutYes Yes Yes Both Yes

net_retry_count Yes Yes Yes Both Yes

net_write_timeoutYes Yes Yes Both Yes

new Yes Yes Yes Both Yes

old Yes Yes Yes Global No

old_alter_table Yes Yes Yes Both Yes

old_passwords Yes Yes Yes Both Yes

open_files_limit Yes Yes Yes Global No

optimizer_prune_levelYes Yes Yes Both Yes

optimizer_search_depthYes Yes Yes Both Yes

optimizer_switch Yes Yes Yes Both Yes

optimizer_trace Yes Yes Yes Both Yes

optimizer_trace_featuresYes Yes Yes Both Yes

optimizer_trace_limitYes Yes Yes Both Yes

optimizer_trace_max_mem_sizeYes Yes Yes Both Yes

optimizer_trace_offsetYes Yes Yes Both Yes

performance_schemaYes Yes Yes Global No

performance_schema_accounts_sizeYes Yes Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

561

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

performance_schema_max_digest_lengthYes Yes Yes Global No

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

performance_schema_users_sizeYes Yes Yes Global No

pid_file Yes Yes Yes Global No

plugin_dir Yes Yes Yes Global No

port Yes Yes Yes Global No

preload_buffer_sizeYes Yes Yes Both Yes

profiling Yes Both Yes

profiling_history_sizeYes Yes Yes Both Yes

protocol_version Yes Global No

proxy_user Yes Session No

pseudo_slave_mode Yes Session Yes

pseudo_thread_id Yes Session Yes

query_alloc_block_sizeYes Yes Yes Both Yes

query_cache_limitYes Yes Yes Global Yes

query_cache_min_res_unitYes Yes Yes Global Yes

query_cache_sizeYes Yes Yes Global Yes

query_cache_typeYes Yes Yes Both Yes

query_cache_wlock_invalidateYes Yes Yes Both Yes

query_prealloc_sizeYes Yes Yes Both Yes

rand_seed1 Yes Session Yes

562

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

rand_seed2 Yes Session Yes

range_alloc_block_sizeYes Yes Yes Both Yes

read_buffer_size Yes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_sizeYes Yes Yes Both Yes

relay_log Yes Yes Yes Global No

relay_log_basename Yes Global No

relay_log_index Yes Yes Yes Global No

relay_log_info_fileYes Yes Yes Global No

relay_log_info_repositoryYes Yes Yes Global Yes

relay_log_purge Yes Yes Yes Global Yes

relay_log_recoveryYes Yes Yes Global Varies

relay_log_space_limitYes Yes Yes Global No

report_host Yes Yes Yes Global No

report_password Yes Yes Yes Global No

report_port Yes Yes Yes Global No

report_user Yes Yes Yes Global No

rpl_semi_sync_master_enabledYes Yes Yes Global Yes

rpl_semi_sync_master_timeoutYes Yes Yes Global Yes

rpl_semi_sync_master_trace_levelYes Yes Yes Global Yes

rpl_semi_sync_master_wait_no_slaveYes Yes Yes Global Yes

rpl_semi_sync_slave_enabledYes Yes Yes Global Yes

rpl_semi_sync_slave_trace_levelYes Yes Yes Global Yes

rpl_stop_slave_timeoutYes Yes Yes Global Yes

secure_auth Yes Yes Yes Global Yes

secure_file_priv Yes Yes Yes Global No

server_id Yes Yes Yes Global Yes

server_id_bits Yes Yes Yes Global No

server_uuid Yes Global No

sha256_password_private_key_pathYes Yes Yes Global No

sha256_password_public_key_pathYes Yes Yes Global No

shared_memory Yes Yes Yes Global No

shared_memory_base_nameYes Yes Yes Global No

show_old_temporalsYes Yes Yes Both Yes

simplified_binlog_gtid_recoveryYes Yes Yes Global No

skip_external_lockingYes Yes Yes Global No

skip_name_resolveYes Yes Yes Global No

skip_networking Yes Yes Yes Global No

563

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

skip_show_databaseYes Yes Yes Global No

skip_slave_start Yes Yes Yes Global No

slave_allow_batchingYes Yes Yes Global Yes

slave_checkpoint_groupYes Yes Yes Global Yes

slave_checkpoint_periodYes Yes Yes Global Yes

slave_compressed_protocolYes Yes Yes Global Yes

slave_exec_modeYes Yes Yes Global Yes

slave_load_tmpdirYes Yes Yes Global No

slave_max_allowed_packetYes Yes Yes Global Yes

slave_net_timeoutYes Yes Yes Global Yes

slave_parallel_workersYes Yes Yes Global Yes

slave_pending_jobs_size_maxYes Yes Yes Global Yes

slave_rows_search_algorithmsYes Yes Yes Global Yes

slave_skip_errorsYes Yes Yes Global No

slave_sql_verify_checksumYes Yes Yes Global Yes

slave_transaction_retriesYes Yes Yes Global Yes

slave_type_conversionsYes Yes Yes Global Yes

slow_launch_timeYes Yes Yes Global Yes

slow_query_log Yes Yes Yes Global Yes

slow_query_log_fileYes Yes Yes Global Yes

socket Yes Yes Yes Global No

sort_buffer_size Yes Yes Yes Both Yes

sql_auto_is_null Yes Both Yes

sql_big_selects Yes Both Yes

sql_buffer_result Yes Both Yes

sql_log_bin Yes Session Yes

sql_log_off Yes Both Yes

sql_mode Yes Yes Yes Both Yes

sql_notes Yes Both Yes

sql_quote_show_create Yes Both Yes

sql_safe_updates Yes Both Yes

sql_select_limit Yes Both Yes

sql_slave_skip_counter Yes Global Yes

sql_warnings Yes Both Yes

ssl_ca Yes Yes Yes Global No

ssl_capath Yes Yes Yes Global No

ssl_cert Yes Yes Yes Global No

ssl_cipher Yes Yes Yes Global No

564

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

ssl_crl Yes Yes Yes Global No

ssl_crlpath Yes Yes Yes Global No

ssl_key Yes Yes Yes Global No

storage_engine Yes Both Yes

stored_program_cacheYes Yes Yes Global Yes

sync_binlog Yes Yes Yes Global Yes

sync_frm Yes Yes Yes Global Yes

sync_master_infoYes Yes Yes Global Yes

sync_relay_log Yes Yes Yes Global Yes

sync_relay_log_infoYes Yes Yes Global Yes

system_time_zone Yes Global No

table_definition_cacheYes Yes Yes Global Yes

table_open_cacheYes Yes Yes Global Yes

table_open_cache_instancesYes Yes Yes Global No

thread_cache_sizeYes Yes Yes Global Yes

thread_concurrencyYes Yes Yes Global No

thread_handling Yes Yes Yes Global No

thread_pool_algorithmYes Yes Yes Global No

thread_pool_high_priority_connectionYes Yes Yes Both Yes

thread_pool_max_unused_threadsYes Yes Yes Global Yes

thread_pool_prio_kickup_timerYes Yes Yes Global Yes

thread_pool_size Yes Yes Yes Global No

thread_pool_stall_limitYes Yes Yes Global Yes

thread_stack Yes Yes Yes Global No

time_format Yes Global No

time_zone Yes Both Yes

timed_mutexes Yes Yes Yes Global Yes

timestamp Yes Session Yes

tmp_table_size Yes Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

transaction_alloc_block_sizeYes Yes Yes Both Yes

transaction_allow_batching Yes Session Yes

transaction_prealloc_sizeYes Yes Yes Both Yes

tx_isolation Yes Both Yes

tx_read_only Yes Both Yes

unique_checks Yes Both Yes

updatable_views_with_limitYes Yes Yes Both Yes

validate_password_dictionary_fileYes Yes Yes Global Varies

565

Server Status Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

validate_password_lengthYes Yes Yes Global Yes

validate_password_mixed_case_countYes Yes Yes Global Yes

validate_password_number_countYes Yes Yes Global Yes

validate_password_policyYes Yes Yes Global Yes

validate_password_special_char_countYes Yes Yes Global Yes

version Yes Global No

version_comment Yes Global No

version_compile_machine Yes Global No

version_compile_os Yes Global No

wait_timeout Yes Yes Yes Both Yes

warning_count Yes Session No

Notes:

1. This option is dynamic, but should be set only by server. You should not set this variable manually.

5.1.5 Server Status Variable Reference

The following table lists all status variables applicable within mysqld.

The table lists each variable's data type and scope. The last column indicates whether the scope for each
variable is Global, Session, or both. Please see the corresponding item descriptions for details on setting
and using the variables. Where appropriate, direct links to further information about the items are provided.

Table 5.4 Status Variable Summary

Variable Name Variable Type Variable Scope

Aborted_clients Integer Global

Aborted_connects Integer Global

Audit_log_current_size Integer Global

Audit_log_event_max_drop_size Integer Global

Audit_log_events Integer Global

Audit_log_events_filtered Integer Global

Audit_log_events_lost Integer Global

Audit_log_events_written Integer Global

Audit_log_total_size Integer Global

Audit_log_write_waits Integer Global

Binlog_cache_disk_use Integer Global

Binlog_cache_use Integer Global

Binlog_stmt_cache_disk_use Integer Global

Binlog_stmt_cache_use Integer Global

Bytes_received Integer Both

Bytes_sent Integer Both

Com_admin_commands Integer Both

566

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Com_alter_db Integer Both

Com_alter_db_upgrade Integer Both

Com_alter_event Integer Both

Com_alter_function Integer Both

Com_alter_procedure Integer Both

Com_alter_server Integer Both

Com_alter_table Integer Both

Com_alter_tablespace Integer Both

Com_alter_user Integer Both

Com_analyze Integer Both

Com_assign_to_keycache Integer Both

Com_begin Integer Both

Com_binlog Integer Both

Com_call_procedure Integer Both

Com_change_db Integer Both

Com_change_master Integer Both

Com_check Integer Both

Com_checksum Integer Both

Com_commit Integer Both

Com_create_db Integer Both

Com_create_event Integer Both

Com_create_function Integer Both

Com_create_index Integer Both

Com_create_procedure Integer Both

Com_create_server Integer Both

Com_create_table Integer Both

Com_create_trigger Integer Both

Com_create_udf Integer Both

Com_create_user Integer Both

Com_create_view Integer Both

Com_dealloc_sql Integer Both

Com_delete Integer Both

Com_delete_multi Integer Both

Com_do Integer Both

Com_drop_db Integer Both

Com_drop_event Integer Both

Com_drop_function Integer Both

Com_drop_index Integer Both

567

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Com_drop_procedure Integer Both

Com_drop_server Integer Both

Com_drop_table Integer Both

Com_drop_trigger Integer Both

Com_drop_user Integer Both

Com_drop_view Integer Both

Com_empty_query Integer Both

Com_execute_sql Integer Both

Com_flush Integer Both

Com_get_diagnostics Integer Both

Com_grant Integer Both

Com_ha_close Integer Both

Com_ha_open Integer Both

Com_ha_read Integer Both

Com_help Integer Both

Com_insert Integer Both

Com_insert_select Integer Both

Com_install_plugin Integer Both

Com_kill Integer Both

Com_load Integer Both

Com_lock_tables Integer Both

Com_optimize Integer Both

Com_preload_keys Integer Both

Com_prepare_sql Integer Both

Com_purge Integer Both

Com_purge_before_date Integer Both

Com_release_savepoint Integer Both

Com_rename_table Integer Both

Com_rename_user Integer Both

Com_repair Integer Both

Com_replace Integer Both

Com_replace_select Integer Both

Com_reset Integer Both

Com_resignal Integer Both

Com_revoke Integer Both

Com_revoke_all Integer Both

Com_rollback Integer Both

Com_rollback_to_savepoint Integer Both

568

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Com_savepoint Integer Both

Com_select Integer Both

Com_set_option Integer Both

Com_show_authors Integer Both

Com_show_binlog_events Integer Both

Com_show_binlogs Integer Both

Com_show_charsets Integer Both

Com_show_collations Integer Both

Com_show_contributors Integer Both

Com_show_create_db Integer Both

Com_show_create_event Integer Both

Com_show_create_func Integer Both

Com_show_create_proc Integer Both

Com_show_create_table Integer Both

Com_show_create_trigger Integer Both

Com_show_databases Integer Both

Com_show_engine_logs Integer Both

Com_show_engine_mutex Integer Both

Com_show_engine_status Integer Both

Com_show_errors Integer Both

Com_show_events Integer Both

Com_show_fields Integer Both

Com_show_function_code Integer Both

Com_show_function_status Integer Both

Com_show_grants Integer Both

Com_show_keys Integer Both

Com_show_master_status Integer Both

Com_show_ndb_status Integer Both

Com_show_open_tables Integer Both

Com_show_plugins Integer Both

Com_show_privileges Integer Both

Com_show_procedure_code Integer Both

Com_show_procedure_status Integer Both

Com_show_processlist Integer Both

Com_show_profile Integer Both

Com_show_profiles Integer Both

Com_show_relaylog_events Integer Both

Com_show_slave_hosts Integer Both

569

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Com_show_slave_status Integer Both

Com_show_status Integer Both

Com_show_storage_engines Integer Both

Com_show_table_status Integer Both

Com_show_tables Integer Both

Com_show_triggers Integer Both

Com_show_variables Integer Both

Com_show_warnings Integer Both

Com_signal Integer Both

Com_slave_start Integer Both

Com_slave_stop Integer Both

Com_stmt_close Integer Both

Com_stmt_execute Integer Both

Com_stmt_fetch Integer Both

Com_stmt_prepare Integer Both

Com_stmt_reprepare Integer Both

Com_stmt_reset Integer Both

Com_stmt_send_long_data Integer Both

Com_truncate Integer Both

Com_uninstall_plugin Integer Both

Com_unlock_tables Integer Both

Com_update Integer Both

Com_update_multi Integer Both

Com_xa_commit Integer Both

Com_xa_end Integer Both

Com_xa_prepare Integer Both

Com_xa_recover Integer Both

Com_xa_rollback Integer Both

Com_xa_start Integer Both

Compression Integer Session

Connection_control_delay_generatedInteger Global

Connection_errors_accept Integer Global

Connection_errors_internal Integer Global

Connection_errors_max_connectionsInteger Global

Connection_errors_peer_address Integer Global

Connection_errors_select Integer Global

Connection_errors_tcpwrap Integer Global

Connections Integer Global

570

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Created_tmp_disk_tables Integer Both

Created_tmp_files Integer Global

Created_tmp_tables Integer Both

Delayed_errors Integer Global

Delayed_insert_threads Integer Global

Delayed_writes Integer Global

Firewall_access_denied Integer Global

Firewall_access_granted Integer Global

Firewall_cached_entries Integer Global

Flush_commands Integer Global

Handler_commit Integer Both

Handler_delete Integer Both

Handler_discover Integer Both

Handler_external_lock Integer Both

Handler_mrr_init Integer Both

Handler_prepare Integer Both

Handler_read_first Integer Both

Handler_read_key Integer Both

Handler_read_last Integer Both

Handler_read_next Integer Both

Handler_read_prev Integer Both

Handler_read_rnd Integer Both

Handler_read_rnd_next Integer Both

Handler_rollback Integer Both

Handler_savepoint Integer Both

Handler_savepoint_rollback Integer Both

Handler_update Integer Both

Handler_write Integer Both

Innodb_available_undo_logs Integer Global

Innodb_buffer_pool_bytes_data Integer Global

Innodb_buffer_pool_bytes_dirty Integer Global

Innodb_buffer_pool_dump_status String Global

Innodb_buffer_pool_load_status String Global

Innodb_buffer_pool_pages_data Integer Global

Innodb_buffer_pool_pages_dirty Integer Global

Innodb_buffer_pool_pages_flushedInteger Global

Innodb_buffer_pool_pages_free Integer Global

Innodb_buffer_pool_pages_latched Integer Global

571

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Innodb_buffer_pool_pages_misc Integer Global

Innodb_buffer_pool_pages_total Integer Global

Innodb_buffer_pool_read_ahead Integer Global

Innodb_buffer_pool_read_ahead_evictedInteger Global

Innodb_buffer_pool_read_ahead_rndInteger Global

Innodb_buffer_pool_read_requests Integer Global

Innodb_buffer_pool_reads Integer Global

Innodb_buffer_pool_wait_free Integer Global

Innodb_buffer_pool_write_requests Integer Global

Innodb_data_fsyncs Integer Global

Innodb_data_pending_fsyncs Integer Global

Innodb_data_pending_reads Integer Global

Innodb_data_pending_writes Integer Global

Innodb_data_read Integer Global

Innodb_data_reads Integer Global

Innodb_data_writes Integer Global

Innodb_data_written Integer Global

Innodb_dblwr_pages_written Integer Global

Innodb_dblwr_writes Integer Global

Innodb_have_atomic_builtins Integer Global

Innodb_log_waits Integer Global

Innodb_log_write_requests Integer Global

Innodb_log_writes Integer Global

Innodb_num_open_files Integer Global

Innodb_os_log_fsyncs Integer Global

Innodb_os_log_pending_fsyncs Integer Global

Innodb_os_log_pending_writes Integer Global

Innodb_os_log_written Integer Global

Innodb_page_size Integer Global

Innodb_pages_created Integer Global

Innodb_pages_read Integer Global

Innodb_pages_written Integer Global

Innodb_row_lock_current_waits Integer Global

Innodb_row_lock_time Integer Global

Innodb_row_lock_time_avg Integer Global

Innodb_row_lock_time_max Integer Global

Innodb_row_lock_waits Integer Global

Innodb_rows_deleted Integer Global

572

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Innodb_rows_inserted Integer Global

Innodb_rows_read Integer Global

Innodb_rows_updated Integer Global

Innodb_truncated_status_writes Integer Global

Key_blocks_not_flushed Integer Global

Key_blocks_unused Integer Global

Key_blocks_used Integer Global

Key_read_requests Integer Global

Key_reads Integer Global

Key_write_requests Integer Global

Key_writes Integer Global

Last_query_cost Numeric Session

Last_query_partial_plans Integer Session

Max_used_connections Integer Global

Ndb_api_adaptive_send_deferred_countInteger Global

Ndb_api_adaptive_send_deferred_count_sessionInteger Global

Ndb_api_adaptive_send_deferred_count_slaveInteger Global

Ndb_api_adaptive_send_forced_countInteger Global

Ndb_api_adaptive_send_forced_count_sessionInteger Global

Ndb_api_adaptive_send_forced_count_slaveInteger Global

Ndb_api_adaptive_send_unforced_countInteger Global

Ndb_api_adaptive_send_unforced_count_sessionInteger Global

Ndb_api_adaptive_send_unforced_count_slaveInteger Global

Ndb_api_bytes_received_count Integer Global

Ndb_api_bytes_received_count_sessionInteger Session

Ndb_api_bytes_received_count_slaveInteger Global

Ndb_api_bytes_sent_count Integer Global

Ndb_api_bytes_sent_count_sessionInteger Session

Ndb_api_bytes_sent_count_slave Integer Global

Ndb_api_event_bytes_count Integer Global

Ndb_api_event_bytes_count_injectorInteger Global

Ndb_api_event_data_count Integer Global

Ndb_api_event_data_count_injectorInteger Global

Ndb_api_event_nondata_count Integer Global

Ndb_api_event_nondata_count_injectorInteger Global

Ndb_api_pk_op_count Integer Global

Ndb_api_pk_op_count_session Integer Session

Ndb_api_pk_op_count_slave Integer Global

573

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Ndb_api_pruned_scan_count Integer Global

Ndb_api_pruned_scan_count_sessionInteger Session

Ndb_api_pruned_scan_count_slaveInteger Global

Ndb_api_range_scan_count Integer Global

Ndb_api_range_scan_count_sessionInteger Session

Ndb_api_range_scan_count_slave Integer Global

Ndb_api_read_row_count Integer Global

Ndb_api_read_row_count_session Integer Session

Ndb_api_read_row_count_slave Integer Global

Ndb_api_scan_batch_count Integer Global

Ndb_api_scan_batch_count_sessionInteger Session

Ndb_api_scan_batch_count_slave Integer Global

Ndb_api_table_scan_count Integer Global

Ndb_api_table_scan_count_sessionInteger Session

Ndb_api_table_scan_count_slave Integer Global

Ndb_api_trans_abort_count Integer Global

Ndb_api_trans_abort_count_sessionInteger Session

Ndb_api_trans_abort_count_slave Integer Global

Ndb_api_trans_close_count Integer Global

Ndb_api_trans_close_count_sessionInteger Session

Ndb_api_trans_close_count_slave Integer Global

Ndb_api_trans_commit_count Integer Global

Ndb_api_trans_commit_count_sessionInteger Session

Ndb_api_trans_commit_count_slaveInteger Global

Ndb_api_trans_local_read_row_countInteger Global

Ndb_api_trans_local_read_row_count_sessionInteger Session

Ndb_api_trans_local_read_row_count_slaveInteger Global

Ndb_api_trans_start_count Integer Global

Ndb_api_trans_start_count_sessionInteger Session

Ndb_api_trans_start_count_slave Integer Global

Ndb_api_uk_op_count Integer Global

Ndb_api_uk_op_count_session Integer Session

Ndb_api_uk_op_count_slave Integer Global

Ndb_api_wait_exec_complete_countInteger Global

Ndb_api_wait_exec_complete_count_sessionInteger Session

Ndb_api_wait_exec_complete_count_slaveInteger Global

Ndb_api_wait_meta_request_countInteger Global

Ndb_api_wait_meta_request_count_sessionInteger Session

574

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Ndb_api_wait_meta_request_count_slaveInteger Global

Ndb_api_wait_nanos_count Integer Global

Ndb_api_wait_nanos_count_sessionInteger Session

Ndb_api_wait_nanos_count_slave Integer Global

Ndb_api_wait_scan_result_count Integer Global

Ndb_api_wait_scan_result_count_sessionInteger Session

Ndb_api_wait_scan_result_count_slaveInteger Global

Ndb_cluster_node_id Integer Global

Ndb_config_from_host Integer Both

Ndb_config_from_port Integer Both

Ndb_conflict_fn_epoch Integer Global

Ndb_conflict_fn_epoch_trans Integer Global

Ndb_conflict_fn_epoch2 Integer Global

Ndb_conflict_fn_epoch2_trans Integer Global

Ndb_conflict_fn_max Integer Global

Ndb_conflict_fn_max_del_win Integer Global

Ndb_conflict_fn_old Integer Global

Ndb_conflict_last_conflict_epoch Integer Global

Ndb_conflict_last_stable_epoch Integer Global

Ndb_conflict_reflected_op_discard_countInteger Global

Ndb_conflict_reflected_op_prepare_countInteger Global

Ndb_conflict_refresh_op_count Integer Global

Ndb_conflict_trans_conflict_commit_countInteger Global

Ndb_conflict_trans_detect_iter_countInteger Global

Ndb_conflict_trans_reject_count Integer Global

Ndb_conflict_trans_row_conflict_countInteger Global

Ndb_conflict_trans_row_reject_countInteger Global

Ndb_epoch_delete_delete_count Integer Global

Ndb_execute_count Integer Global

Ndb_last_commit_epoch_server Integer Global

Ndb_last_commit_epoch_session Integer Session

Ndb_cluster_node_id Integer Global

Ndb_number_of_data_nodes Integer Global

Ndb_pruned_scan_count Integer Global

Ndb_pushed_queries_defined Integer Global

Ndb_pushed_queries_dropped Integer Global

Ndb_pushed_queries_executed Integer Global

Ndb_pushed_reads Integer Global

575

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Ndb_scan_count Integer Global

Ndb_slave_max_replicated_epoch Integer Global

Not_flushed_delayed_rows Integer Global

Open_files Integer Global

Open_streams Integer Global

Open_table_definitions Integer Global

Open_tables Integer Both

Opened_files Integer Global

Opened_table_definitions Integer Both

Opened_tables Integer Both

Performance_schema_accounts_lostInteger Global

Performance_schema_cond_classes_lostInteger Global

Performance_schema_cond_instances_lostInteger Global

Performance_schema_digest_lost Integer Global

Performance_schema_file_classes_lostInteger Global

Performance_schema_file_handles_lostInteger Global

Performance_schema_file_instances_lostInteger Global

Performance_schema_hosts_lost Integer Global

Performance_schema_locker_lost Integer Global

Performance_schema_mutex_classes_lostInteger Global

Performance_schema_mutex_instances_lostInteger Global

Performance_schema_rwlock_classes_lostInteger Global

Performance_schema_rwlock_instances_lostInteger Global

Performance_schema_session_connect_attrs_lostInteger Global

Performance_schema_socket_classes_lostInteger Global

Performance_schema_socket_instances_lostInteger Global

Performance_schema_stage_classes_lostInteger Global

Performance_schema_statement_classes_lostInteger Global

Performance_schema_table_handles_lostInteger Global

Performance_schema_table_instances_lostInteger Global

Performance_schema_thread_classes_lostInteger Global

Performance_schema_thread_instances_lostInteger Global

Performance_schema_users_lost Integer Global

Prepared_stmt_count Integer Global

Qcache_free_blocks Integer Global

Qcache_free_memory Integer Global

Qcache_hits Integer Global

Qcache_inserts Integer Global

576

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Qcache_lowmem_prunes Integer Global

Qcache_not_cached Integer Global

Qcache_queries_in_cache Integer Global

Qcache_total_blocks Integer Global

Queries Integer Both

Questions Integer Both

Rpl_semi_sync_master_clients Integer Global

Rpl_semi_sync_master_net_avg_wait_timeInteger Global

Rpl_semi_sync_master_net_wait_timeInteger Global

Rpl_semi_sync_master_net_waits Integer Global

Rpl_semi_sync_master_no_times Integer Global

Rpl_semi_sync_master_no_tx Integer Global

Rpl_semi_sync_master_status Boolean Global

Rpl_semi_sync_master_timefunc_failuresInteger Global

Rpl_semi_sync_master_tx_avg_wait_timeInteger Global

Rpl_semi_sync_master_tx_wait_timeInteger Global

Rpl_semi_sync_master_tx_waits Integer Global

Rpl_semi_sync_master_wait_pos_backtraverseInteger Global

Rpl_semi_sync_master_wait_sessionsInteger Global

Rpl_semi_sync_master_yes_tx Integer Global

Rpl_semi_sync_slave_status Boolean Global

Rsa_public_key String Global

Select_full_join Integer Both

Select_full_range_join Integer Both

Select_range Integer Both

Select_range_check Integer Both

Select_scan Integer Both

Slave_heartbeat_period Numeric Global

Slave_last_heartbeat Datetime Global

Slave_open_temp_tables Integer Global

Slave_received_heartbeats Integer Global

Slave_retried_transactions Integer Global

Slave_rows_last_search_algorithm_usedString Global

Slave_running Boolean Global

Slow_launch_threads Integer Both

Slow_queries Integer Both

Sort_merge_passes Integer Both

Sort_range Integer Both

577

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Sort_rows Integer Both

Sort_scan Integer Both

Ssl_accept_renegotiates Integer Global

Ssl_accepts Integer Global

Ssl_callback_cache_hits Integer Global

Ssl_cipher String Both

Ssl_cipher_list String Both

Ssl_client_connects Integer Global

Ssl_connect_renegotiates Integer Global

Ssl_ctx_verify_depth Integer Global

Ssl_ctx_verify_mode Integer Global

Ssl_default_timeout Integer Both

Ssl_finished_accepts Integer Global

Ssl_finished_connects Integer Global

Ssl_server_not_after Integer Both

Ssl_server_not_before Integer Both

Ssl_session_cache_hits Integer Global

Ssl_session_cache_misses Integer Global

Ssl_session_cache_mode String Global

Ssl_session_cache_overflows Integer Global

Ssl_session_cache_size Integer Global

Ssl_session_cache_timeouts Integer Global

Ssl_sessions_reused Integer Session

Ssl_used_session_cache_entries Integer Global

Ssl_verify_depth Integer Both

Ssl_verify_mode Integer Both

Ssl_version String Both

Table_locks_immediate Integer Global

Table_locks_waited Integer Global

Table_open_cache_hits Integer Both

Table_open_cache_misses Integer Both

Table_open_cache_overflows Integer Both

Tc_log_max_pages_used Integer Global

Tc_log_page_size Integer Global

Tc_log_page_waits Integer Global

Threads_cached Integer Global

Threads_connected Integer Global

Threads_created Integer Global

578

Server Command Options

Variable Name Variable Type Variable Scope

Threads_running Integer Global

Uptime Integer Global

Uptime_since_flush_status Integer Global

validate_password_dictionary_file_last_parsedDatetime Global

validate_password_dictionary_file_words_countInteger Global

5.1.6 Server Command Options

When you start the mysqld server, you can specify program options using any of the methods described
in Section 4.2.2, “Specifying Program Options”. The most common methods are to provide options in an
option file or on the command line. However, in most cases it is desirable to make sure that the server
uses the same options each time it runs. The best way to ensure this is to list them in an option file. See
Section 4.2.2.2, “Using Option Files”. That section also describes option file format and syntax.

mysqld reads options from the [mysqld] and [server] groups. mysqld_safe reads options from the
[mysqld], [server], [mysqld_safe], and [safe_mysqld] groups. mysql.server reads options
from the [mysqld] and [mysql.server] groups.

An embedded MySQL server usually reads options from the [server], [embedded], and
[xxxxx_SERVER] groups, where xxxxx is the name of the application into which the server is embedded.

mysqld accepts many command options. For a brief summary, execute this command:

mysqld --help

To see the full list, use this command:

mysqld --verbose --help

Some of the items in the list are actually system variables that can be set at server startup. These can
be displayed at runtime using the SHOW VARIABLES statement. Some items displayed by the preceding
mysqld command do not appear in SHOW VARIABLES output; this is because they are options only and
not system variables.

The following list shows some of the most common server options. Additional options are described in
other sections:

• Options that affect security: See Section 6.1.4, “Security-Related mysqld Options and Variables”.

• SSL-related options: See Command Options for Encrypted Connections.

• Binary log control options: See Section 5.4.4, “The Binary Log”.

• Replication-related options: See Section 17.1.4, “Replication and Binary Logging Options and Variables”.

• Options for loading plugins such as pluggable storage engines: See Section 5.5.1, “Installing and
Uninstalling Plugins”.

• Options specific to particular storage engines: See Section 14.14, “InnoDB Startup Options and System
Variables” and Section 15.2.1, “MyISAM Startup Options”.

Some options control the size of buffers or caches. For a given buffer, the server might need to allocate
internal data structures. These structures typically are allocated from the total memory allocated to the
buffer, and the amount of space required might be platform dependent. This means that when you assign
a value to an option that controls a buffer size, the amount of space actually available might differ from

579

Server Command Options

the value assigned. In some cases, the amount might be less than the value assigned. It is also possible
that the server adjusts a value upward. For example, if you assign a value of 0 to an option for which the
minimal value is 1024, the server sets the value to 1024.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Some options take file name values. Unless otherwise specified, the default file location is the data
directory if the value is a relative path name. To specify the location explicitly, use an absolute path name.
Suppose that the data directory is /var/mysql/data. If a file-valued option is given as a relative path
name, it is located under /var/mysql/data. If the value is an absolute path name, its location is as given
by the path name.

You can also set the values of server system variables at server startup by using variable names as
options. To assign a value to a server system variable, use an option of the form --var_name=value. For
example, --key_buffer_size=32M sets the key_buffer_size variable to a value of 32MB.

When you assign a value to a variable, MySQL might automatically correct the value to stay within a given
range, or adjust the value to the closest permissible value if only certain values are permitted.

To restrict the maximum value to which a system variable can be set at runtime with the SET statement,
specify this maximum by using an option of the form --maximum-var_name=value at server startup.

You can change the values of most system variables at runtime with the SET statement. See
Section 13.7.4.1, “SET Syntax for Variable Assignment”.

Section 5.1.7, “Server System Variables”, provides a full description for all variables, and additional
information for setting them at server startup and runtime. For information on changing system variables,
see Section 5.1.1, “Configuring the Server”.

• --help, -?

Command-Line Format --help

Display a short help message and exit. Use both the --verbose and --help options to see the full
message.

• --allow-suspicious-udfs

Command-Line Format --allow-suspicious-udfs[={OFF|ON}]

Type Boolean

Default Value OFF

This option controls whether loadable functions that have only an xxx symbol for the main function can
be loaded. By default, the option is off and only loadable functions that have at least one auxiliary symbol
can be loaded; this prevents attempts at loading functions from shared object files other than those
containing legitimate functions. See Loadable Function Security Precautions.

• --ansi

Command-Line Format --ansi

Use standard (ANSI) SQL syntax instead of MySQL syntax. For more precise control over the server
SQL mode, use the --sql-mode option instead. See Section 1.6, “MySQL Standards Compliance”, and
Section 5.1.10, “Server SQL Modes”.

• --basedir=dir_name, -b dir_name

580

https://dev.mysql.com/doc/extending-mysql/5.6/en/adding-loadable-function.html#loadable-function-security

Server Command Options

Command-Line Format --basedir=dir_name

System Variable basedir

Scope Global

Dynamic No

Type Directory name

Default Value configuration-dependent default

The path to the MySQL installation directory. This option sets the basedir system variable.

• --bootstrap

Command-Line Format --bootstrap

This option is used by the mysql_install_db program to create the MySQL privilege tables without
having to start a full MySQL server.

Replication and global transaction identifiers are automatically disabled whenever this option is used
(Bug #13992602). See Section 17.1.3, “Replication with Global Transaction Identifiers”.

When the server operates in bootstap mode, some functionality is unavailable that limits the statements
permitted in any file named by the init_file system variable. For more information, see the
description of that variable.

• --character-set-client-handshake

Command-Line Format --character-set-client-
handshake[={OFF|ON}]

Type Boolean

Default Value ON

Do not ignore character set information sent by the client. To ignore client information and use the
default server character set, use --skip-character-set-client-handshake; this makes MySQL
behave like MySQL 4.0.

• --chroot=dir_name, -r dir_name

Command-Line Format --chroot=dir_name

Type Directory name

Put the mysqld server in a closed environment during startup by using the chroot() system call. This
is a recommended security measure.

Note

Use of this option somewhat limits LOAD DATA and SELECT ... INTO
OUTFILE.

• --console

Command-Line Format --console

Platform Specific Windows

581

Server Command Options

(Windows only.) Write error log messages to stderr and stdout (the console). mysqld does not close
the console window if this option is used.

--log-error takes precedence over --console if both are given.

• --core-file

Command-Line Format --core-file[={OFF|ON}]

Type Boolean

Default Value OFF

Write a core file if mysqld dies. The name and location of the core file is system dependent. On Linux,
a core file named core.pid is written to the current working directory of the process, which for mysqld
is the data directory. pid represents the process ID of the server process. On macOS, a core file named
core.pid is written to the /cores directory. On Solaris, use the coreadm command to specify where
to write the core file and how to name it.

For some systems, to get a core file you must also specify the --core-file-size option to
mysqld_safe. See Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”. On some systems,
such as Solaris, you do not get a core file if you are also using the --user option. There might be
additional restrictions or limitations. For example, it might be necessary to execute ulimit -c
unlimited before starting the server. Consult your system documentation.

• --datadir=dir_name, -h dir_name

Command-Line Format --datadir=dir_name

System Variable datadir

Scope Global

Dynamic No

Type Directory name

The path to the MySQL server data directory. This option sets the datadir system variable. See the
description of that variable.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

System Variable debug

Scope Global, Session

Dynamic Yes

Type String

Default Value (Unix) d:t:i:o,/tmp/mysqld.trace

Default Value (Windows) d:t:i:O,\mysqld.trace

If MySQL is configured with the -DWITH_DEBUG=1 CMake option, you can use this option to get a trace
file of what mysqld is doing. A typical debug_options string is d:t:o,file_name. The default is
d:t:i:o,/tmp/mysqld.trace on Unix and d:t:i:O,\mysqld.trace on Windows.

Using -DWITH_DEBUG=1 to configure MySQL with debugging support enables you to use the --
debug="d,parser_debug" option when you start the server. This causes the Bison parser that is

582

Server Command Options

used to process SQL statements to dump a parser trace to the server's standard error output. Typically,
this output is written to the error log.

This option may be given multiple times. Values that begin with + or - are added to or subtracted from
the previous value. For example, --debug=T --debug=+P sets the value to P:T.

For more information, see Section 5.8.3, “The DBUG Package”.

• --debug-sync-timeout[=N]

Command-Line Format --debug-sync-timeout[=#]

Type Integer

Controls whether the Debug Sync facility for testing and debugging is enabled. Use of Debug
Sync requires that MySQL be configured with the -DENABLE_DEBUG_SYNC=1 CMake option (see
Section 2.9.7, “MySQL Source-Configuration Options”). If Debug Sync is not compiled in, this option is
not available. The option value is a timeout in seconds. The default value is 0, which disables Debug
Sync. To enable it, specify a value greater than 0; this value also becomes the default timeout for
individual synchronization points. If the option is given without a value, the timeout is set to 300 seconds.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

• --default-authentication-plugin=plugin_name

Command-Line Format --default-authentication-
plugin=plugin_name

Type Enumeration

Default Value mysql_native_password

Valid Values mysql_native_password

sha256_password

This option sets the default authentication plugin. These values are permitted:

• mysql_native_password: Use MySQL native passwords; see Section 6.4.1.1, “Native Pluggable
Authentication”.

• sha256_password: Use SHA-256 passwords; see Section 6.4.1.4, “SHA-256 Pluggable
Authentication”.

Note

Prior to MySQL 5.6.17, if you use this option to change the default authentication
plugin to a value other than mysql_native_password, clients older than
MySQL 5.5.7 cannot connect because they do not understand the resulting
change to the authentication protocol.

In MySQL 5.6, there is no server system variable that corresponds to the --default-
authentication-plugin option; to read the value set for this option, you must check the running
MySQL Server process to see what options, if any, were employed when invoking mysqld (on Linux

583

https://dev.mysql.com/doc/internals/en/test-synchronization.html
https://dev.mysql.com/doc/internals/en/test-synchronization.html

Server Command Options

systems, you can do this with ps ax | grep mysqld or similar), and possibly the server options file
as well. This is a known issue which is resolved in MySQL 5.7. (Bug #68858, Bug #16595944)

The --default-authentication-plugin value affects these aspects of server operation:

• It determines which authentication plugin the server assigns to new accounts created by CREATE
USER and GRANT statements that do not explicitly specify an authentication plugin.

• The old_passwords system variable affects password hashing for accounts that use the
mysql_native_password or sha256_password authentication plugin. If the default authentication
plugin is one of those plugins, the server sets old_passwords at startup to the value required by the
plugin password hashing method.

• For an account created with either of the following statements, the server associates the account with
the default authentication plugin and assigns the account the given password, hashed as required by
that plugin:

CREATE USER ... IDENTIFIED BY 'cleartext password';
GRANT ... IDENTIFIED BY 'cleartext password';

• For an account created with either of the following statements, the server associates the account with
the default authentication plugin and assigns the account the given password hash, if the password
hash has the format required by the plugin:

CREATE USER ... IDENTIFIED BY PASSWORD 'encrypted password';
GRANT ... IDENTIFIED BY PASSWORD 'encrypted password';

If the password hash is not in the format required by the default authentication plugin, the statement
fails.

• --default-time-zone=timezone

Command-Line Format --default-time-zone=name

Type String

Set the default server time zone. This option sets the global time_zone system variable. If this option
is not given, the default time zone is the same as the system time zone (given by the value of the
system_time_zone system variable.

The system_time_zone variable differs from time_zone. Although they might have the same value,
the latter variable is used to initialize the time zone for each client that connects. See Section 5.1.13,
“MySQL Server Time Zone Support”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it is
interpreted relative to the current directory. This must be the first option on the command line if it is used.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

584

Server Command Options

• --defaults-file=file_name

Read only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Note

This must be the first option on the command line if it is used, except that if the
server is started with the --defaults-file and --install (or --install-
manual) options, --install (or --install-manual) must be first.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysqld normally reads the [mysqld] group. If this option is given as --defaults-group-
suffix=_other, mysqld also reads the [mysqld_other] group.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --des-key-file=file_name

Command-Line Format --des-key-file=file_name

Read the default DES keys from this file. These keys are used by the DES_ENCRYPT() and
DES_DECRYPT() functions.

• --exit-info[=flags], -T [flags]

Command-Line Format --exit-info[=flags]

Type Integer

This is a bitmask of different flags that you can use for debugging the mysqld server. Do not use this
option unless you know exactly what it does!

• --external-locking

Command-Line Format --external-locking[={OFF|ON}]

Type Boolean

Default Value OFF

Enable external locking (system locking), which is disabled by default. If you use this option on a system
on which lockd does not fully work (such as Linux), it is easy for mysqld to deadlock.

To disable external locking explicitly, use --skip-external-locking.

External locking affects only MyISAM table access. For more information, including conditions under
which it can and cannot be used, see Section 8.11.5, “External Locking”.

• --flush

Command-Line Format --flush[={OFF|ON}]

585

Server Command Options

System Variable flush

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Flush (synchronize) all changes to disk after each SQL statement. Normally, MySQL does a write of all
changes to disk only after each SQL statement and lets the operating system handle the synchronizing
to disk. See Section B.3.3.3, “What to Do If MySQL Keeps Crashing”.

Note

If --flush is specified, the value of flush_time does not matter and changes
to flush_time have no effect on flush behavior.

• --gdb

Command-Line Format --gdb[={OFF|ON}]

Type Boolean

Default Value OFF

Install an interrupt handler for SIGINT (needed to stop mysqld with ^C to set breakpoints) and disable
stack tracing and core file handling. See Section 5.8.1.4, “Debugging mysqld under gdb”.

• --ignore-db-dir=dir_name

Command-Line Format --ignore-db-dir=dir_name

Type Directory name

This option tells the server to ignore the given directory name for purposes of the SHOW DATABASES
statement or INFORMATION_SCHEMA tables. For example, if a MySQL configuration locates the data
directory at the root of a file system on Unix, the system might create a lost+found directory there that
the server should ignore. Starting the server with --ignore-db-dir=lost+found causes that name
not to be listed as a database.

To specify more than one name, use this option multiple times, once for each name. Specifying the
option with an empty value (that is, as --ignore-db-dir=) resets the directory list to the empty list.

Instances of this option given at server startup are used to set the ignore_db_dirs system variable.

• --innodb-xxx

Set an option for the InnoDB storage engine. The InnoDB options are listed in Section 14.14, “InnoDB
Startup Options and System Variables”.

• --install [service_name]

Command-Line Format --install [service_name]

586

Server Command Options

Platform Specific Windows

(Windows only) Install the server as a Windows service that starts automatically during Windows startup.
The default service name is MySQL if no service_name value is given. For more information, see
Section 2.3.4.7, “Starting MySQL as a Windows Service”.

Note

If the server is started with the --defaults-file and --install options, --
install must be first.

• --install-manual [service_name]

Command-Line Format --install-manual [service_name]

Platform Specific Windows

(Windows only) Install the server as a Windows service that must be started manually. It does not start
automatically during Windows startup. The default service name is MySQL if no service_name value is
given. For more information, see Section 2.3.4.7, “Starting MySQL as a Windows Service”.

Note

If the server is started with the --defaults-file and --install-manual
options, --install-manual must be first.

• --language=lang_name, -L lang_name

Command-Line Format --language=name

Deprecated Yes; use lc-messages-dir instead

System Variable language

Scope Global

Dynamic No

Type Directory name

Default Value /usr/local/mysql/share/mysql/english/

The language to use for error messages. lang_name can be given as the language name or as the full
path name to the directory where the language files are installed. See Section 10.12, “Setting the Error
Message Language”.

--lc-messages-dir and --lc-messages should be used rather than --language, which is
deprecated and handled as a synonym for --lc-messages-dir. Expect the --language option to be
removed in a future MySQL release.

• --large-pages

Command-Line Format --large-pages[={OFF|ON}]

System Variable large_pages

Scope Global

Dynamic No

Platform Specific Linux 587

Server Command Options

Type Boolean

Default Value OFF

Some hardware/operating system architectures support memory pages greater than the default (usually
4KB). The actual implementation of this support depends on the underlying hardware and operating
system. Applications that perform a lot of memory accesses may obtain performance improvements by
using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

MySQL supports the Linux implementation of large page support (which is called HugeTLB in Linux).
See Section 8.12.4.2, “Enabling Large Page Support”. For Solaris support of large pages, see the
description of the --super-large-pages option.

--large-pages is disabled by default.

• --lc-messages=locale_name

Command-Line Format --lc-messages=name

System Variable lc_messages

Scope Global, Session

Dynamic Yes

Type String

Default Value en_US

The locale to use for error messages. The default is en_US. The server converts the argument to a
language name and combines it with the value of --lc-messages-dir to produce the location for the
error message file. See Section 10.12, “Setting the Error Message Language”.

• --lc-messages-dir=dir_name

Command-Line Format --lc-messages-dir=dir_name

System Variable lc_messages_dir

Scope Global

Dynamic No

Type Directory name

The directory where error messages are located. The server uses the value together with the value of --
lc-messages to produce the location for the error message file. See Section 10.12, “Setting the Error
Message Language”.

• --local-service

Command-Line Format --local-service

(Windows only) A --local-service option following the service name causes the server to run
using the LocalService Windows account that has limited system privileges. If both --defaults-
file and --local-service are given following the service name, they can be in any order. See
Section 2.3.4.7, “Starting MySQL as a Windows Service”.

• --log-error[=file_name]

Command-Line Format --log-error[=file_name]

588

Server Command Options

System Variable log_error

Scope Global

Dynamic No

Type File name

Write the error log and startup messages to this file. See Section 5.4.2, “The Error Log”.

If the option names no file, the error log file name on Unix and Unix-like systems is host_name.err in
the data directory. The file name on Windows is the same, unless the --pid-file option is specified.
In that case, the file name is the PID file base name with a suffix of .err in the data directory.

If the option names a file, the error log file has that name (with an .err suffix added if the name has
no suffix), located under the data directory unless an absolute path name is given to specify a different
location.

On Windows, --log-error takes precedence over --console if both are given.

• --log-isam[=file_name]

Command-Line Format --log-isam[=file_name]

Type File name

Log all MyISAM changes to this file (used only when debugging MyISAM).

• --log-raw

Command-Line Format --log-raw[={OFF|ON}]

Type Boolean

Default Value OFF

Passwords in certain statements written to the general query log, slow query log, and binary log are
rewritten by the server not to occur literally in plain text. Password rewriting can be suppressed for
the general query log by starting the server with the --log-raw option. This option may be useful
for diagnostic purposes, to see the exact text of statements as received by the server, but for security
reasons is not recommended for production use.

• --log-short-format

Command-Line Format --log-short-format[={OFF|ON}]

Type Boolean

Default Value OFF

Log less information to the slow query log, if it has been activated.

• --log-slow-admin-statements

Command-Line Format --log-slow-admin-statements[={OFF|
ON}] (5.6.10)

Removed 5.6.11

Type Boolean

Default Value OFF

589

Server Command Options

Include slow administrative statements in the statements written to the slow query log. Administrative
statements include ALTER TABLE, ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP INDEX,
OPTIMIZE TABLE, and REPAIR TABLE.

This command-line option was removed in MySQL 5.6.11 and replaced by the
log_slow_admin_statements system variable. The system variable can be set on the command line
or in option files the same way as the option, so there is no need for any changes at server startup, but
the system variable also makes it possible to examine or set the value at runtime.

• --log-tc=file_name

Command-Line Format --log-tc=file_name

Type File name

Default Value tc.log

The name of the memory-mapped transaction coordinator log file (for XA transactions that affect multiple
storage engines when the binary log is disabled). The default name is tc.log. The file is created under
the data directory if not given as a full path name. This option is unused.

• --log-tc-size=size

Command-Line Format --log-tc-size=#

Type Integer

Default Value 24576

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

The size in bytes of the memory-mapped transaction coordinator log. The default size is 24KB.

• --log-warnings[=level], -W [level]

Command-Line Format --log-warnings[=#]

System Variable log_warnings

Scope Global

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Print out warnings such as Aborted connection... to the error log. This option is enabled (1) by
default. To disable it, use --log-warnings=0. Specifying the option without a level value increments
the current value by 1. Enabling this option by setting it greater than 0 is recommended, for example,
if you use replication (you get more information about what is happening, such as messages about
network failures and reconnections). If the value is greater than 1, aborted connections are written to

590

Server Command Options

the error log, and access-denied errors for new connection attempts are written. See Section B.3.2.10,
“Communication Errors and Aborted Connections”.

If a replica server was started with --log-warnings enabled, the replica prints messages to the error
log to provide information about its status, such as the binary log and relay log coordinates where it
starts its job, when it is switching to another relay log, when it reconnects after a disconnect, and so
forth. The server logs messages about statements that are unsafe for statement-based logging if --
log-warnings is greater than 0.

• --memlock

Command-Line Format --memlock[={OFF|ON}]

Type Boolean

Default Value OFF

Lock the mysqld process in memory. This option might help if you have a problem where the operating
system is causing mysqld to swap to disk.

--memlock works on systems that support the mlockall() system call; this includes Solaris, most
Linux distributions that use a 2.4 or higher kernel, and perhaps other Unix systems. On Linux systems,
you can tell whether or not mlockall() (and thus this option) is supported by checking to see whether
or not it is defined in the system mman.h file, like this:

$> grep mlockall /usr/include/sys/mman.h

If mlockall() is supported, you should see in the output of the previous command something like the
following:

extern int mlockall (int __flags) __THROW;

Important

Use of this option may require you to run the server as root, which, for reasons
of security, is normally not a good idea. See Section 6.1.5, “How to Run MySQL
as a Normal User”.

On Linux and perhaps other systems, you can avoid the need to run the server as
root by changing the limits.conf file. See the notes regarding the memlock
limit in Section 8.12.4.2, “Enabling Large Page Support”.

You must not use this option on a system that does not support the mlockall()
system call; if you do so, mysqld is very likely to exit as soon as you try to start it.

• --myisam-block-size=N

Command-Line Format --myisam-block-size=#

Type Integer

Default Value 1024

Minimum Value 1024

Maximum Value 16384

The block size to be used for MyISAM index pages.

591

Server Command Options

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read. This must be the first option on the
command line if it is used.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --old-style-user-limits

Command-Line Format --old-style-user-limits[={OFF|ON}]

Type Boolean

Default Value OFF

Enable old-style user limits. (Before MySQL 5.0.3, account resource limits were counted separately
for each host from which a user connected rather than per account row in the user table.) See
Section 6.2.13, “Setting Account Resource Limits”.

• --partition[=value]

Command-Line Format --partition[={OFF|ON}]

Disabled by skip-partition

Type Boolean

Default Value ON

Enables or disables user-defined partitioning support in the MySQL Server.

• --performance-schema-xxx

Configure a Performance Schema option. For details, see Section 22.14, “Performance Schema
Command Options”.

• --plugin-load=plugin_list

Command-Line Format --plugin-load=plugin_list

Type String

This option tells the server to load the named plugins at startup. If multiple --plugin-load options are
given, only the last one applies. Additional plugins to load may be specified using --plugin-load-add
options.

The option value is a semicolon-separated list of plugin_library and name=plugin_library
values. Each plugin_library is the name of a library file that contains plugin code, and each name
is the name of a plugin to load. If a plugin library is named without any preceding plugin name, the
server loads all plugins in the library. With a preceding plugin name, the server loads only the named

592

Server Command Options

plugin from the libary. The server looks for plugin library files in the directory named by the plugin_dir
system variable.

For example, if plugins named myplug1 and myplug2 are contained in the plugin library files
myplug1.so and myplug2.so, use this option to perform an early plugin load:

mysqld --plugin-load="myplug1=myplug1.so;myplug2=myplug2.so"

Quotes surround the argument value because otherwise some command interpreters interpret semicolon
(;) as a special character. (For example, Unix shells treat it as a command terminator.)

Each named plugin is loaded for a single invocation of mysqld only. After a restart, the plugin is not
loaded unless --plugin-load is used again. This is in contrast to INSTALL PLUGIN, which adds an
entry to the mysql.plugins table to cause the plugin to be loaded for every normal server startup.

During the normal startup sequence, the server determines which plugins to load by reading the
mysql.plugins system table. If the server is started with the --skip-grant-tables option, plugins
registered in the mysql.plugins table are not loaded and are unavailable. --plugin-load enables
plugins to be loaded even when --skip-grant-tables is given. --plugin-load also enables
plugins to be loaded at startup that cannot be loaded at runtime.

This option does not set a corresponding system variable. The output of SHOW PLUGINS provides
information about loaded plugins. More detailed information can be found in the Information Schema
PLUGINS table. See Section 5.5.2, “Obtaining Server Plugin Information”.

For additional information about plugin loading, see Section 5.5.1, “Installing and Uninstalling Plugins”.

• --plugin-load-add=plugin_list

Command-Line Format --plugin-load-add=plugin_list

Type String

This option complements the --plugin-load option. --plugin-load-add adds a plugin or plugins
to the set of plugins to be loaded at startup. The argument format is the same as for --plugin-load.

593

Server Command Options

--plugin-load-add can be used to avoid specifying a large set of plugins as a single long unwieldy
--plugin-load argument.

--plugin-load-add can be given in the absence of --plugin-load, but any instance of --
plugin-load-add that appears before --plugin-load. has no effect because --plugin-load
resets the set of plugins to load. In other words, these options:

--plugin-load=x --plugin-load-add=y

are equivalent to this option:

--plugin-load="x;y"

But these options:

--plugin-load-add=y --plugin-load=x

are equivalent to this option:

--plugin-load=x

This option does not set a corresponding system variable. The output of SHOW PLUGINS provides
information about loaded plugins. More detailed information can be found in the Information Schema
PLUGINS table. See Section 5.5.2, “Obtaining Server Plugin Information”.

For additional information about plugin loading, see Section 5.5.1, “Installing and Uninstalling Plugins”.

• --plugin-xxx

Specifies an option that pertains to a server plugin. For example, many storage engines can be built as
plugins, and for such engines, options for them can be specified with a --plugin prefix. Thus, the --
innodb-file-per-table option for InnoDB can be specified as --plugin-innodb-file-per-
table.

For boolean options that can be enabled or disabled, the --skip prefix and other alternative formats are
supported as well (see Section 4.2.2.4, “Program Option Modifiers”). For example, --skip-plugin-
innodb-file-per-table disables innodb-file-per-table.

The rationale for the --plugin prefix is that it enables plugin options to be specified unambiguously if
there is a name conflict with a built-in server option. For example, were a plugin writer to name a plugin
“sql” and implement a “mode” option, the option name might be --sql-mode, which would conflict with
the built-in option of the same name. In such cases, references to the conflicting name are resolved in
favor of the built-in option. To avoid the ambiguity, users can specify the plugin option as --plugin-
sql-mode. Use of the --plugin prefix for plugin options is recommended to avoid any question of
ambiguity.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

System Variable port

Scope Global

Dynamic No

Type Integer

Default Value 3306

Minimum Value 0

594

Server Command Options

Maximum Value 65535

The port number to use when listening for TCP/IP connections. On Unix and Unix-like systems, the port
number must be 1024 or higher unless the server is started by the root operating system user. Setting
this option to 0 causes the default value to be used.

• --port-open-timeout=num

Command-Line Format --port-open-timeout=#

Type Integer

Default Value 0

On some systems, when the server is stopped, the TCP/IP port might not become available immediately.
If the server is restarted quickly afterward, its attempt to reopen the port can fail. This option indicates
how many seconds the server should wait for the TCP/IP port to become free if it cannot be opened. The
default is not to wait.

• --print-defaults

Print the program name and all options that it gets from option files. This must be the first option on
the command line if it is used, except that it may be used immediately after --defaults-file or --
defaults-extra-file.

For additional information about this and other option-file options, see Section 4.2.2.3, “Command-Line
Options that Affect Option-File Handling”.

• --remove [service_name]

Command-Line Format --remove [service_name]

Platform Specific Windows

(Windows only) Remove a MySQL Windows service. The default service name is MySQL if no
service_name value is given. For more information, see Section 2.3.4.7, “Starting MySQL as a
Windows Service”.

• --safe-user-create

Command-Line Format --safe-user-create[={OFF|ON}]

Type Boolean

Default Value OFF

If this option is enabled, a user cannot create new MySQL users by using the GRANT statement unless
the user has the INSERT privilege for the mysql.user system table or any column in the table. If you
want a user to have the ability to create new users that have those privileges that the user has the right
to grant, you should grant the user the following privilege:

GRANT INSERT(user) ON mysql.user TO 'user_name'@'host_name';

This ensures that the user cannot change any privilege columns directly, but has to use the GRANT
statement to give privileges to other users.

• --skip-grant-tables

Command-Line Format --skip-grant-tables[={OFF|ON}]

595

Server Command Options

Type Boolean

Default Value OFF

This option affects the server startup sequence:

• --skip-grant-tables causes the server not to read the grant tables in the mysql system
database, and thus to start without using the privilege system at all. This gives anyone with access to
the server unrestricted access to all databases.

To cause a server started with --skip-grant-tables to load the grant tables at runtime, perform a
privilege-flushing operation, which can be done in these ways:

• Issue a MySQL FLUSH PRIVILEGES statement after connecting to the server.

• Execute a mysqladmin flush-privileges or mysqladmin reload command from the
command line.

Privilege flushing might also occur implicitly as a result of other actions performed after startup,
thus causing the server to start using the grant tables. For example, mysql_upgrade flushes the
privileges during the upgrade procedure.

• --skip-grant-tables causes the server not to load certain other objects registered in the mysql
system database:

• Plugins installed using INSTALL PLUGIN and registered in the mysql.plugin system table.

To cause plugins to be loaded even when using --skip-grant-tables, use the --plugin-
load or --plugin-load-add option.

• Scheduled events installed using CREATE EVENT and registered in the mysql.event system
table.

• Loadable functions installed using CREATE FUNCTION and registered in the mysql.func system
table.

• --skip-host-cache

Command-Line Format --skip-host-cache

Disable use of the internal host cache for faster name-to-IP resolution. With the cache disabled, the
server performs a DNS lookup every time a client connects.

Use of --skip-host-cache is similar to setting the host_cache_size system variable to 0, but
host_cache_size is more flexible because it can also be used to resize, enable, or disable the host
cache at runtime, not just at server startup.

Starting the server with --skip-host-cache does not prevent runtime changes to the value
of host_cache_size, but such changes have no effect and the cache is not re-enabled even if
host_cache_size is set larger than 0.

For more information about how the host cache works, see Section 5.1.11.2, “DNS Lookups and the
Host Cache”.

596

Server Command Options

• --skip-innodb

Disable the InnoDB storage engine. In this case, because the default storage engine is InnoDB,
the server cannot start unless you also use --default-storage-engine and --default-tmp-
storage-engine to set the default to some other engine for both permanent and TEMPORARY tables.

As of MySQL 5.6.21, the --skip-innodb option is deprecated. Its use results in a warning. Expect this
option to be removed in a future MySQL release.

• --skip-new

Command-Line Format --skip-new

This option disables (what used to be considered) new, possibly unsafe behaviors. It
results in these settings: delay_key_write=OFF, concurrent_insert=NEVER,
automatic_sp_privileges=OFF. It also causes OPTIMIZE TABLE to be mapped to ALTER TABLE
for storage engines for which OPTIMIZE TABLE is not supported.

• --skip-partition

Command-Line Format --skip-partition

--disable-partition

Disables user-defined partitioning. Partitioned tables can be seen using SHOW TABLES or by querying
the Information Schema TABLES table, but cannot be created or modified, nor can data in such tables be
accessed. All partition-specific columns in the Information Schema PARTITIONS table display NULL.

Since DROP TABLE removes table definition (.frm) files, this statement works on partitioned tables
even when partitioning is disabled using the option. The statement, however, does not remove .par files
associated with partitioned tables in such cases. For this reason, you should avoid dropping partitioned
tables with partitioning disabled, or take action to remove the orphaned .par files manually.

• --skip-show-database

Command-Line Format --skip-show-database

System Variable skip_show_database

Scope Global

Dynamic No

Type Boolean

Default Value OFF

This option sets the skip_show_database system variable that controls who is permitted to use the
SHOW DATABASES statement. See Section 5.1.7, “Server System Variables”.

• --skip-stack-trace

Command-Line Format --skip-stack-trace

Do not write stack traces. This option is useful when you are running mysqld under a debugger. On
some systems, you also must use this option to get a core file. See Section 5.8, “Debugging MySQL”.

597

Server Command Options

• --slow-start-timeout=timeout

Command-Line Format --slow-start-timeout=#

Type Integer

Default Value 15000

This option controls the Windows service control manager's service start timeout. The value is the
maximum number of milliseconds that the service control manager waits before trying to kill the windows
service during startup. The default value is 15000 (15 seconds). If the MySQL service takes too long to
start, you may need to increase this value. A value of 0 means there is no timeout.

• --socket=path

Command-Line Format --socket={file_name|pipe_name}

System Variable socket

Scope Global

Dynamic No

Type String

Default Value (Windows) MySQL

Default Value (Other) /tmp/mysql.sock

On Unix, this option specifies the Unix socket file to use when listening for local connections. The default
value is /tmp/mysql.sock. If this option is given, the server creates the file in the data directory unless
an absolute path name is given to specify a different directory. On Windows, the option specifies the pipe
name to use when listening for local connections that use a named pipe. The default value is MySQL (not
case-sensitive).

• --sql-mode=value[,value[,value...]]

Command-Line Format --sql-mode=name

System Variable sql_mode

Scope Global, Session

Dynamic Yes

Type Set

Default Value NO_ENGINE_SUBSTITUTION

Valid Values ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES598

Server Command Options

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

STRICT_TRANS_TABLES

Set the SQL mode. The default is NO_ENGINE_SUBSTITUTION. See Section 5.1.10, “Server SQL
Modes”.

Note

MySQL installation programs may configure the SQL mode during the installation
process. For example, mysql_install_db creates a default option file named
my.cnf in the base installation directory. This file contains a line that sets
the SQL mode; see Section 4.4.3, “mysql_install_db — Initialize MySQL Data
Directory”.

If the SQL mode differs from the default or from what you expect, check for a
setting in an option file that the server reads at startup.

• --ssl, --skip-ssl

Command-Line Format --ssl[={OFF|ON}]

Disabled by skip-ssl

Type Boolean

Default Value OFF

This option specifies that the server permits but does not require encrypted connections. --ssl may be
implied by setting ssl_xxx system variables, as indicated in the descriptions for those variables.

--ssl can be specified in negated form as --skip-ssl or a synonym (--ssl=OFF, --disable-
ssl). In this case, the option specifies that the server does not permit encrypted connections, regardless
of the settings of the ssl_xxx system variables.

599

Server Command Options

For more information about configuring whether the server permits clients to connect using SSL and
indicating where to find SSL keys and certificates, see Section 6.3.1, “Configuring MySQL to Use
Encrypted Connections”. Consider setting at least the ssl_cert and ssl_key system variables on the
server side and the --ssl-ca (or --ssl-capath) option on the client side.

• --standalone

Command-Line Format --standalone

Platform Specific Windows

Available on Windows only; instructs the MySQL server not to run as a service.

• --super-large-pages

Command-Line Format --super-large-pages[={OFF|ON}]

Platform Specific Solaris

Type Boolean

Default Value OFF

Standard use of large pages in MySQL attempts to use the largest size supported, up to 4MB. Under
Solaris, a “super large pages” feature enables uses of pages up to 256MB. This feature is available for
recent SPARC platforms. It can be enabled or disabled by using the --super-large-pages or --
skip-super-large-pages option.

• --symbolic-links, --skip-symbolic-links

Command-Line Format --symbolic-links[={OFF|ON}]

Type Boolean

Default Value ON

Enable or disable symbolic link support. This option has different effects on Windows and Unix:

• On Windows, enabling symbolic links enables you to establish a symbolic link to a database directory
by creating a db_name.sym file that contains the path to the real directory. See Section 8.12.3.3,
“Using Symbolic Links for Databases on Windows”.

• On Unix, enabling symbolic links means that you can link a MyISAM index file or data file to another
directory with the INDEX DIRECTORY or DATA DIRECTORY option of the CREATE TABLE statement.
If you delete or rename the table, the files that its symbolic links point to also are deleted or renamed.
See Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”.

• --sysdate-is-now

Command-Line Format --sysdate-is-now[={OFF|ON}]

Type Boolean

Default Value OFF

SYSDATE() by default returns the time at which it executes, not the time at which the statement in which
it occurs begins executing. This differs from the behavior of NOW(). This option causes SYSDATE() to
be a synonym for NOW(). For information about the implications for binary logging and replication, see

600

Server Command Options

the description for SYSDATE() in Section 12.7, “Date and Time Functions” and for SET TIMESTAMP in
Section 5.1.7, “Server System Variables”.

• --tc-heuristic-recover={COMMIT|ROLLBACK}

Command-Line Format --tc-heuristic-recover=name

Type Enumeration

Default Value OFF

Valid Values OFF

COMMIT

ROLLBACK

The decision to use in a manual heuristic recovery.

If a --tc-heuristic-recover option is specified, the server exits regardless of whether manual
heuristic recovery is successful.

On systems with more than one storage engine capable of two-phase commit, the ROLLBACK option is
not safe and causes recovery to halt with the following error:

[ERROR] --tc-heuristic-recover rollback
strategy is not safe on systems with more than one 2-phase-commit-capable
storage engine. Aborting crash recovery.

• --temp-pool

Command-Line Format --temp-pool[={OFF|ON}]

Type Boolean

Default Value (Linux) ON

Default Value (Other) OFF

This option is ignored except on Linux. On Linux, it causes most temporary files created by the server to
use a small set of names, rather than a unique name for each new file. This works around a problem in
the Linux kernel dealing with creating many new files with different names. With the old behavior, Linux
seems to “leak” memory, because it is being allocated to the directory entry cache rather than to the disk
cache.

• --transaction-isolation=level

Command-Line Format --transaction-isolation=name

Type Enumeration

Default Value REPEATABLE-READ

Valid Values READ-UNCOMMITTED

READ-COMMITTED

REPEATABLE-READ

601

Server Command Options

SERIALIZABLE

Sets the default transaction isolation level. The level value can be READ-UNCOMMITTED, READ-
COMMITTED, REPEATABLE-READ, or SERIALIZABLE. See Section 13.3.6, “SET TRANSACTION
Statement”.

The default transaction isolation level can also be set at runtime using the SET TRANSACTION
statement or by setting the tx_isolation system variable.

• --transaction-read-only

Command-Line Format --transaction-read-only[={OFF|ON}]

Type Boolean

Default Value OFF

Sets the default transaction access mode. By default, read-only mode is disabled, so the mode is read/
write.

To set the default transaction access mode at runtime, use the SET TRANSACTION statement or set the
tx_read_only system variable. See Section 13.3.6, “SET TRANSACTION Statement”.

• --tmpdir=dir_name, -t dir_name

Command-Line Format --tmpdir=dir_name

System Variable tmpdir

Scope Global

Dynamic No

Type Directory name

The path of the directory to use for creating temporary files. It might be useful if your default /tmp
directory resides on a partition that is too small to hold temporary tables. This option accepts several
paths that are used in round-robin fashion. Paths should be separated by colon characters (:) on Unix
and semicolon characters (;) on Windows.

--tmpdir can be a non-permanent location, such as a directory on a memory-based file system or a
directory that is cleared when the server host restarts. If the MySQL server is acting as a replica, and
you are using a non-permanent location for --tmpdir, consider setting a different temporary directory
for the replica using the slave_load_tmpdir system variable. For a replica, the temporary files used
to replicate LOAD DATA statements are stored in this directory, so with a permanent location they can
survive machine restarts, although replication can now continue after a restart if the temporary files have
been removed.

For more information about the storage location of temporary files, see Section B.3.3.5, “Where MySQL
Stores Temporary Files”.

• --user={user_name|user_id}, -u {user_name|user_id}

Command-Line Format --user=name

Type String

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

602

Server System Variables

This option is mandatory when starting mysqld as root. The server changes its user ID during its
startup sequence, causing it to run as that particular user rather than as root. See Section 6.1.1,
“Security Guidelines”.

To avoid a possible security hole where a user adds a --user=root option to a my.cnf file (thus
causing the server to run as root), mysqld uses only the first --user option specified and produces a
warning if there are multiple --user options. Options in /etc/my.cnf and $MYSQL_HOME/my.cnf are
processed before command-line options, so it is recommended that you put a --user option in /etc/
my.cnf and specify a value other than root. The option in /etc/my.cnf is found before any other --
user options, which ensures that the server runs as a user other than root, and that a warning results if
any other --user option is found.

• --validate-user-plugins[={OFF|ON}]

Command-Line Format --validate-user-plugins[={OFF|ON}]

Introduced 5.6.11

Type Boolean

Default Value ON

If this option is enabled (the default), the server checks each user account and produces a warning if
conditions are found that would make the account unusable:

• The account requires an authentication plugin that is not loaded.

• The account requires the sha256_password authentication plugin but the server was started with
neither SSL nor RSA enabled as required by this plugin.

Enabling --validate-user-plugins slows down server initialization and FLUSH PRIVILEGES.
If you do not require the additional checking, you can disable this option at startup to avoid the
performance decrement.

• --verbose, -v

Use this option with the --help option for detailed help.

• --version, -V

Display version information and exit.

5.1.7 Server System Variables

The MySQL server maintains many system variables that configure its operation. Each system variable
has a default value. System variables can be set at server startup using options on the command line or
in an option file. Most of them can be changed dynamically at runtime using the SET statement, which
enables you to modify operation of the server without having to stop and restart it. You can also use
system variable values in expressions.

At runtime, setting a global system variable value requires the SUPER privilege. Setting a session system
variable value normally requires no special privileges and can be done by any user, although there are
exceptions. For more information, see Section 5.1.8.1, “System Variable Privileges”

There are several ways to see the names and values of system variables:

• To see the values that a server uses based on its compiled-in defaults and any option files that it reads,
use this command:

603

Server System Variables

mysqld --verbose --help

• To see the values that a server uses based only on its compiled-in defaults, ignoring the settings in any
option files, use this command:

mysqld --no-defaults --verbose --help

• To see the current values used by a running server, use the SHOW VARIABLES statement.

This section provides a description of each system variable. For a system variable summary table, see
Section 5.1.4, “Server System Variable Reference”. For more information about manipulation of system
variables, see Section 5.1.8, “Using System Variables”.

For additional system variable information, see these sections:

• Section 5.1.8, “Using System Variables”, discusses the syntax for setting and displaying system variable
values.

• Section 5.1.8.2, “Dynamic System Variables”, lists the variables that can be set at runtime.

• Information on tuning system variables can be found in Section 5.1.1, “Configuring the Server”.

• Section 14.14, “InnoDB Startup Options and System Variables”, lists InnoDB system variables.

• NDB Cluster System Variables, lists system variables which are specific to NDB Cluster.

• For information on server system variables specific to replication, see Section 17.1.4, “Replication and
Binary Logging Options and Variables”.

Note

Some of the following variable descriptions refer to “enabling” or “disabling” a
variable. These variables can be enabled with the SET statement by setting them
to ON or 1, or disabled by setting them to OFF or 0. Boolean variables can be set at
startup to the values ON, TRUE, OFF, and FALSE (not case-sensitive), as well as 1
and 0. See Section 4.2.2.4, “Program Option Modifiers”.

Some system variables control the size of buffers or caches. For a given buffer, the server might need to
allocate internal data structures. These structures typically are allocated from the total memory allocated
to the buffer, and the amount of space required might be platform dependent. This means that when you
assign a value to a system variable that controls a buffer size, the amount of space actually available might
differ from the value assigned. In some cases, the amount might be less than the value assigned. It is also
possible that the server adjusts a value upward. For example, if you assign a value of 0 to a variable for
which the minimal value is 1024, the server sets the value to 1024.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Some system variables take file name values. Unless otherwise specified, the default file location is the
data directory if the value is a relative path name. To specify the location explicitly, use an absolute path
name. Suppose that the data directory is /var/mysql/data. If a file-valued variable is given as a relative
path name, it is located under /var/mysql/data. If the value is an absolute path name, its location is as
given by the path name.

• authentication_windows_log_level

Command-Line Format --authentication-windows-log-level=#

System Variable authentication_windows_log_level

604

Server System Variables

Scope Global

Dynamic No

Type Integer

Default Value 2

Minimum Value 0

Maximum Value 4

This variable is available only if the authentication_windows Windows authentication plugin is
enabled and debugging code is enabled. See Section 6.4.1.7, “Windows Pluggable Authentication”.

This variable sets the logging level for the Windows authentication plugin. The following table shows the
permitted values.

Value Description

0 No logging

1 Log only error messages

2 Log level 1 messages and warning messages

3 Log level 2 messages and information notes

4 Log level 3 messages and debug messages

• authentication_windows_use_principal_name

Command-Line Format --authentication-windows-use-
principal-name[={OFF|ON}]

System Variable authentication_windows_use_principal_name

Scope Global

Dynamic No

Type Boolean

Default Value ON

This variable is available only if the authentication_windows Windows authentication plugin is
enabled. See Section 6.4.1.7, “Windows Pluggable Authentication”.

A client that authenticates using the InitSecurityContext() function should provide a string
identifying the service to which it connects (targetName). MySQL uses the principal name (UPN) of the
account under which the server is running. The UPN has the form user_id@computer_name and need
not be registered anywhere to be used. This UPN is sent by the server at the beginning of authentication
handshake.

This variable controls whether the server sends the UPN in the initial challenge. By default, the variable
is enabled. For security reasons, it can be disabled to avoid sending the server's account name to a
client as cleartext. If the variable is disabled, the server always sends a 0x00 byte in the first challenge,
the client does not specify targetName, and as a result, NTLM authentication is used.

If the server fails to obtain its UPN (which happens primarily in environments that do not support
Kerberos authentication), the UPN is not sent by the server and NTLM authentication is used.

605

Server System Variables

• autocommit

Command-Line Format --autocommit[={OFF|ON}]

System Variable autocommit

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

The autocommit mode. If set to 1, all changes to a table take effect immediately. If set to 0, you must
use COMMIT to accept a transaction or ROLLBACK to cancel it. If autocommit is 0 and you change it to
1, MySQL performs an automatic COMMIT of any open transaction. Another way to begin a transaction
is to use a START TRANSACTION or BEGIN statement. See Section 13.3.1, “START TRANSACTION,
COMMIT, and ROLLBACK Statements”.

By default, client connections begin with autocommit set to 1. To cause clients to begin with a default
of 0, set the global autocommit value by starting the server with the --autocommit=0 option. To set
the variable using an option file, include these lines:

[mysqld]
autocommit=0

• automatic_sp_privileges

Command-Line Format --automatic-sp-privileges[={OFF|ON}]

System Variable automatic_sp_privileges

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

When this variable has a value of 1 (the default), the server automatically grants the EXECUTE and
ALTER ROUTINE privileges to the creator of a stored routine, if the user cannot already execute
and alter or drop the routine. (The ALTER ROUTINE privilege is required to drop the routine.) The
server also automatically drops those privileges from the creator when the routine is dropped. If
automatic_sp_privileges is 0, the server does not automatically add or drop these privileges.

The creator of a routine is the account used to execute the CREATE statement for it. This might not be
the same as the account named as the DEFINER in the routine definition.

If you start mysqld with --skip-new, automatic_sp_privileges is set to OFF.

See also Section 20.2.2, “Stored Routines and MySQL Privileges”.

• avoid_temporal_upgrade

Command-Line Format --avoid-temporal-upgrade[={OFF|ON}]

Introduced 5.6.24

Deprecated 5.6.24

System Variable avoid_temporal_upgrade606

Server System Variables

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

This variable controls whether ALTER TABLE implicitly upgrades temporal columns found to be in
pre-5.6.4 format (TIME, DATETIME, and TIMESTAMP columns without support for fractional seconds
precision). Upgrading such columns requires a table rebuild, which prevents any use of fast alterations
that might otherwise apply to the operation to be performed.

This variable is disabled by default. Enabling it causes ALTER TABLE not to rebuild temporal columns
and thereby be able to take advantage of possible fast alterations.

This variable was added in MySQL 5.6.24. It is deprecated; expect it to be removed in a future MySQL
release.

• back_log

Command-Line Format --back-log=#

System Variable back_log

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value 1

Maximum Value 65535

The number of outstanding connection requests MySQL can have. This comes into play when the
main MySQL thread gets very many connection requests in a very short time. It then takes some
time (although very little) for the main thread to check the connection and start a new thread. The
back_log value indicates how many requests can be stacked during this short time before MySQL
momentarily stops answering new requests. You need to increase this only if you expect a large number
of connections in a short period of time.

In other words, this value is the size of the listen queue for incoming TCP/IP connections. Your operating
system has its own limit on the size of this queue. The manual page for the Unix listen() system
call should have more details. Check your OS documentation for the maximum value for this variable.
back_log cannot be set higher than your operating system limit.

The default value is based on the following formula, capped to a limit of 900:

50 + (max_connections / 5)

• basedir

Command-Line Format --basedir=dir_name

System Variable basedir

Scope Global

Dynamic No 607

Server System Variables

Type Directory name

Default Value configuration-dependent default

The path to the MySQL installation base directory.

• big_tables

Command-Line Format --big-tables[={OFF|ON}]

System Variable big_tables

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

If enabled, the server stores all temporary tables on disk rather than in memory. This prevents most The
table tbl_name is full errors for SELECT operations that require a large temporary table, but also
slows down queries for which in-memory tables would suffice.

The default value for new connections is OFF (use in-memory temporary tables). Normally, it should
never be necessary to enable this variable because the server is able to handle large result sets
automatically by using memory for small temporary tables and switching to disk-based tables as
required.

• bind_address

Command-Line Format --bind-address=addr

System Variable bind_address

Scope Global

Dynamic No

Type String

Default Value *

The MySQL server listens on a single network socket for TCP/IP connections. This socket is bound to a
single address, but it is possible for an address to map onto multiple network interfaces. To specify an
address, set bind_address=addr at server startup, where addr is an IPv4 or IPv6 address or a host
name. If addr is a host name, the server resolves the name to an IP address and binds to that address.
If a host name resolves to multiple IP addresses, the server uses the first IPv4 address if there are any,
or the first IPv6 address otherwise.

The server treats different types of addresses as follows:

• If the address is *, the server accepts TCP/IP connections on all server host IPv4 interfaces, and, if
the server host supports IPv6, on all IPv6 interfaces. Use this address to permit both IPv4 and IPv6
connections on all server interfaces. This value is the default.

• If the address is 0.0.0.0, the server accepts TCP/IP connections on all server host IPv4 interfaces.

• If the address is ::, the server accepts TCP/IP connections on all server host IPv4 and IPv6
interfaces.

608

Server System Variables

• If the address is an IPv4-mapped address, the server accepts TCP/IP connections for that address,
in either IPv4 or IPv6 format. For example, if the server is bound to ::ffff:127.0.0.1, clients can
connect using --host=127.0.0.1 or --host=::ffff:127.0.0.1.

• If the address is a “regular” IPv4 or IPv6 address (such as 127.0.0.1 or ::1), the server accepts
TCP/IP connections only for that IPv4 or IPv6 address.

If binding to the address fails, the server produces an error and does not start.

If you intend to bind the server to a specific address, be sure that the mysql.user system table
contains an account with administrative privileges that you can use to connect to that address.
Otherwise, you are not able to shut down the server. For example, if you bind the server to *, you
can connect to it using all existing accounts. But if you bind the server to ::1, it accepts connections
only on that address. In that case, first make sure that the 'root'@'::1' account is present in the
mysql.user table so you can still connect to the server to shut it down.

• block_encryption_mode

Command-Line Format --block-encryption-mode=#

Introduced 5.6.17

System Variable block_encryption_mode

Scope Global, Session

Dynamic Yes

Type String

Default Value aes-128-ecb

This variable controls the block encryption mode for block-based algorithms such as AES. It affects
encryption for AES_ENCRYPT() and AES_DECRYPT().

block_encryption_mode takes a value in aes-keylen-mode format, where keylen is the key
length in bits and mode is the encryption mode. The value is not case-sensitive. Permitted keylen
values are 128, 192, and 256. Permitted encryption modes depend on whether MySQL was compiled
using OpenSSL or yaSSL:

• For OpenSSL, permitted mode values are: ECB, CBC, CFB1, CFB8, CFB128, OFB

• For yaSSL, permitted mode values are: ECB, CBC

For example, this statement causes the AES encryption functions to use a key length of 256 bits and the
CBC mode:

SET block_encryption_mode = 'aes-256-cbc';

An error occurs for attempts to set block_encryption_mode to a value containing an unsupported
key length or a mode that the SSL library does not support.

This variable was added in MySQL 5.6.17.

• bulk_insert_buffer_size

Command-Line Format --bulk-insert-buffer-size=#

System Variable bulk_insert_buffer_size

609

Server System Variables

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 8388608

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes/thread

MyISAM uses a special tree-like cache to make bulk inserts faster for INSERT ... SELECT,
INSERT ... VALUES (...), (...), ..., and LOAD DATA when adding data to nonempty tables.
This variable limits the size of the cache tree in bytes per thread. Setting it to 0 disables this optimization.
The default value is 8MB.

• character_set_client

System Variable character_set_client

Scope Global, Session

Dynamic Yes

Type String

Default Value utf8

The character set for statements that arrive from the client. The session value of this variable is set using
the character set requested by the client when the client connects to the server. (Many clients support
a --default-character-set option to enable this character set to be specified explicitly. See also
Section 10.4, “Connection Character Sets and Collations”.) The global value of the variable is used to set
the session value in cases when the client-requested value is unknown or not available, or the server is
configured to ignore client requests:

• The client requests a character set not known to the server. For example, a Japanese-enabled client
requests sjis when connecting to a server not configured with sjis support.

• The client is from a version of MySQL older than MySQL 4.1, and thus does not request a character
set.

• mysqld was started with the --skip-character-set-client-handshake option, which causes
it to ignore client character set configuration. This reproduces MySQL 4.0 behavior and is useful
should you wish to upgrade the server without upgrading all the clients.

Some character sets cannot be used as the client character set. Attempting to use them as the
character_set_client value produces an error. See Impermissible Client Character Sets.

• character_set_connection

System Variable character_set_connection

Scope Global, Session

Dynamic Yes

Type String

Default Value utf8

610

Server System Variables

The character set used for literals specified without a character set introducer and for number-to-string
conversion. For information about introducers, see Section 10.3.8, “Character Set Introducers”.

• character_set_database

System Variable character_set_database

Scope Global, Session

Dynamic Yes

Type String

Default Value latin1

Footnote This option is dynamic, but should be set only by
server. You should not set this variable manually.

The character set used by the default database. The server sets this variable whenever the
default database changes. If there is no default database, the variable has the same value as
character_set_server.

• character_set_filesystem

Command-Line Format --character-set-filesystem=name

System Variable character_set_filesystem

Scope Global, Session

Dynamic Yes

Type String

Default Value binary

The file system character set. This variable is used to interpret string literals that refer to file names, such
as in the LOAD DATA and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function.
Such file names are converted from character_set_client to character_set_filesystem
before the file opening attempt occurs. The default value is binary, which means that no
conversion occurs. For systems on which multibyte file names are permitted, a different value
may be more appropriate. For example, if the system represents file names using UTF-8, set
character_set_filesystem to 'utf8mb4'.

• character_set_results

System Variable character_set_results

Scope Global, Session

Dynamic Yes

Type String

Default Value utf8

The character set used for returning query results to the client. This includes result data such as column
values, result metadata such as column names, and error messages.

• character_set_server

Command-Line Format --character-set-server=name 611

Server System Variables

System Variable character_set_server

Scope Global, Session

Dynamic Yes

Type String

Default Value latin1

The servers default character set. See Section 10.15, “Character Set Configuration”. If you set this
variable, you should also set collation_server to specify the collation for the character set.

• character_set_system

System Variable character_set_system

Scope Global

Dynamic No

Type String

Default Value utf8

The character set used by the server for storing identifiers. The value is always utf8.

• character_sets_dir

Command-Line Format --character-sets-dir=dir_name

System Variable character_sets_dir

Scope Global

Dynamic No

Type Directory name

The directory where character sets are installed. See Section 10.15, “Character Set Configuration”.

• collation_connection

System Variable collation_connection

Scope Global, Session

Dynamic Yes

Type String

The collation of the connection character set. collation_connection is important for comparisons
of literal strings. For comparisons of strings with column values, collation_connection does
not matter because columns have their own collation, which has a higher collation precedence (see
Section 10.8.4, “Collation Coercibility in Expressions”).

• collation_database

System Variable collation_database

Scope Global, Session

Dynamic Yes

Type String612

Server System Variables

Default Value latin1_swedish_ci

Footnote This option is dynamic, but should be set only by
server. You should not set this variable manually.

The collation used by the default database. The server sets this variable whenever the default database
changes. If there is no default database, the variable has the same value as collation_server.

• collation_server

Command-Line Format --collation-server=name

System Variable collation_server

Scope Global, Session

Dynamic Yes

Type String

Default Value latin1_swedish_ci

The server's default collation. See Section 10.15, “Character Set Configuration”.

• completion_type

Command-Line Format --completion-type=#

System Variable completion_type

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value NO_CHAIN

Valid Values NO_CHAIN

CHAIN

RELEASE

0

1

2

The transaction completion type. This variable can take the values shown in the following table. The
variable can be assigned using either the name values or corresponding integer values.

Value Description

NO_CHAIN (or 0) COMMIT and ROLLBACK are unaffected. This is the
default value.

CHAIN (or 1) COMMIT and ROLLBACK are equivalent to COMMIT
AND CHAIN and ROLLBACK AND CHAIN,
respectively. (A new transaction starts immediately
with the same isolation level as the just-terminated
transaction.)

613

Server System Variables

Value Description

RELEASE (or 2) COMMIT and ROLLBACK are equivalent to COMMIT
RELEASE and ROLLBACK RELEASE, respectively.
(The server disconnects after terminating the
transaction.)

completion_type affects transactions that begin with START TRANSACTION or BEGIN and end with
COMMIT or ROLLBACK. It does not apply to implicit commits resulting from execution of the statements
listed in Section 13.3.3, “Statements That Cause an Implicit Commit”. It also does not apply for XA
COMMIT, XA ROLLBACK, or when autocommit=1.

• concurrent_insert

Command-Line Format --concurrent-insert[=value]

System Variable concurrent_insert

Scope Global

Dynamic Yes

Type Enumeration

Default Value AUTO

Valid Values NEVER

AUTO

ALWAYS

0

1

2

If AUTO (the default), MySQL permits INSERT and SELECT statements to run concurrently for MyISAM
tables that have no free blocks in the middle of the data file.

This variable can take the values shown in the following table. The variable can be assigned using either
the name values or corresponding integer values.

Value Description

NEVER (or 0) Disables concurrent inserts

AUTO (or 1) (Default) Enables concurrent insert for MyISAM
tables that do not have holes

ALWAYS (or 2) Enables concurrent inserts for all MyISAM tables,
even those that have holes. For a table with a hole,
new rows are inserted at the end of the table if it
is in use by another thread. Otherwise, MySQL
acquires a normal write lock and inserts the row
into the hole.

If you start mysqld with --skip-new, concurrent_insert is set to NEVER.

See also Section 8.11.3, “Concurrent Inserts”.
614

Server System Variables

• connect_timeout

Command-Line Format --connect-timeout=#

System Variable connect_timeout

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 2

Maximum Value 31536000

Unit seconds

The number of seconds that the mysqld server waits for a connect packet before responding with Bad
handshake. The default value is 10 seconds.

Increasing the connect_timeout value might help if clients frequently encounter errors of the form
Lost connection to MySQL server at 'XXX', system error: errno.

• core_file

System Variable core_file

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Whether to write a core file if the server unexpectedly exits. This variable is set by the --core-file
option.

• datadir

Command-Line Format --datadir=dir_name

System Variable datadir

Scope Global

Dynamic No

Type Directory name

The path to the MySQL server data directory. Relative paths are resolved with respect to the current
directory. If the server is likely to be started automatically (that is, in contexts for which you cannot
assume what the current directory is), it is best to specify the datadir value as an absolute path.

• date_format

This variable is unused. It is deprecated; expect it to be removed in a future MySQL release.

• datetime_format

This variable is unused. It is deprecated; expect it to be removed in a future MySQL release.

• debug

615

Server System Variables

Command-Line Format --debug[=debug_options]

System Variable debug

Scope Global, Session

Dynamic Yes

Type String

Default Value (Unix) d:t:i:o,/tmp/mysqld.trace

Default Value (Windows) d:t:i:O,\mysqld.trace

This variable indicates the current debugging settings. It is available only for servers built with debugging
support. The initial value comes from the value of instances of the --debug option given at server
startup. The global and session values may be set at runtime.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

Assigning a value that begins with + or - cause the value to added to or subtracted from the current
value:

mysql> SET debug = 'T';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| T |
+---------+

mysql> SET debug = '+P';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| P:T |
+---------+

mysql> SET debug = '-P';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| T |
+---------+

For more information, see Section 5.8.3, “The DBUG Package”.

• debug_sync

System Variable debug_sync

Scope Session

Dynamic Yes

616

Server System Variables

Type String

This variable is the user interface to the Debug Sync facility. Use of Debug Sync requires that MySQL
be configured with the -DENABLE_DEBUG_SYNC=1 CMake option (see Section 2.9.7, “MySQL Source-
Configuration Options”). If Debug Sync is not compiled in, this system variable is not available.

The global variable value is read only and indicates whether the facility is enabled. By default, Debug
Sync is disabled and the value of debug_sync is OFF. If the server is started with --debug-sync-
timeout=N, where N is a timeout value greater than 0, Debug Sync is enabled and the value of
debug_sync is ON - current signal followed by the signal name. Also, N becomes the default
timeout for individual synchronization points.

The session value can be read by any user and has the same value as the global variable. The session
value can be set to control synchronization points.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

• default_storage_engine

Command-Line Format --default-storage-engine=name

System Variable default_storage_engine

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value InnoDB

The default storage engine for tables. See Chapter 15, Alternative Storage Engines. This variable sets
the storage engine for permanent tables only. To set the storage engine for TEMPORARY tables, set the
default_tmp_storage_engine system variable.

To see which storage engines are available and enabled, use the SHOW ENGINES statement or query
the INFORMATION_SCHEMA ENGINES table.

default_storage_engine should be used in preference to storage_engine, which is deprecated.

If you disable the default storage engine at server startup, you must set the default engine for both
permanent and TEMPORARY tables to a different engine or the server cannot start.

• default_tmp_storage_engine

Command-Line Format --default-tmp-storage-engine=name

System Variable default_tmp_storage_engine

Scope Global, Session

Dynamic Yes

Type Enumeration

617

https://dev.mysql.com/doc/internals/en/test-synchronization.html
https://dev.mysql.com/doc/internals/en/test-synchronization.html

Server System Variables

Default Value InnoDB

The default storage engine for TEMPORARY tables (created with CREATE TEMPORARY TABLE). To set
the storage engine for permanent tables, set the default_storage_engine system variable.

If you disable the default storage engine at server startup, you must set the default engine for both
permanent and TEMPORARY tables to a different engine or the server cannot start.

• default_week_format

Command-Line Format --default-week-format=#

System Variable default_week_format

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 7

The default mode value to use for the WEEK() function. See Section 12.7, “Date and Time Functions”.

• delay_key_write

Command-Line Format --delay-key-write[={OFF|ON|ALL}]

System Variable delay_key_write

Scope Global

Dynamic Yes

Type Enumeration

Default Value ON

Valid Values OFF

ON

ALL

This variable specifies how to use delayed key writes. It applies only to MyISAM tables. Delayed key
writing causes key buffers not to be flushed between writes. See also Section 15.2.1, “MyISAM Startup
Options”.

This variable can have one of the following values to affect handling of the DELAY_KEY_WRITE table
option that can be used in CREATE TABLE statements.

Option Description

OFF DELAY_KEY_WRITE is ignored.

ON MySQL honors any DELAY_KEY_WRITE option
specified in CREATE TABLE statements. This is
the default value.

618

Server System Variables

Option Description

ALL All new opened tables are treated as if they were
created with the DELAY_KEY_WRITE option
enabled.

Note

If you set this variable to ALL, you should not use MyISAM tables from within
another program (such as another MySQL server or myisamchk) when the
tables are in use. Doing so leads to index corruption.

If DELAY_KEY_WRITE is enabled for a table, the key buffer is not flushed for the table on
every index update, but only when the table is closed. This speeds up writes on keys a
lot, but if you use this feature, you should add automatic checking of all MyISAM tables by
starting the server with the myisam_recover_options system variable set (for example,
myisam_recover_options='BACKUP,FORCE'). See Section 5.1.7, “Server System Variables”, and
Section 15.2.1, “MyISAM Startup Options”.

If you start mysqld with --skip-new, delay_key_write is set to OFF.

Warning

If you enable external locking with --external-locking, there is no protection
against index corruption for tables that use delayed key writes.

• delayed_insert_limit

Command-Line Format --delayed-insert-limit=#

Deprecated Yes

System Variable delayed_insert_limit

Scope Global

Dynamic Yes

Type Integer

Default Value 100

Minimum Value 1

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

After inserting delayed_insert_limit delayed rows into a nontransactional table, the INSERT
DELAYED handler thread checks whether there are any SELECT statements pending. If so, it permits
them to execute before continuing to insert delayed rows.

This system variable is deprecated (because DELAYED inserts are deprecated); expect it to be removed
in a future release.

• delayed_insert_timeout

Command-Line Format --delayed-insert-timeout=#

Deprecated Yes

System Variable delayed_insert_timeout
619

Server System Variables

Scope Global

Dynamic Yes

Type Integer

Default Value 300

Minimum Value 1

Maximum Value 31536000

Unit seconds

How many seconds an INSERT DELAYED handler thread should wait for INSERT statements before
terminating.

This system variable is deprecated (because DELAYED inserts are deprecated); expect it to be removed
in a future release.

• delayed_queue_size

Command-Line Format --delayed-queue-size=#

Deprecated Yes

System Variable delayed_queue_size

Scope Global

Dynamic Yes

Type Integer

Default Value 1000

Minimum Value 1

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

This is a per-table limit on the number of rows to queue when handling INSERT DELAYED statements
for nontransactional tables. If the queue becomes full, any client that issues an INSERT DELAYED
statement waits until there is room in the queue again.

This system variable is deprecated (because DELAYED inserts are deprecated); expect it to be removed
in a future release.

• disconnect_on_expired_password

Command-Line Format --disconnect-on-expired-
password[={OFF|ON}]

System Variable disconnect_on_expired_password

Scope Global

Dynamic No

Type Boolean

620

Server System Variables

Default Value ON

This variable controls how the server handles clients with expired passwords:

• If the client indicates that it can handle expired passwords, the value of
disconnect_on_expired_password is irrelevant. The server permits the client to connect but puts
it in sandbox mode.

• If the client does not indicate that it can handle expired passwords, the server handles the client
according to the value of disconnect_on_expired_password:

• If disconnect_on_expired_password: is enabled, the server disconnects the client.

• If disconnect_on_expired_password: is disabled, the server permits the client to connect but
puts it in sandbox mode.

For more information about the interaction of client and server settings relating to expired-password
handling, see Section 6.2.10, “Server Handling of Expired Passwords”.

• div_precision_increment

Command-Line Format --div-precision-increment=#

System Variable div_precision_increment

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 4

Minimum Value 0

Maximum Value 30

This variable indicates the number of digits by which to increase the scale of the result of division
operations performed with the / operator. The default value is 4. The minimum and maximum values are
0 and 30, respectively. The following example illustrates the effect of increasing the default value.

mysql> SELECT 1/7;
+--------+
| 1/7 |
+--------+
| 0.1429 |
+--------+
mysql> SET div_precision_increment = 12;
mysql> SELECT 1/7;
+----------------+
| 1/7 |
+----------------+
| 0.142857142857 |
+----------------+

• end_markers_in_json

Command-Line Format --end-markers-in-json[={OFF|ON}]

System Variable end_markers_in_json

Scope Global, Session

Dynamic Yes

621

Server System Variables

Type Boolean

Default Value OFF

Whether optimizer JSON output should add end markers. See MySQL Internals: The
end_markers_in_json System Variable.

• eq_range_index_dive_limit

Command-Line Format --eq-range-index-dive-limit=#

System Variable eq_range_index_dive_limit

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 4294967295

This variable indicates the number of equality ranges in an equality comparison condition when the
optimizer should switch from using index dives to index statistics in estimating the number of qualifying
rows. It applies to evaluation of expressions that have either of these equivalent forms, where the
optimizer uses a nonunique index to look up col_name values:

col_name IN(val1, ..., valN)
col_name = val1 OR ... OR col_name = valN

In both cases, the expression contains N equality ranges. The optimizer can make row estimates using
index dives or index statistics. If eq_range_index_dive_limit is greater than 0, the optimizer
uses existing index statistics instead of index dives if there are eq_range_index_dive_limit
or more equality ranges. Thus, to permit use of index dives for up to N equality ranges, set
eq_range_index_dive_limit to N + 1. To disable use of index statistics and always use index dives
regardless of N, set eq_range_index_dive_limit to 0.

For more information, see Equality Range Optimization of Many-Valued Comparisons.

To update table index statistics for best estimates, use ANALYZE TABLE.

• error_count

The number of errors that resulted from the last statement that generated messages. This variable is
read only. See Section 13.7.5.18, “SHOW ERRORS Statement”.

• event_scheduler

Command-Line Format --event-scheduler[=value]

System Variable event_scheduler

Scope Global

Dynamic Yes

Type Enumeration

Default Value OFF

Valid Values OFF622

https://dev.mysql.com/doc/internals/en/end-markers-in-json-system-variable.html
https://dev.mysql.com/doc/internals/en/end-markers-in-json-system-variable.html

Server System Variables

ON

DISABLED

This variable enables or disables, and starts or stops, the Event Scheduler. The possible status values
are ON, OFF, and DISABLED. Turning the Event Scheduler OFF is not the same as disabling the Event
Scheduler, which requires setting the status to DISABLED. This variable and its effects on the Event
Scheduler's operation are discussed in greater detail in Section 20.4.2, “Event Scheduler Configuration”

• explicit_defaults_for_timestamp

Command-Line Format --explicit-defaults-for-
timestamp[={OFF|ON}]

Deprecated Yes

System Variable explicit_defaults_for_timestamp

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

This system variable determines whether the server enables certain nonstandard
behaviors for default values and NULL-value handling in TIMESTAMP columns. By default,
explicit_defaults_for_timestamp is disabled, which enables the nonstandard behaviors.

If explicit_defaults_for_timestamp is disabled, the server enables the nonstandard behaviors
and handles TIMESTAMP columns as follows:

• TIMESTAMP columns not explicitly declared with the NULL attribute are automatically declared with the
NOT NULL attribute. Assigning such a column a value of NULL is permitted and sets the column to the
current timestamp.

• The first TIMESTAMP column in a table, if not explicitly declared with the NULL attribute or
an explicit DEFAULT or ON UPDATE attribute, is automatically declared with the DEFAULT
CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP attributes.

• TIMESTAMP columns following the first one, if not explicitly declared with the NULL attribute or an
explicit DEFAULT attribute, are automatically declared as DEFAULT '0000-00-00 00:00:00' (the

623

Server System Variables

“zero” timestamp). For inserted rows that specify no explicit value for such a column, the column is
assigned '0000-00-00 00:00:00' and no warning occurs.

Depending on whether strict SQL mode or the NO_ZERO_DATE SQL mode is enabled, a default value
of '0000-00-00 00:00:00' may be invalid. Be aware that the TRADITIONAL SQL mode includes
strict mode and NO_ZERO_DATE. See Section 5.1.10, “Server SQL Modes”.

In MySQL 5.6, the nonstandard behaviors just described are deprecated; expect them to be removed in
a future MySQL release.

If explicit_defaults_for_timestamp is enabled, the server disables the nonstandard behaviors
and handles TIMESTAMP columns as follows:

• It is not possible to assign a TIMESTAMP column a value of NULL to set it to the current timestamp. To
assign the current timestamp, set the column to CURRENT_TIMESTAMP or a synonym such as NOW().

• TIMESTAMP columns not explicitly declared with the NOT NULL attribute are automatically declared
with the NULL attribute and permit NULL values. Assigning such a column a value of NULL sets it to
NULL, not the current timestamp.

• TIMESTAMP columns declared with the NOT NULL attribute do not permit NULL values. For inserts that
specify NULL for such a column, the result is either an error for a single-row insert if strict SQL mode
is enabled, or '0000-00-00 00:00:00' is inserted for multiple-row inserts with strict SQL mode
disabled. In no case does assigning the column a value of NULL set it to the current timestamp.

• TIMESTAMP columns explicitly declared with the NOT NULL attribute and without an explicit DEFAULT
attribute are treated as having no default value. For inserted rows that specify no explicit value for
such a column, the result depends on the SQL mode. If strict SQL mode is enabled, an error occurs.
If strict SQL mode is not enabled, the column is declared with the implicit default of '0000-00-00
00:00:00' and a warning occurs. This is similar to how MySQL treats other temporal types such as
DATETIME.

• No TIMESTAMP column is automatically declared with the DEFAULT CURRENT_TIMESTAMP or ON
UPDATE CURRENT_TIMESTAMP attributes. Those attributes must be explicitly specified.

• The first TIMESTAMP column in a table is not handled differently from TIMESTAMP columns following
the first one.

If explicit_defaults_for_timestamp is disabled at server startup, this warning appears in the
error log:

[Warning] TIMESTAMP with implicit DEFAULT value is deprecated.
Please use --explicit_defaults_for_timestamp server option (see
documentation for more details).

As indicated by the warning, to disable the deprecated nonstandard behaviors, enable the
explicit_defaults_for_timestamp system variable at server startup.

Note

explicit_defaults_for_timestamp is itself deprecated because its only
purpose is to permit control over deprecated TIMESTAMP behaviors that are
to be removed in a future MySQL release. When removal of those behaviors

624

Server System Variables

occurs, explicit_defaults_for_timestamp has no purpose; expect it to be
removed as well.

For additional information, see Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP
and DATETIME”.

• external_user

System Variable external_user

Scope Session

Dynamic No

Type String

The external user name used during the authentication process, as set by the plugin used to
authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set the
value, this variable is NULL. See Section 6.2.12, “Proxy Users”.

• flush

Command-Line Format --flush[={OFF|ON}]

System Variable flush

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

If ON, the server flushes (synchronizes) all changes to disk after each SQL statement. Normally, MySQL
does a write of all changes to disk only after each SQL statement and lets the operating system handle
the synchronizing to disk. See Section B.3.3.3, “What to Do If MySQL Keeps Crashing”. This variable is
set to ON if you start mysqld with the --flush option.

Note

If flush is enabled, the value of flush_time does not matter and changes to
flush_time have no effect on flush behavior.

• flush_time

Command-Line Format --flush-time=#

System Variable flush_time

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 31536000

625

Server System Variables

Unit seconds

If this is set to a nonzero value, all tables are closed every flush_time seconds to free up resources
and synchronize unflushed data to disk. This option is best used only on systems with minimal
resources. The default is 0.

Note

If flush is enabled, the value of flush_time does not matter and changes to
flush_time have no effect on flush behavior.

• foreign_key_checks

System Variable foreign_key_checks

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

If set to 1 (the default), foreign key constraints are checked. If set to 0, foreign key constraints are
ignored, with a couple of exceptions. When re-creating a table that was dropped, an error is returned
if the table definition does not conform to the foreign key constraints referencing the table. Likewise,
an ALTER TABLE operation returns an error if a foreign key definition is incorrectly formed. For more
information, see Section 13.1.17.5, “FOREIGN KEY Constraints”.

Beginning with MySQL NDB Cluster 7.3.2, setting this variable has the same effect on NDB tables as it
does for InnoDB tables—previously, the setting was ignored and all such checks were enforced (Bug
#14095855). Typically you leave this setting enabled during normal operation, to enforce referential
integrity.

Disabling foreign key checking can be useful for reloading such tables in an order different from that
required by their parent/child relationships. See Section 13.1.17.5, “FOREIGN KEY Constraints”.

Setting foreign_key_checks to 0 also affects data definition statements: DROP SCHEMA drops
a schema even if it contains tables that have foreign keys that are referred to by tables outside the
schema, and DROP TABLE drops tables that have foreign keys that are referred to by other tables.

Note

Setting foreign_key_checks to 1 does not trigger a scan of the existing table
data. Therefore, rows added to the table while foreign_key_checks=0 are not
verified for consistency.

Warning

With foreign_key_checks=0, dropping an index required by a foreign key
constraint places the table in an inconsistent state and causes the foreign key
check that occurs at table load to fail. To avoid this problem, remove the foreign
key constraint before dropping the index (Bug #70260).

• ft_boolean_syntax

Command-Line Format --ft-boolean-syntax=name
626

Server System Variables

System Variable ft_boolean_syntax

Scope Global

Dynamic Yes

Type String

Default Value + -><()~*:""&|

The list of operators supported by boolean full-text searches performed using IN BOOLEAN MODE. See
Section 12.10.2, “Boolean Full-Text Searches”.

The default variable value is '+ -><()~*:""&|'. The rules for changing the value are as follows:

• Operator function is determined by position within the string.

• The replacement value must be 14 characters.

• Each character must be an ASCII nonalphanumeric character.

• Either the first or second character must be a space.

• No duplicates are permitted except the phrase quoting operators in positions 11 and 12. These two
characters are not required to be the same, but they are the only two that may be.

• Positions 10, 13, and 14 (which by default are set to :, &, and |) are reserved for future extensions.

• ft_max_word_len

Command-Line Format --ft-max-word-len=#

System Variable ft_max_word_len

Scope Global

Dynamic No

Type Integer

Default Value 84

Minimum Value 10

Maximum Value 84

The maximum length of the word to be included in a MyISAM FULLTEXT index.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this variable.
Use REPAIR TABLE tbl_name QUICK.

• ft_min_word_len

Command-Line Format --ft-min-word-len=#

System Variable ft_min_word_len

Scope Global

Dynamic No

Type Integer

627

Server System Variables

Default Value 4

Minimum Value 1

Maximum Value 82

The minimum length of the word to be included in a MyISAM FULLTEXT index.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this variable.
Use REPAIR TABLE tbl_name QUICK.

• ft_query_expansion_limit

Command-Line Format --ft-query-expansion-limit=#

System Variable ft_query_expansion_limit

Scope Global

Dynamic No

Type Integer

Default Value 20

Minimum Value 0

Maximum Value 1000

The number of top matches to use for full-text searches performed using WITH QUERY EXPANSION.

• ft_stopword_file

Command-Line Format --ft-stopword-file=file_name

System Variable ft_stopword_file

Scope Global

Dynamic No

Type File name

The file from which to read the list of stopwords for full-text searches on MyISAM tables. The server looks
for the file in the data directory unless an absolute path name is given to specify a different directory.
All the words from the file are used; comments are not honored. By default, a built-in list of stopwords is
used (as defined in the storage/myisam/ft_static.c file). Setting this variable to the empty string
('') disables stopword filtering. See also Section 12.10.4, “Full-Text Stopwords”.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this variable
or the contents of the stopword file. Use REPAIR TABLE tbl_name QUICK.

• general_log

Command-Line Format --general-log[={OFF|ON}]

System Variable general_log

Scope Global

Dynamic Yes

628

Server System Variables

Type Boolean

Default Value OFF

Whether the general query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON) to
enable the log. The destination for log output is controlled by the log_output system variable; if that
value is NONE, no log entries are written even if the log is enabled.

• general_log_file

Command-Line Format --general-log-file=file_name

System Variable general_log_file

Scope Global

Dynamic Yes

Type File name

Default Value host_name.log

The name of the general query log file. The default value is host_name.log, but the initial value can be
changed with the --general_log_file option.

• group_concat_max_len

Command-Line Format --group-concat-max-len=#

System Variable group_concat_max_len

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1024

Minimum Value 4

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

The maximum permitted result length in bytes for the GROUP_CONCAT() function. The default is 1024.

• have_compress

YES if the zlib compression library is available to the server, NO if not. If not, the COMPRESS() and
UNCOMPRESS() functions cannot be used.

• have_crypt

YES if the crypt() system call is available to the server, NO if not. If not, the ENCRYPT() function
cannot be used.

• have_dynamic_loading

YES if mysqld supports dynamic loading of plugins, NO if not. If the value is NO, you cannot use options
such as --plugin-load to load plugins at server startup, or the INSTALL PLUGIN statement to load
plugins at runtime.

• have_geometry

629

Server System Variables

YES if the server supports spatial data types, NO if not.

• have_openssl

This variable is a synonym for have_ssl.

• have_profiling

YES if statement profiling capability is present, NO if not. If present, the profiling system variable
controls whether this capability is enabled or disabled. See Section 13.7.5.32, “SHOW PROFILES
Statement”.

This variable is deprecated; expect it to be removed in a future MySQL release.

• have_query_cache

YES if mysqld supports the query cache, NO if not.

• have_rtree_keys

YES if RTREE indexes are available, NO if not. (These are used for spatial indexes in MyISAM tables.)

• have_ssl

System Variable have_ssl

Scope Global

Dynamic No

Type String

Valid Values YES (SSL support available)

DISABLED (SSL support was compiled into server,
but server was not started with necessary options
to enable it)

YES if mysqld supports SSL connections, DISABLED if the server was not started with the appropriate
appropriate connection-encryption options to enable SSL connections. For more information, see
Section 2.9.6, “Configuring SSL Library Support”.

• have_symlink

YES if symbolic link support is enabled, NO if not. This is required on Unix for support of the DATA
DIRECTORY and INDEX DIRECTORY table options, and on Windows for support of data directory
symlinks. If the server is started with the --skip-symbolic-links option, the value is DISABLED.

• host_cache_size

Command-Line Format --host-cache-size=#

System Variable host_cache_size

Scope Global

Dynamic Yes

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

630

Server System Variables

Minimum Value 0

Maximum Value 65536

The MySQL server maintains an in-memory host cache that contains client host name and IP address
information and is used to avoid Domain Name System (DNS) lookups; see Section 5.1.11.2, “DNS
Lookups and the Host Cache”.

The host_cache_size variable controls the size of the host cache, as well as the size of the
Performance Schema host_cache table that exposes the cache contents. Setting host_cache_size
has these effects:

• Setting the size to 0 disables the host cache. With the cache disabled, the server performs a DNS
lookup every time a client connects.

• Changing the size at runtime causes an implicit host cache flushing operation that clears the host
cache, truncates the host_cache table, and unblocks any blocked hosts.

The default value is autosized to 128, plus 1 for a value of max_connections up to 500, plus 1 for
every increment of 20 over 500 in the max_connections value, capped to a limit of 2000.

Using the --skip-host-cache option is similar to setting the host_cache_size system variable to
0, but host_cache_size is more flexible because it can also be used to resize, enable, and disable the
host cache at runtime, not just at server startup.

Starting the server with --skip-host-cache does not prevent runtime changes to the value
of host_cache_size, but such changes have no effect and the cache is not re-enabled even if
host_cache_size is set larger than 0.

Setting the host_cache_size system variable rather than the --skip-host-cache option is
preferred for the reasons given in the previous paragraph. In addition, the --skip-host-cache option
is deprecated in MySQL 8.0, and its removal is expected in a future version of MySQL.

• hostname

System Variable hostname

Scope Global

Dynamic No

Type String

The server sets this variable to the server host name at startup.

• identity

This variable is a synonym for the last_insert_id variable. It exists for compatibility with other
database systems. You can read its value with SELECT @@identity, and set it using SET identity.

• ignore_db_dirs

System Variable ignore_db_dirs

Scope Global

Dynamic No

631

Server System Variables

Type String

A comma-separated list of names that are not considered as database directories in the data directory.
The value is set from any instances of --ignore-db-dir given at server startup.

• init_connect

Command-Line Format --init-connect=name

System Variable init_connect

Scope Global

Dynamic Yes

Type String

A string to be executed by the server for each client that connects. The string consists of one or more
SQL statements, separated by semicolon characters.

For users that have the SUPER privilege, the content of init_connect is not executed. This is done so
that an erroneous value for init_connect does not prevent all clients from connecting. For example,
the value might contain a statement that has a syntax error, thus causing client connections to fail. Not
executing init_connect for users that have the SUPER privilege enables them to open a connection
and fix the init_connect value.

The server discards any result sets produced by statements in the value of init_connect.

• init_file

Command-Line Format --init-file=file_name

System Variable init_file

Scope Global

Dynamic No

Type File name

If specified, this variable names a file containing SQL statements to be read and executed during the
startup process. Each statement must be on a single line and should not include comments.

If the server is started with the --bootstrap option, it operates in bootstap mode and some
functionality is unavailable that limits the statements permitted in the file. These include statements that
relate to account management (such as CREATE USER or GRANT), replication, and global transaction
identifiers. See Section 17.1.3, “Replication with Global Transaction Identifiers”.

• innodb_xxx

InnoDB system variables are listed in Section 14.14, “InnoDB Startup Options and System Variables”.
These variables control many aspects of storage, memory use, and I/O patterns for InnoDB tables, and
are especially important now that InnoDB is the default storage engine.

• insert_id

The value to be used by the following INSERT or ALTER TABLE statement when inserting an
AUTO_INCREMENT value. This is mainly used with the binary log.

632

Server System Variables

• interactive_timeout

Command-Line Format --interactive-timeout=#

System Variable interactive_timeout

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 28800

Minimum Value 1

Maximum Value 31536000

Unit seconds

The number of seconds the server waits for activity on an interactive connection before closing
it. An interactive client is defined as a client that uses the CLIENT_INTERACTIVE option to
mysql_real_connect(). See also wait_timeout.

• join_buffer_size

Command-Line Format --join-buffer-size=#

System Variable join_buffer_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 262144

Minimum Value 128

Maximum Value (Windows) 4294967168

Maximum Value (Other, 64-bit platforms) 18446744073709551488

Maximum Value (Other, 32-bit platforms) 4294967168

Unit bytes

Block Size 128

The minimum size of the buffer that is used for plain index scans, range index scans, and joins that
do not use indexes and thus perform full table scans. Normally, the best way to get fast joins is to add
indexes. Increase the value of join_buffer_size to get a faster full join when adding indexes is not
possible. One join buffer is allocated for each full join between two tables. For a complex join between
several tables for which indexes are not used, multiple join buffers might be necessary.

Unless a Block Nested-Loop or Batched Key Access algorithm is used, there is no gain from setting the
buffer larger than required to hold each matching row, and all joins allocate at least the minimum size,
so use caution in setting this variable to a large value globally. It is better to keep the global setting small
and change the session setting to a larger value only in sessions that are doing large joins. Memory

633

https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-connect.html

Server System Variables

allocation time can cause substantial performance drops if the global size is larger than needed by most
queries that use it.

When Block Nested-Loop is used, a larger join buffer can be beneficial up to the point where all required
columns from all rows in the first table are stored in the join buffer. This depends on the query; the
optimal size may be smaller than holding all rows from the first tables.

When Batched Key Access is used, the value of join_buffer_size defines how large the batch of
keys is in each request to the storage engine. The larger the buffer, the more sequential access is made
to the right hand table of a join operation, which can significantly improve performance.

The default is 256KB. The maximum permissible setting for join_buffer_size is 4GB−1. Larger
values are permitted for 64-bit platforms (except 64-bit Windows, for which large values are truncated to
4GB−1 with a warning).

For additional information about join buffering, see Section 8.2.1.6, “Nested-Loop Join Algorithms”. For
information about Batched Key Access, see Section 8.2.1.11, “Block Nested-Loop and Batched Key
Access Joins”.

• keep_files_on_create

Command-Line Format --keep-files-on-create[={OFF|ON}]

System Variable keep_files_on_create

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the database
directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it. The same applies
to .MYI files for tables created with no INDEX DIRECTORY option. To suppress this behavior, set the
keep_files_on_create variable to ON (1), in which case MyISAM does not overwrite existing files
and returns an error instead. The default value is OFF (0).

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing
.MYD or .MYI file is found, MyISAM always returns an error. It does not overwrite a file in the specified
directory.

• key_buffer_size

Command-Line Format --key-buffer-size=#

System Variable key_buffer_size

Scope Global

Dynamic Yes

Type Integer

Default Value 8388608

Minimum Value 0

Maximum Value (64-bit platforms) OS_PER_PROCESS_LIMIT

Maximum Value (32-bit platforms) 4294967295

634

Server System Variables

Unit bytes

Index blocks for MyISAM tables are buffered and are shared by all threads. key_buffer_size is the
size of the buffer used for index blocks. The key buffer is also known as the key cache.

The minimum permissible setting is 0, but you cannot set key_buffer_size to 0 dynamically. A setting
of 0 drops the key cache, which is not permitted at runtime. Setting key_buffer_size to 0 is permitted
only at startup, in which case the key cache is not initialized. Changing the key_buffer_size setting
at runtime from a value of 0 to a permitted non-zero value initializes the key cache.

key_buffer_size can be increased or decreased only in increments or multiples of 4096 bytes.
Increasing or decreasing the setting by a nonconforming value produces a warning and truncates the
setting to a conforming value.

The maximum permissible setting for key_buffer_size is 4GB−1 on 32-bit platforms. Larger values
are permitted for 64-bit platforms. The effective maximum size might be less, depending on your
available physical RAM and per-process RAM limits imposed by your operating system or hardware
platform. The value of this variable indicates the amount of memory requested. Internally, the server
allocates as much memory as possible up to this amount, but the actual allocation might be less.

You can increase the value to get better index handling for all reads and multiple writes; on a system
whose primary function is to run MySQL using the MyISAM storage engine, 25% of the machine's total
memory is an acceptable value for this variable. However, you should be aware that, if you make the
value too large (for example, more than 50% of the machine's total memory), your system might start
to page and become extremely slow. This is because MySQL relies on the operating system to perform
file system caching for data reads, so you must leave some room for the file system cache. You should
also consider the memory requirements of any other storage engines that you may be using in addition
to MyISAM.

For even more speed when writing many rows at the same time, use LOCK TABLES. See
Section 8.2.4.1, “Optimizing INSERT Statements”.

You can check the performance of the key buffer by issuing a SHOW STATUS statement and examining
the Key_read_requests, Key_reads, Key_write_requests, and Key_writes status variables.
(See Section 13.7.5, “SHOW Statements”.) The Key_reads/Key_read_requests ratio should
normally be less than 0.01. The Key_writes/Key_write_requests ratio is usually near 1 if you are
using mostly updates and deletes, but might be much smaller if you tend to do updates that affect many
rows at the same time or if you are using the DELAY_KEY_WRITE table option.

The fraction of the key buffer in use can be determined using key_buffer_size in conjunction
with the Key_blocks_unused status variable and the buffer block size, which is available from the
key_cache_block_size system variable:

1 - ((Key_blocks_unused * key_cache_block_size) / key_buffer_size)

This value is an approximation because some space in the key buffer is allocated internally for
administrative structures. Factors that influence the amount of overhead for these structures include
block size and pointer size. As block size increases, the percentage of the key buffer lost to overhead
tends to decrease. Larger blocks results in a smaller number of read operations (because more keys are
obtained per read), but conversely an increase in reads of keys that are not examined (if not all keys in a
block are relevant to a query).

It is possible to create multiple MyISAM key caches. The size limit of 4GB applies to each cache
individually, not as a group. See Section 8.10.2, “The MyISAM Key Cache”.

635

Server System Variables

• key_cache_age_threshold

Command-Line Format --key-cache-age-threshold=#

System Variable key_cache_age_threshold

Scope Global

Dynamic Yes

Type Integer

Default Value 300

Minimum Value 100

Maximum Value (64-bit platforms) 18446744073709551516

Maximum Value (32-bit platforms) 4294967196

Block Size 100

This value controls the demotion of buffers from the hot sublist of a key cache to the warm sublist. Lower
values cause demotion to happen more quickly. The minimum value is 100. The default value is 300.
See Section 8.10.2, “The MyISAM Key Cache”.

• key_cache_block_size

Command-Line Format --key-cache-block-size=#

System Variable key_cache_block_size

Scope Global

Dynamic Yes

Type Integer

Default Value 1024

Minimum Value 512

Maximum Value 16384

Unit bytes

Block Size 512

The size in bytes of blocks in the key cache. The default value is 1024. See Section 8.10.2, “The
MyISAM Key Cache”.

• key_cache_division_limit

Command-Line Format --key-cache-division-limit=#

System Variable key_cache_division_limit

Scope Global

Dynamic Yes

Type Integer

Default Value 100

Minimum Value 1

636

Server System Variables

Maximum Value 100

The division point between the hot and warm sublists of the key cache buffer list. The value is the
percentage of the buffer list to use for the warm sublist. Permissible values range from 1 to 100. The
default value is 100. See Section 8.10.2, “The MyISAM Key Cache”.

• large_files_support

System Variable large_files_support

Scope Global

Dynamic No

Type Boolean

Whether mysqld was compiled with options for large file support.

• large_pages

Command-Line Format --large-pages[={OFF|ON}]

System Variable large_pages

Scope Global

Dynamic No

Platform Specific Linux

Type Boolean

Default Value OFF

Whether large page support is enabled (via the --large-pages option). See Section 8.12.4.2,
“Enabling Large Page Support”.

• large_page_size

System Variable large_page_size

Scope Global

Dynamic No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 65535

Unit bytes

If large page support is enabled, this shows the size of memory pages. Large memory pages are
supported only on Linux; on other platforms, the value of this variable is always 0. See Section 8.12.4.2,
“Enabling Large Page Support”.

• last_insert_id

The value to be returned from LAST_INSERT_ID(). This is stored in the binary log when you use
LAST_INSERT_ID() in a statement that updates a table. Setting this variable does not update the value
returned by the mysql_insert_id() C API function. 637

https://dev.mysql.com/doc/c-api/5.6/en/mysql-insert-id.html

Server System Variables

• lc_messages

Command-Line Format --lc-messages=name

System Variable lc_messages

Scope Global, Session

Dynamic Yes

Type String

Default Value en_US

The locale to use for error messages. The default is en_US. The server converts the argument to a
language name and combines it with the value of lc_messages_dir to produce the location for the
error message file. See Section 10.12, “Setting the Error Message Language”.

• lc_messages_dir

Command-Line Format --lc-messages-dir=dir_name

System Variable lc_messages_dir

Scope Global

Dynamic No

Type Directory name

The directory where error messages are located. The server uses the value together with the value of
lc_messages to produce the location for the error message file. See Section 10.12, “Setting the Error
Message Language”.

• lc_time_names

Command-Line Format --lc-time-names=value

System Variable lc_time_names

Scope Global, Session

Dynamic Yes

Type String

This variable specifies the locale that controls the language used to display day and month names
and abbreviations. This variable affects the output from the DATE_FORMAT(), DAYNAME() and
MONTHNAME() functions. Locale names are POSIX-style values such as 'ja_JP' or 'pt_BR'.
The default value is 'en_US' regardless of your system's locale setting. For further information, see
Section 10.16, “MySQL Server Locale Support”.

• license

System Variable license

Scope Global

Dynamic No

Type String

Default Value GPL

The type of license the server has.

638

Server System Variables

• local_infile

Command-Line Format --local-infile[={OFF|ON}]

System Variable local_infile

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

This variable controls server-side LOCAL capability for LOAD DATA statements. Depending on the
local_infile setting, the server refuses or permits local data loading by clients that have LOCAL
enabled on the client side.

To explicitly cause the server to refuse or permit LOAD DATA LOCAL statements (regardless of how
client programs and libraries are configured at build time or runtime), start mysqld with local_infile
disabled or enabled, respectively. local_infile can also be set at runtime. For more information, see
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”.

• lock_wait_timeout

Command-Line Format --lock-wait-timeout=#

System Variable lock_wait_timeout

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 31536000

Minimum Value 1

Maximum Value 31536000

Unit seconds

This variable specifies the timeout in seconds for attempts to acquire metadata locks. The permissible
values range from 1 to 31536000 (1 year). The default is 31536000.

This timeout applies to all statements that use metadata locks. These include DML and DDL operations
on tables, views, stored procedures, and stored functions, as well as LOCK TABLES, FLUSH TABLES
WITH READ LOCK, and HANDLER statements.

This timeout does not apply to implicit accesses to system tables in the mysql database, such as grant
tables modified by GRANT or REVOKE statements or table logging statements. The timeout does apply to
system tables accessed directly, such as with SELECT or UPDATE.

The timeout value applies separately for each metadata lock attempt. A given statement can require
more than one lock, so it is possible for the statement to block for longer than the lock_wait_timeout
value before reporting a timeout error. When lock timeout occurs, ER_LOCK_WAIT_TIMEOUT is reported.

lock_wait_timeout does not apply to delayed inserts, which always execute with a timeout of 1 year.
This is done to avoid unnecessary timeouts because a session that issues a delayed insert receives no
notification of delayed insert timeouts.

639

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_lock_wait_timeout

Server System Variables

• locked_in_memory

System Variable locked_in_memory

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Whether mysqld was locked in memory with --memlock.

• log_error

Command-Line Format --log-error[=file_name]

System Variable log_error

Scope Global

Dynamic No

Type File name

The name of the error log file, or empty if the server is writing error messages to the console rather than
to a named file. See Section 5.4.2, “The Error Log”.

• log_output

Command-Line Format --log-output=name

System Variable log_output

Scope Global

Dynamic Yes

Type Set

Default Value FILE

Valid Values TABLE

FILE

NONE

The destination or destinations for general query log and slow query log output. The value is a list one
or more comma-separated words chosen from TABLE, FILE, and NONE. TABLE selects logging to the
general_log and slow_log tables in the mysql system database. FILE selects logging to log files.
NONE disables logging. If NONE is present in the value, it takes precedence over any other words that are
present. TABLE and FILE can both be given to select both log output destinations.

This variable selects log output destinations, but does not enable log output. To do that, enable the
general_log and slow_query_log system variables. For FILE logging, the general_log_file
and slow_query_log_file system variables determine the log file locations. For more information,
see Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”.

640

Server System Variables

• log_queries_not_using_indexes

Command-Line Format --log-queries-not-using-
indexes[={OFF|ON}]

System Variable log_queries_not_using_indexes

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

If you enable this variable with the slow query log enabled, queries that are expected to retrieve all
rows are logged. See Section 5.4.5, “The Slow Query Log”. This option does not necessarily mean that
no index is used. For example, a query that uses a full index scan uses an index but would be logged
because the index would not limit the number of rows.

• log_slow_admin_statements

Command-Line Format --log-slow-admin-statements[={OFF|
ON}]

Introduced 5.6.11

System Variable log_slow_admin_statements

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Include slow administrative statements in the statements written to the slow query log. Administrative
statements include ALTER TABLE, ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP INDEX,
OPTIMIZE TABLE, and REPAIR TABLE.

This variable was added in MySQL 5.6.11 as a replacement for the --log-slow-admin-statements
option. The system variable can be set on the command line or in option files the same way as the
option, so there is no need for any changes at server startup, but the system variable also makes it
possible to examine or set the value at runtime.

• log_throttle_queries_not_using_indexes

Command-Line Format --log-throttle-queries-not-using-
indexes=#

System Variable log_throttle_queries_not_using_indexes

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

641

Server System Variables

Maximum Value 4294967295

If log_queries_not_using_indexes is enabled, the
log_throttle_queries_not_using_indexes variable limits the number of such queries per
minute that can be written to the slow query log. A value of 0 (the default) means “no limit”. For more
information, see Section 5.4.5, “The Slow Query Log”.

• log_warnings

Command-Line Format --log-warnings[=#]

System Variable log_warnings

Scope Global

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Whether to produce additional warning messages to the error log. This variable is enabled by default
with a value of 1. To disable it, set it to 0. If the value is greater than 0, the server logs messages about
statements that are unsafe for statement-based logging. If the value is greater than 1, the server logs
aborted connections and access-denied errors for new connection attempts. See Section B.3.2.10,
“Communication Errors and Aborted Connections”.

• long_query_time

Command-Line Format --long-query-time=#

System Variable long_query_time

Scope Global, Session

Dynamic Yes

Type Numeric

Default Value 10

Minimum Value 0

Maximum Value 31536000

Unit seconds

If a query takes longer than this many seconds, the server increments the Slow_queries status
variable. If the slow query log is enabled, the query is logged to the slow query log file. This value
is measured in real time, not CPU time, so a query that is under the threshold on a lightly loaded
system might be above the threshold on a heavily loaded one. The minimum and default values
of long_query_time are 0 and 10, respectively. The value can be specified to a resolution of
microseconds. For logging to a file, times are written including the microseconds part. For logging to
tables, only integer times are written; the microseconds part is ignored. See Section 5.4.5, “The Slow
Query Log”.

Smaller values of this variable result in more statements being considered long-running, with the result
that more space is required for the slow query log. For very small values (less than one second), the

642

Server System Variables

log may grow quite large in a small time. Increasing the number of statements considered long-running
may also result in false positives for the “excessive Number of Long Running Processes” alert in MySQL
Enterprise Monitor. For these reasons, very small values should be used in test environments only, or, in
production environments, only for a short period.

• low_priority_updates

Command-Line Format --low-priority-updates[={OFF|ON}]

System Variable low_priority_updates

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

If set to 1, all INSERT, UPDATE, DELETE, and LOCK TABLE WRITE statements wait until there is no
pending SELECT or LOCK TABLE READ on the affected table. The same effect can be obtained using
{INSERT | REPLACE | DELETE | UPDATE} LOW_PRIORITY ... to lower the priority of only one
query. This variable affects only storage engines that use only table-level locking (such as MyISAM,
MEMORY, and MERGE). See Section 8.11.2, “Table Locking Issues”.

• lower_case_file_system

System Variable lower_case_file_system

Scope Global

Dynamic No

Type Boolean

This variable describes the case sensitivity of file names on the file system where the data directory is
located. OFF means file names are case-sensitive, ON means they are not case-sensitive. This variable
is read only because it reflects a file system attribute and setting it would have no effect on the file
system.

• lower_case_table_names

Command-Line Format --lower-case-table-names[=#]

System Variable lower_case_table_names

Scope Global

Dynamic No

Type Integer

Default Value (macOS) 2

Default Value (Unix) 0

Default Value (Windows) 1

Minimum Value 0

Maximum Value 2

If set to 0, table names are stored as specified and comparisons are case-sensitive. If set to 1, table
names are stored in lowercase on disk and comparisons are not case-sensitive. If set to 2, table names

643

Server System Variables

are stored as given but compared in lowercase. This option also applies to database names and table
aliases. For additional information, see Section 9.2.3, “Identifier Case Sensitivity”.

The default value of this variable is platform-dependent (see lower_case_file_system). On Linux
and other Unix-like systems, the default is 0. On Windows the default value is 1. On macOS, the default
value is 2. On Linux (and other Unix-like systems), setting the value to 2 is not supported; the server
forces the value to 0 instead.

You should not set lower_case_table_names to 0 if you are running MySQL on a system where
the data directory resides on a case-insensitive file system (such as on Windows or macOS). It is an
unsupported combination that could result in a hang condition when running an INSERT INTO ...
SELECT ... FROM tbl_name operation with the wrong tbl_name letter case. With MyISAM,
accessing table names using different letter cases could cause index corruption.

As of MySQL 5.6.27, an error message is printed and the server exits if you attempt to start the server
with --lower_case_table_names=0 on a case-insensitive file system.

The setting of this variable in MySQL 5.6 affects the behavior of replication filtering options with regard to
case sensitivity. This is a change from previous versions of MySQL. (Bug #51639) See Section 17.2.3,
“How Servers Evaluate Replication Filtering Rules”, for more information.

• max_allowed_packet

Command-Line Format --max-allowed-packet=#

System Variable max_allowed_packet

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 4194304

Minimum Value 1024

Maximum Value 1073741824

Unit bytes

Block Size 1024

The maximum size of one packet or any generated/intermediate string, or any parameter sent by the
mysql_stmt_send_long_data() C API function. The default is 4MB.

The packet message buffer is initialized to net_buffer_length bytes, but can grow up to
max_allowed_packet bytes when needed. This value by default is small, to catch large (possibly
incorrect) packets.

You must increase this value if you are using large BLOB columns or long strings. It should be as big
as the largest BLOB you want to use. The protocol limit for max_allowed_packet is 1GB. The value
should be a multiple of 1024; nonmultiples are rounded down to the nearest multiple.

When you change the message buffer size by changing the value of the max_allowed_packet
variable, you should also change the buffer size on the client side if your client program permits it.
The default max_allowed_packet value built in to the client library is 1GB, but individual client
programs might override this. For example, mysql and mysqldump have defaults of 16MB and 24MB,

644

https://dev.mysql.com/doc/c-api/5.6/en/mysql-stmt-send-long-data.html

Server System Variables

respectively. They also enable you to change the client-side value by setting max_allowed_packet on
the command line or in an option file.

The session value of this variable is read only. The client can receive up to as many bytes as the
session value. However, the server does not send to the client more bytes than the current global
max_allowed_packet value. (The global value could be less than the session value if the global value
is changed after the client connects.)

• max_connect_errors

Command-Line Format --max-connect-errors=#

System Variable max_connect_errors

Scope Global

Dynamic Yes

Type Integer

Default Value 100

Minimum Value 1

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

After max_connect_errors successive connection requests from a host are interrupted without a
successful connection, the server blocks that host from further connections. If a connection from a
host is established successfully within fewer than max_connect_errors attempts after a previous
connection was interrupted, the error count for the host is cleared to zero. To unblock blocked hosts,
flush the host cache; see Flushing the Host Cache.

• max_connections

Command-Line Format --max-connections=#

System Variable max_connections

Scope Global

Dynamic Yes

Type Integer

Default Value 151

Minimum Value 1

Maximum Value 100000

The maximum permitted number of simultaneous client connections. The maximum effective value
is the lesser of the effective value of open_files_limit - 810, and the value actually set for
max_connections.

For more information, see Section 5.1.11.1, “Connection Interfaces”.

• max_delayed_threads

Command-Line Format --max-delayed-threads=#

Deprecated Yes

System Variable max_delayed_threads 645

Server System Variables

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 20

Minimum Value 0

Maximum Value 16384

Do not start more than this number of threads to handle INSERT DELAYED statements for
nontransactional tables. If you try to insert data into a new table after all INSERT DELAYED threads
are in use, the row is inserted as if the DELAYED attribute was not specified. If you set this to 0, MySQL
never creates a thread to handle DELAYED rows; in effect, this disables DELAYED entirely.

For the SESSION value of this variable, the only valid values are 0 or the GLOBAL value.

This system variable is deprecated (because DELAYED inserts are deprecated); expect it to be removed
in a future release.

• max_digest_length

Command-Line Format --max-digest-length=#

Introduced 5.6.24

System Variable max_digest_length

Scope Global

Dynamic No

Type Integer

Default Value 1024

Minimum Value 0

Maximum Value 1048576

Unit bytes

The maximum number of bytes of memory reserved per session for computation of normalized
statement digests. Once that amount of space is used during digest computation, truncation occurs:
no further tokens from a parsed statement are collected or figure into its digest value. Statements that
differ only after that many bytes of parsed tokens produce the same normalized statement digest and are
considered identical if compared or if aggregated for digest statistics.

Warning

Setting max_digest_length to zero disables digest production, which also
disables server functionality that requires digests, such as MySQL Enterprise
Firewall.

Decreasing the max_digest_length value reduces memory use but causes the digest value of more
statements to become indistinguishable if they differ only at the end. Increasing the value permits longer
statements to be distinguished but increases memory use, particularly for workloads that involve large
numbers of simultaneous sessions (the server allocates max_digest_length bytes per session).

The parser uses this system variable as a limit on the maximum length of normalized statement
digests that it computes. The Performance Schema, if it tracks statement digests, makes

646

Server System Variables

a copy of the digest value, using the performance_schema_max_digest_length.
system variable as a limit on the maximum length of digests that it stores. Consequently, if
performance_schema_max_digest_length is less than max_digest_length, digest values
stored in the Performance Schema are truncated relative to the original digest values.

In MySQL 5.6.24 and 5.6.25, performance_schema_max_digest_length is not available
and max_digest_length applies to all digest computation. Before MySQL 5.6.24, neither
max_digest_length nor performance_schema_max_digest_length are available and a fixed
maximum of 1024 bytes applies to all digest computation.

For more information about statement digesting, see Section 22.10, “Performance Schema Statement
Digests”.

• max_error_count

Command-Line Format --max-error-count=#

System Variable max_error_count

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 64

Minimum Value 0

Maximum Value 65535

The maximum number of error, warning, and information messages to be stored for display by the SHOW
ERRORS and SHOW WARNINGS statements. This is the same as the number of condition areas in the
diagnostics area, and thus the number of conditions that can be inspected by GET DIAGNOSTICS.

• max_heap_table_size

Command-Line Format --max-heap-table-size=#

System Variable max_heap_table_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 16777216

Minimum Value 16384

Maximum Value (64-bit platforms) 18446744073709550592

Maximum Value (32-bit platforms) 4294966272

Unit bytes

Block Size 1024

This variable sets the maximum size to which user-created MEMORY tables are permitted to grow. The
value of the variable is used to calculate MEMORY table MAX_ROWS values. Setting this variable has no
effect on any existing MEMORY table, unless the table is re-created with a statement such as CREATE

647

Server System Variables

TABLE or altered with ALTER TABLE or TRUNCATE TABLE. A server restart also sets the maximum size
of existing MEMORY tables to the global max_heap_table_size value.

This variable is also used in conjunction with tmp_table_size to limit the size of internal in-memory
tables. See Section 8.4.4, “Internal Temporary Table Use in MySQL”.

max_heap_table_size is not replicated. See Section 17.4.1.20, “Replication and MEMORY Tables”,
and Section 17.4.1.35, “Replication and Variables”, for more information.

• max_insert_delayed_threads

Deprecated Yes

System Variable max_insert_delayed_threads

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 20

Maximum Value 16384

This variable is a synonym for max_delayed_threads.

This system variable is deprecated (because DELAYED inserts are deprecated); expect it to be removed
in a future release.

• max_join_size

Command-Line Format --max-join-size=#

System Variable max_join_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 18446744073709551615

Minimum Value 1

Maximum Value 18446744073709551615

Do not permit statements that probably need to examine more than max_join_size rows (for single-
table statements) or row combinations (for multiple-table statements) or that are likely to do more than
max_join_size disk seeks. By setting this value, you can catch statements where keys are not used
properly and that would probably take a long time. Set it if your users tend to perform joins that lack a
WHERE clause, that take a long time, or that return millions of rows. For more information, see Using
Safe-Updates Mode (--safe-updates).

Setting this variable to a value other than DEFAULT resets the value of sql_big_selects to 0. If you
set the sql_big_selects value again, the max_join_size variable is ignored.

If a query result is in the query cache, no result size check is performed, because the result has
previously been computed and it does not burden the server to send it to the client.

• max_length_for_sort_data

648

Server System Variables

Command-Line Format --max-length-for-sort-data=#

System Variable max_length_for_sort_data

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1024

Minimum Value 4

Maximum Value 8388608

Unit bytes

The cutoff on the size of index values that determines which filesort algorithm to use. See
Section 8.2.1.13, “ORDER BY Optimization”.

• max_prepared_stmt_count

Command-Line Format --max-prepared-stmt-count=#

System Variable max_prepared_stmt_count

Scope Global

Dynamic Yes

Type Integer

Default Value 16382

Minimum Value 0

Maximum Value 1048576

This variable limits the total number of prepared statements in the server. (The sum of the number of
prepared statements across all sessions.) It can be used in environments where there is the potential
for denial-of-service attacks based on running the server out of memory by preparing huge numbers of
statements. If the value is set lower than the current number of prepared statements, existing statements
are not affected and can be used, but no new statements can be prepared until the current number
drops below the limit. Setting the value to 0 disables prepared statements.

• max_seeks_for_key

Command-Line Format --max-seeks-for-key=#

System Variable max_seeks_for_key

Scope Global, Session

Dynamic Yes

Type Integer

Default Value (Windows) 4294967295

Default Value (Other, 64-bit platforms) 18446744073709551615

Default Value (Other, 32-bit platforms) 4294967295

Minimum Value 1

Maximum Value (Windows) 4294967295

Maximum Value (Other, 64-bit platforms) 18446744073709551615

649

Server System Variables

Maximum Value (Other, 32-bit platforms) 4294967295

Limit the assumed maximum number of seeks when looking up rows based on a key. The MySQL
optimizer assumes that no more than this number of key seeks are required when searching for
matching rows in a table by scanning an index, regardless of the actual cardinality of the index (see
Section 13.7.5.23, “SHOW INDEX Statement”). By setting this to a low value (say, 100), you can force
MySQL to prefer indexes instead of table scans.

• max_sort_length

Command-Line Format --max-sort-length=#

System Variable max_sort_length

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1024

Minimum Value 4

Maximum Value 8388608

Unit bytes

The number of bytes to use when sorting data values. The server uses only the first max_sort_length
bytes of each value and ignores the rest. Consequently, values that differ only after the first
max_sort_length bytes compare as equal for GROUP BY, ORDER BY, and DISTINCT operations.

Increasing the value of max_sort_length may require increasing the value of sort_buffer_size as
well. For details, see Section 8.2.1.13, “ORDER BY Optimization”

• max_sp_recursion_depth

Command-Line Format --max-sp-recursion-depth[=#]

System Variable max_sp_recursion_depth

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 255

The number of times that any given stored procedure may be called recursively. The default value for
this option is 0, which completely disables recursion in stored procedures. The maximum value is 255.

Stored procedure recursion increases the demand on thread stack space. If you increase the value of
max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the value
of thread_stack at server startup.

• max_tmp_tables

This variable is unused. It is deprecated; expect it to be removed in a future MySQL release.

650

Server System Variables

• max_user_connections

Command-Line Format --max-user-connections=#

System Variable max_user_connections

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

The maximum number of simultaneous connections permitted to any given MySQL user account. A
value of 0 (the default) means “no limit.”

This variable has a global value that can be set at server startup or runtime. It also has a read-only
session value that indicates the effective simultaneous-connection limit that applies to the account
associated with the current session. The session value is initialized as follows:

• If the user account has a nonzero MAX_USER_CONNECTIONS resource limit, the session
max_user_connections value is set to that limit.

• Otherwise, the session max_user_connections value is set to the global value.

Account resource limits are specified using the GRANT statement. See Section 6.2.13, “Setting Account
Resource Limits”, and Section 13.7.1.4, “GRANT Statement”.

• max_write_lock_count

Command-Line Format --max-write-lock-count=#

System Variable max_write_lock_count

Scope Global

Dynamic Yes

Type Integer

Default Value (Windows) 4294967295

Default Value (Other, 64-bit platforms) 18446744073709551615

Default Value (Other, 32-bit platforms) 4294967295

Minimum Value 1

Maximum Value (Windows) 4294967295

Maximum Value (Other, 64-bit platforms) 18446744073709551615

Maximum Value (Other, 32-bit platforms) 4294967295

After this many write locks, permit some pending read lock requests to be processed in between. Write
lock requests have higher priority than read lock requests. However, if max_write_lock_count is set
to some low value (say, 10), read lock requests may be preferred over pending write lock requests if
the read lock requests have already been passed over in favor of 10 write lock requests. Normally this
behavior does not occur because max_write_lock_count by default has a very large value.

651

Server System Variables

• metadata_locks_cache_size

Command-Line Format --metadata-locks-cache-size=#

System Variable metadata_locks_cache_size

Scope Global

Dynamic No

Type Integer

Default Value 1024

Minimum Value 1

Maximum Value 1048576

Unit bytes

The size of the metadata locks cache. The server uses this cache to avoid creation and destruction of
synchronization objects. This is particularly helpful on systems where such operations are expensive,
such as Windows XP.

• metadata_locks_hash_instances

Command-Line Format --metadata-locks-hash-instances=#

System Variable metadata_locks_hash_instances

Scope Global

Dynamic No

Type Integer

Default Value 8

Minimum Value 1

Maximum Value 1024

The set of metadata locks can be partitioned into separate hashes to permit connections
accessing different objects to use different locking hashes and reduce contention. The
metadata_locks_hash_instances system variable specifies the number of hashes (default 8).

• min_examined_row_limit

Command-Line Format --min-examined-row-limit=#

System Variable min_examined_row_limit

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Queries that examine fewer than this number of rows are not logged to the slow query log.

• multi_range_count

652

Server System Variables

Command-Line Format --multi-range-count=#

Deprecated Yes

System Variable multi_range_count

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 256

Minimum Value 1

Maximum Value 4294967295

This variable has no effect. It is deprecated; expect it to be removed in a future MySQL release.

• myisam_data_pointer_size

Command-Line Format --myisam-data-pointer-size=#

System Variable myisam_data_pointer_size

Scope Global

Dynamic Yes

Type Integer

Default Value 6

Minimum Value 2

Maximum Value 7

Unit bytes

The default pointer size in bytes, to be used by CREATE TABLE for MyISAM tables when no MAX_ROWS
option is specified. This variable cannot be less than 2 or larger than 7. The default value is 6. See
Section B.3.2.11, “The table is full”.

• myisam_max_sort_file_size

Command-Line Format --myisam-max-sort-file-size=#

System Variable myisam_max_sort_file_size

Scope Global

Dynamic Yes

Type Integer

Default Value (Windows) 2146435072

Default Value (Other, 64-bit platforms) 9223372036853727232

Default Value (Other, 32-bit platforms) 2147483648

Minimum Value 0

Maximum Value (Windows) 2146435072

Maximum Value (Other, 64-bit platforms) 9223372036853727232

Maximum Value (Other, 32-bit platforms) 2147483648

653

Server System Variables

Unit bytes

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA). If the file size would be larger than this
value, the index is created using the key cache instead, which is slower. The value is given in bytes.

If MyISAM index files exceed this size and disk space is available, increasing the value may help
performance. The space must be available in the file system containing the directory where the original
index file is located.

• myisam_mmap_size

Command-Line Format --myisam-mmap-size=#

System Variable myisam_mmap_size

Scope Global

Dynamic No

Type Integer

Default Value (64-bit platforms) 18446744073709551615

Default Value (32-bit platforms) 4294967295

Minimum Value 7

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

The maximum amount of memory to use for memory mapping compressed MyISAM files. If many
compressed MyISAM tables are used, the value can be decreased to reduce the likelihood of memory-
swapping problems.

• myisam_recover_options

Command-Line Format --myisam-recover-options[=list]

System Variable myisam_recover_options

Scope Global

Dynamic No

Type Enumeration

Default Value OFF

Valid Values OFF

DEFAULT

BACKUP

FORCE

QUICK

Set the MyISAM storage engine recovery mode. The variable value is any combination of the values of
OFF, DEFAULT, BACKUP, FORCE, or QUICK. If you specify multiple values, separate them by commas.
Specifying the variable with no value at server startup is the same as specifying DEFAULT, and

654

Server System Variables

specifying with an explicit value of "" disables recovery (same as a value of OFF). If recovery is enabled,
each time mysqld opens a MyISAM table, it checks whether the table is marked as crashed or was not
closed properly. (The last option works only if you are running with external locking disabled.) If this is
the case, mysqld runs a check on the table. If the table was corrupted, mysqld attempts to repair it.

The following options affect how the repair works.

Option Description

OFF No recovery.

DEFAULT Recovery without backup, forcing, or quick
checking.

BACKUP If the data file was changed during recovery,
save a backup of the tbl_name.MYD file as
tbl_name-datetime.BAK.

FORCE Run recovery even if we would lose more than one
row from the .MYD file.

QUICK Do not check the rows in the table if there are not
any delete blocks.

Before the server automatically repairs a table, it writes a note about the repair to the error log. If you
want to be able to recover from most problems without user intervention, you should use the options
BACKUP,FORCE. This forces a repair of a table even if some rows would be deleted, but it keeps the old
data file as a backup so that you can later examine what happened.

See Section 15.2.1, “MyISAM Startup Options”.

• myisam_repair_threads

Command-Line Format --myisam-repair-threads=#

System Variable myisam_repair_threads

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

If this value is greater than 1, MyISAM table indexes are created in parallel (each index in its own thread)
during the Repair by sorting process. The default value is 1.

Note

Multithreaded repair is still beta-quality code.

• myisam_sort_buffer_size

Command-Line Format --myisam-sort-buffer-size=#

System Variable myisam_sort_buffer_size

655

Server System Variables

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 8388608

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

The size of the buffer that is allocated when sorting MyISAM indexes during a REPAIR TABLE or when
creating indexes with CREATE INDEX or ALTER TABLE.

• myisam_stats_method

Command-Line Format --myisam-stats-method=name

System Variable myisam_stats_method

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value nulls_unequal

Valid Values nulls_unequal

nulls_equal

nulls_ignored

How the server treats NULL values when collecting statistics about the distribution of index values
for MyISAM tables. This variable has three possible values, nulls_equal, nulls_unequal, and
nulls_ignored. For nulls_equal, all NULL index values are considered equal and form a single
value group that has a size equal to the number of NULL values. For nulls_unequal, NULL values are
considered unequal, and each NULL forms a distinct value group of size 1. For nulls_ignored, NULL
values are ignored.

The method that is used for generating table statistics influences how the optimizer chooses indexes for
query execution, as described in Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.

• myisam_use_mmap

Command-Line Format --myisam-use-mmap[={OFF|ON}]

System Variable myisam_use_mmap

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Use memory mapping for reading and writing MyISAM tables.

• named_pipe

656

Server System Variables

Command-Line Format --named-pipe[={OFF|ON}]

System Variable named_pipe

Scope Global

Dynamic No

Platform Specific Windows

Type Boolean

Default Value OFF

(Windows only.) Indicates whether the server supports connections over named pipes.

• named_pipe_full_access_group

Command-Line Format --named-pipe-full-access-group=value

Introduced 5.6.43

System Variable named_pipe_full_access_group

Scope Global

Dynamic No

Platform Specific Windows

Type String

Default Value empty string

Valid Values empty string

valid Windows local group name

everyone

(Windows only.) The access control granted to clients on the named pipe created by the MySQL server
is set to the minimum necessary for successful communication when the named_pipe system variable
is enabled to support named-pipe connections. Some MySQL client software can open named pipe
connections without any additional configuration, however, other client software may still require full
access to open a named pipe connection.

This variable sets the name of a Windows local group whose members are granted sufficient access
by the MySQL server to use named-pipe clients. Initially, the value is set to '*everyone*' by default,
which permits users of the Everyone group on Windows to continue using the client software until it is
upgraded. In contrast, setting the value to an empty string means that no Windows user is granted full
access to the named pipe. The default value '*everyone*' provides a language-independent way of
referring to the Everyone group on Windows.

Ideally, a new Windows local group name (for example, mysql_access_client_users) should
be created in Windows and then used to replace the default value for this variable when access is
absolutely necessary. In this case, limit the membership of the group to as few users as possible,
removing users from the group when the client software is upgraded. A non-member of the group who
attempts to open a connection to MySQL with the affected named-pipe client is denied access until the
user is added to the group by a Windows administrator, and then the user logs out and logs in (required
by Windows).

657

Server System Variables

• net_buffer_length

Command-Line Format --net-buffer-length=#

System Variable net_buffer_length

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 16384

Minimum Value 1024

Maximum Value 1048576

Unit bytes

Block Size 1024

Each client thread is associated with a connection buffer and result buffer. Both begin with a size given
by net_buffer_length but are dynamically enlarged up to max_allowed_packet bytes as needed.
The result buffer shrinks to net_buffer_length after each SQL statement.

This variable should not normally be changed, but if you have very little memory, you can set it to the
expected length of statements sent by clients. If statements exceed this length, the connection buffer is
automatically enlarged. The maximum value to which net_buffer_length can be set is 1MB.

The session value of this variable is read only.

• net_read_timeout

Command-Line Format --net-read-timeout=#

System Variable net_read_timeout

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 30

Minimum Value 1

Maximum Value 31536000

Unit seconds

The number of seconds to wait for more data from a connection before aborting the read. When the
server is reading from the client, net_read_timeout is the timeout value controlling when to abort.
When the server is writing to the client, net_write_timeout is the timeout value controlling when to
abort. See also slave_net_timeout.

• net_retry_count

Command-Line Format --net-retry-count=#

System Variable net_retry_count

Scope Global, Session

Dynamic Yes
658

Server System Variables

Type Integer

Default Value 10

Minimum Value 1

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

If a read or write on a communication port is interrupted, retry this many times before giving up. This
value should be set quite high on FreeBSD because internal interrupts are sent to all threads.

• net_write_timeout

Command-Line Format --net-write-timeout=#

System Variable net_write_timeout

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 60

Minimum Value 1

Maximum Value 31536000

Unit seconds

The number of seconds to wait for a block to be written to a connection before aborting the write. See
also net_read_timeout.

• new

Command-Line Format --new[={OFF|ON}]

System Variable new

Scope Global, Session

Dynamic Yes

Disabled by skip-new

Type Boolean

Default Value OFF

This variable was used in MySQL 4.0 to turn on some 4.1 behaviors, and is retained for backward
compatibility. Its value is always OFF.

In NDB Cluster, setting this variable to ON makes it possible to employ partitioning types other than KEY
or LINEAR KEY with NDB tables. This feature is experimental only, and not supported in production. For
additional information, see User-defined partitioning and the NDB storage engine (NDB Cluster).

• old

Command-Line Format --old[={OFF|ON}]

System Variable old

Scope Global
659

Server System Variables

Dynamic No

Type Boolean

Default Value OFF

old is a compatibility variable. It is disabled by default, but can be enabled at startup to revert the server
to behaviors present in older versions.

When old is enabled, it changes the default scope of index hints to that used prior to MySQL 5.1.17.
That is, index hints with no FOR clause apply only to how indexes are used for row retrieval and not
to resolution of ORDER BY or GROUP BY clauses. (See Section 8.9.3, “Index Hints”.) Take care about
enabling this in a replication setup. With statement-based binary logging, having different modes for the
source and replicas might lead to replication errors.

• old_alter_table

Command-Line Format --old-alter-table[={OFF|ON}]

System Variable old_alter_table

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

When this variable is enabled, the server does not use the optimized method of processing an ALTER
TABLE operation. It reverts to using a temporary table, copying over the data, and then renaming the
temporary table to the original, as used by MySQL 5.0 and earlier. For more information on the operation
of ALTER TABLE, see Section 13.1.7, “ALTER TABLE Statement”.

• old_passwords

Command-Line Format --old-passwords=value

System Variable old_passwords

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value 0

Valid Values 0

1

660

Server System Variables

2

This variable controls the password hashing method used by the PASSWORD() function. It also
influences password hashing performed by CREATE USER and GRANT statements that specify a
password using an IDENTIFIED BY clause.

The following table shows, for each password hashing method, the permitted value of old_passwords
and which authentication plugins use the hashing method.

Password Hashing Method old_passwords Value Associated Authentication
Plugin

MySQL 4.1 native hashing 0 mysql_native_password

Pre-4.1 (“old”) hashing 1 mysql_old_password

SHA-256 hashing 2 sha256_password

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated; expect support for them to be removed in a future
MySQL release. Consequently, old_passwords=1, which causes PASSWORD()
to generate pre-4.1 password hashes, is also deprecated. For account upgrade
instructions, see Section 6.4.1.3, “Migrating Away from Pre-4.1 Password
Hashing and the mysql_old_password Plugin”.

If old_passwords=1, PASSWORD(str) returns the same value as OLD_PASSWORD(str). The latter
function is not affected by the value of old_passwords.

If you set old_passwords=2, follow the instructions for using the sha256_password plugin at
Section 6.4.1.4, “SHA-256 Pluggable Authentication”.

The server sets the global old_passwords value during startup to be consistent with the
password hashing method required by the default authentication plugin. The default plugin is
mysql_native_password unless the --default-authentication-plugin option is set
otherwise.

When a client successfully connects to the server, the server sets the session old_passwords
value appropriately for the account authentication method. For example, if the account uses the
sha256_password authentication plugin, the server sets old_passwords=2.

For additional information about authentication plugins and hashing formats, see Section 6.2.11,
“Pluggable Authentication”, and Section 6.1.2.4, “Password Hashing in MySQL”.

• open_files_limit

Command-Line Format --open-files-limit=#

System Variable open_files_limit

Scope Global

Dynamic No

Type Integer

Default Value 5000, with possible adjustment
661

Server System Variables

Minimum Value 0

Maximum Value platform dependent

The number of file descriptors available to mysqld from the operating system:

• At startup, mysqld reserves descriptors with setrlimit(), using the value requested at by
setting this variable directly or by using the --open-files-limit option to mysqld_safe. If
mysqld produces the error Too many open files, try increasing the open_files_limit value.
Internally, the maximum value for this variable is the maximum unsigned integer value, but the actual
maximum is platform dependent.

• At runtime, the value of open_files_limit indicates the number of file descriptors actually
permitted to mysqld by the operating system, which might differ from the value requested at startup. If
the number of file descriptors requested during startup cannot be allocated, mysqld writes a warning
to the error log.

The effective open_files_limit value is based on the value specified at system startup (if any) and
the values of max_connections and table_open_cache, using these formulas:

• 10 + max_connections + (table_open_cache * 2)

• max_connections * 5

• The operating system limit if that limit is positive but not Infinity.

• If the operating system limit is Infinity: open_files_limit value if specified at startup, 5000 if not.

The server attempts to obtain the number of file descriptors using the maximum of those values. If that
many descriptors cannot be obtained, the server attempts to obtain as many as the system permits.

The effective value is 0 on systems where MySQL cannot change the number of open files.

On Unix, the value cannot be set greater than the value displayed by the ulimit -n command.
On Linux systems using systemd, the value cannot be set greater than LimitNOFile (this
is DefaultLimitNOFILE, if LimitNOFile is not set); otherwise, on Linux, the value of
open_files_limit cannot exceed ulimit -n.

• optimizer_prune_level

Command-Line Format --optimizer-prune-level=#

System Variable optimizer_prune_level

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 1

Controls the heuristics applied during query optimization to prune less-promising partial plans from the
optimizer search space. A value of 0 disables heuristics so that the optimizer performs an exhaustive
search. A value of 1 causes the optimizer to prune plans based on the number of rows retrieved by
intermediate plans.

662

Server System Variables

• optimizer_search_depth

Command-Line Format --optimizer-search-depth=#

System Variable optimizer_search_depth

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 62

Minimum Value 0

Maximum Value 62

The maximum depth of search performed by the query optimizer. Values larger than the number of
relations in a query result in better query plans, but take longer to generate an execution plan for a
query. Values smaller than the number of relations in a query return an execution plan quicker, but the
resulting plan may be far from being optimal. If set to 0, the system automatically picks a reasonable
value.

• optimizer_switch

Command-Line Format --optimizer-switch=value

System Variable optimizer_switch

Scope Global, Session

Dynamic Yes

Type Set

Valid Values batched_key_access={on|off}

block_nested_loop={on|off}

engine_condition_pushdown={on|off}

firstmatch={on|off}

index_condition_pushdown={on|off}

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

index_merge_union={on|off}

loosescan={on|off}

materialization={on|off}

mrr={on|off}

mrr_cost_based={on|off}

semijoin={on|off}

663

Server System Variables

subquery_materialization_cost_based={on|
off}

use_index_extensions={on|off}

The optimizer_switch system variable enables control over optimizer behavior. The value of this
variable is a set of flags, each of which has a value of on or off to indicate whether the corresponding
optimizer behavior is enabled or disabled. This variable has global and session values and can be
changed at runtime. The global default can be set at server startup.

To see the current set of optimizer flags, select the variable value:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,
 index_merge_intersection=on,
 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on

For more information about the syntax of this variable and the optimizer behaviors that it controls, see
Section 8.9.2, “Switchable Optimizations”.

• optimizer_trace

Command-Line Format --optimizer-trace=value

System Variable optimizer_trace

Scope Global, Session

Dynamic Yes

Type String

This variable controls optimizer tracing. For details, see MySQL Internals: Tracing the Optimizer.

• optimizer_trace_features

Command-Line Format --optimizer-trace-features=value

System Variable optimizer_trace_features

Scope Global, Session

Dynamic Yes

Type String

This variable enables or disables selected optimizer tracing features. For details, see MySQL Internals:
Tracing the Optimizer.

• optimizer_trace_limit

Command-Line Format --optimizer-trace-limit=#

664

https://dev.mysql.com/doc/internals/en/optimizer-tracing.html
https://dev.mysql.com/doc/internals/en/optimizer-tracing.html
https://dev.mysql.com/doc/internals/en/optimizer-tracing.html

Server System Variables

System Variable optimizer_trace_limit

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 2147483647

The maximum number of optimizer traces to display. For details, see MySQL Internals: Tracing the
Optimizer.

• optimizer_trace_max_mem_size

Command-Line Format --optimizer-trace-max-mem-size=#

System Variable optimizer_trace_max_mem_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 16384

Minimum Value 0

Maximum Value 4294967295

Unit bytes

The maximum cumulative size of stored optimizer traces. For details, see MySQL Internals: Tracing the
Optimizer.

• optimizer_trace_offset

Command-Line Format --optimizer-trace-offset=#

System Variable optimizer_trace_offset

Scope Global, Session

Dynamic Yes

Type Integer

Default Value -1

Minimum Value -2147483647

Maximum Value 2147483647

The offset of optimizer traces to display. For details, see MySQL Internals: Tracing the Optimizer.

• performance_schema_xxx

Performance Schema system variables are listed in Section 22.15, “Performance Schema System
Variables”. These variables may be used to configure Performance Schema operation.

• pid_file

Command-Line Format --pid-file=file_name

665

https://dev.mysql.com/doc/internals/en/optimizer-tracing.html
https://dev.mysql.com/doc/internals/en/optimizer-tracing.html
https://dev.mysql.com/doc/internals/en/optimizer-tracing.html
https://dev.mysql.com/doc/internals/en/optimizer-tracing.html
https://dev.mysql.com/doc/internals/en/optimizer-tracing.html

Server System Variables

System Variable pid_file

Scope Global

Dynamic No

Type File name

The path name of the file in which the server writes its process ID. The server creates the file in the
data directory unless an absolute path name is given to specify a different directory. If you specify this
variable, you must specify a value. If you do not specify this variable, MySQL uses a default value of
host_name.pid, where host_name is the name of the host machine.

The process ID file is used by other programs such as mysqld_safe to determine the server's process
ID. On Windows, this variable also affects the default error log file name. See Section 5.4.2, “The Error
Log”.

• plugin_dir

Command-Line Format --plugin-dir=dir_name

System Variable plugin_dir

Scope Global

Dynamic No

Type Directory name

Default Value BASEDIR/lib/plugin

The path name of the plugin directory.

If the plugin directory is writable by the server, it may be possible for a user to write executable code
to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making
plugin_dir read only to the server or by setting secure_file_priv to a directory where SELECT
writes can be made safely.

• port

Command-Line Format --port=port_num

System Variable port

Scope Global

Dynamic No

Type Integer

Default Value 3306

Minimum Value 0

Maximum Value 65535

The number of the port on which the server listens for TCP/IP connections. This variable can be set with
the --port option.

• preload_buffer_size

Command-Line Format --preload-buffer-size=#

System Variable preload_buffer_size666

Server System Variables

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 32768

Minimum Value 1024

Maximum Value 1073741824

Unit bytes

The size of the buffer that is allocated when preloading indexes.

• profiling

If set to 0 or OFF (the default), statement profiling is disabled. If set to 1 or ON, statement profiling
is enabled and the SHOW PROFILE and SHOW PROFILES statements provide access to profiling
information. See Section 13.7.5.32, “SHOW PROFILES Statement”.

This variable is deprecated; expect it to be removed in a future MySQL release.

• profiling_history_size

The number of statements for which to maintain profiling information if profiling is enabled. The
default value is 15. The maximum value is 100. Setting the value to 0 effectively disables profiling. See
Section 13.7.5.32, “SHOW PROFILES Statement”.

This variable is deprecated; expect it to be removed in a future MySQL release.

• protocol_version

System Variable protocol_version

Scope Global

Dynamic No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 4294967295

The version of the client/server protocol used by the MySQL server.

• proxy_user

System Variable proxy_user

Scope Session

Dynamic No

Type String

If the current client is a proxy for another user, this variable is the proxy user account name. Otherwise,
this variable is NULL. See Section 6.2.12, “Proxy Users”.

667

Server System Variables

• pseudo_slave_mode

System Variable pseudo_slave_mode

Scope Session

Dynamic Yes

Type Boolean

This variable is for internal server use.

• pseudo_thread_id

System Variable pseudo_thread_id

Scope Session

Dynamic Yes

Type Integer

Default Value 2147483647

Minimum Value 0

Maximum Value 2147483647

This variable is for internal server use.

Warning

Changing the session value of the pseudo_thread_id system variable
changes the value returned by the CONNECTION_ID() function.

• query_alloc_block_size

Command-Line Format --query-alloc-block-size=#

System Variable query_alloc_block_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 8192

Minimum Value 1024

Maximum Value (64-bit platforms) 18446744073709550592

Maximum Value (32-bit platforms) 4294966272

Unit bytes

Block Size 1024

The allocation size in bytes of memory blocks that are allocated for objects created during statement
parsing and execution. If you have problems with memory fragmentation, it might help to increase this
parameter.

• query_cache_limit

Command-Line Format --query-cache-limit=#
668

Server System Variables

System Variable query_cache_limit

Scope Global

Dynamic Yes

Type Integer

Default Value 1048576

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

Do not cache results that are larger than this number of bytes. The default value is 1MB.

• query_cache_min_res_unit

Command-Line Format --query-cache-min-res-unit=#

System Variable query_cache_min_res_unit

Scope Global

Dynamic Yes

Type Integer

Default Value 4096

Minimum Value 512

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

The minimum size (in bytes) for blocks allocated by the query cache. The default value is 4096 (4KB).
Tuning information for this variable is given in Section 8.10.3.3, “Query Cache Configuration”.

• query_cache_size

Command-Line Format --query-cache-size=#

System Variable query_cache_size

Scope Global

Dynamic Yes

Type Integer

Default Value 1048576

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

669

Server System Variables

Unit bytes

The amount of memory allocated for caching query results. By default, the query cache is disabled. This
is achieved using a default value of 1M, with a default for query_cache_type of 0.

The permissible values are multiples of 1024; other values are rounded down to the nearest multiple.
For nonzero values of query_cache_size, that many bytes of memory are allocated even if
query_cache_type=0. See Section 8.10.3.3, “Query Cache Configuration”, for more information.

The query cache needs a minimum size of about 40KB to allocate its structures. (The exact size
depends on system architecture.) If you set the value of query_cache_size too small, a warning
occurs, as described in Section 8.10.3.3, “Query Cache Configuration”.

• query_cache_type

Command-Line Format --query-cache-type=#

System Variable query_cache_type

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value 0

Valid Values 0

1

2

Set the query cache type. Setting the GLOBAL value sets the type for all clients that connect thereafter.
Individual clients can set the SESSION value to affect their own use of the query cache. Possible values
are shown in the following table.

Option Description

0 or OFF Do not cache results in or retrieve results from the
query cache. Note that this does not deallocate
the query cache buffer. To do that, you should set
query_cache_size to 0.

1 or ON Cache all cacheable query results except for those
that begin with SELECT SQL_NO_CACHE.

2 or DEMAND Cache results only for cacheable queries that begin
with SELECT SQL_CACHE.

This variable defaults to OFF.

If the server is started with query_cache_type set to 0, it does not acquire the query cache mutex at
all, which means that the query cache cannot be enabled at runtime and there is reduced overhead in
query execution.

• query_cache_wlock_invalidate

Command-Line Format --query-cache-wlock-invalidate[={OFF|
ON}]670

Server System Variables

System Variable query_cache_wlock_invalidate

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

Normally, when one client acquires a WRITE lock on a MyISAM table, other clients are not blocked from
issuing statements that read from the table if the query results are present in the query cache. Setting
this variable to 1 causes acquisition of a WRITE lock for a table to invalidate any queries in the query
cache that refer to the table. This forces other clients that attempt to access the table to wait while the
lock is in effect.

• query_prealloc_size

Command-Line Format --query-prealloc-size=#

System Variable query_prealloc_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 8192

Minimum Value 8192

Maximum Value (64-bit platforms) 18446744073709550592

Maximum Value (32-bit platforms) 4294966272

Unit bytes

Block Size 1024

The size in bytes of the persistent buffer used for statement parsing and execution. This buffer is not
freed between statements. If you are running complex queries, a larger query_prealloc_size value
might be helpful in improving performance, because it can reduce the need for the server to perform
memory allocation during query execution operations. You should be aware that doing this does not
necessarily eliminate allocation completely; the server may still allocate memory in some situations, such
as for operations relating to transactions, or to stored programs.

• rand_seed1

System Variable rand_seed1

Scope Session

Dynamic Yes

Type Integer

Default Value N/A

Minimum Value 0

671

Server System Variables

Maximum Value 4294967295

The rand_seed1 and rand_seed2 variables exist as session variables only, and can be set but not
read. The variables—but not their values—are shown in the output of SHOW VARIABLES.

The purpose of these variables is to support replication of the RAND() function. For statements that
invoke RAND(), the source passes two values to the replica, where they are used to seed the random
number generator. The replica uses these values to set the session variables rand_seed1 and
rand_seed2 so that RAND() on the replica generates the same value as on the source.

• rand_seed2

See the description for rand_seed1.

• range_alloc_block_size

Command-Line Format --range-alloc-block-size=#

System Variable range_alloc_block_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 4096

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709550592

Maximum Value (32-bit platforms) 4294966272

Unit bytes

Block Size 1024

The size in bytes of blocks that are allocated when doing range optimization.

• read_buffer_size

Command-Line Format --read-buffer-size=#

System Variable read_buffer_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 131072

Minimum Value 8192

Maximum Value 2147479552

Unit bytes

Block Size 4096

Each thread that does a sequential scan for a MyISAM table allocates a buffer of this size (in bytes)
for each table it scans. If you do many sequential scans, you might want to increase this value, which

672

Server System Variables

defaults to 131072. The value of this variable should be a multiple of 4KB. If it is set to a value that is not
a multiple of 4KB, its value is rounded down to the nearest multiple of 4KB.

This option is also used in the following context for all storage engines:

• For caching the indexes in a temporary file (not a temporary table), when sorting rows for ORDER BY.

• For bulk insert into partitions.

• For caching results of nested queries.

read_buffer_size is also used in one other storage engine-specific way: to determine the memory
block size for MEMORY tables.

For more information about memory use during different operations, see Section 8.12.4.1, “How MySQL
Uses Memory”.

• read_only

Command-Line Format --read-only[={OFF|ON}]

System Variable read_only

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

If the read_only system variable is enabled, the server permits no client updates except from users
who have the SUPER privilege. This variable is disabled by default.

Even with read_only enabled, the server permits these operations:

• Updates performed by replication threads, if the server is a replica. In replication setups, it can be
useful to enable read_only on replica servers to ensure that replicas accept updates only from the
source server and not from clients.

• Use of ANALYZE TABLE or OPTIMIZE TABLE statements. The purpose of read-only mode is to
prevent changes to table structure or contents. Analysis and optimization do not qualify as such

673

Server System Variables

changes. This means, for example, that consistency checks on read-only replicas can be performed
with mysqlcheck --all-databases --analyze.

• Use of FLUSH STATUS statements, which are always written to the binary log.

• Operations on TEMPORARY tables.

• Inserts into the log tables (mysql.general_log and mysql.slow_log); see Section 5.4.1,
“Selecting General Query Log and Slow Query Log Output Destinations”.

Changes to read_only on a replication source server are not replicated to replica servers. The value
can be set on a replica independent of the setting on the source.

The following conditions apply to attempts to enable read_only:

• The attempt fails and an error occurs if you have any explicit locks (acquired with LOCK TABLES) or
have a pending transaction.

• The attempt blocks while other clients have any ongoing statement, active LOCK TABLES WRITE,
or ongoing commit, until the locks are released and the statements and transactions end. While
the attempt to enable read_only is pending, requests by other clients for table locks or to begin
transactions also block until read_only has been set.

• The attempt blocks if there are active transactions that hold metadata locks, until those transactions
end.

• read_only can be enabled while you hold a global read lock (acquired with FLUSH TABLES WITH
READ LOCK) because that does not involve table locks.

• read_rnd_buffer_size

Command-Line Format --read-rnd-buffer-size=#

System Variable read_rnd_buffer_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 262144

Minimum Value 1

Maximum Value 2147483647

Unit bytes

This variable is used for reads from MyISAM tables, and, for any storage engine, for Multi-Range Read
optimization.

When reading rows from a MyISAM table in sorted order following a key-sorting operation, the rows are
read through this buffer to avoid disk seeks. See Section 8.2.1.13, “ORDER BY Optimization”. Setting
the variable to a large value can improve ORDER BY performance by a lot. However, this is a buffer
allocated for each client, so you should not set the global variable to a large value. Instead, change the
session variable only from within those clients that need to run large queries.

For more information about memory use during different operations, see Section 8.12.4.1, “How MySQL
Uses Memory”. For information about Multi-Range Read optimization, see Section 8.2.1.10, “Multi-
Range Read Optimization”.

674

Server System Variables

• secure_auth

Command-Line Format --secure-auth[={OFF|ON}]

System Variable secure_auth

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

If this variable is enabled, the server blocks connections by clients that attempt to use accounts that
have passwords stored in the old (pre-4.1) format. Enable this variable to prevent all use of passwords
employing the old format (and hence insecure communication over the network). This variable is enabled
by default.

Server startup fails with an error if this variable is enabled and the privilege tables are in pre-4.1 format.
See Section B.3.2.4, “Client does not support authentication protocol”.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated; expect support for them to be removed in a future
MySQL release. Consequently, disabling secure authentication by disabling
secure_auth is also deprecated.

• secure_file_priv

Command-Line Format --secure-file-priv=dir_name

System Variable secure_file_priv

Scope Global

Dynamic No

Type String

Default Value (≥ 5.6.34) platform specific

Default Value (≤ 5.6.33) empty string

Valid Values (≥ 5.6.34) empty string

dirname

NULL

Valid Values (≤ 5.6.33) empty string

dirname

This variable is used to limit the effect of data import and export operations, such as those performed by
the LOAD DATA and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function. These
operations are permitted only to users who have the FILE privilege.

secure_file_priv may be set as follows:

• If empty, the variable has no effect. This is not a secure setting.
675

Server System Variables

• If set to the name of a directory, the server limits import and export operations to work only with files in
that directory. The directory must exist; the server does not create it.

• If set to NULL, the server disables import and export operations. This value is permitted as of MySQL
5.6.34.

Before MySQL 5.6.34, this variable is empty by default. As of 5.6.34, the default value is platform
specific and depends on the value of the INSTALL_LAYOUT CMake option, as shown in the following
table. To specify the default secure_file_priv value explicitly if you are building from source, use the
INSTALL_SECURE_FILE_PRIVDIR CMake option.

INSTALL_LAYOUT Value Default secure_file_priv Value

STANDALONE, WIN NULL

DEB, RPM, SLES, SVR4 /var/lib/mysql-files

Otherwise mysql-files under the
CMAKE_INSTALL_PREFIX value

To set the default secure_file_priv value for the libmysqld embedded server, use the
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR CMake option. The default value for this option is NULL.

As of MySQL 5.6.34, the server checks the value of secure_file_priv at startup and writes a
warning to the error log if the value is insecure. A non-NULL value is considered insecure if it is empty,
or the value is the data directory or a subdirectory of it, or a directory that is accessible by all users. If
secure_file_priv is set to a nonexistent path, the server writes an error message to the error log
and exits.

• sha256_password_private_key_path

Command-Line Format --sha256-password-private-key-
path=file_name

System Variable sha256_password_private_key_path

Scope Global

Dynamic No

Type File name

Default Value private_key.pem

This variable is available if MySQL was compiled using OpenSSL (see Section 6.3.4, “SSL
Library-Dependent Capabilities”). Its value is the path name of the RSA private key file for the
sha256_password authentication plugin. If the file is named as a relative path, it is interpreted relative
to the server data directory. The file must be in PEM format.

Important

Because this file stores a private key, its access mode should be restricted so
that only the MySQL server can read it.

For information about sha256_password, see Section 6.4.1.4, “SHA-256 Pluggable Authentication”.

676

Server System Variables

• sha256_password_public_key_path

Command-Line Format --sha256-password-public-key-
path=file_name

System Variable sha256_password_public_key_path

Scope Global

Dynamic No

Type File name

Default Value public_key.pem

This variable is available if MySQL was compiled using OpenSSL (see Section 6.3.4, “SSL
Library-Dependent Capabilities”). Its value is the path name of the RSA public key file for the
sha256_password authentication plugin. If the file is named as a relative path, it is interpreted relative
to the server data directory. The file must be in PEM format. Because this file stores a public key, copies
can be freely distributed to client users. (Clients that explicitly specify a public key when connecting to
the server using RSA password encryption must use the same public key as that used by the server.)

For information about sha256_password, including information about how clients specify the RSA
public key, see Section 6.4.1.4, “SHA-256 Pluggable Authentication”.

• shared_memory

Command-Line Format --shared-memory[={OFF|ON}]

System Variable shared_memory

Scope Global

Dynamic No

Platform Specific Windows

Type Boolean

Default Value OFF

(Windows only.) Whether the server permits shared-memory connections.

• shared_memory_base_name

Command-Line Format --shared-memory-base-name=name

System Variable shared_memory_base_name

Scope Global

Dynamic No

Platform Specific Windows

Type String

Default Value MYSQL

(Windows only.) The name of shared memory to use for shared-memory connections. This is useful
when running multiple MySQL instances on a single physical machine. The default name is MYSQL. The
name is case-sensitive.

This variable applies only if the server is started with the shared_memory system variable enabled to
support shared-memory connections. 677

Server System Variables

• show_old_temporals

Command-Line Format --show-old-temporals[={OFF|ON}]

Introduced 5.6.24

Deprecated 5.6.24

System Variable show_old_temporals

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

Whether SHOW CREATE TABLE output includes comments to flag temporal columns found to be in
pre-5.6.4 format (TIME, DATETIME, and TIMESTAMP columns without support for fractional seconds
precision). This variable is disabled by default. If enabled, SHOW CREATE TABLE output looks like this:

CREATE TABLE `mytbl` (
 `ts` timestamp /* 5.5 binary format */ NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `dt` datetime /* 5.5 binary format */ DEFAULT NULL,
 `t` time /* 5.5 binary format */ DEFAULT NULL
) DEFAULT CHARSET=latin1

Output for the COLUMN_TYPE column of the Information Schema COLUMNS table is affected similarly.

This variable was added in MySQL 5.6.24. It is deprecated; expect it to be removed in a future MySQL
release.

• skip_external_locking

Command-Line Format --skip-external-locking[={OFF|ON}]

System Variable skip_external_locking

Scope Global

Dynamic No

Type Boolean

Default Value ON

This is OFF if mysqld uses external locking (system locking), ON if external locking is disabled. This
affects only MyISAM table access.

This variable is set by the --external-locking or --skip-external-locking option. External
locking is disabled by default.

External locking affects only MyISAM table access. For more information, including conditions under
which it can and cannot be used, see Section 8.11.5, “External Locking”.

• skip_name_resolve

Command-Line Format --skip-name-resolve[={OFF|ON}]

System Variable skip_name_resolve

Scope Global

Dynamic No678

Server System Variables

Type Boolean

Default Value OFF

Whether to resolve host names when checking client connections. If this variable is OFF, mysqld
resolves host names when checking client connections. If it is ON, mysqld uses only IP numbers;
in this case, all Host column values in the grant tables must be IP addresses or localhost. See
Section 5.1.11.2, “DNS Lookups and the Host Cache”.

Depending on the network configuration of your system and the Host values for your accounts,
clients may need to connect using an explicit --host option, such as --host=localhost, --
host=127.0.0.1, or --host=::1.

An attempt to connect to the host 127.0.0.1 normally resolves to the localhost account. However,
this fails if the server is run with skip_name_resolve enabled. If you plan to do that, make sure an
account exists that can accept a connection. For example, to be able to connect as root using --
host=127.0.0.1 or --host=::1, create these accounts:

CREATE USER 'root'@'127.0.0.1' IDENTIFIED BY 'root-password';
CREATE USER 'root'@'::1' IDENTIFIED BY 'root-password';

• skip_networking

Command-Line Format --skip-networking[={OFF|ON}]

System Variable skip_networking

Scope Global

Dynamic No

Type Boolean

Default Value OFF

This variable controls whether the server permits TCP/IP connections. By default, it is disabled (permit
TCP connections). If enabled, the server permits only local (non-TCP/IP) connections and all interaction
with mysqld must be made using named pipes or shared memory (on Windows) or Unix socket files
(on Unix). This option is highly recommended for systems where only local clients are permitted. See
Section 5.1.11.2, “DNS Lookups and the Host Cache”.

• skip_show_database

Command-Line Format --skip-show-database

System Variable skip_show_database

Scope Global

Dynamic No

Type Boolean

Default Value OFF

This prevents people from using the SHOW DATABASES statement if they do not have the SHOW
DATABASES privilege. This can improve security if you have concerns about users being able to see
databases belonging to other users. Its effect depends on the SHOW DATABASES privilege: If the
variable value is ON, the SHOW DATABASES statement is permitted only to users who have the SHOW
DATABASES privilege, and the statement displays all database names. If the value is OFF, SHOW
DATABASES is permitted to all users, but displays the names of only those databases for which the user
has the SHOW DATABASES or other privilege.

679

Server System Variables

Caution

Because a global privilege is considered a privilege for all databases, any global
privilege enables a user to see all database names with SHOW DATABASES or by
examining the INFORMATION_SCHEMA SCHEMATA table.

• slow_launch_time

Command-Line Format --slow-launch-time=#

System Variable slow_launch_time

Scope Global

Dynamic Yes

Type Integer

Default Value 2

Minimum Value 0

Maximum Value 31536000

Unit seconds

If creating a thread takes longer than this many seconds, the server increments the
Slow_launch_threads status variable.

• slow_query_log

Command-Line Format --slow-query-log[={OFF|ON}]

System Variable slow_query_log

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether the slow query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON) to
enable the log. The destination for log output is controlled by the log_output system variable; if that
value is NONE, no log entries are written even if the log is enabled.

“Slow” is determined by the value of the long_query_time variable. See Section 5.4.5, “The Slow
Query Log”.

• slow_query_log_file

Command-Line Format --slow-query-log-file=file_name

System Variable slow_query_log_file

Scope Global

Dynamic Yes

Type File name

680

Server System Variables

Default Value host_name-slow.log

The name of the slow query log file. The default value is host_name-slow.log, but the initial value
can be changed with the --slow_query_log_file option.

• socket

Command-Line Format --socket={file_name|pipe_name}

System Variable socket

Scope Global

Dynamic No

Type String

Default Value (Windows) MySQL

Default Value (Other) /tmp/mysql.sock

On Unix platforms, this variable is the name of the socket file that is used for local client connections.
The default is /tmp/mysql.sock. (For some distribution formats, the directory might be different, such
as /var/lib/mysql for RPMs.)

On Windows, this variable is the name of the named pipe that is used for local client connections. The
default value is MySQL (not case-sensitive).

• sort_buffer_size

Command-Line Format --sort-buffer-size=#

System Variable sort_buffer_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 262144

Minimum Value 32768

Maximum Value (Windows) 4294967295

Maximum Value (Other, 64-bit platforms) 18446744073709551615

Maximum Value (Other, 32-bit platforms) 4294967295

Unit bytes

Each session that must perform a sort allocates a buffer of this size. sort_buffer_size is not
specific to any storage engine and applies in a general manner for optimization. At minimum the
sort_buffer_size value must be large enough to accommodate fifteen tuples in the sort buffer. Also,
increasing the value of max_sort_length may require increasing the value of sort_buffer_size.
For more information, see Section 8.2.1.13, “ORDER BY Optimization”

If you see many Sort_merge_passes per second in SHOW GLOBAL STATUS output, you can consider
increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations that cannot
be improved with query optimization or improved indexing.

The optimizer tries to work out how much space is needed but can allocate more, up to the limit. Setting
it larger than required globally slows down most queries that sort. It is best to increase it as a session

681

Server System Variables

setting, and only for the sessions that need a larger size. On Linux, there are thresholds of 256KB and
2MB where larger values may significantly slow down memory allocation, so you should consider staying
below one of those values. Experiment to find the best value for your workload. See Section B.3.3.5,
“Where MySQL Stores Temporary Files”.

The maximum permissible setting for sort_buffer_size is 4GB−1. Larger values are permitted for
64-bit platforms (except 64-bit Windows, for which large values are truncated to 4GB−1 with a warning).

• sql_auto_is_null

System Variable sql_auto_is_null

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

If this variable is enabled, then after a statement that successfully inserts an automatically generated
AUTO_INCREMENT value, you can find that value by issuing a statement of the following form:

SELECT * FROM tbl_name WHERE auto_col IS NULL

If the statement returns a row, the value returned is the same as if you invoked the LAST_INSERT_ID()
function. For details, including the return value after a multiple-row insert, see Section 12.16,
“Information Functions”. If no AUTO_INCREMENT value was successfully inserted, the SELECT statement
returns no row.

The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison is used by
some ODBC programs, such as Access. See Obtaining Auto-Increment Values. This behavior can be
disabled by setting sql_auto_is_null to OFF.

The default value of sql_auto_is_null is OFF.

• sql_big_selects

System Variable sql_big_selects

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

If set to OFF, MySQL aborts SELECT statements that are likely to take a very long time to execute (that
is, statements for which the optimizer estimates that the number of examined rows exceeds the value of
max_join_size). This is useful when an inadvisable WHERE statement has been issued. The default
value for a new connection is ON, which permits all SELECT statements.

If you set the max_join_size system variable to a value other than DEFAULT, sql_big_selects is
set to OFF.

• sql_buffer_result

System Variable sql_buffer_result

Scope Global, Session
682

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html

Server System Variables

Dynamic Yes

Type Boolean

Default Value OFF

If enabled, sql_buffer_result forces results from SELECT statements to be put into temporary
tables. This helps MySQL free the table locks early and can be beneficial in cases where it takes a long
time to send results to the client. The default value is OFF.

• sql_log_off

System Variable sql_log_off

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

Valid Values OFF (enable logging)

ON (disable logging)

This variable controls whether logging to the general query log is disabled for the current session
(assuming that the general query log itself is enabled). The default value is OFF (that is, enable logging).
To disable or enable general query logging for the current session, set the session sql_log_off
variable to ON or OFF.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

• sql_mode

Command-Line Format --sql-mode=name

System Variable sql_mode

Scope Global, Session

Dynamic Yes

Type Set

Default Value NO_ENGINE_SUBSTITUTION

Valid Values ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

683

Server System Variables

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

STRICT_TRANS_TABLES

The current server SQL mode, which can be set dynamically. The default is
NO_ENGINE_SUBSTITUTION. For details, see Section 5.1.10, “Server SQL Modes”.

Note

MySQL installation programs may configure the SQL mode during the installation
process. For example, mysql_install_db creates a default option file named
my.cnf in the base installation directory. This file contains a line that sets
the SQL mode; see Section 4.4.3, “mysql_install_db — Initialize MySQL Data
Directory”.

If the SQL mode differs from the default or from what you expect, check for a
setting in an option file that the server reads at startup.

• sql_notes

System Variable sql_notes

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

If enabled (the default), diagnostics of Note level increment warning_count and the server records
them. If disabled, Note diagnostics do not increment warning_count and the server does not record
them. mysqldump includes output to disable this variable so that reloading the dump file does not
produce warnings for events that do not affect the integrity of the reload operation.

684

Server System Variables

• sql_quote_show_create

System Variable sql_quote_show_create

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

If enabled (the default), the server quotes identifiers for SHOW CREATE TABLE and SHOW CREATE
DATABASE statements. If disabled, quoting is disabled. This option is enabled by default so that
replication works for identifiers that require quoting. See Section 13.7.5.12, “SHOW CREATE TABLE
Statement”, and Section 13.7.5.8, “SHOW CREATE DATABASE Statement”.

• sql_safe_updates

System Variable sql_safe_updates

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

If this variable is enabled, UPDATE and DELETE statements that do not use a key in the WHERE clause
or a LIMIT clause produce an error. This makes it possible to catch UPDATE and DELETE statements
where keys are not used properly and that would probably change or delete a large number of rows. The
default value is OFF.

For the mysql client, sql_safe_updates can be enabled by using the --safe-updates option. For
more information, see Using Safe-Updates Mode (--safe-updates).

• sql_select_limit

System Variable sql_select_limit

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 18446744073709551615

Minimum Value 0

Maximum Value 18446744073709551615

The maximum number of rows to return from SELECT statements. For more information, see Using Safe-
Updates Mode (--safe-updates).

The default value for a new connection is the maximum number of rows that the server permits per table.
Typical default values are (232)−1 or (264)−1. If you have changed the limit, the default value can be
restored by assigning a value of DEFAULT.

If a SELECT has a LIMIT clause, the LIMIT takes precedence over the value of sql_select_limit.

685

Server System Variables

• sql_warnings

System Variable sql_warnings

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

This variable controls whether single-row INSERT statements produce an information string if warnings
occur. The default is OFF. Set the value to ON to produce an information string.

• ssl_ca

Command-Line Format --ssl-ca=file_name

System Variable ssl_ca

Scope Global

Dynamic No

Type File name

Default Value NULL

The path name of the Certificate Authority (CA) certificate file in PEM format. The file contains a list of
trusted SSL Certificate Authorities. Setting this variable implies enabling --ssl.

• ssl_capath

Command-Line Format --ssl-capath=dir_name

System Variable ssl_capath

Scope Global

Dynamic No

Type Directory name

Default Value NULL

The path name of the directory that contains trusted SSL Certificate Authority (CA) certificate files
in PEM format. Support for this capability depends on the SSL library used to compile MySQL; see
Section 6.3.4, “SSL Library-Dependent Capabilities”. Setting this variable implies enabling --ssl.

• ssl_cert

Command-Line Format --ssl-cert=file_name

System Variable ssl_cert

Scope Global

Dynamic No

Type File name

Default Value NULL

The path name of the server SSL public key certificate file in PEM format. Setting this variable implies
enabling --ssl.

686

Server System Variables

• ssl_cipher

Command-Line Format --ssl-cipher=name

System Variable ssl_cipher

Scope Global

Dynamic No

Type String

Default Value NULL

The list of permissible ciphers for connection encryption. If no cipher in the list is supported, encrypted
connections do not work. Setting this variable implies enabling --ssl.

For greatest portability, the cipher list should be a list of one or more cipher names, separated by colons.
This format is understood both by OpenSSL and yaSSL. The following example shows two cipher names
separated by a colon:

[mysqld]
ssl_cipher="DHE-RSA-AES256-SHA:AES128-SHA"

OpenSSL supports a more flexible syntax for specifying ciphers, as described in the OpenSSL
documentation at https://www.openssl.org/docs/manmaster/man1/ciphers.html. yaSSL does not, so
attempts to use that extended syntax fail for a MySQL distribution compiled using yaSSL.

For information about which encryption ciphers MySQL supports, see Section 6.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

• ssl_crl

Command-Line Format --ssl-crl=file_name

System Variable ssl_crl

Scope Global

Dynamic No

Type File name

Default Value NULL

The path name of the file containing certificate revocation lists in PEM format. Support for revocation-
list capability depends on the SSL library used to compile MySQL. See Section 6.3.4, “SSL Library-
Dependent Capabilities”. Setting this variable implies enabling --ssl.

• ssl_crlpath

Command-Line Format --ssl-crlpath=dir_name

System Variable ssl_crlpath

Scope Global

Dynamic No

Type Directory name

687

https://www.openssl.org/docs/manmaster/man1/ciphers.html

Server System Variables

Default Value NULL

The path of the directory that contains certificate revocation-list files in PEM format. Support for
revocation-list capability depends on the SSL library used to compile MySQL. See Section 6.3.4, “SSL
Library-Dependent Capabilities”. Setting this variable implies enabling --ssl.

• ssl_key

Command-Line Format --ssl-key=file_name

System Variable ssl_key

Scope Global

Dynamic No

Type File name

Default Value NULL

The path name of the server SSL private key file in PEM format. For better security, use a certificate with
an RSA key size of at least 2048 bits. Setting this variable implies enabling --ssl.

If the key file is protected by a passphrase, the server prompts the user for the passphrase. The
password must be given interactively; it cannot be stored in a file. If the passphrase is incorrect, the
program continues as if it could not read the key.

• storage_engine

System Variable storage_engine

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value InnoDB

The default storage engine (table type). See Chapter 15, Alternative Storage Engines.

This variable is deprecated. Use default_storage_engine instead.

• stored_program_cache

Command-Line Format --stored-program-cache=#

System Variable stored_program_cache

Scope Global

Dynamic Yes

Type Integer

Default Value 256

Minimum Value 256

688

Server System Variables

Maximum Value 524288

Sets a soft upper limit for the number of cached stored routines per connection. The value of this
variable is specified in terms of the number of stored routines held in each of the two caches maintained
by the MySQL Server for, respectively, stored procedures and stored functions.

Whenever a stored routine is executed this cache size is checked before the first or top-level statement
in the routine is parsed; if the number of routines of the same type (stored procedures or stored functions
according to which is being executed) exceeds the limit specified by this variable, the corresponding
cache is flushed and memory previously allocated for cached objects is freed. This allows the cache to
be flushed safely, even when there are dependencies between stored routines.

• sync_frm

Command-Line Format --sync-frm[={OFF|ON}]

System Variable sync_frm

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

If this variable is set to 1, when any nontemporary table is created its .frm file is synchronized to disk
(using fdatasync()). This is slower but safer in case of a crash. The default is 1.

• system_time_zone

System Variable system_time_zone

Scope Global

Dynamic No

Type String

The server system time zone. When the server begins executing, it inherits a time zone setting from the
machine defaults, possibly modified by the environment of the account used for running the server or the
startup script. The value is used to set system_time_zone. To explicitly specify the system time zone,
set the TZ environment variable or use the --timezone option of the mysqld_safe script.

The system_time_zone variable differs from the time_zone variable. Although they might have
the same value, the latter variable is used to initialize the time zone for each client that connects. See
Section 5.1.13, “MySQL Server Time Zone Support”.

• table_definition_cache

Command-Line Format --table-definition-cache=#

System Variable table_definition_cache

Scope Global

Dynamic Yes

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value) 689

Server System Variables

Minimum Value 400

Maximum Value 524288

The number of table definitions (from .frm files) that can be stored in the table definition cache. If you
use a large number of tables, you can create a large table definition cache to speed up opening of
tables. The table definition cache takes less space and does not use file descriptors, unlike the normal
table cache. The minimum value is 400. The default value is based on the following formula, capped to a
limit of 2000:

400 + (table_open_cache / 2)

For InnoDB, the table_definition_cache setting acts as a soft limit for the number of table
instances in the InnoDB data dictionary cache and the number file-per-table tablespaces that can be
open at one time.

If the number of table instances in the InnoDB data dictionary cache exceeds the
table_definition_cache limit, an LRU mechanism begins marking table instances for eviction
and eventually removes them from the InnoDB data dictionary cache. The number of open tables with
cached metadata can be higher than the table_definition_cache limit due to table instances with
foreign key relationships, which are not placed on the LRU list.

The number of file-per-table tablespaces that can be open at one time is limited by both the
table_definition_cache and innodb_open_files settings. If both variables are set, the
highest setting is used. If neither variable is set, the table_definition_cache setting, which
has a higher default value, is used. If the number of open tablespaces exceeds the limit defined by
table_definition_cache or innodb_open_files, an LRU mechanism searches the LRU list for
tablespace files that are fully flushed and not currently being extended. This process is performed each
time a new tablespace is opened. Only inactive tablespaces are closed.

• table_open_cache

Command-Line Format --table-open-cache=#

System Variable table_open_cache

Scope Global

Dynamic Yes

Type Integer

Default Value 2000

Minimum Value 1

Maximum Value 524288

The number of open tables for all threads. Increasing this value increases the number of file descriptors
that mysqld requires. The effective value of this variable is the greater of the effective value of
open_files_limit - 10 - the effective value of max_connections / 2, and 400; that is

MAX(
 (open_files_limit - 10 - max_connections) / 2,
 400
)

You can check whether you need to increase the table cache by checking the Opened_tables
status variable. If the value of Opened_tables is large and you do not use FLUSH TABLES often
(which just forces all tables to be closed and reopened), then you should increase the value of the

690

Server System Variables

table_open_cache variable. For more information about the table cache, see Section 8.4.3.1, “How
MySQL Opens and Closes Tables”.

• table_open_cache_instances

Command-Line Format --table-open-cache-instances=#

System Variable table_open_cache_instances

Scope Global

Dynamic No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 64

The number of open tables cache instances (default 1). To improve scalability by reducing contention
among sessions, the open tables cache can be partitioned into several smaller cache instances of size
table_open_cache / table_open_cache_instances . A session needs to lock only one instance
to access it for DML statements. This segments cache access among instances, permitting higher
performance for operations that use the cache when there are many sessions accessing tables. (DDL
statements still require a lock on the entire cache, but such statements are much less frequent than DML
statements.)

A value of 8 or 16 is recommended on systems that routinely use 16 or more cores.

• thread_cache_size

Command-Line Format --thread-cache-size=#

System Variable thread_cache_size

Scope Global

Dynamic Yes

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value 0

Maximum Value 16384

How many threads the server should cache for reuse. When a client disconnects, the client's threads
are put in the cache if there are fewer than thread_cache_size threads there. Requests for threads
are satisfied by reusing threads taken from the cache if possible, and only when the cache is empty is
a new thread created. This variable can be increased to improve performance if you have a lot of new
connections. Normally, this does not provide a notable performance improvement if you have a good
thread implementation. However, if your server sees hundreds of connections per second you should
normally set thread_cache_size high enough so that most new connections use cached threads. By
examining the difference between the Connections and Threads_created status variables, you can
see how efficient the thread cache is. For details, see Section 5.1.9, “Server Status Variables”.

The default value is based on the following formula, capped to a limit of 100:

8 + (max_connections / 100)

691

Server System Variables

• thread_concurrency

Command-Line Format --thread-concurrency=#

Deprecated Yes

System Variable thread_concurrency

Scope Global

Dynamic No

Type Integer

Default Value 10

Minimum Value 1

Maximum Value 512

This variable is specific to Solaris 8 and earlier systems, for which mysqld invokes the
thr_setconcurrency() function with the variable value. This function enables applications to give
the threads system a hint about the desired number of threads that should be run at the same time.
Current Solaris versions document this as having no effect.

This variable is deprecated and is removed in MySQL 5.7. You should remove this from MySQL
configuration files whenever you see it unless they are for Solaris 8 or earlier.

• thread_handling

Command-Line Format --thread-handling=name

System Variable thread_handling

Scope Global

Dynamic No

Type Enumeration

Default Value one-thread-per-connection

Valid Values no-threads

one-thread-per-connection

loaded-dynamically

The thread-handling model used by the server for connection threads. The permissible values are no-
threads (the server uses a single thread to handle one connection), one-thread-per-connection
(the server uses one thread to handle each client connection), and loaded-dynamically (set by the
thread pool plugin when it initializes). no-threads is useful for debugging under Linux; see Section 5.8,
“Debugging MySQL”.

If the thread pool plugin is enabled, the server sets the thread_handling value to loaded-
dynamically. See Section 5.5.3.2, “Thread Pool Installation”.

• thread_pool_algorithm

Command-Line Format --thread-pool-algorithm=#

System Variable thread_pool_algorithm

Scope Global
692

Server System Variables

Dynamic No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

This variable controls which algorithm the thread pool plugin uses:

• A value of 0 (the default) uses a conservative low-concurrency algorithm which is most well tested and
is known to produce very good results.

• A value of 1 increases the concurrency and uses a more aggressive algorithm which at times has
been known to perform 5–10% better on optimal thread counts, but has degrading performance as the
number of connections increases. Its use should be considered as experimental and not supported.

This variable is available only if the thread pool plugin is enabled. See Section 5.5.3, “MySQL Enterprise
Thread Pool”.

• thread_pool_high_priority_connection

Command-Line Format --thread-pool-high-priority-
connection=#

System Variable thread_pool_high_priority_connection

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

This variable affects queuing of new statements prior to execution. If the value is 0 (false, the default),
statement queuing uses both the low-priority and high-priority queues. If the value is 1 (true), queued
statements always go to the high-priority queue.

This variable is available only if the thread pool plugin is enabled. See Section 5.5.3, “MySQL Enterprise
Thread Pool”.

• thread_pool_max_unused_threads

Command-Line Format --thread-pool-max-unused-threads=#

System Variable thread_pool_max_unused_threads

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

693

Server System Variables

Maximum Value 4096

The maximum permitted number of unused threads in the thread pool. This variable makes it possible to
limit the amount of memory used by sleeping threads.

A value of 0 (the default) means no limit on the number of sleeping threads. A value of N where N is
greater than 0 means 1 consumer thread and N−1 reserve threads. In this case, if a thread is ready to
sleep but the number of sleeping threads is already at the maximum, the thread exits rather than going
to sleep.

A sleeping thread is either sleeping as a consumer thread or a reserve thread. The thread pool permits
one thread to be the consumer thread when sleeping. If a thread goes to sleep and there is no existing
consumer thread, it sleeps as a consumer thread. When a thread must be woken up, a consumer thread
is selected if there is one. A reserve thread is selected only when there is no consumer thread to wake
up.

This variable is available only if the thread pool plugin is enabled. See Section 5.5.3, “MySQL Enterprise
Thread Pool”.

• thread_pool_prio_kickup_timer

Command-Line Format --thread-pool-prio-kickup-timer=#

System Variable thread_pool_prio_kickup_timer

Scope Global

Dynamic Yes

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 4294967294

Unit milliseconds

This variable affects statements waiting for execution in the low-priority queue. The value is the number
of milliseconds before a waiting statement is moved to the high-priority queue. The default is 1000 (1
second).

This variable is available only if the thread pool plugin is enabled. See Section 5.5.3, “MySQL Enterprise
Thread Pool”.

• thread_pool_size

Command-Line Format --thread-pool-size=#

System Variable thread_pool_size

Scope Global

Dynamic No

Type Integer

Default Value 16

Minimum Value 1

694

Server System Variables

Maximum Value 64

The number of thread groups in the thread pool. This is the most important parameter controlling thread
pool performance. It affects how many statements can execute simultaneously. If a value outside the
range of permissible values is specified, the thread pool plugin does not load and the server writes a
message to the error log.

This variable is available only if the thread pool plugin is enabled. See Section 5.5.3, “MySQL Enterprise
Thread Pool”.

• thread_pool_stall_limit

Command-Line Format --thread-pool-stall-limit=#

System Variable thread_pool_stall_limit

Scope Global

Dynamic Yes

Type Integer

Default Value 6

Minimum Value 4

Maximum Value 600

Unit milliseconds * 10

This variable affects executing statements. The value is the amount of time a statement has to finish
after starting to execute before it becomes defined as stalled, at which point the thread pool permits the
thread group to begin executing another statement. The value is measured in 10 millisecond units, so
the default of 6 means 60ms. Short wait values permit threads to start more quickly. Short values are
also better for avoiding deadlock situations. Long wait values are useful for workloads that include long-
running statements, to avoid starting too many new statements while the current ones execute.

This variable is available only if the thread pool plugin is enabled. See Section 5.5.3, “MySQL Enterprise
Thread Pool”.

• thread_stack

Command-Line Format --thread-stack=#

System Variable thread_stack

Scope Global

Dynamic No

Type Integer

Default Value (64-bit platforms) 262144

Default Value (32-bit platforms) 196608

Minimum Value 131072

Maximum Value (64-bit platforms) 18446744073709550592

Maximum Value (32-bit platforms) 4294966272

Unit bytes

695

Server System Variables

Block Size 1024

The stack size for each thread. Many of the limits detected by the crash-me test are dependent on
this value. See Section 8.13.2, “The MySQL Benchmark Suite”. The default is large enough for normal
operation. If the thread stack size is too small, it limits the complexity of the SQL statements that the
server can handle, the recursion depth of stored procedures, and other memory-consuming actions.

• time_format

This variable is unused. It is deprecated; expect it to be removed in a future MySQL release.

• time_zone

System Variable time_zone

Scope Global, Session

Dynamic Yes

Type String

Default Value SYSTEM

Minimum Value -12:59

Maximum Value +13:00

The current time zone. This variable is used to initialize the time zone for each client that connects. By
default, the initial value of this is 'SYSTEM' (which means, “use the value of system_time_zone”).
The value can be specified explicitly at server startup with the --default-time-zone option. See
Section 5.1.13, “MySQL Server Time Zone Support”.

Note

If set to SYSTEM, every MySQL function call that requires a time zone calculation
makes a system library call to determine the current system time zone. This call
may be protected by a global mutex, resulting in contention.

• timed_mutexes

Command-Line Format --timed-mutexes[={OFF|ON}]

Deprecated 5.6.20

System Variable timed_mutexes

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

This variable is deprecated; it has no use. Expect it to be removed in a future MySQL release.

• timestamp

System Variable timestamp

Scope Session

Dynamic Yes696

Server System Variables

Type Numeric

Default Value UNIX_TIMESTAMP()

Minimum Value 1

Maximum Value 2147483647

Set the time for this client. This is used to get the original timestamp if you use the binary log to
restore rows. timestamp_value should be a Unix epoch timestamp (a value like that returned by
UNIX_TIMESTAMP(), not a value in 'YYYY-MM-DD hh:mm:ss' format) or DEFAULT.

Setting timestamp to a constant value causes it to retain that value until it is changed again. Setting
timestamp to DEFAULT causes its value to be the current date and time as of the time it is accessed.
The maximum value corresponds to '2038-01-19 03:14:07' UTC, the same as for the TIMESTAMP
data type.

In MySQL 5.6, timestamp is a DOUBLE rather than BIGINT because its value includes a microseconds
part.

SET timestamp affects the value returned by NOW() but not by SYSDATE(). This means that
timestamp settings in the binary log have no effect on invocations of SYSDATE(). The server can be
started with the --sysdate-is-now option to cause SYSDATE() to be a synonym for NOW(), in which
case SET timestamp affects both functions.

• tmp_table_size

Command-Line Format --tmp-table-size=#

System Variable tmp_table_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 16777216

Minimum Value 1024

Maximum Value 18446744073709551615

Unit bytes

The maximum size of internal in-memory temporary tables. This variable does not apply to user-created
MEMORY tables.

The actual limit is the smaller of tmp_table_size and max_heap_table_size. When an in-memory
temporary table exceeds the limit, MySQL automatically converts it to an on-disk MyISAM table. Increase
the value of tmp_table_size (and max_heap_table_size if necessary) if you do many advanced
GROUP BY queries and you have lots of memory.

You can compare the number of internal on-disk temporary tables created to the total number of internal
temporary tables created by comparing Created_tmp_disk_tables and Created_tmp_tables
values.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• tmpdir

Command-Line Format --tmpdir=dir_name

697

Server System Variables

System Variable tmpdir

Scope Global

Dynamic No

Type Directory name

The path of the directory to use for creating temporary files. It might be useful if your default /tmp
directory resides on a partition that is too small to hold temporary tables. This variable can be set to a list
of several paths that are used in round-robin fashion. Paths should be separated by colon characters (:)
on Unix and semicolon characters (;) on Windows.

tmpdir can be a non-permanent location, such as a directory on a memory-based file system or a
directory that is cleared when the server host restarts. If the MySQL server is acting as a replica, and
you are using a non-permanent location for tmpdir, consider setting a different temporary directory for
the replica using the slave_load_tmpdir variable. For a replication replica, the temporary files used
to replicate LOAD DATA statements are stored in this directory, so with a permanent location they can
survive machine restarts, although replication can now continue after a restart if the temporary files have
been removed.

For more information about the storage location of temporary files, see Section B.3.3.5, “Where MySQL
Stores Temporary Files”.

• transaction_alloc_block_size

Command-Line Format --transaction-alloc-block-size=#

System Variable transaction_alloc_block_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 8192

Minimum Value 1024

Maximum Value (64-bit platforms, ≤ 5.6.23) 18446744073709547520

Maximum Value (32-bit platforms, ≤ 5.6.23) 4294967295

Maximum Value (≥ 5.6.24) 131072

Unit bytes

Block Size 1024

The amount in bytes by which to increase a per-transaction memory pool which needs memory. See the
description of transaction_prealloc_size.

• transaction_prealloc_size

Command-Line Format --transaction-prealloc-size=#

System Variable transaction_prealloc_size

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 4096
698

Server System Variables

Minimum Value 1024

Maximum Value (64-bit platforms, ≤ 5.6.23) 18446744073709547520

Maximum Value (32-bit platforms, ≤ 5.6.23) 4294967295

Maximum Value (≥ 5.6.24) 131072

Unit bytes

Block Size 1024

There is a per-transaction memory pool from which various transaction-related allocations take memory.
The initial size of the pool in bytes is transaction_prealloc_size. For every allocation that
cannot be satisfied from the pool because it has insufficient memory available, the pool is increased
by transaction_alloc_block_size bytes. When the transaction ends, the pool is truncated to
transaction_prealloc_size bytes.

By making transaction_prealloc_size sufficiently large to contain all statements within a single
transaction, you can avoid many malloc() calls.

• tx_isolation

System Variable tx_isolation

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value REPEATABLE-READ

Valid Values READ-UNCOMMITTED

READ-COMMITTED

REPEATABLE-READ

SERIALIZABLE

The transaction isolation level. The default is REPEATABLE-READ.

The transaction isolation level has three scopes: global, session, and next transaction. This three-scope
implementation leads to some nonstandard isolation-level assignment semantics, as described later.

To set the global transaction isolation level at startup, use the --transaction-isolation server
option.

At runtime, the isolation level can be set directly using the SET statement to assign a value to the
tx_isolation system variable, or indirectly using the SET TRANSACTION statement. If you set
tx_isolation directly to an isolation level name that contains a space, the name should be enclosed

699

Server System Variables

within quotation marks, with the space replaced by a dash. For example, use this SET statement to set
the global value:

SET GLOBAL tx_isolation = 'READ-COMMITTED';

Setting the global tx_isolation value sets the isolation level for all subsequent sessions. Existing
sessions are unaffected.

To set the session or next-level tx_isolation value, use the SET statement. For most session system
variables, these statements are equivalent ways to set the value:

SET @@SESSION.var_name = value;
SET SESSION var_name = value;
SET var_name = value;
SET @@var_name = value;

As mentioned previously, the transaction isolation level has a next-transaction scope, in addition to the
global and session scopes. To enable the next-transaction scope to be set, SET syntax for assigning
session system variable values has nonstandard semantics for tx_isolation:

• To set the session isolation level, use any of these syntaxes:

SET @@SESSION.tx_isolation = value;
SET SESSION tx_isolation = value;
SET tx_isolation = value;

For each of those syntaxes, these semantics apply:

• Sets the isolation level for all subsequent transactions performed within the session.

• Permitted within transactions, but does not affect the current ongoing transaction.

• If executed between transactions, overrides any preceding statement that sets the next-transaction
isolation level.

• Corresponds to SET SESSION TRANSACTION ISOLATION LEVEL (with the SESSION keyword).

• To set the next-transaction isolation level, use this syntax:

SET @@tx_isolation = value;

For that syntax, these semantics apply:

• Sets the isolation level only for the next single transaction performed within the session.

• Subsequent transactions revert to the session isolation level.

• Not permitted within transactions.

• Corresponds to SET TRANSACTION ISOLATION LEVEL (without the SESSION keyword).

For more information about SET TRANSACTION and its relationship to the tx_isolation system
variable, see Section 13.3.6, “SET TRANSACTION Statement”.

• tx_read_only

System Variable tx_read_only

Scope Global, Session

700

Server System Variables

Dynamic Yes

Type Boolean

Default Value OFF

The transaction access mode. The value can be OFF (read/write; the default) or ON (read only).

The transaction access mode has three scopes: global, session, and next transaction. This three-scope
implementation leads to some nonstandard access-mode assignment semantics, as described later.

To set the global transaction access mode at startup, use the --transaction-read-only server
option.

At runtime, the access mode can be set directly using the SET statement to assign a value to the
tx_read_only system variable, or indirectly using the SET TRANSACTION statement. For example,
use this SET statement to set the global value:

SET GLOBAL tx_read_only = ON;

Setting the global tx_read_only value sets the access mode for all subsequent sessions. Existing
sessions are unaffected.

To set the session or next-level tx_read_only value, use the SET statement. For most session system
variables, these statements are equivalent ways to set the value:

SET @@SESSION.var_name = value;
SET SESSION var_name = value;
SET var_name = value;
SET @@var_name = value;

As mentioned previously, the transaction access mode has a next-transaction scope, in addition to the
global and session scopes. To enable the next-transaction scope to be set, SET syntax for assigning
session system variable values has nonstandard semantics for tx_read_only,

• To set the session access mode, use any of these syntaxes:

SET @@SESSION.tx_read_only = value;
SET SESSION tx_read_only = value;

701

Server System Variables

SET tx_read_only = value;

For each of those syntaxes, these semantics apply:

• Sets the access mode for all subsequent transactions performed within the session.

• Permitted within transactions, but does not affect the current ongoing transaction.

• If executed between transactions, overrides any preceding statement that sets the next-transaction
access mode.

• Corresponds to SET SESSION TRANSACTION {READ WRITE | READ ONLY} (with the
SESSION keyword).

• To set the next-transaction access mode, use this syntax:

SET @@tx_read_only = value;

For that syntax, these semantics apply:

• Sets the access mode only for the next single transaction performed within the session.

• Subsequent transactions revert to the session access mode.

• Not permitted within transactions.

• Corresponds to SET TRANSACTION {READ WRITE | READ ONLY} (without the SESSION
keyword).

For more information about SET TRANSACTION and its relationship to the tx_read_only system
variable, see Section 13.3.6, “SET TRANSACTION Statement”.

• unique_checks

System Variable unique_checks

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

If set to 1 (the default), uniqueness checks for secondary indexes in InnoDB tables are performed. If set
to 0, storage engines are permitted to assume that duplicate keys are not present in input data. If you
know for certain that your data does not contain uniqueness violations, you can set this to 0 to speed up
large table imports to InnoDB.

Setting this variable to 0 does not require storage engines to ignore duplicate keys. An engine is still
permitted to check for them and issue duplicate-key errors if it detects them.

• updatable_views_with_limit

Command-Line Format --updatable-views-with-limit[={OFF|
ON}]

System Variable updatable_views_with_limit

Scope Global, Session
702

Server System Variables

Dynamic Yes

Type Boolean

Default Value 1

This variable controls whether updates to a view can be made when the view does not contain all
columns of the primary key defined in the underlying table, if the update statement contains a LIMIT
clause. (Such updates often are generated by GUI tools.) An update is an UPDATE or DELETE statement.
Primary key here means a PRIMARY KEY, or a UNIQUE index in which no column can contain NULL.

The variable can have two values:

• 1 or YES: Issue a warning only (not an error message). This is the default value.

• 0 or NO: Prohibit the update.

• validate_password_xxx

The validate_password plugin implements a set of system variables having names of the form
validate_password_xxx. These variables affect password testing by that plugin; see Section 6.4.3.2,
“Password Validation Plugin Options and Variables”.

• version

The version number for the server. The value might also include a suffix indicating server build or
configuration information. -log indicates that one or more of the general log, slow query log, or binary
log are enabled. -debug indicates that the server was built with debugging support enabled.

• version_comment

System Variable version_comment

Scope Global

Dynamic No

Type String

The CMake configuration program has a COMPILATION_COMMENT option that permits a comment to be
specified when building MySQL. This variable contains the value of that comment. See Section 2.9.7,
“MySQL Source-Configuration Options”.

• version_compile_machine

System Variable version_compile_machine

Scope Global

Dynamic No

Type String

The type of the server binary.

• version_compile_os

System Variable version_compile_os

Scope Global

Dynamic No

703

Using System Variables

Type String

The type of operating system on which MySQL was built.

• wait_timeout

Command-Line Format --wait-timeout=#

System Variable wait_timeout

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 28800

Minimum Value 1

Maximum Value (Windows) 2147483

Maximum Value (Other) 31536000

Unit seconds

The number of seconds the server waits for activity on a noninteractive connection before closing it.

On thread startup, the session wait_timeout value is initialized from the global wait_timeout
value or from the global interactive_timeout value, depending on the type of client (as
defined by the CLIENT_INTERACTIVE connect option to mysql_real_connect()). See also
interactive_timeout.

• warning_count

The number of errors, warnings, and notes that resulted from the last statement that generated
messages. This variable is read only. See Section 13.7.5.41, “SHOW WARNINGS Statement”.

5.1.8 Using System Variables

The MySQL server maintains many system variables that configure its operation. Section 5.1.7, “Server
System Variables”, describes the meaning of these variables. Each system variable has a default value.
System variables can be set at server startup using options on the command line or in an option file.
Most of them can be changed dynamically while the server is running by means of the SET statement,
which enables you to modify operation of the server without having to stop and restart it. You can also use
system variable values in expressions.

Many system variables are built in. System variables implemented by a server plugin are exposed when
the plugin is installed and have names that begin with the plugin name. For example, the audit_log
plugin implements a system variable named audit_log_policy.

There are two scopes in which system variables exist. Global variables affect the overall operation of the
server. Session variables affect its operation for individual client connections. A given system variable can
have both a global and a session value. Global and session system variables are related as follows:

• When the server starts, it initializes each global variable to its default value. These defaults can be
changed by options specified on the command line or in an option file. (See Section 4.2.2, “Specifying
Program Options”.)

• The server also maintains a set of session variables for each client that connects. The client's session
variables are initialized at connect time using the current values of the corresponding global variables.

704

https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-connect.html

Using System Variables

For example, a client's SQL mode is controlled by the session sql_mode value, which is initialized when
the client connects to the value of the global sql_mode value.

For some system variables, the session value is not initialized from the corresponding global value; if so,
that is indicated in the variable description.

System variable values can be set globally at server startup by using options on the command line
or in an option file. At startup, the syntax for system variables is the same as for command options,
so within variable names, dashes and underscores may be used interchangeably. For example, --
general_log=ON and --general-log=ON are equivalent.

When you use a startup option to set a variable that takes a numeric value, the value can be given with a
suffix of K, M, or G (either uppercase or lowercase) to indicate a multiplier of 1024, 10242 or 10243; that is,
units of kilobytes, megabytes, or gigabytes, respectively. Thus, the following command starts the server
with an InnoDB log file size of 16 megabytes and a maximum packet size of one gigabyte:

mysqld --innodb-log-file-size=16M --max-allowed-packet=1G

Within an option file, those variables are set like this:

[mysqld]
innodb_log_file_size=16M
max_allowed_packet=1G

The lettercase of suffix letters does not matter; 16M and 16m are equivalent, as are 1G and 1g.

To restrict the maximum value to which a system variable can be set at runtime with the SET statement,
specify this maximum by using an option of the form --maximum-var_name=value at server startup. For
example, to prevent the value of innodb_log_file_size from being increased to more than 32MB at
runtime, use the option --maximum-innodb-log-file-size=32M.

Many system variables are dynamic and can be changed at runtime by using the SET statement. For a
list, see Section 5.1.8.2, “Dynamic System Variables”. To change a system variable with SET, refer to
it by name, optionally preceded by a modifier. At runtime, system variable names must be written using
underscores, not dashes. The following examples briefly illustrate this syntax:

• Set a global system variable:

SET GLOBAL max_connections = 1000;
SET @@GLOBAL.max_connections = 1000;

• Set a session system variable:

SET SESSION sql_mode = 'TRADITIONAL';
SET @@SESSION.sql_mode = 'TRADITIONAL';
SET @@sql_mode = 'TRADITIONAL';

For complete details about SET syntax, see Section 13.7.4.1, “SET Syntax for Variable Assignment”.
For a description of the privilege requirements for setting system variables, see Section 5.1.8.1, “System
Variable Privileges”

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not to
set the value with SET at runtime. On the other hand, with SET you can assign a variable's value using
an expression, which is not true when you set a variable at server startup. For example, the first of the
following lines is legal at server startup, but the second is not:

$> mysql --max_allowed_packet=16M
$> mysql --max_allowed_packet=16*1024*1024

705

Using System Variables

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

To display system variable names and values, use the SHOW VARIABLES statement:

mysql> SHOW VARIABLES;
+---------------------------------+-----------------------------------+
| Variable_name | Value |
+---------------------------------+-----------------------------------+
auto_increment_increment	1
auto_increment_offset	1
automatic_sp_privileges	ON
back_log	50
basedir	/home/mysql/
binlog_cache_size	32768
bulk_insert_buffer_size	8388608
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/home/mysql/share/mysql/charsets/
collation_connection	utf8_general_ci
collation_database	latin1_swedish_ci
collation_server	latin1_swedish_ci
...	
innodb_additional_mem_pool_size	1048576
innodb_autoextend_increment	8
innodb_buffer_pool_size	8388608
innodb_checksums	ON
innodb_commit_concurrency	0
innodb_concurrency_tickets	500
innodb_data_file_path	ibdata1:10M:autoextend
innodb_data_home_dir	
...	
version	5.6.37-log
version_comment	Source distribution
version_compile_machine	i686
version_compile_os	suse-linux
wait_timeout	28800
+---------------------------------+-----------------------------------+

With a LIKE clause, the statement displays only those variables that match the pattern. To obtain a
specific variable name, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the % wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking,
because _ is a wildcard that matches any single character, you should escape it as _ to match it literally.
In practice, this is rarely necessary.

For SHOW VARIABLES, if you specify neither GLOBAL nor SESSION, MySQL returns SESSION values.

The reason for requiring the GLOBAL keyword when setting GLOBAL-only variables but not when retrieving
them is to prevent problems in the future:

706

Using System Variables

• Were a SESSION variable to be removed that has the same name as a GLOBAL variable, a client with
privileges sufficient to modify global variables might accidentally change the GLOBAL variable rather than
just the SESSION variable for its own session.

• Were a SESSION variable to be added with the same name as a GLOBAL variable, a client that intends to
change the GLOBAL variable might find only its own SESSION variable changed.

5.1.8.1 System Variable Privileges

A system variable can have a global value that affects server operation as a whole, a session value that
affects only the current session, or both. To modify system variable runtime values, use the SET statement.
See Section 13.7.4.1, “SET Syntax for Variable Assignment”. This section describes the privileges required
to assign values to system variables at runtime.

Setting a global system variable runtime value requires the SUPER privilege.

To set a session system variable runtime value, use the SET SESSION statement. In contrast to setting
global runtime values, setting session runtime values normally requires no special privileges and can be
done by any user to affect the current session. For some system variables, setting the session value may
have effects outside the current session and thus is a restricted operation that can be done only by users
who have the SUPER privilege. If a session system variable is restricted in this way, the variable description
indicates that restriction. Examples include binlog_format and sql_log_bin. Setting the session
value of these variables affects binary logging for the current session, but may also have wider implications
for the integrity of server replication and backups.

5.1.8.2 Dynamic System Variables

Many server system variables are dynamic and can be set at runtime. See Section 13.7.4.1, “SET Syntax
for Variable Assignment”. For a description of the privilege requirements for setting system variables, see
Section 5.1.8.1, “System Variable Privileges”

The following table lists all dynamic system variables applicable within mysqld.

The table lists each variable's data type and scope. The last column indicates whether the scope for each
variable is Global, Session, or both. Please see the corresponding item descriptions for details on setting
and using the variables. Where appropriate, direct links to further information about the items are provided.

Variables that have a type of “string” take a string value. Variables that have a type of “numeric” take a
numeric value. Variables that have a type of “boolean” can be set to 0, 1, ON or OFF. Variables that are
marked as “enumeration” normally should be set to one of the available values for the variable, but can
also be set to the number that corresponds to the desired enumeration value. For enumerated system
variables, the first enumeration value corresponds to 0. This differs from the ENUM data type used for table
columns, for which the first enumeration value corresponds to 1.

Table 5.5 Dynamic System Variable Summary

Variable Name Variable Type Variable Scope

audit_log_connection_policy Enumeration Global

audit_log_exclude_accounts String Global

audit_log_flush Boolean Global

audit_log_include_accounts String Global

audit_log_policy Enumeration Global

audit_log_rotate_on_size Integer Global

audit_log_statement_policy Enumeration Global

707

Using System Variables

Variable Name Variable Type Variable Scope

auto_increment_increment Integer Both

auto_increment_offset Integer Both

autocommit Boolean Both

automatic_sp_privileges Boolean Global

avoid_temporal_upgrade Boolean Global

big_tables Boolean Both

binlog_cache_size Integer Global

binlog_checksum String Global

binlog_direct_non_transactional_updatesBoolean Both

binlog_error_action Enumeration Global

binlog_format Enumeration Both

binlog_max_flush_queue_time Integer Global

binlog_order_commits Boolean Global

binlog_row_image Enumeration Both

binlog_rows_query_log_events Boolean Both

binlog_stmt_cache_size Integer Global

binlogging_impossible_mode Enumeration Both

block_encryption_mode String Both

bulk_insert_buffer_size Integer Both

character_set_client String Both

character_set_connection String Both

character_set_database String Both

character_set_filesystem String Both

character_set_results String Both

character_set_server String Both

collation_connection String Both

collation_database String Both

collation_server String Both

completion_type Enumeration Both

concurrent_insert Enumeration Global

connect_timeout Integer Global

connection_control_failed_connections_thresholdInteger Global

connection_control_max_connection_delayInteger Global

connection_control_min_connection_delayInteger Global

debug String Both

debug_sync String Session

default_storage_engine Enumeration Both

default_tmp_storage_engine Enumeration Both

708

Using System Variables

Variable Name Variable Type Variable Scope

default_week_format Integer Both

delay_key_write Enumeration Global

delayed_insert_limit Integer Global

delayed_insert_timeout Integer Global

delayed_queue_size Integer Global

div_precision_increment Integer Both

end_markers_in_json Boolean Both

eq_range_index_dive_limit Integer Both

event_scheduler Enumeration Global

expire_logs_days Integer Global

explicit_defaults_for_timestamp Boolean Both

flush Boolean Global

flush_time Integer Global

foreign_key_checks Boolean Both

ft_boolean_syntax String Global

general_log Boolean Global

general_log_file File name Global

group_concat_max_len Integer Both

gtid_next Enumeration Session

gtid_purged String Global

host_cache_size Integer Global

identity Integer Session

init_connect String Global

init_slave String Global

innodb_adaptive_flushing Boolean Global

innodb_adaptive_flushing_lwm Integer Global

innodb_adaptive_hash_index Boolean Global

innodb_adaptive_max_sleep_delay Integer Global

innodb_api_bk_commit_interval Integer Global

innodb_api_trx_level Integer Global

innodb_autoextend_increment Integer Global

innodb_buffer_pool_dump_at_shutdownBoolean Global

innodb_buffer_pool_dump_now Boolean Global

innodb_buffer_pool_filename File name Global

innodb_buffer_pool_load_abort Boolean Global

innodb_buffer_pool_load_now Boolean Global

innodb_change_buffer_max_size Integer Global

innodb_change_buffering Enumeration Global

709

Using System Variables

Variable Name Variable Type Variable Scope

innodb_change_buffering_debug Integer Global

innodb_checksum_algorithm Enumeration Global

innodb_cmp_per_index_enabled Boolean Global

innodb_commit_concurrency Integer Global

innodb_compression_failure_threshold_pctInteger Global

innodb_compression_level Integer Global

innodb_compression_pad_pct_maxInteger Global

innodb_concurrency_tickets Integer Global

innodb_disable_sort_file_cache Boolean Global

innodb_fast_shutdown Integer Global

innodb_fil_make_page_dirty_debugInteger Global

innodb_file_format String Global

innodb_file_format_max String Global

innodb_file_per_table Boolean Global

innodb_flush_log_at_timeout Integer Global

innodb_flush_log_at_trx_commit Enumeration Global

innodb_flush_neighbors Enumeration Global

innodb_flushing_avg_loops Integer Global

innodb_ft_aux_table String Global

innodb_ft_enable_diag_print Boolean Global

innodb_ft_enable_stopword Boolean Both

innodb_ft_num_word_optimize Integer Global

innodb_ft_result_cache_limit Integer Global

innodb_ft_server_stopword_table String Global

innodb_ft_user_stopword_table String Both

innodb_io_capacity Integer Global

innodb_io_capacity_max Integer Global

innodb_large_prefix Boolean Global

innodb_limit_optimistic_insert_debugInteger Global

innodb_lock_wait_timeout Integer Both

innodb_log_checkpoint_now Boolean Global

innodb_log_compressed_pages Boolean Global

innodb_lru_scan_depth Integer Global

innodb_max_dirty_pages_pct Numeric Global

innodb_max_dirty_pages_pct_lwm Numeric Global

innodb_max_purge_lag Integer Global

innodb_max_purge_lag_delay Integer Global

innodb_monitor_disable String Global

710

Using System Variables

Variable Name Variable Type Variable Scope

innodb_monitor_enable String Global

innodb_monitor_reset Enumeration Global

innodb_monitor_reset_all Enumeration Global

innodb_old_blocks_pct Integer Global

innodb_old_blocks_time Integer Global

innodb_online_alter_log_max_size Integer Global

innodb_optimize_fulltext_only Boolean Global

innodb_print_all_deadlocks Boolean Global

innodb_purge_batch_size Integer Global

innodb_random_read_ahead Boolean Global

innodb_read_ahead_threshold Integer Global

innodb_replication_delay Integer Global

innodb_rollback_segments Integer Global

innodb_saved_page_number_debugInteger Global

innodb_spin_wait_delay Integer Global

innodb_stats_auto_recalc Boolean Global

innodb_stats_include_delete_markedBoolean Global

innodb_stats_method Enumeration Global

innodb_stats_on_metadata Boolean Global

innodb_stats_persistent Boolean Global

innodb_stats_persistent_sample_pagesInteger Global

innodb_stats_sample_pages Integer Global

innodb_stats_transient_sample_pagesInteger Global

innodb_status_output Boolean Global

innodb_status_output_locks Boolean Global

innodb_strict_mode Boolean Both

innodb_support_xa Boolean Both

innodb_sync_spin_loops Integer Global

innodb_table_locks Boolean Both

innodb_thread_concurrency Integer Global

innodb_thread_sleep_delay Integer Global

innodb_tmpdir Directory name Both

innodb_trx_purge_view_update_only_debugBoolean Global

innodb_trx_rseg_n_slots_debug Integer Global

innodb_undo_logs Integer Global

insert_id Integer Session

interactive_timeout Integer Both

join_buffer_size Integer Both

711

Using System Variables

Variable Name Variable Type Variable Scope

keep_files_on_create Boolean Both

key_buffer_size Integer Global

key_cache_age_threshold Integer Global

key_cache_block_size Integer Global

key_cache_division_limit Integer Global

last_insert_id Integer Session

lc_messages String Both

lc_time_names String Both

local_infile Boolean Global

lock_wait_timeout Integer Both

log_bin_trust_function_creators Boolean Global

log_bin_use_v1_row_events Boolean Global

log_output Set Global

log_queries_not_using_indexes Boolean Global

log_slow_admin_statements Boolean Global

log_slow_slave_statements Boolean Global

log_throttle_queries_not_using_indexesInteger Global

log_warnings Integer Varies

long_query_time Numeric Both

low_priority_updates Boolean Both

master_info_repository String Global

master_verify_checksum Boolean Global

max_allowed_packet Integer Both

max_binlog_cache_size Integer Global

max_binlog_size Integer Global

max_binlog_stmt_cache_size Integer Global

max_connect_errors Integer Global

max_connections Integer Global

max_delayed_threads Integer Both

max_error_count Integer Both

max_heap_table_size Integer Both

max_insert_delayed_threads Integer Both

max_join_size Integer Both

max_length_for_sort_data Integer Both

max_prepared_stmt_count Integer Global

max_relay_log_size Integer Global

max_seeks_for_key Integer Both

max_sort_length Integer Both

712

Using System Variables

Variable Name Variable Type Variable Scope

max_sp_recursion_depth Integer Both

max_tmp_tables Integer Both

max_user_connections Integer Both

max_write_lock_count Integer Global

min_examined_row_limit Integer Both

multi_range_count Integer Both

myisam_data_pointer_size Integer Global

myisam_max_sort_file_size Integer Global

myisam_repair_threads Integer Both

myisam_sort_buffer_size Integer Both

myisam_stats_method Enumeration Both

myisam_use_mmap Boolean Global

mysql_firewall_mode Boolean Global

mysql_firewall_trace Boolean Global

ndb_autoincrement_prefetch_sz Integer Both

ndb_blob_read_batch_bytes Integer Both

ndb_blob_write_batch_bytes Integer Both

ndb_cache_check_time Integer Global

ndb_clear_apply_status Boolean Global

ndb_deferred_constraints Integer Both

ndb_deferred_constraints Integer Both

ndb_distribution Enumeration Global

ndb_distribution Enumeration Global

ndb_eventbuffer_free_percent Integer Global

ndb_eventbuffer_max_alloc Integer Global

ndb_extra_logging Integer Global

ndb_force_send Boolean Both

ndb_index_stat_cache_entries Integer Both

ndb_index_stat_enable Boolean Both

ndb_index_stat_option String Both

ndb_index_stat_update_freq Integer Both

ndb_join_pushdown Boolean Both

ndb_log_binlog_index Boolean Global

ndb_log_empty_epochs Boolean Global

ndb_log_empty_epochs Boolean Global

ndb_log_empty_update Boolean Global

ndb_log_empty_update Boolean Global

ndb_log_exclusive_reads Boolean Both

713

Using System Variables

Variable Name Variable Type Variable Scope

ndb_log_exclusive_reads Boolean Both

ndb_log_update_as_write Boolean Global

ndb_log_update_minimal Boolean Global

ndb_log_updated_only Boolean Global

ndb_optimization_delay Integer Global

ndb_recv_thread_activation_thresholdInteger Global

ndb_recv_thread_cpu_mask Bitmap Global

ndb_report_thresh_binlog_epoch_slipInteger Global

ndb_report_thresh_binlog_mem_usageInteger Global

ndb_show_foreign_key_mock_tablesBoolean Global

ndb_slave_conflict_role Enumeration Global

ndb_table_no_logging Boolean Session

ndb_table_temporary Boolean Session

ndb_use_exact_count Boolean Both

ndb_use_transactions Boolean Both

ndbinfo_max_bytes Integer Both

ndbinfo_max_rows Integer Both

ndbinfo_offline Boolean Global

ndbinfo_show_hidden Boolean Both

net_buffer_length Integer Both

net_read_timeout Integer Both

net_retry_count Integer Both

net_write_timeout Integer Both

new Boolean Both

old_alter_table Boolean Both

old_passwords Enumeration Both

optimizer_prune_level Integer Both

optimizer_search_depth Integer Both

optimizer_switch Set Both

optimizer_trace String Both

optimizer_trace_features String Both

optimizer_trace_limit Integer Both

optimizer_trace_max_mem_size Integer Both

optimizer_trace_offset Integer Both

preload_buffer_size Integer Both

profiling Boolean Both

profiling_history_size Integer Both

pseudo_slave_mode Boolean Session

714

Using System Variables

Variable Name Variable Type Variable Scope

pseudo_thread_id Integer Session

query_alloc_block_size Integer Both

query_cache_limit Integer Global

query_cache_min_res_unit Integer Global

query_cache_size Integer Global

query_cache_type Enumeration Both

query_cache_wlock_invalidate Boolean Both

query_prealloc_size Integer Both

rand_seed1 Integer Session

rand_seed2 Integer Session

range_alloc_block_size Integer Both

read_buffer_size Integer Both

read_only Boolean Global

read_rnd_buffer_size Integer Both

relay_log_info_repository String Global

relay_log_purge Boolean Global

relay_log_recovery Boolean Global

rpl_semi_sync_master_enabled Boolean Global

rpl_semi_sync_master_timeout Integer Global

rpl_semi_sync_master_trace_level Integer Global

rpl_semi_sync_master_wait_no_slaveBoolean Global

rpl_semi_sync_slave_enabled Boolean Global

rpl_semi_sync_slave_trace_level Integer Global

rpl_stop_slave_timeout Integer Global

secure_auth Boolean Global

server_id Integer Global

show_old_temporals Boolean Both

slave_allow_batching Boolean Global

slave_checkpoint_group Integer Global

slave_checkpoint_period Integer Global

slave_compressed_protocol Boolean Global

slave_exec_mode Enumeration Global

slave_max_allowed_packet Integer Global

slave_net_timeout Integer Global

slave_parallel_workers Integer Global

slave_pending_jobs_size_max Integer Global

slave_rows_search_algorithms Set Global

slave_sql_verify_checksum Boolean Global

715

Using System Variables

Variable Name Variable Type Variable Scope

slave_transaction_retries Integer Global

slave_type_conversions Set Global

slow_launch_time Integer Global

slow_query_log Boolean Global

slow_query_log_file File name Global

sort_buffer_size Integer Both

sql_auto_is_null Boolean Both

sql_big_selects Boolean Both

sql_buffer_result Boolean Both

sql_log_bin Boolean Session

sql_log_off Boolean Both

sql_mode Set Both

sql_notes Boolean Both

sql_quote_show_create Boolean Both

sql_safe_updates Boolean Both

sql_select_limit Integer Both

sql_slave_skip_counter Integer Global

sql_warnings Boolean Both

storage_engine Enumeration Both

stored_program_cache Integer Global

sync_binlog Integer Global

sync_frm Boolean Global

sync_master_info Integer Global

sync_relay_log Integer Global

sync_relay_log_info Integer Global

table_definition_cache Integer Global

table_open_cache Integer Global

thread_cache_size Integer Global

thread_pool_high_priority_connectionInteger Both

thread_pool_max_unused_threads Integer Global

thread_pool_prio_kickup_timer Integer Global

thread_pool_stall_limit Integer Global

time_zone String Both

timed_mutexes Boolean Global

timestamp Numeric Session

tmp_table_size Integer Both

transaction_alloc_block_size Integer Both

transaction_allow_batching Boolean Session

716

Using System Variables

Variable Name Variable Type Variable Scope

transaction_prealloc_size Integer Both

tx_isolation Enumeration Both

tx_read_only Boolean Both

unique_checks Boolean Both

updatable_views_with_limit Boolean Both

validate_password_dictionary_file File name Global

validate_password_length Integer Global

validate_password_mixed_case_countInteger Global

validate_password_number_count Integer Global

validate_password_policy Enumeration Global

validate_password_special_char_countInteger Global

wait_timeout Integer Both

5.1.8.3 Structured System Variables

A structured variable differs from a regular system variable in two respects:

• Its value is a structure with components that specify server parameters considered to be closely related.

• There might be several instances of a given type of structured variable. Each one has a different name
and refers to a different resource maintained by the server.

MySQL supports one structured variable type, which specifies parameters governing the operation of key
caches. A key cache structured variable has these components:

• key_buffer_size

• key_cache_block_size

• key_cache_division_limit

• key_cache_age_threshold

This section describes the syntax for referring to structured variables. Key cache variables are used
for syntax examples, but specific details about how key caches operate are found elsewhere, in
Section 8.10.2, “The MyISAM Key Cache”.

To refer to a component of a structured variable instance, you can use a compound name in
instance_name.component_name format. Examples:

hot_cache.key_buffer_size
hot_cache.key_cache_block_size
cold_cache.key_cache_block_size

For each structured system variable, an instance with the name of default is always predefined. If you
refer to a component of a structured variable without any instance name, the default instance is used.
Thus, default.key_buffer_size and key_buffer_size both refer to the same system variable.

Structured variable instances and components follow these naming rules:

• For a given type of structured variable, each instance must have a name that is unique within variables
of that type. However, instance names need not be unique across structured variable types. For

717

Using System Variables

example, each structured variable has an instance named default, so default is not unique across
variable types.

• The names of the components of each structured variable type must be unique across all system
variable names. If this were not true (that is, if two different types of structured variables could share
component member names), it would not be clear which default structured variable to use for references
to member names that are not qualified by an instance name.

• If a structured variable instance name is not legal as an unquoted identifier, refer to it as a quoted
identifier using backticks. For example, hot-cache is not legal, but `hot-cache` is.

• global, session, and local are not legal instance names. This avoids a conflict with notation such as
@@GLOBAL.var_name for referring to nonstructured system variables.

Currently, the first two rules have no possibility of being violated because the only structured variable type
is the one for key caches. These rules may assume greater significance if some other type of structured
variable is created in the future.

With one exception, you can refer to structured variable components using compound names in any
context where simple variable names can occur. For example, you can assign a value to a structured
variable using a command-line option:

$> mysqld --hot_cache.key_buffer_size=64K

In an option file, use this syntax:

[mysqld]
hot_cache.key_buffer_size=64K

If you start the server with this option, it creates a key cache named hot_cache with a size of 64KB in
addition to the default key cache that has a default size of 8MB.

Suppose that you start the server as follows:

$> mysqld --key_buffer_size=256K \
 --extra_cache.key_buffer_size=128K \
 --extra_cache.key_cache_block_size=2048

In this case, the server sets the size of the default key cache to 256KB. (You could also have written
--default.key_buffer_size=256K.) In addition, the server creates a second key cache named
extra_cache that has a size of 128KB, with the size of block buffers for caching table index blocks set to
2048 bytes.

The following example starts the server with three different key caches having sizes in a 3:1:1 ratio:

$> mysqld --key_buffer_size=6M \
 --hot_cache.key_buffer_size=2M \
 --cold_cache.key_buffer_size=2M

Structured variable values may be set and retrieved at runtime as well. For example, to set a key cache
named hot_cache to a size of 10MB, use either of these statements:

mysql> SET GLOBAL hot_cache.key_buffer_size = 10*1024*1024;
mysql> SET @@GLOBAL.hot_cache.key_buffer_size = 10*1024*1024;

To retrieve the cache size, do this:

mysql> SELECT @@GLOBAL.hot_cache.key_buffer_size;

However, the following statement does not work. The variable is not interpreted as a compound name, but
as a simple string for a LIKE pattern-matching operation:

mysql> SHOW GLOBAL VARIABLES LIKE 'hot_cache.key_buffer_size';

718

Server Status Variables

This is the exception to being able to use structured variable names anywhere a simple variable name may
occur.

5.1.9 Server Status Variables

The MySQL server maintains many status variables that provide information about its operation. You can
view these variables and their values by using the SHOW [GLOBAL | SESSION] STATUS statement (see
Section 13.7.5.36, “SHOW STATUS Statement”). The optional GLOBAL keyword aggregates the values
over all connections, and SESSION shows the values for the current connection.

mysql> SHOW GLOBAL STATUS;
+-----------------------------------+------------+
| Variable_name | Value |
+-----------------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
...	
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_files	3
Created_tmp_tables	2
...	
Threads_created	217
Threads_running	88
Uptime	1389872
+-----------------------------------+------------+

Many status variables are reset to 0 by the FLUSH STATUS statement.

This section provides a description of each status variable. For a status variable summary, see
Section 5.1.5, “Server Status Variable Reference”. For information about status variables specific to NDB
Cluster, see NDB Cluster Status Variables.

The status variables have the following meanings.

• Aborted_clients

The number of connections that were aborted because the client died without closing the connection
properly. See Section B.3.2.10, “Communication Errors and Aborted Connections”.

• Aborted_connects

The number of failed attempts to connect to the MySQL server. See Section B.3.2.10, “Communication
Errors and Aborted Connections”.

For additional connection-related information, check the Connection_errors_xxx status variables
and the host_cache table.

• Binlog_cache_disk_use

The number of transactions that used the temporary binary log cache but that exceeded the value of
binlog_cache_size and used a temporary file to store statements from the transaction.

The number of nontransactional statements that caused the binary log transaction cache to be written to
disk is tracked separately in the Binlog_stmt_cache_disk_use status variable.

• Binlog_cache_use

The number of transactions that used the binary log cache.

719

Server Status Variables

• Binlog_stmt_cache_disk_use

The number of nontransaction statements that used the binary log statement cache but that exceeded
the value of binlog_stmt_cache_size and used a temporary file to store those statements.

• Binlog_stmt_cache_use

The number of nontransactional statements that used the binary log statement cache.

• Bytes_received

The number of bytes received from all clients.

• Bytes_sent

The number of bytes sent to all clients.

• Com_xxx

The Com_xxx statement counter variables indicate the number of times each xxx statement has
been executed. There is one status variable for each type of statement. For example, Com_delete
and Com_update count DELETE and UPDATE statements, respectively. Com_delete_multi and
Com_update_multi are similar but apply to DELETE and UPDATE statements that use multiple-table
syntax.

If a query result is returned from query cache, the server increments the Qcache_hits status variable,
not Com_select. See Section 8.10.3.4, “Query Cache Status and Maintenance”.

All Com_stmt_xxx variables are increased even if a prepared statement argument is unknown or an
error occurred during execution. In other words, their values correspond to the number of requests
issued, not to the number of requests successfully completed.

The Com_stmt_xxx status variables are as follows:

• Com_stmt_prepare

• Com_stmt_execute

• Com_stmt_fetch

• Com_stmt_send_long_data

• Com_stmt_reset

• Com_stmt_close

Those variables stand for prepared statement commands. Their names refer to the COM_xxx command
set used in the network layer. In other words, their values increase whenever prepared statement
API calls such as mysql_stmt_prepare(), mysql_stmt_execute(), and so forth are executed.
However, Com_stmt_prepare, Com_stmt_execute and Com_stmt_close also increase for
PREPARE, EXECUTE, or DEALLOCATE PREPARE, respectively. Additionally, the values of the older
statement counter variables Com_prepare_sql, Com_execute_sql, and Com_dealloc_sql
increase for the PREPARE, EXECUTE, and DEALLOCATE PREPARE statements. Com_stmt_fetch
stands for the total number of network round-trips issued when fetching from cursors.

Com_stmt_reprepare indicates the number of times statements were automatically reprepared by the
server after metadata changes to tables or views referred to by the statement. A reprepare operation
increments Com_stmt_reprepare, and also Com_stmt_prepare.

720

Server Status Variables

• Compression

Whether the client connection uses compression in the client/server protocol.

• Connection_errors_xxx

These variables provide information about errors that occur during the client connection process.
They are global only and represent error counts aggregated across connections from all hosts. These
variables track errors not accounted for by the host cache (see Section 5.1.11.2, “DNS Lookups and
the Host Cache”), such as errors that are not associated with TCP connections, occur very early in the
connection process (even before an IP address is known), or are not specific to any particular IP address
(such as out-of-memory conditions).

• Connection_errors_accept

The number of errors that occurred during calls to accept() on the listening port.

• Connection_errors_internal

The number of connections refused due to internal errors in the server, such as failure to start a new
thread or an out-of-memory condition.

• Connection_errors_max_connections

The number of connections refused because the server max_connections limit was reached.

• Connection_errors_peer_address

The number of errors that occurred while searching for connecting client IP addresses.

• Connection_errors_select

The number of errors that occurred during calls to select() or poll() on the listening port. (Failure
of this operation does not necessarily means a client connection was rejected.)

• Connection_errors_tcpwrap

The number of connections refused by the libwrap library.

• Connections

The number of connection attempts (successful or not) to the MySQL server.

• Created_tmp_disk_tables

The number of internal on-disk temporary tables created by the server while executing statements.

You can compare the number of internal on-disk temporary tables created to the total number of internal
temporary tables created by comparing Created_tmp_disk_tables and Created_tmp_tables
values.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• Created_tmp_files

How many temporary files mysqld has created.

• Created_tmp_tables

721

Server Status Variables

The number of internal temporary tables created by the server while executing statements.

You can compare the number of internal on-disk temporary tables created to the total number of internal
temporary tables created by comparing Created_tmp_disk_tables and Created_tmp_tables
values.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

Each invocation of the SHOW STATUS statement uses an internal temporary table and increments the
global Created_tmp_tables value.

• Delayed_errors

The number of rows written with INSERT DELAYED for which some error occurred (probably
duplicate key).

This status variable is deprecated (because DELAYED inserts are deprecated); expect it to be removed in
a future release.

• Delayed_insert_threads

The number of INSERT DELAYED handler threads in use for nontransactional tables.

This status variable is deprecated (because DELAYED inserts are deprecated); expect it to be removed in
a future release.

• Delayed_writes

The number of INSERT DELAYED rows written to nontransactional tables.

This status variable is deprecated (because DELAYED inserts are deprecated); expect it to be removed in
a future release.

• Flush_commands

The number of times the server flushes tables, whether because a user executed a FLUSH TABLES
statement or due to internal server operation. It is also incremented by receipt of a COM_REFRESH
packet. This is in contrast to Com_flush, which indicates how many FLUSH statements have been
executed, whether FLUSH TABLES, FLUSH LOGS, and so forth.

• Handler_commit

The number of internal COMMIT statements.

• Handler_delete

The number of times that rows have been deleted from tables.

• Handler_external_lock

The server increments this variable for each call to its external_lock() function, which generally
occurs at the beginning and end of access to a table instance. There might be differences among
storage engines. This variable can be used, for example, to discover for a statement that accesses a
partitioned table how many partitions were pruned before locking occurred: Check how much the counter
increased for the statement, subtract 2 (2 calls for the table itself), then divide by 2 to get the number of
partitions locked.

• Handler_mrr_init

722

Server Status Variables

The number of times the server uses a storage engine's own Multi-Range Read implementation for table
access.

• Handler_prepare

A counter for the prepare phase of two-phase commit operations.

• Handler_read_first

The number of times the first entry in an index was read. If this value is high, it suggests that the server
is doing a lot of full index scans (for example, SELECT col1 FROM foo, assuming that col1 is
indexed).

• Handler_read_key

The number of requests to read a row based on a key. If this value is high, it is a good indication that
your tables are properly indexed for your queries.

• Handler_read_last

The number of requests to read the last key in an index. With ORDER BY, the server issues a first-key
request followed by several next-key requests, whereas with ORDER BY DESC, the server issues a last-
key request followed by several previous-key requests.

• Handler_read_next

The number of requests to read the next row in key order. This value is incremented if you are querying
an index column with a range constraint or if you are doing an index scan.

• Handler_read_prev

The number of requests to read the previous row in key order. This read method is mainly used to
optimize ORDER BY ... DESC.

• Handler_read_rnd

The number of requests to read a row based on a fixed position. This value is high if you are doing a
lot of queries that require sorting of the result. You probably have a lot of queries that require MySQL to
scan entire tables or you have joins that do not use keys properly.

• Handler_read_rnd_next

The number of requests to read the next row in the data file. This value is high if you are doing a lot of
table scans. Generally this suggests that your tables are not properly indexed or that your queries are
not written to take advantage of the indexes you have.

• Handler_rollback

The number of requests for a storage engine to perform a rollback operation.

• Handler_savepoint

The number of requests for a storage engine to place a savepoint.

• Handler_savepoint_rollback

The number of requests for a storage engine to roll back to a savepoint.

723

Server Status Variables

• Handler_update

The number of requests to update a row in a table.

• Handler_write

The number of requests to insert a row in a table.

• Innodb_available_undo_logs

The total number of available InnoDB rollback segments. Supplements the
innodb_rollback_segments system variable, which defines the number of active rollback segments.

• Innodb_buffer_pool_dump_status

The progress of an operation to record the pages held in the InnoDB buffer pool, triggered by the setting
of innodb_buffer_pool_dump_at_shutdown or innodb_buffer_pool_dump_now.

For related information and examples, see Section 14.8.3.5, “Saving and Restoring the Buffer Pool
State”.

• Innodb_buffer_pool_load_status

The progress of an operation to warm up the InnoDB buffer pool by reading in a
set of pages corresponding to an earlier point in time, triggered by the setting of
innodb_buffer_pool_load_at_startup or innodb_buffer_pool_load_now. If the operation
introduces too much overhead, you can cancel it by setting innodb_buffer_pool_load_abort.

For related information and examples, see Section 14.8.3.5, “Saving and Restoring the Buffer Pool
State”.

• Innodb_buffer_pool_bytes_data

The total number of bytes in the InnoDB buffer pool containing data. The number includes
both dirty and clean pages. For more accurate memory usage calculations than with
Innodb_buffer_pool_pages_data, when compressed tables cause the buffer pool to hold pages of
different sizes.

• Innodb_buffer_pool_pages_data

The number of pages in the InnoDB buffer pool containing data. The number includes both dirty and
clean pages. When using compressed tables, the reported Innodb_buffer_pool_pages_data value
may be larger than Innodb_buffer_pool_pages_total (Bug #59550).

• Innodb_buffer_pool_bytes_dirty

The total current number of bytes held in dirty pages in the InnoDB buffer pool. For more accurate
memory usage calculations than with Innodb_buffer_pool_pages_dirty, when compressed tables
cause the buffer pool to hold pages of different sizes.

• Innodb_buffer_pool_pages_dirty

The current number of dirty pages in the InnoDB buffer pool.

• Innodb_buffer_pool_pages_flushed

The number of requests to flush pages from the InnoDB buffer pool.

• Innodb_buffer_pool_pages_free

724

Server Status Variables

The number of free pages in the InnoDB buffer pool.

• Innodb_buffer_pool_pages_latched

The number of latched pages in the InnoDB buffer pool. These are pages currently being read or
written, or that cannot be flushed or removed for some other reason. Calculation of this variable is
expensive, so it is available only when the UNIV_DEBUG system is defined at server build time.

• Innodb_buffer_pool_pages_misc

The number of pages in the InnoDB buffer pool that are busy because they have
been allocated for administrative overhead, such as row locks or the adaptive hash
index. This value can also be calculated as Innodb_buffer_pool_pages_total −
Innodb_buffer_pool_pages_free − Innodb_buffer_pool_pages_data. When using
compressed tables, Innodb_buffer_pool_pages_misc may report an out-of-bounds value (Bug
#59550).

• Innodb_buffer_pool_pages_total

The total size of the InnoDB buffer pool, in pages. When using compressed tables,
the reported Innodb_buffer_pool_pages_data value may be larger than
Innodb_buffer_pool_pages_total (Bug #59550)

• Innodb_buffer_pool_read_ahead

The number of pages read into the InnoDB buffer pool by the read-ahead background thread.

• Innodb_buffer_pool_read_ahead_evicted

The number of pages read into the InnoDB buffer pool by the read-ahead background thread that were
subsequently evicted without having been accessed by queries.

• Innodb_buffer_pool_read_ahead_rnd

The number of “random” read-aheads initiated by InnoDB. This happens when a query scans a large
portion of a table but in random order.

• Innodb_buffer_pool_read_requests

The number of logical read requests.

• Innodb_buffer_pool_reads

The number of logical reads that InnoDB could not satisfy from the buffer pool, and had to read directly
from disk.

• Innodb_buffer_pool_wait_free

Normally, writes to the InnoDB buffer pool happen in the background. When InnoDB needs to read or
create a page and no clean pages are available, InnoDB flushes some dirty pages first and waits for that
operation to finish. This counter counts instances of these waits. If innodb_buffer_pool_size has
been set properly, this value should be small.

• Innodb_buffer_pool_write_requests

The number of writes done to the InnoDB buffer pool.

• Innodb_data_fsyncs

725

Server Status Variables

The number of fsync() operations so far. The frequency of fsync() calls is influenced by the setting
of the innodb_flush_method configuration option.

• Innodb_data_pending_fsyncs

The current number of pending fsync() operations. The frequency of fsync() calls is influenced by
the setting of the innodb_flush_method configuration option.

• Innodb_data_pending_reads

The current number of pending reads.

• Innodb_data_pending_writes

The current number of pending writes.

• Innodb_data_read

The amount of data read since the server was started (in bytes).

• Innodb_data_reads

The total number of data reads (OS file reads).

• Innodb_data_writes

The total number of data writes.

• Innodb_data_written

The amount of data written so far, in bytes.

• Innodb_dblwr_pages_written

The number of pages that have been written to the doublewrite buffer. See Section 14.12.1, “InnoDB
Disk I/O”.

• Innodb_dblwr_writes

The number of doublewrite operations that have been performed. See Section 14.12.1, “InnoDB Disk I/
O”.

• Innodb_have_atomic_builtins

Indicates whether the server was built with atomic instructions.

• Innodb_log_waits

The number of times that the log buffer was too small and a wait was required for it to be flushed before
continuing.

• Innodb_log_write_requests

The number of write requests for the InnoDB redo log.

• Innodb_log_writes

The number of physical writes to the InnoDB redo log file.

726

Server Status Variables

• Innodb_num_open_files

The number of files InnoDB currently holds open.

• Innodb_os_log_fsyncs

The number of fsync() writes done to the InnoDB redo log files.

• Innodb_os_log_pending_fsyncs

The number of pending fsync() operations for the InnoDB redo log files.

• Innodb_os_log_pending_writes

The number of pending writes to the InnoDB redo log files.

• Innodb_os_log_written

The number of bytes written to the InnoDB redo log files.

• Innodb_page_size

InnoDB page size (default 16KB). Many values are counted in pages; the page size enables them to be
easily converted to bytes.

• Innodb_pages_created

The number of pages created by operations on InnoDB tables.

• Innodb_pages_read

The number of pages read from the InnoDB buffer pool by operations on InnoDB tables.

• Innodb_pages_written

The number of pages written by operations on InnoDB tables.

• Innodb_row_lock_current_waits

The number of row locks currently being waited for by operations on InnoDB tables.

• Innodb_row_lock_time

The total time spent in acquiring row locks for InnoDB tables, in milliseconds.

• Innodb_row_lock_time_avg

The average time to acquire a row lock for InnoDB tables, in milliseconds.

• Innodb_row_lock_time_max

The maximum time to acquire a row lock for InnoDB tables, in milliseconds.

• Innodb_row_lock_waits

The number of times operations on InnoDB tables had to wait for a row lock.

• Innodb_rows_deleted

The number of rows deleted from InnoDB tables.

727

Server Status Variables

• Innodb_rows_inserted

The number of rows inserted into InnoDB tables.

• Innodb_rows_read

The number of rows read from InnoDB tables.

• Innodb_rows_updated

The number of rows updated in InnoDB tables.

• Innodb_truncated_status_writes

The number of times output from the SHOW ENGINE INNODB STATUS statement has been truncated.

• Key_blocks_not_flushed

The number of key blocks in the MyISAM key cache that have changed but have not yet been flushed to
disk.

• Key_blocks_unused

The number of unused blocks in the MyISAM key cache. You can use this value to determine how much
of the key cache is in use; see the discussion of key_buffer_size in Section 5.1.7, “Server System
Variables”.

• Key_blocks_used

The number of used blocks in the MyISAM key cache. This value is a high-water mark that indicates the
maximum number of blocks that have ever been in use at one time.

• Key_read_requests

The number of requests to read a key block from the MyISAM key cache.

• Key_reads

The number of physical reads of a key block from disk into the MyISAM key cache. If Key_reads is
large, then your key_buffer_size value is probably too small. The cache miss rate can be calculated
as Key_reads/Key_read_requests.

• Key_write_requests

The number of requests to write a key block to the MyISAM key cache.

• Key_writes

The number of physical writes of a key block from the MyISAM key cache to disk.

• Last_query_cost

The total cost of the last compiled query as computed by the query optimizer. This is useful for
comparing the cost of different query plans for the same query. The default value of 0 means that no
query has been compiled yet. The default value is 0. Last_query_cost has session scope.

Last_query_cost can be computed accurately only for simple, “flat” queries, but not for complex
queries such as those containing subqueries or UNION. For the latter, the value is set to 0.

• Last_query_partial_plans

728

Server Status Variables

The number of iterations the query optimizer made in execution plan construction for the previous query.

Last_query_partial_plans has session scope.

• Max_used_connections

The maximum number of connections that have been in use simultaneously since the server started.

• Not_flushed_delayed_rows

The number of rows waiting to be written to nontransactional tables in INSERT DELAYED queues.

This status variable is deprecated (because DELAYED inserts are deprecated); expect it to be removed in
a future release.

• Open_files

The number of files that are open. This count includes regular files opened by the server. It does not
include other types of files such as sockets or pipes. Also, the count does not include files that storage
engines open using their own internal functions rather than asking the server level to do so.

• Open_streams

The number of streams that are open (used mainly for logging).

• Open_table_definitions

The number of cached .frm files.

• Open_tables

The number of tables that are open.

• Opened_files

The number of files that have been opened with my_open() (a mysys library function). Parts of the
server that open files without using this function do not increment the count.

• Opened_table_definitions

The number of .frm files that have been cached.

• Opened_tables

The number of tables that have been opened. If Opened_tables is big, your table_open_cache
value is probably too small.

• Performance_schema_xxx

Performance Schema status variables are listed in Section 22.16, “Performance Schema Status
Variables”. These variables provide information about instrumentation that could not be loaded or
created due to memory constraints.

• Prepared_stmt_count

The current number of prepared statements. (The maximum number of statements is given by the
max_prepared_stmt_count system variable.)

• Qcache_free_blocks

729

Server Status Variables

The number of free memory blocks in the query cache.

• Qcache_free_memory

The amount of free memory for the query cache.

• Qcache_hits

The number of query cache hits.

The discussion at the beginning of this section indicates how to relate this statement-counting status
variable to other such variables.

• Qcache_inserts

The number of queries added to the query cache.

• Qcache_lowmem_prunes

The number of queries that were deleted from the query cache because of low memory.

• Qcache_not_cached

The number of noncached queries (not cacheable, or not cached due to the query_cache_type
setting).

• Qcache_queries_in_cache

The number of queries registered in the query cache.

• Qcache_total_blocks

The total number of blocks in the query cache.

• Queries

The number of statements executed by the server. This variable includes statements executed within
stored programs, unlike the Questions variable. It does not count COM_PING or COM_STATISTICS
commands.

The discussion at the beginning of this section indicates how to relate this statement-counting status
variable to other such variables.

• Questions

The number of statements executed by the server. This includes only statements sent to the server
by clients and not statements executed within stored programs, unlike the Queries variable. This
variable does not count COM_PING, COM_STATISTICS, COM_STMT_PREPARE, COM_STMT_CLOSE, or
COM_STMT_RESET commands.

The discussion at the beginning of this section indicates how to relate this statement-counting status
variable to other such variables.

• Rpl_semi_sync_master_clients

The number of semisynchronous replicas.

This variable is available only if the source-side semisynchronous replication plugin is installed.

730

Server Status Variables

• Rpl_semi_sync_master_net_avg_wait_time

The average time in microseconds the source waited for a replica reply.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_net_wait_time

The total time in microseconds the source waited for replica replies.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_net_waits

The total number of times the source waited for replica replies.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_no_times

The number of times the source turned off semisynchronous replication.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_no_tx

The number of commits that were not acknowledged successfully by a replica.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_status

Whether semisynchronous replication currently is operational on the source. The value is ON if the plugin
has been enabled and a commit acknowledgment has occurred. It is OFF if the plugin is not enabled or
the source has fallen back to asynchronous replication due to commit acknowledgment timeout.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_timefunc_failures

The number of times the source failed when calling time functions such as gettimeofday().

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_tx_avg_wait_time

The average time in microseconds the source waited for each transaction.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_tx_wait_time

The total time in microseconds the source waited for transactions.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_tx_waits

The total number of times the source waited for transactions.

731

Server Status Variables

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_wait_pos_backtraverse

The total number of times the source waited for an event with binary coordinates lower than events
waited for previously. This can occur when the order in which transactions start waiting for a reply is
different from the order in which their binary log events are written.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_wait_sessions

The number of sessions currently waiting for replica replies.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_master_yes_tx

The number of commits that were acknowledged successfully by a replica.

This variable is available only if the master-side semisynchronous replication plugin is installed.

• Rpl_semi_sync_slave_status

Whether semisynchronous replication currently is operational on the replica. This is ON if the plugin has
been enabled and the replica I/O thread is running, OFF otherwise.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

• Rsa_public_key

This variable is available if MySQL was compiled using OpenSSL (see Section 6.3.4, “SSL
Library-Dependent Capabilities”). Its value is the public key used by the sha256_password
authentication plugin for RSA key pair-based password exchange. The value is nonempty
only if the server successfully initializes the private and public keys in the files named by the
sha256_password_private_key_path and sha256_password_public_key_path system
variables. The value of Rsa_public_key comes from the latter file.

For information about sha256_password, see Section 6.4.1.4, “SHA-256 Pluggable Authentication”.

• Select_full_join

The number of joins that perform table scans because they do not use indexes. If this value is not 0, you
should carefully check the indexes of your tables.

• Select_full_range_join

The number of joins that used a range search on a reference table.

• Select_range

The number of joins that used ranges on the first table. This is normally not a critical issue even if the
value is quite large.

• Select_range_check

The number of joins without keys that check for key usage after each row. If this is not 0, you should
carefully check the indexes of your tables.

732

Server Status Variables

• Select_scan

The number of joins that did a full scan of the first table.

• Slave_heartbeat_period

Shows the replication heartbeat interval (in seconds) on a replica.

• Slave_last_heartbeat

Shows when the most recent heartbeat signal was received by a replica, as a TIMESTAMP value.

• Slave_open_temp_tables

The number of temporary tables that the replica SQL thread currently has open. If the value is greater
than zero, it is not safe to shut down the replica; see Section 17.4.1.29, “Replication and Temporary
Tables”.

• Slave_received_heartbeats

This counter increments with each replication heartbeat received by a replica since the last time that the
replica was restarted or reset, or a CHANGE MASTER TO statement was issued.

• Slave_retried_transactions

The total number of times since startup that the replica SQL thread has retried transactions.

• Slave_rows_last_search_algorithm_used

The search algorithm that was most recently used by this replica to locate rows for row-based
replication. The result shows whether the replica used indexes, a table scan, or hashing as the search
algorithm for the last transaction executed on any channel.

The method used depends on the setting for the slave_rows_search_algorithms system variable,
and the keys that are available on the relevant table.

This variable is available only for debug builds of MySQL.

• Slave_running

This is ON if this server is a replica that is connected to a replication source, and both the I/O and SQL
threads are running; otherwise, it is OFF.

• Slow_launch_threads

The number of threads that have taken more than slow_launch_time seconds to create.

• Slow_queries

The number of queries that have taken more than long_query_time seconds. This counter
increments regardless of whether the slow query log is enabled. For information about that log, see
Section 5.4.5, “The Slow Query Log”.

• Sort_merge_passes

The number of merge passes that the sort algorithm has had to do. If this value is large, you should
consider increasing the value of the sort_buffer_size system variable.

• Sort_range

733

Server Status Variables

The number of sorts that were done using ranges.

• Sort_rows

The number of sorted rows.

• Sort_scan

The number of sorts that were done by scanning the table.

• Ssl_accept_renegotiates

The number of negotiates needed to establish the connection.

• Ssl_accepts

The number of accepted SSL connections.

• Ssl_callback_cache_hits

The number of callback cache hits.

• Ssl_cipher

The current encryption cipher (empty for unencrypted connections).

• Ssl_cipher_list

The list of possible SSL ciphers (empty for non-SSL connections).

• Ssl_client_connects

The number of SSL connection attempts to an SSL-enabled source.

• Ssl_connect_renegotiates

The number of negotiates needed to establish the connection to an SSL-enabled source.

• Ssl_ctx_verify_depth

The SSL context verification depth (how many certificates in the chain are tested).

• Ssl_ctx_verify_mode

The SSL context verification mode.

• Ssl_default_timeout

The default SSL timeout.

• Ssl_finished_accepts

The number of successful SSL connections to the server.

• Ssl_finished_connects

The number of successful replica connections to an SSL-enabled source.

• Ssl_server_not_after

734

Server Status Variables

The last date for which the SSL certificate is valid. To check SSL certificate expiration information, use
this statement:

mysql> SHOW STATUS LIKE 'Ssl_server_not%';
+-----------------------+--------------------------+
| Variable_name | Value |
+-----------------------+--------------------------+
| Ssl_server_not_after | Apr 28 14:16:39 2025 GMT |
| Ssl_server_not_before | May 1 14:16:39 2015 GMT |
+-----------------------+--------------------------+

In MySQL 5.6, the value is empty unless the connection uses SSL.

• Ssl_server_not_before

The first date for which the SSL certificate is valid.

In MySQL 5.6, the value is empty unless the connection uses SSL.

• Ssl_session_cache_hits

The number of SSL session cache hits.

• Ssl_session_cache_misses

The number of SSL session cache misses.

• Ssl_session_cache_mode

The SSL session cache mode.

• Ssl_session_cache_overflows

The number of SSL session cache overflows.

• Ssl_session_cache_size

The SSL session cache size.

• Ssl_session_cache_timeouts

The number of SSL session cache timeouts.

• Ssl_sessions_reused

This is equal to 0 if TLS was not used in the current MySQL session, or if a TLS session has not been
reused; otherwise it is equal to 1.

Ssl_sessions_reused has session scope.

• Ssl_used_session_cache_entries

How many SSL session cache entries were used.

• Ssl_verify_depth

The verification depth for replication SSL connections.

• Ssl_verify_mode

735

Server Status Variables

The verification mode used by the server for a connection that uses SSL. The value is a bitmask; bits are
defined in the openssl/ssl.h header file:

define SSL_VERIFY_NONE 0x00
define SSL_VERIFY_PEER 0x01
define SSL_VERIFY_FAIL_IF_NO_PEER_CERT 0x02
define SSL_VERIFY_CLIENT_ONCE 0x04

SSL_VERIFY_PEER indicates that the server asks for a client certificate. If the client supplies one, the
server performs verification and proceeds only if verification is successful. SSL_VERIFY_CLIENT_ONCE
indicates that a request for the client certificate is done only in the initial handshake.

• Ssl_version

The SSL protocol version of the connection (for example, TLSv1). If the connection is not encrypted, the
value is empty.

• Table_locks_immediate

The number of times that a request for a table lock could be granted immediately.

• Table_locks_waited

The number of times that a request for a table lock could not be granted immediately and a wait was
needed. If this is high and you have performance problems, you should first optimize your queries, and
then either split your table or tables or use replication.

• Table_open_cache_hits

The number of hits for open tables cache lookups.

• Table_open_cache_misses

The number of misses for open tables cache lookups.

• Table_open_cache_overflows

The number of overflows for the open tables cache. This is the number of times, after a table is
opened or closed, a cache instance has an unused entry and the size of the instance is larger than
table_open_cache / table_open_cache_instances.

• Tc_log_max_pages_used

For the memory-mapped implementation of the log that is used by mysqld when it acts as the
transaction coordinator for recovery of internal XA transactions, this variable indicates the largest
number of pages used for the log since the server started. If the product of Tc_log_max_pages_used
and Tc_log_page_size is always significantly less than the log size, the size is larger than necessary
and can be reduced. (The size is set by the --log-tc-size option. This variable is unused: It is
unneeded for binary log-based recovery, and the memory-mapped recovery log method is not used
unless the number of storage engines that are capable of two-phase commit and that support XA
transactions is greater than one. (InnoDB is the only applicable engine.)

• Tc_log_page_size

The page size used for the memory-mapped implementation of the XA recovery log. The default value
is determined using getpagesize(). This variable is unused for the same reasons as described for
Tc_log_max_pages_used.

736

Server SQL Modes

• Tc_log_page_waits

For the memory-mapped implementation of the recovery log, this variable increments each time the
server was not able to commit a transaction and had to wait for a free page in the log. If this value is
large, you might want to increase the log size (with the --log-tc-size option). For binary log-based
recovery, this variable increments each time the binary log cannot be closed because there are two-
phase commits in progress. (The close operation waits until all such transactions are finished.)

• Threads_cached

The number of threads in the thread cache.

• Threads_connected

The number of currently open connections.

• Threads_created

The number of threads created to handle connections. If Threads_created is big, you may
want to increase the thread_cache_size value. The cache miss rate can be calculated as
Threads_created/Connections.

• Threads_running

The number of threads that are not sleeping.

• Uptime

The number of seconds that the server has been up.

• Uptime_since_flush_status

The number of seconds since the most recent FLUSH STATUS statement.

5.1.10 Server SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for different
clients, depending on the value of the sql_mode system variable. DBAs can set the global SQL mode to
match site server operating requirements, and each application can set its session SQL mode to its own
requirements.

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes it
easier to use MySQL in different environments and to use MySQL together with other database servers.

• Setting the SQL Mode

• The Most Important SQL Modes

• Full List of SQL Modes

• Combination SQL Modes

• Strict SQL Mode

For answers to questions often asked about server SQL modes in MySQL, see Section A.3, “MySQL 5.6
FAQ: Server SQL Mode”.

When working with InnoDB tables, consider also the innodb_strict_mode system variable. It enables
additional error checks for InnoDB tables.

737

Server SQL Modes

Setting the SQL Mode

The default SQL mode is NO_ENGINE_SUBSTITUTION.

To set the SQL mode at server startup, use the --sql-mode="modes" option on the command line, or
sql-mode="modes" in an option file such as my.cnf (Unix operating systems) or my.ini (Windows).
modes is a list of different modes separated by commas. To clear the SQL mode explicitly, set it to an
empty string using --sql-mode="" on the command line, or sql-mode="" in an option file.

Note

MySQL installation programs may configure the SQL mode during the installation
process. For example, mysql_install_db creates a default option file named
my.cnf in the base installation directory. This file contains a line that sets the SQL
mode; see Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”.

If the SQL mode differs from the default or from what you expect, check for a setting
in an option file that the server reads at startup.

To change the SQL mode at runtime, set the global or session sql_mode system variable using a SET
statement:

SET GLOBAL sql_mode = 'modes';
SET SESSION sql_mode = 'modes';

Setting the GLOBAL variable requires the SUPER privilege and affects the operation of all clients that
connect from that time on. Setting the SESSION variable affects only the current client. Each client can
change its session sql_mode value at any time.

To determine the current global or session sql_mode setting, select its value:

SELECT @@GLOBAL.sql_mode;
SELECT @@SESSION.sql_mode;

Important

SQL mode and user-defined partitioning. Changing the server SQL mode
after creating and inserting data into partitioned tables can cause major changes
in the behavior of such tables, and could lead to loss or corruption of data. It is
strongly recommended that you never change the SQL mode once you have
created tables employing user-defined partitioning.

When replicating partitioned tables, differing SQL modes on the source and replica
can also lead to problems. For best results, you should always use the same server
SQL mode on the source and replica.

For more information, see Section 19.6, “Restrictions and Limitations on
Partitioning”.

The Most Important SQL Modes

The most important sql_mode values are probably these:

• ANSI

This mode changes syntax and behavior to conform more closely to standard SQL. It is one of the
special combination modes listed at the end of this section.

• STRICT_TRANS_TABLES

738

Server SQL Modes

If a value could not be inserted as given into a transactional table, abort the statement. For a
nontransactional table, abort the statement if the value occurs in a single-row statement or the first row
of a multiple-row statement. More details are given later in this section.

• TRADITIONAL

Make MySQL behave like a “traditional” SQL database system. A simple description of this mode is “give
an error instead of a warning” when inserting an incorrect value into a column. It is one of the special
combination modes listed at the end of this section.

Note

With TRADITIONAL mode enabled, an INSERT or UPDATE aborts as soon as an
error occurs. If you are using a nontransactional storage engine, this may not be
what you want because data changes made prior to the error may not be rolled
back, resulting in a “partially done” update.

When this manual refers to “strict mode,” it means a mode with either or both STRICT_TRANS_TABLES or
STRICT_ALL_TABLES enabled.

Full List of SQL Modes

The following list describes all supported SQL modes:

• ALLOW_INVALID_DATES

Do not perform full checking of dates. Check only that the month is in the range from 1 to 12 and the day
is in the range from 1 to 31. This may be useful for Web applications that obtain year, month, and day in
three different fields and store exactly what the user inserted, without date validation. This mode applies
to DATE and DATETIME columns. It does not apply to TIMESTAMP columns, which always require a valid
date.

With ALLOW_INVALID_DATES disabled, the server requires that month and day values be legal, and
not merely in the range 1 to 12 and 1 to 31, respectively. With strict mode disabled, invalid dates such as
'2004-04-31' are converted to '0000-00-00' and a warning is generated. With strict mode enabled,
invalid dates generate an error. To permit such dates, enable ALLOW_INVALID_DATES.

• ANSI_QUOTES

Treat " as an identifier quote character (like the ` quote character) and not as a string quote character.
You can still use ` to quote identifiers with this mode enabled. With ANSI_QUOTES enabled, you cannot
use double quotation marks to quote literal strings because they are interpreted as identifiers.

• ERROR_FOR_DIVISION_BY_ZERO

The ERROR_FOR_DIVISION_BY_ZERO mode affects handling of division by zero, which includes
MOD(N,0). For data-change operations (INSERT, UPDATE), its effect also depends on whether strict
SQL mode is enabled.

• If this mode is not enabled, division by zero inserts NULL and produces no warning.

• If this mode is enabled, division by zero inserts NULL and produces a warning.

• If this mode and strict mode are enabled, division by zero produces an error, unless IGNORE is given
as well. For INSERT IGNORE and UPDATE IGNORE, division by zero inserts NULL and produces a
warning.

739

Server SQL Modes

For SELECT, division by zero returns NULL. Enabling ERROR_FOR_DIVISION_BY_ZERO causes a
warning to be produced as well, regardless of whether strict mode is enabled.

As of MySQL 5.6.17, ERROR_FOR_DIVISION_BY_ZERO is deprecated and setting the sql_mode value
to include it generates a warning.

• HIGH_NOT_PRECEDENCE

The precedence of the NOT operator is such that expressions such as NOT a BETWEEN b AND c are
parsed as NOT (a BETWEEN b AND c). In some older versions of MySQL, the expression was parsed
as (NOT a) BETWEEN b AND c. The old higher-precedence behavior can be obtained by enabling the
HIGH_NOT_PRECEDENCE SQL mode.

mysql> SET sql_mode = '';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
 -> 0
mysql> SET sql_mode = 'HIGH_NOT_PRECEDENCE';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
 -> 1

• IGNORE_SPACE

Permit spaces between a function name and the (character. This causes built-in function names to
be treated as reserved words. As a result, identifiers that are the same as function names must be
quoted as described in Section 9.2, “Schema Object Names”. For example, because there is a COUNT()
function, the use of count as a table name in the following statement causes an error:

mysql> CREATE TABLE count (i INT);
ERROR 1064 (42000): You have an error in your SQL syntax

The table name should be quoted:

mysql> CREATE TABLE `count` (i INT);
Query OK, 0 rows affected (0.00 sec)

The IGNORE_SPACE SQL mode applies to built-in functions, not to loadable functions or stored
functions. It is always permissible to have spaces after a loadable function or stored function name,
regardless of whether IGNORE_SPACE is enabled.

For further discussion of IGNORE_SPACE, see Section 9.2.5, “Function Name Parsing and Resolution”.

• NO_AUTO_CREATE_USER

Prevent the GRANT statement from automatically creating new users if it would otherwise do so, unless
authentication information is specified. The statement must specify a nonempty password using
IDENTIFIED BY or an authentication plugin using IDENTIFIED WITH.

• NO_AUTO_VALUE_ON_ZERO

NO_AUTO_VALUE_ON_ZERO affects handling of AUTO_INCREMENT columns. Normally, you generate the
next sequence number for the column by inserting either NULL or 0 into it. NO_AUTO_VALUE_ON_ZERO
suppresses this behavior for 0 so that only NULL generates the next sequence number.

This mode can be useful if 0 has been stored in a table's AUTO_INCREMENT column. (Storing 0 is not
a recommended practice, by the way.) For example, if you dump the table with mysqldump and then
reload it, MySQL normally generates new sequence numbers when it encounters the 0 values, resulting
in a table with contents different from the one that was dumped. Enabling NO_AUTO_VALUE_ON_ZERO

740

Server SQL Modes

before reloading the dump file solves this problem. For this reason, mysqldump automatically includes in
its output a statement that enables NO_AUTO_VALUE_ON_ZERO.

• NO_BACKSLASH_ESCAPES

Enabling this mode disables the use of the backslash character (\) as an escape character within strings
and identifiers. With this mode enabled, backslash becomes an ordinary character like any other, and
the default escape sequence for LIKE expressions is changed so that no escape character is used.

• NO_DIR_IN_CREATE

When creating a table, ignore all INDEX DIRECTORY and DATA DIRECTORY directives. This option is
useful on replica servers.

• NO_ENGINE_SUBSTITUTION

Control automatic substitution of the default storage engine when a statement such as CREATE TABLE
or ALTER TABLE specifies a storage engine that is disabled or not compiled in.

Because storage engines can be pluggable at runtime, unavailable engines are treated the same way:

With NO_ENGINE_SUBSTITUTION disabled, for CREATE TABLE the default engine is used and a
warning occurs if the desired engine is unavailable. For ALTER TABLE, a warning occurs and the table
is not altered.

With NO_ENGINE_SUBSTITUTION enabled, an error occurs and the table is not created or altered if the
desired engine is unavailable.

• NO_FIELD_OPTIONS

Do not print MySQL-specific column options in the output of SHOW CREATE TABLE. This mode is used
by mysqldump in portability mode.

• NO_KEY_OPTIONS

Do not print MySQL-specific index options in the output of SHOW CREATE TABLE. This mode is used by
mysqldump in portability mode.

• NO_TABLE_OPTIONS

Do not print MySQL-specific table options (such as ENGINE) in the output of SHOW CREATE TABLE.
This mode is used by mysqldump in portability mode.

• NO_UNSIGNED_SUBTRACTION

Subtraction between integer values, where one is of type UNSIGNED, produces an unsigned result by
default. If the result would otherwise have been negative, an error results:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CAST(0 AS UNSIGNED) - 1;
ERROR 1690 (22003): BIGINT UNSIGNED value is out of range in '(cast(0 as unsigned) - 1)'

If the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is negative:

mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |

741

Server SQL Modes

+-------------------------+
| -1 |
+-------------------------+

If the result of such an operation is used to update an UNSIGNED integer column, the result is clipped
to the maximum value for the column type, or clipped to 0 if NO_UNSIGNED_SUBTRACTION is enabled.
With strict SQL mode enabled, an error occurs and the column remains unchanged.

When NO_UNSIGNED_SUBTRACTION is enabled, the subtraction result is signed, even if any operand is
unsigned. For example, compare the type of column c2 in table t1 with that of column c2 in table t2:

mysql> SET sql_mode='';
mysql> CREATE TABLE test (c1 BIGINT UNSIGNED NOT NULL);
mysql> CREATE TABLE t1 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t1;
+-------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------------+------+-----+---------+-------+
| c2 | bigint(21) unsigned | NO | | 0 | |
+-------+---------------------+------+-----+---------+-------+

mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
mysql> CREATE TABLE t2 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t2;
+-------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+------------+------+-----+---------+-------+
| c2 | bigint(21) | NO | | 0 | |
+-------+------------+------+-----+---------+-------+

This means that BIGINT UNSIGNED is not 100% usable in all contexts. See Section 12.11, “Cast
Functions and Operators”.

• NO_ZERO_DATE

The NO_ZERO_DATE mode affects whether the server permits '0000-00-00' as a valid date. Its effect
also depends on whether strict SQL mode is enabled.

• If this mode is not enabled, '0000-00-00' is permitted and inserts produce no warning.

• If this mode is enabled, '0000-00-00' is permitted and inserts produce a warning.

• If this mode and strict mode are enabled, '0000-00-00' is not permitted and inserts produce an
error, unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE, '0000-00-00' is
permitted and inserts produce a warning.

As of MySQL 5.6.17, NO_ZERO_DATE is deprecated and setting the sql_mode value to include it
generates a warning.

• NO_ZERO_IN_DATE

The NO_ZERO_IN_DATE mode affects whether the server permits dates in which the year part
is nonzero but the month or day part is 0. (This mode affects dates such as '2010-00-01' or
'2010-01-00', but not '0000-00-00'. To control whether the server permits '0000-00-00', use

742

Server SQL Modes

the NO_ZERO_DATE mode.) The effect of NO_ZERO_IN_DATE also depends on whether strict SQL mode
is enabled.

• If this mode is not enabled, dates with zero parts are permitted and inserts produce no warning.

• If this mode is enabled, dates with zero parts are inserted as '0000-00-00' and produce a warning.

• If this mode and strict mode are enabled, dates with zero parts are not permitted and inserts produce
an error, unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE, dates with zero
parts are inserted as '0000-00-00' and produce a warning.

As of MySQL 5.6.17, NO_ZERO_IN_DATE is deprecated and setting the sql_mode value to include it
generates a warning.

• ONLY_FULL_GROUP_BY

Reject queries for which the select list, HAVING condition, or ORDER BY list refer to nonaggregated
columns that are not named in the GROUP BY clause.

A MySQL extension to standard SQL permits references in the HAVING clause to aliased expressions
in the select list. Enabling ONLY_FULL_GROUP_BY disables this extension, thus requiring the HAVING
clause to be written using unaliased expressions.

For additional discussion and examples, see Section 12.19.3, “MySQL Handling of GROUP BY”.

• PAD_CHAR_TO_FULL_LENGTH

By default, trailing spaces are trimmed from CHAR column values on retrieval. If
PAD_CHAR_TO_FULL_LENGTH is enabled, trimming does not occur and retrieved CHAR values are
padded to their full length. This mode does not apply to VARCHAR columns, for which trailing spaces are
retained on retrieval.

mysql> CREATE TABLE t1 (c1 CHAR(10));
Query OK, 0 rows affected (0.37 sec)

mysql> INSERT INTO t1 (c1) VALUES('xy');
Query OK, 1 row affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------+-----------------+
| c1 | CHAR_LENGTH(c1) |
+------+-----------------+
| xy | 2 |
+------+-----------------+
1 row in set (0.00 sec)

mysql> SET sql_mode = 'PAD_CHAR_TO_FULL_LENGTH';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------------+-----------------+
| c1 | CHAR_LENGTH(c1) |
+------------+-----------------+
| xy | 10 |
+------------+-----------------+
1 row in set (0.00 sec)

• PIPES_AS_CONCAT

743

Server SQL Modes

Treat || as a string concatenation operator (same as CONCAT()) rather than as a synonym for OR.

• REAL_AS_FLOAT

Treat REAL as a synonym for FLOAT. By default, MySQL treats REAL as a synonym for DOUBLE.

• STRICT_ALL_TABLES

Enable strict SQL mode for all storage engines. Invalid data values are rejected. For details, see Strict
SQL Mode.

• STRICT_TRANS_TABLES

Enable strict SQL mode for transactional storage engines, and when possible for nontransactional
storage engines. For details, see Strict SQL Mode.

Combination SQL Modes

The following special modes are provided as shorthand for combinations of mode values from the
preceding list.

• ANSI

Equivalent to REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE.

ANSI mode also causes the server to return an error for queries where a set function S with an outer
reference S(outer_ref) cannot be aggregated in the outer query against which the outer reference
has been resolved. This is such a query:

SELECT * FROM t1 WHERE t1.a IN (SELECT MAX(t1.b) FROM t2 WHERE ...);

Here, MAX(t1.b) cannot aggregated in the outer query because it appears in the WHERE clause of that
query. Standard SQL requires an error in this situation. If ANSI mode is not enabled, the server treats
S(outer_ref) in such queries the same way that it would interpret S(const).

See Section 1.6, “MySQL Standards Compliance”.

• DB2

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• MAXDB

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

• MSSQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• MYSQL323

Equivalent to MYSQL323, HIGH_NOT_PRECEDENCE. This means HIGH_NOT_PRECEDENCE plus some
SHOW CREATE TABLE behaviors specific to MYSQL323:

• TIMESTAMP column display does not include DEFAULT or ON UPDATE attributes.

744

Server SQL Modes

• String column display does not include character set and collation attributes. For CHAR and VARCHAR
columns, if the collation is binary, BINARY is appended to the column type.

• The ENGINE=engine_name table option displays as TYPE=engine_name.

• For MEMORY tables, the storage engine is displayed as HEAP.

• MYSQL40

Equivalent to MYSQL40, HIGH_NOT_PRECEDENCE. This means HIGH_NOT_PRECEDENCE plus some
behaviors specific to MYSQL40. These are the same as for MYSQL323, except that SHOW CREATE
TABLE does not display HEAP as the storage engine for MEMORY tables.

• ORACLE

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

• POSTGRESQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• TRADITIONAL

Equivalent to STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE,
ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER, and NO_ENGINE_SUBSTITUTION.

Strict SQL Mode

Strict mode controls how MySQL handles invalid or missing values in data-change statements such as
INSERT or UPDATE. A value can be invalid for several reasons. For example, it might have the wrong data
type for the column, or it might be out of range. A value is missing when a new row to be inserted does not
contain a value for a non-NULL column that has no explicit DEFAULT clause in its definition. (For a NULL
column, NULL is inserted if the value is missing.) Strict mode also affects DDL statements such as CREATE
TABLE.

If strict mode is not in effect, MySQL inserts adjusted values for invalid or missing values and produces
warnings (see Section 13.7.5.41, “SHOW WARNINGS Statement”). In strict mode, you can produce this
behavior by using INSERT IGNORE or UPDATE IGNORE.

For statements such as SELECT that do not change data, invalid values generate a warning in strict mode,
not an error.

As of MySQL 5.6.11, strict mode produces an error for attempts to create a key that exceeds the maximum
key length. Previously, this resulted in a warning and truncation of the key to the maximum key length (the
same as when strict mode is not enabled).

Strict mode does not affect whether foreign key constraints are checked. foreign_key_checks can be
used for that. (See Section 5.1.7, “Server System Variables”.)

Strict SQL mode is in effect if either STRICT_ALL_TABLES or STRICT_TRANS_TABLES is enabled,
although the effects of these modes differ somewhat:

• For transactional tables, an error occurs for invalid or missing values in a data-change statement when
either STRICT_ALL_TABLES or STRICT_TRANS_TABLES is enabled. The statement is aborted and
rolled back.

745

Connection Management

• For nontransactional tables, the behavior is the same for either mode if the bad value occurs in the
first row to be inserted or updated: The statement is aborted and the table remains unchanged. If the
statement inserts or modifies multiple rows and the bad value occurs in the second or later row, the
result depends on which strict mode is enabled:

• For STRICT_ALL_TABLES, MySQL returns an error and ignores the rest of the rows. However,
because the earlier rows have been inserted or updated, the result is a partial update. To avoid this,
use single-row statements, which can be aborted without changing the table.

• For STRICT_TRANS_TABLES, MySQL converts an invalid value to the closest valid value for the
column and inserts the adjusted value. If a value is missing, MySQL inserts the implicit default
value for the column data type. In either case, MySQL generates a warning rather than an error and
continues processing the statement. Implicit defaults are described in Section 11.5, “Data Type Default
Values”.

Strict mode also affects handling of division by zero, zero dates, and zeros in dates, in conjunction with the
ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE modes. For details, see the
descriptions of those modes.

5.1.11 Connection Management

This section describes how MySQL Server manages connections. This includes a description of the
available connection interfaces, how the server uses connection handler threads, details about the
administrative connection interface, and management of DNS lookups.

5.1.11.1 Connection Interfaces

This section describes aspects of how the MySQL server manages client connections.

• Network Interfaces and Connection Manager Threads

• Client Connection Thread Management

• Connection Volume Management

Network Interfaces and Connection Manager Threads

The server is capable of listening for client connections on multiple network interfaces. Connection
manager threads handle client connection requests on the network interfaces that the server listens to:

• On all platforms, one manager thread handles TCP/IP connection requests.

• On Unix, the same manager thread also handles Unix socket file connection requests.

• On Windows, one manager thread handles shared-memory connection requests, and another handles
named-pipe connection requests.

The server does not create threads to handle interfaces that it does not listen to. For example, a Windows
server that does not have support for named-pipe connections enabled does not create a thread to handle
them.

Client Connection Thread Management

Connection manager threads associate each client connection with a thread dedicated to it that handles
authentication and request processing for that connection. Manager threads create a new thread when
necessary but try to avoid doing so by consulting the thread cache first to see whether it contains a thread

746

Connection Management

that can be used for the connection. When a connection ends, its thread is returned to the thread cache if
the cache is not full.

In this connection thread model, there are as many threads as there are clients currently connected, which
has some disadvantages when server workload must scale to handle large numbers of connections.
For example, thread creation and disposal becomes expensive. Also, each thread requires server and
kernel resources, such as stack space. To accommodate a large number of simultaneous connections,
the stack size per thread must be kept small, leading to a situation where it is either too small or the server
consumes large amounts of memory. Exhaustion of other resources can occur as well, and scheduling
overhead can become significant.

MySQL Enterprise Edition includes a thread pool plugin that provides an alternative thread-handling model
designed to reduce overhead and improve performance. It implements a thread pool that increases server
performance by efficiently managing statement execution threads for large numbers of client connections.
See Section 5.5.3, “MySQL Enterprise Thread Pool”.

To control and monitor how the server manages threads that handle client connections, several system
and status variables are relevant. (See Section 5.1.7, “Server System Variables”, and Section 5.1.9,
“Server Status Variables”.)

• The thread_cache_size system variable determines the thread cache size. By default, the
server autosizes the value at startup, but it can be set explicitly to override this default. A value
of 0 disables caching, which causes a thread to be set up for each new connection and disposed
of when the connection terminates. To enable N inactive connection threads to be cached, set
thread_cache_size to N at server startup or at runtime. A connection thread becomes inactive when
the client connection with which it was associated terminates.

• To monitor the number of threads in the cache and how many threads have been created because a
thread could not be taken from the cache, check the Threads_cached and Threads_created status
variables.

• When the thread stack is too small, this limits the complexity of the SQL statements the server can
handle, the recursion depth of stored procedures, and other memory-consuming actions. To set a stack
size of N bytes for each thread, start the server with thread_stack set to N.

Connection Volume Management

To control the maximum number of clients the server permits to connect simultaneously, set the
max_connections system variable at server startup or at runtime. It may be necessary to increase
max_connections if more clients attempt to connect simultaneously then the server is configured to
handle (see Section B.3.2.6, “Too many connections”).

mysqld actually permits max_connections + 1 client connections. The extra connection is reserved
for use by accounts that have the SUPER privilege. By granting the privilege to administrators and not
to normal users (who should not need it), an administrator who also has the PROCESS privilege can
connect to the server and use SHOW PROCESSLIST to diagnose problems even if the maximum number of
unprivileged clients are connected. See Section 13.7.5.30, “SHOW PROCESSLIST Statement”.

If the server refuses a connection because the max_connections limit is reached, it increments the
Connection_errors_max_connections status variable.

The maximum number of connections MySQL supports (that is, the maximum value to which
max_connections can be set) depends on several factors:

• The quality of the thread library on a given platform.

• The amount of RAM available.

747

Connection Management

• The amount of RAM is used for each connection.

• The workload from each connection.

• The desired response time.

• The number of file descriptors available.

Linux or Solaris should be able to support at least 500 to 1000 simultaneous connections routinely and as
many as 10,000 connections if you have many gigabytes of RAM available and the workload from each is
low or the response time target undemanding.

Increasing the max_connections value increases the number of file descriptors that mysqld requires. If
the required number of descriptors are not available, the server reduces the value of max_connections.
For comments on file descriptor limits, see Section 8.4.3.1, “How MySQL Opens and Closes Tables”.

Increasing the open_files_limit system variable may be necessary, which may also require raising
the operating system limit on how many file descriptors can be used by MySQL. Consult your operating
system documentation to determine whether it is possible to increase the limit and how to do so. See also
Section B.3.2.17, “File Not Found and Similar Errors”.

5.1.11.2 DNS Lookups and the Host Cache

The MySQL server maintains an in-memory host cache that contains information about clients: IP address,
host name, and error information. The Performance Schema host_cache table exposes the contents
of the host cache so that it can be examined using SELECT statements. This may help you diagnose the
causes of connection problems. See Section 22.12.10.1, “The host_cache Table”.

The following sections discuss how the host cache works, as well as other topics such as how to configure
and monitor the cache.

• Host Cache Operation

• Configuring the Host Cache

• Monitoring the Host Cache

• Flushing the Host Cache

• Dealing with Blocked Hosts

Host Cache Operation

The server uses the host cache only for non-localhost TCP connections. It does not use the cache for
TCP connections established using a loopback interface address (for example, 127.0.0.1 or ::1), or for
connections established using a Unix socket file, named pipe, or shared memory.

The server uses the host cache for several purposes:

• By caching the results of IP-to-host name lookups, the server avoids doing a Domain Name System
(DNS) lookup for each client connection. Instead, for a given host, it needs to perform a lookup only for
the first connection from that host.

• The cache contains information about errors that occur during the client connection process.
Some errors are considered “blocking.” If too many of these occur successively from a given
host without a successful connection, the server blocks further connections from that host. The

748

Connection Management

max_connect_errors system variable determines the permitted number of successive errors before
blocking occurs.

For each applicable new client connection, the server uses the client IP address to check whether the
client host name is in the host cache. If so, the server refuses or continues to process the connection
request depending on whether or not the host is blocked. If the host is not in the cache, the server attempts
to resolve the host name. First, it resolves the IP address to a host name and resolves that host name back
to an IP address. Then it compares the result to the original IP address to ensure that they are the same.
The server stores information about the result of this operation in the host cache. If the cache is full, the
least recently used entry is discarded.

The server performs host name resolution using the gethostbyaddr() and gethostbyname() system
calls.

The server handles entries in the host cache like this:

1. When the first TCP client connection reaches the server from a given IP address, a new cache entry
is created to record the client IP, host name, and client lookup validation flag. Initially, the host name
is set to NULL and the flag is false. This entry is also used for subsequent client TCP connections from
the same originating IP.

2. If the validation flag for the client IP entry is false, the server attempts an IP-to-host name-to-IP
DNS resolution. If that is successful, the host name is updated with the resolved host name and the
validation flag is set to true. If resolution is unsuccessful, the action taken depends on whether the error
is permanent or transient. For permanent failures, the host name remains NULL and the validation flag
is set to true. For transient failures, the host name and validation flag remain unchanged. (In this case,
another DNS resolution attempt occurs the next time a client connects from this IP.)

3. If an error occurs while processing an incoming client connection from a given IP address, the server
updates the corresponding error counters in the entry for that IP. For a description of the errors
recorded, see Section 22.12.10.1, “The host_cache Table”.

To unblock blocked hosts, flush the host cache; see Dealing with Blocked Hosts.

It is possible for a blocked host to become unblocked even without flushing the host cache if activity from
other hosts occurs:

• If the cache is full when a connection arrives from a client IP not in the cache, the server discards the
least recently used cache entry to make room for the new entry.

• If the discarded entry is for a blocked host, that host becomes unblocked.

Some connection errors are not associated with TCP connections, occur very early in the connection
process (even before an IP address is known), or are not specific to any particular IP address (such as out-
of-memory conditions). For information about these errors, check the Connection_errors_xxx status
variables (see Section 5.1.9, “Server Status Variables”).

Configuring the Host Cache

The host cache is enabled by default. The host_cache_size system variable controls its size, as well
as the size of the Performance Schema host_cache table that exposes the cache contents. The cache
size can be set at server startup and changed at runtime. For example, to set the size to 100 at startup, put
these lines in the server my.cnf file:

[mysqld]
host_cache_size=200

To change the size to 300 at runtime, do this:

749

Connection Management

SET GLOBAL host_cache_size=300;

Setting host_cache_size to 0, either at server startup or at runtime, disables the host cache. With the
cache disabled, the server performs a DNS lookup every time a client connects.

Changing the cache size at runtime causes an implicit host cache flushing operation that clears the host
cache, truncates the host_cache table, and unblocks any blocked hosts; see Flushing the Host Cache.

Using the --skip-host-cache option is similar to setting the host_cache_size system variable to
0, but host_cache_size is more flexible because it can also be used to resize, enable, and disable the
host cache at runtime, not just at server startup. Starting the server with --skip-host-cache does not
prevent runtime changes to the value of host_cache_size, but such changes have no effect and the
cache is not re-enabled even if host_cache_size is set larger than 0.

To disable DNS host name lookups, start the server with the skip_name_resolve system variable
enabled. In this case, the server uses only IP addresses and not host names to match connecting hosts to
rows in the MySQL grant tables. Only accounts specified in those tables using IP addresses can be used.
(A client may not be able to connect if no account exists that specifies the client IP address.)

If you have a very slow DNS and many hosts, you might be able to improve performance either by enabling
skip_name_resolve to disable DNS lookups, or by increasing the value of host_cache_size to make
the host cache larger.

To disallow TCP/IP connections entirely, start the server with the skip_networking system variable
enabled.

To adjust the permitted number of successive connection errors before host blocking occurs, set the
max_connect_errors system variable. For example, to set the value at startup put these lines in the
server my.cnf file:

[mysqld]
max_connect_errors=10000

To change the value at runtime, do this:

SET GLOBAL max_connect_errors=10000;

Monitoring the Host Cache

The Performance Schema host_cache table exposes the contents of the host cache. This table can be
examined using SELECT statements, which may help you diagnose the causes of connection problems.
The Performance Schema must be enabled or this table is empty. For information about this table, see
Section 22.12.10.1, “The host_cache Table”.

Flushing the Host Cache

Flushing the host cache might be advisable or desirable under these conditions:

• Some of your client hosts change IP address.

• The error message Host 'host_name' is blocked occurs for connections from legitimate hosts.
(See Dealing with Blocked Hosts.)

Flushing the host cache has these effects:

• It clears the in-memory host cache.

• It removes all rows from the Performance Schema host_cache table that exposes the cache contents.

750

IPv6 Support

• It unblocks any blocked hosts. This enables further connection attempts from those hosts.

To flush the host cache, use any of these methods:

• Change the value of the host_cache_size system variable. This requires the SUPER privilege.

• Execute a TRUNCATE TABLE statement that truncates the Performance Schema host_cache table.
This requires the DROP privilege for the table.

• Execute a FLUSH HOSTS statement. This requires the RELOAD privilege.

• Execute a mysqladmin flush-hosts command. This requires the RELOAD privilege.

Dealing with Blocked Hosts

The server uses the host cache to track errors that occur during the client connection process. If the
following error occurs, it means that mysqld has received many connection requests from the given host
that were interrupted in the middle:

Host 'host_name' is blocked because of many connection errors.
Unblock with 'mysqladmin flush-hosts'

The value of the max_connect_errors system variable determines how many successive interrupted
connection requests the server permits before blocking a host. After max_connect_errors failed
requests without a successful connection, the server assumes that something is wrong (for example, that
someone is trying to break in), and blocks the host from further connection requests.

To unblock blocked hosts, flush the host cache; see Flushing the Host Cache.

Alternatively, to avoid having the error message occur, set max_connect_errors as described
in Configuring the Host Cache. The default value of max_connect_errors is 100. Increasing
max_connect_errors to a large value makes it less likely that a host reaches the threshold and become
blocked. However, if the Host 'host_name' is blocked error message occurs, first verify that there
is nothing wrong with TCP/IP connections from the blocked hosts. It does no good to increase the value of
max_connect_errors if there are network problems.

5.1.12 IPv6 Support

Support for IPv6 in MySQL includes these capabilities:

• MySQL Server can accept TCP/IP connections from clients connecting over IPv6. For example, this
command connects over IPv6 to the MySQL server on the local host:

$> mysql -h ::1

To use this capability, two things must be true:

• Your system must be configured to support IPv6. See Section 5.1.12.1, “Verifying System Support for
IPv6”.

• The default MySQL server configuration permits IPv6 connections in addition to IPv4 connections. To
change the default configuration, start the server with the bind_address system variable set to an
appropriate value. See Section 5.1.7, “Server System Variables”.

• MySQL account names permit IPv6 addresses to enable DBAs to specify privileges for clients that
connect to the server over IPv6. See Section 6.2.4, “Specifying Account Names”. IPv6 addresses can be
specified in account names in statements such as CREATE USER, GRANT, and REVOKE. For example:

751

IPv6 Support

mysql> CREATE USER 'bill'@'::1' IDENTIFIED BY 'secret';
mysql> GRANT SELECT ON mydb.* TO 'bill'@'::1';

• IPv6 functions enable conversion between string and internal format IPv6 address formats, and checking
whether values represent valid IPv6 addresses. For example, INET6_ATON() and INET6_NTOA() are
similar to INET_ATON() and INET_NTOA(), but handle IPv6 addresses in addition to IPv4 addresses.
See Section 12.20, “Miscellaneous Functions”.

The following sections describe how to set up MySQL so that clients can connect to the server over IPv6.

5.1.12.1 Verifying System Support for IPv6

Before MySQL Server can accept IPv6 connections, the operating system on your server host must
support IPv6. As a simple test to determine whether that is true, try this command:

$> ping6 ::1
16 bytes from ::1, icmp_seq=0 hlim=64 time=0.171 ms
16 bytes from ::1, icmp_seq=1 hlim=64 time=0.077 ms
...

To produce a description of your system's network interfaces, invoke ifconfig -a and look for IPv6
addresses in the output.

If your host does not support IPv6, consult your system documentation for instructions on enabling it. It
might be that you need only reconfigure an existing network interface to add an IPv6 address. Or a more
extensive change might be needed, such as rebuilding the kernel with IPv6 options enabled.

These links may be helpful in setting up IPv6 on various platforms:

• Windows

• Gentoo Linux

• Ubuntu Linux

• Linux (Generic)

• macOS

5.1.12.2 Configuring the MySQL Server to Permit IPv6 Connections

The MySQL server listens on a single network socket for TCP/IP connections. This socket is bound to a
single address, but it is possible for an address to map onto multiple network interfaces. To specify an
address, set bind_address=addr at server startup, where addr is an IPv4 or IPv6 address or a host
name. For details, see the bind_address description in Section 5.1.7, “Server System Variables”.

5.1.12.3 Connecting Using the IPv6 Local Host Address

The following procedure shows how to configure MySQL to permit IPv6 connections by clients that connect
to the local server using the ::1 local host address. The instructions given here assume that your system
supports IPv6.

1. Start the MySQL server with an appropriate bind_address setting to permit it to accept IPv6
connections. For example, put the following lines in the server option file and restart the server:

[mysqld]
bind_address = * # before 5.6.6, use :: rather than *

752

https://msdn.microsoft.com/en-us/library/dd163569.aspx
http://www.gentoo.org/doc/en/ipv6.xml
https://wiki.ubuntu.com/IPv6
http://www.tldp.org/HOWTO/Linux+IPv6-HOWTO/
https://support.apple.com/en-us/HT202237

IPv6 Support

Alternatively, you can bind the server to ::1, but that makes the server more restrictive for TCP/IP
connections. It accepts only IPv6 connections for that single address and rejects IPv4 connections. For
more information, see the bind_address description in Section 5.1.7, “Server System Variables”.

2. As an administrator, connect to the server and create an account for a local user who connects from
the ::1 local IPv6 host address:

mysql> CREATE USER 'ipv6user'@'::1' IDENTIFIED BY 'ipv6pass';

For the permitted syntax of IPv6 addresses in account names, see Section 6.2.4, “Specifying Account
Names”. In addition to the CREATE USER statement, you can issue GRANT statements that give specific
privileges to the account, although that is not necessary for the remaining steps in this procedure.

3. Invoke the mysql client to connect to the server using the new account:

$> mysql -h ::1 -u ipv6user -pipv6pass

4. Try some simple statements that show connection information:

mysql> STATUS
...
Connection: ::1 via TCP/IP
...

mysql> SELECT CURRENT_USER(), @@bind_address;
+----------------+----------------+
| CURRENT_USER() | @@bind_address |
+----------------+----------------+
| ipv6user@::1 | :: |
+----------------+----------------+

5.1.12.4 Connecting Using IPv6 Nonlocal Host Addresses

The following procedure shows how to configure MySQL to permit IPv6 connections by remote clients. It is
similar to the preceding procedure for local clients, but the server and client hosts are distinct and each has
its own nonlocal IPv6 address. The example uses these addresses:

Server host: 2001:db8:0:f101::1
Client host: 2001:db8:0:f101::2

These addresses are chosen from the nonroutable address range recommended by IANA for
documentation purposes and suffice for testing on your local network. To accept IPv6 connections from
clients outside the local network, the server host must have a public address. If your network provider
assigns you an IPv6 address, you can use that. Otherwise, another way to obtain an address is to use an
IPv6 broker; see Section 5.1.12.5, “Obtaining an IPv6 Address from a Broker”.

1. Start the MySQL server with an appropriate bind_address setting to permit it to accept IPv6
connections. For example, put the following lines in the server option file and restart the server:

[mysqld]
bind_address = * # before 5.6.6, use :: rather than *

Alternatively, you can bind the server to 2001:db8:0:f101::1, but that makes the server more
restrictive for TCP/IP connections. It accepts only IPv6 connections for that single address and rejects
IPv4 connections. For more information, see the bind_address description in Section 5.1.7, “Server
System Variables”.

2. On the server host (2001:db8:0:f101::1), create an account for a user who connects from the
client host (2001:db8:0:f101::2):

753

http://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xml

IPv6 Support

mysql> CREATE USER 'remoteipv6user'@'2001:db8:0:f101::2' IDENTIFIED BY 'remoteipv6pass';

3. On the client host (2001:db8:0:f101::2), invoke the mysql client to connect to the server using the
new account:

$> mysql -h 2001:db8:0:f101::1 -u remoteipv6user -premoteipv6pass

4. Try some simple statements that show connection information:

mysql> STATUS
...
Connection: 2001:db8:0:f101::1 via TCP/IP
...

mysql> SELECT CURRENT_USER(), @@bind_address;
+-----------------------------------+----------------+
| CURRENT_USER() | @@bind_address |
+-----------------------------------+----------------+
| remoteipv6user@2001:db8:0:f101::2 | :: |
+-----------------------------------+----------------+

5.1.12.5 Obtaining an IPv6 Address from a Broker

If you do not have a public IPv6 address that enables your system to communicate over IPv6 outside
your local network, you can obtain one from an IPv6 broker. The Wikipedia IPv6 Tunnel Broker page
lists several brokers and their features, such as whether they provide static addresses and the supported
routing protocols.

After configuring your server host to use a broker-supplied IPv6 address, start the MySQL server with an
appropriate bind_address setting to permit the server to accept IPv6 connections. For example, put the
following lines in the server option file and restart the server:

[mysqld]
bind_address = * # before 5.6.6, use :: rather than *

Alternatively, you can bind the server to the specific IPv6 address provided by the broker, but that makes
the server more restrictive for TCP/IP connections. It accepts only IPv6 connections for that single address
and rejects IPv4 connections. For more information, see the bind_address description in Section 5.1.7,
“Server System Variables”. In addition, if the broker allocates dynamic addresses, the address provided
for your system might change the next time you connect to the broker. If so, any accounts you create that
name the original address become invalid. To bind to a specific address but avoid this change-of-address
problem, you may be able to arrange with the broker for a static IPv6 address.

The following example shows how to use Freenet6 as the broker and the gogoc IPv6 client package on
Gentoo Linux.

1. Create an account at Freenet6 by visiting this URL and signing up:

http://gogonet.gogo6.com

2. After creating the account, go to this URL, sign in, and create a user ID and password for the IPv6
broker:

http://gogonet.gogo6.com/page/freenet6-registration

3. As root, install gogoc:

$> emerge gogoc

4. Edit /etc/gogoc/gogoc.conf to set the userid and password values. For example:

754

http://en.wikipedia.org/wiki/List_of_IPv6_tunnel_brokers
http://gogonet.gogo6.com
http://gogonet.gogo6.com/page/freenet6-registration

MySQL Server Time Zone Support

userid=gogouser
passwd=gogopass

5. Start gogoc:

$> /etc/init.d/gogoc start

To start gogoc each time your system boots, execute this command:

$> rc-update add gogoc default

6. Use ping6 to try to ping a host:

$> ping6 ipv6.google.com

7. To see your IPv6 address:

$> ifconfig tun

5.1.13 MySQL Server Time Zone Support

This section describes the time zone settings maintained by MySQL, how to load the system tables
required for named time support, how to stay current with time zone changes, and how to enable leap-
second support.

For information about time zone settings in replication setups, see Section 17.4.1.15, “Replication and
System Functions” and Section 17.4.1.31, “Replication and Time Zones”.

• Time Zone Variables

• Populating the Time Zone Tables

• Staying Current with Time Zone Changes

• Time Zone Leap Second Support

Time Zone Variables

MySQL Server maintains several time zone settings:

• The server system time zone. When the server starts, it attempts to determine the time zone of the
host machine and uses it to set the system_time_zone system variable. The value does not change
thereafter.

To explicitly specify the system time zone for MySQL Server at startup, set the TZ environment variable
before you start mysqld. If you start the server using mysqld_safe, its --timezone option provides
another way to set the system time zone. The permissible values for TZ and --timezone are system
dependent. Consult your operating system documentation to see what values are acceptable.

• The server current time zone. The global time_zone system variable indicates the time zone the server
currently is operating in. The initial time_zone value is 'SYSTEM', which indicates that the server time
zone is the same as the system time zone.

Note

If set to SYSTEM, every MySQL function call that requires a time zone calculation
makes a system library call to determine the current system time zone. This call
may be protected by a global mutex, resulting in contention.

755

MySQL Server Time Zone Support

The initial global server time zone value can be specified explicitly at startup with the --default-
time-zone option on the command line, or you can use the following line in an option file:

default-time-zone='timezone'

If you have the SUPER privilege, you can set the global server time zone value at runtime with this
statement:

SET GLOBAL time_zone = timezone;

• Per-session time zones. Each client that connects has its own session time zone setting, given by the
session time_zone variable. Initially, the session variable takes its value from the global time_zone
variable, but the client can change its own time zone with this statement:

SET time_zone = timezone;

The session time zone setting affects display and storage of time values that are zone-sensitive. This
includes the values displayed by functions such as NOW() or CURTIME(), and values stored in and
retrieved from TIMESTAMP columns. Values for TIMESTAMP columns are converted from the session time
zone to UTC for storage, and from UTC to the session time zone for retrieval.

The session time zone setting does not affect values displayed by functions such as UTC_TIMESTAMP()
or values in DATE, TIME, or DATETIME columns. Nor are values in those data types stored in UTC; the
time zone applies for them only when converting from TIMESTAMP values. If you want locale-specific
arithmetic for DATE, TIME, or DATETIME values, convert them to UTC, perform the arithmetic, and then
convert back.

The current global and session time zone values can be retrieved like this:

SELECT @@GLOBAL.time_zone, @@SESSION.time_zone;

timezone values can be given in several formats, none of which are case-sensitive:

• As the value 'SYSTEM', indicating that the server time zone is the same as the system time zone.

• As a string indicating an offset from UTC of the form [H]H:MM, prefixed with a + or -, such as
'+10:00', '-6:00', or '+05:30'. A leading zero can optionally be used for hours values less than
10; MySQL prepends a leading zero when storing and retriving the value in such cases. MySQL converts
'-00:00' or '-0:00' to '+00:00'.

A time zone offset must be in the range '-12:59' to '+13:00', inclusive.

• As a named time zone, such as 'Europe/Helsinki', 'US/Eastern', 'MET', or 'UTC'.

Note

Named time zones can be used only if the time zone information tables in the
mysql database have been created and populated. Otherwise, use of a named
time zone results in an error:

mysql> SET time_zone = 'UTC';
ERROR 1298 (HY000): Unknown or incorrect time zone: 'UTC'

Populating the Time Zone Tables

Several tables in the mysql system database exist to store time zone information (see Section 5.3, “The
mysql System Database”). The MySQL installation procedure creates the time zone tables, but does not
load them. To do so manually, use the following instructions.

756

MySQL Server Time Zone Support

Note

Loading the time zone information is not necessarily a one-time operation because
the information changes occasionally. When such changes occur, applications that
use the old rules become out of date and you may find it necessary to reload the
time zone tables to keep the information used by your MySQL server current. See
Staying Current with Time Zone Changes.

If your system has its own zoneinfo database (the set of files describing time zones), use the
mysql_tzinfo_to_sql program to load the time zone tables. Examples of such systems are Linux,
macOS, FreeBSD, and Solaris. One likely location for these files is the /usr/share/zoneinfo directory.
If your system has no zoneinfo database, you can use a downloadable package, as described later in this
section.

To load the time zone tables from the command line, pass the zoneinfo directory path name to
mysql_tzinfo_to_sql and send the output into the mysql program. For example:

mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root -p mysql

The mysql command shown here assumes that you connect to the server using an account such as root
that has privileges for modifying tables in the mysql system database. Adjust the connection parameters
as required.

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from them.
mysql processes those statements to load the time zone tables.

mysql_tzinfo_to_sql also can be used to load a single time zone file or generate leap second
information:

• To load a single time zone file tz_file that corresponds to a time zone name tz_name, invoke
mysql_tzinfo_to_sql like this:

mysql_tzinfo_to_sql tz_file tz_name | mysql -u root -p mysql

With this approach, you must execute a separate command to load the time zone file for each named
zone that the server needs to know about.

• If your time zone must account for leap seconds, initialize leap second information like this, where
tz_file is the name of your time zone file:

mysql_tzinfo_to_sql --leap tz_file | mysql -u root -p mysql

After running mysql_tzinfo_to_sql, restart the server so that it does not continue to use any
previously cached time zone data.

If your system has no zoneinfo database (for example, Windows), you can use a package that is available
for download at the MySQL Developer Zone:

https://dev.mysql.com/downloads/timezones.html

Warning

Do not use a downloadable time zone package if your system has a zoneinfo
database. Use the mysql_tzinfo_to_sql utility instead. Otherwise, you may
cause a difference in datetime handling between MySQL and other applications on
your system.

You can use either a package that contains SQL statements to populate your existing time zone tables, or
a package that contains pre-built MyISAM time zone tables to replace your existing tables:

757

https://dev.mysql.com/downloads/timezones.html

MySQL Server Time Zone Support

• To use a time zone package that contains SQL statements, download and unpack it, then load the
unpacked file contents into your existing time zone tables:

mysql -u root -p mysql < file_name

Then restart the server.

• To use a time zone package that contains .frm, .MYD, and .MYI files for the MyISAM time zone tables,
download and unpack it. These table files are part of the mysql database, so you should place the files
in the mysql subdirectory of your MySQL server's data directory. Stop the server before doing this and
restart it afterward.

Staying Current with Time Zone Changes

When time zone rules change, applications that use the old rules become out of date. To stay current, it is
necessary to make sure that your system uses current time zone information is used. For MySQL, there
are multiple factors to consider in staying current:

• The operating system time affects the value that the MySQL server uses for times if its time zone is set
to SYSTEM. Make sure that your operating system is using the latest time zone information. For most
operating systems, the latest update or service pack prepares your system for the time changes. Check
the website for your operating system vendor for an update that addresses the time changes.

• If you replace the system's /etc/localtime time zone file with a version that uses rules differing from
those in effect at mysqld startup, restart mysqld so that it uses the updated rules. Otherwise, mysqld
might not notice when the system changes its time.

• If you use named time zones with MySQL, make sure that the time zone tables in the mysql database
are up to date:

• If your system has its own zoneinfo database, reload the MySQL time zone tables whenever the
zoneinfo database is updated.

• For systems that do not have their own zoneinfo database, check the MySQL Developer Zone for
updates. When a new update is available, download it and use it to replace the content of your current
time zone tables.

For instructions for both methods, see Populating the Time Zone Tables. mysqld caches time zone
information that it looks up, so after updating the time zone tables, restart mysqld to make sure that it
does not continue to serve outdated time zone data.

If you are uncertain whether named time zones are available, for use either as the server's time zone
setting or by clients that set their own time zone, check whether your time zone tables are empty. The
following query determines whether the table that contains time zone names has any rows:

mysql> SELECT COUNT(*) FROM mysql.time_zone_name;
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+

A count of zero indicates that the table is empty. In this case, no applications currently are using named
time zones, and you need not update the tables (unless you want to enable named time zone support). A
count greater than zero indicates that the table is not empty and that its contents are available to be used
for named time zone support. In this case, be sure to reload your time zone tables so that applications that
use named time zones obtain correct query results.

758

MySQL Server Time Zone Support

To check whether your MySQL installation is updated properly for a change in Daylight Saving Time rules,
use a test like the one following. The example uses values that are appropriate for the 2007 DST 1-hour
change that occurs in the United States on March 11 at 2 a.m.

The test uses this query:

SELECT
 CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') AS time1,
 CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') AS time2;

The two time values indicate the times at which the DST change occurs, and the use of named time zones
requires that the time zone tables be used. The desired result is that both queries return the same result
(the input time, converted to the equivalent value in the 'US/Central' time zone).

Before updating the time zone tables, you see an incorrect result like this:

+---------------------+---------------------+
| time1 | time2 |
+---------------------+---------------------+
| 2007-03-11 01:00:00 | 2007-03-11 02:00:00 |
+---------------------+---------------------+

After updating the tables, you should see the correct result:

+---------------------+---------------------+
| time1 | time2 |
+---------------------+---------------------+
| 2007-03-11 01:00:00 | 2007-03-11 01:00:00 |
+---------------------+---------------------+

Time Zone Leap Second Support

Leap second values are returned with a time part that ends with :59:59. This means that a function
such as NOW() can return the same value for two or three consecutive seconds during the leap second.
It remains true that literal temporal values having a time part that ends with :59:60 or :59:61 are
considered invalid.

If it is necessary to search for TIMESTAMP values one second before the leap second, anomalous results
may be obtained if you use a comparison with 'YYYY-MM-DD hh:mm:ss' values. The following example
demonstrates this. It changes the session time zone to UTC so there is no difference between internal
TIMESTAMP values (which are in UTC) and displayed values (which have time zone correction applied).

mysql> CREATE TABLE t1 (
 a INT,
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (ts)
);
Query OK, 0 rows affected (0.01 sec)

mysql> -- change to UTC
mysql> SET time_zone = '+00:00';
Query OK, 0 rows affected (0.00 sec)

mysql> -- Simulate NOW() = '2008-12-31 23:59:59'
mysql> SET timestamp = 1230767999;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 (a) VALUES (1);
Query OK, 1 row affected (0.00 sec)

759

Server-Side Help Support

mysql> -- Simulate NOW() = '2008-12-31 23:59:60'
mysql> SET timestamp = 1230768000;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 (a) VALUES (2);
Query OK, 1 row affected (0.00 sec)

mysql> -- values differ internally but display the same
mysql> SELECT a, ts, UNIX_TIMESTAMP(ts) FROM t1;
+------+---------------------+--------------------+
| a | ts | UNIX_TIMESTAMP(ts) |
+------+---------------------+--------------------+
| 1 | 2008-12-31 23:59:59 | 1230767999 |
| 2 | 2008-12-31 23:59:59 | 1230768000 |
+------+---------------------+--------------------+
2 rows in set (0.00 sec)

mysql> -- only the non-leap value matches
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:59';
+------+---------------------+
| a | ts |
+------+---------------------+
| 1 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)

mysql> -- the leap value with seconds=60 is invalid
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:60';
Empty set, 2 warnings (0.00 sec)

To work around this, you can use a comparison based on the UTC value actually stored in the column,
which has the leap second correction applied:

mysql> -- selecting using UNIX_TIMESTAMP value return leap value
mysql> SELECT * FROM t1 WHERE UNIX_TIMESTAMP(ts) = 1230768000;
+------+---------------------+
| a | ts |
+------+---------------------+
| 2 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)

5.1.14 Server-Side Help Support

MySQL Server supports a HELP statement that returns information from the MySQL Reference Manual
(see Section 13.8.3, “HELP Statement”). This information is stored in several tables in the mysql database
(see Section 5.3, “The mysql System Database”). Proper operation of the HELP statement requires that
these help tables be initialized.

For a new installation of MySQL using a binary or source distribution on Unix, help-table content
initialization occurs when you initialize the data directory (see Section 2.10.1, “Initializing the Data
Directory”). For an RPM distribution on Linux or binary distribution on Windows, content initialization occurs
as part of the MySQL installation process.

For a MySQL upgrade using a binary distribution, help-table content is not upgraded automatically, but
you can upgrade it manually. Locate the fill_help_tables.sql file in the share or share/mysql
directory. Change location into that directory and process the file with the mysql client as follows (enter the
command on one line):

mysql -u root -p
 --init-command="SET sql_log_bin=OFF"
 mysql < fill_help_tables.sql

760

The Server Shutdown Process

The command shown here assumes that you connect to the server using an account such as root that
has privileges for modifying tables in the mysql database. Adjust the connection parameters as required.

If you are working with Git and a MySQL development source tree, the source tree contains only a “stub”
version of fill_help_tables.sql. To obtain a non-stub copy, use one from a source or binary
distribution.

Note

Each MySQL series has its own series-specific reference manual, so help-table
content is series specific as well. This has implications for replication because help-
table content should match the MySQL series. If you load MySQL 5.6 help content
into a MySQL 5.6 source server, it does not make sense to replicate that content
to a replica server from a different MySQL series and for which that content is not
appropriate. For this reason, as you upgrade individual servers in a replication
scenario, you should upgrade each server's help tables, using the instructions given
earlier.

5.1.15 The Server Shutdown Process

The server shutdown process takes place as follows:

1. The shutdown process is initiated.

This can occur initiated several ways. For example, a user with the SHUTDOWN privilege can execute a
mysqladmin shutdown command. mysqladmin can be used on any platform supported by MySQL.
Other operating system-specific shutdown initiation methods are possible as well: The server shuts
down on Unix when it receives a SIGTERM signal. A server running as a service on Windows shuts
down when the services manager tells it to.

2. The server creates a shutdown thread if necessary.

Depending on how shutdown was initiated, the server might create a thread to handle the shutdown
process. If shutdown was requested by a client, a shutdown thread is created. If shutdown is the result
of receiving a SIGTERM signal, the signal thread might handle shutdown itself, or it might create a
separate thread to do so. If the server tries to create a shutdown thread and cannot (for example, if
memory is exhausted), it issues a diagnostic message that appears in the error log:

Error: Can't create thread to kill server

3. The server stops accepting new connections.

To prevent new activity from being initiated during shutdown, the server stops accepting new
client connections by closing the handlers for the network interfaces to which it normally listens for
connections: the TCP/IP port, the Unix socket file, the Windows named pipe, and shared memory on
Windows.

4. The server terminates current activity.

For each thread associated with a client connection, the server breaks the connection to the client and
marks the thread as killed. Threads die when they notice that they are so marked. Threads for idle
connections die quickly. Threads that currently are processing statements check their state periodically
and take longer to die. For additional information about thread termination, see Section 13.7.6.4,
“KILL Statement”, in particular for the instructions about killed REPAIR TABLE or OPTIMIZE TABLE
operations on MyISAM tables.

For threads that have an open transaction, the transaction is rolled back.

761

The MySQL Data Directory

Note

If a thread is updating a nontransactional table, an operation such as a multiple-
row UPDATE or INSERT may leave the table partially updated because the
operation can terminate before completion.

If the server is a source replication server, it treats threads associated with currently connected replicas
like other client threads. That is, each one is marked as killed and exits when it next checks its state.

If the server is a replica, it stops the I/O and SQL threads, if they are active, before marking client
threads as killed. The SQL thread is permitted to finish its current statement (to avoid causing
replication problems), and then stops. If the SQL thread is in the middle of a transaction at this point,
the server waits until the current replication event group (if any) has finished executing, or until the user
issues a KILL QUERY or KILL CONNECTION statement. See also Section 13.4.2.6, “STOP SLAVE
Statement”. Since nontransactional statements cannot be rolled back, in order to guarantee crash-safe
replication, only transactional tables should be used.

Note

To guarantee crash safety on the replica, you must run the replica with --
relay-log-recovery enabled.

See also Section 17.2.2, “Relay Log and Replication Metadata Repositories”).

5. The server shuts down or closes storage engines.

At this stage, the server flushes the table cache and closes all open tables.

Each storage engine performs any actions necessary for tables that it manages. InnoDB flushes its
buffer pool to disk (unless innodb_fast_shutdown is 2), writes the current LSN to the tablespace,
and terminates its own internal threads. MyISAM flushes any pending index writes for a table.

6. The server exits.

5.2 The MySQL Data Directory
Information managed by the MySQL server is stored under a directory known as the data directory. The
following list briefly describes the items typically found in the data directory, with cross references for
additional information:

• Data directory subdirectories. Each subdirectory of the data directory is a database directory and
corresponds to a database managed by the server. All MySQL installations have certain standard
databases:

• The mysql directory corresponds to the mysql system database, which contains information required
by the MySQL server as it runs. See Section 5.3, “The mysql System Database”.

• The performance_schema directory corresponds to the Performance Schema, which provides
information used to inspect the internal execution of the server at runtime. See Chapter 22, MySQL
Performance Schema.

• The ndbinfo directory corresponds to the ndbinfo database that stores information specific to NDB
Cluster (present only for installations built to include NDB Cluster). See Section 18.6.15, “ndbinfo: The
NDB Cluster Information Database”.

Other subdirectories correspond to databases created by users or applications.

762

The mysql System Database

Note

INFORMATION_SCHEMA is a standard database, but its implementation uses no
corresponding database directory.

• Log files written by the server. See Section 5.4, “MySQL Server Logs”.

• InnoDB tablespace and log files. See Chapter 14, The InnoDB Storage Engine.

• The server process ID file (while the server is running).

Some items in the preceding list can be relocated elsewhere by reconfiguring the server. In addition, the
--datadir option enables the location of the data directory itself to be changed. For a given MySQL
installation, check the server configuration to determine whether items have been moved.

5.3 The mysql System Database
The mysql database is the system database. It contains tables that store information required by the
MySQL server as it runs.

Tables in the mysql database fall into these categories:

• Grant System Tables

• Object Information System Tables

• Log System Tables

• Server-Side Help System Tables

• Time Zone System Tables

• Replication System Tables

• Optimizer System Tables

• Miscellaneous System Tables

The remainder of this section enumerates the tables in each category, with cross references for additional
information. System tables use the MyISAM storage engine unless otherwise indicated.

Warning

Do not convert MySQL system tables in the mysql database from MyISAM to
InnoDB tables. This is an unsupported operation. If you do this, MySQL does not
restart until you restore the old system tables from a backup or regenerate them by
reinitializing the data directory (see Section 2.10.1, “Initializing the Data Directory”).

Grant System Tables

These system tables contain grant information about user accounts and the privileges held by them:

• user: User accounts, global privileges, and other nonprivilege columns.

• db: Database-level privileges.

• host: Obsolete. MySQL install operations do not create this table as of MySQL 5.6.7.

763

Object Information System Tables

• tables_priv: Table-level privileges.

• columns_priv: Column-level privileges.

• procs_priv: Stored procedure and function privileges.

• proxies_priv: Proxy-user privileges.

For more information about the structure, contents, and purpose of the grant tables, see Section 6.2.3,
“Grant Tables”.

Object Information System Tables

These system tables contain information about stored programs, loadable functions, and server-side
plugins:

• event: The registry for Event Scheduler events installed using CREATE EVENT. If the server is started
with the --skip-grant-tables option, the event scheduler is disabled and events registered in the
table do not run. See Section 20.4.2, “Event Scheduler Configuration”.

• func: The registry for loadable functions installed using CREATE FUNCTION. During the normal startup
sequence, the server loads functions registered in this table. If the server is started with the --skip-
grant-tables option, functions registered in the table are not loaded and are unavailable. See
Section 5.6.1, “Installing and Uninstalling Loadable Functions”.

• plugin: The registry for server-side plugins installed using INSTALL PLUGIN. During the normal
startup sequence, the server loads plugins registered in this table. If the server is started with the --
skip-grant-tables option, plugins registered in the table are not loaded and are unavailable. See
Section 5.5.1, “Installing and Uninstalling Plugins”.

• proc: Information about stored procedures and functions. See Section 20.2, “Using Stored Routines”.

Log System Tables

The server uses these system tables for logging:

• general_log: The general query log table.

• slow_log: The slow query log table.

Log tables use the CSV storage engine.

For more information, see Section 5.4, “MySQL Server Logs”.

Server-Side Help System Tables

These system tables contain server-side help information:

• help_category: Information about help categories.

• help_keyword: Keywords associated with help topics.

• help_relation: Mappings between help keywords and topics.

• help_topic: Help topic contents.

For more information, see Section 5.1.14, “Server-Side Help Support”.

764

Time Zone System Tables

Time Zone System Tables

These system tables contain time zone information:

• time_zone: Time zone IDs and whether they use leap seconds.

• time_zone_leap_second: When leap seconds occur.

• time_zone_name: Mappings between time zone IDs and names.

• time_zone_transition, time_zone_transition_type: Time zone descriptions.

For more information, see Section 5.1.13, “MySQL Server Time Zone Support”.

Replication System Tables

The server uses these system tables to support replication:

• ndb_binlog_index: Binary log information for NDB Cluster replication. See Section 18.7.4, “NDB
Cluster Replication Schema and Tables”.

• slave_master_info, slave_relay_log_info, slave_worker_info: Used to store
replication information on replica servers. See Section 17.2.2, “Relay Log and Replication Metadata
Repositories”.

These tables use the InnoDB storage engine as of MySQL 5.6.6, MyISAM before that.

Optimizer System Tables

The innodb_index_stats and innodb_table_stats system tables are used for InnoDB persistent
optimizer statistics. See Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

These tables use the InnoDB storage engine.

Miscellaneous System Tables

Other system tables do not fall into the preceding categories:

• firewall_users, firewall_whitelist: If MySQL Enterprise Firewall is installed, these tables
provide persistent storage for information used by the firewall. See Section 6.4.5, “MySQL Enterprise
Firewall”.

• servers: Used by the FEDERATED storage engine. See Section 15.8.2.2, “Creating a FEDERATED
Table Using CREATE SERVER”.

5.4 MySQL Server Logs
MySQL Server has several logs that can help you find out what activity is taking place.

Log Type Information Written to Log

Error log Problems encountered starting, running, or stopping
mysqld

General query log Established client connections and statements
received from clients

Binary log Statements that change data (also used for
replication)

765

Selecting General Query Log and Slow Query Log Output Destinations

Log Type Information Written to Log

Relay log Data changes received from a replication source
server

Slow query log Queries that took more than long_query_time
seconds to execute

DDL log (metadata log) Metadata operations performed by DDL statements

By default, no logs are enabled, except the error log on Windows. (The DDL log is always created when
required, and has no user-configurable options; see Section 5.4.6, “The DDL Log”.) The following log-
specific sections provide information about the server options that enable logging.

By default, the server writes files for all enabled logs in the data directory. You can force the server
to close and reopen the log files (or in some cases switch to a new log file) by flushing the logs. Log
flushing occurs when you issue a FLUSH LOGS statement; execute mysqladmin with a flush-logs
or refresh argument; or execute mysqldump with a --flush-logs or --master-data option. See
Section 13.7.6.3, “FLUSH Statement”, Section 4.5.2, “mysqladmin — A MySQL Server Administration
Program”, and Section 4.5.4, “mysqldump — A Database Backup Program”. In addition, the binary log is
flushed when its size reaches the value of the max_binlog_size system variable.

You can control the general query and slow query logs during runtime. You can enable or disable logging,
or change the log file name. You can tell the server to write general query and slow query entries to log
tables, log files, or both. For details, see Section 5.4.1, “Selecting General Query Log and Slow Query Log
Output Destinations”, Section 5.4.3, “The General Query Log”, and Section 5.4.5, “The Slow Query Log”.

The relay log is used only on replica servers, to hold data changes from the source server that must also
be made on the replica. For discussion of relay log contents and configuration, see Section 17.2.2.1, “The
Relay Log”.

For information about log maintenance operations such as expiration of old log files, see Section 5.4.7,
“Server Log Maintenance”.

For information about keeping logs secure, see Section 6.1.2.3, “Passwords and Logging”.

5.4.1 Selecting General Query Log and Slow Query Log Output Destinations

MySQL Server provides flexible control over the destination of output written to the general query log
and the slow query log, if those logs are enabled. Possible destinations for log entries are log files or the
general_log and slow_log tables in the mysql system database. File output, table output, or both can
be selected.

• Log Control at Server Startup

• Log Control at Runtime

• Log Table Benefits and Characteristics

Log Control at Server Startup

The log_output system variable specifies the destination for log output. Setting this variable does not in
itself enable the logs; they must be enabled separately.

• If log_output is not specified at startup, the default logging destination is FILE.

• If log_output is specified at startup, its value is a list one or more comma-separated words chosen
from TABLE (log to tables), FILE (log to files), or NONE (do not log to tables or files). NONE, if present,
takes precedence over any other specifiers.

766

Selecting General Query Log and Slow Query Log Output Destinations

The general_log system variable controls logging to the general query log for the selected log
destinations. If specified at server startup, general_log takes an optional argument of 1 or 0 to enable or
disable the log. To specify a file name other than the default for file logging, set the general_log_file
variable. Similarly, the slow_query_log variable controls logging to the slow query log for the selected
destinations and setting slow_query_log_file specifies a file name for file logging. If either log is
enabled, the server opens the corresponding log file and writes startup messages to it. However, further
logging of queries to the file does not occur unless the FILE log destination is selected.

Examples:

• To write general query log entries to the log table and the log file, use --log_output=TABLE,FILE to
select both log destinations and --general_log to enable the general query log.

• To write general and slow query log entries only to the log tables, use --log_output=TABLE to select
tables as the log destination and --general_log and --slow_query_log to enable both logs.

• To write slow query log entries only to the log file, use --log_output=FILE to select files as the log
destination and --slow_query_log to enable the slow query log. In this case, because the default log
destination is FILE, you could omit the log_output setting.

Log Control at Runtime

The system variables associated with log tables and files enable runtime control over logging:

• The log_output variable indicates the current logging destination. It can be modified at runtime to
change the destination.

• The general_log and slow_query_log variables indicate whether the general query log and slow
query log are enabled (ON) or disabled (OFF). You can set these variables at runtime to control whether
the logs are enabled.

• The general_log_file and slow_query_log_file variables indicate the names of the general
query log and slow query log files. You can set these variables at server startup or at runtime to change
the names of the log files.

• To disable or enable general query logging for the current session, set the session sql_log_off
variable to ON or OFF. (This assumes that the general query log itself is enabled.)

Log Table Benefits and Characteristics

The use of tables for log output offers the following benefits:

• Log entries have a standard format. To display the current structure of the log tables, use these
statements:

SHOW CREATE TABLE mysql.general_log;
SHOW CREATE TABLE mysql.slow_log;

• Log contents are accessible through SQL statements. This enables the use of queries that select only
those log entries that satisfy specific criteria. For example, to select log contents associated with a
particular client (which can be useful for identifying problematic queries from that client), it is easier to do
this using a log table than a log file.

• Logs are accessible remotely through any client that can connect to the server and issue queries (if the
client has the appropriate log table privileges). It is not necessary to log in to the server host and directly
access the file system.

The log table implementation has the following characteristics:

767

The Error Log

• In general, the primary purpose of log tables is to provide an interface for users to observe the runtime
execution of the server, not to interfere with its runtime execution.

• CREATE TABLE, ALTER TABLE, and DROP TABLE are valid operations on a log table. For ALTER
TABLE and DROP TABLE, the log table cannot be in use and must be disabled, as described later.

• By default, the log tables use the CSV storage engine that writes data in comma-separated values
format. For users who have access to the .CSV files that contain log table data, the files are easy to
import into other programs such as spreadsheets that can process CSV input.

The log tables can be altered to use the MyISAM storage engine. You cannot use ALTER TABLE to alter
a log table that is in use. The log must be disabled first. No engines other than CSV or MyISAM are legal
for the log tables.

• To disable logging so that you can alter (or drop) a log table, you can use the following strategy.
The example uses the general query log; the procedure for the slow query log is similar but uses the
slow_log table and slow_query_log system variable.

SET @old_log_state = @@GLOBAL.general_log;
SET GLOBAL general_log = 'OFF';
ALTER TABLE mysql.general_log ENGINE = MyISAM;
SET GLOBAL general_log = @old_log_state;

• TRUNCATE TABLE is a valid operation on a log table. It can be used to expire log entries.

• RENAME TABLE is a valid operation on a log table. You can atomically rename a log table (to perform log
rotation, for example) using the following strategy:

USE mysql;
DROP TABLE IF EXISTS general_log2;
CREATE TABLE general_log2 LIKE general_log;
RENAME TABLE general_log TO general_log_backup, general_log2 TO general_log;

• CHECK TABLE is a valid operation on a log table.

• LOCK TABLES cannot be used on a log table.

• INSERT, DELETE, and UPDATE cannot be used on a log table. These operations are permitted only
internally to the server itself.

• FLUSH TABLES WITH READ LOCK and the state of the read_only system variable have no effect on
log tables. The server can always write to the log tables.

• Entries written to the log tables are not written to the binary log and thus are not replicated to replica
servers.

• To flush the log tables or log files, use FLUSH TABLES or FLUSH LOGS, respectively.

• Partitioning of log tables is not permitted.

• A mysqldump dump includes statements to recreate those tables so that they are not missing after
reloading the dump file. Log table contents are not dumped.

5.4.2 The Error Log

This section discusses how to configure the MySQL server for logging of diagnostic messages to the error
log. For information about selecting the error message character set and language, see Section 10.6,
“Error Message Character Set”, and Section 10.12, “Setting the Error Message Language”.

768

The Error Log

The error log contains a record of mysqld startup and shutdown times. It also contains diagnostic
messages such as errors, warnings, and notes that occur during server startup and shutdown, and while
the server is running. For example, if mysqld notices that a table needs to be automatically checked or
repaired, it writes a message to the error log.

On some operating systems, the error log contains a stack trace if mysqld exits abnormally. The trace can
be used to determine where mysqld exited. See Section 5.8, “Debugging MySQL”.

If used to start mysqld, mysqld_safe may write messages to the error log. For example, when
mysqld_safe notices abnormal mysqld exits, it restarts mysqld and writes a mysqld restarted
message to the error log.

The following sections discuss aspects of configuring error logging. In the discussion, “console” means
stderr, the standard error output. This is your terminal or console window unless the standard error
output has been redirected to a different destination.

The server interprets options that determine where to write error messages somewhat differently for
Windows and Unix systems. Be sure to configure error logging using the information appropriate to your
platform.

5.4.2.1 Error Logging on Windows

On Windows, mysqld uses the --log-error, --pid-file, and --console options to determine
whether mysqld writes the error log to the console or a file, and, if to a file, the file name:

• If --console is given, mysqld writes the error log to the console, unless --log-error is also given.
--log-error takes precedence over --console if both are given.

• If --log-error is not given, or is given without naming a file, mysqld writes the error log to a file
named host_name.err in the data directory, unless the --pid-file option is specified. In that case,
the file name is the PID file base name with a suffix of .err in the data directory.

• If --log-error is given to name a file, mysqld writes the error log to that file (with an .err suffix
added if the name has no suffix). The file location is under the data directory unless an absolute path
name is given to specify a different location.

If the server writes the error log to a file, the log_error system variable indicates the error log file name.

In addition, the server by default writes events and error messages to the Windows Event Log within the
Application log:

• Entries marked as Error, Warning, and Note are written to the Event Log, but not messages such as
information statements from individual storage engines.

• Event Log entries have a source of MySQL.

• You cannot disable writing information to the Windows Event Log.

5.4.2.2 Error Logging on Unix and Unix-Like Systems

On Unix and Unix-like systems, mysqld uses the --log-error option to determine whether mysqld
writes the error log to the console or a file, and, if to a file, the file name:

• If --log-error is not given, mysqld writes the error log to the console.

• If --log-error is given without naming a file, mysqld writes the error log to a file named
host_name.err in the data directory.

769

The Error Log

• If --log-error is given to name a file, mysqld writes the error log to that file (with an .err suffix
added if the name has no suffix). The file location is under the data directory unless an absolute path
name is given to specify a different location.

• If --log-error is given in an option file in a [mysqld], [server], or [mysqld_safe] section,
on systems that use mysqld_safe to start the server, mysqld_safe finds and uses the option, and
passes it to mysqld.

Note

It is common for Yum or APT package installations to configure an error log
file location under /var/log with an option like log-error=/var/log/
mysqld.log in a server configuration file. Removing the path name from the
option causes the host_name.err file in the data directory to be used.

If the server writes the error log to a file, the log_error system variable indicates the error log file name.

5.4.2.3 Error Logging to the System Log

If you use mysqld_safe to start mysqld, mysqld_safe arranges for mysqld to write error messages to
a log file or to syslog. mysqld_safe has three error-logging options, --syslog, --skip-syslog, and
--log-error. The default with no logging options or with --skip-syslog is to use the default log file.
To explicitly specify use of an error log file, specify --log-error=file_name to mysqld_safe, which
then arranges for mysqld to write messages to a log file. To use syslog instead, specify the --syslog
option.

Note

Error logging to the system log may require additional system configuration. Consult
the system log documentation for your platform.

5.4.2.4 Error Log Filtering

The --log-warnings option or log_warnings system variable controls warning logging to the error log.
The default value is enabled (1). To disable warning logging, set --log-warnings or log_warnings
to 0. If the value is greater than 1, aborted connections are written to the error log, and access-denied
errors for new connection attempts are written. See Section B.3.2.10, “Communication Errors and Aborted
Connections”.

5.4.2.5 Error Log File Flushing and Renaming

If you flush the error log using a FLUSH ERROR LOGS or FLUSH LOGS statment, or a mysqladmin
flush-logs command, the server closes and reopens any error log file to which it is writing. To rename
an error log file, do so manually before flushing. Flushing the logs then opens a new file with the original
file name. For example, assuming a log file name of host_name.err, use the following commands to
rename the file and create a new one:

mv host_name.err host_name.err-old
mysqladmin flush-logs
mv host_name.err-old backup-directory

On Windows, use rename rather than mv.

If the location of the error log file is not writable by the server, the log-flushing operation fails to create a
new log file. For example, on Linux, the server might write the error log to the /var/log/mysqld.log

770

The General Query Log

file, where the /var/log directory is owned by root and is not writable by mysqld. For information about
handling this case, see Section 5.4.7, “Server Log Maintenance”.

If the server is not writing to a named error log file, no error log file renaming occurs when the error log is
flushed.

5.4.3 The General Query Log

The general query log is a general record of what mysqld is doing. The server writes information to this
log when clients connect or disconnect, and it logs each SQL statement received from clients. The general
query log can be very useful when you suspect an error in a client and want to know exactly what the client
sent to mysqld.

mysqld writes statements to the query log in the order that it receives them, which might differ from the
order in which they are executed. This logging order is in contrast with that of the binary log, for which
statements are written after they are executed but before any locks are released. In addition, the query log
may contain statements that only select data while such statements are never written to the binary log.

When using statement-based binary logging on a replication source server, statements received by its
replicas are written to the query log of each replica. Statements are written to the query log of the source
server if a client reads events with the mysqlbinlog utility and passes them to the server.

However, when using row-based binary logging, updates are sent as row changes rather than SQL
statements, and thus these statements are never written to the query log when binlog_format is ROW.
A given update also might not be written to the query log when this variable is set to MIXED, depending on
the statement used. See Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-
Based Replication”, for more information.

By default, the general query log is disabled. To specify the initial general query log state explicitly,
use --general_log[={0|1}]. With no argument or an argument of 1, --general_log enables
the log. With an argument of 0, this option disables the log. To specify a log file name, use --
general_log_file=file_name. To specify the log destination, use the log_output system variable
(as described in Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”).

If you specify no name for the general query log file, the default name is host_name.log. The server
creates the file in the data directory unless an absolute path name is given to specify a different directory.

To disable or enable the general query log or change the log file name at runtime, use the global
general_log and general_log_file system variables. Set general_log to 0 (or OFF) to disable
the log or to 1 (or ON) to enable it. Set general_log_file to specify the name of the log file. If a log file
already is open, it is closed and the new file is opened.

When the general query log is enabled, the server writes output to any destinations specified by the
log_output system variable. If you enable the log, the server opens the log file and writes startup
messages to it. However, further logging of queries to the file does not occur unless the FILE log
destination is selected. If the destination is NONE, the server writes no queries even if the general log is
enabled. Setting the log file name has no effect on logging if the log destination value does not contain
FILE.

Server restarts and log flushing do not cause a new general query log file to be generated (although
flushing closes and reopens it). To rename the file and create a new one, use the following commands:

$> mv host_name.log host_name-old.log
$> mysqladmin flush-logs
$> mv host_name-old.log backup-directory

On Windows, use rename rather than mv.

771

The Binary Log

You can also rename the general query log file at runtime by disabling the log:

SET GLOBAL general_log = 'OFF';

With the log disabled, rename the log file externally (for example, from the command line). Then enable the
log again:

SET GLOBAL general_log = 'ON';

This method works on any platform and does not require a server restart.

To disable or enable general query logging for the current session, set the session sql_log_off variable
to ON or OFF. (This assumes that the general query log itself is enabled.)

Passwords in statements written to the general query log are rewritten by the server not to occur literally in
plain text. Password rewriting can be suppressed for the general query log by starting the server with the
--log-raw option. This option may be useful for diagnostic purposes, to see the exact text of statements
as received by the server, but for security reasons is not recommended for production use.

One implication of the introduction of password rewriting is that statements that cannot be parsed (due, for
example, to syntax errors) are no longer written to the general query log because they cannot be known to
be password free. Use cases that require logging of all statements including those with errors should use
the --log-raw option, bearing in mind that this also bypasses password rewriting.

Password rewriting occurs only when plain text passwords are expected. For statements with syntax that
expect a password hash value, no rewriting occurs. If a plain text password is supplied erroneously for
such syntax, the password is logged as given, without rewriting. For example, the following statement is
logged as shown because a password hash value is expected:

CREATE USER 'user1'@'localhost' IDENTIFIED BY PASSWORD 'not-so-secret';

5.4.4 The Binary Log

The binary log contains “events” that describe database changes such as table creation operations or
changes to table data. It also contains events for statements that potentially could have made changes
(for example, a DELETE which matched no rows), unless row-based logging is used. The binary log also
contains information about how long each statement took that updated data. The binary log has two
important purposes:

• For replication, the binary log on a source replication server provides a record of the data changes to
be sent to replica servers. The source server sends the events contained in its binary log to its replicas,
which execute those events to make the same data changes that were made on the source. See
Section 17.2, “Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup has been restored, the
events in the binary log that were recorded after the backup was made are re-executed. These events
bring databases up to date from the point of the backup. See Section 7.5, “Point-in-Time (Incremental)
Recovery Using the Binary Log”.

The binary log is not used for statements such as SELECT or SHOW that do not modify data. To log all
statements (for example, to identify a problem query), use the general query log. See Section 5.4.3, “The
General Query Log”.

Running a server with binary logging enabled makes performance slightly slower. However, the benefits of
the binary log in enabling you to set up replication and for restore operations generally outweigh this minor
performance decrement.

772

The Binary Log

The binary log is generally resilient to unexpected halts because only complete transactions are logged or
read back. See Section 17.3.2, “Handling an Unexpected Halt of a Replica Server” for more information.

Passwords in statements written to the binary log are rewritten by the server not to occur literally in plain
text. See also Section 6.1.2.3, “Passwords and Logging”.

The following discussion describes some of the server options and variables that affect the operation of
binary logging. For a complete list, see Section 17.1.4.4, “Binary Log Options and Variables”.

To enable the binary log, start the server with the --log-bin[=base_name] option. If no base_name
value is given, the default name is the value of the --pid-file option (which by default is the name of
host machine) followed by -bin. If the base name is given, the server writes the file in the data directory
unless the base name is given with a leading absolute path name to specify a different directory. It is
recommended that you specify a base name explicitly rather than using the default of the host name; see
Section B.3.7, “Known Issues in MySQL”, for the reason.

If you supply an extension in the log name (for example, --log-bin=base_name.extension), the
extension is silently removed and ignored.

mysqld appends a numeric extension to the binary log base name to generate binary log file names. The
number increases each time the server creates a new log file, thus creating an ordered series of files. The
server creates a new file in the series each time any of the following events occurs:

• The server is started or restarted

• The server flushes the logs.

• The size of the current log file reaches max_binlog_size.

A binary log file may become larger than max_binlog_size if you are using large transactions because a
transaction is written to the file in one piece, never split between files.

To keep track of which binary log files have been used, mysqld also creates a binary log index file that
contains the names of the binary log files. By default, this has the same base name as the binary log file,
with the extension '.index'. You can change the name of the binary log index file with the --log-bin-
index[=file_name] option. You should not manually edit this file while mysqld is running; doing so
would confuse mysqld.

The term “binary log file” generally denotes an individual numbered file containing database events. The
term “binary log” collectively denotes the set of numbered binary log files plus the index file.

A client that has privileges sufficient to set restricted session system variables (see Section 5.1.8.1,
“System Variable Privileges”) can disable binary logging of its own statements by using a SET
sql_log_bin=OFF statement.

By default, the server logs the length of the event as well as the event itself and uses this to verify that
the event was written correctly. You can also cause the server to write checksums for the events by
setting the binlog_checksum system variable. When reading back from the binary log, the source
uses the event length by default, but can be made to use checksums if available by enabling the
master_verify_checksum system variable. The replica I/O thread also verifies events received from
the source. You can cause the replica SQL thread to use checksums if available when reading from the
relay log by enabling the slave_sql_verify_checksum system variable.

The format of the events recorded in the binary log is dependent on the binary logging format. Three format
types are supported, row-based logging, statement-based logging and mixed-base logging. The binary

773

The Binary Log

logging format used depends on the MySQL version. For general descriptions of the logging formats, see
Section 5.4.4.1, “Binary Logging Formats”. For detailed information about the format of the binary log, see
MySQL Internals: The Binary Log.

The server evaluates the --binlog-do-db and --binlog-ignore-db options in the same way as it
does the --replicate-do-db and --replicate-ignore-db options. For information about how this
is done, see Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”.

A replication replica server by default does not write to its own binary log any data modifications that are
received from the replication source. To log these modifications, start the replica with the --log-slave-
updates option in addition to the --log-bin option (see Section 17.1.4.3, “Replica Server Options and
Variables”). This is done when a replica is also to act as a source to other replicas in chained replication.

You can delete all binary log files with the RESET MASTER statement, or a subset of them with PURGE
BINARY LOGS. See Section 13.7.6.6, “RESET Statement”, and Section 13.4.1.1, “PURGE BINARY LOGS
Statement”.

If you are using replication, you should not delete old binary log files on the source until you are sure that
no replica still needs to use them. For example, if your replicas never run more than three days behind,
once a day you can execute mysqladmin flush-logs on the source and then remove any logs that are
more than three days old. You can remove the files manually, but it is preferable to use PURGE BINARY
LOGS, which also safely updates the binary log index file for you (and which can take a date argument).
See Section 13.4.1.1, “PURGE BINARY LOGS Statement”.

You can display the contents of binary log files with the mysqlbinlog utility. This can be useful when you
want to reprocess statements in the log for a recovery operation. For example, you can update a MySQL
server from the binary log as follows:

$> mysqlbinlog log_file | mysql -h server_name

mysqlbinlog also can be used to display replication replica relay log file contents because they are
written using the same format as binary log files. For more information on the mysqlbinlog utility
and how to use it, see Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”. For more
information about the binary log and recovery operations, see Section 7.5, “Point-in-Time (Incremental)
Recovery Using the Binary Log”.

Binary logging is done immediately after a statement or transaction completes but before any locks are
released or any commit is done. This ensures that the log is logged in commit order.

Updates to nontransactional tables are stored in the binary log immediately after execution.

Within an uncommitted transaction, all updates (UPDATE, DELETE, or INSERT) that change transactional
tables such as InnoDB tables are cached until a COMMIT statement is received by the server. At that point,
mysqld writes the entire transaction to the binary log before the COMMIT is executed.

Modifications to nontransactional tables cannot be rolled back. If a transaction that is rolled back includes
modifications to nontransactional tables, the entire transaction is logged with a ROLLBACK statement at the
end to ensure that the modifications to those tables are replicated.

When a thread that handles the transaction starts, it allocates a buffer of binlog_cache_size to buffer
statements. If a statement is bigger than this, the thread opens a temporary file to store the transaction.
The temporary file is deleted when the thread ends.

The Binlog_cache_use status variable shows the number of transactions that used this buffer (and
possibly a temporary file) for storing statements. The Binlog_cache_disk_use status variable shows

774

https://dev.mysql.com/doc/internals/en/binary-log.html

The Binary Log

how many of those transactions actually had to use a temporary file. These two variables can be used for
tuning binlog_cache_size to a large enough value that avoids the use of temporary files.

The max_binlog_cache_size system variable (default 4GB, which is also the maximum) can be used
to restrict the total size used to cache a multiple-statement transaction. If a transaction is larger than this
many bytes, it fails and rolls back. The minimum value is 4096.

If you are using the binary log and row based logging, concurrent inserts are converted to normal inserts
for CREATE ... SELECT or INSERT ... SELECT statements. This is done to ensure that you can
re-create an exact copy of your tables by applying the log during a backup operation. If you are using
statement-based logging, the original statement is written to the log.

The binary log format has some known limitations that can affect recovery from backups. See
Section 17.4.1, “Replication Features and Issues”.

Binary logging for stored programs is done as described in Section 20.7, “Stored Program Binary Logging”.

The binary log format differs in MySQL 5.6 from previous versions of MySQL, due to enhancements in
replication. See Section 17.4.2, “Replication Compatibility Between MySQL Versions”.

If the server is unable to write to the binary log, flush binary log files, or synchronize the binary log to
disk, the binary log on the replication source can become inconsistent and replication replicas can lose
synchronization with the source. The binlog_error_action system variable controls the action taken if
an error of this type is encountered with the binary log.

• The default setting in MySQL 5.6, IGNORE_ERROR, provides backward compatibility with older versions
of MySQL. With this setting, the server continues the ongoing transaction and logs the error, then halts
binary logging, but continues to perform updates. At this point, you can identify and correct the cause of
the error. To resume binary logging, log_bin must be enabled again, which requires a server restart.
Only use this option if you require backward compatibility, and the binary log is non-essential on this
MySQL server instance. For example, you might use the binary log only for intermittent auditing or
debugging of the server, and not use it for replication from the server or rely on it for point-in-time restore
operations.

• The setting ABORT_SERVER, makes the server halt binary logging and shut down. At this point, you
can identify and correct the cause of the error. On restart, recovery proceeds as in the case of an
unexpected server halt (see Section 17.3.2, “Handling an Unexpected Halt of a Replica Server”). This is
the recommended setting, particularly in complex replication environments.

By default, the binary log is not synchronized to disk at each write. So if the operating system or machine
(not only the MySQL server) crashes, there is a chance that the last statements of the binary log are lost.
To prevent this, use the sync_binlog system variable to synchronize the binary log to disk after every
N commit groups. See Section 5.1.7, “Server System Variables”. The safest value for sync_binlog is
1, but this is also the slowest. Even with sync_binlog set to 1, there is still the chance of inconsistency
between the table content and binary log content in case of a crash.

For example, if you are using InnoDB tables and the MySQL server processes a COMMIT statement, it
writes many prepared transactions to the binary log in sequence, synchronizes the binary log, and then
commits this transaction into InnoDB. If the server unexpectedly exits between those two operations, the
transaction is rolled back by InnoDB at restart but still exists in the binary log. Such an issue is resolved
assuming --innodb_support_xa is set to 1, the default. Although this option is related to the support
of XA transactions in InnoDB, it also ensures that the binary log and InnoDB data files are synchronized.
For this option to provide a greater degree of safety, the MySQL server should also be configured to
synchronize the binary log and the InnoDB logs to disk before committing the transaction. The InnoDB
logs are synchronized by default, and sync_binlog=1 can be used to synchronize the binary log. The

775

The Binary Log

effect of this option is that at restart after a crash, after doing a rollback of transactions, the MySQL server
scans the latest binary log file to collect transaction xid values and calculate the last valid position in the
binary log file. The MySQL server then tells InnoDB to complete any prepared transactions that were
successfully written to the to the binary log, and truncates the binary log to the last valid position. This
ensures that the binary log reflects the exact data of InnoDB tables, and therefore the replica remains in
synchrony with the source because it does not receive a statement which has been rolled back.

If the MySQL server discovers at crash recovery that the binary log is shorter than it should have been, it
lacks at least one successfully committed InnoDB transaction. This should not happen if sync_binlog=1
and the disk/file system do an actual sync when they are requested to (some do not), so the server prints
an error message The binary log file_name is shorter than its expected size. In this
case, this binary log is not correct and replication should be restarted from a fresh snapshot of the source's
data.

The session values of the following system variables are written to the binary log and honored by the
replication replica when parsing the binary log:

• sql_mode (except that the NO_DIR_IN_CREATE mode is not replicated; see Section 17.4.1.35,
“Replication and Variables”)

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

• sql_auto_is_null

5.4.4.1 Binary Logging Formats

The server uses several logging formats to record information in the binary log. The exact format employed
depends on the version of MySQL being used. There are three logging formats:

• Replication capabilities in MySQL originally were based on propagation of SQL statements from source
to replica. This is called statement-based logging. You can cause this format to be used by starting the
server with --binlog-format=STATEMENT.

• In row-based logging, the source writes events to the binary log that indicate how individual table
rows are affected. You can cause the server to use row-based logging by starting it with --binlog-
format=ROW.

• A third option is also available: mixed logging. With mixed logging, statement-based logging is used by
default, but the logging mode switches automatically to row-based in certain cases as described below.
You can cause MySQL to use mixed logging explicitly by starting mysqld with the option --binlog-
format=MIXED.

In MySQL 5.6, the default binary logging format is STATEMENT.

The logging format can also be set or limited by the storage engine being used. This helps to eliminate
issues when replicating certain statements between a source and replica which are using different storage
engines.

776

The Binary Log

With statement-based replication, there may be issues with replicating nondeterministic statements. In
deciding whether or not a given statement is safe for statement-based replication, MySQL determines
whether it can guarantee that the statement can be replicated using statement-based logging. If MySQL
cannot make this guarantee, it marks the statement as potentially unreliable and issues the warning,
Statement may not be safe to log in statement format.

You can avoid these issues by using MySQL's row-based replication instead.

5.4.4.2 Setting The Binary Log Format

You can select the binary logging format explicitly by starting the MySQL server with --binlog-
format=type. The supported values for type are:

• STATEMENT causes logging to be statement based.

• ROW causes logging to be row based.

• MIXED causes logging to use mixed format.

In MySQL 5.6, the default binary logging format is STATEMENT.

The logging format also can be switched at runtime. Set the global value of the binlog_format system
variable to specify the format for clients that connect subsequent to the change:

mysql> SET GLOBAL binlog_format = 'STATEMENT';
mysql> SET GLOBAL binlog_format = 'ROW';
mysql> SET GLOBAL binlog_format = 'MIXED';

An individual client can control the logging format for its own statements by setting the session value of
binlog_format:

mysql> SET SESSION binlog_format = 'STATEMENT';
mysql> SET SESSION binlog_format = 'ROW';
mysql> SET SESSION binlog_format = 'MIXED';

Changing the global binlog_format value requires privileges sufficient to set global system variables.
Changing the session binlog_format value requires privileges sufficient to set restricted session system
variables. See Section 5.1.8.1, “System Variable Privileges”.

There are several reasons why a client might want to set binary logging on a per-session basis:

• A session that makes many small changes to the database might want to use row-based logging.

• A session that performs updates that match many rows in the WHERE clause might want to use
statement-based logging because it is more efficient to log a few statements than many rows.

• Some statements require a lot of execution time on the source, but result in just a few rows being
modified. It might therefore be beneficial to replicate them using row-based logging.

There are exceptions when you cannot switch the replication format at runtime:

• From within a stored function or a trigger

• If the NDB storage engine is enabled

• If the session is currently in row-based replication mode and has open temporary tables

Trying to switch the format in any of these cases results in an error.

777

The Binary Log

Switching the replication format at runtime is not recommended when any temporary tables exist, because
temporary tables are logged only when using statement-based replication, whereas with row-based
replication they are not logged. With mixed replication, temporary tables are usually logged; exceptions
happen with loadable functions and with the UUID() function.

Switching the replication format while replication is ongoing can also cause issues. Each MySQL Server
can set its own and only its own binary logging format (true whether binlog_format is set with global
or session scope). This means that changing the logging format on a replication source does not cause a
replica to change its logging format to match. When using STATEMENT mode, the binlog_format system
variable is not replicated. When using MIXED or ROW logging mode, it is replicated but is ignored by the
replica.

A replica is not able to convert binary log entries received in ROW logging format to STATEMENT format
for use in its own binary log. The replica must therefore use ROW or MIXED format if the source does.
Changing the binary logging format on the source from STATEMENT to ROW or MIXED while replication
is ongoing to a replica with STATEMENT format can cause replication to fail with errors such as Error
executing row event: 'Cannot execute statement: impossible to write to binary
log since statement is in row format and BINLOG_FORMAT = STATEMENT.' Changing
the binary logging format on the replica to STATEMENT format when the source is still using MIXED or
ROW format also causes the same type of replication failure. To change the format safely, you must stop
replication and ensure that the same change is made on both the source and the replica.

If you are using InnoDB tables and the transaction isolation level is READ COMMITTED or READ
UNCOMMITTED, only row-based logging can be used. It is possible to change the logging format to
STATEMENT, but doing so at runtime leads very rapidly to errors because InnoDB can no longer perform
inserts.

With the binary log format set to ROW, many changes are written to the binary log using the row-based
format. Some changes, however, still use the statement-based format. Examples include all DDL (data
definition language) statements such as CREATE TABLE, ALTER TABLE, or DROP TABLE.

The --binlog-row-event-max-size option is available for servers that are capable of row-based
replication. Rows are stored into the binary log in chunks having a size in bytes not exceeding the value of
this option. The value must be a multiple of 256. The default value is 8192.

Warning

When using statement-based logging for replication, it is possible for the data on
the source and replica to become different if a statement is designed in such a way
that the data modification is nondeterministic; that is, it is left to the will of the query
optimizer. In general, this is not a good practice even outside of replication. For a
detailed explanation of this issue, see Section B.3.7, “Known Issues in MySQL”.

For information about logs kept by replicas, see Section 17.2.2, “Relay Log and Replication Metadata
Repositories”.

5.4.4.3 Mixed Binary Logging Format

When running in MIXED logging format, the server automatically switches from statement-based to row-
based logging under the following conditions:

• When a function contains UUID().

• When one or more tables with AUTO_INCREMENT columns are updated and a trigger or stored
function is invoked. Like all other unsafe statements, this generates a warning if binlog_format =
STATEMENT.

778

The Binary Log

For more information, see Section 17.4.1.1, “Replication and AUTO_INCREMENT”.

• When the body of a view requires row-based replication, the statement creating the view also uses it. For
example, this occurs when the statement creating a view uses the UUID() function.

• When a call to a loadable function is involved.

• When any INSERT DELAYED is executed for a nontransactional table.

• If a statement is logged by row and the session that executed the statement has any temporary tables,
logging by row is used for all subsequent statements (except for those accessing temporary tables) until
all temporary tables in use by that session are dropped.

This is true whether or not any temporary tables are actually logged.

Temporary tables cannot be logged using row-based format; thus, once row-based logging is used, all
subsequent statements using that table are unsafe. The server approximates this condition by treating
all statements executed during the session as unsafe until the session no longer holds any temporary
tables.

• When FOUND_ROWS() or ROW_COUNT() is used. (Bug #12092, Bug #30244)

• When USER(), CURRENT_USER(), or CURRENT_USER is used. (Bug #28086)

• When a statement refers to one or more system variables. (Bug #31168)

Exception. The following system variables, when used with session scope (only), do not cause the
logging format to switch:

• auto_increment_increment

• auto_increment_offset

• character_set_client

• character_set_connection

• character_set_database

• character_set_server

• collation_connection

• collation_database

• collation_server

• foreign_key_checks

• identity

• last_insert_id

• lc_time_names

• pseudo_thread_id

• sql_auto_is_null

779

The Binary Log

• time_zone

• timestamp

• unique_checks

For information about determining system variable scope, see Section 5.1.8, “Using System Variables”.

For information about how replication treats sql_mode, see Section 17.4.1.35, “Replication and
Variables”.

• When one of the tables involved is a log table in the mysql database.

• When the LOAD_FILE() function is used. (Bug #39701)

Note

A warning is generated if you try to execute a statement using statement-based
logging that should be written using row-based logging. The warning is shown both
in the client (in the output of SHOW WARNINGS) and through the mysqld error log.
A warning is added to the SHOW WARNINGS table each time such a statement is
executed. However, only the first statement that generated the warning for each
client session is written to the error log to prevent flooding the log.

In addition to the decisions above, individual engines can also determine the logging format used when
information in a table is updated. The logging capabilities of an individual engine can be defined as follows:

• If an engine supports row-based logging, the engine is said to be row-logging capable.

• If an engine supports statement-based logging, the engine is said to be statement-logging capable.

A given storage engine can support either or both logging formats. The following table lists the formats
supported by each engine.

Storage Engine Row Logging Supported Statement Logging Supported

ARCHIVE Yes Yes

BLACKHOLE Yes Yes

CSV Yes Yes

EXAMPLE Yes No

FEDERATED Yes Yes

HEAP Yes Yes

InnoDB Yes Yes when the transaction isolation
level is REPEATABLE READ or
SERIALIZABLE; No otherwise.

MyISAM Yes Yes

MERGE Yes Yes

NDB Yes No

Whether a statement is to be logged and the logging mode to be used is determined according to the type
of statement (safe, unsafe, or binary injected), the binary logging format (STATEMENT, ROW, or MIXED), and
the logging capabilities of the storage engine (statement capable, row capable, both, or neither). (Binary
injection refers to logging a change that must be logged using ROW format.)

780

The Binary Log

Statements may be logged with or without a warning; failed statements are not logged, but generate errors
in the log. This is shown in the following decision table. Type, binlog_format, SLC, and RLC columns
outline the conditions, and Error / Warning and Logged as columns represent the corresponding actions.
SLC stands for “statement-logging capable”, and RLC stands for “row-logging capable”.

Type binlog_formatSLC RLC Error / Warning Logged as

* * No No Error:
Cannot
execute
statement:
Binary logging
is impossible
since at least
one engine is
involved that
is both row-
incapable and
statement-
incapable.

-

Safe STATEMENT Yes No - STATEMENT

Safe MIXED Yes No - STATEMENT

Safe ROW Yes No Error:
Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= ROW and at
least one table
uses a storage
engine that is
not capable
of row-based
logging.

-

Unsafe STATEMENT Yes No Warning:
Unsafe
statement
binlogged
in statement
format, since
BINLOG_FORMAT
= STATEMENT

STATEMENT

Unsafe MIXED Yes No Error:
Cannot
execute
statement:
Binary logging
of an unsafe
statement is
impossible
when the

-

781

The Binary Log

Type binlog_formatSLC RLC Error / Warning Logged as
storage engine
is limited to
statement-based
logging, even if
BINLOG_FORMAT
= MIXED.

Unsafe ROW Yes No Error:
Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= ROW and at
least one table
uses a storage
engine that is
not capable
of row-based
logging.

-

Row Injection STATEMENT Yes No Error:
Cannot
execute row
injection:
Binary logging
is not possible
since at least
one table uses a
storage engine
that is not
capable of row-
based logging.

-

Row Injection MIXED Yes No Error:
Cannot
execute row
injection:
Binary logging
is not possible
since at least
one table uses a
storage engine
that is not
capable of row-
based logging.

-

Row Injection ROW Yes No Error:
Cannot
execute row
injection:
Binary logging
is not possible
since at least

-

782

The Binary Log

Type binlog_formatSLC RLC Error / Warning Logged as
one table uses a
storage engine
that is not
capable of row-
based logging.

Safe STATEMENT No Yes Error:
Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= STATEMENT
and at least
one table uses
a storage
engine that is
not capable of
statement-based
logging.

-

Safe MIXED No Yes - ROW

Safe ROW No Yes - ROW

Unsafe STATEMENT No Yes Error:
Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= STATEMENT
and at least
one table uses
a storage
engine that is
not capable of
statement-based
logging.

-

Unsafe MIXED No Yes - ROW

Unsafe ROW No Yes - ROW

Row Injection STATEMENT No Yes Error:
Cannot
execute row
injection:
Binary
logging is not
possible since
BINLOG_FORMAT
= STATEMENT.

-

Row Injection MIXED No Yes - ROW

783

The Binary Log

Type binlog_formatSLC RLC Error / Warning Logged as

Row Injection ROW No Yes - ROW

Safe STATEMENT Yes Yes - STATEMENT

Safe MIXED Yes Yes - STATEMENT

Safe ROW Yes Yes - ROW

Unsafe STATEMENT Yes Yes Warning:
Unsafe
statement
binlogged
in statement
format since
BINLOG_FORMAT
= STATEMENT.

STATEMENT

Unsafe MIXED Yes Yes - ROW

Unsafe ROW Yes Yes - ROW

Row Injection STATEMENT Yes Yes Error:
Cannot
execute row
injection:
Binary logging
is not possible
because
BINLOG_FORMAT
= STATEMENT.

-

Row Injection MIXED Yes Yes - ROW

Row Injection ROW Yes Yes - ROW

When a warning is produced by the determination, a standard MySQL warning is produced (and is
available using SHOW WARNINGS). The information is also written to the mysqld error log. Only one
error for each error instance per client connection is logged to prevent flooding the log. The log message
includes the SQL statement that was attempted.

If a replica server was started with --log-warnings enabled, the replica prints messages to the error log
to provide information about its status, such as the binary log and relay log coordinates where it starts its
job, when it is switching to another relay log, when it reconnects after a disconnect, and so forth.

5.4.4.4 Logging Format for Changes to mysql Database Tables

The contents of the grant tables in the mysql database can be modified directly (for example, with INSERT
or DELETE) or indirectly (for example, with GRANT or CREATE USER). Statements that affect mysql
database tables are written to the binary log using the following rules:

• Data manipulation statements that change data in mysql database tables directly are logged according
to the setting of the binlog_format system variable. This pertains to statements such as INSERT,
UPDATE, DELETE, REPLACE, DO, LOAD DATA, SELECT, and TRUNCATE TABLE.

• Statements that change the mysql database indirectly are logged as statements regardless of the value
of binlog_format. This pertains to statements such as GRANT, REVOKE, SET PASSWORD, RENAME
USER, CREATE (all forms except CREATE TABLE ... SELECT), ALTER (all forms), and DROP (all
forms).

784

The Slow Query Log

CREATE TABLE ... SELECT is a combination of data definition and data manipulation. The CREATE
TABLE part is logged using statement format and the SELECT part is logged according to the value of
binlog_format.

5.4.5 The Slow Query Log

The slow query log consists of SQL statements that take more than long_query_time seconds to
execute and require at least min_examined_row_limit rows to be examined. The slow query log can
be used to find queries that take a long time to execute and are therefore candidates for optimization.
However, examining a long slow query log can be a time-consuming task. To make this easier, you can
use the mysqldumpslow command to process a slow query log file and summarize its contents. See
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”.

The time to acquire the initial locks is not counted as execution time. mysqld writes a statement to the
slow query log after it has been executed and after all locks have been released, so log order might differ
from execution order.

• Slow Query Log Parameters

• Slow Query Log Contents

Slow Query Log Parameters

The minimum and default values of long_query_time are 0 and 10, respectively. The value can be
specified to a resolution of microseconds. For logging to a file, times are written including the microseconds
part. For logging to tables, only integer times are written; the microseconds part is ignored.

By default, administrative statements are not logged, nor are queries that do not use indexes
for lookups. This behavior can be changed using log_slow_admin_statements and
log_queries_not_using_indexes, as described later.

By default, the slow query log is disabled. To specify the initial slow query log state explicitly, use
--slow_query_log[={0|1}]. With no argument or an argument of 1, --slow_query_log
enables the log. With an argument of 0, this option disables the log. To specify a log file name, use --
slow_query_log_file=file_name. To specify the log destination, use the log_output system
variable (as described in Section 5.4.1, “Selecting General Query Log and Slow Query Log Output
Destinations”).

If you specify no name for the slow query log file, the default name is host_name-slow.log. The server
creates the file in the data directory unless an absolute path name is given to specify a different directory.

To disable or enable the slow query log or change the log file name at runtime, use the global
slow_query_log and slow_query_log_file system variables. Set slow_query_log to 0 to disable
the log or to 1 to enable it. Set slow_query_log_file to specify the name of the log file. If a log file
already is open, it is closed and the new file is opened.

The server writes less information to the slow query log if you use the --log-short-format option.

To include slow administrative statements in the slow query log, enable the
log_slow_admin_statements system variable. Administrative statements include ALTER TABLE,
ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP INDEX, OPTIMIZE TABLE, and REPAIR
TABLE.

To include queries that do not use indexes for row lookups in the statements written to the slow query log,
enable the log_queries_not_using_indexes system variable. (Even with that variable enabled, the
server does not log queries that would not benefit from the presence of an index due to the table having
fewer than two rows.)

785

The Slow Query Log

When queries that do not use an index are logged, the slow query log may grow quickly. It is possible
to put a rate limit on these queries by setting the log_throttle_queries_not_using_indexes
system variable. By default, this variable is 0, which means there is no limit. Positive values impose a per-
minute limit on logging of queries that do not use indexes. The first such query opens a 60-second window
within which the server logs queries up to the given limit, then suppresses additional queries. If there are
suppressed queries when the window ends, the server logs a summary that indicates how many there
were and the aggregate time spent in them. The next 60-second window begins when the server logs the
next query that does not use indexes.

The server uses the controlling parameters in the following order to determine whether to write a query to
the slow query log:

1. The query must either not be an administrative statement, or log_slow_admin_statements must
be enabled.

2. The query must have taken at least long_query_time seconds, or
log_queries_not_using_indexes must be enabled and the query used no indexes for row
lookups.

3. The query must have examined at least min_examined_row_limit rows.

4. The query must not be suppressed according to the
log_throttle_queries_not_using_indexes setting.

The server does not log queries handled by the query cache.

By default, a replica does not write replicated queries to the slow query log. To change this, enable
the log_slow_slave_statements system variable. Note that if row-based replication is in use
(binlog_format=ROW), log_slow_slave_statements has no effect. Queries are only added to
the replica's slow query log when they are logged in statement format in the binary log, that is, when
binlog_format=STATEMENT is set, or when binlog_format=MIXED is set and the statement is logged
in statement format. Slow queries that are logged in row format when binlog_format=MIXED is set, or
that are logged when binlog_format=ROW is set, are not added to the replica's slow query log, even if
log_slow_slave_statements is enabled.

Slow Query Log Contents

When the slow query log is enabled, the server writes output to any destinations specified by the
log_output system variable. If you enable the log, the server opens the log file and writes startup
messages to it. However, further logging of queries to the file does not occur unless the FILE log
destination is selected. If the destination is NONE, the server writes no queries even if the slow query log is
enabled. Setting the log file name has no effect on logging if FILE is not selected as an output destination.

If the slow query log is enabled and FILE is selected as an output destination, each statement written to
the log is preceded by a line that begins with a # character and has these fields (with all fields on a single
line):

• Query_time: duration

The statement execution time in seconds.

• Lock_time: duration

The time to acquire locks in seconds.

• Rows_sent: N

The number of rows sent to the client.

786

The DDL Log

• Rows_examined:

The number of rows examined by the server layer (not counting any processing internal to storage
engines).

Each statement written to the slow query log file is preceded by a SET statement that includes a timestamp
indicating when the slow statement was logged (which occurs after the statement finishes executing).

Passwords in statements written to the slow query log are rewritten by the server not to occur literally in
plain text. See Section 6.1.2.3, “Passwords and Logging”.

5.4.6 The DDL Log

The DDL log, or metadata log, records metadata operations generated by data definition statements
affecting table partitioning, such as ALTER TABLE t3 DROP PARTITION p2, where we must make
certain that the partition is completely dropped and that its definition is removed from the list of partitions
for table t3. MySQL uses this log to recover from a crash occurring in the middle of a partitioning metadata
operation.

A record of partitioning metadata operations is written to the file ddl_log.log, in the MySQL data
directory. This is a binary file; it is not intended to be human-readable, and you should not attempt to
modify its contents in any way.

ddl_log.log is not created until it is actually needed for recording metadata statements, and is removed
following a successful start of mysqld. Thus, it is possible for this file not to be present on a MySQL server
that is functioning in a completely normal manner.

ddl_log.log can hold up to 1048573 entries, equivalent to 4 GB in size. Once this limit is exceeded, you
must rename or remove the file before it is possible to execute any additional DDL statements. This is a
known issue (Bug #83708).

There are no user-configurable server options or variables associated with this file.

5.4.7 Server Log Maintenance

As described in Section 5.4, “MySQL Server Logs”, MySQL Server can create several different log files to
help you see what activity is taking place. However, you must clean up these files regularly to ensure that
the logs do not take up too much disk space.

When using MySQL with logging enabled, you may want to back up and remove old log files from time to
time and tell MySQL to start logging to new files. See Section 7.2, “Database Backup Methods”.

On a Linux (Red Hat) installation, you can use the mysql-log-rotate script for log maintenance. If you
installed MySQL from an RPM distribution, this script should have been installed automatically. Be careful
with this script if you are using the binary log for replication. You should not remove binary logs until you
are certain that their contents have been processed by all replicas.

On other systems, you must install a short script yourself that you start from cron (or its equivalent) for
handling log files.

For the binary log, you can set the expire_logs_days system variable to expire binary log files
automatically after a given number of days (see Section 5.1.7, “Server System Variables”). If you are using
replication, you should set the variable no lower than the maximum number of days your replicas might
lag behind the source. To remove binary logs on demand, use the PURGE BINARY LOGS statement (see
Section 13.4.1.1, “PURGE BINARY LOGS Statement”).

787

Server Log Maintenance

To force MySQL to start using new log files, flush the logs. Log flushing occurs when you execute a FLUSH
LOGS statement or a mysqladmin flush-logs, mysqladmin refresh, mysqldump --flush-logs,
or mysqldump --master-data command. See Section 13.7.6.3, “FLUSH Statement”, Section 4.5.2,
“mysqladmin — A MySQL Server Administration Program”, and Section 4.5.4, “mysqldump — A Database
Backup Program”. In addition, the server flushes the binary log automatically when current binary log file
size reaches the value of the max_binlog_size system variable.

FLUSH LOGS supports optional modifiers to enable selective flushing of individual logs (for example,
FLUSH BINARY LOGS). See Section 13.7.6.3, “FLUSH Statement”.

A log-flushing operation has the following effects:

• If binary logging is enabled, the server closes the current binary log file and opens a new log file with the
next sequence number.

• If general query logging or slow query logging to a log file is enabled, the server closes and reopens the
log file.

• If the server was started with the --log-error option to cause the error log to be written to a file, the
server closes and reopens the log file.

Execution of log-flushing statements or commands requires connecting to the server using an account
that has the RELOAD privilege. On Unix and Unix-like systems, another way to flush the logs is to send a
SIGHUP signal to the server, which can be done by root or the account that owns the server process.
Signals enable log flushing to be performed without having to connect to the server. However, SIGHUP
has additional effects other than log flushing that might be undesirable. For details, see Section 4.10, “Unix
Signal Handling in MySQL”.

As mentioned previously, flushing the binary log creates a new binary log file, whereas flushing the general
query log, slow query log, or error log just closes and reopens the log file. For the latter logs, to cause
a new log file to be created on Unix, rename the current log file first before flushing it. At flush time, the
server opens the new log file with the original name. For example, if the general query log, slow query log,
and error log files are named mysql.log, mysql-slow.log, and err.log, you can use a series of
commands like this from the command line:

cd mysql-data-directory
mv mysql.log mysql.log.old
mv mysql-slow.log mysql-slow.log.old
mv err.log err.log.old
mysqladmin flush-logs

On Windows, use rename rather than mv.

At this point, you can make a backup of mysql.log.old, mysql-slow.log.old, and err.log.old,
then remove them from disk.

To rename the general query log or slow query log at runtime, first connect to the server and disable the
log:

SET GLOBAL general_log = 'OFF';
SET GLOBAL slow_query_log = 'OFF';

With the logs disabled, rename the log files externally (for example, from the command line). Then enable
the logs again:

SET GLOBAL general_log = 'ON';
SET GLOBAL slow_query_log = 'ON';

This method works on any platform and does not require a server restart.

788

MySQL Server Plugins

Note

For the server to recreate a given log file after you have renamed the file externally,
the file location must be writable by the server. This may not always be the
case. For example, on Linux, the server might write the error log as /var/log/
mysqld.log, where /var/log is owned by root and not writable by mysqld. In
this case, log-flushing operations fail to create a new log file.

To handle this situation, you must manually create the new log file with the
proper ownership after renaming the original log file. For example, execute these
commands as root:

mv /var/log/mysqld.log /var/log/mysqld.log.old
install -omysql -gmysql -m0644 /dev/null /var/log/mysqld.log

5.5 MySQL Server Plugins
MySQL supports an plugin API that enables creation of server plugins. Plugins can be loaded at server
startup, or loaded and unloaded at runtime without restarting the server. The plugins supported by this
interface include, but are not limited to, storage engines, INFORMATION_SCHEMA tables, full-text parser
plugins, partitioning support, and server extensions.

MySQL distributions include several plugins that implement server extensions:

• Plugins for authenticating attempts by clients to connect to MySQL Server. Plugins are available for
several authentication protocols. See Section 6.2.11, “Pluggable Authentication”.

• A connection-control plugin that enables administrators to introduce an increasing delay after a certain
number of consecutive failed client connection attempts. See Section 6.4.2, “The Connection-Control
Plugins”.

• A password-validation plugin implements password strength policies and assesses the strength of
potential passwords. See Section 6.4.3, “The Password Validation Plugin”.

• Semisynchronous replication plugins implement an interface to replication capabilities that permit
the source to proceed as long as at least one replica has responded to each transaction. See
Section 17.3.9, “Semisynchronous Replication”.

• MySQL Enterprise Edition includes a thread pool plugin that manages connection threads to increase
server performance by efficiently managing statement execution threads for large numbers of client
connections. See Section 5.5.3, “MySQL Enterprise Thread Pool”.

• MySQL Enterprise Edition includes an audit plugin for monitoring and logging of connection and query
activity. See Section 6.4.4, “MySQL Enterprise Audit”.

• MySQL Enterprise Edition includes a firewall plugin that implements an application-level firewall to
enable database administrators to permit or deny SQL statement execution based on matching against
allowlists of accepted statement patterns. See Section 6.4.5, “MySQL Enterprise Firewall”.

The following sections describe how to install and uninstall plugins, and how to determine at runtime which
plugins are installed and obtain information about them. For information about writing plugins, see The
MySQL Plugin API.

5.5.1 Installing and Uninstalling Plugins

Server plugins must be loaded into the server before they can be used. MySQL supports plugin loading at
server startup and runtime. It is also possible to control the activation state of loaded plugins at startup, and
to unload them at runtime.

789

https://dev.mysql.com/doc/extending-mysql/5.6/en/plugin-api.html
https://dev.mysql.com/doc/extending-mysql/5.6/en/plugin-api.html

Installing and Uninstalling Plugins

While a plugin is loaded, information about it is available as described in Section 5.5.2, “Obtaining Server
Plugin Information”.

• Installing Plugins

• Controlling Plugin Activation State

• Uninstalling Plugins

Installing Plugins

Before a server plugin can be used, it must be installed using one of the following methods. In the
descriptions, plugin_name stands for a plugin name such as innodb, csv, or validate_password.

• Built-in Plugins

• Plugins Registered in the mysql.plugin System Table

• Plugins Named with Command-Line Options

• Plugins Installed with the INSTALL PLUGIN Statement

Built-in Plugins

A built-in plugin is known by the server automatically. By default, the server enables the plugin at startup.
Some built-in plugins permit this to be changed with the --plugin_name[=activation_state] option.

Plugins Registered in the mysql.plugin System Table

The mysql.plugin system table serves as a registry of plugins (other than built-in plugins, which need
not be registered). During the normal startup sequence, the server loads plugins registered in the table. By
default, for a plugin loaded from the mysql.plugin table, the server also enables the plugin. This can be
changed with the --plugin_name[=activation_state] option.

If the server is started with the --skip-grant-tables option, plugins registered in the mysql.plugin
table are not loaded and are unavailable.

Plugins Named with Command-Line Options

A plugin located in a plugin library file can be loaded at server startup with the --plugin-load or --
plugin-load-add option. Normally, for a plugin loaded at startup, the server also enables the plugin.
This can be changed with the --plugin_name[=activation_state] option.

The value of each plugin-loading option is a semicolon-separated list of plugin_library and
name=plugin_library values. Each plugin_library is the name of a library file that contains plugin
code, and each name is the name of a plugin to load. If a plugin library is named without any preceding
plugin name, the server loads all plugins in the library. With a preceding plugin name, the server loads
only the named plugin from the libary. The server looks for plugin library files in the directory named by the
plugin_dir system variable.

Plugin-loading options do not register any plugin in the mysql.plugin table. For subsequent restarts, the
server loads the plugin again only if --plugin-load or --plugin-load-add is given again. That is, the
option produces a one-time plugin-installation operation that persists for a single server invocation.

--plugin-load and --plugin-load-add enable plugins to be loaded even when --skip-grant-
tables is given (which causes the server to ignore the mysql.plugin table). --plugin-load and --
plugin-load-add also enable plugins to be loaded at startup that cannot be loaded at runtime.

790

Installing and Uninstalling Plugins

The --plugin-load-add option complements the --plugin-load option:

• Each instance of --plugin-load resets the set of plugins to load at startup, whereas --plugin-
load-add adds a plugin or plugins to the set of plugins to be loaded without resetting the current set.
Consequently, if multiple instances of --plugin-load are specified, only the last one applies. With
multiple instances of --plugin-load-add, all of them apply.

• The argument format is the same as for --plugin-load, but multiple instances of --plugin-load-
add can be used to avoid specifying a large set of plugins as a single long unwieldy --plugin-load
argument.

• --plugin-load-add can be given in the absence of --plugin-load, but any instance of --
plugin-load-add that appears before --plugin-load has no effect because --plugin-load
resets the set of plugins to load.

For example, these options:

--plugin-load=x --plugin-load-add=y

are equivalent to these options:

--plugin-load-add=x --plugin-load-add=y

and are also equivalent to this option:

--plugin-load="x;y"

But these options:

--plugin-load-add=y --plugin-load=x

are equivalent to this option:

--plugin-load=x

Plugins Installed with the INSTALL PLUGIN Statement

A plugin located in a plugin library file can be loaded at runtime with the INSTALL PLUGIN statement.
The statement also registers the plugin in the mysql.plugin table to cause the server to load it
on subsequent restarts. For this reason, INSTALL PLUGIN requires the INSERT privilege for the
mysql.plugin table.

The plugin library file base name depends on your platform. Common suffixes are .so for Unix and Unix-
like systems, .dll for Windows.

Example: The --plugin-load-add option installs a plugin at server startup. To install a plugin named
myplugin from a plugin library file named somepluglib.so, use these lines in a my.cnf file:

[mysqld]
plugin-load-add=myplugin=somepluglib.so

In this case, the plugin is not registered in mysql.plugin. Restarting the server without the --plugin-
load-add option causes the plugin not to be loaded at startup.

Alternatively, the INSTALL PLUGIN statement causes the server to load the plugin code from the library
file at runtime:

INSTALL PLUGIN myplugin SONAME 'somepluglib.so';

INSTALL PLUGIN also causes “permanent” plugin registration: The plugin is listed in the mysql.plugin
table to ensure that the server loads it on subsequent restarts.

791

Installing and Uninstalling Plugins

Many plugins can be loaded either at server startup or at runtime. However, if a plugin is designed such
that it must be loaded and initialized during server startup, attempts to load it at runtime using INSTALL
PLUGIN produce an error:

mysql> INSTALL PLUGIN myplugin SONAME 'somepluglib.so';
ERROR 1721 (HY000): Plugin 'myplugin' is marked as not dynamically
installable. You have to stop the server to install it.

In this case, you must use --plugin-load or --plugin-load-add.

Many plugins can be loaded either at server startup or at runtime. However, if a plugin is designed such
that it must be loaded and initialized during server startup, use --plugin-load or --plugin-load-add
rather than INSTALL PLUGIN.

If a plugin is named both using a --plugin-load or --plugin-load-add option and (as a result of
an earlier INSTALL PLUGIN statement) in the mysql.plugin table, the server starts but writes these
messages to the error log:

[ERROR] Function 'plugin_name' already exists
[Warning] Couldn't load plugin named 'plugin_name'
with soname 'plugin_object_file'.

Controlling Plugin Activation State

If the server knows about a plugin when it starts (for example, because the plugin is named using
a --plugin-load-add option or is registered in the mysql.plugin table), the server loads
and enables the plugin by default. It is possible to control activation state for such a plugin using a
--plugin_name[=activation_state] startup option, where plugin_name is the name of the plugin
to affect, such as innodb, csv, or validate_password. As with other options, dashes and underscores
are interchangeable in option names. Also, activation state values are not case-sensitive. For example, --
my_plugin=ON and --my-plugin=on are equivalent.

• --plugin_name=OFF

Tells the server to disable the plugin. This may not be possible for certain built-in plugins, such as
mysql_native_password.

• --plugin_name[=ON]

Tells the server to enable the plugin. (Specifying the option as --plugin_name without a value has the
same effect.) If the plugin fails to initialize, the server runs with the plugin disabled.

• --plugin_name=FORCE

Tells the server to enable the plugin, but if plugin initialization fails, the server does not start. In other
words, this option forces the server to run with the plugin enabled or not at all.

• --plugin_name=FORCE_PLUS_PERMANENT

Like FORCE, but in addition prevents the plugin from being unloaded at runtime. If a user attempts to do
so with UNINSTALL PLUGIN, an error occurs.

Plugin activation states are visible in the LOAD_OPTION column of the Information Schema PLUGINS table.

Suppose that CSV, BLACKHOLE, and ARCHIVE are built-in pluggable storage engines and that you want
the server to load them at startup, subject to these conditions: The server is permitted to run if CSV
initialization fails, must require that BLACKHOLE initialization succeeds, and should disable ARCHIVE. To
accomplish that, use these lines in an option file:

792

Obtaining Server Plugin Information

[mysqld]
csv=ON
blackhole=FORCE
archive=OFF

The --enable-plugin_name option format is a synonym for --plugin_name=ON. The
--disable-plugin_name and --skip-plugin_name option formats are synonyms for
--plugin_name=OFF.

If a plugin is disabled, either explicitly with OFF or implicitly because it was enabled with ON but fails
to initialize, aspects of server operation that require the plugin change. For example, if the plugin
implements a storage engine, existing tables for the storage engine become inaccessible, and attempts
to create new tables for the storage engine result in tables that use the default storage engine unless the
NO_ENGINE_SUBSTITUTION SQL mode is enabled to cause an error to occur instead.

Disabling a plugin may require adjustment to other options. For example, if you start the server
using --skip-innodb to disable InnoDB, other innodb_xxx options likely need to be omitted
at startup. In addition, because InnoDB is the default storage engine, it cannot start unless you
specify another available storage engine with --default_storage_engine. You must also set --
default_tmp_storage_engine.

Uninstalling Plugins

At runtime, the UNINSTALL PLUGIN statement disables and uninstalls a plugin known to the server. The
statement unloads the plugin and removes it from the mysql.plugin system table, if it is registered there.
For this reason, UNINSTALL PLUGIN statement requires the DELETE privilege for the mysql.plugin
table. With the plugin no longer registered in the table, the server does not load the plugin during
subsequent restarts.

UNINSTALL PLUGIN can unload a plugin regardless of whether it was loaded at runtime with INSTALL
PLUGIN or at startup with a plugin-loading option, subject to these conditions:

• It cannot unload plugins that are built in to the server. These can be identified as those that have a
library name of NULL in the output from INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS.

• It cannot unload plugins for which the server was started with
--plugin_name=FORCE_PLUS_PERMANENT, which prevents plugin unloading at runtime. These can
be identified from the LOAD_OPTION column of the Information Schema PLUGINS table.

To uninstall a plugin that currently is loaded at server startup with a plugin-loading option, use this
procedure.

1. Remove from the my.cnf file any options related to the plugin.

2. Restart the server.

3. Plugins normally are installed using either a plugin-loading option at startup or with INSTALL PLUGIN
at runtime, but not both. However, removing options for a plugin from the my.cnf file may not be
sufficient to uninstall it if at some point INSTALL PLUGIN has also been used. If the plugin still
appears in the output from INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS, use UNINSTALL
PLUGIN to remove it from the mysql.plugin table. Then restart the server again.

5.5.2 Obtaining Server Plugin Information

There are several ways to determine which plugins are installed in the server:

• The Information Schema PLUGINS table contains a row for each loaded plugin. Any that have a
PLUGIN_LIBRARY value of NULL are built in and cannot be unloaded.

793

MySQL Enterprise Thread Pool

mysql> SELECT * FROM INFORMATION_SCHEMA.PLUGINS\G
*************************** 1. row ***************************
 PLUGIN_NAME: binlog
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 50158.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: MySQL AB
 PLUGIN_DESCRIPTION: This is a pseudo storage engine to represent the binlog in a transaction
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: FORCE
...
*************************** 10. row ***************************
 PLUGIN_NAME: InnoDB
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 50158.0
 PLUGIN_LIBRARY: ha_innodb_plugin.so
PLUGIN_LIBRARY_VERSION: 1.0
 PLUGIN_AUTHOR: Innobase Oy
 PLUGIN_DESCRIPTION: Supports transactions, row-level locking,
 and foreign keys
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON
...

• The SHOW PLUGINS statement displays a row for each loaded plugin. Any that have a Library value of
NULL are built in and cannot be unloaded.

mysql> SHOW PLUGINS\G
*************************** 1. row ***************************
 Name: binlog
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
...
*************************** 10. row ***************************
 Name: InnoDB
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: ha_innodb_plugin.so
License: GPL
...

• The mysql.plugin table shows which plugins have been registered with INSTALL PLUGIN. The table
contains only plugin names and library file names, so it does not provide as much information as the
PLUGINS table or the SHOW PLUGINS statement.

5.5.3 MySQL Enterprise Thread Pool

Note

MySQL Enterprise Thread Pool is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, https://
www.mysql.com/products/.

MySQL Enterprise Edition includes MySQL Enterprise Thread Pool, implemented using a server plugin.
The default thread-handling model in MySQL Server executes statements using one thread per client
connection. As more clients connect to the server and execute statements, overall performance degrades.

794

https://www.mysql.com/products/
https://www.mysql.com/products/

MySQL Enterprise Thread Pool

The thread pool plugin provides an alternative thread-handling model designed to reduce overhead
and improve performance. The plugin implements a thread pool that increases server performance by
efficiently managing statement execution threads for large numbers of client connections.

The thread pool addresses several problems of the model that uses one thread per connection:

• Too many thread stacks make CPU caches almost useless in highly parallel execution workloads. The
thread pool promotes thread stack reuse to minimize the CPU cache footprint.

• With too many threads executing in parallel, context switching overhead is high. This also presents a
challenge to the operating system scheduler. The thread pool controls the number of active threads to
keep the parallelism within the MySQL server at a level that it can handle and that is appropriate for the
server host on which MySQL is executing.

• Too many transactions executing in parallel increases resource contention. In InnoDB, this increases
the time spent holding central mutexes. The thread pool controls when transactions start to ensure that
not too many execute in parallel.

Additional Resources

Section A.15, “MySQL 5.6 FAQ: MySQL Enterprise Thread Pool”

5.5.3.1 Thread Pool Elements

MySQL Enterprise Thread Pool comprises these elements:

• A plugin library file implements a plugin for the thread pool code as well as several associated monitoring
tables that provide information about thread pool operation.

For a detailed description of how the thread pool works, see Section 5.5.3.3, “Thread Pool Operation”.

The INFORMATION_SCHEMA tables are named TP_THREAD_STATE, TP_THREAD_GROUP_STATE, and
TP_THREAD_GROUP_STATS. These tables provide information about thread pool operation. For more
information, see Section 21.6, “INFORMATION_SCHEMA Thread Pool Tables”.

• Several system variables are related to the thread pool. The thread_handling system variable has a
value of loaded-dynamically when the server successfully loads the thread pool plugin.

The other related system variables are implemented by the thread pool plugin and are not available
unless it is enabled. For information about using these variables, see Section 5.5.3.3, “Thread Pool
Operation”, and Section 5.5.3.4, “Thread Pool Tuning”.

• The Performance Schema has instruments that expose information about the thread pool and may be
used to investigate operational performance. To identify them, use this query:

SELECT * FROM performance_schema.setup_instruments
WHERE NAME LIKE '%thread_pool%';

For more information, see Chapter 22, MySQL Performance Schema.

5.5.3.2 Thread Pool Installation

This section describes how to install MySQL Enterprise Thread Pool. For general information about
installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

795

MySQL Enterprise Thread Pool

The plugin library file base name is thread_pool. The file name suffix differs per platform (for example,
.so for Unix and Unix-like systems, .dll for Windows).

To enable thread pool capability, load the plugins to be used by starting the server with the --plugin-
load-add option. For example, if you name only the plugin library file, the server loads all plugins that it
contains (that is, the thread pool plugin and all the INFORMATION_SCHEMA tables). To do this, put these
lines in the server my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
plugin-load-add=thread_pool.so

That is equivalent to loading all thread pool plugins by naming them individually:

[mysqld]
plugin-load-add=thread_pool=thread_pool.so
plugin-load-add=tp_thread_state=thread_pool.so
plugin-load-add=tp_thread_group_state=thread_pool.so
plugin-load-add=tp_thread_group_stats=thread_pool.so

If desired, you can load individual plugins from the library file. To load the thread pool plugin but not the
INFORMATION_SCHEMA tables, use an option like this:

[mysqld]
plugin-load-add=thread_pool=thread_pool.so

To load the thread pool plugin and only the TP_THREAD_STATE INFORMATION_SCHEMA table, use
options like this:

[mysqld]
plugin-load-add=thread_pool=thread_pool.so
plugin-load-add=tp_thread_state=thread_pool.so

Note

If you do not load all the INFORMATION_SCHEMA tables, some or all MySQL
Enterprise Monitor thread pool graphs are empty.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'thread%' OR PLUGIN_NAME LIKE 'tp%';
+-----------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-----------------------+---------------+
thread_pool	ACTIVE
TP_THREAD_STATE	ACTIVE
TP_THREAD_GROUP_STATE	ACTIVE
TP_THREAD_GROUP_STATS	ACTIVE
+-----------------------+---------------+

If the server loads the thread pool plugin successfully, it sets the thread_handling system variable to
loaded-dynamically.

If a plugin fails to initialize, check the server error log for diagnostic messages.

5.5.3.3 Thread Pool Operation

The thread pool consists of a number of thread groups, each of which manages a set of client connections.
As connections are established, the thread pool assigns them to thread groups in round-robin fashion.

796

MySQL Enterprise Thread Pool

The thread pool exposes system variables that may be used to configure its operation:

• thread_pool_algorithm: The concurrency algorithm to use for scheduling.

• thread_pool_high_priority_connection: How to schedule statement execution for a session.

• thread_pool_max_unused_threads: How many sleeping threads to permit.

• thread_pool_prio_kickup_timer: How long before the thread pool moves a statement awaiting
execution from the low-priority queue to the high-priority queue.

• thread_pool_size: The number of thread groups in the thread pool. This is the most important
parameter controlling thread pool performance.

• thread_pool_stall_limit: The time before an executing statement is considered to be stalled.

To configure the number of thread groups, use the thread_pool_size system variable. The default
number of groups is 16. For guidelines on setting this variable, see Section 5.5.3.4, “Thread Pool Tuning”.

The maximum number of threads per group is 4096 (or 4095 on some systems where one thread is used
internally).

The thread pool separates connections and threads, so there is no fixed relationship between connections
and the threads that execute statements received from those connections. This differs from the default
thread-handling model that associates one thread with one connection such that a given thread executes
all statements from its connection.

The thread pool tries to ensure a maximum of one thread executing in each group at any time, but
sometimes permits more threads to execute temporarily for best performance:

• Each thread group has a listener thread that listens for incoming statements from the connections
assigned to the group. When a statement arrives, the thread group either begins executing it
immediately or queues it for later execution:

• Immediate execution occurs if the statement is the only one received and no statements are queued or
currently executing.

• Queuing occurs if the statement cannot begin executing immediately.

• If immediate execution occurs, the listener thread performs it. (This means that temporarily no thread
in the group is listening.) If the statement finishes quickly, the executing thread returns to listening for
statements. Otherwise, the thread pool considers the statement stalled and starts another thread as a
listener thread (creating it if necessary). To ensure that no thread group becomes blocked by stalled
statements, the thread pool has a background thread that regularly monitors thread group states.

By using the listening thread to execute a statement that can begin immediately, there is no need to
create an additional thread if the statement finishes quickly. This ensures the most efficient execution
possible in the case of a low number of concurrent threads.

When the thread pool plugin starts, it creates one thread per group (the listener thread), plus the
background thread. Additional threads are created as necessary to execute statements.

• The value of the thread_pool_stall_limit system variable determines the meaning of “finishes
quickly” in the previous item. The default time before threads are considered stalled is 60ms but can be
set to a maximum of 6s. This parameter is configurable to enable you to strike a balance appropriate for
the server work load. Short wait values permit threads to start more quickly. Short values are also better
for avoiding deadlock situations. Long wait values are useful for workloads that include long-running
statements, to avoid starting too many new statements while the current ones execute.

797

MySQL Enterprise Thread Pool

• The thread pool focuses on limiting the number of concurrent short-running statements. Before an
executing statement reaches the stall time, it prevents other statements from beginning to execute.
If the statement executes past the stall time, it is permitted to continue but no longer prevents other
statements from starting. In this way, the thread pool tries to ensure that in each thread group there is
never more than one short-running statement, although there might be multiple long-running statements.
It is undesirable to let long-running statements prevent other statements from executing because there is
no limit on the amount of waiting that might be necessary. For example, on a replication source, a thread
that is sending binary log events to a replica effectively runs forever.

• A statement becomes blocked if it encounters a disk I/O operation or a user level lock (row lock or table
lock). The block would cause the thread group to become unused, so there are callbacks to the thread
pool to ensure that the thread pool can immediately start a new thread in this group to execute another
statement. When a blocked thread returns, the thread pool permits it to restart immediately.

• There are two queues, a high-priority queue and a low-priority queue. The first statement in a
transaction goes to the low-priority queue. Any following statements for the transaction go to
the high-priority queue if the transaction is ongoing (statements for it have begun executing),
or to the low-priority queue otherwise. Queue assignment can be affected by enabling the
thread_pool_high_priority_connection system variable, which causes all queued statements
for a session to go into the high-priority queue.

Statements for a nontransactional storage engine, or a transactional engine if autocommit is enabled,
are treated as low-priority statements because in this case each statement is a transaction. Thus, given
a mix of statements for InnoDB and MyISAM tables, the thread pool prioritizes those for InnoDB over
those for MyISAM unless autocommit is enabled. With autocommit enabled, all statements are low
priority.

• When the thread group selects a queued statement for execution, it first looks in the high-priority
queue, then in the low-priority queue. If a statement is found, it is removed from its queue and begins to
execute.

• If a statement stays in the low-priority queue too long, the thread pool moves to the high-priority queue.
The value of the thread_pool_prio_kickup_timer system variable controls the time before
movement. For each thread group, a maximum of one statement per 10ms (100 per second) is moved
from the low-priority queue to the high-priority queue.

• The thread pool reuses the most active threads to obtain a much better use of CPU caches. This is a
small adjustment that has a great impact on performance.

• While a thread executes a statement from a user connection, Performance Schema instrumentation
accounts thread activity to the user connection. Otherwise, Performance Schema accounts activity to the
thread pool.

Here are examples of conditions under which a thread group might have multiple threads started to
execute statements:

• One thread begins executing a statement, but runs long enough to be considered stalled. The thread
group permits another thread to begin executing another statement even through the first thread is still
executing.

• One thread begins executing a statement, then becomes blocked and reports this back to the thread
pool. The thread group permits another thread to begin executing another statement.

• One thread begins executing a statement, becomes blocked, but does not report back that it is blocked
because the block does not occur in code that has been instrumented with thread pool callbacks. In
this case, the thread appears to the thread group to be still running. If the block lasts long enough for

798

MySQL Enterprise Thread Pool

the statement to be considered stalled, the group permits another thread to begin executing another
statement.

The thread pool is designed to be scalable across an increasing number of connections. It is also designed
to avoid deadlocks that can arise from limiting the number of actively executing statements. It is important
that threads that do not report back to the thread pool do not prevent other statements from executing and
thus cause the thread pool to become deadlocked. Examples of such statements follow:

• Long-running statements. These would lead to all resources used by only a few statements and they
could prevent all others from accessing the server.

• Binary log dump threads that read the binary log and send it to replicas. This is a kind of long-running
“statement” that runs for a very long time, and that should not prevent other statements from executing.

• Statements blocked on a row lock, table lock, sleep, or any other blocking activity that has not been
reported back to the thread pool by MySQL Server or a storage engine.

In each case, to prevent deadlock, the statement is moved to the stalled category when it does not
complete quickly, so that the thread group can permit another statement to begin executing. With this
design, when a thread executes or becomes blocked for an extended time, the thread pool moves the
thread to the stalled category and for the rest of the statement's execution, it does not prevent other
statements from executing.

The maximum number of threads that can occur is the sum of max_connections and
thread_pool_size. This can happen in a situation where all connections are in execution mode and an
extra thread is created per group to listen for more statements. This is not necessarily a state that happens
often, but it is theoretically possible.

5.5.3.4 Thread Pool Tuning

This section provides guidelines on setting thread pool system variables for best performance, measured
using a metric such as transactions per second.

thread_pool_size is the most important parameter controlling thread pool performance. It can be set
only at server startup. Our experience in testing the thread pool indicates the following:

• If the primary storage engine is InnoDB, the optimal thread_pool_size setting is likely to be between
16 and 36, with the most common optimal values tending to be from 24 to 36. We have not seen any
situation where the setting has been optimal beyond 36. There may be special cases where a value
smaller than 16 is optimal.

For workloads such as DBT2 and Sysbench, the optimum for InnoDB seems to be usually around 36.
For very write-intensive workloads, the optimal setting can sometimes be lower.

• If the primary storage engine is MyISAM, the thread_pool_size setting should be fairly low. Optimal
performance is often seen with values from 4 to 8. Higher values tend to have a slightly negative but not
dramatic impact on performance.

Another system variable, thread_pool_stall_limit, is important for handling of blocked and long-
running statements. If all calls that block the MySQL Server are reported to the thread pool, it would always
know when execution threads are blocked. However, this may not always be true. For example, blocks
could occur in code that has not been instrumented with thread pool callbacks. For such cases, the thread
pool must be able to identify threads that appear to be blocked. This is done by means of a timeout that
can be tuned using the thread_pool_stall_limit system variable, the value of which is measured
in 10ms units. This parameter ensures that the server does not become completely blocked. The value of
thread_pool_stall_limit has an upper limit of 6 seconds to prevent the risk of a deadlocked server.

799

MySQL Plugin Services

thread_pool_stall_limit also enables the thread pool to handle long-running statements. If a long-
running statement was permitted to block a thread group, all other connections assigned to the group
would be blocked and unable to start execution until the long-running statement completed. In the worst
case, this could take hours or even days.

The value of thread_pool_stall_limit should be chosen such that statements that execute longer
than its value are considered stalled. Stalled statements generate a lot of extra overhead since they involve
extra context switches and in some cases even extra thread creations. On the other hand, setting the
thread_pool_stall_limit parameter too high means that long-running statements block a number of
short-running statements for longer than necessary. Short wait values permit threads to start more quickly.
Short values are also better for avoiding deadlock situations. Long wait values are useful for workloads
that include long-running statements, to avoid starting too many new statements while the current ones
execute.

Suppose a server executes a workload where 99.9% of the statements complete within 100ms even when
the server is loaded, and the remaining statements take between 100ms and 2 hours fairly evenly spread.
In this case, it would make sense to set thread_pool_stall_limit to 10 (10 × 10ms = 100ms). The
default value of 6 (60ms) is suitable for servers that primarily execute very simple statements.

The thread_pool_stall_limit parameter can be changed at runtime to enable you to strike a
balance appropriate for the server work load. Assuming that the TP_THREAD_GROUP_STATS table is
enabled, you can use the following query to determine the fraction of executed statements that stalled:

SELECT SUM(STALLED_QUERIES_EXECUTED) / SUM(QUERIES_EXECUTED)
FROM INFORMATION_SCHEMA.TP_THREAD_GROUP_STATS;

This number should be as low as possible. To decrease the likelihood of statements stalling, increase the
value of thread_pool_stall_limit.

When a statement arrives, what is the maximum time it can be delayed before it actually starts executing?
Suppose that the following conditions apply:

• There are 200 statements queued in the low-priority queue.

• There are 10 statements queued in the high-priority queue.

• thread_pool_prio_kickup_timer is set to 10000 (10 seconds).

• thread_pool_stall_limit is set to 100 (1 second).

In the worst case, the 10 high-priority statements represent 10 transactions that continue executing for a
long time. Thus, in the worst case, no statements are moved to the high-priority queue because it already
contains statements awaiting execution. After 10 seconds, the new statement is eligible to be moved to
the high-priority queue. However, before it can be moved, all the statements before it must be moved as
well. This could take another 2 seconds because a maximum of 100 statements per second are moved to
the high-priority queue. Now when the statement reaches the high-priority queue, there could potentially
be many long-running statements ahead of it. In the worst case, every one of those becomes stalled and
it takes 1 second for each statement before the next statement is retrieved from the high-priority queue.
Thus, in this scenario, it takes 222 seconds before the new statement starts executing.

This example shows a worst case for an application. How to handle it depends on the application. If the
application has high requirements for the response time, it should most likely throttle users at a higher
level itself. Otherwise, it can use the thread pool configuration parameters to set some kind of a maximum
waiting time.

5.5.4 MySQL Plugin Services

800

MySQL Server Loadable Functions

MySQL server plugins have access to server “plugin services.” The plugin services interface complements
the plugin API by exposing server functionality that plugins can call. For developer information about
writing plugin services, see MySQL Services for Plugins.

5.6 MySQL Server Loadable Functions
MySQL supports loadable functions, that is, functions that are not built in but can be loaded at runtime
(either during startup or later) to extend server capabilities, or unloaded to remove capabilities. For a table
describing the available loadable functions, see Section 12.2, “Loadable Function Reference”. Loadable
functions contrast with built-in (native) functions, which are implemented as part of the server and are
always available; for a table, see Section 12.1, “Built-In Function and Operator Reference”.

Note

Loadable functions previously were known as user-defined functions (UDFs). That
terminology was something of a misnomer because “user-defined” also can apply
to other types of functions, such as stored functions (a type of stored object written
using SQL) and native functions added by modifying the server source code.

MySQL distributions include loadable functions that implement, in whole or in part, these server
capabilities:

• MySQL Enterprise Edition includes functions that perform encryption operations based on the OpenSSL
library. See Section 6.5, “MySQL Enterprise Encryption”.

• MySQL Enterprise Edition includes a firewall capability that implements an application-level firewall to
enable database administrators to permit or deny SQL statement execution based on matching against
patterns for accepted statement. See Section 6.4.5, “MySQL Enterprise Firewall”.

The following sections describe how to install and uninstall loadable functions, and how to determine at
runtime which loadable functions are installed and obtain information about them.

For information about writing loadable functions, see Adding Functions to MySQL.

5.6.1 Installing and Uninstalling Loadable Functions

Loadable functions, as the name implies, must be loaded into the server before they can be used. MySQL
supports automatic function loading during server startup and manual loading thereafter.

While a loadable function is loaded, information about it is available as described in Section 5.6.2,
“Obtaining Information About Loadable Functions”.

• Installing Loadable Functions

• Uninstalling Loadable Functions

• Reinstalling or Upgrading Loadable Functions

Installing Loadable Functions

To load a loadable function manually, use the CREATE FUNCTION statement. For example:

CREATE FUNCTION metaphon
 RETURNS STRING
 SONAME 'udf_example.so';

The file base name depends on your platform. Common suffixes are .so for Unix and Unix-like systems,
.dll for Windows.

801

https://dev.mysql.com/doc/extending-mysql/5.6/en/services-for-plugins.html
https://dev.mysql.com/doc/extending-mysql/5.6/en/adding-functions.html

Obtaining Information About Loadable Functions

CREATE FUNCTION has these effects:

• It loads the function into the server to make it available immediately.

• It registers the function in the mysql.func system table to make it persistent across server restarts. For
this reason, CREATE FUNCTION requires the INSERT privilege for the mysql system database.

Automatic loading of loadable functions occurs during the normal server startup sequence. The server
loads functions registered in the mysql.func table. If the server is started with the --skip-grant-
tables option, functions registered in the table are not loaded and are unavailable.

Uninstalling Loadable Functions

To remove a loadable function, use the DROP FUNCTION statement. For example:

DROP FUNCTION metaphon;

DROP FUNCTION has these effects:

• It unloads the function to make it unavailable.

• It removes the function from the mysql.func system table. For this reason, DROP FUNCTION requires
the DELETE privilege for the mysql system database. With the function no longer registered in the
mysql.func table, the server does not load the function during subsequent restarts.

While a loadable function is loaded, information about it is available from the mysql.func system table.
See Section 5.6.2, “Obtaining Information About Loadable Functions”. CREATE FUNCTION adds the
function to the table and DROP FUNCTION removes it.

Reinstalling or Upgrading Loadable Functions

To reinstall or upgrade the shared library associated with a loadable function, issue a DROP FUNCTION
statement, upgrade the shared library, and then issue a CREATE FUNCTION statement. If you upgrade the
shared library first and then use DROP FUNCTION, the server may unexpectedly shut down.

5.6.2 Obtaining Information About Loadable Functions

The mysql.func system table shows which loadable functions have been registered using CREATE
FUNCTION:

SELECT * FROM mysql.func;

The func table has these columns:

• name

The function name as referred to in SQL statements.

• ret

The function return value type. Permitted values are 0 (STRING), 1 (REAL), 2 (INTEGER), 3 (ROW), or 4
(DECIMAL).

• dl

The name of the function library file containing the executable function code. The file is located in the
directory named by the plugin_dir system variable.

802

Running Multiple MySQL Instances on One Machine

• type

The function type, either function (scalar) or aggregate.

5.7 Running Multiple MySQL Instances on One Machine

In some cases, you might want to run multiple instances of MySQL on a single machine. You might want
to test a new MySQL release while leaving an existing production setup undisturbed. Or you might want to
give different users access to different mysqld servers that they manage themselves. (For example, you
might be an Internet Service Provider that wants to provide independent MySQL installations for different
customers.)

It is possible to use a different MySQL server binary per instance, or use the same binary for multiple
instances, or any combination of the two approaches. For example, you might run a server from MySQL
5.5 and one from MySQL 5.6, to see how different versions handle a given workload. Or you might run
multiple instances of the current production version, each managing a different set of databases.

Whether or not you use distinct server binaries, each instance that you run must be configured with unique
values for several operating parameters. This eliminates the potential for conflict between instances.
Parameters can be set on the command line, in option files, or by setting environment variables. See
Section 4.2.2, “Specifying Program Options”. To see the values used by a given instance, connect to it and
execute a SHOW VARIABLES statement.

The primary resource managed by a MySQL instance is the data directory. Each instance should use a
different data directory, the location of which is specified using the --datadir=dir_name option. For
methods of configuring each instance with its own data directory, and warnings about the dangers of failing
to do so, see Section 5.7.1, “Setting Up Multiple Data Directories”.

In addition to using different data directories, several other options must have different values for each
server instance:

• --port=port_num

--port controls the port number for TCP/IP connections. Alternatively, if the host has multiple network
addresses, you can set the bind_address system variable to cause each server to listen to a different
address.

• --socket={file_name|pipe_name}

--socket controls the Unix socket file path on Unix or the named-pipe name on Windows. On
Windows, it is necessary to specify distinct pipe names only for those servers configured to permit
named-pipe connections.

• --shared-memory-base-name=name

This option is used only on Windows. It designates the shared-memory name used by a Windows server
to permit clients to connect using shared memory. It is necessary to specify distinct shared-memory
names only for those servers configured to permit shared-memory connections.

• --pid-file=file_name

This option indicates the path name of the file in which the server writes its process ID.

If you use the following log file options, their values must differ for each server:

• --general_log_file=file_name

803

Setting Up Multiple Data Directories

• --log-bin[=file_name]

• --slow_query_log_file=file_name

• --log-error[=file_name]

For further discussion of log file options, see Section 5.4, “MySQL Server Logs”.

To achieve better performance, you can specify the following option differently for each server, to spread
the load between several physical disks:

• --tmpdir=dir_name

Having different temporary directories also makes it easier to determine which MySQL server created any
given temporary file.

If you have multiple MySQL installations in different locations, you can specify the base directory for each
installation with the --basedir=dir_name option. This causes each instance to automatically use a
different data directory, log files, and PID file because the default for each of those parameters is relative
to the base directory. In that case, the only other options you need to specify are the --socket and --
port options. Suppose that you install different versions of MySQL using tar file binary distributions.
These install in different locations, so you can start the server for each installation using the command
bin/mysqld_safe under its corresponding base directory. mysqld_safe determines the proper --
basedir option to pass to mysqld, and you need specify only the --socket and --port options to
mysqld_safe.

As discussed in the following sections, it is possible to start additional servers by specifying appropriate
command options or by setting environment variables. However, if you need to run multiple servers on
a more permanent basis, it is more convenient to use option files to specify for each server those option
values that must be unique to it. The --defaults-file option is useful for this purpose.

5.7.1 Setting Up Multiple Data Directories

Each MySQL Instance on a machine should have its own data directory. The location is specified using the
--datadir=dir_name option.

There are different methods of setting up a data directory for a new instance:

• Create a new data directory.

• Copy an existing data directory.

The following discussion provides more detail about each method.

Warning

Normally, you should never have two servers that update data in the same
databases. This may lead to unpleasant surprises if your operating system does
not support fault-free system locking. If (despite this warning) you run multiple
servers using the same data directory and they have logging enabled, you must
use the appropriate options to specify log file names that are unique to each server.
Otherwise, the servers try to log to the same files.

Even when the preceding precautions are observed, this kind of setup works only
with MyISAM and MERGE tables, and not with any of the other storage engines. Also,
this warning against sharing a data directory among servers always applies in an
NFS environment. Permitting multiple MySQL servers to access a common data

804

Running Multiple MySQL Instances on Windows

directory over NFS is a very bad idea. The primary problem is that NFS is the speed
bottleneck. It is not meant for such use. Another risk with NFS is that you must
devise a way to ensure that two or more servers do not interfere with each other.
Usually NFS file locking is handled by the lockd daemon, but at the moment there
is no platform that performs locking 100% reliably in every situation.

Create a New Data Directory

With this method, the data directory is in the same state as when you first install MySQL. It has the default
set of MySQL accounts and no user data.

On Unix, initialize the data directory. See Section 2.10, “Postinstallation Setup and Testing”.

On Windows, the data directory is included in the MySQL distribution:

• MySQL Zip archive distributions for Windows contain an unmodified data directory. You can unpack
such a distribution into a temporary location, then copy it data directory to where you are setting up the
new instance.

• Windows MSI package installers create and set up the data directory that the installed server uses, but
also create a pristine “template” data directory named data under the installation directory. After an
installation has been performed using an MSI package, the template data directory can be copied to set
up additional MySQL instances.

Copy an Existing Data Directory

With this method, any MySQL accounts or user data present in the data directory are carried over to the
new data directory.

1. Stop the existing MySQL instance using the data directory. This must be a clean shutdown so that the
instance flushes any pending changes to disk.

2. Copy the data directory to the location where the new data directory should be.

3. Copy the my.cnf or my.ini option file used by the existing instance. This serves as a basis for the
new instance.

4. Modify the new option file so that any pathnames referring to the original data directory refer to the
new data directory. Also, modify any other options that must be unique per instance, such as the
TCP/IP port number and the log files. For a list of parameters that must be unique per instance, see
Section 5.7, “Running Multiple MySQL Instances on One Machine”.

5. Start the new instance, telling it to use the new option file.

5.7.2 Running Multiple MySQL Instances on Windows

You can run multiple servers on Windows by starting them manually from the command line, each with
appropriate operating parameters, or by installing several servers as Windows services and running them
that way. General instructions for running MySQL from the command line or as a service are given in
Section 2.3, “Installing MySQL on Microsoft Windows”. The following sections describe how to start each
server with different values for those options that must be unique per server, such as the data directory.
These options are listed in Section 5.7, “Running Multiple MySQL Instances on One Machine”.

5.7.2.1 Starting Multiple MySQL Instances at the Windows Command Line

The procedure for starting a single MySQL server manually from the command line is described in
Section 2.3.4.5, “Starting MySQL from the Windows Command Line”. To start multiple servers this way,

805

Running Multiple MySQL Instances on Windows

you can specify the appropriate options on the command line or in an option file. It is more convenient
to place the options in an option file, but it is necessary to make sure that each server gets its own set
of options. To do this, create an option file for each server and tell the server the file name with a --
defaults-file option when you run it.

Suppose that you want to run one instance of mysqld on port 3307 with a data directory of C:\mydata1,
and another instance on port 3308 with a data directory of C:\mydata2. Use this procedure:

1. Make sure that each data directory exists, including its own copy of the mysql database that contains
the grant tables.

2. Create two option files. For example, create one file named C:\my-opts1.cnf that looks like this:

[mysqld]
datadir = C:/mydata1
port = 3307

Create a second file named C:\my-opts2.cnf that looks like this:

[mysqld]
datadir = C:/mydata2
port = 3308

3. Use the --defaults-file option to start each server with its own option file:

C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts2.cnf

Each server starts in the foreground (no new prompt appears until the server exits later), so you must
issue those two commands in separate console windows.

To shut down the servers, connect to each using the appropriate port number:

C:\> C:\mysql\bin\mysqladmin --port=3307 --host=127.0.0.1 --user=root --password shutdown
C:\> C:\mysql\bin\mysqladmin --port=3308 --host=127.0.0.1 --user=root --password shutdown

Servers configured as just described permit clients to connect over TCP/IP. If your version of Windows
supports named pipes and you also want to permit named-pipe connections, specify options that enable
the named pipe and specify its name. Each server that supports named-pipe connections must use a
unique pipe name. For example, the C:\my-opts1.cnf file might be written like this:

[mysqld]
datadir = C:/mydata1
port = 3307
enable-named-pipe
socket = mypipe1

Modify C:\my-opts2.cnf similarly for use by the second server. Then start the servers as described
previously.

A similar procedure applies for servers that you want to permit shared-memory connections. Enable such
connections by starting the server with the shared_memory system variable enabled and specify a unique
shared-memory name for each server by setting the shared_memory_base_name system variable.

5.7.2.2 Starting Multiple MySQL Instances as Windows Services

On Windows, a MySQL server can run as a Windows service. The procedures for installing, controlling,
and removing a single MySQL service are described in Section 2.3.4.7, “Starting MySQL as a Windows
Service”.

806

Running Multiple MySQL Instances on Windows

To set up multiple MySQL services, you must make sure that each instance uses a different service name
in addition to the other parameters that must be unique per instance.

For the following instructions, suppose that you want to run the mysqld server from two different versions
of MySQL that are installed at C:\mysql-5.6.9 and C:\mysql-5.6.51, respectively. (This might be
the case if you are running 5.6.9 as your production server, but also want to conduct tests using 5.6.51.)

To install MySQL as a Windows service, use the --install or --install-manual option. For
information about these options, see Section 2.3.4.7, “Starting MySQL as a Windows Service”.

Based on the preceding information, you have several ways to set up multiple services. The following
instructions describe some examples. Before trying any of them, shut down and remove any existing
MySQL services.

• Approach 1: Specify the options for all services in one of the standard option files. To do this, use a
different service name for each server. Suppose that you want to run the 5.6.9 mysqld using the service
name of mysqld1 and the 5.6.51 mysqld using the service name mysqld2. In this case, you can use
the [mysqld1] group for 5.6.9 and the [mysqld2] group for 5.6.51. For example, you can set up C:
\my.cnf like this:

options for mysqld1 service
[mysqld1]
basedir = C:/mysql-5.6.9
port = 3307
enable-named-pipe
socket = mypipe1

options for mysqld2 service
[mysqld2]
basedir = C:/mysql-5.6.51
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows, using the full server path names to ensure that Windows registers the
correct executable program for each service:

C:\> C:\mysql-5.6.9\bin\mysqld --install mysqld1
C:\> C:\mysql-5.6.51\bin\mysqld --install mysqld2

To start the services, use the services manager, or NET START or SC START with the appropriate
service names:

C:\> SC START mysqld1
C:\> SC START mysqld2

To stop the services, use the services manager, or use NET STOP or SC STOP with the appropriate
service names:

C:\> SC STOP mysqld1
C:\> SC STOP mysqld2

• Approach 2: Specify options for each server in separate files and use --defaults-file when you
install the services to tell each server what file to use. In this case, each file should list options using a
[mysqld] group.

With this approach, to specify options for the 5.6.9 mysqld, create a file C:\my-opts1.cnf that looks
like this:

[mysqld]
basedir = C:/mysql-5.6.9

807

Running Multiple MySQL Instances on Unix

port = 3307
enable-named-pipe
socket = mypipe1

For the 5.6.51 mysqld, create a file C:\my-opts2.cnf that looks like this:

[mysqld]
basedir = C:/mysql-5.6.51
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows (enter each command on a single line):

C:\> C:\mysql-5.6.9\bin\mysqld --install mysqld1
 --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql-5.6.51\bin\mysqld --install mysqld2
 --defaults-file=C:\my-opts2.cnf

When you install a MySQL server as a service and use a --defaults-file option, the service name
must precede the option.

After installing the services, start and stop them the same way as in the preceding example.

To remove multiple services, use SC DELETE mysqld_service_name for each one. Alternatively, use
mysqld --remove for each one, specifying a service name following the --remove option. If the service
name is the default (MySQL), you can omit it when using mysqld --remove.

5.7.3 Running Multiple MySQL Instances on Unix

One way is to run multiple MySQL instances on Unix is to compile different servers with different default
TCP/IP ports and Unix socket files so that each one listens on different network interfaces. Compiling in
different base directories for each installation also results automatically in a separate, compiled-in data
directory, log file, and PID file location for each server.

Assume that an existing 5.5 server is configured for the default TCP/IP port number (3306) and Unix
socket file (/tmp/mysql.sock). To configure a new 5.6.51 server to have different operating parameters,
use a CMake command something like this:

$> cmake . -DMYSQL_TCP_PORT=port_number \
 -DMYSQL_UNIX_ADDR=file_name \
 -DCMAKE_INSTALL_PREFIX=/usr/local/mysql-5.6.51

Here, port_number and file_name must be different from the default TCP/IP port number and Unix
socket file path name, and the CMAKE_INSTALL_PREFIX value should specify an installation directory
different from the one under which the existing MySQL installation is located.

If you have a MySQL server listening on a given port number, you can use the following command to find
out what operating parameters it is using for several important configurable variables, including the base
directory and Unix socket file name:

$> mysqladmin --host=host_name --port=port_number variables

With the information displayed by that command, you can tell what option values not to use when
configuring an additional server.

If you specify localhost as the host name, mysqladmin defaults to using a Unix socket file rather than
TCP/IP. To explicitly specify the transport protocol, use the --protocol={TCP|SOCKET|PIPE|MEMORY}
option.

808

Using Client Programs in a Multiple-Server Environment

You need not compile a new MySQL server just to start with a different Unix socket file and TCP/IP port
number. It is also possible to use the same server binary and start each invocation of it with different
parameter values at runtime. One way to do so is by using command-line options:

$> mysqld_safe --socket=file_name --port=port_number

To start a second server, provide different --socket and --port option values, and pass a --
datadir=dir_name option to mysqld_safe so that the server uses a different data directory.

Alternatively, put the options for each server in a different option file, then start each server using a --
defaults-file option that specifies the path to the appropriate option file. For example, if the option files
for two server instances are named /usr/local/mysql/my.cnf and /usr/local/mysql/my.cnf2,
start the servers like this: command:

$> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf
$> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf2

Another way to achieve a similar effect is to use environment variables to set the Unix socket file name and
TCP/IP port number:

$> MYSQL_UNIX_PORT=/tmp/mysqld-new.sock
$> MYSQL_TCP_PORT=3307
$> export MYSQL_UNIX_PORT MYSQL_TCP_PORT
$> mysql_install_db --user=mysql
$> mysqld_safe --datadir=/path/to/datadir &

This is a quick way of starting a second server to use for testing. The nice thing about this method is that
the environment variable settings apply to any client programs that you invoke from the same shell. Thus,
connections for those clients are automatically directed to the second server.

Section 4.9, “Environment Variables”, includes a list of other environment variables you can use to affect
MySQL programs.

On Unix, the mysqld_multi script provides another way to start multiple servers. See Section 4.3.4,
“mysqld_multi — Manage Multiple MySQL Servers”.

5.7.4 Using Client Programs in a Multiple-Server Environment

To connect with a client program to a MySQL server that is listening to different network interfaces from
those compiled into your client, you can use one of the following methods:

• Start the client with --host=host_name --port=port_number to connect using TCP/IP to a remote
server, with --host=127.0.0.1 --port=port_number to connect using TCP/IP to a local server, or
with --host=localhost --socket=file_name to connect to a local server using a Unix socket file
or a Windows named pipe.

• Start the client with --protocol=TCP to connect using TCP/IP, --protocol=SOCKET to connect
using a Unix socket file, --protocol=PIPE to connect using a named pipe, or --protocol=MEMORY
to connect using shared memory. For TCP/IP connections, you may also need to specify --host and
--port options. For the other types of connections, you may need to specify a --socket option to
specify a Unix socket file or Windows named-pipe name, or a --shared-memory-base-name option
to specify the shared-memory name. Shared-memory connections are supported only on Windows.

• On Unix, set the MYSQL_UNIX_PORT and MYSQL_TCP_PORT environment variables to point to the
Unix socket file and TCP/IP port number before you start your clients. If you normally use a specific
socket file or port number, you can place commands to set these environment variables in your .login
file so that they apply each time you log in. See Section 4.9, “Environment Variables”.

809

Debugging MySQL

• Specify the default Unix socket file and TCP/IP port number in the [client] group of an option file. For
example, you can use C:\my.cnf on Windows, or the .my.cnf file in your home directory on Unix.
See Section 4.2.2.2, “Using Option Files”.

• In a C program, you can specify the socket file or port number arguments in the
mysql_real_connect() call. You can also have the program read option files by calling
mysql_options(). See C API Basic Function Descriptions.

• If you are using the Perl DBD::mysql module, you can read options from MySQL option files. For
example:

$dsn = "DBI:mysql:test;mysql_read_default_group=client;"
 . "mysql_read_default_file=/usr/local/mysql/data/my.cnf";
$dbh = DBI->connect($dsn, $user, $password);

See Section 23.9, “MySQL Perl API”.

Other programming interfaces may provide similar capabilities for reading option files.

5.8 Debugging MySQL

This section describes debugging techniques that assist efforts to track down problems in MySQL.

5.8.1 Debugging a MySQL Server

If you are using some functionality that is very new in MySQL, you can try to run mysqld with the --skip-
new option (which disables all new, potentially unsafe functionality). See Section B.3.3.3, “What to Do If
MySQL Keeps Crashing”.

If mysqld does not want to start, verify that you have no my.cnf files that interfere with your setup! You
can check your my.cnf arguments with mysqld --print-defaults and avoid using them by starting
with mysqld --no-defaults

If mysqld starts to eat up CPU or memory or if it “hangs,” you can use mysqladmin processlist
status to find out if someone is executing a query that takes a long time. It may be a good idea to run
mysqladmin -i10 processlist status in some window if you are experiencing performance
problems or problems when new clients cannot connect.

The command mysqladmin debug dumps some information about locks in use, used memory and query
usage to the MySQL log file. This may help solve some problems. This command also provides some
useful information even if you have not compiled MySQL for debugging!

If the problem is that some tables are getting slower and slower you should try to optimize the table with
OPTIMIZE TABLE or myisamchk. See Chapter 5, MySQL Server Administration. You should also check
the slow queries with EXPLAIN.

You should also read the OS-specific section in this manual for problems that may be unique to your
environment. See Section 2.1, “General Installation Guidance”.

5.8.1.1 Compiling MySQL for Debugging

If you have some very specific problem, you can always try to debug MySQL. To do this you must
configure MySQL with the -DWITH_DEBUG=1 option. You can check whether MySQL was compiled
with debugging by doing: mysqld --help. If the --debug flag is listed with the options then you have
debugging enabled. mysqladmin ver also lists the mysqld version as mysql ... --debug in this
case.

810

https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.6/en/c-api-function-descriptions.html

Debugging a MySQL Server

If mysqld stops crashing when you configure it with the -DWITH_DEBUG=1 CMake option, you probably
have found a compiler bug or a timing bug within MySQL. In this case, you can try to add -g using the
CMAKE_C_FLAGS and CMAKE_CXX_FLAGS CMake options and not use -DWITH_DEBUG=1. If mysqld
dies, you can at least attach to it with gdb or use gdb on the core file to find out what happened.

When you configure MySQL for debugging you automatically enable a lot of extra safety check functions
that monitor the health of mysqld. If they find something “unexpected,” an entry is written to stderr,
which mysqld_safe directs to the error log! This also means that if you are having some unexpected
problems with MySQL and are using a source distribution, the first thing you should do is to configure
MySQL for debugging. If you believe that you have found a bug, please use the instructions at Section 1.5,
“How to Report Bugs or Problems”.

In the Windows MySQL distribution, mysqld.exe is by default compiled with support for trace files.

5.8.1.2 Creating Trace Files

If the mysqld server does not start or it crashes easily, you can try to create a trace file to find the problem.

To do this, you must have a mysqld that has been compiled with debugging support. You can check this
by executing mysqld -V. If the version number ends with -debug, it is compiled with support for trace
files. (On Windows, the debugging server is named mysqld-debug rather than mysqld.)

Start the mysqld server with a trace log in /tmp/mysqld.trace on Unix or \mysqld.trace on
Windows:

$> mysqld --debug

On Windows, you should also use the --standalone flag to not start mysqld as a service. In a console
window, use this command:

C:\> mysqld-debug --debug --standalone

After this, you can use the mysql.exe command-line tool in a second console window to reproduce the
problem. You can stop the mysqld server with mysqladmin shutdown.

The trace file can become very large! To generate a smaller trace file, you can use debugging options
something like this:

mysqld --debug=d,info,error,query,general,where:O,/tmp/mysqld.trace

This only prints information with the most interesting tags to the trace file.

If you file a bug, please add only those lines from the trace file to the bug report that indicate where
something seems to go wrong. If you cannot locate the wrong place, open a bug report and upload
the whole trace file to the report, so that a MySQL developer can take a look at it. For instructions, see
Section 1.5, “How to Report Bugs or Problems”.

The trace file is made with the DBUG package by Fred Fish. See Section 5.8.3, “The DBUG Package”.

5.8.1.3 Using WER with PDB to create a Windows crashdump

Program Database (PDB) files (with file name suffix pdb) are included in ZIP Archive distributions (but not
MSI distributions) of MySQL. These files provide information for debugging your MySQL installation in the
event of a problem.

The PDB file contains more detailed information about mysqld and other tools that enables more detailed
trace and dump files to be created. You can use these with WinDbg or Visual Studio to debug mysqld.

811

Debugging a MySQL Server

For more information on PDB files, see Microsoft Knowledge Base Article 121366. For more information on
the debugging options available, see Debugging Tools for Windows.

To use WinDbg, either install the full Windows Driver Kit (WDK) or install the standalone version.

Important

The .exe and .pdb files must be an exact match (both version number and
MySQL server edition) or WinDBG complains while attempting to load the symbols.

1. To generate a minidump mysqld.dmp, enable the core-file option under the [mysqld] section in
my.ini. Restart the MySQL server after making these changes.

2. Create a directory to store the generated files, such as c:\symbols

3. Determine the path to your windbg.exe executable using the Find GUI or from the command line,
for example: dir /s /b windbg.exe -- a common default is C:\Program Files\Debugging Tools for
Windows (x64)\windbg.exe

4. Launch windbg.exe giving it the paths to mysqld-debug.exe, mysqld.pdb, mysqld.dmp, and the
source code. Alternatively, pass in each path from the WinDbg GUI. For example:

windbg.exe -i "C:\mysql-5.6.51-winx64\bin\"^
 -z "C:\mysql-5.6.51-winx64\data\mysqld.dmp"^
 -srcpath "E:\ade\mysql_archives\5.6\5.6.51\mysql-5.6.51"^
 -y "C:\mysql-5.6.51-winx64\bin;SRV*c:\symbols*http://msdl.microsoft.com/download/symbols"^
 -v -n -c "!analyze -vvvvv"

Note

The ^ character and newline are removed by the Windows command line
processor, so be sure the spaces remain intact.

5.8.1.4 Debugging mysqld under gdb

On most systems you can also start mysqld from gdb to get more information if mysqld crashes.

With some older gdb versions on Linux you must use run --one-thread if you want to be able to debug
mysqld threads. In this case, you can only have one thread active at a time.

NPTL threads (the new thread library on Linux) may cause problems while running mysqld under gdb.
Some symptoms are:

• mysqld hangs during startup (before it writes ready for connections).

• mysqld crashes during a pthread_mutex_lock() or pthread_mutex_unlock() call.

In this case, you should set the following environment variable in the shell before starting gdb:

LD_ASSUME_KERNEL=2.4.1
export LD_ASSUME_KERNEL

When running mysqld under gdb, you should disable the stack trace with --skip-stack-trace to be
able to catch segfaults within gdb.

Use the --gdb option to mysqld to install an interrupt handler for SIGINT (needed to stop mysqld with
^C to set breakpoints) and disable stack tracing and core file handling.

It is very hard to debug MySQL under gdb if you do a lot of new connections the whole time as
gdb does not free the memory for old threads. You can avoid this problem by starting mysqld with

812

http://support.microsoft.com/kb/121366/
http://www.microsoft.com/whdc/devtools/debugging/default.mspx

Debugging a MySQL Server

thread_cache_size set to a value equal to max_connections + 1. In most cases just using --
thread_cache_size=5' helps a lot!

If you want to get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld with
the --core-file option. This core file can be used to make a backtrace that may help you find out why
mysqld died:

$> gdb mysqld core
gdb> backtrace full
gdb> quit

See Section B.3.3.3, “What to Do If MySQL Keeps Crashing”.

If you are using gdb on Linux, you should install a .gdb file, with the following information, in your current
directory:

set print sevenbit off
handle SIGUSR1 nostop noprint
handle SIGUSR2 nostop noprint
handle SIGWAITING nostop noprint
handle SIGLWP nostop noprint
handle SIGPIPE nostop
handle SIGALRM nostop
handle SIGHUP nostop
handle SIGTERM nostop noprint

Here is an example how to debug mysqld:

$> gdb /usr/local/libexec/mysqld
gdb> run
...
backtrace full # Do this when mysqld crashes

Include the preceding output in a bug report, which you can file using the instructions in Section 1.5, “How
to Report Bugs or Problems”.

If mysqld hangs, you can try to use some system tools like strace or /usr/proc/bin/pstack to
examine where mysqld has hung.

strace /tmp/log libexec/mysqld

If you are using the Perl DBI interface, you can turn on debugging information by using the trace method
or by setting the DBI_TRACE environment variable.

5.8.1.5 Using a Stack Trace

On some operating systems, the error log contains a stack trace if mysqld dies unexpectedly. You can
use this to find out where (and maybe why) mysqld died. See Section 5.4.2, “The Error Log”. To get
a stack trace, you must not compile mysqld with the -fomit-frame-pointer option to gcc. See
Section 5.8.1.1, “Compiling MySQL for Debugging”.

A stack trace in the error log looks something like this:

mysqld got signal 11;
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...

stack_bottom = 0x41fd0110 thread_stack 0x40000
mysqld(my_print_stacktrace+0x32)[0x9da402]
mysqld(handle_segfault+0x28a)[0x6648e9]

813

Debugging a MySQL Server

/lib/libpthread.so.0[0x7f1a5af000f0]
/lib/libc.so.6(strcmp+0x2)[0x7f1a5a10f0f2]
mysqld(_Z21check_change_passwordP3THDPKcS2_Pcj+0x7c)[0x7412cb]
mysqld(_ZN16set_var_password5checkEP3THD+0xd0)[0x688354]
mysqld(_Z17sql_set_variablesP3THDP4ListI12set_var_baseE+0x68)[0x688494]
mysqld(_Z21mysql_execute_commandP3THD+0x41a0)[0x67a170]
mysqld(_Z11mysql_parseP3THDPKcjPS2_+0x282)[0x67f0ad]
mysqld(_Z16dispatch_command19enum_server_commandP3THDPcj+0xbb7[0x67fdf8]
mysqld(_Z10do_commandP3THD+0x24d)[0x6811b6]
mysqld(handle_one_connection+0x11c)[0x66e05e]

If resolution of function names for the trace fails, the trace contains less information:

mysqld got signal 11;
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...

stack_bottom = 0x41fd0110 thread_stack 0x40000
[0x9da402]
[0x6648e9]
[0x7f1a5af000f0]
[0x7f1a5a10f0f2]
[0x7412cb]
[0x688354]
[0x688494]
[0x67a170]
[0x67f0ad]
[0x67fdf8]
[0x6811b6]
[0x66e05e]

In the latter case, you can use the resolve_stack_dump utility to determine where mysqld died by
using the following procedure:

1. Copy the numbers from the stack trace to a file, for example mysqld.stack. The numbers should not
include the surrounding square brackets:

0x9da402
0x6648e9
0x7f1a5af000f0
0x7f1a5a10f0f2
0x7412cb
0x688354
0x688494
0x67a170
0x67f0ad
0x67fdf8
0x6811b6
0x66e05e

2. Make a symbol file for the mysqld server:

$> nm -n libexec/mysqld > /tmp/mysqld.sym

If mysqld is not linked statically, use the following command instead:

$> nm -D -n libexec/mysqld > /tmp/mysqld.sym

If you want to decode C++ symbols, use the --demangle, if available, to nm. If your version of nm does
not have this option, you must use the c++filt command after the stack dump has been produced to
demangle the C++ names.

3. Execute the following command:

814

Debugging a MySQL Server

$> resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack

If you were not able to include demangled C++ names in your symbol file, process the
resolve_stack_dump output using c++filt:

$> resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack | c++filt

This prints out where mysqld died. If that does not help you find out why mysqld died, you should
create a bug report and include the output from the preceding command with the bug report.

However, in most cases it does not help us to have just a stack trace to find the reason for the problem.
To be able to locate the bug or provide a workaround, in most cases we need to know the statement
that killed mysqld and preferably a test case so that we can repeat the problem! See Section 1.5, “How
to Report Bugs or Problems”.

Newer versions of glibc stack trace functions also print the address as relative to the object. On glibc-
based systems (Linux), the trace for an unexpected exit within a plugin looks something like:

plugin/auth/auth_test_plugin.so(+0x9a6)[0x7ff4d11c29a6]

To translate the relative address (+0x9a6) into a file name and line number, use this command:

$> addr2line -fie auth_test_plugin.so 0x9a6
auth_test_plugin
mysql-trunk/plugin/auth/test_plugin.c:65

The addr2line utility is part of the binutils package on Linux.

On Solaris, the procedure is similar. The Solaris printstack() already prints relative addresses:

plugin/auth/auth_test_plugin.so:0x1510

To translate, use this command:

$> gaddr2line -fie auth_test_plugin.so 0x1510
mysql-trunk/plugin/auth/test_plugin.c:88

Windows already prints the address, function name and line:

000007FEF07E10A4 auth_test_plugin.dll!auth_test_plugin()[test_plugin.c:72]

5.8.1.6 Using Server Logs to Find Causes of Errors in mysqld

Before starting mysqld with the general query log enabled, you should check all your tables with
myisamchk. See Chapter 5, MySQL Server Administration.

If mysqld dies or hangs, you should start mysqld with the general query log enabled. See Section 5.4.3,
“The General Query Log”. When mysqld dies again, you can examine the end of the log file for the query
that killed mysqld.

If you use the default general query log file, the log is stored in the database directory as host_name.log
In most cases it is the last query in the log file that killed mysqld, but if possible you should verify this by
restarting mysqld and executing the found query from the mysql command-line tools. If this works, you
should also test all complicated queries that did not complete.

You can also try the command EXPLAIN on all SELECT statements that takes a long time to ensure that
mysqld is using indexes properly. See Section 13.8.2, “EXPLAIN Statement”.

815

Debugging a MySQL Server

You can find the queries that take a long time to execute by starting mysqld with the slow query log
enabled. See Section 5.4.5, “The Slow Query Log”.

If you find the text mysqld restarted in the error log (normally a file named host_name.err) you
probably have found a query that causes mysqld to fail. If this happens, you should check all your tables
with myisamchk (see Chapter 5, MySQL Server Administration), and test the queries in the MySQL log
files to see whether one fails. If you find such a query, try first upgrading to the newest MySQL version. If
this does not help, report a bug, see Section 1.5, “How to Report Bugs or Problems”.

If you have started mysqld with the myisam_recover_options system variable set, MySQL
automatically checks and tries to repair MyISAM tables if they are marked as 'not closed properly' or
'crashed'. If this happens, MySQL writes an entry in the hostname.err file 'Warning: Checking
table ...' which is followed by Warning: Repairing table if the table needs to be repaired. If you
get a lot of these errors, without mysqld having died unexpectedly just before, then something is wrong
and needs to be investigated further. See Section 5.1.6, “Server Command Options”.

When the server detects MyISAM table corruption, it writes additional information to the error log, such as
the name and line number of the source file, and the list of threads accessing the table. Example: Got an
error from thread_id=1, mi_dynrec.c:368. This is useful information to include in bug reports.

It is not a good sign if mysqld did die unexpectedly, but in this case, you should not investigate the
Checking table... messages, but instead try to find out why mysqld died.

5.8.1.7 Making a Test Case If You Experience Table Corruption

The following procedure applies to MyISAM tables. For information about steps to take when encountering
InnoDB table corruption, see Section 1.5, “How to Report Bugs or Problems”.

If you encounter corrupted MyISAM tables or if mysqld always fails after some update statements, you can
test whether the issue is reproducible by doing the following:

1. Stop the MySQL daemon with mysqladmin shutdown.

2. Make a backup of the tables to guard against the very unlikely case that the repair does something
bad.

3. Check all tables with myisamchk -s database/*.MYI. Repair any corrupted tables with
myisamchk -r database/table.MYI.

4. Make a second backup of the tables.

5. Remove (or move away) any old log files from the MySQL data directory if you need more space.

6. Start mysqld with the binary log enabled. If you want to find a statement that crashes mysqld, you
should start the server with the general query log enabled as well. See Section 5.4.3, “The General
Query Log”, and Section 5.4.4, “The Binary Log”.

7. When you have gotten a crashed table, stop the mysqld server.

8. Restore the backup.

9. Restart the mysqld server without the binary log enabled.

10. Re-execute the statements with mysqlbinlog binary-log-file | mysql. The binary log is
saved in the MySQL database directory with the name hostname-bin.NNNNNN.

11. If the tables are corrupted again or you can get mysqld to die with the above command, you have
found a reproducible bug. FTP the tables and the binary log to our bugs database using the instructions

816

Debugging a MySQL Client

given in Section 1.5, “How to Report Bugs or Problems”. If you are a support customer, you can use the
MySQL Customer Support Center (https://www.mysql.com/support/) to alert the MySQL team about the
problem and have it fixed as soon as possible.

5.8.2 Debugging a MySQL Client

To be able to debug a MySQL client with the integrated debug package, you should configure MySQL with
-DWITH_DEBUG=1. See Section 2.9.7, “MySQL Source-Configuration Options”.

Before running a client, you should set the MYSQL_DEBUG environment variable:

$> MYSQL_DEBUG=d:t:O,/tmp/client.trace
$> export MYSQL_DEBUG

This causes clients to generate a trace file in /tmp/client.trace.

If you have problems with your own client code, you should attempt to connect to the server and run your
query using a client that is known to work. Do this by running mysql in debugging mode (assuming that
you have compiled MySQL with debugging on):

$> mysql --debug=d:t:O,/tmp/client.trace

This provides useful information in case you mail a bug report. See Section 1.5, “How to Report Bugs or
Problems”.

If your client crashes at some 'legal' looking code, you should check that your mysql.h include file
matches your MySQL library file. A very common mistake is to use an old mysql.h file from an old MySQL
installation with new MySQL library.

5.8.3 The DBUG Package

The MySQL server and most MySQL clients are compiled with the DBUG package originally created by
Fred Fish. When you have configured MySQL for debugging, this package makes it possible to get a trace
file of what the program is doing. See Section 5.8.1.2, “Creating Trace Files”.

This section summarizes the argument values that you can specify in debug options on the command line
for MySQL programs that have been built with debugging support.

The DBUG package can be used by invoking a program with the --debug[=debug_options] or -#
[debug_options] option. If you specify the --debug or -# option without a debug_options value,
most MySQL programs use a default value. The server default is d:t:i:o,/tmp/mysqld.trace on
Unix and d:t:i:O,\mysqld.trace on Windows. The effect of this default is:

• d: Enable output for all debug macros

• t: Trace function calls and exits

• i: Add PID to output lines

• o,/tmp/mysqld.trace, O,\mysqld.trace: Set the debug output file.

Most client programs use a default debug_options value of d:t:o,/tmp/program_name.trace,
regardless of platform.

Here are some example debug control strings as they might be specified on a shell command line:

--debug=d:t
--debug=d:f,main,subr1:F:L:t,20
--debug=d,input,output,files:n

817

https://www.mysql.com/support/

The DBUG Package

--debug=d:t:i:O,\\mysqld.trace

For mysqld, it is also possible to change DBUG settings at runtime by setting the debug system variable.
This variable has global and session values:

mysql> SET GLOBAL debug = 'debug_options';
mysql> SET SESSION debug = 'debug_options';

Changing the global debug value requires privileges sufficient to set global system variables. Changing
the session debug value requires privileges sufficient to set restricted session system variables. See
Section 5.1.8.1, “System Variable Privileges”.

The debug_options value is a sequence of colon-separated fields:

field_1:field_2:...:field_N

Each field within the value consists of a mandatory flag character, optionally preceded by a + or -
character, and optionally followed by a comma-delimited list of modifiers:

[+|-]flag[,modifier,modifier,...,modifier]

The following table describes the permitted flag characters. Unrecognized flag characters are silently
ignored.

Flag Description

d Enable output from DBUG_XXX macros for the
current state. May be followed by a list of keywords,
which enables output only for the DBUG macros
with that keyword. An empty list of keywords
enables output for all macros.

In MySQL, common debug macro keywords to
enable are enter, exit, error, warning, info,
and loop.

D Delay after each debugger output line. The
argument is the delay, in tenths of seconds,
subject to machine capabilities. For example, D,20
specifies a delay of two seconds.

f Limit debugging, tracing, and profiling to the list of
named functions. An empty list enables all functions.
The appropriate d or t flags must still be given; this
flag only limits their actions if they are enabled.

F Identify the source file name for each line of debug
or trace output.

i Identify the process with the PID or thread ID for
each line of debug or trace output.

L Identify the source file line number for each line of
debug or trace output.

n Print the current function nesting depth for each line
of debug or trace output.

N Number each line of debug output.

o Redirect the debugger output stream to the
specified file. The default output is stderr.

818

The DBUG Package

Flag Description

O Like o, but the file is really flushed between each
write. When needed, the file is closed and reopened
between each write.

p Limit debugger actions to specified processes. A
process must be identified with the DBUG_PROCESS
macro and match one in the list for debugger
actions to occur.

P Print the current process name for each line of
debug or trace output.

r When pushing a new state, do not inherit the
previous state's function nesting level. Useful when
the output is to start at the left margin.

S Do function _sanity(_file_,_line_) at
each debugged function until _sanity() returns
something that differs from 0.

t Enable function call/exit trace lines. May be followed
by a list (containing only one modifier) giving
a numeric maximum trace level, beyond which
no output occurs for either debugging or tracing
macros. The default is a compile time option.

The leading + or - character and trailing list of modifiers are used for flag characters such as d or f that
can enable a debug operation for all applicable modifiers or just some of them:

• With no leading + or -, the flag value is set to exactly the modifier list as given.

• With a leading + or -, the modifiers in the list are added to or subtracted from the current modifier list.

The following examples show how this works for the d flag. An empty d list enabled output for all debug
macros. A nonempty list enables output only for the macro keywords in the list.

These statements set the d value to the modifier list as given:

mysql> SET debug = 'd';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d |
+---------+
mysql> SET debug = 'd,error,warning';
mysql> SELECT @@debug;
+-----------------+
| @@debug |
+-----------------+
| d,error,warning |
+-----------------+

A leading + or - adds to or subtracts from the current d value:

mysql> SET debug = '+d,loop';
mysql> SELECT @@debug;
+----------------------+
| @@debug |
+----------------------+
| d,error,warning,loop |

819

Tracing mysqld Using DTrace

+----------------------+
mysql> SET debug = '-d,error,loop';
mysql> SELECT @@debug;
+-----------+
| @@debug |
+-----------+
| d,warning |
+-----------+

Adding to “all macros enabled” results in no change:

mysql> SET debug = 'd';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d |
+---------+
mysql> SET debug = '+d,loop';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d |
+---------+

Disabling all enabled macros disables the d flag entirely:

mysql> SET debug = 'd,error,loop';
mysql> SELECT @@debug;
+--------------+
| @@debug |
+--------------+
| d,error,loop |
+--------------+
mysql> SET debug = '-d,error,loop';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| |
+---------+

Note

Prior to MySQL 5.6.12, the + and - modifiers were not always handled correctly and
could leave a flag value in an incorrect state. Verify your debug-setting sequence in
advance or set it without using + or -.

5.8.4 Tracing mysqld Using DTrace

The DTrace probes in the MySQL server are designed to provide information about the execution of
queries within MySQL and the different areas of the system being utilized during that process. The
organization and triggering of the probes means that the execution of an entire query can be monitored
with one level of probes (query-start and query-done) but by monitoring other probes you can get
successively more detailed information about the execution of the query in terms of the locks used, sort
methods and even row-by-row and storage-engine level execution information.

The DTrace probes are organized so that you can follow the entire query process, from the point of
connection from a client, through the query execution, row-level operations, and back out again. You
can think of the probes as being fired within a specific sequence during a typical client connect/execute/
disconnect sequence, as shown in the following figure.

820

Tracing mysqld Using DTrace

Figure 5.1 DTrace Probe Sequence

Global information is provided in the arguments to the DTrace probes at various levels. Global information,
that is, the connection ID and user/host and where relevant the query string, is provided at key levels
(connection-start, command-start, query-start, and query-exec-start). As you go deeper
into the probes, it is assumed either you are only interested in the individual executions (row-level probes
provide information on the database and table name only), or that you combine the row-level probes with
the notional parent probes to provide the information about a specific query. Examples of this are given as
the format and arguments of each probe are provided.

MySQL includes support for DTrace probes on these platforms:

• Solaris 10 Update 5 (Solaris 5/08) on SPARC, x86 and x86_64 platforms

• OS X / macOS 10.4 and higher

• Oracle Linux 6 and higher with UEK kernel (as of MySQL 5.6.20)

Enabling the probes should be automatic on these platforms. To explicitly enable or disable the probes
during building, use the -DENABLE_DTRACE=1 or -DENABLE_DTRACE=0 option to CMake.

If a non-Solaris platform includes DTrace support, building mysqld on that platform includes DTrace
support.

Additional Resources

• For more information on DTrace and writing DTrace scripts, read the DTrace User Guide.

• For an introduction to DTrace, see the MySQL Dev Zone article Getting started with DTracing MySQL.

5.8.4.1 mysqld DTrace Probe Reference

MySQL supports the following static probes, organized into groups of functionality.

Table 5.6 MySQL DTrace Probes

Group Probes

Connection connection-start, connection-done

Command command-start, command-done

821

http://docs.oracle.com/cd/E19253-01/819-5488/
http://dev.mysql.com/tech-resources/articles/mysql-cluster-7.2.html

Tracing mysqld Using DTrace

Group Probes

Query query-start, query-done

Query Parsing query-parse-start, query-parse-done

Query Cache query-cache-hit, query-cache-miss

Query Execution query-exec-start, query-exec-done

Row Level insert-row-start, insert-row-done

update-row-start, update-row-done

delete-row-start, delete-row-done

Row Reads read-row-start, read-row-done

Index Reads index-read-row-start, index-read-row-
done

Lock handler-rdlock-start, handler-rdlock-
done

handler-wrlock-start, handler-wrlock-
done

handler-unlock-start, handler-unlock-
done

Filesort filesort-start, filesort-done

Statement select-start, select-done

insert-start, insert-done

insert-select-start, insert-select-done

update-start, update-done

multi-update-start, multi-update-done

delete-start, delete-done

multi-delete-start, multi-delete-done

Network net-read-start, net-read-done, net-
write-start, net-write-done

Keycache keycache-read-start, keycache-read-
block, keycache-read-done, keycache-
read-hit, keycache-read-miss, keycache-
write-start, keycache-write-block,
keycache-write-done

Note

When extracting the argument data from the probes, each argument is available as
argN, starting with arg0. To identify each argument within the definitions they are
provided with a descriptive name, but you must access the information using the
corresponding argN parameter.

Connection Probes

The connection-start and connection-done probes enclose a connection from a client, regardless
of whether the connection is through a socket or network connection.

connection-start(connectionid, user, host)

822

Tracing mysqld Using DTrace

connection-done(status, connectionid)

• connection-start: Triggered after a connection and successful login/authentication have been
completed by a client. The arguments contain the connection information:

• connectionid: An unsigned long containing the connection ID. This is the same as the process
ID shown as the Id value in the output from SHOW PROCESSLIST.

• user: The username used when authenticating. The value is blank for the anonymous user.

• host: The host of the client connection. For a connection made using Unix sockets, the value is blank.

• connection-done: Triggered just as the connection to the client has been closed. The arguments are:

• status: The status of the connection when it was closed. A logout operation has a value of 0; any
other termination of the connection has a nonzero value.

• connectionid: The connection ID of the connection that was closed.

The following D script quantifies and summarizes the average duration of individual connections, and
provides a count, dumping the information every 60 seconds:

#!/usr/sbin/dtrace -s

mysql*:::connection-start
{
 self->start = timestamp;
}

mysql*:::connection-done
/self->start/
{
 @ = quantize(((timestamp - self->start)/1000000));
 self->start = 0;
}

tick-60s
{
 printa(@);
}

When executed on a server with a large number of clients you might see output similar to this:

 1 57413 :tick-60s

 value ------------- Distribution ------------- count
 -1 | 0
 0 |@@ 30011
 1 | 59
 2 | 5
 4 | 20
 8 | 29
 16 | 18
 32 | 27
 64 | 30
 128 | 11
 256 | 10
 512 | 1
 1024 | 6
 2048 | 8
 4096 | 9
 8192 | 8
 16384 | 2

823

Tracing mysqld Using DTrace

 32768 | 1
 65536 | 1
 131072 | 0
 262144 | 1
 524288 | 0

Command Probes

The command probes are executed before and after a client command is executed, including any
SQL statement that might be executed during that period. Commands include operations such as the
initialization of the DB, use of the COM_CHANGE_USER operation (supported by the MySQL protocol), and
manipulation of prepared statements. Many of these commands are used only by the MySQL client API
from various connectors such as PHP and Java.

command-start(connectionid, command, user, host)
command-done(status)

• command-start: Triggered when a command is submitted to the server.

• connectionid: The connection ID of the client executing the command.

• command: An integer representing the command that was executed. Possible values are shown in the
following table.

Value Name Description

00 COM_SLEEP Internal thread state

01 COM_QUIT Close connection

02 COM_INIT_DB Select database (USE ...)

03 COM_QUERY Execute a query

04 COM_FIELD_LIST Get a list of fields

05 COM_CREATE_DB Create a database (deprecated)

06 COM_DROP_DB Drop a database (deprecated)

07 COM_REFRESH Refresh connection

08 COM_SHUTDOWN Shutdown server

09 COM_STATISTICS Get statistics

10 COM_PROCESS_INFO Get processes (SHOW
PROCESSLIST)

11 COM_CONNECT Initialize connection

12 COM_PROCESS_KILL Kill process

13 COM_DEBUG Get debug information

14 COM_PING Ping

15 COM_TIME Internal thread state

16 COM_DELAYED_INSERT Internal thread state

17 COM_CHANGE_USER Change user

18 COM_BINLOG_DUMP Used by a replica or
mysqlbinlog to initiate a
binary log read

19 COM_TABLE_DUMP Used by a replica to get the
source table information

824

Tracing mysqld Using DTrace

Value Name Description

20 COM_CONNECT_OUT Used by a replica to log a
connection to the server

21 COM_REGISTER_SLAVE Used by a replica during
registration

22 COM_STMT_PREPARE Prepare a statement

23 COM_STMT_EXECUTE Execute a statement

24 COM_STMT_SEND_LONG_DATAUsed by a client when
requesting extended data

25 COM_STMT_CLOSE Close a prepared statement

26 COM_STMT_RESET Reset a prepared statement

27 COM_SET_OPTION Set a server option

28 COM_STMT_FETCH Fetch a prepared statement

• user: The user executing the command.

• host: The client host.

• command-done: Triggered when the command execution completes. The status argument contains 0
if the command executed successfully, or 1 if the statement was terminated before normal completion.

The command-start and command-done probes are best used when combined with the statement
probes to get an idea of overall execution time.

Query Probes

The query-start and query-done probes are triggered when a specific query is received by the server
and when the query has been completed and the information has been successfully sent to the client.

query-start(query, connectionid, database, user, host)
query-done(status)

• query-start: Triggered after the query string has been received from the client. The arguments are:

• query: The full text of the submitted query.

• connectionid: The connection ID of the client that submitted the query. The connection ID equals
the connection ID returned when the client first connects and the Id value in the output from SHOW
PROCESSLIST.

• database: The database name on which the query is being executed.

• user: The username used to connect to the server.

• host: The hostname of the client.

• query-done: Triggered once the query has been executed and the information has been returned
to the client. The probe includes a single argument, status, which returns 0 when the query is
successfully executed and 1 if there was an error.

You can get a simple report of the execution time for each query using the following D script:

#!/usr/sbin/dtrace -s

825

Tracing mysqld Using DTrace

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-20s %-20s %-40s %-9s\n", "Who", "Database", "Query", "Time(ms)");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->connid = arg1;
 self->db = copyinstr(arg2);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->querystart = timestamp;
}

mysql*:::query-done
{
 printf("%-20s %-20s %-40s %-9d\n",self->who,self->db,self->query,
 (timestamp - self->querystart) / 1000000);
}

When executing the above script you should get a basic idea of the execution time of your queries:

$> ./query.d
Who Database Query Time(ms)
root@localhost test select * from t1 order by i limit 10 0
root@localhost test set global query_cache_size=0 0
root@localhost test select * from t1 order by i limit 10 776
root@localhost test select * from t1 order by i limit 10 773
root@localhost test select * from t1 order by i desc limit 10 795

Query Parsing Probes

The query parsing probes are triggered before the original SQL statement is parsed and when the parsing
of the statement and determination of the execution model required to process the statement has been
completed:

query-parse-start(query)
query-parse-done(status)

• query-parse-start: Triggered just before the statement is parsed by the MySQL query parser. The
single argument, query, is a string containing the full text of the original query.

• query-parse-done: Triggered when the parsing of the original statement has been completed.
The status is an integer describing the status of the operation. A 0 indicates that the query was
successfully parsed. A 1 indicates that the parsing of the query failed.

For example, you could monitor the execution time for parsing a given query using the following D script:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::query-parse-start
{
 self->parsestart = timestamp;
 self->parsequery = copyinstr(arg0);
}

mysql*:::query-parse-done
/arg0 == 0/
{
 printf("Parsing %s: %d microseconds\n", self->parsequery,((timestamp - self->parsestart)/1000));

826

Tracing mysqld Using DTrace

}

mysql*:::query-parse-done
/arg0 != 0/
{
 printf("Error parsing %s: %d microseconds\n", self->parsequery,((timestamp - self->parsestart)/1000));
}

In the above script a predicate is used on query-parse-done so that different output is generated based
on the status value of the probe.

When running the script and monitoring the execution:

$> ./query-parsing.d
Error parsing select from t1 join (t2) on (t1.i = t2.i) order by t1.s,t1.i limit 10: 36 ms
Parsing select * from t1 join (t2) on (t1.i = t2.i) order by t1.s,t1.i limit 10: 176 ms

Query Cache Probes

The query cache probes are fired when executing any query. The query-cache-hit query is triggered
when a query exists in the query cache and can be used to return the query cache information. The
arguments contain the original query text and the number of rows returned from the query cache for the
query. If the query is not within the query cache, or the query cache is not enabled, then the query-
cache-miss probe is triggered instead.

query-cache-hit(query, rows)
query-cache-miss(query)

• query-cache-hit: Triggered when the query has been found within the query cache. The first
argument, query, contains the original text of the query. The second argument, rows, is an integer
containing the number of rows in the cached query.

• query-cache-miss: Triggered when the query is not found within the query cache. The first argument,
query, contains the original text of the query.

The query cache probes are best combined with a probe on the main query so that you can determine the
differences in times between using or not using the query cache for specified queries. For example, in the
following D script, the query and query cache information are combined into the information output during
monitoring:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-20s %-20s %-40s %2s %-9s\n", "Who", "Database", "Query", "QC", "Time(ms)");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->connid = arg1;
 self->db = copyinstr(arg2);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->querystart = timestamp;
 self->qc = 0;
}

mysql*:::query-cache-hit
{
 self->qc = 1;
}

827

Tracing mysqld Using DTrace

mysql*:::query-cache-miss
{
 self->qc = 0;
}

mysql*:::query-done
{
 printf("%-20s %-20s %-40s %-2s %-9d\n",self->who,self->db,self->query,(self->qc ? "Y" : "N"),
 (timestamp - self->querystart) / 1000000);
}

When executing the script you can see the effects of the query cache. Initially the query cache is disabled.
If you set the query cache size and then execute the query multiple times you should see that the query
cache is being used to return the query data:

$> ./query-cache.d
root@localhost test select * from t1 order by i limit 10 N 1072
root@localhost set global query_cache_size=262144 N 0
root@localhost test select * from t1 order by i limit 10 N 781
root@localhost test select * from t1 order by i limit 10 Y 0

Query Execution Probes

The query execution probe is triggered when the actual execution of the query starts, after the parsing and
checking the query cache but before any privilege checks or optimization. By comparing the difference
between the start and done probes you can monitor the time actually spent servicing the query (instead of
just handling the parsing and other elements of the query).

query-exec-start(query, connectionid, database, user, host, exec_type)
query-exec-done(status)

Note

The information provided in the arguments for query-start and query-exec-
start are almost identical and designed so that you can choose to monitor
either the entire query process (using query-start) or only the execution (using
query-exec-start) while exposing the core information about the user, client,
and query being executed.

• query-exec-start: Triggered when the execution of a individual query is started. The arguments are:

• query: The full text of the submitted query.

• connectionid: The connection ID of the client that submitted the query. The connection ID equals
the connection ID returned when the client first connects and the Id value in the output from SHOW
PROCESSLIST.

• database: The database name on which the query is being executed.

• user: The username used to connect to the server.

• host: The hostname of the client.

• exec_type: The type of execution. Execution types are determined based on the contents of the
query and where it was submitted. The values for each type are shown in the following table.

Value Description

0 Executed query from sql_parse, top-level query.

828

Tracing mysqld Using DTrace

Value Description

1 Executed prepared statement

2 Executed cursor statement

3 Executed query in stored procedure

• query-exec-done: Triggered when the execution of the query has completed. The probe includes a
single argument, status, which returns 0 when the query is successfully executed and 1 if there was an
error.

Row-Level Probes

The *row-{start,done} probes are triggered each time a row operation is pushed down to a storage
engine. For example, if you execute an INSERT statement with 100 rows of data, then the insert-row-
start and insert-row-done probes are triggered 100 times each, for each row insert.

insert-row-start(database, table)
insert-row-done(status)

update-row-start(database, table)
update-row-done(status)

delete-row-start(database, table)
delete-row-done(status)

• insert-row-start: Triggered before a row is inserted into a table.

• insert-row-done: Triggered after a row is inserted into a table.

• update-row-start: Triggered before a row is updated in a table.

• update-row-done: Triggered before a row is updated in a table.

• delete-row-start: Triggered before a row is deleted from a table.

• delete-row-done: Triggered before a row is deleted from a table.

The arguments supported by the probes are consistent for the corresponding start and done probes in
each case:

• database: The database name.

• table: The table name.

• status: The status; 0 for success or 1 for failure.

Because the row-level probes are triggered for each individual row access, these probes can be triggered
many thousands of times each second, which may have a detrimental effect on both the monitoring
script and MySQL. The DTrace environment should limit the triggering on these probes to prevent the
performance being adversely affected. Either use the probes sparingly, or use counter or aggregation
functions to report on these probes and then provide a summary when the script terminates or as part of a
query-done or query-exec-done probes.

The following example script summarizes the duration of each row operation within a larger query:

#!/usr/sbin/dtrace -s

#pragma D option quiet

829

Tracing mysqld Using DTrace

dtrace:::BEGIN
{
 printf("%-2s %-10s %-10s %9s %9s %-s \n",
 "St", "Who", "DB", "ConnID", "Dur ms", "Query");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->db = copyinstr(arg2);
 self->connid = arg1;
 self->querystart = timestamp;
 self->rowdur = 0;
}

mysql*:::query-done
{
 this->elapsed = (timestamp - self->querystart) /1000000;
 printf("%2d %-10s %-10s %9d %9d %s\n",
 arg0, self->who, self->db,
 self->connid, this->elapsed, self->query);
}

mysql*:::query-done
/ self->rowdur /
{
 printf("%34s %9d %s\n", "", (self->rowdur/1000000), "-> Row ops");
}

mysql*:::insert-row-start
{
 self->rowstart = timestamp;
}

mysql*:::delete-row-start
{
 self->rowstart = timestamp;
}

mysql*:::update-row-start
{
 self->rowstart = timestamp;
}

mysql*:::insert-row-done
{
 self->rowdur += (timestamp-self->rowstart);
}

mysql*:::delete-row-done
{
 self->rowdur += (timestamp-self->rowstart);
}

mysql*:::update-row-done
{
 self->rowdur += (timestamp-self->rowstart);
}

Running the above script with a query that inserts data into a table, you can monitor the exact time spent
performing the raw row insertion:

St Who DB ConnID Dur ms Query
 0 @localhost test 13 20767 insert into t1(select * from t2)
 4827 -> Row ops

830

Tracing mysqld Using DTrace

Read Row Probes

The read row probes are triggered at a storage engine level each time a row read operation occurs. These
probes are specified within each storage engine (as opposed to the *row-start probes which are in the
storage engine interface). These probes can therefore be used to monitor individual storage engine row-
level operations and performance. Because these probes are triggered around the storage engine row
read interface, they may be hit a significant number of times during a basic query.

read-row-start(database, table, scan_flag)
read-row-done(status)

• read-row-start: Triggered when a row is read by the storage engine from the specified database
and table. The scan_flag is set to 1 (true) when the read is part of a table scan (that is, a sequential
read), or 0 (false) when the read is of a specific record.

• read-row-done: Triggered when a row read operation within a storage engine completes. The status
returns 0 on success, or a positive value on failure.

Index Probes

The index probes are triggered each time a row is read using one of the indexes for the specified table.
The probe is triggered within the corresponding storage engine for the table.

index-read-row-start(database, table)
index-read-row-done(status)

• index-read-row-start: Triggered when a row is read by the storage engine from the specified
database and table.

• index-read-row-done: Triggered when an indexed row read operation within a storage engine
completes. The status returns 0 on success, or a positive value on failure.

Lock Probes

The lock probes are called whenever an external lock is requested by MySQL for a table using the
corresponding lock mechanism on the table as defined by the table's engine type. There are three different
types of lock, the read lock, write lock, and unlock operations. Using the probes you can determine the
duration of the external locking routine (that is, the time taken by the storage engine to implement the
lock, including any time waiting for another lock to become free) and the total duration of the lock/unlock
process.

handler-rdlock-start(database, table)
handler-rdlock-done(status)

handler-wrlock-start(database, table)
handler-wrlock-done(status)

handler-unlock-start(database, table)
handler-unlock-done(status)

• handler-rdlock-start: Triggered when a read lock is requested on the specified database and
table.

• handler-wrlock-start: Triggered when a write lock is requested on the specified database and
table.

• handler-unlock-start: Triggered when an unlock request is made on the specified database and
table.

831

Tracing mysqld Using DTrace

• handler-rdlock-done: Triggered when a read lock request completes. The status is 0 if the lock
operation succeeded, or >0 on failure.

• handler-wrlock-done: Triggered when a write lock request completes. The status is 0 if the lock
operation succeeded, or >0 on failure.

• handler-unlock-done: Triggered when an unlock request completes. The status is 0 if the unlock
operation succeeded, or >0 on failure.

You can use arrays to monitor the locking and unlocking of individual tables and then calculate the duration
of the entire table lock using the following script:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::handler-rdlock-start
{
 self->rdlockstart = timestamp;
 this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
 self->lockmap[this->lockref] = self->rdlockstart;
 printf("Start: Lock->Read %s.%s\n",copyinstr(arg0),copyinstr(arg1));
}

mysql*:::handler-wrlock-start
{
 self->wrlockstart = timestamp;
 this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
 self->lockmap[this->lockref] = self->rdlockstart;
 printf("Start: Lock->Write %s.%s\n",copyinstr(arg0),copyinstr(arg1));
}

mysql*:::handler-unlock-start
{
 self->unlockstart = timestamp;
 this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
 printf("Start: Lock->Unlock %s.%s (%d ms lock duration)\n",
 copyinstr(arg0),copyinstr(arg1),
 (timestamp - self->lockmap[this->lockref])/1000000);
}

mysql*:::handler-rdlock-done
{
 printf("End: Lock->Read %d ms\n",
 (timestamp - self->rdlockstart)/1000000);
}

mysql*:::handler-wrlock-done
{
 printf("End: Lock->Write %d ms\n",
 (timestamp - self->wrlockstart)/1000000);
}

mysql*:::handler-unlock-done
{
 printf("End: Lock->Unlock %d ms\n",
 (timestamp - self->unlockstart)/1000000);
}

When executed, you should get information both about the duration of the locking process itself, and of the
locks on a specific table:

Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (25743 ms lock duration)

832

Tracing mysqld Using DTrace

End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (1 ms lock duration)
End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (1 ms lock duration)
End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms

Filesort Probes

The filesort probes are triggered whenever a filesort operation is applied to a table. For more information
on filesort and the conditions under which it occurs, see Section 8.2.1.13, “ORDER BY Optimization”.

filesort-start(database, table)
filesort-done(status, rows)

• filesort-start: Triggered when the filesort operation starts on a table. The two arguments to the
probe, database and table, identify the table being sorted.

• filesort-done: Triggered when the filesort operation completes. Two arguments are supplied, the
status (0 for success, 1 for failure), and the number of rows sorted during the filesort process.

An example of this is in the following script, which tracks the duration of the filesort process in addition to
the duration of the main query:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-2s %-10s %-10s %9s %18s %-s \n",
 "St", "Who", "DB", "ConnID", "Dur microsec", "Query");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->db = copyinstr(arg2);
 self->connid = arg1;
 self->querystart = timestamp;
 self->filesort = 0;
 self->fsdb = "";
 self->fstable = "";
}

mysql*:::filesort-start
{
 self->filesort = timestamp;
 self->fsdb = copyinstr(arg0);
 self->fstable = copyinstr(arg1);
}

mysql*:::filesort-done
{
 this->elapsed = (timestamp - self->filesort) /1000;
 printf("%2d %-10s %-10s %9d %18d Filesort on %s\n",
 arg0, self->who, self->fsdb,
 self->connid, this->elapsed, self->fstable);
}

833

Tracing mysqld Using DTrace

mysql*:::query-done
{
 this->elapsed = (timestamp - self->querystart) /1000;
 printf("%2d %-10s %-10s %9d %18d %s\n",
 arg0, self->who, self->db,
 self->connid, this->elapsed, self->query);
}

Executing a query on a large table with an ORDER BY clause that triggers a filesort, and then creating an
index on the table and then repeating the same query, you can see the difference in execution speed:

St Who DB ConnID Dur microsec Query
 0 @localhost test 14 11335469 Filesort on t1
 0 @localhost test 14 11335787 select * from t1 order by i limit 100
 0 @localhost test 14 466734378 create index t1a on t1 (i)
 0 @localhost test 14 26472 select * from t1 order by i limit 100

Statement Probes

The individual statement probes are provided to give specific information about different statement types.
For the start probes the string of the query is provided as a the only argument. Depending on the statement
type, the information provided by the corresponding done probe differs. For all done probes the status of
the operation (0 for success, >0 for failure) is provided. For SELECT, INSERT, INSERT ... (SELECT
FROM ...), DELETE, and DELETE FROM t1,t2 operations the number of rows affected is returned.

For UPDATE and UPDATE t1,t2 ... statements the number of rows matched and the number of rows
actually changed is provided. This is because the number of rows actually matched by the corresponding
WHERE clause, and the number of rows changed can differ. MySQL does not update the value of a row if
the value already matches the new setting.

select-start(query)
select-done(status,rows)

insert-start(query)
insert-done(status,rows)

insert-select-start(query)
insert-select-done(status,rows)

update-start(query)
update-done(status,rowsmatched,rowschanged)

multi-update-start(query)
multi-update-done(status,rowsmatched,rowschanged)

delete-start(query)
delete-done(status,rows)

multi-delete-start(query)
multi-delete-done(status,rows)

• select-start: Triggered before a SELECT statement.

• select-done: Triggered at the end of a SELECT statement.

• insert-start: Triggered before a INSERT statement.

• insert-done: Triggered at the end of an INSERT statement.

• insert-select-start: Triggered before an INSERT ... SELECT statement.

• insert-select-done: Triggered at the end of an INSERT ... SELECT statement.

834

Tracing mysqld Using DTrace

• update-start: Triggered before an UPDATE statement.

• update-done: Triggered at the end of an UPDATE statement.

• multi-update-start: Triggered before an UPDATE statement involving multiple tables.

• multi-update-done: Triggered at the end of an UPDATE statement involving multiple tables.

• delete-start: Triggered before a DELETE statement.

• delete-done: Triggered at the end of a DELETE statement.

• multi-delete-start: Triggered before a DELETE statement involving multiple tables.

• multi-delete-done: Triggered at the end of a DELETE statement involving multiple tables.

The arguments for the statement probes are:

• query: The query string.

• status: The status of the query. 0 for success, and >0 for failure.

• rows: The number of rows affected by the statement. This returns the number rows found for SELECT,
the number of rows deleted for DELETE, and the number of rows successfully inserted for INSERT.

• rowsmatched: The number of rows matched by the WHERE clause of an UPDATE operation.

• rowschanged: The number of rows actually changed during an UPDATE operation.

You use these probes to monitor the execution of these statement types without having to monitor the user
or client executing the statements. A simple example of this is to track the execution times:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-60s %-8s %-8s %-8s\n", "Query", "RowsU", "RowsM", "Dur (ms)");
}

mysql*:::update-start, mysql*:::insert-start,
mysql*:::delete-start, mysql*:::multi-delete-start,
mysql*:::multi-delete-done, mysql*:::select-start,
mysql*:::insert-select-start, mysql*:::multi-update-start
{
 self->query = copyinstr(arg0);
 self->querystart = timestamp;
}

mysql*:::insert-done, mysql*:::select-done,
mysql*:::delete-done, mysql*:::multi-delete-done, mysql*:::insert-select-done
/ self->querystart /
{
 this->elapsed = ((timestamp - self->querystart)/1000000);
 printf("%-60s %-8d %-8d %d\n",
 self->query,
 0,
 arg1,
 this->elapsed);
 self->querystart = 0;
}

835

Tracing mysqld Using DTrace

mysql*:::update-done, mysql*:::multi-update-done
/ self->querystart /
{
 this->elapsed = ((timestamp - self->querystart)/1000000);
 printf("%-60s %-8d %-8d %d\n",
 self->query,
 arg1,
 arg2,
 this->elapsed);
 self->querystart = 0;
}

When executed you can see the basic execution times and rows matches:

Query RowsU RowsM Dur (ms)
select * from t2 0 275 0
insert into t2 (select * from t2) 0 275 9
update t2 set i=5 where i > 75 110 110 8
update t2 set i=5 where i < 25 254 134 12
delete from t2 where i < 5 0 0 0

Another alternative is to use the aggregation functions in DTrace to aggregate the execution time of
individual statements together:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::update-start, mysql*:::insert-start,
mysql*:::delete-start, mysql*:::multi-delete-start,
mysql*:::multi-delete-done, mysql*:::select-start,
mysql*:::insert-select-start, mysql*:::multi-update-start
{
 self->querystart = timestamp;
}

mysql*:::select-done
{
 @statements["select"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::insert-done, mysql*:::insert-select-done
{
 @statements["insert"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::update-done, mysql*:::multi-update-done
{
 @statements["update"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::delete-done, mysql*:::multi-delete-done
{
 @statements["delete"] = sum(((timestamp - self->querystart)/1000000));
}

tick-30s
{
 printa(@statements);
}

The script just shown aggregates the times spent doing each operation, which could be used to help
benchmark a standard suite of tests.

 delete 0

836

Tracing mysqld Using DTrace

 update 0
 insert 23
 select 2484

 delete 0
 update 0
 insert 39
 select 10744

 delete 0
 update 26
 insert 56
 select 10944

 delete 0
 update 26
 insert 2287
 select 15985

Network Probes

The network probes monitor the transfer of information from the MySQL server and clients of all types over
the network. The probes are defined as follows:

net-read-start()
net-read-done(status, bytes)
net-write-start(bytes)
net-write-done(status)

• net-read-start: Triggered when a network read operation is started.

• net-read-done: Triggered when the network read operation completes. The status is an integer
representing the return status for the operation, 0 for success and 1 for failure. The bytes argument is
an integer specifying the number of bytes read during the process.

• net-start-bytes: Triggered when data is written to a network socket. The single argument, bytes,
specifies the number of bytes written to the network socket.

• net-write-done: Triggered when the network write operation has completed. The single argument,
status, is an integer representing the return status for the operation, 0 for success and 1 for failure.

You can use the network probes to monitor the time spent reading from and writing to network clients
during execution. The following D script provides an example of this. Both the cumulative time for the read
or write is calculated, and the number of bytes. Note that the dynamic variable size has been increased
(using the dynvarsize option) to cope with the rapid firing of the individual probes for the network reads/
writes.

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option dynvarsize=4m

dtrace:::BEGIN
{
 printf("%-2s %-30s %-10s %9s %18s %-s \n",
 "St", "Who", "DB", "ConnID", "Dur microsec", "Query");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->db = copyinstr(arg2);

837

Tracing mysqld Using DTrace

 self->connid = arg1;
 self->querystart = timestamp;
 self->netwrite = 0;
 self->netwritecum = 0;
 self->netwritebase = 0;
 self->netread = 0;
 self->netreadcum = 0;
 self->netreadbase = 0;
}

mysql*:::net-write-start
{
 self->netwrite += arg0;
 self->netwritebase = timestamp;
}

mysql*:::net-write-done
{
 self->netwritecum += (timestamp - self->netwritebase);
 self->netwritebase = 0;
}

mysql*:::net-read-start
{
 self->netreadbase = timestamp;
}

mysql*:::net-read-done
{
 self->netread += arg1;
 self->netreadcum += (timestamp - self->netreadbase);
 self->netreadbase = 0;
}

mysql*:::query-done
{
 this->elapsed = (timestamp - self->querystart) /1000000;
 printf("%2d %-30s %-10s %9d %18d %s\n",
 arg0, self->who, self->db,
 self->connid, this->elapsed, self->query);
 printf("Net read: %d bytes (%d ms) write: %d bytes (%d ms)\n",
 self->netread, (self->netreadcum/1000000),
 self->netwrite, (self->netwritecum/1000000));
}

When executing the above script on a machine with a remote client, you can see that approximately a third
of the time spent executing the query is related to writing the query results back to the client.

St Who DB ConnID Dur microsec Query
 0 root@::ffff:198.51.100.108 test 31 3495 select * from t1 limit 1000000
Net read: 0 bytes (0 ms) write: 10000075 bytes (1220 ms)

Keycache Probes

The keycache probes are triggered when using the index key cache used with the MyISAM storage engine.
Probes exist to monitor when data is read into the keycache, cached key data is written from the cache into
a cached file, or when accessing the keycache.

Keycache usage indicates when data is read or written from the index files into the cache, and can be
used to monitor how efficient the memory allocated to the keycache is being used. A high number of
keycache reads across a range of queries may indicate that the keycache is too small for size of data
being accessed.

keycache-read-start(filepath, bytes, mem_used, mem_free)
keycache-read-block(bytes)

838

Tracing mysqld Using DTrace

keycache-read-hit()
keycache-read-miss()
keycache-read-done(mem_used, mem_free)
keycache-write-start(filepath, bytes, mem_used, mem_free)
keycache-write-block(bytes)
keycache-write-done(mem_used, mem_free)

When reading data from the index files into the keycache, the process first initializes the read operation
(indicated by keycache-read-start), then loads blocks of data (keycache-read-block), and then
the read block is either matches the data being identified (keycache-read-hit) or more data needs
to be read (keycache-read-miss). Once the read operation has completed, reading stops with the
keycache-read-done.

Data is read from the index file into the keycache only when the specified key is not already within the
keycache.

• keycache-read-start: Triggered when the keycache read operation is started. Data is read from the
specified filepath, reading the specified number of bytes. The mem_used and mem_avail indicate
memory currently used by the keycache and the amount of memory available within the keycache.

• keycache-read-block: Triggered when the keycache reads a block of data, of the specified number
of bytes, from the index file into the keycache.

• keycache-read-hit: Triggered when the block of data read from the index file matches the key data
requested.

• keycache-read-miss: Triggered when the block of data read from the index file does not match the
key data needed.

• keycache-read-done: Triggered when the keycache read operation has completed. The mem_used
and mem_avail indicate memory currently used by the keycache and the amount of memory available
within the keycache.

Keycache writes occur when the index information is updated during an INSERT, UPDATE, or DELETE
operation, and the cached key information is flushed back to the index file.

• keycache-write-start: Triggered when the keycache write operation is started. Data is written
to the specified filepath, reading the specified number of bytes. The mem_used and mem_avail
indicate memory currently used by the keycache and the amount of memory available within the
keycache.

• keycache-write-block: Triggered when the keycache writes a block of data, of the specified number
of bytes, to the index file from the keycache.

• keycache-write-done: Triggered when the keycache write operation has completed. The mem_used
and mem_avail indicate memory currently used by the keycache and the amount of memory available
within the keycache.

839

840

Chapter 6 Security

Table of Contents
6.1 General Security Issues .. 842

6.1.1 Security Guidelines .. 842
6.1.2 Keeping Passwords Secure .. 844
6.1.3 Making MySQL Secure Against Attackers ... 852
6.1.4 Security-Related mysqld Options and Variables ... 854
6.1.5 How to Run MySQL as a Normal User ... 855
6.1.6 Security Considerations for LOAD DATA LOCAL ... 855
6.1.7 Client Programming Security Guidelines .. 857

6.2 Access Control and Account Management ... 859
6.2.1 Account User Names and Passwords ... 860
6.2.2 Privileges Provided by MySQL ... 862
6.2.3 Grant Tables .. 869
6.2.4 Specifying Account Names ... 875
6.2.5 Access Control, Stage 1: Connection Verification ... 877
6.2.6 Access Control, Stage 2: Request Verification ... 880
6.2.7 Adding Accounts, Assigning Privileges, and Dropping Accounts .. 882
6.2.8 When Privilege Changes Take Effect .. 885
6.2.9 Assigning Account Passwords .. 886
6.2.10 Server Handling of Expired Passwords ... 887
6.2.11 Pluggable Authentication .. 890
6.2.12 Proxy Users ... 894
6.2.13 Setting Account Resource Limits .. 900
6.2.14 Troubleshooting Problems Connecting to MySQL .. 902
6.2.15 SQL-Based Account Activity Auditing .. 907

6.3 Using Encrypted Connections .. 908
6.3.1 Configuring MySQL to Use Encrypted Connections ... 909
6.3.2 Encrypted Connection TLS Protocols and Ciphers ... 912
6.3.3 Creating SSL and RSA Certificates and Keys .. 916
6.3.4 SSL Library-Dependent Capabilities .. 922
6.3.5 Connecting to MySQL Remotely from Windows with SSH .. 923

6.4 Security Plugins .. 923
6.4.1 Authentication Plugins .. 924
6.4.2 The Connection-Control Plugins .. 954
6.4.3 The Password Validation Plugin ... 960
6.4.4 MySQL Enterprise Audit ... 967
6.4.5 MySQL Enterprise Firewall ... 994

6.5 MySQL Enterprise Encryption .. 1010
6.5.1 MySQL Enterprise Encryption Installation .. 1011
6.5.2 MySQL Enterprise Encryption Usage and Examples .. 1011
6.5.3 MySQL Enterprise Encryption Function Reference ... 1014
6.5.4 MySQL Enterprise Encryption Function Descriptions .. 1014

6.6 SELinux .. 1018
6.6.1 Check if SELinux is Enabled .. 1019
6.6.2 Changing the SELinux Mode .. 1020
6.6.3 MySQL Server SELinux Policies ... 1020
6.6.4 SELinux File Context .. 1020
6.6.5 SELinux TCP Port Context ... 1022
6.6.6 Troubleshooting SELinux .. 1022

841

General Security Issues

When thinking about security within a MySQL installation, you should consider a wide range of possible
topics and how they affect the security of your MySQL server and related applications:

• General factors that affect security. These include choosing good passwords, not granting unnecessary
privileges to users, ensuring application security by preventing SQL injections and data corruption, and
others. See Section 6.1, “General Security Issues”.

• Security of the installation itself. The data files, log files, and the all the application files of your
installation should be protected to ensure that they are not readable or writable by unauthorized parties.
For more information, see Section 2.10, “Postinstallation Setup and Testing”.

• Access control and security within the database system itself, including the users and databases
granted with access to the databases, views and stored programs in use within the database. For more
information, see Section 6.2, “Access Control and Account Management”

• The features offered by security-related plugins. See Section 6.4, “Security Plugins”.

• Network security of MySQL and your system. The security is related to the grants for individual users,
but you may also wish to restrict MySQL so that it is available only locally on the MySQL server host, or
to a limited set of other hosts.

• Ensure that you have adequate and appropriate backups of your database files, configuration and log
files. Also be sure that you have a recovery solution in place and test that you are able to successfully
recover the information from your backups. See Chapter 7, Backup and Recovery.

6.1 General Security Issues
This section describes general security issues to be aware of and what you can do to make your MySQL
installation more secure against attack or misuse. For information specifically about the access control
system that MySQL uses for setting up user accounts and checking database access, see Section 2.10,
“Postinstallation Setup and Testing”.

For answers to some questions that are often asked about MySQL Server security issues, see Section A.9,
“MySQL 5.6 FAQ: Security”.

6.1.1 Security Guidelines

Anyone using MySQL on a computer connected to the Internet should read this section to avoid the most
common security mistakes.

In discussing security, it is necessary to consider fully protecting the entire server host (not just the MySQL
server) against all types of applicable attacks: eavesdropping, altering, playback, and denial of service. We
do not cover all aspects of availability and fault tolerance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other
operations that users can attempt to perform. There is also support for SSL-encrypted connections
between MySQL clients and servers. Many of the concepts discussed here are not specific to MySQL at
all; the same general ideas apply to almost all applications.

When running MySQL, follow these guidelines:

• Do not ever give anyone (except MySQL root accounts) access to the user table in the mysql
system database! This is critical.

• Learn how the MySQL access privilege system works (see Section 6.2, “Access Control and Account
Management”). Use the GRANT and REVOKE statements to control access to MySQL. Do not grant more
privileges than necessary. Never grant privileges to all hosts.

842

Security Guidelines

Checklist:

• Try mysql -u root. If you are able to connect successfully to the server without being asked for a
password, anyone can connect to your MySQL server as the MySQL root user with full privileges!
Review the MySQL installation instructions, paying particular attention to the information about setting
a root password. See Section 2.10.4, “Securing the Initial MySQL Accounts”.

• Use the SHOW GRANTS statement to check which accounts have access to what. Then use the
REVOKE statement to remove those privileges that are not necessary.

• Do not store cleartext passwords in your database. If your computer becomes compromised, the intruder
can take the full list of passwords and use them. Instead, use SHA2() or some other one-way hashing
function and store the hash value.

To prevent password recovery using rainbow tables, do not use these functions on a plain password;
instead, choose some string to be used as a salt, and use hash(hash(password)+salt) values.

• Do not choose passwords from dictionaries. Special programs exist to break passwords. Even
passwords like “xfish98” are very bad. Much better is “duag98” which contains the same word “fish” but
typed one key to the left on a standard QWERTY keyboard. Another method is to use a password that
is taken from the first characters of each word in a sentence (for example, “Four score and seven years
ago” results in a password of “Fsasya”). The password is easy to remember and type, but difficult to
guess for someone who does not know the sentence. In this case, you can additionally substitute digits
for the number words to obtain the phrase “4 score and 7 years ago”, yielding the password “4sa7ya”
which is even more difficult to guess.

• Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put
MySQL behind the firewall or in a demilitarized zone (DMZ).

Checklist:

• Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306 by default.
This port should not be accessible from untrusted hosts. As a simple way to check whether your
MySQL port is open, try the following command from some remote machine, where server_host is
the host name or IP address of the host on which your MySQL server runs:

$> telnet server_host 3306

If telnet hangs or the connection is refused, the port is blocked, which is how you want it to be. If
you get a connection and some garbage characters, the port is open, and should be closed on your
firewall or router, unless you really have a good reason to keep it open.

• Applications that access MySQL should not trust any data entered by users, and should be written
using proper defensive programming techniques. See Section 6.1.7, “Client Programming Security
Guidelines”.

• Do not transmit plain (unencrypted) data over the Internet. This information is accessible to everyone
who has the time and ability to intercept it and use it for their own purposes. Instead, use an encrypted
protocol such as SSL or SSH. MySQL supports internal SSL connections. Another technique is to use
SSH port-forwarding to create an encrypted (and compressed) tunnel for the communication.

• Learn to use the tcpdump and strings utilities. In most cases, you can check whether MySQL data
streams are unencrypted by issuing a command like the following:

$> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

This works under Linux and should work with small modifications under other systems.

843

Keeping Passwords Secure

Warning

If you do not see cleartext data, this does not always mean that the information
actually is encrypted. If you need high security, consult with a security expert.

6.1.2 Keeping Passwords Secure

Passwords occur in several contexts within MySQL. The following sections provide guidelines that enable
end users and administrators to keep these passwords secure and avoid exposing them. There is also a
discussion of how MySQL uses password hashing internally and of a plugin that you can use to enforce
stricter passwords.

6.1.2.1 End-User Guidelines for Password Security

MySQL users should use the following guidelines to keep passwords secure.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your password
in a way that exposes it to discovery by other users. The methods you can use to specify your password
when you run client programs are listed here, along with an assessment of the risks of each method.
In short, the safest methods are to have the client program prompt for the password or to specify the
password in a properly protected option file.

• Use the mysql_config_editor utility, which enables you to store authentication credentials in
an encrypted login path file named .mylogin.cnf. The file can be read later by MySQL client
programs to obtain authentication credentials for connecting to MySQL Server. See Section 4.6.6,
“mysql_config_editor — MySQL Configuration Utility”.

• Use a --password=password or -ppassword option on the command line. For example:

$> mysql -u francis -pfrank db_name

Warning

This is convenient but insecure. On some systems, your password becomes
visible to system status programs such as ps that may be invoked by other users
to display command lines. MySQL clients typically overwrite the command-line
password argument with zeros during their initialization sequence. However,
there is still a brief interval during which the value is visible. Also, on some
systems this overwriting strategy is ineffective and the password remains visible
to ps. (SystemV Unix systems and perhaps others are subject to this problem.)

If your operating environment is set up to display your current command in the title bar of your terminal
window, the password remains visible as long as the command is running, even if the command has
scrolled out of view in the window content area.

• Use the --password or -p option on the command line with no password value specified. In this case,
the client program solicits the password interactively:

$> mysql -u francis -p db_name
Enter password: ********

The * characters indicate where you enter your password. The password is not displayed as you enter it.

It is more secure to enter your password this way than to specify it on the command line because it is
not visible to other users. However, this method of entering a password is suitable only for programs that

844

Keeping Passwords Secure

you run interactively. If you want to invoke a client from a script that runs noninteractively, there is no
opportunity to enter the password from the keyboard. On some systems, you may even find that the first
line of your script is read and interpreted (incorrectly) as your password.

• Store your password in an option file. For example, on Unix, you can list your password in the [client]
section of the .my.cnf file in your home directory:

[client]
password=password

To keep the password safe, the file should not be accessible to anyone but yourself. To ensure this, set
the file access mode to 400 or 600. For example:

$> chmod 600 .my.cnf

To name from the command line a specific option file containing the password, use the --defaults-
file=file_name option, where file_name is the full path name to the file. For example:

$> mysql --defaults-file=/home/francis/mysql-opts

Section 4.2.2.2, “Using Option Files”, discusses option files in more detail.

• Store your password in the MYSQL_PWD environment variable. See Section 4.9, “Environment Variables”.

This method of specifying your MySQL password must be considered extremely insecure and should
not be used. Some versions of ps include an option to display the environment of running processes.
On some systems, if you set MYSQL_PWD, your password is exposed to any other user who runs ps.
Even on systems without such a version of ps, it is unwise to assume that there are no other methods by
which users can examine process environments.

On Unix, the mysql client writes a record of executed statements to a history file (see Section 4.5.1.3,
“mysql Client Logging”). By default, this file is named .mysql_history and is created in your home
directory. Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT, and
SET PASSWORD, so if you use these statements, they are logged in the history file. To keep this file safe,
use a restrictive access mode, the same way as described earlier for the .my.cnf file.

If your command interpreter is configured to maintain a history, any file in which the commands are saved
contains MySQL passwords entered on the command line. For example, bash uses ~/.bash_history.
Any such file should have a restrictive access mode.

6.1.2.2 Administrator Guidelines for Password Security

Database administrators should use the following guidelines to keep passwords secure.

MySQL stores passwords for user accounts in the mysql.user system table. Access to this table should
never be granted to any nonadministrative accounts.

Account passwords can be expired so that users must reset them. See Section 6.2.10, “Server Handling of
Expired Passwords”.

The validate_password plugin can be used to enforce a policy on acceptable password. See
Section 6.4.3, “The Password Validation Plugin”.

A user who has access to modify the plugin directory (the value of the plugin_dir system variable) or
the my.cnf file that specifies the plugin directory location can replace plugins and modify the capabilities
provided by plugins, including authentication plugins.

845

Keeping Passwords Secure

Files such as log files to which passwords might be written should be protected. See Section 6.1.2.3,
“Passwords and Logging”.

6.1.2.3 Passwords and Logging

Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT, SET
PASSWORD, and statements that invoke the PASSWORD() function. If such statements are logged by the
MySQL server as written, passwords in them become visible to anyone with access to the logs.

Statement logging avoids writing passwords as cleartext for the following statements:

CREATE USER ... IDENTIFIED BY ...
GRANT ... IDENTIFIED BY ...
SET PASSWORD ...
SLAVE START ... PASSWORD = ...
CREATE SERVER ... OPTIONS(... PASSWORD ...)
ALTER SERVER ... OPTIONS(... PASSWORD ...)

Passwords in those statements are rewritten to not appear literally in statement text written to the general
query log, slow query log, and binary log. Rewriting does not apply to other statements. In particular,
INSERT or UPDATE statements for the mysql.user system table that refer to literal passwords are logged
as is, so you should avoid such statements. (Direct modification of grant tables is discouraged, anyway.)

For the general query log, password rewriting can be suppressed by starting the server with the --log-
raw option. For security reasons, this option is not recommended for production use. For diagnostic
purposes, it may be useful to see the exact text of statements as received by the server.

Contents of the audit log file produced by the audit log plugin are not encrypted. For security reasons, this
file should be written to a directory accessible only to the MySQL server and users with a legitimate reason
to view the log. See Section 6.4.4.2, “MySQL Enterprise Audit Security Considerations”.

To guard log files against unwarranted exposure, locate them in a directory that restricts access to the
server and the database administrator. If the server logs to tables in the mysql database, grant access to
those tables only to the database administrator.

Replicas store the password for the replication source in the source info repository, which can be either
a file or a table (see Section 17.2.2, “Relay Log and Replication Metadata Repositories”). Ensure that the
repository can be accessed only by the database administrator. An alternative to storing the password in a
file is to use the START SLAVE statement to specify credentials for connecting to the source.

Use a restricted access mode to protect database backups that include log tables or log files containing
passwords.

6.1.2.4 Password Hashing in MySQL

Note

The information in this section applies only for accounts that use the
mysql_native_password or mysql_old_password authentication plugins.

MySQL lists user accounts in the user table of the mysql database. Each MySQL account can be
assigned a password, although the user table does not store the cleartext version of the password, but a
hash value computed from it.

MySQL uses passwords in two phases of client/server communication:

846

Keeping Passwords Secure

• When a client attempts to connect to the server, there is an initial authentication step in which the client
must present a password that has a hash value matching the hash value stored in the user table for the
account the client wants to use.

• After the client connects, it can (if it has sufficient privileges) set or change the password hash for
accounts listed in the user table. The client can do this by using the PASSWORD() function to generate
a password hash, or by using a password-generating statement (CREATE USER, GRANT, or SET
PASSWORD).

In other words, the server checks hash values during authentication when a client first attempts to connect.
The server generates hash values if a connected client invokes the PASSWORD() function or uses a
password-generating statement to set or change a password.

Password hashing methods in MySQL have the history described following. These changes are illustrated
by changes in the result from the PASSWORD() function that computes password hash values and in the
structure of the user table where passwords are stored.

The Original (Pre-4.1) Hashing Method

The original hashing method produced a 16-byte string. Such hashes look like this:

mysql> SELECT PASSWORD('mypass');
+--------------------+
| PASSWORD('mypass') |
+--------------------+
| 6f8c114b58f2ce9e |
+--------------------+

To store account passwords, the Password column of the user table was at this point 16 bytes long.

The 4.1 Hashing Method

MySQL 4.1 introduced password hashing that provided better security and reduced the risk of passwords
being intercepted. There were several aspects to this change:

• Different format of password values produced by the PASSWORD() function

• Widening of the Password column

• Control over the default hashing method

• Control over the permitted hashing methods for clients attempting to connect to the server

The changes in MySQL 4.1 took place in two stages:

• MySQL 4.1.0 used a preliminary version of the 4.1 hashing method. This method was short lived and the
following discussion says nothing more about it.

• In MySQL 4.1.1, the hashing method was modified to produce a longer 41-byte hash value:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+

The longer password hash format has better cryptographic properties, and client authentication based on
long hashes is more secure than that based on the older short hashes.

847

Keeping Passwords Secure

To accommodate longer password hashes, the Password column in the user table was changed at this
point to be 41 bytes, its current length.

A widened Password column can store password hashes in both the pre-4.1 and 4.1 formats. The
format of any given hash value can be determined two ways:

• The length: 4.1 and pre-4.1 hashes are 41 and 16 bytes, respectively.

• Password hashes in the 4.1 format always begin with a * character, whereas passwords in the pre-4.1
format never do.

To permit explicit generation of pre-4.1 password hashes, two additional changes were made:

• The OLD_PASSWORD() function was added, which returns hash values in the 16-byte format.

• For compatibility purposes, the old_passwords system variable was added, to enable DBAs and
applications control over the hashing method. The default old_passwords value of 0 causes hashing
to use the 4.1 method (41-byte hash values), but setting old_passwords=1 causes hashing to
use the pre-4.1 method. In this case, PASSWORD() produces 16-byte values and is equivalent to
OLD_PASSWORD()

To permit DBAs control over how clients are permitted to connect, the secure_auth system variable
was added. Starting the server with this variable disabled or enabled permits or prohibits clients to
connect using the older pre-4.1 password hashing method. Before MySQL 5.6.5, secure_auth is
disabled by default. As of 5.6.5, secure_auth is enabled by default to promote a more secure default
configuration DBAs can disable it at their discretion, but this is not recommended, and pre-4.1 password
hashes are deprecated and should be avoided. (For account upgrade instructions, see Section 6.4.1.3,
“Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.)

In addition, the mysql client supports a --secure-auth option that is analogous to secure_auth,
but from the client side. It can be used to prevent connections to less secure accounts that use pre-4.1
password hashing. This option is disabled by default before MySQL 5.6.7, enabled thereafter.

Compatibility Issues Related to Hashing Methods

The widening of the Password column in MySQL 4.1 from 16 bytes to 41 bytes affects installation or
upgrade operations as follows:

• If you perform a new installation of MySQL, the Password column is made 41 bytes long automatically.

• Upgrades from MySQL 4.1 or later to current versions of MySQL should not give rise to any issues in
regard to the Password column because both versions use the same column length and password
hashing method.

• For upgrades from a pre-4.1 release to 4.1 or later, you must upgrade the system tables after upgrading.
(See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.)

The 4.1 hashing method is understood only by MySQL 4.1 (and higher) servers and clients, which can
result in some compatibility problems. A 4.1 or higher client can connect to a pre-4.1 server, because the
client understands both the pre-4.1 and 4.1 password hashing methods. However, a pre-4.1 client that
attempts to connect to a 4.1 or higher server may run into difficulties. For example, a 4.0 mysql client may
fail with the following error message:

$> mysql -h localhost -u root
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

848

Keeping Passwords Secure

The following discussion describes the differences between the pre-4.1 and 4.1 hashing methods, and
what you should do if you upgrade your server but need to maintain backward compatibility with pre-4.1
clients. (However, permitting connections by old clients is not recommended and should be avoided if
possible.) Additional information can be found in Section B.3.2.4, “Client does not support authentication
protocol”. This information is of particular importance to PHP programmers migrating MySQL databases
from versions older than 4.1 to 4.1 or higher.

The differences between short and long password hashes are relevant both for how the server uses
passwords during authentication and for how it generates password hashes for connected clients that
perform password-changing operations.

The way in which the server uses password hashes during authentication is affected by the width of the
Password column:

• If the column is short, only short-hash authentication is used.

• If the column is long, it can hold either short or long hashes, and the server can use either format:

• Pre-4.1 clients can connect, but because they know only about the pre-4.1 hashing method, they can
authenticate only using accounts that have short hashes.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

Even for short-hash accounts, the authentication process is actually a bit more secure for 4.1 and later
clients than for older clients. In terms of security, the gradient from least to most secure is:

• Pre-4.1 client authenticating with short password hash

• 4.1 or later client authenticating with short password hash

• 4.1 or later client authenticating with long password hash

The way in which the server generates password hashes for connected clients is affected by the width of
the Password column and by the old_passwords system variable. A 4.1 or later server generates long
hashes only if certain conditions are met: The Password column must be wide enough to hold long values
and old_passwords must not be set to 1.

Those conditions apply as follows:

• The Password column must be wide enough to hold long hashes (41 bytes). If the column has not
been updated and still has the pre-4.1 width of 16 bytes, the server notices that long hashes cannot fit
into it and generates only short hashes when a client performs password-changing operations using
the PASSWORD() function or a password-generating statement. This is the behavior that occurs if
you have upgraded from a version of MySQL older than 4.1 to 4.1 or later but have not yet run the
mysql_upgrade program to widen the Password column.

• If the Password column is wide, it can store either short or long password hashes. In this case, the
PASSWORD() function and password-generating statements generate long hashes unless the server was
started with the old_passwords system variable set to 1 to force the server to generate short password
hashes instead.

The purpose of the old_passwords system variable is to permit backward compatibility with pre-4.1
clients under circumstances where the server would otherwise generate long password hashes. The option
does not affect authentication (4.1 and later clients can still use accounts that have long password hashes),
but it does prevent creation of a long password hash in the user table as the result of a password-
changing operation. Were that permitted to occur, the account could no longer be used by pre-4.1 clients.
With old_passwords disabled, the following undesirable scenario is possible:

849

Keeping Passwords Secure

• An old pre-4.1 client connects to an account that has a short password hash.

• The client changes its own password. With old_passwords disabled, this results in the account having
a long password hash.

• The next time the old client attempts to connect to the account, it cannot, because the account has a
long password hash that requires the 4.1 hashing method during authentication. (Once an account has
a long password hash in the user table, only 4.1 and later clients can authenticate for it because pre-4.1
clients do not understand long hashes.)

This scenario illustrates that, if you must support older pre-4.1 clients, it is problematic to run a 4.1
or higher server without old_passwords set to 1. By running the server with old_passwords=1,
password-changing operations do not generate long password hashes and thus do not cause accounts to
become inaccessible to older clients. (Those clients cannot inadvertently lock themselves out by changing
their password and ending up with a long password hash.)

The downside of old_passwords=1 is that any passwords created or changed use short hashes, even
for 4.1 or later clients. Thus, you lose the additional security provided by long password hashes. To create
an account that has a long hash (for example, for use by 4.1 clients) or to change an existing account to
use a long password hash, an administrator can set the session value of old_passwords set to 0 while
leaving the global value set to 1:

mysql> SET @@SESSION.old_passwords = 0;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@SESSION.old_passwords, @@GLOBAL.old_passwords;
+-------------------------+------------------------+
| @@SESSION.old_passwords | @@GLOBAL.old_passwords |
+-------------------------+------------------------+
| 0 | 1 |
+-------------------------+------------------------+
1 row in set (0.00 sec)

mysql> CREATE USER 'newuser'@'localhost' IDENTIFIED BY 'newpass';
Query OK, 0 rows affected (0.03 sec)

mysql> SET PASSWORD FOR 'existinguser'@'localhost' = PASSWORD('existingpass');
Query OK, 0 rows affected (0.00 sec)

The following scenarios are possible in MySQL 4.1 or later. The factors are whether the Password column
is short or long, and, if long, whether the server is started with old_passwords enabled or disabled.

Scenario 1: Short Password column in user table:

• Only short hashes can be stored in the Password column.

• The server uses only short hashes during client authentication.

• For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use short hashes exclusively. Any change to an account's password
results in that account having a short password hash.

• The value of old_passwords is irrelevant because with a short Password column, the server
generates only short password hashes anyway.

This scenario occurs when a pre-4.1 MySQL installation has been upgraded to 4.1 or later but
mysql_upgrade has not been run to upgrade the system tables in the mysql database. (This is not a
recommended configuration because it does not permit use of more secure 4.1 password hashing.)

850

Keeping Passwords Secure

Scenario 2: Long Password column; server started with old_passwords=1:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate for accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only for accounts that have short hashes.

• For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use short hashes exclusively. Any change to an account's password
results in that account having a short password hash.

In this scenario, newly created accounts have short password hashes because old_passwords=1
prevents generation of long hashes. Also, if you create an account with a long hash before setting
old_passwords to 1, changing the account's password while old_passwords=1 results in the account
being given a short password, causing it to lose the security benefits of a longer hash.

To create a new account that has a long password hash, or to change the password of any existing
account to use a long hash, first set the session value of old_passwords set to 0 while leaving the global
value set to 1, as described previously.

In this scenario, the server has an up to date Password column, but is running with the default password
hashing method set to generate pre-4.1 hash values. This is not a recommended configuration but
may be useful during a transitional period in which pre-4.1 clients and passwords are upgraded to
4.1 or later. When that has been done, it is preferable to run the server with old_passwords=0 and
secure_auth=1.

Scenario 3: Long Password column; server started with old_passwords=0:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only using accounts that have short hashes.

• For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use long hashes exclusively. A change to an account's password
results in that account having a long password hash.

As indicated earlier, a danger in this scenario is that it is possible for accounts that have a short password
hash to become inaccessible to pre-4.1 clients. A change to such an account's password made using
the PASSWORD() function or a password-generating statement results in the account being given a long
password hash. From that point on, no pre-4.1 client can connect to the server using that account. The
client must upgrade to 4.1 or later.

If this is a problem, you can change a password in a special way. For example, normally you use SET
PASSWORD as follows to change an account password:

SET PASSWORD FOR 'some_user'@'some_host' = PASSWORD('password');

To change the password but create a short hash, use the OLD_PASSWORD() function instead:

SET PASSWORD FOR 'some_user'@'some_host' = OLD_PASSWORD('password');

OLD_PASSWORD() is useful for situations in which you explicitly want to generate a short hash.

The disadvantages for each of the preceding scenarios may be summarized as follows:

851

Making MySQL Secure Against Attackers

In scenario 1, you cannot take advantage of longer hashes that provide more secure authentication.

In scenario 2, old_passwords=1 prevents accounts with short hashes from becoming inaccessible, but
password-changing operations cause accounts with long hashes to revert to short hashes unless you take
care to change the session value of old_passwords to 0 first.

In scenario 3, accounts with short hashes become inaccessible to pre-4.1 clients if you change their
passwords without explicitly using OLD_PASSWORD().

The best way to avoid compatibility problems related to short password hashes is to not use them:

• Upgrade all client programs to MySQL 4.1 or later.

• Run the server with old_passwords=0.

• Reset the password for any account with a short password hash to use a long password hash.

• For additional security, run the server with secure_auth=1.

6.1.2.5 Implications of Password Hashing Changes in MySQL 4.1 for Application Programs

An upgrade to MySQL version 4.1 or later can cause compatibility issues for applications that use
PASSWORD() to generate passwords for their own purposes. Applications really should not do this,
because PASSWORD() should be used only to manage passwords for MySQL accounts. But some
applications use PASSWORD() for their own purposes anyway.

If you upgrade to 4.1 or later from a pre-4.1 version of MySQL and run the server under conditions where
it generates long password hashes, an application using PASSWORD() for its own passwords breaks.
The recommended course of action in such cases is to modify the application to use another function,
such as SHA2(), SHA1(), or MD5(), to produce hashed values. If that is not possible, you can use the
OLD_PASSWORD() function, which is provided for generate short hashes in the old format. However, you
should note that OLD_PASSWORD() may one day no longer be supported.

If the server is running with old_passwords=1, it generates short hashes and OLD_PASSWORD() is
equivalent to PASSWORD().

PHP programmers migrating their MySQL databases from version 4.0 or lower to version 4.1 or higher
should see MySQL and PHP.

6.1.3 Making MySQL Secure Against Attackers

When you connect to a MySQL server, you should use a password. The password is not transmitted as
cleartext over the connection. Password handling during the client connection sequence was upgraded in
MySQL 4.1.1 to be very secure. If you are still using pre-4.1.1-style passwords, the encryption algorithm is
not as strong as the newer algorithm. With some effort, a clever attacker who can sniff the traffic between
the client and the server can crack the password. (See Section 6.1.2.4, “Password Hashing in MySQL”, for
a discussion of the different password handling methods.)

All other information is transferred as text, and can be read by anyone who is able to watch the connection.
If the connection between the client and the server goes through an untrusted network, and you are
concerned about this, you can use the compressed protocol to make traffic much more difficult to
decipher. You can also use MySQL's internal SSL support to make the connection even more secure.
See Section 6.3, “Using Encrypted Connections”. Alternatively, use SSH to get an encrypted TCP/IP
connection between a MySQL server and a MySQL client. You can find an Open Source SSH client at
http://www.openssh.org/, and a comparison of both Open Source and Commercial SSH clients at http://
en.wikipedia.org/wiki/Comparison_of_SSH_clients.

852

https://dev.mysql.com/doc/apis-php/en/
http://www.openssh.org/
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients

Making MySQL Secure Against Attackers

To make a MySQL system secure, you should strongly consider the following suggestions:

• Require all MySQL accounts to have a password. A client program does not necessarily know the
identity of the person running it. It is common for client/server applications that the user can specify
any user name to the client program. For example, anyone can use the mysql program to connect as
any other person simply by invoking it as mysql -u other_user db_name if other_user has no
password. If all accounts have a password, connecting using another user's account becomes much
more difficult.

For a discussion of methods for setting passwords, see Section 6.2.9, “Assigning Account Passwords”.

• Make sure that the only Unix user account with read or write privileges in the database directories is the
account that is used for running mysqld.

• Never run the MySQL server as the Unix root user. This is extremely dangerous, because any
user with the FILE privilege is able to cause the server to create files as root (for example,
~root/.bashrc). To prevent this, mysqld refuses to run as root unless that is specified explicitly
using the --user=root option.

mysqld can (and should) be run as an ordinary, unprivileged user instead. You can create a separate
Unix account named mysql to make everything even more secure. Use this account only for
administering MySQL. To start mysqld as a different Unix user, add a user option that specifies the
user name in the [mysqld] group of the my.cnf option file where you specify server options. For
example:

[mysqld]
user=mysql

This causes the server to start as the designated user whether you start it manually or by using
mysqld_safe or mysql.server. For more details, see Section 6.1.5, “How to Run MySQL as a
Normal User”.

Running mysqld as a Unix user other than root does not mean that you need to change the root user
name in the user table. User names for MySQL accounts have nothing to do with user names for Unix
accounts.

• Do not grant the FILE privilege to nonadministrative users. Any user that has this privilege can write
a file anywhere in the file system with the privileges of the mysqld daemon. This includes the server's
data directory containing the files that implement the privilege tables. To make FILE-privilege operations
a bit safer, files generated with SELECT ... INTO OUTFILE do not overwrite existing files and are
writable by everyone.

The FILE privilege may also be used to read any file that is world-readable or accessible to the Unix
user that the server runs as. With this privilege, you can read any file into a database table. This could
be abused, for example, by using LOAD DATA to load /etc/passwd into a table, which then can be
displayed with SELECT.

To limit the location in which files can be read and written, set the secure_file_priv system to a
specific directory. See Section 5.1.7, “Server System Variables”.

• Do not grant the PROCESS or SUPER privilege to nonadministrative users. The output of mysqladmin
processlist and SHOW PROCESSLIST shows the text of any statements currently being executed, so
any user who is permitted to see the server process list might be able to see statements issued by other
users such as UPDATE user SET password=PASSWORD('not_secure').

mysqld reserves an extra connection for users who have the SUPER privilege, so that a MySQL root
user can log in and check server activity even if all normal connections are in use.

853

Security-Related mysqld Options and Variables

The SUPER privilege can be used to terminate client connections, change server operation by changing
the value of system variables, and control replication servers.

• Do not permit the use of symlinks to tables. (This capability can be disabled with the --skip-
symbolic-links option.) This is especially important if you run mysqld as root, because anyone
that has write access to the server's data directory then could delete any file in the system! See
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”.

• Stored programs and views should be written using the security guidelines discussed in Section 20.6,
“Stored Object Access Control”.

• If you do not trust your DNS, you should use IP addresses rather than host names in the grant tables.
In any case, you should be very careful about creating grant table entries using host name values that
contain wildcards.

• If you want to restrict the number of connections permitted to a single account, you can do so by setting
the max_user_connections variable in mysqld. The GRANT statement also supports resource control
options for limiting the extent of server use permitted to an account. See Section 13.7.1.4, “GRANT
Statement”.

• If the plugin directory is writable by the server, it may be possible for a user to write executable code
to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making
plugin_dir read only to the server or by setting secure_file_priv to a directory where SELECT
writes can be made safely.

6.1.4 Security-Related mysqld Options and Variables

The following table shows mysqld options and system variables that affect security. For descriptions
of each of these, see Section 5.1.6, “Server Command Options”, and Section 5.1.7, “Server System
Variables”.

Table 6.1 Security Option and Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

allow-
suspicious-
udfs

Yes Yes

automatic_sp_privilegesYes Yes Yes Global Yes

chroot Yes Yes

des-key-file Yes Yes

local_infile Yes Yes Yes Global Yes

old_passwordsYes Yes Yes Both Yes

safe-user-
create

Yes Yes

secure_auth Yes Yes Yes Global Yes

secure_file_privYes Yes Yes Global No

skip-grant-
tables

Yes Yes

skip_name_resolveYes Yes Yes Global No

skip_networkingYes Yes Yes Global No

854

How to Run MySQL as a Normal User

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

skip_show_databaseYes Yes Yes Global No

6.1.5 How to Run MySQL as a Normal User

On Windows, you can run the server as a Windows service using a normal user account.

On Linux, for installations performed using a MySQL repository, RPM packages, or Debian packages, the
MySQL server mysqld should be started by the local mysql operating system user. Starting by another
operating system user is not supported by the init scripts that are included as part of the installation.

On Unix (or Linux for installations performed using tar or tar.gz packages) , the MySQL server mysqld
can be started and run by any user. However, you should avoid running the server as the Unix root user
for security reasons. To change mysqld to run as a normal unprivileged Unix user user_name, you must
do the following:

1. Stop the server if it is running (use mysqladmin shutdown).

2. Change the database directories and files so that user_name has privileges to read and write files in
them (you might need to do this as the Unix root user):

$> chown -R user_name /path/to/mysql/datadir

If you do not do this, the server cannot access databases or tables when it runs as user_name.

If directories or files within the MySQL data directory are symbolic links, chown -R might not follow
symbolic links for you. If it does not, you must also follow those links and change the directories and
files they point to.

3. Start the server as user user_name. Another alternative is to start mysqld as the Unix root user and
use the --user=user_name option. mysqld starts, then switches to run as the Unix user user_name
before accepting any connections.

4. To start the server as the given user automatically at system startup time, specify the user name by
adding a user option to the [mysqld] group of the /etc/my.cnf option file or the my.cnf option file
in the server's data directory. For example:

[mysqld]
user=user_name

If your Unix machine itself is not secured, you should assign passwords to the MySQL root accounts
in the grant tables. Otherwise, any user with a login account on that machine can run the mysql client
with a --user=root option and perform any operation. (It is a good idea to assign passwords to
MySQL accounts in any case, but especially so when other login accounts exist on the server host.) See
Section 2.10.4, “Securing the Initial MySQL Accounts”.

6.1.6 Security Considerations for LOAD DATA LOCAL

The LOAD DATA statement loads a data file into a table. The statement can load a file located on the
server host, or, if the LOCAL keyword is specified, on the client host.

The LOCAL version of LOAD DATA has two potential security issues:

• Because LOAD DATA LOCAL is an SQL statement, parsing occurs on the server side, and transfer of
the file from the client host to the server host is initiated by the MySQL server, which tells the client the

855

Security Considerations for LOAD DATA LOCAL

file named in the statement. In theory, a patched server could tell the client program to transfer a file of
the server's choosing rather than the file named in the statement. Such a server could access any file
on the client host to which the client user has read access. (A patched server could in fact reply with a
file-transfer request to any statement, not just LOAD DATA LOCAL, so a more fundamental issue is that
clients should not connect to untrusted servers.)

• In a Web environment where the clients are connecting from a Web server, a user could use LOAD
DATA LOCAL to read any files that the Web server process has read access to (assuming that a user
could run any statement against the SQL server). In this environment, the client with respect to the
MySQL server actually is the Web server, not a remote program being run by users who connect to the
Web server.

To avoid connecting to untrusted servers, clients can establish a secure connection and verify the server
identity by connecting using the --ssl-verify-server-cert option and the appropriate CA certificate.
To implement this level of verification, you must first ensure that the CA certificate for the server is reliably
available to the replica, otherwise availability issues will result. For more information, see Command
Options for Encrypted Connections.

To avoid LOAD DATA issues, clients should avoid using LOCAL.

Adminstrators and applications can configure whether to permit local data loading as follows:

• On the server side:

• The local_infile system variable controls server-side LOCAL capability. Depending on the
local_infile setting, the server refuses or permits local data loading by clients that request local
data loading.

• By default, local_infile is enabled. To cause the server to refuse or permit LOAD DATA LOCAL
statements explicitly (regardless of how client programs and libraries are configured at build time or
runtime), start mysqld with local_infile disabled or enabled. local_infile can also be set at
runtime.

• On the client side:

• The ENABLED_LOCAL_INFILE CMake option controls the compiled-in default LOCAL capability for
the MySQL client library (see Section 2.9.7, “MySQL Source-Configuration Options”). Clients that
make no explicit arrangements therefore have LOCAL capability disabled or enabled according to the
ENABLED_LOCAL_INFILE setting specified at MySQL build time.

• By default, the client library in MySQL binary distributions is compiled with ENABLED_LOCAL_INFILE
enabled. If you compile MySQL from source, configure it with ENABLED_LOCAL_INFILE disabled or
enabled based on whether clients that make no explicit arrangements should have LOCAL capability
disabled or enabled.

• For client programs that use the C API, local data loading capability is determined by the
default compiled into the MySQL client library. To enable or disable it explicitly, invoke the
mysql_options() C API function to disable or enable the MYSQL_OPT_LOCAL_INFILE option. See
mysql_options().

• For the mysql client, local data loading capability is determined by the default compiled into the
MySQL client library. To disable or enable it explicitly, use the --local-infile=0 or --local-
infile[=1] option.

• For the mysqlimport client, local data loading is not used by default. To disable or enable it
explicitly, use the --local=0 or --local[=1] option.

856

https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html

Client Programming Security Guidelines

• If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [client] group from
option files, you can add a local-infile option setting to that group. To prevent problems for
programs that do not understand this option, specify it using the loose- prefix:

[client]
loose-local-infile=0

or:

[client]
loose-local-infile=1

• In all cases, successful use of a LOCAL load operation by a client also requires that the server permits
local loading.

If LOCAL capability is disabled, on either the server or client side, a client that attempts to issue a LOAD
DATA LOCAL statement receives the following error message:

ERROR 1148: The used command is not allowed with this MySQL version

6.1.7 Client Programming Security Guidelines

Client applications that access MySQL should use the following guidelines to avoid interpreting external
data incorrectly or exposing sensitive information.

• Handle External Data Properly

• Handle MySQL Error Messages Properly

Handle External Data Properly

Applications that access MySQL should not trust any data entered by users, who can try to trick your code
by entering special or escaped character sequences in Web forms, URLs, or whatever application you
have built. Be sure that your application remains secure if a user tries to perform SQL injection by entering
something like ; DROP DATABASE mysql; into a form. This is an extreme example, but large security
leaks and data loss might occur as a result of hackers using similar techniques, if you do not prepare for
them.

A common mistake is to protect only string data values. Remember to check numeric data as well. If an
application generates a query such as SELECT * FROM table WHERE ID=234 when a user enters
the value 234, the user can enter the value 234 OR 1=1 to cause the application to generate the query
SELECT * FROM table WHERE ID=234 OR 1=1. As a result, the server retrieves every row in the
table. This exposes every row and causes excessive server load. The simplest way to protect from
this type of attack is to use single quotation marks around the numeric constants: SELECT * FROM
table WHERE ID='234'. If the user enters extra information, it all becomes part of the string. In a
numeric context, MySQL automatically converts this string to a number and strips any trailing nonnumeric
characters from it.

Sometimes people think that if a database contains only publicly available data, it need not be protected.
This is incorrect. Even if it is permissible to display any row in the database, you should still protect against
denial of service attacks (for example, those that are based on the technique in the preceding paragraph
that causes the server to waste resources). Otherwise, your server becomes unresponsive to legitimate
users.

Checklist:

857

Client Programming Security Guidelines

• Enable strict SQL mode to tell the server to be more restrictive of what data values it accepts. See
Section 5.1.10, “Server SQL Modes”.

• Try to enter single and double quotation marks (' and ") in all of your Web forms. If you get any kind of
MySQL error, investigate the problem right away.

• Try to modify dynamic URLs by adding %22 ("), %23 (#), and %27 (') to them.

• Try to modify data types in dynamic URLs from numeric to character types using the characters shown in
the previous examples. Your application should be safe against these and similar attacks.

• Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your
application should remove them before passing them to MySQL or else generate an error. Passing
unchecked values to MySQL is very dangerous!

• Check the size of data before passing it to MySQL.

• Have your application connect to the database using a user name different from the one you use for
administrative purposes. Do not give your applications any access privileges they do not need.

Many application programming interfaces provide a means of escaping special characters in data values.
Properly used, this prevents application users from entering values that cause the application to generate
statements that have a different effect than you intend:

• MySQL SQL statements: Use SQL prepared statements and accept data values only by means of
placeholders; see Section 13.5, “Prepared Statements”.

• MySQL C API: Use the mysql_real_escape_string() API call. Alternatively, use the C API
prepared statement interface and accept data values only by means of placeholders; see C API
Prepared Statement Interface.

• MySQL++: Use the escape and quote modifiers for query streams.

• PHP: Use either the mysqli or pdo_mysql extensions, and not the older ext/mysql extension.
The preferred API's support the improved MySQL authentication protocol and passwords, as well as
prepared statements with placeholders. See also MySQL and PHP.

If the older ext/mysql extension must be used, then for escaping use the
mysql_real_escape_string() function and not mysql_escape_string() or addslashes()
because only mysql_real_escape_string() is character set-aware; the other functions can be
“bypassed” when using (invalid) multibyte character sets.

• Perl DBI: Use placeholders or the quote() method.

• Java JDBC: Use a PreparedStatement object and placeholders.

Other programming interfaces might have similar capabilities.

Handle MySQL Error Messages Properly

It is the application's responsibility to intercept errors that occur as a result of executing SQL statements
with the MySQL database server and handle them appropriately.

The information returned in a MySQL error is not gratuitous because that information is key in debugging
MySQL using applications. It would be nearly impossible, for example, to debug a common 10-way join
SELECT statement without providing information regarding which databases, tables, and other objects are
involved with problems. Thus, MySQL errors must sometimes necessarily contain references to the names
of those objects.

858

https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-escape-string.html
https://dev.mysql.com/doc/c-api/5.6/en/c-api-prepared-statement-interface.html
https://dev.mysql.com/doc/c-api/5.6/en/c-api-prepared-statement-interface.html
https://dev.mysql.com/doc/apis-php/en/
https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-escape-string.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-escape-string.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-escape-string.html

Access Control and Account Management

A simple but insecure approach for an application when it receives such an error from MySQL is to
intercept it and display it verbatim to the client. However, revealing error information is a known application
vulnerability type (CWE-209) and the application developer must ensure the application does not have this
vulnerability.

For example, an application that displays a message such as this exposes both a database name and a
table name to clients, which is information a client might attempt to exploit:

ERROR 1146 (42S02): Table 'mydb.mytable' doesn't exist

Instead, the proper behavior for an application when it receives such an error from MySQL is to log
appropriate information, including the error information, to a secure audit location only accessible to trusted
personnel. The application can return something more generic such as “Internal Error” to the user.

6.2 Access Control and Account Management

MySQL enables the creation of accounts that permit client users to connect to the server and access
data managed by the server. The primary function of the MySQL privilege system is to authenticate a
user who connects from a given host and to associate that user with privileges on a database such as
SELECT, INSERT, UPDATE, and DELETE. Additional functionality includes the ability to grant privileges for
administrative operations.

To control which users can connect, each account can be assigned authentication credentials such as a
password. The user interface to MySQL accounts consists of SQL statements such as CREATE USER,
GRANT, and REVOKE. See Section 13.7.1, “Account Management Statements”.

The MySQL privilege system ensures that all users may perform only the operations permitted to them.
As a user, when you connect to a MySQL server, your identity is determined by the host from which you
connect and the user name you specify. When you issue requests after connecting, the system grants
privileges according to your identity and what you want to do.

MySQL considers both your host name and user name in identifying you because there is no reason
to assume that a given user name belongs to the same person on all hosts. For example, the user
joe who connects from office.example.com need not be the same person as the user joe who
connects from home.example.com. MySQL handles this by enabling you to distinguish users on
different hosts that happen to have the same name: You can grant one set of privileges for connections
by joe from office.example.com, and a different set of privileges for connections by joe from
home.example.com. To see what privileges a given account has, use the SHOW GRANTS statement. For
example:

SHOW GRANTS FOR 'joe'@'office.example.com';
SHOW GRANTS FOR 'joe'@'home.example.com';

Internally, the server stores privilege information in the grant tables of the mysql system database. The
MySQL server reads the contents of these tables into memory when it starts and bases access-control
decisions on the in-memory copies of the grant tables.

MySQL access control involves two stages when you run a client program that connects to the server:

Stage 1: The server accepts or rejects the connection based on your identity and whether you can verify
your identity by supplying the correct password.

Stage 2: Assuming that you can connect, the server checks each statement you issue to determine
whether you have sufficient privileges to perform it. For example, if you try to select rows from a table in a
database or drop a table from the database, the server verifies that you have the SELECT privilege for the
table or the DROP privilege for the database.

859

http://cwe.mitre.org/data/definitions/209.html

Account User Names and Passwords

For a more detailed description of what happens during each stage, see Section 6.2.5, “Access Control,
Stage 1: Connection Verification”, and Section 6.2.6, “Access Control, Stage 2: Request Verification”. For
help in diagnosing privilege-related problems, see Section 6.2.14, “Troubleshooting Problems Connecting
to MySQL”.

If your privileges are changed (either by yourself or someone else) while you are connected, those
changes do not necessarily take effect immediately for the next statement that you issue. For details
about the conditions under which the server reloads the grant tables, see Section 6.2.8, “When Privilege
Changes Take Effect”.

There are some things that you cannot do with the MySQL privilege system:

• You cannot explicitly specify that a given user should be denied access. That is, you cannot explicitly
match a user and then refuse the connection.

• You cannot specify that a user has privileges to create or drop tables in a database but not to create or
drop the database itself.

• A password applies globally to an account. You cannot associate a password with a specific object such
as a database, table, or routine.

6.2.1 Account User Names and Passwords

MySQL stores accounts in the user table of the mysql system database. An account is defined in terms
of a user name and the client host or hosts from which the user can connect to the server. For information
about account representation in the user table, see Section 6.2.3, “Grant Tables”.

An account may also have authentication credentials such as a password. The credentials are handled
by the account authentication plugin. MySQL supports multiple authentication plugins. Some of them
use built-in authentication methods, whereas others enable authentication using external authentication
methods. See Section 6.2.11, “Pluggable Authentication”.

There are several distinctions between the way user names and passwords are used by MySQL and your
operating system:

• User names, as used by MySQL for authentication purposes, have nothing to do with user names (login
names) as used by Windows or Unix. On Unix, most MySQL clients by default try to log in using the
current Unix user name as the MySQL user name, but that is for convenience only. The default can
be overridden easily, because client programs permit any user name to be specified with a -u or --
user option. This means that anyone can attempt to connect to the server using any user name, so you
cannot make a database secure in any way unless all MySQL accounts have passwords. Anyone who
specifies a user name for an account that has no password can connect successfully to the server.

• MySQL user names are up to 16 characters long. Operating system user names may have a different
maximum length.

Warning

The MySQL user name length limit is hardcoded in MySQL servers and clients,
and trying to circumvent it by modifying the definitions of the tables in the mysql
database does not work.

You should never alter the structure of tables in the mysql database in any
manner whatsoever except by means of the procedure that is described in
Section 2.11, “Upgrading MySQL”. Attempting to redefine MySQL's system tables
in any other fashion results in undefined and unsupported behavior. The server is
free to ignore rows that become malformed as a result of such modifications.

860

Account User Names and Passwords

• To authenticate client connections for accounts that use built-in authentication methods, the server uses
passwords stored in the user table. These passwords are distinct from passwords for logging in to your
operating system. There is no necessary connection between the “external” password you use to log in
to a Windows or Unix machine and the password you use to access the MySQL server on that machine.

If the server authenticates a client using some other plugin, the authentication method that the plugin
implements may or may not use a password stored in the user table. In this case, it is possible that an
external password is also used to authenticate to the MySQL server.

• Passwords stored in the user table are encrypted using plugin-specific algorithms. For information
about MySQL native password hashing, see Section 6.1.2.4, “Password Hashing in MySQL”.

• If the user name and password contain only ASCII characters, it is possible to connect to the server
regardless of character set settings. To enable connections when the user name or password contain
non-ASCII characters, client applications should call the mysql_options() C API function with the
MYSQL_SET_CHARSET_NAME option and appropriate character set name as arguments. This causes
authentication to take place using the specified character set. Otherwise, authentication fails unless the
server default character set is the same as the encoding in the authentication defaults.

Standard MySQL client programs support a --default-character-set option that causes
mysql_options() to be called as just described. In addition, character set autodetection is
supported as described in Section 10.4, “Connection Character Sets and Collations”. For programs
that use a connector that is not based on the C API, the connector may provide an equivalent to
mysql_options() that can be used instead. Check the connector documentation.

The preceding notes do not apply for ucs2, utf16, and utf32, which are not permitted as client
character sets.

The MySQL installation process populates the grant tables with an initial account or accounts. The names
and access privileges for these accounts are described in Section 2.10.4, “Securing the Initial MySQL
Accounts”, which also discusses how to assign passwords to them. Thereafter, you normally set up,
modify, and remove MySQL accounts using statements such as CREATE USER, DROP USER, GRANT,
and REVOKE. See Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”, and
Section 13.7.1, “Account Management Statements”.

To connect to a MySQL server with a command-line client, specify user name and password options as
necessary for the account that you want to use:

$> mysql --user=finley --password db_name

If you prefer short options, the command looks like this:

$> mysql -u finley -p db_name

If you omit the password value following the --password or -p option on the command line (as just
shown), the client prompts for one. Alternatively, the password can be specified on the command line:

$> mysql --user=finley --password=password db_name
$> mysql -u finley -ppassword db_name

If you use the -p option, there must be no space between -p and the following password value.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. To avoid giving the password on the command line, use an option
file or a login path file. See Section 4.2.2.2, “Using Option Files”, and Section 4.6.6, “mysql_config_editor
— MySQL Configuration Utility”.

For additional information about specifying user names, passwords, and other connection parameters, see
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”.

861

https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html

Privileges Provided by MySQL

6.2.2 Privileges Provided by MySQL

The privileges granted to a MySQL account determine which operations the account can perform. MySQL
privileges differ in the contexts in which they apply and at different levels of operation:

• Administrative privileges enable users to manage operation of the MySQL server. These privileges are
global because they are not specific to a particular database.

• Database privileges apply to a database and to all objects within it. These privileges can be granted for
specific databases, or globally so that they apply to all databases.

• Privileges for database objects such as tables, indexes, views, and stored routines can be granted for
specific objects within a database, for all objects of a given type within a database (for example, all
tables in a database), or globally for all objects of a given type in all databases.

Information about account privileges is stored in the grant tables in the mysql system database. For a
description of the structure and contents of these tables, see Section 6.2.3, “Grant Tables”. The MySQL
server reads the contents of the grant tables into memory when it starts, and reloads them under the
circumstances indicated in Section 6.2.8, “When Privilege Changes Take Effect”. The server bases
access-control decisions on the in-memory copies of the grant tables.

Important

Some MySQL releases introduce changes to the grant tables to add new privileges
or features. To make sure that you can take advantage of any new capabilities,
update your grant tables to the current structure whenever you upgrade MySQL.
See Section 2.11, “Upgrading MySQL”.

The following sections summarize the available privileges, provide more detailed descriptions of each
privilege, and offer usage guidelines.

• Summary of Available Privileges

• Privilege Descriptions

• Privilege-Granting Guidelines

Summary of Available Privileges

The following table shows the privilege names used in GRANT and REVOKE statements, along with the
column name associated with each privilege in the grant tables and the context in which the privilege
applies.

Table 6.2 Permissible Privileges for GRANT and REVOKE

Privilege Grant Table Column Context

ALL [PRIVILEGES] Synonym for “all privileges” Server administration

ALTER Alter_priv Tables

ALTER ROUTINE Alter_routine_priv Stored routines

CREATE Create_priv Databases, tables, or indexes

CREATE ROUTINE Create_routine_priv Stored routines

CREATE TABLESPACE Create_tablespace_priv Server administration

CREATE TEMPORARY TABLES Create_tmp_table_priv Tables

CREATE USER Create_user_priv Server administration

862

Privileges Provided by MySQL

Privilege Grant Table Column Context

CREATE VIEW Create_view_priv Views

DELETE Delete_priv Tables

DROP Drop_priv Databases, tables, or views

EVENT Event_priv Databases

EXECUTE Execute_priv Stored routines

FILE File_priv File access on server host

GRANT OPTION Grant_priv Databases, tables, or stored
routines

INDEX Index_priv Tables

INSERT Insert_priv Tables or columns

LOCK TABLES Lock_tables_priv Databases

PROCESS Process_priv Server administration

PROXY See proxies_priv table Server administration

REFERENCES References_priv Databases or tables

RELOAD Reload_priv Server administration

REPLICATION CLIENT Repl_client_priv Server administration

REPLICATION SLAVE Repl_slave_priv Server administration

SELECT Select_priv Tables or columns

SHOW DATABASES Show_db_priv Server administration

SHOW VIEW Show_view_priv Views

SHUTDOWN Shutdown_priv Server administration

SUPER Super_priv Server administration

TRIGGER Trigger_priv Tables

UPDATE Update_priv Tables or columns

USAGE Synonym for “no privileges” Server administration

Privilege Descriptions

The following list provides general descriptions of each privilege available in MySQL. Particular SQL
statements might have more specific privilege requirements than indicated here. If so, the description for
the statement in question provides the details.

• ALL, ALL PRIVILEGES

These privilege specifiers are shorthand for “all privileges available at a given privilege level” (except
GRANT OPTION). For example, granting ALL at the global or table level grants all global privileges or all
table-level privileges, respectively.

• ALTER

Enables use of the ALTER TABLE statement to change the structure of tables. ALTER TABLE also
requires the CREATE and INSERT privileges. Renaming a table requires ALTER and DROP on the old
table, CREATE, and INSERT on the new table.

• ALTER ROUTINE

863

Privileges Provided by MySQL

Enables use of statements that alter or drop stored routines (stored procedures and functions).

• CREATE

Enables use of statements that create new databases and tables.

• CREATE ROUTINE

Enables use of statements that create stored routines (stored procedures and functions).

• CREATE TABLESPACE

Enables use of statements that create, alter, or drop tablespaces and log file groups.

• CREATE TEMPORARY TABLES

Enables the creation of temporary tables using the CREATE TEMPORARY TABLE statement.

After a session has created a temporary table, the server performs no further privilege checks on the
table. The creating session can perform any operation on the table, such as DROP TABLE, INSERT,
UPDATE, or SELECT. For more information, see Section 13.1.17.2, “CREATE TEMPORARY TABLE
Statement”.

• CREATE USER

Enables use of the ALTER USER, CREATE USER, DROP USER, RENAME USER, and REVOKE ALL
PRIVILEGES statements.

• CREATE VIEW

Enables use of the CREATE VIEW statement.

• DELETE

Enables rows to be deleted from tables in a database.

• DROP

Enables use of statements that drop (remove) existing databases, tables, and views. The DROP privilege
is required to use the ALTER TABLE ... DROP PARTITION statement on a partitioned table. The
DROP privilege is also required for TRUNCATE TABLE.

• EVENT

Enables use of statements that create, alter, drop, or display events for the Event Scheduler.

• EXECUTE

Enables use of statements that execute stored routines (stored procedures and functions).

• FILE

Affects the following operations and server behaviors:

• Enables reading and writing files on the server host using the LOAD DATA and SELECT ... INTO
OUTFILE statements and the LOAD_FILE() function. A user who has the FILE privilege can read
any file on the server host that is either world-readable or readable by the MySQL server. (This implies
the user can read any file in any database directory, because the server can access any of those
files.)

864

Privileges Provided by MySQL

• Enables creating new files in any directory where the MySQL server has write access. This includes
the server's data directory containing the files that implement the privilege tables.

• As of MySQL 5.6.35, enables use of the DATA DIRECTORY or INDEX DIRECTORY table option for the
CREATE TABLE statement.

As a security measure, the server does not overwrite existing files.

To limit the location in which files can be read and written, set the secure_file_priv system variable
to a specific directory. See Section 5.1.7, “Server System Variables”.

• GRANT OPTION

Enables you to grant to or revoke from other users those privileges that you yourself possess.

• INDEX

Enables use of statements that create or drop (remove) indexes. INDEX applies to existing tables. If
you have the CREATE privilege for a table, you can include index definitions in the CREATE TABLE
statement.

• INSERT

Enables rows to be inserted into tables in a database. INSERT is also required for the ANALYZE TABLE,
OPTIMIZE TABLE, and REPAIR TABLE table-maintenance statements.

• LOCK TABLES

Enables use of explicit LOCK TABLES statements to lock tables for which you have the SELECT
privilege. This includes use of write locks, which prevents other sessions from reading the locked table.

• PROCESS

The PROCESS privilege controls access to information about threads executing within the server (that is,
information about statements being executed by sessions). Thread information available using the SHOW
PROCESSLIST statement, the mysqladmin processlist command, and the Information Schema
PROCESSLIST table is accessible as follows:

• With the PROCESS privilege, a user has access to information about all threads, even those belonging
to other users.

• Without the PROCESS privilege, nonanonymous users have access to information about their own
threads but not threads for other users, and anonymous users have no access to thread information.

Note

The Performance Schema threads table also provides thread information,
but table access uses a different privilege model. See Section 22.12.10.3, “The
threads Table”.

The PROCESS privilege also enables use of the SHOW ENGINE statement, access to the
INFORMATION_SCHEMA InnoDB tables (tables with names that begin with INNODB_), and (as of MySQL
5.6.49) access to the INFORMATION_SCHEMA FILES table.

• PROXY

Enables one user to impersonate or become known as another user. See Section 6.2.12, “Proxy Users”.

865

Privileges Provided by MySQL

• REFERENCES

This privilege is unused before MySQL 5.6.22. As of 5.6.22, creation of a foreign key constraint requires
at least one of the SELECT, INSERT, UPDATE, DELETE, or REFERENCES privileges for the parent table.

• RELOAD

The RELOAD enables the following operations:

• Use of the FLUSH statement.

• Use of mysqladmin commands that are equivalent to FLUSH operations: flush-hosts, flush-
logs, flush-privileges, flush-status, flush-tables, flush-threads, refresh, and
reload.

The reload command tells the server to reload the grant tables into memory. flush-privileges
is a synonym for reload. The refresh command closes and reopens the log files and flushes all
tables. The other flush-xxx commands perform functions similar to refresh, but are more specific
and may be preferable in some instances. For example, if you want to flush just the log files, flush-
logs is a better choice than refresh.

• Use of mysqldump options that perform various FLUSH operations: --flush-logs and --master-
data.

• Use of the RESET statement.

• REPLICATION CLIENT

Enables use of the SHOW MASTER STATUS, SHOW SLAVE STATUS, and SHOW BINARY LOGS
statements. Grant this privilege to accounts that are used by replica servers to connect to the current
server as their source.

• REPLICATION SLAVE

Enables the account to request updates that have been made to databases on the source server, using
the SHOW SLAVE HOSTS, SHOW RELAYLOG EVENTS, and SHOW BINLOG EVENTS statements. This
privilege is also required to use the mysqlbinlog options --read-from-remote-server (-R) and
--read-from-remote-master. Grant this privilege to accounts that are used by replica servers to
connect to the current server as their source.

• SELECT

Enables rows to be selected from tables in a database. SELECT statements require the SELECT privilege
only if they actually access tables. Some SELECT statements do not access tables and can be executed
without permission for any database. For example, you can use SELECT as a simple calculator to
evaluate expressions that make no reference to tables:

SELECT 1+1;
SELECT PI()*2;

The SELECT privilege is also needed for other statements that read column values. For example,
SELECT is needed for columns referenced on the right hand side of col_name=expr assignment in
UPDATE statements or for columns named in the WHERE clause of DELETE or UPDATE statements.

The SELECT privilege is needed for tables or views used with EXPLAIN, including any underlying tables
in view definitions.

• SHOW DATABASES

866

Privileges Provided by MySQL

Enables the account to see database names by issuing the SHOW DATABASE statement. Accounts that
do not have this privilege see only databases for which they have some privileges, and cannot use the
statement at all if the server was started with the --skip-show-database option.

Caution

Because a global privilege is considered a privilege for all databases, any global
privilege enables a user to see all database names with SHOW DATABASES or by
examining the INFORMATION_SCHEMA SCHEMATA table.

• SHOW VIEW

Enables use of the SHOW CREATE VIEW statement. This privilege is also needed for views used with
EXPLAIN.

• SHUTDOWN

Enables use of the mysqladmin shutdown command and the mysql_shutdown() C API function.
There is no corresponding SQL statement.

• SUPER

Affects the following operations and server behaviors:

• Enables server configuration changes by modifying global system variables. For some system
variables, setting the session value also requires the SUPER privilege. If a system variable is restricted
and requires a special privilege to set the session value, the variable description indicates that
restriction. Examples include binlog_format, sql_log_bin, and sql_log_off. See also
Section 5.1.8.1, “System Variable Privileges”.

• Enables changes to global transaction characteristics (see Section 13.3.6, “SET TRANSACTION
Statement”).

• Enables the account to start and stop replication.

• Enables use of the CHANGE MASTER TO statement.

• Enables binary log control by means of the PURGE BINARY LOGS and BINLOG statements.

• Enables setting the effective authorization ID when executing a view or stored program. A user with
this privilege can specify any account in the DEFINER attribute of a view or stored program.

• Enables use of the CREATE SERVER, ALTER SERVER, and DROP SERVER statements.

• Enables use of the mysqladmin debug command.

• Enables reading the DES key file by the DES_ENCRYPT() function.

• Enables control over client connections not permitted to non-SUPER accounts:

• Enables use of the KILL statement or mysqladmin kill command to kill threads belonging to
other accounts. (An account can always kill its own threads.)

• The server does not execute init_connect system variable content when SUPER clients connect.

• The server accepts one connection from a SUPER client even if the connection limit configured by
the max_connections system variable is reached.

867

https://dev.mysql.com/doc/c-api/5.6/en/mysql-shutdown.html

Privileges Provided by MySQL

• Updates can be performed even when the read_only system variable is enabled. This applies to
explicit table updates, and to use of account-management statements such as GRANT and REVOKE
that update tables implicitly.

You may also need the SUPER privilege to create or alter stored functions if binary logging is enabled, as
described in Section 20.7, “Stored Program Binary Logging”.

• TRIGGER

Enables trigger operations. You must have this privilege for a table to create, drop, execute, or display
triggers for that table.

When a trigger is activated (by a user who has privileges to execute INSERT, UPDATE, or DELETE
statements for the table associated with the trigger), trigger execution requires that the user who defined
the trigger still have the TRIGGER privilege for the table.

• UPDATE

Enables rows to be updated in tables in a database.

• USAGE

This privilege specifier stands for “no privileges.” It is used at the global level with GRANT to modify
account attributes such as resource limits or SSL characteristics without naming specific account
privileges in the privilege list. SHOW GRANTS displays USAGE to indicate that an account has no
privileges at a privilege level.

Privilege-Granting Guidelines

It is a good idea to grant to an account only those privileges that it needs. You should exercise particular
caution in granting the FILE and administrative privileges:

• FILE can be abused to read into a database table any files that the MySQL server can read on the
server host. This includes all world-readable files and files in the server's data directory. The table can
then be accessed using SELECT to transfer its contents to the client host.

• GRANT OPTION enables users to give their privileges to other users. Two users that have different
privileges and with the GRANT OPTION privilege are able to combine privileges.

• ALTER may be used to subvert the privilege system by renaming tables.

• SHUTDOWN can be abused to deny service to other users entirely by terminating the server.

• PROCESS can be used to view the plain text of currently executing statements, including statements that
set or change passwords.

• SUPER can be used to terminate other sessions or change how the server operates.

• Privileges granted for the mysql system database itself can be used to change passwords and other
access privilege information:

• Passwords are stored encrypted, so a malicious user cannot simply read them to know the plain text
password. However, a user with write access to the mysql.user system table Password column can
change an account's password, and then connect to the MySQL server using that account.

• INSERT or UPDATE granted for the mysql system database enable a user to add privileges or modify
existing privileges, respectively.

868

Grant Tables

• DROP for the mysql system database enables a user to remote privilege tables, or even the database
itself.

6.2.3 Grant Tables

The mysql system database includes several grant tables that contain information about user accounts
and the privileges held by them. This section describes those tables. For information about other tables in
the system database, see Section 5.3, “The mysql System Database”.

The discussion here describes the underlying structure of the grant tables and how the server uses
their contents when interacting with clients. However, normally you do not modify the grant tables
directly. Modifications occur indirectly when you use account-management statements such as CREATE
USER, GRANT, and REVOKE to set up accounts and control the privileges available to each one. See
Section 13.7.1, “Account Management Statements”. When you use such statements to perform account
manipulations, the server modifies the grant tables on your behalf.

Note

Direct modification of grant tables using statements such as INSERT, UPDATE, or
DELETE is discouraged and done at your own risk. The server is free to ignore rows
that become malformed as a result of such modifications.

As of MySQL 5.6.36, for any operation that modifies a grant table, the server
checks whether the table has the expected structure and produces an error if not.
mysql_upgrade must be run to update the tables to the expected structure.

• Grant Table Overview

• The user and db Grant Tables

• The tables_priv and columns_priv Grant Tables

• The procs_priv Grant Table

• The proxies_priv Grant Table

• Grant Table Scope Column Properties

• Grant Table Privilege Column Properties

Grant Table Overview

These mysql database tables contain grant information:

• user: User accounts, global privileges, and other nonprivilege columns.

• db: Database-level privileges.

• tables_priv: Table-level privileges.

• columns_priv: Column-level privileges.

• procs_priv: Stored procedure and function privileges.

• proxies_priv: Proxy-user privileges.

Each grant table contains scope columns and privilege columns:

869

Grant Tables

• Scope columns determine the scope of each row in the tables; that is, the context in which the row
applies. For example, a user table row with Host and User values of 'h1.example.net' and
'bob' applies to authenticating connections made to the server from the host h1.example.net by
a client that specifies a user name of bob. Similarly, a db table row with Host, User, and Db column
values of 'h1.example.net', 'bob' and 'reports' applies when bob connects from the host
h1.example.net to access the reports database. The tables_priv and columns_priv tables
contain scope columns indicating tables or table/column combinations to which each row applies. The
procs_priv scope columns indicate the stored routine to which each row applies.

• Privilege columns indicate which privileges a table row grants; that is, which operations it permits to
be performed. The server combines the information in the various grant tables to form a complete
description of a user's privileges. Section 6.2.6, “Access Control, Stage 2: Request Verification”,
describes the rules for this.

In addition, a grant table may contain columns used for purposes other than scope or privilege
assessment.

The server uses the grant tables in the following manner:

• The user table scope columns determine whether to reject or permit incoming connections. For
permitted connections, any privileges granted in the user table indicate the user's global privileges. Any
privileges granted in this table apply to all databases on the server.

Caution

Because a global privilege is considered a privilege for all databases, any global
privilege enables a user to see all database names with SHOW DATABASES or by
examining the INFORMATION_SCHEMA SCHEMATA table.

• The db table scope columns determine which users can access which databases from which hosts. The
privilege columns determine the permitted operations. A privilege granted at the database level applies
to the database and to all objects in the database, such as tables and stored programs.

• The tables_priv and columns_priv tables are similar to the db table, but are more fine-grained:
They apply at the table and column levels rather than at the database level. A privilege granted at the
table level applies to the table and to all its columns. A privilege granted at the column level applies only
to a specific column.

• The procs_priv table applies to stored routines (stored procedures and functions). A privilege granted
at the routine level applies only to a single procedure or function.

• The proxies_priv table indicates which users can act as proxies for other users and whether a user
can grant the PROXY privilege to other users.

The server reads the contents of the grant tables into memory when it starts. You can tell it to reload the
tables by issuing a FLUSH PRIVILEGES statement or executing a mysqladmin flush-privileges
or mysqladmin reload command. Changes to the grant tables take effect as indicated in Section 6.2.8,
“When Privilege Changes Take Effect”.

When you modify an account, it is a good idea to verify that your changes have the intended effect.
To check the privileges for a given account, use the SHOW GRANTS statement. For example, to
determine the privileges that are granted to an account with user name and host name values of bob and
pc84.example.com, use this statement:

SHOW GRANTS FOR 'bob'@'pc84.example.com';

870

Grant Tables

The user and db Grant Tables

The server uses the user and db tables in the mysql database at both the first and second stages of
access control (see Section 6.2, “Access Control and Account Management”). The columns in the user
and db tables are shown here.

Table 6.3 user and db Table Columns

Table Name user db

Scope columns Host Host

User Db

Password User

Privilege columns Select_priv Select_priv

Insert_priv Insert_priv

Update_priv Update_priv

Delete_priv Delete_priv

Index_priv Index_priv

Alter_priv Alter_priv

Create_priv Create_priv

Drop_priv Drop_priv

Grant_priv Grant_priv

Create_view_priv Create_view_priv

Show_view_priv Show_view_priv

Create_routine_priv Create_routine_priv

Alter_routine_priv Alter_routine_priv

Execute_priv Execute_priv

Trigger_priv Trigger_priv

Event_priv Event_priv

Create_tmp_table_priv Create_tmp_table_priv

Lock_tables_priv Lock_tables_priv

References_priv References_priv

Reload_priv

Shutdown_priv

Process_priv

File_priv

Show_db_priv

Super_priv

Repl_slave_priv

Repl_client_priv

Create_user_priv

Create_tablespace_priv

Security columns ssl_type

871

Grant Tables

Table Name user db

ssl_cipher

x509_issuer

x509_subject

plugin

authentication_string

password_expired

Resource control columns max_questions

max_updates

max_connections

max_user_connections

The user table plugin, Password, and authentication_string columns store authentication plugin
and credential information.

If an account row names a plugin in the plugin column, the server uses it to authenticate
connection attempts for the account. It is up to the plugin whether it uses the Password and
authentication_string column values.

If the plugin column for an account row is empty, the server authenticates the account using the
mysql_native_password or mysql_old_password plugin implicitly, depending on the format of the
password hash in the Password column. If the Password value is empty or a 4.1 password hash (41
characters), the server uses mysql_native_password. If the password value is a pre-4.1 password
hash (16 characters), the server uses mysql_old_password. (For additional information about these
hash formats, see Section 6.1.2.4, “Password Hashing in MySQL”.) Clients must match the password in
the Password column of the account row.

The password_expired column permits DBAs to expire account passwords and require users to reset
their password. The default password_expired value is 'N', but can be set to 'Y' with the ALTER
USER statement. After an account's password has been expired, all operations performed by the account in
subsequent connections to the server result in an error until the user issues a SET PASSWORD statement to
establish a new account password.

Note

Although it is possible to “reset” an expired password by setting it to its current
value, it is preferable, as a matter of good policy, to choose a different password.

The tables_priv and columns_priv Grant Tables

During the second stage of access control, the server performs request verification to ensure that each
client has sufficient privileges for each request that it issues. In addition to the user and db grant tables,
the server may also consult the tables_priv and columns_priv tables for requests that involve tables.
The latter tables provide finer privilege control at the table and column levels. They have the columns
shown in the following table.

Table 6.4 tables_priv and columns_priv Table Columns

Table Name tables_priv columns_priv

Scope columns Host Host

872

Grant Tables

Table Name tables_priv columns_priv

Db Db

User User

Table_name Table_name

Column_name

Privilege columns Table_priv Column_priv

Column_priv

Other columns Timestamp Timestamp

Grantor

The Timestamp and Grantor columns are set to the current timestamp and the CURRENT_USER value,
respectively, but are otherwise unused.

The procs_priv Grant Table

For verification of requests that involve stored routines, the server may consult the procs_priv table,
which has the columns shown in the following table.

Table 6.5 procs_priv Table Columns

Table Name procs_priv

Scope columns Host

Db

User

Routine_name

Routine_type

Privilege columns Proc_priv

Other columns Timestamp

Grantor

The Routine_type column is an ENUM column with values of 'FUNCTION' or 'PROCEDURE' to indicate
the type of routine the row refers to. This column enables privileges to be granted separately for a function
and a procedure with the same name.

The Timestamp and Grantor columns are unused.

The proxies_priv Grant Table

The proxies_priv table records information about proxy accounts. It has these columns:

• Host, User: The proxy account; that is, the account that has the PROXY privilege for the proxied
account.

• Proxied_host, Proxied_user: The proxied account.

• Grantor, Timestamp: Unused.

• With_grant: Whether the proxy account can grant the PROXY privilege to other accounts.

873

Grant Tables

For an account to be able to grant the PROXY privilege to other accounts, it must have a row in the
proxies_priv table with With_grant set to 1 and Proxied_host and Proxied_user set to indicate
the account or accounts for which the privilege can be granted. For example, the 'root'@'localhost'
account created during MySQL installation has a row in the proxies_priv table that enables granting
the PROXY privilege for ''@'', that is, for all users and all hosts. This enables root to set up proxy users,
as well as to delegate to other accounts the authority to set up proxy users. See Section 6.2.12, “Proxy
Users”.

Grant Table Scope Column Properties

Scope columns in the grant tables contain strings. The default value for each is the empty string. The
following table shows the number of characters permitted in each column.

Table 6.6 Grant Table Scope Column Lengths

Column Name Maximum Permitted Characters

Host, Proxied_host 60

User, Proxied_user 16

Password 41

Db 64

Table_name 64

Column_name 64

Routine_name 64

Host and Proxied_host values are converted to lowercase before being stored in the grant tables.

For access-checking purposes, comparisons of User, Proxied_user, Password, Db, and Table_name
values are case-sensitive. Comparisons of Host, Proxied_host, Column_name, and Routine_name
values are not case-sensitive.

Grant Table Privilege Column Properties

The user and db tables list each privilege in a separate column that is declared as ENUM('N','Y')
DEFAULT 'N'. In other words, each privilege can be disabled or enabled, with the default being disabled.

The tables_priv, columns_priv, and procs_priv tables declare the privilege columns as SET
columns. Values in these columns can contain any combination of the privileges controlled by the table.
Only those privileges listed in the column value are enabled.

Table 6.7 Set-Type Privilege Column Values

Table Name Column Name Possible Set Elements

tables_priv Table_priv 'Select', 'Insert',
'Update', 'Delete',
'Create', 'Drop',
'Grant', 'References',
'Index', 'Alter', 'Create
View', 'Show view',
'Trigger'

874

Specifying Account Names

Table Name Column Name Possible Set Elements

tables_priv Column_priv 'Select', 'Insert',
'Update', 'References'

columns_priv Column_priv 'Select', 'Insert',
'Update', 'References'

procs_priv Proc_priv 'Execute', 'Alter
Routine', 'Grant'

Only the user table specifies administrative privileges, such as RELOAD and SHUTDOWN. Administrative
operations are operations on the server itself and are not database-specific, so there is no reason to list
these privileges in the other grant tables. Consequently, the server need consult only the user table to
determine whether a user can perform an administrative operation.

The FILE privilege also is specified only in the user table. It is not an administrative privilege as such, but
a user's ability to read or write files on the server host is independent of the database being accessed.

6.2.4 Specifying Account Names

MySQL account names consist of a user name and a host name, which enables creation of distinct
accounts for users with the same user name who connect from different hosts. This section describes the
syntax for account names, including special values and wildcard rules.

Account names appear in SQL statements such as CREATE USER, GRANT, and SET PASSWORD and
follow these rules:

• Account name syntax is 'user_name'@'host_name'.

• The @'host_name' part is optional. An account name consisting only of a user name is equivalent to
'user_name'@'%'. For example, 'me' is equivalent to 'me'@'%'.

• The user name and host name need not be quoted if they are legal as unquoted identifiers. Quotes must
be used if a user_name string contains special characters (such as space or -), or a host_name string
contains special characters or wildcard characters (such as . or %). For example, in the account name
'test-user'@'%.com', both the user name and host name parts require quotes.

• Quote user names and host names as identifiers or as strings, using either backticks (`), single
quotation marks ('), or double quotation marks ("). For string-quoting and identifier-quoting guidelines,
see Section 9.1.1, “String Literals”, and Section 9.2, “Schema Object Names”.

• The user name and host name parts, if quoted, must be quoted separately. That is,
write 'me'@'localhost', not 'me@localhost'. The latter is actually equivalent to
'me@localhost'@'%'.

• A reference to the CURRENT_USER or CURRENT_USER() function is equivalent to specifying the current
client's user name and host name literally.

MySQL stores account names in grant tables in the mysql system database using separate columns for
the user name and host name parts:

• The user table contains one row for each account. The User and Host columns store the user name
and host name. This table also indicates which global privileges the account has.

• Other grant tables indicate privileges an account has for databases and objects within databases. These
tables have User and Host columns to store the account name. Each row in these tables associates
with the account in the user table that has the same User and Host values.

875

Specifying Account Names

• For access-checking purposes, comparisons of User values are case-sensitive. Comparisons of Host
values are not case-sensitive.

For additional detail about the properties of user names and host names as stored in the grant tables, such
as maximum length, see Grant Table Scope Column Properties.

User names and host names have certain special values or wildcard conventions, as described following.

The user name part of an account name is either a nonblank value that literally matches the user name for
incoming connection attempts, or a blank value (the empty string) that matches any user name. An account
with a blank user name is an anonymous user. To specify an anonymous user in SQL statements, use a
quoted empty user name part, such as ''@'localhost'.

The host name part of an account name can take many forms, and wildcards are permitted:

• A host value can be a host name or an IP address (IPv4 or IPv6). The name 'localhost' indicates the
local host. The IP address '127.0.0.1' indicates the IPv4 loopback interface. The IP address '::1'
indicates the IPv6 loopback interface.

• The % and _ wildcard characters are permitted in host name or IP address values. These have the same
meaning as for pattern-matching operations performed with the LIKE operator. For example, a host
value of '%' matches any host name, whereas a value of '%.mysql.com' matches any host in the
mysql.com domain. '198.51.100.%' matches any host in the 198.51.100 class C network.

Because IP wildcard values are permitted in host values (for example, '198.51.100.%' to
match every host on a subnet), someone could try to exploit this capability by naming a host
198.51.100.somewhere.com. To foil such attempts, MySQL does not perform matching on host
names that start with digits and a dot. For example, if a host is named 1.2.example.com, its name
never matches the host part of account names. An IP wildcard value can match only IP addresses, not
host names.

• For a host value specified as an IPv4 address, a netmask can be given to indicate how many address
bits to use for the network number. Netmask notation cannot be used for IPv6 addresses.

The syntax is host_ip/netmask. For example:

CREATE USER 'david'@'198.51.100.0/255.255.255.0';

This enables david to connect from any client host having an IP address client_ip for which the
following condition is true:

client_ip & netmask = host_ip

That is, for the CREATE USER statement just shown:

client_ip & 255.255.255.0 = 198.51.100.0

IP addresses that satisfy this condition range from 198.51.100.0 to 198.51.100.255.

A netmask typically begins with bits set to 1, followed by bits set to 0. Examples:

• 198.0.0.0/255.0.0.0: Any host on the 198 class A network

• 198.51.0.0/255.255.0.0: Any host on the 198.51 class B network

• 198.51.100.0/255.255.255.0: Any host on the 198.51.100 class C network

• 198.51.100.1: Only the host with this specific IP address

876

Access Control, Stage 1: Connection Verification

The server performs matching of host values in account names against the client host using the value
returned by the system DNS resolver for the client host name or IP address. Except in the case that the
account host value is specified using netmask notation, the server performs this comparison as a string
match, even for an account host value given as an IP address. This means that you should specify account
host values in the same format used by DNS. Here are examples of problems to watch out for:

• Suppose that a host on the local network has a fully qualified name of host1.example.com. If DNS
returns name lookups for this host as host1.example.com, use that name in account host values. If
DNS returns just host1, use host1 instead.

• If DNS returns the IP address for a given host as 198.51.100.2, that matches an account host
value of 198.51.100.2 but not 198.051.100.2. Similarly, it matches an account host pattern like
198.51.100.% but not 198.051.100.%.

To avoid problems like these, it is advisable to check the format in which your DNS returns host names and
addresses. Use values in the same format in MySQL account names.

6.2.5 Access Control, Stage 1: Connection Verification

When you attempt to connect to a MySQL server, the server accepts or rejects the connection based on
your identity and whether you can verify it identity by supplying the correct password. If not, the server
denies access to you completely. Otherwise, the server accepts the connection, and then enters Stage 2
and waits for requests.

The server performs identity and credentials checking using columns in the user table, accepting the
connection only if these conditions are satisfied:

• The client host name and user name match the Host and User columns in some user table row. For
the rules governing permissible Host and User values, see Section 6.2.4, “Specifying Account Names”.

• The client supplies the password specified in the row, as indicated by the Password column.

Your identity is based on two pieces of information:

• Your MySQL user name.

• The client host from which you connect.

If the User column value is nonblank, the user name in an incoming connection must match exactly. If the
User value is blank, it matches any user name. If the user table row that matches an incoming connection
has a blank user name, the user is considered to be an anonymous user with no name, not a user with the
name that the client actually specified. This means that a blank user name is used for all further access
checking for the duration of the connection (that is, during Stage 2).

The Password column can be blank. This is not a wildcard and does not mean that any password
matches. It means that the user must connect without specifying a password. If the server authenticates
a client using a plugin, the authentication method that the plugin implements may or may not use the
password in the Password column. In this case, it is possible that an external password is also used to
authenticate to the MySQL server.

Nonblank password values stored in the Password column of the user table are encrypted. MySQL
does not store passwords as cleartext for anyone to see. Rather, the password supplied by a user who
is attempting to connect is encrypted (using the PASSWORD() function). The encrypted password then is
used during the connection process when checking whether the password is correct. This is done without

877

Access Control, Stage 1: Connection Verification

the encrypted password ever traveling over the connection. See Section 6.2.1, “Account User Names and
Passwords”.

From MySQL's point of view, the encrypted password is the real password, so you should never give
anyone access to it. In particular, do not give nonadministrative users read access to tables in the mysql
system database.

The following table shows how various combinations of User and Host values in the user table apply to
incoming connections.

User Value Host Value Permissible Connections

'fred' 'h1.example.net' fred, connecting from
h1.example.net

'' 'h1.example.net' Any user, connecting from
h1.example.net

'fred' '%' fred, connecting from any host

'' '%' Any user, connecting from any
host

'fred' '%.example.net' fred, connecting from any host in
the example.net domain

'fred' 'x.example.%' fred, connecting from
x.example.net,
x.example.com,
x.example.edu, and so on; this
is probably not useful

'fred' '198.51.100.177' fred, connecting from
the host with IP address
198.51.100.177

'fred' '198.51.100.%' fred, connecting from any host in
the 198.51.100 class C subnet

'fred' '198.51.100.0/255.255.255.0'Same as previous example

It is possible for the client host name and user name of an incoming connection to match more than one
row in the user table. The preceding set of examples demonstrates this: Several of the entries shown
match a connection from h1.example.net by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves this issue
as follows:

• Whenever the server reads the user table into memory, it sorts the rows.

• When a client attempts to connect, the server looks through the rows in sorted order.

• The server uses the first row that matches the client host name and user name.

The server uses sorting rules that order rows with the most-specific Host values first:

• Literal IP addresses and host names are the most specific.

• The specificity of a literal IP address is not affected by whether it has a netmask, so 198.51.100.13
and 198.51.100.0/255.255.255.0 are considered equally specific.

• The pattern '%' means “any host” and is least specific.

878

Access Control, Stage 1: Connection Verification

• The empty string '' also means “any host” but sorts after '%'.

Non-TCP (socket file, named pipe, and shared memory) connections are treated as local connections and
match a host part of localhost if there are any such accounts, or host parts with wildcards that match
localhost otherwise (for example, local%, l%, %).

Rows with the same Host value are ordered with the most-specific User values first. A blank User value
means “any user” and is least specific, so for rows with the same Host value, nonanonymous users sort
before anonymous users.

For rows with equally-specific Host and User values, the order is nondeterministic.

To see how this works, suppose that the user table looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| % | root | ...
| % | jeffrey | ...
| localhost | root | ...
| localhost | | ...
+-----------+----------+-

When the server reads the table into memory, it sorts the rows using the rules just described. The result
after sorting looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| localhost | root | ...
| localhost | | ...
| % | jeffrey | ...
| % | root | ...
+-----------+----------+-

When a client attempts to connect, the server looks through the sorted rows and uses the first match
found. For a connection from localhost by jeffrey, two of the rows from the table match: the one with
Host and User values of 'localhost' and '', and the one with values of '%' and 'jeffrey'. The
'localhost' row appears first in sorted order, so that is the one the server uses.

Here is another example. Suppose that the user table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| % | jeffrey | ...
| h1.example.net | | ...
+----------------+----------+-

The sorted table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| h1.example.net | | ...
| % | jeffrey | ...
+----------------+----------+-

The first row matches a connection by any user from h1.example.net, whereas the second row matches
a connection by jeffrey from any host.

879

Access Control, Stage 2: Request Verification

Note

It is a common misconception to think that, for a given user name, all rows that
explicitly name that user are used first when the server attempts to find a match
for the connection. This is not true. The preceding example illustrates this, where
a connection from h1.example.net by jeffrey is first matched not by the row
containing 'jeffrey' as the User column value, but by the row with no user
name. As a result, jeffrey is authenticated as an anonymous user, even though
he specified a user name when connecting.

If you are able to connect to the server, but your privileges are not what you expect, you probably are
being authenticated as some other account. To find out what account the server used to authenticate you,
use the CURRENT_USER() function. (See Section 12.16, “Information Functions”.) It returns a value in
user_name@host_name format that indicates the User and Host values from the matching user table
row. Suppose that jeffrey connects and issues the following query:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |
+----------------+

The result shown here indicates that the matching user table row had a blank User column value. In other
words, the server is treating jeffrey as an anonymous user.

Another way to diagnose authentication problems is to print out the user table and sort it by hand to see
where the first match is being made.

6.2.6 Access Control, Stage 2: Request Verification

After the server accepts a connection, it enters Stage 2 of access control. For each request that you issue
through the connection, the server determines what operation you want to perform, then checks whether
your privileges are sufficient. This is where the privilege columns in the grant tables come into play. These
privileges can come from any of the user, db, tables_priv, columns_priv, or procs_priv tables.
(You may find it helpful to refer to Section 6.2.3, “Grant Tables”, which lists the columns present in each
grant table.)

The user table grants global privileges. The user table row for an account indicates the account
privileges that apply on a global basis no matter what the default database is. For example, if the user
table grants you the DELETE privilege, you can delete rows from any table in any database on the server
host. It is wise to grant privileges in the user table only to people who need them, such as database
administrators. For other users, leave all privileges in the user table set to 'N' and grant privileges at
more specific levels only (for particular databases, tables, columns, or routines).

The db table grants database-specific privileges. Values in the scope columns of this table can take the
following forms:

• A blank User value matches the anonymous user. A nonblank value matches literally; there are no
wildcards in user names.

• The wildcard characters % and _ can be used in the Host and Db columns. These have the same
meaning as for pattern-matching operations performed with the LIKE operator. If you want to use either
character literally when granting privileges, you must escape it with a backslash. For example, to include
the underscore character (_) as part of a database name, specify it as _ in the GRANT statement.

• A '%' or blank Host value means “any host.”

880

Access Control, Stage 2: Request Verification

• A '%' or blank Db value means “any database.”

The server reads the db table into memory and sorts it at the same time that it reads the user table. The
server sorts the db table based on the Host, Db, and User scope columns. As with the user table, sorting
puts the most-specific values first and least-specific values last, and when the server looks for matching
rows, it uses the first match that it finds.

The tables_priv, columns_priv, and procs_priv tables grant table-specific, column-specific, and
routine-specific privileges. Values in the scope columns of these tables can take the following forms:

• The wildcard characters % and _ can be used in the Host column. These have the same meaning as for
pattern-matching operations performed with the LIKE operator.

• A '%' or blank Host value means “any host.”

• The Db, Table_name, Column_name, and Routine_name columns cannot contain wildcards or be
blank.

The server sorts the tables_priv, columns_priv, and procs_priv tables based on the Host, Db,
and User columns. This is similar to db table sorting, but simpler because only the Host column can
contain wildcards.

The server uses the sorted tables to verify each request that it receives. For requests that require
administrative privileges such as SHUTDOWN or RELOAD, the server checks only the user table row
because that is the only table that specifies administrative privileges. The server grants access if the
row permits the requested operation and denies access otherwise. For example, if you want to execute
mysqladmin shutdown but your user table row does not grant the SHUTDOWN privilege to you, the
server denies access without even checking the db table. (The latter table contains no Shutdown_priv
column, so there is no need to check it.)

For database-related requests (INSERT, UPDATE, and so on), the server first checks the user's global
privileges in the user table row. If the row permits the requested operation, access is granted. If the global
privileges in the user table are insufficient, the server determines the user's database-specific privileges
from the db table:

• The server looks in the db table for a match on the Host, Db, and User columns.

• The Host and User columns are matched to the connecting user's host name and MySQL user name.

• The Db column is matched to the database that the user wants to access.

• If there is no row for the Host and User, access is denied.

After determining the database-specific privileges granted by the db table rows, the server adds them
to the global privileges granted by the user table. If the result permits the requested operation, access
is granted. Otherwise, the server successively checks the user's table and column privileges in the
tables_priv and columns_priv tables, adds those to the user's privileges, and permits or denies
access based on the result. For stored-routine operations, the server uses the procs_priv table rather
than tables_priv and columns_priv.

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be
summarized like this:

global privileges
OR database privileges
OR table privileges

881

Adding Accounts, Assigning Privileges, and Dropping Accounts

OR column privileges
OR routine privileges

It may not be apparent why, if the global privileges are initially found to be insufficient for the requested
operation, the server adds those privileges to the database, table, and column privileges later. The reason
is that a request might require more than one type of privilege. For example, if you execute an INSERT
INTO ... SELECT statement, you need both the INSERT and the SELECT privileges. Your privileges
might be such that the user table row grants one privilege global and the db table row grants the other
specifically for the relevant database. In this case, you have the necessary privileges to perform the
request, but the server cannot tell that from either your global or database privileges alone. It must make
an access-control decision based on the combined privileges.

6.2.7 Adding Accounts, Assigning Privileges, and Dropping Accounts

To manage MySQL accounts, use the SQL statements intended for that purpose:

• CREATE USER and DROP USER create and remove accounts.

• GRANT and REVOKE assign privileges to and revoke privileges from accounts.

• SHOW GRANTS displays account privilege assignments.

Account-management statements cause the server to make appropriate modifications to the underlying
grant tables, which are discussed in Section 6.2.3, “Grant Tables”.

Note

Direct modification of grant tables using statements such as INSERT, UPDATE, or
DELETE is discouraged and done at your own risk. The server is free to ignore rows
that become malformed as a result of such modifications.

As of MySQL 5.6.36, for any operation that modifies a grant table, the server
checks whether the table has the expected structure and produces an error if not.
mysql_upgrade must be run to update the tables to the expected structure.

Another option for creating accounts is to use the GUI tool MySQL Workbench. Also, several third-party
programs offer capabilities for MySQL account administration. phpMyAdmin is one such program.

This section discusses the following topics:

• Creating Accounts and Granting Privileges

• Checking Account Privileges

• Revoking Account Privileges

• Dropping Accounts

For additional information about the statements discussed here, see Section 13.7.1, “Account Management
Statements”.

Creating Accounts and Granting Privileges

The following examples show how to use the mysql client program to set up new accounts. These
examples assume that the MySQL root account has the CREATE USER privilege and all privileges that it
grants to other accounts.

882

Adding Accounts, Assigning Privileges, and Dropping Accounts

At the command line, connect to the server as the MySQL root user, supplying the appropriate password
at the password prompt:

$> mysql -u root -p
Enter password: (enter root password here)

After connecting to the server, you can add new accounts. The following example uses CREATE USER
and GRANT statements to set up four accounts (where you see 'password', substitute an appropriate
password):

CREATE USER 'finley'@'localhost'
 IDENTIFIED BY 'password';
GRANT ALL
 ON *.*
 TO 'finley'@'localhost'
 WITH GRANT OPTION;

CREATE USER 'finley'@'%.example.com'
 IDENTIFIED BY 'password';
GRANT ALL
 ON *.*
 TO 'finley'@'%.example.com'
 WITH GRANT OPTION;

CREATE USER 'admin'@'localhost'
 IDENTIFIED BY 'password';
GRANT RELOAD,PROCESS
 ON *.*
 TO 'admin'@'localhost';

CREATE USER 'dummy'@'localhost';

The accounts created by those statements have the following properties:

• Two accounts have a user name of finley. Both are superuser accounts with full global privileges to
do anything. The 'finley'@'localhost' account can be used only when connecting from the local
host. The 'finley'@'%.example.com' account uses the '%' wildcard in the host part, so it can be
used to connect from any host in the example.com domain.

The 'finley'@'localhost' account is necessary if there is an anonymous-user account for
localhost. Without the 'finley'@'localhost' account, that anonymous-user account takes
precedence when finley connects from the local host and finley is treated as an anonymous user.
The reason for this is that the anonymous-user account has a more specific Host column value than
the 'finley'@'%' account and thus comes earlier in the user table sort order. (For information about
user table sorting, see Section 6.2.5, “Access Control, Stage 1: Connection Verification”.)

• The 'admin'@'localhost' account can be used only by admin to connect from the local host. It is
granted the global RELOAD and PROCESS administrative privileges. These privileges enable the admin
user to execute the mysqladmin reload, mysqladmin refresh, and mysqladmin flush-xxx
commands, as well as mysqladmin processlist . No privileges are granted for accessing any
databases. You could add such privileges using GRANT statements.

• The 'dummy'@'localhost' account has no password (which is insecure and not recommended). This
account can be used only to connect from the local host. No privileges are granted. It is assumed that
you grant specific privileges to the account using GRANT statements.

The previous example grants privileges at the global level. The next example creates three accounts and
grants them access at lower levels; that is, to specific databases or objects within databases. Each account
has a user name of custom, but the host name parts differ:

CREATE USER 'custom'@'localhost'

883

Adding Accounts, Assigning Privileges, and Dropping Accounts

 IDENTIFIED BY 'password';
GRANT ALL
 ON bankaccount.*
 TO 'custom'@'localhost';

CREATE USER 'custom'@'host47.example.com'
 IDENTIFIED BY 'password';
GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 ON expenses.*
 TO 'custom'@'host47.example.com';

CREATE USER 'custom'@'%.example.com'
 IDENTIFIED BY 'password';
GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 ON customer.addresses
 TO 'custom'@'%.example.com';

The three accounts can be used as follows:

• The 'custom'@'localhost' account has all database-level privileges to access the bankaccount
database. The account can be used to connect to the server only from the local host.

• The 'custom'@'host47.example.com' account has specific database-level privileges to access
the expenses database. The account can be used to connect to the server only from the host
host47.example.com.

• The 'custom'@'%.example.com' account has specific table-level privileges to access the
addresses table in the customer database, from any host in the example.com domain. The account
can be used to connect to the server from all machines in the domain due to use of the % wildcard
character in the host part of the account name.

Checking Account Privileges

To see the privileges for an account, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'admin'@'localhost';
+---+
| Grants for admin@localhost |
+---+
| GRANT RELOAD, PROCESS ON *.* TO 'admin'@'localhost' |
+---+

Revoking Account Privileges

To revoke account privileges, use the REVOKE statement. Privileges can be revoked at different levels, just
as they can be granted at different levels.

Revoke global privileges:

REVOKE ALL
 ON *.*
 FROM 'finley'@'%.example.com';

REVOKE RELOAD
 ON *.*
 FROM 'admin'@'localhost';

Revoke database-level privileges:

REVOKE CREATE,DROP
 ON expenses.*
 FROM 'custom'@'host47.example.com';

884

When Privilege Changes Take Effect

Revoke table-level privileges:

REVOKE INSERT,UPDATE,DELETE
 ON customer.addresses
 FROM 'custom'@'%.example.com';

To check the effect of privilege revocation, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'admin'@'localhost';
+---+
| Grants for admin@localhost |
+---+
| GRANT PROCESS ON *.* TO 'admin'@'localhost' |
+---+

Dropping Accounts

To remove an account, use the DROP USER statement. For example, to drop some of the accounts created
previously:

DROP USER 'finley'@'localhost';
DROP USER 'finley'@'%.example.com';
DROP USER 'admin'@'localhost';
DROP USER 'dummy'@'localhost';

6.2.8 When Privilege Changes Take Effect

If the mysqld server is started without the --skip-grant-tables option, it reads all grant table
contents into memory during its startup sequence. The in-memory tables become effective for access
control at that point.

If you modify the grant tables indirectly using an account-management statement, the server notices these
changes and loads the grant tables into memory again immediately. Account-management statements are
described in Section 13.7.1, “Account Management Statements”. Examples include GRANT, REVOKE, SET
PASSWORD, and RENAME USER.

If you modify the grant tables directly using statements such as INSERT, UPDATE, or DELETE (which is not
recommended), the changes have no effect on privilege checking until you either tell the server to reload
the tables or restart it. Thus, if you change the grant tables directly but forget to reload them, the changes
have no effect until you restart the server. This may leave you wondering why your changes seem to make
no difference!

To tell the server to reload the grant tables, perform a flush-privileges operation. This can be done by
issuing a FLUSH PRIVILEGES statement or by executing a mysqladmin flush-privileges or
mysqladmin reload command.

A grant table reload affects privileges for each existing client session as follows:

• Table and column privilege changes take effect with the client's next request.

• Database privilege changes take effect the next time the client executes a USE db_name statement.

Note

Client applications may cache the database name; thus, this effect may not be
visible to them without actually changing to a different database.

• Global privileges and passwords are unaffected for a connected client. These changes take effect only in
sessions for subsequent connections.

885

Assigning Account Passwords

If the server is started with the --skip-grant-tables option, it does not read the grant tables or
implement any access control. Any user can connect and perform any operation, which is insecure. To
cause a server thus started to read the tables and enable access checking, flush the privileges.

6.2.9 Assigning Account Passwords

Required credentials for clients that connect to the MySQL server can include a password. This section
describes how to assign passwords for MySQL accounts.

MySQL stores credentials in the user table in the mysql system database. Operations that assign or
modify passwords are permitted only to users with the CREATE USER privilege, or, alternatively, privileges
for the mysql database (INSERT privilege to create new accounts, UPDATE privilege to modify existing
accounts). If the read_only system variable is enabled, use of account-modification statements such as
CREATE USER or SET PASSWORD additionally requires the SUPER privilege.

The discussion here summarizes syntax only for the most common password-assignment statements.
For complete details on other possibilities, see Section 13.7.1.2, “CREATE USER Statement”,
Section 13.7.1.4, “GRANT Statement”, and Section 13.7.1.7, “SET PASSWORD Statement”.

MySQL uses plugins to perform client authentication; see Section 6.2.11, “Pluggable Authentication”.
In password-assigning statements, the authentication plugin associated with an account performs any
hashing required of a cleartext password specified. This enables MySQL to obfuscate passwords prior to
storing them in the mysql.user system table. For most statements described here, MySQL automatically
hashes the password specified. An exception is SET PASSWORD ... = PASSWORD('auth_string'),
for which you use the PASSWORD() function explicitly to hash the password. There is also syntax for
CREATE USER, GRANT, and SET PASSWORD that permits hashed values to be specified literally. For
details, see the descriptions of those statements.

To assign a password when you create a new account, use CREATE USER and include an IDENTIFIED
BY clause:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';

CREATE USER also supports syntax for specifying the account authentication plugin. See Section 13.7.1.2,
“CREATE USER Statement”.

To assign or change a password for an existing account, use SET PASSWORD with the PASSWORD()
function:

SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('password');

If you are not connected as an anonymous user, you can change your own password by omitting the FOR
clause:

SET PASSWORD = PASSWORD('password');

The PASSWORD() function hashes the password using the hashing method determined by the value of the
old_passwords system variable value. If SET PASSWORD rejects the hashed password value returned
by PASSWORD() as not being in the correct format, it may be necessary to change old_passwords to
change the hashing method. See Section 13.7.1.7, “SET PASSWORD Statement”.

Use a GRANT USAGE statement at the global level (ON *.*) to change an account password without
affecting the account's current privileges:

GRANT USAGE ON *.* TO 'jeffrey'@'localhost' IDENTIFIED BY 'password';

To change an account password from the command line, use the mysqladmin command:

886

Server Handling of Expired Passwords

mysqladmin -u user_name -h host_name password "password"

The account for which this command sets the password is the one with a row in the mysql.user system
table that matches user_name in the User column and the client host from which you connect in the Host
column.

Warning

Setting a password using mysqladmin should be considered insecure. On some
systems, your password becomes visible to system status programs such as ps
that may be invoked by other users to display command lines. MySQL clients
typically overwrite the command-line password argument with zeros during their
initialization sequence. However, there is still a brief interval during which the value
is visible. Also, on some systems this overwriting strategy is ineffective and the
password remains visible to ps. (SystemV Unix systems and perhaps others are
subject to this problem.)

If you are using MySQL Replication, be aware that, currently, a password used by a replica as part of a
CHANGE MASTER TO statement is effectively limited to 32 characters in length; if the password is longer,
any excess characters are truncated. This is not due to any limit imposed by the MySQL Server generally,
but rather is an issue specific to MySQL Replication. (For more information, see Bug #43439.)

6.2.10 Server Handling of Expired Passwords

MySQL 5.6 introduces password-expiration capability, which enables database administrators to require
that users reset their password. The immediately following discussion describes how password expiration
works currently. Later, the development of this capability is detailed as it occurred over several versions,
as background to help you understand what features are available when. However, to ensure that you can
take advantage of all features, use the most recent available version of MySQL if possible.

• How Password Expiration Works

• Development of Password-Expiration Capability

How Password Expiration Works

The ALTER USER statement enables account password expiration. For example:

ALTER USER 'myuser'@'localhost' PASSWORD EXPIRE;

For each connection that uses an account with an expired password, the server either disconnects the
client or restricts the client to “sandbox mode,” in which the server permits the client to perform only those
operations necessary to reset the expired password. Which action is taken by the server depends on both
client and server settings, as discussed later.

If the server disconnects the client, it returns an ER_MUST_CHANGE_PASSWORD_LOGIN error:

$> mysql -u myuser -p
Password: ******
ERROR 1862 (HY000): Your password has expired. To log in you must
change it using a client that supports expired passwords.

If the server restricts the client to sandbox mode, these operations are permitted within the client session:

• The client can reset the account password with SET PASSWORD. After that has been done, the server
restores normal access for the session, as well as for subsequent connections that use the account.

887

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_must_change_password_login

Server Handling of Expired Passwords

Note

Although it is possible to “reset” an expired password by setting it to its current
value, it is preferable, as a matter of good policy, to choose a different password.

• The client can use the SET statement. This might be necessary prior to using SET PASSWORD to reset
the password if the account uses an authentication plugin for which the old_passwords system
variable must first be set to a nondefault value to perform password hashing in a specific way.

For any operation not permitted within the session, the server returns an ER_MUST_CHANGE_PASSWORD
error:

mysql> USE performance_schema;
ERROR 1820 (HY000): You must SET PASSWORD before executing this statement

mysql> SELECT 1;
ERROR 1820 (HY000): You must SET PASSWORD before executing this statement

That is what normally happens for interactive invocations of the mysql client because by default such
invocations are put in sandbox mode. To resume normal functioning, select a new password.

For noninteractive invocations of the mysql client (for example, in batch mode), the server normally
disconnects the client if the password is expired. To permit noninteractive mysql invocations to stay
connected so that the password can be changed (using the statements permitted in sandbox mode), add
the --connect-expired-password option to the mysql command.

As mentioned previously, whether the server disconnects an expired-password client or restricts it to
sandbox mode depends on a combination of client and server settings. The following discussion describes
the relevant settings and how they interact.

Note

This discussion applies only for accounts with expired passwords. If a client
connects using a nonexpired password, the server handles the client normally.

On the client side, a given client indicates whether it can handle sandbox mode for expired passwords. For
clients that use the C client library, there are two ways to do this:

• Pass the MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS flag to mysql_options() prior to
connecting:

my_bool arg = 1;
mysql_options(mysql,
 MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS,
 &arg);

This is the technique used within the mysql client, which enables
MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS if invoked interactively or with the --connect-
expired-password option.

• Pass the CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS flag to mysql_real_connect() at connect
time:

MYSQL mysql;
mysql_init(&mysql);
if (!mysql_real_connect(&mysql,
 host, user, password, db,
 port, unix_socket,
 CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS))

888

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_must_change_password
https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-connect.html

Server Handling of Expired Passwords

{
 ... handle error ...
}

Other MySQL Connectors have their own conventions for indicating readiness to handle sandbox mode.
See the documentation for the Connector in which you are interested.

On the server side, if a client indicates that it can handle expired passwords, the server puts it in sandbox
mode.

If a client does not indicate that it can handle expired passwords (or uses an older version
of the client library that cannot so indicate), the server action depends on the value of the
disconnect_on_expired_password system variable:

• If disconnect_on_expired_password is enabled (the default), the server disconnects the client with
an ER_MUST_CHANGE_PASSWORD_LOGIN error.

• If disconnect_on_expired_password is disabled, the server puts the client in sandbox mode.

Development of Password-Expiration Capability

The following timeline describes the versions in which various password-expiration features were added.

• MySQL 5.6.6: Initial implementation of password expiration.

The password_expired column is introduced in the mysql.user system table to enable DBAs to
expire account passwords. The column default value is 'N' (not expired).

The ALTER USER ... PASSWORD EXPIRE statement is introduced as the SQL interface for setting the
password_expired column to 'Y'.

Connections that use an account with an expired password enter “sandbox mode” that permits only SET
PASSWORD statements. For other statements, the server returns an ER_MUST_CHANGE_PASSWORD error.
The intent is to force the client to reset the password before the server permits any other operations. SET
PASSWORD resets the account password and sets password_expired to 'N'.

A bug in the initial implementation is that ALTER USER sets the Password column in the mysql.user
system table to the empty string. The implication is that users should wait until MySQL 5.6.7 to use this
statement.

• MySQL 5.6.7: ALTER USER is fixed to not set the Password column to the empty string.

• MySQL 5.6.8: ALTER USER can be used as a prepared statement.

mysqladmin password is made capable of resetting expired passwords for accounts that use the
mysql_native_password or mysql_old_password authentication plugin.

Sandbox mode is changed to permit clients to execute SET statements in addition to SET PASSWORD
Prohibiting SET prevented clients that needed to set old_passwords from resetting their password.
It also broke some Connectors, which use SET extensively at connect time to initialize the session
environment.

• MySQL 5.6.9: Sandbox mode is changed to permit SET PASSWORD only if the account named in the
statement matches the account the client authenticated as.

• MySQL 5.6.10: Sandbox mode is changed to permit better control over how the server handles client
connections for accounts with expired passwords, and to permit clients to signal whether they are
capable of handling expired passwords:

889

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_must_change_password_login
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_must_change_password

Pluggable Authentication

• The disconnect_on_expired_password system variable is added, which controls how the server
treats expired-password accounts.

• Two flags are added to the C API client library: MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS
for mysql_options() and CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS for
mysql_real_connect(). Each flag enables a client program to indicate whether it can handle
sandbox mode for accounts with expired passwords.

MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS is enabled for mysqltest unconditionally, for
mysql in interactive mode, and for mysqladmin if the first command is password.

• The ER_MUST_CHANGE_PASSWORD_LOGIN error is added. The server returns this error when it
disconnects a client that has an expired password.

• MySQL 5.6.12: The --connect-expired-password option is added to the mysql client to enable
password-change statement execution in batch mode for accounts with an expired password.

Concurrent with these changes to sandbox mode in MySQL Server and the C API client library, work
begins to modify Connectors for conformance to the changes.

6.2.11 Pluggable Authentication

When a client connects to the MySQL server, the server uses the user name provided by the client and
the client host to select the appropriate account row from the mysql.user system table. The server then
authenticates the client, determining from the account row which authentication plugin applies to the client:

• If the server cannot find the plugin, an error occurs and the connection attempt is rejected. Otherwise, if
the account row specifies a plugin, the server invokes it to authenticate the user.

• If the account row specifies no plugin name, the server authenticates the account using either the
mysql_native_password or mysql_old_password plugin, depending on whether the password
hash value in the Password column used native hashing or the older pre-4.1 hashing method. Clients
must match the password in the Password column of the account row.

The plugin returns a status to the server indicating whether the user provided the correct password and is
permitted to connect.

Pluggable authentication enables these important capabilities:

• Choice of authentication methods. Pluggable authentication makes it easy for DBAs to choose and
change the authentication method used for individual MySQL accounts.

• External authentication. Pluggable authentication makes it possible for clients to connect to
the MySQL server with credentials appropriate for authentication methods that store credentials
elsewhere than in the mysql.user system table. For example, plugins can be created to use external
authentication methods such as PAM, Windows login IDs, LDAP, or Kerberos.

• Proxy users: If a user is permitted to connect, an authentication plugin can return to the server a user
name different from the name of the connecting user, to indicate that the connecting user is a proxy for
another user (the proxied user). While the connection lasts, the proxy user is treated, for purposes of
access control, as having the privileges of the proxied user. In effect, one user impersonates another.
For more information, see Section 6.2.12, “Proxy Users”.

Note

If you start the server with the --skip-grant-tables option, authentication
plugins are not used even if loaded because the server performs no client

890

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_must_change_password_login

Pluggable Authentication

authentication and permits any client to connect. Because this is insecure, you
might want to use --skip-grant-tables in conjunction with enabling the
skip_networking system variable to prevent remote clients from connecting.

• Available Authentication Plugins

• Authentication Plugin Usage

• Restrictions on Pluggable Authentication

Available Authentication Plugins

MySQL 5.6 provides these authentication plugins:

• Plugins that perform native authentication; that is, authentication based on the password
hashing methods in use from before the introduction of pluggable authentication in MySQL. The
mysql_native_password plugin implements authentication based on the native password hashing
method. The mysql_old_password plugin implements native authentication based on the older
(pre-4.1) password hashing method (and is now deprecated). See Section 6.4.1.1, “Native Pluggable
Authentication”, and Section 6.4.1.2, “Old Native Pluggable Authentication”. Native authentication
using mysql_native_password is the default for new accounts, unless the --default-
authentication-plugin option is set otherwise at server startup.

• A plugin that performs authentication using SHA-256 password hashing. This is stronger encryption than
that available with native authentication. See Section 6.4.1.4, “SHA-256 Pluggable Authentication”.

• A client-side plugin that sends the password to the server without hashing or encryption. This plugin is
used in conjunction with server-side plugins that require access to the password exactly as provided by
the client user. See Section 6.4.1.5, “Client-Side Cleartext Pluggable Authentication”.

• A plugin that performs external authentication using PAM (Pluggable Authentication Modules), enabling
MySQL Server to use PAM to authenticate MySQL users. This plugin supports proxy users as well. See
Section 6.4.1.6, “PAM Pluggable Authentication”.

• A plugin that performs external authentication on Windows, enabling MySQL Server to use native
Windows services to authenticate client connections. Users who have logged in to Windows can
connect from MySQL client programs to the server based on the information in their environment without
specifying an additional password. This plugin supports proxy users as well. See Section 6.4.1.7,
“Windows Pluggable Authentication”.

• A plugin that authenticates clients that connect from the local host through the Unix socket file. See
Section 6.4.1.8, “Socket Peer-Credential Pluggable Authentication”.

• A test plugin that checks account credentials and logs success or failure to the server error log.
This plugin is intended for testing and development purposes, and as an example of how to write an
authentication plugin. See Section 6.4.1.9, “Test Pluggable Authentication”.

Note

For information about current restrictions on the use of pluggable authentication,
including which connectors support which plugins, see Restrictions on Pluggable
Authentication.

Third-party connector developers should read that section to determine the extent
to which a connector can take advantage of pluggable authentication capabilities
and what steps to take to become more compliant.

If you are interested in writing your own authentication plugins, see Writing Authentication Plugins.

891

https://dev.mysql.com/doc/extending-mysql/5.6/en/writing-authentication-plugins.html

Pluggable Authentication

Authentication Plugin Usage

This section provides general instructions for installing and using authentication plugins. For instructions
specific to a given plugin, see the section that describes that plugin under Section 6.4.1, “Authentication
Plugins”.

In general, pluggable authentication uses a pair of corresponding plugins on the server and client sides, so
you use a given authentication method like this:

• If necessary, install the plugin library or libraries containing the appropriate plugins. On the server host,
install the library containing the server-side plugin, so that the server can use it to authenticate client
connections. Similarly, on each client host, install the library containing the client-side plugin for use by
client programs. Authentication plugins that are built in need not be installed.

• For each MySQL account that you create, specify the appropriate server-side plugin to use for
authentication. If the account is to use the default authentication plugin, the account-creation statement
need not specify the plugin explicitly. The --default-authentication-plugin option configures
the default authentication plugin.

• When a client connects, the server-side plugin tells the client program which client-side plugin to use for
authentication.

In the case that an account uses an authentication method that is the default for both the server and
the client program, the server need not communicate to the client which client-side plugin to use, and a
round trip in client/server negotiation can be avoided. This is true for accounts that use native MySQL
authentication.

For standard MySQL clients such as mysql and mysqladmin, the --default-auth=plugin_name
option can be specified on the command line as a hint about which client-side plugin the program can
expect to use, although the server overrides this if the server-side plugin associated with the user account
requires a different client-side plugin.

If the client program does not find the client-side plugin library file, specify a --plugin-dir=dir_name
option to indicate the plugin library directory location.

Restrictions on Pluggable Authentication

The first part of this section describes general restrictions on the applicability of the pluggable
authentication framework described at Section 6.2.11, “Pluggable Authentication”. The second part
describes how third-party connector developers can determine the extent to which a connector can take
advantage of pluggable authentication capabilities and what steps to take to become more compliant.

The term “native authentication” used here refers to authentication against passwords stored in the
Password column of the mysql.user system table. This is the same authentication method provided by
older MySQL servers, before pluggable authentication was implemented. “Windows native authentication”
refers to authentication using the credentials of a user who has already logged in to Windows, as
implemented by the Windows Native Authentication plugin (“Windows plugin” for short).

• General Pluggable Authentication Restrictions

• Pluggable Authentication and Third-Party Connectors

General Pluggable Authentication Restrictions

• Connector/C++: Clients that use this connector can connect to the server only through accounts that
use native authentication.

892

Pluggable Authentication

Exception: A connector supports pluggable authentication if it was built to link to libmysqlclient
dynamically (rather than statically) and it loads the current version of libmysqlclient if that version is
installed, or if the connector is recompiled from source to link against the current libmysqlclient.

• Connector/NET: Clients that use Connector/NET can connect to the server through accounts that use
native authentication or Windows native authentication.

• Connector/PHP: Clients that use this connector can connect to the server only through accounts that
use native authentication, when compiled using the MySQL native driver for PHP (mysqlnd).

• Windows native authentication: Connecting through an account that uses the Windows plugin requires
Windows Domain setup. Without it, NTLM authentication is used and then only local connections are
possible; that is, the client and server must run on the same computer.

• Proxy users: Proxy user support is available to the extent that clients can connect through accounts
authenticated with plugins that implement proxy user capability (that is, plugins that can return a user
name different from that of the connecting user). For example, the PAM and Windows plugins support
proxy users. The native authentication plugins do not.

• Replication: Before MySQL 5.6.4, replicas can connect to the source server only through source
accounts that use native authentication. As of 5.6.4, replicas can also connect through source accounts
that use nonnative authentication if the required client-side plugin is available. If the plugin is built into
libmysqlclient, it is available by default. Otherwise, the plugin must be installed on the replica side
in the directory named by the replica plugin_dir system variable.

• FEDERATED tables: A FEDERATED table can access the remote table only through accounts on the
remote server that use native authentication.

Pluggable Authentication and Third-Party Connectors

Third-party connector developers can use the following guidelines to determine readiness of a connector to
take advantage of pluggable authentication capabilities and what steps to take to become more compliant:

• An existing connector to which no changes have been made uses native authentication and clients
that use the connector can connect to the server only through accounts that use native authentication.
However, you should test the connector against a recent version of the server to verify that such
connections still work without problem.

Exception: A connector might work with pluggable authentication without any changes if it links
to libmysqlclient dynamically (rather than statically) and it loads the current version of
libmysqlclient if that version is installed.

• To take advantage of pluggable authentication capabilities, a connector that is libmysqlclient-based
should be relinked against the current version of libmysqlclient. This enables the connector to
support connections though accounts that require client-side plugins now built into libmysqlclient
(such as the cleartext plugin needed for PAM authentication and the Windows plugin needed for
Windows native authentication). Linking with a current libmysqlclient also enables the connector to
access client-side plugins installed in the default MySQL plugin directory (typically the directory named
by the default value of the local server's plugin_dir system variable).

If a connector links to libmysqlclient dynamically, it must be ensured that the newer version of
libmysqlclient is installed on the client host and that the connector loads it at runtime.

• Another way for a connector to support a given authentication method is to implement it directly in
the client/server protocol. Connector/NET uses this approach to provide support for Windows native
authentication.

893

Proxy Users

• If a connector should be able to load client-side plugins from a directory different from the default
plugin directory, it must implement some means for client users to specify the directory. Possibilities for
this include a command-line option or environment variable from which the connector can obtain the
directory name. Standard MySQL client programs such as mysql and mysqladmin implement a --
plugin-dir option. See also C API Client Plugin Interface.

• Proxy user support by a connector depends, as described earlier in this section, on whether the
authentication methods that it supports permit proxy users.

6.2.12 Proxy Users

The MySQL server authenticates client connections using authentication plugins. The plugin that
authenticates a given connection may request that the connecting (external) user be treated as a different
user for privilege-checking purposes. This enables the external user to be a proxy for the second user; that
is, to assume the privileges of the second user:

• The external user is a “proxy user” (a user who can impersonate or become known as another user).

• The second user is a “proxied user” (a user whose identity and privileges can be assumed by a proxy
user).

This section describes how the proxy user capability works. For general information about authentication
plugins, see Section 6.2.11, “Pluggable Authentication”. For information about specific plugins, see
Section 6.4.1, “Authentication Plugins”. For information about writing authentication plugins that support
proxy users, see Implementing Proxy User Support in Authentication Plugins.

• Requirements for Proxy User Support

• Simple Proxy User Example

• Preventing Direct Login to Proxied Accounts

• Granting and Revoking the PROXY Privilege

• Default Proxy Users

• Default Proxy User and Anonymous User Conflicts

• Proxy User System Variables

Requirements for Proxy User Support

For proxying to occur for a given authentication plugin, these conditions must be satisfied:

• The plugin must support proxying.

• The account for the external proxy user must be set up to be authenticated by the plugin. Use the
CREATE USER or GRANT statement to associate an account with an authentication plugin.

• The account for the proxied user must exist and be granted the privileges to be assumed by the proxy
user. Use the CREATE USER and GRANT statements for this.

• Normally, the proxied user is configured so that it can be used only in proxying scenaries and not for
direct logins.

• The proxy user account must have the PROXY privilege for the proxied account. Use the GRANT
statement for this.

894

https://dev.mysql.com/doc/c-api/5.6/en/c-api-plugin-interface.html
https://dev.mysql.com/doc/extending-mysql/5.6/en/writing-authentication-plugins-proxy-users.html

Proxy Users

• For a client connecting to the proxy account to be treated as a proxy user, the authentication plugin must
return a user name different from the client user name, to indicate the user name of the proxied account
that defines the privileges to be assumed by the proxy user.

The proxy mechanism permits mapping only the external client user name to the proxied user name. There
is no provision for mapping host names:

• When a client connects to the server, the server determines the proper account based on the user name
passed by the client program and the host from which the client connects.

• If that account is a proxy account, the server attempts to determine the appropriate proxied account by
finding a match for a proxied account using the user name returned by the authentication plugin and the
host name of the proxy account. The host name in the proxied account is ignored.

Simple Proxy User Example

Consider the following account definitions:

-- create proxy account
CREATE USER 'employee_ext'@'localhost'
 IDENTIFIED WITH my_auth_plugin
 AS 'my_auth_string';

-- create proxied account and grant its privileges
CREATE USER 'employee'@'localhost'
 IDENTIFIED BY 'employee_password';
GRANT ALL
 ON employees.*
 TO 'employee'@'localhost';

-- grant to proxy account the PROXY privilege for proxied account
GRANT PROXY
 ON 'employee'@'localhost'
 TO 'employee_ext'@'localhost';

When a client connects as employee_ext from the local host, MySQL uses the plugin named
my_auth_plugin to perform authentication. Suppose that my_auth_plugin returns a user name of
employee to the server, based on the content of 'my_auth_string' and perhaps by consulting some
external authentication system. The name employee differs from employee_ext, so returning employee
serves as a request to the server to treat the employee_ext external user, for purposes of privilege
checking, as the employee local user.

In this case, employee_ext is the proxy user and employee is the proxied user.

The server verifies that proxy authentication for employee is possible for the employee_ext user by
checking whether employee_ext (the proxy user) has the PROXY privilege for employee (the proxied
user). If this privilege has not been granted, an error occurs. Otherwise, employee_ext assumes
the privileges of employee. The server checks statements executed during the client session by
employee_ext against the privileges granted to employee. In this case, employee_ext can access
tables in the employees database.

To ensure that the proxied account, employee, cannot be used directly, do not tell anyone else its
password. If you do not let anyone know the password for the account, clients cannot use it to connect
directly to the MySQL server.

When proxying occurs, the USER() and CURRENT_USER() functions can be used to see the difference
between the connecting user (the proxy user) and the account whose privileges apply during the current
session (the proxied user). For the example just described, those functions return these values:

mysql> SELECT USER(), CURRENT_USER();

895

Proxy Users

+------------------------+--------------------+
| USER() | CURRENT_USER() |
+------------------------+--------------------+
| employee_ext@localhost | employee@localhost |
+------------------------+--------------------+

In the CREATE USER statement that creates the proxy user account, the IDENTIFIED WITH clause
that names the proxy-supporting authentication plugin is optionally followed by an AS 'auth_string'
clause specifying a string that the server passes to the plugin when the user connects. If present, the string
provides information that helps the plugin determine how to map the proxy (external) client user name
to a proxied user name. It is up to each plugin whether it requires the AS clause. If so, the format of the
authentication string depends on how the plugin intends to use it. Consult the documentation for a given
plugin for information about the authentication string values it accepts.

Preventing Direct Login to Proxied Accounts

Proxied accounts generally are intended to be used only by means of proxy accounts. That is, clients
connect using a proxy account, then are mapped onto and assume the privileges of the appropriate
proxied user.

To ensure that a proxied account cannot be used directly, create the account with a password but do not
tell anyone else the password. If you do not let anyone know the password for the account, clients cannot
use it to connect directly to the MySQL server.

Granting and Revoking the PROXY Privilege

The PROXY privilege is needed to enable an external user to connect as and have the privileges of another
user. To grant this privilege, use the GRANT statement. For example:

GRANT PROXY ON 'proxied_user' TO 'proxy_user';

The statement creates a row in the mysql.proxies_priv grant table.

At connect time, proxy_user must represent a valid externally authenticated MySQL user, and
proxied_user must represent a valid locally authenticated user. Otherwise, the connection attempt fails.

The corresponding REVOKE syntax is:

REVOKE PROXY ON 'proxied_user' FROM 'proxy_user';

MySQL GRANT and REVOKE syntax extensions work as usual. Examples:

-- grant PROXY to multiple accounts
GRANT PROXY ON 'a' TO 'b', 'c', 'd';

-- revoke PROXY from multiple accounts
REVOKE PROXY ON 'a' FROM 'b', 'c', 'd';

-- grant PROXY to an account and enable the account to grant
-- PROXY to the proxied account
GRANT PROXY ON 'a' TO 'd' WITH GRANT OPTION;

-- grant PROXY to default proxy account
GRANT PROXY ON 'a' TO ''@'';

The PROXY privilege can be granted in these cases:

• By a user that has GRANT PROXY ... WITH GRANT OPTION for proxied_user.

• By proxied_user for itself: The value of USER() must exactly match CURRENT_USER() and
proxied_user, for both the user name and host name parts of the account name.

896

Proxy Users

The initial root account created during MySQL installation has the PROXY ... WITH GRANT OPTION
privilege for ''@'', that is, for all users and all hosts. This enables root to set up proxy users, as well as
to delegate to other accounts the authority to set up proxy users. For example, root can do this:

CREATE USER 'admin'@'localhost'
 IDENTIFIED BY 'admin_password';
GRANT PROXY
 ON ''@''
 TO 'admin'@'localhost'
 WITH GRANT OPTION;

Those statements create an admin user that can manage all GRANT PROXY mappings. For example,
admin can do this:

GRANT PROXY ON sally TO joe;

Default Proxy Users

To specify that some or all users should connect using a given authentication plugin, create a “blank”
MySQL account with an empty user name and host name (''@''), associate it with that plugin, and let
the plugin return the real authenticated user name (if different from the blank user). Suppose that there
exists a plugin named ldap_auth that implements LDAP authentication and maps connecting users onto
either a developer or manager account. To set up proxying of users onto these accounts, use the following
statements:

-- create default proxy account
CREATE USER ''@''
 IDENTIFIED WITH ldap_auth
 AS 'O=Oracle, OU=MySQL';

-- create proxied accounts
CREATE USER 'developer'@'localhost'
 IDENTIFIED BY 'developer_password';
CREATE USER 'manager'@'localhost'
 IDENTIFIED BY 'manager_password';

-- grant to default proxy account the
-- PROXY privilege for proxied accounts
GRANT PROXY
 ON 'manager'@'localhost'
 TO ''@'';
GRANT PROXY
 ON 'developer'@'localhost'
 TO ''@'';

As with proxied accounts created in previous examples, the password should be kept secret so that clients
cannot use the accounts to log in directly to the MySQL server.

Now assume that a client connects as follows:

$> mysql --user=myuser --password ...
Enter password: myuser_password

The server does not find myuser defined as a MySQL user. But because there is a blank user account
(''@'') that matches the client user name and host name, the server authenticates the client against
that account: The server invokes the ldap_auth authentication plugin and passes myuser and
myuser_password to it as the user name and password.

If the ldap_auth plugin finds in the LDAP directory that myuser_password is not the correct password
for myuser, authentication fails and the server rejects the connection.

If the password is correct and ldap_auth finds that myuser is a developer, it returns the user name
developer to the MySQL server, rather than myuser. Returning a user name different from the client

897

Proxy Users

user name of myuser signals to the server that it should treat myuser as a proxy. The server verifies that
''@'' can authenticate as developer (because ''@'' has the PROXY privilege to do so) and accepts
the connection. The session proceeds with myuser having the privileges of the developer proxied user.
(These privileges should be set up by the DBA using GRANT statements, not shown.) The USER() and
CURRENT_USER() functions return these values:

mysql> SELECT USER(), CURRENT_USER();
+------------------+---------------------+
| USER() | CURRENT_USER() |
+------------------+---------------------+
| myuser@localhost | developer@localhost |
+------------------+---------------------+

If the plugin instead finds in the LDAP directory that myuser is a manager, it returns manager as the user
name and the session proceeds with myuser having the privileges of the manager proxied user.

mysql> SELECT USER(), CURRENT_USER();
+------------------+-------------------+
| USER() | CURRENT_USER() |
+------------------+-------------------+
| myuser@localhost | manager@localhost |
+------------------+-------------------+

For simplicity, external authentication cannot be multilevel: Neither the credentials for developer nor
those for manager are taken into account in the preceding example. However, they are still used if a
client tries to connect and authenticate directly as the developer or manager account, which is why
those proxied accounts should be protected against direct login (see Preventing Direct Login to Proxied
Accounts).

Default Proxy User and Anonymous User Conflicts

If you intend to create a default proxy user, check for other existing “match any user” accounts that take
precedence over the default proxy user because they can prevent that user from working as intended.

In the preceding discussion, the default proxy user account has '' in the host part, which matches any
host. If you set up a default proxy user, take care to also check whether nonproxy accounts exist with the
same user part and '%' in the host part, because '%' also matches any host, but has precedence over ''
by the rules that the server uses to sort account rows internally (see Section 6.2.5, “Access Control, Stage
1: Connection Verification”).

Suppose that a MySQL installation includes these two accounts:

-- create default proxy account
CREATE USER ''@''
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';
-- create anonymous account
CREATE USER ''@'%'
 IDENTIFIED BY 'anon_user_password';

The first account (''@'') is intended as the default proxy user, used to authenticate connections for users
who do not otherwise match a more-specific account. The second account (''@'%') is an anonymous-
user account, which might have been created, for example, to enable users without their own account to
connect anonymously.

Both accounts have the same user part (''), which matches any user. And each account has a host
part that matches any host. Nevertheless, there is a priority in account matching for connection attempts
because the matching rules sort a host of '%' ahead of ''. For accounts that do not match any more-
specific account, the server attempts to authenticate them against ''@'%' (the anonymous user) rather
than ''@'' (the default proxy user). As a result, the default proxy account is never used.

898

Proxy Users

To avoid this problem, use one of the following strategies:

• Remove the anonymous account so that it does not conflict with the default proxy user.

• Use a more-specific default proxy user that matches ahead of the anonymous user. For example, to
permit only localhost proxy connections, use ''@'localhost':

CREATE USER ''@'localhost'
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';

In addition, modify any GRANT PROXY statements to name ''@'localhost' rather than ''@'' as the
proxy user.

Be aware that this strategy prevents anonymous-user connections from localhost.

• Use a named default account rather than an anonymous default account. For an example of
this technique, consult the instructions for using the authentication_windows plugin. See
Section 6.4.1.7, “Windows Pluggable Authentication”.

• Create multiple proxy users, one for local connections and one for “everything else” (remote
connections). This can be useful particularly when local users should have different privileges from
remote users.

Create the proxy users:

-- create proxy user for local connections
CREATE USER ''@'localhost'
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';
-- create proxy user for remote connections
CREATE USER ''@'%'
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';

Create the proxied users:

-- create proxied user for local connections
CREATE USER 'developer'@'localhost'
 IDENTIFIED BY 'some_password';
-- create proxied user for remote connections
CREATE USER 'developer'@'%'
 IDENTIFIED BY 'some_password';

Grant to each proxy account the PROXY privilege for the corresponding proxied account:

GRANT PROXY
 ON 'developer'@'localhost'
 TO ''@'localhost';
GRANT PROXY
 ON 'developer'@'%'
 TO ''@'%';

Finally, grant appropriate privileges to the local and remote proxied users (not shown).

Assume that the some_plugin/'some_auth_string' combination causes some_plugin to map
the client user name to developer. Local connections match the ''@'localhost' proxy user, which
maps to the 'developer'@'localhost' proxied user. Remote connections match the ''@'%' proxy
user, which maps to the 'developer'@'%' proxied user.

Proxy User System Variables

899

Setting Account Resource Limits

Two system variables help trace the proxy login process:

• proxy_user: This value is NULL if proxying is not used. Otherwise, it indicates the proxy user account.
For example, if a client authenticates through the ''@'' proxy account, this variable is set as follows:

mysql> SELECT @@proxy_user;
+--------------+
| @@proxy_user |
+--------------+
| ''@'' |
+--------------+

• external_user: Sometimes the authentication plugin may use an external user to authenticate to the
MySQL server. For example, when using Windows native authentication, a plugin that authenticates
using the windows API does not need the login ID passed to it. However, it still uses a Windows user
ID to authenticate. The plugin may return this external user ID (or the first 512 UTF-8 bytes of it) to the
server using the external_user read-only session variable. If the plugin does not set this variable, its
value is NULL.

6.2.13 Setting Account Resource Limits

One means of restricting client use of MySQL server resources is to set the global
max_user_connections system variable to a nonzero value. This limits the number of simultaneous
connections that can be made by any given account, but places no limits on what a client can do once
connected. In addition, setting max_user_connections does not enable management of individual
accounts. Both types of control are of interest to MySQL administrators.

To address such concerns, MySQL permits limits for individual accounts on use of these server resources:

• The number of queries an account can issue per hour

• The number of updates an account can issue per hour

• The number of times an account can connect to the server per hour

• The number of simultaneous connections to the server by an account

Any statement that a client can issue counts against the query limit, unless its results are served from the
query cache. Only statements that modify databases or tables count against the update limit.

An “account” in this context corresponds to a row in the mysql.user system table. That is, a connection
is assessed against the User and Host values in the user table row that applies to the connection. For
example, an account 'usera'@'%.example.com' corresponds to a row in the user table that has
User and Host values of usera and %.example.com, to permit usera to connect from any host in
the example.com domain. In this case, the server applies resource limits in this row collectively to all
connections by usera from any host in the example.com domain because all such connections use the
same account.

Before MySQL 5.0, an “account” was assessed against the actual host from which a user connects.
This older method of accounting may be selected by starting the server with the --old-style-
user-limits option. In this case, if usera connects simultaneously from host1.example.com and
host2.example.com, the server applies the account resource limits separately to each connection.
If usera connects again from host1.example.com, the server applies the limits for that connection
together with the existing connection from that host.

To establish resource limits for an account, use the GRANT statement (see Section 13.7.1.4, “GRANT
Statement”). Provide a WITH clause that names each resource to be limited. The default value for each

900

Setting Account Resource Limits

limit is zero (no limit). For example, to create a new account that can access the customer database, but
only in a limited fashion, issue these statements:

mysql> CREATE USER 'francis'@'localhost' IDENTIFIED BY 'frank';
mysql> GRANT ALL ON customer.* TO 'francis'@'localhost'
 -> WITH MAX_QUERIES_PER_HOUR 20
 -> MAX_UPDATES_PER_HOUR 10
 -> MAX_CONNECTIONS_PER_HOUR 5
 -> MAX_USER_CONNECTIONS 2;

The limit types need not all be named in the WITH clause, but those named can be present in any
order. The value for each per-hour limit should be an integer representing a count per hour. For
MAX_USER_CONNECTIONS, the limit is an integer representing the maximum number of simultaneous
connections by the account. If this limit is set to zero, the global max_user_connections system
variable value determines the number of simultaneous connections. If max_user_connections is also
zero, there is no limit for the account.

To modify limits for an existing account, use a GRANT USAGE statement at the global level (ON *.*). The
following statement changes the query limit for francis to 100:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
 -> WITH MAX_QUERIES_PER_HOUR 100;

The statement modifies only the limit value specified and leaves the account otherwise unchanged.

To remove a limit, set its value to zero. For example, to remove the limit on how many times per hour
francis can connect, use this statement:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
 -> WITH MAX_CONNECTIONS_PER_HOUR 0;

As mentioned previously, the simultaneous-connection limit for an account is determined from the
MAX_USER_CONNECTIONS limit and the max_user_connections system variable. Suppose that the
global max_user_connections value is 10 and three accounts have individual resource limits specified
as follows:

GRANT ... TO 'user1'@'localhost' WITH MAX_USER_CONNECTIONS 0;
GRANT ... TO 'user2'@'localhost' WITH MAX_USER_CONNECTIONS 5;
GRANT ... TO 'user3'@'localhost' WITH MAX_USER_CONNECTIONS 20;

user1 has a connection limit of 10 (the global max_user_connections value) because it has
a MAX_USER_CONNECTIONS limit of zero. user2 and user3 have connection limits of 5 and 20,
respectively, because they have nonzero MAX_USER_CONNECTIONS limits.

The server stores resource limits for an account in the user table row corresponding to the account. The
max_questions, max_updates, and max_connections columns store the per-hour limits, and the
max_user_connections column stores the MAX_USER_CONNECTIONS limit. (See Section 6.2.3, “Grant
Tables”.)

Resource-use counting takes place when any account has a nonzero limit placed on its use of any of the
resources.

As the server runs, it counts the number of times each account uses resources. If an account reaches
its limit on number of connections within the last hour, the server rejects further connections for the
account until that hour is up. Similarly, if the account reaches its limit on the number of queries or updates,
the server rejects further queries or updates until the hour is up. In all such cases, the server issues
appropriate error messages.

901

Troubleshooting Problems Connecting to MySQL

Resource counting occurs per account, not per client. For example, if your account has a query limit of 50,
you cannot increase your limit to 100 by making two simultaneous client connections to the server. Queries
issued on both connections are counted together.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a given
account:

• To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES statement.
The counts also can be reset by reloading the grant tables (for example, with a FLUSH PRIVILEGES
statement or a mysqladmin reload command).

• The counts for an individual account can be reset to zero by setting any of its limits again. Specify a limit
value equal to the value currently assigned to the account.

Per-hour counter resets do not affect the MAX_USER_CONNECTIONS limit.

All counts begin at zero when the server starts. Counts do not carry over through server restarts.

For the MAX_USER_CONNECTIONS limit, an edge case can occur if the account currently has open the
maximum number of connections permitted to it: A disconnect followed quickly by a connect can result in
an error (ER_TOO_MANY_USER_CONNECTIONS or ER_USER_LIMIT_REACHED) if the server has not fully
processed the disconnect by the time the connect occurs. When the server finishes disconnect processing,
another connection is once more permitted.

6.2.14 Troubleshooting Problems Connecting to MySQL

If you encounter problems when you try to connect to the MySQL server, the following items describe
some courses of action you can take to correct the problem.

• Make sure that the server is running. If it is not, clients cannot connect to it. For example, if an attempt to
connect to the server fails with a message such as one of those following, one cause might be that the
server is not running:

$> mysql
ERROR 2003: Can't connect to MySQL server on 'host_name' (111)
$> mysql
ERROR 2002: Can't connect to local MySQL server through socket
'/tmp/mysql.sock' (111)

• It might be that the server is running, but you are trying to connect using a TCP/IP port, named pipe, or
Unix socket file different from the one on which the server is listening. To correct this when you invoke
a client program, specify a --port option to indicate the proper port number, or a --socket option to
indicate the proper named pipe or Unix socket file. To find out where the socket file is, you can use this
command:

$> netstat -ln | grep mysql

• Make sure that the server has not been configured to ignore network connections or (if you are
attempting to connect remotely) that it has not been configured to listen only locally on its network
interfaces. If the server was started with the skip_networking system variable enabled, it does not
accept TCP/IP connections at all. If the server was started with the bind_address system variable
set to 127.0.0.1, it listens for TCP/IP connections only locally on the loopback interface and does not
accept remote connections.

• Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be configured
on the basis of the application being executed, or the port number used by MySQL for communication
(3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration to ensure that the
port has not been blocked. Under Windows, applications such as ZoneAlarm or Windows Firewall may
need to be configured not to block the MySQL port.

902

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_too_many_user_connections
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_user_limit_reached

Troubleshooting Problems Connecting to MySQL

• The grant tables must be properly set up so that the server can use them for access control. For
some distribution types (such as binary distributions on Windows, or RPM distributions on Linux),
the installation process initializes the MySQL data directory, including the mysql system database
containing the grant tables. For distributions that do not do this, you must initialize the grant tables
manually. For details, see Section 2.10, “Postinstallation Setup and Testing”.

To determine whether you need to initialize the grant tables, look for a mysql directory under the
data directory. (The data directory normally is named data or var and is located under your MySQL
installation directory.) Make sure that you have a file named user.MYD in the mysql database directory.
If not, execute the mysql_install_db program. After running this program and starting the server, test
the initial privileges by executing this command:

$> mysql -u root

The server should let you connect without error.

• After a fresh installation, you should connect to the server and set up your users and their access
permissions:

$> mysql -u root mysql

The server should let you connect because the MySQL root user has no password initially. That is
also a security risk, so setting the password for the root accounts is something you should do while
you're setting up your other MySQL accounts. For instructions on setting the initial passwords, see
Section 2.10.4, “Securing the Initial MySQL Accounts”.

• If you have updated an existing MySQL installation to a newer version, did you perform the MySQL
upgrade procedure? If not, do so. The structure of the grant tables changes occasionally when new
capabilities are added, so after an upgrade you should always make sure that your tables have the
current structure. For instructions, see Section 2.11, “Upgrading MySQL”.

• If a client program receives the following error message when it tries to connect, it means that the server
expects passwords in a newer format than the client is capable of generating:

$> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

For information on how to deal with this, see Section 6.1.2.4, “Password Hashing in MySQL”, and
Section B.3.2.4, “Client does not support authentication protocol”.

• Remember that client programs use connection parameters specified in option files or environment
variables. If a client program seems to be sending incorrect default connection parameters when you
have not specified them on the command line, check any applicable option files and your environment.
For example, if you get Access denied when you run a client without any options, make sure that you
have not specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the --no-defaults
option. For example:

$> mysqladmin --no-defaults -u root version

The option files that clients use are listed in Section 4.2.2.2, “Using Option Files”. Environment variables
are listed in Section 4.9, “Environment Variables”.

• If you get the following error, it means that you are using an incorrect root password:

$> mysqladmin -u root -pxxxx ver
Access denied for user 'root'@'localhost' (using password: YES)

903

Troubleshooting Problems Connecting to MySQL

If the preceding error occurs even when you have not specified a password, it means that you have
an incorrect password listed in some option file. Try the --no-defaults option as described in the
previous item.

For information on changing passwords, see Section 6.2.9, “Assigning Account Passwords”.

If you have lost or forgotten the root password, see Section B.3.3.2, “How to Reset the Root
Password”.

• If you change a password by using SET PASSWORD, INSERT, or UPDATE, you must encrypt the
password using the PASSWORD() function. If you do not use PASSWORD() for these statements, the
password does not work. For example, the following statement assigns a password, but fails to encrypt
it, so the user is not able to connect afterward:

SET PASSWORD FOR 'abe'@'host_name' = 'eagle';

Instead, set the password like this:

SET PASSWORD FOR 'abe'@'host_name' = PASSWORD('eagle');

The PASSWORD() function is unnecessary when you specify a password using the CREATE USER
or GRANT statements or the mysqladmin password command. Each of those automatically uses
PASSWORD() to encrypt the password. See Section 6.2.9, “Assigning Account Passwords”, and
Section 13.7.1.2, “CREATE USER Statement”.

• localhost is a synonym for your local host name, and is also the default host to which clients try to
connect if you specify no host explicitly.

You can use a --host=127.0.0.1 option to name the server host explicitly. This makes a TCP/IP
connection to the local mysqld server. You can also use TCP/IP by specifying a --host option that
uses the actual host name of the local host. In this case, the host name must be specified in a user
table row on the server host, even though you are running the client program on the same host as the
server.

• The Access denied error message tells you who you are trying to log in as, the client host from which
you are trying to connect, and whether you were using a password. Normally, you should have one
row in the user table that exactly matches the host name and user name that were given in the error
message. For example, if you get an error message that contains using password: NO, it means that
you tried to log in without a password.

• If you get an Access denied error when trying to connect to the database with mysql -u
user_name, you may have a problem with the user table. Check this by executing mysql -u root
mysql and issuing this SQL statement:

SELECT * FROM user;

The result should include a row with the Host and User columns matching your client's host name and
your MySQL user name.

• If the following error occurs when you try to connect from a host other than the one on which the MySQL
server is running, it means that there is no row in the user table with a Host value that matches the
client host:

Host ... is not allowed to connect to this MySQL server

You can fix this by setting up an account for the combination of client host name and user name that you
are using when trying to connect.

904

Troubleshooting Problems Connecting to MySQL

If you do not know the IP address or host name of the machine from which you are connecting, you
should put a row with '%' as the Host column value in the user table. After trying to connect from the
client machine, use a SELECT USER() query to see how you really did connect. Then change the '%'
in the user table row to the actual host name that shows up in the log. Otherwise, your system is left
insecure because it permits connections from any host for the given user name.

On Linux, another reason that this error might occur is that you are using a binary MySQL version that
is compiled with a different version of the glibc library than the one you are using. In this case, you
should either upgrade your operating system or glibc, or download a source distribution of MySQL
version and compile it yourself. A source RPM is normally trivial to compile and install, so this is not a big
problem.

• If you specify a host name when trying to connect, but get an error message where the host name is not
shown or is an IP address, it means that the MySQL server got an error when trying to resolve the IP
address of the client host to a name:

$> mysqladmin -u root -pxxxx -h some_hostname ver
Access denied for user 'root'@'' (using password: YES)

If you try to connect as root and get the following error, it means that you do not have a row in the user
table with a User column value of 'root' and that mysqld cannot resolve the host name for your
client:

Access denied for user ''@'unknown'

These errors indicate a DNS problem. To fix it, execute mysqladmin flush-hosts to reset the
internal DNS host cache. See Section 5.1.11.2, “DNS Lookups and the Host Cache”.

Some permanent solutions are:

• Determine what is wrong with your DNS server and fix it.

• Specify IP addresses rather than host names in the MySQL grant tables.

• Put an entry for the client machine name in /etc/hosts on Unix or \windows\hosts on Windows.

• Start mysqld with the skip_name_resolve system variable enabled.

• Start mysqld with the --skip-host-cache option.

• On Unix, if you are running the server and the client on the same machine, connect to localhost.
For connections to localhost, MySQL programs attempt to connect to the local server by using a
Unix socket file, unless there are connection parameters specified to ensure that the client makes a
TCP/IP connection. For more information, see Section 4.2.4, “Connecting to the MySQL Server Using
Command Options”.

• On Windows, if you are running the server and the client on the same machine and the server
supports named pipe connections, connect to the host name . (period). Connections to . use a
named pipe rather than TCP/IP.

• If mysql -u root works but mysql -h your_hostname -u root results in Access denied
(where your_hostname is the actual host name of the local host), you may not have the correct
name for your host in the user table. A common problem here is that the Host value in the user
table row specifies an unqualified host name, but your system's name resolution routines return a
fully qualified domain name (or vice versa). For example, if you have a row with host 'pluto' in the
user table, but your DNS tells MySQL that your host name is 'pluto.example.com', the row does

905

Troubleshooting Problems Connecting to MySQL

not work. Try adding a row to the user table that contains the IP address of your host as the Host
column value. (Alternatively, you could add a row to the user table with a Host value that contains a
wildcard (for example, 'pluto.%'). However, use of Host values ending with % is insecure and is not
recommended!)

• If mysql -u user_name works but mysql -u user_name some_db does not, you have not granted
access to the given user for the database named some_db.

• If mysql -u user_name works when executed on the server host, but mysql -h host_name -u
user_name does not work when executed on a remote client host, you have not enabled access to the
server for the given user name from the remote host.

• If you cannot figure out why you get Access denied, remove from the user table all rows that have
Host values containing wildcards (rows that contain '%' or '_' characters). A very common error is
to insert a new row with Host='%' and User='some_user', thinking that this enables you to specify
localhost to connect from the same machine. The reason that this does not work is that the default
privileges include a row with Host='localhost' and User=''. Because that row has a Host value
'localhost' that is more specific than '%', it is used in preference to the new row when connecting
from localhost! The correct procedure is to insert a second row with Host='localhost' and
User='some_user', or to delete the row with Host='localhost' and User=''. After deleting
the row, remember to issue a FLUSH PRIVILEGES statement to reload the grant tables. See also
Section 6.2.5, “Access Control, Stage 1: Connection Verification”.

• If you are able to connect to the MySQL server, but get an Access denied message whenever you
issue a SELECT ... INTO OUTFILE or LOAD DATA statement, your row in the user table does not
have the FILE privilege enabled.

• If you change the grant tables directly (for example, by using INSERT, UPDATE, or DELETE statements)
and your changes seem to be ignored, remember that you must execute a FLUSH PRIVILEGES
statement or a mysqladmin flush-privileges command to cause the server to reload the privilege
tables. Otherwise, your changes have no effect until the next time the server is restarted. Remember
that after you change the root password with an UPDATE statement, you do not need to specify the
new password until after you flush the privileges, because the server does not yet know that you have
changed the password.

• If your privileges seem to have changed in the middle of a session, it may be that a MySQL administrator
has changed them. Reloading the grant tables affects new client connections, but it also affects existing
connections as indicated in Section 6.2.8, “When Privilege Changes Take Effect”.

• If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to the server
with mysql -u user_name db_name or mysql -u user_name -ppassword db_name. If
you are able to connect using the mysql client, the problem lies with your program, not with the
access privileges. (There is no space between -p and the password; you can also use the --
password=password syntax to specify the password. If you use the -p or --password option with no
password value, MySQL prompts you for the password.)

• For testing purposes, start the mysqld server with the --skip-grant-tables option. Then you
can change the MySQL grant tables and use the SHOW GRANTS statement to check whether your
modifications have the desired effect. When you are satisfied with your changes, execute mysqladmin
flush-privileges to tell the mysqld server to reload the privileges. This enables you to begin using
the new grant table contents without stopping and restarting the server.

• If everything else fails, start the mysqld server with a debugging option (for example, --
debug=d,general,query). This prints host and user information about attempted connections, as well
as information about each command issued. See Section 5.8.3, “The DBUG Package”.

906

SQL-Based Account Activity Auditing

• If you have any other problems with the MySQL grant tables and ask on the MySQL Community Slack,
always provide a dump of the MySQL grant tables. You can dump the tables with the mysqldump
mysql command. To file a bug report, see the instructions at Section 1.5, “How to Report Bugs or
Problems”. In some cases, you may need to restart mysqld with --skip-grant-tables to run
mysqldump.

6.2.15 SQL-Based Account Activity Auditing

Applications can use the following guidelines to perform SQL-based auditing that ties database activity to
MySQL accounts.

MySQL accounts correspond to rows in the mysql.user system table. When a client connects
successfully, the server authenticates the client to a particular row in this table. The User
and Host column values in this row uniquely identify the account and correspond to the
'user_name'@'host_name' format in which account names are written in SQL statements.

The account used to authenticate a client determines which privileges the client has. Normally, the
CURRENT_USER() function can be invoked to determine which account this is for the client user. Its value
is constructed from the User and Host columns of the user table row for the account.

However, there are circumstances under which the CURRENT_USER() value corresponds not to the client
user but to a different account. This occurs in contexts when privilege checking is not based the client's
account:

• Stored routines (procedures and functions) defined with the SQL SECURITY DEFINER characteristic

• Views defined with the SQL SECURITY DEFINER characteristic

• Triggers and events

In those contexts, privilege checking is done against the DEFINER account and CURRENT_USER() refers
to that account, not to the account for the client who invoked the stored routine or view or who caused
the trigger to activate. To determine the invoking user, you can call the USER() function, which returns a
value indicating the actual user name provided by the client and the host from which the client connected.
However, this value does not necessarily correspond directly to an account in the user table, because the
USER() value never contains wildcards, whereas account values (as returned by CURRENT_USER()) may
contain user name and host name wildcards.

For example, a blank user name matches any user, so an account of ''@'localhost' enables clients to
connect as an anonymous user from the local host with any user name. In this case, if a client connects as
user1 from the local host, USER() and CURRENT_USER() return different values:

mysql> SELECT USER(), CURRENT_USER();
+-----------------+----------------+
| USER() | CURRENT_USER() |
+-----------------+----------------+
| user1@localhost | @localhost |
+-----------------+----------------+

The host name part of an account can contain wildcards, too. If the host name contains a '%' or
'_' pattern character or uses netmask notation, the account can be used for clients connecting from
multiple hosts and the CURRENT_USER() value does not indicate which one. For example, the account
'user2'@'%.example.com' can be used by user2 to connect from any host in the example.com
domain. If user2 connects from remote.example.com, USER() and CURRENT_USER() return different
values:

mysql> SELECT USER(), CURRENT_USER();
+--------------------------+---------------------+

907

https://mysqlcommunity.slack.com/

Using Encrypted Connections

| USER() | CURRENT_USER() |
+--------------------------+---------------------+
| user2@remote.example.com | user2@%.example.com |
+--------------------------+---------------------+

If an application must invoke USER() for user auditing (for example, if it does auditing from within triggers)
but must also be able to associate the USER() value with an account in the user table, it is necessary
to avoid accounts that contain wildcards in the User or Host column. Specifically, do not permit User to
be empty (which creates an anonymous-user account), and do not permit pattern characters or netmask
notation in Host values. All accounts must have a nonempty User value and literal Host value.

With respect to the previous examples, the ''@'localhost' and 'user2'@'%.example.com'
accounts should be changed not to use wildcards:

RENAME USER ''@'localhost' TO 'user1'@'localhost';
RENAME USER 'user2'@'%.example.com' TO 'user2'@'remote.example.com';

If user2 must be able to connect from several hosts in the example.com domain, there should be a
separate account for each host.

To extract the user name or host name part from a CURRENT_USER() or USER() value, use the
SUBSTRING_INDEX() function:

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',1);
+---------------------------------------+
| SUBSTRING_INDEX(CURRENT_USER(),'@',1) |
+---------------------------------------+
| user1 |
+---------------------------------------+

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',-1);
+--+
| SUBSTRING_INDEX(CURRENT_USER(),'@',-1) |
+--+
| localhost |
+--+

6.3 Using Encrypted Connections

With an unencrypted connection between the MySQL client and the server, someone with access to the
network could watch all your traffic and inspect the data being sent or received between client and server.

When you must move information over a network in a secure fashion, an unencrypted connection
is unacceptable. To make any kind of data unreadable, use encryption. Encryption algorithms must
include security elements to resist many kinds of known attacks such as changing the order of encrypted
messages or replaying data twice.

MySQL supports encrypted connections between clients and the server using the TLS (Transport Layer
Security) protocol. TLS is sometimes referred to as SSL (Secure Sockets Layer) but MySQL does not
actually use the SSL protocol for encrypted connections because its encryption is weak (see Section 6.3.2,
“Encrypted Connection TLS Protocols and Ciphers”).

TLS uses encryption algorithms to ensure that data received over a public network can be trusted. It has
mechanisms to detect data change, loss, or replay. TLS also incorporates algorithms that provide identity
verification using the X.509 standard.

X.509 makes it possible to identify someone on the Internet. In basic terms, there should be some entity
called a “Certificate Authority” (or CA) that assigns electronic certificates to anyone who needs them.
Certificates rely on asymmetric encryption algorithms that have two encryption keys (a public key and a

908

Configuring MySQL to Use Encrypted Connections

secret key). A certificate owner can present the certificate to another party as proof of identity. A certificate
consists of its owner's public key. Any data encrypted using this public key can be decrypted only using the
corresponding secret key, which is held by the owner of the certificate.

MySQL can be compiled for encrypted-connection support using OpenSSL or yaSSL. For a comparison
of the two packages, see Section 6.3.4, “SSL Library-Dependent Capabilities” For information about the
encryption protocols and ciphers each package supports, see Section 6.3.2, “Encrypted Connection TLS
Protocols and Ciphers”.

Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.6.46. As of MySQL 5.6.46, support for yaSSL is removed and all
MySQL builds use OpenSSL.

MySQL programs attempt to connect using encryption if the proper options are given and the server
supports encrypted connections. For information about options that affect use of encrypted connections,
see Section 6.3.1, “Configuring MySQL to Use Encrypted Connections” and Command Options for
Encrypted Connections.

MySQL performs encryption on a per-connection basis, and use of encryption for a given user can be
optional or mandatory. This enables you to choose an encrypted or unencrypted connection according
to the requirements of individual applications. For information on how to require users to use encrypted
connections, see the discussion of the REQUIRE clause of the GRANT statement in Section 13.7.1.4,
“GRANT Statement”.

Encrypted connections are not used by default. For applications that require the security provided by
encrypted connections, the extra computation to encrypt the data is worthwhile.

Encrypted connections can be used between source and replica replication servers. See Section 17.3.8,
“Setting Up Replication to Use Encrypted Connections”.

For information about using encrypted connections from the MySQL C API, see Support for Encrypted
Connections.

It is also possible to connect using encryption from within an SSH connection to the MySQL server host.
For an example, see Section 6.3.5, “Connecting to MySQL Remotely from Windows with SSH”.

6.3.1 Configuring MySQL to Use Encrypted Connections

To enable encrypted connections, your MySQL distribution must be built with SSL support, as described
in Section 2.9.6, “Configuring SSL Library Support”. In addition, several configuration parameters are
available to indicate whether to use encrypted connections, and to specify the appropriate certificate and
key files. This section provides general guidance about configuring the server and clients for encrypted
connections:

• Server-Side Startup Configuration for Encrypted Connections

• Client-Side Configuration for Encrypted Connections

Encrypted connections also can be used in other contexts, as discussed in these additional sections:

• Between source and replica servers. See Section 17.3.8, “Setting Up Replication to Use Encrypted
Connections”.

• By client programs that are based on the MySQL C API. See Support for Encrypted Connections.

909

https://dev.mysql.com/doc/c-api/5.6/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/c-api/5.6/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/c-api/5.6/en/c-api-encrypted-connections.html

Configuring MySQL to Use Encrypted Connections

Note

If the server is compiled against OpenSSL, clients from MySQL 5.6 versions older
than 5.6.17 are not able to connect to the server using encrypted connections if
the client library is compiled using yaSSL. Either use a client and server compiled
using the same SSL package, or upgrade to clients compiled against a client library
version from MySQL 5.6.17 or higher.

Instructions for creating any required certificate and key files are available in Section 6.3.3, “Creating SSL
and RSA Certificates and Keys”.

Server-Side Startup Configuration for Encrypted Connections

These system variables on the server side specify the certificate and key files the server uses when
permitting clients to establish encrypted connections:

• ssl_ca: The path name of the Certificate Authority (CA) certificate file. (ssl_capath is similar but
specifies the path name of a directory of CA certificate files.)

• ssl_cert: The path name of the server public key certificate file. This certificate can be sent to the
client and authenticated against the CA certificate that it has.

• ssl_key: The path name of the server private key file.

For example, to enable the server for encrypted connections, start it with these lines in the my.cnf file,
changing the file names as necessary:

[mysqld]
ssl_ca=ca.pem
ssl_cert=server-cert.pem
ssl_key=server-key.pem

Each certificate and key system variable names a file in PEM format. If you have a MySQL source
distribution, you can test your setup using the demonstration certificate and key files in its mysql-test/
std_data directory.

MySQL also provides these system variables for server-side encrypted-connection control:

• ssl_cipher: The list of permissible ciphers for connection encryption.

• ssl_crl: The path name of the file containing certificate revocation lists. (ssl_crlpath is similar but
specifies the path name of a directory of certificate revocation-list files.)

Client-Side Configuration for Encrypted Connections

For a complete list of client options related to establishment of encrypted connections, see Command
Options for Encrypted Connections.

These options on the client side identify the certificate and key files clients use when establishing
encrypted connections to the server. They are similar to the ssl_ca, ssl_cert, and ssl_key system
variables used on the server side, but --ssl-cert and --ssl-key identify the client public and private
key:

• --ssl-ca: The path name of the Certificate Authority (CA) certificate file. This option, if used, must
specify the same certificate used by the server. (--ssl-capath is similar but specifies the path name
of a directory of CA certificate files.)

• --ssl-cert: The path name of the client public key certificate file.

910

Configuring MySQL to Use Encrypted Connections

• --ssl-key: The path name of the client private key file.

For additional security relative to that provided by the default encryption, clients can supply a CA certificate
matching the one used by the server and enable host name identity verification. In this way, the server and
client place their trust in the same CA certificate and the client verifies that the host to which it connected is
the one intended:

• To specify the CA certificate, use --ssl-ca (or --ssl-capath).

• To enable host name identity verification as well, specify --ssl-verify-server-cert.

• To require an encrypted connection, specify --ssl-mode=REQUIRED.

• --ssl-cipher: The list of permissible ciphers for connection encryption.

• --ssl-crl: The path name of the file containing certificate revocation lists. (--ssl-crlpath is similar
but specifies the path name of a directory of certificate revocation-list files.)

Important

--ssl-mode=REQUIRED produces an encrypted connection. However, to help
prevent sophisticated man-in-the-middle attacks, it is also important for the client
to verify the server’s identity. Adding the --ssl-verify-server-cert option
achieves this. To implement that additional option, you must first ensure that the
CA certificate for the server is reliably available to all the clients that use it in your
environment, otherwise availability issues will result.

Depending on the encryption requirements of the MySQL account used by a client, the client may be
required to specify certain options to connect using encryption to the MySQL server.

Suppose that you want to connect using an account that has no special encryption requirements or that
was created using a GRANT statement that included the REQUIRE SSL clause. As a recommended set of
encrypted-connection options, start the server with at least the ssl_cert and ssl_key system variables
set, and invoke the client with the --ssl-ca (or --ssl-capath) option. A client can connect using
encryption like this:

mysql --ssl-ca=ca.pem

To require that a client certificate also be specified, create the account using a REQUIRE X509 clause.
Then the client must also specify the proper client key and certificate files or the server rejects the
connection (enter the command on a single line):

mysql --ssl-ca=ca.pem
 --ssl-cert=client-cert.pem
 --ssl-key=client-key.pem

For additional information about the REQUIRE clause, see Section 13.7.1.4, “GRANT Statement”.

To prevent use of encryption and override other --ssl-xxx options, invoke the client program with --
ssl=0 or a synonym (--skip-ssl, --disable-ssl):

mysql --ssl=0

To determine whether the current connection with the server uses encryption, check the session value of
the Ssl_cipher status variable. If the value is empty, the connection is not encrypted. Otherwise, the
connection is encrypted and the value indicates the encryption cipher. For example:

mysql> SHOW SESSION STATUS LIKE 'Ssl_cipher';

911

Encrypted Connection TLS Protocols and Ciphers

+---------------+--------------------+
| Variable_name | Value |
+---------------+--------------------+
| Ssl_cipher | DHE-RSA-AES256-SHA |
+---------------+--------------------+

For the mysql client, an alternative is to use the STATUS or \s command and check the SSL line:

mysql> \s
...
SSL: Not in use
...

Or:

mysql> \s
...
SSL: Cipher in use is DHE-RSA-AES256-SHA
...

6.3.2 Encrypted Connection TLS Protocols and Ciphers

MySQL supports multiple TLS protocols and ciphers, and enables configuring which ciphers to permit for
encrypted connections. It is also possible to determine which protocol and cipher the current session uses.

• Supported Connection TLS Protocols

• Connection TLS Protocol Configuration

• Connection Cipher Configuration

• Connection TLS Protocol Negotiation

• Monitoring Current Client Session TLS Protocol and Cipher

Supported Connection TLS Protocols

MySQL supports encrypted connections using the TLSv1 protocol and (as of MySQL 5.6.46) TLSv1.1 and
TLSv1.2, listed in order from less secure to more secure.

As of MySQL 5.6.23, SSL 2.0 and SSL 3.0 are explicitly disabled because they provide weak encryption.

The set of protocols actually permitted for connections is subject to multiple factors:

• MySQL configuration. Permitted TLS protocols on the server side and client side must include at least
one protocol in common or connection attempts cannot negotiate a protocol to use. For details, see
Connection TLS Protocol Negotiation.

• System-wide host configuration. The host system may permit only certain TLS protocols, which means
that MySQL connections cannot use nonpermitted protocols even if MySQL itself permits them:

• Suppose that MySQL permits TLSv1, TLSv1.1, and TLSv1.2, but your host system configuration
permits only connections that use TLSv1.2 or higher. In this case, you cannot establish MySQL
connections that use TLSv1 or TLSv1.1, even though MySQL permits them, because the host system
does not permit them.

• If MySQL permits TLSv1, TLSv1.1, and TLSv1.2, but your host system configuration permits only
connections that use TLSv1.3 or higher, you cannot establish MySQL connections at all, because no
protocol permitted by MySQL is permitted by the host system.

912

Encrypted Connection TLS Protocols and Ciphers

Workarounds for this issue include:

• Change the system-wide host configuration to permit additional TLS protocols. Consult your operating
system documentation for instructions. For example, your system may have an /etc/ssl/
openssl.cnf file that contains these lines to restrict TLS protocols to TLSv1.2 or higher:

[system_default_sect]
MinProtocol = TLSv1.2

Changing the value to a lower protocol version or None makes the system more permissive. This
workaround has the disadvantage that permitting lower (less secure) protocols may have adverse
security consequences.

• If you cannot or prefer not to change the host system TLS configuration, change MySQL applications
to use higher (more secure) TLS protocols that are permitted by the host system. This may not be
possible for older versions of MySQL that support only lower protocol versions. For example, TLSv1 is
the only supported protocol prior to MySQL 5.6.46, so attempts to connect to a pre-5.6.46 server fail
even if the client is from a newer MySQL version that supports higher protocol versions. In such cases,
an upgrade to a version of MySQL that supports additional TLS versions may be required.

• The SSL library. If the SSL library does not support a particular protocol, neither does MySQL, and any
parts of the following discussion that specify that protocol do not apply.

• When compiled using OpenSSL 1.0.1 or higher, MySQL supports the TLSv1, TLSv1.1, and TLSv1.2
protocols as of MySQL 5.6.46, and TLS1v1 prior to 5.6.46.

• When compiled using yaSSL, MySQL supports the TLSv1 protocol.

Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.6.46. As of MySQL 5.6.46, support for yaSSL is removed and
all MySQL builds use OpenSSL.

Connection TLS Protocol Configuration

MySQL supports encrypted connections using the TLSv1 protocol and (as of MySQL 5.6.46) TLSv1.1 and
TLSv1.2. Protocol support is built in and cannot be configured as is possible in MySQL 5.7 and higher. The
protocol chosen for a given connection depends on the negotiation process. See Connection TLS Protocol
Negotiation.

Connection Cipher Configuration

A default set of ciphers applies to encrypted connections, which can be overridden by explicitly configuring
the permitted ciphers. During connection establishment, both sides of a connection must permit some
cipher in common or the connection fails. Of the permitted ciphers common to both sides, the SSL library
chooses the one supported by the provided certificate that has the highest priority.

To specify a cipher or ciphers for encrypted connections, set the ssl_cipher system variable on the
server side, and use the --ssl-cipher option for client programs.

For source/replica replication, the MASTER_SSL_CIPHER option for the CHANGE MASTER TO statement
specifies which ciphers a replica server permits for connections to the source.

To determine which ciphers a given server supports, check the session value of the Ssl_cipher_list
status variable:

913

Encrypted Connection TLS Protocols and Ciphers

SHOW SESSION STATUS LIKE 'Ssl_cipher_list';

The Ssl_cipher_list status variable lists the possible SSL ciphers (empty for non-SSL connections).
The set of available ciphers depends on your MySQL version and whether MySQL was compiled using
OpenSSL or yaSSL, and (for OpenSSL) the library version used to compile MySQL.

MySQL passes a default cipher list to the SSL library.

MySQL passes this default cipher list to OpenSSL:

AES256-GCM-SHA384
AES256-SHA
AES256-SHA256
CAMELLIA256-SHA
DES-CBC3-SHA
DHE-DSS-AES256-GCM-SHA384
DHE-DSS-AES256-SHA
DHE-DSS-AES256-SHA256
DHE-DSS-CAMELLIA256-SHA
DHE-RSA-AES256-GCM-SHA384
DHE-RSA-AES256-SHA
DHE-RSA-AES256-SHA256
DHE-RSA-CAMELLIA256-SHA
ECDH-ECDSA-AES256-GCM-SHA384
ECDH-ECDSA-AES256-SHA
ECDH-ECDSA-AES256-SHA384
ECDH-ECDSA-DES-CBC3-SHA
ECDH-RSA-AES256-GCM-SHA384
ECDH-RSA-AES256-SHA
ECDH-RSA-AES256-SHA384
ECDH-RSA-DES-CBC3-SHA
ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES128-SHA
ECDHE-ECDSA-AES128-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDHE-ECDSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA384
ECDHE-ECDSA-DES-CBC3-SHA
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES128-SHA
ECDHE-RSA-AES128-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-RSA-AES256-SHA
ECDHE-RSA-AES256-SHA384
ECDHE-RSA-DES-CBC3-SHA
EDH-DSS-DES-CBC3-SHA
EDH-RSA-DES-CBC3-SHA
PSK-3DES-EDE-CBC-SHA
PSK-AES256-CBC-SHA
SRP-DSS-3DES-EDE-CBC-SHA
SRP-DSS-AES-128-CBC-SHA
SRP-DSS-AES-256-CBC-SHA
SRP-RSA-3DES-EDE-CBC-SHA
SRP-RSA-AES-128-CBC-S
SRP-RSA-AES-256-CBC-SHA

MySQL passes this default cipher list to yaSSL:

AES128-RMD
AES128-SHA
AES256-RMD
AES256-SHA
DES-CBC-SHA
DES-CBC3-RMD
DES-CBC3-SHA
DHE-RSA-AES128-RMD

914

Encrypted Connection TLS Protocols and Ciphers

DHE-RSA-AES128-SHA
DHE-RSA-AES256-RMD
DHE-RSA-AES256-SHA
DHE-RSA-DES-CBC3-RMD
EDH-RSA-DES-CBC-SHA
EDH-RSA-DES-CBC3-SHA
RC4-MD5
RC4-SHA

Connection TLS Protocol Negotiation

Connection attempts in MySQL negotiate use of the highest TLS protocol version available on both sides
for which a protocol-compatible encryption cipher is available on both sides. The negotiation process
depends on factors such as the SSL library used to compile the server and client, the TLS protocol and
encryption cipher configuration, and which key size is used:

• For a connection attempt to succeed, the server and client TLS protocol configuration must permit some
protocol in common.

• Similarly, the server and client encryption cipher configuration must permit some cipher in common.
A given cipher may work only with particular TLS protocols, so a protocol available to the negotiation
process is not chosen unless there is also a compatible cipher.

• If the server and client are compiled using OpenSSL, TLSv1.2 is used if possible. If either or both the
server and client are compiled using yaSSL, only TLSv1 is possible. (“Possible” means that server and
client configuration both must permit the indicated protocol, and both must also permit some protocol-
compatible encryption cipher.) Otherwise, MySQL continues through the list of available protocols,
proceeding from more secure protocols to less secure.

• TLSv1.2 does not work with all ciphers that have a key size of 512 bits or less. To use this protocol with
such a key, set the ssl_cipher system variable on the server side or use the --ssl-cipher client
option to specify the cipher name explicitly:

AES128-SHA
AES128-SHA256
AES256-SHA
AES256-SHA256
CAMELLIA128-SHA
CAMELLIA256-SHA
DES-CBC3-SHA
DHE-RSA-AES256-SHA
RC4-MD5
RC4-SHA
SEED-SHA

• For better security, use a certificate with an RSA key size of at least 2048 bits.

If the server and client do not have a permitted protocol in common, and a protocol-compatible cipher in
common, the server terminates the connection request. Examples:

• If the server is from MySQL 5.7 or higher and is configured with tls_version=TLSv1.1,TLSv1.2:

• Connection attempts fail for pre-MySQL 5.6.46 clients that support only TLSv1.

• Similarly, connection attempts fail for pre-MySQL 5.6.46 replicas that support only TLSv1.

• If the server is a pre-MySQL 5.6.46 server that supports only TLSv1:

• Connection attempts fail for MySQL 5.7 or higher clients invoked with --tls-
version=TLSv1.1,TLSv1.2.

915

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_tls-version

Creating SSL and RSA Certificates and Keys

• Similarly, connection attempts fail for MySQL 5.7 or higher replicas configured with
MASTER_TLS_VERSION = 'TLSv1.1,TLSv1.2'.

Monitoring Current Client Session TLS Protocol and Cipher

To determine which encryption TLS protocol and cipher the current client session uses, check the session
values of the Ssl_version and Ssl_cipher status variables:

mysql> SHOW SESSION STATUS LIKE 'Ssl_version';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Ssl_version | TLSv1 |
+---------------+-------+
mysql> SHOW SESSION STATUS LIKE 'Ssl_cipher';
+---------------+--------------------+
| Variable_name | Value |
+---------------+--------------------+
| Ssl_cipher | DHE-RSA-AES256-SHA |
+---------------+--------------------+

If the connection is not encrypted, both variables have an empty value.

6.3.3 Creating SSL and RSA Certificates and Keys

The following discussion describes how to create the files required for SSL and RSA support in MySQL.
File creation is done by invoking the openssl command.

SSL certificate and key files enable MySQL to support encrypted connections using SSL. See Section 6.3,
“Using Encrypted Connections”.

RSA key files enable MySQL to support secure password exchange over unencrypted connections for
accounts authenticated by the sha256_password plugin. See Section 6.4.1.4, “SHA-256 Pluggable
Authentication”.

6.3.3.1 Creating SSL Certificates and Keys Using openssl

This section describes how to use the openssl command to set up SSL certificate and key files for use
by MySQL servers and clients. The first example shows a simplified procedure such as you might use
from the command line. The second shows a script that contains more detail. The first two examples are
intended for use on Unix and both use the openssl command that is part of OpenSSL. The third example
describes how to set up SSL files on Windows.

Important

Whatever method you use to generate the certificate and key files, the Common
Name value used for the server and client certificates/keys must each differ from
the Common Name value used for the CA certificate. Otherwise, the certificate and
key files do not work for servers compiled using OpenSSL. A typical error in this
case is:

ERROR 2026 (HY000): SSL connection error:
error:00000001:lib(0):func(0):reason(1)

• Example 1: Creating SSL Files from the Command Line on Unix

• Example 2: Creating SSL Files Using a Script on Unix

• Example 3: Creating SSL Files on Windows

916

Creating SSL and RSA Certificates and Keys

Example 1: Creating SSL Files from the Command Line on Unix

The following example shows a set of commands to create MySQL server and client certificate and key
files. You must respond to several prompts by the openssl commands. To generate test files, you can
press Enter to all prompts. To generate files for production use, you should provide nonempty responses.

Create clean environment
rm -rf newcerts
mkdir newcerts && cd newcerts

Create CA certificate
openssl genrsa 2048 > ca-key.pem
openssl req -new -x509 -nodes -days 3600 \
 -key ca-key.pem -out ca.pem

Create server certificate, remove passphrase, and sign it
server-cert.pem = public key, server-key.pem = private key
openssl req -newkey rsa:2048 -days 3600 \
 -nodes -keyout server-key.pem -out server-req.pem
openssl rsa -in server-key.pem -out server-key.pem
openssl x509 -req -in server-req.pem -days 3600 \
 -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out server-cert.pem

Create client certificate, remove passphrase, and sign it
client-cert.pem = public key, client-key.pem = private key
openssl req -newkey rsa:2048 -days 3600 \
 -nodes -keyout client-key.pem -out client-req.pem
openssl rsa -in client-key.pem -out client-key.pem
openssl x509 -req -in client-req.pem -days 3600 \
 -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out client-cert.pem

After generating the certificates, verify them:

openssl verify -CAfile ca.pem server-cert.pem client-cert.pem

You should see a response like this:

server-cert.pem: OK
client-cert.pem: OK

Now you have a set of files that can be used as follows:

• ca.pem: Use this to set the ssl_ca system variable on the server side and the --ssl-ca option on the
client side. (The CA certificate, if used, must be the same on both sides.)

• server-cert.pem, server-key.pem: Use these to set the ssl_cert and ssl_key system
variables on the server side.

• client-cert.pem, client-key.pem: Use these as the arguments to the --ssl-cert and --ssl-
key options on the client side.

For additional usage instructions, see Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”.

Example 2: Creating SSL Files Using a Script on Unix

Here is an example script that shows how to set up SSL certificate and key files for MySQL. After
executing the script, use the files for SSL connections as described in Section 6.3.1, “Configuring MySQL
to Use Encrypted Connections”.

DIR=`pwd`/openssl
PRIV=$DIR/private

mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf

917

Creating SSL and RSA Certificates and Keys

Create necessary files: $database, $serial and $new_certs_dir
directory (optional)

touch $DIR/index.txt
echo "01" > $DIR/serial

#
Generation of Certificate Authority(CA)
#

openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/ca.pem \
 -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/finley/openssl/openssl.cnf
Generating a 1024 bit RSA private key
................++++++
.........++++++
writing new private key to '/home/finley/openssl/private/cakey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL admin
Email Address []:

#
Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \
 $DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/finley/openssl/openssl.cnf
Generating a 1024 bit RSA private key
..++++++
..........++++++
writing new private key to '/home/finley/openssl/server-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:

918

Creating SSL and RSA Certificates and Keys

Common Name (eg, YOUR name) []:MySQL server
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove the passphrase from the key
#
openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem

#
Sign server cert
#
openssl ca -cert $DIR/ca.pem -policy policy_anything \
 -out $DIR/server-cert.pem -config $DIR/openssl.cnf \
 -infiles $DIR/server-req.pem

Sample output:
Using configuration from /home/finley/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL admin'
Certificate is to be certified until Sep 13 14:22:46 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \
 $DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/finley/openssl/openssl.cnf
Generating a 1024 bit RSA private key
.....................................++++++
...++++++
writing new private key to '/home/finley/openssl/client-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL user

919

Creating SSL and RSA Certificates and Keys

Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove the passphrase from the key
#
openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem

#
Sign client cert
#

openssl ca -cert $DIR/ca.pem -policy policy_anything \
 -out $DIR/client-cert.pem -config $DIR/openssl.cnf \
 -infiles $DIR/client-req.pem

Sample output:
Using configuration from /home/finley/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL user'
Certificate is to be certified until Sep 13 16:45:17 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create a my.cnf file that you can use to test the certificates
#

cat <<EOF > $DIR/my.cnf
[client]
ssl-ca=$DIR/ca.pem
ssl-cert=$DIR/client-cert.pem
ssl-key=$DIR/client-key.pem
[mysqld]
ssl_ca=$DIR/ca.pem
ssl_cert=$DIR/server-cert.pem
ssl_key=$DIR/server-key.pem
EOF

Example 3: Creating SSL Files on Windows

Download OpenSSL for Windows if it is not installed on your system. An overview of available packages
can be seen here:

http://www.slproweb.com/products/Win32OpenSSL.html

Choose the Win32 OpenSSL Light or Win64 OpenSSL Light package, depending on your architecture (32-
bit or 64-bit). The default installation location is C:\OpenSSL-Win32 or C:\OpenSSL-Win64, depending
on which package you downloaded. The following instructions assume a default location of C:\OpenSSL-
Win32. Modify this as necessary if you are using the 64-bit package.

920

http://www.slproweb.com/products/Win32OpenSSL.html

Creating SSL and RSA Certificates and Keys

If a message occurs during setup indicating '...critical component is missing: Microsoft
Visual C++ 2008 Redistributables', cancel the setup and download one of the following
packages as well, again depending on your architecture (32-bit or 64-bit):

• Visual C++ 2008 Redistributables (x86), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF

• Visual C++ 2008 Redistributables (x64), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

After installing the additional package, restart the OpenSSL setup procedure.

During installation, leave the default C:\OpenSSL-Win32 as the install path, and also leave the default
option 'Copy OpenSSL DLL files to the Windows system directory' selected.

When the installation has finished, add C:\OpenSSL-Win32\bin to the Windows System Path variable
of your server (depending on your version of Windows, the following path-setting instructions might differ
slightly):

1. On the Windows desktop, right-click the My Computer icon, and select Properties.

2. Select the Advanced tab from the System Properties menu that appears, and click the Environment
Variables button.

3. Under System Variables, select Path, then click the Edit button. The Edit System Variable dialogue
should appear.

4. Add ';C:\OpenSSL-Win32\bin' to the end (notice the semicolon).

5. Press OK 3 times.

6. Check that OpenSSL was correctly integrated into the Path variable by opening a new command
console (Start>Run>cmd.exe) and verifying that OpenSSL is available:

Microsoft Windows [Version ...]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\Windows\system32>cd \

C:\>openssl
OpenSSL> exit <<< If you see the OpenSSL prompt, installation was successful.

C:\>

After OpenSSL has been installed, use instructions similar to those from Example 1 (shown earlier in this
section), with the following changes:

• Change the following Unix commands:

Create clean environment
rm -rf newcerts
mkdir newcerts && cd newcerts

On Windows, use these commands instead:

Create clean environment
md c:\newcerts
cd c:\newcerts

• When a '\' character is shown at the end of a command line, this '\' character must be removed and
the command lines entered all on a single line.

921

http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF
http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

SSL Library-Dependent Capabilities

After generating the certificate and key files, to use them for SSL connections, see Section 6.3.1,
“Configuring MySQL to Use Encrypted Connections”.

6.3.3.2 Creating RSA Keys Using openssl

This section describes how to use the openssl command to set up the RSA key files that enable MySQL
to support secure password exchange over unencrypted connections for accounts authenticated by the
sha256_password plugin.

To create the RSA private and public key-pair files, run these commands while logged into the system
account used to run the MySQL server so the files are owned by that account:

openssl genrsa -out private_key.pem 2048
openssl rsa -in private_key.pem -pubout -out public_key.pem

Those commands create 2,048-bit keys. To create stronger keys, use a larger value.

Then set the access modes for the key files. The private key should be readable only by the server,
whereas the public key can be freely distributed to client users:

chmod 400 private_key.pem
chmod 444 public_key.pem

6.3.4 SSL Library-Dependent Capabilities

MySQL can be compiled using OpenSSL or yaSSL, both of which enable encrypted connections based on
the OpenSSL API:

• MySQL Enterprise Edition binary distributions are compiled using OpenSSL. It is not possible to use
yaSSL with MySQL Enterprise Edition.

• MySQL Community Edition binary distributions are compiled using yaSSL.

• MySQL Community Edition source distributions can be compiled using either OpenSSL or yaSSL (see
Section 2.9.6, “Configuring SSL Library Support”).

Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.6.46. As of MySQL 5.6.46, support for yaSSL is removed and all
MySQL builds use OpenSSL.

OpenSSL and yaSSL offer the same basic functionality, but MySQL distributions compiled using OpenSSL
have additional features:

• OpenSSL supports a more flexible syntax for specifying ciphers (for the ssl_cipher system variable
and --ssl-cipher client option), and supports a wider range of encryption ciphers from which to
choose. See Command Options for Encrypted Connections, and Section 6.3.2, “Encrypted Connection
TLS Protocols and Ciphers”.

• OpenSSL supports the ssl_capath system variable and --ssl-capath client option. MySQL
distributions compiled using yaSSL do not because yaSSL does not look in any directory and do
not follow a chained certificate tree. yaSSL requires that all components of the CA certificate tree
be contained within a single CA certificate tree and that each certificate in the file has a unique
SubjectName value. To work around this limitation, concatenate the individual certificate files comprising
the certificate tree into a new file and specify that file as the value of the ssl_ca system variable and --
ssl-ca option.

922

Connecting to MySQL Remotely from Windows with SSH

• OpenSSL supports certificate revocation-list capability (for the ssl_crl and ssl_crlpath system
variables and --ssl-crl and --ssl-crlpath client options). Distributions compiled using yaSSL do
not because revocation lists do not work with yaSSL. (yaSSL accepts these options but silently ignores
them.)

• Accounts that authenticate using the sha256_password plugin can use RSA key files for secure
password exchange over unencrypted connections. See Section 6.4.1.4, “SHA-256 Pluggable
Authentication”.

• OpenSSL supports more encryption modes for the AES_ENCRYPT() and AES_DECRYPT() functions.
See Section 12.14, “Encryption and Compression Functions”

Certain OpenSSL-related system and status variables are present only if MySQL was compiled using
OpenSSL:

• sha256_password_private_key_path

• sha256_password_public_key_path

• Rsa_public_key

To determine whether a server was compiled using OpenSSL, test the existence of any of those variables.
For example, this statement returns a row if OpenSSL was used and an empty result if yaSSL was used:

SHOW STATUS LIKE 'Rsa_public_key';

Such tests assume that your server version is not older than the first appearance of the variable tested. For
example, you cannot test for Rsa_public_key before MySQL 5.6.6, when that variable was added.

6.3.5 Connecting to MySQL Remotely from Windows with SSH

This section describes how to get an encrypted connection to a remote MySQL server with SSH. The
original information was provided by David Carlson <dcarlson@mplcomm.com>.

1. Install an SSH client on your Windows machine. For a comparison of SSH clients, see http://
en.wikipedia.org/wiki/Comparison_of_SSH_clients.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set
userid=your_userid to log in to your server. This userid value might not be the same as the user
name of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_host:
yourmysqlservername_or_ip, remote_port: 3306) or a local forward (Set port: 3306,
host: localhost, remote port: 3306).

4. Save everything, otherwise you must redo it the next time.

5. Log in to your server with the SSH session you just created.

6. On your Windows machine, start some ODBC application (such as Access).

7. Create a new file in Windows and link to MySQL using the ODBC driver the same way you normally do,
except type in localhost for the MySQL host server, not yourmysqlservername.

At this point, you should have an ODBC connection to MySQL, encrypted using SSH.

6.4 Security Plugins

923

http://en.wikipedia.org/wiki/Comparison_of_SSH_clients
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients

Authentication Plugins

MySQL includes several plugins that implement security features:

• Plugins for authenticating attempts by clients to connect to MySQL Server. Plugins are available
for several authentication protocols. For general discussion of the authentication process, see
Section 6.2.11, “Pluggable Authentication”. For characteristics of specific authentication plugins, see
Section 6.4.1, “Authentication Plugins”.

• A password-validation plugin for implementing password strength policies and assessing the strength of
potential passwords. See Section 6.4.3, “The Password Validation Plugin”.

• (MySQL Enterprise Edition only) MySQL Enterprise Audit, implemented using a server plugin, uses the
open MySQL Audit API to enable standard, policy-based monitoring and logging of connection and query
activity executed on specific MySQL servers. Designed to meet the Oracle audit specification, MySQL
Enterprise Audit provides an out of box, easy to use auditing and compliance solution for applications
that are governed by both internal and external regulatory guidelines. See Section 6.4.4, “MySQL
Enterprise Audit”.

• (MySQL Enterprise Edition only) MySQL Enterprise Firewall, an application-level firewall that enables
database administrators to permit or deny SQL statement execution based on matching against lists of
accepted statement patterns. This helps harden MySQL Server against attacks such as SQL injection or
attempts to exploit applications by using them outside of their legitimate query workload characteristics.
See Section 6.4.5, “MySQL Enterprise Firewall”.

6.4.1 Authentication Plugins

The following sections describe pluggable authentication methods available in MySQL and the plugins
that implement these methods. For general discussion of the authentication process, see Section 6.2.11,
“Pluggable Authentication”.

The default plugin is mysql_native_password unless the --default-authentication-plugin
option is set otherwise at server startup.

6.4.1.1 Native Pluggable Authentication

MySQL includes two plugins that implement native authentication; that is, authentication based on the
password hashing methods in use from before the introduction of pluggable authentication. This section
describes mysql_native_password, which implements authentication against the mysql.user system
table using the native password hashing method. For information about mysql_old_password, which
implements authentication using the older (pre-4.1) native password hashing method, see Section 6.4.1.2,
“Old Native Pluggable Authentication”. For information about these password hashing methods, see
Section 6.1.2.4, “Password Hashing in MySQL”.

The following table shows the plugin names on the server and client sides.

Table 6.8 Plugin and Library Names for Native Password Authentication

Plugin or File Plugin or File Name

Server-side plugin mysql_native_password

Client-side plugin mysql_native_password

Library file None (plugins are built in)

The following sections provide installation and usage information specific to native pluggable
authentication:

• Installing Native Pluggable Authentication

924

Authentication Plugins

• Using Native Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.2.11, “Pluggable
Authentication”.

Installing Native Pluggable Authentication

The mysql_native_password plugin exists in server and client forms:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled by
unloading it.

• The client-side plugin is built into the libmysqlclient client library and is available to any program
linked against libmysqlclient.

Using Native Pluggable Authentication

MySQL client programs use mysql_native_password by default. The --default-auth option can be
used as a hint about which client-side plugin the program can expect to use:

$> mysql --default-auth=mysql_native_password ...

If an account row specifies no plugin name, the server authenticates the account using either the
mysql_native_password or mysql_old_password plugin, depending on whether the password hash
value in the Password column used native hashing or the older pre-4.1 hashing method. Clients must
match the password in the Password column of the account row.

6.4.1.2 Old Native Pluggable Authentication

MySQL includes two plugins that implement native authentication; that is, authentication based on
the password hashing methods in use from before the introduction of pluggable authentication. This
section describes mysql_old_password, which implements authentication against the mysql.user
system table using the older (pre-4.1) native password hashing method. For information about
mysql_native_password, which implements authentication using the native password hashing method,
see Section 6.4.1.1, “Native Pluggable Authentication”. For information about these password hashing
methods, see Section 6.1.2.4, “Password Hashing in MySQL”.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated; expect support for them to be removed in a future
MySQL release. For account upgrade instructions, see Section 6.4.1.3, “Migrating
Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”.

The following table shows the plugin names on the server and client sides.

Table 6.9 Plugin and Library Names for Old Native Password Authentication

Plugin or File Plugin or File Name

Server-side plugin mysql_old_password

Client-side plugin mysql_old_password

Library file None (plugins are built in)

The following sections provide installation and usage information specific to old native pluggable
authentication:

• Installing Old Native Pluggable Authentication

925

Authentication Plugins

• Using Old Native Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.2.11, “Pluggable
Authentication”.

Installing Old Native Pluggable Authentication

The mysql_old_password plugin exists in server and client forms:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled by
unloading it.

• The client-side plugin is built into the libmysqlclient client library and is available to any program
linked against libmysqlclient.

Using Old Native Pluggable Authentication

MySQL client programs can use the --default-auth option to specify the mysql_old_password
plugin as a hint about which client-side plugin the program can expect to use:

$> mysql --default-auth=mysql_old_password ...

If an account row specifies no plugin name, the server authenticates the account using either the
mysql_native_password or mysql_old_password plugin, depending on whether the password hash
value in the Password column used native hashing or the older pre-4.1 hashing method. Clients must
match the password in the Password column of the account row.

6.4.1.3 Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password
Plugin

The MySQL server authenticates connection attempts for each account listed in the mysql.user system
table using the authentication plugin named in the plugin column. If the plugin column is empty, the
server authenticates the account as follows:

• Before MySQL 5.7, the server uses the mysql_native_password or mysql_old_password
plugin implicitly, depending on the format of the password hash in the Password column.
If the Password value is empty or a 4.1 password hash (41 characters), the server uses
mysql_native_password. If the password value is a pre-4.1 password hash (16 characters),
the server uses mysql_old_password. (For additional information about these hash formats, see
Section 6.1.2.4, “Password Hashing in MySQL”.)

• As of MySQL 5.7, the server requires the plugin column to be nonempty and disables accounts that
have an empty plugin value.

Pre-4.1 password hashes and the mysql_old_password plugin are deprecated in MySQL 5.6 and
support for them is removed in MySQL 5.7. They provide a level of security inferior to that offered by 4.1
password hashing and the mysql_native_password plugin.

Given the requirement in MySQL 5.7 that the plugin column must be nonempty, coupled with removal of
mysql_old_password support, DBAs are advised to upgrade accounts as follows:

• Upgrade accounts that use mysql_native_password implicitly to use it explicitly

• Upgrade accounts that use mysql_old_password (either implicitly or explicitly) to use
mysql_native_password explicitly

The instructions in this section describe how to perform those upgrades. The result is that no account has
an empty plugin value and no account uses pre-4.1 password hashing or the mysql_old_password
plugin.

926

Authentication Plugins

As a variant on these instructions, DBAs might offer users the choice to upgrade to the
sha256_password plugin, which authenticates using SHA-256 password hashes. For information about
this plugin, see Section 6.4.1.4, “SHA-256 Pluggable Authentication”.

The following table lists the types of mysql.user accounts considered in this discussion.

plugin Column Password Column Authentication Result Upgrade Action

Empty Empty Implicitly uses
mysql_native_password

Assign plugin

Empty 4.1 hash Implicitly uses
mysql_native_password

Assign plugin

Empty Pre-4.1 hash Implicitly uses
mysql_old_password

Assign plugin, rehash
password

mysql_native_passwordEmpty Explicitly uses
mysql_native_password

None

mysql_native_password4.1 hash Explicitly uses
mysql_native_password

None

mysql_old_password Empty Explicitly uses
mysql_old_password

Upgrade plugin

mysql_old_password Pre-4.1 hash Explicitly uses
mysql_old_password

Upgrade plugin, rehash
password

Accounts corresponding to lines for the mysql_native_password plugin require no upgrade action
(because no change of plugin or hash format is required). For accounts corresponding to lines for which
the password is empty, consider asking the account owners to choose a password (or require it by using
ALTER USER to expire empty account passwords).

Upgrading Accounts from Implicit to Explicit mysql_native_password Use

Accounts that have an empty plugin and a 4.1 password hash use mysql_native_password implicitly.
To upgrade these accounts to use mysql_native_password explicitly, execute these statements:

UPDATE mysql.user SET plugin = 'mysql_native_password'
WHERE plugin = '' AND (Password = '' OR LENGTH(Password) = 41);
FLUSH PRIVILEGES;

Before MySQL 5.7, you can execute those statements to uprade accounts proactively. As of MySQL 5.7,
you can run mysql_upgrade, which performs the same operation among its upgrade actions.

Notes:

• The upgrade operation just described is safe to execute at any time because it makes the
mysql_native_password plugin explicit only for accounts that already use it implicitly.

• This operation requires no password changes, so it can be performed without affecting users or requiring
their involvement in the upgrade process.

Upgrading Accounts from mysql_old_password to mysql_native_password

Accounts that use mysql_old_password (either implicitly or explicitly) should be upgraded to use
mysql_native_password explicitly. This requires changing the plugin and changing the password from
pre-4.1 to 4.1 hash format.

For the accounts covered in this step that must be upgraded, one of these conditions is true:

927

Authentication Plugins

• The account uses mysql_old_password implicitly because the plugin column is empty and the
password has the pre-4.1 hash format (16 characters).

• The account uses mysql_old_password explicitly.

To identify such accounts, use this query:

SELECT User, Host, Password FROM mysql.user
WHERE (plugin = '' AND LENGTH(Password) = 16)
OR plugin = 'mysql_old_password';

The following discussion provides two methods for updating that set of accounts. They have differing
characteristics, so read both and decide which is most suitable for a given MySQL installation.

Method 1.

Characteristics of this method:

• It requires that server and clients be run with secure_auth=0 until all users have been upgraded to
mysql_native_password. (Otherwise, users cannot connect to the server using their old-format
password hashes for the purpose of upgrading to a new-format hash.)

• It works for MySQL 5.5 and 5.6. In 5.7, it does not work because the server requires accounts to have a
nonempty plugin and disables them otherwise. Therefore, if you have already upgraded to 5.7, choose
Method 2, described later.

You should ensure that the server is running with secure_auth=0.

For all accounts that use mysql_old_password explicitly, set them to the empty plugin:

UPDATE mysql.user SET plugin = ''
WHERE plugin = 'mysql_old_password';
FLUSH PRIVILEGES;

To also expire the password for affected accounts, use these statements instead:

UPDATE mysql.user SET plugin = '', password_expired = 'Y'
WHERE plugin = 'mysql_old_password';
FLUSH PRIVILEGES;

Now affected users can reset their password to use 4.1 hashing. Ask each user who now has an empty
plugin to connect to the server and execute these statements:

SET old_passwords = 0;
SET PASSWORD = PASSWORD('user-chosen-password');

Note

The client-side --secure-auth option is enabled by default, so remind users to
disable it or they cannot connect:

$> mysql -u user_name -p --secure-auth=0

After an affected user has executed those statements, you can set the corresponding account plugin to
mysql_native_password to make the plugin explicit. Or you can periodically run these statements to
find and fix any accounts for which affected users have reset their password:

UPDATE mysql.user SET plugin = 'mysql_native_password'
WHERE plugin = '' AND (Password = '' OR LENGTH(Password) = 41);
FLUSH PRIVILEGES;

When there are no more accounts with an empty plugin, this query returns an empty result:

928

Authentication Plugins

SELECT User, Host, Password FROM mysql.user
WHERE plugin = '' AND LENGTH(Password) = 16;

At that point, all accounts have been migrated away from pre-4.1 password hashing and the server no
longer need be run with secure_auth=0.

Method 2.

Characteristics of this method:

• It assigns each affected account a new password, so you must tell each such user the new password
and ask the user to choose a new one. Communication of passwords to users is outside the scope of
MySQL, but should be done carefully.

• It does not require server or clients to be run with secure_auth=0.

• It works for any version of MySQL 5.5 or later (and for 5.7 has an easier variant).

With this method, you update each account separately due to the need to set passwords individually.
Choose a different password for each account.

Suppose that 'user1'@'localhost' is one of the accounts to be upgraded. Modify it as follows:

• In MySQL 5.7, ALTER USER provides the capability of modifying both the account password and its
authentication plugin, so you need not modify the mysql.user system table directly:

ALTER USER 'user1'@'localhost'
IDENTIFIED WITH mysql_native_password BY 'DBA-chosen-password';

To also expire the account password, use this statement instead:

ALTER USER 'user1'@'localhost'
IDENTIFIED WITH mysql_native_password BY 'DBA-chosen-password'
PASSWORD EXPIRE;

Then tell the user the new password and ask the user to connect to the server with that password and
execute this statement to choose a new password:

ALTER USER USER() IDENTIFIED BY 'user-chosen-password';

• Before MySQL 5.7, you must modify the mysql.user system table directly using these statements:

SET old_passwords = 0;
UPDATE mysql.user SET plugin = 'mysql_native_password',
Password = PASSWORD('DBA-chosen-password')
WHERE (User, Host) = ('user1', 'localhost');
FLUSH PRIVILEGES;

To also expire the account password, use these statements instead:

SET old_passwords = 0;
UPDATE mysql.user SET plugin = 'mysql_native_password',
Password = PASSWORD('DBA-chosen-password'), password_expired = 'Y'
WHERE (User, Host) = ('user1', 'localhost');
FLUSH PRIVILEGES;

Then tell the user the new password and ask the user to connect to the server with that password and
execute these statements to choose a new password:

SET old_passwords = 0;
SET PASSWORD = PASSWORD('user-chosen-password');

929

Authentication Plugins

Repeat for each account to be upgraded.

6.4.1.4 SHA-256 Pluggable Authentication

MySQL provides an authentication plugin that implements SHA-256 hashing for user account passwords.

Important

To connect to the server using an account that authenticates with the
sha256_password plugin, you must use either a TLS connection or an
unencrypted connection that supports password exchange using an RSA key
pair, as described later in this section. Either way, use of the sha256_password
plugin requires that MySQL be built with SSL capabilities. See Section 6.3, “Using
Encrypted Connections”.

The following table shows the plugin names on the server and client sides.

Table 6.10 Plugin and Library Names for SHA-256 Authentication

Plugin or File Plugin or File Name

Server-side plugin sha256_password

Client-side plugin sha256_password

Library file None (plugins are built in)

The following sections provide installation and usage information specific to SHA-256 pluggable
authentication:

• Installing SHA-256 Pluggable Authentication

• Using SHA-256 Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.2.11, “Pluggable
Authentication”.

Installing SHA-256 Pluggable Authentication

The sha256_password plugin exists in server and client forms:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled by
unloading it.

• The client-side plugin is built into the libmysqlclient client library and is available to any program
linked against libmysqlclient.

Using SHA-256 Pluggable Authentication

To set up an account that uses the sha256_password plugin for SHA-256 password hashing, use the
following procedure.

1. Create the account and specify that it authenticates using the sha256_password plugin:

CREATE USER 'sha256user'@'localhost' IDENTIFIED WITH sha256_password;

2. Set the old_passwords system variable to 2 to cause the PASSWORD() function to use SHA-256
hashing of password strings, then set the account password:

SET old_passwords = 2;
SET PASSWORD FOR 'sha256user'@'localhost' = PASSWORD('password');

930

Authentication Plugins

The server assigns the sha256_password plugin to the account and uses it to encrypt the password
using SHA-256, storing those values in the plugin and authentication_string columns of the
mysql.user system table.

The preceding instructions do not assume that sha256_password is the default authentication plugin. If
sha256_password is the default authentication plugin, a simpler CREATE USER syntax can be used.

To start the server with the default authentication plugin set to sha256_password, put these lines in the
server option file:

[mysqld]
default-authentication-plugin=sha256_password

That causes the sha256_password plugin to be used by default for new accounts. As a result, it is
possible to create the account and set its password without naming the plugin explicitly:

CREATE USER 'sha256user'@'localhost' IDENTIFIED BY 'password';

Another consequence of setting default-authentication-plugin to sha256_password is that, to
use some other plugin for account creation, you must specify that plugin explicitly in the CREATE USER
statement, then set old_passwords appropriately for the plugin before using SET PASSWORD to set the
account password. For example, to use the mysql_native_password plugin, do this:

CREATE USER 'nativeuser'@'localhost' IDENTIFIED WITH mysql_native_password;
SET old_passwords = 0;
SET PASSWORD FOR 'nativeuser'@'localhost' = PASSWORD('N@tivePa33');

To set or change the password for any account that authenticates using the sha256_password plugin, be
sure that the value of old_passwords is 2 before using SET PASSWORD. If old_passwords has a value
other than 2, an error occurs for attempts to set the password:

mysql> SET old_passwords = 0;
mysql> SET PASSWORD FOR 'sha256user'@'localhost' = PASSWORD('password');
ERROR 1827 (HY000): The password hash doesn't have the expected format.
Check if the correct password algorithm is being used with the
PASSWORD() function.

For more information about old_passwords and PASSWORD(), see Section 5.1.7, “Server System
Variables”, and Section 12.14, “Encryption and Compression Functions”.

MySQL can be compiled using either OpenSSL or yaSSL (see Section 6.3.4, “SSL Library-Dependent
Capabilities”). The sha256_password plugin works with distributions compiled using either package,
but if MySQL is compiled using OpenSSL, sha256_password supports the use of RSA encryption. (To
enable this capability, you must follow the RSA configuration procedure given later in this section.)

Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.6.46. As of MySQL 5.6.46, support for yaSSL is removed and all
MySQL builds use OpenSSL.

RSA support has these characteristics:

• On the server side, two system variables name the RSA private and public key-pair files:
sha256_password_private_key_path and sha256_password_public_key_path. The
database administrator must set these variables at server startup if the key files to use have names that
differ from the system variable default values.

• The Rsa_public_key status variable displays the RSA public key value used by the
sha256_password authentication plugin.

931

Authentication Plugins

• Clients that have the RSA public key can perform RSA key pair-based password exchange with the
server during the connection process, as described later.

• For connections by accounts that authenticate with sha256_password and RSA public key pair-based
password exchange, the server sends the RSA public key to the client as needed. However, if a copy of
the public key is available on the client host, the client can use it to save a round trip in the client/server
protocol:

• For these command-line clients, use the --server-public-key-path option to specify the RSA
public key file: mysql, mysqltest.

• For programs that use the C API, call mysql_options() to specify the RSA public key file by
passing the MYSQL_SERVER_PUBLIC_KEY option and the name of the file.

• For replicas, RSA key pair-based password exchange cannot be used to connect to source servers
for accounts that authenticate with the sha256_password plugin. For such accounts, only secure
connections can be used.

For clients that use the sha256_password plugin, passwords are never exposed as cleartext when
connecting to the server. How password transmission occurs depends on whether a secure connection or
RSA encryption is used:

• If the connection is secure, an RSA key pair is unnecessary and is not used. This applies to connections
encrypted using TLS. The password is sent as cleartext but cannot be snooped because the connection
is secure.

Note

sha256_password does not treat shared-memory connections as secure, even
though share-memory transport is secure by default.

• If the connection is not secure, and an RSA key pair is available, the connection remains unencrypted.
This applies to connections not encrypted using TLS. RSA is used only for password exchange between
client and server, to prevent password snooping. When the server receives the encrypted password, it
decrypts it. A scramble is used in the encryption to prevent repeat attacks.

• If a secure connection is not used and RSA encryption is not available, the connection attempt fails
because the password cannot be sent without being exposed as cleartext.

As mentioned previously, RSA password encryption is available only if MySQL was compiled using
OpenSSL. The implication for MySQL distributions compiled using yaSSL is that, to use SHA-256
passwords, clients must use an encrypted connection to access the server. See Section 6.3.1, “Configuring
MySQL to Use Encrypted Connections”.

Note

To use RSA password encryption with sha256_password, the client and server
both must be compiled using OpenSSL, not just one of them.

Assuming that MySQL has been compiled using OpenSSL, use the following procedure to enable use of
an RSA key pair for password exchange during the client connection process:

1. Create the RSA private and public key-pair files using the instructions in Section 6.3.3, “Creating SSL
and RSA Certificates and Keys”.

2. If the private and public key files are located in the data directory and are named private_key.pem
and public_key.pem (the default values of the sha256_password_private_key_path and

932

https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html

Authentication Plugins

sha256_password_public_key_path system variables), the server uses them automatically at
startup.

Otherwise, to name the key files explicitly, set the system variables to the key file names in the server
option file. If the files are located in the server data directory, you need not specify their full path names:

[mysqld]
sha256_password_private_key_path=myprivkey.pem
sha256_password_public_key_path=mypubkey.pem

If the key files are not located in the data directory, or to make their locations explicit in the system
variable values, use full path names:

[mysqld]
sha256_password_private_key_path=/usr/local/mysql/myprivkey.pem
sha256_password_public_key_path=/usr/local/mysql/mypubkey.pem

3. Restart the server, then connect to it and check the Rsa_public_key status variable value. The value
differs from that shown here, but should be nonempty:

mysql> SHOW STATUS LIKE 'Rsa_public_key'\G
*************************** 1. row ***************************
Variable_name: Rsa_public_key
 Value: -----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDO9nRUDd+KvSZgY7cNBZMNpwX6
MvE1PbJFXO7u18nJ9lwc99Du/E7lw6CVXw7VKrXPeHbVQUzGyUNkf45Nz/ckaaJa
aLgJOBCIDmNVnyU54OT/1lcs2xiyfaDMe8fCJ64ZwTnKbY2gkt1IMjUAB5Ogd5kJ
g8aV7EtKwyhHb0c30QIDAQAB
-----END PUBLIC KEY-----

If the value is empty, the server found some problem with the key files. Check the error log for
diagnostic information.

After the server has been configured with the RSA key files, accounts that authenticate with the
sha256_password plugin have the option of using those key files to connect to the server. As mentioned
previously, such accounts can use either a secure connection (in which case RSA is not used) or an
unencrypted connection that performs password exchange using RSA. Suppose that an unencrypted
connection is used. For example:

$> mysql --ssl-mode=DISABLED -u sha256user -p
Enter password: password

For this connection attempt by sha256user, the server determines that sha256_password is the
appropriate authentication plugin and invokes it (because that was the plugin specified at CREATE
USER time). The plugin finds that the connection is not encrypted and thus requires the password to be
transmitted using RSA encryption. In this case, the plugin sends the RSA public key to the client, which
uses it to encrypt the password and returns the result to the server. The plugin uses the RSA private key
on the server side to decrypt the password and accepts or rejects the connection based on whether the
password is correct.

The server sends the RSA public key to the client as needed. However, if the client has a file containing
a local copy of the RSA public key required by the server, it can specify the file using the --server-
public-key-path option:

$> mysql --ssl-mode=DISABLED -u sha256user -p --server-public-key-path=file_name
Enter password: password

The public key value in the file named by the --server-public-key-path option should be the same
as the key value in the server-side file named by the sha256_password_public_key_path system
variable. If the key file contains a valid public key value but the value is incorrect, an access-denied error

933

Authentication Plugins

occurs. If the key file does not contain a valid public key, the client program cannot use it. In this case,
the sha256_password plugin sends the public key to the client as if no --server-public-key-path
option had been specified.

Client users can obtain the RSA public key two ways:

• The database administrator can provide a copy of the public key file.

• A client user who can connect to the server some other way can use a SHOW STATUS LIKE
'Rsa_public_key' statement and save the returned key value in a file.

6.4.1.5 Client-Side Cleartext Pluggable Authentication

A client-side authentication plugin is available that enables clients to send passwords to the server as
cleartext, without hashing or encryption. This plugin is built into the MySQL client library.

The following table shows the plugin name.

Table 6.11 Plugin and Library Names for Cleartext Authentication

Plugin or File Plugin or File Name

Server-side plugin None, see discussion

Client-side plugin mysql_clear_password

Library file None (plugin is built in)

Many client-side authentication plugins perform hashing or encryption of a password before the client
sends it to the server. This enables clients to avoid sending passwords as cleartext.

Hashing or encryption cannot be done for authentication schemes that require the server to receive the
password as entered on the client side. In such cases, the client-side mysql_clear_password plugin is
used to send the password to the server as cleartext. There is no corresponding server-side plugin. Rather,
the client-side plugin can be used by any server-side plugin that needs a cleartext

Hashing or encryption cannot be done for authentication schemes that require the server to receive the
password as entered on the client side. In such cases, the client-side mysql_clear_password plugin is
used, which enables the client to send the password to the server as cleartext. There is no corresponding
server-side plugin. Rather, mysql_clear_password can be used on the client side in concert with any
server-side plugin that needs a cleartext password. (The PAM authentication plugin is one such; see
Section 6.4.1.6, “PAM Pluggable Authentication”.)

The following discussion provides usage information specific to cleartext pluggable authentication.
For general information about pluggable authentication in MySQL, see Section 6.2.11, “Pluggable
Authentication”.

Note

Sending passwords as cleartext may be a security problem in some configurations.
To avoid problems if there is any possibility that the password would be
intercepted, clients should connect to MySQL Server using a method that protects
the password. Possibilities include SSL (see Section 6.3, “Using Encrypted
Connections”), IPsec, or a private network.

To make inadvertent use of the mysql_clear_password plugin less likely, MySQL clients must explicitly
enable it. This can be done in several ways:

934

Authentication Plugins

• Set the LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN environment variable to a value that begins with 1, Y,
or y. This enables the plugin for all client connections.

• The mysql, mysqladmin, and mysqlslap client programs (also mysqlcheck, mysqldump, and
mysqlshow for MySQL 5.6.28 and later) support an --enable-cleartext-plugin option that
enables the plugin on a per-invocation basis.

• The mysql_options() C API function supports a MYSQL_ENABLE_CLEARTEXT_PLUGIN option that
enables the plugin on a per-connection basis. Also, any program that uses libmysqlclient and reads
option files can enable the plugin by including an enable-cleartext-plugin option in an option
group read by the client library.

6.4.1.6 PAM Pluggable Authentication

Note

PAM pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

MySQL Enterprise Edition supports an authentication method that enables MySQL Server to use PAM
(Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to use a
standard interface to access various kinds of authentication methods, such as traditional Unix passwords
or an LDAP directory.

PAM pluggable authentication provides these capabilities:

• External authentication: PAM authentication enables MySQL Server to accept connections from users
defined outside the MySQL grant tables and that authenticate using methods supported by PAM.

• Proxy user support: PAM authentication can return to MySQL a user name different from the external
user name passed by the client program, based on the PAM groups the external user is a member
of and the authentication string provided. This means that the plugin can return the MySQL user that
defines the privileges the external PAM-authenticated user should have. For example, an operating
sytem user named joe can connect and have the privileges of a MySQL user named developer.

PAM pluggable authentication has been tested on Linux and macOS.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable. For
installation information, see Installing PAM Pluggable Authentication.

Table 6.12 Plugin and Library Names for PAM Authentication

Plugin or File Plugin or File Name

Server-side plugin authentication_pam

Client-side plugin mysql_clear_password

Library file authentication_pam.so

The client-side mysql_clear_password cleartext plugin that communicates with the server-side
PAM plugin is built into the libmysqlclient client library and is included in all distributions, including
community distributions. Inclusion of the client-side cleartext plugin in all MySQL distributions enables
clients from any distribution to connect to a server that has the server-side PAM plugin loaded.

The following sections provide installation and usage information specific to PAM pluggable authentication:

935

https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html
https://www.mysql.com/products/

Authentication Plugins

• How PAM Authentication of MySQL Users Works

• Installing PAM Pluggable Authentication

• Uninstalling PAM Pluggable Authentication

• Using PAM Pluggable Authentication

• PAM Unix Password Authentication without Proxy Users

• PAM LDAP Authentication without Proxy Users

• PAM Unix Password Authentication with Proxy Users and Group Mapping

• PAM Authentication Access to Unix Password Store

• PAM Authentication Debugging

For general information about pluggable authentication in MySQL, see Section 6.2.11, “Pluggable
Authentication”. For information about the mysql_clear_password plugin, see Section 6.4.1.5, “Client-
Side Cleartext Pluggable Authentication”. For proxy user information, see Section 6.2.12, “Proxy Users”.

How PAM Authentication of MySQL Users Works

This section provides an overview of how MySQL and PAM work together to authenticate MySQL users.
For examples showing how to set up MySQL accounts to use specific PAM services, see Using PAM
Pluggable Authentication.

1. The client program and the server communicate, with the client sending to the server the client user
name (the operating system user name by default) and password:

• The client user name is the external user name.

• For accounts that use the PAM server-side authentication plugin, the corresponding client-side plugin
is mysql_clear_password. This client-side plugin performs no password hashing, with the result
that the client sends the password to the server as cleartext.

2. The server finds a matching MySQL account based on the external user name and the host from which
the client connects. The PAM plugin uses the information passed to it by MySQL Server (such as
user name, host name, password, and authentication string). When you define a MySQL account that
authenticates using PAM, the authentication string contains:

• A PAM service name, which is a name that the system administrator can use to refer to an
authentication method for a particular application. There can be multiple applications associated
with a single database server instance, so the choice of service name is left to the SQL application
developer.

• Optionally, if proxying is to be used, a mapping from PAM groups to MySQL user names.

3. The plugin uses the PAM service named in the authentication string to check the user credentials and
returns 'Authentication succeeded, Username is user_name' or 'Authentication
failed'. The password must be appropriate for the password store used by the PAM service.
Examples:

• For traditional Unix passwords, the service looks up passwords stored in the /etc/shadow file.

• For LDAP, the service looks up passwords stored in an LDAP directory.

936

Authentication Plugins

If the credentials check fails, the server refuses the connection.

4. Otherwise, the authentication string indicates whether proxying occurs. If the string contains no PAM
group mapping, proxying does not occur. In this case, the MySQL user name is the same as the
external user name.

5. Otherwise, proxying is indicated based on the PAM group mapping, with the MySQL user name
determined based on the first matching group in the mapping list. The meaning of “PAM group”
depends on the PAM service. Examples:

• For traditional Unix passwords, groups are Unix groups defined in the /etc/group file, possibly
supplemented with additional PAM information in a file such as /etc/security/group.conf.

• For LDAP, groups are LDAP groups defined in an LDAP directory.

If the proxy user (the external user) has the PROXY privilege for the proxied MySQL user name,
proxying occurs, with the proxy user assuming the privileges of the proxied user.

Installing PAM Pluggable Authentication

This section describes how to install the server-side PAM authentication plugin. For general information
about installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

The plugin library file base name is authentication_pam. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
plugin-load-add=authentication_pam.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform as
necessary:

INSTALL PLUGIN authentication_pam SONAME 'authentication_pam.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system table
to cause the server to load it for each subsequent normal startup without the need for --plugin-load-
add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%pam%';
+--------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------------+---------------+
| authentication_pam | ACTIVE |

937

Authentication Plugins

+--------------------+---------------+

If the plugin failed to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the PAM plugin, see Using PAM Pluggable Authentication.

Uninstalling PAM Pluggable Authentication

The method used to uninstall the PAM authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed across
server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN authentication_pam;

Using PAM Pluggable Authentication

This section describes in general terms how to use the PAM authentication plugin to connect from MySQL
client programs to the server. The following sections provide instructions for using PAM authentication
in specific ways. It is assumed that the server is running with the server-side PAM plugin enabled, as
described in Installing PAM Pluggable Authentication.

To refer to the PAM authentication plugin in the IDENTIFIED WITH clause of a CREATE USER or GRANT
statement, use the name authentication_pam. For example:

CREATE USER user
 IDENTIFIED WITH authentication_pam
 AS 'auth_string';

The authentication string specifies the following types of information:

• The PAM service name (see How PAM Authentication of MySQL Users Works). Examples in the
following discussion use a service name of mysql-unix for authentication using traditional Unix
passwords, and mysql-ldap for authentication using LDAP.

• For proxy support, PAM provides a way for a PAM module to return to the server a MySQL user name
other than the external user name passed by the client program when it connects to the server. Use the
authentication string to control the mapping from external user names to MySQL user names. If you want
to take advantage of proxy user capabilities, the authentication string must include this kind of mapping.

For example, if an account uses the mysql-unix PAM service name and should map operating
system users in the root and users PAM groups to the developer and data_entry MySQL users,
respectively, use a statement like this:

CREATE USER user
 IDENTIFIED WITH authentication_pam
 AS 'mysql-unix, root=developer, users=data_entry';

Authentication string syntax for the PAM authentication plugin follows these rules:

• The string consists of a PAM service name, optionally followed by a PAM group mapping list consisting
of one or more keyword/value pairs each specifying a PAM group name and a MySQL user name:

pam_service_name[,pam_group_name=mysql_user_name]...

The plugin parses the authentication string for each connection attempt that uses the account. To
minimize overhead, keep the string as short as possible.

938

Authentication Plugins

• Each pam_group_name=mysql_user_name pair must be preceded by a comma.

• Leading and trailing spaces not inside double quotation marks are ignored.

• Unquoted pam_service_name, pam_group_name, and mysql_user_name values can contain
anything except equal sign, comma, or space.

• If a pam_service_name, pam_group_name, or mysql_user_name value is quoted with double
quotation marks, everything between the quotation marks is part of the value. This is necessary, for
example, if the value contains space characters. All characters are legal except double quotation mark
and backslash (\). To include either character, escape it with a backslash.

If the plugin successfully authenticates the external user name (the name passed by the client), it looks for
a PAM group mapping list in the authentication string and, if present, uses it to return a different MySQL
user name to the MySQL server based on which PAM groups the external user is a member of:

• If the authentication string contains no PAM group mapping list, the plugin returns the external name.

• If the authentication string does contain a PAM group mapping list, the plugin examines each
pam_group_name=mysql_user_name pair in the list from left to right and tries to find a match for the
pam_group_name value in a non-MySQL directory of the groups assigned to the authenticated user and
returns mysql_user_name for the first match it finds. If the plugin finds no match for any PAM group, it
returns the external name. If the plugin is not capable of looking up a group in a directory, it ignores the
PAM group mapping list and returns the external name.

The following sections describe how to set up several authentication scenarios that use the PAM
authentication plugin:

• No proxy users. This uses PAM only to check login names and passwords. Every external user
permitted to connect to MySQL Server should have a matching MySQL account that is defined to use
PAM authentication. (For a MySQL account of 'user_name'@'host_name' to match the external
user, user_name must be the external user name and host_name must match the host from which the
client connects.) Authentication can be performed by various PAM-supported methods. Later discussion
shows how to authenticate client credentials using traditional Unix passwords, and passwords in LDAP.

PAM authentication, when not done through proxy users or PAM groups, requires the MySQL user name
to be same as the operating system user name. MySQL user names are limited to 16 characters (see
Section 6.2.3, “Grant Tables”), which limits PAM nonproxy authentication to Unix accounts with names of
at most 16 characters.

• Proxy users only, with PAM group mapping. For this scenario, create one or more MySQL accounts
that define different sets of privileges. (Ideally, nobody should connect using those accounts directly.)
Then define a default user authenticating through PAM that uses some mapping scheme (usually based
on the external PAM groups the users are members of) to map all the external user names to the few
MySQL accounts holding the privilege sets. Any client who connects and specifies an external user
name as the client user name is mapped to one of the MySQL accounts and uses its privileges. The
discussion shows how to set this up using traditional Unix passwords, but other PAM methods such as
LDAP could be used instead.

Variations on these scenarios are possible:

• You can permit some users to log in directly (without proxying) but require others to connect through
proxy accounts.

• You can use one PAM authentication method for some users, and another method for other users, by
using differing PAM service names among your PAM-authenticated accounts. For example, you can use
the mysql-unix PAM service for some users, and mysql-ldap for others.

939

Authentication Plugins

The examples make the following assumptions. You might need to make some adjustments if your system
is set up differently.

• The login name and password are antonio and antonio_password, respectively. Change these to
correspond to the user you want to authenticate.

• The PAM configuration directory is /etc/pam.d.

• The PAM service name corresponds to the authentication method (mysql-unix or mysql-ldap in
this discussion). To use a given PAM service, you must set up a PAM file with the same name in the
PAM configuration directory (creating the file if it does not exist). In addition, you must use the PAM
service name in the authentication string of CREATE USER or GRANT statements for any account that
authenticates using that service.

The PAM authentication plugin checks at initialization time whether the AUTHENTICATION_PAM_LOG
environment value is set in the server's startup environment. If so, the plugin enables logging of diagnostic
messages to the standard output. Depending on how your server is started, the message might appear
on the console or in the error log. These messages can be helpful for debugging PAM-related issues that
occur when the plugin performs authentication. For more information, see PAM Authentication Debugging.

PAM Unix Password Authentication without Proxy Users

This authentication scenario uses PAM to check external users defined in terms of operating system
user names and Unix passwords, without proxying. Every such external user permitted to connect to
MySQL Server should have a matching MySQL account that is defined to use PAM authentication through
traditional Unix password store.

Note

Traditional Unix passwords are checked using the /etc/shadow file. For
information regarding possible issues related to this file, see PAM Authentication
Access to Unix Password Store.

1. Verify that Unix authentication permits logins to the operating system with the user name antonio and
password antonio_password.

2. Set up PAM to authenticate MySQL connections using traditional Unix passwords by creating a
mysql-unix PAM service file named /etc/pam.d/mysql-unix. The file contents are system
dependent, so check existing login-related files in the /etc/pam.d directory to see what they look like.
On Linux, the mysql-unix file might look like this:

#%PAM-1.0
auth include password-auth
account include password-auth

For macOS, use login rather than password-auth.

The PAM file format might differ on some systems. For example, on Ubuntu and other Debian-based
systems, use these file contents instead:

@include common-auth
@include common-account
@include common-session-noninteractive

3. Create a MySQL account with the same user name as the operating system user name and define it to
authenticate using the PAM plugin and the mysql-unix PAM service:

CREATE USER 'antonio'@'localhost'
 IDENTIFIED WITH authentication_pam

940

Authentication Plugins

 AS 'mysql-unix';
GRANT ALL PRIVILEGES
 ON mydb.*
 TO 'antonio'@'localhost';

Here, the authentication string contains only the PAM service name, mysql-unix, which authenticates
Unix passwords.

4. Use the mysql command-line client to connect to the MySQL server as antonio. For example:

$> mysql --user=antonio --password --enable-cleartext-plugin
Enter password: antonio_password

The server should permit the connection and the following query returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+-------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+-------------------+--------------+
| antonio@localhost | antonio@localhost | NULL |
+-------------------+-------------------+--------------+

This demonstrates that the antonio operating system user is authenticated to have the privileges
granted to the antonio MySQL user, and that no proxying has occurred.

Note

The client-side mysql_clear_password authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as cleartext.
This enables the password to be passed as is to PAM. A cleartext password is
necessary to use the server-side PAM library, but may be a security problem in
some configurations. These measures minimize the risk:

• To make inadvertent use of the mysql_clear_password plugin less likely,
MySQL clients must explicitly enable it (for example, with the --enable-
cleartext-plugin option). See Section 6.4.1.5, “Client-Side Cleartext
Pluggable Authentication”.

• To avoid password exposure with the mysql_clear_password plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 6.3.1, “Configuring MySQL to Use Encrypted
Connections”.

PAM LDAP Authentication without Proxy Users

This authentication scenario uses PAM to check external users defined in terms of operating system user
names and LDAP passwords, without proxying. Every such external user permitted to connect to MySQL
Server should have a matching MySQL account that is defined to use PAM authentication through LDAP.

To use PAM LDAP pluggable authentication for MySQL, these prerequisites must be satisfied:

• An LDAP server must be available for the PAM LDAP service to communicate with.

• LDAP users to be authenticated by MySQL must be present in the directory managed by the LDAP
server.

Configure MySQL for PAM LDAP authentication as follows:

1. Verify that Unix authentication permits logins to the operating system with the user name antonio and
password antonio_password.

941

Authentication Plugins

2. Set up PAM to authenticate MySQL connections using LDAP by creating a mysql-ldap PAM service
file named /etc/pam.d/mysql-ldap. The file contents are system dependent, so check existing
login-related files in the /etc/pam.d directory to see what they look like. On Linux, the mysql-ldap
file might look like this:

#%PAM-1.0
auth required pam_ldap.so
account required pam_ldap.so

If PAM object files have a suffix different from .so on your system, substitute the correct suffix.

The PAM file format might differ on some systems.

3. Create a MySQL account with the same user name as the operating system user name and define it to
authenticate using the PAM plugin and the mysql-ldap PAM service:

CREATE USER 'antonio'@'localhost'
 IDENTIFIED WITH authentication_pam
 AS 'mysql-ldap';
GRANT ALL PRIVILEGES
 ON mydb.*
 TO 'antonio'@'localhost';

Here, the authentication string contains only the PAM service name, mysql-ldap, which authenticates
using LDAP.

4. Connecting to the server is the same as described in PAM Unix Password Authentication without Proxy
Users.

PAM Unix Password Authentication with Proxy Users and Group Mapping

The authentication scheme described here uses proxying and PAM group mapping to map connecting
MySQL users who authenticate using PAM onto other MySQL accounts that define different sets of
privileges. Users do not connect directly through the accounts that define the privileges. Instead, they
connect through a default proxy account authenticated using PAM, such that all the external users are
mapped to the MySQL accounts that hold the privileges. Any user who connects using the proxy account
is mapped to one of those MySQL accounts, the privileges for which determine the database operations
permitted to the external user.

The procedure shown here uses Unix password authentication. To use LDAP instead, see the early steps
of PAM LDAP Authentication without Proxy Users.

Note

Traditional Unix passwords are checked using the /etc/shadow file. For
information regarding possible issues related to this file, see PAM Authentication
Access to Unix Password Store.

1. Verify that Unix authentication permits logins to the operating system with the user name antonio and
password antonio_password.

2. Verify that antonio is a member of the root or users PAM group.

3. Set up PAM to authenticate the mysql-unix PAM service through operating system users by creating
a file named /etc/pam.d/mysql-unix. The file contents are system dependent, so check existing
login-related files in the /etc/pam.d directory to see what they look like. On Linux, the mysql-unix
file might look like this:

#%PAM-1.0

942

Authentication Plugins

auth include password-auth
account include password-auth

For macOS, use login rather than password-auth.

The PAM file format might differ on some systems. For example, on Ubuntu and other Debian-based
systems, use these file contents instead:

@include common-auth
@include common-account
@include common-session-noninteractive

4. Create a default proxy user (''@'') that maps external PAM users to the proxied accounts:

CREATE USER ''@''
 IDENTIFIED WITH authentication_pam
 AS 'mysql-unix, root=developer, users=data_entry';

Here, the authentication string contains the PAM service name, mysql-unix, which authenticates
Unix passwords. The authentication string also maps external users in the root and users PAM
groups to the developer and data_entry MySQL user names, respectively.

The PAM group mapping list following the PAM service name is required when you set up proxy users.
Otherwise, the plugin cannot tell how to perform mapping from external user names to the proper
proxied MySQL user names.

Note

If your MySQL installation has anonymous users, they might conflict with the
default proxy user. For more information about this issue, and ways of dealing
with it, see Default Proxy User and Anonymous User Conflicts.

5. Create the proxied accounts and grant to each one the privileges it should have:

CREATE USER 'developer'@'localhost'
 IDENTIFIED BY 'very secret password';
CREATE USER 'data_entry'@'localhost'
 IDENTIFIED BY 'very secret password';

GRANT ALL PRIVILEGES
 ON mydevdb.*
 TO 'developer'@'localhost';
GRANT ALL PRIVILEGES
 ON mydb.*
 TO 'data_entry'@'localhost';

If you do not let anyone know the passwords for these accounts, clients cannot use them to connect
directly to the MySQL server. Instead, it is expected that users who authenticate using PAM use the
developer or data_entry account by proxy based on their PAM group.

6. Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY
 ON 'developer'@'localhost'
 TO ''@'';
GRANT PROXY
 ON 'data_entry'@'localhost'
 TO ''@'';

7. Use the mysql command-line client to connect to the MySQL server as antonio.

$> mysql --user=antonio --password --enable-cleartext-plugin

943

Authentication Plugins

Enter password: antonio_password

The server authenticates the connection using the default ''@'' proxy account. The resulting
privileges for antonio depend on which PAM groups antonio is a member of. If antonio is a
member of the root PAM group, the PAM plugin maps root to the developer MySQL user name
and returns that name to the server. The server verifies that ''@'' has the PROXY privilege for
developer and permits the connection. The following query returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+---------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+---------------------+--------------+
| antonio@localhost | developer@localhost | ''@'' |
+-------------------+---------------------+--------------+

This demonstrates that the antonio operating system user is authenticated to have the privileges
granted to the developer MySQL user, and that proxying occurred through the default proxy account.

If antonio is not a member of the root PAM group but is a member of the users PAM group, a
similar process occurs, but the plugin maps user PAM group membership to the data_entry MySQL
user name and returns that name to the server:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+----------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+----------------------+--------------+
| antonio@localhost | data_entry@localhost | ''@'' |
+-------------------+----------------------+--------------+

This demonstrates that the antonio operating system user is authenticated to have the privileges of
the data_entry MySQL user, and that proxying occurred through the default proxy account.

Note

The client-side mysql_clear_password authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as cleartext.
This enables the password to be passed as is to PAM. A cleartext password is
necessary to use the server-side PAM library, but may be a security problem in
some configurations. These measures minimize the risk:

• To make inadvertent use of the mysql_clear_password plugin less likely,
MySQL clients must explicitly enable it (for example, with the --enable-
cleartext-plugin option). See Section 6.4.1.5, “Client-Side Cleartext
Pluggable Authentication”.

• To avoid password exposure with the mysql_clear_password plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 6.3.1, “Configuring MySQL to Use Encrypted
Connections”.

PAM Authentication Access to Unix Password Store

On some systems, Unix authentication uses a password store such as /etc/shadow, a file that typically
has restricted access permissions. This can cause MySQL PAM-based authentication to fail. Unfortunately,
the PAM implementation does not permit distinguishing “password could not be checked” (due, for
example, to inability to read /etc/shadow) from “password does not match.” If you are using Unix
password store for PAM authentication, you may be able to enable access to it from MySQL using one of
the following methods:

944

Authentication Plugins

• Assuming that the MySQL server is run from the mysql operating system account, put that account in
the shadow group that has /etc/shadow access:

1. Create a shadow group in /etc/group.

2. Add the mysql operating system user to the shadow group in /etc/group.

3. Assign /etc/group to the shadow group and enable the group read permission:

chgrp shadow /etc/shadow
chmod g+r /etc/shadow

4. Restart the MySQL server.

• If you are using the pam_unix module and the unix_chkpwd utility, enable password store access as
follows:

chmod u-s /usr/sbin/unix_chkpwd
setcap cap_dac_read_search+ep /usr/sbin/unix_chkpwd

Adjust the path to unix_chkpwd as necessary for your platform.

PAM Authentication Debugging

The PAM authentication plugin checks at initialization time whether the AUTHENTICATION_PAM_LOG
environment value is set (the value does not matter). If so, the plugin enables logging of diagnostic
messages to the standard output. These messages may be helpful for debugging PAM-related issues that
occur when the plugin performs authentication.

Some messages include reference to PAM plugin source files and line numbers, which enables plugin
actions to be tied more closely to the location in the code where they occur.

Another technique for debugging connection failures and determining what is happening during connection
attempts is to configure PAM authentication to permit all connections, then check the system log files. This
technique should be used only on a temporary basis, and not on a production server.

Configure a PAM service file named /etc/pam.d/mysql-any-password with these contents (the
format may differ on some systems):

#%PAM-1.0
auth required pam_permit.so
account required pam_permit.so

Create an account that uses the PAM plugin and names the mysql-any-password PAM service:

CREATE USER 'testuser'@'localhost'
 IDENTIFIED WITH authentication_pam
 AS 'mysql-any-password';

The mysql-any-password service file causes any authentication attempt to return true, even for
incorrect passwords. If an authentication attempt fails, that tells you the configuration problem is on
the MySQL side. Otherwise, the problem is on the operating system/PAM side. To see what might be
happening, check system log files such as /var/log/secure, /var/log/audit.log, /var/log/
syslog, or /var/log/messages.

After determining what the problem is, remove the mysql-any-password PAM service file to disable
any-password access.

6.4.1.7 Windows Pluggable Authentication

945

Authentication Plugins

Note

Windows pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

MySQL Enterprise Edition for Windows supports an authentication method that performs external
authentication on Windows, enabling MySQL Server to use native Windows services to authenticate client
connections. Users who have logged in to Windows can connect from MySQL client programs to the server
based on the information in their environment without specifying an additional password.

The client and server exchange data packets in the authentication handshake. As a result of this
exchange, the server creates a security context object that represents the identity of the client in the
Windows OS. This identity includes the name of the client account. Windows pluggable authentication
uses the identity of the client to check whether it is a given account or a member of a group. By default,
negotiation uses Kerberos to authenticate, then NTLM if Kerberos is unavailable.

Windows pluggable authentication provides these capabilities:

• External authentication: Windows authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables who have logged in to Windows.

• Proxy user support: Windows authentication can return to MySQL a user name different from the
external user name passed by the client program. This means that the plugin can return the MySQL
user that defines the privileges the external Windows-authenticated user should have. For example, a
Windows user named joe can connect and have the privileges of a MySQL user named developer.

The following table shows the plugin and library file names. The file must be located in the directory named
by the plugin_dir system variable.

Table 6.13 Plugin and Library Names for Windows Authentication

Plugin or File Plugin or File Name

Server-side plugin authentication_windows

Client-side plugin authentication_windows_client

Library file authentication_windows.dll

The library file includes only the server-side plugin. The client-side plugin is built into the
libmysqlclient client library.

The server-side Windows authentication plugin is included only in MySQL Enterprise Edition. It is not
included in MySQL community distributions. The client-side plugin is included in all distributions, including
community distributions. This enables clients from any distribution to connect to a server that has the
server-side plugin loaded.

The following sections provide installation and usage information specific to Windows pluggable
authentication:

• Installing Windows Pluggable Authentication

• Uninstalling Windows Pluggable Authentication

• Using Windows Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.2.11, “Pluggable
Authentication”. For proxy user information, see Section 6.2.12, “Proxy Users”.

946

https://www.mysql.com/products/

Authentication Plugins

Installing Windows Pluggable Authentication

This section describes how to install the server-side Windows authentication plugin. For general
information about installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file:

[mysqld]
plugin-load-add=authentication_windows.dll

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement:

INSTALL PLUGIN authentication_windows SONAME 'authentication_windows.dll';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system table
to cause the server to load it for each subsequent normal startup without the need for --plugin-load-
add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%windows%';
+------------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+------------------------+---------------+
| authentication_windows | ACTIVE |
+------------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the Windows authentication plugin, see Using
Windows Pluggable Authentication. Additional plugin control is provided by the
authentication_windows_use_principal_name and authentication_windows_log_level
system variables. See Section 5.1.7, “Server System Variables”.

Uninstalling Windows Pluggable Authentication

The method used to uninstall the Windows authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed across
server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN authentication_windows;

In addition, remove any startup options that set Windows plugin-related system variables.

947

Authentication Plugins

Using Windows Pluggable Authentication

The Windows authentication plugin supports the use of MySQL accounts such that users who have logged
in to Windows can connect to the MySQL server without having to specify an additional password. It is
assumed that the server is running with the server-side plugin enabled, as described in Installing Windows
Pluggable Authentication. Once the DBA has enabled the server-side plugin and set up accounts to use it,
clients can connect using those accounts with no other setup required on their part.

To refer to the Windows authentication plugin in the IDENTIFIED WITH clause of a CREATE USER or
GRANT statement, use the name authentication_windows. Suppose that the Windows users Rafal
and Tasha should be permitted to connect to MySQL, as well as any users in the Administrators or
Power Users group. To set this up, create a MySQL account named sql_admin that uses the Windows
plugin for authentication:

CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows
 AS 'Rafal, Tasha, Administrators, "Power Users"';

The plugin name is authentication_windows. The string following the AS keyword is the
authentication string. It specifies that the Windows users named Rafal or Tasha are permitted
to authenticate to the server as the MySQL user sql_admin, as are any Windows users in the
Administrators or Power Users group. The latter group name contains a space, so it must be quoted
with double quote characters.

After you create the sql_admin account, a user who has logged in to Windows can attempt to connect to
the server using that account:

C:\> mysql --user=sql_admin

No password is required here. The authentication_windows plugin uses the Windows security API
to check which Windows user is connecting. If that user is named Rafal or Tasha, or is a member of the
Administrators or Power Users group, the server grants access and the client is authenticated as
sql_admin and has whatever privileges are granted to the sql_admin account. Otherwise, the server
denies access.

Authentication string syntax for the Windows authentication plugin follows these rules:

• The string consists of one or more user mappings separated by commas.

• Each user mapping associates a Windows user or group name with a MySQL user name:

win_user_or_group_name=mysql_user_name
win_user_or_group_name

For the latter syntax, with no mysql_user_name value given, the implicit value is the MySQL user
created by the CREATE USER statement. Thus, these statements are equivalent:

CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows
 AS 'Rafal, Tasha, Administrators, "Power Users"';

CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows
 AS 'Rafal=sql_admin, Tasha=sql_admin, Administrators=sql_admin,
 "Power Users"=sql_admin';

• Each backslash character (\) in a value must be doubled because backslash is the escape character in
MySQL strings.

• Leading and trailing spaces not inside double quotation marks are ignored.

948

Authentication Plugins

• Unquoted win_user_or_group_name and mysql_user_name values can contain anything except
equal sign, comma, or space.

• If a win_user_or_group_name and or mysql_user_name value is quoted with double quotation
marks, everything between the quotation marks is part of the value. This is necessary, for example, if the
name contains space characters. All characters within double quotes are legal except double quotation
mark and backslash. To include either character, escape it with a backslash.

• win_user_or_group_name values use conventional syntax for Windows principals, either local or in a
domain. Examples (note the doubling of backslashes):

domain\\user
.\\user
domain\\group
.\\group
BUILTIN\\WellKnownGroup

When invoked by the server to authenticate a client, the plugin scans the authentication string left to right
for a user or group match to the Windows user. If there is a match, the plugin returns the corresponding
mysql_user_name to the MySQL server. If there is no match, authentication fails.

A user name match takes preference over a group name match. Suppose that the Windows user named
win_user is a member of win_group and the authentication string looks like this:

'win_group = sql_user1, win_user = sql_user2'

When win_user connects to the MySQL server, there is a match both to win_group and to win_user.
The plugin authenticates the user as sql_user2 because the more-specific user match takes precedence
over the group match, even though the group is listed first in the authentication string.

Windows authentication always works for connections from the same computer on which the server
is running. For cross-computer connections, both computers must be registered with Microsoft Active
Directory. If they are in the same Windows domain, it is unnecessary to specify a domain name. It is also
possible to permit connections from a different domain, as in this example:

CREATE USER sql_accounting
 IDENTIFIED WITH authentication_windows
 AS 'SomeDomain\\Accounting';

Here SomeDomain is the name of the other domain. The backslash character is doubled because it is the
MySQL escape character within strings.

MySQL supports the concept of proxy users whereby a client can connect and authenticate to the MySQL
server using one account but while connected has the privileges of another account (see Section 6.2.12,
“Proxy Users”). Suppose that you want Windows users to connect using a single user name but be
mapped based on their Windows user and group names onto specific MySQL accounts as follows:

• The local_user and MyDomain\domain_user local and domain Windows users should map to the
local_wlad MySQL account.

• Users in the MyDomain\Developers domain group should map to the local_dev MySQL account.

• Local machine administrators should map to the local_admin MySQL account.

To set this up, create a proxy account for Windows users to connect to, and configure this account so that
users and groups map to the appropriate MySQL accounts (local_wlad, local_dev, local_admin).
In addition, grant the MySQL accounts the privileges appropriate to the operations they need to perform.
The following instructions use win_proxy as the proxy account, and local_wlad, local_dev, and
local_admin as the proxied accounts.

949

Authentication Plugins

1. Create the proxy MySQL account:

CREATE USER win_proxy
 IDENTIFIED WITH authentication_windows
 AS 'local_user = local_wlad,
 MyDomain\\domain_user = local_wlad,
 MyDomain\\Developers = local_dev,
 BUILTIN\\Administrators = local_admin';

2. For proxying to work, the proxied accounts must exist, so create them:

CREATE USER local_wlad IDENTIFIED BY 'secret_wlad_pass';
CREATE USER local_dev IDENTIFIED BY 'secret_dev_pass';
CREATE USER local_admin IDENTIFIED BY 'secret_admin_pass';

If you do not let anyone know the passwords for these accounts, clients cannot use them to connect
directly to the MySQL server. Instead, it is expected that users who authenticate using Windows use
the win_proxy proxy account.

You should also execute GRANT statements (not shown) that grant each proxied account the privileges
required for MySQL access.

3. Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY ON local_wlad TO win_proxy;
GRANT PROXY ON local_dev TO win_proxy;
GRANT PROXY ON local_admin TO win_proxy;

Now the Windows users local_user and MyDomain\domain_user can connect to the MySQL server
as win_proxy and when authenticated have the privileges of the account given in the authentication
string (in this case, local_wlad). A user in the MyDomain\Developers group who connects as
win_proxy has the privileges of the local_dev account. A user in the BUILTIN\Administrators
group has the privileges of the local_admin account.

To configure authentication so that all Windows users who do not have their own MySQL account go
through a proxy account, substitute the default proxy account (''@'') for win_proxy in the preceding
instructions. For information about default proxy accounts, see Section 6.2.12, “Proxy Users”.

Note

If your MySQL installation has anonymous users, they might conflict with the default
proxy user. For more information about this issue, and ways of dealing with it, see
Default Proxy User and Anonymous User Conflicts.

To use the Windows authentication plugin with Connector/NET connection strings in Connector/NET 8.0
and higher, see Connector/NET Authentication.

6.4.1.8 Socket Peer-Credential Pluggable Authentication

The server-side auth_socket authentication plugin authenticates clients that connect from the local
host through the Unix socket file. The plugin uses the SO_PEERCRED socket option to obtain information
about the user running the client program. Thus, the plugin can be used only on systems that support the
SO_PEERCRED option, such as Linux.

The source code for this plugin can be examined as a relatively simple example demonstrating how to
write a loadable authentication plugin.

The following table shows the plugin and library file names. The file must be located in the directory named
by the plugin_dir system variable.

950

https://dev.mysql.com/doc/connector-net/en/connector-net-authentication.html

Authentication Plugins

Table 6.14 Plugin and Library Names for Socket Peer-Credential Authentication

Plugin or File Plugin or File Name

Server-side plugin auth_socket

Client-side plugin None, see discussion

Library file auth_socket.so

The following sections provide installation and usage information specific to socket pluggable
authentication:

• Installing Socket Pluggable Authentication

• Uninstalling Socket Pluggable Authentication

• Using Socket Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.2.11, “Pluggable
Authentication”.

Installing Socket Pluggable Authentication

This section describes how to install the socket authentication plugin. For general information about
installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file:

[mysqld]
plugin-load-add=auth_socket.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement:

INSTALL PLUGIN auth_socket SONAME 'auth_socket.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system table
to cause the server to load it for each subsequent normal startup without the need for --plugin-load-
add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%socket%';
+-------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------+---------------+
| auth_socket | ACTIVE |
+-------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the socket plugin, see Using Socket Pluggable Authentication.

951

Authentication Plugins

Uninstalling Socket Pluggable Authentication

The method used to uninstall the socket authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed across
server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN auth_socket;

Using Socket Pluggable Authentication

The socket plugin checks whether the socket user name (the operating system user name) matches the
MySQL user name specified by the client program to the server, and permits the connection only if the
names match.

Suppose that a MySQL account is created for an operating system user named valerie who is to be
authenticated by the auth_socket plugin for connections from the local host through the socket file:

CREATE USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket;

If a user on the local host with a login name of stefanie invokes mysql with the option --
user=valerie to connect through the socket file, the server uses auth_socket to authenticate the
client. The plugin determines that the --user option value (valerie) differs from the client user's name
(stephanie) and refuses the connection. If a user named valerie tries the same thing, the plugin finds
that the user name and the MySQL user name are both valerie and permits the connection. However,
the plugin refuses the connection even for valerie if the connection is made using a different protocol,
such as TCP/IP.

6.4.1.9 Test Pluggable Authentication

MySQL includes a test plugin that checks account credentials and logs success or failure to the server
error log. This is a loadable plugin (not built in) and must be installed prior to use.

The test plugin source code is separate from the server source, unlike the built-in native plugin, so it can be
examined as a relatively simple example demonstrating how to write a loadable authentication plugin.

Note

This plugin is intended for testing and development purposes, and is not for use in
production environments or on servers that are exposed to public networks.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable.

Table 6.15 Plugin and Library Names for Test Authentication

Plugin or File Plugin or File Name

Server-side plugin test_plugin_server

Client-side plugin auth_test_plugin

Library file auth_test_plugin.so

The following sections provide installation and usage information specific to test pluggable authentication:

• Installing Test Pluggable Authentication

952

Authentication Plugins

• Uninstalling Test Pluggable Authentication

• Using Test Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.2.11, “Pluggable
Authentication”.

Installing Test Pluggable Authentication

This section describes how to install the server-side test authentication plugin. For general information
about installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
plugin-load-add=auth_test_plugin.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform as
necessary:

INSTALL PLUGIN test_plugin_server SONAME 'auth_test_plugin.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system table
to cause the server to load it for each subsequent normal startup without the need for --plugin-load-
add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%test_plugin%';
+--------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------------+---------------+
| test_plugin_server | ACTIVE |
+--------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the test plugin, see Using Test Pluggable Authentication.

Uninstalling Test Pluggable Authentication

The method used to uninstall the test authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed across
server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN test_plugin_server;

953

The Connection-Control Plugins

Using Test Pluggable Authentication

To use the test authentication plugin, create an account and name that plugin in the IDENTIFIED WITH
clause:

CREATE USER 'testuser'@'localhost' IDENTIFIED WITH test_plugin_server;
SET PASSWORD FOR 'testuser'@'localhost' = PASSWORD('testpassword');

Then provide the --user and --password options for that account when you connect to the server. For
example:

$> mysql --user=testuser --password
Enter password: testpassword

The plugin fetches the password as received from the client and compares it with the value stored in the
authentication_string column of the account row in the mysql.user system table. If the two values
match, the plugin returns the authentication_string value as the new effective user ID.

You can look in the server error log for a message indicating whether authentication succeeded (notice that
the password is reported as the “user”):

[Note] Plugin test_plugin_server reported:
'successfully authenticated user testpassword'

6.4.2 The Connection-Control Plugins

As of MySQL 5.6.35, MySQL Server includes a plugin library that enables administrators to introduce an
increasing delay in server response to connection attempts after a configurable number of consecutive
failed attempts. This capability provides a deterrent that slows down brute force attacks against MySQL
user accounts. The plugin library contains two plugins:

• CONNECTION_CONTROL checks incoming connection attempts and adds a delay to server responses as
necessary. This plugin also exposes system variables that enable its operation to be configured and a
status variable that provides rudimentary monitoring information.

The CONNECTION_CONTROL plugin uses the audit plugin interface (see Writing Audit Plugins). To collect
information, it subscribes to the MYSQL_AUDIT_CONNECTION_CLASSMASK event class, and processes
MYSQL_AUDIT_CONNECTION_CONNECT and MYSQL_AUDIT_CONNECTION_CHANGE_USER subevents
to check whether the server should introduce a delay before responding to connection attempts.

• CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS implements an INFORMATION_SCHEMA table that
exposes more detailed monitoring information for failed connection attempts.

The following sections provide information about connection-control plugin installation and configuration.
For information about the CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table, see Section 21.7.2,
“The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table”.

6.4.2.1 Connection-Control Plugin Installation

This section describes how to install the connection-control plugins, CONNECTION_CONTROL and
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS. For general information about installing plugins,
see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

The plugin library file base name is connection_control. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

954

https://dev.mysql.com/doc/extending-mysql/5.6/en/writing-audit-plugins.html

The Connection-Control Plugins

To load the plugins at server startup, use the --plugin-load-add option to name the library file that
contains them. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
plugin-load-add=connection_control.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugins at runtime, use these statements, adjusting the .so suffix for your platform
as necessary:

INSTALL PLUGIN CONNECTION_CONTROL
 SONAME 'connection_control.so';
INSTALL PLUGIN CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS
 SONAME 'connection_control.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system table
to cause the server to load it for each subsequent normal startup without the need for --plugin-load-
add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'connection%';
+--+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--+---------------+
| CONNECTION_CONTROL | ACTIVE |
| CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS | ACTIVE |
+--+---------------+

If a plugin failed to initialize, check the server error log for diagnostic messages.

If the plugins have been previously registered with INSTALL PLUGIN or are loaded with --plugin-
load-add, you can use the --connection-control and --connection-control-failed-login-
attempts options at server startup to control plugin activation. For example, to load the plugins at startup
and prevent them from being removed at runtime, use these options:

[mysqld]
plugin-load-add=connection_control.so
connection-control=FORCE_PLUS_PERMANENT
connection-control-failed-login-attempts=FORCE_PLUS_PERMANENT

If it is desired to prevent the server from running without a given connection-control plugin, use an option
value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if the plugin does not initialize
successfully.

Note

It is possible to install one plugin without the other, but both must be
installed for full connection-control capability. In particular, installing only the
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS plugin is of little use because
without the CONNECTION_CONTROL plugin to provide the data that populates the
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table, retrievals from the
table are always empty.

• Connection Delay Configuration

955

The Connection-Control Plugins

• Connection Failure Assessment

• Connection Failure Monitoring

Connection Delay Configuration

To enable configuring its operation, the CONNECTION_CONTROL plugin exposes these system variables:

• connection_control_failed_connections_threshold: The number of
consecutive failed connection attempts permitted to accounts before the server adds a
delay for subsequent connection attempts. To disable failed-connection counting, set
connection_control_failed_connections_threshold to zero.

• connection_control_min_connection_delay: The minimum delay in milliseconds for connection
failures above the threshold.

• connection_control_max_connection_delay: The maximum delay in milliseconds for connection
failures above the threshold.

If connection_control_failed_connections_threshold is nonzero, failed-connection counting is
enabled and has these properties:

• The delay is zero up through connection_control_failed_connections_threshold
consecutive failed connection attempts.

• Thereafter, the server adds an increasing delay for subsequent consecutive attempts, until a successful
connection occurs. The initial unadjusted delays begin at 1000 milliseconds (1 second) and increase by
1000 milliseconds per attempt. That is, once delay has been activated for an account, the unadjusted
delays for subsequent failed attempts are 1000 milliseconds, 2000 milliseconds, 3000 milliseconds, and
so forth.

• The actual delay experienced by a client is the unadjusted delay, adjusted to lie
within the values of the connection_control_min_connection_delay and
connection_control_max_connection_delay system variables, inclusive.

• Once delay has been activated for an account, the first successful connection thereafter by the account
also experiences a delay, but failure counting is reset for subsequent connections.

For example, with the default connection_control_failed_connections_threshold
value of 3, there is no delay for the first three consecutive failed connection attempts by an
account. The actual adjusted delays experienced by the account for the fourth and subsequent
failed connections depend on the connection_control_min_connection_delay and
connection_control_max_connection_delay values:

• If connection_control_min_connection_delay and
connection_control_max_connection_delay are 1000 and 20000, the adjusted delays are the
same as the unadjusted delays, up to a maximum of 20000 milliseconds. The fourth and subsequent
failed connections are delayed by 1000 milliseconds, 2000 milliseconds, 3000 milliseconds, and so forth.

• If connection_control_min_connection_delay and
connection_control_max_connection_delay are 1500 and 20000, the adjusted delays for the
fourth and subsequent failed connections are 1500 milliseconds, 2000 milliseconds, 3000 milliseconds,
and so forth, up to a maximum of 20000 milliseconds.

• If connection_control_min_connection_delay and
connection_control_max_connection_delay are 2000 and 3000, the adjusted delays for
the fourth and subsequent failed connections are 2000 milliseconds, 2000 milliseconds, and 3000
milliseconds, with all subsequent failed connections also delayed by 3000 milliseconds.

956

The Connection-Control Plugins

You can set the CONNECTION_CONTROL system variables at server startup or runtime. Suppose that you
want to permit four consecutive failed connection attempts before the server starts delaying its responses,
with a minimum delay of 2000 milliseconds. To set the relevant variables at server startup, put these lines
in the server my.cnf file:

[mysqld]
plugin-load-add=connection_control.so
connection_control_failed_connections_threshold=4
connection_control_min_connection_delay=2000

To set the variables at runtime, use these statements:

SET GLOBAL connection_control_failed_connections_threshold = 4;
SET GLOBAL connection_control_min_connection_delay = 1500;

SET GLOBAL sets the value for the running MySQL instance. To make the change permanent, add a line
in your my.cnf file, as shown previously.

The connection_control_min_connection_delay and
connection_control_max_connection_delay system variables both have minimum and maximum
values of 1000 and 2147483647. In addition, the permitted range of values of each variable also depends
on the current value of the other:

• connection_control_min_connection_delay cannot be set greater than the current value of
connection_control_max_connection_delay.

• connection_control_max_connection_delay cannot be set less than the current value of
connection_control_min_connection_delay.

Thus, to make the changes required for some configurations, you might need to set the
variables in a specific order. Suppose that the current minimum and maximum delays
are 1000 and 2000, and that you want to set them to 3000 and 5000. You cannot first
set connection_control_min_connection_delay to 3000 because that is greater
than the current connection_control_max_connection_delay value of 2000.
Instead, set connection_control_max_connection_delay to 5000, then set
connection_control_min_connection_delay to 3000.

Connection Failure Assessment

When the CONNECTION_CONTROL plugin is installed, it checks connection attempts and tracks whether
they fail or succeed. For this purpose, a failed connection attempt is one for which the client user and host
match a known MySQL account but the provided credentials are incorrect, or do not match any known
account.

Failed-connection counting is based on the user/host combination for each connection attempt.
Determination of the applicable user name and host name takes proxying into account and occurs as
follows:

• If the client user proxies another user, the account for failed-connection counting is the
proxying user, not the proxied user. For example, if external_user@example.com
proxies proxy_user@example.com, connection counting uses the proxying user,
external_user@example.com, rather than the proxied user, proxy_user@example.com.
Both external_user@example.com and proxy_user@example.com must have valid entries
in the mysql.user system table and a proxy relationship between them must be defined in the
mysql.proxies_priv system table (see Section 6.2.12, “Proxy Users”).

• If the client user does not proxy another user, but does match a mysql.user entry, counting uses
the CURRENT_USER() value corresponding to that entry. For example, if a user user1 connecting

957

The Connection-Control Plugins

from a host host1.example.com matches a user1@host1.example.com entry, counting uses
user1@host1.example.com. If the user matches a user1@%.example.com, user1@%.com,
or user1@% entry instead, counting uses user1@%.example.com, user1@%.com, or user1@%,
respectively.

For the cases just described, the connection attempt matches some mysql.user entry, and whether the
request succeeds or fails depends on whether the client provides the correct authentication credentials.
For example, if the client presents an incorrect password, the connection attempt fails.

If the connection attempt matches no mysql.user entry, the attempt fails. In this case, no
CURRENT_USER() value is available and connection-failure counting uses the user name provided
by the client and the client host as determined by the server. For example, if a client attempts to
connect as user user2 from host host2.example.com, the user name part is available in the client
request and the server determines the host information. The user/host combination used for counting is
user2@host2.example.com.

Note

The server maintains information about which client hosts can possibly connect to
the server (essentially the union of host values for mysql.user entries). If a client
attempts to connect from any other host, the server rejects the attempt at an early
stage of connection setup:

ERROR 1130 (HY000): Host 'host_name' is not
allowed to connect to this MySQL server

Because this type of rejection occurs so early, CONNECTION_CONTROL does not
see it, and does not count it.

Connection Failure Monitoring

To monitor failed connections, use these information sources:

• The Connection_control_delay_generated status variable indicates the number
of times the server added a delay to its response to a failed connection attempt. This
does not count attempts that occur before reaching the threshold defined by the
connection_control_failed_connections_threshold system variable.

• The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table provides
information about the current number of consecutive failed connection attempts per account (user/host
combination). This counts all failed attempts, regardless of whether they were delayed.

Assigning a value to connection_control_failed_connections_threshold at runtime has these
effects:

• All accumulated failed-connection counters are reset to zero.

• The Connection_control_delay_generated status variable is reset to zero.

• The CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table becomes empty.

6.4.2.2 Connection-Control System and Status Variables

This section describes the system and status variables that the CONNECTION_CONTROL plugin provides to
enable its operation to be configured and monitored.

• Connection-Control System Variables

958

The Connection-Control Plugins

• Connection-Control Status Variables

Connection-Control System Variables

If the CONNECTION_CONTROL plugin is installed, it exposes these system variables:

• connection_control_failed_connections_threshold

Command-Line Format --connection-control-failed-
connections-threshold=#

Introduced 5.6.35

System Variable connection_control_failed_connections_threshold

Scope Global

Dynamic Yes

Type Integer

Default Value 3

Minimum Value 0

Maximum Value 2147483647

The number of consecutive failed connection attempts permitted to accounts before the server adds a
delay for subsequent connection attempts:

• If the variable has a nonzero value N, the server adds a delay beginning with consecutive failed
attempt N+1. If an account has reached the point where connection responses are delayed, a delay
also occurs for the next subsequent successful connection.

• Setting this variable to zero disables failed-connection counting. In this case, the server never adds
delays.

For information about how connection_control_failed_connections_threshold interacts with
other connection-control system and status variables, see Section 6.4.2.1, “Connection-Control Plugin
Installation”.

• connection_control_max_connection_delay

Command-Line Format --connection-control-max-connection-
delay=#

Introduced 5.6.35

System Variable connection_control_max_connection_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 2147483647

Minimum Value 1000

Maximum Value 2147483647

Unit milliseconds

The maximum delay in milliseconds for server response to failed connection attempts, if
connection_control_failed_connections_threshold is greater than zero.

959

The Password Validation Plugin

For information about how connection_control_max_connection_delay interacts with other
connection-control system and status variables, see Section 6.4.2.1, “Connection-Control Plugin
Installation”.

• connection_control_min_connection_delay

Command-Line Format --connection-control-min-connection-
delay=#

Introduced 5.6.35

System Variable connection_control_min_connection_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 1000

Minimum Value 1000

Maximum Value 2147483647

Unit milliseconds

The minimum delay in milliseconds for server response to failed connection attempts, if
connection_control_failed_connections_threshold is greater than zero.

For information about how connection_control_min_connection_delay interacts with other
connection-control system and status variables, see Section 6.4.2.1, “Connection-Control Plugin
Installation”.

Connection-Control Status Variables

If the CONNECTION_CONTROL plugin is installed, it exposes this status variable:

• Connection_control_delay_generated

The number of times the server added a delay to its response to a failed connection attempt.
This does not count attempts that occur before reaching the threshold defined by the
connection_control_failed_connections_threshold system variable.

This variable provides a simple counter. For more detailed connection-
control monitoring information, examine the INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table; see Section 21.7.2, “The
INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table”.

Assigning a value to connection_control_failed_connections_threshold at runtime resets
Connection_control_delay_generated to zero.

This variable was added in MySQL 5.6.35.

6.4.3 The Password Validation Plugin

The validate_password plugin serves to improve security by requiring account passwords and enabling
strength testing of potential passwords. This plugin exposes a set of system variables that enable you to
configure password policy.

The validate_password plugin implements these capabilities:

960

The Password Validation Plugin

• For SQL statements that assign a password supplied as a cleartext value, validate_password
checks the password against the current password policy and rejects the password if it is weak
(the statement returns an ER_NOT_VALID_PASSWORD error). This applies to the CREATE USER,
GRANT, and SET PASSWORD statements, and passwords given as arguments to the PASSWORD() and
OLD_PASSWORD() functions.

• For CREATE USER statements, validate_password requires that a password be given, and that it
satisfies the password policy.

• validate_password implements a VALIDATE_PASSWORD_STRENGTH() SQL function that assesses
the strength of potential passwords. This function takes a password argument and returns an integer
from 0 (weak) to 100 (strong).

Note

For statements that assign, modify, or generate account passwords (CREATE
USER, GRANT, and SET PASSWORD; statements that use PASSWORD() and
OLD_PASSWORD()), the validate_password capabilities described here
apply only to accounts that use an authentication plugin that stores credentials
internally in the mysql.user system table (mysql_native_password or
sha256_password). For accounts that use plugins that perform authentication
against an external credential system, password management must be handled
externally against that system as well.

The preceding restriction does not apply to use of the
VALIDATE_PASSWORD_STRENGTH() function because it does not affect accounts
directly.

Examples:

• validate_password checks the cleartext password in the following statement. Under the default
password policy, which requires passwords to be at least 8 characters long, the password is weak and
the statement produces an error:

mysql> SET PASSWORD = PASSWORD('abc');
ERROR 1819 (HY000): Your password does not satisfy the current
policy requirements

• Passwords specified as hashed values are not checked because the original password value is not
available for checking:

mysql> SET PASSWORD = '*0D3CED9BEC10A777AEC23CCC353A8C08A633045E';
Query OK, 0 rows affected (0.01 sec)

• To check a password, use the VALIDATE_PASSWORD_STRENGTH() function:

mysql> SELECT VALIDATE_PASSWORD_STRENGTH('weak');
+------------------------------------+
| VALIDATE_PASSWORD_STRENGTH('weak') |
+------------------------------------+
| 25 |
+------------------------------------+
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('lessweak$_@123');
+--+
| VALIDATE_PASSWORD_STRENGTH('lessweak$_@123') |
+--+
| 50 |
+--+
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('N0Tweak$_@123!');
+--+
| VALIDATE_PASSWORD_STRENGTH('N0Tweak$_@123!') |

961

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_not_valid_password

The Password Validation Plugin

+--+
| 100 |
+--+

To configure password checking, modify the system variables having names of the form
validate_password_xxx; these are the parameters that control password policy. See Section 6.4.3.2,
“Password Validation Plugin Options and Variables”.

If validate_password is not installed, the validate_password_xxx system variables are not
available, passwords in statements are not checked, and the VALIDATE_PASSWORD_STRENGTH()
function always returns 0. For example, without the plugin installed, accounts can be assigned passwords
shorter than 8 characters, or no password at all.

Assuming that validate_password is installed, it implements three levels of password
checking: LOW, MEDIUM, and STRONG. The default is MEDIUM; to change this, modify the value of
validate_password_policy. The policies implement increasingly strict password tests. The following
descriptions refer to default parameter values, which can be modified by changing the appropriate system
variables.

• LOW policy tests password length only. Passwords must be at least 8 characters long. To change this
length, modify validate_password_length.

• MEDIUM policy adds the conditions that passwords must contain at least 1 numeric
character, 1 lowercase character, 1 uppercase character, and 1 special (nonalphanumeric)
character. To change these values, modify validate_password_number_count,
validate_password_mixed_case_count, and validate_password_special_char_count.

• STRONG policy adds the condition that password substrings of length 4 or longer must not match
words in the dictionary file, if one has been specified. To specify the dictionary file, modify
validate_password_dictionary_file.

6.4.3.1 Password Validation Plugin Installation

This section describes how to install the validate_password password-validation plugin. For general
information about installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

The plugin library file base name is validate_password. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
plugin-load-add=validate_password.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform as
necessary:

INSTALL PLUGIN validate_password SONAME 'validate_password.so';

INSTALL PLUGIN loads the plugin, and also registers it in the mysql.plugins system table to cause the
plugin to be loaded for each subsequent normal server startup without the need for --plugin-load-add.

962

The Password Validation Plugin

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'validate%';
+-------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------------+---------------+
| validate_password | ACTIVE |
+-------------------+---------------+

If the plugin failed to initialize, check the server error log for diagnostic messages.

If the plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load-
add, you can use the --validate-password option at server startup to control plugin activation. For
example, to load the plugin at startup and prevent it from being removed at runtime, use these options:

[mysqld]
plugin-load-add=validate_password.so
validate-password=FORCE_PLUS_PERMANENT

If it is desired to prevent the server from running without the password-validation plugin, use --
validate-password with a value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if
the plugin does not initialize successfully.

6.4.3.2 Password Validation Plugin Options and Variables

This section describes the options, system variables, and status variables that validate_password
provides to enable its operation to be configured and monitored.

• Password Validation Plugin Options

• Password Validation Plugin System Variables

• Password Validation Plugin Status Variables

Password Validation Plugin Options

To control activation of the validate_password plugin, use this option:

• --validate-password[=value]

Command-Line Format --validate-password[=value]

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

FORCE_PLUS_PERMANENT

This option controls how the server loads the validate_password plugin at startup. The value
should be one of those available for plugin-loading options, as described in Section 5.5.1, “Installing
and Uninstalling Plugins”. For example, --validate-password=FORCE_PLUS_PERMANENT tells the
server to load the plugin at startup and prevents it from being removed while the server is running.

963

The Password Validation Plugin

This option is available only if the validate_password plugin has been previously registered with
INSTALL PLUGIN or is loaded with --plugin-load-add. See Section 6.4.3.1, “Password Validation
Plugin Installation”.

Password Validation Plugin System Variables

If the validate_password plugin is enabled, it exposes several system variables that enable
configuration of password checking:

mysql> SHOW VARIABLES LIKE 'validate_password%';
+--------------------------------------+--------+
| Variable_name | Value |
+--------------------------------------+--------+
validate_password_dictionary_file	
validate_password_length	8
validate_password_mixed_case_count	1
validate_password_number_count	1
validate_password_policy	MEDIUM
validate_password_special_char_count	1
+--------------------------------------+--------+

To change how passwords are checked, you can set these system variables at server startup or at
runtime. The following list describes the meaning of each variable.

• validate_password_dictionary_file

Command-Line Format --validate-password-dictionary-
file=file_name

System Variable validate_password_dictionary_file

Scope Global

Dynamic (≥ 5.6.26) Yes

Dynamic (≤ 5.6.25) No

Type File name

The path name of the dictionary file that validate_password uses for checking passwords. This
variable is unavailable unless validate_password is installed.

By default, this variable has an empty value and dictionary checks are not performed. For dictionary
checks to occur, the variable value must be nonempty. If the file is named as a relative path, it is
interpreted relative to the server data directory. File contents should be lowercase, one word per line.
Contents are treated as having a character set of utf8. The maximum permitted file size is 1MB.

For the dictionary file to be used during password checking, the password policy must be set to 2
(STRONG); see the description of the validate_password_policy system variable. Assuming that is
true, each substring of the password of length 4 up to 100 is compared to the words in the dictionary file.
Any match causes the password to be rejected. Comparisons are not case-sensitive.

For VALIDATE_PASSWORD_STRENGTH(), the password is checked against all policies,
including STRONG, so the strength assessment includes the dictionary check regardless of the
validate_password_policy value.

Before MySQL 5.6.26, changes to the dictionary file while the server is running require a restart for the
server to recognize the changes. As of MySQL 5.6.26, validate_password_dictionary_file can
be set at runtime and assigning a value causes the named file to be read without a server restart.

964

The Password Validation Plugin

• validate_password_length

Command-Line Format --validate-password-length=#

System Variable validate_password_length

Scope Global

Dynamic Yes

Type Integer

Default Value 8

Minimum Value 0

The minimum number of characters that validate_password requires passwords to have. This
variable is unavailable unless validate_password is installed.

The validate_password_length minimum value is a function of several other related system
variables. The value cannot be set less than the value of this expression:

validate_password_number_count
+ validate_password_special_char_count
+ (2 * validate_password_mixed_case_count)

If validate_password adjusts the value of validate_password_length due to the preceding
constraint, it writes a message to the error log.

• validate_password_mixed_case_count

Command-Line Format --validate-password-mixed-case-
count=#

System Variable validate_password_mixed_case_count

Scope Global

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 0

The minimum number of lowercase and uppercase characters that validate_password requires
passwords to have if the password policy is MEDIUM or stronger. This variable is unavailable unless
validate_password is installed.

For a given validate_password_mixed_case_count value, the password must have that many
lowercase characters, and that many uppercase characters.

• validate_password_number_count

Command-Line Format --validate-password-number-count=#

System Variable validate_password_number_count

Scope Global

Dynamic Yes

Type Integer

Default Value 1

965

The Password Validation Plugin

Minimum Value 0

The minimum number of numeric (digit) characters that validate_password requires passwords
to have if the password policy is MEDIUM or stronger. This variable is unavailable unless
validate_password is installed.

• validate_password_policy

Command-Line Format --validate-password-policy=value

System Variable validate_password_policy

Scope Global

Dynamic Yes

Type Enumeration

Default Value 1

Valid Values 0

1

2

The password policy enforced by validate_password. This variable is unavailable unless
validate_password is installed.

The validate_password_policy value can be specified using numeric values 0, 1, 2,
or the corresponding symbolic values LOW, MEDIUM, STRONG. The following table describes
the tests performed for each policy. For the length test, the required length is the value of the
validate_password_length system variable. Similarly, the required values for the other tests are
given by other validate_password_xxx variables.

Policy Tests Performed

0 or LOW Length

1 or MEDIUM Length; numeric, lowercase/uppercase, and
special characters

2 or STRONG Length; numeric, lowercase/uppercase, and
special characters; dictionary file

• validate_password_special_char_count

Command-Line Format --validate-password-special-char-
count=#

System Variable validate_password_special_char_count

Scope Global

Dynamic Yes

Type Integer

Default Value 1

966

MySQL Enterprise Audit

Minimum Value 0

The minimum number of nonalphanumeric characters that validate_password requires
passwords to have if the password policy is MEDIUM or stronger. This variable is unavailable unless
validate_password is installed.

Password Validation Plugin Status Variables

If the validate_password plugin is enabled, it exposes status variables that provide operational
information:

mysql> SHOW STATUS LIKE 'validate_password%';
+---+---------------------+
| Variable_name | Value |
+---+---------------------+
| validate_password_dictionary_file_last_parsed | 2015-06-29 11:08:51 |
| validate_password_dictionary_file_words_count | 1902 |
+---+---------------------+

The following list describes the meaning of each status variable.

• validate_password_dictionary_file_last_parsed

When the dictionary file was last parsed.

This variable was added in MySQL 5.6.26.

• validate_password_dictionary_file_words_count

The number of words read from the dictionary file.

This variable was added in MySQL 5.6.26.

6.4.4 MySQL Enterprise Audit

Note

MySQL Enterprise Audit is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, see https://
www.mysql.com/products/.

MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a server plugin named
audit_log. MySQL Enterprise Audit uses the open MySQL Audit API to enable standard, policy-based
monitoring and logging of connection and query activity executed on specific MySQL servers. Designed
to meet the Oracle audit specification, MySQL Enterprise Audit provides an out of box, easy to use
auditing and compliance solution for applications that are governed by both internal and external regulatory
guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access.

After you install the audit plugin (see Section 6.4.4.1, “Installing MySQL Enterprise Audit”), it writes an audit
log file. By default, the file is named audit.log in the server data directory. To change the name of the
file, set the audit_log_file system variable at server startup.

Audit log file contents are not encrypted. See Section 6.4.4.2, “MySQL Enterprise Audit Security
Considerations”.

967

https://www.mysql.com/products/
https://www.mysql.com/products/

MySQL Enterprise Audit

The audit log file is written in XML, with auditable events encoded as <AUDIT_RECORD> elements. To
select the file format, set the audit_log_format system variable at server startup. For details on file
format and contents, see Section 6.4.4.3, “Audit Log File Formats”.

For more information about controlling how logging occurs, including audit log file naming and format
selection, see Section 6.4.4.4, “Configuring Audit Logging Characteristics”. To perform filtering of audited
events, see Section 6.4.4.5, “Audit Log Filtering”. For descriptions of the parameters used to configure the
audit log plugin, see Audit Log Options and System Variables.

If the audit log plugin is enabled, the Performance Schema (see Chapter 22, MySQL Performance
Schema) has instrumentation for it. To identify the relevant instruments, use this query:

SELECT NAME FROM performance_schema.setup_instruments
WHERE NAME LIKE '%/alog/%';

Changes from Older MySQL Enterprise Audit Versions

Several changes were made to the audit log plugin in MySQL 5.6.14 for better compatibility with Oracle
Audit Vault.

A new audit log file format was implemented. It is possible to select either the old or new format using the
audit_log_format system variable, which has permitted values of OLD and NEW (default OLD). The two
formats differ as follows:

• Information within <AUDIT_RECORD> elements written in the old format using attributes is written in the
new format using subelements.

• The new format includes more information in <AUDIT_RECORD> elements. Every element includes a
RECORD_ID value providing a unique identifier. The TIMESTAMP value includes time zone information.
Query records include HOST, IP, OS_LOGIN, and USER information, as well as COMMAND_CLASS and
STATUS_CODE values.

Example of old <AUDIT_RECORD> format:

<AUDIT_RECORD
 TIMESTAMP="2013-09-15T15:27:27"
 NAME="Query"
 CONNECTION_ID="3"
 STATUS="0"
 SQLTEXT="SELECT 1"
/>

Example of new <AUDIT_RECORD> format:

<AUDIT_RECORD>
 <TIMESTAMP>2013-09-15T15:27:27 UTC</TIMESTAMP>
 <RECORD_ID>3998_2013-09-15T15:27:27</RECORD_ID>
 <NAME>Query</NAME>
 <CONNECTION_ID>3</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>select</COMMAND_CLASS>
 <SQLTEXT>SELECT 1</SQLTEXT>
</AUDIT_RECORD>

When the audit log plugin rotates the audit log file, it uses a different file name format. For a log file named
audit.log, the plugin previously renamed the file to audit.log.TIMESTAMP. The plugin now renames
the file to audit.log.TIMESTAMP.xml to indicate that it is an XML file.

968

MySQL Enterprise Audit

If you change the value of audit_log_format, use this procedure to avoid writing log entries in one
format to an existing log file that contains entries in a different format:

1. Stop the server.

2. Rename the current audit log file manually.

3. Restart the server with the new value of audit_log_format. The audit log plugin creates a new log
file, which contains log entries in the selected format.

The API for writing audit plugins has also changed. The mysql_event_general structure has new
members to represent client host name and IP address, command class, and external user. For more
information, see Writing Audit Plugins.

6.4.4.1 Installing MySQL Enterprise Audit

This section describes how to install MySQL Enterprise Audit, which is implemented using the audit_log
plugin. For general information about installing plugins, see Section 5.5.1, “Installing and Uninstalling
Plugins”.

Note

If installed, the audit_log plugin involves some minimal overhead even when
disabled. To avoid this overhead, do not install MySQL Enterprise Audit unless you
plan to use it.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory location
by setting the value of plugin_dir at server startup.

The plugin library file base name is audit_log. The file name suffix differs per platform (for example, .so
for Unix and Unix-like systems, .dll for Windows).

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put the following lines in the server my.cnf file, adjusting the .so suffix for your platform as
necessary:

[mysqld]
plugin-load-add=audit_log.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform as
necessary:

INSTALL PLUGIN audit_log SONAME 'audit_log.so';

INSTALL PLUGIN loads the plugin, and also registers it in the mysql.plugins system table to cause the
plugin to be loaded for each subsequent normal server startup without the need for --plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'audit%';
+-------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------+---------------+

969

https://dev.mysql.com/doc/extending-mysql/5.6/en/writing-audit-plugins.html

MySQL Enterprise Audit

| audit_log | ACTIVE |
+-------------+---------------+

If the plugin failed to initialize, check the server error log for diagnostic messages.

If the plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load-
add, you can use the --audit-log option at server startup to control plugin activation. For example, to
load the plugin at startup and prevent it from being removed at runtime, use these options:

[mysqld]
plugin-load-add=audit_log.so
audit-log=FORCE_PLUS_PERMANENT

If it is desired to prevent the server from running without the audit plugin, use --audit-log with a
value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if the plugin does not initialize
successfully.

For additional information about the parameters used to configure operation of the audit_log plugin, see
Audit Log Options and System Variables.

Audit log file contents are not encrypted. See Section 6.4.4.2, “MySQL Enterprise Audit Security
Considerations”.

6.4.4.2 MySQL Enterprise Audit Security Considerations

Contents of audit log files produced by the audit log plugin are not encrypted and may contain sensitive
information, such as the text of SQL statements. For security reasons, audit log files should be written
to a directory accessible only to the MySQL server and to users with a legitimate reason to view the
log. The default file name is audit.log in the data directory. This can be changed by setting the
audit_log_file system variable at server startup. Other audit log files may exist due to log rotation.

6.4.4.3 Audit Log File Formats

The MySQL server calls the audit log plugin to write an audit record to its log file whenever an auditable
event occurs. Typically the first audit record written after plugin startup contains the server description
and startup options. Elements following that one represent events such as client connect and disconnect
events, executed SQL statements, and so forth. Only top-level statements are logged, not statements
within stored programs such as triggers or stored procedures. Contents of files referenced by statements
such as LOAD DATA are not logged.

To select the log format that the audit log plugin uses to write its log file, set the audit_log_format
system variable at server startup. These formats are available:

• New-style XML format (audit_log_format=NEW): An XML format that has better compatibility with
Oracle Audit Vault than old-style XML format. MySQL 5.7 introduced this format, which was backported
to MySQL 5.6 as of MySQL 5.6.14.

• Old-style XML format (audit_log_format=OLD): The original audit log format used by default in older
MySQL series. MySQL 5.6 uses old-style XML format by default.

Note

Changing the value of audit_log_format can result in writing log entries in one
format to an existing log file that contains entries in a different format. To avoid this
issue, use the procedure described at Audit Log File Format.

Audit log file contents are not encrypted. See Section 6.4.4.2, “MySQL Enterprise Audit Security
Considerations”.

970

MySQL Enterprise Audit

The following sections describe the available audit logging formats:

• New-Style XML Audit Log File Format

• Old-Style XML Audit Log File Format

New-Style XML Audit Log File Format

Here is a sample log file in new-style XML format (audit_log_format=NEW), reformatted slightly for
readability:

<?xml version="1.0" encoding="utf-8"?>
<AUDIT>
 <AUDIT_RECORD>
 <TIMESTAMP>2017-10-16T14:06:33 UTC</TIMESTAMP>
 <RECORD_ID>1_2017-10-16T14:06:33</RECORD_ID>
 <NAME>Audit</NAME>
 <SERVER_ID>1</SERVER_ID>
 <VERSION>1</VERSION>
 <STARTUP_OPTIONS>/usr/local/mysql/bin/mysqld
 --socket=/usr/local/mysql/mysql.sock
 --port=3306</STARTUP_OPTIONS>
 <OS_VERSION>i686-Linux</OS_VERSION>
 <MYSQL_VERSION>5.6.39-log</MYSQL_VERSION>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2017-10-16T14:09:38 UTC</TIMESTAMP>
 <RECORD_ID>2_2017-10-16T14:06:33</RECORD_ID>
 <NAME>Connect</NAME>
 <CONNECTION_ID>5</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 <PRIV_USER>root</PRIV_USER>
 <PROXY_USER/>
 <DB>test</DB>
 </AUDIT_RECORD>

...

 <AUDIT_RECORD>
 <TIMESTAMP>2017-10-16T14:09:38 UTC</TIMESTAMP>
 <RECORD_ID>6_2017-10-16T14:06:33</RECORD_ID>
 <NAME>Query</NAME>
 <CONNECTION_ID>5</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>drop_table</COMMAND_CLASS>
 <SQLTEXT>DROP TABLE IF EXISTS t</SQLTEXT>
 </AUDIT_RECORD>

...

 <AUDIT_RECORD>
 <TIMESTAMP>2017-10-16T14:09:39 UTC</TIMESTAMP>
 <RECORD_ID>8_2017-10-16T14:06:33</RECORD_ID>
 <NAME>Quit</NAME>
 <CONNECTION_ID>5</CONNECTION_ID>

971

MySQL Enterprise Audit

 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 </AUDIT_RECORD>

...

 <AUDIT_RECORD>
 <TIMESTAMP>2017-10-16T14:09:43 UTC</TIMESTAMP>
 <RECORD_ID>11_2017-10-16T14:06:33</RECORD_ID>
 <NAME>Quit</NAME>
 <CONNECTION_ID>6</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2017-10-16T14:09:45 UTC</TIMESTAMP>
 <RECORD_ID>12_2017-10-16T14:06:33</RECORD_ID>
 <NAME>NoAudit</NAME>
 <SERVER_ID>1</SERVER_ID>
 </AUDIT_RECORD>
</AUDIT>

The audit log file is written as XML, using UTF-8 (up to 4 bytes per character). The root element is
<AUDIT>. The root element contains <AUDIT_RECORD> elements, each of which provides information
about an audited event. When the audit log plugin begins writing a new log file, it writes the XML
declaration and opening <AUDIT> root element tag. When the plugin closes a log file, it writes the closing
</AUDIT> root element tag. The closing tag is not present while the file is open.

Elements within <AUDIT_RECORD> elements have these characteristics:

• Some elements appear in every <AUDIT_RECORD> element. Others are optional and may appear
depending on the audit record type.

• Order of elements within an <AUDIT_RECORD> element is not guaranteed.

• Element values are not fixed length. Long values may be truncated as indicated in the element
descriptions given later.

• The <, >, ", and & characters are encoded as <, >, ", and &, respectively. NUL
bytes (U+00) are encoded as the ? character.

• Characters not valid as XML characters are encoded using numeric character references. Valid XML
characters are:

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

The following elements are mandatory in every <AUDIT_RECORD> element:

• <NAME>

A string representing the type of instruction that generated the audit event, such as a command that the
server received from a client.

972

MySQL Enterprise Audit

Example:

<NAME>Query</NAME>

Some common <NAME> values:

Audit When auditing starts, which may be server startup time
Connect When a client connects, also known as logging in
Query An SQL statement (executed directly)
Prepare Preparation of an SQL statement; usually followed by Execute
Execute Execution of an SQL statement; usually follows Prepare
Shutdown Server shutdown
Quit When a client disconnects
NoAudit Auditing has been turned off

The possible values are Audit, Binlog Dump, Change user, Close stmt, Connect Out,
Connect, Create DB, Daemon, Debug, Delayed insert, Drop DB, Execute, Fetch, Field
List, Init DB, Kill, Long Data, NoAudit, Ping, Prepare, Processlist, Query, Quit,
Refresh, Register Slave, Reset stmt, Set option, Shutdown, Sleep, Statistics, Table
Dump, Time.

With the exception of Audit and NoAudit, these values correspond to the COM_xxx command values
listed in the mysql_com.h header file. For example, Create DB and Change user correspond to
COM_CREATE_DB and COM_CHANGE_USER, respectively.

• <RECORD_ID>

A unique identifier for the audit record. The value is composed from a sequence number and timestamp,
in the format SEQ_TIMESTAMP. When the audit log plugin opens the audit log file, it initializes the
sequence number to the size of the audit log file, then increments the sequence by 1 for each record
logged. The timestamp is a UTC value in YYYY-MM-DDThh:mm:ss format indicating the date and time
when the audit log plugin opened the file.

Example:

<RECORD_ID>12_2017-10-16T14:06:33</RECORD_ID>

• <TIMESTAMP>

A string representing a UTC value in YYYY-MM-DDThh:mm:ss UTC format indicating the date and time
when the audit event was generated. For example, the event corresponding to execution of an SQL
statement received from a client has a <TIMESTAMP> value occurring after the statement finishes, not
when it was received.

Example:

<TIMESTAMP>2017-10-16T14:09:45 UTC</TIMESTAMP>

The following elements are optional in <AUDIT_RECORD> elements. Many of them occur only with specific
<NAME> element values.

• <COMMAND_CLASS>

A string that indicates the type of action performed.

Example:

<COMMAND_CLASS>drop_table</COMMAND_CLASS>

973

MySQL Enterprise Audit

The values correspond to the Com_xxx status variables that indicate command counts; for example
Com_drop_table and Com_select count DROP TABLE and SELECT statements, respectively. The
following statement displays the possible names:

SELECT LOWER(REPLACE(VARIABLE_NAME, 'COM_', '')) AS name
FROM INFORMATION_SCHEMA.GLOBAL_STATUS
WHERE VARIABLE_NAME LIKE 'COM%'
ORDER BY name;

• <CONNECTION_ID>

An unsigned integer representing the client connection identifier. This is the same as the value returned
by the CONNECTION_ID() function within the session.

Example:

<CONNECTION_ID>127</CONNECTION_ID>

• <DB>

A string representing the default database name.

Example:

<DB>test</DB>

• <HOST>

A string representing the client host name.

Example:

<HOST>localhost</HOST>

• <IP>

A string representing the client IP address.

Example:

<IP>127.0.0.1</IP>

• <MYSQL_VERSION>

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable.

Example:

<MYSQL_VERSION>5.6.39-log</MYSQL_VERSION>

• <OS_LOGIN>

A string representing the external user name used during the authentication process, as set by the plugin
used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set
the value, this element is empty. The value is the same as that of the external_user system variable
(see Section 6.2.12, “Proxy Users”).

Example:

974

MySQL Enterprise Audit

<OS_LOGIN>jeffrey</OS_LOGIN>

• <OS_VERSION>

A string representing the operating system on which the server was built or is running.

Example:

<OS_VERSION>x86_64-Linux</OS_VERSION>

• <PRIV_USER>

A string representing the user that the server authenticated the client as. This is the user name that the
server uses for privilege checking, and may differ from the <USER> value.

Example:

<PRIV_USER>jeffrey</PRIV_USER>

• <PROXY_USER>

A string representing the proxy user (see Section 6.2.12, “Proxy Users”). The value is empty if user
proxying is not in effect.

Example:

<PROXY_USER>developer</PROXY_USER>

• <SERVER_ID>

An unsigned integer representing the server ID. This is the same as the value of the server_id system
variable.

Example:

<SERVER_ID>1</SERVER_ID>

• <SQLTEXT>

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so
the value may be the result of conversion. For example, the original statement might have been received
from the client as an SJIS string.

Example:

<SQLTEXT>DELETE FROM t1</SQLTEXT>

• <STARTUP_OPTIONS>

A string representing the options that were given on the command line or in option files when the MySQL
server was started. The first option is the path to the server executable.

Example:

<STARTUP_OPTIONS>/usr/local/mysql/bin/mysqld
 --port=3306 --log_output=FILE</STARTUP_OPTIONS>

• <STATUS>

975

MySQL Enterprise Audit

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the mysql_errno() C API function. See the description for
<STATUS_CODE> for information about how it differs from <STATUS>.

The audit log does not contain the SQLSTATE value or error message. To see the associations between
error codes, SQLSTATE values, and messages, see Server Error Message Reference.

Warnings are not logged.

Example:

<STATUS>1051</STATUS>

• <STATUS_CODE>

An unsigned integer representing the command status: 0 for success, 1 if an error occurred.

The STATUS_CODE value differs from the STATUS value: STATUS_CODE is 0 for success and 1 for
error, which is compatible with the EZ_collector consumer for Audit Vault. STATUS is the value of the
mysql_errno() C API function. This is 0 for success and nonzero for error, and thus is not necessarily
1 for error.

Example:

<STATUS_CODE>0</STATUS_CODE>

• <USER>

A string representing the user name sent by the client. This may differ from the <PRIV_USER> value.

Example:

<USER>root[root] @ localhost [127.0.0.1]</USER>

• <VERSION>

An unsigned integer representing the version of the audit log file format.

Example:

<VERSION>1</VERSION>

Old-Style XML Audit Log File Format

Here is a sample log file in old-style XML format (audit_log_format=OLD), reformatted slightly for
readability:

<?xml version="1.0" encoding="utf-8"?>
<AUDIT>
 <AUDIT_RECORD
 TIMESTAMP="2017-10-16T14:25:00 UTC"
 RECORD_ID="1_2017-10-16T14:25:00"
 NAME="Audit"
 SERVER_ID="1"
 VERSION="1"
 STARTUP_OPTIONS="--port=3306"
 OS_VERSION="i686-Linux"
 MYSQL_VERSION="5.6.39-log"/>
 <AUDIT_RECORD
 TIMESTAMP="2017-10-16T14:25:24 UTC"
 RECORD_ID="2_2017-10-16T14:25:00"

976

https://dev.mysql.com/doc/c-api/5.6/en/mysql-errno.html
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-errno.html

MySQL Enterprise Audit

 NAME="Connect"
 CONNECTION_ID="4"
 STATUS="0"
 STATUS_CODE="0"
 USER="root"
 OS_LOGIN=""
 HOST="localhost"
 IP="127.0.0.1"
 COMMAND_CLASS="connect"
 PRIV_USER="root"
 PROXY_USER=""
 DB="test"/>

...

 <AUDIT_RECORD
 TIMESTAMP="2017-10-16T14:25:24 UTC"
 RECORD_ID="6_2017-10-16T14:25:00"
 NAME="Query"
 CONNECTION_ID="4"
 STATUS="0"
 STATUS_CODE="0"
 USER="root[root] @ localhost [127.0.0.1]"
 OS_LOGIN=""
 HOST="localhost"
 IP="127.0.0.1"
 COMMAND_CLASS="drop_table"
 SQLTEXT="DROP TABLE IF EXISTS t"/>

...

 <AUDIT_RECORD
 TIMESTAMP="2017-10-16T14:25:24 UTC"
 RECORD_ID="8_2017-10-16T14:25:00"
 NAME="Quit"
 CONNECTION_ID="4"
 STATUS="0"
 STATUS_CODE="0"
 USER="root"
 OS_LOGIN=""
 HOST="localhost"
 IP="127.0.0.1"
 COMMAND_CLASS="connect"
 <AUDIT_RECORD
 TIMESTAMP="2017-10-16T14:25:32 UTC"
 RECORD_ID="12_2017-10-16T14:25:00"
 NAME="NoAudit"
 SERVER_ID="1"/>
</AUDIT>

The audit log file is written as XML, using UTF-8 (up to 4 bytes per character). The root element is
<AUDIT>. The root element contains <AUDIT_RECORD> elements, each of which provides information
about an audited event. When the audit log plugin begins writing a new log file, it writes the XML
declaration and opening <AUDIT> root element tag. When the plugin closes a log file, it writes the closing
</AUDIT> root element tag. The closing tag is not present while the file is open.

Attributes of <AUDIT_RECORD> elements have these characteristics:

• Some attributes appear in every <AUDIT_RECORD> element. Others are optional and may appear
depending on the audit record type.

• Order of attributes within an <AUDIT_RECORD> element is not guaranteed.

• Attribute values are not fixed length. Long values may be truncated as indicated in the attribute
descriptions given later.

977

MySQL Enterprise Audit

• The <, >, ", and & characters are encoded as <, >, ", and &, respectively. NUL
bytes (U+00) are encoded as the ? character.

• Characters not valid as XML characters are encoded using numeric character references. Valid XML
characters are:

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

The following attributes are mandatory in every <AUDIT_RECORD> element:

• NAME

A string representing the type of instruction that generated the audit event, such as a command that the
server received from a client.

Example: NAME="Query"

Some common NAME values:

Audit When auditing starts, which may be server startup time
Connect When a client connects, also known as logging in
Query An SQL statement (executed directly)
Prepare Preparation of an SQL statement; usually followed by Execute
Execute Execution of an SQL statement; usually follows Prepare
Shutdown Server shutdown
Quit When a client disconnects
NoAudit Auditing has been turned off

The possible values are Audit, Binlog Dump, Change user, Close stmt, Connect Out,
Connect, Create DB, Daemon, Debug, Delayed insert, Drop DB, Execute, Fetch, Field
List, Init DB, Kill, Long Data, NoAudit, Ping, Prepare, Processlist, Query, Quit,
Refresh, Register Slave, Reset stmt, Set option, Shutdown, Sleep, Statistics, Table
Dump, Time.

With the exception of "Audit" and "NoAudit", these values correspond to the COM_xxx command
values listed in the mysql_com.h header file. For example, "Create DB" and "Change user"
correspond to COM_CREATE_DB and COM_CHANGE_USER, respectively.

• RECORD_ID

A unique identifier for the audit record. The value is composed from a sequence number and timestamp,
in the format SEQ_TIMESTAMP. When the audit log plugin opens the audit log file, it initializes the
sequence number to the size of the audit log file, then increments the sequence by 1 for each record
logged. The timestamp is a UTC value in YYYY-MM-DDThh:mm:ss format indicating the date and time
when the audit log plugin opened the file.

Example: RECORD_ID="12_2017-10-16T14:25:00"

• TIMESTAMP

A string representing a UTC value in YYYY-MM-DDThh:mm:ss UTC format indicating the date and time
when the audit event was generated. For example, the event corresponding to execution of an SQL
statement received from a client has a TIMESTAMP value occurring after the statement finishes, not
when it was received.

Example: TIMESTAMP="2017-10-16T14:25:32 UTC"

The following attributes are optional in <AUDIT_RECORD> elements. Many of them occur only for elements
with specific values of the NAME attribute.

978

MySQL Enterprise Audit

• COMMAND_CLASS

A string that indicates the type of action performed.

Example: COMMAND_CLASS="drop_table"

The values correspond to the Com_xxx status variables that indicate command counts; for example
Com_drop_table and Com_select count DROP TABLE and SELECT statements, respectively. The
following statement displays the possible names:

SELECT LOWER(REPLACE(VARIABLE_NAME, 'COM_', '')) AS name
FROM INFORMATION_SCHEMA.GLOBAL_STATUS
WHERE VARIABLE_NAME LIKE 'COM%'
ORDER BY name;

• CONNECTION_ID

An unsigned integer representing the client connection identifier. This is the same as the value returned
by the CONNECTION_ID() function within the session.

Example: CONNECTION_ID="127"

• DB

A string representing the default database name.

Example: DB="test"

• HOST

A string representing the client host name.

Example: HOST="localhost"

• IP

A string representing the client IP address.

Example: IP="127.0.0.1"

• MYSQL_VERSION

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable.

Example: MYSQL_VERSION="5.6.39-log"

• OS_LOGIN

A string representing the external user name used during the authentication process, as set by the plugin
used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set
the value, this attribute is empty. The value is the same as that of the external_user system variable
(see Section 6.2.12, “Proxy Users”).

Example: OS_LOGIN="jeffrey"

• OS_VERSION

A string representing the operating system on which the server was built or is running.

979

MySQL Enterprise Audit

Example: OS_VERSION="x86_64-Linux"

• PRIV_USER

A string representing the user that the server authenticated the client as. This is the user name that the
server uses for privilege checking, and it may differ from the USER value.

Example: PRIV_USER="jeffrey"

• PROXY_USER

A string representing the proxy user (see Section 6.2.12, “Proxy Users”). The value is empty if user
proxying is not in effect.

Example: PROXY_USER="developer"

• SERVER_ID

An unsigned integer representing the server ID. This is the same as the value of the server_id system
variable.

Example: SERVER_ID="1"

• SQLTEXT

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so
the value may be the result of conversion. For example, the original statement might have been received
from the client as an SJIS string.

Example: SQLTEXT="DELETE FROM t1"

• STARTUP_OPTIONS

A string representing the options that were given on the command line or in option files when the MySQL
server was started.

Example: STARTUP_OPTIONS="--port=3306 --log_output=FILE"

• STATUS

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred. This
is the same as the value of the mysql_errno() C API function. See the description for STATUS_CODE
for information about how it differs from STATUS.

The audit log does not contain the SQLSTATE value or error message. To see the associations between
error codes, SQLSTATE values, and messages, see Server Error Message Reference.

Warnings are not logged.

Example: STATUS="1051"

• STATUS_CODE

An unsigned integer representing the command status: 0 for success, 1 if an error occurred.

The STATUS_CODE value differs from the STATUS value: STATUS_CODE is 0 for success and 1 for
error, which is compatible with the EZ_collector consumer for Audit Vault. STATUS is the value of the

980

https://dev.mysql.com/doc/c-api/5.6/en/mysql-errno.html
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html

MySQL Enterprise Audit

mysql_errno() C API function. This is 0 for success and nonzero for error, and thus is not necessarily
1 for error.

Example: STATUS_CODE="0"

• USER

A string representing the user name sent by the client. This may differ from the PRIV_USER value.

• VERSION

An unsigned integer representing the version of the audit log file format.

Example: VERSION="1"

6.4.4.4 Configuring Audit Logging Characteristics

This section describes how to configure audit logging characteristics, such as the file to which the audit log
plugin writes events and the format of written events.

• Audit Log File Naming Conventions

• Audit Log File Format

• Audit Logging Write Strategy

• Space Management of Audit Log Files

For additional information about the system variables that affect audit logging, see Audit Log Options and
System Variables.

The audit log plugin can also control which audited events are written to the audit log file, based on the
account from which events originate or event status. See Section 6.4.4.5, “Audit Log Filtering”.

Audit Log File Naming Conventions

To control the audit log file name, set the audit_log_file system variable at server startup. The
default name is audit.log in the server data directory. For best security, write the audit log to a directory
accessible only to the MySQL server and to users with a legitimate reason to view the log.

When the audit plugin initializes, it checks whether a file with the audit log file name already exists. If so,
the plugin checks whether the file ends with an </AUDIT> tag and truncates the tag before writing any
<AUDIT_RECORD> elements. If the log file exists but does not end with </AUDIT> or the </AUDIT> tag
cannot be truncated, the plugin considers the file malformed and fails to initialize. This can occur if the
server exits unexpectedly with the audit log plugin running. No logging occurs until the problem is rectified.
Check the error log for diagnostic information:

[ERROR] Plugin 'audit_log' init function returned error.

To deal with this problem, either remove or rename the malformed log file and restart the server.

Audit Log File Format

To configure the audit log file format, set the audit_log_format system variable at server startup.
These formats are available:

• NEW: New-style XML format.

• OLD: Old-style XML format. This is the default.

981

https://dev.mysql.com/doc/c-api/5.6/en/mysql-errno.html

MySQL Enterprise Audit

For details about each format, see Section 6.4.4.3, “Audit Log File Formats”.

Note

Changing the value of audit_log_format can result in writing log entries in one
format to an existing log file that contains entries in a different format. To avoid this
issue, use the following procedure:

1. Stop the server.

2. Either change the value of the audit_log_file system variable so the plugin
writes to a different file, or rename the current audit log file manually.

3. Restart the server with the new value of audit_log_format. The audit log
plugin creates a new log file and writes entries to it in the selected format.

Audit Logging Write Strategy

The audit log plugin can use any of several strategies for log writes. Regardless of strategy, logging occurs
on a best-effort basis, with no guarantee of consistency.

To specify a write strategy, set the audit_log_strategy system variable at server startup. By default,
the strategy value is ASYNCHRONOUS and the plugin logs asynchronously to a buffer, waiting if the buffer
is full. It's possible to tell the plugin not to wait (PERFORMANCE) or to log synchronously, either using
file system caching (SEMISYNCHRONOUS) or forcing output with a sync() call after each write request
(SYNCHRONOUS).

For asynchronous write strategy, the audit_log_buffer_size system variable is the buffer size in
bytes. Set this variable at server startup to change the buffer size. The plugin uses a single buffer, which
it allocates when it initializes and removes when it terminates. The plugin does not allocate this buffer for
nonasynchronous write strategies.

Asynchronous logging strategy has these characteristics:

• Minimal impact on server performance and scalability.

• Blocking of threads that generate audit events for the shortest possible time; that is, time to allocate the
buffer plus time to copy the event to the buffer.

• Output goes to the buffer. A separate thread handles writes from the buffer to the log file.

With asynchronous logging, the integrity of the log file may be compromised if a problem occurs during a
write to the file or if the plugin does not shut down cleanly (for example, in the event that the server host
exits unexpectedly). To reduce this risk, set audit_log_strategy to use synchronous logging.

If the file system to which the audit log is being written fills up, a “disk full” error is written to the error log.
Audit logging continues until the audit log buffer is full. If free disk space has not been made available by
the time the buffer fills, client sessions hang, and stopping the server at the time of client sessions hanging
results in audit log corruption. To avoid this if client sessions are hung, ensure that free space is available
on the audit logging file system before stopping the server.

A disadvantage of PERFORMANCE strategy is that it drops events when the buffer is full. For a heavily
loaded server, the audit log may have events missing.

Space Management of Audit Log Files

The audit log file has the potential to grow quite large and consume a great deal of disk space.
To enable management of the space used by its log files, the audit log plugin provides the

982

MySQL Enterprise Audit

audit_log_rotate_on_size and audit_log_flush system variables, which control audit log file
rotation and flushing. Rotation can be done manually, or automatically based on file size.

Manual audit log file rotation. If audit_log_rotate_on_size is 0 (the default), no log rotation
occurs except when performed manually. In this case, the audit log plugin closes and reopens the log file
when the audit_log_flush value changes from disabled to enabled. Log file renaming must be done
externally to the server. Suppose that the log file name is audit.log and you want to maintain the three
most recent log files, cycling through the names audit.log.1 through audit.log.3. On Unix, perform
rotation manually like this:

1. From the command line, rename the current log files:

mv audit.log.2 audit.log.3
mv audit.log.1 audit.log.2
mv audit.log audit.log.1

At this point, the plugin is still writing to the current log file, which has been renamed to audit.log.1.

2. Connect to the server and flush the log file so the plugin closes it and reopens a new audit.log file:

SET GLOBAL audit_log_flush = ON;

Automatic size-based audit log file rotation. If audit_log_rotate_on_size is greater than
0, setting audit_log_flush has no effect. Instead, whenever a write to the log file causes its size
to exceed the audit_log_rotate_on_size value, the audit log plugin automatically closes the file,
renames it, and opens a new log file.

The renamed file has a timestamp and .xml added to the end. For example, if the file name is
audit.log, the plugin renames it to a value such as audit.log.15081807937726520.xml. The
timestamp value is similar to a Unix timestamp, with the last 7 digits representing the fractional second
part. By inserting a decimal point, the value can be interpreted using the FROM_UNIXTIME() function:

mysql> SELECT FROM_UNIXTIME(1508180793.7726520);
+-----------------------------------+
| FROM_UNIXTIME(1508180793.7726520) |
+-----------------------------------+
| 2017-10-16 14:06:33.772652 |
+-----------------------------------+

Note

With size-based log file rotation, renamed log files have unique names and
accumulate indefinitely. They do not rotate off the end of the name sequence. To
avoid excessive use of space, remove old files periodically, backing them up first as
necessary.

6.4.4.5 Audit Log Filtering

The audit log plugin can filter audited events. This enables you to control whether audited events are
written to the audit log file based on the account from which events originate or event status. Status filtering
occurs separately for connection events and statement events.

Event Filtering by Account

As of MySQL 5.6.20, to filter audited events based on the originating account, set one of these system
variables at server startup or runtime:

• audit_log_include_accounts: The accounts to include in audit logging. If this variable is set, only
these accounts are audited.

983

MySQL Enterprise Audit

• audit_log_exclude_accounts: The accounts to exclude from audit logging. If this variable is set, all
but these accounts are audited.

The value for either variable can be NULL or a string containing one or more comma-separated account
names, each in user_name@host_name format. By default, both variables are NULL, in which case, no
account filtering is done and auditing occurs for all accounts.

Modifications to audit_log_include_accounts or audit_log_exclude_accounts affect only
connections created subsequent to the modification, not existing connections.

Example: To enable audit logging only for the user1 and user2 local host account accounts, set the
audit_log_include_accounts system variable like this:

SET GLOBAL audit_log_include_accounts = 'user1@localhost,user2@localhost';

Only one of audit_log_include_accounts or audit_log_exclude_accounts can be non-NULL at
a time:

• If you set audit_log_include_accounts, the server sets audit_log_exclude_accounts to
NULL.

• If you attempt to set audit_log_exclude_accounts, an error occurs unless
audit_log_include_accounts is NULL. In this case, you must first clear
audit_log_include_accounts by setting it to NULL.

-- This sets audit_log_exclude_accounts to NULL
SET GLOBAL audit_log_include_accounts = value;

-- This fails because audit_log_include_accounts is not NULL
SET GLOBAL audit_log_exclude_accounts = value;

-- To set audit_log_exclude_accounts, first set
-- audit_log_include_accounts to NULL
SET GLOBAL audit_log_include_accounts = NULL;
SET GLOBAL audit_log_exclude_accounts = value;

If you inspect the value of either variable, be aware that SHOW VARIABLES displays NULL as an empty
string. To avoid this, use SELECT instead:

mysql> SHOW VARIABLES LIKE 'audit_log_include_accounts';
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
| audit_log_include_accounts | |
+----------------------------+-------+
mysql> SELECT @@audit_log_include_accounts;
+------------------------------+
| @@audit_log_include_accounts |
+------------------------------+
| NULL |
+------------------------------+

If a user name or host name requires quoting because it contains a comma, space, or other special
character, quote it using single quotes. If the variable value itself is quoted with single quotes, double each
inner single quote or escape it with a backslash. The following statements each enable audit logging for the
local root account and are equivalent, even though the quoting styles differ:

SET GLOBAL audit_log_include_accounts = 'root@localhost';
SET GLOBAL audit_log_include_accounts = '''root''@''localhost''';
SET GLOBAL audit_log_include_accounts = '\'root\'@\'localhost\'';

984

MySQL Enterprise Audit

SET GLOBAL audit_log_include_accounts = "'root'@'localhost'";

The last statement does not work if the ANSI_QUOTES SQL mode is enabled because in that mode double
quotes signify identifier quoting, not string quoting.

Event Filtering by Status

As of MySQL 5.6.20, to filter audited events based on status, set these system variables at server startup
or runtime:

• audit_log_connection_policy: Logging policy for connection events

• audit_log_statement_policy: Logging policy for statement events

Each variable takes a value of ALL (log all associated events; this is the default), ERRORS (log only failed
events), or NONE (do not log events). For example, to log all statement events but only failed connection
events, use these settings:

SET GLOBAL audit_log_statement_policy = ALL;
SET GLOBAL audit_log_connection_policy = ERRORS;

Before MySQL 5.6.20, audit_log_connection_policy and audit_log_statement_policy are
not available. Instead, use audit_log_policy at server startup or runtime. It takes a value of ALL (log
all events; this is the default), LOGINS (log connection events), QUERIES (log statement events), or NONE
(do not log events). For any of those values, the audit log plugin logs all selected events without distinction
as to success or failure.

As of MySQL 5.6.20, audit_log_policy is still available but can be set only at server startup. At
runtime, it is a read-only variable. Its use at startup works as follows:

• If you do not set audit_log_policy or set it to its default of ALL, any explicit settings for
audit_log_connection_policy or audit_log_statement_policy apply as specified. If not
specified, they default to ALL.

• If you set audit_log_policy to a non-ALL value, that value takes precedence over and is used to
set audit_log_connection_policy and audit_log_statement_policy, as indicated in the
following table. If you also set either of those variables to a value other than their default of ALL, the
server writes a message to the error log to indicate that their values are being overridden.

Startup audit_log_policy Value Resulting
audit_log_connection_policy
Value

Resulting
audit_log_statement_policy
Value

LOGINS ALL NONE

QUERIES NONE ALL

NONE NONE NONE

6.4.4.6 Audit Log Reference

The following sections provide a reference to MySQL Enterprise Audit elements:

• Audit Log Option and Variable Reference

• Audit Log Options and System Variables

• Audit Log Plugin Status Variables

985

MySQL Enterprise Audit

Audit Log Option and Variable Reference

Table 6.16 Audit Log Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

audit-log Yes Yes

audit_log_buffer_sizeYes Yes Yes Global No

audit_log_connection_policyYes Yes Yes Global Yes

audit_log_current_session Yes Both No

Audit_log_current_size Yes Global No

Audit_log_event_max_drop_size Yes Global No

Audit_log_events Yes Global No

Audit_log_events_filtered Yes Global No

Audit_log_events_lost Yes Global No

Audit_log_events_written Yes Global No

audit_log_exclude_accountsYes Yes Yes Global Yes

audit_log_file Yes Yes Yes Global No

audit_log_flush Yes Global Yes

audit_log_formatYes Yes Yes Global No

audit_log_include_accountsYes Yes Yes Global Yes

audit_log_policyYes Yes Yes Global Varies

audit_log_rotate_on_sizeYes Yes Yes Global Yes

audit_log_statement_policyYes Yes Yes Global Yes

audit_log_strategyYes Yes Yes Global No

Audit_log_total_size Yes Global No

Audit_log_write_waits Yes Global No

Audit Log Options and System Variables

This section describes the command options and system variables that control operation of MySQL
Enterprise Audit. If values specified at startup time are incorrect, the audit log plugin may fail to initialize
properly and the server does not load it. In this case, the server may also produce error messages for other
audit log settings because it does not recognize them.

To control activation of the audit log plugin, use this option:

• --audit-log[=value]

Command-Line Format --audit-log[=value]

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

986

MySQL Enterprise Audit

FORCE_PLUS_PERMANENT

This option controls how the server loads the audit_log plugin at startup. It is available only if the
plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load or --
plugin-load-add. See Section 6.4.4.1, “Installing MySQL Enterprise Audit”.

The option value should be one of those available for plugin-loading options, as
described in Section 5.5.1, “Installing and Uninstalling Plugins”. For example, --audit-
log=FORCE_PLUS_PERMANENT tells the server to load the plugin at startup and prevents it from being
removed while the server is running.

If the audit log plugin is enabled, it exposes several system variables that permit control over logging:

mysql> SHOW VARIABLES LIKE 'audit_log%';
+-----------------------------+--------------+
| Variable_name | Value |
+-----------------------------+--------------+
audit_log_buffer_size	1048576
audit_log_connection_policy	ALL
audit_log_current_session	ON
audit_log_exclude_accounts	
audit_log_file	audit.log
audit_log_flush	OFF
audit_log_format	OLD
audit_log_include_accounts	
audit_log_policy	ALL
audit_log_rotate_on_size	0
audit_log_statement_policy	ALL
audit_log_strategy	ASYNCHRONOUS
+-----------------------------+--------------+

You can set any of these variables at server startup, and some of them at runtime.

• audit_log_buffer_size

Command-Line Format --audit-log-buffer-size=#

System Variable audit_log_buffer_size

Scope Global

Dynamic No

Type Integer

Default Value 1048576

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294967295

Unit bytes

Block Size 4096

When the audit log plugin writes events to the log asynchronously, it uses a buffer to store event
contents prior to writing them. This variable controls the size of that buffer, in bytes. The server adjusts
the value to a multiple of 4096. The plugin uses a single buffer, which it allocates when it initializes and
removes when it terminates. The plugin allocates this buffer only if logging is asynchronous.

• audit_log_connection_policy

987

MySQL Enterprise Audit

Command-Line Format --audit-log-connection-policy=value

Introduced 5.6.20

System Variable audit_log_connection_policy

Scope Global

Dynamic Yes

Type Enumeration

Default Value ALL

Valid Values ALL

ERRORS

NONE

The policy controlling how the audit log plugin writes connection events to its log file. The following table
shows the permitted values.

Value Description

ALL Log all connection events

ERRORS Log only failed connection events

NONE Do not log connection events

Note

At server startup, any explicit value given for audit_log_connection_policy
may be overridden if audit_log_policy is also specified, as described in
Section 6.4.4.4, “Configuring Audit Logging Characteristics”.

• audit_log_current_session

Introduced 5.6.20

System Variable audit_log_current_session

Scope Global, Session

Dynamic No

Type Boolean

Default Value depends on filtering policy

Whether audit logging is enabled for the current session. The session value of this variable is read only.
It is set when the session begins based on the values of the audit_log_include_accounts and
audit_log_exclude_accounts system variables. The audit log plugin uses the session value to
determine whether to audit events for the session. (There is a global value, but the plugin does not use
it.)

• audit_log_exclude_accounts

Command-Line Format --audit-log-exclude-accounts=value

Introduced 5.6.20

System Variable audit_log_exclude_accounts
988

MySQL Enterprise Audit

Scope Global

Dynamic Yes

Type String

Default Value NULL

The accounts for which events should not be logged. The value should be NULL or a string containing a
list of one or more comma-separated account names. For more information, see Section 6.4.4.5, “Audit
Log Filtering”.

Modifications to audit_log_exclude_accounts affect only connections created subsequent to the
modification, not existing connections.

• audit_log_file

Command-Line Format --audit-log-file=file_name

System Variable audit_log_file

Scope Global

Dynamic No

Type File name

Default Value audit.log

The name of the file to which the audit log plugin writes events. The default value is audit.log. If
the value of audit_log_file is a relative path name, the plugin interprets it relative to the data
directory. If the value is a full path name, the plugin uses the value as is. A full path name may be useful
if it is desirable to locate audit files on a separate file system or directory. For security reasons, the
audit log file should be written to a directory accessible only to the MySQL server and to users with a
legitimate reason to view the log. For more information, see Section 6.4.4.4, “Configuring Audit Logging
Characteristics”.

• audit_log_flush

System Variable audit_log_flush

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

If audit_log_rotate_on_size is 0, automatic audit log file rotation is disabled and rotation occurs
only when performed manually. In that case, enabling audit_log_flush by setting it to 1 or ON causes
the audit log plugin to close and reopen its log file to flush it. (The variable value remains OFF so that you
need not disable it explicitly before enabling it again to perform another flush.) For more information, see
Section 6.4.4.4, “Configuring Audit Logging Characteristics”.

• audit_log_format

Command-Line Format --audit-log-format=value

Introduced 5.6.14

System Variable audit_log_format

Scope Global

989

MySQL Enterprise Audit

Dynamic No

Type Enumeration

Default Value OLD

Valid Values OLD

NEW

The audit log file format. Permitted values are OLD and NEW (default OLD). For details about each format,
see Section 6.4.4.3, “Audit Log File Formats”.

Note

Changing the value of audit_log_format can result in writing log entries in
one format to an existing log file that contains entries in a different format. To
avoid this issue, use the procedure described at Audit Log File Format.

• audit_log_include_accounts

Command-Line Format --audit-log-include-accounts=value

Introduced 5.6.20

System Variable audit_log_include_accounts

Scope Global

Dynamic Yes

Type String

Default Value NULL

The accounts for which events should be logged. The value should be NULL or a string containing a list
of one or more comma-separated account names. For more information, see Section 6.4.4.5, “Audit Log
Filtering”.

Modifications to audit_log_include_accounts affect only connections created subsequent to the
modification, not existing connections.

• audit_log_policy

Command-Line Format --audit-log-policy=value

System Variable audit_log_policy

Scope Global

Dynamic (≥ 5.6.20) No

Dynamic (≤ 5.6.19) Yes

Type Enumeration

Default Value ALL

Valid Values ALL

LOGINS

QUERIES

990

MySQL Enterprise Audit

NONE

The policy controlling how the audit log plugin writes events to its log file. The following table shows the
permitted values.

Value Description

ALL Log all events

LOGINS Log only login events

QUERIES Log only query events

NONE Log nothing (disable the audit stream)

As of MySQL 5.6.20, audit_log_policy can be set only at server startup. At runtime,
it is a read-only variable. This is due to the introduction of two other system variables,
audit_log_connection_policy and audit_log_statement_policy, that provide finer
control over logging policy and that can be set either at startup or at runtime. If you continue to use
audit_log_policy at startup instead of the other two variables, the server uses its value to set those
variables. For more information about the policy variables and their interaction, see Section 6.4.4.4,
“Configuring Audit Logging Characteristics”.

Before MySQL 5.6.20, the audit_log_connection_policy and audit_log_statement_policy
system variables do not exist. audit_log_policy is the only policy control variable and it can be set at
server startup or runtime.

• audit_log_rotate_on_size

Command-Line Format --audit-log-rotate-on-size=#

System Variable audit_log_rotate_on_size

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

Unit bytes

Block Size 4096

If audit_log_rotate_on_size is 0, the audit log plugin does not perform automatic size-based log
file rotation. If rotation is to occur, you must perform it manually; see Manual Audit Log File Rotation.

If audit_log_rotate_on_size is greater than 0, automatic size-based log file rotation occurs.
Whenever a write to the log file causes its size to exceed the audit_log_rotate_on_size value, the
audit log plugin renames the current log file and opens a new current log file using the original name.

If you set audit_log_rotate_on_size to a value that is not a multiple of 4096, it is truncated to the
nearest multiple. In particular, setting it to a value less than 4096 sets it to 0 and no rotation occurs,
except manually.

For more information about audit log file rotation, see Space Management of Audit Log Files.

991

https://dev.mysql.com/doc/refman/5.7/en/audit-log-logging-configuration.html#audit-log-manual-rotation

MySQL Enterprise Audit

• audit_log_statement_policy

Command-Line Format --audit-log-statement-policy=value

Introduced 5.6.20

System Variable audit_log_statement_policy

Scope Global

Dynamic Yes

Type Enumeration

Default Value ALL

Valid Values ALL

ERRORS

NONE

The policy controlling how the audit log plugin writes statement events to its log file. The following table
shows the permitted values.

Value Description

ALL Log all statement events

ERRORS Log only failed statement events

NONE Do not log statement events

Note

At server startup, any explicit value given for audit_log_statement_policy
may be overridden if audit_log_policy is also specified, as described in
Section 6.4.4.4, “Configuring Audit Logging Characteristics”.

• audit_log_strategy

Command-Line Format --audit-log-strategy=value

System Variable audit_log_strategy

Scope Global

Dynamic No

Type Enumeration

Default Value ASYNCHRONOUS

Valid Values ASYNCHRONOUS

PERFORMANCE

SEMISYNCHRONOUS

SYNCHRONOUS

The logging method used by the audit log plugin. These strategy values are permitted:

• ASYNCHRONOUS: Log asynchronously. Wait for space in the output buffer.
992

MySQL Enterprise Audit

• PERFORMANCE: Log asynchronously. Drop requests for which there is insufficient space in the output
buffer.

• SEMISYNCHRONOUS: Log synchronously. Permit caching by the operating system.

• SYNCHRONOUS: Log synchronously. Call sync() after each request.

Audit Log Plugin Status Variables

If the audit log plugin is enabled, it exposes several status variables that provide operational information.

• Audit_log_current_size

The size of the current audit log file. The value increases when an event is written to the log and is reset
to 0 when the log is rotated.

• Audit_log_event_max_drop_size

The size of the largest dropped event in performance logging mode. For a description of logging modes,
see Section 6.4.4.4, “Configuring Audit Logging Characteristics”.

• Audit_log_events

The number of events handled by the audit log plugin, whether or not they were written to the log based
on filtering policy (see Section 6.4.4.4, “Configuring Audit Logging Characteristics”).

• Audit_log_events_filtered

The number of events handled by the audit log plugin that were filtered (not written to the log) based on
filtering policy (see Section 6.4.4.4, “Configuring Audit Logging Characteristics”).

• Audit_log_events_lost

The number of events lost in performance logging mode because an event was larger than the available
audit log buffer space. This value may be useful for assessing how to set audit_log_buffer_size
to size the buffer for performance mode. For a description of logging modes, see Section 6.4.4.4,
“Configuring Audit Logging Characteristics”.

• Audit_log_events_written

The number of events written to the audit log.

• Audit_log_total_size

The total size of events written to all audit log files. Unlike Audit_log_current_size, the value of
Audit_log_total_size increases even when the log is rotated.

• Audit_log_write_waits

The number of times an event had to wait for space in the audit log buffer in asynchronous
logging mode. For a description of logging modes, see Section 6.4.4.4, “Configuring Audit Logging
Characteristics”.

6.4.4.7 Audit Log Restrictions

MySQL Enterprise Audit is subject to these general restrictions:

993

MySQL Enterprise Firewall

• Only SQL statements are logged. Changes made by no-SQL APIs, such as memcached, Node.JS, and
the NDB API, are not logged.

• Only top-level statements are logged, not statements within stored programs such as triggers or stored
procedures.

• Contents of files referenced by statements such as LOAD DATA are not logged.

NDB Cluster. It is possible to use MySQL Enterprise Audit with MySQL NDB Cluster, subject to the
following conditions:

• All changes to be logged must be done using the SQL interface. Changes using no-SQL interfaces, such
as those provided by the NDB API, memcached, or ClusterJ, are not logged.

• The plugin must be installed on each MySQL server that is used to execute SQL on the cluster.

• Audit plugin data must be aggregated amongst all MySQL servers used with the cluster. This
aggregation is the responsibility of the application or user.

6.4.5 MySQL Enterprise Firewall

Note

MySQL Enterprise Firewall is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, see https://
www.mysql.com/products/.

As of MySQL 5.6.24, MySQL Enterprise Edition includes MySQL Enterprise Firewall, an application-
level firewall that enables database administrators to permit or deny SQL statement execution based on
matching against lists of accepted statement patterns. This helps harden MySQL Server against attacks
such as SQL injection or attempts to exploit applications by using them outside of their legitimate query
workload characteristics.

Each MySQL account registered with the firewall has its own statement allowlist, enabling protection to
be tailored per account. For a given account, the firewall can operate in recording, protecting, or detecting
mode, for training in the accepted statement patterns, active protection against unacceptable statements,
or passive detection of unacceptable statements. The diagram illustrates how the firewall processes
incoming statements in each mode.

994

https://www.mysql.com/products/
https://www.mysql.com/products/

MySQL Enterprise Firewall

Figure 6.1 MySQL Enterprise Firewall Operation

The following sections describe the elements of MySQL Enterprise Firewall, discuss how to install and use
it, and provide reference information for its elements.

6.4.5.1 Elements of MySQL Enterprise Firewall

MySQL Enterprise Firewall is based on a plugin library that includes these elements:

• A server-side plugin named MYSQL_FIREWALL examines SQL statements before they execute and,
based on the registered firewall profiles, renders a decision whether to execute or reject each statement.

• Server-side plugins named MYSQL_FIREWALL_USERS and MYSQL_FIREWALL_WHITELIST implement
INFORMATION_SCHEMA tables that provide views into the registered profiles.

• Profiles are cached in memory for better performance. Tables in the mysql system database provide
persistent backing storage of firewall data.

• Stored procedures perform tasks such as registering firewall profiles, establishing their operational
mode, and managing transfer of firewall data between the in-memory cache and persistent storage.

• Administrative functions provide an API for lower-level tasks such as synchronizing the cache with
persistent storage.

• System variables enable firewall configuration and status variables provide runtime operational
information.

6.4.5.2 Installing or Uninstalling MySQL Enterprise Firewall

MySQL Enterprise Firewall installation is a one-time operation that installs the elements described in
Section 6.4.5.1, “Elements of MySQL Enterprise Firewall”. Installation can be performed using a graphical
interface or manually:

995

MySQL Enterprise Firewall

• On Windows, MySQL Installer includes an option to enable MySQL Enterprise Firewall for you.

• MySQL Workbench 6.3.4 or higher can install MySQL Enterprise Firewall, enable or disable an installed
firewall, or uninstall the firewall.

• Manual MySQL Enterprise Firewall installation involves running a script located in the share directory of
your MySQL installation.

Note

If installed, MySQL Enterprise Firewall involves some minimal overhead even when
disabled. To avoid this overhead, do not install the firewall unless you plan to use it.

Note

MySQL Enterprise Firewall does not work together with the query cache. If the
query cache is enabled, disable it before installing the firewall (see Section 8.10.3.3,
“Query Cache Configuration”).

For usage instructions, see Section 6.4.5.3, “Using MySQL Enterprise Firewall”. For reference information,
see Section 6.4.5.4, “MySQL Enterprise Firewall Reference”.

• Installing MySQL Enterprise Firewall

• Uninstalling MySQL Enterprise Firewall

Installing MySQL Enterprise Firewall

If MySQL Enterprise Firewall is already installed from an older version of MySQL, uninstall it using the
instructions given later in this section and then restart your server before installing the current version. In
this case, it is also necessary to register your configuration again.

On Windows, you can use MySQL Installer to install MySQL Enterprise Firewall, as shown in Figure 6.2,
“MySQL Enterprise Firewall Installation on Windows”. Check the Enable MySQL Enterprise Firewall
check box. (Open Firewall port for network access has a different purpose. It refers to Windows Firewall
and controls whether Windows blocks the TCP/IP port on which the MySQL server listens for client
connections.)

996

MySQL Enterprise Firewall

Figure 6.2 MySQL Enterprise Firewall Installation on Windows

To install MySQL Enterprise Firewall using MySQL Workbench 6.3.4 or higher, see MySQL Enterprise
Firewall Interface.

To install MySQL Enterprise Firewall manually, look in the share directory of your MySQL installation and
choose the script that is appropriate for your platform. The available scripts differ in the suffix used to refer
to the plugin library file:

• win_install_firewall.sql: Choose this script for Windows systems that use .dll as the file
name suffix.

• linux_install_firewall.sql: Choose this script for Linux and similar systems that use .so as the
file name suffix.

The installation script creates stored procedures in the default database, so choose a database to use.
Then run the script as follows, naming the chosen database on the command line. The example here uses
the mysql system database and the Linux installation script. Make the appropriate substitutions for your
system.

$> mysql -u root -p mysql < linux_install_firewall.sql
Enter password: (enter root password here)

Installing MySQL Enterprise Firewall either using a graphical interface or manually should enable the
firewall. To verify that, connect to the server and execute this statement:

997

https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html

MySQL Enterprise Firewall

mysql> SHOW GLOBAL VARIABLES LIKE 'mysql_firewall_mode';
+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| mysql_firewall_mode | ON |
+---------------------+-------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

Uninstalling MySQL Enterprise Firewall

MySQL Enterprise Firewall can be uninstalled using MySQL Workbench or manually.

To uninstall MySQL Enterprise Firewall using MySQL Workbench 6.3.4 or higher, see MySQL Enterprise
Firewall Interface, in Chapter 25, MySQL Workbench.

To uninstall MySQL Enterprise Firewall manually, execute the following statements. Statements use IF
EXISTS because, depending on the previously installed firewall version, some objects might not exist.

DROP TABLE IF EXISTS mysql.firewall_users;
DROP TABLE IF EXISTS mysql.firewall_whitelist;

UNINSTALL PLUGIN MYSQL_FIREWALL;
UNINSTALL PLUGIN MYSQL_FIREWALL_USERS;
UNINSTALL PLUGIN MYSQL_FIREWALL_WHITELIST;

DROP FUNCTION IF EXISTS mysql_firewall_flush_status;
DROP FUNCTION IF EXISTS normalize_statement;
DROP FUNCTION IF EXISTS read_firewall_users;
DROP FUNCTION IF EXISTS read_firewall_whitelist;
DROP FUNCTION IF EXISTS set_firewall_mode;

DROP PROCEDURE IF EXISTS mysql.sp_reload_firewall_rules;
DROP PROCEDURE IF EXISTS mysql.sp_set_firewall_mode;

6.4.5.3 Using MySQL Enterprise Firewall

Before using MySQL Enterprise Firewall, install it according to the instructions provided in Section 6.4.5.2,
“Installing or Uninstalling MySQL Enterprise Firewall”. Also, MySQL Enterprise Firewall does not work
together with the query cache; disable the query cache if it is enabled (see Section 8.10.3.3, “Query Cache
Configuration”).

This section describes how to configure MySQL Enterprise Firewall using SQL statements. Alternatively,
MySQL Workbench 6.3.4 or higher provides a graphical interface for firewall control. See MySQL
Enterprise Firewall Interface.

• Enabling or Disabling the Firewall

• Assigning Firewall Privileges

• Firewall Concepts

• Registering Firewall Account Profiles

• Monitoring the Firewall

Enabling or Disabling the Firewall

To enable or disable the firewall, set the mysql_firewall_mode system variable. By default, this
variable is enabled when the firewall is installed. To control the initial firewall state explicitly, you can set
the variable at server startup. For example, to enable the firewall in an option file, use these lines:

[mysqld]

998

https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html

MySQL Enterprise Firewall

mysql_firewall_mode=ON

After modifying my.cnf, restart the server to cause the new setting to take effect.

It is also possible to disable or enable the firewall at runtime:

SET GLOBAL mysql_firewall_mode = OFF;
SET GLOBAL mysql_firewall_mode = ON;

Assigning Firewall Privileges

With the firewall installed, grant the appropriate privileges to the MySQL account or accounts to be used for
administering it:

• Grant the EXECUTE privilege for the firewall stored procedures in the mysql system database. These
may invoke administrative functions, so stored procedure access also requires the privileges needed for
those functions.

• Grant the SUPER privilege so that the firewall administrative functions can be executed.

Firewall Concepts

The MySQL server permits clients to connect and receives from them SQL statements to be executed. If
the firewall is enabled, the server passes to it each incoming statement that does not immediately fail with
a syntax error. Based on whether the firewall accepts the statement, the server executes it or returns an
error to the client. This section describes how the firewall accomplishes the task of accepting or rejecting
statements.

• Firewall Profiles

• Firewall Statement Matching

• Profile Operational Modes

Firewall Profiles

The firewall uses a registry of profiles that determine whether to permit statement execution. Profiles have
these attributes:

• An allowlist. The allowlist is the set of rules that defines which statements are acceptable to the profile.

• A current operational mode. The mode enables the profile to be used in different ways. For example: the
profile can be placed in training mode to establish the allowlist; the allowlist can be used for restricting
statement execution or intrusion detection; the profile can be disabled entirely.

• A scope of applicability. The scope indicates which client connections the profile applies to.

The firewall supports account-based profiles such that each profile matches a particular client account
(client user name and host name combination). For example, you can register one account profile for
which the allowlist applies to connections originating from admin@localhost and another account
profile for which the allowlist applies to connections originating from myapp@apphost.example.com.

Initially, no profiles exist, so by default, the firewall accepts all statements and has no effect on which
statements MySQL accounts can execute. To apply firewall protective capabilities, explicit action is
required:

• Register one or more profiles with the firewall.

• Train the firewall by establishing the allowlist for each profile; that is, the types of statements the profile
permits clients to execute.

999

MySQL Enterprise Firewall

• Place the trained profiles in protecting mode to harden MySQL against unauthorized statement
execution:

• MySQL associates each client session with a specific user name and host name combination. This
combination is the session account.

• For each client connection, the firewall uses the session account to determine which profile applies to
handling incoming statements from the client.

The firewall accepts only statements permitted by the applicable profile allowlist.

The profile-based protection afforded by the firewall enables implementation of strategies such as these:

• If an application has unique protection requirements, configure it to use an account not used for any
other purpose and set up a profile for that account.

• If related applications share protection requirements, configure them all to use the same account (and
thus the same account profile).

Firewall Statement Matching

Statement matching performed by the firewall does not use SQL statements as received from clients.
Instead, the server converts incoming statements to normalized digest form and firewall operation uses
these digests. The benefit of statement normalization is that it enables similar statements to be grouped
and recognized using a single pattern. For example, these statements are distinct from each other:

SELECT first_name, last_name FROM customer WHERE customer_id = 1;
select first_name, last_name from customer where customer_id = 99;
SELECT first_name, last_name FROM customer WHERE customer_id = 143;

But all of them have the same normalized digest form:

SELECT `first_name` , `last_name` FROM `customer` WHERE `customer_id` = ?

By using normalization, firewall allowlists can store digests that each match many different statements
received from clients. For more information about normalization and digests, see Section 22.10,
“Performance Schema Statement Digests”.

Warning

Setting the max_digest_length system variable to zero disables digest
production, which also disables server functionality that requires digests, such as
MySQL Enterprise Firewall.

Note

Before MySQL 5.6.25, MySQL Enterprise Firewall records prepared statements
as they are received by the server, not as normalized digests. Thus, spaces, tabs,
and lettercase are significant for comparison of allowlist rules against incoming
statements.

Profile Operational Modes

Each profile registered with the firewall has its own operational mode, chosen from these values:

• OFF: This mode disables the profile. The firewall considers it inactive and ignores it.

• RECORDING: This is the firewall training mode. Incoming statements received from a client that matches
the profile are considered acceptable for the profile and become part of its “fingerprint.” The firewall

1000

MySQL Enterprise Firewall

records the normalized digest form of each statement to learn the acceptable statement patterns for the
profile. Each pattern is a rule, and the union of the rules is the profile allowlist.

• PROTECTING: In this mode, the profile allows or prevents statement execution. The firewall matches
incoming statements against the profile allowlist, accepting only statements that match and rejecting
those that do not. After training a profile in RECORDING mode, switch it to PROTECTING mode to
harden MySQL against access by statements that deviate from the allowlist. As of MySQL 5.6.25, if the
mysql_firewall_trace system variable is enabled, the firewall also writes rejected statements to the
error log.

• DETECTING: This mode detects but not does not block intrusions (statements that are suspicious
because they match nothing in the profile allowlist). In DETECTING mode, the firewall writes suspicious
statements to the error log but accepts them without denying access. This mode is available in MySQL
5.6.26 and higher.

When a profile is assigned any of the preceding mode values, the firewall stores the mode in the profile.
Firewall mode-setting operations also permit a mode value of RESET, but this value is not stored: setting a
profile to RESET mode causes the firewall to delete all rules for the profile and set its mode to OFF.

Note

Messages written to the error log in DETECTING mode or because
mysql_firewall_trace is enabled are written as Notes, which are information
messages. To ensure that such messages appear in the error log and are not
discarded, set the log_error_verbosity system variable to a value of 3.

As previously mentioned, MySQL associates each client session with a specific user name and host name
combination known as the session account. The firewall matches the session account against registered
profiles to determine which profile applies to handling incoming statements from the session:

• The firewall ignores inactive profiles (profiles with a mode of OFF).

• The session account matches an active account profile having the same user and host, if there is one.
There is at most one such account profile.

After matching the session account to registered profiles, the firewall handles each incoming statement as
follows:

• If there is no applicable profile, the firewall imposes no restrictions and accepts the statement.

• If there is an applicable profile, its mode determines statement handling:

• In RECORDING mode, the firewall adds the statement to the profile allowlist rules and accepts it.

• In PROTECTING mode, the firewall compares the statement to the rules in the profile allowlist. The
firewall accepts the statement if there is a match, and rejects it otherwise. As of MySQL 5.6.25, if the
mysql_firewall_trace system variable is enabled, the firewall also writes rejected statements to
the error log.

• In DETECTING mode, the firewall detects instrusions without denying access. The firewall accepts
the statement, but also matches it to the profile allowlist, as in PROTECTING mode. If the statement is
suspicious (nonmatching), the firewall writes it to the error log.

Registering Firewall Account Profiles

MySQL Enterprise Firewall enables profiles to be registered that correspond to individual accounts. To use
a firewall account profile to protect MySQL against incoming statements from a given account, follow these
steps:

1001

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_log_error_verbosity

MySQL Enterprise Firewall

1. Register the account profile and put it in RECORDING mode.

2. Connect to the MySQL server using the account and execute statements to be learned. This trains the
account profile and establishes the rules that form the profile allowlist.

3. Switch the account profile to PROTECTING mode. When a client connects to the server using the
account, the account profile allowlist restricts statement execution.

4. Should additional training be necessary, switch the account profile to RECORDING mode again, update
its allowlist with new statement patterns, then switch it back to PROTECTING mode.

Observe these guidelines for firewall-related account references:

• Take note of the context in which account references occur. To name an account for firewall operations,
specify it as a single quoted string ('user_name@host_name'). This differs from the usual MySQL
convention for statements such as CREATE USER and GRANT, for which you quote the user and host
parts of an account name separately ('user_name'@'host_name').

The requirement for naming accounts as a single quoted string for firewall operations means that you
cannot use accounts that have embedded @ characters in the user name.

• The firewall assesses statements against accounts represented by actual user and host names as
authenticated by the server. When registering accounts in profiles, do not use wildcard characters or
netmasks:

• Suppose that an account named me@%.example.org exists and a client uses it to connect to the
server from the host abc.example.org.

• The account name contains a % wildcard character, but the server authenticates the client as having a
user name of me and host name of abc.example.com, and that is what the firewall sees.

• Consequently, the account name to use for firewall operations is me@abc.example.org rather than
me@%.example.org.

The following procedure shows how to register an account profile with the firewall, train the firewall to
know the acceptable statements for that profile (its allowlist), and use the profile to protect MySQL against
execution of unacceptable statements by the account. The example account, fwuser@localhost, is
presumed for use by an application that accesses tables in the sakila database (available at https://
dev.mysql.com/doc/index-other.html).

Use an administrative MySQL account to perform the steps in this procedure, except those steps
designated for execution by the fwuser@localhost account that corresponds to the account profile
registered with the firewall. For statements executed using this account, the default database should be
sakila. (You can use a different database by adjusting the instructions accordingly.)

1. If necessary, create the account to use for executing statements (choose an appropriate password) and
grant it privileges for the sakila database:

CREATE USER 'fwuser'@'localhost' IDENTIFIED BY 'password';
GRANT ALL ON sakila.* TO 'fwuser'@'localhost';

2. Use the sp_set_firewall_mode() stored procedure to register the account profile with the firewall
and place the profile in RECORDING (training) mode:

CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'RECORDING');

3. To train the registered account profile, connect to the server as fwuser from the server host so that
the firewall sees a session account of fwuser@localhost. Then use the account to execute some
statements to be considered legitimate for the profile. For example:

1002

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

MySQL Enterprise Firewall

SELECT first_name, last_name FROM customer WHERE customer_id = 1;
UPDATE rental SET return_date = NOW() WHERE rental_id = 1;
SELECT get_customer_balance(1, NOW());

Because the profile is in RECORDING mode, the firewall records the normalized digest form of the
statements as rules in the profile allowlist.

Note

Until the fwuser@localhost account profile receives statements in
RECORDING mode, its allowlist is empty, which is equivalent to “deny all.” No
statement can match an empty allowlist, which has these implications:

• The account profile cannot be switched to PROTECTING mode. It would
reject every statement, effectively prohibiting the account from executing any
statement.

• The account profile can be switched to DETECTING mode. In this case, the
profile accepts every statement but logs it as suspicious.

4. At this point, the account profile information is cached. To see this information, query the
INFORMATION_SCHEMA firewall tables:

mysql> SELECT MODE FROM INFORMATION_SCHEMA.MYSQL_FIREWALL_USERS
 WHERE USERHOST = 'fwuser@localhost';
+-----------+
| MODE |
+-----------+
| RECORDING |
+-----------+
mysql> SELECT RULE FROM INFORMATION_SCHEMA.MYSQL_FIREWALL_WHITELIST
 WHERE USERHOST = 'fwuser@localhost';
+--+
| RULE |
+--+
| SELECT `first_name` , `last_name` FROM `customer` WHERE `customer_id` = ? |
| SELECT `get_customer_balance` (? , NOW ()) |
| UPDATE `rental` SET `return_date` = NOW () WHERE `rental_id` = ? |
| SELECT @@`version_comment` LIMIT ? |
+--+

Note

The @@version_comment rule comes from a statement sent automatically by
the mysql client when you connect to the server.

Important

Train the firewall under conditions matching application use. For example, to
determine server characteristics and capabilities, a given MySQL connector
might send statements to the server at the beginning of each session. If an
application normally is used through that connector, train the firewall using the
connector, too. That enables those initial statements to become part of the
allowlist for the account profile associated with the application.

1003

MySQL Enterprise Firewall

5. Invoke sp_set_firewall_mode() again, this time switching the account profile to PROTECTING
mode:

CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'PROTECTING');

Important

Switching the account profile out of RECORDING mode synchronizes its cached
data to the mysql system database tables that provide persistent underlying
storage. If you do not switch the mode for a profile that is being recorded, the
cached data is not written to persistent storage and is lost when the server is
restarted.

6. Test the account profile by using the account to execute some acceptable and unacceptable
statements. The firewall matches each statement from the account against the profile allowlist and
accepts or rejects it:

• This statement is not identical to a training statement but produces the same normalized statement
as one of them, so the firewall accepts it:

mysql> SELECT first_name, last_name FROM customer WHERE customer_id = '48';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| ANN | EVANS |
+------------+-----------+

• These statements match nothing in the allowlist, so the firewall rejects each with an error:

mysql> SELECT first_name, last_name FROM customer WHERE customer_id = 1 OR TRUE;
ERROR 1045 (28000): Statement was blocked by Firewall
mysql> SHOW TABLES LIKE 'customer%';
ERROR 1045 (28000): Statement was blocked by Firewall
mysql> TRUNCATE TABLE mysql.slow_log;
ERROR 1045 (28000): Statement was blocked by Firewall

• As of MySQL 5.6.25, if the mysql_firewall_trace system variable is enabled, the firewall also
writes rejected statements to the error log. For example:

[Note] Plugin MYSQL_FIREWALL reported:
'ACCESS DENIED for fwuser@localhost. Reason: No match in whitelist.
Statement: TRUNCATE TABLE `mysql` . `slow_log` '

These log messages may be helpful in identifying the source of attacks, should that be necessary.

The firewall account profile now is trained for the fwuser@localhost account. When clients connect
using that account and attempt to execute statements, the profile protects MySQL against statements not
matched by the profile allowlist.

As of MySQL 5.6.26, it is possible to detect intrusions by logging nonmatching statements as suspicious
without denying access. First, put the account profile in DETECTING mode:

CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'DETECTING');

Then, using the account, execute a statement that does not match the account profile allowlist. In
DETECTING mode, the firewall permits the nonmatching statement to execute:

mysql> SHOW TABLES LIKE 'customer%';
+------------------------------+
| Tables_in_sakila (customer%) |
+------------------------------+

1004

MySQL Enterprise Firewall

| customer |
| customer_list |
+------------------------------+

In addition, the firewall writes a message to the error log:

[Note] Plugin MYSQL_FIREWALL reported:
'SUSPICIOUS STATEMENT from 'fwuser@localhost'. Reason: No match in whitelist.
Statement: SHOW TABLES LIKE ? '

To disable an account profile, change its mode to OFF:

CALL mysql.sp_set_firewall_mode(user, 'OFF');

To forget all training for a profile and disable it, reset it:

CALL mysql.sp_set_firewall_mode(user, 'RESET');

The reset operation causes the firewall to delete all rules for the profile and set its mode to OFF.

Monitoring the Firewall

To assess firewall activity, examine its status variables. For example, after performing the procedure
shown earlier to train and protect the fwuser@localhost account, the variables look like this:

mysql> SHOW GLOBAL STATUS LIKE 'Firewall%';
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
Firewall_access_denied	3
Firewall_access_granted	4
Firewall_access_suspicious	1
Firewall_cached_entries	4
+----------------------------+-------+

The variables indicate the number of statements rejected, accepted, logged as suspicious, and
added to the cache, respectively. The Firewall_access_granted count is 4 because of the
@@version_comment statement sent by the mysql client each of the three times you connected using
the registered account, plus the SHOW TABLES statement that was not blocked in DETECTING mode.

6.4.5.4 MySQL Enterprise Firewall Reference

The following sections provide a reference to MySQL Enterprise Firewall elements:

• MySQL Enterprise Firewall Tables

• MySQL Enterprise Firewall Stored Procedures

• MySQL Enterprise Firewall Administrative Functions

• MySQL Enterprise Firewall System Variables

• MySQL Enterprise Firewall Status Variables

MySQL Enterprise Firewall Tables

MySQL Enterprise Firewall maintains profile information using tables in the mysql system database for
persistent storage and INFORMATION_SCHEMA tables to provide views into in-memory cached data. When
enabled, the firewall bases operational decisions on the cached data.

1005

MySQL Enterprise Firewall

Each mysql system database table is accessible only by accounts that have the SELECT privilege for it.
The INFORMATION_SCHEMA tables are accessible by anyone.

The mysql.firewall_users table lists names and operational modes of registered firewall
account profiles. The table has the following columns (with the corresponding Information Schema
MYSQL_FIREWALL_USERS table having similar but not necessarily identical columns):

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTING (as of
MySQL 5.6.26), PROTECTING, RECORDING, and RESET. For details about their meanings, see Firewall
Concepts.

The mysql.firewall_whitelist table lists allowlist rules of registered firewall account
profiles. The table has the following columns (with the corresponding Information Schema
MYSQL_FIREWALL_WHITELIST table having similar but not necessarily identical columns):

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is the
union of its rules.

MySQL Enterprise Firewall Stored Procedures

MySQL Enterprise Firewall stored procedures perform tasks such as registering profiles with the firewall,
establishing their operational mode, and managing transfer of firewall data between the cache and
persistent storage. These procedures invoke administrative functions that provide an API for lower-level
tasks.

Firewall stored procedures are created in the mysql system database. To invoke a firewall stored
procedure, either do so while mysql is the default database, or qualify the procedure name with the
database name. For example:

CALL mysql.sp_set_firewall_mode(user, mode);

The following list describes each firewall stored procedure:

• sp_reload_firewall_rules(user)

This stored procedure provides control over firewall operation for individual account profiles. The
procedure uses firewall administrative functions to reload the in-memory rules for an account profile from
the rules stored in the mysql.firewall_whitelist table.

Arguments:

• user: The name of the affected account profile, as a string in user_name@host_name format.

Example:

CALL mysql.sp_reload_firewall_rules('fwuser@localhost');

1006

MySQL Enterprise Firewall

Warning

This procedure clears the account profile in-memory allowlist rules before
reloading them from persistent storage, and sets the profile mode to OFF. If the
profile mode was not OFF prior to the sp_reload_firewall_rules() call,
use sp_set_firewall_mode() to restore its previous mode after reloading
the rules. For example, if the profile was in PROTECTING mode, that is no longer
true after calling sp_reload_firewall_rules() and you must set it to
PROTECTING again explicitly.

• sp_set_firewall_mode(user, mode)

This stored procedure establishes the operational mode for a firewall account profile, after registering the
profile with the firewall if it was not already registered. The procedure also invokes firewall administrative
functions as necessary to transfer firewall data between the cache and persistent storage. This
procedure may be called even if the mysql_firewall_mode system variable is OFF, although setting
the mode for a profile has no operational effect until the firewall is enabled.

Arguments:

• user: The name of the affected account profile, as a string in user_name@host_name format.

• mode: The operational mode for the profile, as a string. Permitted mode values are OFF, DETECTING,
PROTECTING, RECORDING, and RESET. For details about their meanings, see Firewall Concepts.

Switching an account profile to any mode but RECORDING synchronizes its firewall cache data to the
mysql system database tables that provide persistent underlying storage. Switching the mode from OFF
to RECORDING reloads the allowlist from the mysql.firewall_whitelist table into the cache.

If an account profile has an empty allowlist, its mode cannot be set to PROTECTING because the profile
would reject every statement, effectively prohibiting the account from executing statements. In response
to such a mode-setting attempt, the firewall produces a diagnostic message that is returned as a result
set rather than as an SQL error:

mysql> CALL mysql.sp_set_firewall_mode('a@b','PROTECTING');
+--+
| set_firewall_mode(arg_userhost, arg_mode) |
+--+
| ERROR: PROTECTING mode requested for a@b but the whitelist is empty. |
+--+
1 row in set (0.02 sec)

Query OK, 0 rows affected (0.02 sec)

MySQL Enterprise Firewall Administrative Functions

MySQL Enterprise Firewall administrative functions provide an API for lower-level tasks such as
synchronizing the firewall cache with the underlying system tables.

Under normal operation, these functions are invoked by the firewall stored procedures, not directly by
users. For that reason, these function descriptions do not include details such as information about their
arguments and return types.

• Firewall Account Profile Functions

• Firewall Miscellaneous Functions

1007

MySQL Enterprise Firewall

Firewall Account Profile Functions

These functions perform management operations on firewall account profiles:

• read_firewall_users(user, mode)

This aggregate function updates the firewall account profile cache through a SELECT statement on the
mysql.firewall_users table. It requires the SUPER privilege.

Example:

SELECT read_firewall_users('fwuser@localhost', 'RECORDING')
FROM mysql.firewall_users;

• read_firewall_whitelist(user, rule)

This aggregate function updates the recorded-statement cache for the named account profile through a
SELECT statement on the mysql.firewall_whitelist table. It requires the SUPER privilege.

Example:

SELECT read_firewall_whitelist('fwuser@localhost', fw.rule)
FROM mysql.firewall_whitelist AS fw
WHERE USERHOST = 'fwuser@localhost';

• set_firewall_mode(user, mode)

This function manages the account profile cache and establishes the profile operational mode. It requires
the SUPER privilege.

Example:

SELECT set_firewall_mode('fwuser@localhost', 'RECORDING');

Firewall Miscellaneous Functions

These functions perform miscellaneous firewall operations:

• mysql_firewall_flush_status()

This function resets several firewall status variables to 0:

• Firewall_access_denied

• Firewall_access_granted

• Firewall_access_suspicious

This function requires the SUPER privilege.

Example:

SELECT mysql_firewall_flush_status();

• normalize_statement(stmt)

This function normalizes an SQL statement into the digest form used for allowlist rules. It requires the
SUPER privilege.

Example:

1008

MySQL Enterprise Firewall

SELECT normalize_statement('SELECT * FROM t1 WHERE c1 > 2');

MySQL Enterprise Firewall System Variables

MySQL Enterprise Firewall supports the following system variables. Use them to configure firewall
operation. These variables are unavailable unless the firewall is installed (see Section 6.4.5.2, “Installing or
Uninstalling MySQL Enterprise Firewall”).

• mysql_firewall_max_query_size

Command-Line Format --mysql-firewall-max-query-size=#

Introduced 5.6.24

Removed 5.6.26

System Variable mysql_firewall_max_query_size

Scope Global

Dynamic No

Type Integer

Default Value 4096

Minimum Value 0

Maximum Value 4294967295

Unit bytes

The maximum size of a normalized statement that can be inserted in the MySQL Enterprise Firewall
cache. Normalized statements longer than this size are truncated. Truncated statements are discarded if
the firewall mode for the current user is RECORDING and rejected if the mode is PROTECTING.

mysql_firewall_max_query_size was removed in MySQL 5.6.26. max_digest_length should
be set large enough to avoid statement truncation.

• mysql_firewall_mode

Command-Line Format --mysql-firewall-mode[={OFF|ON}]

Introduced 5.6.24

System Variable mysql_firewall_mode

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Whether MySQL Enterprise Firewall is enabled (the default) or disabled.

• mysql_firewall_trace

Command-Line Format --mysql-firewall-trace[={OFF|ON}]

Introduced 5.6.24

System Variable mysql_firewall_trace

Scope Global

1009

MySQL Enterprise Encryption

Dynamic Yes

Type Boolean

Default Value OFF

Whether the MySQL Enterprise Firewall trace is enabled or disabled (the default). When enabled,
mysql_firewall_trace has this effect:

• In MySQL 5.6.24, the firewall writes a file named firewall_trace.txt in the data directory.

• In MySQL 5.6.25 and higher, for PROTECTING mode, the firewall writes rejected statements to the
error log.

MySQL Enterprise Firewall Status Variables

MySQL Enterprise Firewall supports the following status variables. Use them to obtain information
about firewall operational status. These variables are unavailable unless the firewall is installed (see
Section 6.4.5.2, “Installing or Uninstalling MySQL Enterprise Firewall”). Firewall status variables are set to
0 whenever the MYSQL_FIREWALL plugin is installed or the server is started. Many of them are reset to
zero by the mysql_firewall_flush_status() function (see MySQL Enterprise Firewall Administrative
Functions).

• Firewall_access_denied

The number of statements rejected by MySQL Enterprise Firewall.

• Firewall_access_granted

The number of statements accepted by MySQL Enterprise Firewall.

• Firewall_access_suspicious

The number of statements logged by MySQL Enterprise Firewall as suspicious for users who are in
DETECTING mode.

• Firewall_cached_entries

The number of statements recorded by MySQL Enterprise Firewall, including duplicates.

6.5 MySQL Enterprise Encryption
Note

MySQL Enterprise Encryption is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, https://
www.mysql.com/products/.

As of MySQL 5.6.21, MySQL Enterprise Edition includes a set of encryption functions based on the
OpenSSL library that expose OpenSSL capabilities at the SQL level. These functions enable Enterprise
applications to perform the following operations:

• Implement added data protection using public-key asymmetric cryptography

• Create public and private keys and digital signatures

• Perform asymmetric encryption and decryption

• Use cryptographic hashing for digital signing and data verification and validation

1010

https://www.mysql.com/products/
https://www.mysql.com/products/

MySQL Enterprise Encryption Installation

MySQL Enterprise Encryption supports the RSA, DSA, and DH cryptographic algorithms.

MySQL Enterprise Encryption is supplied as a library of loadable functions, from which individual functions
can be installed individually.

6.5.1 MySQL Enterprise Encryption Installation

MySQL Enterprise Encryption functions are located in a loadable function library file installed in the plugin
directory (the directory named by the plugin_dir system variable). The function library base name is
openssl_udf and the suffix is platform dependent. For example, the file name on Linux or Windows is
openssl_udf.so or openssl_udf.dll, respectively.

To install functions from the library file, use the CREATE FUNCTION statement. To load all functions from
the library, use this set of statements, adjusting the file name suffix as necessary:

CREATE FUNCTION asymmetric_decrypt RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_derive RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_encrypt RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_sign RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_verify RETURNS INTEGER
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_asymmetric_priv_key RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_asymmetric_pub_key RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_dh_parameters RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_digest RETURNS STRING
 SONAME 'openssl_udf.so';

Once installed, the functions remain installed across server restarts. To unload the functions, use the DROP
FUNCTION statement:

DROP FUNCTION asymmetric_decrypt;
DROP FUNCTION asymmetric_derive;
DROP FUNCTION asymmetric_encrypt;
DROP FUNCTION asymmetric_sign;
DROP FUNCTION asymmetric_verify;
DROP FUNCTION create_asymmetric_priv_key;
DROP FUNCTION create_asymmetric_pub_key;
DROP FUNCTION create_dh_parameters;
DROP FUNCTION create_digest;

In the CREATE FUNCTION and DROP FUNCTION statements, the function names must be specified in
lowercase. This differs from their use at function invocation time, for which you can use any lettercase.

The CREATE FUNCTION and DROP FUNCTION statements require the INSERT and DROP privilege,
respectively, for the mysql database.

6.5.2 MySQL Enterprise Encryption Usage and Examples

To use MySQL Enterprise Encryption in applications, invoke the functions that are appropriate for the
operations you wish to perform. This section demonstrates how to carry out some representative tasks:

• Create a private/public key pair using RSA encryption

• Use the private key to encrypt data and the public key to decrypt it

1011

MySQL Enterprise Encryption Usage and Examples

• Generate a digest from a string

• Use the digest with a key pair

• Create a symmetric key

• Limit CPU usage by key-generation operations

Create a private/public key pair using RSA encryption

-- Encryption algorithm; can be 'DSA' or 'DH' instead
SET @algo = 'RSA';
-- Key length in bits; make larger for stronger keys
SET @key_len = 1024;

-- Create private key
SET @priv = create_asymmetric_priv_key(@algo, @key_len);
-- Derive corresponding public key from private key, using same algorithm
SET @pub = create_asymmetric_pub_key(@algo, @priv);

Now you can use the key pair to encrypt and decrypt data, sign and verify data, or generate symmetric
keys.

Use the private key to encrypt data and the public key to decrypt it

This requires that the members of the key pair be RSA keys.

SET @ciphertext = asymmetric_encrypt(@algo, 'My secret text', @priv);
SET @plaintext = asymmetric_decrypt(@algo, @ciphertext, @pub);

Conversely, you can encrypt using the public key and decrypt using the private key.

SET @ciphertext = asymmetric_encrypt(@algo, 'My secret text', @pub);
SET @plaintext = asymmetric_decrypt(@algo, @ciphertext, @priv);

In either case, the algorithm specified for the encryption and decryption functions must match that used to
generate the keys.

Generate a digest from a string

-- Digest type; can be 'SHA256', 'SHA384', or 'SHA512' instead
SET @dig_type = 'SHA224';

-- Generate digest string
SET @dig = create_digest(@dig_type, 'My text to digest');

Use the digest with a key pair

The key pair can be used to sign data, then verify that the signature matches the digest.

-- Encryption algorithm; could be 'DSA' instead; keys must
-- have been created using same algorithm
SET @algo = 'RSA';

-- Generate signature for digest and verify signature against digest
SET @sig = asymmetric_sign(@algo, @dig, @priv, @dig_type);
-- Verify signature against digest
SET @verf = asymmetric_verify(@algo, @dig, @sig, @pub, @dig_type);

Create a symmetric key

This requires DH private/public keys as inputs, created using a shared symmetric secret. Create the secret
by passing the key length to create_dh_parameters(), then pass the secret as the “key length” to
create_asymmetric_priv_key().

1012

MySQL Enterprise Encryption Usage and Examples

-- Generate DH shared symmetric secret
SET @dhp = create_dh_parameters(1024);
-- Generate DH key pairs
SET @algo = 'DH';
SET @priv1 = create_asymmetric_priv_key(@algo, @dhp);
SET @pub1 = create_asymmetric_pub_key(@algo, @priv1);
SET @priv2 = create_asymmetric_priv_key(@algo, @dhp);
SET @pub2 = create_asymmetric_pub_key(@algo, @priv2);

-- Generate symmetric key using public key of first party,
-- private key of second party
SET @sym1 = asymmetric_derive(@pub1, @priv2);

-- Or use public key of second party, private key of first party
SET @sym2 = asymmetric_derive(@pub2, @priv1);

Key string values can be created at runtime and stored into a variable or table using SET, SELECT, or
INSERT:

SET @priv1 = create_asymmetric_priv_key('RSA', 1024);
SELECT create_asymmetric_priv_key('RSA', 1024) INTO @priv2;
INSERT INTO t (key_col) VALUES(create_asymmetric_priv_key('RSA', 1024));

Key string values stored in files can be read using the LOAD_FILE() function by users who have the FILE
privilege.

Digest and signature strings can be handled similarly.

Limit CPU usage by key-generation operations

The create_asymmetric_priv_key() and create_dh_parameters() encryption functions take
a key-length parameter, and the amount of CPU resources required by these functions increases as the
key length increases. For some installations, this might result in unacceptable CPU usage if applications
frequently generate excessively long keys.

OpenSSL imposes a minimum key length of 1,024 bits for all keys. OpenSSL also imposes
a maximum key length of 10,000 bits and 16,384 bits for DSA and RSA keys, respectively,
for create_asymmetric_priv_key(), and a maximum key length of 10,000 bits for
create_dh_parameters(). If those maximum values are too high, three environment variables are
available as of MySQL 5.6.35 to enable MySQL server administrators to set lower maximum lengths for
key generation, and thereby to limit CPU usage:

• MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD: Maximum DSA key length in bits for
create_asymmetric_priv_key(). The minimum and maximum values for this variable are 1,024
and 10,000.

• MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD: Maximum RSA key length in bits for
create_asymmetric_priv_key(). The minimum and maximum values for this variable are 1,024
and 16,384.

• MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD: Maximum key length in bits for
create_dh_parameters(). The minimum and maximum values for this variable are 1,024 and
10,000.

To use any of these environment variables, set them in the environment of the process that
starts the server. If set, their values take precedence over the maximum key lengths imposed by
OpenSSL. For example, to set a maximum key length of 4,096 bits for DSA and RSA keys for
create_asymmetric_priv_key(), set these variables:

export MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD=4096
export MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD=4096

1013

MySQL Enterprise Encryption Function Reference

The example uses Bourne shell syntax. The syntax for other shells may differ.

6.5.3 MySQL Enterprise Encryption Function Reference

Table 6.17 MySQL Enterprise Encryption Functions

Name Description Introduced

asymmetric_decrypt() Decrypt ciphertext using private or
public key

5.6.21

asymmetric_derive() Derive symmetric key from
asymmetric keys

5.6.21

asymmetric_encrypt() Encrypt cleartext using private or
public key

5.6.21

asymmetric_sign() Generate signature from digest 5.6.21

asymmetric_verify() Verify that signature matches
digest

5.6.21

create_asymmetric_priv_key()Create private key 5.6.21

create_asymmetric_pub_key()Create public key 5.6.21

create_dh_parameters() Generate shared DH secret 5.6.21

create_digest() Generate digest from string 5.6.21

6.5.4 MySQL Enterprise Encryption Function Descriptions

MySQL Enterprise Encryption functions have these general characteristics:

• For arguments of the wrong type or an incorrect number of arguments, each function returns an error.

• If the arguments are not suitable to permit a function to perform the requested operation, it returns NULL
or 0 as appropriate. This occurs, for example, if a function does not support a specified algorithm, a
key length is too short or long, or a string expected to be a key string in PEM format is not a valid key.
(OpenSSL imposes its own key-length limits, and server administrators can impose additional limits on
maximum key length by setting environment variables. See Section 6.5.2, “MySQL Enterprise Encryption
Usage and Examples”.)

• The underlying SSL library takes care of randomness initialization.

Several of the functions take an encryption algorithm argument. The following table summarizes the
supported algorithms by function.

Table 6.18 Supported Algorithms by Function

Function Supported Algorithms

asymmetric_decrypt() RSA

asymmetric_derive() DH

asymmetric_encrypt() RSA

asymmetric_sign() RSA, DSA

asymmetric_verify() RSA, DSA

create_asymmetric_priv_key() RSA, DSA, DH

create_asymmetric_pub_key() RSA, DSA, DH

1014

MySQL Enterprise Encryption Function Descriptions

Function Supported Algorithms

create_dh_parameters() DH

Note

Although you can create keys using any of the RSA, DSA, or DH encryption
algorithms, other functions that take key arguments might accept only certain types
of keys. For example, asymmetric_encrypt() and asymmetric_decrypt()
accept only RSA keys.

The following descriptions describe the calling sequences for MySQL Enterprise Encryption functions.
For additional examples and discussion, see Section 6.5.2, “MySQL Enterprise Encryption Usage and
Examples”.

• asymmetric_decrypt(algorithm, crypt_str, key_str)

Decrypts an encrypted string using the given algorithm and key string, and returns the resulting plaintext
as a binary string. If decryption fails, the result is NULL.

key_str must be a valid key string in PEM format. For successful decryption, it must be the public or
private key string corresponding to the private or public key string used with asymmetric_encrypt()
to produce the encrypted string. algorithm indicates the encryption algorithm used to create the key.

Supported algorithm values: 'RSA'

For a usage example, see the description of asymmetric_encrypt().

• asymmetric_derive(pub_key_str, priv_key_str)

Derives a symmetric key using the private key of one party and the public key of another, and returns the
resulting key as a binary string. If key derivation fails, the result is NULL.

pub_key_str and priv_key_str must be valid key strings in PEM format. They must be created
using the DH algorithm.

Suppose that you have two pairs of public and private keys:

SET @dhp = create_dh_parameters(1024);
SET @priv1 = create_asymmetric_priv_key('DH', @dhp);
SET @pub1 = create_asymmetric_pub_key('DH', @priv1);
SET @priv2 = create_asymmetric_priv_key('DH', @dhp);
SET @pub2 = create_asymmetric_pub_key('DH', @priv2);

Suppose further that you use the private key from one pair and the public key from the other pair to
create a symmetric key string. Then this symmetric key identity relationship holds:

asymmetric_derive(@pub1, @priv2) = asymmetric_derive(@pub2, @priv1)

• asymmetric_encrypt(algorithm, str, key_str)

Encrypts a string using the given algorithm and key string, and returns the resulting ciphertext as a
binary string. If encryption fails, the result is NULL.

The str length cannot be greater than the key_str length − 11, in bytes

key_str must be a valid key string in PEM format. algorithm indicates the encryption algorithm used
to create the key.

1015

MySQL Enterprise Encryption Function Descriptions

Supported algorithm values: 'RSA'

To encrypt a string, pass a private or public key string to asymmetric_encrypt(). To recover the
original unencrypted string, pass the encrypted string to asymmetric_decrypt(), along with the
public or private key string correponding to the private or public key string used for encryption.

-- Generate private/public key pair
SET @priv = create_asymmetric_priv_key('RSA', 1024);
SET @pub = create_asymmetric_pub_key('RSA', @priv);

-- Encrypt using private key, decrypt using public key
SET @ciphertext = asymmetric_encrypt('RSA', 'The quick brown fox', @priv);
SET @plaintext = asymmetric_decrypt('RSA', @ciphertext, @pub);

-- Encrypt using public key, decrypt using private key
SET @ciphertext = asymmetric_encrypt('RSA', 'The quick brown fox', @pub);
SET @plaintext = asymmetric_decrypt('RSA', @ciphertext, @priv);

Suppose that:

SET @s = a string to be encrypted
SET @priv = a valid private RSA key string in PEM format
SET @pub = the corresponding public RSA key string in PEM format

Then these identity relationships hold:

asymmetric_decrypt('RSA', asymmetric_encrypt('RSA', @s, @priv), @pub) = @s
asymmetric_decrypt('RSA', asymmetric_encrypt('RSA', @s, @pub), @priv) = @s

• asymmetric_sign(algorithm, digest_str, priv_key_str, digest_type)

Signs a digest string using a private key string, and returns the signature as a binary string. If signing
fails, the result is NULL.

digest_str is the digest string. It can be generated by calling create_digest(). digest_type
indicates the digest algorithm used to generate the digest string.

priv_key_str is the private key string to use for signing the digest string. It must be a valid key string
in PEM format. algorithm indicates the encryption algorithm used to create the key.

Supported algorithm values: 'RSA', 'DSA'

Supported digest_type values: 'SHA224', 'SHA256', 'SHA384', 'SHA512'

For a usage example, see the description of asymmetric_verify().

1016

MySQL Enterprise Encryption Function Descriptions

• asymmetric_verify(algorithm, digest_str, sig_str, pub_key_str, digest_type)

Verifies whether the signature string matches the digest string, and returns 1 or 0 to indicate whether
verification succeeded or failed.

digest_str is the digest string. It can be generated by calling create_digest(). digest_type
indicates the digest algorithm used to generate the digest string.

sig_str is the signature string. It can be generated by calling asymmetric_sign().

pub_key_str is the public key string of the signer. It corresponds to the private key passed to
asymmetric_sign() to generate the signature string and must be a valid key string in PEM format.
algorithm indicates the encryption algorithm used to create the key.

Supported algorithm values: 'RSA', 'DSA'

Supported digest_type values: 'SHA224', 'SHA256', 'SHA384', 'SHA512'

-- Set the encryption algorithm and digest type
SET @algo = 'RSA';
SET @dig_type = 'SHA224';

-- Create private/public key pair
SET @priv = create_asymmetric_priv_key(@algo, 1024);
SET @pub = create_asymmetric_pub_key(@algo, @priv);

-- Generate digest from string
SET @dig = create_digest(@dig_type, 'The quick brown fox');

-- Generate signature for digest and verify signature against digest
SET @sig = asymmetric_sign(@algo, @dig, @priv, @dig_type);
SET @verf = asymmetric_verify(@algo, @dig, @sig, @pub, @dig_type);

• create_asymmetric_priv_key(algorithm, {key_len|dh_secret})

Creates a private key using the given algorithm and key length or DH secret, and returns the key as a
binary string in PEM format. If key generation fails, the result is NULL.

Supported algorithm values: 'RSA', 'DSA', 'DH'

Supported key_len values: The minimum key length in bits is 1,024. The maximum key length depends
on the algorithm: 16,384 for RSA and 10,000 for DSA. These key-length limits are constraints imposed
by OpenSSL. Server administrators can impose additional limits on maximum key length by setting
environment variables. See Section 6.5.2, “MySQL Enterprise Encryption Usage and Examples”.

For DH keys, pass a shared DH secret instead of a key length. To create the secret, pass the key length
to create_dh_parameters().

This example creates a 2,048-bit DSA private key, then derives a public key from the private key:

SET @priv = create_asymmetric_priv_key('DSA', 2048);

1017

SELinux

SET @pub = create_asymmetric_pub_key('DSA', @priv);

For an example showing DH key generation, see the description of asymmetric_derive().

Some general considerations in choosing key lengths and encryption algorithms:

• The strength of encryption for private and public keys increases with the key size, but the time for key
generation increases as well.

• Generation of DH keys takes much longer than RSA or RSA keys.

• Asymmetric encryption functions are slower than symmetric functions. If performance is an important
factor and the functions are to be used very frequently, you are better off using symmetric encryption.
For example, consider using AES_ENCRYPT() and AES_DECRYPT().

• create_asymmetric_pub_key(algorithm, priv_key_str)

Derives a public key from the given private key using the given algorithm, and returns the key as a binary
string in PEM format. If key derivation fails, the result is NULL.

priv_key_str must be a valid key string in PEM format. algorithm indicates the encryption
algorithm used to create the key.

Supported algorithm values: 'RSA', 'DSA', 'DH'

For a usage example, see the description of create_asymmetric_priv_key().

• create_dh_parameters(key_len)

Creates a shared secret for generating a DH private/public key pair and returns a binary string that can
be passed to create_asymmetric_priv_key(). If secret generation fails, the result is null.

Supported key_len values: The minimum and maximum key lengths in bits are 1,024 and 10,000.
These key-length limits are constraints imposed by OpenSSL. Server administrators can impose
additional limits on maximum key length by setting environment variables. See Section 6.5.2, “MySQL
Enterprise Encryption Usage and Examples”.

For an example showing how to use the return value for generating symmetric keys, see the description
of asymmetric_derive().

SET @dhp = create_dh_parameters(1024);

• create_digest(digest_type, str)

Creates a digest from the given string using the given digest type, and returns the digest as a binary
string. If digest generation fails, the result is NULL.

Supported digest_type values: 'SHA224', 'SHA256', 'SHA384', 'SHA512'

SET @dig = create_digest('SHA512', The quick brown fox');

The resulting digest string is suitable for use with asymmetric_sign() and asymmetric_verify().

6.6 SELinux

Security-Enhanced Linux (SELinux) is a mandatory access control (MAC) system that implements access
rights by applying a security label referred to as an SELinux context to each system object. SELinux policy

1018

Check if SELinux is Enabled

modules use SELinux contexts to define rules for how processes, files, ports, and other system objects
interact with each other. Interaction between system objects is only permitted if a policy rule allows it.

An SELinux context (the label applied to a system object) has the following fields: user, role, type, and
security level. Type information rather than the entire SELinux context is used most commonly to
define rules for how processes interact with other system objects. MySQL SELinux policy modules, for
example, define policy rules using type information.

You can view SELinux contexts using operating system commands such as ls and ps with the -Z option.
Assuming that SELinux is enabled and a MySQL Server is running, the following commands show the
SELinux context for the mysqld process and MySQL data directory:

mysqld process:

$> ps -eZ | grep mysqld
system_u:system_r:mysqld_t:s0 5924 ? 00:00:03 mysqld

MySQL data directory:

$> cd /var/lib
$> ls -Z | grep mysql
system_u:object_r:mysqld_db_t:s0 mysql

where:

• system_u is an SELinux user identity for system processes and objects.

• system_r is an SELinux role used for system processes.

• objects_r is an SELinux role used for system objects.

• mysqld_t is the type associated with the mysqld process.

• mysqld_db_t is the type associated with the MySQL data directory and its files.

• s0 is the security level.

For more information about interpreting SELinux contexts, refer to your distribution's SELinux
documentation.

6.6.1 Check if SELinux is Enabled

SELinux is enabled by default on some Linux distributions including Oracle Linux, RHEL, CentOS, and
Fedora. Use the sestatus command to determine if SELinux is enabled on your distribution:

$> sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Memory protection checking: actual (secure)
Max kernel policy version: 31

If SELinux is disabled or the sestatus command is not found, refer to your distribution's SELinux
documentation for guidance before enabling SELinux.

1019

Changing the SELinux Mode

6.6.2 Changing the SELinux Mode

SELinux supports enforcing, permissive, and disabled modes. Enforcing mode is the default. Permissive
mode allows operations that are not permitted in enforcing mode and logs those operations to the SELinux
audit log. Permissive mode is typically used when developing policies or troubleshooting. In disabled
mode, polices are not enforced, and contexts are not applied to system objects, which makes it difficult to
enable SELinux later.

To view the current SELinux mode, use the sestatus command mentioned previously or the
getenforce utility.

$> getenforce
Enforcing

To change the SELinux mode, use the setenforce utility:

$> setenforce 0
$> getenforce
Permissive

$> setenforce 1
$> getenforce
Enforcing

Changes made with setenforce are lost when you restart the system. To permanently change the
SELinux mode, edit the /etc/selinux/config file and restart the system.

6.6.3 MySQL Server SELinux Policies

MySQL Server SELinux policy modules are typically installed by default. You can view installed modules
using the semodule -l command. MySQL Server SELinux policy modules include:

• mysqld_selinux

• mysqld_safe_selinux

For information about MySQL Server SELinux policy modules, refer to the SELinux manual pages. The
manual pages provide information about types and Booleans associated with the MySQL service. Manual
pages are named in the service-name_selinux format.

man mysqld_selinux

If SELinux manual pages are not available, refer to your distribution's SELinux documentation for
information about how to generate manual pages using the sepolicy manpage utility.

6.6.4 SELinux File Context

The MySQL Server reads from and writes to many files. If the SELinux context is not set correctly for these
files, access to the files could be denied.

The instructions that follow use the semanage binary to manage file context; on RHEL, it's part of the
policycoreutils-python-utils package:

yum install -y policycoreutils-python-utils

After installing the semanage binary, you can list MySQL file contexts using semanage with the fcontext
option.

semanage fcontext -l | grep -i mysql

1020

SELinux File Context

Setting the MySQL Data Directory Context

The default data directory location is /var/lib/mysql/; and the SELinux context used is mysqld_db_t.

If you edit the configuration file to use a different location for the data directory, or for any of the files
normally in the data directory (such as the binary logs), you may need to set the context for the new
location. For example:

semanage fcontext -a -t mysqld_db_t "/path/to/my/custom/datadir(/.*)?"
restorecon -Rv /path/to/my/custom/datadir

semanage fcontext -a -t mysqld_db_t "/path/to/my/custom/logdir(/.*)?"
restorecon -Rv /path/to/my/custom/logdir

Setting the MySQL Error Log File Context

The default location for RedHat RPMs is /var/log/mysqld.log; and the SELinux context type used is
mysqld_log_t.

If you edit the configuration file to use a different location, you may need to set the context for the new
location. For example:

semanage fcontext -a -t mysqld_log_t "/path/to/my/custom/error.log"
restorecon -Rv /path/to/my/custom/error.log

Setting the PID File Context

The default location for the PID file is /var/run/mysqld/mysqld.pid; and the SELinux context type
used is mysqld_var_run_t.

If you edit the configuration file to use a different location, you may need to set the context for the new
location. For example:

semanage fcontext -a -t mysqld_var_run_t "/path/to/my/custom/pidfile/directory/.*?"
restorecon -Rv /path/to/my/custom/pidfile/directory

Setting the Unix Domain Socket Context

The default location for the Unix domain socket is /var/lib/mysql/mysql.sock; and the SELinux
context type used is mysqld_var_run_t.

If you edit the configuration file to use a different location, you may need to set the context for the new
location. For example:

semanage fcontext -a -t mysqld_var_run_t "/path/to/my/custom/mysql\.sock"
restorecon -Rv /path/to/my/custom/mysql.sock

Setting the secure_file_priv Directory Context

For MySQL versions since 5.6.34, 5.7.16, and 8.0.11.

Installing the MySQL Server RPM creates a /var/lib/mysql-files/ directory but does not set the
SELinux context for it. The /var/lib/mysql-files/ directory is intended to be used for operations
such as SELECT ... INTO OUTFILE.

If you enabled the use of this directory by setting secure_file_priv, you may need to set the context
like so:

semanage fcontext -a -t mysqld_db_t "/var/lib/mysql-files/(/.*)?"
restorecon -Rv /var/lib/mysql-files

1021

SELinux TCP Port Context

Edit this path if you used a different location. For security purposes, this directory should never be within
the data directory.

For more information about this variable, see the secure_file_priv documentation.

6.6.5 SELinux TCP Port Context

The instructions that follow use the semanage binary to manage port context; on RHEL, it's part of the
policycoreutils-python-utils package:

yum install -y policycoreutils-python-utils

After installing the semanage binary, you can list ports defined with the mysqld_port_t context using
semanage with the port option.

$> semanage port -l | grep mysqld
mysqld_port_t tcp 1186, 3306, 63132-63164

6.6.5.1 Setting the TCP Port Context for mysqld

The default TCP port for mysqld is 3306; and the SELinux context type used is mysqld_port_t.

If you configure mysqld to use a different TCP port, you may need to set the context for the new port.
For example to define the SELinux context for a non-default port such as port 3307:

semanage port -a -t mysqld_port_t -p tcp 3307

To confirm that the port is added:

$> semanage port -l | grep mysqld
mysqld_port_t tcp 3307, 1186, 3306, 63132-63164

6.6.5.2 Setting the TCP Port Context for MySQL Features

If you enable certain MySQL features, you may need to set the SELinux TCP port context for additional
ports used by those features. If ports used by MySQL features do not have the correct SELinux context,
the features may not function correctly.

Generally, the following method can be used to set the port context for other MySQL features:

1. View the ports currently enabled for MySQL:

semanage port -l | grep mysqld

2. If the port used by the MySQL feature is not listed, enable the required port using the following
command:

semanage port -a -t mysqld_port_t -p tcp port_number

where port_number is the port number you want to enable.

For information about ports used by MySQL features, refer to the MySQL Port Reference.

6.6.6 Troubleshooting SELinux

Troubleshooting SELinux typically involves placing SELinux into permissive mode, rerunning problematic
operations, checking for access denial messages in the SELinux audit log, and placing SELinux back into
enforcing mode after problems are resolved.

1022

https://dev.mysql.com/doc/mysql-port-reference/en/

Troubleshooting SELinux

To avoid placing the entire system into permissive mode using setenforce, you can permit only the
MySQL service to run permissively by placing its SELinux domain (mysqld_t) into permissive mode using
the semanage command:

semanage permissive -a mysqld_t

When you are finished troubleshooting, use this command to place the mysqld_t domain back into
enforcing mode:

semanage permissive -d mysqld_t

SELinux writes logs for denied operations to /var/log/audit/audit.log. You can check for denials
by searching for “denied” messages.

grep "denied" /var/log/audit/audit.log

The following sections describes a few common areas where SELinux-related issues may be encountered.

File Contexts

If a MySQL directory or file has an incorrect SELinux context, access may be denied. This issue can occur
if MySQL is configured to read from or write to a non-default directory or file. For example, if you configure
MySQL to use a non-default data directory, the directory may not have the expected SELinux context.

Attempting to start the MySQL service on a non-default data directory with an invalid SELinux context
causes the following startup failure.

$> systemctl start mysql.service
Job for mysqld.service failed because the control process exited with error code.
See "systemctl status mysqld.service" and "journalctl -xe" for details.

In this case, a “denial” message is logged to /var/log/audit/audit.log:

$> grep "denied" /var/log/audit/audit.log
type=AVC msg=audit(1587133719.786:194): avc: denied { write } for pid=7133 comm="mysqld"
name="mysql" dev="dm-0" ino=51347078 scontext=system_u:system_r:mysqld_t:s0
tcontext=unconfined_u:object_r:default_t:s0 tclass=dir permissive=0

For information about setting the proper SELinux context for MySQL directories and files, see
Section 6.6.4, “SELinux File Context”.

Port Access

SELinux expects services such as MySQL Server to use specific ports. Changing ports without updating
the SELinux policies may cause a service failure.

The mysqld_port_t port type defines the ports that the MySQL listens on. If you configure the MySQL
Server to use a non-default port, such as port 3307, and do not update the policy to reflect the change, the
MySQL service fails to start:

$> systemctl start mysqld.service
Job for mysqld.service failed because the control process exited with error code.
See "systemctl status mysqld.service" and "journalctl -xe" for details.

In this case, a denial message is logged to /var/log/audit/audit.log:

$> grep "denied" /var/log/audit/audit.log
type=AVC msg=audit(1587134375.845:198): avc: denied { name_bind } for pid=7340
comm="mysqld" src=3307 scontext=system_u:system_r:mysqld_t:s0
tcontext=system_u:object_r:unreserved_port_t:s0 tclass=tcp_socket permissive=0

1023

Troubleshooting SELinux

For information about setting the proper SELinux port context for MySQL, see Section 6.6.5, “SELinux TCP
Port Context”. Similar port access issues can occur when enabling MySQL features that use ports that are
not defined with the required context. For more information, see Section 6.6.5.2, “Setting the TCP Port
Context for MySQL Features”.

Application Changes

SELinux may not be aware of application changes. For example, a new release, an application extension,
or a new feature may access system resources in a way that is not permitted by SELinux, resulting in
access denials. In such cases, you can use the audit2allow utility to create custom policies to permit
access where it is required. The typical method for creating custom policies is to change the SELinux mode
to permissive, identify access denial messages in the SELinux audit log, and use the audit2allow utility
to create custom policies to permit access.

For information about using the audit2allow utility, refer to your distribution's SELinux documentation.

If you encounter access issues for MySQL that you believe should be handled by standard MySQL
SELinux policy modules, please open a bug report in your distribution's bug tracking system.

1024

Chapter 7 Backup and Recovery

Table of Contents
7.1 Backup and Recovery Types ... 1026
7.2 Database Backup Methods .. 1029
7.3 Example Backup and Recovery Strategy ... 1031

7.3.1 Establishing a Backup Policy .. 1032
7.3.2 Using Backups for Recovery ... 1034
7.3.3 Backup Strategy Summary ... 1034

7.4 Using mysqldump for Backups .. 1035
7.4.1 Dumping Data in SQL Format with mysqldump .. 1035
7.4.2 Reloading SQL-Format Backups ... 1036
7.4.3 Dumping Data in Delimited-Text Format with mysqldump ... 1037
7.4.4 Reloading Delimited-Text Format Backups .. 1038
7.4.5 mysqldump Tips ... 1038

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log .. 1040
7.5.1 Point-in-Time Recovery Using Event Times ... 1042
7.5.2 Point-in-Time Recovery Using Event Positions ... 1042

7.6 MyISAM Table Maintenance and Crash Recovery .. 1043
7.6.1 Using myisamchk for Crash Recovery ... 1043
7.6.2 How to Check MyISAM Tables for Errors .. 1044
7.6.3 How to Repair MyISAM Tables ... 1045
7.6.4 MyISAM Table Optimization .. 1047
7.6.5 Setting Up a MyISAM Table Maintenance Schedule ... 1048

It is important to back up your databases so that you can recover your data and be up and running again
in case problems occur, such as system crashes, hardware failures, or users deleting data by mistake.
Backups are also essential as a safeguard before upgrading a MySQL installation, and they can be used to
transfer a MySQL installation to another system or to set up replica servers.

MySQL offers a variety of backup strategies from which you can choose the methods that best suit the
requirements for your installation. This chapter discusses several backup and recovery topics with which
you should be familiar:

• Types of backups: Logical versus physical, full versus incremental, and so forth.

• Methods for creating backups.

• Recovery methods, including point-in-time recovery.

• Backup scheduling, compression, and encryption.

• Table maintenance, to enable recovery of corrupt tables.

Additional Resources

Resources related to backup or to maintaining data availability include the following:

• Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product for backups.
For an overview of the MySQL Enterprise Backup product, see Section 24.2, “MySQL Enterprise Backup
Overview”.

1025

Backup and Recovery Types

• A forum dedicated to backup issues is available at https://forums.mysql.com/list.php?28.

• Details for mysqldump, mysqlhotcopy, and other MySQL backup programs can be found in Chapter 4,
MySQL Programs.

• The syntax of the SQL statements described here is given in Chapter 13, SQL Statements.

• For additional information about InnoDB backup procedures, see Section 14.18.1, “InnoDB Backup”.

• Replication enables you to maintain identical data on multiple servers. This has several benefits, such
as enabling client query load to be distributed over servers, availability of data even if a given server is
taken offline or fails, and the ability to make backups with no impact on the source by using a replica
server. See Chapter 17, Replication.

• NDB Cluster provides a high-availability, high-redundancy version of MySQL adapted for the distributed
computing environment. See Chapter 18, MySQL NDB Cluster 7.3 and NDB Cluster 7.4, which provides
information about MySQL NDB Cluster 7.4 (based on MySQL 5.6 but containing the latest improvements
and fixes for the NDB storage engine).

• Distributed Replicated Block Device (DRBD) is another high-availability solution. It works by replicating
a block device from a primary server to a secondary server at the block level. See Chapter 16, High
Availability and Scalability.

7.1 Backup and Recovery Types

This section describes the characteristics of different types of backups.

Physical (Raw) Versus Logical Backups

Physical backups consist of raw copies of the directories and files that store database contents. This type
of backup is suitable for large, important databases that need to be recovered quickly when problems
occur.

Logical backups save information represented as logical database structure (CREATE DATABASE, CREATE
TABLE statements) and content (INSERT statements or delimited-text files). This type of backup is suitable
for smaller amounts of data where you might edit the data values or table structure, or recreate the data on
a different machine architecture.

Physical backup methods have these characteristics:

• The backup consists of exact copies of database directories and files. Typically this is a copy of all or
part of the MySQL data directory.

• Physical backup methods are faster than logical because they involve only file copying without
conversion.

• Output is more compact than for logical backup.

• Because backup speed and compactness are important for busy, important databases, the MySQL
Enterprise Backup product performs physical backups. For an overview of the MySQL Enterprise
Backup product, see Section 24.2, “MySQL Enterprise Backup Overview”.

• Backup and restore granularity ranges from the level of the entire data directory down to the level of
individual files. This may or may not provide for table-level granularity, depending on storage engine. For
example, InnoDB tables can each be in a separate file, or share file storage with other InnoDB tables;
each MyISAM table corresponds uniquely to a set of files.

1026

https://forums.mysql.com/list.php?28

Online Versus Offline Backups

• In addition to databases, the backup can include any related files such as log or configuration files.

• Data from MEMORY tables is tricky to back up this way because their contents are not stored on disk.
(The MySQL Enterprise Backup product has a feature where you can retrieve data from MEMORY tables
during a backup.)

• Backups are portable only to other machines that have identical or similar hardware characteristics.

• Backups can be performed while the MySQL server is not running. If the server is running, it is
necessary to perform appropriate locking so that the server does not change database contents during
the backup. MySQL Enterprise Backup does this locking automatically for tables that require it.

• Physical backup tools include the mysqlbackup of MySQL Enterprise Backup for InnoDB or any other
tables, file system-level commands (such as cp, scp, tar, rsync), or mysqlhotcopy for MyISAM
tables.

• For restore:

• MySQL Enterprise Backup restores InnoDB and other tables that it backed up.

• ndb_restore restores NDB tables.

• Files copied at the file system level or with mysqlhotcopy can be copied back to their original
locations with file system commands.

Logical backup methods have these characteristics:

• The backup is done by querying the MySQL server to obtain database structure and content information.

• Backup is slower than physical methods because the server must access database information and
convert it to logical format. If the output is written on the client side, the server must also send it to the
backup program.

• Output is larger than for physical backup, particularly when saved in text format.

• Backup and restore granularity is available at the server level (all databases), database level (all tables
in a particular database), or table level. This is true regardless of storage engine.

• The backup does not include log or configuration files, or other database-related files that are not part of
databases.

• Backups stored in logical format are machine independent and highly portable.

• Logical backups are performed with the MySQL server running. The server is not taken offline.

• Logical backup tools include the mysqldump program and the SELECT ... INTO OUTFILE
statement. These work for any storage engine, even MEMORY.

• To restore logical backups, SQL-format dump files can be processed using the mysql client. To load
delimited-text files, use the LOAD DATA statement or the mysqlimport client.

Online Versus Offline Backups

Online backups take place while the MySQL server is running so that the database information can be
obtained from the server. Offline backups take place while the server is stopped. This distinction can also
be described as “hot” versus “cold” backups; a “warm” backup is one where the server remains running but
locked against modifying data while you access database files externally.

1027

Local Versus Remote Backups

Online backup methods have these characteristics:

• The backup is less intrusive to other clients, which can connect to the MySQL server during the backup
and may be able to access data depending on what operations they need to perform.

• Care must be taken to impose appropriate locking so that data modifications do not take place that
would compromise backup integrity. The MySQL Enterprise Backup product does such locking
automatically.

Offline backup methods have these characteristics:

• Clients can be affected adversely because the server is unavailable during backup. For that reason,
such backups are often taken from a replica server that can be taken offline without harming availability.

• The backup procedure is simpler because there is no possibility of interference from client activity.

A similar distinction between online and offline applies for recovery operations, and similar characteristics
apply. However, it is more likely that clients are affected for online recovery than for online backup because
recovery requires stronger locking. During backup, clients might be able to read data while it is being
backed up. Recovery modifies data and does not just read it, so clients must be prevented from accessing
data while it is being restored.

Local Versus Remote Backups

A local backup is performed on the same host where the MySQL server runs, whereas a remote backup
is done from a different host. For some types of backups, the backup can be initiated from a remote host
even if the output is written locally on the server. host.

• mysqldump can connect to local or remote servers. For SQL output (CREATE and INSERT statements),
local or remote dumps can be done and generate output on the client. For delimited-text output (with the
--tab option), data files are created on the server host.

• mysqlhotcopy performs only local backups: It connects to the server to lock it against data
modifications and then copies local table files.

• SELECT ... INTO OUTFILE can be initiated from a local or remote client host, but the output file is
created on the server host.

• Physical backup methods typically are initiated locally on the MySQL server host so that the server can
be taken offline, although the destination for copied files might be remote.

Snapshot Backups

Some file system implementations enable “snapshots” to be taken. These provide logical copies of the file
system at a given point in time, without requiring a physical copy of the entire file system. (For example,
the implementation may use copy-on-write techniques so that only parts of the file system modified after
the snapshot time need be copied.) MySQL itself does not provide the capability for taking file system
snapshots. It is available through third-party solutions such as Veritas, LVM, or ZFS.

Full Versus Incremental Backups

A full backup includes all data managed by a MySQL server at a given point in time. An incremental
backup consists of the changes made to the data during a given time span (from one point in time to
another). MySQL has different ways to perform full backups, such as those described earlier in this section.
Incremental backups are made possible by enabling the server's binary log, which the server uses to
record data changes.

1028

Full Versus Point-in-Time (Incremental) Recovery

Full Versus Point-in-Time (Incremental) Recovery

A full recovery restores all data from a full backup. This restores the server instance to the state that it
had when the backup was made. If that state is not sufficiently current, a full recovery can be followed by
recovery of incremental backups made since the full backup, to bring the server to a more up-to-date state.

Incremental recovery is recovery of changes made during a given time span. This is also called point-in-
time recovery because it makes a server's state current up to a given time. Point-in-time recovery is based
on the binary log and typically follows a full recovery from the backup files that restores the server to its
state when the backup was made. Then the data changes written in the binary log files are applied as
incremental recovery to redo data modifications and bring the server up to the desired point in time.

Table Maintenance

Data integrity can be compromised if tables become corrupt. For InnoDB tables, this is not a typical issue.
For programs to check MyISAM tables and repair them if problems are found, see Section 7.6, “MyISAM
Table Maintenance and Crash Recovery”.

Backup Scheduling, Compression, and Encryption

Backup scheduling is valuable for automating backup procedures. Compression of backup output reduces
space requirements, and encryption of the output provides better security against unauthorized access of
backed-up data. MySQL itself does not provide these capabilities. The MySQL Enterprise Backup product
can compress InnoDB backups, and compression or encryption of backup output can be achieved using
file system utilities. Other third-party solutions may be available.

7.2 Database Backup Methods
This section summarizes some general methods for making backups.

Making a Hot Backup with MySQL Enterprise Backup

Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product to do physical
backups of entire instances or selected databases, tables, or both. This product includes features for
incremental and compressed backups. Backing up the physical database files makes restore much faster
than logical techniques such as the mysqldump command. InnoDB tables are copied using a hot backup
mechanism. (Ideally, the InnoDB tables should represent a substantial majority of the data.) Tables
from other storage engines are copied using a warm backup mechanism. For an overview of the MySQL
Enterprise Backup product, see Section 24.2, “MySQL Enterprise Backup Overview”.

Making Backups with mysqldump or mysqlhotcopy

The mysqldump program and the mysqlhotcopy script can make backups. mysqldump is more general
because it can back up all kinds of tables. mysqlhotcopy works only with some storage engines. (See
Section 7.4, “Using mysqldump for Backups”, and Section 4.6.10, “mysqlhotcopy — A Database Backup
Program”.)

For InnoDB tables, it is possible to perform an online backup that takes no locks on tables using the --
single-transaction option to mysqldump. See Section 7.3.1, “Establishing a Backup Policy”.

Making Backups by Copying Table Files

For storage engines that represent each table using its own files, tables can be backed up by copying
those files. For example, MyISAM tables are stored as files, so it is easy to do a backup by copying files

1029

Making Delimited-Text File Backups

(*.frm, *.MYD, and *.MYI files). To get a consistent backup, stop the server or lock and flush the
relevant tables:

FLUSH TABLES tbl_list WITH READ LOCK;

You need only a read lock; this enables other clients to continue to query the tables while you are making a
copy of the files in the database directory. The flush is needed to ensure that the all active index pages are
written to disk before you start the backup. See Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Statements”, and Section 13.7.6.3, “FLUSH Statement”.

You can also create a binary backup simply by copying all table files, as long as the server isn't updating
anything. The mysqlhotcopy script uses this method. (But note that table file copying methods do not
work if your database contains InnoDB tables. mysqlhotcopy does not work for InnoDB tables because
InnoDB does not necessarily store table contents in database directories. Also, even if the server is not
actively updating data, InnoDB may still have modified data cached in memory and not flushed to disk.)

Making Delimited-Text File Backups

To create a text file containing a table's data, you can use SELECT * INTO OUTFILE 'file_name'
FROM tbl_name. The file is created on the MySQL server host, not the client host. For this statement,
the output file cannot already exist because permitting files to be overwritten constitutes a security risk.
See Section 13.2.9, “SELECT Statement”. This method works for any kind of data file, but saves only table
data, not the table structure.

Another way to create text data files (along with files containing CREATE TABLE statements for the backed
up tables) is to use mysqldump with the --tab option. See Section 7.4.3, “Dumping Data in Delimited-
Text Format with mysqldump”.

To reload a delimited-text data file, use LOAD DATA or mysqlimport.

Making Incremental Backups by Enabling the Binary Log

MySQL supports incremental backups: You must start the server with the --log-bin option to enable
binary logging; see Section 5.4.4, “The Binary Log”. The binary log files provide you with the information
you need to replicate changes to the database that are made subsequent to the point at which you
performed a backup. At the moment you want to make an incremental backup (containing all changes
that happened since the last full or incremental backup), you should rotate the binary log by using FLUSH
LOGS. This done, you need to copy to the backup location all binary logs which range from the one of the
moment of the last full or incremental backup to the last but one. These binary logs are the incremental
backup; at restore time, you apply them as explained in Section 7.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”. The next time you do a full backup, you should also rotate the binary log using
FLUSH LOGS, mysqldump --flush-logs, or mysqlhotcopy --flushlog. See Section 4.5.4,
“mysqldump — A Database Backup Program”, and Section 4.6.10, “mysqlhotcopy — A Database Backup
Program”.

Making Backups Using Replicas

If you have performance problems with your source server while making backups, one strategy that
can help is to set up replication and perform backups on the replica rather than on the source. See
Section 17.3.1, “Using Replication for Backups”.

If you are backing up a replica server, you should back up its source info and relay log info repositories
(see Section 17.2.2, “Relay Log and Replication Metadata Repositories”) when you back up the replica's
databases, regardless of the backup method you choose. These information files are always needed to
resume replication after you restore the replica's data. If your replica is replicating LOAD DATA statements,

1030

Recovering Corrupt Tables

you should also back up any SQL_LOAD-* files that exist in the directory that the replica uses for this
purpose. The replica needs these files to resume replication of any interrupted LOAD DATA operations.
The location of this directory is the value of the slave_load_tmpdir system variable. If the server was
not started with that variable set, the directory location is the value of the tmpdir system variable.

Recovering Corrupt Tables

If you have to restore MyISAM tables that have become corrupt, try to recover them using REPAIR TABLE
or myisamchk -r first. That should work in 99.9% of all cases. If myisamchk fails, see Section 7.6,
“MyISAM Table Maintenance and Crash Recovery”.

Making Backups Using a File System Snapshot

If you are using a Veritas file system, you can make a backup like this:

1. From a client program, execute FLUSH TABLES WITH READ LOCK.

2. From another shell, execute mount vxfs snapshot.

3. From the first client, execute UNLOCK TABLES.

4. Copy files from the snapshot.

5. Unmount the snapshot.

Similar snapshot capabilities may be available in other file systems, such as LVM or ZFS.

7.3 Example Backup and Recovery Strategy
This section discusses a procedure for performing backups that enables you to recover data after several
types of crashes:

• Operating system crash

• Power failure

• File system crash

• Hardware problem (hard drive, motherboard, and so forth)

The example commands do not include options such as --user and --password for the mysqldump
and mysql client programs. You should include such options as necessary to enable client programs to
connect to the MySQL server.

Assume that data is stored in the InnoDB storage engine, which has support for transactions and
automatic crash recovery. Assume also that the MySQL server is under load at the time of the crash. If it
were not, no recovery would ever be needed.

For cases of operating system crashes or power failures, we can assume that MySQL's disk data is
available after a restart. The InnoDB data files might not contain consistent data due to the crash, but
InnoDB reads its logs and finds in them the list of pending committed and noncommitted transactions that
have not been flushed to the data files. InnoDB automatically rolls back those transactions that were not
committed, and flushes to its data files those that were committed. Information about this recovery process
is conveyed to the user through the MySQL error log. The following is an example log excerpt:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...

1031

Establishing a Backup Policy

InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

For the cases of file system crashes or hardware problems, we can assume that the MySQL disk data is
not available after a restart. This means that MySQL fails to start successfully because some blocks of
disk data are no longer readable. In this case, it is necessary to reformat the disk, install a new one, or
otherwise correct the underlying problem. Then it is necessary to recover our MySQL data from backups,
which means that backups must already have been made. To make sure that is the case, design and
implement a backup policy.

7.3.1 Establishing a Backup Policy

To be useful, backups must be scheduled regularly. A full backup (a snapshot of the data at a point in time)
can be done in MySQL with several tools. For example, MySQL Enterprise Backup can perform a physical
backup of an entire instance, with optimizations to minimize overhead and avoid disruption when backing
up InnoDB data files; mysqldump provides online logical backup. This discussion uses mysqldump.

Assume that we make a full backup of all our InnoDB tables in all databases using the following command
on Sunday at 1 p.m., when load is low:

$> mysqldump --all-databases --master-data --single-transaction > backup_sunday_1_PM.sql

The resulting .sql file produced by mysqldump contains a set of SQL INSERT statements that can be
used to reload the dumped tables at a later time.

This backup operation acquires a global read lock on all tables at the beginning of the dump (using FLUSH
TABLES WITH READ LOCK). As soon as this lock has been acquired, the binary log coordinates are read
and the lock is released. If long updating statements are running when the FLUSH statement is issued, the
backup operation may stall until those statements finish. After that, the dump becomes lock-free and does
not disturb reads and writes on the tables.

It was assumed earlier that the tables to back up are InnoDB tables, so --single-transaction uses
a consistent read and guarantees that data seen by mysqldump does not change. (Changes made by
other clients to InnoDB tables are not seen by the mysqldump process.) If the backup operation includes
nontransactional tables, consistency requires that they do not change during the backup. For example, for
the MyISAM tables in the mysql database, there must be no administrative changes to MySQL accounts
during the backup.

Full backups are necessary, but it is not always convenient to create them. They produce large backup
files and take time to generate. They are not optimal in the sense that each successive full backup includes
all data, even that part that has not changed since the previous full backup. It is more efficient to make an
initial full backup, and then to make incremental backups. The incremental backups are smaller and take

1032

Establishing a Backup Policy

less time to produce. The tradeoff is that, at recovery time, you cannot restore your data just by reloading
the full backup. You must also process the incremental backups to recover the incremental changes.

To make incremental backups, we need to save the incremental changes. In MySQL, these changes
are represented in the binary log, so the MySQL server should always be started with the --log-bin
option to enable that log. With binary logging enabled, the server writes each data change into a file while it
updates data. Looking at the data directory of a MySQL server that was started with the --log-bin option
and that has been running for some days, we find these MySQL binary log files:

-rw-rw---- 1 guilhem guilhem 1277324 Nov 10 23:59 gbichot2-bin.000001
-rw-rw---- 1 guilhem guilhem 4 Nov 10 23:59 gbichot2-bin.000002
-rw-rw---- 1 guilhem guilhem 79 Nov 11 11:06 gbichot2-bin.000003
-rw-rw---- 1 guilhem guilhem 508 Nov 11 11:08 gbichot2-bin.000004
-rw-rw---- 1 guilhem guilhem 220047446 Nov 12 16:47 gbichot2-bin.000005
-rw-rw---- 1 guilhem guilhem 998412 Nov 14 10:08 gbichot2-bin.000006
-rw-rw---- 1 guilhem guilhem 361 Nov 14 10:07 gbichot2-bin.index

Each time it restarts, the MySQL server creates a new binary log file using the next number in the
sequence. While the server is running, you can also tell it to close the current binary log file and begin
a new one manually by issuing a FLUSH LOGS SQL statement or with a mysqladmin flush-logs
command. mysqldump also has an option to flush the logs. The .index file in the data directory contains
the list of all MySQL binary logs in the directory.

The MySQL binary logs are important for recovery because they form the set of incremental backups. If
you make sure to flush the logs when you make your full backup, the binary log files created afterward
contain all the data changes made since the backup. Let's modify the previous mysqldump command a
bit so that it flushes the MySQL binary logs at the moment of the full backup, and so that the dump file
contains the name of the new current binary log:

$> mysqldump --single-transaction --flush-logs --master-data=2 \
 --all-databases > backup_sunday_1_PM.sql

After executing this command, the data directory contains a new binary log file, gbichot2-bin.000007,
because the --flush-logs option causes the server to flush its logs. The --master-data option
causes mysqldump to write binary log information to its output, so the resulting .sql dump file includes
these lines:

-- Position to start replication or point-in-time recovery from
-- CHANGE MASTER TO MASTER_LOG_FILE='gbichot2-bin.000007',MASTER_LOG_POS=4;

Because the mysqldump command made a full backup, those lines mean two things:

• The dump file contains all changes made before any changes written to the gbichot2-bin.000007
binary log file or higher.

• All data changes logged after the backup are not present in the dump file, but are present in the
gbichot2-bin.000007 binary log file or higher.

On Monday at 1 p.m., we can create an incremental backup by flushing the logs to begin a new binary log
file. For example, executing a mysqladmin flush-logs command creates gbichot2-bin.000008.
All changes between the Sunday 1 p.m. full backup and Monday 1 p.m. are in the gbichot2-
bin.000007 file. This incremental backup is important, so it is a good idea to copy it to a safe place.
(For example, back it up on tape or DVD, or copy it to another machine.) On Tuesday at 1 p.m., execute
another mysqladmin flush-logs command. All changes between Monday 1 p.m. and Tuesday 1 p.m.
are in the gbichot2-bin.000008 file (which also should be copied somewhere safe).

The MySQL binary logs take up disk space. To free up space, purge them from time to time. One way to
do this is by deleting the binary logs that are no longer needed, such as when we make a full backup:

1033

Using Backups for Recovery

$> mysqldump --single-transaction --flush-logs --master-data=2 \
 --all-databases --delete-master-logs > backup_sunday_1_PM.sql

Note

Deleting the MySQL binary logs with mysqldump --delete-master-logs can
be dangerous if your server is a replication source server, because replica servers
might not yet fully have processed the contents of the binary log. The description
for the PURGE BINARY LOGS statement explains what should be verified before
deleting the MySQL binary logs. See Section 13.4.1.1, “PURGE BINARY LOGS
Statement”.

7.3.2 Using Backups for Recovery

Now, suppose that we have a catastrophic unexpected exit on Wednesday at 8 a.m. that requires recovery
from backups. To recover, first we restore the last full backup we have (the one from Sunday 1 p.m.). The
full backup file is just a set of SQL statements, so restoring it is very easy:

$> mysql < backup_sunday_1_PM.sql

At this point, the data is restored to its state as of Sunday 1 p.m.. To restore the changes made since then,
we must use the incremental backups; that is, the gbichot2-bin.000007 and gbichot2-bin.000008
binary log files. Fetch the files if necessary from where they were backed up, and then process their
contents like this:

$> mysqlbinlog gbichot2-bin.000007 gbichot2-bin.000008 | mysql

We now have recovered the data to its state as of Tuesday 1 p.m., but still are missing the changes from
that date to the date of the crash. To not lose them, we would have needed to have the MySQL server
store its MySQL binary logs into a safe location (RAID disks, SAN, ...) different from the place where it
stores its data files, so that these logs were not on the destroyed disk. (That is, we can start the server with
a --log-bin option that specifies a location on a different physical device from the one on which the data
directory resides. That way, the logs are safe even if the device containing the directory is lost.) If we had
done this, we would have the gbichot2-bin.000009 file (and any subsequent files) at hand, and we
could apply them using mysqlbinlog and mysql to restore the most recent data changes with no loss up
to the moment of the crash:

$> mysqlbinlog gbichot2-bin.000009 ... | mysql

For more information about using mysqlbinlog to process binary log files, see Section 7.5, “Point-in-
Time (Incremental) Recovery Using the Binary Log”.

7.3.3 Backup Strategy Summary

In case of an operating system crash or power failure, InnoDB itself does all the job of recovering data. But
to make sure that you can sleep well, observe the following guidelines:

• Always run the MySQL server with the --log-bin option, or even --log-bin=log_name, where
the log file name is located on some safe media different from the drive on which the data directory is
located. If you have such safe media, this technique can also be good for disk load balancing (which
results in a performance improvement).

• Make periodic full backups, using the mysqldump command shown earlier in Section 7.3.1,
“Establishing a Backup Policy”, that makes an online, nonblocking backup.

• Make periodic incremental backups by flushing the logs with FLUSH LOGS or mysqladmin flush-
logs.

1034

Using mysqldump for Backups

7.4 Using mysqldump for Backups
This section describes how to use mysqldump to produce dump files, and how to reload dump files. A
dump file can be used in several ways:

• As a backup to enable data recovery in case of data loss.

• As a source of data for setting up replicas.

• As a source of data for experimentation:

• To make a copy of a database that you can use without changing the original data.

• To test potential upgrade incompatibilities.

mysqldump produces two types of output, depending on whether the --tab option is given:

• Without --tab, mysqldump writes SQL statements to the standard output. This output consists of
CREATE statements to create dumped objects (databases, tables, stored routines, and so forth), and
INSERT statements to load data into tables. The output can be saved in a file and reloaded later
using mysql to recreate the dumped objects. Options are available to modify the format of the SQL
statements, and to control which objects are dumped.

• With --tab, mysqldump produces two output files for each dumped table. The server writes one file
as tab-delimited text, one line per table row. This file is named tbl_name.txt in the output directory.
The server also sends a CREATE TABLE statement for the table to mysqldump, which writes it as a file
named tbl_name.sql in the output directory.

7.4.1 Dumping Data in SQL Format with mysqldump

This section describes how to use mysqldump to create SQL-format dump files. For information about
reloading such dump files, see Section 7.4.2, “Reloading SQL-Format Backups”.

By default, mysqldump writes information as SQL statements to the standard output. You can save the
output in a file:

$> mysqldump [arguments] > file_name

To dump all databases, invoke mysqldump with the --all-databases option:

$> mysqldump --all-databases > dump.sql

To dump only specific databases, name them on the command line and use the --databases option:

$> mysqldump --databases db1 db2 db3 > dump.sql

The --databases option causes all names on the command line to be treated as database names.
Without this option, mysqldump treats the first name as a database name and those following as table
names.

With --all-databases or --databases, mysqldump writes CREATE DATABASE and USE statements
prior to the dump output for each database. This ensures that when the dump file is reloaded, it creates
each database if it does not exist and makes it the default database so database contents are loaded
into the same database from which they came. If you want to cause the dump file to force a drop of each
database before recreating it, use the --add-drop-database option as well. In this case, mysqldump
writes a DROP DATABASE statement preceding each CREATE DATABASE statement.

To dump a single database, name it on the command line:

1035

Reloading SQL-Format Backups

$> mysqldump --databases test > dump.sql

In the single-database case, it is permissible to omit the --databases option:

$> mysqldump test > dump.sql

The difference between the two preceding commands is that without --databases, the dump output
contains no CREATE DATABASE or USE statements. This has several implications:

• When you reload the dump file, you must specify a default database name so that the server knows
which database to reload.

• For reloading, you can specify a database name different from the original name, which enables you to
reload the data into a different database.

• If the database to be reloaded does not exist, you must create it first.

• Because the output contains no CREATE DATABASE statement, the --add-drop-database option
has no effect. If you use it, it produces no DROP DATABASE statement.

To dump only specific tables from a database, name them on the command line following the database
name:

$> mysqldump test t1 t3 t7 > dump.sql

7.4.2 Reloading SQL-Format Backups

To reload a dump file written by mysqldump that consists of SQL statements, use it as input to the mysql
client. If the dump file was created by mysqldump with the --all-databases or --databases option, it
contains CREATE DATABASE and USE statements and it is not necessary to specify a default database into
which to load the data:

$> mysql < dump.sql

Alternatively, from within mysql, use a source command:

mysql> source dump.sql

If the file is a single-database dump not containing CREATE DATABASE and USE statements, create the
database first (if necessary):

$> mysqladmin create db1

Then specify the database name when you load the dump file:

$> mysql db1 < dump.sql

Alternatively, from within mysql, create the database, select it as the default database, and load the dump
file:

mysql> CREATE DATABASE IF NOT EXISTS db1;
mysql> USE db1;
mysql> source dump.sql

Note

For Windows PowerShell users: Because the "<" character is reserved for future
use in PowerShell, an alternative approach is required, such as using quotes
cmd.exe /c "mysql < dump.sql".

1036

Dumping Data in Delimited-Text Format with mysqldump

7.4.3 Dumping Data in Delimited-Text Format with mysqldump

This section describes how to use mysqldump to create delimited-text dump files. For information about
reloading such dump files, see Section 7.4.4, “Reloading Delimited-Text Format Backups”.

If you invoke mysqldump with the --tab=dir_name option, it uses dir_name as the output directory and
dumps tables individually in that directory using two files for each table. The table name is the base name
for these files. For a table named t1, the files are named t1.sql and t1.txt. The .sql file contains a
CREATE TABLE statement for the table. The .txt file contains the table data, one line per table row.

The following command dumps the contents of the db1 database to files in the /tmp database:

$> mysqldump --tab=/tmp db1

The .txt files containing table data are written by the server, so they are owned by the system account
used for running the server. The server uses SELECT ... INTO OUTFILE to write the files, so you must
have the FILE privilege to perform this operation, and an error occurs if a given .txt file already exists.

The server sends the CREATE definitions for dumped tables to mysqldump, which writes them to .sql
files. These files therefore are owned by the user who executes mysqldump.

It is best that --tab be used only for dumping a local server. If you use it with a remote server, the --
tab directory must exist on both the local and remote hosts, and the .txt files is written by the server in
the remote directory (on the server host), whereas the .sql files are written by mysqldump in the local
directory (on the client host).

For mysqldump --tab, the server by default writes table data to .txt files one line per row with tabs
between column values, no quotation marks around column values, and newline as the line terminator.
(These are the same defaults as for SELECT ... INTO OUTFILE.)

To enable data files to be written using a different format, mysqldump supports these options:

• --fields-terminated-by=str

The string for separating column values (default: tab).

• --fields-enclosed-by=char

The character within which to enclose column values (default: no character).

• --fields-optionally-enclosed-by=char

The character within which to enclose non-numeric column values (default: no character).

• --fields-escaped-by=char

The character for escaping special characters (default: no escaping).

• --lines-terminated-by=str

The line-termination string (default: newline).

Depending on the value you specify for any of these options, it might be necessary on the command line
to quote or escape the value appropriately for your command interpreter. Alternatively, specify the value
using hex notation. Suppose that you want mysqldump to quote column values within double quotation
marks. To do so, specify double quote as the value for the --fields-enclosed-by option. But this
character is often special to command interpreters and must be treated specially. For example, on Unix,
you can quote the double quote like this:

1037

Reloading Delimited-Text Format Backups

--fields-enclosed-by='"'

On any platform, you can specify the value in hex:

--fields-enclosed-by=0x22

It is common to use several of the data-formatting options together. For example, to dump tables in
comma-separated values format with lines terminated by carriage-return/newline pairs (\r\n), use this
command (enter it on a single line):

$> mysqldump --tab=/tmp --fields-terminated-by=,
 --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1

Should you use any of the data-formatting options to dump table data, you must specify the same format
when you reload data files later, to ensure proper interpretation of the file contents.

7.4.4 Reloading Delimited-Text Format Backups

For backups produced with mysqldump --tab, each table is represented in the output directory by an
.sql file containing the CREATE TABLE statement for the table, and a .txt file containing the table data.
To reload a table, first change location into the output directory. Then process the .sql file with mysql to
create an empty table and process the .txt file to load the data into the table:

$> mysql db1 < t1.sql
$> mysqlimport db1 t1.txt

An alternative to using mysqlimport to load the data file is to use the LOAD DATA statement from within
the mysql client:

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1;

If you used any data-formatting options with mysqldump when you initially dumped the table, you must
use the same options with mysqlimport or LOAD DATA to ensure proper interpretation of the data file
contents:

$> mysqlimport --fields-terminated-by=,
 --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1 t1.txt

Or:

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1
 FIELDS TERMINATED BY ',' FIELDS ENCLOSED BY '"'
 LINES TERMINATED BY '\r\n';

7.4.5 mysqldump Tips

This section surveys techniques that enable you to use mysqldump to solve specific problems:

• How to make a copy a database

• How to copy a database from one server to another

• How to dump stored programs (stored procedures and functions, triggers, and events)

• How to dump definitions and data separately

7.4.5.1 Making a Copy of a Database

$> mysqldump db1 > dump.sql

1038

mysqldump Tips

$> mysqladmin create db2
$> mysql db2 < dump.sql

Do not use --databases on the mysqldump command line because that causes USE db1 to be included
in the dump file, which overrides the effect of naming db2 on the mysql command line.

7.4.5.2 Copy a Database from one Server to Another

On Server 1:

$> mysqldump --databases db1 > dump.sql

Copy the dump file from Server 1 to Server 2.

On Server 2:

$> mysql < dump.sql

Use of --databases with the mysqldump command line causes the dump file to include CREATE
DATABASE and USE statements that create the database if it does exist and make it the default database
for the reloaded data.

Alternatively, you can omit --databases from the mysqldump command. Then you must create the
database on Server 2 (if necessary) and specify it as the default database when you reload the dump file.

On Server 1:

$> mysqldump db1 > dump.sql

On Server 2:

$> mysqladmin create db1
$> mysql db1 < dump.sql

You can specify a different database name in this case, so omitting --databases from the mysqldump
command enables you to dump data from one database and load it into another.

7.4.5.3 Dumping Stored Programs

Several options control how mysqldump handles stored programs (stored procedures and functions,
triggers, and events):

• --events: Dump Event Scheduler events

• --routines: Dump stored procedures and functions

• --triggers: Dump triggers for tables

The --triggers option is enabled by default so that when tables are dumped, they are accompanied by
any triggers they have. The other options are disabled by default and must be specified explicitly to dump
the corresponding objects. To disable any of these options explicitly, use its skip form: --skip-events,
--skip-routines, or --skip-triggers.

7.4.5.4 Dumping Table Definitions and Content Separately

The --no-data option tells mysqldump not to dump table data, resulting in the dump file containing only
statements to create the tables. Conversely, the --no-create-info option tells mysqldump to suppress
CREATE statements from the output, so that the dump file contains only table data.

1039

Point-in-Time (Incremental) Recovery Using the Binary Log

For example, to dump table definitions and data separately for the test database, use these commands:

$> mysqldump --no-data test > dump-defs.sql
$> mysqldump --no-create-info test > dump-data.sql

For a definition-only dump, add the --routines and --events options to also include stored routine and
event definitions:

$> mysqldump --no-data --routines --events test > dump-defs.sql

7.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities

When contemplating a MySQL upgrade, it is prudent to install the newer version separately from your
current production version. Then you can dump the database and database object definitions from the
production server and load them into the new server to verify that they are handled properly. (This is also
useful for testing downgrades.)

On the production server:

$> mysqldump --all-databases --no-data --routines --events > dump-defs.sql

On the upgraded server:

$> mysql < dump-defs.sql

Because the dump file does not contain table data, it can be processed quickly. This enables you to spot
potential incompatibilities without waiting for lengthy data-loading operations. Look for warnings or errors
while the dump file is being processed.

After you have verified that the definitions are handled properly, dump the data and try to load it into the
upgraded server.

On the production server:

$> mysqldump --all-databases --no-create-info > dump-data.sql

On the upgraded server:

$> mysql < dump-data.sql

Now check the table contents and run some test queries.

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log

Point-in-time recovery refers to recovery of data changes made since a given point in time. Typically, this
type of recovery is performed after restoring a full backup that brings the server to its state as of the time
the backup was made. (The full backup can be made in several ways, such as those listed in Section 7.2,
“Database Backup Methods”.) Point-in-time recovery then brings the server up to date incrementally from
the time of the full backup to a more recent time.

Note

Many of the examples here use the mysql client to process binary log output
produced by mysqlbinlog. If your binary log contains \0 (null) characters, that
output cannot be parsed by mysql unless you invoke it with the --binary-mode
option.

Point-in-time recovery is based on these principles:

1040

Point-in-Time (Incremental) Recovery Using the Binary Log

• The source of information for point-in-time recovery is the set of incremental backups represented by the
binary log files generated subsequent to the full backup operation. Therefore, the server must be started
with the --log-bin option to enable binary logging (see Section 5.4.4, “The Binary Log”).

To restore data from the binary log, you must know the name and location of the current binary log files.
By default, the server creates binary log files in the data directory, but a path name can be specified with
the --log-bin option to place the files in a different location. Section 5.4.4, “The Binary Log”.

To see a listing of all binary log files, use this statement:

mysql> SHOW BINARY LOGS;

To determine the name of the current binary log file, issue the following statement:

mysql> SHOW MASTER STATUS;

• The mysqlbinlog utility converts the events in the binary log files from binary format to text so that they
can be executed or viewed. mysqlbinlog has options for selecting sections of the binary log based on
event times or position of events within the log. See Section 4.6.8, “mysqlbinlog — Utility for Processing
Binary Log Files”.

• Executing events from the binary log causes the data modifications they represent to be redone. This
enables recovery of data changes for a given span of time. To execute events from the binary log,
process mysqlbinlog output using the mysql client:

$> mysqlbinlog binlog_files | mysql -u root -p

• Viewing log contents can be useful when you need to determine event times or positions to select partial
log contents prior to executing events. To view events from the log, send mysqlbinlog output into a
paging program:

$> mysqlbinlog binlog_files | more

Alternatively, save the output in a file and view the file in a text editor:

$> mysqlbinlog binlog_files > tmpfile
$> ... edit tmpfile ...

• Saving the output in a file is useful as a preliminary to executing the log contents with certain events
removed, such as an accidental DROP DATABASE. You can delete from the file any statements not to be
executed before executing its contents. After editing the file, execute the contents as follows:

$> mysql -u root -p < tmpfile

If you have more than one binary log to execute on the MySQL server, the safe method is to process them
all using a single connection to the server. Here is an example that demonstrates what may be unsafe:

$> mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
$> mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

Processing binary logs this way using different connections to the server causes problems if the first log file
contains a CREATE TEMPORARY TABLE statement and the second log contains a statement that uses the
temporary table. When the first mysql process terminates, the server drops the temporary table. When the
second mysql process attempts to use the table, the server reports “unknown table.”

To avoid problems like this, use a single connection to execute the contents of all binary logs that you want
to process. Here is one way to do so:

$> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

1041

Point-in-Time Recovery Using Event Times

Another approach is to write all the logs to a single file and then process the file:

$> mysqlbinlog binlog.000001 > /tmp/statements.sql
$> mysqlbinlog binlog.000002 >> /tmp/statements.sql
$> mysql -u root -p -e "source /tmp/statements.sql"

When writing to a dump file while reading back from a binary log containing GTIDs (see Section 17.1.3,
“Replication with Global Transaction Identifiers”), use the --skip-gtids option with mysqlbinlog, like
this:

$> mysqlbinlog --skip-gtids binlog.000001 > /tmp/dump.sql
$> mysqlbinlog --skip-gtids binlog.000002 >> /tmp/dump.sql
$> mysql -u root -p -e "source /tmp/dump.sql"

7.5.1 Point-in-Time Recovery Using Event Times

To indicate the start and end times for recovery, specify the --start-datetime and --stop-datetime
options for mysqlbinlog, in DATETIME format. As an example, suppose that exactly at 10:00 a.m. on
April 20, 2005 an SQL statement was executed that deleted a large table. To restore the table and data,
you could restore the previous night's backup, and then execute the following command:

$> mysqlbinlog --stop-datetime="2005-04-20 9:59:59" \
 /var/log/mysql/bin.123456 | mysql -u root -p

This command recovers all of the data up until the date and time given by the --stop-datetime option.
If you did not detect the erroneous SQL statement that was entered until hours later, you probably also
want to recover the activity that occurred afterward. Based on this, you could run mysqlbinlog again with
a start date and time, like so:

$> mysqlbinlog --start-datetime="2005-04-20 10:01:00" \
 /var/log/mysql/bin.123456 | mysql -u root -p

In this command, the SQL statements logged from 10:01 a.m. on is re-executed. The combination of
restoring of the previous night's dump file and the two mysqlbinlog commands restores everything up
until one second before 10:00 a.m. and everything from 10:01 a.m. on.

To use this method of point-in-time recovery, you should examine the log to be sure of the exact times to
specify for the commands. To display the log file contents without executing them, use this command:

$> mysqlbinlog /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

Then open the /tmp/mysql_restore.sql file with a text editor to examine it.

Excluding specific changes by specifying times for mysqlbinlog does not work well if multiple statements
executed at the same time as the one to be excluded.

7.5.2 Point-in-Time Recovery Using Event Positions

Instead of specifying dates and times, the --start-position and --stop-position options for
mysqlbinlog can be used for specifying log positions. They work the same as the start and stop date
options, except that you specify log position numbers rather than dates. Using positions may enable you
to be more precise about which part of the log to recover, especially if many transactions occurred around
the same time as a damaging SQL statement. To determine the position numbers, run mysqlbinlog for a
range of times near the time when the unwanted transaction was executed, but redirect the results to a text
file for examination. This can be done like so:

$> mysqlbinlog --start-datetime="2005-04-20 9:55:00" \
 --stop-datetime="2005-04-20 10:05:00" \
 /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

1042

MyISAM Table Maintenance and Crash Recovery

This command creates a small text file in the /tmp directory that contains the SQL statements around
the time that the deleterious SQL statement was executed. Open this file with a text editor and look for
the statement that you do not want to repeat. Determine the positions in the binary log for stopping and
resuming the recovery and make note of them. Positions are labeled as log_pos followed by a number.
After restoring the previous backup file, use the position numbers to process the binary log file. For
example, you would use commands something like these:

$> mysqlbinlog --stop-position=368312 /var/log/mysql/bin.123456 \
 | mysql -u root -p

$> mysqlbinlog --start-position=368315 /var/log/mysql/bin.123456 \
 | mysql -u root -p

The first command recovers all the transactions up until the stop position given. The second command
recovers all transactions from the starting position given until the end of the binary log. Because the
output of mysqlbinlog includes SET TIMESTAMP statements before each SQL statement recorded, the
recovered data and related MySQL logs reflect the original times at which the transactions were executed.

7.6 MyISAM Table Maintenance and Crash Recovery

This section discusses how to use myisamchk to check or repair MyISAM tables (tables that have .MYD
and .MYI files for storing data and indexes). For general myisamchk background, see Section 4.6.3,
“myisamchk — MyISAM Table-Maintenance Utility”. Other table-repair information can be found at
Section 2.11.10, “Rebuilding or Repairing Tables or Indexes”.

You can use myisamchk to check, repair, or optimize database tables. The following sections describe
how to perform these operations and how to set up a table maintenance schedule. For information about
using myisamchk to get information about your tables, see Section 4.6.3.5, “Obtaining Table Information
with myisamchk”.

Even though table repair with myisamchk is quite secure, it is always a good idea to make a backup
before doing a repair or any maintenance operation that could make a lot of changes to a table.

myisamchk operations that affect indexes can cause MyISAM FULLTEXT indexes to be rebuilt with full-text
parameters that are incompatible with the values used by the MySQL server. To avoid this problem, follow
the guidelines in Section 4.6.3.1, “myisamchk General Options”.

MyISAM table maintenance can also be done using the SQL statements that perform operations similar to
what myisamchk can do:

• To check MyISAM tables, use CHECK TABLE.

• To repair MyISAM tables, use REPAIR TABLE.

• To optimize MyISAM tables, use OPTIMIZE TABLE.

• To analyze MyISAM tables, use ANALYZE TABLE.

For additional information about these statements, see Section 13.7.2, “Table Maintenance Statements”.

These statements can be used directly or by means of the mysqlcheck client program. One advantage
of these statements over myisamchk is that the server does all the work. With myisamchk, you must
make sure that the server does not use the tables at the same time so that there is no unwanted interaction
between myisamchk and the server.

7.6.1 Using myisamchk for Crash Recovery

1043

How to Check MyISAM Tables for Errors

This section describes how to check for and deal with data corruption in MySQL databases. If your tables
become corrupted frequently, you should try to find the reason why. See Section B.3.3.3, “What to Do If
MySQL Keeps Crashing”.

For an explanation of how MyISAM tables can become corrupted, see Section 15.2.4, “MyISAM Table
Problems”.

If you run mysqld with external locking disabled (which is the default), you cannot reliably use myisamchk
to check a table when mysqld is using the same table. If you can be certain that no one can access
the tables through mysqld while you run myisamchk, you only have to execute mysqladmin flush-
tables before you start checking the tables. If you cannot guarantee this, you must stop mysqld while
you check the tables. If you run myisamchk to check tables that mysqld is updating at the same time, you
may get a warning that a table is corrupt even when it is not.

If the server is run with external locking enabled, you can use myisamchk to check tables at any time. In
this case, if the server tries to update a table that myisamchk is using, the server waits for myisamchk to
finish before it continues.

If you use myisamchk to repair or optimize tables, you must always ensure that the mysqld server is not
using the table (this also applies if external locking is disabled). If you do not stop mysqld, you should at
least do a mysqladmin flush-tables before you run myisamchk. Your tables may become corrupted
if the server and myisamchk access the tables simultaneously.

When performing crash recovery, it is important to understand that each MyISAM table tbl_name in a
database corresponds to the three files in the database directory shown in the following table.

File Purpose

tbl_name.frm Definition (format) file

tbl_name.MYD Data file

tbl_name.MYI Index file

Each of these three file types is subject to corruption in various ways, but problems occur most often in
data files and index files.

myisamchk works by creating a copy of the .MYD data file row by row. It ends the repair stage by
removing the old .MYD file and renaming the new file to the original file name. If you use --quick,
myisamchk does not create a temporary .MYD file, but instead assumes that the .MYD file is correct
and generates only a new index file without touching the .MYD file. This is safe, because myisamchk
automatically detects whether the .MYD file is corrupt and aborts the repair if it is. You can also specify the
--quick option twice to myisamchk. In this case, myisamchk does not abort on some errors (such as
duplicate-key errors) but instead tries to resolve them by modifying the .MYD file. Normally the use of two
--quick options is useful only if you have too little free disk space to perform a normal repair. In this case,
you should at least make a backup of the table before running myisamchk.

7.6.2 How to Check MyISAM Tables for Errors

To check a MyISAM table, use the following commands:

• myisamchk tbl_name

This finds 99.99% of all errors. What it cannot find is corruption that involves only the data file (which is
very unusual). If you want to check a table, you should normally run myisamchk without options or with
the -s (silent) option.

• myisamchk -m tbl_name

1044

How to Repair MyISAM Tables

This finds 99.999% of all errors. It first checks all index entries for errors and then reads through all
rows. It calculates a checksum for all key values in the rows and verifies that the checksum matches the
checksum for the keys in the index tree.

• myisamchk -e tbl_name

This does a complete and thorough check of all data (-e means “extended check”). It does a check-read
of every key for each row to verify that they indeed point to the correct row. This may take a long time for
a large table that has many indexes. Normally, myisamchk stops after the first error it finds. If you want
to obtain more information, you can add the -v (verbose) option. This causes myisamchk to keep going,
up through a maximum of 20 errors.

• myisamchk -e -i tbl_name

This is like the previous command, but the -i option tells myisamchk to print additional statistical
information.

In most cases, a simple myisamchk command with no arguments other than the table name is sufficient to
check a table.

7.6.3 How to Repair MyISAM Tables

The discussion in this section describes how to use myisamchk on MyISAM tables (extensions .MYI and
.MYD).

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables.
See Section 13.7.2.2, “CHECK TABLE Statement”, and Section 13.7.2.5, “REPAIR TABLE Statement”.

Symptoms of corrupted tables include queries that abort unexpectedly and observable errors such as
these:

• tbl_name.frm is locked against change

• Can't find file tbl_name.MYI (Errcode: nnn)

• Unexpected end of file

• Record file is crashed

• Got error nnn from table handler

To get more information about the error, run perror nnn, where nnn is the error number. The following
example shows how to use perror to find the meanings for the most common error numbers that indicate
a problem with a table:

$> perror 126 127 132 134 135 136 141 144 145
MySQL error code 126 = Index file is crashed
MySQL error code 127 = Record-file is crashed
MySQL error code 132 = Old database file
MySQL error code 134 = Record was already deleted (or record file crashed)
MySQL error code 135 = No more room in record file
MySQL error code 136 = No more room in index file
MySQL error code 141 = Duplicate unique key or constraint on write or update
MySQL error code 144 = Table is crashed and last repair failed
MySQL error code 145 = Table was marked as crashed and should be repaired

Error 135 (no more room in record file) and error 136 (no more room in index file) are not errors that can
be fixed by a simple repair. In this case, you must use ALTER TABLE to increase the MAX_ROWS and
AVG_ROW_LENGTH table option values:

1045

How to Repair MyISAM Tables

ALTER TABLE tbl_name MAX_ROWS=xxx AVG_ROW_LENGTH=yyy;

If you do not know the current table option values, use SHOW CREATE TABLE.

For the other errors, you must repair your tables. myisamchk can usually detect and fix most problems
that occur.

The repair process involves up to four stages, described here. Before you begin, you should change
location to the database directory and check the permissions of the table files. On Unix, make sure that
they are readable by the user that mysqld runs as (and to you, because you need to access the files you
are checking). If it turns out you need to modify files, they must also be writable by you.

This section is for the cases where a table check fails (such as those described in Section 7.6.2, “How to
Check MyISAM Tables for Errors”), or you want to use the extended features that myisamchk provides.

The myisamchk options used for table maintenance with are described in Section 4.6.3, “myisamchk —
MyISAM Table-Maintenance Utility”. myisamchk also has variables that you can set to control memory
allocation that may improve performance. See Section 4.6.3.6, “myisamchk Memory Usage”.

If you are going to repair a table from the command line, you must first stop the mysqld server. Note that
when you do mysqladmin shutdown on a remote server, the mysqld server is still available for a while
after mysqladmin returns, until all statement-processing has stopped and all index changes have been
flushed to disk.

Stage 1: Checking your tables

Run myisamchk *.MYI or myisamchk -e *.MYI if you have more time. Use the -s (silent) option to
suppress unnecessary information.

If the mysqld server is stopped, you should use the --update-state option to tell myisamchk to mark
the table as “checked.”

You have to repair only those tables for which myisamchk announces an error. For such tables, proceed
to Stage 2.

If you get unexpected errors when checking (such as out of memory errors), or if myisamchk crashes,
go to Stage 3.

Stage 2: Easy safe repair

First, try myisamchk -r -q tbl_name (-r -q means “quick recovery mode”). This attempts to repair
the index file without touching the data file. If the data file contains everything that it should and the delete
links point at the correct locations within the data file, this should work, and the table is fixed. Start repairing
the next table. Otherwise, use the following procedure:

1. Make a backup of the data file before continuing.

2. Use myisamchk -r tbl_name (-r means “recovery mode”). This removes incorrect rows and
deleted rows from the data file and reconstructs the index file.

3. If the preceding step fails, use myisamchk --safe-recover tbl_name. Safe recovery mode uses
an old recovery method that handles a few cases that regular recovery mode does not (but is slower).

Note

If you want a repair operation to go much faster, you should set the values of the
sort_buffer_size and key_buffer_size variables each to about 25% of your
available memory when running myisamchk.

1046

MyISAM Table Optimization

If you get unexpected errors when repairing (such as out of memory errors), or if myisamchk crashes,
go to Stage 3.

Stage 3: Difficult repair

You should reach this stage only if the first 16KB block in the index file is destroyed or contains incorrect
information, or if the index file is missing. In this case, it is necessary to create a new index file. Do so as
follows:

1. Move the data file to a safe place.

2. Use the table description file to create new (empty) data and index files:

$> mysql db_name

mysql> SET autocommit=1;
mysql> TRUNCATE TABLE tbl_name;
mysql> quit

3. Copy the old data file back onto the newly created data file. (Do not just move the old file back onto the
new file. You want to retain a copy in case something goes wrong.)

Important

If you are using replication, you should stop it prior to performing the above
procedure, since it involves file system operations, and these are not logged by
MySQL.

Go back to Stage 2. myisamchk -r -q should work. (This should not be an endless loop.)

You can also use the REPAIR TABLE tbl_name USE_FRM SQL statement, which performs the whole
procedure automatically. There is also no possibility of unwanted interaction between a utility and the
server, because the server does all the work when you use REPAIR TABLE. See Section 13.7.2.5,
“REPAIR TABLE Statement”.

Stage 4: Very difficult repair

You should reach this stage only if the .frm description file has also crashed. That should never happen,
because the description file is not changed after the table is created:

1. Restore the description file from a backup and go back to Stage 3. You can also restore the index file
and go back to Stage 2. In the latter case, you should start with myisamchk -r.

2. If you do not have a backup but know exactly how the table was created, create a copy of the table in
another database. Remove the new data file, and then move the .frm description and .MYI index files
from the other database to your crashed database. This gives you new description and index files, but
leaves the .MYD data file alone. Go back to Stage 2 and attempt to reconstruct the index file.

7.6.4 MyISAM Table Optimization

To coalesce fragmented rows and eliminate wasted space that results from deleting or updating rows, run
myisamchk in recovery mode:

$> myisamchk -r tbl_name

You can optimize a table in the same way by using the OPTIMIZE TABLE SQL statement. OPTIMIZE
TABLE does a table repair and a key analysis, and also sorts the index tree so that key lookups are faster.

1047

Setting Up a MyISAM Table Maintenance Schedule

There is also no possibility of unwanted interaction between a utility and the server, because the server
does all the work when you use OPTIMIZE TABLE. See Section 13.7.2.4, “OPTIMIZE TABLE Statement”.

myisamchk has a number of other options that you can use to improve the performance of a table:

• --analyze or -a: Perform key distribution analysis. This improves join performance by enabling the join
optimizer to better choose the order in which to join the tables and which indexes it should use.

• --sort-index or -S: Sort the index blocks. This optimizes seeks and makes table scans that use
indexes faster.

• --sort-records=index_num or -R index_num: Sort data rows according to a given index.
This makes your data much more localized and may speed up range-based SELECT and ORDER BY
operations that use this index.

For a full description of all available options, see Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

7.6.5 Setting Up a MyISAM Table Maintenance Schedule

It is a good idea to perform table checks on a regular basis rather than waiting for problems to occur. One
way to check and repair MyISAM tables is with the CHECK TABLE and REPAIR TABLE statements. See
Section 13.7.2, “Table Maintenance Statements”.

Another way to check tables is to use myisamchk. For maintenance purposes, you can use myisamchk
-s. The -s option (short for --silent) causes myisamchk to run in silent mode, printing messages only
when errors occur.

It is also a good idea to enable automatic MyISAM table checking. For example, whenever the machine
has done a restart in the middle of an update, you usually need to check each table that could have been
affected before it is used further. (These are “expected crashed tables.”) To cause the server to check
MyISAM tables automatically, start it with the myisam_recover_options system variable set. See
Section 5.1.7, “Server System Variables”.

You should also check your tables regularly during normal system operation. For example, you can run a
cron job to check important tables once a week, using a line like this in a crontab file:

35 0 * * 0 /path/to/myisamchk --fast --silent /path/to/datadir/*/*.MYI

This prints out information about crashed tables so that you can examine and repair them as necessary.

To start with, execute myisamchk -s each night on all tables that have been updated during the last 24
hours. As you see that problems occur infrequently, you can back off the checking frequency to once a
week or so.

Normally, MySQL tables need little maintenance. If you are performing many updates to MyISAM tables
with dynamic-sized rows (tables with VARCHAR, BLOB, or TEXT columns) or have tables with many deleted
rows you may want to defragment/reclaim space from the tables from time to time. You can do this by
using OPTIMIZE TABLE on the tables in question. Alternatively, if you can stop the mysqld server for a
while, change location into the data directory and use this command while the server is stopped:

$> myisamchk -r -s --sort-index --myisam_sort_buffer_size=16M */*.MYI

1048

Chapter 8 Optimization

Table of Contents
8.1 Optimization Overview ... 1050
8.2 Optimizing SQL Statements .. 1052

8.2.1 Optimizing SELECT Statements ... 1052
8.2.2 Optimizing Subqueries and Derived Tables ... 1091
8.2.3 Optimizing INFORMATION_SCHEMA Queries .. 1101
8.2.4 Optimizing Data Change Statements ... 1106
8.2.5 Optimizing Database Privileges ... 1108
8.2.6 Other Optimization Tips .. 1108

8.3 Optimization and Indexes .. 1108
8.3.1 How MySQL Uses Indexes ... 1109
8.3.2 Primary Key Optimization ... 1110
8.3.3 Foreign Key Optimization ... 1110
8.3.4 Column Indexes ... 1110
8.3.5 Multiple-Column Indexes .. 1112
8.3.6 Verifying Index Usage .. 1113
8.3.7 InnoDB and MyISAM Index Statistics Collection ... 1113
8.3.8 Comparison of B-Tree and Hash Indexes .. 1115
8.3.9 Use of Index Extensions ... 1116
8.3.10 Indexed Lookups from TIMESTAMP Columns ... 1119

8.4 Optimizing Database Structure .. 1121
8.4.1 Optimizing Data Size .. 1121
8.4.2 Optimizing MySQL Data Types ... 1123
8.4.3 Optimizing for Many Tables .. 1124
8.4.4 Internal Temporary Table Use in MySQL ... 1126
8.4.5 Limits on Number of Databases and Tables .. 1128
8.4.6 Limits on Table Size .. 1128
8.4.7 Limits on Table Column Count and Row Size .. 1129

8.5 Optimizing for InnoDB Tables .. 1132
8.5.1 Optimizing Storage Layout for InnoDB Tables ... 1132
8.5.2 Optimizing InnoDB Transaction Management .. 1133
8.5.3 Optimizing InnoDB Read-Only Transactions .. 1134
8.5.4 Optimizing InnoDB Redo Logging ... 1134
8.5.5 Bulk Data Loading for InnoDB Tables ... 1135
8.5.6 Optimizing InnoDB Queries .. 1136
8.5.7 Optimizing InnoDB DDL Operations .. 1137
8.5.8 Optimizing InnoDB Disk I/O .. 1137
8.5.9 Optimizing InnoDB Configuration Variables .. 1140
8.5.10 Optimizing InnoDB for Systems with Many Tables ... 1141

8.6 Optimizing for MyISAM Tables .. 1142
8.6.1 Optimizing MyISAM Queries ... 1142
8.6.2 Bulk Data Loading for MyISAM Tables .. 1143
8.6.3 Optimizing REPAIR TABLE Statements .. 1145

8.7 Optimizing for MEMORY Tables .. 1146
8.8 Understanding the Query Execution Plan ... 1146

8.8.1 Optimizing Queries with EXPLAIN .. 1146
8.8.2 EXPLAIN Output Format .. 1147
8.8.3 Extended EXPLAIN Output Format ... 1160
8.8.4 Estimating Query Performance ... 1162

1049

Optimization Overview

8.9 Controlling the Query Optimizer ... 1163
8.9.1 Controlling Query Plan Evaluation ... 1163
8.9.2 Switchable Optimizations .. 1164
8.9.3 Index Hints .. 1167

8.10 Buffering and Caching ... 1169
8.10.1 InnoDB Buffer Pool Optimization ... 1169
8.10.2 The MyISAM Key Cache .. 1169
8.10.3 The MySQL Query Cache .. 1174
8.10.4 Caching of Prepared Statements and Stored Programs .. 1181

8.11 Optimizing Locking Operations .. 1182
8.11.1 Internal Locking Methods .. 1182
8.11.2 Table Locking Issues .. 1185
8.11.3 Concurrent Inserts .. 1186
8.11.4 Metadata Locking ... 1187
8.11.5 External Locking ... 1190

8.12 Optimizing the MySQL Server ... 1191
8.12.1 System Factors .. 1191
8.12.2 Optimizing Disk I/O .. 1192
8.12.3 Using Symbolic Links ... 1193
8.12.4 Optimizing Memory Use ... 1197

8.13 Measuring Performance (Benchmarking) .. 1200
8.13.1 Measuring the Speed of Expressions and Functions .. 1201
8.13.2 The MySQL Benchmark Suite ... 1201
8.13.3 Using Your Own Benchmarks ... 1202
8.13.4 Measuring Performance with performance_schema .. 1203

8.14 Examining Server Thread (Process) Information ... 1203
8.14.1 Accessing the Process List ... 1203
8.14.2 Thread Command Values ... 1205
8.14.3 General Thread States ... 1207
8.14.4 Delayed-Insert Thread States .. 1213
8.14.5 Query Cache Thread States ... 1214
8.14.6 Replication Source Thread States ... 1215
8.14.7 Replication Replica I/O Thread States ... 1215
8.14.8 Replication Replica SQL Thread States ... 1216
8.14.9 Replication Replica Connection Thread States ... 1217
8.14.10 NDB Cluster Thread States ... 1218
8.14.11 Event Scheduler Thread States ... 1218

This chapter explains how to optimize MySQL performance and provides examples. Optimization involves
configuring, tuning, and measuring performance, at several levels. Depending on your job role (developer,
DBA, or a combination of both), you might optimize at the level of individual SQL statements, entire
applications, a single database server, or multiple networked database servers. Sometimes you can be
proactive and plan in advance for performance, while other times you might troubleshoot a configuration
or code issue after a problem occurs. Optimizing CPU and memory usage can also improve scalability,
allowing the database to handle more load without slowing down.

8.1 Optimization Overview

Database performance depends on several factors at the database level, such as tables, queries, and
configuration settings. These software constructs result in CPU and I/O operations at the hardware level,
which you must minimize and make as efficient as possible. As you work on database performance, you
start by learning the high-level rules and guidelines for the software side, and measuring performance

1050

Optimizing at the Database Level

using wall-clock time. As you become an expert, you learn more about what happens internally, and start
measuring things such as CPU cycles and I/O operations.

Typical users aim to get the best database performance out of their existing software and hardware
configurations. Advanced users look for opportunities to improve the MySQL software itself, or develop
their own storage engines and hardware appliances to expand the MySQL ecosystem.

• Optimizing at the Database Level

• Optimizing at the Hardware Level

• Balancing Portability and Performance

Optimizing at the Database Level

The most important factor in making a database application fast is its basic design:

• Are the tables structured properly? In particular, do the columns have the right data types, and does
each table have the appropriate columns for the type of work? For example, applications that perform
frequent updates often have many tables with few columns, while applications that analyze large
amounts of data often have few tables with many columns.

• Are the right indexes in place to make queries efficient?

• Are you using the appropriate storage engine for each table, and taking advantage of the strengths and
features of each storage engine you use? In particular, the choice of a transactional storage engine
such as InnoDB or a nontransactional one such as MyISAM can be very important for performance and
scalability.

Note

InnoDB is the default storage engine for new tables. In practice, the advanced
InnoDB performance features mean that InnoDB tables often outperform the
simpler MyISAM tables, especially for a busy database.

• Does each table use an appropriate row format? This choice also depends on the storage engine used
for the table. In particular, compressed tables use less disk space and so require less disk I/O to read
and write the data. Compression is available for all kinds of workloads with InnoDB tables, and for read-
only MyISAM tables.

• Does the application use an appropriate locking strategy? For example, by allowing shared access
when possible so that database operations can run concurrently, and requesting exclusive access when
appropriate so that critical operations get top priority. Again, the choice of storage engine is significant.
The InnoDB storage engine handles most locking issues without involvement from you, allowing for
better concurrency in the database and reducing the amount of experimentation and tuning for your
code.

• Are all memory areas used for caching sized correctly? That is, large enough to hold frequently
accessed data, but not so large that they overload physical memory and cause paging. The main
memory areas to configure are the InnoDB buffer pool, the MyISAM key cache, and the MySQL query
cache.

Optimizing at the Hardware Level

Any database application eventually hits hardware limits as the database becomes more and more busy.
A DBA must evaluate whether it is possible to tune the application or reconfigure the server to avoid these

1051

Balancing Portability and Performance

bottlenecks, or whether more hardware resources are required. System bottlenecks typically arise from
these sources:

• Disk seeks. It takes time for the disk to find a piece of data. With modern disks, the mean time for this
is usually lower than 10ms, so we can in theory do about 100 seeks a second. This time improves
slowly with new disks and is very hard to optimize for a single table. The way to optimize seek time is to
distribute the data onto more than one disk.

• Disk reading and writing. When the disk is at the correct position, we need to read or write the data. With
modern disks, one disk delivers at least 10–20MB/s throughput. This is easier to optimize than seeks
because you can read in parallel from multiple disks.

• CPU cycles. When the data is in main memory, we must process it to get our result. Having large tables
compared to the amount of memory is the most common limiting factor. But with small tables, speed is
usually not the problem.

• Memory bandwidth. When the CPU needs more data than can fit in the CPU cache, main memory
bandwidth becomes a bottleneck. This is an uncommon bottleneck for most systems, but one to be
aware of.

Balancing Portability and Performance

To use performance-oriented SQL extensions in a portable MySQL program, you can wrap MySQL-
specific keywords in a statement within /*! */ comment delimiters. Other SQL servers ignore the
commented keywords. For information about writing comments, see Section 9.6, “Comments”.

8.2 Optimizing SQL Statements

The core logic of a database application is performed through SQL statements, whether issued directly
through an interpreter or submitted behind the scenes through an API. The tuning guidelines in this section
help to speed up all kinds of MySQL applications. The guidelines cover SQL operations that read and
write data, the behind-the-scenes overhead for SQL operations in general, and operations used in specific
scenarios such as database monitoring.

8.2.1 Optimizing SELECT Statements

Queries, in the form of SELECT statements, perform all the lookup operations in the database. Tuning
these statements is a top priority, whether to achieve sub-second response times for dynamic web pages,
or to chop hours off the time to generate huge overnight reports.

Besides SELECT statements, the tuning techniques for queries also apply to constructs such as CREATE
TABLE...AS SELECT, INSERT INTO...SELECT, and WHERE clauses in DELETE statements. Those
statements have additional performance considerations because they combine write operations with the
read-oriented query operations.

NDB Cluster supports a join pushdown optimization whereby a qualifying join is sent in its entirety to NDB
Cluster data nodes, where it can be distributed among them and executed in parallel. For more information
about this optimization, see Conditions for NDB pushdown joins.

The main considerations for optimizing queries are:

• To make a slow SELECT ... WHERE query faster, the first thing to check is whether you can add an
index. Set up indexes on columns used in the WHERE clause, to speed up evaluation, filtering, and the
final retrieval of results. To avoid wasted disk space, construct a small set of indexes that speed up
many related queries used in your application.

1052

Optimizing SELECT Statements

Indexes are especially important for queries that reference different tables, using features such as
joins and foreign keys. You can use the EXPLAIN statement to determine which indexes are used for a
SELECT. See Section 8.3.1, “How MySQL Uses Indexes” and Section 8.8.1, “Optimizing Queries with
EXPLAIN”.

• Isolate and tune any part of the query, such as a function call, that takes excessive time. Depending on
how the query is structured, a function could be called once for every row in the result set, or even once
for every row in the table, greatly magnifying any inefficiency.

• Minimize the number of full table scans in your queries, particularly for big tables.

• Keep table statistics up to date by using the ANALYZE TABLE statement periodically, so the optimizer
has the information needed to construct an efficient execution plan.

• Learn the tuning techniques, indexing techniques, and configuration parameters that are specific to
the storage engine for each table. Both InnoDB and MyISAM have sets of guidelines for enabling and
sustaining high performance in queries. For details, see Section 8.5.6, “Optimizing InnoDB Queries” and
Section 8.6.1, “Optimizing MyISAM Queries”.

• You can optimize single-query transactions for InnoDB tables, using the technique in Section 8.5.3,
“Optimizing InnoDB Read-Only Transactions”.

• Avoid transforming the query in ways that make it hard to understand, especially if the optimizer does
some of the same transformations automatically.

• If a performance issue is not easily solved by one of the basic guidelines, investigate the internal details
of the specific query by reading the EXPLAIN plan and adjusting your indexes, WHERE clauses, join
clauses, and so on. (When you reach a certain level of expertise, reading the EXPLAIN plan might be
your first step for every query.)

• Adjust the size and properties of the memory areas that MySQL uses for caching. With efficient use of
the InnoDB buffer pool, MyISAM key cache, and the MySQL query cache, repeated queries run faster
because the results are retrieved from memory the second and subsequent times.

• Even for a query that runs fast using the cache memory areas, you might still optimize further so that
they require less cache memory, making your application more scalable. Scalability means that your
application can handle more simultaneous users, larger requests, and so on without experiencing a big
drop in performance.

• Deal with locking issues, where the speed of your query might be affected by other sessions accessing
the tables at the same time.

8.2.1.1 WHERE Clause Optimization

This section discusses optimizations that can be made for processing WHERE clauses. The examples
use SELECT statements, but the same optimizations apply for WHERE clauses in DELETE and UPDATE
statements.

Note

Because work on the MySQL optimizer is ongoing, not all of the optimizations that
MySQL performs are documented here.

You might be tempted to rewrite your queries to make arithmetic operations faster, while sacrificing
readability. Because MySQL does similar optimizations automatically, you can often avoid this work, and
leave the query in a more understandable and maintainable form. Some of the optimizations performed by
MySQL follow:

1053

Optimizing SELECT Statements

• Removal of unnecessary parentheses:

 ((a AND b) AND c OR (((a AND b) AND (c AND d))))
-> (a AND b AND c) OR (a AND b AND c AND d)

• Constant folding:

 (a<b AND b=c) AND a=5
-> b>5 AND b=c AND a=5

• Constant condition removal:

 (b>=5 AND b=5) OR (b=6 AND 5=5) OR (b=7 AND 5=6)
-> b=5 OR b=6

• Constant expressions used by indexes are evaluated only once.

• COUNT(*) on a single table without a WHERE is retrieved directly from the table information for MyISAM
and MEMORY tables. This is also done for any NOT NULL expression when used with only one table.

• Early detection of invalid constant expressions. MySQL quickly detects that some SELECT statements
are impossible and returns no rows.

• HAVING is merged with WHERE if you do not use GROUP BY or aggregate functions (COUNT(), MIN(),
and so on).

• For each table in a join, a simpler WHERE is constructed to get a fast WHERE evaluation for the table and
also to skip rows as soon as possible.

• All constant tables are read first before any other tables in the query. A constant table is any of the
following:

• An empty table or a table with one row.

• A table that is used with a WHERE clause on a PRIMARY KEY or a UNIQUE index, where all index parts
are compared to constant expressions and are defined as NOT NULL.

All of the following tables are used as constant tables:

SELECT * FROM t WHERE primary_key=1;
SELECT * FROM t1,t2
 WHERE t1.primary_key=1 AND t2.primary_key=t1.id;

• The best join combination for joining the tables is found by trying all possibilities. If all columns in ORDER
BY and GROUP BY clauses come from the same table, that table is preferred first when joining.

• If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or GROUP BY
contains columns from tables other than the first table in the join queue, a temporary table is created.

• If you use the SQL_SMALL_RESULT modifier, MySQL uses an in-memory temporary table.

• Each table index is queried, and the best index is used unless the optimizer believes that it is more
efficient to use a table scan. At one time, a scan was used based on whether the best index spanned
more than 30% of the table, but a fixed percentage no longer determines the choice between using an
index or a scan. The optimizer now is more complex and bases its estimate on additional factors such as
table size, number of rows, and I/O block size.

• In some cases, MySQL can read rows from the index without even consulting the data file. If all columns
used from the index are numeric, only the index tree is used to resolve the query.

• Before each row is output, those that do not match the HAVING clause are skipped.

1054

Optimizing SELECT Statements

Some examples of queries that are very fast:

SELECT COUNT(*) FROM tbl_name;

SELECT MIN(key_part1),MAX(key_part1) FROM tbl_name;

SELECT MAX(key_part2) FROM tbl_name
 WHERE key_part1=constant;

SELECT ... FROM tbl_name
 ORDER BY key_part1,key_part2,... LIMIT 10;

SELECT ... FROM tbl_name
 ORDER BY key_part1 DESC, key_part2 DESC, ... LIMIT 10;

MySQL resolves the following queries using only the index tree, assuming that the indexed columns are
numeric:

SELECT key_part1,key_part2 FROM tbl_name WHERE key_part1=val;

SELECT COUNT(*) FROM tbl_name
 WHERE key_part1=val1 AND key_part2=val2;

SELECT MAX(key_part2) FROM tbl_name GROUP BY key_part1;

The following queries use indexing to retrieve the rows in sorted order without a separate sorting pass:

SELECT ... FROM tbl_name
 ORDER BY key_part1,key_part2,... ;

SELECT ... FROM tbl_name
 ORDER BY key_part1 DESC, key_part2 DESC, ... ;

8.2.1.2 Range Optimization

The range access method uses a single index to retrieve a subset of table rows that are contained within
one or several index value intervals. It can be used for a single-part or multiple-part index. The following
sections give a detailed description of how intervals are extracted from the WHERE clause.

• Range Access Method for Single-Part Indexes

• Range Access Method for Multiple-Part Indexes

• Equality Range Optimization of Many-Valued Comparisons

Range Access Method for Single-Part Indexes

For a single-part index, index value intervals can be conveniently represented by corresponding conditions
in the WHERE clause, denoted as range conditions rather than “intervals.”

The definition of a range condition for a single-part index is as follows:

• For both BTREE and HASH indexes, comparison of a key part with a constant value is a range condition
when using the =, <=>, IN(), IS NULL, or IS NOT NULL operators.

• Additionally, for BTREE indexes, comparison of a key part with a constant value is a range condition
when using the >, <, >=, <=, BETWEEN, !=, or <> operators, or LIKE comparisons if the argument to
LIKE is a constant string that does not start with a wildcard character.

• For all index types, multiple range conditions combined with OR or AND form a range condition.

“Constant value” in the preceding descriptions means one of the following:

1055

Optimizing SELECT Statements

• A constant from the query string

• A column of a const or system table from the same join

• The result of an uncorrelated subquery

• Any expression composed entirely from subexpressions of the preceding types

Here are some examples of queries with range conditions in the WHERE clause:

SELECT * FROM t1
 WHERE key_col > 1
 AND key_col < 10;

SELECT * FROM t1
 WHERE key_col = 1
 OR key_col IN (15,18,20);

SELECT * FROM t1
 WHERE key_col LIKE 'ab%'
 OR key_col BETWEEN 'bar' AND 'foo';

Some nonconstant values may be converted to constants during the optimizer constant propagation phase.

MySQL tries to extract range conditions from the WHERE clause for each of the possible indexes. During
the extraction process, conditions that cannot be used for constructing the range condition are dropped,
conditions that produce overlapping ranges are combined, and conditions that produce empty ranges are
removed.

Consider the following statement, where key1 is an indexed column and nonkey is not indexed:

SELECT * FROM t1 WHERE
 (key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
 (key1 < 'bar' AND nonkey = 4) OR
 (key1 < 'uux' AND key1 > 'z');

The extraction process for key key1 is as follows:

1. Start with original WHERE clause:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z')

2. Remove nonkey = 4 and key1 LIKE '%b' because they cannot be used for a range scan. The
correct way to remove them is to replace them with TRUE, so that we do not miss any matching rows
when doing the range scan. Replacing them with TRUE yields:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR TRUE)) OR
(key1 < 'bar' AND TRUE) OR
(key1 < 'uux' AND key1 > 'z')

3. Collapse conditions that are always true or false:

• (key1 LIKE 'abcde%' OR TRUE) is always true

• (key1 < 'uux' AND key1 > 'z') is always false

Replacing these conditions with constants yields:

(key1 < 'abc' AND TRUE) OR (key1 < 'bar' AND TRUE) OR (FALSE)

Removing unnecessary TRUE and FALSE constants yields:

1056

Optimizing SELECT Statements

(key1 < 'abc') OR (key1 < 'bar')

4. Combining overlapping intervals into one yields the final condition to be used for the range scan:

(key1 < 'bar')

In general (and as demonstrated by the preceding example), the condition used for a range scan is less
restrictive than the WHERE clause. MySQL performs an additional check to filter out rows that satisfy the
range condition but not the full WHERE clause.

The range condition extraction algorithm can handle nested AND/OR constructs of arbitrary depth, and its
output does not depend on the order in which conditions appear in WHERE clause.

MySQL does not support merging multiple ranges for the range access method for spatial indexes. To
work around this limitation, you can use a UNION with identical SELECT statements, except that you put
each spatial predicate in a different SELECT.

Range Access Method for Multiple-Part Indexes

Range conditions on a multiple-part index are an extension of range conditions for a single-part index. A
range condition on a multiple-part index restricts index rows to lie within one or several key tuple intervals.
Key tuple intervals are defined over a set of key tuples, using ordering from the index.

For example, consider a multiple-part index defined as key1(key_part1, key_part2, key_part3),
and the following set of key tuples listed in key order:

key_part1 key_part2 key_part3
 NULL 1 'abc'
 NULL 1 'xyz'
 NULL 2 'foo'
 1 1 'abc'
 1 1 'xyz'
 1 2 'abc'
 2 1 'aaa'

The condition key_part1 = 1 defines this interval:

(1,-inf,-inf) <= (key_part1,key_part2,key_part3) < (1,+inf,+inf)

The interval covers the 4th, 5th, and 6th tuples in the preceding data set and can be used by the range
access method.

By contrast, the condition key_part3 = 'abc' does not define a single interval and cannot be used by
the range access method.

The following descriptions indicate how range conditions work for multiple-part indexes in greater detail.

• For HASH indexes, each interval containing identical values can be used. This means that the interval
can be produced only for conditions in the following form:

 key_part1 cmp const1
AND key_part2 cmp const2
AND ...
AND key_partN cmp constN;

Here, const1, const2, … are constants, cmp is one of the =, <=>, or IS NULL comparison operators,
and the conditions cover all index parts. (That is, there are N conditions, one for each part of an N-part
index.) For example, the following is a range condition for a three-part HASH index:

key_part1 = 1 AND key_part2 IS NULL AND key_part3 = 'foo'

1057

Optimizing SELECT Statements

For the definition of what is considered to be a constant, see Range Access Method for Single-Part
Indexes.

• For a BTREE index, an interval might be usable for conditions combined with AND, where each condition
compares a key part with a constant value using =, <=>, IS NULL, >, <, >=, <=, !=, <>, BETWEEN,
or LIKE 'pattern' (where 'pattern' does not start with a wildcard). An interval can be used as
long as it is possible to determine a single key tuple containing all rows that match the condition (or two
intervals if <> or != is used).

The optimizer attempts to use additional key parts to determine the interval as long as the comparison
operator is =, <=>, or IS NULL. If the operator is >, <, >=, <=, !=, <>, BETWEEN, or LIKE, the optimizer
uses it but considers no more key parts. For the following expression, the optimizer uses = from the first
comparison. It also uses >= from the second comparison but considers no further key parts and does not
use the third comparison for interval construction:

key_part1 = 'foo' AND key_part2 >= 10 AND key_part3 > 10

The single interval is:

('foo',10,-inf) < (key_part1,key_part2,key_part3) < ('foo',+inf,+inf)

It is possible that the created interval contains more rows than the initial condition. For example, the
preceding interval includes the value ('foo', 11, 0), which does not satisfy the original condition.

• If conditions that cover sets of rows contained within intervals are combined with OR, they form a
condition that covers a set of rows contained within the union of their intervals. If the conditions are
combined with AND, they form a condition that covers a set of rows contained within the intersection of
their intervals. For example, for this condition on a two-part index:

(key_part1 = 1 AND key_part2 < 2) OR (key_part1 > 5)

The intervals are:

(1,-inf) < (key_part1,key_part2) < (1,2)
(5,-inf) < (key_part1,key_part2)

In this example, the interval on the first line uses one key part for the left bound and two key parts for
the right bound. The interval on the second line uses only one key part. The key_len column in the
EXPLAIN output indicates the maximum length of the key prefix used.

In some cases, key_len may indicate that a key part was used, but that might be not what you would
expect. Suppose that key_part1 and key_part2 can be NULL. Then the key_len column displays
two key part lengths for the following condition:

key_part1 >= 1 AND key_part2 < 2

But, in fact, the condition is converted to this:

key_part1 >= 1 AND key_part2 IS NOT NULL

For a description of how optimizations are performed to combine or eliminate intervals for range conditions
on a single-part index, see Range Access Method for Single-Part Indexes. Analogous steps are performed
for range conditions on multiple-part indexes.

Equality Range Optimization of Many-Valued Comparisons

Consider these expressions, where col_name is an indexed column:

1058

Optimizing SELECT Statements

col_name IN(val1, ..., valN)
col_name = val1 OR ... OR col_name = valN

Each expression is true if col_name is equal to any of several values. These comparisons are equality
range comparisons (where the “range” is a single value). The optimizer estimates the cost of reading
qualifying rows for equality range comparisons as follows:

• If there is a unique index on col_name, the row estimate for each range is 1 because at most one row
can have the given value.

• Otherwise, any index on col_name is nonunique and the optimizer can estimate the row count for each
range using dives into the index or index statistics.

With index dives, the optimizer makes a dive at each end of a range and uses the number of rows in the
range as the estimate. For example, the expression col_name IN (10, 20, 30) has three equality
ranges and the optimizer makes two dives per range to generate a row estimate. Each pair of dives yields
an estimate of the number of rows that have the given value.

Index dives provide accurate row estimates, but as the number of comparison values in the expression
increases, the optimizer takes longer to generate a row estimate. Use of index statistics is less accurate
than index dives but permits faster row estimation for large value lists.

The eq_range_index_dive_limit system variable enables you to configure the number of values at
which the optimizer switches from one row estimation strategy to the other. To permit use of index dives for
comparisons of up to N equality ranges, set eq_range_index_dive_limit to N + 1. To disable use of
statistics and always use index dives regardless of N, set eq_range_index_dive_limit to 0.

To update table index statistics for best estimates, use ANALYZE TABLE.

Even under conditions when index dives would otherwise be used, they are skipped for queries that satisfy
all these conditions:

• A single-index FORCE INDEX index hint is present. The idea is that if index use is forced, there is
nothing to be gained from the additional overhead of performing dives into the index.

• The index is nonunique and not a FULLTEXT index.

• No subquery is present.

• No DISTINCT, GROUP BY, or ORDER BY clause is present.

Those dive-skipping conditions apply only for single-table queries. Index dives are not skipped for multiple-
table queries (joins).

8.2.1.3 Index Merge Optimization

The Index Merge access method retrieves rows with multiple range scans and merges their results into
one. This access method merges index scans from a single table only, not scans across multiple tables.
The merge can produce unions, intersections, or unions-of-intersections of its underlying scans.

Example queries for which Index Merge may be used:

SELECT * FROM tbl_name WHERE key1 = 10 OR key2 = 20;

SELECT * FROM tbl_name
 WHERE (key1 = 10 OR key2 = 20) AND non_key = 30;

SELECT * FROM t1, t2
 WHERE (t1.key1 IN (1,2) OR t1.key2 LIKE 'value%')

1059

Optimizing SELECT Statements

 AND t2.key1 = t1.some_col;

SELECT * FROM t1, t2
 WHERE t1.key1 = 1
 AND (t2.key1 = t1.some_col OR t2.key2 = t1.some_col2);

Note

The Index Merge optimization algorithm has the following known limitations:

• If your query has a complex WHERE clause with deep AND/OR nesting and MySQL
does not choose the optimal plan, try distributing terms using the following
identity transformations:

(x AND y) OR z => (x OR z) AND (y OR z)
(x OR y) AND z => (x AND z) OR (y AND z)

• Index Merge is not applicable to full-text indexes.

In EXPLAIN output, the Index Merge method appears as index_merge in the type column. In this case,
the key column contains a list of indexes used, and key_len contains a list of the longest key parts for
those indexes.

The Index Merge access method has several algorithms, which are displayed in the Extra field of
EXPLAIN output:

• Using intersect(...)

• Using union(...)

• Using sort_union(...)

The following sections describe these algorithms in greater detail. The optimizer chooses between different
possible Index Merge algorithms and other access methods based on cost estimates of the various
available options.

Use of Index Merge is subject to the value of the index_merge, index_merge_intersection,
index_merge_union, and index_merge_sort_union flags of the optimizer_switch system
variable. See Section 8.9.2, “Switchable Optimizations”. By default, all those flags are on. To enable only
certain algorithms, set index_merge to off, and enable only such of the others as should be permitted.

• Index Merge Intersection Access Algorithm

• Index Merge Union Access Algorithm

• Index Merge Sort-Union Access Algorithm

Index Merge Intersection Access Algorithm

This access algorithm is applicable when a WHERE clause is converted to several range conditions on
different keys combined with AND, and each condition is one of the following:

• An N-part expression of this form, where the index has exactly N parts (that is, all index parts are
covered):

key_part1 = const1 AND key_part2 = const2 ... AND key_partN = constN

• Any range condition over the primary key of an InnoDB table.

Examples:

1060

Optimizing SELECT Statements

SELECT * FROM innodb_table
 WHERE primary_key < 10 AND key_col1 = 20;

SELECT * FROM tbl_name
 WHERE key1_part1 = 1 AND key1_part2 = 2 AND key2 = 2;

The Index Merge intersection algorithm performs simultaneous scans on all used indexes and produces
the intersection of row sequences that it receives from the merged index scans.

If all columns used in the query are covered by the used indexes, full table rows are not retrieved
(EXPLAIN output contains Using index in Extra field in this case). Here is an example of such a query:

SELECT COUNT(*) FROM t1 WHERE key1 = 1 AND key2 = 1;

If the used indexes do not cover all columns used in the query, full rows are retrieved only when the range
conditions for all used keys are satisfied.

If one of the merged conditions is a condition over the primary key of an InnoDB table, it is not used for
row retrieval, but is used to filter out rows retrieved using other conditions.

Index Merge Union Access Algorithm

The criteria for this algorithm are similar to those for the Index Merge intersection algorithm. The algorithm
is applicable when the table's WHERE clause is converted to several range conditions on different keys
combined with OR, and each condition is one of the following:

• An N-part expression of this form, where the index has exactly N parts (that is, all index parts are
covered):

key_part1 = const1 OR key_part2 = const2 ... OR key_partN = constN

• Any range condition over a primary key of an InnoDB table.

• A condition for which the Index Merge intersection algorithm is applicable.

Examples:

SELECT * FROM t1
 WHERE key1 = 1 OR key2 = 2 OR key3 = 3;

SELECT * FROM innodb_table
 WHERE (key1 = 1 AND key2 = 2)
 OR (key3 = 'foo' AND key4 = 'bar') AND key5 = 5;

Index Merge Sort-Union Access Algorithm

This access algorithm is applicable when the WHERE clause is converted to several range conditions
combined by OR, but the Index Merge union algorithm is not applicable.

Examples:

SELECT * FROM tbl_name
 WHERE key_col1 < 10 OR key_col2 < 20;

SELECT * FROM tbl_name
 WHERE (key_col1 > 10 OR key_col2 = 20) AND nonkey_col = 30;

The difference between the sort-union algorithm and the union algorithm is that the sort-union algorithm
must first fetch row IDs for all rows and sort them before returning any rows.

8.2.1.4 Engine Condition Pushdown Optimization

1061

Optimizing SELECT Statements

This optimization improves the efficiency of direct comparisons between a nonindexed column and
a constant. In such cases, the condition is “pushed down” to the storage engine for evaluation. This
optimization can be used only by the NDB storage engine.

For NDB Cluster, this optimization can eliminate the need to send nonmatching rows over the network
between the cluster's data nodes and the MySQL server that issued the query, and can speed up queries
where it is used by a factor of 5 to 10 times over cases where condition pushdown could be but is not used.

Suppose that an NDB Cluster table is defined as follows:

CREATE TABLE t1 (
 a INT,
 b INT,
 KEY(a)
) ENGINE=NDB;

Engine condition pushdown can be used with queries such as the one shown here, which includes a
comparison between a nonindexed column and a constant:

SELECT a, b FROM t1 WHERE b = 10;

The use of engine condition pushdown can be seen in the output of EXPLAIN:

mysql> EXPLAIN SELECT a,b FROM t1 WHERE b = 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using where with pushed condition

However, engine condition pushdown cannot be used with either of these two queries:

SELECT a,b FROM t1 WHERE a = 10;
SELECT a,b FROM t1 WHERE b + 1 = 10;

Engine condition pushdown is not applicable to the first query because an index exists on column a.
(An index access method would be more efficient and so would be chosen in preference to condition
pushdown.) Engine condition pushdown cannot be employed for the second query because the
comparison involving the nonindexed column b is indirect. (However, engine condition pushdown could be
applied if you were to reduce b + 1 = 10 to b = 9 in the WHERE clause.)

Engine condition pushdown may also be employed when an indexed column is compared with a constant
using a > or < operator:

mysql> EXPLAIN SELECT a, b FROM t1 WHERE a < 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: range
possible_keys: a
 key: a
 key_len: 5
 ref: NULL
 rows: 2
 Extra: Using where with pushed condition

1062

Optimizing SELECT Statements

Other supported comparisons for engine condition pushdown include the following:

• column [NOT] LIKE pattern

pattern must be a string literal containing the pattern to be matched; for syntax, see Section 12.8.1,
“String Comparison Functions and Operators”.

• column IS [NOT] NULL

• column IN (value_list)

Each item in the value_list must be a constant, literal value.

• column BETWEEN constant1 AND constant2

constant1 and constant2 must each be a constant, literal value.

In all of the cases in the preceding list, it is possible for the condition to be converted into the form of one or
more direct comparisons between a column and a constant.

Engine condition pushdown is enabled by default. To disable it at server startup, set the
optimizer_switch system variable's engine_condition_pushdown flag to off. For example, in a
my.cnf file, use these lines:

[mysqld]
optimizer_switch=engine_condition_pushdown=off

At runtime, disable condition pushdown like this:

SET optimizer_switch='engine_condition_pushdown=off';

Limitations. Engine condition pushdown is subject to the following limitations:

• Engine condition pushdown is supported only by the NDB storage engine.

• Columns may be compared with constants only; however, this includes expressions which evaluate to
constant values.

• Columns used in comparisons cannot be of any of the BLOB or TEXT types. This exclusion extends to
BIT and ENUM columns as well.

• A string value to be compared with a column must use the same collation as the column.

• Joins are not directly supported; conditions involving multiple tables are pushed separately where
possible. Use extended EXPLAIN output to determine which conditions are actually pushed down. See
Section 8.8.3, “Extended EXPLAIN Output Format”.

8.2.1.5 Index Condition Pushdown Optimization

Index Condition Pushdown (ICP) is an optimization for the case where MySQL retrieves rows from a table
using an index. Without ICP, the storage engine traverses the index to locate rows in the base table and
returns them to the MySQL server which evaluates the WHERE condition for the rows. With ICP enabled,
and if parts of the WHERE condition can be evaluated by using only columns from the index, the MySQL
server pushes this part of the WHERE condition down to the storage engine. The storage engine then
evaluates the pushed index condition by using the index entry and only if this is satisfied is the row read
from the table. ICP can reduce the number of times the storage engine must access the base table and the
number of times the MySQL server must access the storage engine.

Applicability of the Index Condition Pushdown optimization is subject to these conditions:

1063

Optimizing SELECT Statements

• ICP is used for the range, ref, eq_ref, and ref_or_null access methods when there is a need to
access full table rows.

• ICP can be used for InnoDB and MyISAM tables. (Exception: ICP is not supported with partitioned tables
in MySQL 5.6; this issue is resolved in MySQL 5.7.)

• For InnoDB tables, ICP is used only for secondary indexes. The goal of ICP is to reduce the number of
full-row reads and thereby reduce I/O operations. For InnoDB clustered indexes, the complete record is
already read into the InnoDB buffer. Using ICP in this case does not reduce I/O.

• Conditions that refer to subqueries cannot be pushed down.

• Conditions that refer to stored functions cannot be pushed down. Storage engines cannot invoke stored
functions.

• Triggered conditions cannot be pushed down. (For information about triggered conditions, see
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”.)

To understand how this optimization works, first consider how an index scan proceeds when Index
Condition Pushdown is not used:

1. Get the next row, first by reading the index tuple, and then by using the index tuple to locate and read
the full table row.

2. Test the part of the WHERE condition that applies to this table. Accept or reject the row based on the test
result.

Using Index Condition Pushdown, the scan proceeds like this instead:

1. Get the next row's index tuple (but not the full table row).

2. Test the part of the WHERE condition that applies to this table and can be checked using only index
columns. If the condition is not satisfied, proceed to the index tuple for the next row.

3. If the condition is satisfied, use the index tuple to locate and read the full table row.

4. Test the remaining part of the WHERE condition that applies to this table. Accept or reject the row based
on the test result.

EXPLAIN output shows Using index condition in the Extra column when Index Condition
Pushdown is used. It does not show Using index because that does not apply when full table rows must
be read.

Suppose that a table contains information about people and their addresses and that the table has an
index defined as INDEX (zipcode, lastname, firstname). If we know a person's zipcode value
but are not sure about the last name, we can search like this:

SELECT * FROM people
 WHERE zipcode='95054'
 AND lastname LIKE '%etrunia%'
 AND address LIKE '%Main Street%';

MySQL can use the index to scan through people with zipcode='95054'. The second part (lastname
LIKE '%etrunia%') cannot be used to limit the number of rows that must be scanned, so without Index
Condition Pushdown, this query must retrieve full table rows for all people who have zipcode='95054'.

With Index Condition Pushdown, MySQL checks the lastname LIKE '%etrunia%' part before reading
the full table row. This avoids reading full rows corresponding to index tuples that match the zipcode
condition but not the lastname condition.

1064

Optimizing SELECT Statements

Index Condition Pushdown is enabled by default. It can be controlled with the optimizer_switch system
variable by setting the index_condition_pushdown flag:

SET optimizer_switch = 'index_condition_pushdown=off';
SET optimizer_switch = 'index_condition_pushdown=on';

See Section 8.9.2, “Switchable Optimizations”.

8.2.1.6 Nested-Loop Join Algorithms

MySQL executes joins between tables using a nested-loop algorithm or variations on it.

• Nested-Loop Join Algorithm

• Block Nested-Loop Join Algorithm

Nested-Loop Join Algorithm

A simple nested-loop join (NLJ) algorithm reads rows from the first table in a loop one at a time, passing
each row to a nested loop that processes the next table in the join. This process is repeated as many times
as there remain tables to be joined.

Assume that a join between three tables t1, t2, and t3 is to be executed using the following join types:

Table Join Type
t1 range
t2 ref
t3 ALL

If a simple NLJ algorithm is used, the join is processed like this:

for each row in t1 matching range {
 for each row in t2 matching reference key {
 for each row in t3 {
 if row satisfies join conditions, send to client
 }
 }
}

Because the NLJ algorithm passes rows one at a time from outer loops to inner loops, it typically reads
tables processed in the inner loops many times.

Block Nested-Loop Join Algorithm

A Block Nested-Loop (BNL) join algorithm uses buffering of rows read in outer loops to reduce the number
of times that tables in inner loops must be read. For example, if 10 rows are read into a buffer and the
buffer is passed to the next inner loop, each row read in the inner loop can be compared against all 10
rows in the buffer. This reduces by an order of magnitude the number of times the inner table must be
read.

MySQL join buffering has these characteristics:

• Join buffering can be used when the join is of type ALL or index (in other words, when no possible
keys can be used, and a full scan is done, of either the data or index rows, respectively), or range. Use
of buffering is also applicable to outer joins, as described in Section 8.2.1.11, “Block Nested-Loop and
Batched Key Access Joins”.

• A join buffer is never allocated for the first nonconstant table, even if it would be of type ALL or index.

• Only columns of interest to a join are stored in its join buffer, not whole rows.

1065

Optimizing SELECT Statements

• The join_buffer_size system variable determines the size of each join buffer used to process a
query.

• One buffer is allocated for each join that can be buffered, so a given query might be processed using
multiple join buffers.

• A join buffer is allocated prior to executing the join and freed after the query is done.

For the example join described previously for the NLJ algorithm (without buffering), the join is done as
follows using join buffering:

for each row in t1 matching range {
 for each row in t2 matching reference key {
 store used columns from t1, t2 in join buffer
 if buffer is full {
 for each row in t3 {
 for each t1, t2 combination in join buffer {
 if row satisfies join conditions, send to client
 }
 }
 empty join buffer
 }
 }
}

if buffer is not empty {
 for each row in t3 {
 for each t1, t2 combination in join buffer {
 if row satisfies join conditions, send to client
 }
 }
}

If S is the size of each stored t1, t2 combination in the join buffer and C is the number of combinations in
the buffer, the number of times table t3 is scanned is:

(S * C)/join_buffer_size + 1

The number of t3 scans decreases as the value of join_buffer_size increases, up to the point when
join_buffer_size is large enough to hold all previous row combinations. At that point, no speed is
gained by making it larger.

8.2.1.7 Nested Join Optimization

The syntax for expressing joins permits nested joins. The following discussion refers to the join syntax
described in Section 13.2.9.2, “JOIN Clause”.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts only
table_reference, not a list of them inside a pair of parentheses. This is a conservative extension if we
consider each comma in a list of table_reference items as equivalent to an inner join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

Is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MySQL, CROSS JOIN is syntactically equivalent to INNER JOIN; they can replace each other. In
standard SQL, they are not equivalent. INNER JOIN is used with an ON clause; CROSS JOIN is used
otherwise.

1066

Optimizing SELECT Statements

In general, parentheses can be ignored in join expressions containing only inner join operations. Consider
this join expression:

t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
 ON t1.a=t2.a

After removing parentheses and grouping operations to the left, that join expression transforms into this
expression:

(t1 LEFT JOIN t2 ON t1.a=t2.a) LEFT JOIN t3
 ON t2.b=t3.b OR t2.b IS NULL

Yet, the two expressions are not equivalent. To see this, suppose that the tables t1, t2, and t3 have the
following state:

• Table t1 contains rows (1), (2)

• Table t2 contains row (1,101)

• Table t3 contains row (101)

In this case, the first expression returns a result set including the rows (1,1,101,101),
(2,NULL,NULL,NULL), whereas the second expression returns the rows (1,1,101,101),
(2,NULL,NULL,101):

mysql> SELECT *
 FROM t1
 LEFT JOIN
 (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
 ON t1.a=t2.a;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
 FROM (t1 LEFT JOIN t2 ON t1.a=t2.a)
 LEFT JOIN t3
 ON t2.b=t3.b OR t2.b IS NULL;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

In the following example, an outer join operation is used together with an inner join operation:

t1 LEFT JOIN (t2, t3) ON t1.a=t2.a

That expression cannot be transformed into the following expression:

t1 LEFT JOIN t2 ON t1.a=t2.a, t3

For the given table states, the two expressions return different sets of rows:

mysql> SELECT *
 FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+

1067

Optimizing SELECT Statements

| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
 FROM t1 LEFT JOIN t2 ON t1.a=t2.a, t3;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

Therefore, if we omit parentheses in a join expression with outer join operators, we might change the result
set for the original expression.

More exactly, we cannot ignore parentheses in the right operand of the left outer join operation and in
the left operand of a right join operation. In other words, we cannot ignore parentheses for the inner table
expressions of outer join operations. Parentheses for the other operand (operand for the outer table) can
be ignored.

The following expression:

(t1,t2) LEFT JOIN t3 ON P(t2.b,t3.b)

Is equivalent to this expression for any tables t1,t2,t3 and any condition P over attributes t2.b and
t3.b:

t1, t2 LEFT JOIN t3 ON P(t2.b,t3.b)

Whenever the order of execution of join operations in a join expression (joined_table) is not from left to
right, we talk about nested joins. Consider the following queries:

SELECT * FROM t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b) ON t1.a=t2.a
 WHERE t1.a > 1

SELECT * FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a
 WHERE (t2.b=t3.b OR t2.b IS NULL) AND t1.a > 1

Those queries are considered to contain these nested joins:

t2 LEFT JOIN t3 ON t2.b=t3.b
t2, t3

In the first query, the nested join is formed with a left join operation. In the second query, it is formed with
an inner join operation.

In the first query, the parentheses can be omitted: The grammatical structure of the join expression dictates
the same order of execution for join operations. For the second query, the parentheses cannot be omitted,
although the join expression here can be interpreted unambiguously without them. In our extended syntax,
the parentheses in (t2, t3) of the second query are required, although theoretically the query could be
parsed without them: We still would have unambiguous syntactical structure for the query because LEFT
JOIN and ON play the role of the left and right delimiters for the expression (t2,t3).

The preceding examples demonstrate these points:

• For join expressions involving only inner joins (and not outer joins), parentheses can be removed and
joins evaluated left to right. In fact, tables can be evaluated in any order.

• The same is not true, in general, for outer joins or for outer joins mixed with inner joins. Removal of
parentheses may change the result.

1068

Optimizing SELECT Statements

Queries with nested outer joins are executed in the same pipeline manner as queries with inner joins. More
exactly, a variation of the nested-loop join algorithm is exploited. Recall the algorithm by which the nested-
loop join executes a query (see Section 8.2.1.6, “Nested-Loop Join Algorithms”). Suppose that a join query
over 3 tables T1,T2,T3 has this form:

SELECT * FROM T1 INNER JOIN T2 ON P1(T1,T2)
 INNER JOIN T3 ON P2(T2,T3)
 WHERE P(T1,T2,T3)

Here, P1(T1,T2) and P2(T3,T3) are some join conditions (on expressions), whereas P(T1,T2,T3) is
a condition over columns of tables T1,T2,T3.

The nested-loop join algorithm would execute this query in the following manner:

FOR each row t1 in T1 {
 FOR each row t2 in T2 such that P1(t1,t2) {
 FOR each row t3 in T3 such that P2(t2,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

The notation t1||t2||t3 indicates a row constructed by concatenating the columns of rows t1, t2,
and t3. In some of the following examples, NULL where a table name appears means a row in which
NULL is used for each column of that table. For example, t1||t2||NULL indicates a row constructed by
concatenating the columns of rows t1 and t2, and NULL for each column of t3. Such a row is said to be
NULL-complemented.

Now consider a query with nested outer joins:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON P2(T2,T3))
 ON P1(T1,T2)
 WHERE P(T1,T2,T3)

For this query, modify the nested-loop pattern to obtain:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t2 in T2 such that P1(t1,t2) {
 BOOL f2:=FALSE;
 FOR each row t3 in T3 such that P2(t2,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f2=TRUE;
 f1=TRUE;
 }
 IF (!f2) {
 IF P(t1,t2,NULL) {
 t:=t1||t2||NULL; OUTPUT t;
 }
 f1=TRUE;
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

1069

Optimizing SELECT Statements

In general, for any nested loop for the first inner table in an outer join operation, a flag is introduced that
is turned off before the loop and is checked after the loop. The flag is turned on when for the current row
from the outer table a match from the table representing the inner operand is found. If at the end of the
loop cycle the flag is still off, no match has been found for the current row of the outer table. In this case,
the row is complemented by NULL values for the columns of the inner tables. The result row is passed to
the final check for the output or into the next nested loop, but only if the row satisfies the join condition of all
embedded outer joins.

In the example, the outer join table expressed by the following expression is embedded:

(T2 LEFT JOIN T3 ON P2(T2,T3))

For the query with inner joins, the optimizer could choose a different order of nested loops, such as this
one:

FOR each row t3 in T3 {
 FOR each row t2 in T2 such that P2(t2,t3) {
 FOR each row t1 in T1 such that P1(t1,t2) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

For queries with outer joins, the optimizer can choose only such an order where loops for outer tables
precede loops for inner tables. Thus, for our query with outer joins, only one nesting order is possible. For
the following query, the optimizer evaluates two different nestings. In both nestings, T1 must be processed
in the outer loop because it is used in an outer join. T2 and T3 are used in an inner join, so that join must
be processed in the inner loop. However, because the join is an inner join, T2 and T3 can be processed in
either order.

SELECT * T1 LEFT JOIN (T2,T3) ON P1(T1,T2) AND P2(T1,T3)
 WHERE P(T1,T2,T3)

One nesting evaluates T2, then T3:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t2 in T2 such that P1(t1,t2) {
 FOR each row t3 in T3 such that P2(t1,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f1:=TRUE
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

The other nesting evaluates T3, then T2:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t3 in T3 such that P2(t1,t3) {
 FOR each row t2 in T2 such that P1(t1,t2) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }

1070

Optimizing SELECT Statements

 f1:=TRUE
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

When discussing the nested-loop algorithm for inner joins, we omitted some details whose impact on the
performance of query execution may be huge. We did not mention so-called “pushed-down” conditions.
Suppose that our WHERE condition P(T1,T2,T3) can be represented by a conjunctive formula:

P(T1,T2,T2) = C1(T1) AND C2(T2) AND C3(T3).

In this case, MySQL actually uses the following nested-loop algorithm for the execution of the query with
inner joins:

FOR each row t1 in T1 such that C1(t1) {
 FOR each row t2 in T2 such that P1(t1,t2) AND C2(t2) {
 FOR each row t3 in T3 such that P2(t2,t3) AND C3(t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

You see that each of the conjuncts C1(T1), C2(T2), C3(T3) are pushed out of the most inner loop to
the most outer loop where it can be evaluated. If C1(T1) is a very restrictive condition, this condition
pushdown may greatly reduce the number of rows from table T1 passed to the inner loops. As a result, the
execution time for the query may improve immensely.

For a query with outer joins, the WHERE condition is to be checked only after it has been found that
the current row from the outer table has a match in the inner tables. Thus, the optimization of pushing
conditions out of the inner nested loops cannot be applied directly to queries with outer joins. Here we must
introduce conditional pushed-down predicates guarded by the flags that are turned on when a match has
been encountered.

Recall this example with outer joins:

P(T1,T2,T3)=C1(T1) AND C(T2) AND C3(T3)

For that example, the nested-loop algorithm using guarded pushed-down conditions looks like this:

FOR each row t1 in T1 such that C1(t1) {
 BOOL f1:=FALSE;
 FOR each row t2 in T2
 such that P1(t1,t2) AND (f1?C2(t2):TRUE) {
 BOOL f2:=FALSE;
 FOR each row t3 in T3
 such that P2(t2,t3) AND (f1&&f2?C3(t3):TRUE) {
 IF (f1&&f2?TRUE:(C2(t2) AND C3(t3))) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f2=TRUE;
 f1=TRUE;
 }
 IF (!f2) {
 IF (f1?TRUE:C2(t2) && P(t1,t2,NULL)) {
 t:=t1||t2||NULL; OUTPUT t;
 }

1071

Optimizing SELECT Statements

 f1=TRUE;
 }
 }
 IF (!f1 && P(t1,NULL,NULL)) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
}

In general, pushed-down predicates can be extracted from join conditions such as P1(T1,T2) and
P(T2,T3). In this case, a pushed-down predicate is guarded also by a flag that prevents checking the
predicate for the NULL-complemented row generated by the corresponding outer join operation.

Access by key from one inner table to another in the same nested join is prohibited if it is induced by a
predicate from the WHERE condition.

8.2.1.8 Outer Join Optimization

Outer joins include LEFT JOIN and RIGHT JOIN.

MySQL implements an A LEFT JOIN B join_specification as follows:

• Table B is set to depend on table A and all tables on which A depends.

• Table A is set to depend on all tables (except B) that are used in the LEFT JOIN condition.

• The LEFT JOIN condition is used to decide how to retrieve rows from table B. (In other words, any
condition in the WHERE clause is not used.)

• All standard join optimizations are performed, with the exception that a table is always read after all
tables on which it depends. If there is a circular dependency, an error occurs.

• All standard WHERE optimizations are performed.

• If there is a row in A that matches the WHERE clause, but there is no row in B that matches the ON
condition, an extra B row is generated with all columns set to NULL.

• If you use LEFT JOIN to find rows that do not exist in some table and you have the following test:
col_name IS NULL in the WHERE part, where col_name is a column that is declared as NOT NULL,
MySQL stops searching for more rows (for a particular key combination) after it has found one row that
matches the LEFT JOIN condition.

The RIGHT JOIN implementation is analogous to that of LEFT JOIN with the table roles reversed. Right
joins are converted to equivalent left joins, as described in Section 8.2.1.9, “Outer Join Simplification”.

For a LEFT JOIN, if the WHERE condition is always false for the generated NULL row, the LEFT JOIN
is changed to an inner join. For example, the WHERE clause would be false in the following query if
t2.column1 were NULL:

SELECT * FROM t1 LEFT JOIN t2 ON (column1) WHERE t2.column2=5;

Therefore, it is safe to convert the query to an inner join:

SELECT * FROM t1, t2 WHERE t2.column2=5 AND t1.column1=t2.column1;

Now the optimizer can use table t2 before table t1 if doing so would result in a better query plan.
To provide a hint about the table join order, use STRAIGHT_JOIN; see Section 13.2.9, “SELECT
Statement”. However, STRAIGHT_JOIN may prevent indexes from being used because it disables
semijoin transformations; see Section 8.2.2.1, “Optimizing Subqueries with Semijoin Transformations”.

1072

Optimizing SELECT Statements

8.2.1.9 Outer Join Simplification

Table expressions in the FROM clause of a query are simplified in many cases.

At the parser stage, queries with right outer join operations are converted to equivalent queries containing
only left join operations. In the general case, the conversion is performed such that this right join:

(T1, ...) RIGHT JOIN (T2, ...) ON P(T1, ..., T2, ...)

Becomes this equivalent left join:

(T2, ...) LEFT JOIN (T1, ...) ON P(T1, ..., T2, ...)

All inner join expressions of the form T1 INNER JOIN T2 ON P(T1,T2) are replaced by the list T1,T2,
P(T1,T2) being joined as a conjunct to the WHERE condition (or to the join condition of the embedding
join, if there is any).

When the optimizer evaluates plans for outer join operations, it takes into consideration only plans where,
for each such operation, the outer tables are accessed before the inner tables. The optimizer choices are
limited because only such plans enable outer joins to be executed using the nested-loop algorithm.

Consider a query of this form, where R(T2) greatly narrows the number of matching rows from table T2:

SELECT * T1 FROM T1
 LEFT JOIN T2 ON P1(T1,T2)
 WHERE P(T1,T2) AND R(T2)

If the query is executed as written, the optimizer has no choice but to access the less-restricted table T1
before the more-restricted table T2, which may produce a very inefficient execution plan.

Instead, MySQL converts the query to a query with no outer join operation if the WHERE condition is null-
rejected. (That is, it converts the outer join to an inner join.) A condition is said to be null-rejected for an
outer join operation if it evaluates to FALSE or UNKNOWN for any NULL-complemented row generated for the
operation.

Thus, for this outer join:

T1 LEFT JOIN T2 ON T1.A=T2.A

Conditions such as these are null-rejected because they cannot be true for any NULL-complemented row
(with T2 columns set to NULL):

T2.B IS NOT NULL
T2.B > 3
T2.C <= T1.C
T2.B < 2 OR T2.C > 1

Conditions such as these are not null-rejected because they might be true for a NULL-complemented row:

T2.B IS NULL
T1.B < 3 OR T2.B IS NOT NULL
T1.B < 3 OR T2.B > 3

The general rules for checking whether a condition is null-rejected for an outer join operation are simple:

• It is of the form A IS NOT NULL, where A is an attribute of any of the inner tables

• It is a predicate containing a reference to an inner table that evaluates to UNKNOWN when one of its
arguments is NULL

• It is a conjunction containing a null-rejected condition as a conjunct

1073

Optimizing SELECT Statements

• It is a disjunction of null-rejected conditions

A condition can be null-rejected for one outer join operation in a query and not null-rejected for another. In
this query, the WHERE condition is null-rejected for the second outer join operation but is not null-rejected
for the first one:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 LEFT JOIN T3 ON T3.B=T1.B
 WHERE T3.C > 0

If the WHERE condition is null-rejected for an outer join operation in a query, the outer join operation is
replaced by an inner join operation.

For example, in the preceding query, the second outer join is null-rejected and can be replaced by an inner
join:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 INNER JOIN T3 ON T3.B=T1.B
 WHERE T3.C > 0

For the original query, the optimizer evaluates only plans compatible with the single table-access order
T1,T2,T3. For the rewritten query, it additionally considers the access order T3,T1,T2.

A conversion of one outer join operation may trigger a conversion of another. Thus, the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 LEFT JOIN T3 ON T3.B=T2.B
 WHERE T3.C > 0

Is first converted to the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 INNER JOIN T3 ON T3.B=T2.B
 WHERE T3.C > 0

Which is equivalent to the query:

SELECT * FROM (T1 LEFT JOIN T2 ON T2.A=T1.A), T3
 WHERE T3.C > 0 AND T3.B=T2.B

The remaining outer join operation can also be replaced by an inner join because the condition
T3.B=T2.B is null-rejected. This results in a query with no outer joins at all:

SELECT * FROM (T1 INNER JOIN T2 ON T2.A=T1.A), T3
 WHERE T3.C > 0 AND T3.B=T2.B

Sometimes the optimizer succeeds in replacing an embedded outer join operation, but cannot convert the
embedding outer join. The following query:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A
 WHERE T3.C > 0

Is converted to:

SELECT * FROM T1 LEFT JOIN
 (T2 INNER JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A
 WHERE T3.C > 0

That can be rewritten only to the form still containing the embedding outer join operation:

SELECT * FROM T1 LEFT JOIN

1074

Optimizing SELECT Statements

 (T2,T3)
 ON (T2.A=T1.A AND T3.B=T2.B)
 WHERE T3.C > 0

Any attempt to convert an embedded outer join operation in a query must take into account the join
condition for the embedding outer join together with the WHERE condition. In this query, the WHERE
condition is not null-rejected for the embedded outer join, but the join condition of the embedding outer join
T2.A=T1.A AND T3.C=T1.C is null-rejected:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A AND T3.C=T1.C
 WHERE T3.D > 0 OR T1.D > 0

Consequently, the query can be converted to:

SELECT * FROM T1 LEFT JOIN
 (T2, T3)
 ON T2.A=T1.A AND T3.C=T1.C AND T3.B=T2.B
 WHERE T3.D > 0 OR T1.D > 0

8.2.1.10 Multi-Range Read Optimization

Reading rows using a range scan on a secondary index can result in many random disk accesses to the
base table when the table is large and not stored in the storage engine's cache. With the Disk-Sweep
Multi-Range Read (MRR) optimization, MySQL tries to reduce the number of random disk access for
range scans by first scanning the index only and collecting the keys for the relevant rows. Then the keys
are sorted and finally the rows are retrieved from the base table using the order of the primary key. The
motivation for Disk-sweep MRR is to reduce the number of random disk accesses and instead achieve a
more sequential scan of the base table data.

The Multi-Range Read optimization provides these benefits:

• MRR enables data rows to be accessed sequentially rather than in random order, based on index tuples.
The server obtains a set of index tuples that satisfy the query conditions, sorts them according to data
row ID order, and uses the sorted tuples to retrieve data rows in order. This makes data access more
efficient and less expensive.

• MRR enables batch processing of requests for key access for operations that require access to data
rows through index tuples, such as range index scans and equi-joins that use an index for the join
attribute. MRR iterates over a sequence of index ranges to obtain qualifying index tuples. As these
results accumulate, they are used to access the corresponding data rows. It is not necessary to acquire
all index tuples before starting to read data rows.

The following scenarios illustrate when MRR optimization can be advantageous:

Scenario A: MRR can be used for InnoDB and MyISAM tables for index range scans and equi-join
operations.

1. A portion of the index tuples are accumulated in a buffer.

2. The tuples in the buffer are sorted by their data row ID.

3. Data rows are accessed according to the sorted index tuple sequence.

Scenario B: MRR can be used for NDB tables for multiple-range index scans or when performing an equi-
join by an attribute.

1. A portion of ranges, possibly single-key ranges, is accumulated in a buffer on the central node where
the query is submitted.

1075

Optimizing SELECT Statements

2. The ranges are sent to the execution nodes that access data rows.

3. The accessed rows are packed into packages and sent back to the central node.

4. The received packages with data rows are placed in a buffer.

5. Data rows are read from the buffer.

When MRR is used, the Extra column in EXPLAIN output shows Using MRR.

InnoDB and MyISAM do not use MRR if full table rows need not be accessed to produce the query result.
This is the case if results can be produced entirely on the basis on information in the index tuples (through
a covering index); MRR provides no benefit.

Two optimizer_switch system variable flags provide an interface to the use of MRR optimization.
The mrr flag controls whether MRR is enabled. If mrr is enabled (on), the mrr_cost_based flag
controls whether the optimizer attempts to make a cost-based choice between using and not using MRR
(on) or uses MRR whenever possible (off). By default, mrr is on and mrr_cost_based is on. See
Section 8.9.2, “Switchable Optimizations”.

For MRR, a storage engine uses the value of the read_rnd_buffer_size system variable
as a guideline for how much memory it can allocate for its buffer. The engine uses up to
read_rnd_buffer_size bytes and determines the number of ranges to process in a single pass.

8.2.1.11 Block Nested-Loop and Batched Key Access Joins

In MySQL, a Batched Key Access (BKA) Join algorithm is available that uses both index access to the
joined table and a join buffer. The BKA algorithm supports inner join, outer join, and semijoin operations,
including nested outer joins. Benefits of BKA include improved join performance due to more efficient
table scanning. Also, the Block Nested-Loop (BNL) Join algorithm previously used only for inner joins is
extended and can be employed for outer join and semijoin operations, including nested outer joins.

The following sections discuss the join buffer management that underlies the extension of the original BNL
algorithm, the extended BNL algorithm, and the BKA algorithm. For information about semijoin strategies,
see Section 8.2.2.1, “Optimizing Subqueries with Semijoin Transformations”

• Join Buffer Management for Block Nested-Loop and Batched Key Access Algorithms

• Block Nested-Loop Algorithm for Outer Joins and Semijoins

• Batched Key Access Joins

Join Buffer Management for Block Nested-Loop and Batched Key Access Algorithms

MySQL can employ join buffers to execute not only inner joins without index access to the inner table,
but also outer joins and semijoins that appear after subquery flattening. Moreover, a join buffer can be
effectively used when there is an index access to the inner table.

The join buffer management code slightly more efficiently utilizes join buffer space when storing the values
of the interesting row columns: No additional bytes are allocated in buffers for a row column if its value is
NULL, and the minimum number of bytes is allocated for any value of the VARCHAR type.

The code supports two types of buffers, regular and incremental. Suppose that join buffer B1 is employed
to join tables t1 and t2 and the result of this operation is joined with table t3 using join buffer B2:

• A regular join buffer contains columns from each join operand. If B2 is a regular join buffer, each row r
put into B2 is composed of the columns of a row r1 from B1 and the interesting columns of a matching
row r2 from table t3.

1076

Optimizing SELECT Statements

• An incremental join buffer contains only columns from rows of the table produced by the second join
operand. That is, it is incremental to a row from the first operand buffer. If B2 is an incremental join
buffer, it contains the interesting columns of the row r2 together with a link to the row r1 from B1.

Incremental join buffers are always incremental relative to a join buffer from an earlier join operation, so the
buffer from the first join operation is always a regular buffer. In the example just given, the buffer B1 used
to join tables t1 and t2 must be a regular buffer.

Each row of the incremental buffer used for a join operation contains only the interesting columns of a row
from the table to be joined. These columns are augmented with a reference to the interesting columns of
the matched row from the table produced by the first join operand. Several rows in the incremental buffer
can refer to the same row r whose columns are stored in the previous join buffers insofar as all these rows
match row r.

Incremental buffers enable less frequent copying of columns from buffers used for previous join operations.
This provides a savings in buffer space because in the general case a row produced by the first join
operand can be matched by several rows produced by the second join operand. It is unnecessary to make
several copies of a row from the first operand. Incremental buffers also provide a savings in processing
time due to the reduction in copying time.

The block_nested_loop and batched_key_access flags of the optimizer_switch system
variable control how the optimizer uses the Block Nested-Loop and Batched Key Access join algorithms.
By default, block_nested_loop is on and batched_key_access is off. See Section 8.9.2,
“Switchable Optimizations”.

For information about semijoin strategies, see Section 8.2.2.1, “Optimizing Subqueries with Semijoin
Transformations”

Block Nested-Loop Algorithm for Outer Joins and Semijoins

The original implementation of the MySQL BNL algorithm is extended to support outer join and semijoin
operations.

When these operations are executed with a join buffer, each row put into the buffer is supplied with a
match flag.

If an outer join operation is executed using a join buffer, each row of the table produced by the second
operand is checked for a match against each row in the join buffer. When a match is found, a new
extended row is formed (the original row plus columns from the second operand) and sent for further
extensions by the remaining join operations. In addition, the match flag of the matched row in the buffer is
enabled. After all rows of the table to be joined have been examined, the join buffer is scanned. Each row
from the buffer that does not have its match flag enabled is extended by NULL complements (NULL values
for each column in the second operand) and sent for further extensions by the remaining join operations.

The block_nested_loop flag of the optimizer_switch system variable controls how the optimizer
uses the Block Nested-Loop algorithm. By default, block_nested_loop is on. See Section 8.9.2,
“Switchable Optimizations”.

In EXPLAIN output, use of BNL for a table is signified when the Extra value contains Using join
buffer (Block Nested Loop) and the type value is ALL, index, or range.

Some cases involving the combination of one or more subqueries with one or more left joins, particularly
those returning many rows, may use BNL even though it is not ideal in such instances. This is a known
issue which is fixed in MySQL 8.0. If upgrading MySQL is not immediately feasible for you, you may wish
to disable BNL in the meantime by setting optimizer_switch='block_nested_loop=off', to let the
optimizer choose a better plan, using one or more index hints (see Section 8.9.3, “Index Hints”), or both, to
improve the performance of such queries.

1077

Optimizing SELECT Statements

For information about semijoin strategies, see Section 8.2.2.1, “Optimizing Subqueries with Semijoin
Transformations”

Batched Key Access Joins

MySQL implements a method of joining tables called the Batched Key Access (BKA) join algorithm. BKA
can be applied when there is an index access to the table produced by the second join operand. Like the
BNL join algorithm, the BKA join algorithm employs a join buffer to accumulate the interesting columns of
the rows produced by the first operand of the join operation. Then the BKA algorithm builds keys to access
the table to be joined for all rows in the buffer and submits these keys in a batch to the database engine
for index lookups. The keys are submitted to the engine through the Multi-Range Read (MRR) interface
(see Section 8.2.1.10, “Multi-Range Read Optimization”). After submission of the keys, the MRR engine
functions perform lookups in the index in an optimal way, fetching the rows of the joined table found by
these keys, and starts feeding the BKA join algorithm with matching rows. Each matching row is coupled
with a reference to a row in the join buffer.

When BKA is used, the value of join_buffer_size defines how large the batch of keys is in each
request to the storage engine. The larger the buffer, the more sequential access is made to the right hand
table of a join operation, which can significantly improve performance.

For BKA to be used, the batched_key_access flag of the optimizer_switch system variable must be
set to on. BKA uses MRR, so the mrr flag must also be on. Currently, the cost estimation for MRR is too
pessimistic. Hence, it is also necessary for mrr_cost_based to be off for BKA to be used. The following
setting enables BKA:

mysql> SET optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

There are two scenarios by which MRR functions execute:

• The first scenario is used for conventional disk-based storage engines such as InnoDB and MyISAM.
For these engines, usually the keys for all rows from the join buffer are submitted to the MRR interface
at once. Engine-specific MRR functions perform index lookups for the submitted keys, get row IDs (or
primary keys) from them, and then fetch rows for all these selected row IDs one by one by request from
BKA algorithm. Every row is returned with an association reference that enables access to the matched
row in the join buffer. The rows are fetched by the MRR functions in an optimal way: They are fetched in
the row ID (primary key) order. This improves performance because reads are in disk order rather than
random order.

• The second scenario is used for remote storage engines such as NDB. A package of keys for a portion
of rows from the join buffer, together with their associations, is sent by a MySQL Server (SQL node) to
NDB Cluster data nodes. In return, the SQL node receives a package (or several packages) of matching
rows coupled with corresponding associations. The BKA join algorithm takes these rows and builds new
joined rows. Then a new set of keys is sent to the data nodes and the rows from the returned packages
are used to build new joined rows. The process continues until the last keys from the join buffer are
sent to the data nodes, and the SQL node has received and joined all rows matching these keys. This
improves performance because fewer key-bearing packages sent by the SQL node to the data nodes
means fewer round trips between it and the data nodes to perform the join operation.

With the first scenario, a portion of the join buffer is reserved to store row IDs (primary keys) selected by
index lookups and passed as a parameter to the MRR functions.

There is no special buffer to store keys built for rows from the join buffer. Instead, a function that builds the
key for the next row in the buffer is passed as a parameter to the MRR functions.

In EXPLAIN output, use of BKA for a table is signified when the Extra value contains Using join
buffer (Batched Key Access) and the type value is ref or eq_ref.

1078

Optimizing SELECT Statements

8.2.1.12 IS NULL Optimization

MySQL can perform the same optimization on col_name IS NULL that it can use for col_name =
constant_value. For example, MySQL can use indexes and ranges to search for NULL with IS NULL.

Examples:

SELECT * FROM tbl_name WHERE key_col IS NULL;

SELECT * FROM tbl_name WHERE key_col <=> NULL;

SELECT * FROM tbl_name
 WHERE key_col=const1 OR key_col=const2 OR key_col IS NULL;

If a WHERE clause includes a col_name IS NULL condition for a column that is declared as NOT NULL,
that expression is optimized away. This optimization does not occur in cases when the column might
produce NULL anyway (for example, if it comes from a table on the right side of a LEFT JOIN).

MySQL can also optimize the combination col_name = expr OR col_name IS NULL, a form that is
common in resolved subqueries. EXPLAIN shows ref_or_null when this optimization is used.

This optimization can handle one IS NULL for any key part.

Some examples of queries that are optimized, assuming that there is an index on columns a and b of table
t2:

SELECT * FROM t1 WHERE t1.a=expr OR t1.a IS NULL;

SELECT * FROM t1, t2 WHERE t1.a=t2.a OR t2.a IS NULL;

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a OR t2.a IS NULL) AND t2.b=t1.b;

SELECT * FROM t1, t2
 WHERE t1.a=t2.a AND (t2.b=t1.b OR t2.b IS NULL);

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a AND t2.a IS NULL AND ...)
 OR (t1.a=t2.a AND t2.a IS NULL AND ...);

ref_or_null works by first doing a read on the reference key, and then a separate search for rows with a
NULL key value.

The optimization can handle only one IS NULL level. In the following query, MySQL uses key lookups only
on the expression (t1.a=t2.a AND t2.a IS NULL) and is not able to use the key part on b:

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a AND t2.a IS NULL)
 OR (t1.b=t2.b AND t2.b IS NULL);

8.2.1.13 ORDER BY Optimization

This section describes when MySQL can use an index to satisfy an ORDER BY clause, the filesort
operation used when an index cannot be used, and execution plan information available from the optimizer
about ORDER BY.

An ORDER BY with and without LIMIT may return rows in different orders, as discussed in
Section 8.2.1.16, “LIMIT Query Optimization”.

• Use of Indexes to Satisfy ORDER BY

• Use of filesort to Satisfy ORDER BY

1079

Optimizing SELECT Statements

• Influencing ORDER BY Optimization

• ORDER BY Execution Plan Information Available

Use of Indexes to Satisfy ORDER BY

In some cases, MySQL may use an index to satisfy an ORDER BY clause and avoid the extra sorting
involved in performing a filesort operation.

The index may also be used even if the ORDER BY does not match the index exactly, as long as all unused
portions of the index and all extra ORDER BY columns are constants in the WHERE clause. If the index does
not contain all columns accessed by the query, the index is used only if index access is cheaper than other
access methods.

Assuming that there is an index on (key_part1, key_part2), the following queries may use the index
to resolve the ORDER BY part. Whether the optimizer actually does so depends on whether reading the
index is more efficient than a table scan if columns not in the index must also be read.

• In this query, the index on (key_part1, key_part2) enables the optimizer to avoid sorting:

SELECT * FROM t1
 ORDER BY key_part1, key_part2;

However, the query uses SELECT *, which may select more columns than key_part1 and
key_part2. In that case, scanning an entire index and looking up table rows to find columns not in
the index may be more expensive than scanning the table and sorting the results. If so, the optimizer
is not likelt to use the index. If SELECT * selects only the index columns, the index is used and sorting
avoided.

If t1 is an InnoDB table, the table primary key is implicitly part of the index, and the index can be used
to resolve the ORDER BY for this query:

SELECT pk, key_part1, key_part2 FROM t1
 ORDER BY key_part1, key_part2;

• In this query, key_part1 is constant, so all rows accessed through the index are in key_part2 order,
and an index on (key_part1, key_part2) avoids sorting if the WHERE clause is selective enough to
make an index range scan cheaper than a table scan:

SELECT * FROM t1
 WHERE key_part1 = constant
 ORDER BY key_part2;

• In the next two queries, whether the index is used is similar to the same queries without DESC shown
previously:

SELECT * FROM t1
 ORDER BY key_part1 DESC, key_part2 DESC;

SELECT * FROM t1
 WHERE key_part1 = constant
 ORDER BY key_part2 DESC;

• In the next two queries, key_part1 is compared to a constant. The index is used if the WHERE clause is
selective enough to make an index range scan cheaper than a table scan:

SELECT * FROM t1
 WHERE key_part1 > constant
 ORDER BY key_part1 ASC;

SELECT * FROM t1

1080

Optimizing SELECT Statements

 WHERE key_part1 < constant
 ORDER BY key_part1 DESC;

• In the next query, the ORDER BY does not name key_part1, but all rows selected have a constant
key_part1 value, so the index can still be used:

SELECT * FROM t1
 WHERE key_part1 = constant1 AND key_part2 > constant2
 ORDER BY key_part2;

In some cases, MySQL cannot use indexes to resolve the ORDER BY, although it may still use indexes to
find the rows that match the WHERE clause. Examples:

• The query uses ORDER BY on different indexes:

SELECT * FROM t1 ORDER BY key1, key2;

• The query uses ORDER BY on nonconsecutive parts of an index:

SELECT * FROM t1 WHERE key2=constant ORDER BY key1_part1, key1_part3;

• The query mixes ASC and DESC:

SELECT * FROM t1 ORDER BY key_part1 DESC, key_part2 ASC;

• The index used to fetch the rows differs from the one used in the ORDER BY:

SELECT * FROM t1 WHERE key2=constant ORDER BY key1;

• The query uses ORDER BY with an expression that includes terms other than the index column name:

SELECT * FROM t1 ORDER BY ABS(key);
SELECT * FROM t1 ORDER BY -key;

• The query joins many tables, and the columns in the ORDER BY are not all from the first nonconstant
table that is used to retrieve rows. (This is the first table in the EXPLAIN output that does not have a
const join type.)

• The query has different ORDER BY and GROUP BY expressions.

• There is an index on only a prefix of a column named in the ORDER BY clause. In this case, the index
cannot be used to fully resolve the sort order. For example, if only the first 10 bytes of a CHAR(20)
column are indexed, the index cannot distinguish values past the 10th byte and a filesort is needed.

• The index does not store rows in order. For example, this is true for a HASH index in a MEMORY table.

Availability of an index for sorting may be affected by the use of column aliases. Suppose that the column
t1.a is indexed. In this statement, the name of the column in the select list is a. It refers to t1.a, as does
the reference to a in the ORDER BY, so the index on t1.a can be used:

SELECT a FROM t1 ORDER BY a;

In this statement, the name of the column in the select list is also a, but it is the alias name. It refers to
ABS(a), as does the reference to a in the ORDER BY, so the index on t1.a cannot be used:

SELECT ABS(a) AS a FROM t1 ORDER BY a;

In the following statement, the ORDER BY refers to a name that is not the name of a column in the select
list. But there is a column in t1 named a, so the ORDER BY refers to t1.a and the index on t1.a can be
used. (The resulting sort order may be completely different from the order for ABS(a), of course.)

SELECT ABS(a) AS b FROM t1 ORDER BY a;

1081

Optimizing SELECT Statements

By default, MySQL sorts GROUP BY col1, col2, ... queries as if you also included ORDER BY
col1, col2, ... in the query. If you include an explicit ORDER BY clause that contains the same
column list, MySQL optimizes it away without any speed penalty, although the sorting still occurs.

If a query includes GROUP BY but you want to avoid the overhead of sorting the result, you can suppress
sorting by specifying ORDER BY NULL. For example:

INSERT INTO foo
SELECT a, COUNT(*) FROM bar GROUP BY a ORDER BY NULL;

The optimizer may still choose to use sorting to implement grouping operations. ORDER BY NULL
suppresses sorting of the result, not prior sorting done by grouping operations to determine the result.

Note

GROUP BY implicitly sorts by default (that is, in the absence of ASC or DESC
designators for GROUP BY columns), but relying on implicit GROUP BY sorting is
deprecated. To produce a given sort order, use explicit ASC or DESC designators
for GROUP BY columns or provide an ORDER BY clause. GROUP BY sorting is a
MySQL extension that may change in a future release; for example, to make it
possible for the optimizer to order groupings in whatever manner it deems most
efficient and to avoid the sorting overhead.

Use of filesort to Satisfy ORDER BY

If an index cannot be used to satisfy an ORDER BY clause, MySQL performs a filesort operation that
reads table rows and sorts them. A filesort constitutes an extra sorting phase in query execution.

To obtain memory for filesort operations, the optimizer allocates a fixed amount of
sort_buffer_size bytes up front. Individual sessions can change the session value of this variable as
desired to avoid excessive memory use, or to allocate more memory as necessary.

A filesort operation uses temporary disk files as necessary if the result set is too large to fit in memory.
Some types of queries are particularly suited to completely in-memory filesort operations. For example,
the optimizer can use filesort to efficiently handle in memory, without temporary files, the ORDER BY
operation for queries (and subqueries) of the following form:

SELECT ... FROM single_table ... ORDER BY non_index_column [DESC] LIMIT [M,]N;

Such queries are common in web applications that display only a few rows from a larger result set.
Examples:

SELECT col1, ... FROM t1 ... ORDER BY name LIMIT 10;
SELECT col1, ... FROM t1 ... ORDER BY RAND() LIMIT 15;

Influencing ORDER BY Optimization

For slow ORDER BY queries for which filesort is not used, try lowering the
max_length_for_sort_data system variable to a value that is appropriate to trigger a filesort. (A
symptom of setting the value of this variable too high is a combination of high disk activity and low CPU
activity.)

To increase ORDER BY speed, check whether you can get MySQL to use indexes rather than an extra
sorting phase. If this is not possible, try the following strategies:

• Increase the sort_buffer_size variable value. Ideally, the value should be large enough for the
entire result set to fit in the sort buffer (to avoid writes to disk and merge passes), but at minimum the

1082

Optimizing SELECT Statements

value must be large enough to accommodate 15 tuples. (Up to 15 temporary disk files are merged and
there must be room in memory for at least one tuple per file.)

Take into account that the size of column values stored in the sort buffer is affected by the
max_sort_length system variable value. For example, if tuples store values of long string columns
and you increase the value of max_sort_length, the size of sort buffer tuples increases as well and
may require you to increase sort_buffer_size. For column values calculated as a result of string
expressions (such as those that invoke a string-valued function), the filesort algorithm cannot tell the
maximum length of expression values, so it must allocate max_sort_length bytes for each tuple.

To monitor the number of merge passes (to merge temporary files), check the Sort_merge_passes
status variable.

• Increase the read_rnd_buffer_size variable value so that more rows are read at a time.

• Use less RAM per row by declaring columns only as large as they need to be to hold the values stored in
them. For example, CHAR(16) is better than CHAR(200) if values never exceed 16 characters.

• Change the tmpdir system variable to point to a dedicated file system with large amounts of free space.
The variable value can list several paths that are used in round-robin fashion; you can use this feature
to spread the load across several directories. Separate the paths by colon characters (:) on Unix and
semicolon characters (;) on Windows. The paths should name directories in file systems located on
different physical disks, not different partitions on the same disk.

ORDER BY Execution Plan Information Available

With EXPLAIN (see Section 8.8.1, “Optimizing Queries with EXPLAIN”), you can check whether MySQL
can use indexes to resolve an ORDER BY clause:

• If the Extra column of EXPLAIN output does not contain Using filesort, the index is used and a
filesort is not performed.

• If the Extra column of EXPLAIN output contains Using filesort, the index is not used and a
filesort is performed.

In addition, if a filesort is performed, optimizer trace output includes a filesort_summary block. For
example:

"filesort_summary": {
 "rows": 100,
 "examined_rows": 100,
 "number_of_tmp_files": 0,
 "sort_buffer_size": 25192,
 "sort_mode": "<sort_key, additional_fields>"
}

The sort_mode value provides information about the contents of tuples in the sort buffer:

• <sort_key, rowid>: This indicates that sort buffer tuples are pairs that contain the sort key value and
row ID of the original table row. Tuples are sorted by sort key value and the row ID is used to read the
row from the table.

• <sort_key, additional_fields>: This indicates that sort buffer tuples contain the sort key value
and columns referenced by the query. Tuples are sorted by sort key value and column values are read
directly from the tuple.

EXPLAIN does not distinguish whether the optimizer does or does not perform a filesort
in memory. Use of an in-memory filesort can be seen in optimizer trace output. Look for

1083

Optimizing SELECT Statements

filesort_priority_queue_optimization. For information about the optimizer trace, see MySQL
Internals: Tracing the Optimizer.

8.2.1.14 GROUP BY Optimization

The most general way to satisfy a GROUP BY clause is to scan the whole table and create a new temporary
table where all rows from each group are consecutive, and then use this temporary table to discover
groups and apply aggregate functions (if any). In some cases, MySQL is able to do much better than that
and avoid creation of temporary tables by using index access.

The most important preconditions for using indexes for GROUP BY are that all GROUP BY columns
reference attributes from the same index, and that the index stores its keys in order (as is true, for
example, for a BTREE index, but not for a HASH index). Whether use of temporary tables can be replaced
by index access also depends on which parts of an index are used in a query, the conditions specified for
these parts, and the selected aggregate functions.

There are two ways to execute a GROUP BY query through index access, as detailed in the following
sections. The first method applies the grouping operation together with all range predicates (if any). The
second method first performs a range scan, and then groups the resulting tuples.

In MySQL, GROUP BY is used for sorting, so the server may also apply ORDER BY optimizations to
grouping. However, relying on implicit GROUP BY sorting is deprecated. See Section 8.2.1.13, “ORDER BY
Optimization”.

• Loose Index Scan

• Tight Index Scan

Loose Index Scan

The most efficient way to process GROUP BY is when an index is used to directly retrieve the grouping
columns. With this access method, MySQL uses the property of some index types that the keys are
ordered (for example, BTREE). This property enables use of lookup groups in an index without having
to consider all keys in the index that satisfy all WHERE conditions. This access method considers only a
fraction of the keys in an index, so it is called a Loose Index Scan. When there is no WHERE clause, a
Loose Index Scan reads as many keys as the number of groups, which may be a much smaller number
than that of all keys. If the WHERE clause contains range predicates (see the discussion of the range join
type in Section 8.8.1, “Optimizing Queries with EXPLAIN”), a Loose Index Scan looks up the first key of
each group that satisfies the range conditions, and again reads the smallest possible number of keys. This
is possible under the following conditions:

• The query is over a single table.

• The GROUP BY names only columns that form a leftmost prefix of the index and no other columns. (If,
instead of GROUP BY, the query has a DISTINCT clause, all distinct attributes refer to columns that form
a leftmost prefix of the index.) For example, if a table t1 has an index on (c1,c2,c3), Loose Index
Scan is applicable if the query has GROUP BY c1, c2. It is not applicable if the query has GROUP BY
c2, c3 (the columns are not a leftmost prefix) or GROUP BY c1, c2, c4 (c4 is not in the index).

• The only aggregate functions used in the select list (if any) are MIN() and MAX(), and all of them refer
to the same column. The column must be in the index and must immediately follow the columns in the
GROUP BY.

• Any other parts of the index than those from the GROUP BY referenced in the query must be constants
(that is, they must be referenced in equalities with constants), except for the argument of MIN() or
MAX() functions.

1084

https://dev.mysql.com/doc/internals/en/optimizer-tracing.html
https://dev.mysql.com/doc/internals/en/optimizer-tracing.html

Optimizing SELECT Statements

• For columns in the index, full column values must be indexed, not just a prefix. For example, with c1
VARCHAR(20), INDEX (c1(10)), the index uses only a prefix of c1 values and cannot be used for
Loose Index Scan.

If Loose Index Scan is applicable to a query, the EXPLAIN output shows Using index for group-by
in the Extra column.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The Loose Index Scan
access method can be used for the following queries:

SELECT c1, c2 FROM t1 GROUP BY c1, c2;
SELECT DISTINCT c1, c2 FROM t1;
SELECT c1, MIN(c2) FROM t1 GROUP BY c1;
SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT MAX(c3), MIN(c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2;
SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2;

The following queries cannot be executed with this quick select method, for the reasons given:

• There are aggregate functions other than MIN() or MAX():

SELECT c1, SUM(c2) FROM t1 GROUP BY c1;

• The columns in the GROUP BY clause do not form a leftmost prefix of the index:

SELECT c1, c2 FROM t1 GROUP BY c2, c3;

• The query refers to a part of a key that comes after the GROUP BY part, and for which there is no
equality with a constant:

SELECT c1, c3 FROM t1 GROUP BY c1, c2;

Were the query to include WHERE c3 = const, Loose Index Scan could be used.

The Loose Index Scan access method can be applied to other forms of aggregate function references in
the select list, in addition to the MIN() and MAX() references already supported:

• AVG(DISTINCT), SUM(DISTINCT), and COUNT(DISTINCT) are supported. AVG(DISTINCT)
and SUM(DISTINCT) take a single argument. COUNT(DISTINCT) can have more than one column
argument.

• There must be no GROUP BY or DISTINCT clause in the query.

• The Loose Index Scan limitations described previously still apply.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The Loose Index Scan
access method can be used for the following queries:

SELECT COUNT(DISTINCT c1), SUM(DISTINCT c1) FROM t1;

SELECT COUNT(DISTINCT c1, c2), COUNT(DISTINCT c2, c1) FROM t1;

Tight Index Scan

A Tight Index Scan may be either a full index scan or a range index scan, depending on the query
conditions.

When the conditions for a Loose Index Scan are not met, it still may be possible to avoid creation of
temporary tables for GROUP BY queries. If there are range conditions in the WHERE clause, this method

1085

Optimizing SELECT Statements

reads only the keys that satisfy these conditions. Otherwise, it performs an index scan. Because this
method reads all keys in each range defined by the WHERE clause, or scans the whole index if there are
no range conditions, it is called a Tight Index Scan. With a Tight Index Scan, the grouping operation is
performed only after all keys that satisfy the range conditions have been found.

For this method to work, it is sufficient that there be a constant equality condition for all columns in a query
referring to parts of the key coming before or in between parts of the GROUP BY key. The constants from
the equality conditions fill in any “gaps” in the search keys so that it is possible to form complete prefixes
of the index. These index prefixes then can be used for index lookups. If the GROUP BY result requires
sorting, and it is possible to form search keys that are prefixes of the index, MySQL also avoids extra
sorting operations because searching with prefixes in an ordered index already retrieves all the keys in
order.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The following queries do
not work with the Loose Index Scan access method described previously, but still work with the Tight Index
Scan access method.

• There is a gap in the GROUP BY, but it is covered by the condition c2 = 'a':

SELECT c1, c2, c3 FROM t1 WHERE c2 = 'a' GROUP BY c1, c3;

• The GROUP BY does not begin with the first part of the key, but there is a condition that provides a
constant for that part:

SELECT c1, c2, c3 FROM t1 WHERE c1 = 'a' GROUP BY c2, c3;

8.2.1.15 DISTINCT Optimization

DISTINCT combined with ORDER BY needs a temporary table in many cases.

Because DISTINCT may use GROUP BY, learn how MySQL works with columns in ORDER BY or HAVING
clauses that are not part of the selected columns. See Section 12.19.3, “MySQL Handling of GROUP BY”.

In most cases, a DISTINCT clause can be considered as a special case of GROUP BY. For example, the
following two queries are equivalent:

SELECT DISTINCT c1, c2, c3 FROM t1
WHERE c1 > const;

SELECT c1, c2, c3 FROM t1
WHERE c1 > const GROUP BY c1, c2, c3;

Due to this equivalence, the optimizations applicable to GROUP BY queries can be also applied to queries
with a DISTINCT clause. Thus, for more details on the optimization possibilities for DISTINCT queries, see
Section 8.2.1.14, “GROUP BY Optimization”.

When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count
unique rows.

If you do not use columns from all tables named in a query, MySQL stops scanning any unused tables as
soon as it finds the first match. In the following case, assuming that t1 is used before t2 (which you can
check with EXPLAIN), MySQL stops reading from t2 (for any particular row in t1) when it finds the first
row in t2:

SELECT DISTINCT t1.a FROM t1, t2 where t1.a=t2.a;

8.2.1.16 LIMIT Query Optimization

1086

Optimizing SELECT Statements

If you need only a specified number of rows from a result set, use a LIMIT clause in the query, rather than
fetching the whole result set and throwing away the extra data.

MySQL sometimes optimizes a query that has a LIMIT row_count clause and no HAVING clause:

• If you select only a few rows with LIMIT, MySQL uses indexes in some cases when normally it would
prefer to do a full table scan.

• If you combine LIMIT row_count with ORDER BY, MySQL stops sorting as soon as it has found the
first row_count rows of the sorted result, rather than sorting the entire result. If ordering is done by
using an index, this is very fast. If a filesort must be done, all rows that match the query without the
LIMIT clause are selected, and most or all of them are sorted, before the first row_count are found.
After the initial rows have been found, MySQL does not sort any remainder of the result set.

One manifestation of this behavior is that an ORDER BY query with and without LIMIT may return rows
in different order, as described later in this section.

• If you combine LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count
unique rows.

• In some cases, a GROUP BY can be resolved by reading the index in order (or doing a sort on the index),
then calculating summaries until the index value changes. In this case, LIMIT row_count does not
calculate any unnecessary GROUP BY values.

• As soon as MySQL has sent the required number of rows to the client, it aborts the query unless you
are using SQL_CALC_FOUND_ROWS. In that case, the number of rows can be retrieved with SELECT
FOUND_ROWS(). See Section 12.16, “Information Functions”.

• LIMIT 0 quickly returns an empty set. This can be useful for checking the validity of a query. It can also
be employed to obtain the types of the result columns within applications that use a MySQL API that
makes result set metadata available. With the mysql client program, you can use the --column-type-
info option to display result column types.

• If the server uses temporary tables to resolve a query, it uses the LIMIT row_count clause to
calculate how much space is required.

• If an index is not used for ORDER BY but a LIMIT clause is also present, the optimizer may be able to
avoid using a merge file and sort the rows in memory using an in-memory filesort operation.

If multiple rows have identical values in the ORDER BY columns, the server is free to return those rows in
any order, and may do so differently depending on the overall execution plan. In other words, the sort order
of those rows is nondeterministic with respect to the nonordered columns.

One factor that affects the execution plan is LIMIT, so an ORDER BY query with and without LIMIT
may return rows in different orders. Consider this query, which is sorted by the category column but
nondeterministic with respect to the id and rating columns:

mysql> SELECT * FROM ratings ORDER BY category;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
1	1	4.5
5	1	3.2
3	2	3.7
4	2	3.5
6	2	3.5
2	3	5.0
7	3	2.7

1087

Optimizing SELECT Statements

+----+----------+--------+

Including LIMIT may affect order of rows within each category value. For example, this is a valid query
result:

mysql> SELECT * FROM ratings ORDER BY category LIMIT 5;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
1	1	4.5
5	1	3.2
4	2	3.5
3	2	3.7
6	2	3.5
+----+----------+--------+

In each case, the rows are sorted by the ORDER BY column, which is all that is required by the SQL
standard.

If it is important to ensure the same row order with and without LIMIT, include additional columns in the
ORDER BY clause to make the order deterministic. For example, if id values are unique, you can make
rows for a given category value appear in id order by sorting like this:

mysql> SELECT * FROM ratings ORDER BY category, id;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
1	1	4.5
5	1	3.2
3	2	3.7
4	2	3.5
6	2	3.5
2	3	5.0
7	3	2.7
+----+----------+--------+

mysql> SELECT * FROM ratings ORDER BY category, id LIMIT 5;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
1	1	4.5
5	1	3.2
3	2	3.7
4	2	3.5
6	2	3.5
+----+----------+--------+

8.2.1.17 Function Call Optimization

MySQL functions are tagged internally as deterministic or nondeterministic. A function is nondeterministic
if, given fixed values for its arguments, it can return different results for different invocations. Examples of
nondeterministic functions: RAND(), UUID().

If a function is tagged nondeterministic, a reference to it in a WHERE clause is evaluated for every row
(when selecting from one table) or combination of rows (when selecting from a multiple-table join).

MySQL also determines when to evaluate functions based on types of arguments, whether the arguments
are table columns or constant values. A deterministic function that takes a table column as argument must
be evaluated whenever that column changes value.

Nondeterministic functions may affect query performance. For example, some optimizations may not be
available, or more locking might be required. The following discussion uses RAND() but applies to other
nondeterministic functions as well.

1088

Optimizing SELECT Statements

Suppose that a table t has this definition:

CREATE TABLE t (id INT NOT NULL PRIMARY KEY, col_a VARCHAR(100));

Consider these two queries:

SELECT * FROM t WHERE id = POW(1,2);
SELECT * FROM t WHERE id = FLOOR(1 + RAND() * 49);

Both queries appear to use a primary key lookup because of the equality comparison against the primary
key, but that is true only for the first of them:

• The first query always produces a maximum of one row because POW() with constant arguments is a
constant value and is used for index lookup.

• The second query contains an expression that uses the nondeterministic function RAND(), which is not
constant in the query but in fact has a new value for every row of table t. Consequently, the query reads
every row of the table, evaluates the predicate for each row, and outputs all rows for which the primary
key matches the random value. This might be zero, one, or multiple rows, depending on the id column
values and the values in the RAND() sequence.

The effects of nondeterminism are not limited to SELECT statements. This UPDATE statement uses a
nondeterministic function to select rows to be modified:

UPDATE t SET col_a = some_expr WHERE id = FLOOR(1 + RAND() * 49);

Presumably the intent is to update at most a single row for which the primary key matches the expression.
However, it might update zero, one, or multiple rows, depending on the id column values and the values in
the RAND() sequence.

The behavior just described has implications for performance and replication:

• Because a nondeterministic function does not produce a constant value, the optimizer cannot use
strategies that might otherwise be applicable, such as index lookups. The result may be a table scan.

• InnoDB might escalate to a range-key lock rather than taking a single row lock for one matching row.

• Updates that do not execute deterministically are unsafe for replication.

The difficulties stem from the fact that the RAND() function is evaluated once for every row of the table. To
avoid multiple function evaluations, use one of these techniques:

• Move the expression containing the nondeterministic function to a separate statement, saving the value
in a variable. In the original statement, replace the expression with a reference to the variable, which the
optimizer can treat as a constant value:

SET @keyval = FLOOR(1 + RAND() * 49);
UPDATE t SET col_a = some_expr WHERE id = @keyval;

• Assign the random value to a variable in a derived table. This technique causes the variable to be
assigned a value, once, prior to its use in the comparison in the WHERE clause:

UPDATE t, (SELECT @keyval := FLOOR(1 + RAND() * 49)) AS dt
SET col_a = some_expr WHERE id = @keyval;

As mentioned previously, a nondeterministic expression in the WHERE clause might prevent optimizations
and result in a table scan. However, it may be possible to partially optimize the WHERE clause if other
expressions are deterministic. For example:

1089

Optimizing SELECT Statements

SELECT * FROM t WHERE partial_key=5 AND some_column=RAND();

If the optimizer can use partial_key to reduce the set of rows selected, RAND() is executed fewer
times, which diminishes the effect of nondeterminism on optimization.

8.2.1.18 Row Constructor Expression Optimization

Row constructors permit simultaneous comparisons of multiple values. For example, these two statements
are semantically equivalent:

SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

In addition, the optimizer handles both expressions the same way.

The optimizer is less likely to use available indexes if the row constructor columns do not cover the prefix
of an index. Consider the following table, which has a primary key on (c1, c2, c3):

CREATE TABLE t1 (
 c1 INT, c2 INT, c3 INT, c4 CHAR(100),
 PRIMARY KEY(c1,c2,c3)
);

In this query, the WHERE clause uses all columns in the index. However, the row constructor itself does not
cover an index prefix, with the result that the optimizer uses only c1 (key_len=4, the size of c1):

mysql> EXPLAIN SELECT * FROM t1
 WHERE c1=1 AND (c2,c3) > (1,1)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 3
 Extra: Using where

In such cases, rewriting the row constructor expression using an equivalent nonconstructor expression
may result in more complete index use. For the given query, the row constructor and equivalent
nonconstructor expressions are:

(c2,c3) > (1,1)
c2 > 1 OR ((c2 = 1) AND (c3 > 1))

Rewriting the query to use the nonconstructor expression results in the optimizer using all three columns in
the index (key_len=12):

mysql> EXPLAIN SELECT * FROM t1
 WHERE c1 = 1 AND (c2 > 1 OR ((c2 = 1) AND (c3 > 1)))\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 12

1090

Optimizing Subqueries and Derived Tables

 ref: NULL
 rows: 3
 Extra: Using where

Thus, for better results, avoid mixing row constructors with AND/OR expressions. Use one or the other.

Under certain conditions, the optimizer can apply the range access method to IN() expressions that have
row constructor arguments. See Range Optimization of Row Constructor Expressions.

8.2.1.19 Avoiding Full Table Scans

The output from EXPLAIN shows ALL in the type column when MySQL uses a full table scan to resolve a
query. This usually happens under the following conditions:

• The table is so small that it is faster to perform a table scan than to bother with a key lookup. This is
common for tables with fewer than 10 rows and a short row length.

• There are no usable restrictions in the ON or WHERE clause for indexed columns.

• You are comparing indexed columns with constant values and MySQL has calculated (based on the
index tree) that the constants cover too large a part of the table and that a table scan would be faster.
See Section 8.2.1.1, “WHERE Clause Optimization”.

• You are using a key with low cardinality (many rows match the key value) through another column. In
this case, MySQL assumes that by using the key it is likely to perform many key lookups and that a table
scan would be faster.

For small tables, a table scan often is appropriate and the performance impact is negligible. For large
tables, try the following techniques to avoid having the optimizer incorrectly choose a table scan:

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 13.7.2.1, “ANALYZE TABLE Statement”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive compared to
using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
 WHERE t1.col_name=t2.col_name;

See Section 8.9.3, “Index Hints”.

• Start mysqld with the --max-seeks-for-key=1000 option or use SET max_seeks_for_key=1000
to tell the optimizer to assume that no key scan causes more than 1,000 key seeks. See Section 5.1.7,
“Server System Variables”.

8.2.2 Optimizing Subqueries and Derived Tables

The MySQL query optimizer has different strategies available to evaluate subqueries:

• For IN (or =ANY) subqueries, the optimizer has these choices:

• Semijoin

• Materialization

• EXISTS strategy

• For NOT IN (or <>ALL) subqueries, the optimizer has these choices:

1091

https://dev.mysql.com/doc/refman/5.7/en/range-optimization.html#row-constructor-range-optimization

Optimizing Subqueries and Derived Tables

• Materialization

• EXISTS strategy

For derived tables, the optimizer has these choices:

• Merge the derived table into the outer query block

• Materialize the derived table to an internal temporary table

The following discussion provides more information about the preceding optimization strategies.

Note

A limitation on UPDATE and DELETE statements that use a subquery to modify a
single table is that the optimizer does not use semijoin or materialization subquery
optimizations. As a workaround, try rewriting them as multiple-table UPDATE and
DELETE statements that use a join rather than a subquery.

8.2.2.1 Optimizing Subqueries with Semijoin Transformations

A semijoin is a preparation-time transformation that enables multiple execution strategies such as table
pullout, duplicate weedout, first match, loose scan, and materialization. The optimizer uses semijoin
strategies to improve subquery execution, as described in this section.

For an inner join between two tables, the join returns a row from one table as many times as there are
matches in the other table. But for some questions, the only information that matters is whether there is
a match, not the number of matches. Suppose that there are tables named class and roster that list
classes in a course curriculum and class rosters (students enrolled in each class), respectively. To list the
classes that actually have students enrolled, you could use this join:

SELECT class.class_num, class.class_name
FROM class INNER JOIN roster
WHERE class.class_num = roster.class_num;

However, the result lists each class once for each enrolled student. For the question being asked, this is
unnecessary duplication of information.

Assuming that class_num is a primary key in the class table, duplicate suppression is possible by using
SELECT DISTINCT, but it is inefficient to generate all matching rows first only to eliminate duplicates later.

The same duplicate-free result can be obtained by using a subquery:

SELECT class_num, class_name
FROM class
WHERE class_num IN (SELECT class_num FROM roster);

Here, the optimizer can recognize that the IN clause requires the subquery to return only one instance of
each class number from the roster table. In this case, the query can use a semijoin; that is, an operation
that returns only one instance of each row in class that is matched by rows in roster.

Outer join and inner join syntax is permitted in the outer query specification, and table references may be
base tables, derived tables, or view references.

In MySQL, a subquery must satisfy these criteria to be handled as a semijoin:

• It must be an IN (or =ANY) subquery that appears at the top level of the WHERE or ON clause, possibly as
a term in an AND expression. For example:

1092

Optimizing Subqueries and Derived Tables

SELECT ...
FROM ot1, ...
WHERE (oe1, ...) IN (SELECT ie1, ... FROM it1, ... WHERE ...);

Here, ot_i and it_i represent tables in the outer and inner parts of the query, and oe_i and ie_i
represent expressions that refer to columns in the outer and inner tables.

• It must be a single SELECT without UNION constructs.

• It must not contain a GROUP BY or HAVING clause.

• It must not be implicitly grouped (it must contain no aggregate functions).

• It must not have ORDER BY with LIMIT.

• The STRAIGHT_JOIN modifier must not be present.

• The number of outer and inner tables together must be less than the maximum number of tables
permitted in a join.

The subquery may be correlated or uncorrelated. DISTINCT is permitted, as is LIMIT unless ORDER BY is
also used.

If a subquery meets the preceding criteria, MySQL converts it to a semijoin and makes a cost-based choice
from these strategies:

• Convert the subquery to a join, or use table pullout and run the query as an inner join between subquery
tables and outer tables. Table pullout pulls a table out from the subquery to the outer query.

• Duplicate Weedout: Run the semijoin as if it was a join and remove duplicate records using a temporary
table.

• FirstMatch: When scanning the inner tables for row combinations and there are multiple instances of a
given value group, choose one rather than returning them all. This "shortcuts" scanning and eliminates
production of unnecessary rows.

• LooseScan: Scan a subquery table using an index that enables a single value to be chosen from each
subquery's value group.

• Materialize the subquery into an indexed temporary table that is used to perform a join, where the index
is used to remove duplicates. The index might also be used later for lookups when joining the temporary
table with the outer tables; if not, the table is scanned. For more information about materialization, see
Section 8.2.2.2, “Optimizing Subqueries with Materialization”.

Each of these strategies except Duplicate Weedout can be enabled or disabled using the
optimizer_switch system variable:

• The semijoin flag controls whether semijoins are used.

• If semijoin is enabled, the firstmatch, loosescan, and materialization flags enable finer
control over the permitted semijoin strategies.

These flags are enabled by default. See Section 8.9.2, “Switchable Optimizations”.

EXPLAIN output indicates the use of semijoin strategies as follows:

• Semijoined tables show up in the outer select. For extended EXPLAIN output, the text displayed
by a following SHOW WARNINGS shows the rewritten query, which displays the semijoin structure.

1093

Optimizing Subqueries and Derived Tables

(See Section 8.8.3, “Extended EXPLAIN Output Format”.) From this you can get an idea about which
tables were pulled out of the semijoin. If a subquery was converted to a semijoin, you can see that the
subquery predicate is gone and its tables and WHERE clause were merged into the outer query join list
and WHERE clause.

• Temporary table use for Duplicate Weedout is indicated by Start temporary and End temporary
in the Extra column. Tables that were not pulled out and are in the range of EXPLAIN output rows
covered by Start temporary and End temporary have their rowid in the temporary table.

• FirstMatch(tbl_name) in the Extra column indicates join shortcutting.

• LooseScan(m..n) in the Extra column indicates use of the LooseScan strategy. m and n are key part
numbers.

• Temporary table use for materialization is indicated by rows with a select_type value of
MATERIALIZED and rows with a table value of <subqueryN>.

8.2.2.2 Optimizing Subqueries with Materialization

The optimizer uses materialization to enable more efficient subquery processing. Materialization speeds up
query execution by generating a subquery result as a temporary table, normally in memory. The first time
MySQL needs the subquery result, it materializes that result into a temporary table. Any subsequent time
the result is needed, MySQL refers again to the temporary table. The optimizer may index the table with a
hash index to make lookups fast and inexpensive. The index contains unique values to eliminate duplicates
and make the table smaller.

Subquery materialization uses an in-memory temporary table when possible, falling back to on-disk
storage if the table becomes too large. See Section 8.4.4, “Internal Temporary Table Use in MySQL”.

If materialization is not used, the optimizer sometimes rewrites a noncorrelated subquery as a correlated
subquery. For example, the following IN subquery is noncorrelated (where_condition involves only
columns from t2 and not t1):

SELECT * FROM t1
WHERE t1.a IN (SELECT t2.b FROM t2 WHERE where_condition);

The optimizer might rewrite this as an EXISTS correlated subquery:

SELECT * FROM t1
WHERE EXISTS (SELECT t2.b FROM t2 WHERE where_condition AND t1.a=t2.b);

Subquery materialization using a temporary table avoids such rewrites and makes it possible to execute
the subquery only once rather than once per row of the outer query.

For subquery materialization to be used in MySQL, the optimizer_switch system variable
materialization flag must be enabled. (See Section 8.9.2, “Switchable Optimizations”.) With the
materialization flag enabled, materialization applies to subquery predicates that appear anywhere (in
the select list, WHERE, ON, GROUP BY, HAVING, or ORDER BY), for predicates that fall into any of these use
cases:

• The predicate has this form, when no outer expression oe_i or inner expression ie_i is nullable. N is 1
or larger.

(oe_1, oe_2, ..., oe_N) [NOT] IN (SELECT ie_1, i_2, ..., ie_N ...)

• The predicate has this form, when there is a single outer expression oe and inner expression ie. The
expressions can be nullable.

1094

Optimizing Subqueries and Derived Tables

oe [NOT] IN (SELECT ie ...)

• The predicate is IN or NOT IN and a result of UNKNOWN (NULL) has the same meaning as a result of
FALSE.

The following examples illustrate how the requirement for equivalence of UNKNOWN and FALSE predicate
evaluation affects whether subquery materialization can be used. Assume that where_condition
involves columns only from t2 and not t1 so that the subquery is noncorrelated.

This query is subject to materialization:

SELECT * FROM t1
WHERE t1.a IN (SELECT t2.b FROM t2 WHERE where_condition);

Here, it does not matter whether the IN predicate returns UNKNOWN or FALSE. Either way, the row from t1
is not included in the query result.

An example where subquery materialization is not used is the following query, where t2.b is a nullable
column:

SELECT * FROM t1
WHERE (t1.a,t1.b) NOT IN (SELECT t2.a,t2.b FROM t2
 WHERE where_condition);

The following restrictions apply to the use of subquery materialization:

• The types of the inner and outer expressions must match. For example, the optimizer might be able to
use materialization if both expressions are integer or both are decimal, but cannot if one expression is
integer and the other is decimal.

• The inner expression cannot be a BLOB.

Use of EXPLAIN with a query provides some indication of whether the optimizer uses subquery
materialization:

• Compared to query execution that does not use materialization, select_type may change from
DEPENDENT SUBQUERY to SUBQUERY. This indicates that, for a subquery that would be executed once
per outer row, materialization enables the subquery to be executed just once.

• For extended EXPLAIN output, the text displayed by a following SHOW WARNINGS includes
materialize and materialized-subquery.

8.2.2.3 Optimizing Subqueries with the EXISTS Strategy

Certain optimizations are applicable to comparisons that use the IN (or =ANY) operator to test subquery
results. This section discusses these optimizations, particularly with regard to the challenges that NULL
values present. The last part of the discussion suggests how you can help the optimizer.

Consider the following subquery comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

MySQL evaluates queries “from outside to inside.” That is, it first obtains the value of the outer expression
outer_expr, and then runs the subquery and captures the rows that it produces.

A very useful optimization is to “inform” the subquery that the only rows of interest are those where the
inner expression inner_expr is equal to outer_expr. This is done by pushing down an appropriate

1095

Optimizing Subqueries and Derived Tables

equality into the subquery's WHERE clause to make it more restrictive. The converted comparison looks like
this:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

After the conversion, MySQL can use the pushed-down equality to limit the number of rows it must
examine to evaluate the subquery.

More generally, a comparison of N values to a subquery that returns N-value rows is subject to the same
conversion. If oe_i and ie_i represent corresponding outer and inner expression values, this subquery
comparison:

(oe_1, ..., oe_N) IN
 (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

Becomes:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND oe_1 = ie_1
 AND ...
 AND oe_N = ie_N)

For simplicity, the following discussion assumes a single pair of outer and inner expression values.

The conversion just described has its limitations. It is valid only if we ignore possible NULL values. That is,
the “pushdown” strategy works as long as both of these conditions are true:

• outer_expr and inner_expr cannot be NULL.

• You need not distinguish NULL from FALSE subquery results. If the subquery is a part of an OR or AND
expression in the WHERE clause, MySQL assumes that you do not care. Another instance where the
optimizer notices that NULL and FALSE subquery results need not be distinguished is this construct:

... WHERE outer_expr IN (subquery)

In this case, the WHERE clause rejects the row whether IN (subquery) returns NULL or FALSE.

When either or both of those conditions do not hold, optimization is more complex.

Suppose that outer_expr is known to be a non-NULL value but the subquery does not produce a row
such that outer_expr = inner_expr. Then outer_expr IN (SELECT ...) evaluates as follows:

• NULL, if the SELECT produces any row where inner_expr is NULL

• FALSE, if the SELECT produces only non-NULL values or produces nothing

In this situation, the approach of looking for rows with outer_expr = inner_expr is no longer valid. It
is necessary to look for such rows, but if none are found, also look for rows where inner_expr is NULL.
Roughly speaking, the subquery can be converted to something like this:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND
 (outer_expr=inner_expr OR inner_expr IS NULL))

The need to evaluate the extra IS NULL condition is why MySQL has the ref_or_null access method:

mysql> EXPLAIN
 SELECT outer_expr IN (SELECT t2.maybe_null_key
 FROM t2, t3 WHERE ...)
 FROM t1;
*************************** 1. row ***************************

1096

Optimizing Subqueries and Derived Tables

 id: 1
 select_type: PRIMARY
 table: t1
...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: ref_or_null
possible_keys: maybe_null_key
 key: maybe_null_key
 key_len: 5
 ref: func
 rows: 2
 Extra: Using where; Using index
...

The unique_subquery and index_subquery subquery-specific access methods also have “or NULL”
variants. However, they are not visible in EXPLAIN output, so you must use EXPLAIN EXTENDED followed
by SHOW WARNINGS (note the checking NULL in the warning message):

mysql> EXPLAIN EXTENDED
 SELECT outer_expr IN (SELECT maybe_null_key FROM t2) FROM t1\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: index_subquery
possible_keys: maybe_null_key
 key: maybe_null_key
 key_len: 5
 ref: func
 rows: 2
 Extra: Using index

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: select (`test`.`t1`.`outer_expr`,
 (((`test`.`t1`.`outer_expr`) in t2 on
 maybe_null_key checking NULL))) AS `outer_expr IN (SELECT
 maybe_null_key FROM t2)` from `test`.`t1`

The additional OR ... IS NULL condition makes query execution slightly more complicated (and some
optimizations within the subquery become inapplicable), but generally this is tolerable.

The situation is much worse when outer_expr can be NULL. According to the SQL interpretation of NULL
as “unknown value,” NULL IN (SELECT inner_expr ...) should evaluate to:

• NULL, if the SELECT produces any rows

• FALSE, if the SELECT produces no rows

For proper evaluation, it is necessary to be able to check whether the SELECT has produced any rows
at all, so outer_expr = inner_expr cannot be pushed down into the subquery. This is a problem
because many real world subqueries become very slow unless the equality can be pushed down.

Essentially, there must be different ways to execute the subquery depending on the value of outer_expr.

1097

Optimizing Subqueries and Derived Tables

The optimizer chooses SQL compliance over speed, so it accounts for the possibility that outer_expr
might be NULL:

• If outer_expr is NULL, to evaluate the following expression, it is necessary to execute the SELECT to
determine whether it produces any rows:

NULL IN (SELECT inner_expr FROM ... WHERE subquery_where)

It is necessary to execute the original SELECT here, without any pushed-down equalities of the kind
mentioned previously.

• On the other hand, when outer_expr is not NULL, it is absolutely essential that this comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

Be converted to this expression that uses a pushed-down condition:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

Without this conversion, subqueries are slow.

To solve the dilemma of whether or not to push down conditions into the subquery, the conditions are
wrapped within “trigger” functions. Thus, an expression of the following form:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

Is converted into:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND trigcond(outer_expr=inner_expr))

More generally, if the subquery comparison is based on several pairs of outer and inner expressions, the
conversion takes this comparison:

(oe_1, ..., oe_N) IN (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

And converts it to this expression:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND trigcond(oe_1=ie_1)
 AND ...
 AND trigcond(oe_N=ie_N)
)

Each trigcond(X) is a special function that evaluates to the following values:

• X when the “linked” outer expression oe_i is not NULL

• TRUE when the “linked” outer expression oe_i is NULL

Note

Trigger functions are not triggers of the kind that you create with CREATE
TRIGGER.

Equalities that are wrapped within trigcond() functions are not first class predicates for the query
optimizer. Most optimizations cannot deal with predicates that may be turned on and off at query execution
time, so they assume any trigcond(X) to be an unknown function and ignore it. Triggered equalities can
be used by those optimizations:

1098

Optimizing Subqueries and Derived Tables

• Reference optimizations: trigcond(X=Y [OR Y IS NULL]) can be used to construct ref, eq_ref,
or ref_or_null table accesses.

• Index lookup-based subquery execution engines: trigcond(X=Y) can be used to construct
unique_subquery or index_subquery accesses.

• Table-condition generator: If the subquery is a join of several tables, the triggered condition is checked
as soon as possible.

When the optimizer uses a triggered condition to create some kind of index lookup-based access (as for
the first two items of the preceding list), it must have a fallback strategy for the case when the condition is
turned off. This fallback strategy is always the same: Do a full table scan. In EXPLAIN output, the fallback
shows up as Full scan on NULL key in the Extra column:

mysql> EXPLAIN SELECT t1.col1,
 t1.col1 IN (SELECT t2.key1 FROM t2 WHERE t2.col2=t1.col2) FROM t1\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 ...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: index_subquery
possible_keys: key1
 key: key1
 key_len: 5
 ref: func
 rows: 2
 Extra: Using where; Full scan on NULL key

If you run EXPLAIN EXTENDED followed by SHOW WARNINGS, you can see the triggered condition:

*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: select `test`.`t1`.`col1` AS `col1`,
 <in_optimizer>(`test`.`t1`.`col1`,
 <exists>(<index_lookup>(<cache>(`test`.`t1`.`col1`) in t2
 on key1 checking NULL
 where (`test`.`t2`.`col2` = `test`.`t1`.`col2`) having
 trigcond(<is_not_null_test>(`test`.`t2`.`key1`))))) AS
 `t1.col1 IN (select t2.key1 from t2 where t2.col2=t1.col2)`
 from `test`.`t1`

The use of triggered conditions has some performance implications. A NULL IN (SELECT ...)
expression now may cause a full table scan (which is slow) when it previously did not. This is the price paid
for correct results (the goal of the trigger-condition strategy is to improve compliance, not speed).

For multiple-table subqueries, execution of NULL IN (SELECT ...) is particularly slow because the join
optimizer does not optimize for the case where the outer expression is NULL. It assumes that subquery
evaluations with NULL on the left side are very rare, even if there are statistics that indicate otherwise.
On the other hand, if the outer expression might be NULL but never actually is, there is no performance
penalty.

To help the query optimizer better execute your queries, use these suggestions:

• Declare a column as NOT NULL if it really is. This also helps other aspects of the optimizer by simplifying
condition testing for the column.

1099

Optimizing Subqueries and Derived Tables

• If you need not distinguish a NULL from FALSE subquery result, you can easily avoid the slow execution
path. Replace a comparison that looks like this:

outer_expr IN (SELECT inner_expr FROM ...)

with this expression:

(outer_expr IS NOT NULL) AND (outer_expr IN (SELECT inner_expr FROM ...))

Then NULL IN (SELECT ...) is never evaluated because MySQL stops evaluating AND parts as
soon as the expression result is clear.

Another possible rewrite:

EXISTS (SELECT inner_expr FROM ...
 WHERE inner_expr=outer_expr)

This would apply when you need not distinguish NULL from FALSE subquery results, in which case you
may actually want EXISTS.

The subquery_materialization_cost_based flag of the optimizer_switch system variable
enables control over the choice between subquery materialization and IN-to-EXISTS subquery
transformation. See Section 8.9.2, “Switchable Optimizations”.

8.2.2.4 Optimizing Derived Tables

The optimizer handles derived tables as follows:

• The optimizer postpones materialization of derived tables until their contents are needed during query
execution, which improves performance.

• For non-EXPLAIN queries, delay of materialization may result in not having to do it at all. Consider
a query that joins the result of a derived table to another table: If the optimizer processes that other
table first and finds that it returns no rows, the join need not be carried out further and the optimizer can
completely skip materializing the derived table.

• During query execution, the optimizer may add an index to a derived table to speed up row retrieval from
it.

Consider the following EXPLAIN statement, for a SELECT query that contains a derived table:

EXPLAIN SELECT * FROM (SELECT * FROM t1) AS derived_t1;

The optimizer avoids materializing the derived table by delaying it until the result is needed during SELECT
execution. In this case, the query is not executed (because it occurs in an EXPLAIN statement), so the
result is never needed.

Even for queries that are executed, delay of derived table materialization may enable the optimizer to avoid
materialization entirely. Consider the following query, which joins the result of a derived table to another
table:

SELECT *
 FROM t1 JOIN (SELECT t2.f1 FROM t2) AS derived_t2
 ON t1.f2=derived_t2.f1
 WHERE t1.f1 > 0;

If the optimization processes t1 first and the WHERE clause produces an empty result, the join must
necessarily be empty and the derived table need not be materialized.

1100

Optimizing INFORMATION_SCHEMA Queries

For cases when a derived table requires materialization, the optimizer may add an index to the
materialized table to speed up access to it. If such an index enables ref access to the table, it can greatly
reduce amount of data read during query execution. Consider the following query:

SELECT *
 FROM t1 JOIN (SELECT DISTINCT f1 FROM t2) AS derived_t2
 ON t1.f1=derived_t2.f1;

The optimizer constructs an index over column f1 from derived_t2 if doing so would enable use of ref
access for the lowest cost execution plan. After adding the index, the optimizer can treat the materialized
derived table the same as a regular table with an index, and it benefits similarly from the generated index.
The overhead of index creation is negligible compared to the cost of query execution without the index. If
ref access would result in higher cost than some other access method, the optimizer creates no index and
loses nothing.

For optimizer trace output, a merged derived table or view reference is not shown as a node. Only its
underlying tables appear in the top query's plan.

8.2.3 Optimizing INFORMATION_SCHEMA Queries

Applications that monitor databases may make frequent use of INFORMATION_SCHEMA tables. Certain
types of queries for INFORMATION_SCHEMA tables can be optimized to execute more quickly. The goal
is to minimize file operations (for example, scanning a directory or opening a table file) to collect the
information that makes up these dynamic tables.

Note

Comparison behavior for database and table names in INFORMATION_SCHEMA
queries might differ from what you expect. For details, see Section 10.8.7, “Using
Collation in INFORMATION_SCHEMA Searches”.

1) Try to use constant lookup values for database and table names in the WHERE clause

You can take advantage of this principle as follows:

• To look up databases or tables, use expressions that evaluate to a constant, such as literal values,
functions that return a constant, or scalar subqueries.

• Avoid queries that use a nonconstant database name lookup value (or no lookup value) because they
require a scan of the data directory to find matching database directory names.

• Within a database, avoid queries that use a nonconstant table name lookup value (or no lookup value)
because they require a scan of the database directory to find matching table files.

This principle applies to the INFORMATION_SCHEMA tables shown in the following table, which shows the
columns for which a constant lookup value enables the server to avoid a directory scan. For example, if
you are selecting from TABLES, using a constant lookup value for TABLE_SCHEMA in the WHERE clause
enables a data directory scan to be avoided.

Table Column to specify to avoid data
directory scan

Column to specify to avoid
database directory scan

COLUMNS TABLE_SCHEMA TABLE_NAME

KEY_COLUMN_USAGE TABLE_SCHEMA TABLE_NAME

PARTITIONS TABLE_SCHEMA TABLE_NAME

REFERENTIAL_CONSTRAINTS CONSTRAINT_SCHEMA TABLE_NAME

1101

Optimizing INFORMATION_SCHEMA Queries

Table Column to specify to avoid data
directory scan

Column to specify to avoid
database directory scan

STATISTICS TABLE_SCHEMA TABLE_NAME

TABLES TABLE_SCHEMA TABLE_NAME

TABLE_CONSTRAINTS TABLE_SCHEMA TABLE_NAME

TRIGGERS EVENT_OBJECT_SCHEMA EVENT_OBJECT_TABLE

VIEWS TABLE_SCHEMA TABLE_NAME

The benefit of a query that is limited to a specific constant database name is that checks need be made
only for the named database directory. Example:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test';

Use of the literal database name test enables the server to check only the test database directory,
regardless of how many databases there might be. By contrast, the following query is less efficient
because it requires a scan of the data directory to determine which database names match the pattern
'test%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA LIKE 'test%';

For a query that is limited to a specific constant table name, checks need be made only for the named
table within the corresponding database directory. Example:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 't1';

Use of the literal table name t1 enables the server to check only the files for the t1 table, regardless of
how many tables there might be in the test database. By contrast, the following query requires a scan of
the test database directory to determine which table names match the pattern 't%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME LIKE 't%';

The following query requires a scan of the database directory to determine matching database names
for the pattern 'test%', and for each matching database, it requires a scan of the database directory to
determine matching table names for the pattern 't%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test%' AND TABLE_NAME LIKE 't%';

2) Write queries that minimize the number of table files that must be opened

For queries that refer to certain INFORMATION_SCHEMA table columns, several optimizations are available
that minimize the number of table files that must be opened. Example:

SELECT TABLE_NAME, ENGINE FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test';

In this case, after the server has scanned the database directory to determine the names of the tables
in the database, those names become available with no further file system lookups. Thus, TABLE_NAME
requires no files to be opened. The ENGINE (storage engine) value can be determined by opening the
table's .frm file, without touching other table files such as the .MYD or .MYI file.

Some values, such as INDEX_LENGTH for MyISAM tables, require opening the .MYD or .MYI file as well.

1102

Optimizing INFORMATION_SCHEMA Queries

The file-opening optimization types are denoted thus:

• SKIP_OPEN_TABLE: Table files do not need to be opened. The information has already become
available within the query by scanning the database directory.

• OPEN_FRM_ONLY: Only the table's .frm file need be opened.

• OPEN_TRIGGER_ONLY: Only the table's .TRG file need be opened.

• OPEN_FULL_TABLE: The unoptimized information lookup. The .frm, .MYD, and .MYI files must be
opened.

The following list indicates how the preceding optimization types apply to INFORMATION_SCHEMA table
columns. For tables and columns not named, none of the optimizations apply.

• COLUMNS: OPEN_FRM_ONLY applies to all columns

• KEY_COLUMN_USAGE: OPEN_FULL_TABLE applies to all columns

• PARTITIONS: OPEN_FULL_TABLE applies to all columns

• REFERENTIAL_CONSTRAINTS: OPEN_FULL_TABLE applies to all columns

• STATISTICS:

Column Optimization type

TABLE_CATALOG OPEN_FRM_ONLY

TABLE_SCHEMA OPEN_FRM_ONLY

TABLE_NAME OPEN_FRM_ONLY

NON_UNIQUE OPEN_FRM_ONLY

INDEX_SCHEMA OPEN_FRM_ONLY

INDEX_NAME OPEN_FRM_ONLY

SEQ_IN_INDEX OPEN_FRM_ONLY

COLUMN_NAME OPEN_FRM_ONLY

COLLATION OPEN_FRM_ONLY

CARDINALITY OPEN_FULL_TABLE

SUB_PART OPEN_FRM_ONLY

PACKED OPEN_FRM_ONLY

NULLABLE OPEN_FRM_ONLY

INDEX_TYPE OPEN_FULL_TABLE

COMMENT OPEN_FRM_ONLY

• TABLES:

Column Optimization type

TABLE_CATALOG SKIP_OPEN_TABLE

TABLE_SCHEMA SKIP_OPEN_TABLE

TABLE_NAME SKIP_OPEN_TABLE

1103

Optimizing INFORMATION_SCHEMA Queries

Column Optimization type

TABLE_TYPE OPEN_FRM_ONLY

ENGINE OPEN_FRM_ONLY

VERSION OPEN_FRM_ONLY

ROW_FORMAT OPEN_FULL_TABLE

TABLE_ROWS OPEN_FULL_TABLE

AVG_ROW_LENGTH OPEN_FULL_TABLE

DATA_LENGTH OPEN_FULL_TABLE

MAX_DATA_LENGTH OPEN_FULL_TABLE

INDEX_LENGTH OPEN_FULL_TABLE

DATA_FREE OPEN_FULL_TABLE

AUTO_INCREMENT OPEN_FULL_TABLE

CREATE_TIME OPEN_FULL_TABLE

UPDATE_TIME OPEN_FULL_TABLE

CHECK_TIME OPEN_FULL_TABLE

TABLE_COLLATION OPEN_FRM_ONLY

CHECKSUM OPEN_FULL_TABLE

CREATE_OPTIONS OPEN_FRM_ONLY

TABLE_COMMENT OPEN_FRM_ONLY

• TABLE_CONSTRAINTS: OPEN_FULL_TABLE applies to all columns

• TRIGGERS: OPEN_TRIGGER_ONLY applies to all columns

• VIEWS:

Column Optimization type

TABLE_CATALOG OPEN_FRM_ONLY

TABLE_SCHEMA OPEN_FRM_ONLY

TABLE_NAME OPEN_FRM_ONLY

VIEW_DEFINITION OPEN_FRM_ONLY

CHECK_OPTION OPEN_FRM_ONLY

IS_UPDATABLE OPEN_FULL_TABLE

DEFINER OPEN_FRM_ONLY

SECURITY_TYPE OPEN_FRM_ONLY

CHARACTER_SET_CLIENT OPEN_FRM_ONLY

COLLATION_CONNECTION OPEN_FRM_ONLY

3) Use EXPLAIN to determine whether the server can use INFORMATION_SCHEMA optimizations for a
query

This applies particularly for INFORMATION_SCHEMA queries that search for information from more than
one database, which might take a long time and impact performance. The Extra value in EXPLAIN
output indicates which, if any, of the optimizations described earlier the server can use to evaluate

1104

Optimizing INFORMATION_SCHEMA Queries

INFORMATION_SCHEMA queries. The following examples demonstrate the kinds of information you can
expect to see in the Extra value.

mysql> EXPLAIN SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS WHERE
 TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v1'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: VIEWS
 type: ALL
possible_keys: NULL
 key: TABLE_SCHEMA,TABLE_NAME
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Using where; Open_frm_only; Scanned 0 databases

Use of constant database and table lookup values enables the server to avoid directory scans. For
references to VIEWS.TABLE_NAME, only the .frm file need be opened.

mysql> EXPLAIN SELECT TABLE_NAME, ROW_FORMAT FROM INFORMATION_SCHEMA.TABLES\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: TABLES
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Open_full_table; Scanned all databases

No lookup values are provided (there is no WHERE clause), so the server must scan the data directory
and each database directory. For each table thus identified, the table name and row format are selected.
TABLE_NAME requires no further table files to be opened (the SKIP_OPEN_TABLE optimization applies).
ROW_FORMAT requires all table files to be opened (OPEN_FULL_TABLE applies). EXPLAIN reports
OPEN_FULL_TABLE because it is more expensive than SKIP_OPEN_TABLE.

mysql> EXPLAIN SELECT TABLE_NAME, TABLE_TYPE FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'test'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: TABLES
 type: ALL
possible_keys: NULL
 key: TABLE_SCHEMA
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Using where; Open_frm_only; Scanned 1 database

No table name lookup value is provided, so the server must scan the test database directory. For the
TABLE_NAME and TABLE_TYPE columns, the SKIP_OPEN_TABLE and OPEN_FRM_ONLY optimizations
apply, respectively. EXPLAIN reports OPEN_FRM_ONLY because it is more expensive.

mysql> EXPLAIN SELECT B.TABLE_NAME
 FROM INFORMATION_SCHEMA.TABLES AS A, INFORMATION_SCHEMA.COLUMNS AS B
 WHERE A.TABLE_SCHEMA = 'test'
 AND A.TABLE_NAME = 't1'
 AND B.TABLE_NAME = A.TABLE_NAME\G
*************************** 1. row ***************************
 id: 1

1105

Optimizing Data Change Statements

 select_type: SIMPLE
 table: A
 type: ALL
possible_keys: NULL
 key: TABLE_SCHEMA,TABLE_NAME
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Using where; Skip_open_table; Scanned 0 databases
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: B
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Using where; Open_frm_only; Scanned all databases;
 Using join buffer

For the first EXPLAIN output row: Constant database and table lookup values enable the server to avoid
directory scans for TABLES values. References to TABLES.TABLE_NAME require no further table files.

For the second EXPLAIN output row: All COLUMNS table values are OPEN_FRM_ONLY lookups, so
COLUMNS.TABLE_NAME requires the .frm file to be opened.

mysql> EXPLAIN SELECT * FROM INFORMATION_SCHEMA.COLLATIONS\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: COLLATIONS
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra:

In this case, no optimizations apply because COLLATIONS is not one of the INFORMATION_SCHEMA tables
for which optimizations are available.

8.2.4 Optimizing Data Change Statements

This section explains how to speed up data change statements: INSERT, UPDATE, and DELETE.
Traditional OLTP applications and modern web applications typically do many small data change
operations, where concurrency is vital. Data analysis and reporting applications typically run data change
operations that affect many rows at once, where the main considerations is the I/O to write large amounts
of data and keep indexes up-to-date. For inserting and updating large volumes of data (known in the
industry as ETL, for “extract-transform-load”), sometimes you use other SQL statements or external
commands, that mimic the effects of INSERT, UPDATE, and DELETE statements.

8.2.4.1 Optimizing INSERT Statements

To optimize insert speed, combine many small operations into a single large operation. Ideally, you make a
single connection, send the data for many new rows at once, and delay all index updates and consistency
checking until the very end.

The time required for inserting a row is determined by the following factors, where the numbers indicate
approximate proportions:

1106

Optimizing Data Change Statements

• Connecting: (3)

• Sending query to server: (2)

• Parsing query: (2)

• Inserting row: (1 × size of row)

• Inserting indexes: (1 × number of indexes)

• Closing: (1)

This does not take into consideration the initial overhead to open tables, which is done once for each
concurrently running query.

The size of the table slows down the insertion of indexes by log N, assuming B-tree indexes.

You can use the following methods to speed up inserts:

• If you are inserting many rows from the same client at the same time, use INSERT statements with
multiple VALUES lists to insert several rows at a time. This is considerably faster (many times faster in
some cases) than using separate single-row INSERT statements. If you are adding data to a nonempty
table, you can tune the bulk_insert_buffer_size variable to make data insertion even faster. See
Section 5.1.7, “Server System Variables”.

• When loading a table from a text file, use LOAD DATA. This is usually 20 times faster than using INSERT
statements. See Section 13.2.6, “LOAD DATA Statement”.

• Take advantage of the fact that columns have default values. Insert values explicitly only when the value
to be inserted differs from the default. This reduces the parsing that MySQL must do and improves the
insert speed.

• See Section 8.5.5, “Bulk Data Loading for InnoDB Tables” for tips specific to InnoDB tables.

• See Section 8.6.2, “Bulk Data Loading for MyISAM Tables” for tips specific to MyISAM tables.

8.2.4.2 Optimizing UPDATE Statements

An update statement is optimized like a SELECT query with the additional overhead of a write. The speed
of the write depends on the amount of data being updated and the number of indexes that are updated.
Indexes that are not changed do not get updated.

Another way to get fast updates is to delay updates and then do many updates in a row later. Performing
multiple updates together is much quicker than doing one at a time if you lock the table.

For a MyISAM table that uses dynamic row format, updating a row to a longer total length may split the
row. If you do this often, it is very important to use OPTIMIZE TABLE occasionally. See Section 13.7.2.4,
“OPTIMIZE TABLE Statement”.

8.2.4.3 Optimizing DELETE Statements

The time required to delete individual rows in a MyISAM table is exactly proportional to the number of
indexes. To delete rows more quickly, you can increase the size of the key cache by increasing the
key_buffer_size system variable. See Section 5.1.1, “Configuring the Server”.

To delete all rows from a MyISAM table, TRUNCATE TABLE tbl_name is faster than DELETE FROM
tbl_name. Truncate operations are not transaction-safe; an error occurs when attempting one in the
course of an active transaction or active table lock. See Section 13.1.33, “TRUNCATE TABLE Statement”.

1107

Optimizing Database Privileges

8.2.5 Optimizing Database Privileges

The more complex your privilege setup, the more overhead applies to all SQL statements. Simplifying the
privileges established by GRANT statements enables MySQL to reduce permission-checking overhead
when clients execute statements. For example, if you do not grant any table-level or column-level
privileges, the server need not ever check the contents of the tables_priv and columns_priv tables.
Similarly, if you place no resource limits on any accounts, the server does not have to perform resource
counting. If you have a very high statement-processing load, consider using a simplified grant structure to
reduce permission-checking overhead.

8.2.6 Other Optimization Tips

This section lists a number of miscellaneous tips for improving query processing speed:

• If your application makes several database requests to perform related updates, combining the
statements into a stored routine can help performance. Similarly, if your application computes a single
result based on several column values or large volumes of data, combining the computation into a
loadable function can help performance. The resulting fast database operations are then available to be
reused by other queries, applications, and even code written in different programming languages. See
Section 20.2, “Using Stored Routines” and Adding Functions to MySQL for more information.

• To fix any compression issues that occur with ARCHIVE tables, use OPTIMIZE TABLE. See
Section 15.5, “The ARCHIVE Storage Engine”.

• If possible, classify reports as “live” or as “statistical”, where data needed for statistical reports is created
only from summary tables that are generated periodically from the live data.

• If you have data that does not conform well to a rows-and-columns table structure, you can pack and
store data into a BLOB column. In this case, you must provide code in your application to pack and
unpack information, but this might save I/O operations to read and write the sets of related values.

• With Web servers, store images and other binary assets as files, with the path name stored in the
database rather than the file itself. Most Web servers are better at caching files than database contents,
so using files is generally faster. (Although you must handle backups and storage issues yourself in this
case.)

• If you need really high speed, look at the low-level MySQL interfaces. For example, by accessing
the MySQL InnoDB or MyISAM storage engine directly, you could get a substantial speed increase
compared to using the SQL interface.

Similarly, for databases using the NDBCLUSTER storage engine, you may wish to investigate possible
use of the NDB API (see MySQL NDB Cluster API Developer Guide).

• Replication can provide a performance benefit for some operations. You can distribute client retrievals
among replicas to split up the load. To avoid slowing down the source while making backups, you can
make backups using a replica. See Chapter 17, Replication.

8.3 Optimization and Indexes
The best way to improve the performance of SELECT operations is to create indexes on one or more of
the columns that are tested in the query. The index entries act like pointers to the table rows, allowing
the query to quickly determine which rows match a condition in the WHERE clause, and retrieve the other
column values for those rows. All MySQL data types can be indexed.

Although it can be tempting to create an indexes for every possible column used in a query, unnecessary
indexes waste space and waste time for MySQL to determine which indexes to use. Indexes also add to

1108

https://dev.mysql.com/doc/extending-mysql/5.6/en/adding-functions.html
https://dev.mysql.com/doc/ndbapi/en/

How MySQL Uses Indexes

the cost of inserts, updates, and deletes because each index must be updated. You must find the right
balance to achieve fast queries using the optimal set of indexes.

8.3.1 How MySQL Uses Indexes

Indexes are used to find rows with specific column values quickly. Without an index, MySQL must begin
with the first row and then read through the entire table to find the relevant rows. The larger the table, the
more this costs. If the table has an index for the columns in question, MySQL can quickly determine the
position to seek to in the middle of the data file without having to look at all the data. This is much faster
than reading every row sequentially.

Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees. Exceptions:
Indexes on spatial data types use R-trees; MEMORY tables also support hash indexes; InnoDB uses
inverted lists for FULLTEXT indexes.

In general, indexes are used as described in the following discussion. Characteristics specific to hash
indexes (as used in MEMORY tables) are described in Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”.

MySQL uses indexes for these operations:

• To find the rows matching a WHERE clause quickly.

• To eliminate rows from consideration. If there is a choice between multiple indexes, MySQL normally
uses the index that finds the smallest number of rows (the most selective index).

• If the table has a multiple-column index, any leftmost prefix of the index can be used by the optimizer
to look up rows. For example, if you have a three-column index on (col1, col2, col3), you have
indexed search capabilities on (col1), (col1, col2), and (col1, col2, col3). For more
information, see Section 8.3.5, “Multiple-Column Indexes”.

• To retrieve rows from other tables when performing joins. MySQL can use indexes on columns more
efficiently if they are declared as the same type and size. In this context, VARCHAR and CHAR are
considered the same if they are declared as the same size. For example, VARCHAR(10) and CHAR(10)
are the same size, but VARCHAR(10) and CHAR(15) are not.

For comparisons between nonbinary string columns, both columns should use the same character set.
For example, comparing a utf8 column with a latin1 column precludes use of an index.

Comparison of dissimilar columns (comparing a string column to a temporal or numeric column, for
example) may prevent use of indexes if values cannot be compared directly without conversion. For a
given value such as 1 in the numeric column, it might compare equal to any number of values in the
string column such as '1', ' 1', '00001', or '01.e1'. This rules out use of any indexes for the string
column.

• To find the MIN() or MAX() value for a specific indexed column key_col. This is optimized by a
preprocessor that checks whether you are using WHERE key_part_N = constant on all key parts
that occur before key_col in the index. In this case, MySQL does a single key lookup for each MIN()
or MAX() expression and replaces it with a constant. If all expressions are replaced with constants, the
query returns at once. For example:

SELECT MIN(key_part2),MAX(key_part2)
 FROM tbl_name WHERE key_part1=10;

• To sort or group a table if the sorting or grouping is done on a leftmost prefix of a usable index (for
example, ORDER BY key_part1, key_part2). If all key parts are followed by DESC, the key is read

1109

Primary Key Optimization

in reverse order. See Section 8.2.1.13, “ORDER BY Optimization”, and Section 8.2.1.14, “GROUP BY
Optimization”.

• In some cases, a query can be optimized to retrieve values without consulting the data rows. (An index
that provides all the necessary results for a query is called a covering index.) If a query uses from a table
only columns that are included in some index, the selected values can be retrieved from the index tree
for greater speed:

SELECT key_part3 FROM tbl_name
 WHERE key_part1=1

Indexes are less important for queries on small tables, or big tables where report queries process most or
all of the rows. When a query needs to access most of the rows, reading sequentially is faster than working
through an index. Sequential reads minimize disk seeks, even if not all the rows are needed for the query.
See Section 8.2.1.19, “Avoiding Full Table Scans” for details.

8.3.2 Primary Key Optimization

The primary key for a table represents the column or set of columns that you use in your most vital queries.
It has an associated index, for fast query performance. Query performance benefits from the NOT NULL
optimization, because it cannot include any NULL values. With the InnoDB storage engine, the table data
is physically organized to do ultra-fast lookups and sorts based on the primary key column or columns.

If your table is big and important, but does not have an obvious column or set of columns to use as a
primary key, you might create a separate column with auto-increment values to use as the primary key.
These unique IDs can serve as pointers to corresponding rows in other tables when you join tables using
foreign keys.

8.3.3 Foreign Key Optimization

If a table has many columns, and you query many different combinations of columns, it might be efficient
to split the less-frequently used data into separate tables with a few columns each, and relate them back
to the main table by duplicating the numeric ID column from the main table. That way, each small table can
have a primary key for fast lookups of its data, and you can query just the set of columns that you need
using a join operation. Depending on how the data is distributed, the queries might perform less I/O and
take up less cache memory because the relevant columns are packed together on disk. (To maximize
performance, queries try to read as few data blocks as possible from disk; tables with only a few columns
can fit more rows in each data block.)

8.3.4 Column Indexes

The most common type of index involves a single column, storing copies of the values from that column in
a data structure, allowing fast lookups for the rows with the corresponding column values. The B-tree data
structure lets the index quickly find a specific value, a set of values, or a range of values, corresponding to
operators such as =, >, ≤, BETWEEN, IN, and so on, in a WHERE clause.

The maximum number of indexes per table and the maximum index length is defined per storage engine.
See Chapter 14, The InnoDB Storage Engine, and Chapter 15, Alternative Storage Engines. All storage
engines support at least 16 indexes per table and a total index length of at least 256 bytes. Most storage
engines have higher limits.

For additional information about column indexes, see Section 13.1.13, “CREATE INDEX Statement”.

• Index Prefixes

• FULLTEXT Indexes

1110

Column Indexes

• Spatial Indexes

• Indexes in the MEMORY Storage Engine

Index Prefixes

With col_name(N) syntax in an index specification for a string column, you can create an index that uses
only the first N characters of the column. Indexing only a prefix of column values in this way can make the
index file much smaller. When you index a BLOB or TEXT column, you must specify a prefix length for the
index. For example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables, unless you have
innodb_large_prefix set).

Note

Prefix limits are measured in bytes, whereas the prefix length in CREATE TABLE,
ALTER TABLE, and CREATE INDEX statements is interpreted as number of
characters for nonbinary string types (CHAR, VARCHAR, TEXT) and number of
bytes for binary string types (BINARY, VARBINARY, BLOB). Take this into account
when specifying a prefix length for a nonbinary string column that uses a multibyte
character set.

If a search term exceeds the index prefix length, the index is used to exclude non-matching rows, and the
remaining rows are examined for possible matches.

For additional information about index prefixes, see Section 13.1.13, “CREATE INDEX Statement”.

FULLTEXT Indexes

FULLTEXT indexes are used for full-text searches. Only the InnoDB and MyISAM storage engines support
FULLTEXT indexes and only for CHAR, VARCHAR, and TEXT columns. Indexing always takes place over
the entire column and column prefix indexing is not supported. For details, see Section 12.10, “Full-Text
Search Functions”.

Optimizations are applied to certain kinds of FULLTEXT queries against single InnoDB tables. Queries with
these characteristics are particularly efficient:

• FULLTEXT queries that only return the document ID, or the document ID and the search rank.

• FULLTEXT queries that sort the matching rows in descending order of score and apply a LIMIT clause
to take the top N matching rows. For this optimization to apply, there must be no WHERE clauses and
only a single ORDER BY clause in descending order.

• FULLTEXT queries that retrieve only the COUNT(*) value of rows matching a search term, with
no additional WHERE clauses. Code the WHERE clause as WHERE MATCH(text) AGAINST
('other_text'), without any > 0 comparison operator.

For queries that contain full-text expressions, MySQL evaluates those expressions during the optimization
phase of query execution. The optimizer does not just look at full-text expressions and make estimates, it
actually evaluates them in the process of developing an execution plan.

An implication of this behavior is that EXPLAIN for full-text queries is typically slower than for non-full-text
queries for which no expression evaluation occurs during the optimization phase.

1111

Multiple-Column Indexes

EXPLAIN for full-text queries may show Select tables optimized away in the Extra column due to
matching occurring during optimization; in this case, no table access need occur during later execution.

Spatial Indexes

You can create indexes on spatial data types. Only MyISAM supports R-tree indexes on spatial types.
Other storage engines use B-trees for indexing spatial types (except for ARCHIVE, which does not support
spatial type indexing).

Indexes in the MEMORY Storage Engine

The MEMORY storage engine uses HASH indexes by default, but also supports BTREE indexes.

8.3.5 Multiple-Column Indexes

MySQL can create composite indexes (that is, indexes on multiple columns). An index may consist of up
to 16 columns. For certain data types, you can index a prefix of the column (see Section 8.3.4, “Column
Indexes”).

MySQL can use multiple-column indexes for queries that test all the columns in the index, or queries
that test just the first column, the first two columns, the first three columns, and so on. If you specify the
columns in the right order in the index definition, a single composite index can speed up several kinds of
queries on the same table.

A multiple-column index can be considered a sorted array, the rows of which contain values that are
created by concatenating the values of the indexed columns.

Note

As an alternative to a composite index, you can introduce a column that is “hashed”
based on information from other columns. If this column is short, reasonably unique,
and indexed, it might be faster than a “wide” index on many columns. In MySQL, it
is very easy to use this extra column:

SELECT * FROM tbl_name
 WHERE hash_col=MD5(CONCAT(val1,val2))
 AND col1=val1 AND col2=val2;

Suppose that a table has the following specification:

CREATE TABLE test (
 id INT NOT NULL,
 last_name CHAR(30) NOT NULL,
 first_name CHAR(30) NOT NULL,
 PRIMARY KEY (id),
 INDEX name (last_name,first_name)
);

The name index is an index over the last_name and first_name columns. The index can be used for
lookups in queries that specify values in a known range for combinations of last_name and first_name
values. It can also be used for queries that specify just a last_name value because that column is a
leftmost prefix of the index (as described later in this section). Therefore, the name index is used for
lookups in the following queries:

SELECT * FROM test WHERE last_name='Jones';

SELECT * FROM test
 WHERE last_name='Jones' AND first_name='John';

1112

Verifying Index Usage

SELECT * FROM test
 WHERE last_name='Jones'
 AND (first_name='John' OR first_name='Jon');

SELECT * FROM test
 WHERE last_name='Jones'
 AND first_name >='M' AND first_name < 'N';

However, the name index is not used for lookups in the following queries:

SELECT * FROM test WHERE first_name='John';

SELECT * FROM test
 WHERE last_name='Jones' OR first_name='John';

Suppose that you issue the following SELECT statement:

SELECT * FROM tbl_name
 WHERE col1=val1 AND col2=val2;

If a multiple-column index exists on col1 and col2, the appropriate rows can be fetched directly. If
separate single-column indexes exist on col1 and col2, the optimizer attempts to use the Index Merge
optimization (see Section 8.2.1.3, “Index Merge Optimization”), or attempts to find the most restrictive index
by deciding which index excludes more rows and using that index to fetch the rows.

If the table has a multiple-column index, any leftmost prefix of the index can be used by the optimizer
to look up rows. For example, if you have a three-column index on (col1, col2, col3), you have
indexed search capabilities on (col1), (col1, col2), and (col1, col2, col3).

MySQL cannot use the index to perform lookups if the columns do not form a leftmost prefix of the index.
Suppose that you have the SELECT statements shown here:

SELECT * FROM tbl_name WHERE col1=val1;
SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

SELECT * FROM tbl_name WHERE col2=val2;
SELECT * FROM tbl_name WHERE col2=val2 AND col3=val3;

If an index exists on (col1, col2, col3), only the first two queries use the index. The third and fourth
queries do involve indexed columns, but do not use an index to perform lookups because (col2) and
(col2, col3) are not leftmost prefixes of (col1, col2, col3).

8.3.6 Verifying Index Usage

Always check whether all your queries really use the indexes that you have created in the tables. Use the
EXPLAIN statement, as described in Section 8.8.1, “Optimizing Queries with EXPLAIN”.

8.3.7 InnoDB and MyISAM Index Statistics Collection

Storage engines collect statistics about tables for use by the optimizer. Table statistics are based on value
groups, where a value group is a set of rows with the same key prefix value. For optimizer purposes, an
important statistic is the average value group size.

MySQL uses the average value group size in the following ways:

• To estimate how many rows must be read for each ref access

• To estimate how many rows a partial join produces; that is, the number of rows that an operation of this
form produces:

1113

InnoDB and MyISAM Index Statistics Collection

(...) JOIN tbl_name ON tbl_name.key = expr

As the average value group size for an index increases, the index is less useful for those two purposes
because the average number of rows per lookup increases: For the index to be good for optimization
purposes, it is best that each index value target a small number of rows in the table. When a given index
value yields a large number of rows, the index is less useful and MySQL is less likely to use it.

The average value group size is related to table cardinality, which is the number of value groups. The SHOW
INDEX statement displays a cardinality value based on N/S, where N is the number of rows in the table
and S is the average value group size. That ratio yields an approximate number of value groups in the
table.

For a join based on the <=> comparison operator, NULL is not treated differently from any other value:
NULL <=> NULL, just as N <=> N for any other N.

However, for a join based on the = operator, NULL is different from non-NULL values: expr1 = expr2 is
not true when expr1 or expr2 (or both) are NULL. This affects ref accesses for comparisons of the form
tbl_name.key = expr: MySQL does not access the table if the current value of expr is NULL, because
the comparison cannot be true.

For = comparisons, it does not matter how many NULL values are in the table. For optimization purposes,
the relevant value is the average size of the non-NULL value groups. However, MySQL does not currently
enable that average size to be collected or used.

For InnoDB and MyISAM tables, you have some control over collection of table statistics by means of the
innodb_stats_method and myisam_stats_method system variables, respectively. These variables
have three possible values, which differ as follows:

• When the variable is set to nulls_equal, all NULL values are treated as identical (that is, they all form
a single value group).

If the NULL value group size is much higher than the average non-NULL value group size, this method
skews the average value group size upward. This makes index appear to the optimizer to be less useful
than it really is for joins that look for non-NULL values. Consequently, the nulls_equal method may
cause the optimizer not to use the index for ref accesses when it should.

• When the variable is set to nulls_unequal, NULL values are not considered the same. Instead, each
NULL value forms a separate value group of size 1.

If you have many NULL values, this method skews the average value group size downward. If the
average non-NULL value group size is large, counting NULL values each as a group of size 1 causes the
optimizer to overestimate the value of the index for joins that look for non-NULL values. Consequently,
the nulls_unequal method may cause the optimizer to use this index for ref lookups when other
methods may be better.

• When the variable is set to nulls_ignored, NULL values are ignored.

If you tend to use many joins that use <=> rather than =, NULL values are not special in comparisons and
one NULL is equal to another. In this case, nulls_equal is the appropriate statistics method.

The innodb_stats_method system variable has a global value; the myisam_stats_method system
variable has both global and session values. Setting the global value affects statistics collection for tables
from the corresponding storage engine. Setting the session value affects statistics collection only for the
current client connection. This means that you can force a table's statistics to be regenerated with a given
method without affecting other clients by setting the session value of myisam_stats_method.

1114

Comparison of B-Tree and Hash Indexes

To regenerate MyISAM table statistics, you can use any of the following methods:

• Execute myisamchk --stats_method=method_name --analyze

• Change the table to cause its statistics to go out of date (for example, insert a row and then delete it),
and then set myisam_stats_method and issue an ANALYZE TABLE statement

Some caveats regarding the use of innodb_stats_method and myisam_stats_method:

• You can force table statistics to be collected explicitly, as just described. However, MySQL may also
collect statistics automatically. For example, if during the course of executing statements for a table,
some of those statements modify the table, MySQL may collect statistics. (This may occur for bulk
inserts or deletes, or some ALTER TABLE statements, for example.) If this happens, the statistics are
collected using whatever value innodb_stats_method or myisam_stats_method has at the time.
Thus, if you collect statistics using one method, but the system variable is set to the other method when
a table's statistics are collected automatically later, the other method is used.

• There is no way to tell which method was used to generate statistics for a given table.

• These variables apply only to InnoDB and MyISAM tables. Other storage engines have only one method
for collecting table statistics. Usually it is closer to the nulls_equal method.

8.3.8 Comparison of B-Tree and Hash Indexes

Understanding the B-tree and hash data structures can help predict how different queries perform on
different storage engines that use these data structures in their indexes, particularly for the MEMORY
storage engine that lets you choose B-tree or hash indexes.

• B-Tree Index Characteristics

• Hash Index Characteristics

B-Tree Index Characteristics

A B-tree index can be used for column comparisons in expressions that use the =, >, >=, <, <=, or
BETWEEN operators. The index also can be used for LIKE comparisons if the argument to LIKE is a
constant string that does not start with a wildcard character. For example, the following SELECT statements
use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE 'Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE 'Pat%_ck%';

In the first statement, only rows with 'Patrick' <= key_col < 'Patricl' are considered. In the
second statement, only rows with 'Pat' <= key_col < 'Pau' are considered.

The following SELECT statements do not use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE '%Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE other_col;

In the first statement, the LIKE value begins with a wildcard character. In the second statement, the LIKE
value is not a constant.

If you use ... LIKE '%string%' and string is longer than three characters, MySQL uses the Turbo
Boyer-Moore algorithm to initialize the pattern for the string and then uses this pattern to perform the
search more quickly.

A search using col_name IS NULL employs indexes if col_name is indexed.

1115

Use of Index Extensions

Any index that does not span all AND levels in the WHERE clause is not used to optimize the query. In other
words, to be able to use an index, a prefix of the index must be used in every AND group.

The following WHERE clauses use indexes:

... WHERE index_part1=1 AND index_part2=2 AND other_column=3

 /* index = 1 OR index = 2 */
... WHERE index=1 OR A=10 AND index=2

 /* optimized like "index_part1='hello'" */
... WHERE index_part1='hello' AND index_part3=5

 /* Can use index on index1 but not on index2 or index3 */
... WHERE index1=1 AND index2=2 OR index1=3 AND index3=3;

These WHERE clauses do not use indexes:

 /* index_part1 is not used */
... WHERE index_part2=1 AND index_part3=2

 /* Index is not used in both parts of the WHERE clause */
... WHERE index=1 OR A=10

 /* No index spans all rows */
... WHERE index_part1=1 OR index_part2=10

Sometimes MySQL does not use an index, even if one is available. One circumstance under which
this occurs is when the optimizer estimates that using the index would require MySQL to access a very
large percentage of the rows in the table. (In this case, a table scan is likely to be much faster because it
requires fewer seeks.) However, if such a query uses LIMIT to retrieve only some of the rows, MySQL
uses an index anyway, because it can much more quickly find the few rows to return in the result.

Hash Index Characteristics

Hash indexes have somewhat different characteristics from those just discussed:

• They are used only for equality comparisons that use the = or <=> operators (but are very fast). They are
not used for comparison operators such as < that find a range of values. Systems that rely on this type
of single-value lookup are known as “key-value stores”; to use MySQL for such applications, use hash
indexes wherever possible.

• The optimizer cannot use a hash index to speed up ORDER BY operations. (This type of index cannot be
used to search for the next entry in order.)

• MySQL cannot determine approximately how many rows there are between two values (this is used by
the range optimizer to decide which index to use). This may affect some queries if you change a MyISAM
or InnoDB table to a hash-indexed MEMORY table.

• Only whole keys can be used to search for a row. (With a B-tree index, any leftmost prefix of the key can
be used to find rows.)

8.3.9 Use of Index Extensions

InnoDB automatically extends each secondary index by appending the primary key columns to it. Consider
this table definition:

CREATE TABLE t1 (
 i1 INT NOT NULL DEFAULT 0,
 i2 INT NOT NULL DEFAULT 0,

1116

Use of Index Extensions

 d DATE DEFAULT NULL,
 PRIMARY KEY (i1, i2),
 INDEX k_d (d)
) ENGINE = InnoDB;

This table defines the primary key on columns (i1, i2). It also defines a secondary index k_d on
column (d), but internally InnoDB extends this index and treats it as columns (d, i1, i2).

The optimizer takes into account the primary key columns of the extended secondary index when
determining how and whether to use that index. This can result in more efficient query execution plans and
better performance.

The optimizer can use extended secondary indexes for ref, range, and index_merge index access, for
Loose Index Scan access, for join and sorting optimization, and for MIN()/MAX() optimization.

The following example shows how execution plans are affected by whether the optimizer uses extended
secondary indexes. Suppose that t1 is populated with these rows:

INSERT INTO t1 VALUES
(1, 1, '1998-01-01'), (1, 2, '1999-01-01'),
(1, 3, '2000-01-01'), (1, 4, '2001-01-01'),
(1, 5, '2002-01-01'), (2, 1, '1998-01-01'),
(2, 2, '1999-01-01'), (2, 3, '2000-01-01'),
(2, 4, '2001-01-01'), (2, 5, '2002-01-01'),
(3, 1, '1998-01-01'), (3, 2, '1999-01-01'),
(3, 3, '2000-01-01'), (3, 4, '2001-01-01'),
(3, 5, '2002-01-01'), (4, 1, '1998-01-01'),
(4, 2, '1999-01-01'), (4, 3, '2000-01-01'),
(4, 4, '2001-01-01'), (4, 5, '2002-01-01'),
(5, 1, '1998-01-01'), (5, 2, '1999-01-01'),
(5, 3, '2000-01-01'), (5, 4, '2001-01-01'),
(5, 5, '2002-01-01');

Now consider this query:

EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'

The execution plan depends on whether the extended index is used.

When the optimizer does not consider index extensions, it treats the index k_d as only (d). EXPLAIN for
the query produces this result:

mysql> EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ref
possible_keys: PRIMARY,k_d
 key: k_d
 key_len: 4
 ref: const
 rows: 5
 Extra: Using where; Using index

When the optimizer takes index extensions into account, it treats k_d as (d, i1, i2). In this case, it can
use the leftmost index prefix (d, i1) to produce a better execution plan:

mysql> EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1

1117

Use of Index Extensions

 type: ref
possible_keys: PRIMARY,k_d
 key: k_d
 key_len: 8
 ref: const,const
 rows: 1
 Extra: Using index

In both cases, key indicates that the optimizer uses secondary index k_d but the EXPLAIN output shows
these improvements from using the extended index:

• key_len goes from 4 bytes to 8 bytes, indicating that key lookups use columns d and i1, not just d.

• The ref value changes from const to const,const because the key lookup uses two key parts, not
one.

• The rows count decreases from 5 to 1, indicating that InnoDB should need to examine fewer rows to
produce the result.

• The Extra value changes from Using where; Using index to Using index. This means that
rows can be read using only the index, without consulting columns in the data row.

Differences in optimizer behavior for use of extended indexes can also be seen with SHOW STATUS:

FLUSH TABLE t1;
FLUSH STATUS;
SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01';
SHOW STATUS LIKE 'handler_read%'

The preceding statements include FLUSH TABLES and FLUSH STATUS to flush the table cache and clear
the status counters.

Without index extensions, SHOW STATUS produces this result:

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
Handler_read_first	0
Handler_read_key	1
Handler_read_last	0
Handler_read_next	5
Handler_read_prev	0
Handler_read_rnd	0
Handler_read_rnd_next	0
+-----------------------+-------+

With index extensions, SHOW STATUS produces this result. The Handler_read_next value decreases
from 5 to 1, indicating more efficient use of the index:

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
Handler_read_first	0
Handler_read_key	1
Handler_read_last	0
Handler_read_next	1
Handler_read_prev	0
Handler_read_rnd	0
Handler_read_rnd_next	0
+-----------------------+-------+

The use_index_extensions flag of the optimizer_switch system variable permits control over
whether the optimizer takes the primary key columns into account when determining how to use an

1118

Indexed Lookups from TIMESTAMP Columns

InnoDB table's secondary indexes. By default, use_index_extensions is enabled. To check whether
disabling use of index extensions can improve performance, use this statement:

SET optimizer_switch = 'use_index_extensions=off';

Use of index extensions by the optimizer is subject to the usual limits on the number of key parts in an
index (16) and the maximum key length (3072 bytes).

8.3.10 Indexed Lookups from TIMESTAMP Columns

Temporal values are stored in TIMESTAMP columns as UTC values, and values inserted into and retrieved
from TIMESTAMP columns are converted between the session time zone and UTC. (This is the same
type of conversion performed by the CONVERT_TZ() function. If the session time zone is UTC, there is
effectively no time zone conversion.)

Due to conventions for local time zone changes such as Daylight Saving Time (DST), conversions between
UTC and non-UTC time zones are not one-to-one in both directions. UTC values that are distinct may not
be distinct in another time zone. The following example shows distinct UTC values that become identical in
a non-UTC time zone:

mysql> CREATE TABLE tstable (ts TIMESTAMP);
mysql> SET time_zone = 'UTC'; -- insert UTC values
mysql> INSERT INTO tstable VALUES
 ('2018-10-28 00:30:00'),
 ('2018-10-28 01:30:00');
mysql> SELECT ts FROM tstable;
+---------------------+
| ts |
+---------------------+
| 2018-10-28 00:30:00 |
| 2018-10-28 01:30:00 |
+---------------------+
mysql> SET time_zone = 'MET'; -- retrieve non-UTC values
mysql> SELECT ts FROM tstable;
+---------------------+
| ts |
+---------------------+
| 2018-10-28 02:30:00 |
| 2018-10-28 02:30:00 |
+---------------------+

Note

To use named time zones such as 'MET' or 'Europe/Amsterdam', the time
zone tables must be properly set up. For instructions, see Section 5.1.13, “MySQL
Server Time Zone Support”.

You can see that the two distinct UTC values are the same when converted to the 'MET' time zone. This
phenomenon can lead to different results for a given TIMESTAMP column query, depending on whether the
optimizer uses an index to execute the query.

Suppose that a query selects values from the table shown earlier using a WHERE clause to search the ts
column for a single specific value such as a user-provided timestamp literal:

SELECT ts FROM tstable
WHERE ts = 'literal';

Suppose further that the query executes under these conditions:

• The session time zone is not UTC and has a DST shift. For example:

SET time_zone = 'MET';

1119

Indexed Lookups from TIMESTAMP Columns

• Unique UTC values stored in the TIMESTAMP column are not unique in the session time zone due to
DST shifts. (The example shown earlier illustrates how this can occur.)

• The query specifies a search value that is within the hour of entry into DST in the session time zone.

Under those conditions, the comparison in the WHERE clause occurs in different ways for nonindexed and
indexed lookups and leads to different results:

• If there is no index or the optimizer cannot use it, comparisons occur in the session time zone. The
optimizer performs a table scan in which it retrieves each ts column value, converts it from UTC to the
session time zone, and compares it to the search value (also interpreted in the session time zone):

mysql> SELECT ts FROM tstable
 WHERE ts = '2018-10-28 02:30:00';
+---------------------+
| ts |
+---------------------+
| 2018-10-28 02:30:00 |
| 2018-10-28 02:30:00 |
+---------------------+

Because the stored ts values are converted to the session time zone, it is possible for the query to
return two timestamp values that are distinct as UTC values but equal in the session time zone: One
value that occurs before the DST shift when clocks are changed, and one value that was occurs after the
DST shift.

• If there is a usable index, comparisons occur in UTC. The optimizer performs an index scan, first
converting the search value from the session time zone to UTC, then comparing the result to the UTC
index entries:

mysql> ALTER TABLE tstable ADD INDEX (ts);
mysql> SELECT ts FROM tstable
 WHERE ts = '2018-10-28 02:30:00';
+---------------------+
| ts |
+---------------------+
| 2018-10-28 02:30:00 |
+---------------------+

In this case, the (converted) search value is matched only to index entries, and because the index
entries for the distinct stored UTC values are also distinct, the search value can match only one of them.

Due to different optimizer operation for nonindexed and indexed lookups, the query produces different
results in each case. The result from the nonindexed lookup returns all values that match in the session
time zone. The indexed lookup cannot do so:

• It is performed within the storage engine, which knows only about UTC values.

• For the two distinct session time zone values that map to the same UTC value, the indexed lookup
matches only the corresponding UTC index entry and returns only a single row.

In the preceding discussion, the data set stored in tstable happens to consist of distinct UTC values. In
such cases, all index-using queries of the form shown match at most one index entry.

If the index is not UNIQUE, it is possible for the table (and the index) to store multiple instances of a given
UTC value. For example, the ts column might contain multiple instances of the UTC value '2018-10-28
00:30:00'. In this case, the index-using query would return each of them (converted to the MET value
'2018-10-28 02:30:00' in the result set). It remains true that index-using queries match the converted
search value to a single value in the UTC index entries, rather than matching multiple UTC values that
convert to the search value in the session time zone.

1120

Optimizing Database Structure

If it is important to return all ts values that match in the session time zone, the workaround is to suppress
use of the index with an IGNORE INDEX hint:

mysql> SELECT ts FROM tstable
 IGNORE INDEX (ts)
 WHERE ts = '2018-10-28 02:30:00';
+---------------------+
| ts |
+---------------------+
| 2018-10-28 02:30:00 |
| 2018-10-28 02:30:00 |
+---------------------+

The same lack of one-to-one mapping for time zone conversions in both directions occurs in other contexts
as well, such as conversions performed with the FROM_UNIXTIME() and UNIX_TIMESTAMP() functions.
See Section 12.7, “Date and Time Functions”.

8.4 Optimizing Database Structure
In your role as a database designer, look for the most efficient way to organize your schemas, tables, and
columns. As when tuning application code, you minimize I/O, keep related items together, and plan ahead
so that performance stays high as the data volume increases. Starting with an efficient database design
makes it easier for team members to write high-performing application code, and makes the database
likely to endure as applications evolve and are rewritten.

8.4.1 Optimizing Data Size

Design your tables to minimize their space on the disk. This can result in huge improvements by reducing
the amount of data written to and read from disk. Smaller tables normally require less main memory while
their contents are being actively processed during query execution. Any space reduction for table data also
results in smaller indexes that can be processed faster.

MySQL supports many different storage engines (table types) and row formats. For each table, you can
decide which storage and indexing method to use. Choosing the proper table format for your application
can give you a big performance gain. See Chapter 14, The InnoDB Storage Engine, and Chapter 15,
Alternative Storage Engines.

You can get better performance for a table and minimize storage space by using the techniques listed
here:

• Table Columns

• Row Format

• Indexes

• Joins

• Normalization

Table Columns

• Use the most efficient (smallest) data types possible. MySQL has many specialized types that save
disk space and memory. For example, use the smaller integer types if possible to get smaller tables.
MEDIUMINT is often a better choice than INT because a MEDIUMINT column uses 25% less space.

• Declare columns to be NOT NULL if possible. It makes SQL operations faster, by enabling better use of
indexes and eliminating overhead for testing whether each value is NULL. You also save some storage

1121

Optimizing Data Size

space, one bit per column. If you really need NULL values in your tables, use them. Just avoid the default
setting that allows NULL values in every column.

Row Format

• In MySQL 5.6, InnoDB tables use the COMPACT row storage format (ROW_FORMAT=COMPACT) by
default. The compact family of row formats, which includes COMPACT, DYNAMIC, and COMPRESSED,
decreases row storage space at the cost of increasing CPU use for some operations. If your workload
is a typical one that is limited by cache hit rates and disk speed it is likely to be faster. If it is a rare case
that is limited by CPU speed, it might be slower.

The compact family of row formats also optimizes CHAR column storage when using a variable-length
character set such as utf8mb3 or utf8mb4. With ROW_FORMAT=REDUNDANT, CHAR(N) occupies N ×
the maximum byte length of the character set. Many languages can be written primarily using single-byte
utf8 characters, so a fixed storage length often wastes space. With the compact family of rows formats,
InnoDB allocates a variable amount of storage in the range of N to N × the maximum byte length of the
character set for these columns by stripping trailing spaces. The minimum storage length is N bytes
to facilitate in-place updates in typical cases. For more information, see Section 14.11, “InnoDB Row
Formats”.

• To minimize space even further by storing table data in compressed form, specify
ROW_FORMAT=COMPRESSED when creating InnoDB tables, or run the myisampack command on
an existing MyISAM table. (InnoDB compressed tables are readable and writable, while MyISAM
compressed tables are read-only.)

• For MyISAM tables, if you do not have any variable-length columns (VARCHAR, TEXT, or BLOB columns),
a fixed-size row format is used. This is faster but may waste some space. See Section 15.2.3, “MyISAM
Table Storage Formats”. You can hint that you want to have fixed length rows even if you have VARCHAR
columns with the CREATE TABLE option ROW_FORMAT=FIXED.

Indexes

• The primary index of a table should be as short as possible. This makes identification of each row easy
and efficient. For InnoDB tables, the primary key columns are duplicated in each secondary index entry,
so a short primary key saves considerable space if you have many secondary indexes.

• Create only the indexes that you need to improve query performance. Indexes are good for retrieval, but
slow down insert and update operations. If you access a table mostly by searching on a combination of
columns, create a single composite index on them rather than a separate index for each column. The
first part of the index should be the column most used. If you always use many columns when selecting
from the table, the first column in the index should be the one with the most duplicates, to obtain better
compression of the index.

• If it is very likely that a long string column has a unique prefix on the first number of characters, it is
better to index only this prefix, using MySQL's support for creating an index on the leftmost part of
the column (see Section 13.1.13, “CREATE INDEX Statement”). Shorter indexes are faster, not only
because they require less disk space, but because they also give you more hits in the index cache, and
thus fewer disk seeks. See Section 5.1.1, “Configuring the Server”.

Joins

• In some circumstances, it can be beneficial to split into two a table that is scanned very often. This is
especially true if it is a dynamic-format table and it is possible to use a smaller static format table that
can be used to find the relevant rows when scanning the table.

• Declare columns with identical information in different tables with identical data types, to speed up joins
based on the corresponding columns.

1122

Optimizing MySQL Data Types

• Keep column names simple, so that you can use the same name across different tables and simplify
join queries. For example, in a table named customer, use a column name of name instead of
customer_name. To make your names portable to other SQL servers, consider keeping them shorter
than 18 characters.

Normalization

• Normally, try to keep all data nonredundant (observing what is referred to in database theory as third
normal form). Instead of repeating lengthy values such as names and addresses, assign them unique
IDs, repeat these IDs as needed across multiple smaller tables, and join the tables in queries by
referencing the IDs in the join clause.

• If speed is more important than disk space and the maintenance costs of keeping multiple copies of
data, for example in a business intelligence scenario where you analyze all the data from large tables,
you can relax the normalization rules, duplicating information or creating summary tables to gain more
speed.

8.4.2 Optimizing MySQL Data Types

8.4.2.1 Optimizing for Numeric Data

• For unique IDs or other values that can be represented as either strings or numbers, prefer numeric
columns to string columns. Since large numeric values can be stored in fewer bytes than the
corresponding strings, it is faster and takes less memory to transfer and compare them.

• If you are using numeric data, it is faster in many cases to access information from a database (using
a live connection) than to access a text file. Information in the database is likely to be stored in a more
compact format than in the text file, so accessing it involves fewer disk accesses. You also save code in
your application because you can avoid parsing the text file to find line and column boundaries.

8.4.2.2 Optimizing for Character and String Types

For character and string columns, follow these guidelines:

• Use binary collation order for fast comparison and sort operations, when you do not need language-
specific collation features. You can use the BINARY operator to use binary collation within a particular
query.

• When comparing values from different columns, declare those columns with the same character set and
collation wherever possible, to avoid string conversions while running the query.

• For column values less than 8KB in size, use binary VARCHAR instead of BLOB. The GROUP BY and
ORDER BY clauses can generate temporary tables, and these temporary tables can use the MEMORY
storage engine if the original table does not contain any BLOB columns.

• If a table contains string columns such as name and address, but many queries do not retrieve those
columns, consider splitting the string columns into a separate table and using join queries with a foreign
key when necessary. When MySQL retrieves any value from a row, it reads a data block containing all
the columns of that row (and possibly other adjacent rows). Keeping each row small, with only the most
frequently used columns, allows more rows to fit in each data block. Such compact tables reduce disk I/
O and memory usage for common queries.

• When you use a randomly generated value as a primary key in an InnoDB table, prefix it with an
ascending value such as the current date and time if possible. When consecutive primary values are
physically stored near each other, InnoDB can insert and retrieve them faster.

1123

Optimizing for Many Tables

• See Section 8.4.2.1, “Optimizing for Numeric Data” for reasons why a numeric column is usually
preferable to an equivalent string column.

8.4.2.3 Optimizing for BLOB Types

• When storing a large blob containing textual data, consider compressing it first. Do not use this
technique when the entire table is compressed by InnoDB or MyISAM.

• For a table with several columns, to reduce memory requirements for queries that do not use the BLOB
column, consider splitting the BLOB column into a separate table and referencing it with a join query
when needed.

• Since the performance requirements to retrieve and display a BLOB value might be very different from
other data types, you could put the BLOB-specific table on a different storage device or even a separate
database instance. For example, to retrieve a BLOB might require a large sequential disk read that is
better suited to a traditional hard drive than to an SSD device.

• See Section 8.4.2.2, “Optimizing for Character and String Types” for reasons why a binary VARCHAR
column is sometimes preferable to an equivalent BLOB column.

• Rather than testing for equality against a very long text string, you can store a hash of the column value
in a separate column, index that column, and test the hashed value in queries. (Use the MD5() or
CRC32() function to produce the hash value.) Since hash functions can produce duplicate results for
different inputs, you still include a clause AND blob_column = long_string_value in the query to
guard against false matches; the performance benefit comes from the smaller, easily scanned index for
the hashed values.

8.4.2.4 Using PROCEDURE ANALYSE

ANALYSE([max_elements[,max_memory]])

ANALYSE() examines the result from a query and returns an analysis of the results that suggests optimal
data types for each column that may help reduce table sizes. To obtain this analysis, append PROCEDURE
ANALYSE to the end of a SELECT statement:

SELECT ... FROM ... WHERE ... PROCEDURE ANALYSE([max_elements,[max_memory]])

For example:

SELECT col1, col2 FROM table1 PROCEDURE ANALYSE(10, 2000);

The results show some statistics for the values returned by the query, and propose an optimal data type
for the columns. This can be helpful for checking your existing tables, or after importing new data. You
may need to try different settings for the arguments so that PROCEDURE ANALYSE() does not suggest the
ENUM data type when it is not appropriate.

The arguments are optional and are used as follows:

• max_elements (default 256) is the maximum number of distinct values that ANALYSE() notices per
column. This is used by ANALYSE() to check whether the optimal data type should be of type ENUM; if
there are more than max_elements distinct values, then ENUM is not a suggested type.

• max_memory (default 8192) is the maximum amount of memory that ANALYSE() should allocate per
column while trying to find all distinct values.

A PROCEDURE clause is not permitted in a UNION statement.

8.4.3 Optimizing for Many Tables

1124

Optimizing for Many Tables

Some techniques for keeping individual queries fast involve splitting data across many tables. When the
number of tables runs into the thousands or even millions, the overhead of dealing with all these tables
becomes a new performance consideration.

8.4.3.1 How MySQL Opens and Closes Tables

When you execute a mysqladmin status command, you should see something like this:

Uptime: 426 Running threads: 1 Questions: 11082
Reloads: 1 Open tables: 12

The Open tables value of 12 can be somewhat puzzling if you have fewer than 12 tables.

MySQL is multithreaded, so there may be many clients issuing queries for a given table simultaneously.
To minimize the problem with multiple client sessions having different states on the same table, the table
is opened independently by each concurrent session. This uses additional memory but normally increases
performance. With MyISAM tables, one extra file descriptor is required for the data file for each client that
has the table open. (By contrast, the index file descriptor is shared between all sessions.)

The table_open_cache and max_connections system variables affect the maximum number of files
the server keeps open. If you increase one or both of these values, you may run up against a limit imposed
by your operating system on the per-process number of open file descriptors. Many operating systems
permit you to increase the open-files limit, although the method varies widely from system to system.
Consult your operating system documentation to determine whether it is possible to increase the limit and
how to do so.

table_open_cache is related to max_connections. For example, for 200 concurrent running
connections, specify a table cache size of at least 200 * N, where N is the maximum number of tables
per join in any of the queries which you execute. You must also reserve some extra file descriptors for
temporary tables and files.

Make sure that your operating system can handle the number of open file descriptors implied by the
table_open_cache setting. If table_open_cache is set too high, MySQL may run out of file
descriptors and exhibit symptoms such as refusing connections or failing to perform queries.

Also take into account that the MyISAM storage engine needs two file descriptors for each unique open
table. For a partitioned MyISAM table, two file descriptors are required for each partition of the opened
table. (When MyISAM opens a partitioned table, it opens every partition of this table, whether or not a given
partition is actually used. See MyISAM and partition file descriptor usage.) To increase the number of file
descriptors available to MySQL, set the open_files_limit system variable. See Section B.3.2.17, “File
Not Found and Similar Errors”.

The cache of open tables is kept at a level of table_open_cache entries. The server autosizes the cache
size at startup. To set the size explicitly, set the table_open_cache system variable at startup. MySQL
may temporarily open more tables than this to execute queries, as described later in this section.

MySQL closes an unused table and removes it from the table cache under the following circumstances:

• When the cache is full and a thread tries to open a table that is not in the cache.

• When the cache contains more than table_open_cache entries and a table in the cache is no longer
being used by any threads.

• When a table-flushing operation occurs. This happens when someone issues a FLUSH TABLES
statement or executes a mysqladmin flush-tables or mysqladmin refresh command.

When the table cache fills up, the server uses the following procedure to locate a cache entry to use:

1125

Internal Temporary Table Use in MySQL

• Tables not currently in use are released, beginning with the table least recently used.

• If a new table must be opened, but the cache is full and no tables can be released, the cache is
temporarily extended as necessary. When the cache is in a temporarily extended state and a table goes
from a used to unused state, the table is closed and released from the cache.

A MyISAM table is opened for each concurrent access. This means the table needs to be opened twice if
two threads access the same table or if a thread accesses the table twice in the same query (for example,
by joining the table to itself). Each concurrent open requires an entry in the table cache. The first open of
any MyISAM table takes two file descriptors: one for the data file and one for the index file. Each additional
use of the table takes only one file descriptor for the data file. The index file descriptor is shared among all
threads.

If you are opening a table with the HANDLER tbl_name OPEN statement, a dedicated table object is
allocated for the thread. This table object is not shared by other threads and is not closed until the thread
calls HANDLER tbl_name CLOSE or the thread terminates. When this happens, the table is put back in
the table cache (if the cache is not full). See Section 13.2.4, “HANDLER Statement”.

To determine whether your table cache is too small, check the Opened_tables status variable, which
indicates the number of table-opening operations since the server started:

mysql> SHOW GLOBAL STATUS LIKE 'Opened_tables';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Opened_tables | 2741 |
+---------------+-------+

If the value is very large or increases rapidly, even when you have not issued many FLUSH TABLES
statements, increase the table_open_cache value at server startup.

8.4.3.2 Disadvantages of Creating Many Tables in the Same Database

If you have many MyISAM tables in the same database directory, open, close, and create operations are
slow. If you execute SELECT statements on many different tables, there is a little overhead when the table
cache is full, because for every table that has to be opened, another must be closed. You can reduce this
overhead by increasing the number of entries permitted in the table cache.

8.4.4 Internal Temporary Table Use in MySQL

In some cases, the server creates internal temporary tables while processing statements. Users have no
direct control over when this occurs.

The server creates temporary tables under conditions such as these:

• Evaluation of UNION statements.

• Evaluation of some views, such those that use the TEMPTABLE algorithm, UNION, or aggregation.

• Evaluation of derived tables (see Section 13.2.10.8, “Derived Tables”).

• Tables created for subquery or semijoin materialization (see Section 8.2.2, “Optimizing Subqueries and
Derived Tables”).

• Evaluation of statements that contain an ORDER BY clause and a different GROUP BY clause, or for
which the ORDER BY or GROUP BY contains columns from tables other than the first table in the join
queue.

1126

Internal Temporary Table Use in MySQL

• Evaluation of DISTINCT combined with ORDER BY may require a temporary table.

• For queries that use the SQL_SMALL_RESULT modifier, MySQL uses an in-memory temporary table,
unless the query also contains elements (described later) that require on-disk storage.

• To evaluate INSERT ... SELECT statements that select from and insert into the same table, MySQL
creates an internal temporary table to hold the rows from the SELECT, then inserts those rows into the
target table. See Section 13.2.5.1, “INSERT ... SELECT Statement”.

• Evaluation of multiple-table UPDATE statements.

• Evaluation of GROUP_CONCAT() or COUNT(DISTINCT) expressions.

To determine whether a statement requires a temporary table, use EXPLAIN and check the Extra column
to see whether it says Using temporary (see Section 8.8.1, “Optimizing Queries with EXPLAIN”).
EXPLAIN does not necessarily say Using temporary for derived or materialized temporary tables.

Some query conditions prevent the use of an in-memory temporary table, in which case the server uses an
on-disk table instead:

• Presence of a BLOB or TEXT column in the table. This includes user-defined variables having a string
value because they are treated as BLOB or TEXT columns, depending on whether their value is a binary
or nonbinary string, respectively.

• Presence of any string column in a GROUP BY or DISTINCT clause larger than 512 bytes for binary
strings or 512 characters for nonbinary strings.

• Presence of any string column with a maximum length larger than 512 (bytes for binary strings,
characters for nonbinary strings) in the SELECT list, if UNION or UNION ALL is used.

• The SHOW COLUMNS and DESCRIBE statements use BLOB as the type for some columns, thus the
temporary table used for the results is an on-disk table.

• Internal Temporary Table Storage Engine

• Internal Temporary Table Storage Format

Internal Temporary Table Storage Engine

An internal temporary table can be held in memory and processed by the MEMORY storage engine, or
stored on disk and processed by the MyISAM storage engine.

If an internal temporary table is created as an in-memory table but becomes too large, MySQL
automatically converts it to an on-disk table. The maximum size of an in-memory temporary table is defined
by the tmp_table_size or max_heap_table_size value, whichever is smaller. This differs from
MEMORY tables explicitly created with CREATE TABLE. For such tables, only the max_heap_table_size
variable determines how large a table can grow, and there is no conversion to on-disk format.

When an internal temporary table is created in memory or on disk, the server increments the
Created_tmp_tables value. When an internal temporary table is created on disk, the server increments
the Created_tmp_disk_tables value. If too many internal temporary tables are created on disk,
consider increasing the tmp_table_size and max_heap_table_size settings.

Internal Temporary Table Storage Format

In-memory temporary tables are managed by the MEMORY storage engine, which uses fixed-length row
format. VARCHAR and VARBINARY column values are padded to the maximum column length, in effect
storing them as CHAR and BINARY columns.

1127

Limits on Number of Databases and Tables

On-disk temporary tables are managed by the MyISAM storage engine using dynamic-width row format.
Columns take only as much storage as needed, which reduces disk I/O and space requirements, and
processing time compared to on-disk tables that use fixed-length rows.

For statements that initially create an internal temporary table in memory, then convert it to an on-disk
table, better performance might be achieved by skipping the conversion step and creating the table on disk
to begin with. The big_tables variable can be used to force disk storage of internal temporary tables.

8.4.5 Limits on Number of Databases and Tables

MySQL has no limit on the number of databases. The underlying file system may have a limit on the
number of directories.

MySQL has no limit on the number of tables. The underlying file system may have a limit on the number
of files that represent tables. Individual storage engines may impose engine-specific constraints. InnoDB
permits up to 4 billion tables.

8.4.6 Limits on Table Size

The effective maximum table size for MySQL databases is usually determined by operating system
constraints on file sizes, not by MySQL internal limits. For up-to-date information operating system file size
limits, refer to the documentation specific to your operating system.

Windows users, please note that FAT and VFAT (FAT32) are not considered suitable for production use
with MySQL. Use NTFS instead.

If you encounter a full-table error, there are several reasons why it might have occurred:

• The disk might be full.

• You are using InnoDB tables and have run out of room in an InnoDB tablespace file. The maximum
tablespace size is also the maximum size for a table. For tablespace size limits, see Section 14.22,
“InnoDB Limits”.

Generally, partitioning of tables into multiple tablespace files is recommended for tables larger than 1TB
in size.

• You have hit an operating system file size limit. For example, you are using MyISAM tables on an
operating system that supports files only up to 2GB in size and you have hit this limit for the data file or
index file.

• You are using a MyISAM table and the space required for the table exceeds what is permitted by the
internal pointer size. MyISAM permits data and index files to grow up to 256TB by default, but this limit
can be changed up to the maximum permissible size of 65,536TB (2567 − 1 bytes).

If you need a MyISAM table that is larger than the default limit and your operating system supports
large files, the CREATE TABLE statement supports AVG_ROW_LENGTH and MAX_ROWS options. See
Section 13.1.17, “CREATE TABLE Statement”. The server uses these options to determine how large a
table to permit.

If the pointer size is too small for an existing table, you can change the options with ALTER TABLE to
increase a table's maximum permissible size. See Section 13.1.7, “ALTER TABLE Statement”.

ALTER TABLE tbl_name MAX_ROWS=1000000000 AVG_ROW_LENGTH=nnn;

You have to specify AVG_ROW_LENGTH only for tables with BLOB or TEXT columns; in this case, MySQL
cannot optimize the space required based only on the number of rows.

1128

Limits on Table Column Count and Row Size

To change the default size limit for MyISAM tables, set the myisam_data_pointer_size, which sets
the number of bytes used for internal row pointers. The value is used to set the pointer size for new
tables if you do not specify the MAX_ROWS option. The value of myisam_data_pointer_size can be
from 2 to 7. For example, for tables that use the dynamic storage format, a value of 4 permits tables up
to 4GB; a value of 6 permits tables up to 256TB. Tables that use the fixed storage format have a larger
maximum data length. For storage format characteristics, see Section 15.2.3, “MyISAM Table Storage
Formats”.

You can check the maximum data and index sizes by using this statement:

SHOW TABLE STATUS FROM db_name LIKE 'tbl_name';

You also can use myisamchk -dv /path/to/table-index-file. See Section 13.7.5, “SHOW
Statements”, or Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.

Other ways to work around file-size limits for MyISAM tables are as follows:

• If your large table is read only, you can use myisampack to compress it. myisampack usually
compresses a table by at least 50%, so you can have, in effect, much bigger tables. myisampack
also can merge multiple tables into a single table. See Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”.

• MySQL includes a MERGE library that enables you to handle a collection of MyISAM tables that have
identical structure as a single MERGE table. See Section 15.7, “The MERGE Storage Engine”.

• You are using the MEMORY (HEAP) storage engine; in this case you need to increase the value of the
max_heap_table_size system variable. See Section 5.1.7, “Server System Variables”.

8.4.7 Limits on Table Column Count and Row Size

This section describes limits on the number of columns in tables and the size of individual rows.

• Column Count Limits

• Row Size Limits

Column Count Limits

MySQL has hard limit of 4096 columns per table, but the effective maximum may be less for a given table.
The exact column limit depends on several factors:

• The maximum row size for a table constrains the number (and possibly size) of columns because the
total length of all columns cannot exceed this size. See Row Size Limits.

• The storage requirements of individual columns constrain the number of columns that fit within a given
maximum row size. Storage requirements for some data types depend on factors such as storage
engine, storage format, and character set. See Section 11.6, “Data Type Storage Requirements”.

• Storage engines may impose additional restrictions that limit table column count. For example, InnoDB
has a limit of 1017 columns per table. See Section 14.22, “InnoDB Limits”. For information about other
storage engines, see Chapter 15, Alternative Storage Engines.

• Each table has an .frm file that contains the table definition. The definition affects the content of this file
in ways that may affect the number of columns permitted in the table. See Limits Imposed by .frm File
Structure.

Row Size Limits

1129

Limits on Table Column Count and Row Size

The maximum row size for a given table is determined by several factors:

• The internal representation of a MySQL table has a maximum row size limit of 65,535 bytes, even if the
storage engine is capable of supporting larger rows. BLOB and TEXT columns only contribute 9 to 12
bytes toward the row size limit because their contents are stored separately from the rest of the row.

• The maximum row size for an InnoDB table, which applies to data stored locally within a database page,
is slightly less than half a page. For example, the maximum row size is slightly less than 8KB for the
default 16KB InnoDB page size, which is defined by the innodb_page_size configuration option. See
Section 14.22, “InnoDB Limits”.

If a row containing variable-length columns exceeds the InnoDB maximum row size, InnoDB selects
variable-length columns for external off-page storage until the row fits within the InnoDB row size limit.
The amount of data stored locally for variable-length columns that are stored off-page differs by row
format. For more information, see Section 14.11, “InnoDB Row Formats”.

• Different storage formats use different amounts of page header and trailer data, which affects the
amount of storage available for rows.

• For information about InnoDB row formats, see Section 14.11, “InnoDB Row Formats”.

• For information about MyISAM storage formats, see Section 15.2.3, “MyISAM Table Storage Formats”.

Row Size Limit Examples

• The MySQL maximum row size limit of 65,535 bytes is demonstrated in the following InnoDB and
MyISAM examples. The limit is enforced regardless of storage engine, even though the storage engine
may be capable of supporting larger rows.

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
 c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 f VARCHAR(10000), g VARCHAR(6000)) ENGINE=InnoDB CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the used
table type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual. You have to change some columns to TEXT or BLOBs

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
 c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 f VARCHAR(10000), g VARCHAR(6000)) ENGINE=MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the used
table type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual. You have to change some columns to TEXT or BLOBs

In the following MyISAM example, changing a column to TEXT avoids the 65,535-byte row size limit and
permits the operation to succeed because BLOB and TEXT columns only contribute 9 to 12 bytes toward
the row size.

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
 c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 f VARCHAR(10000), g TEXT(6000)) ENGINE=MyISAM CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)

The operation succeeds for an InnoDB table because changing a column to TEXT avoids the MySQL
65,535-byte row size limit, and InnoDB off-page storage of variable-length columns avoids the InnoDB
row size limit.

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
 c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 f VARCHAR(10000), g TEXT(6000)) ENGINE=InnoDB CHARACTER SET latin1;

1130

Limits on Table Column Count and Row Size

Query OK, 0 rows affected (0.02 sec)

• Storage for variable-length columns includes length bytes, which are counted toward the row size. For
example, a VARCHAR(255) CHARACTER SET utf8mb3 column takes two bytes to store the length of
the value, so each value can take up to 767 bytes.

The statement to create table t1 succeeds because the columns require 32,765 + 2 bytes and 32,766 +
2 bytes, which falls within the maximum row size of 65,535 bytes:

mysql> CREATE TABLE t1
 (c1 VARCHAR(32765) NOT NULL, c2 VARCHAR(32766) NOT NULL)
 ENGINE = InnoDB CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)

The statement to create table t2 fails because, although the column length is within the maximum length
of 65,535 bytes, two additional bytes are required to record the length, which causes the row size to
exceed 65,535 bytes:

mysql> CREATE TABLE t2
 (c1 VARCHAR(65535) NOT NULL)
 ENGINE = InnoDB CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the used
table type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual. You have to change some columns to TEXT or BLOBs

Reducing the column length to 65,533 or less permits the statement to succeed.

mysql> CREATE TABLE t2
 (c1 VARCHAR(65533) NOT NULL)
 ENGINE = InnoDB CHARACTER SET latin1;
Query OK, 0 rows affected (0.01 sec)

• For MyISAM tables, NULL columns require additional space in the row to record whether their values are
NULL. Each NULL column takes one bit extra, rounded up to the nearest byte.

The statement to create table t3 fails because MyISAM requires space for NULL columns in addition to
the space required for variable-length column length bytes, causing the row size to exceed 65,535 bytes:

mysql> CREATE TABLE t3
 (c1 VARCHAR(32765) NULL, c2 VARCHAR(32766) NULL)
 ENGINE = MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the used
table type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual. You have to change some columns to TEXT or BLOBs

For information about InnoDB NULL column storage, see Section 14.11, “InnoDB Row Formats”.

• InnoDB restricts row size (for data stored locally within the database page) to slightly less than half
a database page. For example, the maximum row size is slightly less than 8KB for the default 16KB
InnoDB page size, which is defined by the innodb_page_size configuration option.

The statement to create table t4 fails because the defined columns exceed the row size limit for a 16KB
InnoDB page.

Note

innodb_strict_mode is enabled in the following example to ensure that
InnoDB returns an error if the defined columns exceed the InnoDB row size limit.
When innodb_strict_mode is disabled (the default), creating a table that uses
REDUNDANT or COMPACT row format succeeds with a warning if the InnoDB row
size limit is exceeded.

1131

Optimizing for InnoDB Tables

DYNAMIC and COMPRESSED row formats are more restrictive in this regard.
Creating a table that uses DYNAMIC or COMRESSED row format fails
with an error if the InnoDB row size limit is exceeded, regardless of the
innodb_strict_mode setting.

mysql> SET SESSION innodb_strict_mode=1;
mysql> CREATE TABLE t4 (
 c1 CHAR(255),c2 CHAR(255),c3 CHAR(255),
 c4 CHAR(255),c5 CHAR(255),c6 CHAR(255),
 c7 CHAR(255),c8 CHAR(255),c9 CHAR(255),
 c10 CHAR(255),c11 CHAR(255),c12 CHAR(255),
 c13 CHAR(255),c14 CHAR(255),c15 CHAR(255),
 c16 CHAR(255),c17 CHAR(255),c18 CHAR(255),
 c19 CHAR(255),c20 CHAR(255),c21 CHAR(255),
 c22 CHAR(255),c23 CHAR(255),c24 CHAR(255),
 c25 CHAR(255),c26 CHAR(255),c27 CHAR(255),
 c28 CHAR(255),c29 CHAR(255),c30 CHAR(255),
 c31 CHAR(255),c32 CHAR(255),c33 CHAR(255)
) ENGINE=InnoDB ROW_FORMAT=COMPACT DEFAULT CHARSET latin1;
ERROR 1118 (42000): Row size too large (> 8126). Changing some columns to TEXT or BLOB or using
ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED may help. In current row format, BLOB prefix of 768
bytes is stored inline.

8.5 Optimizing for InnoDB Tables

InnoDB is the storage engine that MySQL customers typically use in production databases where reliability
and concurrency are important. InnoDB is the default storage engine in MySQL 5.6 This section explains
how to tables more often than before. This section explains how to optimize database operations for
InnoDB tables.

8.5.1 Optimizing Storage Layout for InnoDB Tables

• Once your data reaches a stable size, or a growing table has increased by tens or some hundreds
of megabytes, consider using the OPTIMIZE TABLE statement to reorganize the table and compact
any wasted space. The reorganized tables require less disk I/O to perform full table scans. This is a
straightforward technique that can improve performance when other techniques such as improving index
usage or tuning application code are not practical.

OPTIMIZE TABLE copies the data part of the table and rebuilds the indexes. The benefits come from
improved packing of data within indexes, and reduced fragmentation within the tablespaces and on disk.
The benefits vary depending on the data in each table. You may find that there are significant gains
for some and not for others, or that the gains decrease over time until you next optimize the table. This
operation can be slow if the table is large or if the indexes being rebuilt do not fit into the buffer pool. The
first run after adding a lot of data to a table is often much slower than later runs.

• In InnoDB, having a long PRIMARY KEY (either a single column with a lengthy value, or several
columns that form a long composite value) wastes a lot of disk space. The primary key value for a
row is duplicated in all the secondary index records that point to the same row. (See Section 14.6.2.1,
“Clustered and Secondary Indexes”.) Create an AUTO_INCREMENT column as the primary key if your
primary key is long, or index a prefix of a long VARCHAR column instead of the entire column.

• Use the VARCHAR data type instead of CHAR to store variable-length strings or for columns with many
NULL values. A CHAR(N) column always takes N characters to store data, even if the string is shorter or
its value is NULL. Smaller tables fit better in the buffer pool and reduce disk I/O.

When using COMPACT row format (the default InnoDB format) and variable-length character sets, such
as utf8 or sjis, CHAR(N) columns occupy a variable amount of space, but still at least N bytes.

1132

Optimizing InnoDB Transaction Management

• For tables that are big, or contain lots of repetitive text or numeric data, consider using COMPRESSED
row format. Less disk I/O is required to bring data into the buffer pool, or to perform full table scans.
Before making a permanent decision, measure the amount of compression you can achieve by using
COMPRESSED versus COMPACT row format.

8.5.2 Optimizing InnoDB Transaction Management

To optimize InnoDB transaction processing, find the ideal balance between the performance overhead
of transactional features and the workload of your server. For example, an application might encounter
performance issues if it commits thousands of times per second, and different performance issues if it
commits only every 2-3 hours.

• The default MySQL setting AUTOCOMMIT=1 can impose performance limitations on a busy database
server. Where practical, wrap several related data change operations into a single transaction, by issuing
SET AUTOCOMMIT=0 or a START TRANSACTION statement, followed by a COMMIT statement after
making all the changes.

InnoDB must flush the log to disk at each transaction commit if that transaction made modifications to
the database. When each change is followed by a commit (as with the default autocommit setting), the I/
O throughput of the storage device puts a cap on the number of potential operations per second.

• Alternatively, for transactions that consist only of a single SELECT statement, turning on AUTOCOMMIT
helps InnoDB to recognize read-only transactions and optimize them. See Section 8.5.3, “Optimizing
InnoDB Read-Only Transactions” for requirements.

• Avoid performing rollbacks after inserting, updating, or deleting huge numbers of rows. If a big
transaction is slowing down server performance, rolling it back can make the problem worse, potentially
taking several times as long to perform as the original data change operations. Killing the database
process does not help, because the rollback starts again on server startup.

To minimize the chance of this issue occurring:

• Increase the size of the buffer pool so that all the data change changes can be cached rather than
immediately written to disk.

• Set innodb_change_buffering=all so that update and delete operations are buffered in addition
to inserts.

• Consider issuing COMMIT statements periodically during the big data change operation, possibly
breaking a single delete or update into multiple statements that operate on smaller numbers of rows.

To get rid of a runaway rollback once it occurs, increase the buffer pool so that the rollback becomes
CPU-bound and runs fast, or kill the server and restart with innodb_force_recovery=3, as explained
in Section 14.18.2, “InnoDB Recovery”.

This issue is expected to be infrequent with the default setting innodb_change_buffering=all,
which allows update and delete operations to be cached in memory, making them faster to perform in
the first place, and also faster to roll back if needed. Make sure to use this parameter setting on servers
that process long-running transactions with many inserts, updates, or deletes.

• If you can afford the loss of some of the latest committed transactions if an unexpected exit occurs, you
can set the innodb_flush_log_at_trx_commit parameter to 0. InnoDB tries to flush the log once
per second anyway, although the flush is not guaranteed. Also, set the value of innodb_support_xa
to 0, which reduces the number of disk flushes due to synchronizing on disk data and the binary log.

• When rows are modified or deleted, the rows and associated undo logs are not physically removed
immediately, or even immediately after the transaction commits. The old data is preserved until

1133

Optimizing InnoDB Read-Only Transactions

transactions that started earlier or concurrently are finished, so that those transactions can access the
previous state of modified or deleted rows. Thus, a long-running transaction can prevent InnoDB from
purging data that was changed by a different transaction.

• When rows are modified or deleted within a long-running transaction, other transactions using the READ
COMMITTED and REPEATABLE READ isolation levels have to do more work to reconstruct the older data
if they read those same rows.

• When a long-running transaction modifies a table, queries against that table from other transactions do
not make use of the covering index technique. Queries that normally could retrieve all the result columns
from a secondary index, instead look up the appropriate values from the table data.

If secondary index pages are found to have a PAGE_MAX_TRX_ID that is too new, or if records in the
secondary index are delete-marked, InnoDB may need to look up records using a clustered index.

8.5.3 Optimizing InnoDB Read-Only Transactions

InnoDB can avoid the overhead associated with setting up the transaction ID (TRX_ID field) for
transactions that are known to be read-only. A transaction ID is only needed for a transaction that might
perform write operations or locking reads such as SELECT ... FOR UPDATE. Eliminating unnecessary
transaction IDs reduces the size of internal data structures that are consulted each time a query or data
change statement constructs a read view.

InnoDB detects read-only transactions when:

• The transaction is started with the START TRANSACTION READ ONLY statement. In this case,
attempting to make changes to the database (for InnoDB, MyISAM, or other types of tables) causes an
error, and the transaction continues in read-only state:

ERROR 1792 (25006): Cannot execute statement in a READ ONLY transaction.

You can still make changes to session-specific temporary tables in a read-only transaction, or issue
locking queries for them, because those changes and locks are not visible to any other transaction.

• The autocommit setting is turned on, so that the transaction is guaranteed to be a single statement,
and the single statement making up the transaction is a “non-locking” SELECT statement. That is, a
SELECT that does not use a FOR UPDATE or LOCK IN SHARED MODE clause.

Thus, for a read-intensive application such as a report generator, you can tune a sequence of InnoDB
queries by grouping them inside START TRANSACTION READ ONLY and COMMIT, or by turning on the
autocommit setting before running the SELECT statements, or simply by avoiding any data change
statements interspersed with the queries.

For information about START TRANSACTION and autocommit, see Section 13.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Statements”.

Note

Transactions that qualify as auto-commit, non-locking, and read-only (AC-NL-RO)
are kept out of certain internal InnoDB data structures and are therefore not listed
in SHOW ENGINE INNODB STATUS output.

8.5.4 Optimizing InnoDB Redo Logging

Consider the following guidelines for optimizing redo logging:

1134

Bulk Data Loading for InnoDB Tables

• Make your redo log files big, even as big as the buffer pool. When InnoDB has written the redo log files
full, it must write the modified contents of the buffer pool to disk in a checkpoint. Small redo log files
cause many unnecessary disk writes. Although historically big redo log files caused lengthy recovery
times, recovery is now much faster and you can confidently use large redo log files.

The size and number of redo log files are configured using the innodb_log_file_size and
innodb_log_files_in_group configuration options. For information about modifying an existing
redo log file configuration, see Changing the Number or Size of InnoDB Redo Log Files.

• Consider increasing the size of the log buffer. A large log buffer enables large transactions to run without
a need to write the log to disk before the transactions commit. Thus, if you have transactions that update,
insert, or delete many rows, making the log buffer larger saves disk I/O. Log buffer size is configured
using the innodb_log_buffer_size configuration option.

8.5.5 Bulk Data Loading for InnoDB Tables

These performance tips supplement the general guidelines for fast inserts in Section 8.2.4.1, “Optimizing
INSERT Statements”.

• When importing data into InnoDB, turn off autocommit mode, because it performs a log flush to disk for
every insert. To disable autocommit during your import operation, surround it with SET autocommit
and COMMIT statements:

SET autocommit=0;
... SQL import statements ...
COMMIT;

The mysqldump option --opt creates dump files that are fast to import into an InnoDB table, even
without wrapping them with the SET autocommit and COMMIT statements.

• If you have UNIQUE constraints on secondary keys, you can speed up table imports by temporarily
turning off the uniqueness checks during the import session:

SET unique_checks=0;
... SQL import statements ...
SET unique_checks=1;

For big tables, this saves a lot of disk I/O because InnoDB can use its change buffer to write secondary
index records in a batch. Be certain that the data contains no duplicate keys.

• If you have FOREIGN KEY constraints in your tables, you can speed up table imports by turning off the
foreign key checks for the duration of the import session:

SET foreign_key_checks=0;
... SQL import statements ...
SET foreign_key_checks=1;

For big tables, this can save a lot of disk I/O.

• Use the multiple-row INSERT syntax to reduce communication overhead between the client and the
server if you need to insert many rows:

INSERT INTO yourtable VALUES (1,2), (5,5), ...;

This tip is valid for inserts into any table, not just InnoDB tables.

• When doing bulk inserts into tables with auto-increment columns, set innodb_autoinc_lock_mode
to 2 instead of the default value 1. See Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB” for
details.

1135

https://dev.mysql.com/doc/refman/5.7/en/innodb-redo-log.html#innodb-redo-log-file-reconfigure

Optimizing InnoDB Queries

• When performing bulk inserts, it is faster to insert rows in PRIMARY KEY order. InnoDB tables use a
clustered index, which makes it relatively fast to use data in the order of the PRIMARY KEY. Performing
bulk inserts in PRIMARY KEY order is particularly important for tables that do not fit entirely within the
buffer pool.

• For optimal performance when loading data into an InnoDB FULLTEXT index, follow this set of steps:

1. Define a column FTS_DOC_ID at table creation time, of type BIGINT UNSIGNED NOT NULL, with a
unique index named FTS_DOC_ID_INDEX. For example:

CREATE TABLE t1 (
FTS_DOC_ID BIGINT unsigned NOT NULL AUTO_INCREMENT,
title varchar(255) NOT NULL DEFAULT '',
text mediumtext NOT NULL,
PRIMARY KEY (`FTS_DOC_ID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
CREATE UNIQUE INDEX FTS_DOC_ID_INDEX on t1(FTS_DOC_ID);

2. Load the data into the table.

3. Create the FULLTEXT index after the data is loaded.

Note

When adding FTS_DOC_ID column at table creation time, ensure that the
FTS_DOC_ID column is updated when the FULLTEXT indexed column is
updated, as the FTS_DOC_ID must increase monotonically with each INSERT
or UPDATE. If you choose not to add the FTS_DOC_ID at table creation time and
have InnoDB manage DOC IDs for you, InnoDB adds the FTS_DOC_ID as a
hidden column with the next CREATE FULLTEXT INDEX call. This approach,
however, requires a table rebuild which can impact performance.

8.5.6 Optimizing InnoDB Queries

To tune queries for InnoDB tables, create an appropriate set of indexes on each table. See Section 8.3.1,
“How MySQL Uses Indexes” for details. Follow these guidelines for InnoDB indexes:

• Because each InnoDB table has a primary key (whether you request one or not), specify a set of
primary key columns for each table, columns that are used in the most important and time-critical
queries.

• Do not specify too many or too long columns in the primary key, because these column values are
duplicated in each secondary index. When an index contains unnecessary data, the I/O to read this data
and memory to cache it reduce the performance and scalability of the server.

• Do not create a separate secondary index for each column, because each query can only make use of
one index. Indexes on rarely tested columns or columns with only a few different values might not be
helpful for any queries. If you have many queries for the same table, testing different combinations of
columns, try to create a small number of concatenated indexes rather than a large number of single-
column indexes. If an index contains all the columns needed for the result set (known as a covering
index), the query might be able to avoid reading the table data at all.

• If an indexed column cannot contain any NULL values, declare it as NOT NULL when you create the
table. The optimizer can better determine which index is most effective to use for a query, when it knows
whether each column contains NULL values.

• You can optimize single-query transactions for InnoDB tables, using the technique in Section 8.5.3,
“Optimizing InnoDB Read-Only Transactions”.

1136

Optimizing InnoDB DDL Operations

8.5.7 Optimizing InnoDB DDL Operations

• Many DDL operations on tables and indexes (CREATE, ALTER, and DROP statements) can be performed
online. See Section 14.13, “InnoDB and Online DDL” for details.

• Online DDL support for adding secondary indexes means that you can generally speed up the process
of creating and loading a table and associated indexes by creating the table without secondary indexes,
then adding secondary indexes after the data is loaded.

• Use TRUNCATE TABLE to empty a table, not DELETE FROM tbl_name. Foreign key constraints can
make a TRUNCATE statement work like a regular DELETE statement, in which case a sequence of
commands like DROP TABLE and CREATE TABLE might be fastest.

• Because the primary key is integral to the storage layout of each InnoDB table, and changing the
definition of the primary key involves reorganizing the whole table, always set up the primary key as part
of the CREATE TABLE statement, and plan ahead so that you do not need to ALTER or DROP the primary
key afterward.

8.5.8 Optimizing InnoDB Disk I/O

If you follow best practices for database design and tuning techniques for SQL operations, but your
database is still slow due to heavy disk I/O activity, consider these disk I/O optimizations. If the Unix top
tool or the Windows Task Manager shows that the CPU usage percentage with your workload is less than
70%, your workload is probably disk-bound.

• Increase buffer pool size

When table data is cached in the InnoDB buffer pool, it can be accessed repeatedly by queries without
requiring any disk I/O. Specify the size of the buffer pool with the innodb_buffer_pool_size
option. This memory area is important enough that it is typically recommended that
innodb_buffer_pool_size is configured to 50 to 75 percent of system memory. For more
information see, Section 8.12.4.1, “How MySQL Uses Memory”.

• Adjust the flush method

In some versions of GNU/Linux and Unix, flushing files to disk with the Unix fsync() call (which
InnoDB uses by default) and similar methods is surprisingly slow. If database write performance is an
issue, conduct benchmarks with the innodb_flush_method parameter set to O_DSYNC.

• Use a noop or deadline I/O scheduler with native AIO on Linux

InnoDB uses the asynchronous I/O subsystem (native AIO) on Linux to perform read-ahead and write
requests for data file pages. This behavior is controlled by the innodb_use_native_aio configuration
option, which is enabled by default. With native AIO, the type of I/O scheduler has greater influence on I/
O performance. Generally, noop and deadline I/O schedulers are recommended. Conduct benchmarks
to determine which I/O scheduler provides the best results for your workload and environment. For more
information, see Section 14.8.7, “Using Asynchronous I/O on Linux”.

• Use direct I/O on Solaris 10 for x86_64 architecture

When using the InnoDB storage engine on Solaris 10 for x86_64 architecture (AMD Opteron), use direct
I/O for InnoDB-related files to avoid degradation of InnoDB performance. To use direct I/O for an entire
UFS file system used for storing InnoDB-related files, mount it with the forcedirectio option; see
mount_ufs(1M). (The default on Solaris 10/x86_64 is not to use this option.) To apply direct I/O only to
InnoDB file operations rather than the whole file system, set innodb_flush_method = O_DIRECT.
With this setting, InnoDB calls directio() instead of fcntl() for I/O to data files (not for I/O to log
files).

1137

Optimizing InnoDB Disk I/O

• Use raw storage for data and log files with Solaris 2.6 or later

When using the InnoDB storage engine with a large innodb_buffer_pool_size value on any
release of Solaris 2.6 and up and any platform (sparc/x86/x64/amd64), conduct benchmarks with
InnoDB data files and log files on raw devices or on a separate direct I/O UFS file system, using the
forcedirectio mount option as described previously. (It is necessary to use the mount option rather
than setting innodb_flush_method if you want direct I/O for the log files.) Users of the Veritas file
system VxFS should use the convosync=direct mount option.

Do not place other MySQL data files, such as those for MyISAM tables, on a direct I/O file system.
Executables or libraries must not be placed on a direct I/O file system.

• Use additional storage devices

Additional storage devices could be used to set up a RAID configuration. For related information, see
Section 8.12.2, “Optimizing Disk I/O”.

Alternatively, InnoDB tablespace data files and log files can be placed on different physical disks. For
more information, refer to the following sections:

• Section 14.8.1, “InnoDB Startup Configuration”

• Section 14.6.1.2, “Creating Tables Externally”

• Section 14.6.1.4, “Moving or Copying InnoDB Tables”

• Consider non-rotational storage

Non-rotational storage generally provides better performance for random I/O operations; and rotational
storage for sequential I/O operations. When distributing data and log files across rotational and non-

1138

Optimizing InnoDB Disk I/O

rotational storage devices, consider the type of I/O operations that are predominantly performed on each
file.

Random I/O-oriented files typically include file-per-table data files and undo tablespace files. Sequential
I/O-oriented files include InnoDB system tablespace files (due to doublewrite buffering and change
buffering) and log files such as binary log files and redo log files.

Review settings for the following configuration options when using non-rotational storage:

• innodb_checksum_algorithm

The crc32 option uses a faster checksum algorithm and is recommended for fast storage systems.

• innodb_flush_neighbors

Optimizes I/O for rotational storage devices. Disable it for non-rotational storage or a mix of rotational
and non-rotational storage.

• innodb_io_capacity

The default setting of 200 is generally sufficient for a lower-end non-rotational storage device. For
higher-end, bus-attached devices, consider a higher setting such as 1000.

• innodb_io_capacity_max

The default value of 2000 is intended for workloads that use non-rotational storage. For a high-end,
bus-attached non-rotational storage device, consider a higher setting such as 2500.

• innodb_log_compressed_pages

If redo logs are on non-rotational storage, consider disabling this option to reduce logging. See Disable
logging of compressed pages.

• innodb_log_file_size

If redo logs are on non-rotational storage, configure this option to maximize caching and write
combining.

• innodb_page_size

Consider using a page size that matches the internal sector size of the disk. Early-generation SSD
devices often have a 4KB sector size. Some newer devices have a 16KB sector size. The default
InnoDB page size is 16KB. Keeping the page size close to the storage device block size minimizes
the amount of unchanged data that is rewritten to disk.

• binlog_row_image

If binary logs are on non-rotational storage and all tables have primary keys, consider setting this
option to minimal to reduce logging.

Ensure that TRIM support is enabled for your operating system. It is typically enabled by default.

• Increase I/O capacity to avoid backlogs

If throughput drops periodically because of InnoDB checkpoint operations, consider increasing the
value of the innodb_io_capacity configuration option. Higher values cause more frequent flushing,
avoiding the backlog of work that can cause dips in throughput.

1139

Optimizing InnoDB Configuration Variables

• Lower I/O capacity if flushing does not fall behind

If the system is not falling behind with InnoDB flushing operations, consider lowering the value of the
innodb_io_capacity configuration option. Typically, you keep this option value as low as practical,
but not so low that it causes periodic drops in throughput as mentioned in the preceding bullet. In a
typical scenario where you could lower the option value, you might see a combination like this in the
output from SHOW ENGINE INNODB STATUS:

• History list length low, below a few thousand.

• Insert buffer merges close to rows inserted.

• Modified pages in buffer pool consistently well below innodb_max_dirty_pages_pct of the buffer
pool. (Measure at a time when the server is not doing bulk inserts; it is normal during bulk inserts for
the modified pages percentage to rise significantly.)

• Log sequence number - Last checkpoint is at less than 7/8 or ideally less than 6/8 of the
total size of the InnoDB log files.

• Disable logging of compressed pages

When using the InnoDB table compression feature, images of re-compressed pages are written
to the redo log when changes are made to compressed data. This behavior is controlled by
innodb_log_compressed_pages, which is enabled by default to prevent corruption that can occur if
a different version of the zlib compression algorithm is used during recovery. If you are certain that the
zlib version is not subject to change, disable innodb_log_compressed_pages to reduce redo log
generation for workloads that modify compressed data.

8.5.9 Optimizing InnoDB Configuration Variables

Different settings work best for servers with light, predictable loads, versus servers that are running near
full capacity all the time, or that experience spikes of high activity.

Because the InnoDB storage engine performs many of its optimizations automatically, many performance-
tuning tasks involve monitoring to ensure that the database is performing well, and changing configuration
options when performance drops. See Section 14.16, “InnoDB Integration with MySQL Performance
Schema” for information about detailed InnoDB performance monitoring.

The main configuration steps you can perform include:

• Enabling InnoDB to use high-performance memory allocators on systems that include them. See
Section 14.8.4, “Configuring the Memory Allocator for InnoDB”.

• Controlling the types of data change operations for which InnoDB buffers the changed data, to avoid
frequent small disk writes. See Configuring Change Buffering. Because the default is to buffer all types
of data change operations, only change this setting if you need to reduce the amount of buffering.

• Turning the adaptive hash indexing feature on and off using the innodb_adaptive_hash_index
option. See Section 14.5.3, “Adaptive Hash Index” for more information. You might change this setting
during periods of unusual activity, then restore it to its original setting.

• Setting a limit on the number of concurrent threads that InnoDB processes, if context switching is a
bottleneck. See Section 14.8.5, “Configuring Thread Concurrency for InnoDB”.

• Controlling the amount of prefetching that InnoDB does with its read-ahead operations. When the
system has unused I/O capacity, more read-ahead can improve the performance of queries. Too much

1140

Optimizing InnoDB for Systems with Many Tables

read-ahead can cause periodic drops in performance on a heavily loaded system. See Section 14.8.3.3,
“Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”.

• Increasing the number of background threads for read or write operations, if you have a high-end I/O
subsystem that is not fully utilized by the default values. See Section 14.8.6, “Configuring the Number of
Background InnoDB I/O Threads”.

• Controlling how much I/O InnoDB performs in the background. See Section 14.8.8, “Configuring InnoDB
I/O Capacity”. You might scale back this setting if you observe periodic drops in performance.

• Controlling the algorithm that determines when InnoDB performs certain types of background writes.
See Section 14.8.3.4, “Configuring Buffer Pool Flushing”. The algorithm works for some types of
workloads but not others, so you might disable this feature if you observe periodic drops in performance.

• Taking advantage of multicore processors and their cache memory configuration, to minimize delays in
context switching. See Section 14.8.9, “Configuring Spin Lock Polling”.

• Preventing one-time operations such as table scans from interfering with the frequently accessed data
stored in the InnoDB buffer cache. See Section 14.8.3.2, “Making the Buffer Pool Scan Resistant”.

• Adjusting log files to a size that makes sense for reliability and crash recovery. InnoDB log files have
often been kept small to avoid long startup times after a crash. Optimizations introduced in MySQL 5.5
speed up certain steps of the crash recovery process. In particular, scanning the redo log and applying
the redo log are faster due to improved algorithms for memory management. If you have kept your log
files artificially small to avoid long startup times, you can now consider increasing log file size to reduce
the I/O that occurs due recycling of redo log records.

• Configuring the size and number of instances for the InnoDB buffer pool, especially important for
systems with multi-gigabyte buffer pools. See Section 14.8.3.1, “Configuring Multiple Buffer Pool
Instances”.

• Increasing the maximum number of concurrent transactions, which dramatically improves scalability for
the busiest databases. See Section 14.6.7, “Undo Logs”.

• Moving purge operations (a type of garbage collection) into a background thread. See Section 14.8.10,
“Purge Configuration”. To effectively measure the results of this setting, tune the other I/O-related and
thread-related configuration settings first.

• Reducing the amount of switching that InnoDB does between concurrent threads, so that
SQL operations on a busy server do not queue up and form a “traffic jam”. Set a value for the
innodb_thread_concurrency option, up to approximately 32 for a high-powered modern system.
Increase the value for the innodb_concurrency_tickets option, typically to 5000 or so. This
combination of options sets a cap on the number of threads that InnoDB processes at any one time,
and allows each thread to do substantial work before being swapped out, so that the number of waiting
threads stays low and operations can complete without excessive context switching.

8.5.10 Optimizing InnoDB for Systems with Many Tables

• If you have configured non-persistent optimizer statistics (a non-default configuration), InnoDB
computes index cardinality values for a table the first time that table is accessed after startup, instead
of storing such values in the table. This step can take significant time on systems that partition the data
into many tables. Since this overhead only applies to the initial table open operation, to “warm up” a
table for later use, access it immediately after startup by issuing a statement such as SELECT 1 FROM
tbl_name LIMIT 1.

1141

Optimizing for MyISAM Tables

Optimizer statistics are persisted to disk by default, enabled by the innodb_stats_persistent
configuration option. For information about persistent optimizer statistics, see Section 14.8.11.1,
“Configuring Persistent Optimizer Statistics Parameters”.

8.6 Optimizing for MyISAM Tables
The MyISAM storage engine performs best with read-mostly data or with low-concurrency operations,
because table locks limit the ability to perform simultaneous updates. In MySQL, InnoDB is the default
storage engine rather than MyISAM.

8.6.1 Optimizing MyISAM Queries

Some general tips for speeding up queries on MyISAM tables:

• To help MySQL better optimize queries, use ANALYZE TABLE or run myisamchk --analyze on
a table after it has been loaded with data. This updates a value for each index part that indicates the
average number of rows that have the same value. (For unique indexes, this is always 1.) MySQL uses
this to decide which index to choose when you join two tables based on a nonconstant expression. You
can check the result from the table analysis by using SHOW INDEX FROM tbl_name and examining the
Cardinality value. myisamchk --description --verbose shows index distribution information.

• To sort an index and data according to an index, use myisamchk --sort-index --sort-
records=1 (assuming that you want to sort on index 1). This is a good way to make queries faster if
you have a unique index from which you want to read all rows in order according to the index. The first
time you sort a large table this way, it may take a long time.

• Try to avoid complex SELECT queries on MyISAM tables that are updated frequently, to avoid problems
with table locking that occur due to contention between readers and writers.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you can
INSERT new rows into it at the same time that other threads are reading from the table. If it is important
to be able to do this, consider using the table in ways that avoid deleting rows. Another possibility is to
run OPTIMIZE TABLE to defragment the table after you have deleted a lot of rows from it. This behavior
is altered by setting the concurrent_insert variable. You can force new rows to be appended
(and therefore permit concurrent inserts), even in tables that have deleted rows. See Section 8.11.3,
“Concurrent Inserts”.

• For MyISAM tables that change frequently, try to avoid all variable-length columns (VARCHAR, BLOB,
and TEXT). The table uses dynamic row format if it includes even a single variable-length column. See
Chapter 15, Alternative Storage Engines.

• It is normally not useful to split a table into different tables just because the rows become large. In
accessing a row, the biggest performance hit is the disk seek needed to find the first byte of the row.
After finding the data, most modern disks can read the entire row fast enough for most applications. The
only cases where splitting up a table makes an appreciable difference is if it is a MyISAM table using
dynamic row format that you can change to a fixed row size, or if you very often need to scan the table
but do not need most of the columns. See Chapter 15, Alternative Storage Engines.

• Use ALTER TABLE ... ORDER BY expr1, expr2, ... if you usually retrieve rows in expr1,
expr2, ... order. By using this option after extensive changes to the table, you may be able to get
higher performance.

• If you often need to calculate results such as counts based on information from a lot of rows, it may be
preferable to introduce a new table and update the counter in real time. An update of the following form
is very fast:

1142

Bulk Data Loading for MyISAM Tables

UPDATE tbl_name SET count_col=count_col+1 WHERE key_col=constant;

This is very important when you use MySQL storage engines such as MyISAM that has only table-level
locking (multiple readers with single writers). This also gives better performance with most database
systems, because the row locking manager in this case has less to do.

• Use INSERT DELAYED for MyISAM (or other supported nontransactional tables) when you do not need
to know when your data is written. This reduces the overall insertion impact because many rows can be
written with a single disk write.

Note

INSERT DELAYED is deprecated; expect it to be removed in a future release.
Use INSERT (without DELAYED) instead.

• Use OPTIMIZE TABLE periodically to avoid fragmentation with dynamic-format MyISAM tables. See
Section 15.2.3, “MyISAM Table Storage Formats”.

• Declaring a MyISAM table with the DELAY_KEY_WRITE=1 table option makes index updates faster
because they are not flushed to disk until the table is closed. The downside is that if something kills
the server while such a table is open, you must ensure that the table is okay by running the server with
the myisam_recover_options system variable set, or by running myisamchk before restarting
the server. (However, even in this case, you should not lose anything by using DELAY_KEY_WRITE,
because the key information can always be generated from the data rows.)

• Strings are automatically prefix- and end-space compressed in MyISAM indexes. See Section 13.1.13,
“CREATE INDEX Statement”.

• You can increase performance by caching queries or answers in your application and then executing
many inserts or updates together. Locking the table during this operation ensures that the index cache
is only flushed once after all updates. You can also take advantage of MySQL's query cache to achieve
similar results; see Section 8.10.3, “The MySQL Query Cache”.

8.6.2 Bulk Data Loading for MyISAM Tables

These performance tips supplement the general guidelines for fast inserts in Section 8.2.4.1, “Optimizing
INSERT Statements”.

• To improve performance when multiple clients insert a lot of rows, use the INSERT DELAYED statement.
See Section 13.2.5.3, “INSERT DELAYED Statement”. This technique works for MyISAM and some
other storage engines, but not InnoDB.

Note

INSERT DELAYED is deprecated; expect it to be removed in a future release.
Use INSERT (without DELAYED) instead.

• For a MyISAM table, you can use concurrent inserts to add rows at the same time that SELECT
statements are running, if there are no deleted rows in middle of the data file. See Section 8.11.3,
“Concurrent Inserts”.

• With some extra work, it is possible to make LOAD DATA run even faster for a MyISAM table when the
table has many indexes. Use the following procedure:

1. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

1143

Bulk Data Loading for MyISAM Tables

2. Use myisamchk --keys-used=0 -rq /path/to/db/tbl_name to remove all use of indexes
for the table.

3. Insert data into the table with LOAD DATA. This does not update any indexes and therefore is very
fast.

4. If you intend only to read from the table in the future, use myisampack to compress it. See
Section 15.2.3.3, “Compressed Table Characteristics”.

5. Re-create the indexes with myisamchk -rq /path/to/db/tbl_name. This creates the index
tree in memory before writing it to disk, which is much faster than updating the index during LOAD
DATA because it avoids lots of disk seeks. The resulting index tree is also perfectly balanced.

6. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

LOAD DATA performs the preceding optimization automatically if the MyISAM table into which you insert
data is empty. The main difference between automatic optimization and using the procedure explicitly
is that you can let myisamchk allocate much more temporary memory for the index creation than you
might want the server to allocate for index re-creation when it executes the LOAD DATA statement.

You can also disable or enable the nonunique indexes for a MyISAM table by using the following
statements rather than myisamchk. If you use these statements, you can skip the FLUSH TABLES
operations:

ALTER TABLE tbl_name DISABLE KEYS;
ALTER TABLE tbl_name ENABLE KEYS;

• To speed up INSERT operations that are performed with multiple statements for nontransactional tables,
lock your tables:

LOCK TABLES a WRITE;
INSERT INTO a VALUES (1,23),(2,34),(4,33);
INSERT INTO a VALUES (8,26),(6,29);
...
UNLOCK TABLES;

This benefits performance because the index buffer is flushed to disk only once, after all INSERT
statements have completed. Normally, there would be as many index buffer flushes as there are INSERT
statements. Explicit locking statements are not needed if you can insert all rows with a single INSERT.

Locking also lowers the total time for multiple-connection tests, although the maximum wait time for
individual connections might go up because they wait for locks. Suppose that five clients attempt to
perform inserts simultaneously as follows:

• Connection 1 does 1000 inserts

• Connections 2, 3, and 4 do 1 insert

• Connection 5 does 1000 inserts

If you do not use locking, connections 2, 3, and 4 finish before 1 and 5. If you use locking, connections 2,
3, and 4 probably do not finish before 1 or 5, but the total time should be about 40% faster.

INSERT, UPDATE, and DELETE operations are very fast in MySQL, but you can obtain better overall
performance by adding locks around everything that does more than about five successive inserts or
updates. If you do very many successive inserts, you could do a LOCK TABLES followed by an UNLOCK

1144

Optimizing REPAIR TABLE Statements

TABLES once in a while (each 1,000 rows or so) to permit other threads to access table. This would still
result in a nice performance gain.

INSERT is still much slower for loading data than LOAD DATA, even when using the strategies just
outlined.

• To increase performance for MyISAM tables, for both LOAD DATA and INSERT, enlarge the key cache
by increasing the key_buffer_size system variable. See Section 5.1.1, “Configuring the Server”.

8.6.3 Optimizing REPAIR TABLE Statements

REPAIR TABLE for MyISAM tables is similar to using myisamchk for repair operations, and some of the
same performance optimizations apply:

• myisamchk has variables that control memory allocation. You may be able to its improve performance
by setting these variables, as described in Section 4.6.3.6, “myisamchk Memory Usage”.

• For REPAIR TABLE, the same principle applies, but because the repair is done by the server, you set
server system variables instead of myisamchk variables. Also, in addition to setting memory-allocation
variables, increasing the myisam_max_sort_file_size system variable increases the likelihood
that the repair uses the faster filesort method and avoid the slower repair by key cache method. Set the
variable to the maximum file size for your system, after checking to be sure that there is enough free
space to hold a copy of the table files. The free space must be available in the file system containing the
original table files.

Suppose that a myisamchk table-repair operation is done using the following options to set its memory-
allocation variables:

--key_buffer_size=128M --myisam_sort_buffer_size=256M
--read_buffer_size=64M --write_buffer_size=64M

Some of those myisamchk variables correspond to server system variables:

myisamchk Variable System Variable

key_buffer_size key_buffer_size

myisam_sort_buffer_size myisam_sort_buffer_size

read_buffer_size read_buffer_size

write_buffer_size none

Each of the server system variables can be set at runtime, and some of them
(myisam_sort_buffer_size, read_buffer_size) have a session value in addition to a global
value. Setting a session value limits the effect of the change to your current session and does not affect
other users. Changing a global-only variable (key_buffer_size, myisam_max_sort_file_size)
affects other users as well. For key_buffer_size, you must take into account that the buffer is shared
with those users. For example, if you set the myisamchk key_buffer_size variable to 128MB, you
could set the corresponding key_buffer_size system variable larger than that (if it is not already set
larger), to permit key buffer use by activity in other sessions. However, changing the global key buffer size
invalidates the buffer, causing increased disk I/O and slowdown for other sessions. An alternative that
avoids this problem is to use a separate key cache, assign to it the indexes from the table to be repaired,
and deallocate it when the repair is complete. See Section 8.10.2.2, “Multiple Key Caches”.

Based on the preceding remarks, a REPAIR TABLE operation can be done as follows to use settings
similar to the myisamchk command. Here a separate 128MB key buffer is allocated and the file system is
assumed to permit a file size of at least 100GB.

SET SESSION myisam_sort_buffer_size = 256*1024*1024;

1145

Optimizing for MEMORY Tables

SET SESSION read_buffer_size = 64*1024*1024;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
SET GLOBAL repair_cache.key_buffer_size = 128*1024*1024;
CACHE INDEX tbl_name IN repair_cache;
LOAD INDEX INTO CACHE tbl_name;
REPAIR TABLE tbl_name ;
SET GLOBAL repair_cache.key_buffer_size = 0;

If you intend to change a global variable but want to do so only for the duration of a REPAIR TABLE
operation to minimally affect other users, save its value in a user variable and restore it afterward. For
example:

SET @old_myisam_sort_buffer_size = @@GLOBAL.myisam_max_sort_file_size;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
REPAIR TABLE tbl_name ;
SET GLOBAL myisam_max_sort_file_size = @old_myisam_max_sort_file_size;

The system variables that affect REPAIR TABLE can be set globally at server startup if you want the
values to be in effect by default. For example, add these lines to the server my.cnf file:

[mysqld]
myisam_sort_buffer_size=256M
key_buffer_size=1G
myisam_max_sort_file_size=100G

These settings do not include read_buffer_size. Setting read_buffer_size globally to a large value
does so for all sessions and can cause performance to suffer due to excessive memory allocation for a
server with many simultaneous sessions.

8.7 Optimizing for MEMORY Tables
Consider using MEMORY tables for noncritical data that is accessed often, and is read-only or rarely
updated. Benchmark your application against equivalent InnoDB or MyISAM tables under a realistic
workload, to confirm that any additional performance is worth the risk of losing data, or the overhead of
copying data from a disk-based table at application start.

For best performance with MEMORY tables, examine the kinds of queries against each table, and specify
the type to use for each associated index, either a B-tree index or a hash index. On the CREATE INDEX
statement, use the clause USING BTREE or USING HASH. B-tree indexes are fast for queries that do
greater-than or less-than comparisons through operators such as > or BETWEEN. Hash indexes are only
fast for queries that look up single values through the = operator, or a restricted set of values through
the IN operator. For why USING BTREE is often a better choice than the default USING HASH, see
Section 8.2.1.19, “Avoiding Full Table Scans”. For implementation details of the different types of MEMORY
indexes, see Section 8.3.8, “Comparison of B-Tree and Hash Indexes”.

8.8 Understanding the Query Execution Plan
Depending on the details of your tables, columns, indexes, and the conditions in your WHERE clause,
the MySQL optimizer considers many techniques to efficiently perform the lookups involved in an SQL
query. A query on a huge table can be performed without reading all the rows; a join involving several
tables can be performed without comparing every combination of rows. The set of operations that the
optimizer chooses to perform the most efficient query is called the “query execution plan”, also known as
the EXPLAIN plan. Your goals are to recognize the aspects of the EXPLAIN plan that indicate a query is
optimized well, and to learn the SQL syntax and indexing techniques to improve the plan if you see some
inefficient operations.

8.8.1 Optimizing Queries with EXPLAIN

The EXPLAIN statement provides information about how MySQL executes statements:

1146

EXPLAIN Output Format

• The EXPLAIN statement provides information about how MySQL executes statements. EXPLAIN works
with SELECT, DELETE, INSERT, REPLACE, and UPDATE statements.

• When EXPLAIN is used with an explainable statement, MySQL displays information from the optimizer
about the statement execution plan. That is, MySQL explains how it would process the statement,
including information about how tables are joined and in which order. For information about using
EXPLAIN to obtain execution plan information, see Section 8.8.2, “EXPLAIN Output Format”.

• EXPLAIN EXTENDED produces additional execution plan information that can be displayed using SHOW
WARNINGS. See Section 8.8.3, “Extended EXPLAIN Output Format”.

• EXPLAIN PARTITIONS is useful for examining queries involving partitioned tables. See Section 19.3.5,
“Obtaining Information About Partitions”.

• The FORMAT option can be used to select the output format. TRADITIONAL presents the output in
tabular format. This is the default if no FORMAT option is present. JSON format displays the information in
JSON format. With FORMAT = JSON, the output includes extended and partition information.

 With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement
executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the optimizer
joins the tables in an optimal order. To give a hint to the optimizer to use a join order corresponding
to the order in which the tables are named in a SELECT statement, begin the statement with SELECT
STRAIGHT_JOIN rather than just SELECT. (See Section 13.2.9, “SELECT Statement”.) However,
STRAIGHT_JOIN may prevent indexes from being used because it disables semijoin transformations. See
Section 8.2.2.1, “Optimizing Subqueries with Semijoin Transformations”.

If you have a problem with indexes not being used when you believe that they should be, run ANALYZE
TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer
makes. See Section 13.7.2.1, “ANALYZE TABLE Statement”.

Note

EXPLAIN can also be used to obtain information about the columns in a
table. EXPLAIN tbl_name is synonymous with DESCRIBE tbl_name and
SHOW COLUMNS FROM tbl_name. For more information, see Section 13.8.1,
“DESCRIBE Statement”, and Section 13.7.5.6, “SHOW COLUMNS Statement”.

8.8.2 EXPLAIN Output Format

The EXPLAIN statement provides information about how MySQL executes statements. EXPLAIN works
with SELECT, DELETE, INSERT, REPLACE, and UPDATE statements.

EXPLAIN returns a row of information for each table used in the SELECT statement. It lists the tables in
the output in the order that MySQL would read them while processing the statement. MySQL resolves all
joins using a nested-loop join method. This means that MySQL reads a row from the first table, and then
finds a matching row in the second table, the third table, and so on. When all tables are processed, MySQL
outputs the selected columns and backtracks through the table list until a table is found for which there are
more matching rows. The next row is read from this table and the process continues with the next table.

When the EXTENDED keyword is used, EXPLAIN produces extra information that can be viewed by issuing
a SHOW WARNINGS statement following the EXPLAIN statement. EXPLAIN EXTENDED also displays the
filtered column. See Section 8.8.3, “Extended EXPLAIN Output Format”.

Note

You cannot use the EXTENDED and PARTITIONS keywords together in the same
EXPLAIN statement. Neither of these keywords can be used together with the

1147

EXPLAIN Output Format

FORMAT option. (FORMAT=JSON causes EXPLAIN to display extended and partition
information automatically; using FORMAT=TRADITIONAL has no effect on EXPLAIN
output.)

Note

MySQL Workbench has a Visual Explain capability that provides a visual
representation of EXPLAIN output. See Tutorial: Using Explain to Improve Query
Performance.

• EXPLAIN Output Columns

• EXPLAIN Join Types

• EXPLAIN Extra Information

• EXPLAIN Output Interpretation

EXPLAIN Output Columns

This section describes the output columns produced by EXPLAIN. Later sections provide additional
information about the type and Extra columns.

Each output row from EXPLAIN provides information about one table. Each row contains the values
summarized in Table 8.1, “EXPLAIN Output Columns”, and described in more detail following the table.
Column names are shown in the table's first column; the second column provides the equivalent property
name shown in the output when FORMAT=JSON is used.

Table 8.1 EXPLAIN Output Columns

Column JSON Name Meaning

id select_id The SELECT identifier

select_type None The SELECT type

table table_name The table for the output row

partitions partitions The matching partitions

type access_type The join type

possible_keys possible_keys The possible indexes to choose

key key The index actually chosen

key_len key_length The length of the chosen key

ref ref The columns compared to the
index

rows rows Estimate of rows to be examined

filtered filtered Percentage of rows filtered by
table condition

Extra None Additional information

Note

JSON properties which are NULL are not displayed in JSON-formatted EXPLAIN
output.

1148

https://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html
https://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html

EXPLAIN Output Format

• id (JSON name: select_id)

The SELECT identifier. This is the sequential number of the SELECT within the query. The value can be
NULL if the row refers to the union result of other rows. In this case, the table column shows a value
like <unionM,N> to indicate that the row refers to the union of the rows with id values of M and N.

• select_type (JSON name: none)

The type of SELECT, which can be any of those shown in the following table. A JSON-formatted
EXPLAIN exposes the SELECT type as a property of a query_block, unless it is SIMPLE or PRIMARY.
The JSON names (where applicable) are also shown in the table.

select_type Value JSON Name Meaning

SIMPLE None Simple SELECT (not using UNION
or subqueries)

PRIMARY None Outermost SELECT

UNION None Second or later SELECT
statement in a UNION

DEPENDENT UNION dependent (true) Second or later SELECT
statement in a UNION, dependent
on outer query

UNION RESULT union_result Result of a UNION.

SUBQUERY None First SELECT in subquery

DEPENDENT SUBQUERY dependent (true) First SELECT in subquery,
dependent on outer query

DERIVED None Derived table

MATERIALIZED materialized_from_subqueryMaterialized subquery

UNCACHEABLE SUBQUERY cacheable (false) A subquery for which the result
cannot be cached and must be
re-evaluated for each row of the
outer query

UNCACHEABLE UNION cacheable (false) The second or later select in
a UNION that belongs to an
uncacheable subquery (see
UNCACHEABLE SUBQUERY)

DEPENDENT typically signifies the use of a correlated subquery. See Section 13.2.10.7, “Correlated
Subqueries”.

DEPENDENT SUBQUERY evaluation differs from UNCACHEABLE SUBQUERY evaluation. For DEPENDENT
SUBQUERY, the subquery is re-evaluated only once for each set of different values of the variables from
its outer context. For UNCACHEABLE SUBQUERY, the subquery is re-evaluated for each row of the outer
context.

Cacheability of subqueries differs from caching of query results in the query cache (which is described in
Section 8.10.3.1, “How the Query Cache Operates”). Subquery caching occurs during query execution,
whereas the query cache is used to store results only after query execution finishes.

When you specify FORMAT=JSON with EXPLAIN, the output has no single property directly
equivalent to select_type; the query_block property corresponds to a given SELECT. Properties
equivalent to most of the SELECT subquery types just shown are available (an example being

1149

EXPLAIN Output Format

materialized_from_subquery for MATERIALIZED), and are displayed when appropriate. There are
no JSON equivalents for SIMPLE or PRIMARY.

• table (JSON name: table_name)

The name of the table to which the row of output refers. This can also be one of the following values:

• <unionM,N>: The row refers to the union of the rows with id values of M and N.

• <derivedN>: The row refers to the derived table result for the row with an id value of N. A derived
table may result, for example, from a subquery in the FROM clause.

• <subqueryN>: The row refers to the result of a materialized subquery for the row with an id value of
N. See Section 8.2.2.2, “Optimizing Subqueries with Materialization”.

• partitions (JSON name: partitions)

The partitions from which records would be matched by the query. This column is displayed only if
the PARTITIONS keyword is used. The value is NULL for nonpartitioned tables. See Section 19.3.5,
“Obtaining Information About Partitions”.

• type (JSON name: access_type)

The join type. For descriptions of the different types, see EXPLAIN Join Types.

• possible_keys (JSON name: possible_keys)

The possible_keys column indicates the indexes from which MySQL can choose to find the rows in
this table. Note that this column is totally independent of the order of the tables as displayed in the output
from EXPLAIN. That means that some of the keys in possible_keys might not be usable in practice
with the generated table order.

If this column is NULL (or undefined in JSON-formatted output), there are no relevant indexes. In this
case, you may be able to improve the performance of your query by examining the WHERE clause to
check whether it refers to some column or columns that would be suitable for indexing. If so, create
an appropriate index and check the query with EXPLAIN again. See Section 13.1.7, “ALTER TABLE
Statement”.

To see what indexes a table has, use SHOW INDEX FROM tbl_name.

• key (JSON name: key)

The key column indicates the key (index) that MySQL actually decided to use. If MySQL decides to use
one of the possible_keys indexes to look up rows, that index is listed as the key value.

It is possible that key names an index that is not present in the possible_keys value. This can
happen if none of the possible_keys indexes are suitable for looking up rows, but all the columns
selected by the query are columns of some other index. That is, the named index covers the selected
columns, so although it is not used to determine which rows to retrieve, an index scan is more efficient
than a data row scan.

For InnoDB, a secondary index might cover the selected columns even if the query also selects the
primary key because InnoDB stores the primary key value with each secondary index. If key is NULL,
MySQL found no index to use for executing the query more efficiently.

To force MySQL to use or ignore an index listed in the possible_keys column, use FORCE INDEX,
USE INDEX, or IGNORE INDEX in your query. See Section 8.9.3, “Index Hints”.

1150

EXPLAIN Output Format

For MyISAM and NDB tables, running ANALYZE TABLE helps the optimizer choose better indexes.
For NDB tables, this also improves performance of distributed pushed-down joins. For MyISAM tables,
myisamchk --analyze does the same as ANALYZE TABLE. See Section 7.6, “MyISAM Table
Maintenance and Crash Recovery”.

• key_len (JSON name: key_length)

The key_len column indicates the length of the key that MySQL decided to use. The value of key_len
enables you to determine how many parts of a multiple-part key MySQL actually uses. If the key column
says NULL, the key_len column also says NULL.

Due to the key storage format, the key length is one greater for a column that can be NULL than for a
NOT NULL column.

• ref (JSON name: ref)

The ref column shows which columns or constants are compared to the index named in the key
column to select rows from the table.

If the value is func, the value used is the result of some function. To see which function, use SHOW
WARNINGS following EXPLAIN EXTENDED to see the extended EXPLAIN output. The function might
actually be an operator such as an arithmetic operator.

• rows (JSON name: rows)

The rows column indicates the number of rows MySQL believes it must examine to execute the query.

For InnoDB tables, this number is an estimate, and may not always be exact.

• filtered (JSON name: filtered)

The filtered column indicates an estimated percentage of table rows that are filtered by the table
condition. The maximum value is 100, which means no filtering of rows occurred. Values decreasing
from 100 indicate increasing amounts of filtering. rows shows the estimated number of rows examined
and rows × filtered shows the number of rows that are joined with the following table. For example,
if rows is 1000 and filtered is 50.00 (50%), the number of rows to be joined with the following table is
1000 × 50% = 500. This column is displayed if you use EXPLAIN EXTENDED.

• Extra (JSON name: none)

This column contains additional information about how MySQL resolves the query. For descriptions of
the different values, see EXPLAIN Extra Information.

There is no single JSON property corresponding to the Extra column; however, values that can occur in
this column are exposed as JSON properties, or as the text of the message property.

EXPLAIN Join Types

The type column of EXPLAIN output describes how tables are joined. In JSON-formatted output, these
are found as values of the access_type property. The following list describes the join types, ordered from
the best type to the worst:

• system

The table has only one row (= system table). This is a special case of the const join type.

• const

1151

EXPLAIN Output Format

The table has at most one matching row, which is read at the start of the query. Because there is only
one row, values from the column in this row can be regarded as constants by the rest of the optimizer.
const tables are very fast because they are read only once.

const is used when you compare all parts of a PRIMARY KEY or UNIQUE index to constant values. In
the following queries, tbl_name can be used as a const table:

SELECT * FROM tbl_name WHERE primary_key=1;

SELECT * FROM tbl_name
 WHERE primary_key_part1=1 AND primary_key_part2=2;

• eq_ref

One row is read from this table for each combination of rows from the previous tables. Other than the
system and const types, this is the best possible join type. It is used when all parts of an index are
used by the join and the index is a PRIMARY KEY or UNIQUE NOT NULL index.

eq_ref can be used for indexed columns that are compared using the = operator. The comparison
value can be a constant or an expression that uses columns from tables that are read before this table.
In the following examples, MySQL can use an eq_ref join to process ref_table:

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column_part1=other_table.column
 AND ref_table.key_column_part2=1;

• ref

All rows with matching index values are read from this table for each combination of rows from the
previous tables. ref is used if the join uses only a leftmost prefix of the key or if the key is not a
PRIMARY KEY or UNIQUE index (in other words, if the join cannot select a single row based on the key
value). If the key that is used matches only a few rows, this is a good join type.

ref can be used for indexed columns that are compared using the = or <=> operator. In the following
examples, MySQL can use a ref join to process ref_table:

SELECT * FROM ref_table WHERE key_column=expr;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column_part1=other_table.column
 AND ref_table.key_column_part2=1;

• fulltext

The join is performed using a FULLTEXT index.

• ref_or_null

This join type is like ref, but with the addition that MySQL does an extra search for rows that contain
NULL values. This join type optimization is used most often in resolving subqueries. In the following
examples, MySQL can use a ref_or_null join to process ref_table:

SELECT * FROM ref_table
 WHERE key_column=expr OR key_column IS NULL;

1152

EXPLAIN Output Format

See Section 8.2.1.12, “IS NULL Optimization”.

• index_merge

This join type indicates that the Index Merge optimization is used. In this case, the key column in the
output row contains a list of indexes used, and key_len contains a list of the longest key parts for the
indexes used. For more information, see Section 8.2.1.3, “Index Merge Optimization”.

• unique_subquery

This type replaces eq_ref for some IN subqueries of the following form:

value IN (SELECT primary_key FROM single_table WHERE some_expr)

unique_subquery is just an index lookup function that replaces the subquery completely for better
efficiency.

• index_subquery

This join type is similar to unique_subquery. It replaces IN subqueries, but it works for nonunique
indexes in subqueries of the following form:

value IN (SELECT key_column FROM single_table WHERE some_expr)

• range

Only rows that are in a given range are retrieved, using an index to select the rows. The key column in
the output row indicates which index is used. The key_len contains the longest key part that was used.
The ref column is NULL for this type.

range can be used when a key column is compared to a constant using any of the =, <>, >, >=, <, <=,
IS NULL, <=>, BETWEEN, LIKE, or IN() operators:

SELECT * FROM tbl_name
 WHERE key_column = 10;

SELECT * FROM tbl_name
 WHERE key_column BETWEEN 10 and 20;

SELECT * FROM tbl_name
 WHERE key_column IN (10,20,30);

SELECT * FROM tbl_name
 WHERE key_part1 = 10 AND key_part2 IN (10,20,30);

• index

The index join type is the same as ALL, except that the index tree is scanned. This occurs two ways:

• If the index is a covering index for the queries and can be used to satisfy all data required from the
table, only the index tree is scanned. In this case, the Extra column says Using index. An index-
only scan usually is faster than ALL because the size of the index usually is smaller than the table
data.

• A full table scan is performed using reads from the index to look up data rows in index order. Uses
index does not appear in the Extra column.

MySQL can use this join type when the query uses only columns that are part of a single index.

1153

EXPLAIN Output Format

• ALL

A full table scan is done for each combination of rows from the previous tables. This is normally not good
if the table is the first table not marked const, and usually very bad in all other cases. Normally, you
can avoid ALL by adding indexes that enable row retrieval from the table based on constant values or
column values from earlier tables.

EXPLAIN Extra Information

The Extra column of EXPLAIN output contains additional information about how MySQL resolves the
query. The following list explains the values that can appear in this column. Each item also indicates for
JSON-formatted output which property displays the Extra value. For some of these, there is a specific
property. The others display as the text of the message property.

If you want to make your queries as fast as possible, look out for Extra column values of Using
filesort and Using temporary, or, in JSON-formatted EXPLAIN output, for using_filesort and
using_temporary_table properties equal to true.

• Child of 'table' pushed join@1 (JSON: message text)

This table is referenced as the child of table in a join that can be pushed down to the NDB kernel.
Applies only in NDB Cluster, when pushed-down joins are enabled. See the description of the
ndb_join_pushdown server system variable for more information and examples.

• const row not found (JSON property: const_row_not_found)

For a query such as SELECT ... FROM tbl_name, the table was empty.

• Deleting all rows (JSON property: message)

For DELETE, some storage engines (such as MyISAM) support a handler method that removes all table
rows in a simple and fast way. This Extra value is displayed if the engine uses this optimization.

• Distinct (JSON property: distinct)

MySQL is looking for distinct values, so it stops searching for more rows for the current row combination
after it has found the first matching row.

• FirstMatch(tbl_name) (JSON property: first_match)

The semijoin FirstMatch join shortcutting strategy is used for tbl_name.

• Full scan on NULL key (JSON property: message)

This occurs for subquery optimization as a fallback strategy when the optimizer cannot use an index-
lookup access method.

• Impossible HAVING (JSON property: message)

The HAVING clause is always false and cannot select any rows.

• Impossible WHERE (JSON property: message)

The WHERE clause is always false and cannot select any rows.

• Impossible WHERE noticed after reading const tables (JSON property: message)

MySQL has read all const (and system) tables and notice that the WHERE clause is always false.

1154

EXPLAIN Output Format

• LooseScan(m..n) (JSON property: message)

The semijoin LooseScan strategy is used. m and n are key part numbers.

• No matching min/max row (JSON property: message)

No row satisfies the condition for a query such as SELECT MIN(...) FROM ... WHERE condition.

• no matching row in const table (JSON property: message)

For a query with a join, there was an empty table or a table with no rows satisfying a unique index
condition.

• No matching rows after partition pruning (JSON property: message)

For DELETE or UPDATE, the optimizer found nothing to delete or update after partition pruning. It is
similar in meaning to Impossible WHERE for SELECT statements.

• No tables used (JSON property: message)

The query has no FROM clause, or has a FROM DUAL clause.

For INSERT or REPLACE statements, EXPLAIN displays this value when there is no SELECT part.
For example, it appears for EXPLAIN INSERT INTO t VALUES(10) because that is equivalent to
EXPLAIN INSERT INTO t SELECT 10 FROM DUAL.

• Not exists (JSON property: message)

MySQL was able to do a LEFT JOIN optimization on the query and does not examine more rows in this
table for the previous row combination after it finds one row that matches the LEFT JOIN criteria. Here
is an example of the type of query that can be optimized this way:

SELECT * FROM t1 LEFT JOIN t2 ON t1.id=t2.id
 WHERE t2.id IS NULL;

Assume that t2.id is defined as NOT NULL. In this case, MySQL scans t1 and looks up the rows in
t2 using the values of t1.id. If MySQL finds a matching row in t2, it knows that t2.id can never be
NULL, and does not scan through the rest of the rows in t2 that have the same id value. In other words,
for each row in t1, MySQL needs to do only a single lookup in t2, regardless of how many rows actually
match in t2.

• Range checked for each record (index map: N) (JSON property: message)

MySQL found no good index to use, but found that some of indexes might be used after column values
from preceding tables are known. For each row combination in the preceding tables, MySQL checks
whether it is possible to use a range or index_merge access method to retrieve rows. This is not very
fast, but is faster than performing a join with no index at all. The applicability criteria are as described
in Section 8.2.1.2, “Range Optimization”, and Section 8.2.1.3, “Index Merge Optimization”, with the
exception that all column values for the preceding table are known and considered to be constants.

Indexes are numbered beginning with 1, in the same order as shown by SHOW INDEX for the table. The
index map value N is a bitmask value that indicates which indexes are candidates. For example, a value
of 0x19 (binary 11001) means that indexes 1, 4, and 5 are considered.

1155

EXPLAIN Output Format

• Scanned N databases (JSON property: message)

This indicates how many directory scans the server performs when processing a query for
INFORMATION_SCHEMA tables, as described in Section 8.2.3, “Optimizing INFORMATION_SCHEMA
Queries”. The value of N can be 0, 1, or all.

• Select tables optimized away (JSON property: message)

The optimizer determined 1) that at most one row should be returned, and 2) that to produce this row,
a deterministic set of rows must be read. When the rows to be read can be read during the optimization
phase (for example, by reading index rows), there is no need to read any tables during query execution.

The first condition is fulfilled when the query is implicitly grouped (contains an aggregate function but no
GROUP BY clause). The second condition is fulfilled when one row lookup is performed per index used.
The number of indexes read determines the number of rows to read.

Consider the following implicitly grouped query:

SELECT MIN(c1), MIN(c2) FROM t1;

Suppose that MIN(c1) can be retrieved by reading one index row and MIN(c2) can be retrieved by
reading one row from a different index. That is, for each column c1 and c2, there exists an index where
the column is the first column of the index. In this case, one row is returned, produced by reading two
deterministic rows.

This Extra value does not occur if the rows to read are not deterministic. Consider this query:

SELECT MIN(c2) FROM t1 WHERE c1 <= 10;

Suppose that (c1, c2) is a covering index. Using this index, all rows with c1 <= 10 must be scanned
to find the minimum c2 value. By contrast, consider this query:

SELECT MIN(c2) FROM t1 WHERE c1 = 10;

In this case, the first index row with c1 = 10 contains the minimum c2 value. Only one row must be
read to produce the returned row.

For storage engines that maintain an exact row count per table (such as MyISAM, but not InnoDB), this
Extra value can occur for COUNT(*) queries for which the WHERE clause is missing or always true
and there is no GROUP BY clause. (This is an instance of an implicitly grouped query where the storage
engine influences whether a deterministic number of rows can be read.)

• Skip_open_table, Open_frm_only, Open_full_table (JSON property: message)

These values indicate file-opening optimizations that apply to queries for INFORMATION_SCHEMA tables,
as described in Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”.

• Skip_open_table: Table files do not need to be opened. The information has already become
available within the query by scanning the database directory.

• Open_frm_only: Only the table's .frm file need be opened.

• Open_full_table: The unoptimized information lookup. The .frm, .MYD, and .MYI files must be
opened.

• Start temporary, End temporary (JSON property: message)

This indicates temporary table use for the semijoin Duplicate Weedout strategy.

1156

EXPLAIN Output Format

• unique row not found (JSON property: message)

For a query such as SELECT ... FROM tbl_name, no rows satisfy the condition for a UNIQUE index
or PRIMARY KEY on the table.

• Using filesort (JSON property: using_filesort)

MySQL must do an extra pass to find out how to retrieve the rows in sorted order. The sort is done by
going through all rows according to the join type and storing the sort key and pointer to the row for all
rows that match the WHERE clause. The keys then are sorted and the rows are retrieved in sorted order.
See Section 8.2.1.13, “ORDER BY Optimization”.

• Using index (JSON property: using_index)

The column information is retrieved from the table using only information in the index tree without having
to do an additional seek to read the actual row. This strategy can be used when the query uses only
columns that are part of a single index.

For InnoDB tables that have a user-defined clustered index, that index can be used even when Using
index is absent from the Extra column. This is the case if type is index and key is PRIMARY.

• Using index condition (JSON property: using_index_condition)

Tables are read by accessing index tuples and testing them first to determine whether to read full table
rows. In this way, index information is used to defer (“push down”) reading full table rows unless it is
necessary. See Section 8.2.1.5, “Index Condition Pushdown Optimization”.

• Using index for group-by (JSON property: using_index_for_group_by)

Similar to the Using index table access method, Using index for group-by indicates that
MySQL found an index that can be used to retrieve all columns of a GROUP BY or DISTINCT query
without any extra disk access to the actual table. Additionally, the index is used in the most efficient way
so that for each group, only a few index entries are read. For details, see Section 8.2.1.14, “GROUP BY
Optimization”.

• Using join buffer (Block Nested Loop), Using join buffer (Batched Key Access)
(JSON property: using_join_buffer)

Tables from earlier joins are read in portions into the join buffer, and then their rows are used from
the buffer to perform the join with the current table. (Block Nested Loop) indicates use of the
Block Nested-Loop algorithm and (Batched Key Access) indicates use of the Batched Key Access
algorithm. That is, the keys from the table on the preceding line of the EXPLAIN output are buffered, and
the matching rows are fetched in batches from the table represented by the line in which Using join
buffer appears.

In JSON-formatted output, the value of using_join_buffer is always either one of Block Nested
Loop or Batched Key Access.

For more information about these algorithms, see Block Nested-Loop Join Algorithm, and Batched Key
Access Joins.

• Using MRR (JSON property: message)

Tables are read using the Multi-Range Read optimization strategy. See Section 8.2.1.10, “Multi-Range
Read Optimization”.

• Using sort_union(...), Using union(...), Using intersect(...) (JSON property:
message)

1157

EXPLAIN Output Format

These indicate the particular algorithm showing how index scans are merged for the index_merge join
type. See Section 8.2.1.3, “Index Merge Optimization”.

• Using temporary (JSON property: using_temporary_table)

To resolve the query, MySQL needs to create a temporary table to hold the result. This typically happens
if the query contains GROUP BY and ORDER BY clauses that list columns differently.

• Using where (JSON property: attached_condition)

A WHERE clause is used to restrict which rows to match against the next table or send to the client.
Unless you specifically intend to fetch or examine all rows from the table, you may have something
wrong in your query if the Extra value is not Using where and the table join type is ALL or index.

Using where has no direct counterpart in JSON-formatted output; the attached_condition
property contains any WHERE condition used.

• Using where with pushed condition (JSON property: message)

This item applies to NDB tables only. It means that NDB Cluster is using the Condition Pushdown
optimization to improve the efficiency of a direct comparison between a nonindexed column and a
constant. In such cases, the condition is “pushed down” to the cluster's data nodes and is evaluated on
all data nodes simultaneously. This eliminates the need to send nonmatching rows over the network, and
can speed up such queries by a factor of 5 to 10 times over cases where Condition Pushdown could be
but is not used. For more information, see Section 8.2.1.4, “Engine Condition Pushdown Optimization”.

EXPLAIN Output Interpretation

You can get a good indication of how good a join is by taking the product of the values in the rows column
of the EXPLAIN output. This should tell you roughly how many rows MySQL must examine to execute
the query. If you restrict queries with the max_join_size system variable, this row product also is used
to determine which multiple-table SELECT statements to execute and which to abort. See Section 5.1.1,
“Configuring the Server”.

The following example shows how a multiple-table join can be optimized progressively based on the
information provided by EXPLAIN.

Suppose that you have the SELECT statement shown here and that you plan to examine it using EXPLAIN:

EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
 tt.ProjectReference, tt.EstimatedShipDate,
 tt.ActualShipDate, tt.ClientID,
 tt.ServiceCodes, tt.RepetitiveID,
 tt.CurrentProcess, tt.CurrentDPPerson,
 tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
 et_1.COUNTRY, do.CUSTNAME
 FROM tt, et, et AS et_1, do
 WHERE tt.SubmitTime IS NULL
 AND tt.ActualPC = et.EMPLOYID
 AND tt.AssignedPC = et_1.EMPLOYID
 AND tt.ClientID = do.CUSTNMBR;

For this example, make the following assumptions:

• The columns being compared have been declared as follows.

Table Column Data Type

tt ActualPC CHAR(10)

1158

EXPLAIN Output Format

Table Column Data Type

tt AssignedPC CHAR(10)

tt ClientID CHAR(10)

et EMPLOYID CHAR(15)

do CUSTNMBR CHAR(15)

• The tables have the following indexes.

Table Index

tt ActualPC

tt AssignedPC

tt ClientID

et EMPLOYID (primary key)

do CUSTNMBR (primary key)

• The tt.ActualPC values are not evenly distributed.

Initially, before any optimizations have been performed, the EXPLAIN statement produces the following
information:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
do ALL PRIMARY NULL NULL NULL 2135
et_1 ALL PRIMARY NULL NULL NULL 74
tt ALL AssignedPC, NULL NULL NULL 3872
 ClientID,
 ActualPC
 Range checked for each record (index map: 0x23)

Because type is ALL for each table, this output indicates that MySQL is generating a Cartesian product of
all the tables; that is, every combination of rows. This takes quite a long time, because the product of the
number of rows in each table must be examined. For the case at hand, this product is 74 × 2135 × 74 ×
3872 = 45,268,558,720 rows. If the tables were bigger, you can only imagine how long it would take.

One problem here is that MySQL can use indexes on columns more efficiently if they are declared as the
same type and size. In this context, VARCHAR and CHAR are considered the same if they are declared as
the same size. tt.ActualPC is declared as CHAR(10) and et.EMPLOYID is CHAR(15), so there is a
length mismatch.

To fix this disparity between column lengths, use ALTER TABLE to lengthen ActualPC from 10 characters
to 15 characters:

mysql> ALTER TABLE tt MODIFY ActualPC VARCHAR(15);

Now tt.ActualPC and et.EMPLOYID are both VARCHAR(15). Executing the EXPLAIN statement again
produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC, NULL NULL NULL 3872 Using
 ClientID, where
 ActualPC
do ALL PRIMARY NULL NULL NULL 2135
 Range checked for each record (index map: 0x1)
et_1 ALL PRIMARY NULL NULL NULL 74
 Range checked for each record (index map: 0x1)
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1

1159

Extended EXPLAIN Output Format

This is not perfect, but is much better: The product of the rows values is less by a factor of 74. This version
executes in a couple of seconds.

A second alteration can be made to eliminate the column length mismatches for the tt.AssignedPC =
et_1.EMPLOYID and tt.ClientID = do.CUSTNMBR comparisons:

mysql> ALTER TABLE tt MODIFY AssignedPC VARCHAR(15),
 MODIFY ClientID VARCHAR(15);

After that modification, EXPLAIN produces the output shown here:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
tt ref AssignedPC, ActualPC 15 et.EMPLOYID 52 Using
 ClientID, where
 ActualPC
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

At this point, the query is optimized almost as well as possible. The remaining problem is that, by default,
MySQL assumes that values in the tt.ActualPC column are evenly distributed, and that is not the case
for the tt table. Fortunately, it is easy to tell MySQL to analyze the key distribution:

mysql> ANALYZE TABLE tt;

With the additional index information, the join is perfect and EXPLAIN produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC NULL NULL NULL 3872 Using
 ClientID, where
 ActualPC
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

 The rows column in the output from EXPLAIN is an educated guess from the MySQL join optimizer.
Check whether the numbers are even close to the truth by comparing the rows product with the actual
number of rows that the query returns. If the numbers are quite different, you might get better performance
by using STRAIGHT_JOIN in your SELECT statement and trying to list the tables in a different order in
the FROM clause. (However, STRAIGHT_JOIN may prevent indexes from being used because it disables
semijoin transformations. See Section 8.2.2.1, “Optimizing Subqueries with Semijoin Transformations”.)

It is possible in some cases to execute statements that modify data when EXPLAIN SELECT is used with a
subquery; for more information, see Section 13.2.10.8, “Derived Tables”.

8.8.3 Extended EXPLAIN Output Format

When EXPLAIN is used with the EXTENDED keyword, the output includes a filtered column not
otherwise displayed. This column indicates the estimated percentage of table rows that are filtered by the
table condition.

In addition, for SELECT statements, the statement produces extra (“extended”) information that is not part
of EXPLAIN output but can be viewed by issuing a SHOW WARNINGS statement following EXPLAIN. The
Message value in SHOW WARNINGS output displays how the optimizer qualifies table and column names in
the SELECT statement, what the SELECT looks like after the application of rewriting and optimization rules,
and possibly other notes about the optimization process.

The extended information displayable with a SHOW WARNINGS statement following EXPLAIN is produced
only for SELECT statements. SHOW WARNINGS displays an empty result for other explainable statements
(DELETE, INSERT, REPLACE, and UPDATE).

1160

Extended EXPLAIN Output Format

Here is an example of extended EXPLAIN output:

mysql> EXPLAIN EXTENDED
 SELECT t1.a, t1.a IN (SELECT t2.a FROM t2) FROM t1\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 4
 filtered: 100.00
 Extra: Using index
*************************** 2. row ***************************
 id: 2
 select_type: SUBQUERY
 table: t2
 type: index
possible_keys: a
 key: a
 key_len: 5
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: Using index
2 rows in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select `test`.`t1`.`a` AS `a`,
 <in_optimizer>(`test`.`t1`.`a`,`test`.`t1`.`a` in
 (<materialize> (/* select#2 */ select `test`.`t2`.`a`
 from `test`.`t2` where 1 having 1),
 <primary_index_lookup>(`test`.`t1`.`a` in
 <temporary table> on <auto_key>
 where ((`test`.`t1`.`a` = `materialized-subquery`.`a`))))) AS `t1.a
 IN (SELECT t2.a FROM t2)` from `test`.`t1`
1 row in set (0.00 sec)

Because the statement displayed by SHOW WARNINGS may contain special markers to provide information
about query rewriting or optimizer actions, the statement is not necessarily valid SQL and is not intended
to be executed. The output may also include rows with Message values that provide additional non-SQL
explanatory notes about actions taken by the optimizer.

The following list describes special markers that can appear in the extended output displayed by SHOW
WARNINGS:

• <auto_key>

An automatically generated key for a temporary table.

• <cache>(expr)

The expression (such as a scalar subquery) is executed once and the resulting value is saved in
memory for later use. For results consisting of multiple values, a temporary table may be created and
you may see <temporary table> instead.

• <exists>(query fragment)

1161

Estimating Query Performance

The subquery predicate is converted to an EXISTS predicate and the subquery is transformed so that it
can be used together with the EXISTS predicate.

• <in_optimizer>(query fragment)

This is an internal optimizer object with no user significance.

• <index_lookup>(query fragment)

The query fragment is processed using an index lookup to find qualifying rows.

• <if>(condition, expr1, expr2)

If the condition is true, evaluate to expr1, otherwise expr2.

• <is_not_null_test>(expr)

A test to verify that the expression does not evaluate to NULL.

• <materialize>(query fragment)

Subquery materialization is used.

• `materialized-subquery`.col_name, `materialized subselect`.col_name

A reference to the column col_name in an internal temporary table materialized to hold the result from
evaluating a subquery.

• <primary_index_lookup>(query fragment)

The query fragment is processed using a primary key lookup to find qualifying rows.

• <ref_null_helper>(expr)

This is an internal optimizer object with no user significance.

• /* select#N */ select_stmt

The SELECT is associated with the row in non-extended EXPLAIN output that has an id value of N.

• outer_tables semi join (inner_tables)

A semijoin operation. inner_tables shows the tables that were not pulled out. See Section 8.2.2.1,
“Optimizing Subqueries with Semijoin Transformations”.

• <temporary table>

This represents an internal temporary table created to cache an intermediate result.

When some tables are of const or system type, expressions involving columns from these tables are
evaluated early by the optimizer and are not part of the displayed statement. However, with FORMAT=JSON,
some const table accesses are displayed as a ref access that uses a const value.

8.8.4 Estimating Query Performance

In most cases, you can estimate query performance by counting disk seeks. For small tables, you can
usually find a row in one disk seek (because the index is probably cached). For bigger tables, you can
estimate that, using B-tree indexes, you need this many seeks to find a row: log(row_count) /
log(index_block_length / 3 * 2 / (index_length + data_pointer_length)) + 1.

1162

Controlling the Query Optimizer

In MySQL, an index block is usually 1,024 bytes and the data pointer is usually four bytes. For a
500,000-row table with a key value length of three bytes (the size of MEDIUMINT), the formula indicates
log(500,000)/log(1024/3*2/(3+4)) + 1 = 4 seeks.

This index would require storage of about 500,000 * 7 * 3/2 = 5.2MB (assuming a typical index buffer fill
ratio of 2/3), so you probably have much of the index in memory and so need only one or two calls to read
data to find the row.

For writes, however, you need four seek requests to find where to place a new index value and normally
two seeks to update the index and write the row.

The preceding discussion does not mean that your application performance slowly degenerates by log N.
As long as everything is cached by the OS or the MySQL server, things become only marginally slower
as the table gets bigger. After the data gets too big to be cached, things start to go much slower until your
applications are bound only by disk seeks (which increase by log N). To avoid this, increase the key cache
size as the data grows. For MyISAM tables, the key cache size is controlled by the key_buffer_size
system variable. See Section 5.1.1, “Configuring the Server”.

8.9 Controlling the Query Optimizer
MySQL provides optimizer control through system variables that affect how query plans are evaluated,
switchable optimizations, and index hints.

8.9.1 Controlling Query Plan Evaluation

The task of the query optimizer is to find an optimal plan for executing an SQL query. Because the
difference in performance between “good” and “bad” plans can be orders of magnitude (that is, seconds
versus hours or even days), most query optimizers, including that of MySQL, perform a more or less
exhaustive search for an optimal plan among all possible query evaluation plans. For join queries, the
number of possible plans investigated by the MySQL optimizer grows exponentially with the number of
tables referenced in a query. For small numbers of tables (typically less than 7 to 10) this is not a problem.
However, when larger queries are submitted, the time spent in query optimization may easily become the
major bottleneck in the server's performance.

A more flexible method for query optimization enables the user to control how exhaustive the optimizer
is in its search for an optimal query evaluation plan. The general idea is that the fewer plans that are
investigated by the optimizer, the less time it spends in compiling a query. On the other hand, because the
optimizer skips some plans, it may miss finding an optimal plan.

The behavior of the optimizer with respect to the number of plans it evaluates can be controlled using two
system variables:

• The optimizer_prune_level variable tells the optimizer to skip certain plans based on estimates of
the number of rows accessed for each table. Our experience shows that this kind of “educated guess”
rarely misses optimal plans, and may dramatically reduce query compilation times. That is why this
option is on (optimizer_prune_level=1) by default. However, if you believe that the optimizer
missed a better query plan, this option can be switched off (optimizer_prune_level=0) with the risk
that query compilation may take much longer. Note that, even with the use of this heuristic, the optimizer
still explores a roughly exponential number of plans.

• The optimizer_search_depth variable tells how far into the “future” of each incomplete plan
the optimizer should look to evaluate whether it should be expanded further. Smaller values of
optimizer_search_depth may result in orders of magnitude smaller query compilation times. For
example, queries with 12, 13, or more tables may easily require hours and even days to compile if
optimizer_search_depth is close to the number of tables in the query. At the same time, if compiled
with optimizer_search_depth equal to 3 or 4, the optimizer may compile in less than a minute for

1163

Switchable Optimizations

the same query. If you are unsure of what a reasonable value is for optimizer_search_depth, this
variable can be set to 0 to tell the optimizer to determine the value automatically.

8.9.2 Switchable Optimizations

The optimizer_switch system variable enables control over optimizer behavior. Its value is a set of
flags, each of which has a value of on or off to indicate whether the corresponding optimizer behavior
is enabled or disabled. This variable has global and session values and can be changed at runtime. The
global default can be set at server startup.

To see the current set of optimizer flags, select the variable value:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,
 index_merge_intersection=on,
 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on

To change the value of optimizer_switch, assign a value consisting of a comma-separated list of one
or more commands:

SET [GLOBAL|SESSION] optimizer_switch='command[,command]...';

Each command value should have one of the forms shown in the following table.

Command Syntax Meaning

default Reset every optimization to its default value

opt_name=default Set the named optimization to its default value

opt_name=off Disable the named optimization

opt_name=on Enable the named optimization

The order of the commands in the value does not matter, although the default command is executed
first if present. Setting an opt_name flag to default sets it to whichever of on or off is its default value.
Specifying any given opt_name more than once in the value is not permitted and causes an error. Any
errors in the value cause the assignment to fail with an error, leaving the value of optimizer_switch
unchanged.

The following list describes the permissible opt_name flag names, grouped by optimization strategy:

• Batched Key Access Flags

• batched_key_access (default off)

Controls use of BKA join algorithm.

For batched_key_access to have any effect when set to on, the mrr flag must also be on. Currently,
the cost estimation for MRR is too pessimistic. Hence, it is also necessary for mrr_cost_based to be
off for BKA to be used.

For more information, see Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”.

1164

Switchable Optimizations

• Block Nested-Loop Flags

• block_nested_loop (default on)

Controls use of BNL join algorithm.

For more information, see Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”.

• Engine Condition Pushdown Flags

• engine_condition_pushdown (default on)

Controls engine condition pushdown.

For more information, see Section 8.2.1.4, “Engine Condition Pushdown Optimization”.

• Index Condition Pushdown Flags

• index_condition_pushdown (default on)

Controls index condition pushdown.

For more information, see Section 8.2.1.5, “Index Condition Pushdown Optimization”.

• Index Extensions Flags

• use_index_extensions (default on)

Controls use of index extensions.

For more information, see Section 8.3.9, “Use of Index Extensions”.

• Index Merge Flags

• index_merge (default on)

Controls all Index Merge optimizations.

• index_merge_intersection (default on)

Controls the Index Merge Intersection Access optimization.

• index_merge_sort_union (default on)

Controls the Index Merge Sort-Union Access optimization.

• index_merge_union (default on)

Controls the Index Merge Union Access optimization.

For more information, see Section 8.2.1.3, “Index Merge Optimization”.

• Multi-Range Read Flags

• mrr (default on)

Controls the Multi-Range Read strategy.

• mrr_cost_based (default on)

1165

Switchable Optimizations

Controls use of cost-based MRR if mrr=on.

For more information, see Section 8.2.1.10, “Multi-Range Read Optimization”.

• Semijoin Flags

• semijoin (default on)

Controls all semijoin strategies.

• firstmatch (default on)

Controls the semijoin FirstMatch strategy.

• loosescan (default on)

Controls the semijoin LooseScan strategy (not to be confused with Loose Index Scan for GROUP BY).

The semijoin flag controls whether semijoins are used. If it is set to on, the firstmatch and
loosescan flags enable finer control over the permitted semijoin strategies.

If semijoin and materialization are both on, semijoins also use materialization where applicable.
These flags are on by default.

For more information, see Section 8.2.2.1, “Optimizing Subqueries with Semijoin Transformations”.

• Subquery Materialization Flags

• materialization (default on)

Controls materialization (including semijoin materialization).

• subquery_materialization_cost_based (default on)

Use cost-based materialization choice.

The materialization flag controls whether subquery materialization is used. If semijoin and
materialization are both on, semijoins also use materialization where applicable. These flags are
on by default.

The subquery_materialization_cost_based flag enables control over the choice between
subquery materialization and IN-to-EXISTS subquery transformation. If the flag is on (the default), the
optimizer performs a cost-based choice between subquery materialization and IN-to-EXISTS subquery
transformation if either method could be used. If the flag is off, the optimizer chooses subquery
materialization over IN-to-EXISTS subquery transformation.

For more information, see Section 8.2.2, “Optimizing Subqueries and Derived Tables”.

When you assign a value to optimizer_switch, flags that are not mentioned keep their current values.
This makes it possible to enable or disable specific optimizer behaviors in a single statement without
affecting other behaviors. The statement does not depend on what other optimizer flags exist and what
their values are. Suppose that all Index Merge optimizations are enabled:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,
 index_merge_intersection=on,

1166

Index Hints

 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on

If the server is using the Index Merge Union or Index Merge Sort-Union access methods for certain queries
and you want to check whether the optimizer performs better without them, set the variable value like this:

mysql> SET optimizer_switch='index_merge_union=off,index_merge_sort_union=off';

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=off,
 index_merge_sort_union=off,
 index_merge_intersection=on,
 engine_condition_pushdown=on,
 index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,
 block_nested_loop=on,batched_key_access=off,
 materialization=on,semijoin=on,loosescan=on,
 firstmatch=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on

8.9.3 Index Hints

Index hints give the optimizer information about how to choose indexes during query processing. Index
hints apply only to SELECT and UPDATE statements.

Index hints are specified following a table name. (For the general syntax for specifying tables in a SELECT
statement, see Section 13.2.9.2, “JOIN Clause”.) The syntax for referring to an individual table, including
index hints, looks like this:

tbl_name [[AS] alias] [index_hint_list]

index_hint_list:
 index_hint [index_hint] ...

index_hint:
 USE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
 | {IGNORE|FORCE} {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

index_list:
 index_name [, index_name] ...

The USE INDEX (index_list) hint tells MySQL to use only one of the named indexes to find rows in
the table. The alternative syntax IGNORE INDEX (index_list) tells MySQL to not use some particular
index or indexes. These hints are useful if EXPLAIN shows that MySQL is using the wrong index from the
list of possible indexes.

The FORCE INDEX hint acts like USE INDEX (index_list), with the addition that a table scan is
assumed to be very expensive. In other words, a table scan is used only if there is no way to use one of
the named indexes to find rows in the table.

Each hint requires index names, not column names. To refer to a primary key, use the name PRIMARY. To
see the index names for a table, use the SHOW INDEX statement or the Information Schema STATISTICS
table.

1167

Index Hints

An index_name value need not be a full index name. It can be an unambiguous prefix of an index name.
If a prefix is ambiguous, an error occurs.

Examples:

SELECT * FROM table1 USE INDEX (col1_index,col2_index)
 WHERE col1=1 AND col2=2 AND col3=3;

SELECT * FROM table1 IGNORE INDEX (col3_index)
 WHERE col1=1 AND col2=2 AND col3=3;

The syntax for index hints has the following characteristics:

• It is syntactically valid to omit index_list for USE INDEX, which means “use no indexes.” Omitting
index_list for FORCE INDEX or IGNORE INDEX is a syntax error.

• You can specify the scope of an index hint by adding a FOR clause to the hint. This provides more fine-
grained control over optimizer selection of an execution plan for various phases of query processing.
To affect only the indexes used when MySQL decides how to find rows in the table and how to process
joins, use FOR JOIN. To influence index usage for sorting or grouping rows, use FOR ORDER BY or FOR
GROUP BY.

• You can specify multiple index hints:

SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX FOR ORDER BY (i2) ORDER BY a;

It is not an error to name the same index in several hints (even within the same hint):

SELECT * FROM t1 USE INDEX (i1) USE INDEX (i1,i1);

However, it is an error to mix USE INDEX and FORCE INDEX for the same table:

SELECT * FROM t1 USE INDEX FOR JOIN (i1) FORCE INDEX FOR JOIN (i2);

If an index hint includes no FOR clause, the scope of the hint is to apply to all parts of the statement. For
example, this hint:

IGNORE INDEX (i1)

is equivalent to this combination of hints:

IGNORE INDEX FOR JOIN (i1)
IGNORE INDEX FOR ORDER BY (i1)
IGNORE INDEX FOR GROUP BY (i1)

In MySQL 5.0, hint scope with no FOR clause was to apply only to row retrieval. To cause the server to
use this older behavior when no FOR clause is present, enable the old system variable at server startup.
Take care about enabling this variable in a replication setup. With statement-based binary logging, having
different modes for the source and replicas might lead to replication errors.

When index hints are processed, they are collected in a single list by type (USE, FORCE, IGNORE) and by
scope (FOR JOIN, FOR ORDER BY, FOR GROUP BY). For example:

SELECT * FROM t1
 USE INDEX () IGNORE INDEX (i2) USE INDEX (i1) USE INDEX (i2);

is equivalent to:

SELECT * FROM t1
 USE INDEX (i1,i2) IGNORE INDEX (i2);

1168

Buffering and Caching

The index hints then are applied for each scope in the following order:

1. {USE|FORCE} INDEX is applied if present. (If not, the optimizer-determined set of indexes is used.)

2. IGNORE INDEX is applied over the result of the previous step. For example, the following two queries
are equivalent:

SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX (i2) USE INDEX (i2);

SELECT * FROM t1 USE INDEX (i1);

For FULLTEXT searches, index hints work as follows:

• For natural language mode searches, index hints are silently ignored. For example, IGNORE
INDEX(i1) is ignored with no warning and the index is still used.

• For boolean mode searches, index hints with FOR ORDER BY or FOR GROUP BY are silently ignored.
Index hints with FOR JOIN or no FOR modifier are honored. In contrast to how hints apply for
non-FULLTEXT searches, the hint is used for all phases of query execution (finding rows and retrieval,
grouping, and ordering). This is true even if the hint is given for a non-FULLTEXT index.

For example, the following two queries are equivalent:

SELECT * FROM t
 USE INDEX (index1)
 IGNORE INDEX FOR ORDER BY (index1)
 IGNORE INDEX FOR GROUP BY (index1)
 WHERE ... IN BOOLEAN MODE ... ;

SELECT * FROM t
 USE INDEX (index1)
 WHERE ... IN BOOLEAN MODE ... ;

8.10 Buffering and Caching
MySQL uses several strategies that cache information in memory buffers to increase performance.

8.10.1 InnoDB Buffer Pool Optimization

InnoDB maintains a storage area called the buffer pool for caching data and indexes in memory. Knowing
how the InnoDB buffer pool works, and taking advantage of it to keep frequently accessed data in
memory, is an important aspect of MySQL tuning.

For an explanation of the inner workings of the InnoDB buffer pool, an overview of its LRU replacement
algorithm, and general configuration information, see Section 14.5.1, “Buffer Pool”.

For additional InnoDB buffer pool configuration and tuning information, see these sections:

• Section 14.8.3.3, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”

• Section 14.8.3.4, “Configuring Buffer Pool Flushing”

• Section 14.8.3.2, “Making the Buffer Pool Scan Resistant”

• Section 14.8.3.1, “Configuring Multiple Buffer Pool Instances”

• Section 14.8.3.5, “Saving and Restoring the Buffer Pool State”

8.10.2 The MyISAM Key Cache

1169

The MyISAM Key Cache

To minimize disk I/O, the MyISAM storage engine exploits a strategy that is used by many database
management systems. It employs a cache mechanism to keep the most frequently accessed table blocks
in memory:

• For index blocks, a special structure called the key cache (or key buffer) is maintained. The structure
contains a number of block buffers where the most-used index blocks are placed.

• For data blocks, MySQL uses no special cache. Instead it relies on the native operating system file
system cache.

This section first describes the basic operation of the MyISAM key cache. Then it discusses features that
improve key cache performance and that enable you to better control cache operation:

• Multiple sessions can access the cache concurrently.

• You can set up multiple key caches and assign table indexes to specific caches.

To control the size of the key cache, use the key_buffer_size system variable. If this variable is set
equal to zero, no key cache is used. The key cache also is not used if the key_buffer_size value is too
small to allocate the minimal number of block buffers (8).

When the key cache is not operational, index files are accessed using only the native file system buffering
provided by the operating system. (In other words, table index blocks are accessed using the same
strategy as that employed for table data blocks.)

An index block is a contiguous unit of access to the MyISAM index files. Usually the size of an index block
is equal to the size of nodes of the index B-tree. (Indexes are represented on disk using a B-tree data
structure. Nodes at the bottom of the tree are leaf nodes. Nodes above the leaf nodes are nonleaf nodes.)

All block buffers in a key cache structure are the same size. This size can be equal to, greater than, or less
than the size of a table index block. Usually one these two values is a multiple of the other.

When data from any table index block must be accessed, the server first checks whether it is available in
some block buffer of the key cache. If it is, the server accesses data in the key cache rather than on disk.
That is, it reads from the cache or writes into it rather than reading from or writing to disk. Otherwise, the
server chooses a cache block buffer containing a different table index block (or blocks) and replaces the
data there by a copy of required table index block. As soon as the new index block is in the cache, the
index data can be accessed.

If it happens that a block selected for replacement has been modified, the block is considered “dirty.” In this
case, prior to being replaced, its contents are flushed to the table index from which it came.

Usually the server follows an LRU (Least Recently Used) strategy: When choosing a block for
replacement, it selects the least recently used index block. To make this choice easier, the key cache
module maintains all used blocks in a special list (LRU chain) ordered by time of use. When a block
is accessed, it is the most recently used and is placed at the end of the list. When blocks need to be
replaced, blocks at the beginning of the list are the least recently used and become the first candidates for
eviction.

The InnoDB storage engine also uses an LRU algorithm, to manage its buffer pool. See Section 14.5.1,
“Buffer Pool”.

8.10.2.1 Shared Key Cache Access

Threads can access key cache buffers simultaneously, subject to the following conditions:

1170

The MyISAM Key Cache

• A buffer that is not being updated can be accessed by multiple sessions.

• A buffer that is being updated causes sessions that need to use it to wait until the update is complete.

• Multiple sessions can initiate requests that result in cache block replacements, as long as they do not
interfere with each other (that is, as long as they need different index blocks, and thus cause different
cache blocks to be replaced).

Shared access to the key cache enables the server to improve throughput significantly.

8.10.2.2 Multiple Key Caches

Shared access to the key cache improves performance but does not eliminate contention among sessions
entirely. They still compete for control structures that manage access to the key cache buffers. To reduce
key cache access contention further, MySQL also provides multiple key caches. This feature enables you
to assign different table indexes to different key caches.

Where there are multiple key caches, the server must know which cache to use when processing queries
for a given MyISAM table. By default, all MyISAM table indexes are cached in the default key cache. To
assign table indexes to a specific key cache, use the CACHE INDEX statement (see Section 13.7.6.2,
“CACHE INDEX Statement”). For example, the following statement assigns indexes from the tables t1, t2,
and t3 to the key cache named hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a SET
GLOBAL parameter setting statement or by using server startup options. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

To destroy a key cache, set its size to zero:

mysql> SET GLOBAL keycache1.key_buffer_size=0;

You cannot destroy the default key cache. Any attempt to do this is ignored:

mysql> SET GLOBAL key_buffer_size = 0;

mysql> SHOW VARIABLES LIKE 'key_buffer_size';
+-----------------+---------+
| Variable_name | Value |
+-----------------+---------+
| key_buffer_size | 8384512 |
+-----------------+---------+

Key cache variables are structured system variables that have a name and components. For
keycache1.key_buffer_size, keycache1 is the cache variable name and key_buffer_size is the
cache component. See Section 5.1.8.3, “Structured System Variables”, for a description of the syntax used
for referring to structured key cache system variables.

By default, table indexes are assigned to the main (default) key cache created at the server startup. When
a key cache is destroyed, all indexes assigned to it are reassigned to the default key cache.

For a busy server, you can use a strategy that involves three key caches:

1171

The MyISAM Key Cache

• A “hot” key cache that takes up 20% of the space allocated for all key caches. Use this for tables that are
heavily used for searches but that are not updated.

• A “cold” key cache that takes up 20% of the space allocated for all key caches. Use this cache for
medium-sized, intensively modified tables, such as temporary tables.

• A “warm” key cache that takes up 60% of the key cache space. Employ this as the default key cache, to
be used by default for all other tables.

One reason the use of three key caches is beneficial is that access to one key cache structure does not
block access to the others. Statements that access tables assigned to one cache do not compete with
statements that access tables assigned to another cache. Performance gains occur for other reasons as
well:

• The hot cache is used only for retrieval queries, so its contents are never modified. Consequently,
whenever an index block needs to be pulled in from disk, the contents of the cache block chosen for
replacement need not be flushed first.

• For an index assigned to the hot cache, if there are no queries requiring an index scan, there is a high
probability that the index blocks corresponding to nonleaf nodes of the index B-tree remain in the cache.

• An update operation most frequently executed for temporary tables is performed much faster when
the updated node is in the cache and need not be read from disk first. If the size of the indexes of the
temporary tables are comparable with the size of cold key cache, the probability is very high that the
updated node is in the cache.

The CACHE INDEX statement sets up an association between a table and a key cache, but the association
is lost each time the server restarts. If you want the association to take effect each time the server starts,
one way to accomplish this is to use an option file: Include variable settings that configure your key
caches, and an init_file system variable that names a file containing CACHE INDEX statements to be
executed. For example:

key_buffer_size = 4G
hot_cache.key_buffer_size = 2G
cold_cache.key_buffer_size = 2G
init_file=/path/to/data-directory/mysqld_init.sql

The statements in mysqld_init.sql are executed each time the server starts. The file should contain
one SQL statement per line. The following example assigns several tables each to hot_cache and
cold_cache:

CACHE INDEX db1.t1, db1.t2, db2.t3 IN hot_cache
CACHE INDEX db1.t4, db2.t5, db2.t6 IN cold_cache

8.10.2.3 Midpoint Insertion Strategy

By default, the key cache management system uses a simple LRU strategy for choosing key cache blocks
to be evicted, but it also supports a more sophisticated method called the midpoint insertion strategy.

When using the midpoint insertion strategy, the LRU chain is divided into two parts: a hot sublist and a
warm sublist. The division point between two parts is not fixed, but the key cache management system
takes care that the warm part is not “too short,” always containing at least key_cache_division_limit
percent of the key cache blocks. key_cache_division_limit is a component of structured key cache
variables, so its value is a parameter that can be set per cache.

When an index block is read from a table into the key cache, it is placed at the end of the warm sublist.
After a certain number of hits (accesses of the block), it is promoted to the hot sublist. At present, the
number of hits required to promote a block (3) is the same for all index blocks.

1172

The MyISAM Key Cache

A block promoted into the hot sublist is placed at the end of the list. The block then circulates within this
sublist. If the block stays at the beginning of the sublist for a long enough time, it is demoted to the warm
sublist. This time is determined by the value of the key_cache_age_threshold component of the key
cache.

The threshold value prescribes that, for a key cache containing N blocks, the block at the beginning of the
hot sublist not accessed within the last N * key_cache_age_threshold / 100 hits is to be moved
to the beginning of the warm sublist. It then becomes the first candidate for eviction, because blocks for
replacement always are taken from the beginning of the warm sublist.

The midpoint insertion strategy enables you to keep more-valued blocks always in the cache. If you prefer
to use the plain LRU strategy, leave the key_cache_division_limit value set to its default of 100.

The midpoint insertion strategy helps to improve performance when execution of a query that
requires an index scan effectively pushes out of the cache all the index blocks corresponding to
valuable high-level B-tree nodes. To avoid this, you must use a midpoint insertion strategy with the
key_cache_division_limit set to much less than 100. Then valuable frequently hit nodes are
preserved in the hot sublist during an index scan operation as well.

8.10.2.4 Index Preloading

If there are enough blocks in a key cache to hold blocks of an entire index, or at least the blocks
corresponding to its nonleaf nodes, it makes sense to preload the key cache with index blocks before
starting to use it. Preloading enables you to put the table index blocks into a key cache buffer in the most
efficient way: by reading the index blocks from disk sequentially.

Without preloading, the blocks are still placed into the key cache as needed by queries. Although the
blocks stay in the cache, because there are enough buffers for all of them, they are fetched from disk in
random order, and not sequentially.

To preload an index into a cache, use the LOAD INDEX INTO CACHE statement. For example, the
following statement preloads nodes (index blocks) of indexes of the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.
Thus, the statement shown preloads all index blocks from t1, but only blocks for the nonleaf nodes from
t2.

If an index has been assigned to a key cache using a CACHE INDEX statement, preloading places index
blocks into that cache. Otherwise, the index is loaded into the default key cache.

8.10.2.5 Key Cache Block Size

It is possible to specify the size of the block buffers for an individual key cache using the
key_cache_block_size variable. This permits tuning of the performance of I/O operations for index
files.

The best performance for I/O operations is achieved when the size of read buffers is equal to the size of
the native operating system I/O buffers. But setting the size of key nodes equal to the size of the I/O buffer
does not always ensure the best overall performance. When reading the big leaf nodes, the server pulls in
a lot of unnecessary data, effectively preventing reading other leaf nodes.

1173

The MySQL Query Cache

To control the size of blocks in the .MYI index file of MyISAM tables, use the --myisam-block-size
option at server startup.

8.10.2.6 Restructuring a Key Cache

A key cache can be restructured at any time by updating its parameter values. For example:

mysql> SET GLOBAL cold_cache.key_buffer_size=4*1024*1024;

If you assign to either the key_buffer_size or key_cache_block_size key cache component a
value that differs from the component's current value, the server destroys the cache's old structure and
creates a new one based on the new values. If the cache contains any dirty blocks, the server saves them
to disk before destroying and re-creating the cache. Restructuring does not occur if you change other key
cache parameters.

When restructuring a key cache, the server first flushes the contents of any dirty buffers to disk. After that,
the cache contents become unavailable. However, restructuring does not block queries that need to use
indexes assigned to the cache. Instead, the server directly accesses the table indexes using native file
system caching. File system caching is not as efficient as using a key cache, so although queries execute,
a slowdown can be anticipated. After the cache has been restructured, it becomes available again for
caching indexes assigned to it, and the use of file system caching for the indexes ceases.

8.10.3 The MySQL Query Cache

The query cache stores the text of a SELECT statement together with the corresponding result that was
sent to the client. If an identical statement is received later, the server retrieves the results from the query
cache rather than parsing and executing the statement again. The query cache is shared among sessions,
so a result set generated by one client can be sent in response to the same query issued by another client.

The query cache can be useful in an environment where you have tables that do not change very often and
for which the server receives many identical queries. This is a typical situation for many Web servers that
generate many dynamic pages based on database content.

The query cache does not return stale data. When tables are modified, any relevant entries in the query
cache are flushed.

Note

The query cache does not work in an environment where you have multiple mysqld
servers updating the same MyISAM tables.

The query cache is used for prepared statements under the conditions described in Section 8.10.3.1, “How
the Query Cache Operates”.

Note

The query cache is not supported for partitioned tables, and is automatically
disabled for queries involving partitioned tables. The query cache cannot be
enabled for such queries.

Some performance data for the query cache follows. These results were generated by running the MySQL
benchmark suite on a Linux Alpha 2×500MHz system with 2GB RAM and a 64MB query cache.

• If all the queries you are performing are simple (such as selecting a row from a table with one row),
but still differ so that the queries cannot be cached, the overhead for having the query cache active
is 13%. This could be regarded as the worst case scenario. In real life, queries tend to be much more
complicated, so the overhead normally is significantly lower.

1174

The MySQL Query Cache

• Searches for a single row in a single-row table are 238% faster with the query cache than without it. This
can be regarded as close to the minimum speedup to be expected for a query that is cached.

To disable the query cache at server startup, set the query_cache_size system variable to 0. By
disabling the query cache code, there is no noticeable overhead.

The query cache offers the potential for substantial performance improvement, but do not assume that it
does so under all circumstances. With some query cache configurations or server workloads, you might
actually see a performance decrease:

• Be cautious about sizing the query cache excessively large, which increases the overhead required to
maintain the cache, possibly beyond the benefit of enabling it. Sizes in tens of megabytes are usually
beneficial. Sizes in the hundreds of megabytes might not be.

• Server workload has a significant effect on query cache efficiency. A query mix consisting almost entirely
of a fixed set of SELECT statements is much more likely to benefit from enabling the cache than a mix in
which frequent INSERT statements cause continual invalidation of results in the cache. In some cases,
a workaround is to use the SQL_NO_CACHE option to prevent results from even entering the cache for
SELECT statements that use frequently modified tables. (See Section 8.10.3.2, “Query Cache SELECT
Options”.)

To verify that enabling the query cache is beneficial, test the operation of your MySQL server with the
cache enabled and disabled. Then retest periodically because query cache efficiency may change as
server workload changes.

8.10.3.1 How the Query Cache Operates

This section describes how the query cache works when it is operational. Section 8.10.3.3, “Query Cache
Configuration”, describes how to control whether it is operational.

Incoming queries are compared to those in the query cache before parsing, so the following two queries
are regarded as different by the query cache:

SELECT * FROM tbl_name
Select * from tbl_name

Queries must be exactly the same (byte for byte) to be seen as identical. In addition, query strings that
are identical may be treated as different for other reasons. Queries that use different databases, different
protocol versions, or different default character sets are considered different queries and are cached
separately.

The cache is not used for queries of the following types:

• Queries that are a subquery of an outer query

• Queries executed within the body of a stored function, trigger, or event

Before a query result is fetched from the query cache, MySQL checks whether the user has SELECT
privilege for all databases and tables involved. If this is not the case, the cached result is not used.

If a query result is returned from query cache, the server increments the Qcache_hits status variable, not
Com_select. See Section 8.10.3.4, “Query Cache Status and Maintenance”.

If a table changes, all cached queries that use the table become invalid and are removed from the cache.
This includes queries that use MERGE tables that map to the changed table. A table can be changed by
many types of statements, such as INSERT, UPDATE, DELETE, TRUNCATE TABLE, ALTER TABLE, DROP
TABLE, or DROP DATABASE.

1175

The MySQL Query Cache

The query cache also works within transactions when using InnoDB tables.

The result from a SELECT query on a view is cached.

The query cache works for SELECT SQL_CALC_FOUND_ROWS ... queries and stores a value that is
returned by a following SELECT FOUND_ROWS() query. FOUND_ROWS() returns the correct value even if
the preceding query was fetched from the cache because the number of found rows is also stored in the
cache. The SELECT FOUND_ROWS() query itself cannot be cached.

Prepared statements that are issued using the binary protocol using mysql_stmt_prepare() and
mysql_stmt_execute() (see C API Prepared Statement Interface), are subject to limitations on
caching. Comparison with statements in the query cache is based on the text of the statement after
expansion of ? parameter markers. The statement is compared only with other cached statements
that were executed using the binary protocol. That is, for query cache purposes, prepared statements
issued using the binary protocol are distinct from prepared statements issued using the text protocol (see
Section 13.5, “Prepared Statements”).

A query cannot be cached if it uses any of the following functions:

• BENCHMARK()

• CONNECTION_ID()

• CONVERT_TZ()

• CURDATE()

• CURRENT_DATE()

• CURRENT_TIME()

• CURRENT_TIMESTAMP()

• CURRENT_USER()

• CURTIME()

• DATABASE()

• ENCRYPT() with one parameter

• FOUND_ROWS()

• GET_LOCK()

• IS_FREE_LOCK()

• IS_USED_LOCK()

• LAST_INSERT_ID()

• LOAD_FILE()

• MASTER_POS_WAIT()

• NOW()

• PASSWORD()

• RAND()

1176

https://dev.mysql.com/doc/c-api/5.6/en/mysql-stmt-prepare.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-stmt-execute.html
https://dev.mysql.com/doc/c-api/5.6/en/c-api-prepared-statement-interface.html

The MySQL Query Cache

• RANDOM_BYTES()

• RELEASE_ALL_LOCKS()

• RELEASE_LOCK()

• SLEEP()

• SYSDATE()

• UNIX_TIMESTAMP() with no parameters

• USER()

• UUID()

• UUID_SHORT()

A query also is not cached under these conditions:

• It refers to loadable functions or stored functions.

• It refers to user variables or local stored program variables.

• It refers to tables in the mysql, INFORMATION_SCHEMA, or performance_schema database.

• It refers to any partitioned tables.

• It is of any of the following forms:

SELECT ... LOCK IN SHARE MODE
SELECT ... FOR UPDATE
SELECT ... INTO OUTFILE ...
SELECT ... INTO DUMPFILE ...
SELECT * FROM ... WHERE autoincrement_col IS NULL

The last form is not cached because it is used as the ODBC workaround for obtaining the last insert ID
value. See the Connector/ODBC section of Chapter 23, Connectors and APIs.

Statements within transactions that use SERIALIZABLE isolation level also cannot be cached because
they use LOCK IN SHARE MODE locking.

• It uses TEMPORARY tables.

• It does not use any tables.

• It generates warnings.

• The user has a column-level privilege for any of the involved tables.

8.10.3.2 Query Cache SELECT Options

Two query cache-related options may be specified in SELECT statements:

• SQL_CACHE

The query result is cached if it is cacheable and the value of the query_cache_type system variable is
ON or DEMAND.

•
SQL_NO_CACHE

1177

https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_release-all-locks

The MySQL Query Cache

The server does not use the query cache. It neither checks the query cache to see whether the result is
already cached, nor does it cache the query result. (Due to a limitation in the parser, a space character
must precede and follow the SQL_NO_CACHE keyword; a nonspace such as a newline causes the server
to check the query cache to see whether the result is already cached.)

Examples:

SELECT SQL_CACHE id, name FROM customer;
SELECT SQL_NO_CACHE id, name FROM customer;

8.10.3.3 Query Cache Configuration

The have_query_cache server system variable indicates whether the query cache is available:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

When using a standard MySQL binary, this value is always YES, even if query caching is disabled.

Several other system variables control query cache operation. These can be set in an option file or on the
command line when starting mysqld. The query cache system variables all have names that begin with
query_cache_. They are described briefly in Section 5.1.7, “Server System Variables”, with additional
configuration information given here.

To set the size of the query cache, set the query_cache_size system variable. Setting it to 0 disables
the query cache, as does setting query_cache_type=0. By default, the query cache is disabled. This is
achieved using a default size of 1M, with a default for query_cache_type of 0.

To reduce overhead significantly, start the server with query_cache_type=0 if you do not intend to use
the query cache.

Note

When using the Windows Configuration Wizard to install or configure MySQL, the
default value for query_cache_size is configured automatically for you based on
the different configuration types available. When using the Windows Configuration
Wizard, the query cache may be enabled (that is, set to a nonzero value) due to
the selected configuration. The query cache is also controlled by the setting of the
query_cache_type variable. Check the values of these variables as set in your
my.ini file after configuration has taken place.

When you set query_cache_size to a nonzero value, keep in mind that the query cache needs a
minimum size of about 40KB to allocate its structures. (The exact size depends on system architecture.) If
you set the value too small, you'll get a warning, as in this example:

mysql> SET GLOBAL query_cache_size = 40000;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1282
Message: Query cache failed to set size 39936;
 new query cache size is 0

1178

The MySQL Query Cache

mysql> SET GLOBAL query_cache_size = 41984;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| query_cache_size | 41984 |
+------------------+-------+

For the query cache to actually be able to hold any query results, its size must be set larger:

mysql> SET GLOBAL query_cache_size = 1000000;
Query OK, 0 rows affected (0.04 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+--------+
| Variable_name | Value |
+------------------+--------+
| query_cache_size | 999424 |
+------------------+--------+
1 row in set (0.00 sec)

The query_cache_size value is aligned to the nearest 1024 byte block. The value reported may
therefore be different from the value that you assign.

If the query cache size is greater than 0, the query_cache_type variable influences how it works. This
variable can be set to the following values:

• A value of 0 or OFF prevents caching or retrieval of cached results.

• A value of 1 or ON enables caching except of those statements that begin with SELECT SQL_NO_CACHE.

• A value of 2 or DEMAND causes caching of only those statements that begin with SELECT SQL_CACHE.

If query_cache_size is 0, you should also set query_cache_type variable to 0. In this case, the
server does not acquire the query cache mutex at all, which means that the query cache cannot be
enabled at runtime and there is reduced overhead in query execution.

Setting the GLOBAL query_cache_type value determines query cache behavior for all clients that
connect after the change is made. Individual clients can control cache behavior for their own connection by
setting the SESSION query_cache_type value. For example, a client can disable use of the query cache
for its own queries like this:

mysql> SET SESSION query_cache_type = OFF;

If you set query_cache_type at server startup (rather than at runtime with a SET statement), only the
numeric values are permitted.

To control the maximum size of individual query results that can be cached, set the query_cache_limit
system variable. The default value is 1MB.

Be careful not to set the size of the cache too large. Due to the need for threads to lock the cache during
updates, you may see lock contention issues with a very large cache.

Note

You can set the maximum size that can be specified for the query cache at runtime
with the SET statement by using the --maximum-query_cache_size=32M option
on the command line or in the configuration file.

1179

The MySQL Query Cache

When a query is to be cached, its result (the data sent to the client) is stored in the query cache during
result retrieval. Therefore the data usually is not handled in one big chunk. The query cache allocates
blocks for storing this data on demand, so when one block is filled, a new block is allocated. Because
memory allocation operation is costly (timewise), the query cache allocates blocks with a minimum size
given by the query_cache_min_res_unit system variable. When a query is executed, the last result
block is trimmed to the actual data size so that unused memory is freed. Depending on the types of queries
your server executes, you might find it helpful to tune the value of query_cache_min_res_unit:

• The default value of query_cache_min_res_unit is 4KB. This should be adequate for most cases.

• If you have a lot of queries with small results, the default block size may lead to memory fragmentation,
as indicated by a large number of free blocks. Fragmentation can force the query cache to
prune (delete) queries from the cache due to lack of memory. In this case, decrease the value of
query_cache_min_res_unit. The number of free blocks and queries removed due to pruning are
given by the values of the Qcache_free_blocks and Qcache_lowmem_prunes status variables.

• If most of your queries have large results (check the Qcache_total_blocks and
Qcache_queries_in_cache status variables), you can increase performance by increasing
query_cache_min_res_unit. However, be careful to not make it too large (see the previous item).

8.10.3.4 Query Cache Status and Maintenance

To check whether the query cache is present in your MySQL server, use the following statement:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

You can defragment the query cache to better utilize its memory with the FLUSH QUERY CACHE
statement. The statement does not remove any queries from the cache.

The RESET QUERY CACHE statement removes all query results from the query cache. The FLUSH
TABLES statement also does this.

To monitor query cache performance, use SHOW STATUS to view the cache status variables:

mysql> SHOW STATUS LIKE 'Qcache%';
+-------------------------+--------+
| Variable_name | Value |
+-------------------------+--------+
Qcache_free_blocks	36
Qcache_free_memory	138488
Qcache_hits	79570
Qcache_inserts	27087
Qcache_lowmem_prunes	3114
Qcache_not_cached	22989
Qcache_queries_in_cache	415
Qcache_total_blocks	912
+-------------------------+--------+

Descriptions of each of these variables are given in Section 5.1.9, “Server Status Variables”. Some uses
for them are described here.

The total number of SELECT queries is given by this formula:

 Com_select
+ Qcache_hits
+ queries with errors found by parser

1180

Caching of Prepared Statements and Stored Programs

The Com_select value is given by this formula:

 Qcache_inserts
+ Qcache_not_cached
+ queries with errors found during the column-privileges check

The query cache uses variable-length blocks, so Qcache_total_blocks and Qcache_free_blocks
may indicate query cache memory fragmentation. After FLUSH QUERY CACHE, only a single free block
remains.

Every cached query requires a minimum of two blocks (one for the query text and one or more for the
query results). Also, every table that is used by a query requires one block. However, if two or more
queries use the same table, only one table block needs to be allocated.

The information provided by the Qcache_lowmem_prunes status variable can help you tune the query
cache size. It counts the number of queries that have been removed from the cache to free up memory for
caching new queries. The query cache uses a least recently used (LRU) strategy to decide which queries
to remove from the cache. Tuning information is given in Section 8.10.3.3, “Query Cache Configuration”.

8.10.4 Caching of Prepared Statements and Stored Programs

For certain statements that a client might execute multiple times during a session, the server converts the
statement to an internal structure and caches that structure to be used during execution. Caching enables
the server to perform more efficiently because it avoids the overhead of reconverting the statement should
it be needed again during the session. Conversion and caching occurs for these statements:

• Prepared statements, both those processed at the SQL level (using the PREPARE statement) and those
processed using the binary client/server protocol (using the mysql_stmt_prepare() C API function).
The max_prepared_stmt_count system variable controls the total number of statements the server
caches. (The sum of the number of prepared statements across all sessions.)

• Stored programs (stored procedures and functions, triggers, and events). In this case, the server
converts and caches the entire program body. The stored_program_cache system variable indicates
the approximate number of stored programs the server caches per session.

The server maintains caches for prepared statements and stored programs on a per-session basis.
Statements cached for one session are not accessible to other sessions. When a session ends, the server
discards any statements cached for it.

When the server uses a cached internal statement structure, it must take care that the structure does not
go out of date. Metadata changes can occur for an object used by the statement, causing a mismatch
between the current object definition and the definition as represented in the internal statement structure.
Metadata changes occur for DDL statements such as those that create, drop, alter, rename, or truncate
tables, or that analyze, optimize, or repair tables. Table content changes (for example, with INSERT or
UPDATE) do not change metadata, nor do SELECT statements.

Here is an illustration of the problem. Suppose that a client prepares this statement:

PREPARE s1 FROM 'SELECT * FROM t1';

The SELECT * expands in the internal structure to the list of columns in the table. If the set of columns in
the table is modified with ALTER TABLE, the prepared statement goes out of date. If the server does not
detect this change the next time the client executes s1, the prepared statement returns incorrect results.

To avoid problems caused by metadata changes to tables or views referred to by the prepared statement,
the server detects these changes and automatically reprepares the statement when it is next executed.
That is, the server reparses the statement and rebuilds the internal structure. Reparsing also occurs after

1181

https://dev.mysql.com/doc/c-api/5.6/en/mysql-stmt-prepare.html

Optimizing Locking Operations

referenced tables or views are flushed from the table definition cache, either implicitly to make room for
new entries in the cache, or explicitly due to FLUSH TABLES.

Similarly, if changes occur to objects used by a stored program, the server reparses affected statements
within the program.

The server also detects metadata changes for objects in expressions. These might be used in statements
specific to stored programs, such as DECLARE CURSOR or flow-control statements such as IF, CASE, and
RETURN.

To avoid reparsing entire stored programs, the server reparses affected statements or expressions within a
program only as needed. Examples:

• Suppose that metadata for a table or view is changed. Reparsing occurs for a SELECT * within the
program that accesses the table or view, but not for a SELECT * that does not access the table or view.

• When a statement is affected, the server reparses it only partially if possible. Consider this CASE
statement:

CASE case_expr
 WHEN when_expr1 ...
 WHEN when_expr2 ...
 WHEN when_expr3 ...
 ...
END CASE

If a metadata change affects only WHEN when_expr3, that expression is reparsed. case_expr and the
other WHEN expressions are not reparsed.

Reparsing uses the default database and SQL mode that were in effect for the original conversion to
internal form.

The server attempts reparsing up to three times. An error occurs if all attempts fail.

Reparsing is automatic, but to the extent that it occurs, diminishes prepared statement and stored program
performance.

For prepared statements, the Com_stmt_reprepare status variable tracks the number of repreparations.

8.11 Optimizing Locking Operations

MySQL manages contention for table contents using locking:

• Internal locking is performed within the MySQL server itself to manage contention for table contents
by multiple threads. This type of locking is internal because it is performed entirely by the server and
involves no other programs. See Section 8.11.1, “Internal Locking Methods”.

• External locking occurs when the server and other programs lock MyISAM table files to coordinate
among themselves which program can access the tables at which time. See Section 8.11.5, “External
Locking”.

8.11.1 Internal Locking Methods

This section discusses internal locking; that is, locking performed within the MySQL server itself to manage
contention for table contents by multiple sessions. This type of locking is internal because it is performed
entirely by the server and involves no other programs. For locking performed on MySQL files by other
programs, see Section 8.11.5, “External Locking”.

1182

Internal Locking Methods

• Row-Level Locking

• Table-Level Locking

• Choosing the Type of Locking

Row-Level Locking

MySQL uses row-level locking for InnoDB tables to support simultaneous write access by multiple
sessions, making them suitable for multi-user, highly concurrent, and OLTP applications.

To avoid deadlocks when performing multiple concurrent write operations on a single InnoDB table,
acquire necessary locks at the start of the transaction by issuing a SELECT ... FOR UPDATE statement
for each group of rows expected to be modified, even if the data change statements come later in the
transaction. If transactions modify or lock more than one table, issue the applicable statements in the same
order within each transaction. Deadlocks affect performance rather than representing a serious error,
because InnoDB automatically detects deadlock conditions and rolls back one of the affected transactions.

Advantages of row-level locking:

• Fewer lock conflicts when different sessions access different rows.

• Fewer changes for rollbacks.

• Possible to lock a single row for a long time.

Table-Level Locking

MySQL uses table-level locking for MyISAM, MEMORY, and MERGE tables, permitting only one session to
update those tables at a time. This locking level makes these storage engines more suitable for read-only,
read-mostly, or single-user applications.

These storage engines avoid deadlocks by always requesting all needed locks at once at the beginning
of a query and always locking the tables in the same order. The tradeoff is that this strategy reduces
concurrency; other sessions that want to modify the table must wait until the current data change statement
finishes.

Advantages of table-level locking:

• Relatively little memory required (row locking requires memory per row or group of rows locked)

• Fast when used on a large part of the table because only a single lock is involved.

• Fast if you often do GROUP BY operations on a large part of the data or must scan the entire table
frequently.

MySQL grants table write locks as follows:

1. If there are no locks on the table, put a write lock on it.

2. Otherwise, put the lock request in the write lock queue.

MySQL grants table read locks as follows:

1. If there are no write locks on the table, put a read lock on it.

2. Otherwise, put the lock request in the read lock queue.

Table updates are given higher priority than table retrievals. Therefore, when a lock is released, the lock
is made available to the requests in the write lock queue and then to the requests in the read lock queue.

1183

Internal Locking Methods

This ensures that updates to a table are not “starved” even when there is heavy SELECT activity for the
table. However, if there are many updates for a table, SELECT statements wait until there are no more
updates.

For information on altering the priority of reads and writes, see Section 8.11.2, “Table Locking Issues”.

You can analyze the table lock contention on your system by checking the Table_locks_immediate
and Table_locks_waited status variables, which indicate the number of times that requests for table
locks could be granted immediately and the number that had to wait, respectively:

mysql> SHOW STATUS LIKE 'Table%';
+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and writers
for a given table: If a MyISAM table has no free blocks in the middle of the data file, rows are always
inserted at the end of the data file. In this case, you can freely mix concurrent INSERT and SELECT
statements for a MyISAM table without locks. That is, you can insert rows into a MyISAM table at the
same time other clients are reading from it. Holes can result from rows having been deleted from or
updated in the middle of the table. If there are holes, concurrent inserts are disabled but are enabled
again automatically when all holes have been filled with new data. To control this behavior, use the
concurrent_insert system variable. See Section 8.11.3, “Concurrent Inserts”.

If you acquire a table lock explicitly with LOCK TABLES, you can request a READ LOCAL lock rather than a
READ lock to enable other sessions to perform concurrent inserts while you have the table locked.

To perform many INSERT and SELECT operations on a table t1 when concurrent inserts are not possible,
you can insert rows into a temporary table temp_t1 and update the real table with the rows from the
temporary table:

mysql> LOCK TABLES t1 WRITE, temp_t1 WRITE;
mysql> INSERT INTO t1 SELECT * FROM temp_t1;
mysql> DELETE FROM temp_t1;
mysql> UNLOCK TABLES;

Choosing the Type of Locking

Generally, table locks are superior to row-level locks in the following cases:

• Most statements for the table are reads.

• Statements for the table are a mix of reads and writes, where writes are updates or deletes for a single
row that can be fetched with one key read:

UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;
DELETE FROM tbl_name WHERE unique_key_col=key_value;

• SELECT combined with concurrent INSERT statements, and very few UPDATE or DELETE statements.

• Many scans or GROUP BY operations on the entire table without any writers.

With higher-level locks, you can more easily tune applications by supporting locks of different types,
because the lock overhead is less than for row-level locks.

Options other than row-level locking:

1184

Table Locking Issues

• Versioning (such as that used in MySQL for concurrent inserts) where it is possible to have one writer at
the same time as many readers. This means that the database or table supports different views for the
data depending on when access begins. Other common terms for this are “time travel,” “copy on write,”
or “copy on demand.”

• Copy on demand is in many cases superior to row-level locking. However, in the worst case, it can use
much more memory than using normal locks.

• Instead of using row-level locks, you can employ application-level locks, such as those provided by
GET_LOCK() and RELEASE_LOCK() in MySQL. These are advisory locks, so they work only with
applications that cooperate with each other. See Section 12.15, “Locking Functions”.

8.11.2 Table Locking Issues

InnoDB tables use row-level locking so that multiple sessions and applications can read from and write to
the same table simultaneously, without making each other wait or producing inconsistent results. For this
storage engine, avoid using the LOCK TABLES statement, because it does not offer any extra protection,
but instead reduces concurrency. The automatic row-level locking makes these tables suitable for your
busiest databases with your most important data, while also simplifying application logic since you do not
need to lock and unlock tables. Consequently, the InnoDB storage engine is the default in MySQL.

MySQL uses table locking (instead of page, row, or column locking) for all storage engines except InnoDB.
The locking operations themselves do not have much overhead. But because only one session can write
to a table at any one time, for best performance with these other storage engines, use them primarily for
tables that are queried often and rarely inserted into or updated.

• Performance Considerations Favoring InnoDB

• Workarounds for Locking Performance Issues

Performance Considerations Favoring InnoDB

When choosing whether to create a table using InnoDB or a different storage engine, keep in mind the
following disadvantages of table locking:

• Table locking enables many sessions to read from a table at the same time, but if a session wants to
write to a table, it must first get exclusive access, meaning it might have to wait for other sessions to
finish with the table first. During the update, all other sessions that want to access this particular table
must wait until the update is done.

• Table locking causes problems when a session is waiting because the disk is full and free space needs
to become available before the session can proceed. In this case, all sessions that want to access the
problem table are also put in a waiting state until more disk space is made available.

• A SELECT statement that takes a long time to run prevents other sessions from updating the table in the
meantime, making the other sessions appear slow or unresponsive. While a session is waiting to get
exclusive access to the table for updates, other sessions that issue SELECT statements queue up behind
it, reducing concurrency even for read-only sessions.

Workarounds for Locking Performance Issues

The following items describe some ways to avoid or reduce contention caused by table locking:

• Consider switching the table to the InnoDB storage engine, either using CREATE TABLE ...
ENGINE=INNODB during setup, or using ALTER TABLE ... ENGINE=INNODB for an existing table.
See Chapter 14, The InnoDB Storage Engine for more details about this storage engine.

1185

Concurrent Inserts

• Optimize SELECT statements to run faster so that they lock tables for a shorter time. You might have to
create some summary tables to do this.

• Start mysqld with --low-priority-updates. For storage engines that use only table-level locking
(such as MyISAM, MEMORY, and MERGE), this gives all statements that update (modify) a table lower
priority than SELECT statements. In this case, the second SELECT statement in the preceding scenario
would execute before the UPDATE statement, and would not wait for the first SELECT to finish.

• To specify that all updates issued in a specific connection should be done with low priority, set the
low_priority_updates server system variable equal to 1.

• To give a specific INSERT, UPDATE, or DELETE statement lower priority, use the LOW_PRIORITY
attribute.

• To give a specific SELECT statement higher priority, use the HIGH_PRIORITY attribute. See
Section 13.2.9, “SELECT Statement”.

• Start mysqld with a low value for the max_write_lock_count system variable to force MySQL to
temporarily elevate the priority of all SELECT statements that are waiting for a table after a specific
number of write locks to the table occur (for example, for insert operations). This permits read locks after
a certain number of write locks.

• If you mix inserts and deletes on the same nontransactional table, INSERT DELAYED may help. See
Section 13.2.5.3, “INSERT DELAYED Statement”.

Note

INSERT DELAYED is deprecated; expect it to be removed in a future release.
Use INSERT (without DELAYED) instead.

• If you have problems with mixed SELECT and DELETE statements, the LIMIT option to DELETE may
help. See Section 13.2.2, “DELETE Statement”.

• Using SQL_BUFFER_RESULT with SELECT statements can help to make the duration of table locks
shorter. See Section 13.2.9, “SELECT Statement”.

• Splitting table contents into separate tables may help, by allowing queries to run against columns in one
table, while updates are confined to columns in a different table.

• You could change the locking code in mysys/thr_lock.c to use a single queue. In this case, write
locks and read locks would have the same priority, which might help some applications.

8.11.3 Concurrent Inserts

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and writers
for a given table: If a MyISAM table has no holes in the data file (deleted rows in the middle), an INSERT
statement can be executed to add rows to the end of the table at the same time that SELECT statements
are reading rows from the table. If there are multiple INSERT statements, they are queued and performed
in sequence, concurrently with the SELECT statements. The results of a concurrent INSERT may not be
visible immediately.

The concurrent_insert system variable can be set to modify the concurrent-insert processing.
By default, the variable is set to AUTO (or 1) and concurrent inserts are handled as just described. If
concurrent_insert is set to NEVER (or 0), concurrent inserts are disabled. If the variable is set to
ALWAYS (or 2), concurrent inserts at the end of the table are permitted even for tables that have deleted
rows. See also the description of the concurrent_insert system variable.

1186

Metadata Locking

Under circumstances where concurrent inserts can be used, there is seldom any need to use the DELAYED
modifier for INSERT statements. See Section 13.2.5.3, “INSERT DELAYED Statement”.

If you are using the binary log, concurrent inserts are converted to normal inserts for CREATE ...
SELECT or INSERT ... SELECT statements. This is done to ensure that you can re-create an exact
copy of your tables by applying the log during a backup operation. See Section 5.4.4, “The Binary Log”. In
addition, for those statements a read lock is placed on the selected-from table such that inserts into that
table are blocked. The effect is that concurrent inserts for that table must wait as well.

With LOAD DATA, if you specify CONCURRENT with a MyISAM table that satisfies the condition for
concurrent inserts (that is, it contains no free blocks in the middle), other sessions can retrieve data from
the table while LOAD DATA is executing. Use of the CONCURRENT option affects the performance of LOAD
DATA a bit, even if no other session is using the table at the same time.

If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option if the
server was started with that option. It also causes concurrent inserts not to be used.

For LOCK TABLE, the difference between READ LOCAL and READ is that READ LOCAL permits
nonconflicting INSERT statements (concurrent inserts) to execute while the lock is held. However, this
cannot be used if you are going to manipulate the database using processes external to the server while
you hold the lock.

8.11.4 Metadata Locking

MySQL uses metadata locking to manage concurrent access to database objects and to ensure data
consistency. Metadata locking applies not just to tables, but also to schemas and stored programs
(procedures, functions, triggers, and scheduled events).

Metadata locking does involve some overhead, which increases as query volume increases. Metadata
contention increases the more that multiple queries attempt to access the same objects.

Metadata locking is not a replacement for the table definition cache, and its mutexes and locks differ from
the LOCK_open mutex. The following discussion provides some information about how metadata locking
works.

• Metadata Lock Acquisition

• Metadata Lock Release

Metadata Lock Acquisition

If there are multiple waiters for a given lock, the highest-priority lock request is satisfied first, with an
exception related to the max_write_lock_count system variable. Write lock requests have higher
priority than read lock requests. However, if max_write_lock_count is set to some low value (say,
10), read lock requests may be preferred over pending write lock requests if the read lock requests
have already been passed over in favor of 10 write lock requests. Normally this behavior does not occur
because max_write_lock_count by default has a very large value.

Statements acquire metadata locks one by one, not simultaneously, and perform deadlock detection in the
process.

DML statements normally acquire locks in the order in which tables are mentioned in the statement.

DDL statements, LOCK TABLES, and other similar statements try to reduce the number of possible
deadlocks between concurrent DDL statements by acquiring locks on explicitly named tables in name
order. Locks might be acquired in a different order for implicitly used tables (such as tables in foreign key
relationships that also must be locked).

1187

Metadata Locking

For example, RENAME TABLE is a DDL statement that acquires locks in name order:

• This RENAME TABLE statement renames tbla to something else, and renames tblc to tbla:

RENAME TABLE tbla TO tbld, tblc TO tbla;

The statement acquires metadata locks, in order, on tbla, tblc, and tbld (because tbld follows
tblc in name order):

• This slightly different statement also renames tbla to something else, and renames tblc to tbla:

RENAME TABLE tbla TO tblb, tblc TO tbla;

In this case, the statement acquires metadata locks, in order, on tbla, tblb, and tblc (because tblb
precedes tblc in name order):

Both statements acquire locks on tbla and tblc, in that order, but differ in whether the lock on the
remaining table name is acquired before or after tblc.

Metadata lock acquisition order can make a difference in operation outcome when multiple transactions
execute concurrently, as the following example illustrates.

Begin with two tables x and x_new that have identical structure. Three clients issue statements that involve
these tables:

Client 1:

LOCK TABLE x WRITE, x_new WRITE;

The statement requests and acquires write locks in name order on x and x_new.

Client 2:

INSERT INTO x VALUES(1);

The statement requests and blocks waiting for a write lock on x.

Client 3:

RENAME TABLE x TO x_old, x_new TO x;

The statement requests exclusive locks in name order on x, x_new, and x_old, but blocks waiting for the
lock on x.

Client 1:

UNLOCK TABLES;

The statement releases the write locks on x and x_new. The exclusive lock request for x by Client 3 has
higher priority than the write lock request by Client 2, so Client 3 acquires its lock on x, then also on x_new
and x_old, performs the renaming, and releases its locks. Client 2 then acquires its lock on x, performs
the insert, and releases its lock.

Lock acquisition order results in the RENAME TABLE executing before the INSERT. The x into which the
insert occurs is the table that was named x_new when Client 2 issued the insert and was renamed to x by
Client 3:

mysql> SELECT * FROM x;
+------+
| i |

1188

Metadata Locking

+------+
| 1 |
+------+

mysql> SELECT * FROM x_old;
Empty set (0.01 sec)

Now begin instead with tables named x and new_x that have identical structure. Again, three clients issue
statements that involve these tables:

Client 1:

LOCK TABLE x WRITE, new_x WRITE;

The statement requests and acquires write locks in name order on new_x and x.

Client 2:

INSERT INTO x VALUES(1);

The statement requests and blocks waiting for a write lock on x.

Client 3:

RENAME TABLE x TO old_x, new_x TO x;

The statement requests exclusive locks in name order on new_x, old_x, and x, but blocks waiting for the
lock on new_x.

Client 1:

UNLOCK TABLES;

The statement releases the write locks on x and new_x. For x, the only pending request is by Client 2, so
Client 2 acquires its lock, performs the insert, and releases the lock. For new_x, the only pending request
is by Client 3, which is permitted to acquire that lock (and also the lock on old_x). The rename operation
still blocks for the lock on x until the Client 2 insert finishes and releases its lock. Then Client 3 acquires the
lock on x, performs the rename, and releases its lock.

In this case, lock acquisition order results in the INSERT executing before the RENAME TABLE. The x into
which the insert occurs is the original x, now renamed to old_x by the rename operation:

mysql> SELECT * FROM x;
Empty set (0.01 sec)

mysql> SELECT * FROM old_x;
+------+
| i |
+------+
| 1 |
+------+

If order of lock acquisition in concurrent statements makes a difference to an application in operation
outcome, as in the preceding example, you may be able to adjust the table names to affect the order of
lock acquisition.

Metadata Lock Release

To ensure transaction serializability, the server must not permit one session to perform a data definition
language (DDL) statement on a table that is used in an uncompleted explicitly or implicitly started

1189

External Locking

transaction in another session. The server achieves this by acquiring metadata locks on tables used within
a transaction and deferring release of those locks until the transaction ends. A metadata lock on a table
prevents changes to the table's structure. This locking approach has the implication that a table that is
being used by a transaction within one session cannot be used in DDL statements by other sessions until
the transaction ends.

This principle applies not only to transactional tables, but also to nontransactional tables. Suppose that a
session begins a transaction that uses transactional table t and nontransactional table nt as follows:

START TRANSACTION;
SELECT * FROM t;
SELECT * FROM nt;

The server holds metadata locks on both t and nt until the transaction ends. If another session attempts
a DDL or write lock operation on either table, it blocks until metadata lock release at transaction end. For
example, a second session blocks if it attempts any of these operations:

DROP TABLE t;
ALTER TABLE t ...;
DROP TABLE nt;
ALTER TABLE nt ...;
LOCK TABLE t ... WRITE;

If the server acquires metadata locks for a statement that is syntactically valid but fails during execution,
it does not release the locks early. Lock release is still deferred to the end of the transaction because the
failed statement is written to the binary log and the locks protect log consistency.

In autocommit mode, each statement is in effect a complete transaction, so metadata locks acquired for
the statement are held only to the end of the statement.

Metadata locks acquired during a PREPARE statement are released once the statement has been
prepared, even if preparation occurs within a multiple-statement transaction.

8.11.5 External Locking

External locking is the use of file system locking to manage contention for MyISAM database tables by
multiple processes. External locking is used in situations where a single process such as the MySQL
server cannot be assumed to be the only process that requires access to tables. Here are some examples:

• If you run multiple servers that use the same database directory (not recommended), each server must
have external locking enabled.

• If you use myisamchk to perform table maintenance operations on MyISAM tables, you must either
ensure that the server is not running, or that the server has external locking enabled so that it locks table
files as necessary to coordinate with myisamchk for access to the tables. The same is true for use of
myisampack to pack MyISAM tables.

If the server is run with external locking enabled, you can use myisamchk at any time for read
operations such a checking tables. In this case, if the server tries to update a table that myisamchk is
using, the server waits for myisamchk to finish before it continues.

If you use myisamchk for write operations such as repairing or optimizing tables, or if you use
myisampack to pack tables, you must always ensure that the mysqld server is not using the table. If
you do not stop mysqld, at least do a mysqladmin flush-tables before you run myisamchk. Your
tables may become corrupted if the server and myisamchk access the tables simultaneously.

With external locking in effect, each process that requires access to a table acquires a file system lock for
the table files before proceeding to access the table. If all necessary locks cannot be acquired, the process

1190

Optimizing the MySQL Server

is blocked from accessing the table until the locks can be obtained (after the process that currently holds
the locks releases them).

External locking affects server performance because the server must sometimes wait for other processes
before it can access tables.

External locking is unnecessary if you run a single server to access a given data directory (which is the
usual case) and if no other programs such as myisamchk need to modify tables while the server is
running. If you only read tables with other programs, external locking is not required, although myisamchk
might report warnings if the server changes tables while myisamchk is reading them.

With external locking disabled, to use myisamchk, you must either stop the server while myisamchk
executes or else lock and flush the tables before running myisamchk. (See Section 8.12.1, “System
Factors”.) To avoid this requirement, use the CHECK TABLE and REPAIR TABLE statements to check and
repair MyISAM tables.

For mysqld, external locking is controlled by the value of the skip_external_locking system variable.
When this variable is enabled, external locking is disabled, and vice versa. External locking is disabled by
default.

Use of external locking can be controlled at server startup by using the --external-locking or --
skip-external-locking option.

If you do use external locking option to enable updates to MyISAM tables from many MySQL processes,
you must ensure that the following conditions are satisfied:

• Do not use the query cache for queries that use tables that are updated by another process.

• Do not start the server with the delay_key_write system variable set to ALL or use the
DELAY_KEY_WRITE=1 table option for any shared tables. Otherwise, index corruption can occur.

The easiest way to satisfy these conditions is to always use --external-locking together with --
delay-key-write=OFF and --query-cache-size=0. (This is not done by default because in many
setups it is useful to have a mixture of the preceding options.)

8.12 Optimizing the MySQL Server
This section discusses optimization techniques for the database server, primarily dealing with system
configuration rather than tuning SQL statements. The information in this section is appropriate for
DBAs who want to ensure performance and scalability across the servers they manage; for developers
constructing installation scripts that include setting up the database; and people running MySQL
themselves for development, testing, and so on who want to maximize their own productivity.

8.12.1 System Factors

Some system-level factors can affect performance in a major way:

• If you have enough RAM, you could remove all swap devices. Some operating systems use a swap
device in some contexts even if you have free memory.

• Avoid external locking for MyISAM tables. The default is for external locking to be disabled. The --
external-locking and --skip-external-locking options explicitly enable and disable external
locking.

Disabling external locking does not affect MySQL's functionality as long as you run only one server. Just
remember to take down the server (or lock and flush the relevant tables) before you run myisamchk. On
some systems it is mandatory to disable external locking because it does not work, anyway.

1191

Optimizing Disk I/O

The only case in which you cannot disable external locking is when you run multiple MySQL servers
(not clients) on the same data, or if you run myisamchk to check (not repair) a table without telling the
server to flush and lock the tables first. Note that using multiple MySQL servers to access the same data
concurrently is generally not recommended, except when using NDB Cluster.

The LOCK TABLES and UNLOCK TABLES statements use internal locking, so you can use them even if
external locking is disabled.

8.12.2 Optimizing Disk I/O

This section describes ways to configure storage devices when you can devote more and faster storage
hardware to the database server. For information about optimizing an InnoDB configuration to improve I/O
performance, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• Disk seeks are a huge performance bottleneck. This problem becomes more apparent when the amount
of data starts to grow so large that effective caching becomes impossible. For large databases where
you access data more or less randomly, you can be sure that you need at least one disk seek to read
and a couple of disk seeks to write things. To minimize this problem, use disks with low seek times.

• Increase the number of available disk spindles (and thereby reduce the seek overhead) by either
symlinking files to different disks or striping the disks:

• Using symbolic links

This means that, for MyISAM tables, you symlink the index file and data files from their usual location
in the data directory to another disk (that may also be striped). This makes both the seek and read
times better, assuming that the disk is not used for other purposes as well. See Section 8.12.3, “Using
Symbolic Links”.

Symbolic links are not supported for use with InnoDB tables. However, it is possible to place InnoDB
data and log files on different physical disks. For more information, see Section 8.5.8, “Optimizing
InnoDB Disk I/O”.

• Striping

Striping means that you have many disks and put the first block on the first disk, the second block
on the second disk, and the N-th block on the (N MOD number_of_disks) disk, and so on. This
means if your normal data size is less than the stripe size (or perfectly aligned), you get much better
performance. Striping is very dependent on the operating system and the stripe size, so benchmark
your application with different stripe sizes. See Section 8.13.3, “Using Your Own Benchmarks”.

The speed difference for striping is very dependent on the parameters. Depending on how you set the
striping parameters and number of disks, you may get differences measured in orders of magnitude.
You have to choose to optimize for random or sequential access.

• For reliability, you may want to use RAID 0+1 (striping plus mirroring), but in this case, you need 2 × N
drives to hold N drives of data. This is probably the best option if you have the money for it. However,
you may also have to invest in some volume-management software to handle it efficiently.

• A good option is to vary the RAID level according to how critical a type of data is. For example, store
semi-important data that can be regenerated on a RAID 0 disk, but store really important data such as
host information and logs on a RAID 0+1 or RAID N disk. RAID N can be a problem if you have many
writes, due to the time required to update the parity bits.

• You can also set the parameters for the file system that the database uses:

1192

Using Symbolic Links

If you do not need to know when files were last accessed (which is not really useful on a database
server), you can mount your file systems with the -o noatime option. That skips updates to the last
access time in inodes on the file system, which avoids some disk seeks.

On many operating systems, you can set a file system to be updated asynchronously by mounting it with
the -o async option. If your computer is reasonably stable, this should give you better performance
without sacrificing too much reliability. (This flag is on by default on Linux.)

Using NFS with MySQL

You should be cautious when considering whether to use NFS with MySQL. Potential issues, which vary
by operating system and NFS version, include the following:

• MySQL data and log files placed on NFS volumes becoming locked and unavailable for use. Locking
issues may occur in cases where multiple instances of MySQL access the same data directory or
where MySQL is shut down improperly, due to a power outage, for example. NFS version 4 addresses
underlying locking issues with the introduction of advisory and lease-based locking. However, sharing a
data directory among MySQL instances is not recommended.

• Data inconsistencies introduced due to messages received out of order or lost network traffic. To avoid
this issue, use TCP with hard and intr mount options.

• Maximum file size limitations. NFS Version 2 clients can only access the lowest 2GB of a file (signed 32
bit offset). NFS Version 3 clients support larger files (up to 64 bit offsets). The maximum supported file
size also depends on the local file system of the NFS server.

Using NFS within a professional SAN environment or other storage system tends to offer greater reliability
than using NFS outside of such an environment. However, NFS within a SAN environment may be slower
than directly attached or bus-attached non-rotational storage.

If you choose to use NFS, NFS Version 4 or later is recommended, as is testing your NFS setup thoroughly
before deploying into a production environment.

8.12.3 Using Symbolic Links

You can move databases or tables from the database directory to other locations and replace them with
symbolic links to the new locations. You might want to do this, for example, to move a database to a file
system with more free space or increase the speed of your system by spreading your tables to different
disks.

For InnoDB tables, use the DATA DIRECTORY clause of the CREATE TABLE statement instead of
symbolic links, as explained in Section 14.6.1.2, “Creating Tables Externally”. This new feature is a
supported, cross-platform technique.

The recommended way to do this is to symlink entire database directories to a different disk. Symlink
MyISAM tables only as a last resort.

To determine the location of your data directory, use this statement:

SHOW VARIABLES LIKE 'datadir';

8.12.3.1 Using Symbolic Links for Databases on Unix

On Unix, the way to symlink a database is first to create a directory on some disk where you have free
space and then to create a soft link to it from the MySQL data directory.

1193

Using Symbolic Links

$> mkdir /dr1/databases/test
$> ln -s /dr1/databases/test /path/to/datadir

MySQL does not support linking one directory to multiple databases. Replacing a database directory with
a symbolic link works as long as you do not make a symbolic link between databases. Suppose that you
have a database db1 under the MySQL data directory, and then make a symlink db2 that points to db1:

$> cd /path/to/datadir
$> ln -s db1 db2

The result is that, for any table tbl_a in db1, there also appears to be a table tbl_a in db2. If one client
updates db1.tbl_a and another client updates db2.tbl_a, problems are likely to occur.

8.12.3.2 Using Symbolic Links for MyISAM Tables on Unix

Symlinks are fully supported only for MyISAM tables. For files used by tables for other storage engines, you
may get strange problems if you try to use symbolic links. For InnoDB tables, use the alternative technique
explained in Section 14.6.1.2, “Creating Tables Externally” instead.

Do not symlink tables on systems that do not have a fully operational realpath() call. (Linux and Solaris
support realpath()). To determine whether your system supports symbolic links, check the value of the
have_symlink system variable using this statement:

SHOW VARIABLES LIKE 'have_symlink';

The handling of symbolic links for MyISAM tables works as follows:

• In the data directory, you always have the table format (.frm) file, the data (.MYD) file, and the index
(.MYI) file. The data file and index file can be moved elsewhere and replaced in the data directory by
symlinks. The format file cannot.

• You can symlink the data file and the index file independently to different directories.

• To instruct a running MySQL server to perform the symlinking, use the DATA DIRECTORY and
INDEX DIRECTORY options to CREATE TABLE. See Section 13.1.17, “CREATE TABLE Statement”.
Alternatively, if mysqld is not running, symlinking can be accomplished manually using ln -s from the
command line.

Note

The path used with either or both of the DATA DIRECTORY and INDEX
DIRECTORY options may not include the MySQL data directory. (Bug #32167)

• myisamchk does not replace a symlink with the data file or index file. It works directly on the file to
which the symlink points. Any temporary files are created in the directory where the data file or index file
is located. The same is true for the ALTER TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.

• Note

When you drop a table that is using symlinks, both the symlink and the file to
which the symlink points are dropped. This is an extremely good reason not to
run mysqld as the root operating system user or permit operating system users
to have write access to MySQL database directories.

• If you rename a table with ALTER TABLE ... RENAME or RENAME TABLE and you do not move the
table to another database, the symlinks in the database directory are renamed to the new names and the
data file and index file are renamed accordingly.

1194

Using Symbolic Links

• If you use ALTER TABLE ... RENAME or RENAME TABLE to move a table to another database,
the table is moved to the other database directory. If the table name changed, the symlinks in the
new database directory are renamed to the new names and the data file and index file are renamed
accordingly.

• If you are not using symlinks, start mysqld with the --skip-symbolic-links option to ensure that no
one can use mysqld to drop or rename a file outside of the data directory.

These table symlink operations are not supported:

• ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

• As indicated previously, only the data and index files can be symbolic links. The .frm file must never
be a symbolic link. Attempting to do this (for example, to make one table name a synonym for another)
produces incorrect results. Suppose that you have a database db1 under the MySQL data directory, a
table tbl1 in this database, and in the db1 directory you make a symlink tbl2 that points to tbl1:

$> cd /path/to/datadir/db1
$> ln -s tbl1.frm tbl2.frm
$> ln -s tbl1.MYD tbl2.MYD
$> ln -s tbl1.MYI tbl2.MYI

Problems result if one thread reads db1.tbl1 and another thread updates db1.tbl2:

• The query cache is “fooled” (it has no way of knowing that tbl1 has not been updated, so it returns
outdated results).

• ALTER statements on tbl2 fail.

8.12.3.3 Using Symbolic Links for Databases on Windows

On Windows, symbolic links can be used for database directories. This enables you to put a database
directory at a different location (for example, on a different disk) by setting up a symbolic link to it. Use of
database symlinks on Windows is similar to their use on Unix, although the procedure for setting up the link
differs.

Suppose that you want to place the database directory for a database named mydb at D:\data\mydb. To
do this, create a symbolic link in the MySQL data directory that points to D:\data\mydb. However, before
creating the symbolic link, make sure that the D:\data\mydb directory exists by creating it if necessary. If
you already have a database directory named mydb in the data directory, move it to D:\data. Otherwise,
the symbolic link is ineffective. To avoid problems, make sure that the server is not running when you move
the database directory.

The procedure for creating the database symbolic link depends on your version of Windows.

On Windows, you can create a symlink using the mklink command. This command requires
administrative privileges.

1. Make sure that the desired path to the database exists. For this example, we use D:\data\mydb, and
a database named mydb.

2. If the database does not already exist, issue CREATE DATABASE mydb in the mysql client to create it.

3. Stop the MySQL service.

4. Using Windows Explorer or the command line, move the directory mydb from the data directory to D:
\data, replacing the directory of the same name.

1195

Using Symbolic Links

5. If you are not already using the command prompt, open it, and change location to the data directory,
like this:

C:\> cd \path\to\datadir

If your MySQL installation is in the default location, you can use this:

C:\> cd C:\ProgramData\MySQL\MySQL Server 5.6\Data

6. In the data directory, create a symlink named mydb that points to the location of the database directory:

C:\> mklink /d mydb D:\data\mydb

7. Start the MySQL service.

After this, all tables created in the database mydb are created in D:\data\mydb.

Alternatively, on any version of Windows supported by MySQL, you can create a symbolic link to a MySQL
database by creating a .sym file in the data directory that contains the path to the destination directory.
The file should be named db_name.sym, where db_name is the database name.

Support for database symbolic links on Windows using .sym files is enabled by default. If you do not
need .sym file symbolic links, you can disable support for them by starting mysqld with the --skip-
symbolic-links option. To determine whether your system supports .sym file symbolic links, check the
value of the have_symlink system variable using this statement:

SHOW VARIABLES LIKE 'have_symlink';

To create a .sym file symlink, use this procedure:

1. Change location into the data directory:

C:\> cd \path\to\datadir

2. In the data directory, create a text file named mydb.sym that contains this path name: D:\data\mydb
\

Note

The path name to the new database and tables should be absolute. If you
specify a relative path, the location is relative to the mydb.sym file.

After this, all tables created in the database mydb are created in D:\data\mydb.

Note

Because support for .sym files is redundant with native symlink support available
using mklink, use of .sym files is deprecated; expect support for them to be
removed in a future MySQL release.

The following limitations apply to the use of .sym files for database symbolic linking on Windows. These
limitations do not apply for symlinks created using mklink.

• The symbolic link is not used if a directory with the same name as the database exists in the MySQL
data directory.

• The --innodb_file_per_table option cannot be used.

• If you run mysqld as a service, you cannot use a mapped drive to a remote server as the destination of
the symbolic link. As a workaround, you can use the full path (\\servername\path\).

1196

Optimizing Memory Use

8.12.4 Optimizing Memory Use

8.12.4.1 How MySQL Uses Memory

MySQL allocates buffers and caches to improve performance of database operations. You can improve
MySQL performance by increasing the values of certain cache and buffer-related system variables. You
can also modify these variables to run MySQL on systems with limited memory.

The following list describes some of the ways that MySQL uses memory. Where applicable, relevant
system variables are referenced. Some items are storage engine or feature specific.

• The InnoDB buffer pool is a memory area that holds cached InnoDB data for tables, indexes, and other
auxiliary buffers. For efficiency of high-volume read operations, the buffer pool is divided into pages that
can potentially hold multiple rows. For efficiency of cache management, the buffer pool is implemented
as a linked list of pages; data that is rarely used is aged out of the cache, using a variation of the LRU
algorithm. For more information, see Section 14.5.1, “Buffer Pool”.

The size of the buffer pool is important for system performance:

• InnoDB allocates memory for the entire buffer pool at server startup, using malloc() operations.
The innodb_buffer_pool_size system variable defines the buffer pool size. Typically, a
recommended innodb_buffer_pool_size value is 50 to 75 percent of system memory. For more
information, see Configuring InnoDB Buffer Pool Size.

• On systems with a large amount of memory, you can improve concurrency by dividing the buffer pool
into multiple buffer pool instances. The innodb_buffer_pool_instances system variable defines
the number of buffer pool instances.

• A buffer pool that is too small may cause excessive churning as pages are flushed from the buffer pool
only to be required again a short time later.

• A buffer pool that is too large may cause swapping due to competition for memory.

• All threads share the MyISAM key buffer. The key_buffer_size system variable determines its size.

For each MyISAM table the server opens, the index file is opened once; the data file is opened once for
each concurrently running thread that accesses the table. For each concurrent thread, a table structure,
column structures for each column, and a buffer of size 3 * N are allocated (where N is the maximum
row length, not counting BLOB columns). A BLOB column requires five to eight bytes plus the length of
the BLOB data. The MyISAM storage engine maintains one extra row buffer for internal use.

• The myisam_use_mmap system variable can be set to 1 to enable memory-mapping for all MyISAM
tables.

• If an internal in-memory temporary table becomes too large (as determined using the tmp_table_size
and max_heap_table_size system variables), MySQL automatically converts the table from in-
memory to on-disk format. On-disk temporary tables use the MyISAM storage engine. You can increase
the permissible temporary table size as described in Section 8.4.4, “Internal Temporary Table Use in
MySQL”.

For MEMORY tables explicitly created with CREATE TABLE, only the max_heap_table_size system
variable determines how large a table can grow, and there is no conversion to on-disk format.

• The MySQL Performance Schema is a feature for monitoring MySQL server execution at a low level. For
performance reasons, fixed memory buffers for Performance Schema are allocated at server startup and
do not change in size while the server is running.

1197

https://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool-resize.html

Optimizing Memory Use

• Each thread that the server uses to manage client connections requires some thread-specific space. The
following list indicates these and which system variables control their size:

• A stack (thread_stack)

• A connection buffer (net_buffer_length)

• A result buffer (net_buffer_length)

The connection buffer and result buffer each begin with a size equal to net_buffer_length bytes,
but are dynamically enlarged up to max_allowed_packet bytes as needed. The result buffer shrinks
to net_buffer_length bytes after each SQL statement. While a statement is running, a copy of the
current statement string is also allocated.

Each connection thread uses memory for computing statement digests. In MySQL 5.6.24 and up, the
server allocates max_digest_length bytes per session. Before MySQL 5.6.24, the server allocates
1024 bytes per session. See Section 22.10, “Performance Schema Statement Digests”.

• All threads share the same base memory.

• When a thread is no longer needed, the memory allocated to it is released and returned to the system
unless the thread goes back into the thread cache. In that case, the memory remains allocated.

• Each request that performs a sequential scan of a table allocates a read buffer. The
read_buffer_size system variable determines the buffer size.

• When reading rows in an arbitrary sequence (for example, following a sort), a random-read buffer may
be allocated to avoid disk seeks. The read_rnd_buffer_size system variable determines the buffer
size.

• All joins are executed in a single pass, and most joins can be done without even using a temporary
table. Most temporary tables are memory-based hash tables. Temporary tables with a large row length
(calculated as the sum of all column lengths) or that contain BLOB columns are stored on disk.

• Most requests that perform a sort allocate a sort buffer and zero to two temporary files depending on the
result set size. See Section B.3.3.5, “Where MySQL Stores Temporary Files”.

• Almost all parsing and calculating is done in thread-local and reusable memory pools. No memory
overhead is needed for small items, thus avoiding the normal slow memory allocation and freeing.
Memory is allocated only for unexpectedly large strings.

• For each table having BLOB columns, a buffer is enlarged dynamically to read in larger BLOB values. If
you scan a table, the buffer grows as large as the largest BLOB value.

• MySQL requires memory and descriptors for the table cache. Handler structures for all in-use tables
are saved in the table cache and managed as “First In, First Out” (FIFO). The table_open_cache
system variable defines the initial table cache size; see Section 8.4.3.1, “How MySQL Opens and Closes
Tables”.

MySQL also requires memory for the table definition cache. The table_definition_cache system
variable defines the number of table definitions (from .frm files) that can be stored in the table definition
cache. If you use a large number of tables, you can create a large table definition cache to speed up the
opening of tables. The table definition cache takes less space and does not use file descriptors, unlike
the table cache.

• A FLUSH TABLES statement or mysqladmin flush-tables command closes all tables that are not
in use at once and marks all in-use tables to be closed when the currently executing thread finishes. This
effectively frees most in-use memory. FLUSH TABLES does not return until all tables have been closed.

1198

Optimizing Memory Use

• The server caches information in memory as a result of GRANT, CREATE USER, CREATE SERVER,
and INSTALL PLUGIN statements. This memory is not released by the corresponding REVOKE, DROP
USER, DROP SERVER, and UNINSTALL PLUGIN statements, so for a server that executes many
instances of the statements that cause caching, there is likely to be an increase in cached memory use
unless it is freed with FLUSH PRIVILEGES.

ps and other system status programs may report that mysqld uses a lot of memory. This may be caused
by thread stacks on different memory addresses. For example, the Solaris version of ps counts the unused
memory between stacks as used memory. To verify this, check available swap with swap -s. We test
mysqld with several memory-leakage detectors (both commercial and Open Source), so there should be
no memory leaks.

8.12.4.2 Enabling Large Page Support

Some hardware/operating system architectures support memory pages greater than the default (usually
4KB). The actual implementation of this support depends on the underlying hardware and operating
system. Applications that perform a lot of memory accesses may obtain performance improvements by
using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

In MySQL, large pages can be used by InnoDB, to allocate memory for its buffer pool and additional
memory pool.

Standard use of large pages in MySQL attempts to use the largest size supported, up to 4MB. Under
Solaris, a “super large pages” feature enables uses of pages up to 256MB. This feature is available for
recent SPARC platforms. It can be enabled or disabled by using the --super-large-pages or --skip-
super-large-pages option.

MySQL also supports the Linux implementation of large page support (which is called HugeTLB in Linux).

Before large pages can be used on Linux, the kernel must be enabled to support them and it is necessary
to configure the HugeTLB memory pool. For reference, the HugeTBL API is documented in the
Documentation/vm/hugetlbpage.txt file of your Linux sources.

The kernel for some recent systems such as Red Hat Enterprise Linux appear to have the large pages
feature enabled by default. To check whether this is true for your kernel, use the following command and
look for output lines containing “huge”:

$> cat /proc/meminfo | grep -i huge
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 4096 kB

The nonempty command output indicates that large page support is present, but the zero values indicate
that no pages are configured for use.

If your kernel needs to be reconfigured to support large pages, consult the hugetlbpage.txt file for
instructions.

Assuming that your Linux kernel has large page support enabled, configure it for use by MySQL using
the following commands. Normally, you put these in an rc file or equivalent startup file that is executed
during the system boot sequence, so that the commands execute each time the system starts. The
commands should execute early in the boot sequence, before the MySQL server starts. Be sure to change
the allocation numbers and the group number as appropriate for your system.

Set the number of pages to be used.

1199

Measuring Performance (Benchmarking)

Each page is normally 2MB, so a value of 20 = 40MB.
This command actually allocates memory, so this much
memory must be available.
echo 20 > /proc/sys/vm/nr_hugepages

Set the group number that is permitted to access this
memory (102 in this case). The mysql user must be a
member of this group.
echo 102 > /proc/sys/vm/hugetlb_shm_group

Increase the amount of shmem permitted per segment
(12G in this case).
echo 1560281088 > /proc/sys/kernel/shmmax

Increase total amount of shared memory. The value
is the number of pages. At 4KB/page, 4194304 = 16GB.
echo 4194304 > /proc/sys/kernel/shmall

For MySQL usage, you normally want the value of shmmax to be close to the value of shmall.

To verify the large page configuration, check /proc/meminfo again as described previously. Now you
should see some nonzero values:

$> cat /proc/meminfo | grep -i huge
HugePages_Total: 20
HugePages_Free: 20
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 4096 kB

The final step to make use of the hugetlb_shm_group is to give the mysql user an “unlimited” value for
the memlock limit. This can be done either by editing /etc/security/limits.conf or by adding the
following command to your mysqld_safe script:

ulimit -l unlimited

Adding the ulimit command to mysqld_safe causes the root user to set the memlock limit to
unlimited before switching to the mysql user. (This assumes that mysqld_safe is started by root.)

Large page support in MySQL is disabled by default. To enable it, start the server with the --large-
pages option. For example, you can use the following lines in the server my.cnf file:

[mysqld]
large-pages

With this option, InnoDB uses large pages automatically for its buffer pool and additional memory pool.
If InnoDB cannot do this, it falls back to use of traditional memory and writes a warning to the error log:
Warning: Using conventional memory pool

To verify that large pages are being used, check /proc/meminfo again:

$> cat /proc/meminfo | grep -i huge
HugePages_Total: 20
HugePages_Free: 20
HugePages_Rsvd: 2
HugePages_Surp: 0
Hugepagesize: 4096 kB

8.13 Measuring Performance (Benchmarking)

To measure performance, consider the following factors:

1200

Measuring the Speed of Expressions and Functions

• Whether you are measuring the speed of a single operation on a quiet system, or how a set of
operations (a “workload”) works over a period of time. With simple tests, you usually test how changing
one aspect (a configuration setting, the set of indexes on a table, the SQL clauses in a query) affects
performance. Benchmarks are typically long-running and elaborate performance tests, where the results
could dictate high-level choices such as hardware and storage configuration, or how soon to upgrade to
a new MySQL version.

• For benchmarking, sometimes you must simulate a heavy database workload to get an accurate picture.

• Performance can vary depending on so many different factors that a difference of a few percentage
points might not be a decisive victory. The results might shift the opposite way when you test in a
different environment.

• Certain MySQL features help or do not help performance depending on the workload. For completeness,
always test performance with those features turned on and turned off. The two most important features
to try with each workload are the MySQL query cache, and the adaptive hash index for InnoDB tables.

This section progresses from simple and direct measurement techniques that a single developer can do, to
more complicated ones that require additional expertise to perform and interpret the results.

8.13.1 Measuring the Speed of Expressions and Functions

To measure the speed of a specific MySQL expression or function, invoke the BENCHMARK() function
using the mysql client program. Its syntax is BENCHMARK(loop_count,expr). The return value is
always zero, but mysql prints a line displaying approximately how long the statement took to execute. For
example:

mysql> SELECT BENCHMARK(1000000,1+1);
+------------------------+
| BENCHMARK(1000000,1+1) |
+------------------------+
| 0 |
+------------------------+
1 row in set (0.32 sec)

This result was obtained on a Pentium II 400MHz system. It shows that MySQL can execute 1,000,000
simple addition expressions in 0.32 seconds on that system.

The built-in MySQL functions are typically highly optimized, but there may be some exceptions.
BENCHMARK() is an excellent tool for finding out if some function is a problem for your queries.

8.13.2 The MySQL Benchmark Suite

This benchmark suite is meant to tell any user what operations a given SQL implementation performs well
or poorly. You can get a good idea for how the benchmarks work by looking at the code and results in the
sql-bench directory in any MySQL source distribution.

To use the benchmark suite, the following requirements must be satisfied:

• The benchmark suite is provided with MySQL source distributions. You can either download a released
distribution from https://dev.mysql.com/downloads/, or use the current development source tree. (See
Section 2.9.5, “Installing MySQL Using a Development Source Tree”.)

• The benchmark scripts are written in Perl and use the Perl DBI module to access database servers, so
DBI must be installed. You also need the server-specific DBD drivers for each of the servers you want to
test. For example, to test MySQL, PostgreSQL, and DB2, you must have the DBD::mysql, DBD::Pg,
and DBD::DB2 modules installed. See Section 2.13, “Perl Installation Notes”.

1201

https://dev.mysql.com/downloads/

Using Your Own Benchmarks

After you obtain a MySQL source distribution, you can find the benchmark suite located in its sql-bench
directory. To run the benchmark tests, build MySQL, and then change location into the sql-bench
directory and execute the run-all-tests script:

$> cd sql-bench
$> perl run-all-tests --server=server_name

server_name should be the name of one of the supported servers. To get a list of all options and
supported servers, invoke this command:

$> perl run-all-tests --help

The crash-me script also is located in the sql-bench directory. crash-me tries to determine what
features a database system supports and what its capabilities and limitations are by actually running
queries. For example, it determines:

• What data types are supported

• How many indexes are supported

• What functions are supported

• How big a query can be

• How big a VARCHAR column can be

For more information about benchmark results, visit http://www.mysql.com/why-mysql/benchmarks/.

8.13.3 Using Your Own Benchmarks

Benchmark your application and database to find out where the bottlenecks are. After fixing one bottleneck
(or by replacing it with a “dummy” module), you can proceed to identify the next bottleneck. Even if the
overall performance for your application currently is acceptable, you should at least make a plan for each
bottleneck and decide how to solve it if someday you really need the extra performance.

For examples of portable benchmark programs, look at those in the MySQL benchmark suite. See
Section 8.13.2, “The MySQL Benchmark Suite”. You can take any program from this suite and modify it
for your own needs. By doing this, you can try different solutions to your problem and test which really is
fastest for you.

Another free benchmark suite is the Open Source Database Benchmark, available at http://
osdb.sourceforge.net/.

It is very common for a problem to occur only when the system is very heavily loaded. We have had many
customers who contact us when they have a (tested) system in production and have encountered load
problems. In most cases, performance problems turn out to be due to issues of basic database design (for
example, table scans are not good under high load) or problems with the operating system or libraries.
Most of the time, these problems would be much easier to fix if the systems were not already in production.

To avoid problems like this, benchmark your whole application under the worst possible load:

• The mysqlslap program can be helpful for simulating a high load produced by multiple clients issuing
queries simultaneously. See Section 4.5.7, “mysqlslap — A Load Emulation Client”.

• You can also try benchmarking packages such as SysBench and DBT2, available at https://
launchpad.net/sysbench, and http://osdldbt.sourceforge.net/#dbt2.

1202

http://www.mysql.com/why-mysql/benchmarks/
http://osdb.sourceforge.net/
http://osdb.sourceforge.net/
https://launchpad.net/sysbench
https://launchpad.net/sysbench
http://osdldbt.sourceforge.net/#dbt2

Measuring Performance with performance_schema

These programs or packages can bring a system to its knees, so be sure to use them only on your
development systems.

8.13.4 Measuring Performance with performance_schema

You can query the tables in the performance_schema database to see real-time information about the
performance characteristics of your server and the applications it is running. See Chapter 22, MySQL
Performance Schema for details.

8.14 Examining Server Thread (Process) Information

To ascertain what your MySQL server is doing, it can be helpful to examine the process list, which
indicates the operations currently being performed by the set of threads executing within the server. For
example:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 1
 User: event_scheduler
 Host: localhost
 db: NULL
Command: Daemon
 Time: 2756681
 State: Waiting on empty queue
 Info: NULL
*************************** 2. row ***************************
 Id: 20
 User: me
 Host: localhost:52943
 db: test
Command: Query
 Time: 0
 State: init
 Info: SHOW PROCESSLIST

Threads can be killed with the KILL statement. See Section 13.7.6.4, “KILL Statement”.

8.14.1 Accessing the Process List

The following discussion enumerates the sources of process information, the privileges required to see
process information, and describes the content of process list entries.

• Sources of Process Information

• Privileges Required to Access the Process List

• Content of Process List Entries

Sources of Process Information

Process information is available from these sources:

• The SHOW PROCESSLIST statement: Section 13.7.5.30, “SHOW PROCESSLIST Statement”

• The mysqladmin processlist command: Section 4.5.2, “mysqladmin — A MySQL Server
Administration Program”

• The INFORMATION_SCHEMA PROCESSLIST table: Section 21.3.16, “The INFORMATION_SCHEMA
PROCESSLIST Table”

1203

Accessing the Process List

• The Performance Schema threads table columns with names having a prefix of PROCESSLIST_:
Section 22.12.10.3, “The threads Table”

The threads table compares to SHOW PROCESSLIST, INFORMATION_SCHEMA PROCESSLIST, and
mysqladmin processlist as follows:

• Access to the threads table does not require a mutex and has minimal impact on server performance.
The other sources have negative performance consequences because they require a mutex.

• The threads table displays background threads, which the other sources do not. It also provides
additional information for each thread that the other sources do not, such as whether the thread is a
foreground or background thread, and the location within the server associated with the thread. This
means that the threads table can be used to monitor thread activity the other sources cannot.

• You can enable or disable Performance Schema thread monitoring, as described in Section 22.12.10.3,
“The threads Table”.

For these reasons, DBAs who perform server monitoring using one of the other thread information sources
may wish to monitor using the threads table instead.

Privileges Required to Access the Process List

For most sources of process information, if you have the PROCESS privilege, you can see all threads, even
those belonging to other users. Otherwise (without the PROCESS privilege), nonanonymous users have
access to information about their own threads but not threads for other users, and anonymous users have
no access to thread information.

The Performance Schema threads table also provides thread information, but table access uses a
different privilege model. See Section 22.12.10.3, “The threads Table”.

Content of Process List Entries

Each process list entry contains several pieces of information. The following list describes them using the
labels from SHOW PROCESSLIST output. Other process information sources use similar labels.

• Id is the connection identifier for the client associated with the thread.

• User and Host indicate the account associated with the thread.

• db is the default database for the thread, or NULL if none has been selected.

• Command and State indicate what the thread is doing.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

The following sections list the possible Command values, and State values grouped by category. The
meaning for some of these values is self-evident. For others, additional description is provided.

Note

Applications that examine process list information should be aware that the
commands and states are subject to change.

• Time indicates how long the thread has been in its current state. The thread's notion of the current time
may be altered in some cases: The thread can change the time with SET TIMESTAMP = value. For

1204

Thread Command Values

a replica SQL thread, the value is the number of seconds between the timestamp of the last replicated
event and the real time of the replica host. See Section 17.2.1, “Replication Threads”.

• Info indicates the statement the thread is executing, or NULL if it is executing no statement. For SHOW
PROCESSLIST, this value contains only the first 100 characters of the statement. To see complete
statements, use SHOW FULL PROCESSLIST (or query a diffferent process information source).

8.14.2 Thread Command Values

A thread can have any of the following Command values:

• Binlog Dump

This is a thread on a replication source for sending binary log contents to a replica.

• Change user

The thread is executing a change user operation.

• Close stmt

The thread is closing a prepared statement.

• Connect

A replica is connected to its source.

• Connect Out

A replica is connecting to its source.

• Create DB

The thread is executing a create database operation.

• Daemon

This thread is internal to the server, not a thread that services a client connection.

• Debug

The thread is generating debugging information.

• Delayed insert

The thread is a delayed insert handler.

• Drop DB

The thread is executing a drop database operation.

• Error

• Execute

The thread is executing a prepared statement.

• Fetch

The thread is fetching the results from executing a prepared statement.

1205

Thread Command Values

• Field List

The thread is retrieving information for table columns.

• Init DB

The thread is selecting a default database.

• Kill

The thread is killing another thread.

• Long Data

The thread is retrieving long data in the result of executing a prepared statement.

• Ping

The thread is handling a server ping request.

• Prepare

The thread is preparing a prepared statement.

• Processlist

The thread is producing information about server threads.

• Query

The thread is executing a statement.

• Quit

The thread is terminating.

• Refresh

The thread is flushing table, logs, or caches, or resetting status variable or replication server information.

• Register Slave

The thread is registering a replica server.

• Reset stmt

The thread is resetting a prepared statement.

• Set option

The thread is setting or resetting a client statement execution option.

• Shutdown

The thread is shutting down the server.

• Sleep

The thread is waiting for the client to send a new statement to it.

1206

General Thread States

• Statistics

The thread is producing server status information.

• Time

Unused.

8.14.3 General Thread States

The following list describes thread State values that are associated with general query processing and
not more specialized activities such as replication. Many of these are useful only for finding bugs in the
server.

• After create

This occurs when the thread creates a table (including internal temporary tables), at the end of the
function that creates the table. This state is used even if the table could not be created due to some
error.

• altering table

The server is in the process of executing an in-place ALTER TABLE.

• Analyzing

The thread is calculating a MyISAM table key distributions (for example, for ANALYZE TABLE).

• checking permissions

The thread is checking whether the server has the required privileges to execute the statement.

• Checking table

The thread is performing a table check operation.

• cleaning up

The thread has processed one command and is preparing to free memory and reset certain state
variables.

• closing tables

The thread is flushing the changed table data to disk and closing the used tables. This should be a fast
operation. If not, verify that you do not have a full disk and that the disk is not in very heavy use.

• committing alter table to storage engine

The server has finished an in-place ALTER TABLE and is committing the result.

• converting HEAP to MyISAM

The thread is converting an internal temporary table from a MEMORY table to an on-disk MyISAM table.

• copy to tmp table

The thread is processing an ALTER TABLE statement. This state occurs after the table with the new
structure has been created but before rows are copied into it.

1207

General Thread States

• Copying to group table

If a statement has different ORDER BY and GROUP BY criteria, the rows are sorted by group and copied
to a temporary table.

• Copying to tmp table

The server is copying to a temporary table in memory.

• Copying to tmp table on disk

The server is copying to a temporary table on disk. The temporary result set has become too large (see
Section 8.4.4, “Internal Temporary Table Use in MySQL”). Consequently, the thread is changing the
temporary table from in-memory to disk-based format to save memory.

• Creating index

The thread is processing ALTER TABLE ... ENABLE KEYS for a MyISAM table.

• Creating sort index

The thread is processing a SELECT that is resolved using an internal temporary table.

• creating table

The thread is creating a table. This includes creation of temporary tables.

• Creating tmp table

The thread is creating a temporary table in memory or on disk. If the table is created in memory but later
is converted to an on-disk table, the state during that operation is Copying to tmp table on disk.

• deleting from main table

The server is executing the first part of a multiple-table delete. It is deleting only from the first table, and
saving columns and offsets to be used for deleting from the other (reference) tables.

• deleting from reference tables

The server is executing the second part of a multiple-table delete and deleting the matched rows from
the other tables.

• discard_or_import_tablespace

The thread is processing an ALTER TABLE ... DISCARD TABLESPACE or ALTER TABLE ...
IMPORT TABLESPACE statement.

• end

This occurs at the end but before the cleanup of ALTER TABLE, CREATE VIEW, DELETE, INSERT,
SELECT, or UPDATE statements.

For the end state, the following operations could be happening:

• Removing query cache entries after data in a table is changed

• Writing an event to the binary log

• Freeing memory buffers, including for blobs

1208

General Thread States

• executing

The thread has begun executing a statement.

• Execution of init_command

The thread is executing statements in the value of the init_command system variable.

• freeing items

The thread has executed a command. Some freeing of items done during this state involves the query
cache. This state is usually followed by cleaning up.

• FULLTEXT initialization

The server is preparing to perform a natural-language full-text search.

• init

This occurs before the initialization of ALTER TABLE, DELETE, INSERT, SELECT, or UPDATE
statements. Actions taken by the server in this state include flushing the binary log, the InnoDB log, and
some query cache cleanup operations.

• Killed

Someone has sent a KILL statement to the thread and it should abort next time it checks the kill flag.
The flag is checked in each major loop in MySQL, but in some cases it might still take a short time for
the thread to die. If the thread is locked by some other thread, the kill takes effect as soon as the other
thread releases its lock.

• logging slow query

The thread is writing a statement to the slow-query log.

• login

The initial state for a connection thread until the client has been authenticated successfully.

• manage keys

The server is enabling or disabling a table index.

• Opening tables

The thread is trying to open a table. This is should be very fast procedure, unless something prevents
opening. For example, an ALTER TABLE or a LOCK TABLE statement can prevent opening a table until
the statement is finished. It is also worth checking that your table_open_cache value is large enough.

• optimizing

The server is performing initial optimizations for a query.

• preparing

This state occurs during query optimization.

• preparing for alter table

The server is preparing to execute an in-place ALTER TABLE.

1209

General Thread States

• Purging old relay logs

The thread is removing unneeded relay log files.

• query end

This state occurs after processing a query but before the freeing items state.

• Reading from net

The server is reading a packet from the network.

• Removing duplicates

The query was using SELECT DISTINCT in such a way that MySQL could not optimize away the
distinct operation at an early stage. Because of this, MySQL requires an extra stage to remove all
duplicated rows before sending the result to the client.

• removing tmp table

The thread is removing an internal temporary table after processing a SELECT statement. This state is
not used if no temporary table was created.

• rename

The thread is renaming a table.

• rename result table

The thread is processing an ALTER TABLE statement, has created the new table, and is renaming it to
replace the original table.

• Reopen tables

The thread got a lock for the table, but noticed after getting the lock that the underlying table structure
changed. It has freed the lock, closed the table, and is trying to reopen it.

• Repair by sorting

The repair code is using a sort to create indexes.

• Repair done

The thread has completed a multithreaded repair for a MyISAM table.

• Repair with keycache

The repair code is using creating keys one by one through the key cache. This is much slower than
Repair by sorting.

• Rolling back

The thread is rolling back a transaction.

• Saving state

For MyISAM table operations such as repair or analysis, the thread is saving the new table state to the
.MYI file header. State includes information such as number of rows, the AUTO_INCREMENT counter,
and key distributions.

1210

General Thread States

• Searching rows for update

The thread is doing a first phase to find all matching rows before updating them. This has to be done if
the UPDATE is changing the index that is used to find the involved rows.

• Sending data

The thread is reading and processing rows for a SELECT statement, and sending data to the client.
Because operations occurring during this state tend to perform large amounts of disk access (reads), it is
often the longest-running state over the lifetime of a given query.

• setup

The thread is beginning an ALTER TABLE operation.

• Sorting for group

The thread is doing a sort to satisfy a GROUP BY.

• Sorting for order

The thread is doing a sort to satisfy an ORDER BY.

• Sorting index

The thread is sorting index pages for more efficient access during a MyISAM table optimization
operation.

• Sorting result

For a SELECT statement, this is similar to Creating sort index, but for nontemporary tables.

• statistics

The server is calculating statistics to develop a query execution plan. If a thread is in this state for a long
time, the server is probably disk-bound performing other work.

• System lock

The thread has called mysql_lock_tables() and the thread state has not been updated since. This
is a very general state that can occur for many reasons.

For example, the thread is going to request or is waiting for an internal or external system lock for the
table. This can occur when InnoDB waits for a table-level lock during execution of LOCK TABLES. If
this state is being caused by requests for external locks and you are not using multiple mysqld servers
that are accessing the same MyISAM tables, you can disable external system locks with the --skip-
external-locking option. However, external locking is disabled by default, so it is likely that this
option has no effect. For SHOW PROFILE, this state means the thread is requesting the lock (not waiting
for it).

• update

The thread is getting ready to start updating the table.

• Updating

The thread is searching for rows to update and is updating them.

• updating main table

1211

General Thread States

The server is executing the first part of a multiple-table update. It is updating only the first table, and
saving columns and offsets to be used for updating the other (reference) tables.

• updating reference tables

The server is executing the second part of a multiple-table update and updating the matched rows from
the other tables.

• User lock

The thread is going to request or is waiting for an advisory lock requested with a GET_LOCK() call. For
SHOW PROFILE, this state means the thread is requesting the lock (not waiting for it).

• User sleep

The thread has invoked a SLEEP() call.

• Waiting for commit lock

FLUSH TABLES WITH READ LOCK is waiting for a commit lock.

• Waiting for global read lock

FLUSH TABLES WITH READ LOCK is waiting for a global read lock or the global read_only system
variable is being set.

• Waiting for tables

The thread got a notification that the underlying structure for a table has changed and it needs to reopen
the table to get the new structure. However, to reopen the table, it must wait until all other threads have
closed the table in question.

This notification takes place if another thread has used FLUSH TABLES or one of the following
statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE,
REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

• Waiting for table flush

The thread is executing FLUSH TABLES and is waiting for all threads to close their tables, or the thread
got a notification that the underlying structure for a table has changed and it needs to reopen the table to
get the new structure. However, to reopen the table, it must wait until all other threads have closed the
table in question.

This notification takes place if another thread has used FLUSH TABLES or one of the following
statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE,
REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

• Waiting for lock_type lock

The server is waiting to acquire a THR_LOCK lock or a lock from the metadata locking subsystem, where
lock_type indicates the type of lock.

This state indicates a wait for a THR_LOCK:

• Waiting for table level lock

These states indicate a wait for a metadata lock:

1212

Delayed-Insert Thread States

• Waiting for event metadata lock

• Waiting for global read lock

• Waiting for schema metadata lock

• Waiting for stored function metadata lock

• Waiting for stored procedure metadata lock

• Waiting for table metadata lock

• Waiting for trigger metadata lock

For information about table lock indicators, see Section 8.11.1, “Internal Locking Methods”. For
information about metadata locking, see Section 8.11.4, “Metadata Locking”.

• Waiting on cond

A generic state in which the thread is waiting for a condition to become true. No specific state information
is available.

• Writing to net

The server is writing a packet to the network.

8.14.4 Delayed-Insert Thread States

These thread states are associated with processing for DELAYED inserts (see Section 13.2.5.3, “INSERT
DELAYED Statement”). Some states are associated with connection threads that process INSERT
DELAYED statements from clients. Other states are associated with delayed-insert handler threads that
insert the rows. There is a delayed-insert handler thread for each table for which INSERT DELAYED
statements are issued.

States associated with a connection thread that processes an INSERT DELAYED statement from the client:

• allocating local table

The thread is preparing to feed rows to the delayed-insert handler thread.

• Creating delayed handler

The thread is creating a handler for DELAYED inserts.

• got handler lock

This occurs before the allocating local table state and after the waiting for handler lock
state, when the connection thread gets access to the delayed-insert handler thread.

• got old table

This occurs after the waiting for handler open state. The delayed-insert handler thread has
signaled that it has ended its initialization phase, which includes opening the table for delayed inserts.

• storing row into queue

The thread is adding a new row to the list of rows that the delayed-insert handler thread must insert.

1213

Query Cache Thread States

• waiting for delay_list

This occurs during the initialization phase when the thread is trying to find the delayed-insert handler
thread for the table, and before attempting to gain access to the list of delayed-insert threads.

• waiting for handler insert

An INSERT DELAYED handler has processed all pending inserts and is waiting for new ones.

• waiting for handler lock

This occurs before the allocating local table state when the connection thread waits for access
to the delayed-insert handler thread.

• waiting for handler open

This occurs after the Creating delayed handler state and before the got old table state.
The delayed-insert handler thread has just been started, and the connection thread is waiting for it to
initialize.

States associated with a delayed-insert handler thread that inserts the rows:

• insert

The state that occurs just before inserting rows into the table.

• reschedule

After inserting a number of rows, the delayed-insert thread sleeps to let other threads do work.

• upgrading lock

A delayed-insert handler is trying to get a lock for the table to insert rows.

• Waiting for INSERT

A delayed-insert handler is waiting for a connection thread to add rows to the queue (see storing row
into queue).

8.14.5 Query Cache Thread States

These thread states are associated with the query cache (see Section 8.10.3, “The MySQL Query Cache”).

• checking privileges on cached query

The server is checking whether the user has privileges to access a cached query result.

• checking query cache for query

The server is checking whether the current query is present in the query cache.

• invalidating query cache entries

Query cache entries are being marked invalid because the underlying tables have changed.

• sending cached result to client

The server is taking the result of a query from the query cache and sending it to the client.

1214

Replication Source Thread States

• storing result in query cache

The server is storing the result of a query in the query cache.

• Waiting for query cache lock

This state occurs while a session is waiting to take the query cache lock. This can happen for any
statement that needs to perform some query cache operation, such as an INSERT or DELETE that
invalidates the query cache, a SELECT that looks for a cached entry, RESET QUERY CACHE, and so
forth.

8.14.6 Replication Source Thread States

The following list shows the most common states you may see in the State column for the Binlog
Dump thread of the replication source. If you see no Binlog Dump threads on a source, this means that
replication is not running; that is, that no replicas are currently connected.

• Finished reading one binlog; switching to next binlog

The thread has finished reading a binary log file and is opening the next one to send to the replica.

• Master has sent all binlog to slave; waiting for binlog to be updated

The thread has read all remaining updates from the binary logs and sent them to the replica. The thread
is now idle, waiting for new events to appear in the binary log resulting from new updates occurring on
the source.

• Sending binlog event to slave

Binary logs consist of events, where an event is usually an update plus some other information. The
thread has read an event from the binary log and is now sending it to the replica.

• Waiting to finalize termination

A very brief state that occurs as the thread is stopping.

8.14.7 Replication Replica I/O Thread States

The following list shows the most common states you see in the State column for a replica server I/O
thread. This state also appears in the Slave_IO_State column displayed by SHOW SLAVE STATUS, so
you can get a good view of what is happening by using that statement.

• Checking master version

A state that occurs very briefly, after the connection to the source is established.

• Connecting to master

The thread is attempting to connect to the source.

• Queueing master event to the relay log

The thread has read an event and is copying it to the relay log so that the SQL thread can process it.

• Reconnecting after a failed binlog dump request

The thread is trying to reconnect to the source.

1215

Replication Replica SQL Thread States

• Reconnecting after a failed master event read

The thread is trying to reconnect to the source. When connection is established again, the state
becomes Waiting for master to send event.

• Registering slave on master

A state that occurs very briefly after the connection to the source is established.

• Requesting binlog dump

A state that occurs very briefly, after the connection to the source is established. The thread sends to the
source a request for the contents of its binary logs, starting from the requested binary log file name and
position.

• Waiting for master to send event

The thread has connected to the source and is waiting for binary log events to arrive. This can last for a
long time if the source is idle. If the wait lasts for slave_net_timeout seconds, a timeout occurs. At
that point, the thread considers the connection to be broken and makes an attempt to reconnect.

• Waiting for master update

The initial state before Connecting to master.

• Waiting for slave mutex on exit

A state that occurs briefly as the thread is stopping.

• Waiting for the slave SQL thread to free enough relay log space

You are using a nonzero relay_log_space_limit value, and the relay logs have grown large
enough that their combined size exceeds this value. The I/O thread is waiting until the SQL thread frees
enough space by processing relay log contents so that it can delete some relay log files.

• Waiting to reconnect after a failed binlog dump request

If the binary log dump request failed (due to disconnection), the thread goes into this state while it
sleeps, then tries to reconnect periodically. The interval between retries can be specified using the
CHANGE MASTER TO statement.

• Waiting to reconnect after a failed master event read

An error occurred while reading (due to disconnection). The thread is sleeping for the number of seconds
set by the CHANGE MASTER TO statement (default 60) before attempting to reconnect.

8.14.8 Replication Replica SQL Thread States

The following list shows the most common states you may see in the State column for a replica server
SQL thread:

• Making temporary file (append) before replaying LOAD DATA INFILE

The thread is executing a LOAD DATA statement and is appending the data to a temporary file
containing the data from which the replica reads rows.

• Making temporary file (create) before replaying LOAD DATA INFILE

1216

Replication Replica Connection Thread States

The thread is executing a LOAD DATA statement and is creating a temporary file containing the data
from which the replica reads rows. This state can only be encountered if the original LOAD DATA
statement was logged by a source running a version of MySQL lower than MySQL 5.0.3.

• Reading event from the relay log

The thread has read an event from the relay log so that the event can be processed.

• Slave has read all relay log; waiting for more updates

The thread has processed all events in the relay log files, and is now waiting for the I/O thread to write
new events to the relay log.

• Waiting for an event from Coordinator

Using the multithreaded replica (slave_parallel_workers is greater than 1), one of the replica
worker threads is waiting for an event from the coordinator thread.

• Waiting for slave mutex on exit

A very brief state that occurs as the thread is stopping.

• Waiting for Slave Workers to free pending events

This waiting action occurs when the total size of events being processed by Workers exceeds the size of
the slave_pending_jobs_size_max system variable. The Coordinator resumes scheduling when the
size drops below this limit. This state occurs only when slave_parallel_workers is set greater than
0.

• Waiting for the next event in relay log

The initial state before Reading event from the relay log.

• Waiting until MASTER_DELAY seconds after master executed event

The SQL thread has read an event but is waiting for the replica delay to lapse. This delay is set with the
MASTER_DELAY option of CHANGE MASTER TO.

The Info column for the SQL thread may also show the text of a statement. This indicates that the thread
has read an event from the relay log, extracted the statement from it, and may be executing it.

8.14.9 Replication Replica Connection Thread States

These thread states occur on a replica server but are associated with connection threads, not with the I/O
or SQL threads.

• Changing master

The thread is processing a CHANGE MASTER TO statement.

• Killing slave

The thread is processing a STOP SLAVE statement.

• Opening master dump table

This state occurs after Creating table from master dump.

1217

NDB Cluster Thread States

• Reading master dump table data

This state occurs after Opening master dump table.

• Rebuilding the index on master dump table

This state occurs after Reading master dump table data.

8.14.10 NDB Cluster Thread States

• Committing events to binlog

• Opening mysql.ndb_apply_status

• Processing events

The thread is processing events for binary logging.

• Processing events from schema table

The thread is doing the work of schema replication.

• Shutting down

• Syncing ndb table schema operation and binlog

This is used to have a correct binary log of schema operations for NDB.

• Waiting for allowed to take ndbcluster global schema lock

The thread is waiting for permission to take a global schema lock.

• Waiting for event from ndbcluster

The server is acting as an SQL node in an NDB Cluster, and is connected to a cluster management
node.

• Waiting for first event from ndbcluster

• Waiting for ndbcluster binlog update to reach current position

• Waiting for ndbcluster global schema lock

The thread is waiting for a global schema lock held by another thread to be released.

• Waiting for ndbcluster to start

• Waiting for schema epoch

The thread is waiting for a schema epoch (that is, a global checkpoint).

8.14.11 Event Scheduler Thread States

These states occur for the Event Scheduler thread, threads that are created to execute scheduled events,
or threads that terminate the scheduler.

• Clearing

The scheduler thread or a thread that was executing an event is terminating and is about to end.

1218

Event Scheduler Thread States

• Initialized

The scheduler thread or a thread that executes an event has been initialized.

• Waiting for next activation

The scheduler has a nonempty event queue but the next activation is in the future.

• Waiting for scheduler to stop

The thread issued SET GLOBAL event_scheduler=OFF and is waiting for the scheduler to stop.

• Waiting on empty queue

The scheduler's event queue is empty and it is sleeping.

1219

1220

Chapter 9 Language Structure

Table of Contents
9.1 Literal Values .. 1221

9.1.1 String Literals ... 1221
9.1.2 Numeric Literals ... 1224
9.1.3 Date and Time Literals ... 1224
9.1.4 Hexadecimal Literals .. 1227
9.1.5 Bit-Value Literals .. 1229
9.1.6 Boolean Literals ... 1230
9.1.7 NULL Values ... 1230

9.2 Schema Object Names ... 1230
9.2.1 Identifier Length Limits ... 1232
9.2.2 Identifier Qualifiers ... 1233
9.2.3 Identifier Case Sensitivity ... 1235
9.2.4 Mapping of Identifiers to File Names ... 1237
9.2.5 Function Name Parsing and Resolution ... 1239

9.3 Keywords and Reserved Words .. 1243
9.4 User-Defined Variables ... 1266
9.5 Expressions .. 1269
9.6 Comments .. 1274

This chapter discusses the rules for writing the following elements of SQL statements when using MySQL:

• Literal values such as strings and numbers

• Identifiers such as database, table, and column names

• Keywords and reserved words

• User-defined and system variables

• Expressions

• Comments

9.1 Literal Values
This section describes how to write literal values in MySQL. These include strings, numbers, hexadecimal
and bit values, boolean values, and NULL. The section also covers various nuances that you may
encounter when dealing with these basic types in MySQL.

9.1.1 String Literals

A string is a sequence of bytes or characters, enclosed within either single quote (') or double quote (")
characters. Examples:

'a string'
"another string"

Quoted strings placed next to each other are concatenated to a single string. The following lines are
equivalent:

1221

String Literals

'a string'
'a' ' ' 'string'

If the ANSI_QUOTES SQL mode is enabled, string literals can be quoted only within single quotation marks
because a string quoted within double quotation marks is interpreted as an identifier.

A binary string is a string of bytes. Every binary string has a character set and collation named binary. A
nonbinary string is a string of characters. It has a character set other than binary and a collation that is
compatible with the character set.

For both types of strings, comparisons are based on the numeric values of the string unit. For binary
strings, the unit is the byte; comparisons use numeric byte values. For nonbinary strings, the unit is the
character and some character sets support multibyte characters; comparisons use numeric character
code values. Character code ordering is a function of the string collation. (For more information, see
Section 10.8.5, “The binary Collation Compared to _bin Collations”.)

Note

Within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that
option, see Section 4.5.1, “mysql — The MySQL Command-Line Client”.

A character string literal may have an optional character set introducer and COLLATE clause, to designate
it as a string that uses a particular character set and collation:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT _latin1'string';
SELECT _binary'string';
SELECT _utf8'string' COLLATE utf8_danish_ci;

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

For information about these forms of string syntax, see Section 10.3.7, “The National Character Set”, and
Section 10.3.8, “Character Set Introducers”.

Within a string, certain sequences have special meaning unless the NO_BACKSLASH_ESCAPES SQL mode
is enabled. Each of these sequences begins with a backslash (\), known as the escape character. MySQL
recognizes the escape sequences shown in Table 9.1, “Special Character Escape Sequences”. For all
other escape sequences, backslash is ignored. That is, the escaped character is interpreted as if it was not
escaped. For example, \x is just x. These sequences are case-sensitive. For example, \b is interpreted
as a backspace, but \B is interpreted as B. Escape processing is done according to the character set
indicated by the character_set_connection system variable. This is true even for strings that
are preceded by an introducer that indicates a different character set, as discussed in Section 10.3.6,
“Character String Literal Character Set and Collation”.

Table 9.1 Special Character Escape Sequences

Escape Sequence Character Represented by Sequence

\0 An ASCII NUL (X'00') character

1222

String Literals

Escape Sequence Character Represented by Sequence

\' A single quote (') character

\" A double quote (") character

\b A backspace character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character

\Z ASCII 26 (Control+Z); see note following the table

\\ A backslash (\) character

\% A % character; see note following the table

_ A _ character; see note following the table

The ASCII 26 character can be encoded as \Z to enable you to work around the problem that ASCII 26
stands for END-OF-FILE on Windows. ASCII 26 within a file causes problems if you try to use mysql
db_name < file_name.

The \% and _ sequences are used to search for literal instances of % and _ in pattern-matching contexts
where they would otherwise be interpreted as wildcard characters. See the description of the LIKE
operator in Section 12.8.1, “String Comparison Functions and Operators”. If you use \% or _ outside of
pattern-matching contexts, they evaluate to the strings \% and _, not to % and _.

There are several ways to include quote characters within a string:

• A ' inside a string quoted with ' may be written as ''.

• A " inside a string quoted with " may be written as "".

• Precede the quote character by an escape character (\).

• A ' inside a string quoted with " needs no special treatment and need not be doubled or escaped. In the
same way, " inside a string quoted with ' needs no special treatment.

The following SELECT statements demonstrate how quoting and escaping work:

mysql> SELECT 'hello', '"hello"', '""hello""', 'hel''lo', '\'hello';
+-------+---------+-----------+--------+--------+
| hello | "hello" | ""hello"" | hel'lo | 'hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT "hello", "'hello'", "''hello''", "hel""lo", "\"hello";
+-------+---------+-----------+--------+--------+
| hello | 'hello' | ''hello'' | hel"lo | "hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT 'This\nIs\nFour\nLines';
+--------------------+
| This
Is
Four
Lines |
+--------------------+

mysql> SELECT 'disappearing\ backslash';
+------------------------+
| disappearing backslash |
+------------------------+

1223

Numeric Literals

To insert binary data into a string column (such as a BLOB column), you should represent certain
characters by escape sequences. Backslash (\) and the quote character used to quote the string must be
escaped. In certain client environments, it may also be necessary to escape NUL or Control+Z. The mysql
client truncates quoted strings containing NUL characters if they are not escaped, and Control+Z may be
taken for END-OF-FILE on Windows if not escaped. For the escape sequences that represent each of
these characters, see Table 9.1, “Special Character Escape Sequences”.

When writing application programs, any string that might contain any of these special characters must be
properly escaped before the string is used as a data value in an SQL statement that is sent to the MySQL
server. You can do this in two ways:

• Process the string with a function that escapes the special characters. In a C program, you
can use the mysql_real_escape_string() C API function to escape characters. See
mysql_real_escape_string(). Within SQL statements that construct other SQL statements, you can use
the QUOTE() function. The Perl DBI interface provides a quote method to convert special characters
to the proper escape sequences. See Section 23.9, “MySQL Perl API”. Other language interfaces may
provide a similar capability.

• As an alternative to explicitly escaping special characters, many MySQL APIs provide a placeholder
capability that enables you to insert special markers into a statement string, and then bind data values
to them when you issue the statement. In this case, the API takes care of escaping special characters in
the values for you.

9.1.2 Numeric Literals

Number literals include exact-value (integer and DECIMAL) literals and approximate-value (floating-point)
literals.

Integers are represented as a sequence of digits. Numbers may include . as a decimal separator.
Numbers may be preceded by - or + to indicate a negative or positive value, respectively. Numbers
represented in scientific notation with a mantissa and exponent are approximate-value numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed. Examples:
1, .2, 3.4, -5, -6.78, +9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-point)
number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type
has several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types. For more
information about exact-value calculations, see Section 12.21, “Precision Math”.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In MySQL,
types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

An integer may be used in floating-point context; it is interpreted as the equivalent floating-point number.

9.1.3 Date and Time Literals

• Standard SQL and ODBC Date and Time Literals

• String and Numeric Literals in Date and Time Context

1224

https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-escape-string.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-escape-string.html

Date and Time Literals

Date and time values can be represented in several formats, such as quoted strings or as numbers,
depending on the exact type of the value and other factors. For example, in contexts where MySQL
expects a date, it interprets any of '2015-07-21', '20150721', and 20150721 as a date.

This section describes the acceptable formats for date and time literals. For more information about the
temporal data types, such as the range of permitted values, see Section 11.2, “Date and Time Data
Types”.

Standard SQL and ODBC Date and Time Literals

Standard SQL requires temporal literals to be specified using a type keyword and a string. The space
between the keyword and string is optional.

DATE 'str'
TIME 'str'
TIMESTAMP 'str'

MySQL recognizes but, unlike standard SQL, does not require the type keyword. Applications that are to
be standard-compliant should include the type keyword for temporal literals.

MySQL also recognizes the ODBC syntax corresponding to the standard SQL syntax:

{ d 'str' }
{ t 'str' }
{ ts 'str' }

Before MySQL 5.6.4, MySQL ignores the type keyword and each of the preceding constructions produces
the string value 'str', with a type of VARCHAR.

As of 5.6.4, MySQL uses the type keywords and the ODBC constructions to produce DATE, TIME, and
DATETIME values, respectively, including a trailing fractional seconds part if specified. The TIMESTAMP
syntax produces a DATETIME value in MySQL because DATETIME has a range that more closely
corresponds to the standard SQL TIMESTAMP type, which has a year range from 0001 to 9999. (The
MySQL TIMESTAMP year range is 1970 to 2038.)

String and Numeric Literals in Date and Time Context

MySQL recognizes DATE values in these formats:

• As a string in either 'YYYY-MM-DD' or 'YY-MM-DD' format. A “relaxed” syntax is permitted: Any
punctuation character may be used as the delimiter between date parts. For example, '2012-12-31',
'2012/12/31', '2012^12^31', and '2012@12@31' are equivalent.

• As a string with no delimiters in either 'YYYYMMDD' or 'YYMMDD' format, provided that the string makes
sense as a date. For example, '20070523' and '070523' are interpreted as '2007-05-23', but
'071332' is illegal (it has nonsensical month and day parts) and becomes '0000-00-00'.

• As a number in either YYYYMMDD or YYMMDD format, provided that the number makes sense as a date.
For example, 19830905 and 830905 are interpreted as '1983-09-05'.

MySQL recognizes DATETIME and TIMESTAMP values in these formats:

• As a string in either 'YYYY-MM-DD hh:mm:ss' or 'YY-MM-DD hh:mm:ss' format. A “relaxed” syntax
is permitted here, too: Any punctuation character may be used as the delimiter between date parts or
time parts. For example, '2012-12-31 11:30:45', '2012^12^31 11+30+45', '2012/12/31
11*30*45', and '2012@12@31 11^30^45' are equivalent.

The only delimiter recognized between a date and time part and a fractional seconds part is the decimal
point.

1225

Date and Time Literals

The date and time parts can be separated by T rather than a space. For example, '2012-12-31
11:30:45' '2012-12-31T11:30:45' are equivalent.

• As a string with no delimiters in either 'YYYYMMDDhhmmss' or 'YYMMDDhhmmss' format, provided
that the string makes sense as a date. For example, '20070523091528' and '070523091528' are
interpreted as '2007-05-23 09:15:28', but '071122129015' is illegal (it has a nonsensical minute
part) and becomes '0000-00-00 00:00:00'.

• As a number in either YYYYMMDDhhmmss or YYMMDDhhmmss format, provided that the number
makes sense as a date. For example, 19830905132800 and 830905132800 are interpreted as
'1983-09-05 13:28:00'.

A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds
(6 digits) precision. The fractional part should always be separated from the rest of the time by a decimal
point; no other fractional seconds delimiter is recognized. For information about fractional seconds support
in MySQL, see Section 11.2.7, “Fractional Seconds in Time Values”.

Dates containing two-digit year values are ambiguous because the century is unknown. MySQL interprets
two-digit year values using these rules:

• Year values in the range 70-99 become 1970-1999.

• Year values in the range 00-69 become 2000-2069.

See also Section 11.2.9, “2-Digit Years in Dates”.

For values specified as strings that include date part delimiters, it is unnecessary to specify two digits for
month or day values that are less than 10. '2015-6-9' is the same as '2015-06-09'. Similarly, for
values specified as strings that include time part delimiters, it is unnecessary to specify two digits for hour,
minute, or second values that are less than 10. '2015-10-30 1:2:3' is the same as '2015-10-30
01:02:03'.

Values specified as numbers should be 6, 8, 12, or 14 digits long. If a number is 8 or 14 digits long, it is
assumed to be in YYYYMMDD or YYYYMMDDhhmmss format and that the year is given by the first 4 digits.
If the number is 6 or 12 digits long, it is assumed to be in YYMMDD or YYMMDDhhmmss format and that the
year is given by the first 2 digits. Numbers that are not one of these lengths are interpreted as though
padded with leading zeros to the closest length.

Values specified as nondelimited strings are interpreted according their length. For a string 8 or 14
characters long, the year is assumed to be given by the first 4 characters. Otherwise, the year is assumed
to be given by the first 2 characters. The string is interpreted from left to right to find year, month, day,
hour, minute, and second values, for as many parts as are present in the string. This means you should not
use strings that have fewer than 6 characters. For example, if you specify '9903', thinking that represents
March, 1999, MySQL converts it to the “zero” date value. This occurs because the year and month values
are 99 and 03, but the day part is completely missing. However, you can explicitly specify a value of zero
to represent missing month or day parts. For example, to insert the value '1999-03-00', use '990300'.

MySQL recognizes TIME values in these formats:

• As a string in 'D hh:mm:ss' format. You can also use one of the following “relaxed” syntaxes:
'hh:mm:ss', 'hh:mm', 'D hh:mm', 'D hh', or 'ss'. Here D represents days and can have a value
from 0 to 34.

• As a string with no delimiters in 'hhmmss' format, provided that it makes sense as a time. For example,
'101112' is understood as '10:11:12', but '109712' is illegal (it has a nonsensical minute part)
and becomes '00:00:00'.

1226

Hexadecimal Literals

• As a number in hhmmss format, provided that it makes sense as a time. For example, 101112 is
understood as '10:11:12'. The following alternative formats are also understood: ss, mmss, or
hhmmss.

A trailing fractional seconds part is recognized in the 'D hh:mm:ss.fraction',
'hh:mm:ss.fraction', 'hhmmss.fraction', and hhmmss.fraction time formats, where
fraction is the fractional part in up to microseconds (6 digits) precision. The fractional part should
always be separated from the rest of the time by a decimal point; no other fractional seconds delimiter is
recognized. For information about fractional seconds support in MySQL, see Section 11.2.7, “Fractional
Seconds in Time Values”.

For TIME values specified as strings that include a time part delimiter, it is unnecessary to specify two
digits for hours, minutes, or seconds values that are less than 10. '8:3:2' is the same as '08:03:02'.

9.1.4 Hexadecimal Literals

Hexadecimal literal values are written using X'val' or 0xval notation, where val contains hexadecimal
digits (0..9, A..F). Lettercase of the digits and of any leading X does not matter. A leading 0x is case-
sensitive and cannot be written as 0X.

Legal hexadecimal literals:

X'01AF'
X'01af'
x'01AF'
x'01af'
0x01AF
0x01af

Illegal hexadecimal literals:

X'0G' (G is not a hexadecimal digit)
0X01AF (0X must be written as 0x)

Values written using X'val' notation must contain an even number of digits or a syntax error occurs. To
correct the problem, pad the value with a leading zero:

mysql> SET @s = X'FFF';
ERROR 1064 (42000): You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server
version for the right syntax to use near 'X'FFF''

mysql> SET @s = X'0FFF';
Query OK, 0 rows affected (0.00 sec)

Values written using 0xval notation that contain an odd number of digits are treated as having an extra
leading 0. For example, 0xaaa is interpreted as 0x0aaa.

By default, a hexadecimal literal is a binary string, where each pair of hexadecimal digits represents a
character:

mysql> SELECT X'4D7953514C', CHARSET(X'4D7953514C');
+---------------+------------------------+
| X'4D7953514C' | CHARSET(X'4D7953514C') |
+---------------+------------------------+
| MySQL | binary |
+---------------+------------------------+
mysql> SELECT 0x5461626c65, CHARSET(0x5461626c65);
+--------------+-----------------------+
| 0x5461626c65 | CHARSET(0x5461626c65) |
+--------------+-----------------------+
| Table | binary |

1227

Hexadecimal Literals

+--------------+-----------------------+

A hexadecimal literal may have an optional character set introducer and COLLATE clause, to designate it
as a string that uses a particular character set and collation:

[_charset_name] X'val' [COLLATE collation_name]

Examples:

SELECT _latin1 X'4D7953514C';
SELECT _utf8 0x4D7953514C COLLATE utf8_danish_ci;

The examples use X'val' notation, but 0xval notation permits introducers as well. For information about
introducers, see Section 10.3.8, “Character Set Introducers”.

In numeric contexts, MySQL treats a hexadecimal literal like a BIGINT UNSIGNED (64-bit unsigned
integer). To ensure numeric treatment of a hexadecimal literal, use it in numeric context. Ways to do this
include adding 0 or using CAST(... AS UNSIGNED). For example, a hexadecimal literal assigned to
a user-defined variable is a binary string by default. To assign the value as a number, use it in numeric
context:

mysql> SET @v1 = X'41';
mysql> SET @v2 = X'41'+0;
mysql> SET @v3 = CAST(X'41' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

An empty hexadecimal value (X'') evaluates to a zero-length binary string. Converted to a number, it
produces 0:

mysql> SELECT CHARSET(X''), LENGTH(X'');
+--------------+-------------+
| CHARSET(X'') | LENGTH(X'') |
+--------------+-------------+
| binary | 0 |
+--------------+-------------+
mysql> SELECT X''+0;
+-------+
| X''+0 |
+-------+
| 0 |
+-------+

The X'val' notation is based on standard SQL. The 0x notation is based on ODBC, for which
hexadecimal strings are often used to supply values for BLOB columns.

To convert a string or a number to a string in hexadecimal format, use the HEX() function:

mysql> SELECT HEX('cat');
+------------+
| HEX('cat') |
+------------+
| 636174 |
+------------+
mysql> SELECT X'636174';
+-----------+
| X'636174' |
+-----------+
| cat |
+-----------+

1228

Bit-Value Literals

9.1.5 Bit-Value Literals

Bit-value literals are written using b'val' or 0bval notation. val is a binary value written using zeros and
ones. Lettercase of any leading b does not matter. A leading 0b is case-sensitive and cannot be written as
0B.

Legal bit-value literals:

b'01'
B'01'
0b01

Illegal bit-value literals:

b'2' (2 is not a binary digit)
0B01 (0B must be written as 0b)

By default, a bit-value literal is a binary string:

mysql> SELECT b'1000001', CHARSET(b'1000001');
+------------+---------------------+
| b'1000001' | CHARSET(b'1000001') |
+------------+---------------------+
| A | binary |
+------------+---------------------+
mysql> SELECT 0b1100001, CHARSET(0b1100001);
+-----------+--------------------+
| 0b1100001 | CHARSET(0b1100001) |
+-----------+--------------------+
| a | binary |
+-----------+--------------------+

A bit-value literal may have an optional character set introducer and COLLATE clause, to designate it as a
string that uses a particular character set and collation:

[_charset_name] b'val' [COLLATE collation_name]

Examples:

SELECT _latin1 b'1000001';
SELECT _utf8 0b1000001 COLLATE utf8_danish_ci;

The examples use b'val' notation, but 0bval notation permits introducers as well. For information about
introducers, see Section 10.3.8, “Character Set Introducers”.

In numeric contexts, MySQL treats a bit literal like an integer. To ensure numeric treatment of a bit literal,
use it in numeric context. Ways to do this include adding 0 or using CAST(... AS UNSIGNED). For
example, a bit literal assigned to a user-defined variable is a binary string by default. To assign the value
as a number, use it in numeric context:

mysql> SET @v1 = b'1100001';
mysql> SET @v2 = b'1100001'+0;
mysql> SET @v3 = CAST(b'1100001' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| a | 97 | 97 |
+------+------+------+

An empty bit value (b'') evaluates to a zero-length binary string. Converted to a number, it produces 0:

mysql> SELECT CHARSET(b''), LENGTH(b'');

1229

Boolean Literals

+--------------+-------------+
| CHARSET(b'') | LENGTH(b'') |
+--------------+-------------+
| binary | 0 |
+--------------+-------------+
mysql> SELECT b''+0;
+-------+
| b''+0 |
+-------+
| 0 |
+-------+

Bit-value notation is convenient for specifying values to be assigned to BIT columns:

mysql> CREATE TABLE t (b BIT(8));
mysql> INSERT INTO t SET b = b'11111111';
mysql> INSERT INTO t SET b = b'1010';
mysql> INSERT INTO t SET b = b'0101';

Bit values in result sets are returned as binary values, which may not display well. To convert a bit value to
printable form, use it in numeric context or use a conversion function such as BIN() or HEX(). High-order
0 digits are not displayed in the converted value.

mysql> SELECT b+0, BIN(b), OCT(b), HEX(b) FROM t;
+------+----------+--------+--------+
| b+0 | BIN(b) | OCT(b) | HEX(b) |
+------+----------+--------+--------+
255	11111111	377	FF
10	1010	12	A
5	101	5	5
+------+----------+--------+--------+

9.1.6 Boolean Literals

The constants TRUE and FALSE evaluate to 1 and 0, respectively. The constant names can be written in
any lettercase.

mysql> SELECT TRUE, true, FALSE, false;
 -> 1, 1, 0, 0

9.1.7 NULL Values

The NULL value means “no data.” NULL can be written in any lettercase. A synonym is \N (case-sensitive).

Be aware that the NULL value is different from values such as 0 for numeric types or the empty string for
string types. For more information, see Section B.3.4.3, “Problems with NULL Values”.

For text file import or export operations performed with LOAD DATA or SELECT ... INTO OUTFILE,
NULL is represented by the \N sequence. See Section 13.2.6, “LOAD DATA Statement”.

For sorting with ORDER BY, NULL values sort before other values for ascending sorts, after other values for
descending sorts.

9.2 Schema Object Names
Certain objects within MySQL, including database, table, index, column, alias, view, stored procedure,
partition, tablespace, and other object names are known as identifiers. This section describes the
permissible syntax for identifiers in MySQL. Section 9.2.1, “Identifier Length Limits”, indicates the maximum
length of each type of identifier. Section 9.2.3, “Identifier Case Sensitivity”, describes which types of
identifiers are case-sensitive and under what conditions.

1230

Schema Object Names

An identifier may be quoted or unquoted. If an identifier contains special characters or is a reserved word,
you must quote it whenever you refer to it. (Exception: A reserved word that follows a period in a qualified
name must be an identifier, so it need not be quoted.) Reserved words are listed at Section 9.3, “Keywords
and Reserved Words”.

Internally, identifiers are converted to and are stored as Unicode (UTF-8). The permissible Unicode
characters in identifiers are those in the Basic Multilingual Plane (BMP). Supplementary characters are not
permitted. Identifiers thus may contain these characters:

• Permitted characters in unquoted identifiers:

• ASCII: [0-9,a-z,A-Z$_] (basic Latin letters, digits 0-9, dollar, underscore)

• Extended: U+0080 .. U+FFFF

• Permitted characters in quoted identifiers include the full Unicode Basic Multilingual Plane (BMP), except
U+0000:

• ASCII: U+0001 .. U+007F

• Extended: U+0080 .. U+FFFF

• ASCII NUL (U+0000) and supplementary characters (U+10000 and higher) are not permitted in quoted
or unquoted identifiers.

• Identifiers may begin with a digit but unless quoted may not consist solely of digits.

• Database, table, and column names cannot end with space characters.

The identifier quote character is the backtick (`):

mysql> SELECT * FROM `select` WHERE `select`.id > 100;

If the ANSI_QUOTES SQL mode is enabled, it is also permissible to quote identifiers within double
quotation marks:

mysql> CREATE TABLE "test" (col INT);
ERROR 1064: You have an error in your SQL syntax...
mysql> SET sql_mode='ANSI_QUOTES';
mysql> CREATE TABLE "test" (col INT);
Query OK, 0 rows affected (0.00 sec)

The ANSI_QUOTES mode causes the server to interpret double-quoted strings as identifiers. Consequently,
when this mode is enabled, string literals must be enclosed within single quotation marks. They
cannot be enclosed within double quotation marks. The server SQL mode is controlled as described in
Section 5.1.10, “Server SQL Modes”.

Identifier quote characters can be included within an identifier if you quote the identifier. If the character
to be included within the identifier is the same as that used to quote the identifier itself, then you need to
double the character. The following statement creates a table named a`b that contains a column named
c"d:

mysql> CREATE TABLE `a``b` (`c"d` INT);

In the select list of a query, a quoted column alias can be specified using identifier or string quoting
characters:

mysql> SELECT 1 AS `one`, 2 AS 'two';
+-----+-----+

1231

Identifier Length Limits

| one | two |
+-----+-----+
| 1 | 2 |
+-----+-----+

Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference is
treated as a string literal.

It is recommended that you do not use names that begin with Me or MeN, where M and N are integers. For
example, avoid using 1e as an identifier, because an expression such as 1e+3 is ambiguous. Depending
on context, it might be interpreted as the expression 1e + 3 or as the number 1e+3.

Be careful when using MD5() to produce table names because it can produce names in illegal or
ambiguous formats such as those just described.

A user variable cannot be used directly in an SQL statement as an identifier or as part of an identifier. See
Section 9.4, “User-Defined Variables”, for more information and examples of workarounds.

Special characters in database and table names are encoded in the corresponding file system names as
described in Section 9.2.4, “Mapping of Identifiers to File Names”. If you have databases or tables from an
older version of MySQL that contain special characters and for which the underlying directory names or file
names have not been updated to use the new encoding, the server displays their names with a prefix of
#mysql50#. For information about referring to such names or converting them to the newer encoding, see
that section.

9.2.1 Identifier Length Limits

The following table describes the maximum length for each type of identifier.

Identifier Type Maximum Length (characters)

Database 64 (NDB storage engine: 63)

Table 64 (NDB storage engine: 63)

Column 64

Index 64

Constraint 64

Stored Program 64

View 64

Tablespace 64

Server 64

Log File Group 64

Alias 256 (see exception following table)

Compound Statement Label 16

Aliases for column names in CREATE VIEW statements are checked against the maximum column length
of 64 characters (not the maximum alias length of 256 characters).

For constraint definitions that include no constraint name, the server internally generates a name derived
from the associated table name. For example, internally generated foreign key constraint names consist
of the table name plus _ibfk_ and a number. If the table name is close to the length limit for constraint
names, the additional characters required for the constraint name may cause that name to exceed the limit,
resulting in an error.

1232

Identifier Qualifiers

Identifiers are stored using Unicode (UTF-8). This applies to identifiers in table definitions that are stored
in .frm files and to identifiers stored in the grant tables in the mysql database. The sizes of the identifier
string columns in the grant tables are measured in characters. You can use multibyte characters without
reducing the number of characters permitted for values stored in these columns.

NDB Cluster imposes a maximum length of 63 characters for names of databases and tables. See
Section 18.2.7.5, “Limits Associated with Database Objects in NDB Cluster”.

Values such as user name and host names in MySQL account names are strings rather than identifiers.
For information about the maximum length of such values as stored in grant tables, see Grant Table Scope
Column Properties.

9.2.2 Identifier Qualifiers

Object names may be unqualified or qualified. An unqualified name is permitted in contexts where
interpretation of the name is unambiguous. A qualified name includes at least one qualifier to clarify the
interpretive context by overriding a default context or providing missing context.

For example, this statement creates a table using the unqualified name t1:

CREATE TABLE t1 (i INT);

Because t1 includes no qualifier to specify a database, the statement creates the table in the default
database. If there is no default database, an error occurs.

This statement creates a table using the qualified name db1.t1:

CREATE TABLE db1.t1 (i INT);

Because db1.t1 includes a database qualifier db1, the statement creates t1 in the database named db1,
regardless of the default database. The qualifier must be specified if there is no default database. The
qualifier may be specified if there is a default database, to specify a database different from the default, or
to make the database explicit if the default is the same as the one specified.

Qualifiers have these characteristics:

• An unqualified name consists of a single identifier. A qualified name consists of multiple identifiers.

• The components of a multiple-part name must be separated by period (.) characters. The initial parts of
a multiple-part name act as qualifiers that affect the context within which to interpret the final identifier.

• The qualifier character is a separate token and need not be contiguous with the associated identifiers.
For example, tbl_name.col_name and tbl_name . col_name are equivalent.

• If any components of a multiple-part name require quoting, quote them individually rather than quoting
the name as a whole. For example, write `my-table`.`my-column`, not `my-table.my-column`.

• A reserved word that follows a period in a qualified name must be an identifier, so in that context it need
not be quoted.

• The syntax .tbl_name means the table tbl_name in the default database. This syntax is accepted for
ODBC compatibility because some ODBC programs prefix table names with a . character.

The permitted qualifiers for object names depend on the object type:

• A database name is fully qualified and takes no qualifier:

CREATE DATABASE db1;

1233

Identifier Qualifiers

• A table, view, or stored program name may be given a database-name qualifier. Examples of unqualified
and qualified names in CREATE statements:

CREATE TABLE mytable ...;
CREATE VIEW myview ...;
CREATE PROCEDURE myproc ...;
CREATE FUNCTION myfunc ...;
CREATE EVENT myevent ...;

CREATE TABLE mydb.mytable ...;
CREATE VIEW mydb.myview ...;
CREATE PROCEDURE mydb.myproc ...;
CREATE FUNCTION mydb.myfunc ...;
CREATE EVENT mydb.myevent ...;

• A trigger is associated with a table, so any qualifier applies to the table name:

CREATE TRIGGER mytrigger ... ON mytable ...;

CREATE TRIGGER mytrigger ... ON mydb.mytable ...;

• A column name may be given multiple qualifiers to indicate context in statements that reference it, as
shown in the following table.

Column Reference Meaning

col_name Column col_name from whichever table used in
the statement contains a column of that name

tbl_name.col_name Column col_name from table tbl_name of the
default database

db_name.tbl_name.col_name Column col_name from table tbl_name of the
database db_name

In other words, a column name may be given a table-name qualifier, which itself may be given
a database-name qualifier. Examples of unqualified and qualified column references in SELECT
statements:

SELECT c1 FROM mytable
WHERE c2 > 100;

SELECT mytable.c1 FROM mytable
WHERE mytable.c2 > 100;

SELECT mydb.mytable.c1 FROM mydb.mytable
WHERE mydb.mytable.c2 > 100;

You need not specify a qualifier for an object reference in a statement unless the unqualified reference is
ambiguous. Suppose that column c1 occurs only in table t1, c2 only in t2, and c in both t1 and t2. Any
unqualified reference to c is ambiguous in a statement that refers to both tables and must be qualified as
t1.c or t2.c to indicate which table you mean:

SELECT c1, c2, t1.c FROM t1 INNER JOIN t2
WHERE t2.c > 100;

Similarly, to retrieve from a table t in database db1 and from a table t in database db2 in the same
statement, you must qualify the table references: For references to columns in those tables, qualifiers are
required only for column names that appear in both tables. Suppose that column c1 occurs only in table
db1.t, c2 only in db2.t, and c in both db1.t and db2.t. In this case, c is ambiguous and must be
qualified but c1 and c2 need not be:

SELECT c1, c2, db1.t.c FROM db1.t INNER JOIN db2.t

1234

Identifier Case Sensitivity

WHERE db2.t.c > 100;

Table aliases enable qualified column references to be written more simply:

SELECT c1, c2, t1.c FROM db1.t AS t1 INNER JOIN db2.t AS t2
WHERE t2.c > 100;

9.2.3 Identifier Case Sensitivity

In MySQL, databases correspond to directories within the data directory. Each table within a database
corresponds to at least one file within the database directory (and possibly more, depending on the
storage engine). Triggers also correspond to files. Consequently, the case sensitivity of the underlying
operating system plays a part in the case sensitivity of database, table, and trigger names. This means
such names are not case-sensitive in Windows, but are case-sensitive in most varieties of Unix. One
notable exception is macOS, which is Unix-based but uses a default file system type (HFS+) that is not
case-sensitive. However, macOS also supports UFS volumes, which are case-sensitive just as on any
Unix. See Section 1.6.1, “MySQL Extensions to Standard SQL”. The lower_case_table_names system
variable also affects how the server handles identifier case sensitivity, as described later in this section.

Note

Although database, table, and trigger names are not case-sensitive on some
platforms, you should not refer to one of these using different cases within the same
statement. The following statement would not work because it refers to a table both
as my_table and as MY_TABLE:

mysql> SELECT * FROM my_table WHERE MY_TABLE.col=1;

Column, index, stored routine, and event names are not case-sensitive on any platform, nor are column
aliases.

However, names of logfile groups are case-sensitive. This differs from standard SQL.

By default, table aliases are case-sensitive on Unix, but not so on Windows or macOS. The following
statement would not work on Unix, because it refers to the alias both as a and as A:

mysql> SELECT col_name FROM tbl_name AS a
 WHERE a.col_name = 1 OR A.col_name = 2;

However, this same statement is permitted on Windows. To avoid problems caused by such differences,
it is best to adopt a consistent convention, such as always creating and referring to databases and tables
using lowercase names. This convention is recommended for maximum portability and ease of use.

How table and database names are stored on disk and used in MySQL is affected by the
lower_case_table_names system variable, which you can set when starting mysqld.
lower_case_table_names can take the values shown in the following table. This variable does not
affect case sensitivity of trigger identifiers. On Unix, the default value of lower_case_table_names is 0.
On Windows, the default value is 1. On macOS, the default value is 2.

Value Meaning

0 Table and database names are stored on disk
using the lettercase specified in the CREATE
TABLE or CREATE DATABASE statement. Name
comparisons are case-sensitive. You should not
set this variable to 0 if you are running MySQL on a

1235

Identifier Case Sensitivity

Value Meaning
system that has case-insensitive file names (such
as Windows or macOS). If you force this variable
to 0 with --lower-case-table-names=0 on a
case-insensitive file system and access MyISAM
tablenames using different lettercases, index
corruption may result.

1 Table names are stored in lowercase on disk and
name comparisons are not case-sensitive. MySQL
converts all table names to lowercase on storage
and lookup. This behavior also applies to database
names and table aliases.

2 Table and database names are stored on disk using
the lettercase specified in the CREATE TABLE
or CREATE DATABASE statement, but MySQL
converts them to lowercase on lookup. Name
comparisons are not case-sensitive. This works
only on file systems that are not case-sensitive!
InnoDB table names are stored in lowercase, as for
lower_case_table_names=1.

If you are using MySQL on only one platform, you do not normally have to change the
lower_case_table_names variable from its default value. However, you may encounter difficulties if you
want to transfer tables between platforms that differ in file system case sensitivity. For example, on Unix,
you can have two different tables named my_table and MY_TABLE, but on Windows these two names are
considered identical. To avoid data transfer problems arising from lettercase of database or table names,
you have two options:

• Use lower_case_table_names=1 on all systems. The main disadvantage with this is that when you
use SHOW TABLES or SHOW DATABASES, you do not see the names in their original lettercase.

• Use lower_case_table_names=0 on Unix and lower_case_table_names=2 on Windows. This
preserves the lettercase of database and table names. The disadvantage of this is that you must ensure
that your statements always refer to your database and table names with the correct lettercase on
Windows. If you transfer your statements to Unix, where lettercase is significant, they do not work if the
lettercase is incorrect.

Exception: If you are using InnoDB tables and you are trying to avoid these data transfer problems,
you should set lower_case_table_names to 1 on all platforms to force names to be converted to
lowercase.

If you plan to set the lower_case_table_names system variable to 1 on Unix, you must first convert
your old database and table names to lowercase before stopping mysqld and restarting it with the new
variable setting. To do this for an individual table, use RENAME TABLE:

RENAME TABLE T1 TO t1;

To convert one or more entire databases, dump them before setting lower_case_table_names, then
drop the databases, and reload them after setting lower_case_table_names:

1. Use mysqldump to dump each database:

mysqldump --databases db1 > db1.sql
mysqldump --databases db2 > db2.sql
...

1236

Mapping of Identifiers to File Names

Do this for each database that must be recreated.

2. Use DROP DATABASE to drop each database.

3. Stop the server, set lower_case_table_names, and restart the server.

4. Reload the dump file for each database. Because lower_case_table_names is set, each database
and table name is converted to lowercase as it is recreated:

mysql < db1.sql
mysql < db2.sql
...

Object names may be considered duplicates if their uppercase forms are equal according to a binary
collation. That is true for names of cursors, conditions, procedures, functions, savepoints, stored routine
parameters, stored program local variables, and plugins. It is not true for names of columns, constraints,
databases, partitions, statements prepared with PREPARE, tables, triggers, users, and user-defined
variables.

File system case sensitivity can affect searches in string columns of INFORMATION_SCHEMA tables. For
more information, see Section 10.8.7, “Using Collation in INFORMATION_SCHEMA Searches”.

9.2.4 Mapping of Identifiers to File Names

There is a correspondence between database and table identifiers and names in the file system. For the
basic structure, MySQL represents each database as a directory in the data directory, and each table by
one or more files in the appropriate database directory. For the table format files (.FRM), the data is always
stored in this structure and location.

For the data and index files, the exact representation on disk is storage engine specific. These files
may be stored in the same location as the FRM files, or the information may be stored in a separate file.
InnoDB data is stored in the InnoDB data files. If you are using tablespaces with InnoDB, then the specific
tablespace files you create are used instead.

Any character is legal in database or table identifiers except ASCII NUL (X'00'). MySQL encodes
any characters that are problematic in the corresponding file system objects when it creates database
directories or table files:

• Basic Latin letters (a..zA..Z), digits (0..9) and underscore (_) are encoded as is. Consequently, their
case sensitivity directly depends on file system features.

• All other national letters from alphabets that have uppercase/lowercase mapping are encoded as shown
in the following table. Values in the Code Range column are UCS-2 values.

Code Range Pattern Number Used Unused Blocks

00C0..017F [@][0..4][g..z] 5*20= 100 97 3 Latin-1
Supplement +
Latin Extended-
A

0370..03FF [@][5..9][g..z] 5*20= 100 88 12 Greek and
Coptic

0400..052F [@][g..z][0..6] 20*7= 140 137 3 Cyrillic + Cyrillic
Supplement

0530..058F [@][g..z][7..8] 20*2= 40 38 2 Armenian

1237

Mapping of Identifiers to File Names

Code Range Pattern Number Used Unused Blocks

2160..217F [@][g..z][9] 20*1= 20 16 4 Number Forms

0180..02AF [@][g..z][a..k] 20*11=220 203 17 Latin Extended-
B + IPA
Extensions

1E00..1EFF [@][g..z][l..r] 20*7= 140 136 4 Latin Extended
Additional

1F00..1FFF [@][g..z][s..z] 20*8= 160 144 16 Greek Extended

.... [@][a..f][g..z] 6*20= 120 0 120 RESERVED

24B6..24E9 [@][@][a..z] 26 26 0 Enclosed
Alphanumerics

FF21..FF5A [@][a..z][@] 26 26 0 Halfwidth and
Fullwidth forms

One of the bytes in the sequence encodes lettercase. For example: LATIN CAPITAL LETTER A WITH
GRAVE is encoded as @0G, whereas LATIN SMALL LETTER A WITH GRAVE is encoded as @0g. Here
the third byte (G or g) indicates lettercase. (On a case-insensitive file system, both letters are treated as
the same.)

For some blocks, such as Cyrillic, the second byte determines lettercase. For other blocks, such as
Latin1 Supplement, the third byte determines lettercase. If two bytes in the sequence are letters (as
in Greek Extended), the leftmost letter character stands for lettercase. All other letter bytes must be in
lowercase.

• All nonletter characters except underscore (_), as well as letters from alphabets that do not have
uppercase/lowercase mapping (such as Hebrew) are encoded using hexadecimal representation using
lowercase letters for hexadecimal digits a..f:

0x003F -> @003f
0xFFFF -> @ffff

The hexadecimal values correspond to character values in the ucs2 double-byte character set.

On Windows, some names such as nul, prn, and aux are encoded by appending @@@ to the name when
the server creates the corresponding file or directory. This occurs on all platforms for portability of the
corresponding database object between platforms.

If you have databases or tables from a version of MySQL older than 5.1.6 that contain special
characters and for which the underlying directory names or file names have not been updated to use
the new encoding, the server displays their names with a prefix of #mysql50# in the output from
INFORMATION_SCHEMA tables or SHOW statements. For example, if you have a table named a@b and its
name encoding has not been updated, SHOW TABLES displays it like this:

mysql> SHOW TABLES;
+----------------+
| Tables_in_test |
+----------------+
| #mysql50#a@b |
+----------------+

To refer to such a name for which the encoding has not been updated, you must supply the #mysql50#
prefix:

mysql> SHOW COLUMNS FROM `a@b`;
ERROR 1146 (42S02): Table 'test.a@b' doesn't exist

1238

Function Name Parsing and Resolution

mysql> SHOW COLUMNS FROM `#mysql50#a@b`;
+-------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------+------+-----+---------+-------+
| i | int(11) | YES | | NULL | |
+-------+---------+------+-----+---------+-------+

To update old names to eliminate the need to use the special prefix to refer to them, re-encode them with
mysqlcheck. The following commands update all names to the new encoding:

mysqlcheck --check-upgrade --all-databases
mysqlcheck --fix-db-names --fix-table-names --all-databases

To check only specific databases or tables, omit --all-databases and provide the appropriate
database or table arguments. For information about mysqlcheck invocation syntax, see Section 4.5.3,
“mysqlcheck — A Table Maintenance Program”.

Note

The #mysql50# prefix is intended only to be used internally by the server. You
should not create databases or tables with names that use this prefix.

Also, mysqlcheck cannot fix names that contain literal instances of the @ character
that is used for encoding special characters. If you have databases or tables that
contain this character, use mysqldump to dump them before upgrading to MySQL
5.1.6 or later, and then reload the dump file after upgrading.

9.2.5 Function Name Parsing and Resolution

MySQL supports built-in (native) functions, loadable functions, and stored functions. This section describes
how the server recognizes whether the name of a built-in function is used as a function call or as an
identifier, and how the server determines which function to use in cases when functions of different types
exist with a given name.

• Built-In Function Name Parsing

• Function Name Resolution

Built-In Function Name Parsing

The parser uses default rules for parsing names of built-in functions. These rules can be changed by
enabling the IGNORE_SPACE SQL mode.

When the parser encounters a word that is the name of a built-in function, it must determine whether the
name signifies a function call or is instead a nonexpression reference to an identifier such as a table or
column name. For example, in the following statements, the first reference to count is a function call,
whereas the second reference is a table name:

SELECT COUNT(*) FROM mytable;
CREATE TABLE count (i INT);

The parser should recognize the name of a built-in function as indicating a function call only when parsing
what is expected to be an expression. That is, in nonexpression context, function names are permitted as
identifiers.

However, some built-in functions have special parsing or implementation considerations, so the parser
uses the following rules by default to distinguish whether their names are being used as function calls or as
identifiers in nonexpression context:

1239

Function Name Parsing and Resolution

• To use the name as a function call in an expression, there must be no whitespace between the name
and the following (parenthesis character.

• Conversely, to use the function name as an identifier, it must not be followed immediately by a
parenthesis.

The requirement that function calls be written with no whitespace between the name and the parenthesis
applies only to the built-in functions that have special considerations. COUNT is one such name. The
sql_functions[] array in the sql/lex.h source file lists the names of these special functions for
which following whitespace determines their interpretation.

The following list names the functions in MySQL 5.6 that are affected by the IGNORE_SPACE setting
and listed as special in the sql/lex.h source file. You may find it easiest to treat the no-whitespace
requirement as applying to all function calls.

• ADDDATE

• BIT_AND

• BIT_OR

• BIT_XOR

• CAST

• COUNT

• CURDATE

• CURTIME

• DATE_ADD

• DATE_SUB

• EXTRACT

• GROUP_CONCAT

• MAX

• MID

• MIN

• NOW

• POSITION

• SESSION_USER

• STD

• STDDEV

• STDDEV_POP

• STDDEV_SAMP

• SUBDATE

1240

Function Name Parsing and Resolution

• SUBSTR

• SUBSTRING

• SUM

• SYSDATE

• SYSTEM_USER

• TRIM

• VARIANCE

• VAR_POP

• VAR_SAMP

For functions not listed as special in sql/lex.h, whitespace does not matter. They are interpreted as
function calls only when used in expression context and may be used freely as identifiers otherwise. ASCII
is one such name. However, for these nonaffected function names, interpretation may vary in expression
context: func_name () is interpreted as a built-in function if there is one with the given name; if not,
func_name () is interpreted as a loadable function or stored function if one exists with that name.

The IGNORE_SPACE SQL mode can be used to modify how the parser treats function names that are
whitespace-sensitive:

• With IGNORE_SPACE disabled, the parser interprets the name as a function call when there is no
whitespace between the name and the following parenthesis. This occurs even when the function name
is used in nonexpression context:

mysql> CREATE TABLE count(i INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'count(i INT)'

To eliminate the error and cause the name to be treated as an identifier, either use whitespace following
the name or write it as a quoted identifier (or both):

CREATE TABLE count (i INT);
CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

• With IGNORE_SPACE enabled, the parser loosens the requirement that there be no whitespace between
the function name and the following parenthesis. This provides more flexibility in writing function calls.
For example, either of the following function calls are legal:

SELECT COUNT(*) FROM mytable;
SELECT COUNT (*) FROM mytable;

However, enabling IGNORE_SPACE also has the side effect that the parser treats the affected function
names as reserved words (see Section 9.3, “Keywords and Reserved Words”). This means that a space
following the name no longer signifies its use as an identifier. The name can be used in function calls
with or without following whitespace, but causes a syntax error in nonexpression context unless it is
quoted. For example, with IGNORE_SPACE enabled, both of the following statements fail with a syntax
error because the parser interprets count as a reserved word:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

To use the function name in nonexpression context, write it as a quoted identifier:

1241

Function Name Parsing and Resolution

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

To enable the IGNORE_SPACE SQL mode, use this statement:

SET sql_mode = 'IGNORE_SPACE';

IGNORE_SPACE is also enabled by certain other composite modes such as ANSI that include it in their
value:

SET sql_mode = 'ANSI';

Check Section 5.1.10, “Server SQL Modes”, to see which composite modes enable IGNORE_SPACE.

To minimize the dependency of SQL code on the IGNORE_SPACE setting, use these guidelines:

• Avoid creating loadable functions or stored functions that have the same name as a built-in function.

• Avoid using function names in nonexpression context. For example, these statements use count (one
of the affected function names affected by IGNORE_SPACE), so they fail with or without whitespace
following the name if IGNORE_SPACE is enabled:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

If you must use a function name in nonexpression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

Function Name Resolution

The following rules describe how the server resolves references to function names for function creation
and invocation:

• Built-in functions and loadable functions

An error occurs if you try to create a loadable function with the same name as a built-in function.

• Built-in functions and stored functions

It is possible to create a stored function with the same name as a built-in function, but to invoke
the stored function it is necessary to qualify it with a schema name. For example, if you create a
stored function named PI in the test schema, invoke it as test.PI() because the server resolves
PI() without a qualifier as a reference to the built-in function. The server generates a warning if the
stored function name collides with a built-in function name. The warning can be displayed with SHOW
WARNINGS.

• Loadable functions and stored functions

Loadable functions and stored functions share the same namespace, so you cannot create a loadable
function and a stored function with the same name.

The preceding function name resolution rules have implications for upgrading to versions of MySQL that
implement new built-in functions:

• If you have already created a loadable function with a given name and upgrade MySQL to a version that
implements a new built-in function with the same name, the loadable function becomes inaccessible. To

1242

Keywords and Reserved Words

correct this, use DROP FUNCTION to drop the loadable function and CREATE FUNCTION to re-create
the loadable function with a different nonconflicting name. Then modify any affected code to use the new
name.

• If a new version of MySQL implements a built-in function with the same name as an existing stored
function, you have two choices: Rename the stored function to use a nonconflicting name, or change
calls to the function so that they use a schema qualifier (that is, use schema_name.func_name()
syntax). In either case, modify any affected code accordingly.

9.3 Keywords and Reserved Words
Keywords are words that have significance in SQL. Certain keywords, such as SELECT, DELETE, or
BIGINT, are reserved and require special treatment for use as identifiers such as table and column names.
This may also be true for the names of built-in functions.

Nonreserved keywords are permitted as identifiers without quoting. Reserved words are permitted as
identifiers if you quote them as described in Section 9.2, “Schema Object Names”:

mysql> CREATE TABLE interval (begin INT, end INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'interval (begin INT, end INT)'

BEGIN and END are keywords but not reserved, so their use as identifiers does not require quoting.
INTERVAL is a reserved keyword and must be quoted to be used as an identifier:

mysql> CREATE TABLE `interval` (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Exception: A word that follows a period in a qualified name must be an identifier, so it need not be quoted
even if it is reserved:

mysql> CREATE TABLE mydb.interval (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Names of built-in functions are permitted as identifiers but may require care to be used as such. For
example, COUNT is acceptable as a column name. However, by default, no whitespace is permitted in
function invocations between the function name and the following (character. This requirement enables
the parser to distinguish whether the name is used in a function call or in nonfunction context. For further
details on recognition of function names, see Section 9.2.5, “Function Name Parsing and Resolution”.

• MySQL 5.6 Keywords and Reserved Words

• MySQL 5.6 New Keywords and Reserved Words

• MySQL 5.6 Removed Keywords and Reserved Words

MySQL 5.6 Keywords and Reserved Words

The following list shows the keywords and reserved words in MySQL 5.6, along with changes to individual
words from version to version. Reserved keywords are marked with (R). In addition, _FILENAME is
reserved.

At some point, you might upgrade to a higher version, so it is a good idea to have a look at future reserved
words, too. You can find these in the manuals that cover higher versions of MySQL. Most of the reserved
words in the list are forbidden by standard SQL as column or table names (for example, GROUP). A few are
reserved because MySQL needs them and uses a yacc parser.

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

1243

MySQL 5.6 Keywords and Reserved Words

A

• ACCESSIBLE (R)

• ACTION

• ADD (R)

• AFTER

• AGAINST

• AGGREGATE

• ALGORITHM

• ALL (R)

• ALTER (R)

• ANALYSE; added in 5.6.6 (nonreserved)

• ANALYZE (R)

• AND (R)

• ANY

• AS (R)

• ASC (R)

• ASCII

• ASENSITIVE (R)

• AT

• AUTHORS; removed in 5.6.8

• AUTOEXTEND_SIZE

• AUTO_INCREMENT

• AVG

• AVG_ROW_LENGTH

B

• BACKUP

• BEFORE (R)

• BEGIN

• BETWEEN (R)

• BIGINT (R)

1244

MySQL 5.6 Keywords and Reserved Words

• BINARY (R)

• BINLOG

• BIT

• BLOB (R)

• BLOCK

• BOOL

• BOOLEAN

• BOTH (R)

• BTREE

• BY (R)

• BYTE

C

• CACHE

• CALL (R)

• CASCADE (R)

• CASCADED

• CASE (R)

• CATALOG_NAME

• CHAIN

• CHANGE (R)

• CHANGED

• CHAR (R)

• CHARACTER (R)

• CHARSET

• CHECK (R)

• CHECKSUM

• CIPHER

• CLASS_ORIGIN

• CLIENT

• CLOSE

1245

MySQL 5.6 Keywords and Reserved Words

• COALESCE

• CODE

• COLLATE (R)

• COLLATION

• COLUMN (R)

• COLUMNS

• COLUMN_FORMAT; added in 5.6.6 (nonreserved)

• COLUMN_NAME

• COMMENT

• COMMIT

• COMMITTED

• COMPACT

• COMPLETION

• COMPRESSED

• CONCURRENT

• CONDITION (R)

• CONNECTION

• CONSISTENT

• CONSTRAINT (R)

• CONSTRAINT_CATALOG

• CONSTRAINT_NAME

• CONSTRAINT_SCHEMA

• CONTAINS

• CONTEXT

• CONTINUE (R)

• CONTRIBUTORS; removed in 5.6.8

• CONVERT (R)

• CPU

• CREATE (R)

• CROSS (R)

1246

MySQL 5.6 Keywords and Reserved Words

• CUBE

• CURRENT; added in 5.6.4 (nonreserved)

• CURRENT_DATE (R)

• CURRENT_TIME (R)

• CURRENT_TIMESTAMP (R)

• CURRENT_USER (R)

• CURSOR (R)

• CURSOR_NAME

D

• DATA

• DATABASE (R)

• DATABASES (R)

• DATAFILE

• DATE

• DATETIME

• DAY

• DAY_HOUR (R)

• DAY_MICROSECOND (R)

• DAY_MINUTE (R)

• DAY_SECOND (R)

• DEALLOCATE

• DEC (R)

• DECIMAL (R)

• DECLARE (R)

• DEFAULT (R)

• DEFAULT_AUTH; added in 5.6.4 (nonreserved)

• DEFINER

• DELAYED (R)

• DELAY_KEY_WRITE

• DELETE (R)

1247

MySQL 5.6 Keywords and Reserved Words

• DESC (R)

• DESCRIBE (R)

• DES_KEY_FILE

• DETERMINISTIC (R)

• DIAGNOSTICS; added in 5.6.4 (nonreserved)

• DIRECTORY

• DISABLE

• DISCARD

• DISK

• DISTINCT (R)

• DISTINCTROW (R)

• DIV (R)

• DO

• DOUBLE (R)

• DROP (R)

• DUAL (R)

• DUMPFILE

• DUPLICATE

• DYNAMIC

E

• EACH (R)

• ELSE (R)

• ELSEIF (R)

• ENABLE

• ENCLOSED (R)

• END

• ENDS

• ENGINE

• ENGINES

• ENUM

1248

MySQL 5.6 Keywords and Reserved Words

• ERROR

• ERRORS

• ESCAPE

• ESCAPED (R)

• EVENT

• EVENTS

• EVERY

• EXCHANGE

• EXECUTE

• EXISTS (R)

• EXIT (R)

• EXPANSION

• EXPIRE; added in 5.6.6 (nonreserved)

• EXPLAIN (R)

• EXPORT; added in 5.6.6 (nonreserved)

• EXTENDED

• EXTENT_SIZE

F

• FALSE (R)

• FAST

• FAULTS

• FETCH (R)

• FIELDS

• FILE

• FIRST

• FIXED

• FLOAT (R)

• FLOAT4 (R)

• FLOAT8 (R)

• FLUSH

1249

MySQL 5.6 Keywords and Reserved Words

• FOR (R)

• FORCE (R)

• FOREIGN (R)

• FORMAT; added in 5.6.5 (nonreserved)

• FOUND

• FROM (R)

• FULL

• FULLTEXT (R)

• FUNCTION

G

• GENERAL; became nonreserved in 5.6.1

• GEOMETRY

• GEOMETRYCOLLECTION

• GET (R); added in 5.6.4 (reserved)

• GET_FORMAT

• GLOBAL

• GRANT (R)

• GRANTS

• GROUP (R)

H

• HANDLER

• HASH

• HAVING (R)

• HELP

• HIGH_PRIORITY (R)

• HOST

• HOSTS

• HOUR

• HOUR_MICROSECOND (R)

• HOUR_MINUTE (R)

1250

MySQL 5.6 Keywords and Reserved Words

• HOUR_SECOND (R)

I

• IDENTIFIED

• IF (R)

• IGNORE (R)

• IGNORE_SERVER_IDS; became nonreserved in 5.6.1

• IMPORT

• IN (R)

• INDEX (R)

• INDEXES

• INFILE (R)

• INITIAL_SIZE

• INNER (R)

• INOUT (R)

• INSENSITIVE (R)

• INSERT (R)

• INSERT_METHOD

• INSTALL

• INT (R)

• INT1 (R)

• INT2 (R)

• INT3 (R)

• INT4 (R)

• INT8 (R)

• INTEGER (R)

• INTERVAL (R)

• INTO (R)

• INVOKER

• IO

• IO_AFTER_GTIDS (R); added in 5.6.5 (reserved)

1251

MySQL 5.6 Keywords and Reserved Words

• IO_BEFORE_GTIDS (R); added in 5.6.5 (reserved)

• IO_THREAD

• IPC

• IS (R)

• ISOLATION

• ISSUER

• ITERATE (R)

J

• JOIN (R)

K

• KEY (R)

• KEYS (R)

• KEY_BLOCK_SIZE

• KILL (R)

L

• LANGUAGE

• LAST

• LEADING (R)

• LEAVE (R)

• LEAVES

• LEFT (R)

• LESS

• LEVEL

• LIKE (R)

• LIMIT (R)

• LINEAR (R)

• LINES (R)

• LINESTRING

• LIST

• LOAD (R)

1252

MySQL 5.6 Keywords and Reserved Words

• LOCAL

• LOCALTIME (R)

• LOCALTIMESTAMP (R)

• LOCK (R)

• LOCKS

• LOGFILE

• LOGS

• LONG (R)

• LONGBLOB (R)

• LONGTEXT (R)

• LOOP (R)

• LOW_PRIORITY (R)

M

• MASTER

• MASTER_AUTO_POSITION; added in 5.6.5 (nonreserved)

• MASTER_BIND (R); added in 5.6.1 (reserved)

• MASTER_CONNECT_RETRY

• MASTER_DELAY

• MASTER_HEARTBEAT_PERIOD; became nonreserved in 5.6.1

• MASTER_HOST

• MASTER_LOG_FILE

• MASTER_LOG_POS

• MASTER_PASSWORD

• MASTER_PORT

• MASTER_RETRY_COUNT; added in 5.6.1 (nonreserved)

• MASTER_SERVER_ID

• MASTER_SSL

• MASTER_SSL_CA

• MASTER_SSL_CAPATH

• MASTER_SSL_CERT

1253

MySQL 5.6 Keywords and Reserved Words

• MASTER_SSL_CIPHER

• MASTER_SSL_CRL; added in 5.6.3 (nonreserved)

• MASTER_SSL_CRLPATH; added in 5.6.3 (nonreserved)

• MASTER_SSL_KEY

• MASTER_SSL_VERIFY_SERVER_CERT (R)

• MASTER_USER

• MATCH (R)

• MAXVALUE (R)

• MAX_CONNECTIONS_PER_HOUR

• MAX_QUERIES_PER_HOUR

• MAX_ROWS

• MAX_SIZE

• MAX_UPDATES_PER_HOUR

• MAX_USER_CONNECTIONS

• MEDIUM

• MEDIUMBLOB (R)

• MEDIUMINT (R)

• MEDIUMTEXT (R)

• MEMORY

• MERGE

• MESSAGE_TEXT

• MICROSECOND

• MIDDLEINT (R)

• MIGRATE

• MINUTE

• MINUTE_MICROSECOND (R)

• MINUTE_SECOND (R)

• MIN_ROWS

• MOD (R)

• MODE

1254

MySQL 5.6 Keywords and Reserved Words

• MODIFIES (R)

• MODIFY

• MONTH

• MULTILINESTRING

• MULTIPOINT

• MULTIPOLYGON

• MUTEX

• MYSQL_ERRNO

N

• NAME

• NAMES

• NATIONAL

• NATURAL (R)

• NCHAR

• NDB

• NDBCLUSTER

• NEW

• NEXT

• NO

• NODEGROUP

• NONE

• NOT (R)

• NO_WAIT

• NO_WRITE_TO_BINLOG (R)

• NULL (R)

• NUMBER; added in 5.6.4 (nonreserved)

• NUMERIC (R)

• NVARCHAR

O

• OFFSET

1255

MySQL 5.6 Keywords and Reserved Words

• OLD_PASSWORD

• ON (R)

• ONE

• ONE_SHOT; became reserved in 5.6.1; removed in 5.6.5

• ONLY; added in 5.6.5 (nonreserved)

• OPEN

• OPTIMIZE (R)

• OPTION (R)

• OPTIONALLY (R)

• OPTIONS

• OR (R)

• ORDER (R)

• OUT (R)

• OUTER (R)

• OUTFILE (R)

• OWNER

P

• PACK_KEYS

• PAGE

• PARSER

• PARTIAL

• PARTITION (R); became reserved in 5.6.2

• PARTITIONING

• PARTITIONS

• PASSWORD

• PHASE

• PLUGIN

• PLUGINS

• PLUGIN_DIR; added in 5.6.4 (nonreserved)

• POINT

1256

MySQL 5.6 Keywords and Reserved Words

• POLYGON

• PORT

• PRECISION (R)

• PREPARE

• PRESERVE

• PREV

• PRIMARY (R)

• PRIVILEGES

• PROCEDURE (R)

• PROCESSLIST

• PROFILE

• PROFILES

• PROXY; added in 5.6.1 (nonreserved)

• PURGE (R)

Q

• QUARTER

• QUERY

• QUICK

R

• RANGE (R)

• READ (R)

• READS (R)

• READ_ONLY

• READ_WRITE (R)

• REAL (R)

• REBUILD

• RECOVER

• REDOFILE

• REDO_BUFFER_SIZE

• REDUNDANT

1257

MySQL 5.6 Keywords and Reserved Words

• REFERENCES (R)

• REGEXP (R)

• RELAY

• RELAYLOG

• RELAY_LOG_FILE

• RELAY_LOG_POS

• RELAY_THREAD

• RELEASE (R)

• RELOAD

• REMOVE

• RENAME (R)

• REORGANIZE

• REPAIR

• REPEAT (R)

• REPEATABLE

• REPLACE (R)

• REPLICATION

• REQUIRE (R)

• RESET

• RESIGNAL (R)

• RESTORE

• RESTRICT (R)

• RESUME

• RETURN (R)

• RETURNED_SQLSTATE; added in 5.6.4 (nonreserved)

• RETURNS

• REVERSE

• REVOKE (R)

• RIGHT (R)

• RLIKE (R)

1258

MySQL 5.6 Keywords and Reserved Words

• ROLLBACK

• ROLLUP

• ROUTINE

• ROW

• ROWS

• ROW_COUNT; added in 5.6.4 (nonreserved)

• ROW_FORMAT

• RTREE

S

• SAVEPOINT

• SCHEDULE

• SCHEMA (R)

• SCHEMAS (R)

• SCHEMA_NAME

• SECOND

• SECOND_MICROSECOND (R)

• SECURITY

• SELECT (R)

• SENSITIVE (R)

• SEPARATOR (R)

• SERIAL

• SERIALIZABLE

• SERVER

• SESSION

• SET (R)

• SHARE

• SHOW (R)

• SHUTDOWN

• SIGNAL (R)

• SIGNED

1259

MySQL 5.6 Keywords and Reserved Words

• SIMPLE

• SLAVE

• SLOW; became nonreserved in 5.6.1

• SMALLINT (R)

• SNAPSHOT

• SOCKET

• SOME

• SONAME

• SOUNDS

• SOURCE

• SPATIAL (R)

• SPECIFIC (R)

• SQL (R)

• SQLEXCEPTION (R)

• SQLSTATE (R)

• SQLWARNING (R)

• SQL_AFTER_GTIDS; added in 5.6.5 (reserved); became nonreserved in 5.6.6

• SQL_AFTER_MTS_GAPS; added in 5.6.6 (nonreserved)

• SQL_BEFORE_GTIDS; added in 5.6.5 (reserved); became nonreserved in 5.6.6

• SQL_BIG_RESULT (R)

• SQL_BUFFER_RESULT

• SQL_CACHE

• SQL_CALC_FOUND_ROWS (R)

• SQL_NO_CACHE

• SQL_SMALL_RESULT (R)

• SQL_THREAD

• SQL_TSI_DAY

• SQL_TSI_HOUR

• SQL_TSI_MINUTE

• SQL_TSI_MONTH

• SQL_TSI_QUARTER

1260

MySQL 5.6 Keywords and Reserved Words

• SQL_TSI_SECOND

• SQL_TSI_WEEK

• SQL_TSI_YEAR

• SSL (R)

• START

• STARTING (R)

• STARTS

• STATS_AUTO_RECALC; added in 5.6.6 (nonreserved)

• STATS_PERSISTENT; added in 5.6.6 (nonreserved)

• STATS_SAMPLE_PAGES; added in 5.6.6 (nonreserved)

• STATUS

• STOP

• STORAGE

• STRAIGHT_JOIN (R)

• STRING

• SUBCLASS_ORIGIN

• SUBJECT

• SUBPARTITION

• SUBPARTITIONS

• SUPER

• SUSPEND

• SWAPS

• SWITCHES

T

• TABLE (R)

• TABLES

• TABLESPACE

• TABLE_CHECKSUM

• TABLE_NAME

• TEMPORARY

• TEMPTABLE

1261

MySQL 5.6 Keywords and Reserved Words

• TERMINATED (R)

• TEXT

• THAN

• THEN (R)

• TIME

• TIMESTAMP

• TIMESTAMPADD

• TIMESTAMPDIFF

• TINYBLOB (R)

• TINYINT (R)

• TINYTEXT (R)

• TO (R)

• TRAILING (R)

• TRANSACTION

• TRIGGER (R)

• TRIGGERS

• TRUE (R)

• TRUNCATE

• TYPE

• TYPES

U

• UNCOMMITTED

• UNDEFINED

• UNDO (R)

• UNDOFILE

• UNDO_BUFFER_SIZE

• UNICODE

• UNINSTALL

• UNION (R)

• UNIQUE (R)

• UNKNOWN

1262

MySQL 5.6 Keywords and Reserved Words

• UNLOCK (R)

• UNSIGNED (R)

• UNTIL

• UPDATE (R)

• UPGRADE

• USAGE (R)

• USE (R)

• USER

• USER_RESOURCES

• USE_FRM

• USING (R)

• UTC_DATE (R)

• UTC_TIME (R)

• UTC_TIMESTAMP (R)

V

• VALUE

• VALUES (R)

• VARBINARY (R)

• VARCHAR (R)

• VARCHARACTER (R)

• VARIABLES

• VARYING (R)

• VIEW

W

• WAIT

• WARNINGS

• WEEK

• WEIGHT_STRING

• WHEN (R)

• WHERE (R)

• WHILE (R)

1263

MySQL 5.6 New Keywords and Reserved Words

• WITH (R)

• WORK

• WRAPPER

• WRITE (R)

X

• X509

• XA

• XML

• XOR (R)

Y

• YEAR

• YEAR_MONTH (R)

Z

• ZEROFILL (R)

MySQL 5.6 New Keywords and Reserved Words

The following list shows the keywords and reserved words that are added in MySQL 5.6, compared to
MySQL 5.5. Reserved keywords are marked with (R).

A | C | D | E | F | G | I | M | N | O | P | R | S | W

A

• ANALYSE

C

• COLUMN_FORMAT

• CURRENT

D

• DEFAULT_AUTH

• DIAGNOSTICS

E

• EXCHANGE

• EXPIRE

• EXPORT

F

1264

MySQL 5.6 New Keywords and Reserved Words

• FORMAT

G

• GET (R)

I

• IO_AFTER_GTIDS (R)

• IO_BEFORE_GTIDS (R)

M

• MASTER_AUTO_POSITION

• MASTER_BIND (R)

• MASTER_DELAY

• MASTER_RETRY_COUNT

• MASTER_SSL_CRL

• MASTER_SSL_CRLPATH

N

• NUMBER

O

• ONLY

P

• PLUGIN_DIR

R

• RETURNED_SQLSTATE

• REVERSE

• ROW_COUNT

S

• SQL_AFTER_GTIDS

• SQL_AFTER_MTS_GAPS

• SQL_BEFORE_GTIDS

• STATS_AUTO_RECALC

• STATS_PERSISTENT

• STATS_SAMPLE_PAGES

W

1265

MySQL 5.6 Removed Keywords and Reserved Words

• WEIGHT_STRING

MySQL 5.6 Removed Keywords and Reserved Words

The following list shows the keywords and reserved words that are removed in MySQL 5.6, compared to
MySQL 5.5. Reserved keywords are marked with (R).

• AUTHORS

• CONTRIBUTORS

• ONE_SHOT

9.4 User-Defined Variables
You can store a value in a user-defined variable in one statement and refer to it later in another statement.
This enables you to pass values from one statement to another.

User variables are written as @var_name, where the variable name var_name consists of alphanumeric
characters, ., _, and $. A user variable name can contain other characters if you quote it as a string or
identifier (for example, @'my-var', @"my-var", or @`my-var`).

User-defined variables are session specific. A user variable defined by one client cannot be seen or used
by other clients. All variables for a given client session are automatically freed when that client exits.

User variable names are not case-sensitive.

One way to set a user-defined variable is by issuing a SET statement:

SET @var_name = expr [, @var_name = expr] ...

For SET, either = or := can be used as the assignment operator.

User variables can be assigned a value from a limited set of data types: integer, decimal, floating-point,
binary or nonbinary string, or NULL value. Assignment of decimal and real values does not preserve the
precision or scale of the value. A value of a type other than one of the permissible types is converted to
a permissible type. For example, a value having a temporal or spatial data type is converted to a binary
string.

If a user variable is assigned a nonbinary (character) string value, it has the same character set and
collation as the string. The coercibility of user variables is implicit. (This is the same coercibility as for table
column values.)

Hexadecimal or bit values assigned to user variables are treated as binary strings. To assign a
hexadecimal or bit value as a number to a user variable, use it in numeric context. For example, add 0 or
use CAST(... AS UNSIGNED):

mysql> SET @v1 = X'41';
mysql> SET @v2 = X'41'+0;
mysql> SET @v3 = CAST(X'41' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+
mysql> SET @v1 = b'1000001';
mysql> SET @v2 = b'1000001'+0;
mysql> SET @v3 = CAST(b'1000001' AS UNSIGNED);

1266

User-Defined Variables

mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

If the value of a user variable is selected in a result set, it is returned to the client as a string.

If you refer to a variable that has not been initialized, it has a value of NULL and a type of string.

User variables may be used in most contexts where expressions are permitted. This does not currently
include contexts that explicitly require a literal value, such as in the LIMIT clause of a SELECT statement,
or the IGNORE N LINES clause of a LOAD DATA statement.

You can also assign a value to a user variable in statements other than SET. In this case, the assignment
operator must be := and not = because the latter is treated as the comparison operator = in statements
other than SET:

mysql> SET @t1=1, @t2=2, @t3:=4;
mysql> SELECT @t1, @t2, @t3, @t4 := @t1+@t2+@t3;
+------+------+------+--------------------+
| @t1 | @t2 | @t3 | @t4 := @t1+@t2+@t3 |
+------+------+------+--------------------+
| 1 | 2 | 4 | 7 |
+------+------+------+--------------------+

As a general rule, other than in SET statements, you should never assign a value to a user variable and
read the value within the same statement. For example, to increment a variable, this is okay:

SET @a = @a + 1;

For other statements, such as SELECT, you might get the results you expect, but this is not guaranteed. In
the following statement, you might think that MySQL evaluates @a first and then performs an assignment
second:

SELECT @a, @a:=@a+1, ...;

However, the order of evaluation for expressions involving user variables is undefined.

Another issue with assigning a value to a variable and reading the value within the same non-SET
statement is that the default result type of a variable is based on its type at the start of the statement. The
following example illustrates this:

mysql> SET @a='test';
mysql> SELECT @a,(@a:=20) FROM tbl_name;

For this SELECT statement, MySQL reports to the client that column one is a string and converts all
accesses of @a to strings, even though @a is set to a number for the second row. After the SELECT
statement executes, @a is regarded as a number for the next statement.

To avoid problems with this behavior, either do not assign a value to and read the value of the same
variable within a single statement, or else set the variable to 0, 0.0, or '' to define its type before you use
it.

In a SELECT statement, each select expression is evaluated only when sent to the client. This means that
in a HAVING, GROUP BY, or ORDER BY clause, referring to a variable that is assigned a value in the select
expression list does not work as expected:

mysql> SELECT (@aa:=id) AS a, (@aa+3) AS b FROM tbl_name HAVING b=5;

1267

User-Defined Variables

The reference to b in the HAVING clause refers to an alias for an expression in the select list that uses
@aa. This does not work as expected: @aa contains the value of id from the previous selected row, not
from the current row.

User variables are intended to provide data values. They cannot be used directly in an SQL statement as
an identifier or as part of an identifier, such as in contexts where a table or database name is expected, or
as a reserved word such as SELECT. This is true even if the variable is quoted, as shown in the following
example:

mysql> SELECT c1 FROM t;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> SET @col = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| c1 |
+------+
1 row in set (0.00 sec)

mysql> SELECT `@col` FROM t;
ERROR 1054 (42S22): Unknown column '@col' in 'field list'

mysql> SET @col = "`c1`";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| `c1` |
+------+
1 row in set (0.00 sec)

An exception to this principle that user variables cannot be used to provide identifiers, is when you are
constructing a string for use as a prepared statement to execute later. In this case, user variables can be
used to provide any part of the statement. The following example illustrates how this can be done:

mysql> SET @c = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SET @s = CONCAT("SELECT ", @c, " FROM t");
Query OK, 0 rows affected (0.00 sec)

mysql> PREPARE stmt FROM @s;
Query OK, 0 rows affected (0.04 sec)
Statement prepared

mysql> EXECUTE stmt;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |

1268

Expressions

+----+
2 rows in set (0.00 sec)

mysql> DEALLOCATE PREPARE stmt;
Query OK, 0 rows affected (0.00 sec)

See Section 13.5, “Prepared Statements”, for more information.

A similar technique can be used in application programs to construct SQL statements using program
variables, as shown here using PHP 5:

<?php
 $mysqli = new mysqli("localhost", "user", "pass", "test");

 if(mysqli_connect_errno())
 die("Connection failed: %s\n", mysqli_connect_error());

 $col = "c1";

 $query = "SELECT $col FROM t";

 $result = $mysqli->query($query);

 while($row = $result->fetch_assoc())
 {
 echo "<p>" . $row["$col"] . "</p>\n";
 }

 $result->close();

 $mysqli->close();
?>

Assembling an SQL statement in this fashion is sometimes known as “Dynamic SQL”.

9.5 Expressions

This section lists the grammar rules that expressions must follow in MySQL and provides additional
information about the types of terms that may appear in expressions.

• Expression Syntax

• Expression Term Notes

• Temporal Intervals

Expression Syntax

The following grammar rules define expression syntax in MySQL. The grammar shown here is based on
that given in the sql/sql_yacc.yy file of MySQL source distributions. For additional information about
some of the expression terms, see Expression Term Notes.

expr:
 expr OR expr
 | expr || expr
 | expr XOR expr
 | expr AND expr
 | expr && expr
 | NOT expr
 | ! expr
 | boolean_primary IS [NOT] {TRUE | FALSE | UNKNOWN}
 | boolean_primary

1269

Expression Syntax

boolean_primary:
 boolean_primary IS [NOT] NULL
 | boolean_primary <=> predicate
 | boolean_primary comparison_operator predicate
 | boolean_primary comparison_operator {ALL | ANY} (subquery)
 | predicate

comparison_operator: = | >= | > | <= | < | <> | !=

predicate:
 bit_expr [NOT] IN (subquery)
 | bit_expr [NOT] IN (expr [, expr] ...)
 | bit_expr [NOT] BETWEEN bit_expr AND predicate
 | bit_expr SOUNDS LIKE bit_expr
 | bit_expr [NOT] LIKE simple_expr [ESCAPE simple_expr]
 | bit_expr [NOT] REGEXP bit_expr
 | bit_expr

bit_expr:
 bit_expr | bit_expr
 | bit_expr & bit_expr
 | bit_expr << bit_expr
 | bit_expr >> bit_expr
 | bit_expr + bit_expr
 | bit_expr - bit_expr
 | bit_expr * bit_expr
 | bit_expr / bit_expr
 | bit_expr DIV bit_expr
 | bit_expr MOD bit_expr
 | bit_expr % bit_expr
 | bit_expr ^ bit_expr
 | bit_expr + interval_expr
 | bit_expr - interval_expr
 | simple_expr

simple_expr:
 literal
 | identifier
 | function_call
 | simple_expr COLLATE collation_name
 | param_marker
 | variable
 | simple_expr || simple_expr
 | + simple_expr
 | - simple_expr
 | ~ simple_expr
 | ! simple_expr
 | BINARY simple_expr
 | (expr [, expr] ...)
 | ROW (expr, expr [, expr] ...)
 | (subquery)
 | EXISTS (subquery)
 | {identifier expr}
 | match_expr
 | case_expr
 | interval_expr

For operator precedence, see Section 12.4.1, “Operator Precedence”. The precedence and meaning of
some operators depends on the SQL mode:

• By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation,
with a precedence between ^ and the unary operators.

• By default, ! has a higher precedence than NOT. With HIGH_NOT_PRECEDENCE enabled, ! and NOT
have the same precedence.

1270

Expression Term Notes

See Section 5.1.10, “Server SQL Modes”.

Expression Term Notes

For literal value syntax, see Section 9.1, “Literal Values”.

For identifier syntax, see Section 9.2, “Schema Object Names”.

Variables can be user variables, system variables, or stored program local variables or parameters:

• User variables: Section 9.4, “User-Defined Variables”

• System variables: Section 5.1.8, “Using System Variables”

• Stored program local variables: Section 13.6.4.1, “Local Variable DECLARE Statement”

• Stored program parameters: Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION
Statements”

param_marker is ? as used in prepared statements for placeholders. See Section 13.5.1, “PREPARE
Statement”.

(subquery) indicates a subquery that returns a single value; that is, a scalar subquery. See
Section 13.2.10.1, “The Subquery as Scalar Operand”.

{identifier expr} is ODBC escape syntax and is accepted for ODBC compatibility. The value is
expr. The { and } curly braces in the syntax should be written literally; they are not metasyntax as used
elsewhere in syntax descriptions.

match_expr indicates a MATCH expression. See Section 12.10, “Full-Text Search Functions”.

case_expr indicates a CASE expression. See Section 12.5, “Flow Control Functions”.

interval_expr represents a temporal interval. See Temporal Intervals.

Temporal Intervals

interval_expr in expressions represents a temporal interval. Intervals have this syntax:

INTERVAL expr unit

expr represents a quantity. unit represents the unit for interpreting the quantity; it is a specifier such as
HOUR, DAY, or WEEK. The INTERVAL keyword and the unit specifier are not case-sensitive.

The following table shows the expected form of the expr argument for each unit value.

Table 9.2 Temporal Interval Expression and Unit Arguments

unit Value Expected expr Format

MICROSECOND MICROSECONDS

SECOND SECONDS

MINUTE MINUTES

HOUR HOURS

DAY DAYS

WEEK WEEKS

MONTH MONTHS

1271

Temporal Intervals

unit Value Expected expr Format

QUARTER QUARTERS

YEAR YEARS

SECOND_MICROSECOND 'SECONDS.MICROSECONDS'

MINUTE_MICROSECOND 'MINUTES:SECONDS.MICROSECONDS'

MINUTE_SECOND 'MINUTES:SECONDS'

HOUR_MICROSECOND 'HOURS:MINUTES:SECONDS.MICROSECONDS'

HOUR_SECOND 'HOURS:MINUTES:SECONDS'

HOUR_MINUTE 'HOURS:MINUTES'

DAY_MICROSECOND 'DAYS
HOURS:MINUTES:SECONDS.MICROSECONDS'

DAY_SECOND 'DAYS HOURS:MINUTES:SECONDS'

DAY_MINUTE 'DAYS HOURS:MINUTES'

DAY_HOUR 'DAYS HOURS'

YEAR_MONTH 'YEARS-MONTHS'

MySQL permits any punctuation delimiter in the expr format. Those shown in the table are the suggested
delimiters.

Temporal intervals are used for certain functions, such as DATE_ADD() and DATE_SUB():

mysql> SELECT DATE_ADD('2018-05-01',INTERVAL 1 DAY);
 -> '2018-05-02'
mysql> SELECT DATE_SUB('2018-05-01',INTERVAL 1 YEAR);
 -> '2017-05-01'
mysql> SELECT DATE_ADD('2020-12-31 23:59:59',
 -> INTERVAL 1 SECOND);
 -> '2021-01-01 00:00:00'
mysql> SELECT DATE_ADD('2018-12-31 23:59:59',
 -> INTERVAL 1 DAY);
 -> '2019-01-01 23:59:59'
mysql> SELECT DATE_ADD('2100-12-31 23:59:59',
 -> INTERVAL '1:1' MINUTE_SECOND);
 -> '2101-01-01 00:01:00'
mysql> SELECT DATE_SUB('2025-01-01 00:00:00',
 -> INTERVAL '1 1:1:1' DAY_SECOND);
 -> '2024-12-30 22:58:59'
mysql> SELECT DATE_ADD('1900-01-01 00:00:00',
 -> INTERVAL '-1 10' DAY_HOUR);
 -> '1899-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
 -> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',
 -> INTERVAL '1.999999' SECOND_MICROSECOND);
 -> '1993-01-01 00:00:01.000001'

Temporal arithmetic also can be performed in expressions using INTERVAL together with the + or -
operator:

date + INTERVAL expr unit
date - INTERVAL expr unit

INTERVAL expr unit is permitted on either side of the + operator if the expression on the other side is
a date or datetime value. For the - operator, INTERVAL expr unit is permitted only on the right side,
because it makes no sense to subtract a date or datetime value from an interval.

1272

Temporal Intervals

mysql> SELECT '2018-12-31 23:59:59' + INTERVAL 1 SECOND;
 -> '2019-01-01 00:00:00'
mysql> SELECT INTERVAL 1 DAY + '2018-12-31';
 -> '2019-01-01'
mysql> SELECT '2025-01-01' - INTERVAL 1 SECOND;
 -> '2024-12-31 23:59:59'

The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or DATE_SUB(), but
extracts parts from the date rather than performing date arithmetic:

mysql> SELECT EXTRACT(YEAR FROM '2019-07-02');
 -> 2019
mysql> SELECT EXTRACT(YEAR_MONTH FROM '2019-07-02 01:02:03');
 -> 201907

Temporal intervals can be used in CREATE EVENT statements:

CREATE EVENT myevent
 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR
 DO
 UPDATE myschema.mytable SET mycol = mycol + 1;

If you specify an interval value that is too short (does not include all the interval parts that would be
expected from the unit keyword), MySQL assumes that you have left out the leftmost parts of the interval
value. For example, if you specify a unit of DAY_SECOND, the value of expr is expected to have days,
hours, minutes, and seconds parts. If you specify a value like '1:10', MySQL assumes that the days
and hours parts are missing and the value represents minutes and seconds. In other words, '1:10'
DAY_SECOND is interpreted in such a way that it is equivalent to '1:10' MINUTE_SECOND. This is
analogous to the way that MySQL interprets TIME values as representing elapsed time rather than as a
time of day.

expr is treated as a string, so be careful if you specify a nonstring value with INTERVAL. For example,
with an interval specifier of HOUR_MINUTE, '6/4' is treated as 6 hours, four minutes, whereas 6/4 evaluates
to 1.5000 and is treated as 1 hour, 5000 minutes:

mysql> SELECT '6/4', 6/4;
 -> 1.5000
mysql> SELECT DATE_ADD('2019-01-01', INTERVAL '6/4' HOUR_MINUTE);
 -> '2019-01-01 06:04:00'
mysql> SELECT DATE_ADD('2019-01-01', INTERVAL 6/4 HOUR_MINUTE);
 -> '2019-01-04 12:20:00'

To ensure interpretation of the interval value as you expect, a CAST() operation may be used. To treat
6/4 as 1 hour, 5 minutes, cast it to a DECIMAL value with a single fractional digit:

mysql> SELECT CAST(6/4 AS DECIMAL(3,1));
 -> 1.5
mysql> SELECT DATE_ADD('1970-01-01 12:00:00',
 -> INTERVAL CAST(6/4 AS DECIMAL(3,1)) HOUR_MINUTE);
 -> '1970-01-01 13:05:00'

If you add to or subtract from a date value something that contains a time part, the result is automatically
converted to a datetime value:

mysql> SELECT DATE_ADD('2023-01-01', INTERVAL 1 DAY);
 -> '2023-01-02'
mysql> SELECT DATE_ADD('2023-01-01', INTERVAL 1 HOUR);
 -> '2023-01-01 01:00:00'

If you add MONTH, YEAR_MONTH, or YEAR and the resulting date has a day that is larger than the maximum
day for the new month, the day is adjusted to the maximum days in the new month:

mysql> SELECT DATE_ADD('2019-01-30', INTERVAL 1 MONTH);

1273

Comments

 -> '2019-02-28'

Date arithmetic operations require complete dates and do not work with incomplete dates such as
'2016-07-00' or badly malformed dates:

mysql> SELECT DATE_ADD('2016-07-00', INTERVAL 1 DAY);
 -> NULL
mysql> SELECT '2005-03-32' + INTERVAL 1 MONTH;
 -> NULL

9.6 Comments
MySQL Server supports three comment styles:

• From a # character to the end of the line.

• From a -- sequence to the end of the line. In MySQL, the -- (double-dash) comment style requires
the second dash to be followed by at least one whitespace or control character (such as a space, tab,
newline, and so on). This syntax differs slightly from standard SQL comment syntax, as discussed in
Section 1.6.2.4, “'--' as the Start of a Comment”.

• From a /* sequence to the following */ sequence, as in the C programming language. This syntax
enables a comment to extend over multiple lines because the beginning and closing sequences need not
be on the same line.

The following example demonstrates all three comment styles:

mysql> SELECT 1+1; # This comment continues to the end of line
mysql> SELECT 1+1; -- This comment continues to the end of line
mysql> SELECT 1 /* this is an in-line comment */ + 1;
mysql> SELECT 1+
/*
this is a
multiple-line comment
*/
1;

Nested comments are not supported. (Under some conditions, nested comments might be permitted, but
usually are not, and users should avoid them.)

MySQL Server supports certain variants of C-style comments. These enable you to write code that
includes MySQL extensions, but is still portable, by using comments of the following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other SQL
statement, but other SQL servers should ignore the extensions. For example, MySQL Server recognizes
the STRAIGHT_JOIN keyword in the following statement, but other servers do not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the ! character, the syntax within the comment is executed only if the
MySQL version is greater than or equal to the specified version number. The KEY_BLOCK_SIZE keyword
in the following comment is executed only by servers from MySQL 5.1.10 or higher:

CREATE TABLE t1(a INT, KEY (a)) /*!50110 KEY_BLOCK_SIZE=1024 */;

The version number uses the format Mmmrr, where M is a major version, mm is a two-digit minor version,
and rr is a two-digit release number. For example: In a statement to be run only by a MySQL server
version 5.6.31 or later, use 50631 in the comment.

1274

Comments

The comment syntax just described applies to how the mysqld server parses SQL statements. The mysql
client program also performs some parsing of statements before sending them to the server. (It does this to
determine statement boundaries within a multiple-statement input line.) For information about differences
between the server and mysql client parsers, see Section 4.5.1.6, “mysql Client Tips”.

Comments in /*!12345 ... */ format are not stored on the server. If this format is used to comment
stored programs, the comments are not retained in the program body.

The use of short-form mysql commands such as \C within multiple-line /* ... */ comments is not
supported.

1275

1276

Chapter 10 Character Sets, Collations, Unicode

Table of Contents
10.1 Character Sets and Collations in General ... 1278
10.2 Character Sets and Collations in MySQL ... 1279

10.2.1 Character Set Repertoire .. 1281
10.2.2 UTF-8 for Metadata .. 1282

10.3 Specifying Character Sets and Collations ... 1284
10.3.1 Collation Naming Conventions .. 1284
10.3.2 Server Character Set and Collation ... 1285
10.3.3 Database Character Set and Collation ... 1286
10.3.4 Table Character Set and Collation .. 1287
10.3.5 Column Character Set and Collation ... 1287
10.3.6 Character String Literal Character Set and Collation ... 1289
10.3.7 The National Character Set .. 1291
10.3.8 Character Set Introducers ... 1291
10.3.9 Examples of Character Set and Collation Assignment .. 1293
10.3.10 Compatibility with Other DBMSs .. 1294

10.4 Connection Character Sets and Collations ... 1294
10.5 Configuring Application Character Set and Collation ... 1300
10.6 Error Message Character Set .. 1302
10.7 Column Character Set Conversion ... 1303
10.8 Collation Issues .. 1304

10.8.1 Using COLLATE in SQL Statements ... 1304
10.8.2 COLLATE Clause Precedence .. 1305
10.8.3 Character Set and Collation Compatibility .. 1305
10.8.4 Collation Coercibility in Expressions .. 1305
10.8.5 The binary Collation Compared to _bin Collations .. 1307
10.8.6 Examples of the Effect of Collation ... 1309
10.8.7 Using Collation in INFORMATION_SCHEMA Searches .. 1310

10.9 Unicode Support ... 1312
10.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding) 1314
10.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding) 1315
10.9.3 The utf8 Character Set (Alias for utf8mb3) .. 1315
10.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding) .. 1315
10.9.5 The utf16 Character Set (UTF-16 Unicode Encoding) ... 1316
10.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding) .. 1316
10.9.7 The utf32 Character Set (UTF-32 Unicode Encoding) ... 1316
10.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets 1317

10.10 Supported Character Sets and Collations ... 1319
10.10.1 Unicode Character Sets .. 1320
10.10.2 West European Character Sets ... 1326
10.10.3 Central European Character Sets .. 1327
10.10.4 South European and Middle East Character Sets ... 1328
10.10.5 Baltic Character Sets .. 1329
10.10.6 Cyrillic Character Sets .. 1329
10.10.7 Asian Character Sets .. 1330
10.10.8 The Binary Character Set ... 1333

10.11 Restrictions on Character Sets .. 1334
10.12 Setting the Error Message Language ... 1335

1277

Character Sets and Collations in General

10.13 Adding a Character Set ... 1335
10.13.1 Character Definition Arrays ... 1337
10.13.2 String Collating Support for Complex Character Sets .. 1338
10.13.3 Multi-Byte Character Support for Complex Character Sets .. 1338

10.14 Adding a Collation to a Character Set .. 1339
10.14.1 Collation Implementation Types ... 1340
10.14.2 Choosing a Collation ID .. 1343
10.14.3 Adding a Simple Collation to an 8-Bit Character Set ... 1344
10.14.4 Adding a UCA Collation to a Unicode Character Set .. 1345

10.15 Character Set Configuration ... 1352
10.16 MySQL Server Locale Support .. 1353

MySQL includes character set support that enables you to store data using a variety of character sets
and perform comparisons according to a variety of collations. The default MySQL server character set
and collation are latin1 and latin1_swedish_ci, but you can specify character sets at the server,
database, table, column, and string literal levels.

This chapter discusses the following topics:

• What are character sets and collations?

• The multiple-level default system for character set assignment.

• Syntax for specifying character sets and collations.

• Affected functions and operations.

• Unicode support.

• The character sets and collations that are available, with notes.

• Selecting the language for error messages.

• Selecting the locale for day and month names.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character
set different from the default, you'll need to indicate which one. For example, to use the utf8 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about configuring character sets for application use and character set-related issues
in client/server communication, see Section 10.5, “Configuring Application Character Set and Collation”,
and Section 10.4, “Connection Character Sets and Collations”.

10.1 Character Sets and Collations in General

A character set is a set of symbols and encodings. A collation is a set of rules for comparing characters in
a character set. Let's make the distinction clear with an example of an imaginary character set.

Suppose that we have an alphabet with four letters: A, B, a, b. We give each letter a number: A = 0, B = 1,
a = 2, b = 3. The letter A is a symbol, the number 0 is the encoding for A, and the combination of all four
letters and their encodings is a character set.

1278

Character Sets and Collations in MySQL

Suppose that we want to compare two string values, A and B. The simplest way to do this is to look at the
encodings: 0 for A and 1 for B. Because 0 is less than 1, we say A is less than B. What we've just done is
apply a collation to our character set. The collation is a set of rules (only one rule in this case): “compare
the encodings.” We call this simplest of all possible collations a binary collation.

But what if we want to say that the lowercase and uppercase letters are equivalent? Then we would have
at least two rules: (1) treat the lowercase letters a and b as equivalent to A and B; (2) then compare the
encodings. We call this a case-insensitive collation. It is a little more complex than a binary collation.

In real life, most character sets have many characters: not just A and B but whole alphabets, sometimes
multiple alphabets or eastern writing systems with thousands of characters, along with many special
symbols and punctuation marks. Also in real life, most collations have many rules, not just for whether
to distinguish lettercase, but also for whether to distinguish accents (an “accent” is a mark attached to a
character as in German Ö), and for multiple-character mappings (such as the rule that Ö = OE in one of the
two German collations).

MySQL can do these things for you:

• Store strings using a variety of character sets.

• Compare strings using a variety of collations.

• Mix strings with different character sets or collations in the same server, the same database, or even the
same table.

• Enable specification of character set and collation at any level.

To use these features effectively, you must know what character sets and collations are available, how to
change the defaults, and how they affect the behavior of string operators and functions.

10.2 Character Sets and Collations in MySQL

MySQL Server supports multiple character sets. To display the available character sets, use the
INFORMATION_SCHEMA CHARACTER_SETS table or the SHOW CHARACTER SET statement. A partial
listing follows. For more complete information, see Section 10.10, “Supported Character Sets and
Collations”.

mysql> SHOW CHARACTER SET;
+----------+---------------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+---------------------------------+---------------------+--------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |
...
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |
...
| utf8 | UTF-8 Unicode | utf8_general_ci | 3 |
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
...
| utf8mb4 | UTF-8 Unicode | utf8mb4_general_ci | 4 |
...
| binary | Binary pseudo charset | binary | 1 |
...

By default, the SHOW CHARACTER SET statement displays all available character sets. It takes an optional
LIKE or WHERE clause that indicates which character set names to match. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+

1279

Character Sets and Collations in MySQL

| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

A given character set always has at least one collation, and most character sets have several. To list the
display collations for a character set, use the INFORMATION_SCHEMA COLLATIONS table or the SHOW
COLLATION statement.

By default, the SHOW COLLATION statement displays all available collations. It takes an optional LIKE or
WHERE clause that indicates which collation names to display. For example, to see the collations for the
default character set, latin1 (cp1252 West European), use this statement:

mysql> SHOW COLLATION WHERE Charset = 'latin1';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5		Yes	1
latin1_swedish_ci	latin1	8	Yes	Yes	1
latin1_danish_ci	latin1	15		Yes	1
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	1
latin1_general_ci	latin1	48		Yes	1
latin1_general_cs	latin1	49		Yes	1
latin1_spanish_ci	latin1	94		Yes	1
+-------------------+---------+----+---------+----------+---------+

The latin1 collations have the following meanings.

Collation Meaning

latin1_bin Binary according to latin1 encoding

latin1_danish_ci Danish/Norwegian

latin1_general_ci Multilingual (Western European)

latin1_general_cs Multilingual (ISO Western European), case-sensitive

latin1_german1_ci German DIN-1 (dictionary order)

latin1_german2_ci German DIN-2 (phone book order)

latin1_spanish_ci Modern Spanish

latin1_swedish_ci Swedish/Finnish

Collations have these general characteristics:

• Two different character sets cannot have the same collation.

• Each character set has a default collation. For example, the default collations for latin1 and utf8
are latin1_swedish_ci and utf8_general_ci, respectively. The INFORMATION_SCHEMA
CHARACTER_SETS table and the SHOW CHARACTER SET statement indicate the default collation
for each character set. The INFORMATION_SCHEMA COLLATIONS table and the SHOW COLLATION
statement have a column that indicates for each collation whether it is the default for its character set
(Yes if so, empty if not).

• Collation names start with the name of the character set with which they are associated, generally
followed by one or more suffixes indicating other collation characteristics. For additional information
about naming conventions, see Section 10.3.1, “Collation Naming Conventions”.

1280

Character Set Repertoire

When a character set has multiple collations, it might not be clear which collation is most suitable for
a given application. To avoid choosing an inappropriate collation, perform some comparisons with
representative data values to make sure that a given collation sorts values the way you expect.

10.2.1 Character Set Repertoire

The repertoire of a character set is the collection of characters in the set.

String expressions have a repertoire attribute, which can have two values:

• ASCII: The expression can contain only ASCII characters; that is, characters in the Unicode range U
+0000 to U+007F.

• UNICODE: The expression can contain characters in the Unicode range U+0000 to U+10FFFF.
This includes characters in the Basic Multilingual Plane (BMP) range (U+0000 to U+FFFF) and
supplementary characters outside the BMP range (U+10000 to U+10FFFF).

The ASCII range is a subset of UNICODE range, so a string with ASCII repertoire can be converted
safely without loss of information to the character set of any string with UNICODE repertoire. It can also be
converted safely to any character set that is a superset of the ascii character set. (All MySQL character
sets are supersets of ascii with the exception of swe7, which reuses some punctuation characters for
Swedish accented characters.)

The use of repertoire enables character set conversion in expressions for many cases where MySQL
would otherwise return an “illegal mix of collations” error when the rules for collation coercibility are
insufficient to resolve ambiguities. (For information about coercibility, see Section 10.8.4, “Collation
Coercibility in Expressions”.)

The following discussion provides examples of expressions and their repertoires, and describes how the
use of repertoire changes string expression evaluation:

• The repertoire for a string constant depends on string content and may differ from the repertoire of the
string character set. Consider these statements:

SET NAMES utf8; SELECT 'abc';
SELECT _utf8'def';
SELECT N'MySQL';

Although the character set is utf8 in each of the preceding cases, the strings do not actually contain
any characters outside the ASCII range, so their repertoire is ASCII rather than UNICODE.

• A column having the ascii character set has ASCII repertoire because of its character set. In the
following table, c1 has ASCII repertoire:

CREATE TABLE t1 (c1 CHAR(1) CHARACTER SET ascii);

The following example illustrates how repertoire enables a result to be determined in a case where an
error occurs without repertoire:

CREATE TABLE t1 (
 c1 CHAR(1) CHARACTER SET latin1,
 c2 CHAR(1) CHARACTER SET ascii
);
INSERT INTO t1 VALUES ('a','b');
SELECT CONCAT(c1,c2) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (ascii_general_ci,IMPLICIT) for operation 'concat'

1281

UTF-8 for Metadata

Using repertoire, subset to superset (ascii to latin1) conversion can occur and a result is returned:

+---------------+
| CONCAT(c1,c2) |
+---------------+
| ab |
+---------------+

• Functions with one string argument inherit the repertoire of their argument. The result of
UPPER(_utf8'abc') has ASCII repertoire because its argument has ASCII repertoire. (Despite the
_utf8 introducer, the string 'abc' contains no characters outside the ASCII range.)

• For functions that return a string but do not have string arguments and use
character_set_connection as the result character set, the result repertoire is ASCII if
character_set_connection is ascii, and UNICODE otherwise:

FORMAT(numeric_column, 4);

Use of repertoire changes how MySQL evaluates the following example:

SET NAMES ascii;
CREATE TABLE t1 (a INT, b VARCHAR(10) CHARACTER SET latin1);
INSERT INTO t1 VALUES (1,'b');
SELECT CONCAT(FORMAT(a, 4), b) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (ascii_general_ci,COERCIBLE)
and (latin1_swedish_ci,IMPLICIT) for operation 'concat'

With repertoire, a result is returned:

+-------------------------+
| CONCAT(FORMAT(a, 4), b) |
+-------------------------+
| 1.0000b |
+-------------------------+

• Functions with two or more string arguments use the “widest” argument repertoire for the result
repertoire, where UNICODE is wider than ASCII. Consider the following CONCAT() calls:

CONCAT(_ucs2 X'0041', _ucs2 X'0042')
CONCAT(_ucs2 X'0041', _ucs2 X'00C2')

For the first call, the repertoire is ASCII because both arguments are within the ASCII range. For the
second call, the repertoire is UNICODE because the second argument is outside the ASCII range.

• The repertoire for function return values is determined based on the repertoire of only those arguments
that affect the result's character set and collation.

IF(column1 < column2, 'smaller', 'greater')

The result repertoire is ASCII because the two string arguments (the second argument and the third
argument) both have ASCII repertoire. The first argument does not matter for the result repertoire, even
if the expression uses string values.

10.2.2 UTF-8 for Metadata

Metadata is “the data about the data.” Anything that describes the database—as opposed to being the
contents of the database—is metadata. Thus column names, database names, user names, version

1282

UTF-8 for Metadata

names, and most of the string results from SHOW are metadata. This is also true of the contents of tables in
INFORMATION_SCHEMA because those tables by definition contain information about database objects.

Representation of metadata must satisfy these requirements:

• All metadata must be in the same character set. Otherwise, neither the SHOW statements nor SELECT
statements for tables in INFORMATION_SCHEMA would work properly because different rows in the same
column of the results of these operations would be in different character sets.

• Metadata must include all characters in all languages. Otherwise, users would not be able to name
columns and tables using their own languages.

To satisfy both requirements, MySQL stores metadata in a Unicode character set, namely UTF-8. This
does not cause any disruption if you never use accented or non-Latin characters. But if you do, you should
be aware that metadata is in UTF-8.

The metadata requirements mean that the return values of the USER(), CURRENT_USER(),
SESSION_USER(), SYSTEM_USER(), DATABASE(), and VERSION() functions have the UTF-8 character
set by default.

The server sets the character_set_system system variable to the name of the metadata character set:

mysql> SHOW VARIABLES LIKE 'character_set_system';
+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| character_set_system | utf8 |
+----------------------+-------+

Storage of metadata using Unicode does not mean that the server returns headers of columns and the
results of DESCRIBE functions in the character_set_system character set by default. When you use
SELECT column1 FROM t, the name column1 itself is returned from the server to the client in the
character set determined by the value of the character_set_results system variable, which has a
default value of utf8. If you want the server to pass metadata results back in a different character set, use
the SET NAMES statement to force the server to perform character set conversion. SET NAMES sets the
character_set_results and other related system variables. (See Section 10.4, “Connection Character
Sets and Collations”.) Alternatively, a client program can perform the conversion after receiving the result
from the server. It is more efficient for the client to perform the conversion, but this option is not always
available for all clients.

If character_set_results is set to NULL, no conversion is performed and the server returns metadata
using its original character set (the set indicated by character_set_system).

Error messages returned from the server to the client are converted to the client character set
automatically, as with metadata.

If you are using (for example) the USER() function for comparison or assignment within a single statement,
don't worry. MySQL performs some automatic conversion for you.

SELECT * FROM t1 WHERE USER() = latin1_column;

This works because the contents of latin1_column are automatically converted to UTF-8 before the
comparison.

INSERT INTO t1 (latin1_column) SELECT USER();

This works because the contents of USER() are automatically converted to latin1 before the
assignment.

1283

Specifying Character Sets and Collations

Although automatic conversion is not in the SQL standard, the standard does say that every character
set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-known principle that
“what applies to a superset can apply to a subset,” we believe that a collation for Unicode can apply for
comparisons with non-Unicode strings. For more information about coercion of strings, see Section 10.8.4,
“Collation Coercibility in Expressions”.

10.3 Specifying Character Sets and Collations

There are default settings for character sets and collations at four levels: server, database, table, and
column. The description in the following sections may appear complex, but it has been found in practice
that multiple-level defaulting leads to natural and obvious results.

CHARACTER SET is used in clauses that specify a character set. CHARSET can be used as a synonym for
CHARACTER SET.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character
set different from the default, you'll need to indicate which one. For example, to use the utf8 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about character set-related issues in client/server communication, see Section 10.4,
“Connection Character Sets and Collations”.

10.3.1 Collation Naming Conventions

MySQL collation names follow these conventions:

• A collation name starts with the name of the character set with which it is associated, generally followed
by one or more suffixes indicating other collation characteristics. For example, utf8_general_ci
and latin1_swedish_ci are collations for the utf8 and latin1 character sets, respectively. The
binary character set has a single collation, also named binary, with no suffixes.

• A language-specific collation includes a language name. For example, utf8_turkish_ci and
utf8_hungarian_ci sort characters for the utf8 character set using the rules of Turkish and
Hungarian, respectively.

• Collation suffixes indicate whether a collation is case-sensitive, accent-sensitive, or kana-sensitive (or
some combination thereof), or binary. The following table shows the suffixes used to indicate these
characteristics.

Table 10.1 Collation Suffix Meanings

Suffix Meaning

_ai Accent-insensitive

_as Accent-sensitive

_ci Case-insensitive

_cs Case-sensitive

_bin Binary

For nonbinary collation names that do not specify accent sensitivity, it is determined by case sensitivity.
If a collation name does not contain _ai or _as, _ci in the name implies _ai and _cs in the name

1284

Server Character Set and Collation

implies _as. For example, latin1_general_ci is explicitly case-insensitive and implicitly accent-
insensitive, and latin1_general_cs is explicitly case-sensitive and implicitly accent-sensitive.

For the binary collation of the binary character set, comparisons are based on numeric byte values.
For the _bin collation of a nonbinary character set, comparisons are based on numeric character code
values, which differ from byte values for multibyte characters. For information about the differences
between the binary collation of the binary character set and the _bin collations of nonbinary
character sets, see Section 10.8.5, “The binary Collation Compared to _bin Collations”.

• Collation names for Unicode character sets may include a version number to indicate the version of
the Unicode Collation Algorithm (UCA) on which the collation is based. UCA-based collations without a
version number in the name use the version-4.0.0 UCA weight keys. For example:

• utf8_unicode_520_ci is based on UCA 5.2.0 weight keys (http://www.unicode.org/Public/
UCA/5.2.0/allkeys.txt).

• utf8_unicode_ci (with no version named) is based on UCA 4.0.0 weight keys (http://
www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt).

• For Unicode character sets, the xxx_general_mysql500_ci collations preserve the pre-5.1.24
ordering of the original xxx_general_ci collations and permit upgrades for tables created before
MySQL 5.1.24 (Bug #27877).

10.3.2 Server Character Set and Collation

MySQL Server has a server character set and a server collation. By default, these are latin1 and
latin1_swedish_ci, but they can be set explicitly at server startup on the command line or in an option
file and changed at runtime.

Initially, the server character set and collation depend on the options that you use when you start
mysqld. You can use --character-set-server for the character set. Along with it, you can add --
collation-server for the collation. If you don't specify a character set, that is the same as saying
--character-set-server=latin1. If you specify only a character set (for example, latin1) but
not a collation, that is the same as saying --character-set-server=latin1 --collation-
server=latin1_swedish_ci because latin1_swedish_ci is the default collation for latin1.
Therefore, the following three commands all have the same effect:

mysqld
mysqld --character-set-server=latin1
mysqld --character-set-server=latin1 \
 --collation-server=latin1_swedish_ci

One way to change the settings is by recompiling. To change the default server character set and collation
when building from sources, use the DEFAULT_CHARSET and DEFAULT_COLLATION options for CMake.
For example:

cmake . -DDEFAULT_CHARSET=latin1

Or:

cmake . -DDEFAULT_CHARSET=latin1 \
 -DDEFAULT_COLLATION=latin1_german1_ci

Both mysqld and CMake verify that the character set/collation combination is valid. If not, each program
displays an error message and terminates.

The server character set and collation are used as default values if the database character set and
collation are not specified in CREATE DATABASE statements. They have no other purpose.

1285

http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

Database Character Set and Collation

The current server character set and collation can be determined from the values of the
character_set_server and collation_server system variables. These variables can be changed
at runtime.

10.3.3 Database Character Set and Collation

Every database has a database character set and a database collation. The CREATE DATABASE and
ALTER DATABASE statements have optional clauses for specifying the database character set and
collation:

CREATE DATABASE db_name
 [[DEFAULT] CHARACTER SET charset_name]
 [[DEFAULT] COLLATE collation_name]

ALTER DATABASE db_name
 [[DEFAULT] CHARACTER SET charset_name]
 [[DEFAULT] COLLATE collation_name]

The keyword SCHEMA can be used instead of DATABASE.

All database options are stored in a text file named db.opt that can be found in the database directory.

The CHARACTER SET and COLLATE clauses make it possible to create databases with different character
sets and collations on the same MySQL server.

Example:

CREATE DATABASE db_name CHARACTER SET latin1 COLLATE latin1_swedish_ci;

MySQL chooses the database character set and database collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified, character set
charset_name and collation collation_name are used.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name
and its default collation are used. To see the default collation for each character set, use the SHOW
CHARACTER SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated with
collation_name and collation collation_name are used.

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the server character set and server
collation are used.

The character set and collation for the default database can be determined from the values of the
character_set_database and collation_database system variables. The server sets these
variables whenever the default database changes. If there is no default database, the variables have
the same value as the corresponding server-level system variables, character_set_server and
collation_server.

To see the default character set and collation for a given database, use these statements:

USE db_name;
SELECT @@character_set_database, @@collation_database;

Alternatively, to display the values without changing the default database:

SELECT DEFAULT_CHARACTER_SET_NAME, DEFAULT_COLLATION_NAME
FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME = 'db_name';

1286

Table Character Set and Collation

The database character set and collation affect these aspects of server operation:

• For CREATE TABLE statements, the database character set and collation are used as default values for
table definitions if the table character set and collation are not specified. To override this, provide explicit
CHARACTER SET and COLLATE table options.

• For LOAD DATA statements that include no CHARACTER SET clause, the server uses the character set
indicated by the character_set_database system variable to interpret the information in the file. To
override this, provide an explicit CHARACTER SET clause.

• For stored routines (procedures and functions), the database character set and collation in effect at
routine creation time are used as the character set and collation of character data parameters for
which the declaration includes no CHARACTER SET or a COLLATE attribute. To override this, provide
CHARACTER SET and COLLATE explicitly.

10.3.4 Table Character Set and Collation

Every table has a table character set and a table collation. The CREATE TABLE and ALTER TABLE
statements have optional clauses for specifying the table character set and collation:

CREATE TABLE tbl_name (column_list)
 [[DEFAULT] CHARACTER SET charset_name]
 [COLLATE collation_name]]

ALTER TABLE tbl_name
 [[DEFAULT] CHARACTER SET charset_name]
 [COLLATE collation_name]

Example:

CREATE TABLE t1 (...)
CHARACTER SET latin1 COLLATE latin1_danish_ci;

MySQL chooses the table character set and collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified, character set
charset_name and collation collation_name are used.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name
and its default collation are used. To see the default collation for each character set, use the SHOW
CHARACTER SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated with
collation_name and collation collation_name are used.

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the database character set and collation
are used.

The table character set and collation are used as default values for column definitions if the column
character set and collation are not specified in individual column definitions. The table character set and
collation are MySQL extensions; there are no such things in standard SQL.

10.3.5 Column Character Set and Collation

Every “character” column (that is, a column of type CHAR, VARCHAR, a TEXT type, or any synonym) has
a column character set and a column collation. Column definition syntax for CREATE TABLE and ALTER
TABLE has optional clauses for specifying the column character set and collation:

col_name {CHAR | VARCHAR | TEXT} (col_length)

1287

Column Character Set and Collation

 [CHARACTER SET charset_name]
 [COLLATE collation_name]

These clauses can also be used for ENUM and SET columns:

col_name {ENUM | SET} (val_list)
 [CHARACTER SET charset_name]
 [COLLATE collation_name]

Examples:

CREATE TABLE t1
(
 col1 VARCHAR(5)
 CHARACTER SET latin1
 COLLATE latin1_german1_ci
);

ALTER TABLE t1 MODIFY
 col1 VARCHAR(5)
 CHARACTER SET latin1
 COLLATE latin1_swedish_ci;

MySQL chooses the column character set and collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified, character set
charset_name and collation collation_name are used.

CREATE TABLE t1
(
 col1 CHAR(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set and collation are specified for the column, so they are used. The column has character
set utf8 and collation utf8_unicode_ci.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name and
its default collation are used.

CREATE TABLE t1
(
 col1 CHAR(10) CHARACTER SET utf8
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set is specified for the column, but the collation is not. The column has character set
utf8 and the default collation for utf8, which is utf8_general_ci. To see the default collation for
each character set, use the SHOW CHARACTER SET statement or query the INFORMATION_SCHEMA
CHARACTER_SETS table.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated with
collation_name and collation collation_name are used.

CREATE TABLE t1
(
 col1 CHAR(10) COLLATE utf8_polish_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The collation is specified for the column, but the character set is not. The column has collation
utf8_polish_ci and the character set is the one associated with the collation, which is utf8.

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the table character set and collation are
used.

1288

Character String Literal Character Set and Collation

CREATE TABLE t1
(
 col1 CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_bin;

Neither the character set nor collation is specified for the column, so the table defaults are used. The
column has character set latin1 and collation latin1_bin.

The CHARACTER SET and COLLATE clauses are standard SQL.

If you use ALTER TABLE to convert a column from one character set to another, MySQL attempts to map
the data values, but if the character sets are incompatible, there may be data loss.

10.3.6 Character String Literal Character Set and Collation

Every character string literal has a character set and a collation.

For the simple statement SELECT 'string', the string has the connection default character set and
collation defined by the character_set_connection and collation_connection system variables.

A character string literal may have an optional character set introducer and COLLATE clause, to designate
it as a string that uses a particular character set and collation:

[_charset_name]'string' [COLLATE collation_name]

The _charset_name expression is formally called an introducer. It tells the parser, “the string that follows
uses character set charset_name.” An introducer does not change the string to the introducer character
set like CONVERT() would do. It does not change the string value, although padding may occur. The
introducer is just a signal. See Section 10.3.8, “Character Set Introducers”.

Examples:

SELECT 'abc';
SELECT _latin1'abc';
SELECT _binary'abc';
SELECT _utf8'abc' COLLATE utf8_danish_ci;

Character set introducers and the COLLATE clause are implemented according to standard SQL
specifications.

MySQL determines the character set and collation of a character string literal in the following manner:

• If both _charset_name and COLLATE collation_name are specified, character set charset_name
and collation collation_name are used. collation_name must be a permitted collation for
charset_name.

• If _charset_name is specified but COLLATE is not specified, character set charset_name and its
default collation are used. To see the default collation for each character set, use the SHOW CHARACTER
SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If _charset_name is not specified but COLLATE collation_name is specified, the connection
default character set given by the character_set_connection system variable and collation
collation_name are used. collation_name must be a permitted collation for the connection default
character set.

• Otherwise (neither _charset_name nor COLLATE collation_name is specified), the
connection default character set and collation given by the character_set_connection and
collation_connection system variables are used.

1289

Character String Literal Character Set and Collation

Examples:

• A nonbinary string with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'Müller' COLLATE latin1_german1_ci;

• A nonbinary string with utf8 character set and its default collation (that is, utf8_general_ci):

SELECT _utf8'Müller';

• A binary string with binary character set and its default collation (that is, binary):

SELECT _binary'Müller';

• A nonbinary string with the connection default character set and utf8_general_ci collation (fails if the
connection character set is not utf8):

SELECT 'Müller' COLLATE utf8_general_ci;

• A string with the connection default character set and collation:

SELECT 'Müller';

An introducer indicates the character set for the following string, but does not change how the parser
performs escape processing within the string. Escapes are always interpreted by the parser according to
the character set given by character_set_connection.

The following examples show that escape processing occurs using character_set_connection
even in the presence of an introducer. The examples use SET NAMES (which changes
character_set_connection, as discussed in Section 10.4, “Connection Character Sets and
Collations”), and display the resulting strings using the HEX() function so that the exact string contents can
be seen.

Example 1:

mysql> SET NAMES latin1;
mysql> SELECT HEX('à\n'), HEX(_sjis'à\n');
+------------+-----------------+
| HEX('à\n') | HEX(_sjis'à\n') |
+------------+-----------------+
| E00A | E00A |
+------------+-----------------+

Here, à (hexadecimal value E0) is followed by \n, the escape sequence for newline. The escape sequence
is interpreted using the character_set_connection value of latin1 to produce a literal newline
(hexadecimal value 0A). This happens even for the second string. That is, the _sjis introducer does not
affect the parser's escape processing.

Example 2:

mysql> SET NAMES sjis;
mysql> SELECT HEX('à\n'), HEX(_latin1'à\n');
+------------+-------------------+
| HEX('à\n') | HEX(_latin1'à\n') |
+------------+-------------------+
| E05C6E | E05C6E |
+------------+-------------------+

Here, character_set_connection is sjis, a character set in which the sequence of à followed by
\ (hexadecimal values 05 and 5C) is a valid multibyte character. Hence, the first two bytes of the string
are interpreted as a single sjis character, and the \ is not interpreted as an escape character. The

1290

The National Character Set

following n (hexadecimal value 6E) is not interpreted as part of an escape sequence. This is true even for
the second string; the _latin1 introducer does not affect escape processing.

10.3.7 The National Character Set

Standard SQL defines NCHAR or NATIONAL CHAR as a way to indicate that a CHAR column should use
some predefined character set. MySQL uses utf8 as this predefined character set. For example, these
data type declarations are equivalent:

CHAR(10) CHARACTER SET utf8
NATIONAL CHARACTER(10)
NCHAR(10)

As are these:

VARCHAR(10) CHARACTER SET utf8
NATIONAL VARCHAR(10)
NVARCHAR(10)
NCHAR VARCHAR(10)
NATIONAL CHARACTER VARYING(10)
NATIONAL CHAR VARYING(10)

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

10.3.8 Character Set Introducers

A character string literal, hexadecimal literal, or bit-value literal may have an optional character set
introducer and COLLATE clause, to designate it as a string that uses a particular character set and
collation:

[_charset_name] literal [COLLATE collation_name]

The _charset_name expression is formally called an introducer. It tells the parser, “the string that follows
uses character set charset_name.” An introducer does not change the string to the introducer character
set like CONVERT() would do. It does not change the string value, although padding may occur. The
introducer is just a signal.

For character string literals, space between the introducer and the string is permitted but optional.

For character set literals, an introducer indicates the character set for the following string, but does not
change how the parser performs escape processing within the string. Escapes are always interpreted
by the parser according to the character set given by character_set_connection. For additional
discussion and examples, see Section 10.3.6, “Character String Literal Character Set and Collation”.

Examples:

SELECT 'abc';
SELECT _latin1'abc';
SELECT _binary'abc';
SELECT _utf8'abc' COLLATE utf8_danish_ci;

SELECT _latin1 X'4D7953514C';
SELECT _utf8 0x4D7953514C COLLATE utf8_danish_ci;

1291

Character Set Introducers

SELECT _latin1 b'1000001';
SELECT _utf8 0b1000001 COLLATE utf8_danish_ci;

Character set introducers and the COLLATE clause are implemented according to standard SQL
specifications.

Character string literals can be designated as binary strings by using the _binary introducer.
Hexadecimal literals and bit-value literals are binary strings by default, so _binary is permitted, but
unnecessary.

MySQL determines the character set and collation of a character string literal, hexadecimal literal, or bit-
value literal in the following manner:

• If both _charset_name and COLLATE collation_name are specified, character set charset_name
and collation collation_name are used. collation_name must be a permitted collation for
charset_name.

• If _charset_name is specified but COLLATE is not specified, character set charset_name and its
default collation are used. To see the default collation for each character set, use the SHOW CHARACTER
SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If _charset_name is not specified but COLLATE collation_name is specified:

• For a character string literal, the connection default character set given by the
character_set_connection system variable and collation collation_name are used.
collation_name must be a permitted collation for the connection default character set.

• For a hexadecimal literal or bit-value literal, the only permitted collation is binary because these
types of literals are binary strings by default.

• Otherwise (neither _charset_name nor COLLATE collation_name is specified):

• For a character string literal, the connection default character set and collation given by the
character_set_connection and collation_connection system variables are used.

• For a hexadecimal literal or bit-value literal, the character set and collation are binary.

Examples:

• Nonbinary strings with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'Müller' COLLATE latin1_german1_ci;
SELECT _latin1 X'0A0D' COLLATE latin1_german1_ci;
SELECT _latin1 b'0110' COLLATE latin1_german1_ci;

• Nonbinary strings with utf8 character set and its default collation (that is, utf8_general_ci):

SELECT _utf8'Müller';
SELECT _utf8 X'0A0D';
SELECT _utf8 b'0110';

• Binary strings with binary character set and its default collation (that is, binary):

SELECT _binary'Müller';
SELECT X'0A0D';
SELECT b'0110';

The hexadecimal literal and bit-value literal need no introducer because they are binary strings by
default.

1292

Examples of Character Set and Collation Assignment

• A nonbinary string with the connection default character set and utf8_general_ci collation (fails if the
connection character set is not utf8):

SELECT 'Müller' COLLATE utf8_general_ci;

This construction (COLLATE only) does not work for hexadecimal literals or bit literals because their
character set is binary no matter the connection character set, and binary is not compatible with the
utf8_general_ci collation. The only permitted COLLATE clause in the absence of an introducer is
COLLATE binary.

• A string with the connection default character set and collation:

SELECT 'Müller';

10.3.9 Examples of Character Set and Collation Assignment

The following examples show how MySQL determines default character set and collation values.

Example 1: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci
) DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;

Here we have a column with a latin1 character set and a latin1_german1_ci collation. The definition
is explicit, so that is straightforward. Notice that there is no problem with storing a latin1 column in a
latin2 table.

Example 2: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10) CHARACTER SET latin1
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

This time we have a column with a latin1 character set and a default collation. Although it might seem
natural, the default collation is not taken from the table level. Instead, because the default collation for
latin1 is always latin1_swedish_ci, column c1 has a collation of latin1_swedish_ci (not
latin1_danish_ci).

Example 3: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10)
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

We have a column with a default character set and a default collation. In this circumstance, MySQL checks
the table level to determine the column character set and collation. Consequently, the character set for
column c1 is latin1 and its collation is latin1_danish_ci.

Example 4: Database, Table, and Column Definition

CREATE DATABASE d1
 DEFAULT CHARACTER SET latin2 COLLATE latin2_czech_cs;
USE d1;
CREATE TABLE t1
(

1293

Compatibility with Other DBMSs

 c1 CHAR(10)
);

We create a column without specifying its character set and collation. We're also not specifying a character
set and a collation at the table level. In this circumstance, MySQL checks the database level to determine
the table settings, which thereafter become the column settings.) Consequently, the character set for
column c1 is latin2 and its collation is latin2_czech_cs.

10.3.10 Compatibility with Other DBMSs

For MaxDB compatibility these two statements are the same:

CREATE TABLE t1 (f1 CHAR(N) UNICODE);
CREATE TABLE t1 (f1 CHAR(N) CHARACTER SET ucs2);

10.4 Connection Character Sets and Collations

A “connection” is what a client program makes when it connects to the server, to begin a session within
which it interacts with the server. The client sends SQL statements, such as queries, over the session
connection. The server sends responses, such as result sets or error messages, over the connection back
to the client.

• Connection Character Set and Collation System Variables

• Impermissible Client Character Sets

• Client Program Connection Character Set Configuration

• SQL Statements for Connection Character Set Configuration

• Connection Character Set Error Handling

Connection Character Set and Collation System Variables

Several character set and collation system variables relate to a client's interaction with the server. Some of
these have been mentioned in earlier sections:

• The character_set_server and collation_server system variables indicate the server
character set and collation. See Section 10.3.2, “Server Character Set and Collation”.

• The character_set_database and collation_database system variables indicate the character
set and collation of the default database. See Section 10.3.3, “Database Character Set and Collation”.

Additional character set and collation system variables are involved in handling traffic for the connection
between a client and the server. Every client has session-specific connection-related character set and
collation system variables. These session system variable values are initialized at connect time, but can be
changed within the session.

Several questions about character set and collation handling for client connections can be answered in
terms of system variables:

• What character set are statements in when they leave the client?

The server takes the character_set_client system variable to be the character set in which
statements are sent by the client.

1294

Impermissible Client Character Sets

Note

Some character sets cannot be used as the client character set. See
Impermissible Client Character Sets.

• What character set should the server translate statements to after receiving them?

To determine this, the server uses the character_set_connection and collation_connection
system variables:

• The server converts statements sent by the client from character_set_client to
character_set_connection. Exception: For string literals that have an introducer such as
_utf8mb4 or _latin2, the introducer determines the character set. See Section 10.3.8, “Character
Set Introducers”.

• collation_connection is important for comparisons of literal strings. For comparisons of strings
with column values, collation_connection does not matter because columns have their own
collation, which has a higher collation precedence (see Section 10.8.4, “Collation Coercibility in
Expressions”).

• What character set should the server translate query results to before shipping them back to the client?

The character_set_results system variable indicates the character set in which the server returns
query results to the client. This includes result data such as column values, result metadata such as
column names, and error messages.

To tell the server to perform no conversion of result sets or error messages, set
character_set_results to NULL or binary:

SET character_set_results = NULL;
SET character_set_results = binary;

For more information about character sets and error messages, see Section 10.6, “Error Message
Character Set”.

To see the values of the character set and collation system variables that apply to the current session, use
this statement:

SELECT * FROM INFORMATION_SCHEMA.SESSION_VARIABLES
WHERE VARIABLE_NAME IN (
'character_set_client', 'character_set_connection',
'character_set_results', 'collation_connection'
) ORDER BY VARIABLE_NAME;

The following simpler statements also display the connection variables, but include other related variables
as well. They can be useful to see all character set and collation system variables:

SHOW SESSION VARIABLES LIKE 'character_set_%';
SHOW SESSION VARIABLES LIKE 'collation_%';

Clients can fine-tune the settings for these variables, or depend on the defaults (in which case, you can
skip the rest of this section). If you do not use the defaults, you must change the character settings for
each connection to the server.

Impermissible Client Character Sets

The character_set_client system variable cannot be set to certain character sets:

1295

Client Program Connection Character Set Configuration

ucs2
utf16
utf16le
utf32

Attempting to use any of those character sets as the client character set produces an error:

mysql> SET character_set_client = 'ucs2';
ERROR 1231 (42000): Variable 'character_set_client'
can't be set to the value of 'ucs2'

The same error occurs if any of those character sets are used in the following contexts, all of which result
in an attempt to set character_set_client to the named character set:

• The --default-character-set=charset_name command option used by MySQL client programs
such as mysql and mysqladmin.

• The SET NAMES 'charset_name' statement.

• The SET CHARACTER SET 'charset_name' statement.

Client Program Connection Character Set Configuration

When a client connects to the server, it indicates which character set it wants to use for communication
with the server. (Actually, the client indicates the default collation for that character set, from
which the server can determine the character set.) The server uses this information to set the
character_set_client, character_set_results, character_set_connection system
variables to the character set, and collation_connection to the character set default collation. In
effect, the server performs the equivalent of a SET NAMES operation.

If the server does not support the requested character set or collation, it falls back to using the server
character set and collation to configure the connection. For additional detail about this fallback behavior,
see Connection Character Set Error Handling.

The mysql, mysqladmin, mysqlcheck, mysqlimport, and mysqlshow client programs determine the
default character set to use as follows:

• In the absence of other information, each client uses the compiled-in default character set, usually
latin1.

• Each client can autodetect which character set to use based on the operating system setting, such as
the value of the LANG or LC_ALL locale environment variable on Unix systems or the code page setting
on Windows systems. For systems on which the locale is available from the OS, the client uses it to
set the default character set rather than using the compiled-in default. For example, setting LANG to
ru_RU.KOI8-R causes the koi8r character set to be used. Thus, users can configure the locale in
their environment for use by MySQL clients.

The OS character set is mapped to the closest MySQL character set if there is no exact match. If the
client does not support the matching character set, it uses the compiled-in default. For example, ucs2 is
not supported as a connection character set, so it maps to the compiled-in default.

C applications can use character set autodetection based on the OS setting by invoking
mysql_options() as follows before connecting to the server:

mysql_options(mysql,
 MYSQL_SET_CHARSET_NAME,
 MYSQL_AUTODETECT_CHARSET_NAME);

1296

https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html

SQL Statements for Connection Character Set Configuration

• Each client supports a --default-character-set option, which enables users to specify the
character set explicitly to override whatever default the client otherwise determines.

Note

Some character sets cannot be used as the client character set. Attempting
to use them with --default-character-set produces an error. See
Impermissible Client Character Sets.

With the mysql client, to use a character set different from the default, you could explicitly execute a SET
NAMES statement every time you connect to the server (see Client Program Connection Character Set
Configuration). To accomplish the same result more easily, specify the character set in your option file.
For example, the following option file setting changes the three connection-related character set system
variables set to koi8r each time you invoke mysql:

[mysql]
default-character-set=koi8r

If you are using the mysql client with auto-reconnect enabled (which is not recommended), it is preferable
to use the charset command rather than SET NAMES. For example:

mysql> charset koi8r
Charset changed

The charset command issues a SET NAMES statement, and also changes the default character set that
mysql uses when it reconnects after the connection has dropped.

When configuration client programs, you must also consider the environment within which they execute.
See Section 10.5, “Configuring Application Character Set and Collation”.

SQL Statements for Connection Character Set Configuration

After a connection has been established, clients can change the character set and collation system
variables for the current session. These variables can be changed individually using SET statements, but
two more convenient statements affect the connection-related character set sytem variables as a group:

• SET NAMES 'charset_name' [COLLATE 'collation_name']

SET NAMES indicates what character set the client uses to send SQL statements to the server. Thus,
SET NAMES 'cp1251' tells the server, “future incoming messages from this client are in character
set cp1251.” It also specifies the character set that the server should use for sending results back to
the client. (For example, it indicates what character set to use for column values if you use a SELECT
statement that produces a result set.)

A SET NAMES 'charset_name' statement is equivalent to these three statements:

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET character_set_connection = charset_name;

Setting character_set_connection to charset_name also implicitly sets
collation_connection to the default collation for charset_name. It is unnecessary to set that
collation explicitly. To specify a particular collation to use for collation_connection, add a COLLATE
clause:

SET NAMES 'charset_name' COLLATE 'collation_name'

• SET CHARACTER SET 'charset_name'

1297

Connection Character Set Error Handling

SET CHARACTER SET is similar to SET NAMES but sets character_set_connection and
collation_connection to character_set_database and collation_database (which, as
mentioned previously, indicate the character set and collation of the default database).

A SET CHARACTER SET charset_name statement is equivalent to these three statements:

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET collation_connection = @@collation_database;

Setting collation_connection also implicitly sets character_set_connection to the character
set associated with the collation (equivalent to executing SET character_set_connection =
@@character_set_database). It is unnecessary to set character_set_connection explicitly.

Note

Some character sets cannot be used as the client character set. Attempting to
use them with SET NAMES or SET CHARACTER SET produces an error. See
Impermissible Client Character Sets.

Example: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you do not say
SET NAMES or SET CHARACTER SET, then for SELECT column1 FROM t, the server sends back all
the values for column1 using the character set that the client specified when it connected. On the other
hand, if you say SET NAMES 'latin1' or SET CHARACTER SET 'latin1' before issuing the SELECT
statement, the server converts the latin2 values to latin1 just before sending results back. Conversion
may be lossy for characters that are not in both character sets.

Connection Character Set Error Handling

Attempts to use an inappropriate connection character set or collation can produce an error, or cause the
server to fall back to its default character set and collation for a given connection. This section describes
problems that can occur when configuring the connection character set. These problems can occur when
establishing a connection or when changing the character set within an established connection.

• Connect-Time Error Handling

• Runtime Error Handling

Connect-Time Error Handling

Some character sets cannot be used as the client character set; see Impermissible Client Character Sets.
If you specify a character set that is valid but not permitted as a client character set, the server returns an
error:

$> mysql --default-character-set=ucs2
ERROR 1231 (42000): Variable 'character_set_client' can't be set to
the value of 'ucs2'

If you specify a character set that the client does not recognize, it produces an error:

$> mysql --default-character-set=bogus
mysql: Character set 'bogus' is not a compiled character set and is
not specified in the '/usr/local/mysql/share/charsets/Index.xml' file
ERROR 2019 (HY000): Can't initialize character set bogus
(path: /usr/local/mysql/share/charsets/)

If you specify a character set that the client recognizes but the server does not, the server falls back
to its default character set and collation. Suppose that the server is configured to use latin1 and
latin1_swedish_ci as its defaults, and that it does not recognize gb18030 as a valid character set.

1298

Connection Character Set Error Handling

A client that specifies --default-character-set=gb18030 is able to connect to the server, but the
resulting character set is not what the client wants:

mysql> SHOW SESSION VARIABLES LIKE 'character_set_%';
+--------------------------+--------+
| Variable_name | Value |
+--------------------------+--------+
| character_set_client | latin1 |
| character_set_connection | latin1 |
...
| character_set_results | latin1 |
...
+--------------------------+--------+
mysql> SHOW SESSION VARIABLES LIKE 'collation_connection';
+----------------------+-------------------+
| Variable_name | Value |
+----------------------+-------------------+
| collation_connection | latin1_swedish_ci |
+----------------------+-------------------+

You can see that the connection system variables have been set to reflect a character set and collation of
latin1 and latin1_swedish_ci. This occurs because the server cannot satisfy the client character set
request and falls back to its defaults.

In this case, the client cannot use the character set that it wants because the server does not support
it. The client must either be willing to use a different character set, or connect to a different server that
supports the desired character set.

The same problem occurs in a more subtle context: When the client tells the server to use a character set
that the server recognizes, but the default collation for that character set on the client side is not known
on the server side. This occurs, for example, when a MySQL 8.0 client wants to connect to a MySQL
5.7 server using utf8mb4 as the client character set. A client that specifies --default-character-
set=utf8mb4 is able to connect to the server. However, as in the previous example, the server falls back
to its default character set and collation, not what the client requested:

mysql> SHOW SESSION VARIABLES LIKE 'character_set_%';
+--------------------------+--------+
| Variable_name | Value |
+--------------------------+--------+
| character_set_client | latin1 |
| character_set_connection | latin1 |
...
| character_set_results | latin1 |
...
+--------------------------+--------+
mysql> SHOW SESSION VARIABLES LIKE 'collation_connection';
+----------------------+-------------------+
| Variable_name | Value |
+----------------------+-------------------+
| collation_connection | latin1_swedish_ci |
+----------------------+-------------------+

Why does this occur? After all, utf8mb4 is known to the 8.0 client and the 5.7 server, so both of them
recognize it. To understand this behavior, it is necessary to understand that when the client tells the server
which character set it wants to use, it really tells the server the default collation for that character set.
Therefore, the aforementioned behavior occurs due to a combination of factors:

• The default collation for utf8mb4 differs between MySQL 5.7 and 8.0 (utf8mb4_general_ci for 5.7,
utf8mb4_0900_ai_ci for 8.0).

• When the 8.0 client requests a character set of utf8mb4, what it sends to the server is the default 8.0
utf8mb4 collation; that is, the utf8mb4_0900_ai_ci.

1299

Configuring Application Character Set and Collation

• utf8mb4_0900_ai_ci is implemented only as of MySQL 8.0, so the 5.7 server does not recognize it.

• Because the 5.7 server does not recognize utf8mb4_0900_ai_ci, it cannot satisfy the client
character set request, and falls back to its default character set and collation (latin1 and
latin1_swedish_ci).

In this case, the client can still use utf8mb4 by issuing a SET NAMES 'utf8mb4' statement after
connecting. The resulting collation is the 5.7 default utf8mb4 collation; that is, utf8mb4_general_ci.
If the client additionally wants a collation of utf8mb4_0900_ai_ci, it cannot achieve that because the
server does not recognize that collation. The client must either be willing to use a different utf8mb4
collation, or connect to a server from MySQL 8.0 or higher.

Runtime Error Handling

Within an established connection, the client can request a change of connection character set and collation
with SET NAMES or SET CHARACTER SET.

Some character sets cannot be used as the client character set; see Impermissible Client Character Sets.
If you specify a character set that is valid but not permitted as a client character set, the server returns an
error:

mysql> SET NAMES 'ucs2';
ERROR 1231 (42000): Variable 'character_set_client' can't be set to
the value of 'ucs2'

If the server does not recognize the character set (or the collation), it produces an error:

mysql> SET NAMES 'bogus';
ERROR 1115 (42000): Unknown character set: 'bogus'

mysql> SET NAMES 'utf8mb4' COLLATE 'bogus';
ERROR 1273 (HY000): Unknown collation: 'bogus'

Tip

A client that wants to verify whether its requested character set was honored by the
server can execute the following statement after connecting and checking that the
result is the expected character set:

SELECT @@character_set_client;

10.5 Configuring Application Character Set and Collation
For applications that store data using the default MySQL character set and collation (latin1,
latin1_swedish_ci), no special configuration should be needed. If applications require data storage
using a different character set or collation, you can configure character set information several ways:

• Specify character settings per database. For example, applications that use one database might use the
default of latin1, whereas applications that use another database might use sjis.

• Specify character settings at server startup. This causes the server to use the given settings for all
applications that do not make other arrangements.

• Specify character settings at configuration time, if you build MySQL from source. This causes the server
to use the given settings as the defaults for all applications, without having to specify them at server
startup.

When different applications require different character settings, the per-database technique provides a
good deal of flexibility. If most or all applications use the same character set, specifying character settings
at server startup or configuration time may be most convenient.

1300

Configuring Application Character Set and Collation

For the per-database or server-startup techniques, the settings control the character set for data storage.
Applications must also tell the server which character set to use for client/server communications, as
described in the following instructions.

The examples shown here assume use of the utf8 character set and utf8_general_ci collation in
particular contexts as an alternative to the defaults of latin1 and latin1_swedish_ci.

• Specify character settings per database. To create a database such that its tables use a given
default character set and collation for data storage, use a CREATE DATABASE statement like this:

CREATE DATABASE mydb
 CHARACTER SET utf8
 COLLATE utf8_general_ci;

Tables created in the database use utf8 and utf8_general_ci by default for any character columns.

Applications that use the database should also configure their connection to the server each time
they connect. This can be done by executing a SET NAMES 'utf8' statement after connecting. The
statement can be used regardless of connection method (the mysql client, PHP scripts, and so forth).

In some cases, it may be possible to configure the connection to use the desired character set some
other way. For example, to connect using mysql, you can specify the --default-character-
set=utf8 command-line option to achieve the same effect as SET NAMES 'utf8'.

For more information about configuring client connections, see Section 10.4, “Connection Character Sets
and Collations”.

Note

If you use ALTER DATABASE to change the database default character set or
collation, existing stored routines in the database that use those defaults must
be dropped and recreated so that they use the new defaults. (In a stored routine,
variables with character data types use the database defaults if the character
set or collation are not specified explicitly. See Section 13.1.15, “CREATE
PROCEDURE and CREATE FUNCTION Statements”.)

• Specify character settings at server startup. To select a character set and collation at server
startup, use the --character-set-server and --collation-server options. For example, to
specify the options in an option file, include these lines:

[mysqld]
character-set-server=utf8
collation-server=utf8_general_ci

These settings apply server-wide and apply as the defaults for databases created by any application,
and for tables created in those databases.

It is still necessary for applications to configure their connection using SET NAMES or equivalent
after they connect, as described previously. You might be tempted to start the server with the --
init_connect="SET NAMES 'utf8'" option to cause SET NAMES to be executed automatically
for each client that connects. However, this may yield inconsistent results because the init_connect
value is not executed for users who have the SUPER privilege.

• Specify character settings at MySQL configuration time. To select a character set and collation if
you configure and build MySQL from source, use the DEFAULT_CHARSET and DEFAULT_COLLATION
CMake options:

cmake . -DDEFAULT_CHARSET=utf8 \

1301

Error Message Character Set

 -DDEFAULT_COLLATION=utf8_general_ci

The resulting server uses utf8 and utf8_general_ci as the default for databases and tables and
for client connections. It is unnecessary to use --character-set-server and --collation-
server to specify those defaults at server startup. It is also unnecessary for applications to configure
their connection using SET NAMES or equivalent after they connect to the server.

Regardless of how you configure the MySQL character set for application use, you must also consider the
environment within which those applications execute. For example, if you send statements using UTF-8
text taken from a file that you create in an editor, you should edit the file with the locale of your environment
set to UTF-8 so that the file encoding is correct and so that the operating system handles it correctly. If
you use the mysql client from within a terminal window, the window must be configured to use UTF-8
or characters may not display properly. For a script that executes in a Web environment, the script must
handle character encoding properly for its interaction with the MySQL server, and it must generate pages
that correctly indicate the encoding so that browsers know how to display the content of the pages. For
example, you can include this <meta> tag within your <head> element:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

10.6 Error Message Character Set
This section describes how the MySQL server uses character sets for constructing error messages. For
information about the language of error messages (rather than the character set), see Section 10.12,
“Setting the Error Message Language”. For general information about configuring error logging, see
Section 5.4.2, “The Error Log”.

• Character Set for Error Message Construction

• Character Set for Error Message Disposition

Character Set for Error Message Construction

The server constructs error messages as follows:

• The message template uses UTF-8 (utf8mb3).

• Parameters in the message template are replaced with values that apply to a specific error occurrence:

• Identifiers such as table or column names use UTF-8 internally so they are copied as is.

• Character (nonbinary) string values are converted from their character set to UTF-8.

• Binary string values are copied as is for bytes in the range 0x20 to 0x7E, and using \x hexadecimal
encoding for bytes outside that range. For example, if a duplicate-key error occurs for an attempt to
insert 0x41CF9F into a VARBINARY unique column, the resulting error message uses UTF-8 with
some bytes hexadecimal encoded:

Duplicate entry 'A\xCF\x9F' for key 1

Character Set for Error Message Disposition

An error message, once constructed, can be written by the server to the error log or sent to clients:

• If the server writes the error message to the error log, it writes it in UTF-8, as constructed, without
conversion to another character set.

• If the server sends the error message to a client program, the server converts it from
UTF-8 to the character set specified by the character_set_results system variable. If

1302

Column Character Set Conversion

character_set_results has a value of NULL or binary, no conversion occurs. No conversion
occurs if the variable value is utf8mb3 or utf8mb4, either, because those character sets have a
repertoire that includes all UTF-8 characters used in message construction.

If characters cannot be represented in character_set_results, some encoding may occur during
the conversion. The encoding uses Unicode code point values:

• Characters in the Basic Multilingual Plane (BMP) range (0x0000 to 0xFFFF) are written using \nnnn
notation.

• Characters outside the BMP range (0x10000 to 0x10FFFF) are written using \+nnnnnn notation.

Clients can set character_set_results to control the character set in which they receive error
messages. The variable can be set directly, or indirectly by means such as SET NAMES. For more
information about character_set_results, see Section 10.4, “Connection Character Sets and
Collations”.

10.7 Column Character Set Conversion
To convert a binary or nonbinary string column to use a particular character set, use ALTER TABLE. For
successful conversion to occur, one of the following conditions must apply:

• If the column has a binary data type (BINARY, VARBINARY, BLOB), all the values that it contains must
be encoded using a single character set (the character set you're converting the column to). If you use a
binary column to store information in multiple character sets, MySQL has no way to know which values
use which character set and cannot convert the data properly.

• If the column has a nonbinary data type (CHAR, VARCHAR, TEXT), its contents should be encoded in the
column character set, not some other character set. If the contents are encoded in a different character
set, you can convert the column to use a binary data type first, and then to a nonbinary column with the
desired character set.

Suppose that a table t has a binary column named col1 defined as VARBINARY(50). Assuming that
the information in the column is encoded using a single character set, you can convert it to a nonbinary
column that has that character set. For example, if col1 contains binary data representing characters in
the greek character set, you can convert it as follows:

ALTER TABLE t MODIFY col1 VARCHAR(50) CHARACTER SET greek;

If your original column has a type of BINARY(50), you could convert it to CHAR(50), but the resulting
values are padded with 0x00 bytes at the end, which may be undesirable. To remove these bytes, use the
TRIM() function:

UPDATE t SET col1 = TRIM(TRAILING 0x00 FROM col1);

Suppose that table t has a nonbinary column named col1 defined as CHAR(50) CHARACTER SET
latin1 but you want to convert it to use utf8 so that you can store values from many languages. The
following statement accomplishes this:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET utf8;

Conversion may be lossy if the column contains characters that are not in both character sets.

A special case occurs if you have old tables from before MySQL 4.1 where a nonbinary column contains
values that actually are encoded in a character set different from the server's default character set. For
example, an application might have stored sjis values in a column, even though MySQL's default
character set was different. It is possible to convert the column to use the proper character set but an

1303

Collation Issues

additional step is required. Suppose that the server's default character set was latin1 and col1 is
defined as CHAR(50) but its contents are sjis values. The first step is to convert the column to a
binary data type, which removes the existing character set information without performing any character
conversion:

ALTER TABLE t MODIFY col1 BLOB;

The next step is to convert the column to a nonbinary data type with the proper character set:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET sjis;

This procedure requires that the table not have been modified already with statements such as INSERT
or UPDATE after an upgrade to MySQL 4.1 or higher. In that case, MySQL would store new values in the
column using latin1; the column contains a mix of sjis and latin1 values and cannot be converted
properly.

If you specified attributes when creating a column initially, you should also specify them when altering the
table with ALTER TABLE. For example, if you specified NOT NULL and an explicit DEFAULT value, you
should also provide them in the ALTER TABLE statement. Otherwise, the resulting column definition does
not include those attributes.

To convert all character columns in a table, the ALTER TABLE ... CONVERT TO CHARACTER SET
charset statement may be useful. See Section 13.1.7, “ALTER TABLE Statement”.

10.8 Collation Issues

The following sections discuss various aspects of character set collations.

10.8.1 Using COLLATE in SQL Statements

With the COLLATE clause, you can override whatever the default collation is for a comparison. COLLATE
may be used in various parts of SQL statements. Here are some examples:

• With ORDER BY:

SELECT k
FROM t1
ORDER BY k COLLATE latin1_german2_ci;

• With AS:

SELECT k COLLATE latin1_german2_ci AS k1
FROM t1
ORDER BY k1;

• With GROUP BY:

SELECT k
FROM t1
GROUP BY k COLLATE latin1_german2_ci;

• With aggregate functions:

SELECT MAX(k COLLATE latin1_german2_ci)
FROM t1;

• With DISTINCT:

SELECT DISTINCT k COLLATE latin1_german2_ci

1304

COLLATE Clause Precedence

FROM t1;

• With WHERE:

 SELECT *
 FROM t1
 WHERE _latin1 'Müller' COLLATE latin1_german2_ci = k;

 SELECT *
 FROM t1
 WHERE k LIKE _latin1 'Müller' COLLATE latin1_german2_ci;

• With HAVING:

SELECT k
FROM t1
GROUP BY k
HAVING k = _latin1 'Müller' COLLATE latin1_german2_ci;

10.8.2 COLLATE Clause Precedence

The COLLATE clause has high precedence (higher than ||), so the following two expressions are
equivalent:

x || y COLLATE z
x || (y COLLATE z)

10.8.3 Character Set and Collation Compatibility

Each character set has one or more collations, but each collation is associated with one and only one
character set. Therefore, the following statement causes an error message because the latin2_bin
collation is not legal with the latin1 character set:

mysql> SELECT _latin1 'x' COLLATE latin2_bin;
ERROR 1253 (42000): COLLATION 'latin2_bin' is not valid
for CHARACTER SET 'latin1'

10.8.4 Collation Coercibility in Expressions

In the great majority of statements, it is obvious what collation MySQL uses to resolve a comparison
operation. For example, in the following cases, it should be clear that the collation is the collation of column
x:

SELECT x FROM T ORDER BY x;
SELECT x FROM T WHERE x = x;
SELECT DISTINCT x FROM T;

However, with multiple operands, there can be ambiguity. For example, this statement performs a
comparison between the column x and the string literal 'Y':

SELECT x FROM T WHERE x = 'Y';

If x and 'Y' have the same collation, there is no ambiguity about the collation to use for the comparison.
But if they have different collations, should the comparison use the collation of x, or of 'Y'? Both x and
'Y' have collations, so which collation takes precedence?

A mix of collations may also occur in contexts other than comparison. For example, a multiple-argument
concatenation operation such as CONCAT(x,'Y') combines its arguments to produce a single string.
What collation should the result have?

1305

Collation Coercibility in Expressions

To resolve questions like these, MySQL checks whether the collation of one item can be coerced to the
collation of the other. MySQL assigns coercibility values as follows:

• An explicit COLLATE clause has a coercibility of 0 (not coercible at all).

• The concatenation of two strings with different collations has a coercibility of 1.

• The collation of a column or a stored routine parameter or local variable has a coercibility of 2.

• A “system constant” (the string returned by functions such as USER() or VERSION()) has a coercibility
of 3.

• The collation of a literal has a coercibility of 4.

• The collation of a numeric or temporal value has a coercibility of 5.

• NULL or an expression that is derived from NULL has a coercibility of 6.

MySQL uses coercibility values with the following rules to resolve ambiguities:

• Use the collation with the lowest coercibility value.

• If both sides have the same coercibility, then:

• If both sides are Unicode, or both sides are not Unicode, it is an error.

• If one of the sides has a Unicode character set, and another side has a non-Unicode character set, the
side with Unicode character set wins, and automatic character set conversion is applied to the non-
Unicode side. For example, the following statement does not return an error:

SELECT CONCAT(utf8_column, latin1_column) FROM t1;

It returns a result that has a character set of utf8 and the same collation as utf8_column. Values of
latin1_column are automatically converted to utf8 before concatenating.

• For an operation with operands from the same character set but that mix a _bin collation and a _ci
or _cs collation, the _bin collation is used. This is similar to how operations that mix nonbinary and
binary strings evaluate the operands as binary strings, applied to collations rather than data types.

Although automatic conversion is not in the SQL standard, the standard does say that every character
set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-known principle that
“what applies to a superset can apply to a subset,” we believe that a collation for Unicode can apply
for comparisons with non-Unicode strings. More generally, MySQL uses the concept of character set
repertoire, which can sometimes be used to determine subset relationships among character sets and
enable conversion of operands in operations that would otherwise produce an error. See Section 10.2.1,
“Character Set Repertoire”.

The following table illustrates some applications of the preceding rules.

Comparison Collation Used

column1 = 'A' Use collation of column1

column1 = 'A' COLLATE x Use collation of 'A' COLLATE x

column1 COLLATE x = 'A' COLLATE y Error

To determine the coercibility of a string expression, use the COERCIBILITY() function (see
Section 12.16, “Information Functions”):

1306

The binary Collation Compared to _bin Collations

mysql> SELECT COERCIBILITY(_utf8'A' COLLATE utf8_bin);
 -> 0
mysql> SELECT COERCIBILITY(VERSION());
 -> 3
mysql> SELECT COERCIBILITY('A');
 -> 4
mysql> SELECT COERCIBILITY(1000);
 -> 5
mysql> SELECT COERCIBILITY(NULL);
 -> 6

For implicit conversion of a numeric or temporal value to a string, such as occurs for the argument 1 in
the expression CONCAT(1, 'abc'), the result is a character (nonbinary) string that has a character set
and collation determined by the character_set_connection and collation_connection system
variables. See Section 12.3, “Type Conversion in Expression Evaluation”.

10.8.5 The binary Collation Compared to _bin Collations

This section describes how the binary collation for binary strings compares to _bin collations for
nonbinary strings.

Binary strings (as stored using the BINARY, VARBINARY, and BLOB data types) have a character set and
collation named binary. Binary strings are sequences of bytes and the numeric values of those bytes
determine comparison and sort order. See Section 10.10.8, “The Binary Character Set”.

Nonbinary strings (as stored using the CHAR, VARCHAR, and TEXT data types) have a character set and
collation other than binary. A given nonbinary character set can have several collations, each of which
defines a particular comparison and sort order for the characters in the set. One of these is the binary
collation, indicated by a _bin suffix in the collation name. For example, the binary collation for utf8 and
latin1 is named utf8_bin and latin1_bin, respectively.

The binary collation differs from _bin collations in several respects, discussed in the following sections:

• The Unit for Comparison and Sorting

• Character Set Conversion

• Lettercase Conversion

• Trailing Space Handling in Comparisons

• Trailing Space Handling for Inserts and Retrievals

The Unit for Comparison and Sorting

Binary strings are sequences of bytes. For the binary collation, comparison and sorting are based on
numeric byte values. Nonbinary strings are sequences of characters, which might be multibyte. Collations
for nonbinary strings define an ordering of the character values for comparison and sorting. For _bin
collations, this ordering is based on numeric character code values, which is similar to ordering for binary
strings except that character code values might be multibyte.

Character Set Conversion

A nonbinary string has a character set and is automatically converted to another character set in many
cases, even when the string has a _bin collation:

• When assigning column values to another column that has a different character set:

1307

The binary Collation Compared to _bin Collations

UPDATE t1 SET utf8_bin_column=latin1_column;
INSERT INTO t1 (latin1_column) SELECT utf8_bin_column FROM t2;

• When assigning column values for INSERT or UPDATE using a string literal:

SET NAMES latin1;
INSERT INTO t1 (utf8_bin_column) VALUES ('string-in-latin1');

• When sending results from the server to a client:

SET NAMES latin1;
SELECT utf8_bin_column FROM t2;

For binary string columns, no conversion occurs. For cases similar to those preceding, the string value is
copied byte-wise.

Lettercase Conversion

Collations for nonbinary character sets provide information about lettercase of characters, so characters
in a nonbinary string can be converted from one lettercase to another, even for _bin collations that ignore
lettercase for ordering:

mysql> SET NAMES utf8mb4 COLLATE utf8mb4_bin;
mysql> SELECT LOWER('aA'), UPPER('zZ');
+-------------+-------------+
| LOWER('aA') | UPPER('zZ') |
+-------------+-------------+
| aa | ZZ |
+-------------+-------------+

The concept of lettercase does not apply to bytes in a binary string. To perform lettercase conversion, the
string must first be converted to a nonbinary string using a character set appropriate for the data stored in
the string:

mysql> SET NAMES binary;
mysql> SELECT LOWER('aA'), LOWER(CONVERT('aA' USING utf8mb4));
+-------------+------------------------------------+
| LOWER('aA') | LOWER(CONVERT('aA' USING utf8mb4)) |
+-------------+------------------------------------+
| aA | aa |
+-------------+------------------------------------+

Trailing Space Handling in Comparisons

Nonbinary strings have PAD SPACE behavior for all collations, including _bin collations. Trailing spaces
are insignificant in comparisons:

mysql> SET NAMES utf8 COLLATE utf8_bin;
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 1 |
+------------+

For binary strings, all bytes are significant in comparisons, including trailing spaces:

mysql> SET NAMES binary;
mysql> SELECT 'a ' = 'a';
+------------+

1308

Examples of the Effect of Collation

| 'a ' = 'a' |
+------------+
| 0 |
+------------+

Trailing Space Handling for Inserts and Retrievals

CHAR(N) columns store nonbinary strings N characters long. For inserts, values shorter than N characters
are extended with spaces. For retrievals, trailing spaces are removed.

BINARY(N) columns store binary strings N bytes long. For inserts, values shorter than N bytes are
extended with 0x00 bytes. For retrievals, nothing is removed; a value of the declared length is always
returned.

mysql> CREATE TABLE t1 (
 a CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin,
 b BINARY(10)
);
mysql> INSERT INTO t1 VALUES ('x','x');
mysql> INSERT INTO t1 VALUES ('x ','x ');
mysql> SELECT a, b, HEX(a), HEX(b) FROM t1;
+------+------------+--------+----------------------+
| a | b | HEX(a) | HEX(b) |
+------+------------+--------+----------------------+
| x | x | 78 | 78000000000000000000 |
| x | x | 78 | 78200000000000000000 |
+------+------------+--------+----------------------+

10.8.6 Examples of the Effect of Collation

Example 1: Sorting German Umlauts

Suppose that column X in table T has these latin1 column values:

Muffler
Müller
MX Systems
MySQL

Suppose also that the column values are retrieved using the following statement:

SELECT X FROM T ORDER BY X COLLATE collation_name;

The following table shows the resulting order of the values if we use ORDER BY with different collations.

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller

MX Systems Müller Muffler

Müller MX Systems MX Systems

MySQL MySQL MySQL

The character that causes the different sort orders in this example is the U with two dots over it (ü), which
the Germans call “U-umlaut.”

• The first column shows the result of the SELECT using the Swedish/Finnish collating rule, which says
that U-umlaut sorts with Y.

1309

Using Collation in INFORMATION_SCHEMA Searches

• The second column shows the result of the SELECT using the German DIN-1 rule, which says that U-
umlaut sorts with U.

• The third column shows the result of the SELECT using the German DIN-2 rule, which says that U-umlaut
sorts with UE.

Example 2: Searching for German Umlauts

Suppose that you have three tables that differ only by the character set and collation used:

mysql> SET NAMES utf8;
mysql> CREATE TABLE german1 (
 c CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_german1_ci;
mysql> CREATE TABLE german2 (
 c CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_german2_ci;
mysql> CREATE TABLE germanutf8 (
 c CHAR(10)
) CHARACTER SET utf8 COLLATE utf8_unicode_ci;

Each table contains two records:

mysql> INSERT INTO german1 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO german2 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO germanutf8 VALUES ('Bar'), ('Bär');

Two of the above collations have an A = Ä equality, and one has no such equality
(latin1_german2_ci). For that reason, you'll get these results in comparisons:

mysql> SELECT * FROM german1 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+
mysql> SELECT * FROM german2 WHERE c = 'Bär';
+------+
| c |
+------+
| Bär |
+------+
mysql> SELECT * FROM germanutf8 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+

This is not a bug but rather a consequence of the sorting properties of latin1_german1_ci and
utf8_unicode_ci (the sorting shown is done according to the German DIN 5007 standard).

10.8.7 Using Collation in INFORMATION_SCHEMA Searches

String columns in INFORMATION_SCHEMA tables have a collation of utf8_general_ci, which is case-
insensitive. However, for values that correspond to objects that are represented in the file system, such
as databases and tables, searches in INFORMATION_SCHEMA string columns can be case-sensitive
or case-insensitive, depending on the characteristics of the underlying file system and the value of the
lower_case_table_names system variable. For example, searches may be case-sensitive if the file

1310

Using Collation in INFORMATION_SCHEMA Searches

system is case-sensitive. This section describes this behavior and how to modify it if necessary; see also
Bug #34921.

Suppose that a query searches the SCHEMATA.SCHEMA_NAME column for the test database. On Linux,
file systems are case-sensitive, so comparisons of SCHEMATA.SCHEMA_NAME with 'test' match, but
comparisons with 'TEST' do not:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'TEST';
Empty set (0.00 sec)

These results occur with the lower_case_table_names system variable set to 0. Changing the value of
lower_case_table_names to 1 or 2 causes the second query to return the same (nonempty) result as
the first query.

On Windows or macOS, file systems are not case-sensitive, so comparisons match both 'test' and
'TEST':

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'TEST';
+-------------+
| SCHEMA_NAME |
+-------------+
| TEST |
+-------------+

The value of lower_case_table_names makes no difference in this context.

The preceding behavior occurs because the utf8_general_ci collation is not used for
INFORMATION_SCHEMA queries when searching for values that correspond to objects
represented in the file system. It is a result of file system-scanning optimizations implemented for
INFORMATION_SCHEMA searches. For information about these optimizations, see Section 8.2.3,
“Optimizing INFORMATION_SCHEMA Queries”.

If the result of a string operation on an INFORMATION_SCHEMA column differs from expectations, a
workaround is to use an explicit COLLATE clause to force a suitable collation (see Section 10.8.1, “Using
COLLATE in SQL Statements”). For example, to perform a case-insensitive search, use COLLATE with the
INFORMATION_SCHEMA column name:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME COLLATE utf8_general_ci = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |

1311

Unicode Support

+-------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME COLLATE utf8_general_ci = 'TEST';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+

In the preceding queries, it is important to apply the COLLATE clause to the INFORMATION_SCHEMA
column name. Applying COLLATE to the comparison value has no effect.

You can also use the UPPER() or LOWER() function:

WHERE UPPER(SCHEMA_NAME) = 'TEST'
WHERE LOWER(SCHEMA_NAME) = 'test'

Although a case-insensitive comparison can be performed even on platforms with case-sensitive file
systems, as just shown, it is not necessarily always the right thing to do. On such platforms, it is possible
to have multiple objects with names that differ only in lettercase. For example, tables named city, CITY,
and City can all exist simultaneously. Consider whether a search should match all such names or just one
and write queries accordingly. The first of the following comparisons (with utf8_bin) is case-sensitive; the
others are not:

WHERE TABLE_NAME COLLATE utf8_bin = 'City'
WHERE TABLE_NAME COLLATE utf8_general_ci = 'city'
WHERE UPPER(TABLE_NAME) = 'CITY'
WHERE LOWER(TABLE_NAME) = 'city'

Searches in INFORMATION_SCHEMA string columns for values that refer to INFORMATION_SCHEMA
itself do use the utf8_general_ci collation because INFORMATION_SCHEMA is a “virtual” database
not represented in the file system. For example, comparisons with SCHEMATA.SCHEMA_NAME match
'information_schema' or 'INFORMATION_SCHEMA' regardless of platform:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'information_schema';
+--------------------+
| SCHEMA_NAME |
+--------------------+
| information_schema |
+--------------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'INFORMATION_SCHEMA';
+--------------------+
| SCHEMA_NAME |
+--------------------+
| information_schema |
+--------------------+

10.9 Unicode Support

The Unicode Standard includes characters from the Basic Multilingual Plane (BMP) and supplementary
characters that lie outside the BMP. This section describes support for Unicode in MySQL. For information
about the Unicode Standard itself, visit the Unicode Consortium website.

BMP characters have these characteristics:

• Their code point values are between 0 and 65535 (or U+0000 and U+FFFF).

1312

http://www.unicode.org/

Unicode Support

• They can be encoded in a variable-length encoding using 8, 16, or 24 bits (1 to 3 bytes).

• They can be encoded in a fixed-length encoding using 16 bits (2 bytes).

• They are sufficient for almost all characters in major languages.

Supplementary characters lie outside the BMP:

• Their code point values are between U+10000 and U+10FFFF).

• Unicode support for supplementary characters requires character sets that have a range outside BMP
characters and therefore take more space than BMP characters (up to 4 bytes per character).

The UTF-8 (Unicode Transformation Format with 8-bit units) method for encoding Unicode data is
implemented according to RFC 3629, which describes encoding sequences that take from one to four
bytes. The idea of UTF-8 is that various Unicode characters are encoded using byte sequences of different
lengths:

• Basic Latin letters, digits, and punctuation signs use one byte.

• Most European and Middle East script letters fit into a 2-byte sequence: extended Latin letters (with tilde,
macron, acute, grave and other accents), Cyrillic, Greek, Armenian, Hebrew, Arabic, Syriac, and others.

• Korean, Chinese, and Japanese ideographs use 3-byte or 4-byte sequences.

MySQL supports these Unicode character sets:

• utf8mb4: A UTF-8 encoding of the Unicode character set using one to four bytes per character.

• utf8mb3: A UTF-8 encoding of the Unicode character set using one to three bytes per character.

• utf8: An alias for utf8mb3.

• ucs2: The UCS-2 encoding of the Unicode character set using two bytes per character.

• utf16: The UTF-16 encoding for the Unicode character set using two or four bytes per character. Like
ucs2 but with an extension for supplementary characters.

• utf16le: The UTF-16LE encoding for the Unicode character set. Like utf16 but little-endian rather
than big-endian.

• utf32: The UTF-32 encoding for the Unicode character set using four bytes per character.

Table 10.2, “Unicode Character Set General Characteristics”, summarizes the general characteristics of
Unicode character sets supported by MySQL.

Table 10.2 Unicode Character Set General Characteristics

Character Set Supported Characters Required Storage Per Character

utf8mb3, utf8 BMP only 1, 2, or 3 bytes

ucs2 BMP only 2 bytes

utf8mb4 BMP and supplementary 1, 2, 3, or 4 bytes

utf16 BMP and supplementary 2 or 4 bytes

utf16le BMP and supplementary 2 or 4 bytes

1313

The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)

Character Set Supported Characters Required Storage Per Character

utf32 BMP and supplementary 4 bytes

Characters outside the BMP compare as REPLACEMENT CHARACTER and convert to '?' when
converted to a Unicode character set that supports only BMP characters (utf8mb3 or ucs2).

If you use character sets that support supplementary characters and thus are “wider” than the BMP-
only utf8mb3 and ucs2 character sets, there are potential incompatibility issues for your applications;
see Section 10.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”. That section also
describes how to convert tables from the (3-byte) utf8mb3 to the (4-byte) utf8mb4, and what constraints
may apply in doing so.

A similar set of collations is available for most Unicode character sets. For example, each has a Danish
collation, the names of which are utf8mb4_danish_ci, utf8mb3_danish_ci, utf8_danish_ci,
ucs2_danish_ci, utf16_danish_ci, and utf32_danish_ci. The exception is utf16le, which has
only two collations. For information about Unicode collations and their differentiating properties, including
collation properties for supplementary characters, see Section 10.10.1, “Unicode Character Sets”.

The MySQL implementation of UCS-2, UTF-16, and UTF-32 stores characters in big-endian byte order and
does not use a byte order mark (BOM) at the beginning of values. Other database systems might use little-
endian byte order or a BOM. In such cases, conversion of valuesmust be performed when transferring data
between those systems and MySQL. The implementation of UTF-16LE is little-endian.

MySQL uses no BOM for UTF-8 values.

Client applications that communicate with the server using Unicode should set the client character set
accordingly (for example, by issuing a SET NAMES 'utf8mb4' statement). Some character sets cannot
be used as the client character set. Attempting to use them with SET NAMES or SET CHARACTER SET
produces an error. See Impermissible Client Character Sets.

The following sections provide additional detail on the Unicode character sets in MySQL.

10.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)

The utfmb4 character set has these characteristics:

• Supports BMP and supplementary characters.

• Requires a maximum of four bytes per multibyte character.

utf8mb4 contrasts with the utf8mb3 character set, which supports only BMP characters and uses a
maximum of three bytes per character:

• For a BMP character, utf8mb4 and utf8mb3 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf8mb4 requires four bytes to store it, whereas utf8mb3 cannot
store the character at all. When converting utf8mb3 columns to utf8mb4, you need not worry about
converting supplementary characters because there are none.

utf8mb4 is a superset of utf8mb3, so for an operation such as the following concatenation, the result has
character set utf8mb4 and the collation of utf8mb4_col:

SELECT CONCAT(utf8mb3_col, utf8mb4_col);

Similarly, the following comparison in the WHERE clause works according to the collation of utf8mb4_col:

1314

The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding)

SELECT * FROM utf8mb3_tbl, utf8mb4_tbl
WHERE utf8mb3_tbl.utf8mb3_col = utf8mb4_tbl.utf8mb4_col;

For information about data type storage as it relates to multibyte character sets, see String Type Storage
Requirements.

10.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding)

The utf8mb3 character set has these characteristics:

• Supports BMP characters only (no support for supplementary characters)

• Requires a maximum of three bytes per multibyte character.

Applications that use UTF-8 data but require supplementary character support should use utf8mb4 rather
than utf8mb3 (see Section 10.9.1, “The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)”).

Exactly the same set of characters is available in utf8mb3 and ucs2. That is, they have the same
repertoire.

utf8 is an alias for utf8mb3; the character limit is implicit, rather than explicit in the name.

utf8mb3 can be used in CHARACTER SET clauses, and utf8mb3_collation_substring in
COLLATE clauses, where collation_substring is bin, czech_ci, danish_ci, esperanto_ci,
estonian_ci, and so forth. For example:

CREATE TABLE t (s1 CHAR(1)) CHARACTER SET utf8mb3;
SELECT * FROM t WHERE s1 COLLATE utf8mb3_general_ci = 'x';
DECLARE x VARCHAR(5) CHARACTER SET utf8mb3 COLLATE utf8mb3_danish_ci;
SELECT CAST('a' AS CHAR CHARACTER SET utf8) COLLATE utf8_czech_ci;

MySQL immediately converts instances of utf8mb3 in statements to utf8, so in statements such as
SHOW CREATE TABLE or SELECT CHARACTER_SET_NAME FROM INFORMATION_SCHEMA.COLUMNS
or SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLUMNS, users see the name utf8 or
utf8_collation_substring.

utf8mb3 is also valid in contexts other than CHARACTER SET clauses. For example:

mysqld --character-set-server=utf8mb3

SET NAMES 'utf8mb3'; /* and other SET statements that have similar effect */
SELECT _utf8mb3 'a';

For information about data type storage as it relates to multibyte character sets, see String Type Storage
Requirements.

10.9.3 The utf8 Character Set (Alias for utf8mb3)

utf8 is an alias for the utf8mb3 character set. For more information, see Section 10.9.2, “The utf8mb3
Character Set (3-Byte UTF-8 Unicode Encoding)”.

10.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding)

In UCS-2, every character is represented by a 2-byte Unicode code with the most significant byte first. For
example: LATIN CAPITAL LETTER A has the code 0x0041 and it is stored as a 2-byte sequence: 0x00
0x41. CYRILLIC SMALL LETTER YERU (Unicode 0x044B) is stored as a 2-byte sequence: 0x04 0x4B.
For Unicode characters and their codes, please refer to the Unicode Consortium website.

1315

http://www.unicode.org/

The utf16 Character Set (UTF-16 Unicode Encoding)

The ucs2 character set has these characteristics:

• Supports BMP characters only (no support for supplementary characters)

• Uses a fixed-length 16-bit encoding and requires two bytes per character.

10.9.5 The utf16 Character Set (UTF-16 Unicode Encoding)

The utf16 character set is the ucs2 character set with an extension that enables encoding of
supplementary characters:

• For a BMP character, utf16 and ucs2 have identical storage characteristics: same code values, same
encoding, same length.

• For a supplementary character, utf16 has a special sequence for representing the character using 32
bits. This is called the “surrogate” mechanism: For a number greater than 0xffff, take 10 bits and add
them to 0xd800 and put them in the first 16-bit word, take 10 more bits and add them to 0xdc00 and put
them in the next 16-bit word. Consequently, all supplementary characters require 32 bits, where the first
16 bits are a number between 0xd800 and 0xdbff, and the last 16 bits are a number between 0xdc00
and 0xdfff. Examples are in Section 15.5 Surrogates Area of the Unicode 4.0 document.

Because utf16 supports surrogates and ucs2 does not, there is a validity check that applies only in
utf16: You cannot insert a top surrogate without a bottom surrogate, or vice versa. For example:

INSERT INTO t (ucs2_column) VALUES (0xd800); /* legal */
INSERT INTO t (utf16_column)VALUES (0xd800); /* illegal */

There is no validity check for characters that are technically valid but are not true Unicode (that is,
characters that Unicode considers to be “unassigned code points” or “private use” characters or even
“illegals” like 0xffff). For example, since U+F8FF is the Apple Logo, this is legal:

INSERT INTO t (utf16_column)VALUES (0xf8ff); /* legal */

Such characters cannot be expected to mean the same thing to everyone.

Because MySQL must allow for the worst case (that one character requires four bytes) the maximum
length of a utf16 column or index is only half of the maximum length for a ucs2 column or index. For
example, the maximum length of a MEMORY table index key is 3072 bytes, so these statements create
tables with the longest permitted indexes for ucs2 and utf16 columns:

CREATE TABLE tf (s1 VARCHAR(1536) CHARACTER SET ucs2) ENGINE=MEMORY;
CREATE INDEX i ON tf (s1);
CREATE TABLE tg (s1 VARCHAR(768) CHARACTER SET utf16) ENGINE=MEMORY;
CREATE INDEX i ON tg (s1);

10.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding)

This is the same as utf16 but is little-endian rather than big-endian.

10.9.7 The utf32 Character Set (UTF-32 Unicode Encoding)

The utf32 character set is fixed length (like ucs2 and unlike utf16). utf32 uses 32 bits for every
character, unlike ucs2 (which uses 16 bits for every character), and unlike utf16 (which uses 16 bits for
some characters and 32 bits for others).

utf32 takes twice as much space as ucs2 and more space than utf16, but utf32 has the same
advantage as ucs2 that it is predictable for storage: The required number of bytes for utf32 equals the

1316

http://www.unicode.org/versions/Unicode4.0.0/ch15.pdf

Converting Between 3-Byte and 4-Byte Unicode Character Sets

number of characters times 4. Also, unlike utf16, there are no tricks for encoding in utf32, so the stored
value equals the code value.

To demonstrate how the latter advantage is useful, here is an example that shows how to determine a
utf8mb4 value given the utf32 code value:

/* Assume code value = 100cc LINEAR B WHEELED CHARIOT */
CREATE TABLE tmp (utf32_col CHAR(1) CHARACTER SET utf32,
 utf8mb4_col CHAR(1) CHARACTER SET utf8mb4);
INSERT INTO tmp VALUES (0x000100cc,NULL);
UPDATE tmp SET utf8mb4_col = utf32_col;
SELECT HEX(utf32_col),HEX(utf8mb4_col) FROM tmp;

MySQL is very forgiving about additions of unassigned Unicode characters or private-use-area characters.
There is in fact only one validity check for utf32: No code value may be greater than 0x10ffff. For
example, this is illegal:

INSERT INTO t (utf32_column) VALUES (0x110000); /* illegal */

10.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets

This section describes issues that you may face when converting character data between the utf8mb3
and utf8mb4 character sets.

Note

This discussion focuses primarily on converting between utf8mb3 and utf8mb4,
but similar principles apply to converting between the ucs2 character set and
character sets such as utf16 or utf32.

The utf8mb3 and utf8mb4 character sets differ as follows:

• utf8mb3 supports only characters in the Basic Multilingual Plane (BMP). utf8mb4 additionally supports
supplementary characters that lie outside the BMP.

• utf8mb3 uses a maximum of three bytes per character. utf8mb4 uses a maximum of four bytes per
character.

Note

This discussion refers to the utf8mb3 and utf8mb4 character set names to
be explicit about referring to 3-byte and 4-byte UTF-8 character set data. The
exception is that in table definitions, utf8 is used because MySQL converts
instances of utf8mb3 specified in such definitions to utf8, which is an alias for
utf8mb3.

One advantage of converting from utf8mb3 to utf8mb4 is that this enables applications to use
supplementary characters. One tradeoff is that this may increase data storage space requirements.

In terms of table content, conversion from utf8mb3 to utf8mb4 presents no problems:

• For a BMP character, utf8mb4 and utf8mb3 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf8mb4 requires four bytes to store it, whereas utf8mb3 cannot
store the character at all. When converting utf8mb3 columns to utf8mb4, you need not worry about
converting supplementary characters because there are none.

1317

Converting Between 3-Byte and 4-Byte Unicode Character Sets

In terms of table structure, these are the primary potential incompatibilities:

• For the variable-length character data types (VARCHAR and the TEXT types), the maximum permitted
length in characters is less for utf8mb4 columns than for utf8mb3 columns.

• For all character data types (CHAR, VARCHAR, and the TEXT types), the maximum number of characters
that can be indexed is less for utf8mb4 columns than for utf8mb3 columns.

Consequently, to convert tables from utf8mb3 to utf8mb4, it may be necessary to change some column
or index definitions.

Tables can be converted from utf8mb3 to utf8mb4 by using ALTER TABLE. Suppose that a table has
this definition:

CREATE TABLE t1 (
 col1 CHAR(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL,
 col2 CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL
) CHARACTER SET utf8;

The following statement converts t1 to use utf8mb4:

ALTER TABLE t1
 DEFAULT CHARACTER SET utf8mb4,
 MODIFY col1 CHAR(10)
 CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 MODIFY col2 CHAR(10)
 CHARACTER SET utf8mb4 COLLATE utf8mb4_bin NOT NULL;

The catch when converting from utf8mb3 to utf8mb4 is that the maximum length of a column or index
key is unchanged in terms of bytes. Therefore, it is smaller in terms of characters because the maximum
length of a character is four bytes instead of three. For the CHAR, VARCHAR, and TEXT data types, watch
for these issues when converting your MySQL tables:

• Check all definitions of utf8mb3 columns and make sure they do not exceed the maximum length for
the storage engine.

• Check all indexes on utf8mb3 columns and make sure they do not exceed the maximum length for the
storage engine. Sometimes the maximum can change due to storage engine enhancements.

If the preceding conditions apply, you must either reduce the defined length of columns or indexes, or
continue to use utf8mb3 rather than utf8mb4.

Here are some examples where structural changes may be needed:

• A TINYTEXT column can hold up to 255 bytes, so it can hold up to 85 3-byte or 63 4-byte characters.
Suppose that you have a TINYTEXT column that uses utf8mb3 but must be able to contain more than
63 characters. You cannot convert it to utf8mb4 unless you also change the data type to a longer type
such as TEXT.

Similarly, a very long VARCHAR column may need to be changed to one of the longer TEXT types if you
want to convert it from utf8mb3 to utf8mb4.

• InnoDB has a maximum index length of 767 bytes for tables that use COMPACT or REDUNDANT row
format, so for utf8mb3 or utf8mb4 columns, you can index a maximum of 255 or 191 characters,
respectively. If you currently have utf8mb3 columns with indexes longer than 191 characters, you must
index a smaller number of characters.

In an InnoDB table that uses COMPACT or REDUNDANT row format, these column and index definitions
are legal:

1318

Supported Character Sets and Collations

col1 VARCHAR(500) CHARACTER SET utf8, INDEX (col1(255))

To use utf8mb4 instead, the index must be smaller:

col1 VARCHAR(500) CHARACTER SET utf8mb4, INDEX (col1(191))

Note

For InnoDB tables that use COMPRESSED or DYNAMIC row format, you
can enable the innodb_large_prefix option to permit index key
prefixes longer than 767 bytes (up to 3072 bytes). Creating such tables
also requires the option values innodb_file_format=barracuda
and innodb_file_per_table=true.) In this case, enabling the
innodb_large_prefix option enables you to index a maximum of 1024 or
768 characters for utf8mb3 or utf8mb4 columns, respectively. For related
information, see Section 14.22, “InnoDB Limits”.

The preceding types of changes are most likely to be required only if you have very long columns or
indexes. Otherwise, you should be able to convert your tables from utf8mb3 to utf8mb4 without
problems, using ALTER TABLE as described previously.

The following items summarize other potential incompatibilities:

• SET NAMES 'utf8mb4' causes use of the 4-byte character set for connection character sets. As long
as no 4-byte characters are sent from the server, there should be no problems. Otherwise, applications
that expect to receive a maximum of three bytes per character may have problems. Conversely,
applications that expect to send 4-byte characters must ensure that the server understands them.

• For replication, if character sets that support supplementary characters are to be used on the source, all
replicas must understand them as well.

Also, keep in mind the general principle that if a table has different definitions on the source and replica,
this can lead to unexpected results. For example, the differences in maximum index key length make it
risky to use utf8mb3 on the source and utf8mb4 on the replica.

If you have converted to utf8mb4, utf16, utf16le, or utf32, and then decide to convert back to
utf8mb3 or ucs2 (for example, to downgrade to an older version of MySQL), these considerations apply:

• utf8mb3 and ucs2 data should present no problems.

• The server must be recent enough to recognize definitions referring to the character set from which you
are converting.

• For object definitions that refer to the utf8mb4 character set, you can dump them with mysqldump prior
to downgrading, edit the dump file to change instances of utf8mb4 to utf8, and reload the file in the
older server, as long as there are no 4-byte characters in the data. The older server sees utf8 in the
dump file object definitions and creates new objects that use the (3-byte) utf8 character set.

10.10 Supported Character Sets and Collations

This section indicates which character sets MySQL supports. There is one subsection for each group of
related character sets. For each character set, the permissible collations are listed.

To list the available character sets and their default collations, use the SHOW CHARACTER SET statement
or query the INFORMATION_SCHEMA CHARACTER_SETS table. For example:

1319

Unicode Character Sets

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
swe7	7bit Swedish	swe7_swedish_ci	1
ascii	US ASCII	ascii_general_ci	1
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci	1
tis620	TIS620 Thai	tis620_thai_ci	1
euckr	EUC-KR Korean	euckr_korean_ci	2
koi8u	KOI8-U Ukrainian	koi8u_general_ci	1
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
greek	ISO 8859-7 Greek	greek_general_ci	1
cp1250	Windows Central European	cp1250_general_ci	1
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
armscii8	ARMSCII-8 Armenian	armscii8_general_ci	1
utf8	UTF-8 Unicode	utf8_general_ci	3
ucs2	UCS-2 Unicode	ucs2_general_ci	2
cp866	DOS Russian	cp866_general_ci	1
keybcs2	DOS Kamenicky Czech-Slovak	keybcs2_general_ci	1
macce	Mac Central European	macce_general_ci	1
macroman	Mac West European	macroman_general_ci	1
cp852	DOS Central European	cp852_general_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
utf8mb4	UTF-8 Unicode	utf8mb4_general_ci	4
cp1251	Windows Cyrillic	cp1251_general_ci	1
utf16	UTF-16 Unicode	utf16_general_ci	4
utf16le	UTF-16LE Unicode	utf16le_general_ci	4
cp1256	Windows Arabic	cp1256_general_ci	1
cp1257	Windows Baltic	cp1257_general_ci	1
utf32	UTF-32 Unicode	utf32_general_ci	4
binary	Binary pseudo charset	binary	1
geostd8	GEOSTD8 Georgian	geostd8_general_ci	1
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+----------+-----------------------------+---------------------+--------+

In cases where a character set has multiple collations, it might not be clear which collation is most
suitable for a given application. To avoid choosing the wrong collation, it can be helpful to perform some
comparisons with representative data values to make sure that a given collation sorts values the way you
expect.

10.10.1 Unicode Character Sets

This section describes the collations available for Unicode character sets and their differentiating
properties. For general information about Unicode, see Section 10.9, “Unicode Support”.

MySQL supports multiple Unicode character sets:

• utf8mb4: A UTF-8 encoding of the Unicode character set using one to four bytes per character.

• utf8mb3: A UTF-8 encoding of the Unicode character set using one to three bytes per character.

• utf8: An alias for utf8mb3.

1320

Unicode Character Sets

• ucs2: The UCS-2 encoding of the Unicode character set using two bytes per character.

• utf16: The UTF-16 encoding for the Unicode character set using two or four bytes per character. Like
ucs2 but with an extension for supplementary characters.

• utf16le: The UTF-16LE encoding for the Unicode character set. Like utf16 but little-endian rather
than big-endian.

• utf32: The UTF-32 encoding for the Unicode character set using four bytes per character.

utf8mb4, utf16, utf16le, and utf32 support Basic Multilingual Plane (BMP) characters and
supplementary characters that lie outside the BMP. utf8 and ucs2 support only BMP characters.

Most Unicode character sets have a general collation (indicated by _general in the name or
by the absence of a language specifier), a binary collation (indicated by _bin in the name),
and several language-specific collations (indicated by language specifiers). For example, for
utf8mb4, utf8mb4_general_ci and utf8mb4_bin are its general and binary collations, and
utf8mb4_danish_ci is one of its language-specific collations.

Collation support for utf16le is limited. The only collations available are utf16le_general_ci and
utf16le_bin. These are similar to utf16_general_ci and utf16_bin.

• Unicode Collation Algorithm (UCA) Versions

• Language-Specific Collations

• _general_ci Versus _unicode_ci Collations

• Character Collating Weights

• Miscellaneous Information

Unicode Collation Algorithm (UCA) Versions

MySQL implements the xxx_unicode_ci collations according to the Unicode Collation Algorithm (UCA)
described at http://www.unicode.org/reports/tr10/. The collation uses the version-4.0.0 UCA weight keys:
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. The xxx_unicode_ci collations have only
partial support for the Unicode Collation Algorithm. Some characters are not supported, and combining
marks are not fully supported. This affects primarily Vietnamese, Yoruba, and some smaller languages
such as Navajo. A combined character is considered different from the same character written with a single
unicode character in string comparisons, and the two characters are considered to have a different length
(for example, as returned by the CHAR_LENGTH() function or in result set metadata).

Unicode collations based on UCA versions higher than 4.0.0 include the version in the collation name.
Thus, utf8_unicode_520_ci is based on UCA 5.2.0 weight keys (http://www.unicode.org/Public/
UCA/5.2.0/allkeys.txt).

The LOWER() and UPPER() functions perform case folding according to the collation of their argument.
A character that has uppercase and lowercase versions only in a Unicode version higher than 4.0.0 is
converted by these functions only if the argument collation uses a high enough UCA version.

Language-Specific Collations

MySQL implements language-specific Unicode collations if the ordering based only on the Unicode
Collation Algorithm (UCA) does not work well for a language. Language-specific collations are UCA-based,
with additional language tailoring rules. Examples of such rules appear later in this section. For questions

1321

http://www.unicode.org/reports/tr10/
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt

Unicode Character Sets

about particular language orderings, unicode.org provides Common Locale Data Repository (CLDR)
collation charts at http://www.unicode.org/cldr/charts/30/collation/index.html.

A language name shown in the following table indicates a language-specific collation. Unicode character
sets may include collations for one or more of these languages.

Table 10.3 Unicode Collation Language Specifiers

Language Language Specifier

Classical Latin roman

Croatian croatian

Czech czech

Danish danish

Esperanto esperanto

Estonian estonian

German phone book order german2

Hungarian hungarian

Icelandic icelandic

Latvian latvian

Lithuanian lithuanian

Persian persian

Polish polish

Romanian romanian

Sinhala sinhala

Slovak slovak

Slovenian slovenian

Modern Spanish spanish

Traditional Spanish spanish2

Swedish swedish

Turkish turkish

Vietnamese vietnamese

Croatian collations are tailored for these Croatian letters: Č, Ć, Dž, Đ, Lj, Nj, Š, Ž.

Danish collations may also be used for Norwegian.

For Classical Latin collations, I and J compare as equal, and U and V compare as equal.

Spanish collations are available for modern and traditional Spanish. For both, ñ (n-tilde) is a separate letter
between n and o. In addition, for traditional Spanish, ch is a separate letter between c and d, and ll is a
separate letter between l and m.

Traditional Spanish collations may also be used for Asturian and Galician.

Swedish collations include Swedish rules. For example, in Swedish, the following relationship holds, which
is not something expected by a German or French speaker:

1322

unicode.org
http://www.unicode.org/cldr/charts/30/collation/index.html

Unicode Character Sets

Ü = Y < Ö

_general_ci Versus _unicode_ci Collations

For any Unicode character set, operations performed using the xxx_general_ci collation are faster
than those for the xxx_unicode_ci collation. For example, comparisons for the utf8_general_ci
collation are faster, but slightly less correct, than comparisons for utf8_unicode_ci. The reason is
that utf8_unicode_ci supports mappings such as expansions; that is, when one character compares
as equal to combinations of other characters. For example, ß is equal to ss in German and some other
languages. utf8_unicode_ci also supports contractions and ignorable characters. utf8_general_ci
is a legacy collation that does not support expansions, contractions, or ignorable characters. It can make
only one-to-one comparisons between characters.

To further illustrate, the following equalities hold in both utf8_general_ci and utf8_unicode_ci (for
the effect of this in comparisons or searches, see Section 10.8.6, “Examples of the Effect of Collation”):

Ä = A
Ö = O
Ü = U

A difference between the collations is that this is true for utf8_general_ci:

ß = s

Whereas this is true for utf8_unicode_ci, which supports the German DIN-1 ordering (also known as
dictionary order):

ß = ss

MySQL implements utf8 language-specific collations if the ordering with utf8_unicode_ci does not
work well for a language. For example, utf8_unicode_ci works fine for German dictionary order and
French, so there is no need to create special utf8 collations.

utf8_general_ci also is satisfactory for both German and French, except that ß is equal to s, and not to
ss. If this is acceptable for your application, you should use utf8_general_ci because it is faster. If this
is not acceptable (for example, if you require German dictionary order), use utf8_unicode_ci because it
is more accurate.

If you require German DIN-2 (phone book) ordering, use the utf8_german2_ci collation, which
compares the following sets of characters equal:

Ä = Æ = AE
Ö = Œ = OE
Ü = UE
ß = ss

utf8_german2_ci is similar to latin1_german2_ci, but the latter does not compare Æ equal to AE
or Œ equal to OE. There is no utf8_german_ci corresponding to latin1_german_ci for German
dictionary order because utf8_general_ci suffices.

Character Collating Weights

A character's collating weight is determined as follows:

• For all Unicode collations except the _bin (binary) collations, MySQL performs a table lookup to find a
character's collating weight.

1323

Unicode Character Sets

• For _bin collations, the weight is based on the code point, possibly with leading zero bytes added.

Collating weights can be displayed using the WEIGHT_STRING() function. (See Section 12.8, “String
Functions and Operators”.) If a collation uses a weight lookup table, but a character is not in the table (for
example, because it is a “new” character), collating weight determination becomes more complex:

• For BMP characters in general collations (xxx_general_ci), the weight is the code point.

• For BMP characters in UCA collations (for example, xxx_unicode_ci and language-specific
collations), the following algorithm applies:

if (code >= 0x3400 && code <= 0x4DB5)
 base= 0xFB80; /* CJK Ideograph Extension */
else if (code >= 0x4E00 && code <= 0x9FA5)
 base= 0xFB40; /* CJK Ideograph */
else
 base= 0xFBC0; /* All other characters */
aaaa= base + (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;

The result is a sequence of two collating elements, aaaa followed by bbbb. For example:

mysql> SELECT HEX(WEIGHT_STRING(_ucs2 0x04CF COLLATE ucs2_unicode_ci));
+--+
| HEX(WEIGHT_STRING(_ucs2 0x04CF COLLATE ucs2_unicode_ci)) |
+--+
| FBC084CF |
+--+

Thus, U+04cf CYRILLIC SMALL LETTER PALOCHKA is, with all UCA 4.0.0 collations, greater than U
+04c0 CYRILLIC LETTER PALOCHKA. With UCA 5.2.0 collations, all palochkas sort together.

• For supplementary characters in general collations, the weight is the weight for 0xfffd REPLACEMENT
CHARACTER. For supplementary characters in UCA 4.0.0 collations, their collating weight is 0xfffd.
That is, to MySQL, all supplementary characters are equal to each other, and greater than almost all
BMP characters.

An example with Deseret characters and COUNT(DISTINCT):

CREATE TABLE t (s1 VARCHAR(5) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0xfffd); /* REPLACEMENT CHARACTER */
INSERT INTO t VALUES (0x010412); /* DESERET CAPITAL LETTER BEE */
INSERT INTO t VALUES (0x010413); /* DESERET CAPITAL LETTER TEE */
SELECT COUNT(DISTINCT s1) FROM t;

The result is 2 because in the MySQL xxx_unicode_ci collations, the replacement character has a
weight of 0x0dc6, whereas Deseret Bee and Deseret Tee both have a weight of 0xfffd. (Were the
utf32_general_ci collation used instead, the result is 1 because all three characters have a weight of
0xfffd in that collation.)

An example with cuneiform characters and WEIGHT_STRING():

/*
The four characters in the INSERT string are
00000041 # LATIN CAPITAL LETTER A
0001218F # CUNEIFORM SIGN KAB
000121A7 # CUNEIFORM SIGN KISH
00000042 # LATIN CAPITAL LETTER B
*/
CREATE TABLE t (s1 CHAR(4) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0x000000410001218f000121a700000042);
SELECT HEX(WEIGHT_STRING(s1)) FROM t;

1324

Unicode Character Sets

The result is:

0E33 FFFD FFFD 0E4A

0E33 and 0E4A are primary weights as in UCA 4.0.0. FFFD is the weight for KAB and also for KISH.

The rule that all supplementary characters are equal to each other is nonoptimal but is not expected to
cause trouble. These characters are very rare, so it is very rare that a multi-character string consists
entirely of supplementary characters. In Japan, since the supplementary characters are obscure Kanji
ideographs, the typical user does not care what order they are in, anyway. If you really want rows sorted
by the MySQL rule and secondarily by code point value, it is easy:

ORDER BY s1 COLLATE utf32_unicode_ci, s1 COLLATE utf32_bin

• For supplementary characters based on UCA versions higher than 4.0.0 (for example,
xxx_unicode_520_ci), supplementary characters do not necessarily all have the same collating
weight. Some have explicit weights from the UCA allkeys.txt file. Others have weights calculated
from this algorithm:

aaaa= base + (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;

There is a difference between “ordering by the character's code value” and “ordering by the character's
binary representation,” a difference that appears only with utf16_bin, because of surrogates.

Suppose that utf16_bin (the binary collation for utf16) was a binary comparison “byte by byte” rather
than “character by character.” If that were so, the order of characters in utf16_bin would differ from
the order in utf8_bin. For example, the following chart shows two rare characters. The first character
is in the range E000-FFFF, so it is greater than a surrogate but less than a supplementary. The second
character is a supplementary.

Code point Character utf8 utf16
---------- --------- ---- -----
0FF9D HALFWIDTH KATAKANA LETTER N EF BE 9D FF 9D
10384 UGARITIC LETTER DELTA F0 90 8E 84 D8 00 DF 84

The two characters in the chart are in order by code point value because 0xff9d < 0x10384. And they
are in order by utf8 value because 0xef < 0xf0. But they are not in order by utf16 value, if we use
byte-by-byte comparison, because 0xff > 0xd8.

So MySQL's utf16_bin collation is not “byte by byte.” It is “by code point.” When MySQL sees a
supplementary-character encoding in utf16, it converts to the character's code-point value, and then
compares. Therefore, utf8_bin and utf16_bin are the same ordering. This is consistent with the
SQL:2008 standard requirement for a UCS_BASIC collation: “UCS_BASIC is a collation in which the
ordering is determined entirely by the Unicode scalar values of the characters in the strings being sorted.
It is applicable to the UCS character repertoire. Since every character repertoire is a subset of the UCS
repertoire, the UCS_BASIC collation is potentially applicable to every character set. NOTE 11: The
Unicode scalar value of a character is its code point treated as an unsigned integer.”

If the character set is ucs2, comparison is byte-by-byte, but ucs2 strings should not contain surrogates,
anyway.

Miscellaneous Information

The xxx_general_mysql500_ci collations preserve the pre-5.1.24 ordering of the original
xxx_general_ci collations and permit upgrades for tables created before MySQL 5.1.24 (Bug #27877).

1325

ftp://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

West European Character Sets

10.10.2 West European Character Sets

Western European character sets cover most West European languages, such as French, Spanish,
Catalan, Basque, Portuguese, Italian, Albanian, Dutch, German, Danish, Swedish, Norwegian, Finnish,
Faroese, Icelandic, Irish, Scottish, and English.

• ascii (US ASCII) collations:

• ascii_bin

• ascii_general_ci (default)

• cp850 (DOS West European) collations:

• cp850_bin

• cp850_general_ci (default)

• dec8 (DEC Western European) collations:

• dec8_bin

• dec8_swedish_ci (default)

• hp8 (HP Western European) collations:

• hp8_bin

• hp8_english_ci (default)

• latin1 (cp1252 West European) collations:

• latin1_bin

• latin1_danish_ci

• latin1_general_ci

• latin1_general_cs

• latin1_german1_ci

• latin1_german2_ci

• latin1_spanish_ci

• latin1_swedish_ci (default)

latin1 is the default character set. MySQL's latin1 is the same as the Windows cp1252 character
set. This means it is the same as the official ISO 8859-1 or IANA (Internet Assigned Numbers
Authority) latin1, except that IANA latin1 treats the code points between 0x80 and 0x9f as
“undefined,” whereas cp1252, and therefore MySQL's latin1, assign characters for those positions.
For example, 0x80 is the Euro sign. For the “undefined” entries in cp1252, MySQL translates 0x81 to
Unicode 0x0081, 0x8d to 0x008d, 0x8f to 0x008f, 0x90 to 0x0090, and 0x9d to 0x009d.

The latin1_swedish_ci collation is the default that probably is used by the majority of MySQL
customers. Although it is frequently said that it is based on the Swedish/Finnish collation rules, there are
Swedes and Finns who disagree with this statement.

1326

Central European Character Sets

The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1 and DIN-2
standards, where DIN stands for Deutsches Institut für Normung (the German equivalent of ANSI). DIN-1
is called the “dictionary collation” and DIN-2 is called the “phone book collation.” For an example of the
effect this has in comparisons or when doing searches, see Section 10.8.6, “Examples of the Effect of
Collation”.

• latin1_german1_ci (dictionary) rules:

Ä = A
Ö = O
Ü = U
ß = s

• latin1_german2_ci (phone-book) rules:

Ä = AE
Ö = OE
Ü = UE
ß = ss

In the latin1_spanish_ci collation, ñ (n-tilde) is a separate letter between n and o.

• macroman (Mac West European) collations:

• macroman_bin

• macroman_general_ci (default)

• swe7 (7bit Swedish) collations:

• swe7_bin

• swe7_swedish_ci (default)

10.10.3 Central European Character Sets

MySQL provides some support for character sets used in the Czech Republic, Slovakia, Hungary,
Romania, Slovenia, Croatia, Poland, and Serbia (Latin).

• cp1250 (Windows Central European) collations:

• cp1250_bin

• cp1250_croatian_ci

• cp1250_czech_cs

• cp1250_general_ci (default)

• cp1250_polish_ci

• cp852 (DOS Central European) collations:

• cp852_bin

• cp852_general_ci (default)

• keybcs2 (DOS Kamenicky Czech-Slovak) collations:

1327

South European and Middle East Character Sets

• keybcs2_bin

• keybcs2_general_ci (default)

• latin2 (ISO 8859-2 Central European) collations:

• latin2_bin

• latin2_croatian_ci

• latin2_czech_cs

• latin2_general_ci (default)

• latin2_hungarian_ci

• macce (Mac Central European) collations:

• macce_bin

• macce_general_ci (default)

10.10.4 South European and Middle East Character Sets

South European and Middle Eastern character sets supported by MySQL include Armenian, Arabic,
Georgian, Greek, Hebrew, and Turkish.

• armscii8 (ARMSCII-8 Armenian) collations:

• armscii8_bin

• armscii8_general_ci (default)

• cp1256 (Windows Arabic) collations:

• cp1256_bin

• cp1256_general_ci (default)

• geostd8 (GEOSTD8 Georgian) collations:

• geostd8_bin

• geostd8_general_ci (default)

• greek (ISO 8859-7 Greek) collations:

• greek_bin

• greek_general_ci (default)

• hebrew (ISO 8859-8 Hebrew) collations:

• hebrew_bin

• hebrew_general_ci (default)

• latin5 (ISO 8859-9 Turkish) collations:

1328

Baltic Character Sets

• latin5_bin

• latin5_turkish_ci (default)

10.10.5 Baltic Character Sets

The Baltic character sets cover Estonian, Latvian, and Lithuanian languages.

• cp1257 (Windows Baltic) collations:

• cp1257_bin

• cp1257_general_ci (default)

• cp1257_lithuanian_ci

• latin7 (ISO 8859-13 Baltic) collations:

• latin7_bin

• latin7_estonian_cs

• latin7_general_ci (default)

• latin7_general_cs

10.10.6 Cyrillic Character Sets

The Cyrillic character sets and collations are for use with Belarusian, Bulgarian, Russian, Ukrainian, and
Serbian (Cyrillic) languages.

• cp1251 (Windows Cyrillic) collations:

• cp1251_bin

• cp1251_bulgarian_ci

• cp1251_general_ci (default)

• cp1251_general_cs

• cp1251_ukrainian_ci

• cp866 (DOS Russian) collations:

• cp866_bin

• cp866_general_ci (default)

• koi8r (KOI8-R Relcom Russian) collations:

• koi8r_bin

• koi8r_general_ci (default)

• koi8u (KOI8-U Ukrainian) collations:

• koi8u_bin

1329

Asian Character Sets

• koi8u_general_ci (default)

10.10.7 Asian Character Sets

The Asian character sets that we support include Chinese, Japanese, Korean, and Thai. These can
be complicated. For example, the Chinese sets must allow for thousands of different characters. See
Section 10.10.7.1, “The cp932 Character Set”, for additional information about the cp932 and sjis
character sets.

For answers to some common questions and problems relating support for Asian character sets in MySQL,
see Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”.

• big5 (Big5 Traditional Chinese) collations:

• big5_bin

• big5_chinese_ci (default)

• cp932 (SJIS for Windows Japanese) collations:

• cp932_bin

• cp932_japanese_ci (default)

• eucjpms (UJIS for Windows Japanese) collations:

• eucjpms_bin

• eucjpms_japanese_ci (default)

• euckr (EUC-KR Korean) collations:

• euckr_bin

• euckr_korean_ci (default)

• gb2312 (GB2312 Simplified Chinese) collations:

• gb2312_bin

• gb2312_chinese_ci (default)

• gbk (GBK Simplified Chinese) collations:

• gbk_bin

• gbk_chinese_ci (default)

• sjis (Shift-JIS Japanese) collations:

• sjis_bin

• sjis_japanese_ci (default)

• tis620 (TIS620 Thai) collations:

• tis620_bin

1330

Asian Character Sets

• tis620_thai_ci (default)

• ujis (EUC-JP Japanese) collations:

• ujis_bin

• ujis_japanese_ci (default)

The big5_chinese_ci collation sorts on number of strokes.

10.10.7.1 The cp932 Character Set

Why is cp932 needed?

In MySQL, the sjis character set corresponds to the Shift_JIS character set defined by IANA, which
supports JIS X0201 and JIS X0208 characters. (See http://www.iana.org/assignments/character-sets.)

However, the meaning of “SHIFT JIS” as a descriptive term has become very vague and it often includes
the extensions to Shift_JIS that are defined by various vendors.

For example, “SHIFT JIS” used in Japanese Windows environments is a Microsoft extension of
Shift_JIS and its exact name is Microsoft Windows Codepage : 932 or cp932. In addition to
the characters supported by Shift_JIS, cp932 supports extension characters such as NEC special
characters, NEC selected—IBM extended characters, and IBM selected characters.

Many Japanese users have experienced problems using these extension characters. These problems
stem from the following factors:

• MySQL automatically converts character sets.

• Character sets are converted using Unicode (ucs2).

• The sjis character set does not support the conversion of these extension characters.

• There are several conversion rules from so-called “SHIFT JIS” to Unicode, and some characters are
converted to Unicode differently depending on the conversion rule. MySQL supports only one of these
rules (described later).

The MySQL cp932 character set is designed to solve these problems.

Because MySQL supports character set conversion, it is important to separate IANA Shift_JIS and
cp932 into two different character sets because they provide different conversion rules.

How does cp932 differ from sjis?

The cp932 character set differs from sjis in the following ways:

• cp932 supports NEC special characters, NEC selected—IBM extended characters, and IBM selected
characters.

• Some cp932 characters have two different code points, both of which convert to the same Unicode code
point. When converting from Unicode back to cp932, one of the code points must be selected. For this
“round trip conversion,” the rule recommended by Microsoft is used. (See http://support.microsoft.com/
kb/170559/EN-US/.)

The conversion rule works like this:

1331

http://www.iana.org/assignments/character-sets
http://support.microsoft.com/kb/170559/EN-US/
http://support.microsoft.com/kb/170559/EN-US/

Asian Character Sets

• If the character is in both JIS X 0208 and NEC special characters, use the code point of JIS X 0208.

• If the character is in both NEC special characters and IBM selected characters, use the code point of
NEC special characters.

• If the character is in both IBM selected characters and NEC selected—IBM extended characters, use
the code point of IBM extended characters.

The table shown at https://msdn.microsoft.com/en-us/goglobal/cc305152.aspx provides information
about the Unicode values of cp932 characters. For cp932 table entries with characters under which
a four-digit number appears, the number represents the corresponding Unicode (ucs2) encoding. For
table entries with an underlined two-digit value appears, there is a range of cp932 character values that
begin with those two digits. Clicking such a table entry takes you to a page that displays the Unicode
value for each of the cp932 characters that begin with those digits.

The following links are of special interest. They correspond to the encodings for the following sets of
characters:

• NEC special characters (lead byte 0x87):

https://msdn.microsoft.com/en-us/goglobal/gg674964

• NEC selected—IBM extended characters (lead byte 0xED and 0xEE):

https://msdn.microsoft.com/en-us/goglobal/gg671837
https://msdn.microsoft.com/en-us/goglobal/gg671838

• IBM selected characters (lead byte 0xFA, 0xFB, 0xFC):

https://msdn.microsoft.com/en-us/goglobal/gg671839
https://msdn.microsoft.com/en-us/goglobal/gg671840
https://msdn.microsoft.com/en-us/goglobal/gg671841

• cp932 supports conversion of user-defined characters in combination with eucjpms, and solves
the problems with sjis/ujis conversion. For details, please refer to http://www.sljfaq.org/afaq/
encodings.html.

For some characters, conversion to and from ucs2 is different for sjis and cp932. The following tables
illustrate these differences.

Conversion to ucs2:

sjis/cp932 Value sjis -> ucs2 Conversion cp932 -> ucs2 Conversion

5C 005C 005C

7E 007E 007E

815C 2015 2015

815F 005C FF3C

8160 301C FF5E

8161 2016 2225

817C 2212 FF0D

8191 00A2 FFE0

8192 00A3 FFE1

1332

https://msdn.microsoft.com/en-us/goglobal/cc305152.aspx
https://msdn.microsoft.com/en-us/goglobal/gg674964
https://msdn.microsoft.com/en-us/goglobal/gg671837
https://msdn.microsoft.com/en-us/goglobal/gg671838
https://msdn.microsoft.com/en-us/goglobal/gg671839
https://msdn.microsoft.com/en-us/goglobal/gg671840
https://msdn.microsoft.com/en-us/goglobal/gg671841
http://www.sljfaq.org/afaq/encodings.html
http://www.sljfaq.org/afaq/encodings.html

The Binary Character Set

sjis/cp932 Value sjis -> ucs2 Conversion cp932 -> ucs2 Conversion

81CA 00AC FFE2

Conversion from ucs2:

ucs2 value ucs2 -> sjis Conversion ucs2 -> cp932 Conversion

005C 815F 5C

007E 7E 7E

00A2 8191 3F

00A3 8192 3F

00AC 81CA 3F

2015 815C 815C

2016 8161 3F

2212 817C 3F

2225 3F 8161

301C 8160 3F

FF0D 3F 817C

FF3C 3F 815F

FF5E 3F 8160

FFE0 3F 8191

FFE1 3F 8192

FFE2 3F 81CA

Users of any Japanese character sets should be aware that using --character-set-client-
handshake (or --skip-character-set-client-handshake) has an important effect. See
Section 5.1.6, “Server Command Options”.

10.10.8 The Binary Character Set

The binary character set is the character set for binary strings, which are sequences of bytes. The
binary character set has one collation, also named binary. Comparison and sorting are based on
numeric byte values, rather than on numeric character code values (which for multibyte characters differ
from numeric byte values). For information about the differences between the binary collation of the
binary character set and the _bin collations of nonbinary character sets, see Section 10.8.5, “The binary
Collation Compared to _bin Collations”.

For the binary character set, the concepts of lettercase and accent equivalence do not apply:

• For single-byte characters stored as binary strings, character and byte boundaries are the same, so
lettercase and accent differences are significant in comparisons. That is, the binary collation is case-
sensitive and accent-sensitive.

mysql> SET NAMES 'binary';
mysql> SELECT CHARSET('abc'), COLLATION('abc');
+----------------+------------------+
| CHARSET('abc') | COLLATION('abc') |
+----------------+------------------+
| binary | binary |
+----------------+------------------+
mysql> SELECT 'abc' = 'ABC', 'a' = 'ä';

1333

Restrictions on Character Sets

+---------------+------------+
| 'abc' = 'ABC' | 'a' = 'ä' |
+---------------+------------+
| 0 | 0 |
+---------------+------------+

• For multibyte characters stored as binary strings, character and byte boundaries differ. Character
boundaries are lost, so comparisons that depend on them are not meaningful.

To perform lettercase conversion of a binary string, first convert it to a nonbinary string using a character
set appropriate for the data stored in the string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING utf8mb4));
+-------------+------------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING utf8mb4)) |
+-------------+------------------------------------+
| New York | new york |
+-------------+------------------------------------+

To convert a string expression to a binary string, these constructs are equivalent:

BINARY expr
CAST(expr AS BINARY)
CONVERT(expr USING BINARY)

If a value is a character string literal, the _binary introducer may be used to designate it as a binary
string. For example:

_binary 'a'

The _binary introducer is permitted for hexadecimal literals and bit-value literals as well, but
unnecessary; such literals are binary strings by default.

For more information about introducers, see Section 10.3.8, “Character Set Introducers”.

Note

Within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that
option, see Section 4.5.1, “mysql — The MySQL Command-Line Client”.

10.11 Restrictions on Character Sets

• Identifiers are stored in mysql database tables (user, db, and so forth) using utf8, but identifiers
can contain only characters in the Basic Multilingual Plane (BMP). Supplementary characters are not
permitted in identifiers.

• The ucs2, utf16, utf16le, and utf32 character sets have the following restrictions:

• None of them can be used as the client character set. See Impermissible Client Character Sets.

• It is currently not possible to use LOAD DATA to load data files that use these character sets.

• FULLTEXT indexes cannot be created on a column that uses any of these character sets. However,
you can perform IN BOOLEAN MODE searches on the column without an index.

• The use of ENCRYPT() with these character sets is not recommended because the underlying system
call expects a string terminated by a zero byte.

1334

Setting the Error Message Language

• The REGEXP and RLIKE operators work in byte-wise fashion, so they are not multibyte safe and
may produce unexpected results with multibyte character sets. In addition, these operators compare
characters by their byte values and accented characters may not compare as equal even if a given
collation treats them as equal.

10.12 Setting the Error Message Language

By default, mysqld produces error messages in English, but they can be displayed instead in any of
several other languages: Czech, Danish, Dutch, Estonian, French, German, Greek, Hungarian, Italian,
Japanese, Korean, Norwegian, Norwegian-ny, Polish, Portuguese, Romanian, Russian, Slovak, Spanish,
or Swedish. This applies to messages the server writes to the error log and sends to clients.

To select the language in which the server writes error messages, follow the instructions in this section.
For information about changing the character set for error messages (rather than the language), see
Section 10.6, “Error Message Character Set”. For general information about configuring error logging, see
Section 5.4.2, “The Error Log”.

The server searches for the error message file using these rules:

• It looks for the file in a directory constructed from two system variable values, lc_messages_dir and
lc_messages, with the latter converted to a language name. Suppose that you start the server using
this command:

mysqld --lc_messages_dir=/usr/share/mysql --lc_messages=fr_FR

In this case, mysqld maps the locale fr_FR to the language french and looks for the error file in the /
usr/share/mysql/french directory.

By default, the language files are located in the share/mysql/LANGUAGE directory under the MySQL
base directory.

• If the message file cannot be found in the directory constructed as just described, the server ignores the
lc_messages value and uses only the lc_messages_dir value as the location in which to look.

The lc_messages_dir system variable can be set only at server startup and has only a global read-only
value at runtime. lc_messages can be set at server startup and has global and session values that can
be modified at runtime. Thus, the error message language can be changed while the server is running, and
each client can have its own error message language by setting its session lc_messages value to the
desired locale name. For example, if the server is using the fr_FR locale for error messages, a client can
execute this statement to receive error messages in English:

SET lc_messages = 'en_US';

10.13 Adding a Character Set

This section discusses the procedure for adding a character set to MySQL. The proper procedure depends
on whether the character set is simple or complex:

• If the character set does not need special string collating routines for sorting and does not need multibyte
character support, it is simple.

• If the character set needs either of those features, it is complex.

For example, greek and swe7 are simple character sets, whereas big5 and czech are complex
character sets.

1335

Adding a Character Set

To use the following instructions, you must have a MySQL source distribution. In the instructions, MYSET
represents the name of the character set that you want to add.

1. Add a <charset> element for MYSET to the sql/share/charsets/Index.xml file. Use the
existing contents in the file as a guide to adding new contents. A partial listing for the latin1
<charset> element follows:

<charset name="latin1">
 <family>Western</family>
 <description>cp1252 West European</description>
 ...
 <collation name="latin1_swedish_ci" id="8" order="Finnish, Swedish">
 <flag>primary</flag>
 <flag>compiled</flag>
 </collation>
 <collation name="latin1_danish_ci" id="15" order="Danish"/>
 ...
 <collation name="latin1_bin" id="47" order="Binary">
 <flag>binary</flag>
 <flag>compiled</flag>
 </collation>
 ...
</charset>

The <charset> element must list all the collations for the character set. These must include at least a
binary collation and a default (primary) collation. The default collation is often named using a suffix of
general_ci (general, case-insensitive). It is possible for the binary collation to be the default collation,
but usually they are different. The default collation should have a primary flag. The binary collation
should have a binary flag.

You must assign a unique ID number to each collation. The range of IDs from 1024 to 2047 is reserved
for user-defined collations. To find the maximum of the currently used collation IDs, use this query:

SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;

2. This step depends on whether you are adding a simple or complex character set. A simple character
set requires only a configuration file, whereas a complex character set requires C source file that
defines collation functions, multibyte functions, or both.

For a simple character set, create a configuration file, MYSET.xml, that describes the character
set properties. Create this file in the sql/share/charsets directory. You can use a copy of
latin1.xml as the basis for this file. The syntax for the file is very simple:

• Comments are written as ordinary XML comments (<!-- text -->).

• Words within <map> array elements are separated by arbitrary amounts of whitespace.

• Each word within <map> array elements must be a number in hexadecimal format.

• The <map> array element for the <ctype> element has 257 words. The other <map> array elements
after that have 256 words. See Section 10.13.1, “Character Definition Arrays”.

• For each collation listed in the <charset> element for the character set in Index.xml, MYSET.xml
must contain a <collation> element that defines the character ordering.

For a complex character set, create a C source file that describes the character set properties and
defines the support routines necessary to properly perform operations on the character set:

• Create the file ctype-MYSET.c in the strings directory. Look at one of the existing ctype-*.c
files (such as ctype-big5.c) to see what needs to be defined. The arrays in your file must have

1336

Character Definition Arrays

names like ctype_MYSET, to_lower_MYSET, and so on. These correspond to the arrays for a
simple character set. See Section 10.13.1, “Character Definition Arrays”.

• For each <collation> element listed in the <charset> element for the character set in
Index.xml, the ctype-MYSET.c file must provide an implementation of the collation.

• If the character set requires string collating functions, see Section 10.13.2, “String Collating Support
for Complex Character Sets”.

• If the character set requires multibyte character support, see Section 10.13.3, “Multi-Byte Character
Support for Complex Character Sets”.

3. Modify the configuration information. Use the existing configuration information as a guide to adding
information for MYSYS. The example here assumes that the character set has default and binary
collations, but more lines are needed if MYSET has additional collations.

a. Edit mysys/charset-def.c, and “register” the collations for the new character set.

Add these lines to the “declaration” section:

#ifdef HAVE_CHARSET_MYSET
extern CHARSET_INFO my_charset_MYSET_general_ci;
extern CHARSET_INFO my_charset_MYSET_bin;
#endif

Add these lines to the “registration” section:

#ifdef HAVE_CHARSET_MYSET
 add_compiled_collation(&my_charset_MYSET_general_ci);
 add_compiled_collation(&my_charset_MYSET_bin);
#endif

b. If the character set uses ctype-MYSET.c, edit strings/CMakeLists.txt and add
ctype-MYSET.c to the definition of the STRINGS_SOURCES variable.

c. Edit cmake/character_sets.cmake:

i. Add MYSET to the value of with CHARSETS_AVAILABLE in alphabetic order.

ii. Add MYSET to the value of CHARSETS_COMPLEX in alphabetic order. This is needed even for
simple character sets, or CMake does not recognize -DDEFAULT_CHARSET=MYSET.

4. Reconfigure, recompile, and test.

10.13.1 Character Definition Arrays

Each simple character set has a configuration file located in the sql/share/charsets directory. For a
character set named MYSYS, the file is named MYSET.xml. It uses <map> array elements to list character
set properties. <map> elements appear within these elements:

• <ctype> defines attributes for each character.

• <lower> and <upper> list the lowercase and uppercase characters.

• <unicode> maps 8-bit character values to Unicode values.

• <collation> elements indicate character ordering for comparison and sorting, one element per
collation. Binary collations need no <map> element because the character codes themselves provide the
ordering.

1337

String Collating Support for Complex Character Sets

For a complex character set as implemented in a ctype-MYSET.c file in the strings directory,
there are corresponding arrays: ctype_MYSET[], to_lower_MYSET[], and so forth. Not every
complex character set has all of the arrays. See also the existing ctype-*.c files for examples. See the
CHARSET_INFO.txt file in the strings directory for additional information.

Most of the arrays are indexed by character value and have 256 elements. The <ctype> array is indexed
by character value + 1 and has 257 elements. This is a legacy convention for handling EOF.

<ctype> array elements are bit values. Each element describes the attributes of a single character in the
character set. Each attribute is associated with a bitmask, as defined in include/m_ctype.h:

#define _MY_U 01 /* Upper case */
#define _MY_L 02 /* Lower case */
#define _MY_NMR 04 /* Numeral (digit) */
#define _MY_SPC 010 /* Spacing character */
#define _MY_PNT 020 /* Punctuation */
#define _MY_CTR 040 /* Control character */
#define _MY_B 0100 /* Blank */
#define _MY_X 0200 /* heXadecimal digit */

The <ctype> value for a given character should be the union of the applicable bitmask values that
describe the character. For example, 'A' is an uppercase character (_MY_U) as well as a hexadecimal
digit (_MY_X), so its ctype value should be defined like this:

ctype['A'+1] = _MY_U | _MY_X = 01 | 0200 = 0201

The bitmask values in m_ctype.h are octal values, but the elements of the <ctype> array in MYSET.xml
should be written as hexadecimal values.

The <lower> and <upper> arrays hold the lowercase and uppercase characters corresponding to each
member of the character set. For example:

lower['A'] should contain 'a'
upper['a'] should contain 'A'

Each <collation> array indicates how characters should be ordered for comparison and sorting
purposes. MySQL sorts characters based on the values of this information. In some cases, this is the same
as the <upper> array, which means that sorting is case-insensitive. For more complicated sorting rules
(for complex character sets), see the discussion of string collating in Section 10.13.2, “String Collating
Support for Complex Character Sets”.

10.13.2 String Collating Support for Complex Character Sets

For a simple character set named MYSET, sorting rules are specified in the MYSET.xml configuration
file using <map> array elements within <collation> elements. If the sorting rules for your language
are too complex to be handled with simple arrays, you must define string collating functions in the
ctype-MYSET.c source file in the strings directory.

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the big5,
czech, gbk, sjis, and tis160 character sets. Take a look at the MY_COLLATION_HANDLER structures
to see how they are used. See also the CHARSET_INFO.txt file in the strings directory for additional
information.

10.13.3 Multi-Byte Character Support for Complex Character Sets

If you want to add support for a new character set named MYSET that includes multibyte characters, you
must use multibyte character functions in the ctype-MYSET.c source file in the strings directory.

1338

Adding a Collation to a Character Set

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the euc_kr,
gb2312, gbk, sjis, and ujis character sets. Take a look at the MY_CHARSET_HANDLER structures to
see how they are used. See also the CHARSET_INFO.txt file in the strings directory for additional
information.

10.14 Adding a Collation to a Character Set

A collation is a set of rules that defines how to compare and sort character strings. Each collation in
MySQL belongs to a single character set. Every character set has at least one collation, and most have
two or more collations.

A collation orders characters based on weights. Each character in a character set maps to a weight.
Characters with equal weights compare as equal, and characters with unequal weights compare according
to the relative magnitude of their weights.

The WEIGHT_STRING() function can be used to see the weights for the characters in a
string. The value that it returns to indicate weights is a binary string, so it is convenient to use
HEX(WEIGHT_STRING(str)) to display the weights in printable form. The following example shows that
weights do not differ for lettercase for the letters in 'AaBb' if it is a nonbinary case-insensitive string, but
do differ if it is a binary string:

mysql> SELECT HEX(WEIGHT_STRING('AaBb' COLLATE latin1_swedish_ci));
+--+
| HEX(WEIGHT_STRING('AaBb' COLLATE latin1_swedish_ci)) |
+--+
| 41414242 |
+--+
mysql> SELECT HEX(WEIGHT_STRING(BINARY 'AaBb'));
+-----------------------------------+
| HEX(WEIGHT_STRING(BINARY 'AaBb')) |
+-----------------------------------+
| 41614262 |
+-----------------------------------+

MySQL supports several collation implementations, as discussed in Section 10.14.1, “Collation
Implementation Types”. Some of these can be added to MySQL without recompiling:

• Simple collations for 8-bit character sets.

• UCA-based collations for Unicode character sets.

• Binary (xxx_bin) collations.

The following sections describe how to add user-defined collations of the first two types to existing
character sets. All existing character sets already have a binary collation, so there is no need here to
describe how to add one.

Summary of the procedure for adding a new user-defined collation:

1. Choose a collation ID.

2. Add configuration information that names the collation and describes the character-ordering rules.

3. Restart the server.

4. Verify that the server recognizes the collation.

1339

Additional Resources

The instructions here cover only user-defined collations that can be added without recompiling MySQL.
To add a collation that does require recompiling (as implemented by means of functions in a C source
file), use the instructions in Section 10.13, “Adding a Character Set”. However, instead of adding all the
information required for a complete character set, just modify the appropriate files for an existing character
set. That is, based on what is already present for the character set's current collations, add data structures,
functions, and configuration information for the new collation.

Note

If you modify an existing user-defined collation, that may affect the ordering of rows
for indexes on columns that use the collation. In this case, rebuild any such indexes
to avoid problems such as incorrect query results. See Section 2.11.10, “Rebuilding
or Repairing Tables or Indexes”.

Additional Resources

• Example showing how to add a collation for full-text searches: Section 12.10.7, “Adding a User-Defined
Collation for Full-Text Indexing”

• The Unicode Collation Algorithm (UCA) specification: http://www.unicode.org/reports/tr10/

• The Locale Data Markup Language (LDML) specification: http://www.unicode.org/reports/tr35/

10.14.1 Collation Implementation Types

MySQL implements several types of collations:

Simple collations for 8-bit character sets

This kind of collation is implemented using an array of 256 weights that defines a one-to-one mapping from
character codes to weights. latin1_swedish_ci is an example. It is a case-insensitive collation, so the
uppercase and lowercase versions of a character have the same weights and they compare as equal.

mysql> SET NAMES 'latin1' COLLATE 'latin1_swedish_ci';
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT HEX(WEIGHT_STRING('a')), HEX(WEIGHT_STRING('A'));
+-------------------------+-------------------------+
| HEX(WEIGHT_STRING('a')) | HEX(WEIGHT_STRING('A')) |
+-------------------------+-------------------------+
| 41 | 41 |
+-------------------------+-------------------------+
1 row in set (0.01 sec)

mysql> SELECT 'a' = 'A';
+-----------+
| 'a' = 'A' |
+-----------+
| 1 |
+-----------+
1 row in set (0.12 sec)

For implementation instructions, see Section 10.14.3, “Adding a Simple Collation to an 8-Bit Character
Set”.

Complex collations for 8-bit character sets

This kind of collation is implemented using functions in a C source file that define how to order characters,
as described in Section 10.13, “Adding a Character Set”.

1340

http://www.unicode.org/reports/tr10/
http://www.unicode.org/reports/tr35/

Collation Implementation Types

Collations for non-Unicode multibyte character sets

For this type of collation, 8-bit (single-byte) and multibyte characters are handled differently. For 8-bit
characters, character codes map to weights in case-insensitive fashion. (For example, the single-byte
characters 'a' and 'A' both have a weight of 0x41.) For multibyte characters, there are two types of
relationship between character codes and weights:

• Weights equal character codes. sjis_japanese_ci is an example of this kind of collation. The
multibyte character 'ぢ' has a character code of 0x82C0, and the weight is also 0x82C0.

mysql> CREATE TABLE t1
 (c1 VARCHAR(2) CHARACTER SET sjis COLLATE sjis_japanese_ci);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t1 VALUES ('a'),('A'),(0x82C0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	41
A	41	41
ぢ	82C0	82C0
+------+---------+------------------------+
3 rows in set (0.00 sec)

• Character codes map one-to-one to weights, but a code is not necessarily equal to the weight.
gbk_chinese_ci is an example of this kind of collation. The multibyte character '膰' has a character
code of 0x81B0 but a weight of 0xC286.

mysql> CREATE TABLE t1
 (c1 VARCHAR(2) CHARACTER SET gbk COLLATE gbk_chinese_ci);
Query OK, 0 rows affected (0.33 sec)

mysql> INSERT INTO t1 VALUES ('a'),('A'),(0x81B0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	41
A	41	41
膰	81B0	C286
+------+---------+------------------------+
3 rows in set (0.00 sec)

For implementation instructions, see Section 10.13, “Adding a Character Set”.

Collations for Unicode multibyte character sets

Some of these collations are based on the Unicode Collation Algorithm (UCA), others are not.

Non-UCA collations have a one-to-one mapping from character code to weight. In MySQL, such collations
are case-insensitive and accent-insensitive. utf8_general_ci is an example: 'a', 'A', 'À', and 'á'
each have different character codes but all have a weight of 0x0041 and compare as equal.

mysql> SET NAMES 'utf8' COLLATE 'utf8_general_ci';
Query OK, 0 rows affected (0.00 sec)

1341

Collation Implementation Types

mysql> CREATE TABLE t1
 (c1 CHAR(1) CHARACTER SET UTF8 COLLATE utf8_general_ci);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t1 VALUES ('a'),('A'),('À'),('á');
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	0041
A	41	0041
À	C380	0041
á	C3A1	0041
+------+---------+------------------------+
4 rows in set (0.00 sec)

UCA-based collations in MySQL have these properties:

• If a character has weights, each weight uses 2 bytes (16 bits).

• A character may have zero weights (or an empty weight). In this case, the character is ignorable.
Example: "U+0000 NULL" does not have a weight and is ignorable.

• A character may have one weight. Example: 'a' has a weight of 0x0E33.

mysql> SET NAMES 'utf8' COLLATE 'utf8_unicode_ci';
Query OK, 0 rows affected (0.05 sec)

mysql> SELECT HEX('a'), HEX(WEIGHT_STRING('a'));
+----------+-------------------------+
| HEX('a') | HEX(WEIGHT_STRING('a')) |
+----------+-------------------------+
| 61 | 0E33 |
+----------+-------------------------+
1 row in set (0.02 sec)

• A character may have many weights. This is an expansion. Example: The German letter 'ß' (SZ
ligature, or SHARP S) has a weight of 0x0FEA0FEA.

mysql> SET NAMES 'utf8' COLLATE 'utf8_unicode_ci';
Query OK, 0 rows affected (0.11 sec)

mysql> SELECT HEX('ß'), HEX(WEIGHT_STRING('ß'));
+-----------+--------------------------+
| HEX('ß') | HEX(WEIGHT_STRING('ß')) |
+-----------+--------------------------+
| C39F | 0FEA0FEA |
+-----------+--------------------------+
1 row in set (0.00 sec)

• Many characters may have one weight. This is a contraction. Example: 'ch' is a single letter in Czech
and has a weight of 0x0EE2.

mysql> SET NAMES 'utf8' COLLATE 'utf8_czech_ci';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT HEX('ch'), HEX(WEIGHT_STRING('ch'));
+-----------+--------------------------+
| HEX('ch') | HEX(WEIGHT_STRING('ch')) |
+-----------+--------------------------+
| 6368 | 0EE2 |

1342

Choosing a Collation ID

+-----------+--------------------------+
1 row in set (0.00 sec)

A many-characters-to-many-weights mapping is also possible (this is contraction with expansion), but is
not supported by MySQL.

For implementation instructions, for a non-UCA collation, see Section 10.13, “Adding a Character Set”. For
a UCA collation, see Section 10.14.4, “Adding a UCA Collation to a Unicode Character Set”.

Miscellaneous collations

There are also a few collations that do not fall into any of the previous categories.

10.14.2 Choosing a Collation ID

Each collation must have a unique ID. To add a collation, you must choose an ID value that is not currently
used. MySQL supports two-byte collation IDs. The range of IDs from 1024 to 2047 is reserved for user-
defined collations.

The collation ID that you choose appears in these contexts:

• The ID column of the Information Schema COLLATIONS table.

• The Id column of SHOW COLLATION output.

• The charsetnr member of the MYSQL_FIELD C API data structure.

• The number member of the MY_CHARSET_INFO data structure returned by the
mysql_get_character_set_info() C API function.

To determine the largest currently used ID, issue the following statement:

mysql> SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;
+---------+
| MAX(ID) |
+---------+
| 247 |
+---------+

To display a list of all currently used IDs, issue this statement:

mysql> SELECT ID FROM INFORMATION_SCHEMA.COLLATIONS ORDER BY ID;
+-----+
| ID |
+-----+
| 1 |
| 2 |
| ... |
| 52 |
| 53 |
| 57 |
| 58 |
| ... |
| 98 |
| 99 |
| 128 |
| 129 |
| ... |
| 247 |
+-----+

1343

https://dev.mysql.com/doc/c-api/5.6/en/mysql-get-character-set-info.html

Adding a Simple Collation to an 8-Bit Character Set

Warning

Before upgrading, you should save the configuration files that you change. If you
upgrade in place, the process replaces the modified files.

10.14.3 Adding a Simple Collation to an 8-Bit Character Set

This section describes how to add a simple collation for an 8-bit character set by writing the <collation>
elements associated with a <charset> character set description in the MySQL Index.xml file. The
procedure described here does not require recompiling MySQL. The example adds a collation named
latin1_test_ci to the latin1 character set.

1. Choose a collation ID, as shown in Section 10.14.2, “Choosing a Collation ID”. The following steps use
an ID of 1024.

2. Modify the Index.xml and latin1.xml configuration files. These files are located in the directory
named by the character_sets_dir system variable. You can check the variable value as follows,
although the path name might be different on your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+

3. Choose a name for the collation and list it in the Index.xml file. Find the <charset> element for the
character set to which the collation is being added, and add a <collation> element that indicates the
collation name and ID, to associate the name with the ID. For example:

<charset name="latin1">
 ...
 <collation name="latin1_test_ci" id="1024"/>
 ...
</charset>

4. In the latin1.xml configuration file, add a <collation> element that names the collation and that
contains a <map> element that defines a character code-to-weight mapping table for character codes 0
to 255. Each value within the <map> element must be a number in hexadecimal format.

<collation name="latin1_test_ci">
<map>
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
 60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C D7 5C 55 55 55 59 59 DE DF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C F7 5C 55 55 55 59 59 DE FF
</map>
</collation>

5. Restart the server and use this statement to verify that the collation is present:

1344

Adding a UCA Collation to a Unicode Character Set

mysql> SHOW COLLATION WHERE Collation = 'latin1_test_ci';
+----------------+---------+------+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------+---------+------+---------+----------+---------+
| latin1_test_ci | latin1 | 1024 | | | 1 |
+----------------+---------+------+---------+----------+---------+

10.14.4 Adding a UCA Collation to a Unicode Character Set

This section describes how to add a UCA collation for a Unicode character set by writing the
<collation> element within a <charset> character set description in the MySQL Index.xml file.
The procedure described here does not require recompiling MySQL. It uses a subset of the Locale Data
Markup Language (LDML) specification, which is available at http://www.unicode.org/reports/tr35/. With
this method, you need not define the entire collation. Instead, you begin with an existing “base” collation
and describe the new collation in terms of how it differs from the base collation. The following table lists the
base collations of the Unicode character sets for which UCA collations can be defined. It is not possible to
create user-defined UCA collations for utf16le; there is no utf16le_unicode_ci collation that would
serve as the basis for such collations.

Table 10.4 MySQL Character Sets Available for User-Defined UCA Collations

Character Set Base Collation

utf8 utf8_unicode_ci

ucs2 ucs2_unicode_ci

utf16 utf16_unicode_ci

utf32 utf32_unicode_ci

The following sections show how to add a collation that is defined using LDML syntax, and provide a
summary of LDML rules supported in MySQL.

10.14.4.1 Defining a UCA Collation Using LDML Syntax

To add a UCA collation for a Unicode character set without recompiling MySQL, use the following
procedure. If you are unfamiliar with the LDML rules used to describe the collation's sort characteristics,
see Section 10.14.4.2, “LDML Syntax Supported in MySQL”.

The example adds a collation named utf8_phone_ci to the utf8 character set. The collation is
designed for a scenario involving a Web application for which users post their names and phone numbers.
Phone numbers can be given in very different formats:

+7-12345-67
+7-12-345-67
+7 12 345 67
+7 (12) 345 67
+71234567

The problem raised by dealing with these kinds of values is that the varying permissible formats make
searching for a specific phone number very difficult. The solution is to define a new collation that reorders
punctuation characters, making them ignorable.

1. Choose a collation ID, as shown in Section 10.14.2, “Choosing a Collation ID”. The following steps use
an ID of 1029.

2. To modify the Index.xml configuration file. This file is located in the directory named by the
character_sets_dir system variable. You can check the variable value as follows, although the
path name might be different on your system:

1345

http://www.unicode.org/reports/tr35/

Adding a UCA Collation to a Unicode Character Set

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+

3. Choose a name for the collation and list it in the Index.xml file. In addition, you'll need to provide the
collation ordering rules. Find the <charset> element for the character set to which the collation is
being added, and add a <collation> element that indicates the collation name and ID, to associate
the name with the ID. Within the <collation> element, provide a <rules> element containing the
ordering rules:

<charset name="utf8">
 ...
 <collation name="utf8_phone_ci" id="1029">
 <rules>
 <reset>\u0000</reset>
 <i>\u0020</i> <!-- space -->
 <i>\u0028</i> <!-- left parenthesis -->
 <i>\u0029</i> <!-- right parenthesis -->
 <i>\u002B</i> <!-- plus -->
 <i>\u002D</i> <!-- hyphen -->
 </rules>
 </collation>
 ...
</charset>

4. If you want a similar collation for other Unicode character sets, add other <collation> elements. For
example, to define ucs2_phone_ci, add a <collation> element to the <charset name="ucs2">
element. Remember that each collation must have its own unique ID.

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION WHERE Collation = 'utf8_phone_ci';
+---------------+---------+------+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------+---------+------+---------+----------+---------+
| utf8_phone_ci | utf8 | 1029 | | | 8 |
+---------------+---------+------+---------+----------+---------+

Now test the collation to make sure that it has the desired properties.

Create a table containing some sample phone numbers using the new collation:

mysql> CREATE TABLE phonebook (
 name VARCHAR(64),
 phone VARCHAR(64) CHARACTER SET utf8 COLLATE utf8_phone_ci
);
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO phonebook VALUES ('Svoj','+7 912 800 80 02');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Hf','+7 (912) 800 80 04');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Bar','+7-912-800-80-01');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Ramil','(7912) 800 80 03');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Sanja','+380 (912) 8008005');

1346

Adding a UCA Collation to a Unicode Character Set

Query OK, 1 row affected (0.00 sec)

Run some queries to see whether the ignored punctuation characters are in fact ignored for comparison
and sorting:

mysql> SELECT * FROM phonebook ORDER BY phone;
+-------+--------------------+
| name | phone |
+-------+--------------------+
Sanja	+380 (912) 8008005
Bar	+7-912-800-80-01
Svoj	+7 912 800 80 02
Ramil	(7912) 800 80 03
Hf	+7 (912) 800 80 04
+-------+--------------------+
5 rows in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='+7(912)800-80-01';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='79128008001';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='7 9 1 2 8 0 0 8 0 0 1';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

10.14.4.2 LDML Syntax Supported in MySQL

This section describes the LDML syntax that MySQL recognizes. This is a subset of the syntax described
in the LDML specification available at http://www.unicode.org/reports/tr35/, which should be consulted
for further information. MySQL recognizes a large enough subset of the syntax that, in many cases, it is
possible to download a collation definition from the Unicode Common Locale Data Repository and paste
the relevant part (that is, the part between the <rules> and </rules> tags) into the MySQL Index.xml
file. The rules described here are all supported except that character sorting occurs only at the primary
level. Rules that specify differences at secondary or higher sort levels are recognized (and thus can be
included in collation definitions) but are treated as equality at the primary level.

The MySQL server generates diagnostics when it finds problems while parsing the Index.xml file. See
Section 10.14.4.3, “Diagnostics During Index.xml Parsing”.

Character Representation

Characters named in LDML rules can be written literally or in \unnnn format, where nnnn is the
hexadecimal Unicode code point value. For example, A and á can be written literally or as \u0041 and
\u00E1. Within hexadecimal values, the digits A through F are not case-sensitive; \u00E1 and \u00e1
are equivalent. For UCA 4.0.0 collations, hexadecimal notation can be used only for characters in the Basic
Multilingual Plane, not for characters outside the BMP range of 0000 to FFFF. For UCA 5.2.0 collations,
hexadecimal notation can be used for any character.

1347

http://www.unicode.org/reports/tr35/

Adding a UCA Collation to a Unicode Character Set

The Index.xml file itself should be written using UTF-8 encoding.

Syntax Rules

LDML has reset rules and shift rules to specify character ordering. Orderings are given as a set of rules
that begin with a reset rule that establishes an anchor point, followed by shift rules that indicate how
characters sort relative to the anchor point.

• A <reset> rule does not specify any ordering in and of itself. Instead, it “resets” the ordering for
subsequent shift rules to cause them to be taken in relation to a given character. Either of the following
rules resets subsequent shift rules to be taken in relation to the letter 'A':

<reset>A</reset>

<reset>\u0041</reset>

• The <p>, <s>, and <t> shift rules define primary, secondary, and tertiary differences of a character from
another character:

• Use primary differences to distinguish separate letters.

• Use secondary differences to distinguish accent variations.

• Use tertiary differences to distinguish lettercase variations.

Either of these rules specifies a primary shift rule for the 'G' character:

<p>G</p>

<p>\u0047</p>

• The <i> shift rule indicates that one character sorts identically to another. The following rules cause 'b'
to sort the same as 'a':

<reset>a</reset>
<i>b</i>

• Abbreviated shift syntax specifies multiple shift rules using a single pair of tags. The following table
shows the correspondence between abbreviated syntax rules and the equivalent nonabbreviated rules.

Table 10.5 Abbreviated Shift Syntax

Abbreviated Syntax Nonabbreviated Syntax

<pc>xyz</pc> <p>x</p><p>y</p><p>z</p>

<sc>xyz</sc> <s>x</s><s>y</s><s>z</s>

<tc>xyz</tc> <t>x</t><t>y</t><t>z</t>

<ic>xyz</ic> <i>x</i><i>y</i><i>z</i>

• An expansion is a reset rule that establishes an anchor point for a multiple-character sequence. MySQL
supports expansions 2 to 6 characters long. The following rules put 'z' greater at the primary level than
the sequence of three characters 'abc':

<reset>abc</reset>
<p>z</p>

• A contraction is a shift rule that sorts a multiple-character sequence. MySQL supports contractions 2 to
6 characters long. The following rules put the sequence of three characters 'xyz' greater at the primary
level than 'a':

1348

Adding a UCA Collation to a Unicode Character Set

<reset>a</reset>
<p>xyz</p>

• Long expansions and long contractions can be used together. These rules put the sequence of three
characters 'xyz' greater at the primary level than the sequence of three characters 'abc':

<reset>abc</reset>
<p>xyz</p>

• Normal expansion syntax uses <x> plus <extend> elements to specify an expansion. The following
rules put the character 'k' greater at the secondary level than the sequence 'ch'. That is, 'k'
behaves as if it expands to a character after 'c' followed by 'h':

<reset>c</reset>
<x><s>k</s><extend>h</extend></x>

This syntax permits long sequences. These rules sort the sequence 'ccs' greater at the tertiary level
than the sequence 'cscs':

<reset>cs</reset>
<x><t>ccs</t><extend>cs</extend></x>

The LDML specification describes normal expansion syntax as “tricky.” See that specification for details.

• Previous context syntax uses <x> plus <context> elements to specify that the context before a
character affects how it sorts. The following rules put '-' greater at the secondary level than 'a', but
only when '-' occurs after 'b':

<reset>a</reset>
<x><context>b</context><s>-</s></x>

• Previous context syntax can include the <extend> element. These rules put 'def' greater at the
primary level than 'aghi', but only when 'def' comes after 'abc':

<reset>a</reset>
<x><context>abc</context><p>def</p><extend>ghi</extend></x>

• Reset rules permit a before attribute. Normally, shift rules after a reset rule indicate characters that sort
after the reset character. Shift rules after a reset rule that has the before attribute indicate characters
that sort before the reset character. The following rules put the character 'b' immediately before 'a' at
the primary level:

<reset before="primary">a</reset>
<p>b</p>

Permissible before attribute values specify the sort level by name or the equivalent numeric value:

<reset before="primary">
<reset before="1">

<reset before="secondary">
<reset before="2">

<reset before="tertiary">
<reset before="3">

• A reset rule can name a logical reset position rather than a literal character:

<first_tertiary_ignorable/>
<last_tertiary_ignorable/>
<first_secondary_ignorable/>
<last_secondary_ignorable/>

1349

Adding a UCA Collation to a Unicode Character Set

<first_primary_ignorable/>
<last_primary_ignorable/>
<first_variable/>
<last_variable/>
<first_non_ignorable/>
<last_non_ignorable/>
<first_trailing/>
<last_trailing/>

These rules put 'z' greater at the primary level than nonignorable characters that have a Default
Unicode Collation Element Table (DUCET) entry and that are not CJK:

<reset><last_non_ignorable/></reset>
<p>z</p>

Logical positions have the code points shown in the following table.

Table 10.6 Logical Reset Position Code Points

Logical Position Unicode 4.0.0 Code Point Unicode 5.2.0 Code Point

<first_non_ignorable/> U+02D0 U+02D0

<last_non_ignorable/> U+A48C U+1342E

<first_primary_ignorable/
>

U+0332 U+0332

<last_primary_ignorable/> U+20EA U+101FD

<first_secondary_ignorable/
>

U+0000 U+0000

<last_secondary_ignorable/
>

U+FE73 U+FE73

<first_tertiary_ignorable/
>

U+0000 U+0000

<last_tertiary_ignorable/
>

U+FE73 U+FE73

<first_trailing/> U+0000 U+0000

<last_trailing/> U+0000 U+0000

<first_variable/> U+0009 U+0009

<last_variable/> U+2183 U+1D371

• The <collation> element permits a shift-after-method attribute that affects character weight
calculation for shift rules. The attribute has these permitted values:

• simple: Calculate character weights as for reset rules that do not have a before attribute. This is the
default if the attribute is not given.

• expand: Use expansions for shifts after reset rules.

Suppose that '0' and '1' have weights of 0E29 and 0E2A and we want to put all basic Latin letters
between '0' and '1':

<reset>0</reset>

1350

Adding a UCA Collation to a Unicode Character Set

<pc>abcdefghijklmnopqrstuvwxyz</pc>

For simple shift mode, weights are calculated as follows:

'a' has weight 0E29+1
'b' has weight 0E29+2
'c' has weight 0E29+3
...

However, there are not enough vacant positions to put 26 characters between '0' and '1'. The result
is that digits and letters are intermixed.

To solve this, use shift-after-method="expand". Then weights are calculated like this:

'a' has weight [0E29][233D+1]
'b' has weight [0E29][233D+2]
'c' has weight [0E29][233D+3]
...

233D is the UCA 4.0.0 weight for character 0xA48C, which is the last nonignorable character (a sort of
the greatest character in the collation, excluding CJK). UCA 5.2.0 is similar but uses 3ACA, for character
0x1342E.

MySQL-Specific LDML Extensions

An extension to LDML rules permits the <collation> element to include an optional version attribute
in <collation> tags to indicate the UCA version on which the collation is based. If the version attribute
is omitted, its default value is 4.0.0. For example, this specification indicates a collation that is based on
UCA 5.2.0:

<collation id="nnn" name="utf8_xxx_ci" version="5.2.0">
...
</collation>

10.14.4.3 Diagnostics During Index.xml Parsing

The MySQL server generates diagnostics when it finds problems while parsing the Index.xml file:

• Unknown tags are written to the error log. For example, the following message results if a collation
definition contains a <aaa> tag:

[Warning] Buffered warning: Unknown LDML tag:
'charsets/charset/collation/rules/aaa'

• If collation initialization is not possible, the server reports an “Unknown collation” error, and also
generates warnings explaining the problems, such as in the previous example. In other cases, when a
collation description is generally correct but contains some unknown tags, the collation is initialized and
is available for use. The unknown parts are ignored, but a warning is generated in the error log.

• Problems with collations generate warnings that clients can display with SHOW WARNINGS. Suppose that
a reset rule contains an expansion longer than the maximum supported length of 6 characters:

<reset>abcdefghi</reset>
<i>x</i>

An attempt to use the collation produces warnings:

mysql> SELECT _utf8'test' COLLATE utf8_test_ci;
ERROR 1273 (HY000): Unknown collation: 'utf8_test_ci'
mysql> SHOW WARNINGS;
+---------+------+--+

1351

Character Set Configuration

| Level | Code | Message |
+---------+------+--+
| Error | 1273 | Unknown collation: 'utf8_test_ci' |
| Warning | 1273 | Expansion is too long at 'abcdefghi=x' |
+---------+------+--+

10.15 Character Set Configuration
The MySQL server has a compiled-in default character set and collation. To change these defaults, use
the --character-set-server and --collation-server options when you start the server. See
Section 5.1.6, “Server Command Options”. The collation must be a legal collation for the default character
set. To determine which collations are available for each character set, use the SHOW COLLATION
statement or query the INFORMATION_SCHEMA COLLATIONS table.

If you try to use a character set that is not compiled into your binary, you might run into the following
problems:

• If your program uses an incorrect path to determine where the character sets are stored (which is
typically the share/mysql/charsets or share/charsets directory under the MySQL installation
directory), this can be fixed by using the --character-sets-dir option when you run the program.
For example, to specify a directory to be used by MySQL client programs, list it in the [client] group
of your option file. The examples given here show what the setting might look like for Unix or Windows,
respectively:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets

[client]
character-sets-dir="C:/Program Files/MySQL/MySQL Server 5.6/share/charsets"

• If the character set is a complex character set that cannot be loaded dynamically, you must recompile
the program with support for the character set.

For Unicode character sets, you can define collations without recompiling by using LDML notation. See
Section 10.14.4, “Adding a UCA Collation to a Unicode Character Set”.

• If the character set is a dynamic character set, but you do not have a configuration file for it, you should
install the configuration file for the character set from a new MySQL distribution.

• If your character set index file (Index.xml) does not contain the name for the character set, your
program displays an error message:

Character set 'charset_name' is not a compiled character set and is not
specified in the '/usr/share/mysql/charsets/Index.xml' file

To solve this problem, you should either get a new index file or manually add the name of any missing
character sets to the current file.

You can force client programs to use specific character set as follows:

[client]
default-character-set=charset_name

This is normally unnecessary. However, when character_set_system differs from
character_set_server or character_set_client, and you input characters manually (as database
object identifiers, column values, or both), these may be displayed incorrectly in output from the client or
the output itself may be formatted incorrectly. In such cases, starting the mysql client with --default-
character-set=system_character_set—that is, setting the client character set to match the system
character set—should fix the problem.

1352

MySQL Server Locale Support

10.16 MySQL Server Locale Support

The locale indicated by the lc_time_names system variable controls the language used to display
day and month names and abbreviations. This variable affects the output from the DATE_FORMAT(),
DAYNAME(), and MONTHNAME() functions.

lc_time_names does not affect the STR_TO_DATE() or GET_FORMAT() function.

The lc_time_names value does not affect the result from FORMAT(), but this function takes an optional
third parameter that enables a locale to be specified to be used for the result number's decimal point,
thousands separator, and grouping between separators. Permissible locale values are the same as the
legal values for the lc_time_names system variable.

Locale names have language and region subtags listed by IANA (http://www.iana.org/assignments/
language-subtag-registry) such as 'ja_JP' or 'pt_BR'. The default value is 'en_US' regardless of your
system's locale setting, but you can set the value at server startup, or set the GLOBAL value at runtime
if you have privileges sufficient to set global system variables; see Section 5.1.8.1, “System Variable
Privileges”. Any client can examine the value of lc_time_names or set its SESSION value to affect the
locale for its own connection.

mysql> SET NAMES 'utf8';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| en_US |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| Friday | January |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+---+
| Friday Fri January Jan |
+---+
1 row in set (0.00 sec)

mysql> SET lc_time_names = 'es_MX';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| es_MX |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| viernes | enero |

1353

http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry

MySQL Server Locale Support

+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+---+
| viernes vie enero ene |
+---+
1 row in set (0.00 sec)

The day or month name for each of the affected functions is converted from utf8 to the character set
indicated by the character_set_connection system variable.

lc_time_names may be set to any of the following locale values. The set of locales supported by MySQL
may differ from those supported by your operating system.

Locale Value Meaning

ar_AE Arabic - United Arab Emirates

ar_BH Arabic - Bahrain

ar_DZ Arabic - Algeria

ar_EG Arabic - Egypt

ar_IN Arabic - India

ar_IQ Arabic - Iraq

ar_JO Arabic - Jordan

ar_KW Arabic - Kuwait

ar_LB Arabic - Lebanon

ar_LY Arabic - Libya

ar_MA Arabic - Morocco

ar_OM Arabic - Oman

ar_QA Arabic - Qatar

ar_SA Arabic - Saudi Arabia

ar_SD Arabic - Sudan

ar_SY Arabic - Syria

ar_TN Arabic - Tunisia

ar_YE Arabic - Yemen

be_BY Belarusian - Belarus

bg_BG Bulgarian - Bulgaria

ca_ES Catalan - Spain

cs_CZ Czech - Czech Republic

da_DK Danish - Denmark

de_AT German - Austria

de_BE German - Belgium

de_CH German - Switzerland

de_DE German - Germany

de_LU German - Luxembourg

1354

MySQL Server Locale Support

Locale Value Meaning

el_GR Greek - Greece

en_AU English - Australia

en_CA English - Canada

en_GB English - United Kingdom

en_IN English - India

en_NZ English - New Zealand

en_PH English - Philippines

en_US English - United States

en_ZA English - South Africa

en_ZW English - Zimbabwe

es_AR Spanish - Argentina

es_BO Spanish - Bolivia

es_CL Spanish - Chile

es_CO Spanish - Colombia

es_CR Spanish - Costa Rica

es_DO Spanish - Dominican Republic

es_EC Spanish - Ecuador

es_ES Spanish - Spain

es_GT Spanish - Guatemala

es_HN Spanish - Honduras

es_MX Spanish - Mexico

es_NI Spanish - Nicaragua

es_PA Spanish - Panama

es_PE Spanish - Peru

es_PR Spanish - Puerto Rico

es_PY Spanish - Paraguay

es_SV Spanish - El Salvador

es_US Spanish - United States

es_UY Spanish - Uruguay

es_VE Spanish - Venezuela

et_EE Estonian - Estonia

eu_ES Basque - Spain

fi_FI Finnish - Finland

fo_FO Faroese - Faroe Islands

fr_BE French - Belgium

fr_CA French - Canada

fr_CH French - Switzerland

fr_FR French - France

1355

MySQL Server Locale Support

Locale Value Meaning

fr_LU French - Luxembourg

gl_ES Galician - Spain

gu_IN Gujarati - India

he_IL Hebrew - Israel

hi_IN Hindi - India

hr_HR Croatian - Croatia

hu_HU Hungarian - Hungary

id_ID Indonesian - Indonesia

is_IS Icelandic - Iceland

it_CH Italian - Switzerland

it_IT Italian - Italy

ja_JP Japanese - Japan

ko_KR Korean - Republic of Korea

lt_LT Lithuanian - Lithuania

lv_LV Latvian - Latvia

mk_MK Macedonian - North Macedonia

mn_MN Mongolia - Mongolian

ms_MY Malay - Malaysia

nb_NO Norwegian(Bokmål) - Norway

nl_BE Dutch - Belgium

nl_NL Dutch - The Netherlands

no_NO Norwegian - Norway

pl_PL Polish - Poland

pt_BR Portugese - Brazil

pt_PT Portugese - Portugal

rm_CH Romansh - Switzerland

ro_RO Romanian - Romania

ru_RU Russian - Russia

ru_UA Russian - Ukraine

sk_SK Slovak - Slovakia

sl_SI Slovenian - Slovenia

sq_AL Albanian - Albania

sr_RS Serbian - Serbia

sv_FI Swedish - Finland

sv_SE Swedish - Sweden

ta_IN Tamil - India

te_IN Telugu - India

th_TH Thai - Thailand

1356

MySQL Server Locale Support

Locale Value Meaning

tr_TR Turkish - Turkey

uk_UA Ukrainian - Ukraine

ur_PK Urdu - Pakistan

vi_VN Vietnamese - Vietnam

zh_CN Chinese - China

zh_HK Chinese - Hong Kong

zh_TW Chinese - Taiwan

1357

1358

Chapter 11 Data Types

Table of Contents
11.1 Numeric Data Types ... 1360

11.1.1 Numeric Data Type Syntax ... 1360
11.1.2 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT,
BIGINT ... 1364
11.1.3 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC .. 1364
11.1.4 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE 1365
11.1.5 Bit-Value Type - BIT ... 1365
11.1.6 Numeric Type Attributes ... 1365
11.1.7 Out-of-Range and Overflow Handling .. 1366

11.2 Date and Time Data Types ... 1368
11.2.1 Date and Time Data Type Syntax ... 1369
11.2.2 The DATE, DATETIME, and TIMESTAMP Types ... 1372
11.2.3 The TIME Type .. 1373
11.2.4 The YEAR Type ... 1374
11.2.5 2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR ... 1374
11.2.6 Automatic Initialization and Updating for TIMESTAMP and DATETIME 1377
11.2.7 Fractional Seconds in Time Values ... 1381
11.2.8 Conversion Between Date and Time Types ... 1382
11.2.9 2-Digit Years in Dates .. 1383

11.3 String Data Types ... 1384
11.3.1 String Data Type Syntax ... 1384
11.3.2 The CHAR and VARCHAR Types ... 1387
11.3.3 The BINARY and VARBINARY Types ... 1389
11.3.4 The BLOB and TEXT Types ... 1391
11.3.5 The ENUM Type .. 1392
11.3.6 The SET Type ... 1395

11.4 Spatial Data Types ... 1398
11.4.1 Spatial Data Types ... 1399
11.4.2 The OpenGIS Geometry Model ... 1400
11.4.3 Supported Spatial Data Formats ... 1406
11.4.4 Creating Spatial Columns ... 1409
11.4.5 Populating Spatial Columns .. 1409
11.4.6 Fetching Spatial Data ... 1410
11.4.7 Optimizing Spatial Analysis ... 1410
11.4.8 Creating Spatial Indexes ... 1411
11.4.9 Using Spatial Indexes ... 1412

11.5 Data Type Default Values ... 1414
11.6 Data Type Storage Requirements .. 1415
11.7 Choosing the Right Type for a Column .. 1420
11.8 Using Data Types from Other Database Engines .. 1420

MySQL supports SQL data types in several categories: numeric types, date and time types, string
(character and byte) types, and spatial types. This chapter provides an overview and more detailed
description of the properties of the types in each category, and a summary of the data type storage
requirements. The initial overviews are intentionally brief. Consult the more detailed descriptions for
additional information about particular data types, such as the permissible formats in which you can specify
values.

1359

Numeric Data Types

Data type descriptions use these conventions:

• For integer types, M indicates the maximum display width. For floating-point and fixed-point types, M is
the total number of digits that can be stored (the precision). For string types, M is the maximum length.
The maximum permissible value of M depends on the data type.

• D applies to floating-point and fixed-point types and indicates the number of digits following the
decimal point (the scale). The maximum possible value is 30, but should be no greater than M−2.

• fsp applies to the TIME, DATETIME, and TIMESTAMP types and represents fractional seconds
precision; that is, the number of digits following the decimal point for fractional parts of seconds. The
fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional part. If
omitted, the default precision is 0. (This differs from the standard SQL default of 6, for compatibility with
previous MySQL versions.)

• Square brackets ([and]) indicate optional parts of type definitions.

11.1 Numeric Data Types

MySQL supports all standard SQL numeric data types. These types include the exact numeric data types
(INTEGER, SMALLINT, DECIMAL, and NUMERIC), as well as the approximate numeric data types (FLOAT,
REAL, and DOUBLE PRECISION). The keyword INT is a synonym for INTEGER, and the keywords DEC
and FIXED are synonyms for DECIMAL. MySQL treats DOUBLE as a synonym for DOUBLE PRECISION (a
nonstandard extension). MySQL also treats REAL as a synonym for DOUBLE PRECISION (a nonstandard
variation), unless the REAL_AS_FLOAT SQL mode is enabled.

The BIT data type stores bit values and is supported for MyISAM, MEMORY, InnoDB, and NDB tables.

For information about how MySQL handles assignment of out-of-range values to columns and overflow
during expression evaluation, see Section 11.1.7, “Out-of-Range and Overflow Handling”.

For information about storage requirements of the numeric data types, see Section 11.6, “Data Type
Storage Requirements”.

For descriptions of functions that operate on numeric values, see Section 12.6, “Numeric Functions and
Operators”. The data type used for the result of a calculation on numeric operands depends on the types of
the operands and the operations performed on them. For more information, see Section 12.6.1, “Arithmetic
Operators”.

11.1.1 Numeric Data Type Syntax

For integer data types, M indicates the maximum display width. The maximum display width is 255. Display
width is unrelated to the range of values a type can store, as described in Section 11.1.6, “Numeric Type
Attributes”.

For floating-point and fixed-point data types, M is the total number of digits that can be stored.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to the
column.

Numeric data types that permit the UNSIGNED attribute also permit SIGNED. However, these data types
are signed by default, so the SIGNED attribute has no effect.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

1360

Numeric Data Type Syntax

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL
AUTO_INCREMENT UNIQUE.

Warning

When you use subtraction between integer values where one is of type UNSIGNED,
the result is unsigned unless the NO_UNSIGNED_SUBTRACTION SQL mode is
enabled. See Section 12.11, “Cast Functions and Operators”.

• BIT[(M)]

A bit-value type. M indicates the number of bits per value, from 1 to 64. The default is 1 if M is omitted.

• TINYINT[(M)] [UNSIGNED] [ZEROFILL]

A very small integer. The signed range is -128 to 127. The unsigned range is 0 to 255.

• BOOL, BOOLEAN

These types are synonyms for TINYINT(1). A value of zero is considered false. Nonzero values are
considered true:

mysql> SELECT IF(0, 'true', 'false');
+------------------------+
| IF(0, 'true', 'false') |
+------------------------+
| false |
+------------------------+

mysql> SELECT IF(1, 'true', 'false');
+------------------------+
| IF(1, 'true', 'false') |
+------------------------+
| true |
+------------------------+

mysql> SELECT IF(2, 'true', 'false');
+------------------------+
| IF(2, 'true', 'false') |
+------------------------+
| true |
+------------------------+

However, the values TRUE and FALSE are merely aliases for 1 and 0, respectively, as shown here:

mysql> SELECT IF(0 = FALSE, 'true', 'false');
+--------------------------------+
| IF(0 = FALSE, 'true', 'false') |
+--------------------------------+
| true |
+--------------------------------+

mysql> SELECT IF(1 = TRUE, 'true', 'false');
+-------------------------------+
| IF(1 = TRUE, 'true', 'false') |
+-------------------------------+
| true |
+-------------------------------+

mysql> SELECT IF(2 = TRUE, 'true', 'false');
+-------------------------------+
| IF(2 = TRUE, 'true', 'false') |
+-------------------------------+
| false |

1361

Numeric Data Type Syntax

+-------------------------------+

mysql> SELECT IF(2 = FALSE, 'true', 'false');
+--------------------------------+
| IF(2 = FALSE, 'true', 'false') |
+--------------------------------+
| false |
+--------------------------------+

The last two statements display the results shown because 2 is equal to neither 1 nor 0.

• SMALLINT[(M)] [UNSIGNED] [ZEROFILL]

A small integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535.

• MEDIUMINT[(M)] [UNSIGNED] [ZEROFILL]

A medium-sized integer. The signed range is -8388608 to 8388607. The unsigned range is 0 to
16777215.

• INT[(M)] [UNSIGNED] [ZEROFILL]

A normal-size integer. The signed range is -2147483648 to 2147483647. The unsigned range is 0 to
4294967295.

• INTEGER[(M)] [UNSIGNED] [ZEROFILL]

This type is a synonym for INT.

• BIGINT[(M)] [UNSIGNED] [ZEROFILL]

A large integer. The signed range is -9223372036854775808 to 9223372036854775807. The
unsigned range is 0 to 18446744073709551615.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

Some things you should be aware of with respect to BIGINT columns:

• All arithmetic is done using signed BIGINT or DOUBLE values, so you should not use unsigned big
integers larger than 9223372036854775807 (63 bits) except with bit functions! If you do that, some
of the last digits in the result may be wrong because of rounding errors when converting a BIGINT
value to a DOUBLE.

MySQL can handle BIGINT in the following cases:

• When using integers to store large unsigned values in a BIGINT column.

• In MIN(col_name) or MAX(col_name), where col_name refers to a BIGINT column.

• When using operators (+, -, *, and so on) where both operands are integers.

• You can always store an exact integer value in a BIGINT column by storing it using a string. In this
case, MySQL performs a string-to-number conversion that involves no intermediate double-precision
representation.

• The -, +, and * operators use BIGINT arithmetic when both operands are integer values. This
means that if you multiply two big integers (or results from functions that return integers), you may get
unexpected results when the result is larger than 9223372036854775807.

• DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]

1362

Numeric Data Type Syntax

A packed “exact” fixed-point number. M is the total number of digits (the precision) and D is the number of
digits after the decimal point (the scale). The decimal point and (for negative numbers) the - sign are not
counted in M. If D is 0, values have no decimal point or fractional part. The maximum number of digits (M)
for DECIMAL is 65. The maximum number of supported decimals (D) is 30. If D is omitted, the default is
0. If M is omitted, the default is 10. (There is also a limit on how long the text of DECIMAL literals can be;
see Section 12.21.3, “Expression Handling”.)

UNSIGNED, if specified, disallows negative values.

All basic calculations (+, -, *, /) with DECIMAL columns are done with a precision of 65 digits.

• DEC[(M[,D])] [UNSIGNED] [ZEROFILL], NUMERIC[(M[,D])] [UNSIGNED] [ZEROFILL],
FIXED[(M[,D])] [UNSIGNED] [ZEROFILL]

These types are synonyms for DECIMAL. The FIXED synonym is available for compatibility with other
database systems.

• FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]

A small (single-precision) floating-point number. Permissible values are -3.402823466E+38 to
-1.175494351E-38, 0, and 1.175494351E-38 to 3.402823466E+38. These are the theoretical
limits, based on the IEEE standard. The actual range might be slightly smaller depending on your
hardware or operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are
omitted, values are stored to the limits permitted by the hardware. A single-precision floating-point
number is accurate to approximately 7 decimal places.

FLOAT(M,D) is a nonstandard MySQL extension.

UNSIGNED, if specified, disallows negative values.

Using FLOAT might give you some unexpected problems because all calculations in MySQL are done
with double precision. See Section B.3.4.7, “Solving Problems with No Matching Rows”.

• FLOAT(p) [UNSIGNED] [ZEROFILL]

A floating-point number. p represents the precision in bits, but MySQL uses this value only to determine
whether to use FLOAT or DOUBLE for the resulting data type. If p is from 0 to 24, the data type becomes
FLOAT with no M or D values. If p is from 25 to 53, the data type becomes DOUBLE with no M or D values.
The range of the resulting column is the same as for the single-precision FLOAT or double-precision
DOUBLE data types described earlier in this section.

 FLOAT(p) syntax is provided for ODBC compatibility.

• DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]

A normal-size (double-precision) floating-point number. Permissible values are
-1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to 1.7976931348623157E+308. These are the theoretical limits,
based on the IEEE standard. The actual range might be slightly smaller depending on your hardware or
operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are
omitted, values are stored to the limits permitted by the hardware. A double-precision floating-point
number is accurate to approximately 15 decimal places.

1363

Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT

DOUBLE(M,D) is a nonstandard MySQL extension.

UNSIGNED, if specified, disallows negative values.

• DOUBLE PRECISION[(M,D)] [UNSIGNED] [ZEROFILL], REAL[(M,D)] [UNSIGNED]
[ZEROFILL]

These types are synonyms for DOUBLE. Exception: If the REAL_AS_FLOAT SQL mode is enabled, REAL
is a synonym for FLOAT rather than DOUBLE.

11.1.2 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT

MySQL supports the SQL standard integer types INTEGER (or INT) and SMALLINT. As an extension to
the standard, MySQL also supports the integer types TINYINT, MEDIUMINT, and BIGINT. The following
table shows the required storage and range for each integer type.

Table 11.1 Required Storage and Range for Integer Types Supported by MySQL

Type Storage (Bytes) Minimum Value
Signed

Minimum Value
Unsigned

Maximum
Value Signed

Maximum
Value
Unsigned

TINYINT 1 -128 0 127 255

SMALLINT 2 -32768 0 32767 65535

MEDIUMINT 3 -8388608 0 8388607 16777215

INT 4 -2147483648 0 2147483647 4294967295

BIGINT 8 -263 0 263-1 264-1

11.1.3 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC

The DECIMAL and NUMERIC types store exact numeric data values. These types are used when it
is important to preserve exact precision, for example with monetary data. In MySQL, NUMERIC is
implemented as DECIMAL, so the following remarks about DECIMAL apply equally to NUMERIC.

MySQL stores DECIMAL values in binary format. See Section 12.21, “Precision Math”.

In a DECIMAL column declaration, the precision and scale can be (and usually is) specified. For example:

salary DECIMAL(5,2)

In this example, 5 is the precision and 2 is the scale. The precision represents the number of significant
digits that are stored for values, and the scale represents the number of digits that can be stored following
the decimal point.

Standard SQL requires that DECIMAL(5,2) be able to store any value with five digits and two decimals,
so values that can be stored in the salary column range from -999.99 to 999.99.

In standard SQL, the syntax DECIMAL(M) is equivalent to DECIMAL(M,0). Similarly, the syntax DECIMAL
is equivalent to DECIMAL(M,0), where the implementation is permitted to decide the value of M. MySQL
supports both of these variant forms of DECIMAL syntax. The default value of M is 10.

If the scale is 0, DECIMAL values contain no decimal point or fractional part.

The maximum number of digits for DECIMAL is 65, but the actual range for a given DECIMAL column can
be constrained by the precision or scale for a given column. When such a column is assigned a value with

1364

Floating-Point Types (Approximate Value) - FLOAT, DOUBLE

more digits following the decimal point than are permitted by the specified scale, the value is converted to
that scale. (The precise behavior is operating system-specific, but generally the effect is truncation to the
permissible number of digits.)

11.1.4 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE

The FLOAT and DOUBLE types represent approximate numeric data values. MySQL uses four bytes for
single-precision values and eight bytes for double-precision values.

For FLOAT, the SQL standard permits an optional specification of the precision (but not the range of the
exponent) in bits following the keyword FLOAT in parentheses, that is, FLOAT(p). MySQL also supports
this optional precision specification, but the precision value in FLOAT(p) is used only to determine storage
size. A precision from 0 to 23 results in a 4-byte single-precision FLOAT column. A precision from 24 to 53
results in an 8-byte double-precision DOUBLE column.

MySQL permits a nonstandard syntax: FLOAT(M,D) or REAL(M,D) or DOUBLE PRECISION(M,D). Here,
(M,D) means than values can be stored with up to M digits in total, of which D digits may be after the
decimal point. For example, a column defined as FLOAT(7,4) looks like -999.9999 when displayed.
MySQL performs rounding when storing values, so if you insert 999.00009 into a FLOAT(7,4) column,
the approximate result is 999.0001.

Because floating-point values are approximate and not stored as exact values, attempts to treat them
as exact in comparisons may lead to problems. They are also subject to platform or implementation
dependencies. For more information, see Section B.3.4.8, “Problems with Floating-Point Values”.

For maximum portability, code requiring storage of approximate numeric data values should use FLOAT or
DOUBLE PRECISION with no specification of precision or number of digits.

11.1.5 Bit-Value Type - BIT

The BIT data type is used to store bit values. A type of BIT(M) enables storage of M-bit values. M can
range from 1 to 64.

To specify bit values, b'value' notation can be used. value is a binary value written using zeros and
ones. For example, b'111' and b'10000000' represent 7 and 128, respectively. See Section 9.1.5, “Bit-
Value Literals”.

If you assign a value to a BIT(M) column that is less than M bits long, the value is padded on the left with
zeros. For example, assigning a value of b'101' to a BIT(6) column is, in effect, the same as assigning
b'000101'.

NDB Cluster. The maximum combined size of all BIT columns used in a given NDB table must not
exceed 4096 bits.

11.1.6 Numeric Type Attributes

MySQL supports an extension for optionally specifying the display width of integer data types in
parentheses following the base keyword for the type. For example, INT(4) specifies an INT with a display
width of four digits. This optional display width may be used by applications to display integer values
having a width less than the width specified for the column by left-padding them with spaces. (That is, this
width is present in the metadata returned with result sets. Whether it is used is up to the application.)

The display width does not constrain the range of values that can be stored in the column. Nor does it
prevent values wider than the column display width from being displayed correctly. For example, a column
specified as SMALLINT(3) has the usual SMALLINT range of -32768 to 32767, and values outside the
range permitted by three digits are displayed in full using more than three digits.

1365

Out-of-Range and Overflow Handling

When used in conjunction with the optional (nonstandard) ZEROFILL attribute, the default padding of
spaces is replaced with zeros. For example, for a column declared as INT(4) ZEROFILL, a value of 5 is
retrieved as 0005.

Note

The ZEROFILL attribute is ignored for columns involved in expressions or UNION
queries.

If you store values larger than the display width in an integer column that has
the ZEROFILL attribute, you may experience problems when MySQL generates
temporary tables for some complicated joins. In these cases, MySQL assumes that
the data values fit within the column display width.

All integer types can have an optional (nonstandard) UNSIGNED attribute. An unsigned type can be used
to permit only nonnegative numbers in a column or when you need a larger upper numeric range for the
column. For example, if an INT column is UNSIGNED, the size of the column's range is the same but its
endpoints shift up, from -2147483648 and 2147483647 to 0 and 4294967295.

Floating-point and fixed-point types also can be UNSIGNED. As with integer types, this attribute prevents
negative values from being stored in the column. Unlike the integer types, the upper range of column
values remains the same.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute.

Integer or floating-point data types can have the AUTO_INCREMENT attribute. When you insert a value of
NULL into an indexed AUTO_INCREMENT column, the column is set to the next sequence value. Typically
this is value+1, where value is the largest value for the column currently in the table. (AUTO_INCREMENT
sequences begin with 1.)

Storing 0 into an AUTO_INCREMENT column has the same effect as storing NULL, unless the
NO_AUTO_VALUE_ON_ZERO SQL mode is enabled.

Inserting NULL to generate AUTO_INCREMENT values requires that the column be declared NOT NULL.
If the column is declared NULL, inserting NULL stores a NULL. When you insert any other value into an
AUTO_INCREMENT column, the column is set to that value and the sequence is reset so that the next
automatically generated value follows sequentially from the inserted value.

Negative values for AUTO_INCREMENT columns are not supported.

11.1.7 Out-of-Range and Overflow Handling

When MySQL stores a value in a numeric column that is outside the permissible range of the column data
type, the result depends on the SQL mode in effect at the time:

• If strict SQL mode is enabled, MySQL rejects the out-of-range value with an error, and the insert fails, in
accordance with the SQL standard.

• If no restrictive modes are enabled, MySQL clips the value to the appropriate endpoint of the column
data type range and stores the resulting value instead.

When an out-of-range value is assigned to an integer column, MySQL stores the value representing the
corresponding endpoint of the column data type range.

When a floating-point or fixed-point column is assigned a value that exceeds the range implied by the
specified (or default) precision and scale, MySQL stores the value representing the corresponding
endpoint of that range.

1366

Out-of-Range and Overflow Handling

Suppose that a table t1 has this definition:

CREATE TABLE t1 (i1 TINYINT, i2 TINYINT UNSIGNED);

With strict SQL mode enabled, an out of range error occurs:

mysql> SET sql_mode = 'TRADITIONAL';
mysql> INSERT INTO t1 (i1, i2) VALUES(256, 256);
ERROR 1264 (22003): Out of range value for column 'i1' at row 1
mysql> SELECT * FROM t1;
Empty set (0.00 sec)

With strict SQL mode not enabled, clipping with warnings occurs:

mysql> SET sql_mode = '';
mysql> INSERT INTO t1 (i1, i2) VALUES(256, 256);
mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1264 | Out of range value for column 'i1' at row 1 |
| Warning | 1264 | Out of range value for column 'i2' at row 1 |
+---------+------+---+
mysql> SELECT * FROM t1;
+------+------+
| i1 | i2 |
+------+------+
| 127 | 255 |
+------+------+

When strict SQL mode is not enabled, column-assignment conversions that occur due to clipping are
reported as warnings for ALTER TABLE, LOAD DATA, UPDATE, and multiple-row INSERT statements. In
strict mode, these statements fail, and some or all the values are not inserted or changed, depending on
whether the table is a transactional table and other factors. For details, see Section 5.1.10, “Server SQL
Modes”.

Overflow during numeric expression evaluation results in an error. For example, the largest signed BIGINT
value is 9223372036854775807, so the following expression produces an error:

mysql> SELECT 9223372036854775807 + 1;
ERROR 1690 (22003): BIGINT value is out of range in '(9223372036854775807 + 1)'

To enable the operation to succeed in this case, convert the value to unsigned;

mysql> SELECT CAST(9223372036854775807 AS UNSIGNED) + 1;
+---+
| CAST(9223372036854775807 AS UNSIGNED) + 1 |
+---+
| 9223372036854775808 |
+---+

Whether overflow occurs depends on the range of the operands, so another way to handle the preceding
expression is to use exact-value arithmetic because DECIMAL values have a larger range than integers:

mysql> SELECT 9223372036854775807.0 + 1;
+---------------------------+
| 9223372036854775807.0 + 1 |
+---------------------------+
| 9223372036854775808.0 |
+---------------------------+

Subtraction between integer values, where one is of type UNSIGNED, produces an unsigned result by
default. If the result would otherwise have been negative, an error results:

1367

Date and Time Data Types

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CAST(0 AS UNSIGNED) - 1;
ERROR 1690 (22003): BIGINT UNSIGNED value is out of range in '(cast(0 as unsigned) - 1)'

If the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is negative:

mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+

If the result of such an operation is used to update an UNSIGNED integer column, the result is clipped to the
maximum value for the column type, or clipped to 0 if NO_UNSIGNED_SUBTRACTION is enabled. If strict
SQL mode is enabled, an error occurs and the column remains unchanged.

11.2 Date and Time Data Types

The date and time data types for representing temporal values are DATE, TIME, DATETIME, TIMESTAMP,
and YEAR. Each temporal type has a range of valid values, as well as a “zero” value that may be used
when you specify an invalid value that MySQL cannot represent. The TIMESTAMP and DATETIME types
have special automatic updating behavior, described in Section 11.2.6, “Automatic Initialization and
Updating for TIMESTAMP and DATETIME”.

For information about storage requirements of the temporal data types, see Section 11.6, “Data Type
Storage Requirements”.

For descriptions of functions that operate on temporal values, see Section 12.7, “Date and Time
Functions”.

Keep in mind these general considerations when working with date and time types:

• MySQL retrieves values for a given date or time type in a standard output format, but it attempts to
interpret a variety of formats for input values that you supply (for example, when you specify a value to
be assigned to or compared to a date or time type). For a description of the permitted formats for date
and time types, see Section 9.1.3, “Date and Time Literals”. It is expected that you supply valid values.
Unpredictable results may occur if you use values in other formats.

• Although MySQL tries to interpret values in several formats, date parts must always be given in year-
month-day order (for example, '98-09-04'), rather than in the month-day-year or day-month-year
orders commonly used elsewhere (for example, '09-04-98', '04-09-98'). To convert strings in other
orders to year-month-day order, the STR_TO_DATE() function may be useful.

• Dates containing 2-digit year values are ambiguous because the century is unknown. MySQL interprets
2-digit year values using these rules:

• Year values in the range 70-99 become 1970-1999.

• Year values in the range 00-69 become 2000-2069.

See also Section 11.2.9, “2-Digit Years in Dates”.

• Conversion of values from one temporal type to another occurs according to the rules in Section 11.2.8,
“Conversion Between Date and Time Types”.

1368

Date and Time Data Type Syntax

• MySQL automatically converts a date or time value to a number if the value is used in numeric context
and vice versa.

• By default, when MySQL encounters a value for a date or time type that is out of range or otherwise
invalid for the type, it converts the value to the “zero” value for that type. The exception is that out-of-
range TIME values are clipped to the appropriate endpoint of the TIME range.

• By setting the SQL mode to the appropriate value, you can specify more exactly what kind of dates you
want MySQL to support. (See Section 5.1.10, “Server SQL Modes”.) You can get MySQL to accept
certain dates, such as '2009-11-31', by enabling the ALLOW_INVALID_DATES SQL mode. This is
useful when you want to store a “possibly wrong” value which the user has specified (for example, in a
web form) in the database for future processing. Under this mode, MySQL verifies only that the month is
in the range from 1 to 12 and that the day is in the range from 1 to 31.

• MySQL permits you to store dates where the day or month and day are zero in a DATE or DATETIME
column. This is useful for applications that need to store birthdates for which you may not know the
exact date. In this case, you simply store the date as '2009-00-00' or '2009-01-00'. However, with
dates such as these, you should not expect to get correct results for functions such as DATE_SUB()
or DATE_ADD() that require complete dates. To disallow zero month or day parts in dates, enable the
NO_ZERO_IN_DATE SQL mode.

• MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” In some cases,
this is more convenient than using NULL values, and uses less data and index space. To disallow
'0000-00-00', enable the NO_ZERO_DATE SQL mode.

• “Zero” date or time values used through Connector/ODBC are converted automatically to NULL because
ODBC cannot handle such values.

The following table shows the format of the “zero” value for each type. The “zero” values are special, but
you can store or refer to them explicitly using the values shown in the table. You can also do this using the
values '0' or 0, which are easier to write. For temporal types that include a date part (DATE, DATETIME,
and TIMESTAMP), use of these values may produce warning or errors. The precise behavior depends on
which, if any, of the strict and NO_ZERO_DATE SQL modes are enabled; see Section 5.1.10, “Server SQL
Modes”.

Data Type “Zero” Value

DATE '0000-00-00'

TIME '00:00:00'

DATETIME '0000-00-00 00:00:00'

TIMESTAMP '0000-00-00 00:00:00'

YEAR 0000

11.2.1 Date and Time Data Type Syntax

The date and time data types for representing temporal values are DATE, TIME, DATETIME, TIMESTAMP,
and YEAR.

For the DATE and DATETIME range descriptions, “supported” means that although earlier values might
work, there is no guarantee.

MySQL permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to microseconds
(6 digits) precision. To define a column that includes a fractional seconds part, use the syntax

1369

Date and Time Data Type Syntax

type_name(fsp), where type_name is TIME, DATETIME, or TIMESTAMP, and fsp is the fractional
seconds precision. For example:

CREATE TABLE t1 (t TIME(3), dt DATETIME(6), ts TIMESTAMP(0));

The fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional part.
If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for compatibility with
previous MySQL versions.)

Any TIMESTAMP or DATETIME column in a table can have automatic initialization and updating properties;
see Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”.

• DATE

A date. The supported range is '1000-01-01' to '9999-12-31'. MySQL displays DATE values
in 'YYYY-MM-DD' format, but permits assignment of values to DATE columns using either strings or
numbers.

• DATETIME[(fsp)]

A date and time combination. The supported range is '1000-01-01 00:00:00.000000' to
'9999-12-31 23:59:59.999999'. MySQL displays DATETIME values in 'YYYY-MM-DD
hh:mm:ss[.fraction]' format, but permits assignment of values to DATETIME columns using either
strings or numbers.

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision. A
value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

Automatic initialization and updating to the current date and time for DATETIME columns can be
specified using DEFAULT and ON UPDATE column definition clauses, as described in Section 11.2.6,
“Automatic Initialization and Updating for TIMESTAMP and DATETIME”.

• TIMESTAMP[(fsp)]

A timestamp. The range is '1970-01-01 00:00:01.000000' UTC to '2038-01-19
03:14:07.999999' UTC. TIMESTAMP values are stored as the number of seconds since the
epoch ('1970-01-01 00:00:00' UTC). A TIMESTAMP cannot represent the value '1970-01-01
00:00:00' because that is equivalent to 0 seconds from the epoch and the value 0 is reserved for
representing '0000-00-00 00:00:00', the “zero” TIMESTAMP value.

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision. A
value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

The way the server handles TIMESTAMP definitions depends on the value of the
explicit_defaults_for_timestamp system variable (see Section 5.1.7, “Server System
Variables”).

If explicit_defaults_for_timestamp is enabled, there is no automatic assignment of the
DEFAULT CURRENT_TIMESTAMP or ON UPDATE CURRENT_TIMESTAMP attributes to any TIMESTAMP
column. They must be included explicitly in the column definition. Also, any TIMESTAMP not explicitly
declared as NOT NULL permits NULL values.

If explicit_defaults_for_timestamp is disabled, the server handles TIMESTAMP as follows:

Unless specified otherwise, the first TIMESTAMP column in a table is defined to be automatically set
to the date and time of the most recent modification if not explicitly assigned a value. This makes
TIMESTAMP useful for recording the timestamp of an INSERT or UPDATE operation. You can also set

1370

Date and Time Data Type Syntax

any TIMESTAMP column to the current date and time by assigning it a NULL value, unless it has been
defined with the NULL attribute to permit NULL values.

Automatic initialization and updating to the current date and time can be specified using DEFAULT
CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP column definition clauses. By default,
the first TIMESTAMP column has these properties, as previously noted. However, any TIMESTAMP
column in a table can be defined to have these properties.

explicit_defaults_for_timestamp is available as of MySQL 5.6.6. Before 5.6.6, the server
handles TIMESTAMP as discussed for explicit_defaults_for_timestamp disabled. Those
behaviors, while they remain the default, are nonstandard and are deprecated as of 5.6.6. For discussion
regarding upgrading to an installation with explicit_defaults_for_timestamp enabled, see
Section 2.11.3, “Changes in MySQL 5.6”.

• TIME[(fsp)]

A time. The range is '-838:59:59.000000' to '838:59:59.000000'. MySQL displays TIME
values in 'hh:mm:ss[.fraction]' format, but permits assignment of values to TIME columns using
either strings or numbers.

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision. A
value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

• YEAR[(2|4)]

A year in 2-digit or 4-digit format. The default is 4-digit format. YEAR(2) or YEAR(4) differ in display
format, but have the same range of values. In 4-digit format, values display as 1901 to 2155, or 0000. In
2-digit format, values display as 70 to 69, representing years from 1970 to 2069. MySQL displays YEAR
values in YYYY or YY format, but permits assignment of values to YEAR columns using either strings or
numbers.

Note

The 2-digit YEAR(2) data type has certain issues that you should consider
before choosing to use it. As of MySQL 5.6.6, YEAR(2) is deprecated: 2-digit
YEAR(2) columns in existing tables are treated as before, but 2-digit YEAR(2)
columns in new or altered tables are converted to 4-digit YEAR columns. For more
information, see Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-
Digit YEAR”.

For additional information about YEAR display format and interpretation of input values, see
Section 11.2.4, “The YEAR Type”.

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values to
numbers, losing everything after the first nonnumeric character.) To work around this problem, convert to
numeric units, perform the aggregate operation, and convert back to a temporal value. Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

Note

The MySQL server can be run with the MAXDB SQL mode enabled. In this case,
TIMESTAMP is identical with DATETIME. If this mode is enabled at the time that a
table is created, TIMESTAMP columns are created as DATETIME columns. As a
result, such columns use DATETIME display format, have the same range of values,

1371

The DATE, DATETIME, and TIMESTAMP Types

and there is no automatic initialization or updating to the current date and time. See
Section 5.1.10, “Server SQL Modes”.

11.2.2 The DATE, DATETIME, and TIMESTAMP Types

The DATE, DATETIME, and TIMESTAMP types are related. This section describes their characteristics,
how they are similar, and how they differ. MySQL recognizes DATE, DATETIME, and TIMESTAMP values in
several formats, described in Section 9.1.3, “Date and Time Literals”. For the DATE and DATETIME range
descriptions, “supported” means that although earlier values might work, there is no guarantee.

The DATE type is used for values with a date part but no time part. MySQL retrieves and displays DATE
values in 'YYYY-MM-DD' format. The supported range is '1000-01-01' to '9999-12-31'.

The DATETIME type is used for values that contain both date and time parts. MySQL retrieves and
displays DATETIME values in 'YYYY-MM-DD hh:mm:ss' format. The supported range is '1000-01-01
00:00:00' to '9999-12-31 23:59:59'.

The TIMESTAMP data type is used for values that contain both date and time parts. TIMESTAMP has a
range of '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC.

A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds (6
digits) precision. In particular, as of MySQL 5.6.4, any fractional part in a value inserted into a DATETIME
or TIMESTAMP column is stored rather than discarded. With the fractional part included, the format
for these values is 'YYYY-MM-DD hh:mm:ss[.fraction]', the range for DATETIME values is
'1000-01-01 00:00:00.000000' to '9999-12-31 23:59:59.999999', and the range for
TIMESTAMP values is '1970-01-01 00:00:01.000000' to '2038-01-19 03:14:07.999999'.
The fractional part should always be separated from the rest of the time by a decimal point; no other
fractional seconds delimiter is recognized. For information about fractional seconds support in MySQL, see
Section 11.2.7, “Fractional Seconds in Time Values”.

The TIMESTAMP and DATETIME data types offer automatic initialization and updating to the current date
and time. For more information, see Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP
and DATETIME”.

MySQL converts TIMESTAMP values from the current time zone to UTC for storage, and back from UTC to
the current time zone for retrieval. (This does not occur for other types such as DATETIME.) By default, the
current time zone for each connection is the server's time. The time zone can be set on a per-connection
basis. As long as the time zone setting remains constant, you get back the same value you store. If you
store a TIMESTAMP value, and then change the time zone and retrieve the value, the retrieved value is
different from the value you stored. This occurs because the same time zone was not used for conversion
in both directions. The current time zone is available as the value of the time_zone system variable. For
more information, see Section 5.1.13, “MySQL Server Time Zone Support”.

Invalid DATE, DATETIME, or TIMESTAMP values are converted to the “zero” value of the appropriate type
('0000-00-00' or '0000-00-00 00:00:00'), if the SQL mode permits this conversion. The precise
behavior depends on which if any of strict SQL mode and the NO_ZERO_DATE SQL mode are enabled; see
Section 5.1.10, “Server SQL Modes”.

Be aware of certain properties of date value interpretation in MySQL:

• MySQL permits a “relaxed” format for values specified as strings, in which any punctuation character
may be used as the delimiter between date parts or time parts. In some cases, this syntax can be
deceiving. For example, a value such as '10:11:12' might look like a time value because of the :, but
is interpreted as the year '2010-11-12' if used in date context. The value '10:45:15' is converted
to '0000-00-00' because '45' is not a valid month.

1372

The TIME Type

The only delimiter recognized between a date and time part and a fractional seconds part is the decimal
point.

• The server requires that month and day values be valid, and not merely in the range 1 to 12 and 1 to
31, respectively. With strict mode disabled, invalid dates such as '2004-04-31' are converted to
'0000-00-00' and a warning is generated. With strict mode enabled, invalid dates generate an error.
To permit such dates, enable ALLOW_INVALID_DATES. See Section 5.1.10, “Server SQL Modes”, for
more information.

• MySQL does not accept TIMESTAMP values that include a zero in the day or month column or values
that are not a valid date. The sole exception to this rule is the special “zero” value '0000-00-00
00:00:00', if the SQL mode permits this value. The precise behavior depends on which if any of strict
SQL mode and the NO_ZERO_DATE SQL mode are enabled; see Section 5.1.10, “Server SQL Modes”.

• Dates containing 2-digit year values are ambiguous because the century is unknown. MySQL interprets
2-digit year values using these rules:

• Year values in the range 00-69 become 2000-2069.

• Year values in the range 70-99 become 1970-1999.

See also Section 11.2.9, “2-Digit Years in Dates”.

Note

The MySQL server can be run with the MAXDB SQL mode enabled. In this case,
TIMESTAMP is identical with DATETIME. If this mode is enabled at the time that a
table is created, TIMESTAMP columns are created as DATETIME columns. As a
result, such columns use DATETIME display format, have the same range of values,
and there is no automatic initialization or updating to the current date and time. See
Section 5.1.10, “Server SQL Modes”.

11.2.3 The TIME Type

MySQL retrieves and displays TIME values in 'hh:mm:ss' format (or 'hhh:mm:ss' format for large
hours values). TIME values may range from '-838:59:59' to '838:59:59'. The hours part may be so
large because the TIME type can be used not only to represent a time of day (which must be less than 24
hours), but also elapsed time or a time interval between two events (which may be much greater than 24
hours, or even negative).

MySQL recognizes TIME values in several formats, some of which can include a trailing fractional seconds
part in up to microseconds (6 digits) precision. See Section 9.1.3, “Date and Time Literals”. For information
about fractional seconds support in MySQL, see Section 11.2.7, “Fractional Seconds in Time Values”. In
particular, as of MySQL 5.6.4, any fractional part in a value inserted into a TIME column is stored rather
than discarded. With the fractional part included, the range for TIME values is '-838:59:59.000000' to
'838:59:59.000000'.

Be careful about assigning abbreviated values to a TIME column. MySQL interprets abbreviated TIME
values with colons as time of the day. That is, '11:12' means '11:12:00', not '00:11:12'. MySQL
interprets abbreviated values without colons using the assumption that the two rightmost digits represent
seconds (that is, as elapsed time rather than as time of day). For example, you might think of '1112' and
1112 as meaning '11:12:00' (12 minutes after 11 o'clock), but MySQL interprets them as '00:11:12'
(11 minutes, 12 seconds). Similarly, '12' and 12 are interpreted as '00:00:12'.

The only delimiter recognized between a time part and a fractional seconds part is the decimal point.

1373

The YEAR Type

By default, values that lie outside the TIME range but are otherwise valid are clipped to the closest
endpoint of the range. For example, '-850:00:00' and '850:00:00' are converted to '-838:59:59'
and '838:59:59'. Invalid TIME values are converted to '00:00:00'. Note that because '00:00:00'
is itself a valid TIME value, there is no way to tell, from a value of '00:00:00' stored in a table, whether
the original value was specified as '00:00:00' or whether it was invalid.

For more restrictive treatment of invalid TIME values, enable strict SQL mode to cause errors to occur. See
Section 5.1.10, “Server SQL Modes”.

11.2.4 The YEAR Type

The YEAR type is a 1-byte type used to represent year values. It can be declared as YEAR with an
implicit display width of 4 characters, or as YEAR(4) or YEAR(2) with an explicit display width of 4 or 2
characters.

Note

The 2-digit YEAR(2) data type has certain issues that you should consider before
choosing to use it. As of MySQL 5.6.6, YEAR(2) is deprecated: 2-digit YEAR(2)
columns in existing tables are treated as before, but 2-digit YEAR(2) columns in
new or altered tables are converted to 4-digit YEAR columns. For more information,
see Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”.

YEAR/YEAR(4) and YEAR(2) differ in display format, but have the same range of values. For 4-digit
format, MySQL displays YEAR values in YYYY format, with a range of 1901 to 2155, and 0000. For 2-
digit format, MySQL displays only the last (least significant) 2 digits; for example, 70 (1970 or 2070) or 69
(2069).

YEAR accepts input values in a variety of formats:

• As 4-digit strings in the range '1901' to '2155'.

• As 4-digit numbers in the range 1901 to 2155.

• As 1- or 2-digit strings in the range '0' to '99'. MySQL converts values in the ranges '0' to '69' and
'70' to '99' to YEAR values in the ranges 2000 to 2069 and 1970 to 1999.

• As 1- or 2-digit numbers in the range 0 to 99. MySQL converts values in the ranges 1 to 69 and 70 to 99
to YEAR values in the ranges 2001 to 2069 and 1970 to 1999.

Inserting a numeric 0 has different effects for YEAR/YEAR(4) and YEAR(2):

• For YEAR/YEAR(4), the result has a display value of 0000 and an internal value of 0000. To specify
zero and have it be interpreted as 2000, specify it as a string '0' or '00'.

• For YEAR(2), the result has a display value of 00 and an internal value of 2000.

• As the result of functions that return a value that is acceptable in YEAR context, such as NOW().

If strict SQL mode is not enabled, MySQL converts invalid YEAR values to 0000. In strict SQL mode,
attempting to insert an invalid YEAR value produces an error.

See also Section 11.2.9, “2-Digit Years in Dates”.

11.2.5 2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR

This section describes problems that can occur when using the 2-digit YEAR(2) data type and provides
information about converting existing YEAR(2) columns to 4-digit year-valued columns, which can be

1374

2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR

declared as YEAR with an implicit display width of 4 characters, or equivalently as YEAR(4) with an explicit
display width.

Although the internal range of values for YEAR/YEAR(4) and the deprecated YEAR(2) type is the same
(1901 to 2155, and 0000), the display width for YEAR(2) makes that type inherently ambiguous because
displayed values indicate only the last two digits of the internal values and omit the century digits. The
result can be a loss of information under certain circumstances. For this reason, avoid using YEAR(2)
in your applications and use YEAR/YEAR(4) wherever you need a year-valued data type. Note that
conversion is required at some point because support for YEAR data types with display values other than 4,
most notably YEAR(2), is reduced as of MySQL 5.6.6 and is removed entirely in MySQL 5.7.

YEAR(2) Limitations

Issues with the YEAR(2) data type include ambiguity of displayed values, and possible loss of information
when values are dumped and reloaded or converted to strings.

• Displayed YEAR(2) values can be ambiguous. It is possible for up to three YEAR(2) values that have
different internal values to have the same displayed value, as the following example demonstrates:

mysql> CREATE TABLE t (y2 YEAR(2), y4 YEAR);
Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> INSERT INTO t (y2) VALUES(1912),(2012),(2112);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> UPDATE t SET y4 = y2;
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

mysql> SELECT * FROM t;
+------+------+
| y2 | y4 |
+------+------+
12	1912
12	2012
12	2112
+------+------+
3 rows in set (0.00 sec)

• If you use mysqldump to dump the table created in the preceding example, the dump file represents
all y2 values using the same 2-digit representation (12). If you reload the table from the dump file, all
resulting rows have internal value 2012 and display value 12, thus losing the distinctions between them.

• Conversion of a 2-digit or 4-digit YEAR data value to string form uses the data type display width.
Suppose that a YEAR(2) column and a YEAR/YEAR(4) column both contain the value 1970. Assigning
each column to a string results in a value of '70' or '1970', respectively. That is, loss of information
occurs for conversion from YEAR(2) to string.

• Values outside the range from 1970 to 2069 are stored incorrectly when inserted into a YEAR(2)
column in a CSV table. For example, inserting 2211 results in a display value of 11 but an internal value
of 2011.

To avoid these problems, use the 4-digit YEAR or YEAR(4) data type rather than the 2-digit YEAR(2) data
type. Suggestions regarding migration strategies appear later in this section.

Reduced YEAR(2) Support in MySQL 5.6

As of MySQL 5.6.6, support for YEAR(2) is diminished:

1375

2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR

• YEAR(2) column definitions for new tables are converted (with an
ER_INVALID_YEAR_COLUMN_LENGTH warning) to 4-digit YEAR columns:

mysql> CREATE TABLE t1 (y YEAR(2));
Query OK, 0 rows affected, 1 warning (0.04 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1818
Message: YEAR(2) column type is deprecated. Creating YEAR(4) column instead.
1 row in set (0.00 sec)

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `y` year(4) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

• YEAR(2) columns in existing tables remain as YEAR(2) and are processed in queries as in older
versions of MySQL. However, several programs or statements convert YEAR(2) columns to 4-digit YEAR
columns automatically:

• ALTER TABLE statements that result in a table rebuild.

• REPAIR TABLE (which CHECK TABLE recommends you use, if it finds a table that contains YEAR(2)
columns).

• mysql_upgrade (which uses REPAIR TABLE).

• Dumping with mysqldump and reloading the dump file. Unlike the conversions performed by the
preceding three items, a dump and reload has the potential to change data values.

A MySQL upgrade usually involves at least one of the last two items. However, with respect to YEAR(2),
mysql_upgrade is preferable to mysqldump, which, as noted, can change data values.

Migrating from YEAR(2) to 4-Digit YEAR

To convert 2-digit YEAR(2) columns to 4-digit YEAR columns, you can do so manually at any time without
upgrading. Alternatively, you can upgrade to a version of MySQL with reduced support for YEAR(2)
(MySQL 5.6.6 or later), then have MySQL convert YEAR(2) columns automatically. In the latter case,
avoid upgrading by dumping and reloading your data because that can change data values. In addition, if
you use replication, there are upgrade considerations you must take into account.

To convert 2-digit YEAR(2) columns to 4-digit YEAR manually, use ALTER TABLE or REPAIR TABLE.
Suppose that a table t1 has this definition:

CREATE TABLE t1 (ycol YEAR(2) NOT NULL DEFAULT '70');

Modify the column using ALTER TABLE as follows:

ALTER TABLE t1 FORCE;

The ALTER TABLE statement converts the table without changing YEAR(2) values. If the server is a
replication source, the ALTER TABLE statement replicates to replicas and makes the corresponding table
change on each one.

Another migration method is to perform a binary upgrade: Upgrade MySQL 5.6.6 or later in place without
dumping and reloading your data. Then run mysql_upgrade, which uses REPAIR TABLE to convert 2-

1376

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_invalid_year_column_length

Automatic Initialization and Updating for TIMESTAMP and DATETIME

digit YEAR(2) columns to 4-digit YEAR columns without changing data values. If the server is a replication
source, the REPAIR TABLE statements replicate to replicas and make the corresponding table changes on
each one, unless you invoke mysql_upgrade with the --skip-write-binlog option.

Upgrades to replication servers usually involve upgrading replicas to a newer version of MySQL, then
upgrading the source. For example, if a source and replica both run MySQL 5.5, a typical upgrade
sequence involves upgrading the replica to 5.6, then upgrading the source to 5.6. With regard to the
different treatment of YEAR(2) as of MySQL 5.6.6, that upgrade sequence results in a problem: Suppose
that the replica has been upgraded but not yet the source. Then creating a table containing a 2-digit
YEAR(2) column on the source results in a table containing a 4-digit YEAR column on the replica.
Consequently, the following operations have a different result on the source and replica, if you use
statement-based replication:

• Inserting numeric 0. The resulting value has an internal value of 2000 on the source but 0000 on the
replica.

• Converting YEAR(2) to string. This operation uses the display value of YEAR(2) on the source but
YEAR(4) on the replica.

To avoid such problems, use one of these strategies:

• Use row-based replication instead of statement-based replication.

• Modify all 2-digit YEAR(2) columns on the source to 4-digit YEAR columns before upgrading. (Use
ALTER TABLE, as described previously.) That makes it possible to upgrade normally (replica first, then
source) without introducing any YEAR(2) to YEAR(4) differences between the source and replica.

One migration method should be avoided: Do not dump your data with mysqldump and reload the dump
file after upgrading. That has the potential to change YEAR(2) values, as described previously.

A migration from 2-digit YEAR(2) columns to 4-digit YEAR columns should also involve examining
application code for the possibility of changed behavior under conditions such as these:

• Code that expects selecting a YEAR column to produce exactly two digits.

• Code that does not account for different handling for inserts of numeric 0: Inserting 0 into YEAR(2) or
YEAR(4) results in an internal value of 2000 or 0000, respectively.

11.2.6 Automatic Initialization and Updating for TIMESTAMP and DATETIME

As of MySQL 5.6.5, TIMESTAMP and DATETIME columns can be automatically initializated and updated
to the current date and time (that is, the current timestamp). Before 5.6.5, this is true only for TIMESTAMP,
and for at most one TIMESTAMP column per table. The following notes first describe automatic initialization
and updating for MySQL 5.6.5 and up, then the differences for versions preceding 5.6.5.

For any TIMESTAMP or DATETIME column in a table, you can assign the current timestamp as the default
value, the auto-update value, or both:

• An auto-initialized column is set to the current timestamp for inserted rows that specify no value for the
column.

• An auto-updated column is automatically updated to the current timestamp when the value of any other
column in the row is changed from its current value. An auto-updated column remains unchanged if all
other columns are set to their current values. To prevent an auto-updated column from updating when
other columns change, explicitly set it to its current value. To update an auto-updated column even

1377

Automatic Initialization and Updating for TIMESTAMP and DATETIME

when other columns do not change, explicitly set it to the value it should have (for example, set it to
CURRENT_TIMESTAMP).

In addition, if the explicit_defaults_for_timestamp system variable is disabled, you can initialize
or update any TIMESTAMP (but not DATETIME) column to the current date and time by assigning it a NULL
value, unless it has been defined with the NULL attribute to permit NULL values.

To specify automatic properties, use the DEFAULT CURRENT_TIMESTAMP and ON UPDATE
CURRENT_TIMESTAMP clauses in column definitions. The order of the clauses does not matter. If both are
present in a column definition, either can occur first. Any of the synonyms for CURRENT_TIMESTAMP have
the same meaning as CURRENT_TIMESTAMP. These are CURRENT_TIMESTAMP(), NOW(), LOCALTIME,
LOCALTIME(), LOCALTIMESTAMP, and LOCALTIMESTAMP().

Use of DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP is specific to
TIMESTAMP and DATETIME. The DEFAULT clause also can be used to specify a constant (nonautomatic)
default value (for example, DEFAULT 0 or DEFAULT '2000-01-01 00:00:00').

Note

The following examples use DEFAULT 0, a default that can produce warnings or
errors depending on whether strict SQL mode or the NO_ZERO_DATE SQL mode
is enabled. Be aware that the TRADITIONAL SQL mode includes strict mode and
NO_ZERO_DATE. See Section 5.1.10, “Server SQL Modes”.

TIMESTAMP or DATETIME column definitions can specify the current timestamp for both the default
and auto-update values, for one but not the other, or for neither. Different columns can have different
combinations of automatic properties. The following rules describe the possibilities:

• With both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP, the column has
the current timestamp for its default value and is automatically updated to the current timestamp.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);

• With a DEFAULT clause but no ON UPDATE CURRENT_TIMESTAMP clause, the column has the given
default value and is not automatically updated to the current timestamp.

The default depends on whether the DEFAULT clause specifies CURRENT_TIMESTAMP or a constant
value. With CURRENT_TIMESTAMP, the default is the current timestamp.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT CURRENT_TIMESTAMP
);

With a constant, the default is the given value. In this case, the column has no automatic properties at
all.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT 0,
 dt DATETIME DEFAULT 0
);

• With an ON UPDATE CURRENT_TIMESTAMP clause and a constant DEFAULT clause, the column is
automatically updated to the current timestamp and has the given constant default value.

CREATE TABLE t1 (

1378

Automatic Initialization and Updating for TIMESTAMP and DATETIME

 ts TIMESTAMP DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP
);

• With an ON UPDATE CURRENT_TIMESTAMP clause but no DEFAULT clause, the column is automatically
updated to the current timestamp but does not have the current timestamp for its default value.

The default in this case is type dependent. TIMESTAMP has a default of 0 unless defined with the NULL
attribute, in which case the default is NULL.

CREATE TABLE t1 (
 ts1 TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, -- default 0
 ts2 TIMESTAMP NULL ON UPDATE CURRENT_TIMESTAMP -- default NULL
);

DATETIME has a default of NULL unless defined with the NOT NULL attribute, in which case the default
is 0.

CREATE TABLE t1 (
 dt1 DATETIME ON UPDATE CURRENT_TIMESTAMP, -- default NULL
 dt2 DATETIME NOT NULL ON UPDATE CURRENT_TIMESTAMP -- default 0
);

TIMESTAMP and DATETIME columns have no automatic properties unless they are specified explicitly,
with this exception: If the explicit_defaults_for_timestamp system variable is disabled, the first
TIMESTAMP column has both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP
if neither is specified explicitly. To suppress automatic properties for the first TIMESTAMP column, use one
of these strategies:

• Enable the explicit_defaults_for_timestamp system variable. In this case, the DEFAULT
CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP clauses that specify automatic
initialization and updating are available, but are not assigned to any TIMESTAMP column unless explicitly
included in the column definition.

• Alternatively, if explicit_defaults_for_timestamp is disabled, do either of the following:

• Define the column with a DEFAULT clause that specifies a constant default value.

• Specify the NULL attribute. This also causes the column to permit NULL values, which means that
you cannot assign the current timestamp by setting the column to NULL. Assigning NULL sets the
column to NULL, not the current timestamp. To assign the current timestamp, set the column to
CURRENT_TIMESTAMP or a synonym such as NOW().

Consider these table definitions:

CREATE TABLE t1 (
 ts1 TIMESTAMP DEFAULT 0,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t2 (
 ts1 TIMESTAMP NULL,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t3 (
 ts1 TIMESTAMP NULL DEFAULT 0,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);

The tables have these properties:

• In each table definition, the first TIMESTAMP column has no automatic initialization or updating.

1379

Automatic Initialization and Updating for TIMESTAMP and DATETIME

• The tables differ in how the ts1 column handles NULL values. For t1, ts1 is NOT NULL and assigning
it a value of NULL sets it to the current timestamp. For t2 and t3, ts1 permits NULL and assigning it a
value of NULL sets it to NULL.

• t2 and t3 differ in the default value for ts1. For t2, ts1 is defined to permit NULL, so the default is also
NULL in the absence of an explicit DEFAULT clause. For t3, ts1 permits NULL but has an explicit default
of 0.

If a TIMESTAMP or DATETIME column definition includes an explicit fractional seconds precision value
anywhere, the same value must be used throughout the column definition. This is permitted:

CREATE TABLE t1 (
 ts TIMESTAMP(6) DEFAULT CURRENT_TIMESTAMP(6) ON UPDATE CURRENT_TIMESTAMP(6)
);

This is not permitted:

CREATE TABLE t1 (
 ts TIMESTAMP(6) DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP(3)
);

Automatic Timestamp Properties Before MySQL 5.6.5

Before MySQL 5.6.5, support for automatic initialization and updating is more limited:

• DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP cannot be used with
DATETIME columns.

• DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP can be used with at most
one TIMESTAMP column per table. It is not possible to have the current timestamp be the default value
for one column and the auto-update value for another column.

You can choose whether to use these properties and which TIMESTAMP column should have them. It need
not be the first one in a table that is automatically initialized or updated to the current timestamp. To specify
automatic initialization or updating for a different TIMESTAMP column, you must suppress the automatic
properties for the first one, as previously described. Then, for the other TIMESTAMP column, the rules for
the DEFAULT and ON UPDATE clauses are the same as for the first TIMESTAMP column, except that if you
omit both clauses, no automatic initialization or updating occurs.

TIMESTAMP Initialization and the NULL Attribute

If the explicit_defaults_for_timestamp system variable is disabled, TIMESTAMP columns by
default are NOT NULL, cannot contain NULL values, and assigning NULL assigns the current timestamp.
To permit a TIMESTAMP column to contain NULL, explicitly declare it with the NULL attribute. In this
case, the default value also becomes NULL unless overridden with a DEFAULT clause that specifies a
different default value. DEFAULT NULL can be used to explicitly specify NULL as the default value. (For
a TIMESTAMP column not declared with the NULL attribute, DEFAULT NULL is invalid.) If a TIMESTAMP
column permits NULL values, assigning NULL sets it to NULL, not to the current timestamp.

The following table contains several TIMESTAMP columns that permit NULL values:

CREATE TABLE t
(
 ts1 TIMESTAMP NULL DEFAULT NULL,
 ts2 TIMESTAMP NULL DEFAULT 0,
 ts3 TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP
);

1380

Fractional Seconds in Time Values

A TIMESTAMP column that permits NULL values does not take on the current timestamp at insert time
except under one of the following conditions:

• Its default value is defined as CURRENT_TIMESTAMP and no value is specified for the column

• CURRENT_TIMESTAMP or any of its synonyms such as NOW() is explicitly inserted into the column

In other words, a TIMESTAMP column defined to permit NULL values auto-initializes only if its definition
includes DEFAULT CURRENT_TIMESTAMP:

CREATE TABLE t (ts TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP);

If the TIMESTAMP column permits NULL values but its definition does not include DEFAULT
CURRENT_TIMESTAMP, you must explicitly insert a value corresponding to the current date and time.
Suppose that tables t1 and t2 have these definitions:

CREATE TABLE t1 (ts TIMESTAMP NULL DEFAULT '0000-00-00 00:00:00');
CREATE TABLE t2 (ts TIMESTAMP NULL DEFAULT NULL);

To set the TIMESTAMP column in either table to the current timestamp at insert time, explicitly assign it that
value. For example:

INSERT INTO t2 VALUES (CURRENT_TIMESTAMP);
INSERT INTO t1 VALUES (NOW());

If the explicit_defaults_for_timestamp system variable is enabled, TIMESTAMP columns permit
NULL values only if declared with the NULL attribute. Also, TIMESTAMP columns do not permit assigning
NULL to assign the current timestamp, whether declared with the NULL or NOT NULL attribute. To assign
the current timestamp, set the column to CURRENT_TIMESTAMP or a synonym such as NOW().

11.2.7 Fractional Seconds in Time Values

MySQL 5.6 has fractional seconds support for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision:

• To define a column that includes a fractional seconds part, use the syntax type_name(fsp), where
type_name is TIME, DATETIME, or TIMESTAMP, and fsp is the fractional seconds precision. For
example:

CREATE TABLE t1 (t TIME(3), dt DATETIME(6));

The fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional part.
If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for compatibility
with previous MySQL versions.)

• Inserting a TIME, DATE, or TIMESTAMP value with a fractional seconds part into a column of the same
type but having fewer fractional digits results in rounding. Consider a table created and populated as
follows:

CREATE TABLE fractest(c1 TIME(2), c2 DATETIME(2), c3 TIMESTAMP(2));
INSERT INTO fractest VALUES
('17:51:04.777', '2018-09-08 17:51:04.777', '2018-09-08 17:51:04.777');

The temporal values are inserted into the table with rounding:

mysql> SELECT * FROM fractest;
+-------------+------------------------+------------------------+
| c1 | c2 | c3 |
+-------------+------------------------+------------------------+

1381

Conversion Between Date and Time Types

| 17:51:04.78 | 2018-09-08 17:51:04.78 | 2018-09-08 17:51:04.78 |
+-------------+------------------------+------------------------+

No warning or error is given when such rounding occurs. This behavior follows the SQL standard, and is
not affected by the server sql_mode setting.

• Functions that take temporal arguments accept values with fractional seconds. Return values from
temporal functions include fractional seconds as appropriate. For example, NOW() with no argument
returns the current date and time with no fractional part, but takes an optional argument from 0 to 6 to
specify that the return value includes a fractional seconds part of that many digits.

• Syntax for temporal literals produces temporal values: DATE 'str', TIME 'str', and TIMESTAMP
'str', and the ODBC-syntax equivalents. The resulting value includes a trailing fractional seconds part
if specified. Previously, the temporal type keyword was ignored and these constructs produced the string
value. See Standard SQL and ODBC Date and Time Literals

In some cases, previously accepted syntax may produce different results. The following items indicate
where existing code may need to be changed to avoid problems:

• Some expressions produce results that differ from previous results. Examples: The timestamp
system variable returns a value that includes a microseconds fractional part rather than an integer.
Functions that return a result that includes the current time (such as CURTIME(), SYSDATE(), or
UTC_TIMESTAMP()) interpret an argument as an fsp value and the return value includes a fractional
seconds part of that many digits. Previously, these functions permitted an argument but ignored it.

• TIME values are converted to DATETIME by adding the time to the current date. (This means that
the date part of the result differs from the current date if the time value is outside the range from
'00:00:00' to '23:59:59'.) Previously, conversion of TIME values to DATETIME was unreliable.
See Section 11.2.8, “Conversion Between Date and Time Types”.

• TIMESTAMP(N) was permitted in old MySQL versions, but N was a display width rather than fractional
seconds precision. Support for this behavior was removed in MySQL 5.5.3, so applications that are
reasonably up to date should not be subject to this issue. Otherwise, code must be rewritten.

11.2.8 Conversion Between Date and Time Types

To some extent, you can convert a value from one temporal type to another. However, there may be some
alteration of the value or loss of information. In all cases, conversion between temporal types is subject to
the range of valid values for the resulting type. For example, although DATE, DATETIME, and TIMESTAMP
values all can be specified using the same set of formats, the types do not all have the same range of
values. TIMESTAMP values cannot be earlier than 1970 UTC or later than '2038-01-19 03:14:07'
UTC. This means that a date such as '1968-01-01', while valid as a DATE or DATETIME value, is not
valid as a TIMESTAMP value and is converted to 0.

Conversion of DATE values:

• Conversion to a DATETIME or TIMESTAMP value adds a time part of '00:00:00' because the DATE
value contains no time information.

• Conversion to a TIME value is not useful; the result is '00:00:00'.

Conversion of DATETIME and TIMESTAMP values:

• Conversion to a DATE value takes fractional seconds into account and rounds the time part. For
example, '1999-12-31 23:59:59.499' becomes '1999-12-31', whereas '1999-12-31
23:59:59.500' becomes '2000-01-01'.

1382

2-Digit Years in Dates

• Conversion to a TIME value discards the date part because the TIME type contains no date information.

For conversion of TIME values to other temporal types, the value of CURRENT_DATE() is used for the date
part. The TIME is interpreted as elapsed time (not time of day) and added to the date. This means that the
date part of the result differs from the current date if the time value is outside the range from '00:00:00'
to '23:59:59'.

Suppose that the current date is '2012-01-01'. TIME values of '12:00:00', '24:00:00',
and '-12:00:00', when converted to DATETIME or TIMESTAMP values, result in '2012-01-01
12:00:00', '2012-01-02 00:00:00', and '2011-12-31 12:00:00', respectively.

Conversion of TIME to DATE is similar but discards the time part from the result: '2012-01-01',
'2012-01-02', and '2011-12-31', respectively.

Explicit conversion can be used to override implicit conversion. For example, in comparison of DATE
and DATETIME values, the DATE value is coerced to the DATETIME type by adding a time part of
'00:00:00'. To perform the comparison by ignoring the time part of the DATETIME value instead, use
the CAST() function in the following way:

date_col = CAST(datetime_col AS DATE)

Conversion of TIME and DATETIME values to numeric form (for example, by adding +0) depends on
whether the value contains a fractional seconds part. TIME(N) or DATETIME(N) is converted to integer
when N is 0 (or omitted) and to a DECIMAL value with N decimal digits when N is greater than 0:

mysql> SELECT CURTIME(), CURTIME()+0, CURTIME(3)+0;
+-----------+-------------+--------------+
| CURTIME() | CURTIME()+0 | CURTIME(3)+0 |
+-----------+-------------+--------------+
| 09:28:00 | 92800 | 92800.887 |
+-----------+-------------+--------------+
mysql> SELECT NOW(), NOW()+0, NOW(3)+0;
+---------------------+----------------+--------------------+
| NOW() | NOW()+0 | NOW(3)+0 |
+---------------------+----------------+--------------------+
| 2012-08-15 09:28:00 | 20120815092800 | 20120815092800.889 |
+---------------------+----------------+--------------------+

11.2.9 2-Digit Years in Dates

Date values with 2-digit years are ambiguous because the century is unknown. Such values must be
interpreted into 4-digit form because MySQL stores years internally using 4 digits.

For DATETIME, DATE, and TIMESTAMP types, MySQL interprets dates specified with ambiguous year
values using these rules:

• Year values in the range 00-69 become 2000-2069.

• Year values in the range 70-99 become 1970-1999.

For YEAR, the rules are the same, with this exception: A numeric 00 inserted into YEAR(4) results in 0000
rather than 2000. To specify zero for YEAR(4) and have it be interpreted as 2000, specify it as a string
'0' or '00'.

Remember that these rules are only heuristics that provide reasonable guesses as to what your data
values mean. If the rules used by MySQL do not produce the values you require, you must provide
unambiguous input containing 4-digit year values.

ORDER BY properly sorts YEAR values that have 2-digit years.

1383

String Data Types

Some functions like MIN() and MAX() convert a YEAR to a number. This means that a value with a 2-digit
year does not work properly with these functions. The fix in this case is to convert the YEAR to 4-digit year
format.

11.3 String Data Types

The string data types are CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, and SET.

For information about storage requirements of the string data types, see Section 11.6, “Data Type Storage
Requirements”.

For descriptions of functions that operate on string values, see Section 12.8, “String Functions and
Operators”.

11.3.1 String Data Type Syntax

The string data types are CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, and SET.

In some cases, MySQL may change a string column to a type different from that given in a CREATE TABLE
or ALTER TABLE statement. See Section 13.1.17.6, “Silent Column Specification Changes”.

For definitions of character string columns (CHAR, VARCHAR, and the TEXT types), MySQL interprets length
specifications in character units. For definitions of binary string columns (BINARY, VARBINARY, and the
BLOB types), MySQL interprets length specifications in byte units.

Column definitions for character string data types CHAR, VARCHAR, the TEXT types, ENUM, SET, and any
synonyms) can specify the column character set and collation:

• CHARACTER SET specifies the character set. If desired, a collation for the character set can be specified
with the COLLATE attribute, along with any other attributes. For example:

CREATE TABLE t
(
 c1 VARCHAR(20) CHARACTER SET utf8,
 c2 TEXT CHARACTER SET latin1 COLLATE latin1_general_cs
);

This table definition creates a column named c1 that has a character set of utf8 with the default
collation for that character set, and a column named c2 that has a character set of latin1 and a case-
sensitive (_cs) collation.

The rules for assigning the character set and collation when either or both of CHARACTER SET and the
COLLATE attribute are missing are described in Section 10.3.5, “Column Character Set and Collation”.

CHARSET is a synonym for CHARACTER SET.

• Specifying the CHARACTER SET binary attribute for a character string data type causes the column
to be created as the corresponding binary string data type: CHAR becomes BINARY, VARCHAR becomes
VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this does not occur; they are
created as declared. Suppose that you specify a table using this definition:

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET binary,
 c2 TEXT CHARACTER SET binary,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

1384

String Data Type Syntax

The resulting table has this definition:

CREATE TABLE t
(
 c1 VARBINARY(10),
 c2 BLOB,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

• The BINARY attribute is a nonstandard MySQL extension that is shorthand for specifying the binary
(_bin) collation of the column character set (or of the table default character set if no column character
set is specified). In this case, comparison and sorting are based on numeric character code values.
Suppose that you specify a table using this definition:

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET latin1 BINARY,
 c2 TEXT BINARY
) CHARACTER SET utf8mb4;

The resulting table has this definition:

CREATE TABLE t (
 c1 VARCHAR(10) CHARACTER SET latin1 COLLATE latin1_bin,
 c2 TEXT CHARACTER SET utf8mb4 COLLATE utf8mb4_bin
) CHARACTER SET utf8mb4;

• The ASCII attribute is shorthand for CHARACTER SET latin1.

• The UNICODE attribute is shorthand for CHARACTER SET ucs2.

Character column comparison and sorting are based on the collation assigned to the column. For the
CHAR, VARCHAR, TEXT, ENUM, and SET data types, you can declare a column with a binary (_bin) collation
or the BINARY attribute to cause comparison and sorting to use the underlying character code values
rather than a lexical ordering.

For additional information about use of character sets in MySQL, see Chapter 10, Character Sets,
Collations, Unicode.

• [NATIONAL] CHAR[(M)] [CHARACTER SET charset_name] [COLLATE
collation_name]

A fixed-length string that is always right-padded with spaces to the specified length when stored. M
represents the column length in characters. The range of M is 0 to 255. If M is omitted, the length is 1.

Note

Trailing spaces are removed when CHAR values are retrieved unless the
PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.

CHAR is shorthand for CHARACTER. NATIONAL CHAR (or its equivalent short form, NCHAR) is the
standard SQL way to define that a CHAR column should use some predefined character set. MySQL
uses utf8 as this predefined character set. Section 10.3.7, “The National Character Set”.

The CHAR BYTE data type is an alias for the BINARY data type. This is a compatibility feature.

MySQL permits you to create a column of type CHAR(0). This is useful primarily when you must be
compliant with old applications that depend on the existence of a column but that do not actually use
its value. CHAR(0) is also quite nice when you need a column that can take only two values: A column

1385

String Data Type Syntax

that is defined as CHAR(0) NULL occupies only one bit and can take only the values NULL and '' (the
empty string).

• [NATIONAL] VARCHAR(M) [CHARACTER SET charset_name] [COLLATE
collation_name]

A variable-length string. M represents the maximum column length in characters. The range of M is 0 to
65,535. The effective maximum length of a VARCHAR is subject to the maximum row size (65,535 bytes,
which is shared among all columns) and the character set used. For example, utf8 characters can
require up to three bytes per character, so a VARCHAR column that uses the utf8 character set can be
declared to be a maximum of 21,844 characters. See Section 8.4.7, “Limits on Table Column Count and
Row Size”.

MySQL stores VARCHAR values as a 1-byte or 2-byte length prefix plus data. The length prefix indicates
the number of bytes in the value. A VARCHAR column uses one length byte if values require no more
than 255 bytes, two length bytes if values may require more than 255 bytes.

Note

MySQL follows the standard SQL specification, and does not remove trailing
spaces from VARCHAR values.

VARCHAR is shorthand for CHARACTER VARYING. NATIONAL VARCHAR is the standard SQL way to
define that a VARCHAR column should use some predefined character set. MySQL uses utf8 as this
predefined character set. Section 10.3.7, “The National Character Set”. NVARCHAR is shorthand for
NATIONAL VARCHAR.

• BINARY[(M)]

The BINARY type is similar to the CHAR type, but stores binary byte strings rather than nonbinary
character strings. An optional length M represents the column length in bytes. If omitted, M defaults to 1.

• VARBINARY(M)

The VARBINARY type is similar to the VARCHAR type, but stores binary byte strings rather than nonbinary
character strings. M represents the maximum column length in bytes.

• TINYBLOB

A BLOB column with a maximum length of 255 (28 − 1) bytes. Each TINYBLOB value is stored using a 1-
byte length prefix that indicates the number of bytes in the value.

• TINYTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 255 (28 − 1) characters. The effective maximum length is less
if the value contains multibyte characters. Each TINYTEXT value is stored using a 1-byte length prefix
that indicates the number of bytes in the value.

• BLOB[(M)]

A BLOB column with a maximum length of 65,535 (216 − 1) bytes. Each BLOB value is stored using a 2-
byte length prefix that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the smallest
BLOB type large enough to hold values M bytes long.

• TEXT[(M)] [CHARACTER SET charset_name] [COLLATE collation_name]

1386

The CHAR and VARCHAR Types

A TEXT column with a maximum length of 65,535 (216 − 1) characters. The effective maximum length
is less if the value contains multibyte characters. Each TEXT value is stored using a 2-byte length prefix
that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the smallest
TEXT type large enough to hold values M characters long.

• MEDIUMBLOB

A BLOB column with a maximum length of 16,777,215 (224 − 1) bytes. Each MEDIUMBLOB value is stored
using a 3-byte length prefix that indicates the number of bytes in the value.

• MEDIUMTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 16,777,215 (224 − 1) characters. The effective maximum
length is less if the value contains multibyte characters. Each MEDIUMTEXT value is stored using a 3-
byte length prefix that indicates the number of bytes in the value.

• LONGBLOB

A BLOB column with a maximum length of 4,294,967,295 or 4GB (232 − 1) bytes. The effective maximum
length of LONGBLOB columns depends on the configured maximum packet size in the client/server
protocol and available memory. Each LONGBLOB value is stored using a 4-byte length prefix that
indicates the number of bytes in the value.

• LONGTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 4,294,967,295 or 4GB (232 − 1) characters. The effective
maximum length is less if the value contains multibyte characters. The effective maximum length of
LONGTEXT columns also depends on the configured maximum packet size in the client/server protocol
and available memory. Each LONGTEXT value is stored using a 4-byte length prefix that indicates the
number of bytes in the value.

• ENUM('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

An enumeration. A string object that can have only one value, chosen from the list of values 'value1',
'value2', ..., NULL or the special '' error value. ENUM values are represented internally as integers.

An ENUM column can have a maximum of 65,535 distinct elements. (The practical limit is less than
3000.) A table can have no more than 255 unique element list definitions among its ENUM and SET
columns considered as a group. For more information on these limits, see Limits Imposed by .frm File
Structure.

• SET('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

A set. A string object that can have zero or more values, each of which must be chosen from the list of
values 'value1', 'value2', ... SET values are represented internally as integers.

A SET column can have a maximum of 64 distinct members. A table can have no more than 255 unique
element list definitions among its ENUM and SET columns considered as a group. For more information
on this limit, see Limits Imposed by .frm File Structure.

11.3.2 The CHAR and VARCHAR Types

1387

The CHAR and VARCHAR Types

The CHAR and VARCHAR types are similar, but differ in the way they are stored and retrieved. They also
differ in maximum length and in whether trailing spaces are retained.

The CHAR and VARCHAR types are declared with a length that indicates the maximum number of characters
you want to store. For example, CHAR(30) can hold up to 30 characters.

The length of a CHAR column is fixed to the length that you declare when you create the table. The
length can be any value from 0 to 255. When CHAR values are stored, they are right-padded with
spaces to the specified length. When CHAR values are retrieved, trailing spaces are removed unless the
PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.

Values in VARCHAR columns are variable-length strings. The length can be specified as a value from
0 to 65,535. The effective maximum length of a VARCHAR is subject to the maximum row size (65,535
bytes, which is shared among all columns) and the character set used. See Section 8.4.7, “Limits on Table
Column Count and Row Size”.

In contrast to CHAR, VARCHAR values are stored as a 1-byte or 2-byte length prefix plus data. The length
prefix indicates the number of bytes in the value. A column uses one length byte if values require no more
than 255 bytes, two length bytes if values may require more than 255 bytes.

If strict SQL mode is not enabled and you assign a value to a CHAR or VARCHAR column that exceeds
the column's maximum length, the value is truncated to fit and a warning is generated. For truncation of
nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion of
the value by using strict SQL mode. See Section 5.1.10, “Server SQL Modes”.

For VARCHAR columns, trailing spaces in excess of the column length are truncated prior to insertion and a
warning is generated, regardless of the SQL mode in use. For CHAR columns, truncation of excess trailing
spaces from inserted values is performed silently regardless of the SQL mode.

VARCHAR values are not padded when they are stored. Trailing spaces are retained when values are
stored and retrieved, in conformance with standard SQL.

The following table illustrates the differences between CHAR and VARCHAR by showing the result of storing
various string values into CHAR(4) and VARCHAR(4) columns (assuming that the column uses a single-
byte character set such as latin1).

Value CHAR(4) Storage Required VARCHAR(4) Storage Required

'' ' ' 4 bytes '' 1 byte

'ab' 'ab ' 4 bytes 'ab' 3 bytes

'abcd' 'abcd' 4 bytes 'abcd' 5 bytes

'abcdefgh' 'abcd' 4 bytes 'abcd' 5 bytes

The values shown as stored in the last row of the table apply only when not using strict SQL mode; if strict
mode is enabled, values that exceed the column length are not stored, and an error results.

InnoDB encodes fixed-length fields greater than or equal to 768 bytes in length as variable-length fields,
which can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the maximum
byte length of the character set is greater than 3, as it is with utf8mb4.

If a given value is stored into the CHAR(4) and VARCHAR(4) columns, the values retrieved from the
columns are not always the same because trailing spaces are removed from CHAR columns upon retrieval.
The following example illustrates this difference:

mysql> CREATE TABLE vc (v VARCHAR(4), c CHAR(4));

1388

The BINARY and VARBINARY Types

Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO vc VALUES ('ab ', 'ab ');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT CONCAT('(', v, ')'), CONCAT('(', c, ')') FROM vc;
+---------------------+---------------------+
| CONCAT('(', v, ')') | CONCAT('(', c, ')') |
+---------------------+---------------------+
| (ab) | (ab) |
+---------------------+---------------------+
1 row in set (0.06 sec)

Values in CHAR, VARCHAR, and TEXT columns are sorted and compared according to the character set
collation assigned to the column.

All MySQL collations are of type PAD SPACE. This means that all CHAR, VARCHAR, and TEXT values are
compared without regard to any trailing spaces. “Comparison” in this context does not include the LIKE
pattern-matching operator, for which trailing spaces are significant. For example:

mysql> CREATE TABLE names (myname CHAR(10));
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO names VALUES ('Jones');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT myname = 'Jones', myname = 'Jones ' FROM names;
+------------------+--------------------+
| myname = 'Jones' | myname = 'Jones ' |
+------------------+--------------------+
| 1 | 1 |
+------------------+--------------------+
1 row in set (0.00 sec)

mysql> SELECT myname LIKE 'Jones', myname LIKE 'Jones ' FROM names;
+---------------------+-----------------------+
| myname LIKE 'Jones' | myname LIKE 'Jones ' |
+---------------------+-----------------------+
| 1 | 0 |
+---------------------+-----------------------+
1 row in set (0.00 sec)

This is not affected by the server SQL mode.

Note

For more information about MySQL character sets and collations, see Chapter 10,
Character Sets, Collations, Unicode. For additional information about storage
requirements, see Section 11.6, “Data Type Storage Requirements”.

For those cases where trailing pad characters are stripped or comparisons ignore them, if a column has an
index that requires unique values, inserting into the column values that differ only in number of trailing pad
characters results in a duplicate-key error. For example, if a table contains 'a', an attempt to store 'a '
causes a duplicate-key error.

11.3.3 The BINARY and VARBINARY Types

The BINARY and VARBINARY types are similar to CHAR and VARCHAR, except that they store binary strings
rather than nonbinary strings. That is, they store byte strings rather than character strings. This means they
have the binary character set and collation, and comparison and sorting are based on the numeric values
of the bytes in the values.

1389

The BINARY and VARBINARY Types

The permissible maximum length is the same for BINARY and VARBINARY as it is for CHAR and VARCHAR,
except that the length for BINARY and VARBINARY is measured in bytes rather than characters.

The BINARY and VARBINARY data types are distinct from the CHAR BINARY and VARCHAR BINARY
data types. For the latter types, the BINARY attribute does not cause the column to be treated as a binary
string column. Instead, it causes the binary (_bin) collation for the column character set (or the table
default character set if no column character set is specified) to be used, and the column itself stores
nonbinary character strings rather than binary byte strings. For example, if the default character set is
latin1, CHAR(5) BINARY is treated as CHAR(5) CHARACTER SET latin1 COLLATE latin1_bin.
This differs from BINARY(5), which stores 5-byte binary strings that have the binary character set and
collation. For information about the differences between the binary collation of the binary character set
and the _bin collations of nonbinary character sets, see Section 10.8.5, “The binary Collation Compared
to _bin Collations”.

If strict SQL mode is not enabled and you assign a value to a BINARY or VARBINARY column that exceeds
the column's maximum length, the value is truncated to fit and a warning is generated. For cases of
truncation, to cause an error to occur (rather than a warning) and suppress insertion of the value, use strict
SQL mode. See Section 5.1.10, “Server SQL Modes”.

When BINARY values are stored, they are right-padded with the pad value to the specified length. The
pad value is 0x00 (the zero byte). Values are right-padded with 0x00 for inserts, and no trailing bytes
are removed for retrievals. All bytes are significant in comparisons, including ORDER BY and DISTINCT
operations. 0x00 and space differ in comparisons, with 0x00 sorting before space.

Example: For a BINARY(3) column, 'a ' becomes 'a \0' when inserted. 'a\0' becomes 'a\0\0'
when inserted. Both inserted values remain unchanged for retrievals.

For VARBINARY, there is no padding for inserts and no bytes are stripped for retrievals. All bytes are
significant in comparisons, including ORDER BY and DISTINCT operations. 0x00 and space differ in
comparisons, with 0x00 sorting before space.

For those cases where trailing pad bytes are stripped or comparisons ignore them, if a column has an
index that requires unique values, inserting values into the column that differ only in number of trailing
pad bytes results in a duplicate-key error. For example, if a table contains 'a', an attempt to store 'a\0'
causes a duplicate-key error.

You should consider the preceding padding and stripping characteristics carefully if you plan to use the
BINARY data type for storing binary data and you require that the value retrieved be exactly the same as
the value stored. The following example illustrates how 0x00-padding of BINARY values affects column
value comparisons:

mysql> CREATE TABLE t (c BINARY(3));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET c = 'a';
Query OK, 1 row affected (0.01 sec)

mysql> SELECT HEX(c), c = 'a', c = 'a\0\0' from t;
+--------+---------+-------------+
| HEX(c) | c = 'a' | c = 'a\0\0' |
+--------+---------+-------------+
| 610000 | 0 | 1 |
+--------+---------+-------------+
1 row in set (0.09 sec)

If the value retrieved must be the same as the value specified for storage with no padding, it might be
preferable to use VARBINARY or one of the BLOB data types instead.

1390

The BLOB and TEXT Types

Note

Within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that
option, see Section 4.5.1, “mysql — The MySQL Command-Line Client”.

11.3.4 The BLOB and TEXT Types

A BLOB is a binary large object that can hold a variable amount of data. The four BLOB types are
TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB. These differ only in the maximum length of the
values they can hold. The four TEXT types are TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT. These
correspond to the four BLOB types and have the same maximum lengths and storage requirements. See
Section 11.6, “Data Type Storage Requirements”.

BLOB values are treated as binary strings (byte strings). They have the binary character set and collation,
and comparison and sorting are based on the numeric values of the bytes in column values. TEXT values
are treated as nonbinary strings (character strings). They have a character set other than binary, and
values are sorted and compared based on the collation of the character set.

If strict SQL mode is not enabled and you assign a value to a BLOB or TEXT column that exceeds the
column's maximum length, the value is truncated to fit and a warning is generated. For truncation of
nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion of
the value by using strict SQL mode. See Section 5.1.10, “Server SQL Modes”.

Truncation of excess trailing spaces from values to be inserted into TEXT columns always generates a
warning, regardless of the SQL mode.

For TEXT and BLOB columns, there is no padding on insert and no bytes are stripped on select.

If a TEXT column is indexed, index entry comparisons are space-padded at the end. This means that, if the
index requires unique values, duplicate-key errors occur for values that differ only in the number of trailing
spaces. For example, if a table contains 'a', an attempt to store 'a ' causes a duplicate-key error. This
is not true for BLOB columns.

In most respects, you can regard a BLOB column as a VARBINARY column that can be as large as you like.
Similarly, you can regard a TEXT column as a VARCHAR column. BLOB and TEXT differ from VARBINARY
and VARCHAR in the following ways:

• For indexes on BLOB and TEXT columns, you must specify an index prefix length. For CHAR and
VARCHAR, a prefix length is optional. See Section 8.3.4, “Column Indexes”.

• BLOB and TEXT columns cannot have DEFAULT values.

If you use the BINARY attribute with a TEXT data type, the column is assigned the binary (_bin) collation
of the column character set.

LONG and LONG VARCHAR map to the MEDIUMTEXT data type. This is a compatibility feature.

MySQL Connector/ODBC defines BLOB values as LONGVARBINARY and TEXT values as LONGVARCHAR.

Because BLOB and TEXT values can be extremely long, you might encounter some constraints in using
them:

• Only the first max_sort_length bytes of the column are used when sorting. The default value of
max_sort_length is 1024. You can make more bytes significant in sorting or grouping by increasing
the value of max_sort_length at server startup or runtime. Any client can change the value of its
session max_sort_length variable:

1391

The ENUM Type

mysql> SET max_sort_length = 2000;
mysql> SELECT id, comment FROM t
 -> ORDER BY comment;

• Instances of BLOB or TEXT columns in the result of a query that is processed using a temporary table
causes the server to use a table on disk rather than in memory because the MEMORY storage engine
does not support those data types (see Section 8.4.4, “Internal Temporary Table Use in MySQL”). Use of
disk incurs a performance penalty, so include BLOB or TEXT columns in the query result only if they are
really needed. For example, avoid using SELECT *, which selects all columns.

• The maximum size of a BLOB or TEXT object is determined by its type, but the largest value you actually
can transmit between the client and server is determined by the amount of available memory and the
size of the communications buffers. You can change the message buffer size by changing the value of
the max_allowed_packet variable, but you must do so for both the server and your client program.
For example, both mysql and mysqldump enable you to change the client-side max_allowed_packet
value. See Section 5.1.1, “Configuring the Server”, Section 4.5.1, “mysql — The MySQL Command-
Line Client”, and Section 4.5.4, “mysqldump — A Database Backup Program”. You may also want to
compare the packet sizes and the size of the data objects you are storing with the storage requirements,
see Section 11.6, “Data Type Storage Requirements”

Each BLOB or TEXT value is represented internally by a separately allocated object. This is in contrast to all
other data types, for which storage is allocated once per column when the table is opened.

In some cases, it may be desirable to store binary data such as media files in BLOB or TEXT columns.
You may find MySQL's string handling functions useful for working with such data. See Section 12.8,
“String Functions and Operators”. For security and other reasons, it is usually preferable to do so using
application code rather than giving application users the FILE privilege. You can discuss specifics for
various languages and platforms in the MySQL Forums (http://forums.mysql.com/).

Note

Within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that
option, see Section 4.5.1, “mysql — The MySQL Command-Line Client”.

11.3.5 The ENUM Type

An ENUM is a string object with a value chosen from a list of permitted values that are enumerated explicitly
in the column specification at table creation time.

See Section 11.3.1, “String Data Type Syntax” for ENUM type syntax and length limits.

The ENUM type has these advantages:

• Compact data storage in situations where a column has a limited set of possible values. The strings you
specify as input values are automatically encoded as numbers. See Section 11.6, “Data Type Storage
Requirements” for storage requirements for the ENUM type.

• Readable queries and output. The numbers are translated back to the corresponding strings in query
results.

and these potential issues to consider:

• If you make enumeration values that look like numbers, it is easy to mix up the literal values with their
internal index numbers, as explained in Enumeration Limitations.

• Using ENUM columns in ORDER BY clauses requires extra care, as explained in Enumeration Sorting.

1392

http://forums.mysql.com/

The ENUM Type

• Creating and Using ENUM Columns

• Index Values for Enumeration Literals

• Handling of Enumeration Literals

• Empty or NULL Enumeration Values

• Enumeration Sorting

• Enumeration Limitations

Creating and Using ENUM Columns

An enumeration value must be a quoted string literal. For example, you can create a table with an ENUM
column like this:

CREATE TABLE shirts (
 name VARCHAR(40),
 size ENUM('x-small', 'small', 'medium', 'large', 'x-large')
);
INSERT INTO shirts (name, size) VALUES ('dress shirt','large'), ('t-shirt','medium'),
 ('polo shirt','small');
SELECT name, size FROM shirts WHERE size = 'medium';
+---------+--------+
| name | size |
+---------+--------+
| t-shirt | medium |
+---------+--------+
UPDATE shirts SET size = 'small' WHERE size = 'large';
COMMIT;

Inserting 1 million rows into this table with a value of 'medium' would require 1 million bytes of storage, as
opposed to 6 million bytes if you stored the actual string 'medium' in a VARCHAR column.

Index Values for Enumeration Literals

Each enumeration value has an index:

• The elements listed in the column specification are assigned index numbers, beginning with 1.

• The index value of the empty string error value is 0. This means that you can use the following SELECT
statement to find rows into which invalid ENUM values were assigned:

mysql> SELECT * FROM tbl_name WHERE enum_col=0;

• The index of the NULL value is NULL.

• The term “index” here refers to a position within the list of enumeration values. It has nothing to do with
table indexes.

For example, a column specified as ENUM('Mercury', 'Venus', 'Earth') can have any of the
values shown here. The index of each value is also shown.

Value Index

NULL NULL

'' 0

'Mercury' 1

1393

The ENUM Type

Value Index

'Venus' 2

'Earth' 3

An ENUM column can have a maximum of 65,535 distinct elements. (The practical limit is less than 3000.)
A table can have no more than 255 unique element list definitions among its ENUM and SET columns
considered as a group. For more information on these limits, see Limits Imposed by .frm File Structure.

If you retrieve an ENUM value in a numeric context, the column value's index is returned. For example, you
can retrieve numeric values from an ENUM column like this:

mysql> SELECT enum_col+0 FROM tbl_name;

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For ENUM values, the index number is used in the calculation.

Handling of Enumeration Literals

Trailing spaces are automatically deleted from ENUM member values in the table definition when a table is
created.

When retrieved, values stored into an ENUM column are displayed using the lettercase that was used in
the column definition. Note that ENUM columns can be assigned a character set and collation. For binary or
case-sensitive collations, lettercase is taken into account when assigning values to the column.

If you store a number into an ENUM column, the number is treated as the index into the possible values,
and the value stored is the enumeration member with that index. (However, this does not work with LOAD
DATA, which treats all input as strings.) If the numeric value is quoted, it is still interpreted as an index
if there is no matching string in the list of enumeration values. For these reasons, it is not advisable to
define an ENUM column with enumeration values that look like numbers, because this can easily become
confusing. For example, the following column has enumeration members with string values of '0', '1',
and '2', but numeric index values of 1, 2, and 3:

numbers ENUM('0','1','2')

If you store 2, it is interpreted as an index value, and becomes '1' (the value with index 2). If you store
'2', it matches an enumeration value, so it is stored as '2'. If you store '3', it does not match any
enumeration value, so it is treated as an index and becomes '2' (the value with index 3).

mysql> INSERT INTO t (numbers) VALUES(2),('2'),('3');
mysql> SELECT * FROM t;
+---------+
| numbers |
+---------+
| 1 |
| 2 |
| 2 |
+---------+

To determine all possible values for an ENUM column, use SHOW COLUMNS FROM tbl_name LIKE
'enum_col' and parse the ENUM definition in the Type column of the output.

In the C API, ENUM values are returned as strings. For information about using result set metadata to
distinguish them from other strings, see C API Basic Data Structures.

Empty or NULL Enumeration Values

An enumeration value can also be the empty string ('') or NULL under certain circumstances:

1394

https://dev.mysql.com/doc/c-api/5.6/en/c-api-data-structures.html

The SET Type

• If you insert an invalid value into an ENUM (that is, a string not present in the list of permitted values), the
empty string is inserted instead as a special error value. This string can be distinguished from a “normal”
empty string by the fact that this string has the numeric value 0. See Index Values for Enumeration
Literals for details about the numeric indexes for the enumeration values.

If strict SQL mode is enabled, attempts to insert invalid ENUM values result in an error.

• If an ENUM column is declared to permit NULL, the NULL value is a valid value for the column, and the
default value is NULL. If an ENUM column is declared NOT NULL, its default value is the first element of
the list of permitted values.

Enumeration Sorting

ENUM values are sorted based on their index numbers, which depend on the order in which the
enumeration members were listed in the column specification. For example, 'b' sorts before 'a' for
ENUM('b', 'a'). The empty string sorts before nonempty strings, and NULL values sort before all other
enumeration values.

To prevent unexpected results when using the ORDER BY clause on an ENUM column, use one of these
techniques:

• Specify the ENUM list in alphabetic order.

• Make sure that the column is sorted lexically rather than by index number by coding ORDER BY
CAST(col AS CHAR) or ORDER BY CONCAT(col).

Enumeration Limitations

An enumeration value cannot be an expression, even one that evaluates to a string value.

For example, this CREATE TABLE statement does not work because the CONCAT function cannot be used
to construct an enumeration value:

CREATE TABLE sizes (
 size ENUM('small', CONCAT('med','ium'), 'large')
);

You also cannot employ a user variable as an enumeration value. This pair of statements do not work:

SET @mysize = 'medium';

CREATE TABLE sizes (
 size ENUM('small', @mysize, 'large')
);

We strongly recommend that you do not use numbers as enumeration values, because it does not save
on storage over the appropriate TINYINT or SMALLINT type, and it is easy to mix up the strings and the
underlying number values (which might not be the same) if you quote the ENUM values incorrectly. If you
do use a number as an enumeration value, always enclose it in quotation marks. If the quotation marks
are omitted, the number is regarded as an index. See Handling of Enumeration Literals to see how even a
quoted number could be mistakenly used as a numeric index value.

Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.

11.3.6 The SET Type

A SET is a string object that can have zero or more values, each of which must be chosen from a list
of permitted values specified when the table is created. SET column values that consist of multiple set

1395

The SET Type

members are specified with members separated by commas (,). A consequence of this is that SET
member values should not themselves contain commas.

For example, a column specified as SET('one', 'two') NOT NULL can have any of these values:

''
'one'
'two'
'one,two'

A SET column can have a maximum of 64 distinct members. A table can have no more than 255 unique
element list definitions among its ENUM and SET columns considered as a group. For more information on
this limit, see Limits Imposed by .frm File Structure.

Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.

Trailing spaces are automatically deleted from SET member values in the table definition when a table is
created.

See String Type Storage Requirements for storage requirements for the SET type.

See Section 11.3.1, “String Data Type Syntax” for SET type syntax and length limits.

When retrieved, values stored in a SET column are displayed using the lettercase that was used in the
column definition. Note that SET columns can be assigned a character set and collation. For binary or
case-sensitive collations, lettercase is taken into account when assigning values to the column.

MySQL stores SET values numerically, with the low-order bit of the stored value corresponding to
the first set member. If you retrieve a SET value in a numeric context, the value retrieved has bits set
corresponding to the set members that make up the column value. For example, you can retrieve numeric
values from a SET column like this:

mysql> SELECT set_col+0 FROM tbl_name;

If a number is stored into a SET column, the bits that are set in the binary representation of the number
determine the set members in the column value. For a column specified as SET('a','b','c','d'), the
members have the following decimal and binary values.

SET Member Decimal Value Binary Value

'a' 1 0001

'b' 2 0010

'c' 4 0100

'd' 8 1000

If you assign a value of 9 to this column, that is 1001 in binary, so the first and fourth SET value members
'a' and 'd' are selected and the resulting value is 'a,d'.

For a value containing more than one SET element, it does not matter what order the elements are listed
in when you insert the value. It also does not matter how many times a given element is listed in the value.
When the value is retrieved later, each element in the value appears once, with elements listed according
to the order in which they were specified at table creation time. Suppose that a column is specified as
SET('a','b','c','d'):

mysql> CREATE TABLE myset (col SET('a', 'b', 'c', 'd'));

If you insert the values 'a,d', 'd,a', 'a,d,d', 'a,d,a', and 'd,a,d':

1396

The SET Type

mysql> INSERT INTO myset (col) VALUES
-> ('a,d'), ('d,a'), ('a,d,a'), ('a,d,d'), ('d,a,d');
Query OK, 5 rows affected (0.01 sec)
Records: 5 Duplicates: 0 Warnings: 0

Then all these values appear as 'a,d' when retrieved:

mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
5 rows in set (0.04 sec)

If you set a SET column to an unsupported value, the value is ignored and a warning is issued:

mysql> INSERT INTO myset (col) VALUES ('a,d,d,s');
Query OK, 1 row affected, 1 warning (0.03 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1265 | Data truncated for column 'col' at row 1 |
+---------+------+--+
1 row in set (0.04 sec)

mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
6 rows in set (0.01 sec)

If strict SQL mode is enabled, attempts to insert invalid SET values result in an error.

SET values are sorted numerically. NULL values sort before non-NULL SET values.

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For SET values, the cast operation causes the numeric value to be used.

Normally, you search for SET values using the FIND_IN_SET() function or the LIKE operator:

mysql> SELECT * FROM tbl_name WHERE FIND_IN_SET('value',set_col)>0;
mysql> SELECT * FROM tbl_name WHERE set_col LIKE '%value%';

The first statement finds rows where set_col contains the value set member. The second is similar, but
not the same: It finds rows where set_col contains value anywhere, even as a substring of another set
member.

The following statements also are permitted:

mysql> SELECT * FROM tbl_name WHERE set_col & 1;

1397

Spatial Data Types

mysql> SELECT * FROM tbl_name WHERE set_col = 'val1,val2';

The first of these statements looks for values containing the first set member. The second looks for an
exact match. Be careful with comparisons of the second type. Comparing set values to 'val1,val2'
returns different results than comparing values to 'val2,val1'. You should specify the values in the
same order they are listed in the column definition.

To determine all possible values for a SET column, use SHOW COLUMNS FROM tbl_name LIKE
set_col and parse the SET definition in the Type column of the output.

In the C API, SET values are returned as strings. For information about using result set metadata to
distinguish them from other strings, see C API Basic Data Structures.

11.4 Spatial Data Types

The Open Geospatial Consortium (OGC) is an international consortium of more than 250 companies,
agencies, and universities participating in the development of publicly available conceptual solutions that
can be useful with all kinds of applications that manage spatial data.

The Open Geospatial Consortium publishes the OpenGIS® Implementation Standard for Geographic
information - Simple Feature Access - Part 2: SQL Option, a document that proposes several conceptual
ways for extending an SQL RDBMS to support spatial data. This specification is available from the OGC
website at http://www.opengeospatial.org/standards/sfs.

Following the OGC specification, MySQL implements spatial extensions as a subset of the SQL with
Geometry Types environment. This term refers to an SQL environment that has been extended with a set
of geometry types. A geometry-valued SQL column is implemented as a column that has a geometry type.
The specification describes a set of SQL geometry types, as well as functions on those types to create and
analyze geometry values.

MySQL spatial extensions enable the generation, storage, and analysis of geographic features:

• Data types for representing spatial values

• Functions for manipulating spatial values

• Spatial indexing for improved access times to spatial columns

The spatial data types and functions are available for MyISAM, InnoDB, NDB, and ARCHIVE tables. For
indexing spatial columns, MyISAM supports both SPATIAL and non-SPATIAL indexes. The other storage
engines support non-SPATIAL indexes, as described in Section 13.1.13, “CREATE INDEX Statement”.

A geographic feature is anything in the world that has a location. A feature can be:

• An entity. For example, a mountain, a pond, a city.

• A space. For example, town district, the tropics.

• A definable location. For example, a crossroad, as a particular place where two streets intersect.

Some documents use the term geospatial feature to refer to geographic features.

Geometry is another word that denotes a geographic feature. Originally the word geometry meant
measurement of the earth. Another meaning comes from cartography, referring to the geometric features
that cartographers use to map the world.

1398

https://dev.mysql.com/doc/c-api/5.6/en/c-api-data-structures.html
http://www.opengeospatial.org
http://www.opengeospatial.org/standards/sfs

MySQL GIS Conformance and Compatibility

The discussion here considers these terms synonymous: geographic feature, geospatial feature,
feature, or geometry. The term most commonly used is geometry, defined as a point or an aggregate of
points representing anything in the world that has a location.

The following material covers these topics:

• The spatial data types implemented in MySQL model

• The basis of the spatial extensions in the OpenGIS geometry model

• Data formats for representing spatial data

• How to use spatial data in MySQL

• Use of indexing for spatial data

• MySQL differences from the OpenGIS specification

For information about functions that operate on spatial data, see Section 12.17, “Spatial Analysis
Functions”.

MySQL GIS Conformance and Compatibility

MySQL does not implement the following GIS features:

• Additional Metadata Views

OpenGIS specifications propose several additional metadata views. For example, a system view named
GEOMETRY_COLUMNS contains a description of geometry columns, one row for each geometry column in
the database.

• The OpenGIS function Length() on LineString and MultiLineString should be called in MySQL
as GLength()

The problem is that there is an existing SQL function Length() that calculates the length of string
values, and sometimes it is not possible to distinguish whether the function is called in a textual or spatial
context.

Additional Resources

The Open Geospatial Consortium publishes the OpenGIS® Implementation Standard for Geographic
information - Simple feature access - Part 2: SQL option, a document that proposes several conceptual
ways for extending an SQL RDBMS to support spatial data. The Open Geospatial Consortium (OGC)
maintains a website at http://www.opengeospatial.org/. The specification is available there at http://
www.opengeospatial.org/standards/sfs. It contains additional information relevant to the material here.

If you have questions or concerns about the use of the spatial extensions to MySQL, you can discuss them
in the GIS forum: https://forums.mysql.com/list.php?23.

11.4.1 Spatial Data Types

MySQL has spatial data types that correspond to OpenGIS classes. The basis for these types is described
in Section 11.4.2, “The OpenGIS Geometry Model”.

Some spatial data types hold single geometry values:

• GEOMETRY

1399

http://www.opengeospatial.org/
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs
https://forums.mysql.com/list.php?23

The OpenGIS Geometry Model

• POINT

• LINESTRING

• POLYGON

GEOMETRY can store geometry values of any type. The other single-value types (POINT, LINESTRING,
and POLYGON) restrict their values to a particular geometry type.

The other spatial data types hold collections of values:

• MULTIPOINT

• MULTILINESTRING

• MULTIPOLYGON

• GEOMETRYCOLLECTION

GEOMETRYCOLLECTION can store a collection of objects of any type. The other collection types
(MULTIPOINT, MULTILINESTRING, and MULTIPOLYGON) restrict collection members to those having a
particular geometry type.

Example: To create a table named geom that has a column named g that can store values of any geometry
type, use this statement:

CREATE TABLE geom (g GEOMETRY);

SPATIAL indexes can be created on NOT NULL spatial columns, so if you plan to index the column,
declare it NOT NULL:

CREATE TABLE geom (g GEOMETRY NOT NULL);

For other examples showing how to use spatial data types in MySQL, see Section 11.4.4, “Creating Spatial
Columns”.

11.4.2 The OpenGIS Geometry Model

The set of geometry types proposed by OGC's SQL with Geometry Types environment is based on the
OpenGIS Geometry Model. In this model, each geometric object has the following general properties:

• It is associated with a spatial reference system, which describes the coordinate space in which the object
is defined.

• It belongs to some geometry class.

11.4.2.1 The Geometry Class Hierarchy

The geometry classes define a hierarchy as follows:

• Geometry (noninstantiable)

• Point (instantiable)

• Curve (noninstantiable)

• LineString (instantiable)

• Line

1400

The OpenGIS Geometry Model

• LinearRing

• Surface (noninstantiable)

• Polygon (instantiable)

• GeometryCollection (instantiable)

• MultiPoint (instantiable)

• MultiCurve (noninstantiable)

• MultiLineString (instantiable)

• MultiSurface (noninstantiable)

• MultiPolygon (instantiable)

It is not possible to create objects in noninstantiable classes. It is possible to create objects in instantiable
classes. All classes have properties, and instantiable classes may also have assertions (rules that define
valid class instances).

Geometry is the base class. It is an abstract class. The instantiable subclasses of Geometry are
restricted to zero-, one-, and two-dimensional geometric objects that exist in two-dimensional coordinate
space. All instantiable geometry classes are defined so that valid instances of a geometry class are
topologically closed (that is, all defined geometries include their boundary).

The base Geometry class has subclasses for Point, Curve, Surface, and GeometryCollection:

• Point represents zero-dimensional objects.

• Curve represents one-dimensional objects, and has subclass LineString, with sub-subclasses Line
and LinearRing.

• Surface is designed for two-dimensional objects and has subclass Polygon.

• GeometryCollection has specialized zero-, one-, and two-dimensional collection classes named
MultiPoint, MultiLineString, and MultiPolygon for modeling geometries corresponding to
collections of Points, LineStrings, and Polygons, respectively. MultiCurve and MultiSurface
are introduced as abstract superclasses that generalize the collection interfaces to handle Curves and
Surfaces.

Geometry, Curve, Surface, MultiCurve, and MultiSurface are defined as noninstantiable classes.
They define a common set of methods for their subclasses and are included for extensibility.

Point, LineString, Polygon, GeometryCollection, MultiPoint, MultiLineString, and
MultiPolygon are instantiable classes.

11.4.2.2 Geometry Class

Geometry is the root class of the hierarchy. It is a noninstantiable class but has a number of properties,
described in the following list, that are common to all geometry values created from any of the Geometry
subclasses. Particular subclasses have their own specific properties, described later.

Geometry Properties

A geometry value has the following properties:

1401

The OpenGIS Geometry Model

• Its type. Each geometry belongs to one of the instantiable classes in the hierarchy.

• Its SRID, or spatial reference identifier. This value identifies the geometry's associated spatial reference
system that describes the coordinate space in which the geometry object is defined.

In MySQL, the SRID value is an integer associated with the geometry value. The maximum usable SRID
value is 232−1. If a larger value is given, only the lower 32 bits are used. All computations are done
assuming SRID 0, regardless of the actual SRID value. SRID 0 represents an infinite flat Cartesian plane
with no units assigned to its axes.

• Its coordinates in its spatial reference system, represented as double-precision (8-byte) numbers.
All nonempty geometries include at least one pair of (X,Y) coordinates. Empty geometries contain no
coordinates.

Coordinates are related to the SRID. For example, in different coordinate systems, the distance between
two objects may differ even when objects have the same coordinates, because the distance on the
planar coordinate system and the distance on the geodetic system (coordinates on the Earth's surface)
are different things.

• Its interior, boundary, and exterior.

Every geometry occupies some position in space. The exterior of a geometry is all space not occupied
by the geometry. The interior is the space occupied by the geometry. The boundary is the interface
between the geometry's interior and exterior.

• Its MBR (minimum bounding rectangle), or envelope. This is the bounding geometry, formed by the
minimum and maximum (X,Y) coordinates:

((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

• Whether the value is simple or nonsimple. Geometry values of types (LineString, MultiPoint,
MultiLineString) are either simple or nonsimple. Each type determines its own assertions for being
simple or nonsimple.

• Whether the value is closed or not closed. Geometry values of types (LineString, MultiString)
are either closed or not closed. Each type determines its own assertions for being closed or not closed.

• Whether the value is empty or nonempty A geometry is empty if it does not have any points. Exterior,
interior, and boundary of an empty geometry are not defined (that is, they are represented by a NULL
value). An empty geometry is defined to be always simple and has an area of 0.

• Its dimension. A geometry can have a dimension of −1, 0, 1, or 2:

• −1 for an empty geometry.

• 0 for a geometry with no length and no area.

• 1 for a geometry with nonzero length and zero area.

• 2 for a geometry with nonzero area.

Point objects have a dimension of zero. LineString objects have a dimension of 1. Polygon objects
have a dimension of 2. The dimensions of MultiPoint, MultiLineString, and MultiPolygon
objects are the same as the dimensions of the elements they consist of.

11.4.2.3 Point Class

A Point is a geometry that represents a single location in coordinate space.

1402

The OpenGIS Geometry Model

Point Examples

• Imagine a large-scale map of the world with many cities. A Point object could represent each city.

• On a city map, a Point object could represent a bus stop.

Point Properties

• X-coordinate value.

• Y-coordinate value.

• Point is defined as a zero-dimensional geometry.

• The boundary of a Point is the empty set.

11.4.2.4 Curve Class

A Curve is a one-dimensional geometry, usually represented by a sequence of points. Particular
subclasses of Curve define the type of interpolation between points. Curve is a noninstantiable class.

Curve Properties

• A Curve has the coordinates of its points.

• A Curve is defined as a one-dimensional geometry.

• A Curve is simple if it does not pass through the same point twice, with the exception that a curve can
still be simple if the start and end points are the same.

• A Curve is closed if its start point is equal to its endpoint.

• The boundary of a closed Curve is empty.

• The boundary of a nonclosed Curve consists of its two endpoints.

• A Curve that is simple and closed is a LinearRing.

11.4.2.5 LineString Class

A LineString is a Curve with linear interpolation between points.

LineString Examples

• On a world map, LineString objects could represent rivers.

• In a city map, LineString objects could represent streets.

LineString Properties

• A LineString has coordinates of segments, defined by each consecutive pair of points.

• A LineString is a Line if it consists of exactly two points.

• A LineString is a LinearRing if it is both closed and simple.

11.4.2.6 Surface Class

A Surface is a two-dimensional geometry. It is a noninstantiable class. Its only instantiable subclass is
Polygon.

1403

The OpenGIS Geometry Model

Surface Properties

• A Surface is defined as a two-dimensional geometry.

• The OpenGIS specification defines a simple Surface as a geometry that consists of a single “patch”
that is associated with a single exterior boundary and zero or more interior boundaries.

• The boundary of a simple Surface is the set of closed curves corresponding to its exterior and interior
boundaries.

11.4.2.7 Polygon Class

A Polygon is a planar Surface representing a multisided geometry. It is defined by a single exterior
boundary and zero or more interior boundaries, where each interior boundary defines a hole in the
Polygon.

Polygon Examples

• On a region map, Polygon objects could represent forests, districts, and so on.

Polygon Assertions

• The boundary of a Polygon consists of a set of LinearRing objects (that is, LineString objects that
are both simple and closed) that make up its exterior and interior boundaries.

• A Polygon has no rings that cross. The rings in the boundary of a Polygon may intersect at a Point,
but only as a tangent.

• A Polygon has no lines, spikes, or punctures.

• A Polygon has an interior that is a connected point set.

• A Polygon may have holes. The exterior of a Polygon with holes is not connected. Each hole defines a
connected component of the exterior.

The preceding assertions make a Polygon a simple geometry.

11.4.2.8 GeometryCollection Class

A GeometryCollection is a geometry that is a collection of zero or more geometries of any class.

All the elements in a geometry collection must be in the same spatial reference system (that is, in the same
coordinate system). There are no other constraints on the elements of a geometry collection, although
the subclasses of GeometryCollection described in the following sections may restrict membership.
Restrictions may be based on:

• Element type (for example, a MultiPoint may contain only Point elements)

• Dimension

• Constraints on the degree of spatial overlap between elements

11.4.2.9 MultiPoint Class

A MultiPoint is a geometry collection composed of Point elements. The points are not connected or
ordered in any way.

MultiPoint Examples

1404

The OpenGIS Geometry Model

• On a world map, a MultiPoint could represent a chain of small islands.

• On a city map, a MultiPoint could represent the outlets for a ticket office.

MultiPoint Properties

• A MultiPoint is a zero-dimensional geometry.

• A MultiPoint is simple if no two of its Point values are equal (have identical coordinate values).

• The boundary of a MultiPoint is the empty set.

11.4.2.10 MultiCurve Class

A MultiCurve is a geometry collection composed of Curve elements. MultiCurve is a noninstantiable
class.

MultiCurve Properties

• A MultiCurve is a one-dimensional geometry.

• A MultiCurve is simple if and only if all of its elements are simple; the only intersections between any
two elements occur at points that are on the boundaries of both elements.

• A MultiCurve boundary is obtained by applying the “mod 2 union rule” (also known as the “odd-even
rule”): A point is in the boundary of a MultiCurve if it is in the boundaries of an odd number of Curve
elements.

• A MultiCurve is closed if all of its elements are closed.

• The boundary of a closed MultiCurve is always empty.

11.4.2.11 MultiLineString Class

A MultiLineString is a MultiCurve geometry collection composed of LineString elements.

MultiLineString Examples

• On a region map, a MultiLineString could represent a river system or a highway system.

11.4.2.12 MultiSurface Class

A MultiSurface is a geometry collection composed of surface elements. MultiSurface is a
noninstantiable class. Its only instantiable subclass is MultiPolygon.

MultiSurface Assertions

• Surfaces within a MultiSurface have no interiors that intersect.

• Surfaces within a MultiSurface have boundaries that intersect at most at a finite number of points.

11.4.2.13 MultiPolygon Class

A MultiPolygon is a MultiSurface object composed of Polygon elements.

MultiPolygon Examples

• On a region map, a MultiPolygon could represent a system of lakes.

1405

Supported Spatial Data Formats

MultiPolygon Assertions

• A MultiPolygon has no two Polygon elements with interiors that intersect.

• A MultiPolygon has no two Polygon elements that cross (crossing is also forbidden by the previous
assertion), or that touch at an infinite number of points.

• A MultiPolygon may not have cut lines, spikes, or punctures. A MultiPolygon is a regular, closed
point set.

• A MultiPolygon that has more than one Polygon has an interior that is not connected. The number of
connected components of the interior of a MultiPolygon is equal to the number of Polygon values in
the MultiPolygon.

MultiPolygon Properties

• A MultiPolygon is a two-dimensional geometry.

• A MultiPolygon boundary is a set of closed curves (LineString values) corresponding to the
boundaries of its Polygon elements.

• Each Curve in the boundary of the MultiPolygon is in the boundary of exactly one Polygon element.

• Every Curve in the boundary of an Polygon element is in the boundary of the MultiPolygon.

11.4.3 Supported Spatial Data Formats

Two standard spatial data formats are used to represent geometry objects in queries:

• Well-Known Text (WKT) format

• Well-Known Binary (WKB) format

Internally, MySQL stores geometry values in a format that is not identical to either WKT or WKB format.
(Internal format is like WKB but with an initial 4 bytes to indicate the SRID.)

There are functions available to convert between different data formats; see Section 12.17.6, “Geometry
Format Conversion Functions”.

The following sections describe the spatial data formats MySQL uses:

• Well-Known Text (WKT) Format

• Well-Known Binary (WKB) Format

• Internal Geometry Storage Format

Well-Known Text (WKT) Format

The Well-Known Text (WKT) representation of geometry values is designed for exchanging geometry
data in ASCII form. The OpenGIS specification provides a Backus-Naur grammar that specifies the formal
production rules for writing WKT values (see Section 11.4, “Spatial Data Types”).

Examples of WKT representations of geometry objects:

• A Point:

POINT(15 20)

1406

Supported Spatial Data Formats

The point coordinates are specified with no separating comma. This differs from the syntax for the SQL
Point() function, which requires a comma between the coordinates. Take care to use the syntax
appropriate to the context of a given spatial operation. For example, the following statements both
use ST_X() to extract the X-coordinate from a Point object. The first produces the object directly
using the Point() function. The second uses a WKT representation converted to a Point with
ST_GeomFromText().

mysql> SELECT X(Point(15, 20));
+------------------+
| X(POINT(15, 20)) |
+------------------+
| 15 |
+------------------+

mysql> SELECT X(GeomFromText('POINT(15 20)'));
+---------------------------------+
| X(GeomFromText('POINT(15 20)')) |
+---------------------------------+
| 15 |
+---------------------------------+

• A LineString with four points:

LINESTRING(0 0, 10 10, 20 25, 50 60)

The point coordinate pairs are separated by commas.

• A Polygon with one exterior ring and one interior ring:

POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

• A MultiPoint with three Point values:

MULTIPOINT(0 0, 20 20, 60 60)

• A MultiLineString with two LineString values:

MULTILINESTRING((10 10, 20 20), (15 15, 30 15))

• A MultiPolygon with two Polygon values:

MULTIPOLYGON(((0 0,10 0,10 10,0 10,0 0)),((5 5,7 5,7 7,5 7, 5 5)))

• A GeometryCollection consisting of two Point values and one LineString:

GEOMETRYCOLLECTION(POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))

Well-Known Binary (WKB) Format

The Well-Known Binary (WKB) representation of geometric values is used for exchanging geometry data
as binary streams represented by BLOB values containing geometric WKB information. This format is
defined by the OpenGIS specification (see Section 11.4, “Spatial Data Types”). It is also defined in the ISO
SQL/MM Part 3: Spatial standard.

WKB uses 1-byte unsigned integers, 4-byte unsigned integers, and 8-byte double-precision numbers (IEEE
754 format). A byte is eight bits.

For example, a WKB value that corresponds to POINT(1 -1) consists of this sequence of 21 bytes, each
represented by two hexadecimal digits:

0101000000000000000000F03F000000000000F0BF

1407

Supported Spatial Data Formats

The sequence consists of the components shown in the following table.

Table 11.2 WKB Components Example

Component Size Value

Byte order 1 byte 01

WKB type 4 bytes 01000000

X coordinate 8 bytes 000000000000F03F

Y coordinate 8 bytes 000000000000F0BF

Component representation is as follows:

• The byte order indicator is either 1 or 0 to signify little-endian or big-endian storage. The little-endian
and big-endian byte orders are also known as Network Data Representation (NDR) and External Data
Representation (XDR), respectively.

• The WKB type is a code that indicates the geometry type. MySQL uses values from 1 through 7 to
indicate Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and
GeometryCollection.

• A Point value has X and Y coordinates, each represented as a double-precision value.

WKB values for more complex geometry values have more complex data structures, as detailed in the
OpenGIS specification.

Internal Geometry Storage Format

MySQL stores geometry values using 4 bytes to indicate the SRID followed by the WKB representation of
the value. For a description of WKB format, see Well-Known Binary (WKB) Format.

For the WKB part, these MySQL-specific considerations apply:

• The byte-order indicator byte is 1 because MySQL stores geometries as little-endian values.

• MySQL supports geometry types of Point, LineString, Polygon, MultiPoint,
MultiLineString, MultiPolygon, and GeometryCollection. Other geometry types are not
supported.

The LENGTH() function returns the space in bytes required for value storage. Example:

mysql> SET @g = ST_GeomFromText('POINT(1 -1)');
mysql> SELECT LENGTH(@g);
+------------+
| LENGTH(@g) |
+------------+
| 25 |
+------------+
mysql> SELECT HEX(@g);
+--+
| HEX(@g) |
+--+
| 000000000101000000000000000000F03F000000000000F0BF |
+--+

The value length is 25 bytes, made up of these components (as can be seen from the hexadecimal value):

• 4 bytes for integer SRID (0)

1408

Creating Spatial Columns

• 1 byte for integer byte order (1 = little-endian)

• 4 bytes for integer type information (1 = Point)

• 8 bytes for double-precision X coordinate (1)

• 8 bytes for double-precision Y coordinate (−1)

11.4.4 Creating Spatial Columns

MySQL provides a standard way of creating spatial columns for geometry types, for example, with CREATE
TABLE or ALTER TABLE. Spatial columns are supported for MyISAM, InnoDB, NDB, and ARCHIVE tables.
See also the notes about spatial indexes under Section 11.4.8, “Creating Spatial Indexes”.

• Use the CREATE TABLE statement to create a table with a spatial column:

CREATE TABLE geom (g GEOMETRY);

• Use the ALTER TABLE statement to add or drop a spatial column to or from an existing table:

ALTER TABLE geom ADD pt POINT;
ALTER TABLE geom DROP pt;

11.4.5 Populating Spatial Columns

After you have created spatial columns, you can populate them with spatial data.

Values should be stored in internal geometry format, but you can convert them to that format from either
Well-Known Text (WKT) or Well-Known Binary (WKB) format. The following examples demonstrate how to
insert geometry values into a table by converting WKT values to internal geometry format:

• Perform the conversion directly in the INSERT statement:

INSERT INTO geom VALUES (GeomFromText('POINT(1 1)'));

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (GeomFromText(@g));

• Perform the conversion prior to the INSERT:

SET @g = GeomFromText('POINT(1 1)');
INSERT INTO geom VALUES (@g);

The following examples insert more complex geometries into the table:

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomFromText(@g));

The preceding examples use GeomFromText() to create geometry values. You can also use type-specific
functions:

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (PointFromText(@g));

SET @g = 'LINESTRING(0 0,1 1,2 2)';

1409

Fetching Spatial Data

INSERT INTO geom VALUES (LineStringFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (PolygonFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomCollFromText(@g));

A client application program that wants to use WKB representations of geometry values is responsible for
sending correctly formed WKB in queries to the server. There are several ways to satisfy this requirement.
For example:

• Inserting a POINT(1 1) value with hex literal syntax:

INSERT INTO geom VALUES
(GeomFromWKB(X'0101000000000000000000F03F000000000000F03F'));

• An ODBC application can send a WKB representation, binding it to a placeholder using an argument of
BLOB type:

INSERT INTO geom VALUES (GeomFromWKB(?))

Other programming interfaces may support a similar placeholder mechanism.

• In a C program, you can escape a binary value using mysql_real_escape_string() and include the
result in a query string that is sent to the server. See mysql_real_escape_string().

11.4.6 Fetching Spatial Data

Geometry values stored in a table can be fetched in internal format. You can also convert them to WKT or
WKB format.

• Fetching spatial data in internal format:

Fetching geometry values using internal format can be useful in table-to-table transfers:

CREATE TABLE geom2 (g GEOMETRY) SELECT g FROM geom;

• Fetching spatial data in WKT format:

The AsText() function converts a geometry from internal format to a WKT string.

SELECT AsText(g) FROM geom;

• Fetching spatial data in WKB format:

The AsBinary() function converts a geometry from internal format to a BLOB containing the WKB
value.

SELECT AsBinary(g) FROM geom;

11.4.7 Optimizing Spatial Analysis

For MyISAM tables, search operations in columns containing spatial data can be optimized using SPATIAL
indexes. The most typical operations are:

• Point queries that search for all objects that contain a given point

• Region queries that search for all objects that overlap a given region

1410

https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-escape-string.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-escape-string.html

Creating Spatial Indexes

MySQL uses R-Trees with quadratic splitting for SPATIAL indexes on spatial columns. A SPATIAL
index is built using the minimum bounding rectangle (MBR) of a geometry. For most geometries, the MBR
is a minimum rectangle that surrounds the geometries. For a horizontal or a vertical linestring, the MBR is a
rectangle degenerated into the linestring. For a point, the MBR is a rectangle degenerated into the point.

It is also possible to create normal indexes on spatial columns. In a non-SPATIAL index, you must declare
a prefix for any spatial column except for POINT columns.

MyISAM supports both SPATIAL and non-SPATIAL indexes. Other storage engines support non-SPATIAL
indexes, as described in Section 13.1.13, “CREATE INDEX Statement”.

11.4.8 Creating Spatial Indexes

For MyISAM tables, MySQL can create spatial indexes using syntax similar to that for creating regular
indexes, but using the SPATIAL keyword. Columns in spatial indexes must be declared NOT NULL. The
following examples demonstrate how to create spatial indexes:

• With CREATE TABLE:

CREATE TABLE geom (g GEOMETRY NOT NULL, SPATIAL INDEX(g)) ENGINE=MyISAM;

• With ALTER TABLE:

CREATE TABLE geom (g GEOMETRY NOT NULL) ENGINE=MyISAM;
ALTER TABLE geom ADD SPATIAL INDEX(g);

• With CREATE INDEX:

CREATE TABLE geom (g GEOMETRY NOT NULL) ENGINE=MyISAM;
CREATE SPATIAL INDEX g ON geom (g);

SPATIAL INDEX creates an R-tree index. For storage engines that support nonspatial indexing of spatial
columns, the engine creates a B-tree index. A B-tree index on spatial values is useful for exact-value
lookups, but not for range scans.

For more information on indexing spatial columns, see Section 13.1.13, “CREATE INDEX Statement”.

To drop spatial indexes, use ALTER TABLE or DROP INDEX:

• With ALTER TABLE:

ALTER TABLE geom DROP INDEX g;

• With DROP INDEX:

DROP INDEX g ON geom;

Example: Suppose that a table geom contains more than 32,000 geometries, which are stored in the
column g of type GEOMETRY. The table also has an AUTO_INCREMENT column fid for storing object ID
values.

mysql> DESCRIBE geom;
+-------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+----------------+
| fid | int(11) | | PRI | NULL | auto_increment |
| g | geometry | | | | |
+-------+----------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

mysql> SELECT COUNT(*) FROM geom;

1411

Using Spatial Indexes

+----------+
| count(*) |
+----------+
| 32376 |
+----------+
1 row in set (0.00 sec)

To add a spatial index on the column g, use this statement:

mysql> ALTER TABLE geom ADD SPATIAL INDEX(g) ENGINE=MyISAM;
Query OK, 32376 rows affected (4.05 sec)
Records: 32376 Duplicates: 0 Warnings: 0

11.4.9 Using Spatial Indexes

The optimizer investigates whether available spatial indexes can be involved in the search for queries that
use a function such as MBRContains() or MBRWithin() in the WHERE clause. The following query finds
all objects that are in the given rectangle:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> SELECT fid,AsText(g) FROM geom WHERE
 -> MBRContains(GeomFromText(@poly),g);
+-----+---+
| fid | AsText(g) |
+-----+---+
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ...
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...
+-----+---+
20 rows in set (0.00 sec)

Use EXPLAIN to check the way this query is executed:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> EXPLAIN SELECT fid,AsText(g) FROM geom WHERE
 -> MBRContains(GeomFromText(@poly),g)\G
*************************** 1. row ***************************
 id: 1

1412

Using Spatial Indexes

 select_type: SIMPLE
 table: geom
 type: range
possible_keys: g
 key: g
 key_len: 32
 ref: NULL
 rows: 50
 Extra: Using where
1 row in set (0.00 sec)

Check what would happen without a spatial index:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> EXPLAIN SELECT fid,AsText(g) FROM g IGNORE INDEX (g) WHERE
 -> MBRContains(GeomFromText(@poly),g)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: geom
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 32376
 Extra: Using where
1 row in set (0.00 sec)

Executing the SELECT statement without the spatial index yields the same result but causes the execution
time to rise from 0.00 seconds to 0.46 seconds:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> SELECT fid,AsText(g) FROM geom IGNORE INDEX (g) WHERE
 -> MBRContains(GeomFromText(@poly),g);
+-----+---+
| fid | AsText(g) |
+-----+---+
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...

1413

Data Type Default Values

| 249 | LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ... |
+-----+---+
20 rows in set (0.46 sec)

11.5 Data Type Default Values
Data type specifications can have explicit or implicit default values.

• Explicit Default Handling

• Implicit Default Handling

Explicit Default Handling

A DEFAULT value clause in a data type specification explicitly indicates a default value for a column.
Examples:

CREATE TABLE t1 (
 i INT DEFAULT -1,
 c VARCHAR(10) DEFAULT '',
 price DOUBLE(16,2) DEFAULT '0.00'
);

SERIAL DEFAULT VALUE is a special case. In the definition of an integer column, it is an alias for NOT
NULL AUTO_INCREMENT UNIQUE.

With one exception, the default value specified in a DEFAULT clause must be a literal constant; it cannot be
a function or an expression. This means, for example, that you cannot set the default for a date column to
be the value of a function such as NOW() or CURRENT_DATE. The exception is that, for TIMESTAMP and
DATETIME columns, you can specify CURRENT_TIMESTAMP as the default. See Section 11.2.6, “Automatic
Initialization and Updating for TIMESTAMP and DATETIME”.

The BLOB and TEXT data types cannot be assigned a default value.

Implicit Default Handling

If a data type specification includes no explicit DEFAULT value, MySQL determines the default value as
follows:

If the column can take NULL as a value, the column is defined with an explicit DEFAULT NULL clause.

If the column cannot take NULL as a value, MySQL defines the column with no explicit DEFAULT clause.
Exception: If the column is defined as part of a PRIMARY KEY but not explicitly as NOT NULL, MySQL
creates it as a NOT NULL column (because PRIMARY KEY columns must be NOT NULL), but also assigns
it a DEFAULT clause using the implicit default value. To prevent this, include an explicit NOT NULL in the
definition of any PRIMARY KEY column.

For data entry into a NOT NULL column that has no explicit DEFAULT clause, if an INSERT or REPLACE
statement includes no value for the column, or an UPDATE statement sets the column to NULL, MySQL
handles the column according to the SQL mode in effect at the time:

• If strict SQL mode is enabled, an error occurs for transactional tables and the statement is rolled back.
For nontransactional tables, an error occurs, but if this happens for the second or subsequent row of a
multiple-row statement, the preceding rows have already been inserted.

• If strict mode is not enabled, MySQL sets the column to the implicit default value for the column data
type.

1414

Data Type Storage Requirements

Suppose that a table t is defined as follows:

CREATE TABLE t (i INT NOT NULL);

In this case, i has no explicit default, so in strict mode each of the following statements produce an error
and no row is inserted. When not using strict mode, only the third statement produces an error; the implicit
default is inserted for the first two statements, but the third fails because DEFAULT(i) cannot produce a
value:

INSERT INTO t VALUES();
INSERT INTO t VALUES(DEFAULT);
INSERT INTO t VALUES(DEFAULT(i));

See Section 5.1.10, “Server SQL Modes”.

For a given table, the SHOW CREATE TABLE statement displays which columns have an explicit DEFAULT
clause.

Implicit defaults are defined as follows:

• For numeric types, the default is 0, with the exception that for integer or floating-point types declared with
the AUTO_INCREMENT attribute, the default is the next value in the sequence.

• For date and time types other than TIMESTAMP, the default is the appropriate “zero” value for the type.
This is also true for TIMESTAMP if the explicit_defaults_for_timestamp system variable is
enabled (see Section 5.1.7, “Server System Variables”). Otherwise, for the first TIMESTAMP column in a
table, the default value is the current date and time. See Section 11.2, “Date and Time Data Types”.

• For string types other than ENUM, the default value is the empty string. For ENUM, the default is the first
enumeration value.

11.6 Data Type Storage Requirements
• InnoDB Table Storage Requirements

• NDB Table Storage Requirements

• Numeric Type Storage Requirements

• Date and Time Type Storage Requirements

• String Type Storage Requirements

• Spatial Type Storage Requirements

The storage requirements for table data on disk depend on several factors. Different storage engines
represent data types and store raw data differently. Table data might be compressed, either for a column
or an entire row, complicating the calculation of storage requirements for a table or column.

Despite differences in storage layout on disk, the internal MySQL APIs that communicate and exchange
information about table rows use a consistent data structure that applies across all storage engines.

This section includes guidelines and information for the storage requirements for each data type supported
by MySQL, including the internal format and size for storage engines that use a fixed-size representation
for data types. Information is listed by category or storage engine.

The internal representation of a table has a maximum row size of 65,535 bytes, even if the storage engine
is capable of supporting larger rows. This figure excludes BLOB or TEXT columns, which contribute only

1415

InnoDB Table Storage Requirements

9 to 12 bytes toward this size. For BLOB and TEXT data, the information is stored internally in a different
area of memory than the row buffer. Different storage engines handle the allocation and storage of this
data in different ways, according to the method they use for handling the corresponding types. For more
information, see Chapter 15, Alternative Storage Engines, and Section 8.4.7, “Limits on Table Column
Count and Row Size”.

InnoDB Table Storage Requirements

See Section 14.11, “InnoDB Row Formats” for information about storage requirements for InnoDB tables.

NDB Table Storage Requirements

Important

NDB tables use 4-byte alignment; all NDB data storage is done in multiples of 4
bytes. Thus, a column value that would typically take 15 bytes requires 16 bytes in
an NDB table. For example, in NDB tables, the TINYINT, SMALLINT, MEDIUMINT,
and INTEGER (INT) column types each require 4 bytes storage per record due to
the alignment factor.

Each BIT(M) column takes M bits of storage space. Although an individual BIT
column is not 4-byte aligned, NDB reserves 4 bytes (32 bits) per row for the first
1-32 bits needed for BIT columns, then another 4 bytes for bits 33-64, and so on.

While a NULL itself does not require any storage space, NDB reserves 4 bytes per
row if the table definition contains any columns defined as NULL, up to 32 NULL
columns. (If an NDB Cluster table is defined with more than 32 NULL columns up to
64 NULL columns, then 8 bytes per row are reserved.)

Every table using the NDB storage engine requires a primary key; if you do not define a primary key, a
“hidden” primary key is created by NDB. This hidden primary key consumes 31-35 bytes per table record.

You can use the ndb_size.pl Perl script to estimate NDB storage requirements. It connects to a current
MySQL (not NDB Cluster) database and creates a report on how much space that database would require
if it used the NDB storage engine. See Section 18.5.26, “ndb_size.pl — NDBCLUSTER Size Requirement
Estimator” for more information.

Numeric Type Storage Requirements

Data Type Storage Required

TINYINT 1 byte

SMALLINT 2 bytes

MEDIUMINT 3 bytes

INT, INTEGER 4 bytes

BIGINT 8 bytes

FLOAT(p) 4 bytes if 0 <= p <= 24, 8 bytes if 25 <= p <= 53

FLOAT 4 bytes

DOUBLE [PRECISION], REAL 8 bytes

DECIMAL(M,D), NUMERIC(M,D) Varies; see following discussion

BIT(M) approximately (M+7)/8 bytes

1416

Date and Time Type Storage Requirements

Values for DECIMAL (and NUMERIC) columns are represented using a binary format that packs nine
decimal (base 10) digits into four bytes. Storage for the integer and fractional parts of each value are
determined separately. Each multiple of nine digits requires four bytes, and the “leftover” digits require
some fraction of four bytes. The storage required for excess digits is given by the following table.

Leftover Digits Number of Bytes

0 0

1 1

2 1

3 2

4 2

5 3

6 3

7 4

8 4

Date and Time Type Storage Requirements

For TIME, DATETIME, and TIMESTAMP columns, the storage required for tables created before MySQL
5.6.4 differs from tables created from 5.6.4 on. This is due to a change in 5.6.4 that permits these types to
have a fractional part, which requires from 0 to 3 bytes.

Data Type Storage Required Before
MySQL 5.6.4

Storage Required as of MySQL
5.6.4

YEAR 1 byte 1 byte

DATE 3 bytes 3 bytes

TIME 3 bytes 3 bytes + fractional seconds
storage

DATETIME 8 bytes 5 bytes + fractional seconds
storage

TIMESTAMP 4 bytes 4 bytes + fractional seconds
storage

As of MySQL 5.6.4, storage for YEAR and DATE remains unchanged. However, TIME, DATETIME, and
TIMESTAMP are represented differently. DATETIME is packed more efficiently, requiring 5 rather than 8
bytes for the nonfractional part, and all three parts have a fractional part that requires from 0 to 3 bytes,
depending on the fractional seconds precision of stored values.

Fractional Seconds Precision Storage Required

0 0 bytes

1, 2 1 byte

3, 4 2 bytes

5, 6 3 bytes

For example, TIME(0), TIME(2), TIME(4), and TIME(6) use 3, 4, 5, and 6 bytes, respectively. TIME
and TIME(0) are equivalent and require the same storage.

1417

String Type Storage Requirements

For details about internal representation of temporal values, see MySQL Internals: Important Algorithms
and Structures.

String Type Storage Requirements

In the following table, M represents the declared column length in characters for nonbinary string types and
bytes for binary string types. L represents the actual length in bytes of a given string value.

Data Type Storage Required

CHAR(M) The compact family of InnoDB row formats optimize
storage for variable-length character sets. See
COMPACT Row Format Storage Characteristics.
Otherwise, M × w bytes, <= M <= 255, where w
is the number of bytes required for the maximum-
length character in the character set.

BINARY(M) M bytes, 0 <= M <= 255

VARCHAR(M), VARBINARY(M) L + 1 bytes if column values require 0 − 255 bytes,
L + 2 bytes if values may require more than 255
bytes

TINYBLOB, TINYTEXT L + 1 bytes, where L < 28

BLOB, TEXT L + 2 bytes, where L < 216

MEDIUMBLOB, MEDIUMTEXT L + 3 bytes, where L < 224

LONGBLOB, LONGTEXT L + 4 bytes, where L < 232

ENUM('value1','value2',...) 1 or 2 bytes, depending on the number of
enumeration values (65,535 values maximum)

SET('value1','value2',...) 1, 2, 3, 4, or 8 bytes, depending on the number of
set members (64 members maximum)

Variable-length string types are stored using a length prefix plus data. The length prefix requires from one
to four bytes depending on the data type, and the value of the prefix is L (the byte length of the string). For
example, storage for a MEDIUMTEXT value requires L bytes to store the value plus three bytes to store the
length of the value.

To calculate the number of bytes used to store a particular CHAR, VARCHAR, or TEXT column value, you
must take into account the character set used for that column and whether the value contains multibyte
characters. In particular, when using a utf8 Unicode character set, you must keep in mind that not all
characters use the same number of bytes. utf8mb3 and utf8mb4 character sets can require up to three
and four bytes per character, respectively. For a breakdown of the storage used for different categories of
utf8mb3 or utf8mb4 characters, see Section 10.9, “Unicode Support”.

VARCHAR, VARBINARY, and the BLOB and TEXT types are variable-length types. For each, the storage
requirements depend on these factors:

• The actual length of the column value

• The column's maximum possible length

• The character set used for the column, because some character sets contain multibyte characters

For example, a VARCHAR(255) column can hold a string with a maximum length of 255 characters.
Assuming that the column uses the latin1 character set (one byte per character), the actual storage

1418

https://dev.mysql.com/doc/internals/en/algorithms.html
https://dev.mysql.com/doc/internals/en/algorithms.html

Spatial Type Storage Requirements

required is the length of the string (L), plus one byte to record the length of the string. For the string
'abcd', L is 4 and the storage requirement is five bytes. If the same column is instead declared to use the
ucs2 double-byte character set, the storage requirement is 10 bytes: The length of 'abcd' is eight bytes
and the column requires two bytes to store lengths because the maximum length is greater than 255 (up to
510 bytes).

The effective maximum number of bytes that can be stored in a VARCHAR or VARBINARY column is subject
to the maximum row size of 65,535 bytes, which is shared among all columns. For a VARCHAR column that
stores multibyte characters, the effective maximum number of characters is less. For example, utf8mb3
characters can require up to three bytes per character, so a VARCHAR column that uses the utf8mb3
character set can be declared to be a maximum of 21,844 characters. See Section 8.4.7, “Limits on Table
Column Count and Row Size”.

InnoDB encodes fixed-length fields greater than or equal to 768 bytes in length as variable-length fields,
which can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the maximum
byte length of the character set is greater than 3, as it is with utf8mb4.

The NDB storage engine supports variable-width columns. This means that a VARCHAR column in an NDB
Cluster table requires the same amount of storage as would any other storage engine, with the exception
that such values are 4-byte aligned. Thus, the string 'abcd' stored in a VARCHAR(50) column using the
latin1 character set requires 8 bytes (rather than 5 bytes for the same column value in a MyISAM table).

TEXT and BLOB columns are implemented differently in the NDB storage engine, wherein each row in a
TEXT column is made up of two separate parts. One of these is of fixed size (256 bytes), and is actually
stored in the original table. The other consists of any data in excess of 256 bytes, which is stored in a
hidden blob parts table. The size of the rows in this second table are determined by the exact BLOB or
TEXT type of the column, as shown in the following table:

Type Blob Part Size

BLOB, TEXT 2000

MEDIUMBLOB, MEDIUMTEXT 4000

LONGBLOB, LONGTEXT 13948

This means that the size of a TEXT column is 256 if size <= 256 (where size represents the size of the
row); otherwise, the size is 256 + size + (2000 × (size − 256) % 2000).

No blob parts are stored separately by NDB for TINYBLOB or TINYTEXT column values.

You can increase the size of an NDB blob column's blob part to the maximum of 13948 using NDB_COLUMN
in a column comment when creating or altering the parent table. See Section 13.1.17.7, “Setting NDB
Comment Options”, for more information.

The size of an ENUM object is determined by the number of different enumeration values. One byte is used
for enumerations with up to 255 possible values. Two bytes are used for enumerations having between
256 and 65,535 possible values. See Section 11.3.5, “The ENUM Type”.

The size of a SET object is determined by the number of different set members. If the set size is N, the
object occupies (N+7)/8 bytes, rounded up to 1, 2, 3, 4, or 8 bytes. A SET can have a maximum of 64
members. See Section 11.3.6, “The SET Type”.

Spatial Type Storage Requirements

MySQL stores geometry values using 4 bytes to indicate the SRID followed by the WKB representation of
the value. The LENGTH() function returns the space in bytes required for value storage.

1419

Choosing the Right Type for a Column

For descriptions of WKB and internal storage formats for spatial values, see Section 11.4.3, “Supported
Spatial Data Formats”.

11.7 Choosing the Right Type for a Column

For optimum storage, you should try to use the most precise type in all cases. For example, if an integer
column is used for values in the range from 1 to 99999, MEDIUMINT UNSIGNED is the best type. Of the
types that represent all the required values, this type uses the least amount of storage.

All basic calculations (+, -, *, and /) with DECIMAL columns are done with precision of 65 decimal (base
10) digits. See Section 11.1.1, “Numeric Data Type Syntax”.

If accuracy is not too important or if speed is the highest priority, the DOUBLE type may be good enough.
For high precision, you can always convert to a fixed-point type stored in a BIGINT. This enables you to do
all calculations with 64-bit integers and then convert results back to floating-point values as necessary.

PROCEDURE ANALYSE can be used to obtain suggestions for optimal column data types. For more
information, see Section 8.4.2.4, “Using PROCEDURE ANALYSE”.

11.8 Using Data Types from Other Database Engines

To facilitate the use of code written for SQL implementations from other vendors, MySQL maps data types
as shown in the following table. These mappings make it easier to import table definitions from other
database systems into MySQL.

Other Vendor Type MySQL Type

BOOL TINYINT

BOOLEAN TINYINT

CHARACTER VARYING(M) VARCHAR(M)

FIXED DECIMAL

FLOAT4 FLOAT

FLOAT8 DOUBLE

INT1 TINYINT

INT2 SMALLINT

INT3 MEDIUMINT

INT4 INT

INT8 BIGINT

LONG VARBINARY MEDIUMBLOB

LONG VARCHAR MEDIUMTEXT

LONG MEDIUMTEXT

MIDDLEINT MEDIUMINT

NUMERIC DECIMAL

Data type mapping occurs at table creation time, after which the original type specifications are discarded.
If you create a table with types used by other vendors and then issue a DESCRIBE tbl_name statement,
MySQL reports the table structure using the equivalent MySQL types. For example:

mysql> CREATE TABLE t (a BOOL, b FLOAT8, c LONG VARCHAR, d NUMERIC);

1420

Using Data Types from Other Database Engines

Query OK, 0 rows affected (0.00 sec)

mysql> DESCRIBE t;
+-------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------+------+-----+---------+-------+
a	tinyint(1)	YES		NULL	
b	double	YES		NULL	
c	mediumtext	YES		NULL	
d	decimal(10,0)	YES		NULL	
+-------+---------------+------+-----+---------+-------+
4 rows in set (0.01 sec)

1421

1422

Chapter 12 Functions and Operators

Table of Contents
12.1 Built-In Function and Operator Reference .. 1424
12.2 Loadable Function Reference .. 1442
12.3 Type Conversion in Expression Evaluation ... 1442
12.4 Operators ... 1445

12.4.1 Operator Precedence ... 1446
12.4.2 Comparison Functions and Operators ... 1447
12.4.3 Logical Operators ... 1454
12.4.4 Assignment Operators .. 1456

12.5 Flow Control Functions .. 1457
12.6 Numeric Functions and Operators .. 1459

12.6.1 Arithmetic Operators ... 1460
12.6.2 Mathematical Functions .. 1462

12.7 Date and Time Functions .. 1471
12.8 String Functions and Operators ... 1493

12.8.1 String Comparison Functions and Operators .. 1510
12.8.2 Regular Expressions .. 1513
12.8.3 Character Set and Collation of Function Results .. 1519

12.9 What Calendar Is Used By MySQL? .. 1520
12.10 Full-Text Search Functions .. 1521

12.10.1 Natural Language Full-Text Searches .. 1522
12.10.2 Boolean Full-Text Searches .. 1525
12.10.3 Full-Text Searches with Query Expansion .. 1531
12.10.4 Full-Text Stopwords .. 1532
12.10.5 Full-Text Restrictions .. 1536
12.10.6 Fine-Tuning MySQL Full-Text Search .. 1537
12.10.7 Adding a User-Defined Collation for Full-Text Indexing ... 1540

12.11 Cast Functions and Operators ... 1541
12.12 XML Functions .. 1548
12.13 Bit Functions and Operators .. 1559
12.14 Encryption and Compression Functions .. 1561
12.15 Locking Functions ... 1571
12.16 Information Functions .. 1572
12.17 Spatial Analysis Functions ... 1583

12.17.1 Spatial Function Reference ... 1583
12.17.2 Argument Handling by Spatial Functions ... 1586
12.17.3 Functions That Create Geometry Values from WKT Values .. 1587
12.17.4 Functions That Create Geometry Values from WKB Values .. 1589
12.17.5 MySQL-Specific Functions That Create Geometry Values ... 1590
12.17.6 Geometry Format Conversion Functions .. 1591
12.17.7 Geometry Property Functions .. 1592
12.17.8 Spatial Operator Functions .. 1600
12.17.9 Functions That Test Spatial Relations Between Geometry Objects 1601

12.18 Functions Used with Global Transaction IDs ... 1605
12.19 Aggregate Functions ... 1607

12.19.1 Aggregate Function Descriptions ... 1607
12.19.2 GROUP BY Modifiers ... 1612
12.19.3 MySQL Handling of GROUP BY ... 1615

12.20 Miscellaneous Functions .. 1616

1423

Built-In Function and Operator Reference

12.21 Precision Math .. 1623
12.21.1 Types of Numeric Values .. 1624
12.21.2 DECIMAL Data Type Characteristics ... 1624
12.21.3 Expression Handling ... 1625
12.21.4 Rounding Behavior ... 1627
12.21.5 Precision Math Examples .. 1628

Expressions can be used at several points in SQL statements, such as in the ORDER BY or HAVING
clauses of SELECT statements, in the WHERE clause of a SELECT, DELETE, or UPDATE statement, or in
SET statements. Expressions can be written using values from several sources, such as literal values,
column values, NULL, variables, built-in functions and operators, loadable functions, and stored functions
(a type of stored object).

This chapter describes the built-in functions and operators that are permitted for writing expressions in
MySQL. For information about loadable functions and stored functions, see Section 5.6, “MySQL Server
Loadable Functions”, and Section 20.2, “Using Stored Routines”. For the rules describing how the server
interprets references to different kinds of functions, see Section 9.2.5, “Function Name Parsing and
Resolution”.

An expression that contains NULL always produces a NULL value unless otherwise indicated in the
documentation for a particular function or operator.

Note

By default, there must be no whitespace between a function name and the
parenthesis following it. This helps the MySQL parser distinguish between function
calls and references to tables or columns that happen to have the same name as a
function. However, spaces around function arguments are permitted.

To tell the MySQL server to accept spaces after function names by starting it
with the --sql-mode=IGNORE_SPACE option. (See Section 5.1.10, “Server
SQL Modes”.) Individual client programs can request this behavior by using the
CLIENT_IGNORE_SPACE option for mysql_real_connect(). In either case, all
function names become reserved words.

For the sake of brevity, some examples in this chapter display the output from the mysql program in
abbreviated form. Rather than showing examples in this format:

mysql> SELECT MOD(29,9);
+-----------+
| mod(29,9) |
+-----------+
| 2 |
+-----------+
1 rows in set (0.00 sec)

This format is used instead:

mysql> SELECT MOD(29,9);
 -> 2

12.1 Built-In Function and Operator Reference

The following table lists each built-in (native) function and operator and provides a short description of
each one. For a table listing functions that are loadable at runtime, see Section 12.2, “Loadable Function
Reference”.

1424

https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-connect.html

Built-In Function and Operator Reference

Table 12.1 Built-In Functions and Operators

Name Description Introduced Deprecated

& Bitwise AND

> Greater than operator

>> Right shift

>= Greater than or equal
operator

< Less than operator

<>, != Not equal operator

<< Left shift

<= Less than or equal
operator

<=> NULL-safe equal to
operator

%, MOD Modulo operator

* Multiplication operator

+ Addition operator

- Minus operator

- Change the sign of the
argument

/ Division operator

:= Assign a value

= Assign a value (as part
of a SET statement, or as
part of the SET clause in
an UPDATE statement)

= Equal operator

^ Bitwise XOR

ABS() Return the absolute value

ACOS() Return the arc cosine

ADDDATE() Add time values
(intervals) to a date value

ADDTIME() Add time

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

AND, && Logical AND

Area() Return Polygon or
MultiPolygon area

AsBinary(), AsWKB() Convert from internal
geometry format to WKB

ASCII() Return numeric value of
left-most character

1425

Built-In Function and Operator Reference

Name Description Introduced Deprecated

ASIN() Return the arc sine

AsText(), AsWKT() Convert from internal
geometry format to WKT

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of
the two arguments

AVG() Return the average value
of the argument

BENCHMARK() Repeatedly execute an
expression

BETWEEN ... AND ... Whether a value is within
a range of values

BIN() Return a string containing
binary representation of a
number

BINARY Cast a string to a binary
string

BIT_AND() Return bitwise AND

BIT_COUNT() Return the number of bits
that are set

BIT_LENGTH() Return length of
argument in bits

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

Buffer() Return geometry of
points within given
distance from geometry

CASE Case operator

CAST() Cast a value as a certain
type

CEIL() Return the smallest
integer value not less
than the argument

CEILING() Return the smallest
integer value not less
than the argument

Centroid() Return centroid as a
point

CHAR() Return the character for
each integer passed

CHAR_LENGTH() Return number of
characters in argument

CHARACTER_LENGTH() Synonym for
CHAR_LENGTH()

1426

Built-In Function and Operator Reference

Name Description Introduced Deprecated

CHARSET() Return the character set
of the argument

COALESCE() Return the first non-NULL
argument

COERCIBILITY() Return the collation
coercibility value of the
string argument

COLLATION() Return the collation of the
string argument

COMPRESS() Return result as a binary
string

CONCAT() Return concatenated
string

CONCAT_WS() Return concatenate with
separator

CONNECTION_ID() Return the connection
ID (thread ID) for the
connection

Contains() Whether MBR of one
geometry contains MBR
of another

CONV() Convert numbers
between different number
bases

CONVERT() Cast a value as a certain
type

CONVERT_TZ() Convert from one time
zone to another

COS() Return the cosine

COT() Return the cotangent

COUNT() Return a count of the
number of rows returned

COUNT(DISTINCT) Return the count of
a number of different
values

CRC32() Compute a cyclic
redundancy check value

Crosses() Whether one geometry
crosses another

CURDATE() Return the current date

CURRENT_DATE(),
CURRENT_DATE

Synonyms for
CURDATE()

CURRENT_TIME(),
CURRENT_TIME

Synonyms for
CURTIME()

1427

Built-In Function and Operator Reference

Name Description Introduced Deprecated

CURRENT_TIMESTAMP(),
CURRENT_TIMESTAMP

Synonyms for NOW()

CURRENT_USER(),
CURRENT_USER

The authenticated user
name and host name

CURTIME() Return the current time

DATABASE() Return the default
(current) database name

DATE() Extract the date part
of a date or datetime
expression

DATE_ADD() Add time values
(intervals) to a date value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a time value
(interval) from a date

DATEDIFF() Subtract two dates

DAY() Synonym for
DAYOFMONTH()

DAYNAME() Return the name of the
weekday

DAYOFMONTH() Return the day of the
month (0-31)

DAYOFWEEK() Return the weekday
index of the argument

DAYOFYEAR() Return the day of the
year (1-366)

DECODE() Decode a string
encrypted using
ENCODE()

DEFAULT() Return the default value
for a table column

DEGREES() Convert radians to
degrees

DES_DECRYPT() Decrypt a string

DES_ENCRYPT() Encrypt a string

Dimension() Dimension of geometry

Disjoint() Whether MBRs of two
geometries are disjoint

DIV Integer division

ELT() Return string at index
number

ENCODE() Encode a string

ENCRYPT() Encrypt a string

1428

Built-In Function and Operator Reference

Name Description Introduced Deprecated

EndPoint() End Point of LineString

Envelope() Return MBR of geometry

Equals() Whether MBRs of two
geometries are equal

EXP() Raise to the power of

EXPORT_SET() Return a string such that
for every bit set in the
value bits, you get an on
string and for every unset
bit, you get an off string

ExteriorRing() Return exterior ring of
Polygon

EXTRACT() Extract part of a date

ExtractValue() Extract a value from an
XML string using XPath
notation

FIELD() Index (position) of first
argument in subsequent
arguments

FIND_IN_SET() Index (position) of first
argument within second
argument

FLOOR() Return the largest integer
value not greater than the
argument

FORMAT() Return a number
formatted to specified
number of decimal places

FOUND_ROWS() For a SELECT with a
LIMIT clause, the number
of rows that would be
returned were there no
LIMIT clause

FROM_BASE64() Decode base64 encoded
string and return result

FROM_DAYS() Convert a day number to
a date

FROM_UNIXTIME() Format Unix timestamp
as a date

GeomCollFromText(),
GeometryCollectionFromText()

Return geometry
collection from WKT

GeomCollFromWKB(),
GeometryCollectionFromWKB()

Return geometry
collection from WKB

1429

Built-In Function and Operator Reference

Name Description Introduced Deprecated

GeometryCollection()Construct geometry
collection from
geometries

GeometryN() Return N-th geometry
from geometry collection

GeometryType() Return name of geometry
type

GeomFromText(),
GeometryFromText()

Return geometry from
WKT

GeomFromWKB(),
GeometryFromWKB()

Return geometry from
WKB

GET_FORMAT() Return a date format
string

GET_LOCK() Get a named lock

GLength() Return length of
LineString

GREATEST() Return the largest
argument

GROUP_CONCAT() Return a concatenated
string

GTID_SUBSET() Return true if all GTIDs
in subset are also in set;
otherwise false.

GTID_SUBTRACT() Return all GTIDs in set
that are not in subset.

HEX() Hexadecimal
representation of decimal
or string value

HOUR() Extract the hour

IF() If/else construct

IFNULL() Null if/else construct

IN() Whether a value is within
a set of values

INET_ATON() Return the numeric value
of an IP address

INET_NTOA() Return the IP address
from a numeric value

INET6_ATON() Return the numeric value
of an IPv6 address

INET6_NTOA() Return the IPv6 address
from a numeric value

INSERT() Insert substring at
specified position up

1430

Built-In Function and Operator Reference

Name Description Introduced Deprecated
to specified number of
characters

INSTR() Return the index of
the first occurrence of
substring

InteriorRingN() Return N-th interior ring
of Polygon

Intersects() Whether MBRs of two
geometries intersect

INTERVAL() Return the index of the
argument that is less
than the first argument

IS Test a value against a
boolean

IS_FREE_LOCK() Whether the named lock
is free

IS_IPV4() Whether argument is an
IPv4 address

IS_IPV4_COMPAT() Whether argument is an
IPv4-compatible address

IS_IPV4_MAPPED() Whether argument is an
IPv4-mapped address

IS_IPV6() Whether argument is an
IPv6 address

IS NOT Test a value against a
boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

IS_USED_LOCK() Whether the named
lock is in use; return
connection identifier if
true

IsClosed() Whether a geometry is
closed and simple

IsEmpty() Whether a geometry is
empty

ISNULL() Test whether the
argument is NULL

IsSimple() Whether a geometry is
simple

LAST_DAY Return the last day of the
month for the argument

LAST_INSERT_ID() Value of the
AUTOINCREMENT

1431

Built-In Function and Operator Reference

Name Description Introduced Deprecated
column for the last
INSERT

LCASE() Synonym for LOWER()

LEAST() Return the smallest
argument

LEFT() Return the leftmost
number of characters as
specified

LENGTH() Return the length of a
string in bytes

LIKE Simple pattern matching

LineFromText(),
LineStringFromText()

Construct LineString from
WKT

LineFromWKB(),
LineStringFromWKB()

Construct LineString from
WKB

LineString() Construct LineString from
Point values

LN() Return the natural
logarithm of the argument

LOAD_FILE() Load the named file

LOCALTIME(),
LOCALTIME

Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()

Synonym for NOW()

LOCATE() Return the position of
the first occurrence of
substring

LOG() Return the natural
logarithm of the first
argument

LOG10() Return the base-10
logarithm of the argument

LOG2() Return the base-2
logarithm of the argument

LOWER() Return the argument in
lowercase

LPAD() Return the string
argument, left-padded
with the specified string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-
separated strings that
have the corresponding
bit in bits set

1432

Built-In Function and Operator Reference

Name Description Introduced Deprecated

MAKEDATE() Create a date from the
year and day of year

MAKETIME() Create time from hour,
minute, second

MASTER_POS_WAIT() Block until the replica
has read and applied
all updates up to the
specified position

MATCH() Perform full-text search

MAX() Return the maximum
value

MBRContains() Whether MBR of one
geometry contains MBR
of another

MBRDisjoint() Whether MBRs of two
geometries are disjoint

MBREqual() Whether MBRs of two
geometries are equal

MBRIntersects() Whether MBRs of two
geometries intersect

MBROverlaps() Whether MBRs of two
geometries overlap

MBRTouches() Whether MBRs of two
geometries touch

MBRWithin() Whether MBR of one
geometry is within MBR
of another

MD5() Calculate MD5 checksum

MICROSECOND() Return the microseconds
from argument

MID() Return a substring
starting from the
specified position

MIN() Return the minimum
value

MINUTE() Return the minute from
the argument

MLineFromText(),
MultiLineStringFromText()

Construct MultiLineString
from WKT

MLineFromWKB(),
MultiLineStringFromWKB()

Construct MultiLineString
from WKB

MOD() Return the remainder

MONTH() Return the month from
the date passed

1433

Built-In Function and Operator Reference

Name Description Introduced Deprecated

MONTHNAME() Return the name of the
month

MPointFromText(),
MultiPointFromText()

Construct MultiPoint from
WKT

MPointFromWKB(),
MultiPointFromWKB()

Construct MultiPoint from
WKB

MPolyFromText(),
MultiPolygonFromText()

Construct MultiPolygon
from WKT

MPolyFromWKB(),
MultiPolygonFromWKB()

Construct MultiPolygon
from WKB

MultiLineString() Contruct MultiLineString
from LineString values

MultiPoint() Construct MultiPoint from
Point values

MultiPolygon() Construct MultiPolygon
from Polygon values

NAME_CONST() Cause the column to
have the given name

NOT, ! Negates value

NOT BETWEEN ...
AND ...

Whether a value is not
within a range of values

NOT IN() Whether a value is not
within a set of values

NOT LIKE Negation of simple
pattern matching

NOT REGEXP Negation of REGEXP

NOW() Return the current date
and time

NULLIF() Return NULL if expr1 =
expr2

NumGeometries() Return number of
geometries in geometry
collection

NumInteriorRings() Return number of interior
rings in Polygon

NumPoints() Return number of points
in LineString

OCT() Return a string containing
octal representation of a
number

OCTET_LENGTH() Synonym for LENGTH()

OLD_PASSWORD() Return the value of the
pre-4.1 implementation of
PASSWORD

Yes

1434

Built-In Function and Operator Reference

Name Description Introduced Deprecated

OR, || Logical OR

ORD() Return character code for
leftmost character of the
argument

Overlaps() Whether MBRs of two
geometries overlap

PASSWORD() Calculate and return a
password string

PERIOD_ADD() Add a period to a year-
month

PERIOD_DIFF() Return the number of
months between periods

PI() Return the value of pi

Point() Construct Point from
coordinates

PointFromText() Construct Point from
WKT

PointFromWKB() Construct Point from
WKB

PointN() Return N-th point from
LineString

PolyFromText(),
PolygonFromText()

Construct Polygon from
WKT

PolyFromWKB(),
PolygonFromWKB()

Construct Polygon from
WKB

Polygon() Construct Polygon from
LineString arguments

POSITION() Synonym for LOCATE()

POW() Return the argument
raised to the specified
power

POWER() Return the argument
raised to the specified
power

PROCEDURE ANALYSE() Analyze the results of a
query

QUARTER() Return the quarter from a
date argument

QUOTE() Escape the argument for
use in an SQL statement

RADIANS() Return argument
converted to radians

RAND() Return a random floating-
point value

1435

Built-In Function and Operator Reference

Name Description Introduced Deprecated

RANDOM_BYTES() Return a random byte
vector

5.6.17

REGEXP Whether string matches
regular expression

RELEASE_LOCK() Release the named lock

REPEAT() Repeat a string the
specified number of times

REPLACE() Replace occurrences of a
specified string

REVERSE() Reverse the characters in
a string

RIGHT() Return the specified
rightmost number of
characters

RLIKE Whether string matches
regular expression

ROUND() Round the argument

ROW_COUNT() The number of rows
updated

RPAD() Append string the
specified number of times

RTRIM() Remove trailing spaces

SCHEMA() Synonym for
DATABASE()

SEC_TO_TIME() Converts seconds to
'hh:mm:ss' format

SECOND() Return the second (0-59)

SESSION_USER() Synonym for USER()

SHA1(), SHA() Calculate an SHA-1 160-
bit checksum

SHA2() Calculate an SHA-2
checksum

SIGN() Return the sign of the
argument

SIN() Return the sine of the
argument

SLEEP() Sleep for a number of
seconds

SOUNDEX() Return a soundex string

SOUNDS LIKE Compare sounds

SPACE() Return a string of the
specified number of
spaces

1436

Built-In Function and Operator Reference

Name Description Introduced Deprecated

SQL_THREAD_WAIT_AFTER_GTIDS()Obsolete. Use
WAIT_FOR_EXECUTED_GTID_SET().

Yes

SQRT() Return the square root of
the argument

SRID() Return spatial reference
system ID for geometry

ST_Area() Return Polygon or
MultiPolygon area

ST_AsBinary(),
ST_AsWKB()

Convert from internal
geometry format to WKB

ST_AsText(),
ST_AsWKT()

Convert from internal
geometry format to WKT

ST_Buffer() Return geometry of
points within given
distance from geometry

ST_Centroid() Return centroid as a
point

ST_Contains() Whether one geometry
contains another

ST_Crosses() Whether one geometry
crosses another

ST_Difference() Return point set
difference of two
geometries

ST_Dimension() Dimension of geometry

ST_Disjoint() Whether one geometry is
disjoint from another

ST_Distance() The distance of one
geometry from another

ST_EndPoint() End Point of LineString

ST_Envelope() Return MBR of geometry

ST_Equals() Whether one geometry is
equal to another

ST_ExteriorRing() Return exterior ring of
Polygon

ST_GeomCollFromText(),
ST_GeometryCollectionFromText(),
ST_GeomCollFromTxt()

Return geometry
collection from WKT

ST_GeomCollFromWKB(),
ST_GeometryCollectionFromWKB()

Return geometry
collection from WKB

ST_GeometryN() Return N-th geometry
from geometry collection

ST_GeometryType() Return name of geometry
type

1437

Built-In Function and Operator Reference

Name Description Introduced Deprecated

ST_GeomFromText(),
ST_GeometryFromText()

Return geometry from
WKT

ST_GeomFromWKB(),
ST_GeometryFromWKB()

Return geometry from
WKB

ST_InteriorRingN() Return N-th interior ring
of Polygon

ST_Intersection() Return point set
intersection of two
geometries

ST_Intersects() Whether one geometry
intersects another

ST_IsClosed() Whether a geometry is
closed and simple

ST_IsEmpty() Whether a geometry is
empty

ST_IsSimple() Whether a geometry is
simple

ST_LineFromText(),
ST_LineStringFromText()

Construct LineString from
WKT

ST_LineFromWKB(),
ST_LineStringFromWKB()

Construct LineString from
WKB

ST_NumGeometries() Return number of
geometries in geometry
collection

ST_NumInteriorRing(),
ST_NumInteriorRings()

Return number of interior
rings in Polygon

ST_NumPoints() Return number of points
in LineString

ST_Overlaps() Whether one geometry
overlaps another

ST_PointFromText() Construct Point from
WKT

ST_PointFromWKB() Construct Point from
WKB

ST_PointN() Return N-th point from
LineString

ST_PolyFromText(),
ST_PolygonFromText()

Construct Polygon from
WKT

ST_PolyFromWKB(),
ST_PolygonFromWKB()

Construct Polygon from
WKB

ST_SRID() Return spatial reference
system ID for geometry

ST_StartPoint() Start Point of LineString

1438

Built-In Function and Operator Reference

Name Description Introduced Deprecated

ST_SymDifference() Return point set
symmetric difference of
two geometries

ST_Touches() Whether one geometry
touches another

ST_Union() Return point set union of
two geometries

ST_Within() Whether one geometry is
within another

ST_X() Return X coordinate of
Point

ST_Y() Return Y coordinate of
Point

StartPoint() Start Point of LineString

STD() Return the population
standard deviation

STDDEV() Return the population
standard deviation

STDDEV_POP() Return the population
standard deviation

STDDEV_SAMP() Return the sample
standard deviation

STR_TO_DATE() Convert a string to a date

STRCMP() Compare two strings

SUBDATE() Synonym for
DATE_SUB() when
invoked with three
arguments

SUBSTR() Return the substring as
specified

SUBSTRING() Return the substring as
specified

SUBSTRING_INDEX() Return a substring
from a string before
the specified number
of occurrences of the
delimiter

SUBTIME() Subtract times

SUM() Return the sum

SYSDATE() Return the time at which
the function executes

SYSTEM_USER() Synonym for USER()

TAN() Return the tangent of the
argument

1439

Built-In Function and Operator Reference

Name Description Introduced Deprecated

TIME() Extract the time portion of
the expression passed

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument
converted to seconds

TIMEDIFF() Subtract time

TIMESTAMP() With a single argument,
this function returns
the date or datetime
expression; with two
arguments, the sum of
the arguments

TIMESTAMPADD() Add an interval to a
datetime expression

TIMESTAMPDIFF() Return the difference
of two datetime
expressions, using the
units specified

TO_BASE64() Return the argument
converted to a base-64
string

TO_DAYS() Return the date argument
converted to days

TO_SECONDS() Return the date or
datetime argument
converted to seconds
since Year 0

Touches() Whether one geometry
touches another

TRIM() Remove leading and
trailing spaces

TRUNCATE() Truncate to specified
number of decimal places

UCASE() Synonym for UPPER()

UNCOMPRESS() Uncompress a string
compressed

UNCOMPRESSED_LENGTH()Return the length
of a string before
compression

UNHEX() Return a string containing
hex representation of a
number

UNIX_TIMESTAMP() Return a Unix timestamp

UpdateXML() Return replaced XML
fragment

1440

Built-In Function and Operator Reference

Name Description Introduced Deprecated

UPPER() Convert to uppercase

USER() The user name and host
name provided by the
client

UTC_DATE() Return the current UTC
date

UTC_TIME() Return the current UTC
time

UTC_TIMESTAMP() Return the current UTC
date and time

UUID() Return a Universal
Unique Identifier (UUID)

UUID_SHORT() Return an integer-valued
universal identifier

VALIDATE_PASSWORD_STRENGTH()Determine strength of
password

VALUES() Define the values to be
used during an INSERT

VAR_POP() Return the population
standard variance

VAR_SAMP() Return the sample
variance

VARIANCE() Return the population
standard variance

VERSION() Return a string that
indicates the MySQL
server version

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()Use
WAIT_FOR_EXECUTED_GTID_SET().

WEEK() Return the week number

WEEKDAY() Return the weekday
index

WEEKOFYEAR() Return the calendar week
of the date (1-53)

WEIGHT_STRING() Return the weight string
for a string

Within() Whether MBR of one
geometry is within MBR
of another

X() Return X coordinate of
Point

XOR Logical XOR

Y() Return Y coordinate of
Point

1441

Loadable Function Reference

Name Description Introduced Deprecated

YEAR() Return the year

YEARWEEK() Return the year and
week

| Bitwise OR

~ Bitwise inversion

12.2 Loadable Function Reference

The following table lists each function that is loadable at runtime and provides a short description of each
one. For a table listing built-in functions and operators, see Section 12.1, “Built-In Function and Operator
Reference”

For general information about loadable functions, see Section 5.6, “MySQL Server Loadable Functions”.

Table 12.2 Loadable Functions

Name Description Introduced

asymmetric_decrypt() Decrypt ciphertext using private or
public key

5.6.21

asymmetric_derive() Derive symmetric key from
asymmetric keys

5.6.21

asymmetric_encrypt() Encrypt cleartext using private or
public key

5.6.21

asymmetric_sign() Generate signature from digest 5.6.21

asymmetric_verify() Verify that signature matches
digest

5.6.21

create_asymmetric_priv_key()Create private key 5.6.21

create_asymmetric_pub_key()Create public key 5.6.21

create_dh_parameters() Generate shared DH secret 5.6.21

create_digest() Generate digest from string 5.6.21

mysql_firewall_flush_status()Reset firewall status variables

normalize_statement() Normalize SQL statement to
digest form

read_firewall_users() Update firewall account profile
cache

read_firewall_whitelist() Update firewall account profile
recorded-statement cache

set_firewall_mode() Establish firewall account profile
operational mode

12.3 Type Conversion in Expression Evaluation

When an operator is used with operands of different types, type conversion occurs to make the operands
compatible. Some conversions occur implicitly. For example, MySQL automatically converts strings to
numbers as necessary, and vice versa.

1442

Type Conversion in Expression Evaluation

mysql> SELECT 1+'1';
 -> 2
mysql> SELECT CONCAT(2,' test');
 -> '2 test'

It is also possible to convert a number to a string explicitly using the CAST() function. Conversion occurs
implicitly with the CONCAT() function because it expects string arguments.

mysql> SELECT 38.8, CAST(38.8 AS CHAR);
 -> 38.8, '38.8'
mysql> SELECT 38.8, CONCAT(38.8);
 -> 38.8, '38.8'

See later in this section for information about the character set of implicit number-to-string conversions,
and for modified rules that apply to CREATE TABLE ... SELECT statements.

The following rules describe how conversion occurs for comparison operations:

• If one or both arguments are NULL, the result of the comparison is NULL, except for the NULL-safe <=>
equality comparison operator. For NULL <=> NULL, the result is true. No conversion is needed.

• If both arguments in a comparison operation are strings, they are compared as strings.

• If both arguments are integers, they are compared as integers.

• Hexadecimal values are treated as binary strings if not compared to a number.

• If one of the arguments is a TIMESTAMP or DATETIME column and the other argument is a constant,
the constant is converted to a timestamp before the comparison is performed. This is done to be
more ODBC-friendly. This is not done for the arguments to IN(). To be safe, always use complete
datetime, date, or time strings when doing comparisons. For example, to achieve best results when
using BETWEEN with date or time values, use CAST() to explicitly convert the values to the desired data
type.

A single-row subquery from a table or tables is not considered a constant. For example, if a subquery
returns an integer to be compared to a DATETIME value, the comparison is done as two integers.
The integer is not converted to a temporal value. To compare the operands as DATETIME values, use
CAST() to explicitly convert the subquery value to DATETIME.

• If one of the arguments is a decimal value, comparison depends on the other argument. The arguments
are compared as decimal values if the other argument is a decimal or integer value, or as floating-point
values if the other argument is a floating-point value.

• In all other cases, the arguments are compared as floating-point (double-precision) numbers. For
example, a comparison of string and numeric operands takes place as a comparison of floating-point
numbers.

For information about conversion of values from one temporal type to another, see Section 11.2.8,
“Conversion Between Date and Time Types”.

The following examples illustrate conversion of strings to numbers for comparison operations:

mysql> SELECT 1 > '6x';
 -> 0
mysql> SELECT 7 > '6x';
 -> 1
mysql> SELECT 0 > 'x6';
 -> 0
mysql> SELECT 0 = 'x6';
 -> 1

1443

Type Conversion in Expression Evaluation

For comparisons of a string column with a number, MySQL cannot use an index on the column to look up
the value quickly. If str_col is an indexed string column, the index cannot be used when performing the
lookup in the following statement:

SELECT * FROM tbl_name WHERE str_col=1;

The reason for this is that there are many different strings that may convert to the value 1, such as '1', '
1', or '1a'.

Comparisons between floating-point numbers and large values of INTEGER type are approximate because
the integer is converted to double-precision floating point before comparison, which is not capable of
representing all 64-bit integers exactly. For example, the integer value 253 + 1 is not representable as a
float, and is rounded to 253 or 253 + 2 before a float comparison, depending on the platform.

To illustrate, only the first of the following comparisons compares equal values, but both comparisons
return true (1):

mysql> SELECT '9223372036854775807' = 9223372036854775807;
 -> 1
mysql> SELECT '9223372036854775807' = 9223372036854775806;
 -> 1

When conversions from string to floating-point and from integer to floating-point occur, they do not
necessarily occur the same way. The integer may be converted to floating-point by the CPU, whereas the
string is converted digit by digit in an operation that involves floating-point multiplications. Also, results can
be affected by factors such as computer architecture or the compiler version or optimization level. One way
to avoid such problems is to use CAST() so that a value is not converted implicitly to a float-point number:

mysql> SELECT CAST('9223372036854775807' AS UNSIGNED) = 9223372036854775806;
 -> 0

For more information about floating-point comparisons, see Section B.3.4.8, “Problems with Floating-Point
Values”.

The server includes dtoa, a conversion library that provides the basis for improved conversion between
string or DECIMAL values and approximate-value (FLOAT/DOUBLE) numbers:

• Consistent conversion results across platforms, which eliminates, for example, Unix versus Windows
conversion differences.

• Accurate representation of values in cases where results previously did not provide sufficient precision,
such as for values close to IEEE limits.

• Conversion of numbers to string format with the best possible precision. The precision of dtoa is always
the same or better than that of the standard C library functions.

Because the conversions produced by this library differ in some cases from non-dtoa results, the potential
exists for incompatibilities in applications that rely on previous results. For example, applications that
depend on a specific exact result from previous conversions might need adjustment to accommodate
additional precision.

The dtoa library provides conversions with the following properties. D represents a value with a DECIMAL
or string representation, and F represents a floating-point number in native binary (IEEE) format.

• F -> D conversion is done with the best possible precision, returning D as the shortest string that yields F
when read back in and rounded to the nearest value in native binary format as specified by IEEE.

• D -> F conversion is done such that F is the nearest native binary number to the input decimal string D.

1444

Operators

These properties imply that F -> D -> F conversions are lossless unless F is -inf, +inf, or NaN. The latter
values are not supported because the SQL standard defines them as invalid values for FLOAT or DOUBLE.

For D -> F -> D conversions, a sufficient condition for losslessness is that D uses 15 or fewer digits of
precision, is not a denormal value, -inf, +inf, or NaN. In some cases, the conversion is lossless even if D
has more than 15 digits of precision, but this is not always the case.

Implicit conversion of a numeric or temporal value to string produces a value that has a character set
and collation determined by the character_set_connection and collation_connection system
variables. (These variables commonly are set with SET NAMES. For information about connection
character sets, see Section 10.4, “Connection Character Sets and Collations”.)

This means that such a conversion results in a character (nonbinary) string (a CHAR, VARCHAR, or
LONGTEXT value), except in the case that the connection character set is set to binary. In that case, the
conversion result is a binary string (a BINARY, VARBINARY, or LONGBLOB value).

For integer expressions, the preceding remarks about expression evaluation apply somewhat differently for
expression assignment; for example, in a statement such as this:

CREATE TABLE t SELECT integer_expr;

In this case, the table in the column resulting from the expression has type INT or BIGINT depending
on the length of the integer expression. If the maximum length of the expression does not fit in an INT,
BIGINT is used instead. The length is taken from the max_length value of the SELECT result set
metadata (see C API Basic Data Structures). This means that you can force a BIGINT rather than INT by
use of a sufficiently long expression:

CREATE TABLE t SELECT 000000000000000000000;

12.4 Operators

Table 12.3 Operators

Name Description

& Bitwise AND

> Greater than operator

>> Right shift

>= Greater than or equal operator

< Less than operator

<>, != Not equal operator

<< Left shift

<= Less than or equal operator

<=> NULL-safe equal to operator

%, MOD Modulo operator

* Multiplication operator

+ Addition operator

- Minus operator

- Change the sign of the argument

/ Division operator

1445

https://dev.mysql.com/doc/c-api/5.6/en/c-api-data-structures.html

Operator Precedence

Name Description

:= Assign a value

= Assign a value (as part of a SET statement, or as
part of the SET clause in an UPDATE statement)

= Equal operator

^ Bitwise XOR

AND, && Logical AND

BETWEEN ... AND ... Whether a value is within a range of values

BINARY Cast a string to a binary string

CASE Case operator

DIV Integer division

IN() Whether a value is within a set of values

IS Test a value against a boolean

IS NOT Test a value against a boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

LIKE Simple pattern matching

NOT, ! Negates value

NOT BETWEEN ... AND ... Whether a value is not within a range of values

NOT IN() Whether a value is not within a set of values

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

OR, || Logical OR

REGEXP Whether string matches regular expression

RLIKE Whether string matches regular expression

SOUNDS LIKE Compare sounds

XOR Logical XOR

| Bitwise OR

~ Bitwise inversion

12.4.1 Operator Precedence

Operator precedences are shown in the following list, from highest precedence to the lowest. Operators
that are shown together on a line have the same precedence.

INTERVAL
BINARY, COLLATE
!
- (unary minus), ~ (unary bit inversion)
^
*, /, DIV, %, MOD
-, +
<<, >>
&
|
= (comparison), <=>, >=, >, <=, <, <>, !=, IS, LIKE, REGEXP, IN

1446

Comparison Functions and Operators

BETWEEN, CASE, WHEN, THEN, ELSE
NOT
AND, &&
XOR
OR, ||
= (assignment), :=

The precedence of = depends on whether it is used as a comparison operator (=) or as an assignment
operator (=). When used as a comparison operator, it has the same precedence as <=>, >=, >, <=, <, <>,
!=, IS, LIKE, REGEXP, and IN(). When used as an assignment operator, it has the same precedence as
:=. Section 13.7.4.1, “SET Syntax for Variable Assignment”, and Section 9.4, “User-Defined Variables”,
explain how MySQL determines which interpretation of = should apply.

For operators that occur at the same precedence level within an expression, evaluation proceeds left to
right, with the exception that assignments evaluate right to left.

The precedence and meaning of some operators depends on the SQL mode:

• By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation,
with a precedence between ^ and the unary operators.

• By default, ! has a higher precedence than NOT. With HIGH_NOT_PRECEDENCE enabled, ! and NOT
have the same precedence.

See Section 5.1.10, “Server SQL Modes”.

The precedence of operators determines the order of evaluation of terms in an expression. To override this
order and group terms explicitly, use parentheses. For example:

mysql> SELECT 1+2*3;
 -> 7
mysql> SELECT (1+2)*3;
 -> 9

12.4.2 Comparison Functions and Operators

Table 12.4 Comparison Operators

Name Description

> Greater than operator

>= Greater than or equal operator

< Less than operator

<>, != Not equal operator

<= Less than or equal operator

<=> NULL-safe equal to operator

= Equal operator

BETWEEN ... AND ... Whether a value is within a range of values

COALESCE() Return the first non-NULL argument

GREATEST() Return the largest argument

IN() Whether a value is within a set of values

INTERVAL() Return the index of the argument that is less than
the first argument

1447

Comparison Functions and Operators

Name Description

IS Test a value against a boolean

IS NOT Test a value against a boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

ISNULL() Test whether the argument is NULL

LEAST() Return the smallest argument

LIKE Simple pattern matching

NOT BETWEEN ... AND ... Whether a value is not within a range of values

NOT IN() Whether a value is not within a set of values

NOT LIKE Negation of simple pattern matching

STRCMP() Compare two strings

Comparison operations result in a value of 1 (TRUE), 0 (FALSE), or NULL. These operations work for
both numbers and strings. Strings are automatically converted to numbers and numbers to strings as
necessary.

The following relational comparison operators can be used to compare not only scalar operands, but row
operands:

= > < >= <= <> !=

The descriptions for those operators later in this section detail how they work with row operands. For
additional examples of row comparisons in the context of row subqueries, see Section 13.2.10.5, “Row
Subqueries”.

Some of the functions in this section return values other than 1 (TRUE), 0 (FALSE), or NULL. LEAST() and
GREATEST() are examples of such functions; Section 12.3, “Type Conversion in Expression Evaluation”,
describes the rules for comparison operations performed by these and similar functions for determining
their return values.

To convert a value to a specific type for comparison purposes, you can use the CAST() function. String
values can be converted to a different character set using CONVERT(). See Section 12.11, “Cast Functions
and Operators”.

By default, string comparisons are not case-sensitive and use the current character set. The default is
latin1 (cp1252 West European), which also works well for English.

• =

Equal:

mysql> SELECT 1 = 0;
 -> 0
mysql> SELECT '0' = 0;
 -> 1
mysql> SELECT '0.0' = 0;
 -> 1
mysql> SELECT '0.01' = 0;
 -> 0
mysql> SELECT '.01' = 0.01;
 -> 1

1448

Comparison Functions and Operators

For row comparisons, (a, b) = (x, y) is equivalent to:

(a = x) AND (b = y)

• <=>

NULL-safe equal. This operator performs an equality comparison like the = operator, but returns 1 rather
than NULL if both operands are NULL, and 0 rather than NULL if one operand is NULL.

The <=> operator is equivalent to the standard SQL IS NOT DISTINCT FROM operator.

mysql> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;
 -> 1, 1, 0
mysql> SELECT 1 = 1, NULL = NULL, 1 = NULL;
 -> 1, NULL, NULL

For row comparisons, (a, b) <=> (x, y) is equivalent to:

(a <=> x) AND (b <=> y)

• <>, !=

Not equal:

mysql> SELECT '.01' <> '0.01';
 -> 1
mysql> SELECT .01 <> '0.01';
 -> 0
mysql> SELECT 'zapp' <> 'zappp';
 -> 1

For row comparisons, (a, b) <> (x, y) and (a, b) != (x, y) are equivalent to:

(a <> x) OR (b <> y)

• <=

Less than or equal:

mysql> SELECT 0.1 <= 2;
 -> 1

For row comparisons, (a, b) <= (x, y) is equivalent to:

(a < x) OR ((a = x) AND (b <= y))

• <

Less than:

mysql> SELECT 2 < 2;
 -> 0

For row comparisons, (a, b) < (x, y) is equivalent to:

(a < x) OR ((a = x) AND (b < y))

• >=

Greater than or equal:

mysql> SELECT 2 >= 2;

1449

Comparison Functions and Operators

 -> 1

For row comparisons, (a, b) >= (x, y) is equivalent to:

(a > x) OR ((a = x) AND (b >= y))

• >

Greater than:

mysql> SELECT 2 > 2;
 -> 0

For row comparisons, (a, b) > (x, y) is equivalent to:

(a > x) OR ((a = x) AND (b > y))

• expr BETWEEN min AND max

If expr is greater than or equal to min and expr is less than or equal to max, BETWEEN returns 1,
otherwise it returns 0. This is equivalent to the expression (min <= expr AND expr <= max) if
all the arguments are of the same type. Otherwise type conversion takes place according to the rules
described in Section 12.3, “Type Conversion in Expression Evaluation”, but applied to all the three
arguments.

mysql> SELECT 2 BETWEEN 1 AND 3, 2 BETWEEN 3 and 1;
 -> 1, 0
mysql> SELECT 1 BETWEEN 2 AND 3;
 -> 0
mysql> SELECT 'b' BETWEEN 'a' AND 'c';
 -> 1
mysql> SELECT 2 BETWEEN 2 AND '3';
 -> 1
mysql> SELECT 2 BETWEEN 2 AND 'x-3';
 -> 0

For best results when using BETWEEN with date or time values, use CAST() to explicitly convert the
values to the desired data type. Examples: If you compare a DATETIME to two DATE values, convert the
DATE values to DATETIME values. If you use a string constant such as '2001-1-1' in a comparison to
a DATE, cast the string to a DATE.

• expr NOT BETWEEN min AND max

This is the same as NOT (expr BETWEEN min AND max).

• COALESCE(value,...)

Returns the first non-NULL value in the list, or NULL if there are no non-NULL values.

The return type of COALESCE() is the aggregated type of the argument types.

mysql> SELECT COALESCE(NULL,1);
 -> 1
mysql> SELECT COALESCE(NULL,NULL,NULL);
 -> NULL

• GREATEST(value1,value2,...)

With two or more arguments, returns the largest (maximum-valued) argument. The arguments are
compared using the same rules as for LEAST().

mysql> SELECT GREATEST(2,0);

1450

Comparison Functions and Operators

 -> 2
mysql> SELECT GREATEST(34.0,3.0,5.0,767.0);
 -> 767.0
mysql> SELECT GREATEST('B','A','C');
 -> 'C'

GREATEST() returns NULL if any argument is NULL.

• expr IN (value,...)

Returns 1 (true) if expr is equal to any of the values in the IN() list, else returns 0 (false).

Type conversion takes place according to the rules described in Section 12.3, “Type Conversion in
Expression Evaluation”, applied to all the arguments. If no type conversion is needed for the values in
the IN() list, they are all constants of the same type, and expr can be compared to each of them as a
value of the same type (possibly after type conversion), an optimization takes place. The values the list
are sorted and the search for expr is done using a binary search, which makes the IN() operation very
quick.

mysql> SELECT 2 IN (0,3,5,7);
 -> 0
mysql> SELECT 'wefwf' IN ('wee','wefwf','weg');
 -> 1

IN() can be used to compare row constructors:

mysql> SELECT (3,4) IN ((1,2), (3,4));
 -> 1
mysql> SELECT (3,4) IN ((1,2), (3,5));
 -> 0

You should never mix quoted and unquoted values in an IN() list because the comparison rules
for quoted values (such as strings) and unquoted values (such as numbers) differ. Mixing types may
therefore lead to inconsistent results. For example, do not write an IN() expression like this:

SELECT val1 FROM tbl1 WHERE val1 IN (1,2,'a');

Instead, write it like this:

SELECT val1 FROM tbl1 WHERE val1 IN ('1','2','a');

Implicit type conversion may produce nonintuitive results:

mysql> SELECT 'a' IN (0), 0 IN ('b');
 -> 1, 1

In both cases, the comparison values are converted to floating-point values, yielding 0.0 in each case,
and a comparison result of 1 (true).

The number of values in the IN() list is only limited by the max_allowed_packet value.

To comply with the SQL standard, IN() returns NULL not only if the expression on the left hand side is
NULL, but also if no match is found in the list and one of the expressions in the list is NULL.

IN() syntax can also be used to write certain types of subqueries. See Section 13.2.10.3, “Subqueries
with ANY, IN, or SOME”.

• expr NOT IN (value,...)

This is the same as NOT (expr IN (value,...)).
1451

Comparison Functions and Operators

• INTERVAL(N,N1,N2,N3,...)

Returns 0 if N < N1, 1 if N < N2 and so on or -1 if N is NULL. All arguments are treated as integers. It is
required that N1 < N2 < N3 < ... < Nn for this function to work correctly. This is because a binary search
is used (very fast).

mysql> SELECT INTERVAL(23, 1, 15, 17, 30, 44, 200);
 -> 3
mysql> SELECT INTERVAL(10, 1, 10, 100, 1000);
 -> 2
mysql> SELECT INTERVAL(22, 23, 30, 44, 200);
 -> 0

• IS boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS TRUE, 0 IS FALSE, NULL IS UNKNOWN;
 -> 1, 1, 1

• IS NOT boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS NOT UNKNOWN, 0 IS NOT UNKNOWN, NULL IS NOT UNKNOWN;
 -> 1, 1, 0

• IS NULL

Tests whether a value is NULL.

mysql> SELECT 1 IS NULL, 0 IS NULL, NULL IS NULL;
 -> 0, 0, 1

To work well with ODBC programs, MySQL supports the following extra features when using IS NULL:

• If sql_auto_is_null variable is set to 1, then after a statement that successfully inserts an
automatically generated AUTO_INCREMENT value, you can find that value by issuing a statement of
the following form:

SELECT * FROM tbl_name WHERE auto_col IS NULL

If the statement returns a row, the value returned is the same as if you invoked the
LAST_INSERT_ID() function. For details, including the return value after a multiple-row insert, see

1452

Comparison Functions and Operators

Section 12.16, “Information Functions”. If no AUTO_INCREMENT value was successfully inserted, the
SELECT statement returns no row.

The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison can be
disabled by setting sql_auto_is_null = 0. See Section 5.1.7, “Server System Variables”.

The default value of sql_auto_is_null is 0.

• For DATE and DATETIME columns that are declared as NOT NULL, you can find the special date
'0000-00-00' by using a statement like this:

SELECT * FROM tbl_name WHERE date_column IS NULL

This is needed to get some ODBC applications to work because ODBC does not support a
'0000-00-00' date value.

See Obtaining Auto-Increment Values, and the description for the FLAG_AUTO_IS_NULL option at
Connector/ODBC Connection Parameters.

• IS NOT NULL

Tests whether a value is not NULL.

mysql> SELECT 1 IS NOT NULL, 0 IS NOT NULL, NULL IS NOT NULL;
 -> 1, 1, 0

• ISNULL(expr)

If expr is NULL, ISNULL() returns 1, otherwise it returns 0.

mysql> SELECT ISNULL(1+1);
 -> 0
mysql> SELECT ISNULL(1/0);
 -> 1

ISNULL() can be used instead of = to test whether a value is NULL. (Comparing a value to NULL using
= always yields NULL.)

The ISNULL() function shares some special behaviors with the IS NULL comparison operator. See the
description of IS NULL.

1453

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html
https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration-connection-parameters.html

Logical Operators

• LEAST(value1,value2,...)

With two or more arguments, returns the smallest (minimum-valued) argument. The arguments are
compared using the following rules:

• If any argument is NULL, the result is NULL. No comparison is needed.

• If all arguments are integer-valued, they are compared as integers.

• If at least one argument is double precision, they are compared as double-precision values.
Otherwise, if at least one argument is a DECIMAL value, they are compared as DECIMAL values.

• If the arguments comprise a mix of numbers and strings, they are compared as numbers.

• If any argument is a nonbinary (character) string, the arguments are compared as nonbinary strings.

• In all other cases, the arguments are compared as binary strings.

The return type of LEAST() is the aggregated type of the comparison argument types.

mysql> SELECT LEAST(2,0);
 -> 0
mysql> SELECT LEAST(34.0,3.0,5.0,767.0);
 -> 3.0
mysql> SELECT LEAST('B','A','C');
 -> 'A'

12.4.3 Logical Operators
Table 12.5 Logical Operators

Name Description

AND, && Logical AND

NOT, ! Negates value

OR, || Logical OR

XOR Logical XOR

In SQL, all logical operators evaluate to TRUE, FALSE, or NULL (UNKNOWN). In MySQL, these are
implemented as 1 (TRUE), 0 (FALSE), and NULL. Most of this is common to different SQL database
servers, although some servers may return any nonzero value for TRUE.

MySQL evaluates any nonzero, non-NULL value to TRUE. For example, the following statements all assess
to TRUE:

mysql> SELECT 10 IS TRUE;
-> 1
mysql> SELECT -10 IS TRUE;
-> 1
mysql> SELECT 'string' IS NOT NULL;
-> 1

• NOT, !

Logical NOT. Evaluates to 1 if the operand is 0, to 0 if the operand is nonzero, and NOT NULL returns
NULL.

mysql> SELECT NOT 10;
 -> 0
mysql> SELECT NOT 0;

1454

Logical Operators

 -> 1
mysql> SELECT NOT NULL;
 -> NULL
mysql> SELECT ! (1+1);
 -> 0
mysql> SELECT ! 1+1;
 -> 1

The last example produces 1 because the expression evaluates the same way as (!1)+1.

• AND, &&

Logical AND. Evaluates to 1 if all operands are nonzero and not NULL, to 0 if one or more operands are
0, otherwise NULL is returned.

mysql> SELECT 1 AND 1;
 -> 1
mysql> SELECT 1 AND 0;
 -> 0
mysql> SELECT 1 AND NULL;
 -> NULL
mysql> SELECT 0 AND NULL;
 -> 0
mysql> SELECT NULL AND 0;
 -> 0

• OR, ||

Logical OR. When both operands are non-NULL, the result is 1 if any operand is nonzero, and 0
otherwise. With a NULL operand, the result is 1 if the other operand is nonzero, and NULL otherwise. If
both operands are NULL, the result is NULL.

mysql> SELECT 1 OR 1;
 -> 1
mysql> SELECT 1 OR 0;
 -> 1
mysql> SELECT 0 OR 0;
 -> 0
mysql> SELECT 0 OR NULL;
 -> NULL
mysql> SELECT 1 OR NULL;
 -> 1

Note

If the PIPES_AS_CONCAT SQL mode is enabled, || signifies the SQL-standard
string concatenation operator (like CONCAT()).

• XOR

Logical XOR. Returns NULL if either operand is NULL. For non-NULL operands, evaluates to 1 if an odd
number of operands is nonzero, otherwise 0 is returned.

mysql> SELECT 1 XOR 1;
 -> 0
mysql> SELECT 1 XOR 0;
 -> 1
mysql> SELECT 1 XOR NULL;
 -> NULL
mysql> SELECT 1 XOR 1 XOR 1;
 -> 1

a XOR b is mathematically equal to (a AND (NOT b)) OR ((NOT a) and b).

1455

Assignment Operators

12.4.4 Assignment Operators

Table 12.6 Assignment Operators

Name Description

:= Assign a value

= Assign a value (as part of a SET statement, or as
part of the SET clause in an UPDATE statement)

• :=

Assignment operator. Causes the user variable on the left hand side of the operator to take on the value
to its right. The value on the right hand side may be a literal value, another variable storing a value, or
any legal expression that yields a scalar value, including the result of a query (provided that this value
is a scalar value). You can perform multiple assignments in the same SET statement. You can perform
multiple assignments in the same statement.

Unlike =, the := operator is never interpreted as a comparison operator. This means you can use := in
any valid SQL statement (not just in SET statements) to assign a value to a variable.

mysql> SELECT @var1, @var2;
 -> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
 -> 1, 1
mysql> SELECT @var1, @var2;
 -> 1, 1

mysql> SELECT @var1:=COUNT(*) FROM t1;
 -> 4
mysql> SELECT @var1;
 -> 4

You can make value assignments using := in other statements besides SELECT, such as UPDATE, as
shown here:

mysql> SELECT @var1;
 -> 4
mysql> SELECT * FROM t1;
 -> 1, 3, 5, 7

mysql> UPDATE t1 SET c1 = 2 WHERE c1 = @var1:= 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT @var1;
 -> 1
mysql> SELECT * FROM t1;
 -> 2, 3, 5, 7

While it is also possible both to set and to read the value of the same variable in a single SQL statement
using the := operator, this is not recommended. Section 9.4, “User-Defined Variables”, explains why you
should avoid doing this.

• =

This operator is used to perform value assignments in two cases, described in the next two paragraphs.

1456

Flow Control Functions

Within a SET statement, = is treated as an assignment operator that causes the user variable on the
left hand side of the operator to take on the value to its right. (In other words, when used in a SET
statement, = is treated identically to :=.) The value on the right hand side may be a literal value, another
variable storing a value, or any legal expression that yields a scalar value, including the result of a query
(provided that this value is a scalar value). You can perform multiple assignments in the same SET
statement.

In the SET clause of an UPDATE statement, = also acts as an assignment operator; in this case,
however, it causes the column named on the left hand side of the operator to assume the value given
to the right, provided any WHERE conditions that are part of the UPDATE are met. You can make multiple
assignments in the same SET clause of an UPDATE statement.

In any other context, = is treated as a comparison operator.

mysql> SELECT @var1, @var2;
 -> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
 -> 1, 1
mysql> SELECT @var1, @var2;
 -> 1, 1

For more information, see Section 13.7.4.1, “SET Syntax for Variable Assignment”, Section 13.2.11,
“UPDATE Statement”, and Section 13.2.10, “Subqueries”.

12.5 Flow Control Functions

Table 12.7 Flow Control Operators

Name Description

CASE Case operator

IF() If/else construct

IFNULL() Null if/else construct

NULLIF() Return NULL if expr1 = expr2

• CASE value WHEN compare_value THEN result [WHEN compare_value THEN result
...] [ELSE result] END

CASE WHEN condition THEN result [WHEN condition THEN result ...] [ELSE
result] END

The first CASE syntax returns the result for the first value=compare_value comparison that is true.
The second syntax returns the result for the first condition that is true. If no comparison or condition is
true, the result after ELSE is returned, or NULL if there is no ELSE part.

Note

The syntax of the CASE operator described here differs slightly from that of the
SQL CASE statement described in Section 13.6.5.1, “CASE Statement”, for use
inside stored programs. The CASE statement cannot have an ELSE NULL clause,
and it is terminated with END CASE instead of END.

1457

Flow Control Functions

The return type of a CASE expression result is the aggregated type of all result values.

mysql> SELECT CASE 1 WHEN 1 THEN 'one'
 -> WHEN 2 THEN 'two' ELSE 'more' END;
 -> 'one'
mysql> SELECT CASE WHEN 1>0 THEN 'true' ELSE 'false' END;
 -> 'true'
mysql> SELECT CASE BINARY 'B'
 -> WHEN 'a' THEN 1 WHEN 'b' THEN 2 END;
 -> NULL

• IF(expr1,expr2,expr3)

If expr1 is TRUE (expr1 <> 0 and expr1 IS NOT NULL), IF() returns expr2. Otherwise, it returns
expr3.

Note

There is also an IF statement, which differs from the IF() function described
here. See Section 13.6.5.2, “IF Statement”.

If only one of expr2 or expr3 is explicitly NULL, the result type of the IF() function is the type of the
non-NULL expression.

The default return type of IF() (which may matter when it is stored into a temporary table) is calculated
as follows:

• If expr2 or expr3 produce a string, the result is a string.

If expr2 and expr3 are both strings, the result is case-sensitive if either string is case-sensitive.

• If expr2 or expr3 produce a floating-point value, the result is a floating-point value.

• If expr2 or expr3 produce an integer, the result is an integer.

mysql> SELECT IF(1>2,2,3);
 -> 3
mysql> SELECT IF(1<2,'yes','no');
 -> 'yes'
mysql> SELECT IF(STRCMP('test','test1'),'no','yes');
 -> 'no'

• IFNULL(expr1,expr2)

If expr1 is not NULL, IFNULL() returns expr1; otherwise it returns expr2.

mysql> SELECT IFNULL(1,0);
 -> 1
mysql> SELECT IFNULL(NULL,10);
 -> 10
mysql> SELECT IFNULL(1/0,10);
 -> 10
mysql> SELECT IFNULL(1/0,'yes');
 -> 'yes'

The default return type of IFNULL(expr1,expr2) is the more “general” of the two expressions, in the
order STRING, REAL, or INTEGER. Consider the case of a table based on expressions or where MySQL
must internally store a value returned by IFNULL() in a temporary table:

mysql> CREATE TABLE tmp SELECT IFNULL(1,'test') AS test;

1458

Numeric Functions and Operators

mysql> DESCRIBE tmp;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| test | varbinary(4) | NO | | | |
+-------+--------------+------+-----+---------+-------+

In this example, the type of the test column is VARBINARY(4) (a string type).

• NULLIF(expr1,expr2)

Returns NULL if expr1 = expr2 is true, otherwise returns expr1. This is the same as CASE WHEN
expr1 = expr2 THEN NULL ELSE expr1 END.

The return value has the same type as the first argument.

mysql> SELECT NULLIF(1,1);
 -> NULL
mysql> SELECT NULLIF(1,2);
 -> 1

Note

MySQL evaluates expr1 twice if the arguments are not equal.

12.6 Numeric Functions and Operators
Table 12.8 Numeric Functions and Operators

Name Description

%, MOD Modulo operator

* Multiplication operator

+ Addition operator

- Minus operator

- Change the sign of the argument

/ Division operator

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of the two arguments

CEIL() Return the smallest integer value not less than the
argument

CEILING() Return the smallest integer value not less than the
argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

CRC32() Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

1459

Arithmetic Operators

Name Description

DIV Integer division

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than the
argument

LN() Return the natural logarithm of the argument

LOG() Return the natural logarithm of the first argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

MOD() Return the remainder

PI() Return the value of pi

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

TRUNCATE() Truncate to specified number of decimal places

12.6.1 Arithmetic Operators
Table 12.9 Arithmetic Operators

Name Description

%, MOD Modulo operator

* Multiplication operator

+ Addition operator

- Minus operator

- Change the sign of the argument

/ Division operator

DIV Integer division

The usual arithmetic operators are available. The result is determined according to the following rules:

• In the case of -, +, and *, the result is calculated with BIGINT (64-bit) precision if both operands are
integers.

• If both operands are integers and any of them are unsigned, the result is an unsigned integer. For
subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is signed even if any
operand is unsigned.

• If any of the operands of a +, -, /, *, % is a real or string value, the precision of the result is the precision
of the operand with the maximum precision.

1460

Arithmetic Operators

• In division performed with /, the scale of the result when using two exact-value operands is the scale
of the first operand plus the value of the div_precision_increment system variable (which is 4 by
default). For example, the result of the expression 5.05 / 0.014 has a scale of six decimal places
(360.714286).

These rules are applied for each operation, such that nested calculations imply the precision of each
component. Hence, (14620 / 9432456) / (24250 / 9432456), resolves first to (0.0014) /
(0.0026), with the final result having 8 decimal places (0.60288653).

Because of these rules and the way they are applied, care should be taken to ensure that components and
subcomponents of a calculation use the appropriate level of precision. See Section 12.11, “Cast Functions
and Operators”.

For information about handling of overflow in numeric expression evaluation, see Section 11.1.7, “Out-of-
Range and Overflow Handling”.

Arithmetic operators apply to numbers. For other types of values, alternative operations may be available.
For example, to add date values, use DATE_ADD(); see Section 12.7, “Date and Time Functions”.

• +

Addition:

mysql> SELECT 3+5;
 -> 8

• -

Subtraction:

mysql> SELECT 3-5;
 -> -2

• -

Unary minus. This operator changes the sign of the operand.

mysql> SELECT - 2;
 -> -2

Note

If this operator is used with a BIGINT, the return value is also a BIGINT. This
means that you should avoid using - on integers that may have the value of −263.

• *

Multiplication:

mysql> SELECT 3*5;
 -> 15
mysql> SELECT 18014398509481984*18014398509481984.0;
 -> 324518553658426726783156020576256.0
mysql> SELECT 18014398509481984*18014398509481984;
 -> out-of-range error

The last expression produces an error because the result of the integer multiplication exceeds the 64-bit
range of BIGINT calculations. (See Section 11.1, “Numeric Data Types”.)

• /

1461

Mathematical Functions

Division:

mysql> SELECT 3/5;
 -> 0.60

Division by zero produces a NULL result:

mysql> SELECT 102/(1-1);
 -> NULL

A division is calculated with BIGINT arithmetic only if performed in a context where its result is converted
to an integer.

• DIV

Integer division. Discards from the division result any fractional part to the right of the decimal point.

If either operand has a noninteger type, the operands are converted to DECIMAL and divided using
DECIMAL arithmetic before converting the result to BIGINT. If the result exceeds BIGINT range, an
error occurs.

mysql> SELECT 5 DIV 2, -5 DIV 2, 5 DIV -2, -5 DIV -2;
 -> 2, -2, -2, 2

• N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M. For more information, see the description for
the MOD() function in Section 12.6.2, “Mathematical Functions”.

12.6.2 Mathematical Functions

Table 12.10 Mathematical Functions

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of the two arguments

CEIL() Return the smallest integer value not less than the
argument

CEILING() Return the smallest integer value not less than the
argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

CRC32() Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than the
argument

1462

Mathematical Functions

Name Description

LN() Return the natural logarithm of the argument

LOG() Return the natural logarithm of the first argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

MOD() Return the remainder

PI() Return the value of pi

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

TRUNCATE() Truncate to specified number of decimal places

All mathematical functions return NULL in the event of an error.

• ABS(X)

Returns the absolute value of X, or NULL if X is NULL.

The result type is derived from the argument type. An implication of this is that
ABS(-9223372036854775808) produces an error because the result cannot be stored in a signed
BIGINT value.

mysql> SELECT ABS(2);
 -> 2
mysql> SELECT ABS(-32);
 -> 32

This function is safe to use with BIGINT values.

• ACOS(X)

Returns the arc cosine of X, that is, the value whose cosine is X. Returns NULL if X is not in the range -1
to 1.

mysql> SELECT ACOS(1);
 -> 0
mysql> SELECT ACOS(1.0001);
 -> NULL
mysql> SELECT ACOS(0);
 -> 1.5707963267949

• ASIN(X)

Returns the arc sine of X, that is, the value whose sine is X. Returns NULL if X is not in the range -1 to 1.

mysql> SELECT ASIN(0.2);

1463

Mathematical Functions

 -> 0.20135792079033
mysql> SELECT ASIN('foo');

+-------------+
| ASIN('foo') |
+-------------+
| 0 |
+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1292 | Truncated incorrect DOUBLE value: 'foo' |
+---------+------+---+

• ATAN(X)

Returns the arc tangent of X, that is, the value whose tangent is X.

mysql> SELECT ATAN(2);
 -> 1.1071487177941
mysql> SELECT ATAN(-2);
 -> -1.1071487177941

• ATAN(Y,X), ATAN2(Y,X)

Returns the arc tangent of the two variables X and Y. It is similar to calculating the arc tangent of Y / X,
except that the signs of both arguments are used to determine the quadrant of the result.

mysql> SELECT ATAN(-2,2);
 -> -0.78539816339745
mysql> SELECT ATAN2(PI(),0);
 -> 1.5707963267949

• CEIL(X)

CEIL() is a synonym for CEILING().

• CEILING(X)

Returns the smallest integer value not less than X.

mysql> SELECT CEILING(1.23);
 -> 2
mysql> SELECT CEILING(-1.23);
 -> -1

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or
floating-point arguments, the return value has a floating-point type.

• CONV(N,from_base,to_base)

Converts numbers between different number bases. Returns a string representation of the number
N, converted from base from_base to base to_base. Returns NULL if any argument is NULL. The
argument N is interpreted as an integer, but may be specified as an integer or a string. The minimum
base is 2 and the maximum base is 36. If from_base is a negative number, N is regarded as a signed
number. Otherwise, N is treated as unsigned. CONV() works with 64-bit precision.

mysql> SELECT CONV('a',16,2);
 -> '1010'
mysql> SELECT CONV('6E',18,8);

1464

Mathematical Functions

 -> '172'
mysql> SELECT CONV(-17,10,-18);
 -> '-H'
mysql> SELECT CONV(10+'10'+'10'+X'0a',10,10);
 -> '40'

• COS(X)

Returns the cosine of X, where X is given in radians.

mysql> SELECT COS(PI());
 -> -1

• COT(X)

Returns the cotangent of X.

mysql> SELECT COT(12);
 -> -1.5726734063977
mysql> SELECT COT(0);
 -> out-of-range error

• CRC32(expr)

Computes a cyclic redundancy check value and returns a 32-bit unsigned value. The result is NULL if the
argument is NULL. The argument is expected to be a string and (if possible) is treated as one if it is not.

mysql> SELECT CRC32('MySQL');
 -> 3259397556
mysql> SELECT CRC32('mysql');
 -> 2501908538

• DEGREES(X)

Returns the argument X, converted from radians to degrees.

mysql> SELECT DEGREES(PI());
 -> 180
mysql> SELECT DEGREES(PI() / 2);
 -> 90

• EXP(X)

Returns the value of e (the base of natural logarithms) raised to the power of X. The inverse of this
function is LOG() (using a single argument only) or LN().

mysql> SELECT EXP(2);
 -> 7.3890560989307
mysql> SELECT EXP(-2);
 -> 0.13533528323661
mysql> SELECT EXP(0);
 -> 1

• FLOOR(X)

Returns the largest integer value not greater than X.

mysql> SELECT FLOOR(1.23), FLOOR(-1.23);
 -> 1, -2

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or
floating-point arguments, the return value has a floating-point type.

1465

Mathematical Functions

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the
result as a string. For details, see Section 12.8, “String Functions and Operators”.

• HEX(N_or_S)

This function can be used to obtain a hexadecimal representation of a decimal number or a string; the
manner in which it does so varies according to the argument's type. See this function's description in
Section 12.8, “String Functions and Operators”, for details.

• LN(X)

Returns the natural logarithm of X; that is, the base-e logarithm of X. If X is less than or equal to 0, then
NULL is returned.

mysql> SELECT LN(2);
 -> 0.69314718055995
mysql> SELECT LN(-2);
 -> NULL

This function is synonymous with LOG(X). The inverse of this function is the EXP() function.

• LOG(X), LOG(B,X)

If called with one parameter, this function returns the natural logarithm of X. If X is less than or equal to 0,
then NULL is returned.

The inverse of this function (when called with a single argument) is the EXP() function.

mysql> SELECT LOG(2);
 -> 0.69314718055995
mysql> SELECT LOG(-2);
 -> NULL

If called with two parameters, this function returns the logarithm of X to the base B. If X is less than or
equal to 0, or if B is less than or equal to 1, then NULL is returned.

mysql> SELECT LOG(2,65536);
 -> 16
mysql> SELECT LOG(10,100);
 -> 2
mysql> SELECT LOG(1,100);
 -> NULL

LOG(B,X) is equivalent to LOG(X) / LOG(B).

• LOG2(X)

Returns the base-2 logarithm of X.

mysql> SELECT LOG2(65536);
 -> 16
mysql> SELECT LOG2(-100);
 -> NULL

LOG2() is useful for finding out how many bits a number requires for storage. This function is equivalent
to the expression LOG(X) / LOG(2).

1466

Mathematical Functions

• LOG10(X)

Returns the base-10 logarithm of X.

mysql> SELECT LOG10(2);
 -> 0.30102999566398
mysql> SELECT LOG10(100);
 -> 2
mysql> SELECT LOG10(-100);
 -> NULL

LOG10(X) is equivalent to LOG(10,X).

• MOD(N,M), N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M.

mysql> SELECT MOD(234, 10);
 -> 4
mysql> SELECT 253 % 7;
 -> 1
mysql> SELECT MOD(29,9);
 -> 2
mysql> SELECT 29 MOD 9;
 -> 2

This function is safe to use with BIGINT values.

MOD() also works on values that have a fractional part and returns the exact remainder after division:

mysql> SELECT MOD(34.5,3);
 -> 1.5

MOD(N,0) returns NULL.

• PI()

Returns the value of π (pi). The default number of decimal places displayed is seven, but MySQL uses
the full double-precision value internally.

mysql> SELECT PI();
 -> 3.141593
mysql> SELECT PI()+0.000000000000000000;
 -> 3.141592653589793116

• POW(X,Y)

Returns the value of X raised to the power of Y.

mysql> SELECT POW(2,2);
 -> 4
mysql> SELECT POW(2,-2);
 -> 0.25

• POWER(X,Y)

This is a synonym for POW().

1467

Mathematical Functions

• RADIANS(X)

Returns the argument X, converted from degrees to radians.

Note

π radians equals 180 degrees.

mysql> SELECT RADIANS(90);
 -> 1.5707963267949

• RAND([N])

Returns a random floating-point value v in the range 0 <= v < 1.0. To obtain a random integer R in
the range i <= R < j, use the expression FLOOR(i + RAND() * (j − i)). For example, to obtain a
random integer in the range the range 7 <= R < 12, use the following statement:

SELECT FLOOR(7 + (RAND() * 5));

If an integer argument N is specified, it is used as the seed value:

• With a constant initializer argument, the seed is initialized once when the statement is prepared, prior
to execution.

• With a nonconstant initializer argument (such as a column name), the seed is initialized with the value
for each invocation of RAND().

One implication of this behavior is that for equal argument values, RAND(N) returns the same value
each time, and thus produces a repeatable sequence of column values. In the following example, the
sequence of values produced by RAND(3) is the same both places it occurs.

mysql> CREATE TABLE t (i INT);
Query OK, 0 rows affected (0.42 sec)

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i | RAND() |
+------+------------------+
1	0.61914388706828
2	0.93845168309142
3	0.83482678498591
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i | RAND(3) |
+------+------------------+
1	0.90576975597606
2	0.37307905813035
3	0.14808605345719
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i | RAND() |

1468

Mathematical Functions

+------+------------------+
1	0.35877890638893
2	0.28941420772058
3	0.37073435016976
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i | RAND(3) |
+------+------------------+
1	0.90576975597606
2	0.37307905813035
3	0.14808605345719
+------+------------------+
3 rows in set (0.01 sec)

RAND() in a WHERE clause is evaluated for every row (when selecting from one table) or combination of
rows (when selecting from a multiple-table join). Thus, for optimizer purposes, RAND() is not a constant
value and cannot be used for index optimizations. For more information, see Section 8.2.1.17, “Function
Call Optimization”.

Use of a column with RAND() values in an ORDER BY or GROUP BY clause may yield unexpected
results because for either clause a RAND() expression can be evaluated multiple times for the same
row, each time returning a different result. If the goal is to retrieve rows in random order, you can use a
statement like this:

SELECT * FROM tbl_name ORDER BY RAND();

To select a random sample from a set of rows, combine ORDER BY RAND() with LIMIT:

SELECT * FROM table1, table2 WHERE a=b AND c<d ORDER BY RAND() LIMIT 1000;

RAND() is not meant to be a perfect random generator. It is a fast way to generate random numbers on
demand that is portable between platforms for the same MySQL version.

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

• ROUND(X), ROUND(X,D)

Rounds the argument X to D decimal places. The rounding algorithm depends on the data type of X. D
defaults to 0 if not specified. D can be negative to cause D digits left of the decimal point of the value X to
become zero. The maximum absolute value for D is 30; any digits in excess of 30 (or -30) are truncated.

mysql> SELECT ROUND(-1.23);
 -> -1
mysql> SELECT ROUND(-1.58);
 -> -2
mysql> SELECT ROUND(1.58);
 -> 2
mysql> SELECT ROUND(1.298, 1);
 -> 1.3
mysql> SELECT ROUND(1.298, 0);
 -> 1
mysql> SELECT ROUND(23.298, -1);
 -> 20
mysql> SELECT ROUND(.12345678901234567890123456789012345, 35);

1469

Mathematical Functions

 -> 0.123456789012345678901234567890

The return value has the same type as the first argument (assuming that it is integer, double, or
decimal). This means that for an integer argument, the result is an integer (no decimal places):

mysql> SELECT ROUND(150.000,2), ROUND(150,2);
+------------------+--------------+
| ROUND(150.000,2) | ROUND(150,2) |
+------------------+--------------+
| 150.00 | 150 |
+------------------+--------------+

ROUND() uses the following rules depending on the type of the first argument:

• For exact-value numbers, ROUND() uses the “round half away from zero” or “round toward nearest”
rule: A value with a fractional part of .5 or greater is rounded up to the next integer if positive or down
to the next integer if negative. (In other words, it is rounded away from zero.) A value with a fractional
part less than .5 is rounded down to the next integer if positive or up to the next integer if negative.

• For approximate-value numbers, the result depends on the C library. On many systems, this means
that ROUND() uses the “round to nearest even” rule: A value with a fractional part exactly half way
between two integers is rounded to the nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

For more information, see Section 12.21, “Precision Math”.

• SIGN(X)

Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative, zero, or positive.

mysql> SELECT SIGN(-32);
 -> -1
mysql> SELECT SIGN(0);
 -> 0
mysql> SELECT SIGN(234);
 -> 1

• SIN(X)

Returns the sine of X, where X is given in radians.

mysql> SELECT SIN(PI());
 -> 1.2246063538224e-16
mysql> SELECT ROUND(SIN(PI()));
 -> 0

• SQRT(X)

Returns the square root of a nonnegative number X.

mysql> SELECT SQRT(4);
 -> 2
mysql> SELECT SQRT(20);
 -> 4.4721359549996

1470

Date and Time Functions

mysql> SELECT SQRT(-16);
 -> NULL

• TAN(X)

Returns the tangent of X, where X is given in radians.

mysql> SELECT TAN(PI());
 -> -1.2246063538224e-16
mysql> SELECT TAN(PI()+1);
 -> 1.5574077246549

• TRUNCATE(X,D)

Returns the number X, truncated to D decimal places. If D is 0, the result has no decimal point or
fractional part. D can be negative to cause D digits left of the decimal point of the value X to become
zero.

mysql> SELECT TRUNCATE(1.223,1);
 -> 1.2
mysql> SELECT TRUNCATE(1.999,1);
 -> 1.9
mysql> SELECT TRUNCATE(1.999,0);
 -> 1
mysql> SELECT TRUNCATE(-1.999,1);
 -> -1.9
mysql> SELECT TRUNCATE(122,-2);
 -> 100
mysql> SELECT TRUNCATE(10.28*100,0);
 -> 1028

All numbers are rounded toward zero.

12.7 Date and Time Functions
This section describes the functions that can be used to manipulate temporal values. See Section 11.2,
“Date and Time Data Types”, for a description of the range of values each date and time type has and the
valid formats in which values may be specified.

Table 12.11 Date and Time Functions

Name Description

ADDDATE() Add time values (intervals) to a date value

ADDTIME() Add time

CONVERT_TZ() Convert from one time zone to another

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()

CURRENT_TIMESTAMP(), CURRENT_TIMESTAMP Synonyms for NOW()

CURTIME() Return the current time

DATE() Extract the date part of a date or datetime
expression

DATE_ADD() Add time values (intervals) to a date value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a time value (interval) from a date

1471

Date and Time Functions

Name Description

DATEDIFF() Subtract two dates

DAY() Synonym for DAYOFMONTH()

DAYNAME() Return the name of the weekday

DAYOFMONTH() Return the day of the month (0-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

EXTRACT() Extract part of a date

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format Unix timestamp as a date

GET_FORMAT() Return a date format string

HOUR() Extract the hour

LAST_DAY Return the last day of the month for the argument

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP, LOCALTIMESTAMP() Synonym for NOW()

MAKEDATE() Create a date from the year and day of year

MAKETIME() Create time from hour, minute, second

MICROSECOND() Return the microseconds from argument

MINUTE() Return the minute from the argument

MONTH() Return the month from the date passed

MONTHNAME() Return the name of the month

NOW() Return the current date and time

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

QUARTER() Return the quarter from a date argument

SEC_TO_TIME() Converts seconds to 'hh:mm:ss' format

SECOND() Return the second (0-59)

STR_TO_DATE() Convert a string to a date

SUBDATE() Synonym for DATE_SUB() when invoked with three
arguments

SUBTIME() Subtract times

SYSDATE() Return the time at which the function executes

TIME() Extract the time portion of the expression passed

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument converted to seconds

TIMEDIFF() Subtract time

TIMESTAMP() With a single argument, this function returns the
date or datetime expression; with two arguments,
the sum of the arguments

TIMESTAMPADD() Add an interval to a datetime expression

1472

Date and Time Functions

Name Description

TIMESTAMPDIFF() Return the difference of two datetime expressions,
using the units specified

TO_DAYS() Return the date argument converted to days

TO_SECONDS() Return the date or datetime argument converted to
seconds since Year 0

UNIX_TIMESTAMP() Return a Unix timestamp

UTC_DATE() Return the current UTC date

UTC_TIME() Return the current UTC time

UTC_TIMESTAMP() Return the current UTC date and time

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR() Return the calendar week of the date (1-53)

YEAR() Return the year

YEARWEEK() Return the year and week

Here is an example that uses date functions. The following query selects all rows with a date_col value
from within the last 30 days:

mysql> SELECT something FROM tbl_name
 -> WHERE DATE_SUB(CURDATE(),INTERVAL 30 DAY) <= date_col;

The query also selects rows with dates that lie in the future.

Functions that expect date values usually accept datetime values and ignore the time part. Functions that
expect time values usually accept datetime values and ignore the date part.

Functions that return the current date or time each are evaluated only once per query at the start of
query execution. This means that multiple references to a function such as NOW() within a single query
always produce the same result. (For our purposes, a single query also includes a call to a stored program
(stored routine, trigger, or event) and all subprograms called by that program.) This principle also applies
to CURDATE(), CURTIME(), UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(), and to any of their
synonyms.

The CURRENT_TIMESTAMP(), CURRENT_TIME(), CURRENT_DATE(), and FROM_UNIXTIME() functions
return values in the current session time zone, which is available as the session value of the time_zone
system variable. In addition, UNIX_TIMESTAMP() assumes that its argument is a datetime value in the
session time zone. See Section 5.1.13, “MySQL Server Time Zone Support”.

Some date functions can be used with “zero” dates or incomplete dates such as '2001-11-00', whereas
others cannot. Functions that extract parts of dates typically work with incomplete dates and thus can
return 0 when you might otherwise expect a nonzero value. For example:

mysql> SELECT DAYOFMONTH('2001-11-00'), MONTH('2005-00-00');
 -> 0, 0

Other functions expect complete dates and return NULL for incomplete dates. These include functions that
perform date arithmetic or that map parts of dates to names. For example:

mysql> SELECT DATE_ADD('2006-05-00',INTERVAL 1 DAY);
 -> NULL
mysql> SELECT DAYNAME('2006-05-00');
 -> NULL

1473

Date and Time Functions

Several functions are strict when passed a DATE() function value as their argument and reject
incomplete dates with a day part of zero: CONVERT_TZ(), DATE_ADD(), DATE_SUB(), DAYOFYEAR(),
TIMESTAMPDIFF(), TO_DAYS(), TO_SECONDS(), WEEK(), WEEKDAY(), WEEKOFYEAR(),
YEARWEEK().

Fractional seconds for TIME, DATETIME, and TIMESTAMP values are supported, with up to microsecond
precision. Functions that take temporal arguments accept values with fractional seconds. Return values
from temporal functions include fractional seconds as appropriate.

• ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)

When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym for
DATE_ADD(). The related function SUBDATE() is a synonym for DATE_SUB(). For information on the
INTERVAL unit argument, see Temporal Intervals.

mysql> SELECT DATE_ADD('2008-01-02', INTERVAL 31 DAY);
 -> '2008-02-02'
mysql> SELECT ADDDATE('2008-01-02', INTERVAL 31 DAY);
 -> '2008-02-02'

When invoked with the days form of the second argument, MySQL treats it as an integer number of
days to be added to expr.

mysql> SELECT ADDDATE('2008-01-02', 31);
 -> '2008-02-02'

• ADDTIME(expr1,expr2)

ADDTIME() adds expr2 to expr1 and returns the result. expr1 is a time or datetime expression, and
expr2 is a time expression.

mysql> SELECT ADDTIME('2007-12-31 23:59:59.999999', '1 1:1:1.000002');
 -> '2008-01-02 01:01:01.000001'
mysql> SELECT ADDTIME('01:00:00.999999', '02:00:00.999998');
 -> '03:00:01.999997'

• CONVERT_TZ(dt,from_tz,to_tz)

CONVERT_TZ() converts a datetime value dt from the time zone given by from_tz to the time zone
given by to_tz and returns the resulting value. Time zones are specified as described in Section 5.1.13,
“MySQL Server Time Zone Support”. This function returns NULL if the arguments are invalid.

If the value falls out of the supported range of the TIMESTAMP type when converted from from_tz to
UTC, no conversion occurs. The TIMESTAMP range is described in Section 11.2.1, “Date and Time Data
Type Syntax”.

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','GMT','MET');
 -> '2004-01-01 13:00:00'
mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','+00:00','+10:00');
 -> '2004-01-01 22:00:00'

Note

To use named time zones such as 'MET' or 'Europe/Amsterdam', the
time zone tables must be properly set up. For instructions, see Section 5.1.13,
“MySQL Server Time Zone Support”.

• CURDATE()

1474

Date and Time Functions

Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether the
function is used in string or numeric context.

mysql> SELECT CURDATE();
 -> '2008-06-13'
mysql> SELECT CURDATE() + 0;
 -> 20080613

• CURRENT_DATE, CURRENT_DATE()

CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE().

• CURRENT_TIME, CURRENT_TIME([fsp])

CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME().

• CURRENT_TIMESTAMP, CURRENT_TIMESTAMP([fsp])

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW().

• CURTIME([fsp])

Returns the current time as a value in 'hh:mm:ss' or hhmmss format, depending on whether the
function is used in string or numeric context. The value is expressed in the session time zone.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT CURTIME();
 -> '23:50:26'
mysql> SELECT CURTIME() + 0;
 -> 235026.000000

• DATE(expr)

Extracts the date part of the date or datetime expression expr.

mysql> SELECT DATE('2003-12-31 01:02:03');
 -> '2003-12-31'

• DATEDIFF(expr1,expr2)

DATEDIFF() returns expr1 − expr2 expressed as a value in days from one date to the other. expr1
and expr2 are date or date-and-time expressions. Only the date parts of the values are used in the
calculation.

mysql> SELECT DATEDIFF('2007-12-31 23:59:59','2007-12-30');
 -> 1
mysql> SELECT DATEDIFF('2010-11-30 23:59:59','2010-12-31');
 -> -31

• DATE_ADD(date,INTERVAL expr unit), DATE_SUB(date,INTERVAL expr unit)

These functions perform date arithmetic. The date argument specifies the starting date or datetime
value. expr is an expression specifying the interval value to be added or subtracted from the starting

1475

Date and Time Functions

date. expr is evaluated as a string; it may start with a - for negative intervals. unit is a keyword
indicating the units in which the expression should be interpreted.

For more information about temporal interval syntax, including a full list of unit specifiers, the expected
form of the expr argument for each unit value, and rules for operand interpretation in temporal
arithmetic, see Temporal Intervals.

The return value depends on the arguments:

• DATE if the date argument is a DATE value and your calculations involve only YEAR, MONTH, and DAY
parts (that is, no time parts).

• DATETIME if the first argument is a DATETIME (or TIMESTAMP) value, or if the first argument is a
DATE and the unit value uses HOURS, MINUTES, or SECONDS.

• String otherwise.

To ensure that the result is DATETIME, you can use CAST() to convert the first argument to DATETIME.

mysql> SELECT DATE_ADD('2018-05-01',INTERVAL 1 DAY);
 -> '2018-05-02'
mysql> SELECT DATE_SUB('2018-05-01',INTERVAL 1 YEAR);
 -> '2017-05-01'
mysql> SELECT DATE_ADD('2020-12-31 23:59:59',
 -> INTERVAL 1 SECOND);
 -> '2021-01-01 00:00:00'
mysql> SELECT DATE_ADD('2018-12-31 23:59:59',
 -> INTERVAL 1 DAY);
 -> '2019-01-01 23:59:59'
mysql> SELECT DATE_ADD('2100-12-31 23:59:59',
 -> INTERVAL '1:1' MINUTE_SECOND);
 -> '2101-01-01 00:01:00'
mysql> SELECT DATE_SUB('2025-01-01 00:00:00',
 -> INTERVAL '1 1:1:1' DAY_SECOND);
 -> '2024-12-30 22:58:59'
mysql> SELECT DATE_ADD('1900-01-01 00:00:00',
 -> INTERVAL '-1 10' DAY_HOUR);
 -> '1899-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
 -> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',
 -> INTERVAL '1.999999' SECOND_MICROSECOND);
 -> '1993-01-01 00:00:01.000001'

When adding a MONTH interval to a DATE or DATETIME value, and the resulting date includes a day that
does not exist in the given month, the day is adjusted to the last day of the month, as shown here:

mysql> SELECT DATE_ADD('2024-03-30', INTERVAL 1 MONTH) AS d1,
 > DATE_ADD('2024-03-31', INTERVAL 1 MONTH) AS d2;
+------------+------------+
| d1 | d2 |
+------------+------------+
| 2024-04-30 | 2024-04-30 |
+------------+------------+
1 row in set (0.00 sec)

1476

Date and Time Functions

• DATE_FORMAT(date,format)

Formats the date value according to the format string.

The specifiers shown in the following table may be used in the format string. The % character
is required before format specifier characters. The specifiers apply to other functions as well:
STR_TO_DATE(), TIME_FORMAT(), UNIX_TIMESTAMP().

Specifier Description

%a Abbreviated weekday name (Sun..Sat)

%b Abbreviated month name (Jan..Dec)

%c Month, numeric (0..12)

%D Day of the month with English suffix (0th, 1st,
2nd, 3rd, …)

%d Day of the month, numeric (00..31)

%e Day of the month, numeric (0..31)

%f Microseconds (000000..999999)

%H Hour (00..23)

%h Hour (01..12)

%I Hour (01..12)

%i Minutes, numeric (00..59)

%j Day of year (001..366)

%k Hour (0..23)

%l Hour (1..12)

%M Month name (January..December)

%m Month, numeric (00..12)

%p AM or PM

%r Time, 12-hour (hh:mm:ss followed by AM or PM)

%S Seconds (00..59)

%s Seconds (00..59)

%T Time, 24-hour (hh:mm:ss)

%U Week (00..53), where Sunday is the first day of the
week; WEEK() mode 0

%u Week (00..53), where Monday is the first day of
the week; WEEK() mode 1

%V Week (01..53), where Sunday is the first day of the
week; WEEK() mode 2; used with %X

%v Week (01..53), where Monday is the first day of
the week; WEEK() mode 3; used with %x

%W Weekday name (Sunday..Saturday)

%w Day of the week (0=Sunday..6=Saturday)

%X Year for the week where Sunday is the first day of
the week, numeric, four digits; used with %V

1477

Date and Time Functions

Specifier Description

%x Year for the week, where Monday is the first day of
the week, numeric, four digits; used with %v

%Y Year, numeric, four digits

%y Year, numeric (two digits)

%% A literal % character

%x x, for any “x” not listed above

Ranges for the month and day specifiers begin with zero due to the fact that MySQL permits the storing
of incomplete dates such as '2014-00-00'.

The language used for day and month names and abbreviations is controlled by the value of the
lc_time_names system variable (Section 10.16, “MySQL Server Locale Support”).

For the %U, %u, %V, and %v specifiers, see the description of the WEEK() function for information about
the mode values. The mode affects how week numbering occurs.

DATE_FORMAT() returns a string with a character set and collation given by
character_set_connection and collation_connection so that it can return month and
weekday names containing non-ASCII characters.

mysql> SELECT DATE_FORMAT('2009-10-04 22:23:00', '%W %M %Y');
 -> 'Sunday October 2009'
mysql> SELECT DATE_FORMAT('2007-10-04 22:23:00', '%H:%i:%s');
 -> '22:23:00'
mysql> SELECT DATE_FORMAT('1900-10-04 22:23:00',
 -> '%D %y %a %d %m %b %j');
 -> '4th 00 Thu 04 10 Oct 277'
mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',
 -> '%H %k %I %r %T %S %w');
 -> '22 22 10 10:23:00 PM 22:23:00 00 6'
mysql> SELECT DATE_FORMAT('1999-01-01', '%X %V');
 -> '1998 52'
mysql> SELECT DATE_FORMAT('2006-06-00', '%d');
 -> '00'

• DATE_SUB(date,INTERVAL expr unit)

See the description for DATE_ADD().

• DAY(date)

DAY() is a synonym for DAYOFMONTH().

• DAYNAME(date)

Returns the name of the weekday for date. The language used for the name is controlled by the value
of the lc_time_names system variable (Section 10.16, “MySQL Server Locale Support”).

mysql> SELECT DAYNAME('2007-02-03');
 -> 'Saturday'

• DAYOFMONTH(date)

Returns the day of the month for date, in the range 1 to 31, or 0 for dates such as '0000-00-00' or
'2008-00-00' that have a zero day part.

mysql> SELECT DAYOFMONTH('2007-02-03');

1478

Date and Time Functions

 -> 3

• DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, …, 7 = Saturday). These index values
correspond to the ODBC standard.

mysql> SELECT DAYOFWEEK('2007-02-03');
 -> 7

• DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366.

mysql> SELECT DAYOFYEAR('2007-02-03');
 -> 34

• EXTRACT(unit FROM date)

The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or DATE_SUB(),
but extracts parts from the date rather than performing date arithmetic. For information on the unit
argument, see Temporal Intervals.

mysql> SELECT EXTRACT(YEAR FROM '2019-07-02');
 -> 2019
mysql> SELECT EXTRACT(YEAR_MONTH FROM '2019-07-02 01:02:03');
 -> 201907
mysql> SELECT EXTRACT(DAY_MINUTE FROM '2019-07-02 01:02:03');
 -> 20102
mysql> SELECT EXTRACT(MICROSECOND
 -> FROM '2003-01-02 10:30:00.000123');
 -> 123

• FROM_DAYS(N)

Given a day number N, returns a DATE value.

mysql> SELECT FROM_DAYS(730669);
 -> '2000-07-03'

Use FROM_DAYS() with caution on old dates. It is not intended for use with values that precede the
advent of the Gregorian calendar (1582). See Section 12.9, “What Calendar Is Used By MySQL?”.

• FROM_UNIXTIME(unix_timestamp[,format])

Returns a representation of unix_timestamp as a datetime or character string value. The value
returned is expressed using the session time zone. (Clients can set the session time zone as described
in Section 5.1.13, “MySQL Server Time Zone Support”.) unix_timestamp is an internal timestamp
value representing seconds since '1970-01-01 00:00:00' UTC, such as produced by the
UNIX_TIMESTAMP() function.

If format is omitted, this function returns a DATETIME value.

If unix_timestamp is an integer, the fractional seconds precision of the DATETIME is zero. When
unix_timestamp is a decimal value, the fractional seconds precision of the DATETIME is the same as

1479

Date and Time Functions

the precision of the decimal value, up to a maximum of 6. When unix_timestamp is a floating point
number, the fractional seconds precision of the datetime is 6.

format is used to format the result in the same way as the format string used for the DATE_FORMAT()
function. If format is supplied, the value returned is a VARCHAR.

mysql> SELECT FROM_UNIXTIME(1447430881);
 -> '2015-11-13 10:08:01'
mysql> SELECT FROM_UNIXTIME(1447430881) + 0;
 -> 20151113100801
mysql> SELECT FROM_UNIXTIME(1447430881,
 -> '%Y %D %M %h:%i:%s %x');
 -> '2015 13th November 10:08:01 2015'

Note

If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between
values in a non-UTC time zone and Unix timestamp values, the conversion is
lossy because the mapping is not one-to-one in both directions. For details, see
the description of the UNIX_TIMESTAMP() function.

• GET_FORMAT({DATE|TIME|DATETIME}, {'EUR'|'USA'|'JIS'|'ISO'|'INTERNAL'})

Returns a format string. This function is useful in combination with the DATE_FORMAT() and the
STR_TO_DATE() functions.

The possible values for the first and second arguments result in several possible format strings (for the
specifiers used, see the table in the DATE_FORMAT() function description). ISO format refers to ISO
9075, not ISO 8601.

Function Call Result

GET_FORMAT(DATE,'USA') '%m.%d.%Y'

GET_FORMAT(DATE,'JIS') '%Y-%m-%d'

GET_FORMAT(DATE,'ISO') '%Y-%m-%d'

GET_FORMAT(DATE,'EUR') '%d.%m.%Y'

GET_FORMAT(DATE,'INTERNAL') '%Y%m%d'

GET_FORMAT(DATETIME,'USA') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'JIS') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'ISO') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'EUR') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'INTERNAL') '%Y%m%d%H%i%s'

GET_FORMAT(TIME,'USA') '%h:%i:%s %p'

GET_FORMAT(TIME,'JIS') '%H:%i:%s'

GET_FORMAT(TIME,'ISO') '%H:%i:%s'

GET_FORMAT(TIME,'EUR') '%H.%i.%s'

GET_FORMAT(TIME,'INTERNAL') '%H%i%s'

TIMESTAMP can also be used as the first argument to GET_FORMAT(), in which case the function
returns the same values as for DATETIME.

mysql> SELECT DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR'));

1480

Date and Time Functions

 -> '03.10.2003'
mysql> SELECT STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA'));
 -> '2003-10-31'

• HOUR(time)

Returns the hour for time. The range of the return value is 0 to 23 for time-of-day values. However, the
range of TIME values actually is much larger, so HOUR can return values greater than 23.

mysql> SELECT HOUR('10:05:03');
 -> 10
mysql> SELECT HOUR('272:59:59');
 -> 272

• LAST_DAY(date)

Takes a date or datetime value and returns the corresponding value for the last day of the month.
Returns NULL if the argument is invalid.

mysql> SELECT LAST_DAY('2003-02-05');
 -> '2003-02-28'
mysql> SELECT LAST_DAY('2004-02-05');
 -> '2004-02-29'
mysql> SELECT LAST_DAY('2004-01-01 01:01:01');
 -> '2004-01-31'
mysql> SELECT LAST_DAY('2003-03-32');
 -> NULL

• LOCALTIME, LOCALTIME([fsp])

LOCALTIME and LOCALTIME() are synonyms for NOW().

• LOCALTIMESTAMP, LOCALTIMESTAMP([fsp])

LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW().

• MAKEDATE(year,dayofyear)

Returns a date, given year and day-of-year values. dayofyear must be greater than 0 or the result is
NULL.

mysql> SELECT MAKEDATE(2011,31), MAKEDATE(2011,32);
 -> '2011-01-31', '2011-02-01'
mysql> SELECT MAKEDATE(2011,365), MAKEDATE(2014,365);
 -> '2011-12-31', '2014-12-31'
mysql> SELECT MAKEDATE(2011,0);
 -> NULL

• MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute, and second arguments.

The second argument can have a fractional part.

mysql> SELECT MAKETIME(12,15,30);
 -> '12:15:30'

• MICROSECOND(expr)

Returns the microseconds from the time or datetime expression expr as a number in the range from 0
to 999999.

mysql> SELECT MICROSECOND('12:00:00.123456');

1481

Date and Time Functions

 -> 123456
mysql> SELECT MICROSECOND('2019-12-31 23:59:59.000010');
 -> 10

• MINUTE(time)

Returns the minute for time, in the range 0 to 59.

mysql> SELECT MINUTE('2008-02-03 10:05:03');
 -> 5

• MONTH(date)

Returns the month for date, in the range 1 to 12 for January to December, or 0 for dates such as
'0000-00-00' or '2008-00-00' that have a zero month part.

mysql> SELECT MONTH('2008-02-03');
 -> 2

• MONTHNAME(date)

Returns the full name of the month for date. The language used for the name is controlled by the value
of the lc_time_names system variable (Section 10.16, “MySQL Server Locale Support”).

mysql> SELECT MONTHNAME('2008-02-03');
 -> 'February'

• NOW([fsp])

Returns the current date and time as a value in 'YYYY-MM-DD hh:mm:ss' or YYYYMMDDhhmmss
format, depending on whether the function is used in string or numeric context. The value is expressed in
the session time zone.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT NOW();
 -> '2007-12-15 23:50:26'
mysql> SELECT NOW() + 0;
 -> 20071215235026.000000

NOW() returns a constant time that indicates the time at which the statement began to execute. (Within
a stored function or trigger, NOW() returns the time at which the function or triggering statement began
to execute.) This differs from the behavior for SYSDATE(), which returns the exact time at which it
executes.

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by SYSDATE().
This means that timestamp settings in the binary log have no effect on invocations of SYSDATE().

1482

Date and Time Functions

Setting the timestamp to a nonzero value causes each subsequent invocation of NOW() to return that
value. Setting the timestamp to zero cancels this effect so that NOW() once again returns the current
date and time.

See the description for SYSDATE() for additional information about the differences between the two
functions.

• PERIOD_ADD(P,N)

Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in the format YYYYMM.

Note

The period argument P is not a date value.

mysql> SELECT PERIOD_ADD(200801,2);
 -> 200803

• PERIOD_DIFF(P1,P2)

Returns the number of months between periods P1 and P2. P1 and P2 should be in the format YYMM or
YYYYMM. Note that the period arguments P1 and P2 are not date values.

mysql> SELECT PERIOD_DIFF(200802,200703);
 -> 11

• QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4.

mysql> SELECT QUARTER('2008-04-01');
 -> 2

• SECOND(time)

Returns the second for time, in the range 0 to 59.

mysql> SELECT SECOND('10:05:03');
 -> 3

• SEC_TO_TIME(seconds)

Returns the seconds argument, converted to hours, minutes, and seconds, as a TIME value. The range
of the result is constrained to that of the TIME data type. A warning occurs if the argument corresponds
to a value outside that range.

mysql> SELECT SEC_TO_TIME(2378);
 -> '00:39:38'
mysql> SELECT SEC_TO_TIME(2378) + 0;
 -> 3938

• STR_TO_DATE(str,format)

This is the inverse of the DATE_FORMAT() function. It takes a string str and a format string format.
STR_TO_DATE() returns a DATETIME value if the format string contains both date and time parts, or
a DATE or TIME value if the string contains only date or time parts. If the date, time, or datetime value
extracted from str is illegal, STR_TO_DATE() returns NULL and produces a warning.

The server scans str attempting to match format to it. The format string can contain literal characters
and format specifiers beginning with %. Literal characters in format must match literally in str. Format

1483

Date and Time Functions

specifiers in format must match a date or time part in str. For the specifiers that can be used in
format, see the DATE_FORMAT() function description.

mysql> SELECT STR_TO_DATE('01,5,2013','%d,%m,%Y');
 -> '2013-05-01'
mysql> SELECT STR_TO_DATE('May 1, 2013','%M %d,%Y');
 -> '2013-05-01'

Scanning starts at the beginning of str and fails if format is found not to match. Extra characters at the
end of str are ignored.

mysql> SELECT STR_TO_DATE('a09:30:17','a%h:%i:%s');
 -> '09:30:17'
mysql> SELECT STR_TO_DATE('a09:30:17','%h:%i:%s');
 -> NULL
mysql> SELECT STR_TO_DATE('09:30:17a','%h:%i:%s');
 -> '09:30:17'

Unspecified date or time parts have a value of 0, so incompletely specified values in str produce a
result with some or all parts set to 0:

mysql> SELECT STR_TO_DATE('abc','abc');
 -> '0000-00-00'
mysql> SELECT STR_TO_DATE('9','%m');
 -> '0000-09-00'
mysql> SELECT STR_TO_DATE('9','%s');
 -> '00:00:09'

Range checking on the parts of date values is as described in Section 11.2.2, “The DATE, DATETIME,
and TIMESTAMP Types”. This means, for example, that “zero” dates or dates with part values of 0 are
permitted unless the SQL mode is set to disallow such values.

mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
 -> '0000-00-00'
mysql> SELECT STR_TO_DATE('04/31/2004', '%m/%d/%Y');
 -> '2004-04-31'

If the NO_ZERO_DATE SQL mode is enabled, zero dates are disallowed. In that case, STR_TO_DATE()
returns NULL and generates a warning:

mysql> SET sql_mode = '';
mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
+---------------------------------------+
| STR_TO_DATE('00/00/0000', '%m/%d/%Y') |
+---------------------------------------+
| 0000-00-00 |
+---------------------------------------+
mysql> SET sql_mode = 'NO_ZERO_DATE';
mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
+---------------------------------------+
| STR_TO_DATE('00/00/0000', '%m/%d/%Y') |
+---------------------------------------+
| NULL |
+---------------------------------------+
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1411

1484

Date and Time Functions

Message: Incorrect datetime value: '00/00/0000' for function str_to_date

Note

You cannot use format "%X%V" to convert a year-week string to a date because
the combination of a year and week does not uniquely identify a year and month
if the week crosses a month boundary. To convert a year-week to a date, you
should also specify the weekday:

mysql> SELECT STR_TO_DATE('200442 Monday', '%X%V %W');
 -> '2004-10-18'

• SUBDATE(date,INTERVAL expr unit), SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym for
DATE_SUB(). For information on the INTERVAL unit argument, see the discussion for DATE_ADD().

mysql> SELECT DATE_SUB('2008-01-02', INTERVAL 31 DAY);
 -> '2007-12-02'
mysql> SELECT SUBDATE('2008-01-02', INTERVAL 31 DAY);
 -> '2007-12-02'

The second form enables the use of an integer value for days. In such cases, it is interpreted as the
number of days to be subtracted from the date or datetime expression expr.

mysql> SELECT SUBDATE('2008-01-02 12:00:00', 31);
 -> '2007-12-02 12:00:00'

• SUBTIME(expr1,expr2)

SUBTIME() returns expr1 − expr2 expressed as a value in the same format as expr1. expr1 is a
time or datetime expression, and expr2 is a time expression.

mysql> SELECT SUBTIME('2007-12-31 23:59:59.999999','1 1:1:1.000002');
 -> '2007-12-30 22:58:58.999997'
mysql> SELECT SUBTIME('01:00:00.999999', '02:00:00.999998');
 -> '-00:59:59.999999'

• SYSDATE([fsp])

Returns the current date and time as a value in 'YYYY-MM-DD hh:mm:ss' or YYYYMMDDhhmmss
format, depending on whether the function is used in string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

SYSDATE() returns the time at which it executes. This differs from the behavior for NOW(), which returns
a constant time that indicates the time at which the statement began to execute. (Within a stored function
or trigger, NOW() returns the time at which the function or triggering statement began to execute.)

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |

1485

Date and Time Functions

+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by SYSDATE().
This means that timestamp settings in the binary log have no effect on invocations of SYSDATE().

Because SYSDATE() can return different values even within the same statement, and is not affected by
SET TIMESTAMP, it is nondeterministic and therefore unsafe for replication if statement-based binary
logging is used. If that is a problem, you can use row-based logging.

Alternatively, you can use the --sysdate-is-now option to cause SYSDATE() to be an alias for
NOW(). This works if the option is used on both the source and the replica.

The nondeterministic nature of SYSDATE() also means that indexes cannot be used for evaluating
expressions that refer to it.

• TIME(expr)

Extracts the time part of the time or datetime expression expr and returns it as a string.

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

mysql> SELECT TIME('2003-12-31 01:02:03');
 -> '01:02:03'
mysql> SELECT TIME('2003-12-31 01:02:03.000123');
 -> '01:02:03.000123'

• TIMEDIFF(expr1,expr2)

TIMEDIFF() returns expr1 − expr2 expressed as a time value. expr1 and expr2 are strings which
are converted to TIME or DATETIME expressions; these must be of the same type following conversion.

The result returned by TIMEDIFF() is limited to the range allowed for TIME values. Alternatively, you
can use either of the functions TIMESTAMPDIFF() and UNIX_TIMESTAMP(), both of which return
integers.

mysql> SELECT TIMEDIFF('2000:01:01 00:00:00',
 -> '2000:01:01 00:00:00.000001');
 -> '-00:00:00.000001'
mysql> SELECT TIMEDIFF('2008-12-31 23:59:59.000001',
 -> '2008-12-30 01:01:01.000002');
 -> '46:58:57.999999'

• TIMESTAMP(expr), TIMESTAMP(expr1,expr2)

With a single argument, this function returns the date or datetime expression expr as a datetime value.
With two arguments, it adds the time expression expr2 to the date or datetime expression expr1 and
returns the result as a datetime value.

mysql> SELECT TIMESTAMP('2003-12-31');
 -> '2003-12-31 00:00:00'
mysql> SELECT TIMESTAMP('2003-12-31 12:00:00','12:00:00');
 -> '2004-01-01 00:00:00'

1486

Date and Time Functions

• TIMESTAMPADD(unit,interval,datetime_expr)

Adds the integer expression interval to the date or datetime expression datetime_expr. The
unit for interval is given by the unit argument, which should be one of the following values:
MICROSECOND (microseconds), SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, or YEAR.

The unit value may be specified using one of keywords as shown, or with a prefix of SQL_TSI_. For
example, DAY and SQL_TSI_DAY both are legal.

mysql> SELECT TIMESTAMPADD(MINUTE,1,'2003-01-02');
 -> '2003-01-02 00:01:00'
mysql> SELECT TIMESTAMPADD(WEEK,1,'2003-01-02');
 -> '2003-01-09'

When adding a MONTH interval to a DATE or DATETIME value, and the resulting date includes a day that
does not exist in the given month, the day is adjusted to the last day of the month, as shown here:

mysql> SELECT TIMESTAMPADD(MONTH, 1, DATE '2024-03-30') AS t1,
 > TIMESTAMPADD(MONTH, 1, DATE '2024-03-31') AS t2;
+------------+------------+
| t1 | t2 |
+------------+------------+
| 2024-04-30 | 2024-04-30 |
+------------+------------+
1 row in set (0.00 sec)

• TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)

Returns datetime_expr2 − datetime_expr1, where datetime_expr1 and datetime_expr2
are date or datetime expressions. One expression may be a date and the other a datetime; a date value
is treated as a datetime having the time part '00:00:00' where necessary. The unit for the result (an
integer) is given by the unit argument. The legal values for unit are the same as those listed in the
description of the TIMESTAMPADD() function.

mysql> SELECT TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');
 -> 3
mysql> SELECT TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01');
 -> -1
mysql> SELECT TIMESTAMPDIFF(MINUTE,'2003-02-01','2003-05-01 12:05:55');
 -> 128885

Note

The order of the date or datetime arguments for this function is the opposite of
that used with the TIMESTAMP() function when invoked with 2 arguments.

• TIME_FORMAT(time,format)

This is used like the DATE_FORMAT() function, but the format string may contain format specifiers only
for hours, minutes, seconds, and microseconds. Other specifiers produce a NULL value or 0.

If the time value contains an hour part that is greater than 23, the %H and %k hour format specifiers
produce a value larger than the usual range of 0..23. The other hour format specifiers produce the hour
value modulo 12.

mysql> SELECT TIME_FORMAT('100:00:00', '%H %k %h %I %l');
 -> '100 100 04 04 4'

• TIME_TO_SEC(time)

Returns the time argument, converted to seconds.

1487

Date and Time Functions

mysql> SELECT TIME_TO_SEC('22:23:00');
 -> 80580
mysql> SELECT TIME_TO_SEC('00:39:38');
 -> 2378

• TO_DAYS(date)

Given a date date, returns a day number (the number of days since year 0).

mysql> SELECT TO_DAYS(950501);
 -> 728779
mysql> SELECT TO_DAYS('2007-10-07');
 -> 733321

TO_DAYS() is not intended for use with values that precede the advent of the Gregorian calendar
(1582), because it does not take into account the days that were lost when the calendar was changed.
For dates before 1582 (and possibly a later year in other locales), results from this function are not
reliable. See Section 12.9, “What Calendar Is Used By MySQL?”, for details.

Remember that MySQL converts two-digit year values in dates to four-digit form using the rules in
Section 11.2, “Date and Time Data Types”. For example, '2008-10-07' and '08-10-07' are seen as
identical dates:

mysql> SELECT TO_DAYS('2008-10-07'), TO_DAYS('08-10-07');
 -> 733687, 733687

In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered invalid.
This means that, for '0000-00-00' and '0000-01-01', TO_DAYS() returns the values shown here:

mysql> SELECT TO_DAYS('0000-00-00');
+-----------------------+
| to_days('0000-00-00') |
+-----------------------+
| NULL |
+-----------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT TO_DAYS('0000-01-01');
+-----------------------+
| to_days('0000-01-01') |
+-----------------------+
| 1 |
+-----------------------+
1 row in set (0.00 sec)

This is true whether or not the ALLOW_INVALID_DATES SQL server mode is enabled.

• TO_SECONDS(expr)

Given a date or datetime expr, returns the number of seconds since the year 0. If expr is not a valid
date or datetime value, returns NULL.

mysql> SELECT TO_SECONDS(950501);

1488

Date and Time Functions

 -> 62966505600
mysql> SELECT TO_SECONDS('2009-11-29');
 -> 63426672000
mysql> SELECT TO_SECONDS('2009-11-29 13:43:32');
 -> 63426721412
mysql> SELECT TO_SECONDS(NOW());
 -> 63426721458

Like TO_DAYS(), TO_SECONDS() is not intended for use with values that precede the advent of the
Gregorian calendar (1582), because it does not take into account the days that were lost when the
calendar was changed. For dates before 1582 (and possibly a later year in other locales), results from
this function are not reliable. See Section 12.9, “What Calendar Is Used By MySQL?”, for details.

Like TO_DAYS(), TO_SECONDS(), converts two-digit year values in dates to four-digit form using the
rules in Section 11.2, “Date and Time Data Types”.

In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered invalid.
This means that, for '0000-00-00' and '0000-01-01', TO_SECONDS() returns the values shown
here:

mysql> SELECT TO_SECONDS('0000-00-00');
+--------------------------+
| TO_SECONDS('0000-00-00') |
+--------------------------+
| NULL |
+--------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT TO_SECONDS('0000-01-01');
+--------------------------+
| TO_SECONDS('0000-01-01') |
+--------------------------+
| 86400 |
+--------------------------+
1 row in set (0.00 sec)

This is true whether or not the ALLOW_INVALID_DATES SQL server mode is enabled.

• UNIX_TIMESTAMP([date])

If UNIX_TIMESTAMP() is called with no date argument, it returns a Unix timestamp representing
seconds since '1970-01-01 00:00:00' UTC.

If UNIX_TIMESTAMP() is called with a date argument, it returns the value of the argument as seconds
since '1970-01-01 00:00:00' UTC. The server interprets date as a value in the session time
zone and converts it to an internal Unix timestamp value in UTC. (Clients can set the session time zone
as described in Section 5.1.13, “MySQL Server Time Zone Support”.) The date argument may be
a DATE, DATETIME, or TIMESTAMP string, or a number in YYMMDD, YYMMDDhhmmss, YYYYMMDD, or

1489

Date and Time Functions

YYYYMMDDhhmmss format. If the argument includes a time part, it may optionally include a fractional
seconds part.

The return value is an integer if no argument is given or the argument does not include a fractional
seconds part, or DECIMAL if an argument is given that includes a fractional seconds part.

When the date argument is a TIMESTAMP column, UNIX_TIMESTAMP() returns the internal timestamp
value directly, with no implicit “string-to-Unix-timestamp” conversion.

The valid range of argument values is the same as for the TIMESTAMP data type: '1970-01-01
00:00:01.000000' UTC to '2038-01-19 03:14:07.999999' UTC. If you pass an out-of-range
date to UNIX_TIMESTAMP(), it returns 0.

mysql> SELECT UNIX_TIMESTAMP();
 -> 1447431666
mysql> SELECT UNIX_TIMESTAMP('2015-11-13 10:20:19');
 -> 1447431619
mysql> SELECT UNIX_TIMESTAMP('2015-11-13 10:20:19.012');
 -> 1447431619.012

If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between values in a non-UTC time
zone and Unix timestamp values, the conversion is lossy because the mapping is not one-to-one in both
directions. For example, due to conventions for local time zone changes such as Daylight Saving Time
(DST), it is possible for UNIX_TIMESTAMP() to map two values that are distinct in a non-UTC time zone
to the same Unix timestamp value. FROM_UNIXTIME() maps that value back to only one of the original
values. Here is an example, using values that are distinct in the MET time zone:

mysql> SET time_zone = 'MET';
mysql> SELECT UNIX_TIMESTAMP('2005-03-27 03:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 03:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT UNIX_TIMESTAMP('2005-03-27 02:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 02:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT FROM_UNIXTIME(1111885200);
+---------------------------+
| FROM_UNIXTIME(1111885200) |
+---------------------------+
| 2005-03-27 03:00:00 |
+---------------------------+

Note

To use named time zones such as 'MET' or 'Europe/Amsterdam', the
time zone tables must be properly set up. For instructions, see Section 5.1.13,
“MySQL Server Time Zone Support”.

If you want to subtract UNIX_TIMESTAMP() columns, you might want to cast them to signed integers.
See Section 12.11, “Cast Functions and Operators”.

1490

Date and Time Functions

• UTC_DATE, UTC_DATE()

Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether
the function is used in string or numeric context.

mysql> SELECT UTC_DATE(), UTC_DATE() + 0;
 -> '2003-08-14', 20030814

• UTC_TIME, UTC_TIME([fsp])

Returns the current UTC time as a value in 'hh:mm:ss' or hhmmss format, depending on whether the
function is used in string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT UTC_TIME(), UTC_TIME() + 0;
 -> '18:07:53', 180753.000000

• UTC_TIMESTAMP, UTC_TIMESTAMP([fsp])

Returns the current UTC date and time as a value in 'YYYY-MM-DD hh:mm:ss' or YYYYMMDDhhmmss
format, depending on whether the function is used in string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;
 -> '2003-08-14 18:08:04', 20030814180804.000000

• WEEK(date[,mode])

This function returns the week number for date. The two-argument form of WEEK() enables you
to specify whether the week starts on Sunday or Monday and whether the return value should
be in the range from 0 to 53 or from 1 to 53. If the mode argument is omitted, the value of the
default_week_format system variable is used. See Section 5.1.7, “Server System Variables”.

The following table describes how the mode argument works.

Mode First day of week Range Week 1 is the first
week …

0 Sunday 0-53 with a Sunday in this
year

1 Monday 0-53 with 4 or more days this
year

2 Sunday 1-53 with a Sunday in this
year

3 Monday 1-53 with 4 or more days this
year

4 Sunday 0-53 with 4 or more days this
year

5 Monday 0-53 with a Monday in this
year

6 Sunday 1-53 with 4 or more days this
year

1491

Date and Time Functions

Mode First day of week Range Week 1 is the first
week …

7 Monday 1-53 with a Monday in this
year

For mode values with a meaning of “with 4 or more days this year,” weeks are numbered according to
ISO 8601:1988:

• If the week containing January 1 has 4 or more days in the new year, it is week 1.

• Otherwise, it is the last week of the previous year, and the next week is week 1.

mysql> SELECT WEEK('2008-02-20');
 -> 7
mysql> SELECT WEEK('2008-02-20',0);
 -> 7
mysql> SELECT WEEK('2008-02-20',1);
 -> 8
mysql> SELECT WEEK('2008-12-31',1);
 -> 53

If a date falls in the last week of the previous year, MySQL returns 0 if you do not use 2, 3, 6, or 7 as the
optional mode argument:

mysql> SELECT YEAR('2000-01-01'), WEEK('2000-01-01',0);
 -> 2000, 0

One might argue that WEEK() should return 52 because the given date actually occurs in the 52nd week
of 1999. WEEK() returns 0 instead so that the return value is “the week number in the given year.” This
makes use of the WEEK() function reliable when combined with other functions that extract a date part
from a date.

If you prefer a result evaluated with respect to the year that contains the first day of the week for the
given date, use 0, 2, 5, or 7 as the optional mode argument.

mysql> SELECT WEEK('2000-01-01',2);
 -> 52

Alternatively, use the YEARWEEK() function:

mysql> SELECT YEARWEEK('2000-01-01');
 -> 199952
mysql> SELECT MID(YEARWEEK('2000-01-01'),5,2);
 -> '52'

• WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, … 6 = Sunday).

mysql> SELECT WEEKDAY('2008-02-03 22:23:00');
 -> 6
mysql> SELECT WEEKDAY('2007-11-06');
 -> 1

• WEEKOFYEAR(date)

Returns the calendar week of the date as a number in the range from 1 to 53. WEEKOFYEAR() is a
compatibility function that is equivalent to WEEK(date,3).

mysql> SELECT WEEKOFYEAR('2008-02-20');

1492

String Functions and Operators

 -> 8

• YEAR(date)

Returns the year for date, in the range 1000 to 9999, or 0 for the “zero” date.

mysql> SELECT YEAR('1987-01-01');
 -> 1987

• YEARWEEK(date), YEARWEEK(date,mode)

Returns year and week for a date. The year in the result may be different from the year in the date
argument for the first and the last week of the year.

The mode argument works exactly like the mode argument to WEEK(). For the single-argument syntax,
a mode value of 0 is used. Unlike WEEK(), the value of default_week_format does not influence
YEARWEEK().

mysql> SELECT YEARWEEK('1987-01-01');
 -> 198652

The week number is different from what the WEEK() function would return (0) for optional arguments 0
or 1, as WEEK() then returns the week in the context of the given year.

12.8 String Functions and Operators
Table 12.12 String Functions and Operators

Name Description

ASCII() Return numeric value of left-most character

BIN() Return a string containing binary representation of a
number

BIT_LENGTH() Return length of argument in bits

CHAR() Return the character for each integer passed

CHAR_LENGTH() Return number of characters in argument

CHARACTER_LENGTH() Synonym for CHAR_LENGTH()

CONCAT() Return concatenated string

CONCAT_WS() Return concatenate with separator

ELT() Return string at index number

EXPORT_SET() Return a string such that for every bit set in the
value bits, you get an on string and for every unset
bit, you get an off string

FIELD() Index (position) of first argument in subsequent
arguments

FIND_IN_SET() Index (position) of first argument within second
argument

FORMAT() Return a number formatted to specified number of
decimal places

FROM_BASE64() Decode base64 encoded string and return result

HEX() Hexadecimal representation of decimal or string
value

1493

String Functions and Operators

Name Description

INSERT() Insert substring at specified position up to specified
number of characters

INSTR() Return the index of the first occurrence of substring

LCASE() Synonym for LOWER()

LEFT() Return the leftmost number of characters as
specified

LENGTH() Return the length of a string in bytes

LIKE Simple pattern matching

LOAD_FILE() Load the named file

LOCATE() Return the position of the first occurrence of
substring

LOWER() Return the argument in lowercase

LPAD() Return the string argument, left-padded with the
specified string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-separated strings that have
the corresponding bit in bits set

MATCH() Perform full-text search

MID() Return a substring starting from the specified
position

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

OCT() Return a string containing octal representation of a
number

OCTET_LENGTH() Synonym for LENGTH()

ORD() Return character code for leftmost character of the
argument

POSITION() Synonym for LOCATE()

QUOTE() Escape the argument for use in an SQL statement

REGEXP Whether string matches regular expression

REPEAT() Repeat a string the specified number of times

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

RIGHT() Return the specified rightmost number of characters

RLIKE Whether string matches regular expression

RPAD() Append string the specified number of times

RTRIM() Remove trailing spaces

SOUNDEX() Return a soundex string

SOUNDS LIKE Compare sounds

SPACE() Return a string of the specified number of spaces

1494

String Functions and Operators

Name Description

STRCMP() Compare two strings

SUBSTR() Return the substring as specified

SUBSTRING() Return the substring as specified

SUBSTRING_INDEX() Return a substring from a string before the specified
number of occurrences of the delimiter

TO_BASE64() Return the argument converted to a base-64 string

TRIM() Remove leading and trailing spaces

UCASE() Synonym for UPPER()

UNHEX() Return a string containing hex representation of a
number

UPPER() Convert to uppercase

WEIGHT_STRING() Return the weight string for a string

String-valued functions return NULL if the length of the result would be greater than the value of the
max_allowed_packet system variable. See Section 5.1.1, “Configuring the Server”.

For functions that operate on string positions, the first position is numbered 1.

For functions that take length arguments, noninteger arguments are rounded to the nearest integer.

• ASCII(str)

Returns the numeric value of the leftmost character of the string str. Returns 0 if str is the empty
string. Returns NULL if str is NULL. ASCII() works for 8-bit characters.

mysql> SELECT ASCII('2');
 -> 50
mysql> SELECT ASCII(2);
 -> 50
mysql> SELECT ASCII('dx');
 -> 100

See also the ORD() function.

• BIN(N)

Returns a string representation of the binary value of N, where N is a longlong (BIGINT) number. This is
equivalent to CONV(N,10,2). Returns NULL if N is NULL.

mysql> SELECT BIN(12);
 -> '1100'

• BIT_LENGTH(str)

Returns the length of the string str in bits.

mysql> SELECT BIT_LENGTH('text');
 -> 32

• CHAR(N,... [USING charset_name])

CHAR() interprets each argument N as an integer and returns a string consisting of the characters given
by the code values of those integers. NULL values are skipped.

1495

String Functions and Operators

mysql> SELECT CHAR(77,121,83,81,'76');
 -> 'MySQL'
mysql> SELECT CHAR(77,77.3,'77.3');
 -> 'MMM'

CHAR() arguments larger than 255 are converted into multiple result bytes. For example, CHAR(256) is
equivalent to CHAR(1,0), and CHAR(256*256) is equivalent to CHAR(1,0,0):

mysql> SELECT HEX(CHAR(1,0)), HEX(CHAR(256));
+----------------+----------------+
| HEX(CHAR(1,0)) | HEX(CHAR(256)) |
+----------------+----------------+
| 0100 | 0100 |
+----------------+----------------+
mysql> SELECT HEX(CHAR(1,0,0)), HEX(CHAR(256*256));
+------------------+--------------------+
| HEX(CHAR(1,0,0)) | HEX(CHAR(256*256)) |
+------------------+--------------------+
| 010000 | 010000 |
+------------------+--------------------+

By default, CHAR() returns a binary string. To produce a string in a given character set, use the optional
USING clause:

mysql> SELECT CHARSET(CHAR(X'65')), CHARSET(CHAR(X'65' USING utf8));
+----------------------+---------------------------------+
| CHARSET(CHAR(X'65')) | CHARSET(CHAR(X'65' USING utf8)) |
+----------------------+---------------------------------+
| binary | utf8 |
+----------------------+---------------------------------+

If USING is given and the result string is illegal for the given character set, a warning is issued. Also, if
strict SQL mode is enabled, the result from CHAR() becomes NULL.

If CHAR() is invoked from within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• CHAR_LENGTH(str)

Returns the length of the string str, measured in code points. A multibyte character counts as a single
code point. This means that, for a string containing two 3-byte characters, LENGTH() returns 6, whereas
CHAR_LENGTH() returns 2, as shown here:

mysql> SET @dolphin:='海豚';
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT LENGTH(@dolphin), CHAR_LENGTH(@dolphin);
+------------------+-----------------------+
| LENGTH(@dolphin) | CHAR_LENGTH(@dolphin) |
+------------------+-----------------------+
| 6 | 2 |
+------------------+-----------------------+
1 row in set (0.00 sec)

• CHARACTER_LENGTH(str)

CHARACTER_LENGTH() is a synonym for CHAR_LENGTH().

1496

String Functions and Operators

• CONCAT(str1,str2,...)

Returns the string that results from concatenating the arguments. May have one or more arguments. If
all arguments are nonbinary strings, the result is a nonbinary string. If the arguments include any binary
strings, the result is a binary string. A numeric argument is converted to its equivalent nonbinary string
form.

CONCAT() returns NULL if any argument is NULL.

mysql> SELECT CONCAT('My', 'S', 'QL');
 -> 'MySQL'
mysql> SELECT CONCAT('My', NULL, 'QL');
 -> NULL
mysql> SELECT CONCAT(14.3);
 -> '14.3'

For quoted strings, concatenation can be performed by placing the strings next to each other:

mysql> SELECT 'My' 'S' 'QL';
 -> 'MySQL'

If CONCAT() is invoked from within the mysql client, binary string results display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• CONCAT_WS(separator,str1,str2,...)

CONCAT_WS() stands for Concatenate With Separator and is a special form of CONCAT(). The first
argument is the separator for the rest of the arguments. The separator is added between the strings to
be concatenated. The separator can be a string, as can the rest of the arguments. If the separator is
NULL, the result is NULL.

mysql> SELECT CONCAT_WS(',','First name','Second name','Last Name');
 -> 'First name,Second name,Last Name'
mysql> SELECT CONCAT_WS(',','First name',NULL,'Last Name');
 -> 'First name,Last Name'

CONCAT_WS() does not skip empty strings. However, it does skip any NULL values after the separator
argument.

• ELT(N,str1,str2,str3,...)

ELT() returns the Nth element of the list of strings: str1 if N = 1, str2 if N = 2, and so on. Returns
NULL if N is less than 1 or greater than the number of arguments. ELT() is the complement of FIELD().

mysql> SELECT ELT(1, 'Aa', 'Bb', 'Cc', 'Dd');
 -> 'Aa'
mysql> SELECT ELT(4, 'Aa', 'Bb', 'Cc', 'Dd');
 -> 'Dd'

• EXPORT_SET(bits,on,off[,separator[,number_of_bits]])

Returns a string such that for every bit set in the value bits, you get an on string and for every bit not
set in the value, you get an off string. Bits in bits are examined from right to left (from low-order to
high-order bits). Strings are added to the result from left to right, separated by the separator string
(the default being the comma character ,). The number of bits examined is given by number_of_bits,
which has a default of 64 if not specified. number_of_bits is silently clipped to 64 if larger than 64. It is
treated as an unsigned integer, so a value of −1 is effectively the same as 64.

mysql> SELECT EXPORT_SET(5,'Y','N',',',4);

1497

String Functions and Operators

 -> 'Y,N,Y,N'
mysql> SELECT EXPORT_SET(6,'1','0',',',10);
 -> '0,1,1,0,0,0,0,0,0,0'

• FIELD(str,str1,str2,str3,...)

Returns the index (position) of str in the str1, str2, str3, ... list. Returns 0 if str is not found.

If all arguments to FIELD() are strings, all arguments are compared as strings. If all arguments are
numbers, they are compared as numbers. Otherwise, the arguments are compared as double.

If str is NULL, the return value is 0 because NULL fails equality comparison with any value. FIELD() is
the complement of ELT().

mysql> SELECT FIELD('Bb', 'Aa', 'Bb', 'Cc', 'Dd', 'Ff');
 -> 2
mysql> SELECT FIELD('Gg', 'Aa', 'Bb', 'Cc', 'Dd', 'Ff');
 -> 0

• FIND_IN_SET(str,strlist)

Returns a value in the range of 1 to N if the string str is in the string list strlist consisting of
N substrings. A string list is a string composed of substrings separated by , characters. If the first
argument is a constant string and the second is a column of type SET, the FIND_IN_SET() function
is optimized to use bit arithmetic. Returns 0 if str is not in strlist or if strlist is the empty string.
Returns NULL if either argument is NULL. This function does not work properly if the first argument
contains a comma (,) character.

mysql> SELECT FIND_IN_SET('b','a,b,c,d');
 -> 2

• FORMAT(X,D[,locale])

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the
result as a string. If D is 0, the result has no decimal point or fractional part.

The optional third parameter enables a locale to be specified to be used for the result number's decimal
point, thousands separator, and grouping between separators. Permissible locale values are the same
as the legal values for the lc_time_names system variable (see Section 10.16, “MySQL Server Locale
Support”). If no locale is specified, the default is 'en_US'.

mysql> SELECT FORMAT(12332.123456, 4);
 -> '12,332.1235'
mysql> SELECT FORMAT(12332.1,4);
 -> '12,332.1000'
mysql> SELECT FORMAT(12332.2,0);
 -> '12,332'
mysql> SELECT FORMAT(12332.2,2,'de_DE');
 -> '12.332,20'

• FROM_BASE64(str)

Takes a string encoded with the base-64 encoded rules used by TO_BASE64() and returns the decoded
result as a binary string. The result is NULL if the argument is NULL or not a valid base-64 string. See the
description of TO_BASE64() for details about the encoding and decoding rules.

mysql> SELECT TO_BASE64('abc'), FROM_BASE64(TO_BASE64('abc'));

1498

String Functions and Operators

 -> 'JWJj', 'abc'

If FROM_BASE64() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• HEX(str), HEX(N)

For a string argument str, HEX() returns a hexadecimal string representation of str where each byte
of each character in str is converted to two hexadecimal digits. (Multibyte characters therefore become
more than two digits.) The inverse of this operation is performed by the UNHEX() function.

For a numeric argument N, HEX() returns a hexadecimal string representation of the value of N treated
as a longlong (BIGINT) number. This is equivalent to CONV(N,10,16). The inverse of this operation is
performed by CONV(HEX(N),16,10).

mysql> SELECT X'616263', HEX('abc'), UNHEX(HEX('abc'));
 -> 'abc', 616263, 'abc'
mysql> SELECT HEX(255), CONV(HEX(255),16,10);
 -> 'FF', 255

• INSERT(str,pos,len,newstr)

Returns the string str, with the substring beginning at position pos and len characters long replaced
by the string newstr. Returns the original string if pos is not within the length of the string. Replaces the
rest of the string from position pos if len is not within the length of the rest of the string. Returns NULL if
any argument is NULL.

mysql> SELECT INSERT('Quadratic', 3, 4, 'What');
 -> 'QuWhattic'
mysql> SELECT INSERT('Quadratic', -1, 4, 'What');
 -> 'Quadratic'
mysql> SELECT INSERT('Quadratic', 3, 100, 'What');
 -> 'QuWhat'

This function is multibyte safe.

• INSTR(str,substr)

Returns the position of the first occurrence of substring substr in string str. This is the same as the
two-argument form of LOCATE(), except that the order of the arguments is reversed.

mysql> SELECT INSTR('foobarbar', 'bar');
 -> 4
mysql> SELECT INSTR('xbar', 'foobar');
 -> 0

This function is multibyte safe, and is case-sensitive only if at least one argument is a binary string.

• LCASE(str)

LCASE() is a synonym for LOWER().

• LEFT(str,len)

Returns the leftmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT LEFT('foobarbar', 5);
 -> 'fooba'

This function is multibyte safe.

1499

String Functions and Operators

• LENGTH(str)

Returns the length of the string str, measured in bytes. A multibyte character counts as multiple
bytes. This means that for a string containing five 2-byte characters, LENGTH() returns 10, whereas
CHAR_LENGTH() returns 5.

mysql> SELECT LENGTH('text');
 -> 4

Note

The Length() OpenGIS spatial function is named GLength() in MySQL.

• LOAD_FILE(file_name)

Reads the file and returns the file contents as a string. To use this function, the file must be located
on the server host, you must specify the full path name to the file, and you must have the FILE
privilege. The file must be readable by all and its size less than max_allowed_packet bytes. If the
secure_file_priv system variable is set to a nonempty directory name, the file to be loaded must be
located in that directory.

If the file does not exist or cannot be read because one of the preceding conditions is not satisfied, the
function returns NULL.

The character_set_filesystem system variable controls interpretation of file names that are given
as literal strings.

mysql> UPDATE t
 SET blob_col=LOAD_FILE('/tmp/picture')
 WHERE id=1;

• LOCATE(substr,str), LOCATE(substr,str,pos)

The first syntax returns the position of the first occurrence of substring substr in string str. The
second syntax returns the position of the first occurrence of substring substr in string str, starting at
position pos. Returns 0 if substr is not in str. Returns NULL if substr or str is NULL.

mysql> SELECT LOCATE('bar', 'foobarbar');
 -> 4
mysql> SELECT LOCATE('xbar', 'foobar');
 -> 0
mysql> SELECT LOCATE('bar', 'foobarbar', 5);
 -> 7

This function is multibyte safe, and is case-sensitive only if at least one argument is a binary string.

• LOWER(str)

Returns the string str with all characters changed to lowercase according to the current character set
mapping. The default is latin1 (cp1252 West European).

mysql> SELECT LOWER('QUADRATICALLY');
 -> 'quadratically'

LOWER() (and UPPER()) are ineffective when applied to binary strings (BINARY, VARBINARY, BLOB).
To perform lettercase conversion of a binary string, first convert it to a nonbinary string using a character
set appropriate for the data stored in the string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));

1500

String Functions and Operators

+-------------+-----------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |
+-------------+-----------------------------------+
| New York | new york |
+-------------+-----------------------------------+

For collations of Unicode character sets, LOWER() and UPPER() work according to the Unicode
Collation Algorithm (UCA) version in the collation name, if there is one, and UCA 4.0.0 if no version
is specified. For example, utf8_unicode_520_ci works according to UCA 5.2.0, whereas
utf8_unicode_ci works according to UCA 4.0.0. See Section 10.10.1, “Unicode Character Sets”.

This function is multibyte safe.

• LPAD(str,len,padstr)

Returns the string str, left-padded with the string padstr to a length of len characters. If str is longer
than len, the return value is shortened to len characters.

mysql> SELECT LPAD('hi',4,'??');
 -> '??hi'
mysql> SELECT LPAD('hi',1,'??');
 -> 'h'

• LTRIM(str)

Returns the string str with leading space characters removed.

mysql> SELECT LTRIM(' barbar');
 -> 'barbar'

This function is multibyte safe.

• MAKE_SET(bits,str1,str2,...)

Returns a set value (a string containing substrings separated by , characters) consisting of the strings
that have the corresponding bit in bits set. str1 corresponds to bit 0, str2 to bit 1, and so on. NULL
values in str1, str2, ... are not appended to the result.

mysql> SELECT MAKE_SET(1,'a','b','c');
 -> 'a'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice','world');
 -> 'hello,world'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice',NULL,'world');
 -> 'hello'
mysql> SELECT MAKE_SET(0,'a','b','c');
 -> ''

• MID(str,pos,len)

MID(str,pos,len) is a synonym for SUBSTRING(str,pos,len).

• OCT(N)

Returns a string representation of the octal value of N, where N is a longlong (BIGINT) number. This is
equivalent to CONV(N,10,8). Returns NULL if N is NULL.

mysql> SELECT OCT(12);
 -> '14'

• OCTET_LENGTH(str)

OCTET_LENGTH() is a synonym for LENGTH().

1501

String Functions and Operators

• ORD(str)

If the leftmost character of the string str is a multibyte character, returns the code for that character,
calculated from the numeric values of its constituent bytes using this formula:

 (1st byte code)
+ (2nd byte code * 256)
+ (3rd byte code * 256^2) ...

If the leftmost character is not a multibyte character, ORD() returns the same value as the ASCII()
function.

mysql> SELECT ORD('2');
 -> 50

• POSITION(substr IN str)

POSITION(substr IN str) is a synonym for LOCATE(substr,str).

• QUOTE(str)

Quotes a string to produce a result that can be used as a properly escaped data value in an SQL
statement. The string is returned enclosed by single quotation marks and with each instance of
backslash (\), single quote ('), ASCII NUL, and Control+Z preceded by a backslash. If the argument is
NULL, the return value is the word “NULL” without enclosing single quotation marks.

mysql> SELECT QUOTE('Don\'t!');
 -> 'Don\'t!'
mysql> SELECT QUOTE(NULL);
 -> NULL

For comparison, see the quoting rules for literal strings and within the C API in Section 9.1.1, “String
Literals”, and mysql_real_escape_string().

• REPEAT(str,count)

Returns a string consisting of the string str repeated count times. If count is less than 1, returns an
empty string. Returns NULL if str or count are NULL.

mysql> SELECT REPEAT('MySQL', 3);
 -> 'MySQLMySQLMySQL'

• REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str replaced by the string to_str.
REPLACE() performs a case-sensitive match when searching for from_str.

mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
 -> 'WwWwWw.mysql.com'

This function is multibyte safe.

• REVERSE(str)

Returns the string str with the order of the characters reversed.

mysql> SELECT REVERSE('abc');
 -> 'cba'

This function is multibyte safe.

1502

https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-escape-string.html

String Functions and Operators

• RIGHT(str,len)

Returns the rightmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT RIGHT('foobarbar', 4);
 -> 'rbar'

This function is multibyte safe.

• RPAD(str,len,padstr)

Returns the string str, right-padded with the string padstr to a length of len characters. If str is
longer than len, the return value is shortened to len characters.

mysql> SELECT RPAD('hi',5,'?');
 -> 'hi???'
mysql> SELECT RPAD('hi',1,'?');
 -> 'h'

This function is multibyte safe.

• RTRIM(str)

Returns the string str with trailing space characters removed.

mysql> SELECT RTRIM('barbar ');
 -> 'barbar'

This function is multibyte safe.

• SOUNDEX(str)

Returns a soundex string from str. Two strings that sound almost the same should have identical
soundex strings. A standard soundex string is four characters long, but the SOUNDEX() function returns
an arbitrarily long string. You can use SUBSTRING() on the result to get a standard soundex string.
All nonalphabetic characters in str are ignored. All international alphabetic characters outside the A-Z
range are treated as vowels.

Important

When using SOUNDEX(), you should be aware of the following limitations:

• This function, as currently implemented, is intended to work well with strings that are in the English
language only. Strings in other languages may not produce reliable results.

• This function is not guaranteed to provide consistent results with strings that use multibyte character
sets, including utf-8. See Bug #22638 for more information.

mysql> SELECT SOUNDEX('Hello');
 -> 'H400'
mysql> SELECT SOUNDEX('Quadratically');
 -> 'Q36324'

Note

This function implements the original Soundex algorithm, not the more popular
enhanced version (also described by D. Knuth). The difference is that original
version discards vowels first and duplicates second, whereas the enhanced
version discards duplicates first and vowels second.

1503

String Functions and Operators

• expr1 SOUNDS LIKE expr2

This is the same as SOUNDEX(expr1) = SOUNDEX(expr2).

• SPACE(N)

Returns a string consisting of N space characters.

mysql> SELECT SPACE(6);
 -> ' '

• SUBSTR(str,pos), SUBSTR(str FROM pos), SUBSTR(str,pos,len), SUBSTR(str FROM pos
FOR len)

SUBSTR() is a synonym for SUBSTRING().

• SUBSTRING(str,pos), SUBSTRING(str FROM pos), SUBSTRING(str,pos,len),
SUBSTRING(str FROM pos FOR len)

The forms without a len argument return a substring from string str starting at position pos. The forms
with a len argument return a substring len characters long from string str, starting at position pos.
The forms that use FROM are standard SQL syntax. It is also possible to use a negative value for pos.
In this case, the beginning of the substring is pos characters from the end of the string, rather than the
beginning. A negative value may be used for pos in any of the forms of this function. A value of 0 for
pos returns an empty string.

For all forms of SUBSTRING(), the position of the first character in the string from which the substring is
to be extracted is reckoned as 1.

mysql> SELECT SUBSTRING('Quadratically',5);
 -> 'ratically'
mysql> SELECT SUBSTRING('foobarbar' FROM 4);
 -> 'barbar'
mysql> SELECT SUBSTRING('Quadratically',5,6);
 -> 'ratica'
mysql> SELECT SUBSTRING('Sakila', -3);
 -> 'ila'
mysql> SELECT SUBSTRING('Sakila', -5, 3);
 -> 'aki'
mysql> SELECT SUBSTRING('Sakila' FROM -4 FOR 2);
 -> 'ki'

This function is multibyte safe.

If len is less than 1, the result is the empty string.

• SUBSTRING_INDEX(str,delim,count)

Returns the substring from string str before count occurrences of the delimiter delim. If count
is positive, everything to the left of the final delimiter (counting from the left) is returned. If count
is negative, everything to the right of the final delimiter (counting from the right) is returned.
SUBSTRING_INDEX() performs a case-sensitive match when searching for delim.

mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', 2);
 -> 'www.mysql'
mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', -2);
 -> 'mysql.com'

This function is multibyte safe.

• TO_BASE64(str)

1504

String Functions and Operators

Converts the string argument to base-64 encoded form and returns the result as a character string with
the connection character set and collation. If the argument is not a string, it is converted to a string
before conversion takes place. The result is NULL if the argument is NULL. Base-64 encoded strings can
be decoded using the FROM_BASE64() function.

mysql> SELECT TO_BASE64('abc'), FROM_BASE64(TO_BASE64('abc'));
 -> 'JWJj', 'abc'

Different base-64 encoding schemes exist. These are the encoding and decoding rules used by
TO_BASE64() and FROM_BASE64():

• The encoding for alphabet value 62 is '+'.

• The encoding for alphabet value 63 is '/'.

• Encoded output consists of groups of 4 printable characters. Each 3 bytes of the input data are
encoded using 4 characters. If the last group is incomplete, it is padded with '=' characters to a
length of 4.

• A newline is added after each 76 characters of encoded output to divide long output into multiple lines.

• Decoding recognizes and ignores newline, carriage return, tab, and space.

• TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str), TRIM([remstr FROM] str)

Returns the string str with all remstr prefixes or suffixes removed. If none of the specifiers BOTH,
LEADING, or TRAILING is given, BOTH is assumed. remstr is optional and, if not specified, spaces are
removed.

mysql> SELECT TRIM(' bar ');
 -> 'bar'
mysql> SELECT TRIM(LEADING 'x' FROM 'xxxbarxxx');
 -> 'barxxx'
mysql> SELECT TRIM(BOTH 'x' FROM 'xxxbarxxx');
 -> 'bar'
mysql> SELECT TRIM(TRAILING 'xyz' FROM 'barxxyz');
 -> 'barx'

This function is multibyte safe.

• UCASE(str)

UCASE() is a synonym for UPPER().

• UNHEX(str)

For a string argument str, UNHEX(str) interprets each pair of characters in the argument as a
hexadecimal number and converts it to the byte represented by the number. The return value is a binary
string.

mysql> SELECT UNHEX('4D7953514C');
 -> 'MySQL'
mysql> SELECT X'4D7953514C';
 -> 'MySQL'
mysql> SELECT UNHEX(HEX('string'));
 -> 'string'
mysql> SELECT HEX(UNHEX('1267'));

1505

String Functions and Operators

 -> '1267'

The characters in the argument string must be legal hexadecimal digits: '0' .. '9', 'A' .. 'F', 'a' ..
'f'. If the argument contains any nonhexadecimal digits, the result is NULL:

mysql> SELECT UNHEX('GG');
+-------------+
| UNHEX('GG') |
+-------------+
| NULL |
+-------------+

A NULL result can occur if the argument to UNHEX() is a BINARY column, because values are padded
with 0x00 bytes when stored but those bytes are not stripped on retrieval. For example, '41' is stored
into a CHAR(3) column as '41 ' and retrieved as '41' (with the trailing pad space stripped), so
UNHEX() for the column value returns X'41'. By contrast, '41' is stored into a BINARY(3) column
as '41\0' and retrieved as '41\0' (with the trailing pad 0x00 byte not stripped). '\0' is not a legal
hexadecimal digit, so UNHEX() for the column value returns NULL.

For a numeric argument N, the inverse of HEX(N) is not performed by UNHEX(). Use
CONV(HEX(N),16,10) instead. See the description of HEX().

If UNHEX() is invoked from within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• UPPER(str)

Returns the string str with all characters changed to uppercase according to the current character set
mapping. The default is latin1 (cp1252 West European).

mysql> SELECT UPPER('Hej');
 -> 'HEJ'

See the description of LOWER() for information that also applies to UPPER(). This included information
about how to perform lettercase conversion of binary strings (BINARY, VARBINARY, BLOB) for which
these functions are ineffective, and information about case folding for Unicode character sets.

This function is multibyte safe.

1506

String Functions and Operators

• WEIGHT_STRING(str [AS {CHAR|BINARY}(N)] [LEVEL levels] [flags])

levels: N [ASC|DESC|REVERSE] [, N [ASC|DESC|REVERSE]] ...

This function returns the weight string for the input string. The return value is a binary string that
represents the comparison and sorting value of the string. It has these properties:

• If WEIGHT_STRING(str1) = WEIGHT_STRING(str2), then str1 = str2 (str1 and str2 are
considered equal)

• If WEIGHT_STRING(str1) < WEIGHT_STRING(str2), then str1 < str2 (str1 sorts before
str2)

WEIGHT_STRING() is a debugging function intended for internal use. Its behavior can change without
notice between MySQL versions. It can be used for testing and debugging of collations, especially if you
are adding a new collation. See Section 10.14, “Adding a Collation to a Character Set”.

This list briefly summarizes the arguments. More details are given in the discussion following the list.

• str: The input string expression.

• AS clause: Optional; cast the input string to a given type and length.

• LEVEL clause: Optional; specify weight levels for the return value.

• flags: Optional; unused.

The input string, str, is a string expression. If the input is a nonbinary (character) string such as a
CHAR, VARCHAR, or TEXT value, the return value contains the collation weights for the string. If the
input is a binary (byte) string such as a BINARY, VARBINARY, or BLOB value, the return value is the
same as the input (the weight for each byte in a binary string is the byte value). If the input is NULL,
WEIGHT_STRING() returns NULL.

Examples:

mysql> SET @s = _latin1 'AB' COLLATE latin1_swedish_ci;
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| AB | 4142 | 4142 |
+------+---------+------------------------+

mysql> SET @s = _latin1 'ab' COLLATE latin1_swedish_ci;
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| ab | 6162 | 4142 |
+------+---------+------------------------+

mysql> SET @s = CAST('AB' AS BINARY);
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| AB | 4142 | 4142 |
+------+---------+------------------------+

mysql> SET @s = CAST('ab' AS BINARY);
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));

1507

String Functions and Operators

+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| ab | 6162 | 6162 |
+------+---------+------------------------+

The preceding examples use HEX() to display the WEIGHT_STRING() result. Because the result is a
binary value, HEX() can be especially useful when the result contains nonprinting values, to display it in
printable form:

mysql> SET @s = CONVERT(X'C39F' USING utf8) COLLATE utf8_czech_ci;
mysql> SELECT HEX(WEIGHT_STRING(@s));
+------------------------+
| HEX(WEIGHT_STRING(@s)) |
+------------------------+
| 0FEA0FEA |
+------------------------+

For non-NULL return values, the data type of the value is VARBINARY if its length is within the maximum
length for VARBINARY, otherwise the data type is BLOB.

The AS clause may be given to cast the input string to a nonbinary or binary string and to force it to a
given length:

• AS CHAR(N) casts the string to a nonbinary string and pads it on the right with spaces to a length of N
characters. N must be at least 1. If N is less than the length of the input string, the string is truncated to
N characters. No warning occurs for truncation.

• AS BINARY(N) is similar but casts the string to a binary string, N is measured in bytes (not
characters), and padding uses 0x00 bytes (not spaces).

mysql> SET NAMES 'latin1';
mysql> SELECT HEX(WEIGHT_STRING('ab' AS CHAR(4)));
+-------------------------------------+
| HEX(WEIGHT_STRING('ab' AS CHAR(4))) |
+-------------------------------------+
| 41422020 |
+-------------------------------------+
mysql> SET NAMES 'utf8';
mysql> SELECT HEX(WEIGHT_STRING('ab' AS CHAR(4)));
+-------------------------------------+
| HEX(WEIGHT_STRING('ab' AS CHAR(4))) |
+-------------------------------------+
| 0041004200200020 |
+-------------------------------------+

mysql> SELECT HEX(WEIGHT_STRING('ab' AS BINARY(4)));
+---------------------------------------+
| HEX(WEIGHT_STRING('ab' AS BINARY(4))) |
+---------------------------------------+
| 61620000 |

1508

String Functions and Operators

+---------------------------------------+

The LEVEL clause may be given to specify that the return value should contain weights for specific
collation levels.

The levels specifier following the LEVEL keyword may be given either as a list of one or more integers
separated by commas, or as a range of two integers separated by a dash. Whitespace around the
punctuation characters does not matter.

Examples:

LEVEL 1
LEVEL 2, 3, 5
LEVEL 1-3

Any level less than 1 is treated as 1. Any level greater than the maximum for the input string collation is
treated as maximum for the collation. The maximum varies per collation, but is never greater than 6.

In a list of levels, levels must be given in increasing order. In a range of levels, if the second number is
less than the first, it is treated as the first number (for example, 4-2 is the same as 4-4).

If the LEVEL clause is omitted, MySQL assumes LEVEL 1 - max, where max is the maximum level for
the collation.

If LEVEL is specified using list syntax (not range syntax), any level number can be followed by these
modifiers:

• ASC: Return the weights without modification. This is the default.

• DESC: Return bitwise-inverted weights (for example, 0x78f0 DESC = 0x870f).

• REVERSE: Return the weights in reverse order (that is,the weights for the reversed string, with the first
character last and the last first).

Examples:

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1));
+--------------------------------------+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1)) |
+--------------------------------------+
| 007FFF |
+--------------------------------------+

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC));
+---+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC)) |
+---+
| FF8000 |
+---+

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 REVERSE));
+--+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 REVERSE)) |
+--+
| FF7F00 |
+--+

mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC REVERSE));
+---+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC REVERSE)) |
+---+
| 0080FF |

1509

String Comparison Functions and Operators

+---+

The flags clause currently is unused.

If WEIGHT_STRING() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

12.8.1 String Comparison Functions and Operators

Table 12.13 String Comparison Functions and Operators

Name Description

LIKE Simple pattern matching

NOT LIKE Negation of simple pattern matching

STRCMP() Compare two strings

If a string function is given a binary string as an argument, the resulting string is also a binary string. A
number converted to a string is treated as a binary string. This affects only comparisons.

Normally, if any expression in a string comparison is case-sensitive, the comparison is performed in case-
sensitive fashion.

If a string function is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• expr LIKE pat [ESCAPE 'escape_char']

Pattern matching using an SQL pattern. Returns 1 (TRUE) or 0 (FALSE). If either expr or pat is NULL,
the result is NULL.

The pattern need not be a literal string. For example, it can be specified as a string expression or
table column. In the latter case, the column must be defined as one of the MySQL string types (see
Section 11.3, “String Data Types”).

Per the SQL standard, LIKE performs matching on a per-character basis, thus it can produce results
different from the = comparison operator:

mysql> SELECT 'ä' LIKE 'ae' COLLATE latin1_german2_ci;
+---+
| 'ä' LIKE 'ae' COLLATE latin1_german2_ci |
+---+
| 0 |
+---+
mysql> SELECT 'ä' = 'ae' COLLATE latin1_german2_ci;
+--------------------------------------+
| 'ä' = 'ae' COLLATE latin1_german2_ci |
+--------------------------------------+
| 1 |
+--------------------------------------+

In particular, trailing spaces are significant, which is not true for comparisons of nonbinary strings (CHAR,
VARCHAR, and TEXT values) performed with the = operator:

mysql> SELECT 'a' = 'a ', 'a' LIKE 'a ';
+------------+---------------+
| 'a' = 'a ' | 'a' LIKE 'a ' |
+------------+---------------+

1510

String Comparison Functions and Operators

| 1 | 0 |
+------------+---------------+
1 row in set (0.00 sec)

With LIKE you can use the following two wildcard characters in the pattern:

• % matches any number of characters, even zero characters.

• _ matches exactly one character.

mysql> SELECT 'David!' LIKE 'David_';
 -> 1
mysql> SELECT 'David!' LIKE '%D%v%';
 -> 1

To test for literal instances of a wildcard character, precede it by the escape character. If you do not
specify the ESCAPE character, \ is assumed, unless the NO_BACKSLASH_ESCAPES SQL mode is
enabled. In that case, no escape character is used.

• \% matches one % character.

• _ matches one _ character.

mysql> SELECT 'David!' LIKE 'David_';
 -> 0
mysql> SELECT 'David_' LIKE 'David_';
 -> 1

To specify a different escape character, use the ESCAPE clause:

mysql> SELECT 'David_' LIKE 'David|_' ESCAPE '|';
 -> 1

The escape sequence should be one character long to specify the escape character, or empty to specify
that no escape character is used. The expression must evaluate as a constant at execution time. If the
NO_BACKSLASH_ESCAPES SQL mode is enabled, the sequence cannot be empty.

The following two statements illustrate that string comparisons are not case-sensitive unless one of the
operands is case-sensitive (uses a case-sensitive collation or is a binary string):

mysql> SELECT 'abc' LIKE 'ABC';
 -> 1
mysql> SELECT 'abc' LIKE _latin1 'ABC' COLLATE latin1_general_cs;
 -> 0
mysql> SELECT 'abc' LIKE _latin1 'ABC' COLLATE latin1_bin;
 -> 0
mysql> SELECT 'abc' LIKE BINARY 'ABC';
 -> 0

As an extension to standard SQL, MySQL permits LIKE on numeric expressions.

mysql> SELECT 10 LIKE '1%';
 -> 1

MySQL attempts in such cases to perform implicit conversion of the expression to a string. See
Section 12.3, “Type Conversion in Expression Evaluation”.

Note

MySQL uses C escape syntax in strings (for example, \n to represent the
newline character). If you want a LIKE string to contain a literal \, you must

1511

String Comparison Functions and Operators

double it. (Unless the NO_BACKSLASH_ESCAPES SQL mode is enabled, in which
case no escape character is used.) For example, to search for \n, specify it as
\\n. To search for \, specify it as \\\\; this is because the backslashes are
stripped once by the parser and again when the pattern match is made, leaving a
single backslash to be matched against.

Exception: At the end of the pattern string, backslash can be specified as \\.
At the end of the string, backslash stands for itself because there is nothing
following to escape. Suppose that a table contains the following values:

mysql> SELECT filename FROM t1;
+--------------+
| filename |
+--------------+
| C: |
| C:\ |
| C:\Programs |
| C:\Programs\ |
+--------------+

To test for values that end with backslash, you can match the values using either
of the following patterns:

mysql> SELECT filename, filename LIKE '%\\' FROM t1;
+--------------+---------------------+
| filename | filename LIKE '%\\' |
+--------------+---------------------+
C:	0
C:\	1
C:\Programs	0
C:\Programs\	1
+--------------+---------------------+

mysql> SELECT filename, filename LIKE '%\\\\' FROM t1;
+--------------+-----------------------+
| filename | filename LIKE '%\\\\' |
+--------------+-----------------------+
C:	0
C:\	1
C:\Programs	0
C:\Programs\	1
+--------------+-----------------------+

• expr NOT LIKE pat [ESCAPE 'escape_char']

This is the same as NOT (expr LIKE pat [ESCAPE 'escape_char']).

Note

Aggregate queries involving NOT LIKE comparisons with columns containing
NULL may yield unexpected results. For example, consider the following table
and data:

CREATE TABLE foo (bar VARCHAR(10));

INSERT INTO foo VALUES (NULL), (NULL);

The query SELECT COUNT(*) FROM foo WHERE bar LIKE '%baz%';
returns 0. You might assume that SELECT COUNT(*) FROM foo WHERE bar
NOT LIKE '%baz%'; would return 2. However, this is not the case: The second
query returns 0. This is because NULL NOT LIKE expr always returns NULL,
regardless of the value of expr. The same is true for aggregate queries involving

1512

Regular Expressions

NULL and comparisons using NOT RLIKE or NOT REGEXP. In such cases, you
must test explicitly for NOT NULL using OR (and not AND), as shown here:

SELECT COUNT(*) FROM foo WHERE bar NOT LIKE '%baz%' OR bar IS NULL;

• STRCMP(expr1,expr2)

STRCMP() returns 0 if the strings are the same, -1 if the first argument is smaller than the second
according to the current sort order, and 1 otherwise.

mysql> SELECT STRCMP('text', 'text2');
 -> -1
mysql> SELECT STRCMP('text2', 'text');
 -> 1
mysql> SELECT STRCMP('text', 'text');
 -> 0

STRCMP() performs the comparison using the collation of the arguments.

mysql> SET @s1 = _latin1 'x' COLLATE latin1_general_ci;
mysql> SET @s2 = _latin1 'X' COLLATE latin1_general_ci;
mysql> SET @s3 = _latin1 'x' COLLATE latin1_general_cs;
mysql> SET @s4 = _latin1 'X' COLLATE latin1_general_cs;
mysql> SELECT STRCMP(@s1, @s2), STRCMP(@s3, @s4);
+------------------+------------------+
| STRCMP(@s1, @s2) | STRCMP(@s3, @s4) |
+------------------+------------------+
| 0 | 1 |
+------------------+------------------+

If the collations are incompatible, one of the arguments must be converted to be compatible with the
other. See Section 10.8.4, “Collation Coercibility in Expressions”.

mysql> SELECT STRCMP(@s1, @s3);
ERROR 1267 (HY000): Illegal mix of collations (latin1_general_ci,IMPLICIT)
and (latin1_general_cs,IMPLICIT) for operation 'strcmp'
mysql> SELECT STRCMP(@s1, @s3 COLLATE latin1_general_ci);
+--+
| STRCMP(@s1, @s3 COLLATE latin1_general_ci) |
+--+
| 0 |
+--+

12.8.2 Regular Expressions
Table 12.14 Regular Expression Functions and Operators

Name Description

NOT REGEXP Negation of REGEXP

REGEXP Whether string matches regular expression

RLIKE Whether string matches regular expression

A regular expression is a powerful way of specifying a pattern for a complex search. This section discusses
the operators available for regular expression matching and illustrates, with examples, some of the special
characters and constructs that can be used for regular expression operations. See also Section 3.3.4.7,
“Pattern Matching”.

MySQL uses Henry Spencer's implementation of regular expressions, which is aimed at conformance
with POSIX 1003.2. MySQL uses the extended version to support regular expression pattern-matching
operations in SQL statements. This section does not contain all the details that can be found in Henry

1513

Regular Expressions

Spencer's regex(7) manual page. That manual page is included in MySQL source distributions, in the
regex.7 file under the regex directory.

• Regular Expression Function and Operator Descriptions

• Regular Expression Syntax

Regular Expression Function and Operator Descriptions

• expr NOT REGEXP pat, expr NOT RLIKE pat

This is the same as NOT (expr REGEXP pat).

• expr REGEXP pat, expr RLIKE pat

Returns 1 if the string expr matches the regular expression specified by the pattern pat, 0 otherwise. If
either expr or pat is NULL, the return value is NULL.

RLIKE is a synonym for REGEXP, provided for mSQL compatibility.

The pattern can be an extended regular expression, the syntax for which is discussed in Regular
Expression Syntax. The pattern need not be a literal string. For example, it can be specified as a string
expression or table column.

Note

MySQL uses C escape syntax in strings (for example, \n to represent the
newline character). If you want your expr or pat argument to contain a literal \,
you must double it. (Unless the NO_BACKSLASH_ESCAPES SQL mode is enabled,
in which case no escape character is used.)

Regular expression operations use the character set and collation of the string expression and pattern
arguments when deciding the type of a character and performing the comparison. If the arguments have
different character sets or collations, coercibility rules apply as described in Section 10.8.4, “Collation
Coercibility in Expressions”. If either argument is a binary string, the arguments are handled in case-
sensitive fashion as binary strings.

mysql> SELECT 'Michael!' REGEXP '.*';
+------------------------+
| 'Michael!' REGEXP '.*' |
+------------------------+
| 1 |
+------------------------+
mysql> SELECT 'new*\n*line' REGEXP 'new*.*line';
+---------------------------------------+
| 'new*\n*line' REGEXP 'new*.*line' |
+---------------------------------------+
| 0 |
+---------------------------------------+
mysql> SELECT 'a' REGEXP '^[a-d]';
+---------------------+
| 'a' REGEXP '^[a-d]' |
+---------------------+
| 1 |
+---------------------+

Warning

The REGEXP and RLIKE operators work in byte-wise fashion, so they are not
multibyte safe and may produce unexpected results with multibyte character

1514

Regular Expressions

sets. In addition, these operators compare characters by their byte values and
accented characters may not compare as equal even if a given collation treats
them as equal.

Regular Expression Syntax

A regular expression describes a set of strings. The simplest regular expression is one that has no special
characters in it. For example, the regular expression hello matches hello and nothing else.

Nontrivial regular expressions use certain special constructs so that they can match more than one string.
For example, the regular expression hello|world contains the | alternation operator and matches either
the hello or world.

As a more complex example, the regular expression B[an]*s matches any of the strings Bananas,
Baaaaas, Bs, and any other string starting with a B, ending with an s, and containing any number of a or n
characters in between.

A regular expression for the REGEXP operator may use any of the following special characters and
constructs:

• ^

Match the beginning of a string.

mysql> SELECT 'fo\nfo' REGEXP '^fo$'; -> 0
mysql> SELECT 'fofo' REGEXP '^fo'; -> 1

• $

Match the end of a string.

mysql> SELECT 'fo\no' REGEXP '^fo\no$'; -> 1
mysql> SELECT 'fo\no' REGEXP '^fo$'; -> 0

• .

Match any character (including carriage return and newline).

mysql> SELECT 'fofo' REGEXP '^f.*$'; -> 1
mysql> SELECT 'fo\r\nfo' REGEXP '^f.*$'; -> 1

• a*

Match any sequence of zero or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Baaan' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba*n'; -> 1

• a+

Match any sequence of one or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba+n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba+n'; -> 0

• a?

Match either zero or one a character.

mysql> SELECT 'Bn' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Ban' REGEXP '^Ba?n'; -> 1

1515

Regular Expressions

mysql> SELECT 'Baan' REGEXP '^Ba?n'; -> 0

• de|abc

Alternation; match either of the sequences de or abc.

mysql> SELECT 'pi' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'axe' REGEXP 'pi|apa'; -> 0
mysql> SELECT 'apa' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'apa' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pi' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pix' REGEXP '^(pi|apa)$'; -> 0

• (abc)*

Match zero or more instances of the sequence abc.

mysql> SELECT 'pi' REGEXP '^(pi)*$'; -> 1
mysql> SELECT 'pip' REGEXP '^(pi)*$'; -> 0
mysql> SELECT 'pipi' REGEXP '^(pi)*$'; -> 1

• {1}, {2,3}

Repetition; {n} and {m,n} notation provide a more general way of writing regular expressions that
match many occurrences of the previous atom (or “piece”) of the pattern. m and n are integers.

• a*

Can be written as a{0,}.

• a+

Can be written as a{1,}.

• a?

Can be written as a{0,1}.

To be more precise, a{n} matches exactly n instances of a. a{n,} matches n or more instances of a.
a{m,n} matches m through n instances of a, inclusive. If both m and n are given, m must be less than or
equal to n.

m and n must be in the range from 0 to RE_DUP_MAX (default 255), inclusive.

mysql> SELECT 'abcde' REGEXP 'a[bcd]{2}e'; -> 0
mysql> SELECT 'abcde' REGEXP 'a[bcd]{3}e'; -> 1
mysql> SELECT 'abcde' REGEXP 'a[bcd]{1,10}e'; -> 1

• [a-dX], [^a-dX]

Matches any character that is (or is not, if ^ is used) either a, b, c, d or X. A - character between two
other characters forms a range that matches all characters from the first character to the second. For
example, [0-9] matches any decimal digit. To include a literal] character, it must immediately follow
the opening bracket [. To include a literal - character, it must be written first or last. Any character that
does not have a defined special meaning inside a [] pair matches only itself.

mysql> SELECT 'aXbc' REGEXP '[a-dXYZ]'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]$'; -> 0
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]+$'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[^a-dXYZ]+$'; -> 0
mysql> SELECT 'gheis' REGEXP '^[^a-dXYZ]+$'; -> 1

1516

Regular Expressions

mysql> SELECT 'gheisa' REGEXP '^[^a-dXYZ]+$'; -> 0

• [.characters.]

Within a bracket expression (written using [and]), matches the sequence of characters of that collating
element. characters is either a single character or a character name like newline. The following
table lists the permissible character names.

The following table shows the permissible character names and the characters that they match. For
characters given as numeric values, the values are represented in octal.

Name Character Name Character

NUL 0 SOH 001

STX 002 ETX 003

EOT 004 ENQ 005

ACK 006 BEL 007

alert 007 BS 010

backspace '\b' HT 011

tab '\t' LF 012

newline '\n' VT 013

vertical-tab '\v' FF 014

form-feed '\f' CR 015

carriage-return '\r' SO 016

SI 017 DLE 020

DC1 021 DC2 022

DC3 023 DC4 024

NAK 025 SYN 026

ETB 027 CAN 030

EM 031 SUB 032

ESC 033 IS4 034

FS 034 IS3 035

GS 035 IS2 036

RS 036 IS1 037

US 037 space ' '

exclamation-mark '!' quotation-mark '"'

number-sign '#' dollar-sign '$'

percent-sign '%' ampersand '&'

apostrophe '\'' left-parenthesis '('

right-parenthesis ')' asterisk '*'

plus-sign '+' comma ','

hyphen '-' hyphen-minus '-'

period '.' full-stop '.'

1517

Regular Expressions

Name Character Name Character

slash '/' solidus '/'

zero '0' one '1'

two '2' three '3'

four '4' five '5'

six '6' seven '7'

eight '8' nine '9'

colon ':' semicolon ';'

less-than-sign '<' equals-sign '='

greater-than-sign '>' question-mark '?'

commercial-at '@' left-square-
bracket

'['

backslash '\\' reverse-solidus '\\'

right-square-
bracket

']' circumflex '^'

circumflex-accent '^' underscore '_'

low-line '_' grave-accent '`'

left-brace '{' left-curly-bracket '{'

vertical-line '|' right-brace '}'

right-curly-
bracket

'}' tilde '~'

DEL 177

mysql> SELECT '~' REGEXP '[[.~.]]'; -> 1
mysql> SELECT '~' REGEXP '[[.tilde.]]'; -> 1

• [=character_class=]

Within a bracket expression (written using [and]), [=character_class=] represents an
equivalence class. It matches all characters with the same collation value, including itself. For example,
if o and (+) are the members of an equivalence class, [[=o=]], [[=(+)=]], and [o(+)] are all
synonymous. An equivalence class may not be used as an endpoint of a range.

• [:character_class:]

Within a bracket expression (written using [and]), [:character_class:] represents a character
class that matches all characters belonging to that class. The following table lists the standard class
names. These names stand for the character classes defined in the ctype(3) manual page. A
particular locale may provide other class names. A character class may not be used as an endpoint of a
range.

Character Class Name Meaning

alnum Alphanumeric characters

alpha Alphabetic characters

blank Whitespace characters

cntrl Control characters

1518

Character Set and Collation of Function Results

Character Class Name Meaning

digit Digit characters

graph Graphic characters

lower Lowercase alphabetic characters

print Graphic or space characters

punct Punctuation characters

space Space, tab, newline, and carriage return

upper Uppercase alphabetic characters

xdigit Hexadecimal digit characters

mysql> SELECT 'justalnums' REGEXP '[[:alnum:]]+'; -> 1
mysql> SELECT '!!' REGEXP '[[:alnum:]]+'; -> 0

• [[:<:]], [[:>:]]

These markers stand for word boundaries. They match the beginning and end of words, respectively. A
word is a sequence of word characters that is not preceded by or followed by word characters. A word
character is an alphanumeric character in the alnum class or an underscore (_).

mysql> SELECT 'a word a' REGEXP '[[:<:]]word[[:>:]]'; -> 1
mysql> SELECT 'a xword a' REGEXP '[[:<:]]word[[:>:]]'; -> 0

To use a literal instance of a special character in a regular expression, precede it by two backslash (\)
characters. The MySQL parser interprets one of the backslashes, and the regular expression library
interprets the other. For example, to match the string 1+2 that contains the special + character, only the
last of the following regular expressions is the correct one:

mysql> SELECT '1+2' REGEXP '1+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\\+2'; -> 1

12.8.3 Character Set and Collation of Function Results

MySQL has many operators and functions that return a string. This section answers the question: What is
the character set and collation of such a string?

For simple functions that take string input and return a string result as output, the output's character set
and collation are the same as those of the principal input value. For example, UPPER(X) returns a string
with the same character string and collation as X. The same applies for INSTR(), LCASE(), LOWER(),
LTRIM(), MID(), REPEAT(), REPLACE(), REVERSE(), RIGHT(), RPAD(), RTRIM(), SOUNDEX(),
SUBSTRING(), TRIM(), UCASE(), and UPPER().

Note

The REPLACE() function, unlike all other functions, always ignores the collation of
the string input and performs a case-sensitive comparison.

If a string input or function result is a binary string, the string has the binary character set and collation.
This can be checked by using the CHARSET() and COLLATION() functions, both of which return binary
for a binary string argument:

mysql> SELECT CHARSET(BINARY 'a'), COLLATION(BINARY 'a');
+---------------------+-----------------------+
| CHARSET(BINARY 'a') | COLLATION(BINARY 'a') |
+---------------------+-----------------------+

1519

What Calendar Is Used By MySQL?

| binary | binary |
+---------------------+-----------------------+

For operations that combine multiple string inputs and return a single string output, the “aggregation rules”
of standard SQL apply for determining the collation of the result:

• If an explicit COLLATE Y occurs, use Y.

• If explicit COLLATE Y and COLLATE Z occur, raise an error.

• Otherwise, if all collations are Y, use Y.

• Otherwise, the result has no collation.

For example, with CASE ... WHEN a THEN b WHEN b THEN c COLLATE X END, the resulting
collation is X. The same applies for UNION, ||, CONCAT(), ELT(), GREATEST(), IF(), and LEAST().

For operations that convert to character data, the character set and collation of the strings that result from
the operations are defined by the character_set_connection and collation_connection system
variables that determine the default connection character set and collation (see Section 10.4, “Connection
Character Sets and Collations”). This applies only to CAST(), CONV(), FORMAT(), HEX(), and SPACE().

If there is any question about the character set or collation of the result returned by a string function, use
the CHARSET() or COLLATION() function to find out:

mysql> SELECT USER(), CHARSET(USER()), COLLATION(USER());
+----------------+-----------------+-------------------+
| USER() | CHARSET(USER()) | COLLATION(USER()) |
+----------------+-----------------+-------------------+
| test@localhost | utf8 | utf8_general_ci |
+----------------+-----------------+-------------------+
mysql> SELECT CHARSET(COMPRESS('abc')), COLLATION(COMPRESS('abc'));
+--------------------------+----------------------------+
| CHARSET(COMPRESS('abc')) | COLLATION(COMPRESS('abc')) |
+--------------------------+----------------------------+
| binary | binary |
+--------------------------+----------------------------+

12.9 What Calendar Is Used By MySQL?
MySQL uses what is known as a proleptic Gregorian calendar.

Every country that has switched from the Julian to the Gregorian calendar has had to discard at least ten
days during the switch. To see how this works, consider the month of October 1582, when the first Julian-
to-Gregorian switch occurred.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 3 4 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

There are no dates between October 4 and October 15. This discontinuity is called the cutover. Any dates
before the cutover are Julian, and any dates following the cutover are Gregorian. Dates during a cutover
are nonexistent.

A calendar applied to dates when it was not actually in use is called proleptic. Thus, if we assume there
was never a cutover and Gregorian rules always rule, we have a proleptic Gregorian calendar. This is what
is used by MySQL, as is required by standard SQL. For this reason, dates prior to the cutover stored as

1520

Full-Text Search Functions

MySQL DATE or DATETIME values must be adjusted to compensate for the difference. It is important to
realize that the cutover did not occur at the same time in all countries, and that the later it happened, the
more days were lost. For example, in Great Britain, it took place in 1752, when Wednesday September
2 was followed by Thursday September 14. Russia remained on the Julian calendar until 1918, losing 13
days in the process, and what is popularly referred to as its “October Revolution” occurred in November
according to the Gregorian calendar.

12.10 Full-Text Search Functions
MATCH (col1,col2,...) AGAINST (expr [search_modifier])

search_modifier:
 {
 IN NATURAL LANGUAGE MODE
 | IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION
 | IN BOOLEAN MODE
 | WITH QUERY EXPANSION
 }

MySQL has support for full-text indexing and searching:

• A full-text index in MySQL is an index of type FULLTEXT.

• Full-text indexes can be used only with InnoDB or MyISAM tables, and can be created only for CHAR,
VARCHAR, or TEXT columns.

• A FULLTEXT index definition can be given in the CREATE TABLE statement when a table is created, or
added later using ALTER TABLE or CREATE INDEX.

• For large data sets, it is much faster to load your data into a table that has no FULLTEXT index and then
create the index after that, than to load data into a table that has an existing FULLTEXT index.

Full-text searching is performed using MATCH() AGAINST() syntax. MATCH() takes a comma-separated
list that names the columns to be searched. AGAINST takes a string to search for, and an optional modifier
that indicates what type of search to perform. The search string must be a string value that is constant
during query evaluation. This rules out, for example, a table column because that can differ for each row.

There are three types of full-text searches:

• A natural language search interprets the search string as a phrase in natural human language (a
phrase in free text). There are no special operators, with the exception of double quote (") characters.
The stopword list applies. For more information about stopword lists, see Section 12.10.4, “Full-Text
Stopwords”.

Full-text searches are natural language searches if the IN NATURAL LANGUAGE MODE modifier is
given or if no modifier is given. For more information, see Section 12.10.1, “Natural Language Full-Text
Searches”.

• A boolean search interprets the search string using the rules of a special query language. The string
contains the words to search for. It can also contain operators that specify requirements such that a word
must be present or absent in matching rows, or that it should be weighted higher or lower than usual.
Certain common words (stopwords) are omitted from the search index and do not match if present in the
search string. The IN BOOLEAN MODE modifier specifies a boolean search. For more information, see
Section 12.10.2, “Boolean Full-Text Searches”.

• A query expansion search is a modification of a natural language search. The search string is used to
perform a natural language search. Then words from the most relevant rows returned by the search are
added to the search string and the search is done again. The query returns the rows from the second

1521

Natural Language Full-Text Searches

search. The IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION or WITH QUERY EXPANSION
modifier specifies a query expansion search. For more information, see Section 12.10.3, “Full-Text
Searches with Query Expansion”.

For information about FULLTEXT query performance, see Section 8.3.4, “Column Indexes”.

For more information about InnoDB FULLTEXT indexes, see Section 14.6.2.3, “InnoDB Full-Text Indexes”.

Constraints on full-text searching are listed in Section 12.10.5, “Full-Text Restrictions”.

The myisam_ftdump utility dumps the contents of a MyISAM full-text index. This may be helpful for
debugging full-text queries. See Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”.

12.10.1 Natural Language Full-Text Searches

By default or with the IN NATURAL LANGUAGE MODE modifier, the MATCH() function performs a natural
language search for a string against a text collection. A collection is a set of one or more columns included
in a FULLTEXT index. The search string is given as the argument to AGAINST(). For each row in the
table, MATCH() returns a relevance value; that is, a similarity measure between the search string and the
text in that row in the columns named in the MATCH() list.

mysql> CREATE TABLE articles (
 -> id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 -> title VARCHAR(200),
 -> body TEXT,
 -> FULLTEXT (title,body)
 ->) ENGINE=InnoDB;
Query OK, 0 rows affected (0.08 sec)

mysql> INSERT INTO articles (title,body) VALUES
 -> ('MySQL Tutorial','DBMS stands for DataBase ...'),
 -> ('How To Use MySQL Well','After you went through a ...'),
 -> ('Optimizing MySQL','In this tutorial, we show ...'),
 -> ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 -> ('MySQL vs. YourSQL','In the following database comparison ...'),
 -> ('MySQL Security','When configured properly, MySQL ...');
Query OK, 6 rows affected (0.01 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM articles
 -> WHERE MATCH (title,body)
 -> AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

By default, the search is performed in case-insensitive fashion. To perform a case-sensitive full-text
search, use a binary collation for the indexed columns. For example, a column that uses the latin1
character set of can be assigned a collation of latin1_bin to make it case-sensitive for full-text
searches.

When MATCH() is used in a WHERE clause, as in the example shown earlier, the rows returned are
automatically sorted with the highest relevance first as long as the following conditions are met:

• There must be no explicit ORDER BY clause.

• The search must be performed using a full-text index scan rather than a table scan.

1522

Natural Language Full-Text Searches

• If the query joins tables, the full-text index scan must be the leftmost non-constant table in the join.

Given the conditions just listed, it is usually less effort to specify using ORDER BY an explicit sort order
when one is necessary or desired.

Relevance values are nonnegative floating-point numbers. Zero relevance means no similarity. Relevance
is computed based on the number of words in the row (document), the number of unique words in the row,
the total number of words in the collection, and the number of rows that contain a particular word.

Note

The term “document” may be used interchangeably with the term “row”, and both
terms refer to the indexed part of the row. The term “collection” refers to the indexed
columns and encompasses all rows.

To simply count matches, you could use a query like this:

mysql> SELECT COUNT(*) FROM articles
 -> WHERE MATCH (title,body)
 -> AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+
1 row in set (0.00 sec)

You might find it quicker to rewrite the query as follows:

mysql> SELECT
 -> COUNT(IF(MATCH (title,body) AGAINST ('database' IN NATURAL LANGUAGE MODE), 1, NULL))
 -> AS count
 -> FROM articles;
+-------+
| count |
+-------+
| 2 |
+-------+
1 row in set (0.03 sec)

The first query does some extra work (sorting the results by relevance) but also can use an index lookup
based on the WHERE clause. The index lookup might make the first query faster if the search matches
few rows. The second query performs a full table scan, which might be faster than the index lookup if the
search term was present in most rows.

For natural-language full-text searches, the columns named in the MATCH() function must be the same
columns included in some FULLTEXT index in your table. For the preceding query, the columns named in
the MATCH() function (title and body) are the same as those named in the definition of the article
table's FULLTEXT index. To search the title or body separately, you would create separate FULLTEXT
indexes for each column.

You can also perform a boolean search or a search with query expansion. These search types are
described in Section 12.10.2, “Boolean Full-Text Searches”, and Section 12.10.3, “Full-Text Searches with
Query Expansion”.

A full-text search that uses an index can name columns only from a single table in the MATCH() clause
because an index cannot span multiple tables. For MyISAM tables, a boolean search can be done in the
absence of an index (albeit more slowly), in which case it is possible to name columns from multiple tables.

The preceding example is a basic illustration that shows how to use the MATCH() function where rows
are returned in order of decreasing relevance. The next example shows how to retrieve the relevance

1523

Natural Language Full-Text Searches

values explicitly. Returned rows are not ordered because the SELECT statement includes neither WHERE
nor ORDER BY clauses:

mysql> SELECT id, MATCH (title,body)
 -> AGAINST ('Tutorial' IN NATURAL LANGUAGE MODE) AS score
 -> FROM articles;
+----+---------------------+
| id | score |
+----+---------------------+
1	0.22764469683170319
2	0
3	0.22764469683170319
4	0
5	0
6	0
+----+---------------------+
6 rows in set (0.00 sec)

The following example is more complex. The query returns the relevance values and it also sorts the rows
in order of decreasing relevance. To achieve this result, specify MATCH() twice: once in the SELECT list
and once in the WHERE clause. This causes no additional overhead, because the MySQL optimizer notices
that the two MATCH() calls are identical and invokes the full-text search code only once.

mysql> SELECT id, body, MATCH (title,body)
 -> AGAINST ('Security implications of running MySQL as root'
 -> IN NATURAL LANGUAGE MODE) AS score
 -> FROM articles
 -> WHERE MATCH (title,body)
 -> AGAINST('Security implications of running MySQL as root'
 -> IN NATURAL LANGUAGE MODE);
+----+-------------------------------------+-----------------+
| id | body | score |
+----+-------------------------------------+-----------------+
| 4 | 1. Never run mysqld as root. 2. ... | 1.5219271183014 |
| 6 | When configured properly, MySQL ... | 1.3114095926285 |
+----+-------------------------------------+-----------------+
2 rows in set (0.00 sec)

A phrase that is enclosed within double quote (") characters matches only rows that contain the phrase
literally, as it was typed. The full-text engine splits the phrase into words and performs a search in the
FULLTEXT index for the words. Nonword characters need not be matched exactly: Phrase searching
requires only that matches contain exactly the same words as the phrase and in the same order. For
example, "test phrase" matches "test, phrase". If the phrase contains no words that are in the
index, the result is empty. For example, if all words are either stopwords or shorter than the minimum
length of indexed words, the result is empty.

The MySQL FULLTEXT implementation regards any sequence of true word characters (letters, digits, and
underscores) as a word. That sequence may also contain apostrophes ('), but not more than one in a row.
This means that aaa'bbb is regarded as one word, but aaa''bbb is regarded as two words. Apostrophes
at the beginning or the end of a word are stripped by the FULLTEXT parser; 'aaa'bbb' would be parsed
as aaa'bbb.

The FULLTEXT parser determines where words start and end by looking for certain delimiter characters;
for example, (space), , (comma), and . (period). If words are not separated by delimiters (as in, for
example, Chinese), the FULLTEXT parser cannot determine where a word begins or ends. To be able to
add words or other indexed terms in such languages to a FULLTEXT index, you must preprocess them so
that they are separated by some arbitrary delimiter.

It is possible to write a plugin that replaces the built-in full-text parser (only supported with MyISAM). For
details, see The MySQL Plugin API. For example parser plugin source code, see the plugin/fulltext
directory of a MySQL source distribution.

1524

https://dev.mysql.com/doc/extending-mysql/5.6/en/plugin-api.html

Boolean Full-Text Searches

Some words are ignored in full-text searches:

• Any word that is too short is ignored. The default minimum length of words that are found by full-text
searches is three characters for InnoDB search indexes, or four characters for MyISAM. You can control
the cutoff by setting a configuration option before creating the index: innodb_ft_min_token_size
configuration option for InnoDB search indexes, or ft_min_word_len for MyISAM.

• Words in the stopword list are ignored. A stopword is a word such as “the” or “some” that is so
common that it is considered to have zero semantic value. There is a built-in stopword list, but it
can be overridden by a user-defined list. The stopword lists and related configuration options are
different for InnoDB search indexes and MyISAM ones. Stopword processing is controlled by the
configuration options innodb_ft_enable_stopword, innodb_ft_server_stopword_table,
and innodb_ft_user_stopword_table for InnoDB search indexes, and ft_stopword_file for
MyISAM ones.

See Section 12.10.4, “Full-Text Stopwords” to view default stopword lists and how to change them. The
default minimum word length can be changed as described in Section 12.10.6, “Fine-Tuning MySQL Full-
Text Search”.

Every correct word in the collection and in the query is weighted according to its significance in the
collection or query. Thus, a word that is present in many documents has a lower weight, because it has
lower semantic value in this particular collection. Conversely, if the word is rare, it receives a higher weight.
The weights of the words are combined to compute the relevance of the row. This technique works best
with large collections.

MyISAM Limitation

For very small tables, word distribution does not adequately reflect their semantic
value, and this model may sometimes produce bizarre results for search indexes on
MyISAM tables. For example, although the word “MySQL” is present in every row of
the articles table shown earlier, a search for the word in a MyISAM search index
produces no results:

mysql> SELECT * FROM articles
 -> WHERE MATCH (title,body)
 -> AGAINST ('MySQL' IN NATURAL LANGUAGE MODE);
Empty set (0.00 sec)

The search result is empty because the word “MySQL” is present in at least 50% of
the rows, and so is effectively treated as a stopword. This filtering technique is more
suitable for large data sets, where you might not want the result set to return every
second row from a 1GB table, than for small data sets where it might cause poor
results for popular terms.

The 50% threshold can surprise you when you first try full-text searching to see how
it works, and makes InnoDB tables more suited to experimentation with full-text
searches. If you create a MyISAM table and insert only one or two rows of text into
it, every word in the text occurs in at least 50% of the rows. As a result, no search
returns any results until the table contains more rows. Users who need to bypass
the 50% limitation can build search indexes on InnoDB tables, or use the boolean
search mode explained in Section 12.10.2, “Boolean Full-Text Searches”.

12.10.2 Boolean Full-Text Searches

MySQL can perform boolean full-text searches using the IN BOOLEAN MODE modifier. With this modifier,
certain characters have special meaning at the beginning or end of words in the search string. In the
following query, the + and - operators indicate that a word must be present or absent, respectively, for

1525

Boolean Full-Text Searches

a match to occur. Thus, the query retrieves all the rows that contain the word “MySQL” but that do not
contain the word “YourSQL”:

mysql> SELECT * FROM articles WHERE MATCH (title,body)
 -> AGAINST ('+MySQL -YourSQL' IN BOOLEAN MODE);
+----+-----------------------+-------------------------------------+
| id | title | body |
+----+-----------------------+-------------------------------------+
1	MySQL Tutorial	DBMS stands for DataBase ...
2	How To Use MySQL Well	After you went through a ...
3	Optimizing MySQL	In this tutorial, we show ...
4	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...
6	MySQL Security	When configured properly, MySQL ...
+----+-----------------------+-------------------------------------+

Note

In implementing this feature, MySQL uses what is sometimes referred to as implied
Boolean logic, in which

• + stands for AND

• - stands for NOT

• [no operator] implies OR

Boolean full-text searches have these characteristics:

• They do not automatically sort rows in order of decreasing relevance.

• InnoDB tables require a FULLTEXT index on all columns of the MATCH() expression to perform boolean
queries. Boolean queries against a MyISAM search index can work even without a FULLTEXT index,
although a search executed in this fashion would be quite slow.

• The minimum and maximum word length full-text parameters apply: innodb_ft_min_token_size
and innodb_ft_max_token_size for InnoDB search indexes, and ft_min_word_len and
ft_max_word_len for MyISAM ones.

• The stopword list applies, controlled by innodb_ft_enable_stopword,
innodb_ft_server_stopword_table, and innodb_ft_user_stopword_table for InnoDB
search indexes, and ft_stopword_file for MyISAM ones.

• InnoDB full-text search does not support the use of multiple operators on a single search word, as in
this example: '++apple'. MyISAM full-text search successfully processes the same search ignoring all
operators except for the operator immediately adjacent to the search word.

• InnoDB full-text search only supports leading plus or minus signs. For example, InnoDB supports
'+apple' but does not support 'apple+'. Specifying a trailing plus or minus sign causes InnoDB to
report a syntax error.

• InnoDB full-text search does not support the use of a leading plus sign with wildcard ('+*'), a plus and
minus sign combination ('+-'), or leading a plus and minus sign combination ('+-apple'). These
invalid queries return a syntax error.

• InnoDB full-text search does not support the use of the @ symbol in boolean full-text searches. The @
symbol is reserved for use by the @distance proximity search operator.

• They do not use the 50% threshold that applies to MyISAM search indexes.

The boolean full-text search capability supports the following operators:

1526

Boolean Full-Text Searches

• +

A leading or trailing plus sign indicates that this word must be present in each row that is returned.
InnoDB only supports leading plus signs.

• -

A leading or trailing minus sign indicates that this word must not be present in any of the rows that are
returned. InnoDB only supports leading minus signs.

The - operator acts only to exclude rows that are otherwise matched by other search terms. Thus, a
boolean-mode search that contains only terms preceded by - returns an empty result. It does not return
“all rows except those containing any of the excluded terms.”

• (no operator)

By default (when neither + nor - is specified), the word is optional, but the rows that contain it are rated
higher. This mimics the behavior of MATCH() AGAINST() without the IN BOOLEAN MODE modifier.

• @distance

This operator works on InnoDB tables only. It tests whether two or more words all start within a specified
distance from each other, measured in words. Specify the search words within a double-quoted string
immediately before the @distance operator, for example, MATCH(col1) AGAINST('"word1 word2
word3" @8' IN BOOLEAN MODE)

• > <

These two operators are used to change a word's contribution to the relevance value that is assigned
to a row. The > operator increases the contribution and the < operator decreases it. See the example
following this list.

• ()

Parentheses group words into subexpressions. Parenthesized groups can be nested.

• ~

A leading tilde acts as a negation operator, causing the word's contribution to the row's relevance to
be negative. This is useful for marking “noise” words. A row containing such a word is rated lower than
others, but is not excluded altogether, as it would be with the - operator.

• *

The asterisk serves as the truncation (or wildcard) operator. Unlike the other operators, it is appended to
the word to be affected. Words match if they begin with the word preceding the * operator.

If a word is specified with the truncation operator, it is not stripped from a boolean query, even if it is too
short or a stopword. Whether a word is too short is determined from the innodb_ft_min_token_size
setting for InnoDB tables, or ft_min_word_len for MyISAM tables. The wildcarded word is considered
as a prefix that must be present at the start of one or more words. If the minimum word length is 4, a
search for '+word +the*' could return fewer rows than a search for '+word +the', because the
second query ignores the too-short search term the.

• "

A phrase that is enclosed within double quote (") characters matches only rows that contain the phrase
literally, as it was typed. The full-text engine splits the phrase into words and performs a search in the

1527

Boolean Full-Text Searches

FULLTEXT index for the words. Nonword characters need not be matched exactly: Phrase searching
requires only that matches contain exactly the same words as the phrase and in the same order. For
example, "test phrase" matches "test, phrase".

If the phrase contains no words that are in the index, the result is empty. The words might not be in the
index because of a combination of factors: if they do not exist in the text, are stopwords, or are shorter
than the minimum length of indexed words.

The following examples demonstrate some search strings that use boolean full-text operators:

• 'apple banana'

Find rows that contain at least one of the two words.

• '+apple +juice'

Find rows that contain both words.

• '+apple macintosh'

Find rows that contain the word “apple”, but rank rows higher if they also contain “macintosh”.

• '+apple -macintosh'

Find rows that contain the word “apple” but not “macintosh”.

• '+apple ~macintosh'

Find rows that contain the word “apple”, but if the row also contains the word “macintosh”, rate it lower
than if row does not. This is “softer” than a search for '+apple -macintosh', for which the presence
of “macintosh” causes the row not to be returned at all.

• '+apple +(>turnover <strudel)'

Find rows that contain the words “apple” and “turnover”, or “apple” and “strudel” (in any order), but rank
“apple turnover” higher than “apple strudel”.

• 'apple*'

Find rows that contain words such as “apple”, “apples”, “applesauce”, or “applet”.

• '"some words"'

Find rows that contain the exact phrase “some words” (for example, rows that contain “some words of
wisdom” but not “some noise words”).

Note

The " characters that enclose the phrase are operator characters that delimit the
phrase. They are not the quotation marks that enclose the search string itself.

Relevancy Rankings for InnoDB Boolean Mode Search

InnoDB full-text search is modeled on the Sphinx full-text search engine, and the algorithms used are
based on BM25 and TF-IDF ranking algorithms. For these reasons, relevancy rankings for InnoDB
boolean full-text search may differ from MyISAM relevancy rankings.

InnoDB uses a variation of the “term frequency-inverse document frequency” (TF-IDF) weighting system
to rank a document's relevance for a given full-text search query. The TF-IDF weighting is based on how

1528

http://sphinxsearch.com/
http://en.wikipedia.org/wiki/Okapi_BM25
http://en.wikipedia.org/wiki/TF-IDF

Boolean Full-Text Searches

frequently a word appears in a document, offset by how frequently the word appears in all documents in
the collection. In other words, the more frequently a word appears in a document, and the less frequently
the word appears in the document collection, the higher the document is ranked.

How Relevancy Ranking is Calculated

The term frequency (TF) value is the number of times that a word appears in a document. The
inverse document frequency (IDF) value of a word is calculated using the following formula, where
total_records is the number of records in the collection, and matching_records is the number of
records that the search term appears in.

${IDF} = log10(${total_records} / ${matching_records})

When a document contains a word multiple times, the IDF value is multiplied by the TF value:

${TF} * ${IDF}

Using the TF and IDF values, the relevancy ranking for a document is calculated using this formula:

${rank} = ${TF} * ${IDF} * ${IDF}

The formula is demonstrated in the following examples.

Relevancy Ranking for a Single Word Search

This example demonstrates the relevancy ranking calculation for a single-word search.

mysql> CREATE TABLE articles (
id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
title VARCHAR(200),
body TEXT,
FULLTEXT (title,body)
) ENGINE=InnoDB;
Query OK, 0 rows affected (1.04 sec)

mysql> INSERT INTO articles (title,body) VALUES
('MySQL Tutorial','This database tutorial ...'),
("How To Use MySQL",'After you went through a ...'),
('Optimizing Your Database','In this database tutorial ...'),
('MySQL vs. YourSQL','When comparing databases ...'),
('MySQL Security','When configured properly, MySQL ...'),
('Database, Database, Database','database database database'),
('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
('MySQL Full-Text Indexes', 'MySQL fulltext indexes use a ..');
Query OK, 8 rows affected (0.06 sec)
Records: 8 Duplicates: 0 Warnings: 0

mysql> SELECT id, title, body, MATCH (title,body) AGAINST ('database' IN BOOLEAN MODE)
AS score FROM articles ORDER BY score DESC;
+----+------------------------------+-------------------------------------+---------------------+
| id | title | body | score |
+----+------------------------------+-------------------------------------+---------------------+
6	Database, Database, Database	database database database	1.0886961221694946
3	Optimizing Your Database	In this database tutorial ...	0.36289870738983154
1	MySQL Tutorial	This database tutorial ...	0.18144935369491577
2	How To Use MySQL	After you went through a ...	0
4	MySQL vs. YourSQL	When comparing databases ...	0
5	MySQL Security	When configured properly, MySQL ...	0
7	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...	0
8	MySQL Full-Text Indexes	MySQL fulltext indexes use a ..	0
+----+------------------------------+-------------------------------------+---------------------+
8 rows in set (0.00 sec)

1529

Boolean Full-Text Searches

There are 8 records in total, with 3 that match the “database” search term. The first record (id 6) contains
the search term 6 times and has a relevancy ranking of 1.0886961221694946. This ranking value is
calculated using a TF value of 6 (the “database” search term appears 6 times in record id 6) and an IDF
value of 0.42596873216370745, which is calculated as follows (where 8 is the total number of records and
3 is the number of records that the search term appears in):

${IDF} = log10(8 / 3) = 0.42596873216370745

The TF and IDF values are then entered into the ranking formula:

${rank} = ${TF} * ${IDF} * ${IDF}

Performing the calculation in the MySQL command-line client returns a ranking value of
1.088696164686938.

mysql> SELECT 6*log10(8/3)*log10(8/3);
+-------------------------+
| 6*log10(8/3)*log10(8/3) |
+-------------------------+
| 1.088696164686938 |
+-------------------------+
1 row in set (0.00 sec)

Note

You may notice a slight difference in the ranking values returned by the
SELECT ... MATCH ... AGAINST statement and the MySQL command-line
client (1.0886961221694946 versus 1.088696164686938). The difference is
due to how the casts between integers and floats/doubles are performed internally
by InnoDB (along with related precision and rounding decisions), and how they are
performed elsewhere, such as in the MySQL command-line client or other types of
calculators.

Relevancy Ranking for a Multiple Word Search

This example demonstrates the relevancy ranking calculation for a multiple-word full-text search based on
the articles table and data used in the previous example.

If you search on more than one word, the relevancy ranking value is a sum of the relevancy ranking value
for each word, as shown in this formula:

${rank} = ${TF} * ${IDF} * ${IDF} + ${TF} * ${IDF} * ${IDF}

Performing a search on two terms ('mysql tutorial') returns the following results:

mysql> SELECT id, title, body, MATCH (title,body) AGAINST ('mysql tutorial' IN BOOLEAN MODE)
 AS score FROM articles ORDER BY score DESC;
+----+------------------------------+-------------------------------------+----------------------+
| id | title | body | score |
+----+------------------------------+-------------------------------------+----------------------+
1	MySQL Tutorial	This database tutorial ...	0.7405621409416199
3	Optimizing Your Database	In this database tutorial ...	0.3624762296676636
5	MySQL Security	When configured properly, MySQL ...	0.031219376251101494
8	MySQL Full-Text Indexes	MySQL fulltext indexes use a ..	0.031219376251101494
2	How To Use MySQL	After you went through a ...	0.015609688125550747
4	MySQL vs. YourSQL	When comparing databases ...	0.015609688125550747
7	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...	0.015609688125550747
6	Database, Database, Database	database database database	0
+----+------------------------------+-------------------------------------+----------------------+
8 rows in set (0.00 sec)

1530

Full-Text Searches with Query Expansion

In the first record (id 8), 'mysql' appears once and 'tutorial' appears twice. There are six matching records
for 'mysql' and two matching records for 'tutorial'. The MySQL command-line client returns the expected
ranking value when inserting these values into the ranking formula for a multiple word search:

mysql> SELECT (1*log10(8/6)*log10(8/6)) + (2*log10(8/2)*log10(8/2));
+---+
| (1*log10(8/6)*log10(8/6)) + (2*log10(8/2)*log10(8/2)) |
+---+
| 0.7405621541938003 |
+---+
1 row in set (0.00 sec)

Note

The slight difference in the ranking values returned by the SELECT ...
MATCH ... AGAINST statement and the MySQL command-line client is explained
in the preceding example.

12.10.3 Full-Text Searches with Query Expansion

Full-text search supports query expansion (and in particular, its variant “blind query expansion”). This is
generally useful when a search phrase is too short, which often means that the user is relying on implied
knowledge that the full-text search engine lacks. For example, a user searching for “database” may really
mean that “MySQL”, “Oracle”, “DB2”, and “RDBMS” all are phrases that should match “databases” and
should be returned, too. This is implied knowledge.

Blind query expansion (also known as automatic relevance feedback) is enabled by adding WITH QUERY
EXPANSION or IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION following the search phrase.
It works by performing the search twice, where the search phrase for the second search is the original
search phrase concatenated with the few most highly relevant documents from the first search. Thus,
if one of these documents contains the word “databases” and the word “MySQL”, the second search
finds the documents that contain the word “MySQL” even if they do not contain the word “database”. The
following example shows this difference:

mysql> SELECT * FROM articles
 WHERE MATCH (title,body)
 AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

mysql> SELECT * FROM articles
 WHERE MATCH (title,body)
 AGAINST ('database' WITH QUERY EXPANSION);
+----+-----------------------+--+
| id | title | body |
+----+-----------------------+--+
5	MySQL vs. YourSQL	In the following database comparison ...
1	MySQL Tutorial	DBMS stands for DataBase ...
3	Optimizing MySQL	In this tutorial we show ...
6	MySQL Security	When configured properly, MySQL ...
2	How To Use MySQL Well	After you went through a ...
4	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...
+----+-----------------------+--+
6 rows in set (0.00 sec)

Another example could be searching for books by Georges Simenon about Maigret, when a user is not
sure how to spell “Maigret”. A search for “Megre and the reluctant witnesses” finds only “Maigret and the

1531

Full-Text Stopwords

Reluctant Witnesses” without query expansion. A search with query expansion finds all books with the
word “Maigret” on the second pass.

Note

Because blind query expansion tends to increase noise significantly by returning
nonrelevant documents, use it only when a search phrase is short.

12.10.4 Full-Text Stopwords

The stopword list is loaded and searched for full-text queries using the server character set and
collation (the values of the character_set_server and collation_server system variables).
False hits or misses might occur for stopword lookups if the stopword file or columns used for full-text
indexing or searches have a character set or collation different from character_set_server or
collation_server.

Case sensitivity of stopword lookups depends on the server collation. For example, lookups are case-
insensitive if the collation is latin1_swedish_ci, whereas lookups are case-sensitive if the collation is
latin1_general_cs or latin1_bin.

• Stopwords for InnoDB Search Indexes

• Stopwords for MyISAM Search Indexes

Stopwords for InnoDB Search Indexes

InnoDB has a relatively short list of default stopwords, because documents from technical, literary, and
other sources often use short words as keywords or in significant phrases. For example, you might search
for “to be or not to be” and expect to get a sensible result, rather than having all those words ignored.

To see the default InnoDB stopword list, query the Information Schema
INNODB_FT_DEFAULT_STOPWORD table.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DEFAULT_STOPWORD;
+-------+
| value |
+-------+
| a |
| about |
| an |
| are |
| as |
| at |
| be |
| by |
| com |
| de |
| en |
| for |
| from |
| how |
| i |
| in |
| is |
| it |
| la |
| of |
| on |
| or |
| that |

1532

Full-Text Stopwords

| the |
| this |
| to |
| was |
| what |
| when |
| where |
| who |
| will |
| with |
| und |
| the |
| www |
+-------+
36 rows in set (0.00 sec)

To define your own stopword list for all InnoDB tables, define a table with the same structure as
the INNODB_FT_DEFAULT_STOPWORD table, populate it with stopwords, and set the value of the
innodb_ft_server_stopword_table option to a value in the form db_name/table_name before
creating the full-text index. The stopword table must have a single VARCHAR column named value. The
following example demonstrates creating and configuring a new global stopword table for InnoDB.

-- Create a new stopword table

mysql> CREATE TABLE my_stopwords(value VARCHAR(30)) ENGINE = INNODB;
Query OK, 0 rows affected (0.01 sec)

-- Insert stopwords (for simplicity, a single stopword is used in this example)

mysql> INSERT INTO my_stopwords(value) VALUES ('Ishmael');
Query OK, 1 row affected (0.00 sec)

-- Create the table

mysql> CREATE TABLE opening_lines (
id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
opening_line TEXT(500),
author VARCHAR(200),
title VARCHAR(200)
) ENGINE=InnoDB;
Query OK, 0 rows affected (0.01 sec)

-- Insert data into the table

mysql> INSERT INTO opening_lines(opening_line,author,title) VALUES
('Call me Ishmael.','Herman Melville','Moby-Dick'),
('A screaming comes across the sky.','Thomas Pynchon','Gravity\'s Rainbow'),
('I am an invisible man.','Ralph Ellison','Invisible Man'),
('Where now? Who now? When now?','Samuel Beckett','The Unnamable'),
('It was love at first sight.','Joseph Heller','Catch-22'),
('All this happened, more or less.','Kurt Vonnegut','Slaughterhouse-Five'),
('Mrs. Dalloway said she would buy the flowers herself.','Virginia Woolf','Mrs. Dalloway'),
('It was a pleasure to burn.','Ray Bradbury','Fahrenheit 451');
Query OK, 8 rows affected (0.00 sec)
Records: 8 Duplicates: 0 Warnings: 0

-- Set the innodb_ft_server_stopword_table option to the new stopword table

mysql> SET GLOBAL innodb_ft_server_stopword_table = 'test/my_stopwords';
Query OK, 0 rows affected (0.00 sec)

-- Create the full-text index (which rebuilds the table if no FTS_DOC_ID column is defined)

mysql> CREATE FULLTEXT INDEX idx ON opening_lines(opening_line);
Query OK, 0 rows affected, 1 warning (1.17 sec)
Records: 0 Duplicates: 0 Warnings: 1

1533

Full-Text Stopwords

Verify that the specified stopword ('Ishmael') does not appear by querying the words in Information
Schema INNODB_FT_INDEX_TABLE.

Note

By default, words less than 3 characters in length or greater than 84 characters in
length do not appear in an InnoDB full-text search index. Maximum and minimum
word length values are configurable using the innodb_ft_max_token_size and
innodb_ft_min_token_size variables.

mysql> SET GLOBAL innodb_ft_aux_table='test/opening_lines';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT word FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_TABLE LIMIT 15;
+-----------+
| word |
+-----------+
| across |
| all |
| burn |
| buy |
| call |
| comes |
| dalloway |
| first |
| flowers |
| happened |
| herself |
| invisible |
| less |
| love |
| man |
+-----------+
15 rows in set (0.00 sec)

To create stopword lists on a table-by-table basis, create other stopword tables and use the
innodb_ft_user_stopword_table option to specify the stopword table that you want to use before
you create the full-text index.

Stopwords for MyISAM Search Indexes

The stopword file is loaded and searched using latin1 if character_set_server is ucs2, utf16,
utf16le, or utf32.

 To override the default stopword list for MyISAM tables, set the ft_stopword_file system variable.
(See Section 5.1.7, “Server System Variables”.) The variable value should be the path name of the file
containing the stopword list, or the empty string to disable stopword filtering. The server looks for the file
in the data directory unless an absolute path name is given to specify a different directory. After changing
the value of this variable or the contents of the stopword file, restart the server and rebuild your FULLTEXT
indexes.

The stopword list is free-form, separating stopwords with any nonalphanumeric character such as newline,
space, or comma. Exceptions are the underscore character (_) and a single apostrophe (') which are
treated as part of a word. The character set of the stopword list is the server's default character set; see
Section 10.3.2, “Server Character Set and Collation”.

The following list shows the default stopwords for MyISAM search indexes. In a MySQL source distribution,
you can find this list in the storage/myisam/ft_static.c file.

a's able about above according
accordingly across actually after afterwards
again against ain't all allow

1534

Full-Text Stopwords

allows almost alone along already
also although always am among
amongst an and another any
anybody anyhow anyone anything anyway
anyways anywhere apart appear appreciate
appropriate are aren't around as
aside ask asking associated at
available away awfully be became
because become becomes becoming been
before beforehand behind being believe
below beside besides best better
between beyond both brief but
by c'mon c's came can
can't cannot cant cause causes
certain certainly changes clearly co
com come comes concerning consequently
consider considering contain containing contains
corresponding could couldn't course currently
definitely described despite did didn't
different do does doesn't doing
don't done down downwards during
each edu eg eight either
else elsewhere enough entirely especially
et etc even ever every
everybody everyone everything everywhere ex
exactly example except far few
fifth first five followed following
follows for former formerly forth
four from further furthermore get
gets getting given gives go
goes going gone got gotten
greetings had hadn't happens hardly
has hasn't have haven't having
he he's hello help hence
her here here's hereafter hereby
herein hereupon hers herself hi
him himself his hither hopefully
how howbeit however i'd i'll
i'm i've ie if ignored
immediate in inasmuch inc indeed
indicate indicated indicates inner insofar
instead into inward is isn't
it it'd it'll it's its
itself just keep keeps kept
know known knows last lately
later latter latterly least less
lest let let's like liked
likely little look looking looks
ltd mainly many may maybe
me mean meanwhile merely might
more moreover most mostly much
must my myself name namely
nd near nearly necessary need
needs neither never nevertheless new
next nine no nobody non
none noone nor normally not
nothing novel now nowhere obviously
of off often oh ok
okay old on once one
ones only onto or other
others otherwise ought our ours
ourselves out outside over overall
own particular particularly per perhaps
placed please plus possible presumably
probably provides que quite qv
rather rd re really reasonably
regarding regardless regards relatively respectively

1535

Full-Text Restrictions

right said same saw say
saying says second secondly see
seeing seem seemed seeming seems
seen self selves sensible sent
serious seriously seven several shall
she should shouldn't since six
so some somebody somehow someone
something sometime sometimes somewhat somewhere
soon sorry specified specify specifying
still sub such sup sure
t's take taken tell tends
th than thank thanks thanx
that that's thats the their
theirs them themselves then thence
there there's thereafter thereby therefore
therein theres thereupon these they
they'd they'll they're they've think
third this thorough thoroughly those
though three through throughout thru
thus to together too took
toward towards tried tries truly
try trying twice two un
under unfortunately unless unlikely until
unto up upon us use
used useful uses using usually
value various very via viz
vs want wants was wasn't
way we we'd we'll we're
we've welcome well went were
weren't what what's whatever when
whence whenever where where's whereafter
whereas whereby wherein whereupon wherever
whether which while whither who
who's whoever whole whom whose
why will willing wish with
within without won't wonder would
wouldn't yes yet you you'd
you'll you're you've your yours
yourself yourselves zero

12.10.5 Full-Text Restrictions

• Full-text searches are supported for InnoDB and MyISAM tables only.

• Full-text searches are not supported for partitioned tables. See Section 19.6, “Restrictions and
Limitations on Partitioning”.

• Full-text searches can be used with most multibyte character sets. The exception is that for Unicode, the
utf8 character set can be used, but not the ucs2 character set. Although FULLTEXT indexes on ucs2
columns cannot be used, you can perform IN BOOLEAN MODE searches on a ucs2 column that has no
such index.

The remarks for utf8 also apply to utf8mb4, and the remarks for ucs2 also apply to utf16, utf16le,
and utf32.

• Ideographic languages such as Chinese and Japanese do not have word delimiters. Therefore, the
FULLTEXT parser cannot determine where words begin and end in these and other such languages.

• Although the use of multiple character sets within a single table is supported, all columns in a FULLTEXT
index must use the same character set and collation.

1536

Fine-Tuning MySQL Full-Text Search

• The MATCH() column list must match exactly the column list in some FULLTEXT index definition for the
table, unless this MATCH() is IN BOOLEAN MODE on a MyISAM table. For MyISAM tables, boolean-
mode searches can be done on nonindexed columns, although they are likely to be slow.

• The argument to AGAINST() must be a string value that is constant during query evaluation. This rules
out, for example, a table column because that can differ for each row.

• Index hints are more limited for FULLTEXT searches than for non-FULLTEXT searches. See
Section 8.9.3, “Index Hints”.

• For InnoDB, all DML operations (INSERT, UPDATE, DELETE) involving columns with full-text indexes
are processed at transaction commit time. For example, for an INSERT operation, an inserted string is
tokenized and decomposed into individual words. The individual words are then added to full-text index
tables when the transaction is committed. As a result, full-text searches only return committed data.

• The '%' character is not a supported wildcard character for full-text searches.

12.10.6 Fine-Tuning MySQL Full-Text Search

MySQL's full-text search capability has few user-tunable parameters. You can exert more control over full-
text searching behavior if you have a MySQL source distribution because some changes require source
code modifications. See Section 2.9, “Installing MySQL from Source”.

Full-text search is carefully tuned for effectiveness. Modifying the default behavior in most cases can
actually decrease effectiveness. Do not alter the MySQL sources unless you know what you are doing.

Most full-text variables described in this section must be set at server startup time. A server restart is
required to change them; they cannot be modified while the server is running.

Some variable changes require that you rebuild the FULLTEXT indexes in your tables. Instructions for
doing so are given later in this section.

• Configuring Minimum and Maximum Word Length

• Configuring the Natural Language Search Threshold

• Modifying Boolean Full-Text Search Operators

• Character Set Modifications

• Rebuilding InnoDB Full-Text Indexes

• Optimizing InnoDB Full-Text Indexes

• Rebuilding MyISAM Full-Text Indexes

Configuring Minimum and Maximum Word Length

The minimum and maximum lengths of words to be indexed are defined by the
innodb_ft_min_token_size and innodb_ft_max_token_size for InnoDB search indexes, and
ft_min_word_len and ft_max_word_len for MyISAM ones. After changing any of these options,
rebuild your FULLTEXT indexes for the change to take effect. For example, to make two-character words
searchable, you could put the following lines in an option file:

[mysqld]
innodb_ft_min_token_size=2
ft_min_word_len=2

Then restart the server and rebuild your FULLTEXT indexes. For MyISAM tables, note the remarks
regarding myisamchk in the instructions that follow for rebuilding MyISAM full-text indexes.

1537

Fine-Tuning MySQL Full-Text Search

Configuring the Natural Language Search Threshold

For MyISAM search indexes, the 50% threshold for natural language searches is determined by the
particular weighting scheme chosen. To disable it, look for the following line in storage/myisam/
ftdefs.h:

#define GWS_IN_USE GWS_PROB

Change that line to this:

#define GWS_IN_USE GWS_FREQ

Then recompile MySQL. There is no need to rebuild the indexes in this case.

Note

By making this change, you severely decrease MySQL's ability to provide adequate
relevance values for the MATCH() function. If you really need to search for such
common words, it would be better to search using IN BOOLEAN MODE instead,
which does not observe the 50% threshold.

Modifying Boolean Full-Text Search Operators

To change the operators used for boolean full-text searches on MyISAM tables, set the
ft_boolean_syntax system variable. (InnoDB does not have an equivalent setting.) This variable
can be changed while the server is running, but you must have privileges sufficient to set global system
variables (see Section 5.1.8.1, “System Variable Privileges”). No rebuilding of indexes is necessary in this
case.

Character Set Modifications

You can change the set of characters that are considered word characters in several ways, as described
in the following list. After making the modification, rebuild the indexes for each table that contains any
FULLTEXT indexes. Suppose that you want to treat the hyphen character ('-') as a word character. Use one
of these methods:

• Modify the MySQL source: In storage/innobase/handler/ha_innodb.cc (for InnoDB), or in
storage/myisam/ftdefs.h (for MyISAM), see the true_word_char() and misc_word_char()
macros. Add '-' to one of those macros and recompile MySQL.

• Modify a character set file: This requires no recompilation. The true_word_char() macro uses
a “character type” table to distinguish letters and numbers from other characters. . You can edit the
contents of the <ctype><map> array in one of the character set XML files to specify that '-' is
a “letter.” Then use the given character set for your FULLTEXT indexes. For information about the
<ctype><map> array format, see Section 10.13.1, “Character Definition Arrays”.

• Add a new collation for the character set used by the indexed columns, and alter the columns to use
that collation. For general information about adding collations, see Section 10.14, “Adding a Collation
to a Character Set”. For an example specific to full-text indexing, see Section 12.10.7, “Adding a User-
Defined Collation for Full-Text Indexing”.

Rebuilding InnoDB Full-Text Indexes

For the changes to take effect, FULLTEXT indexes must be rebuilt after modifying any of the
following full-text index variables: innodb_ft_min_token_size; innodb_ft_max_token_size;
innodb_ft_server_stopword_table; innodb_ft_user_stopword_table;
innodb_ft_enable_stopword. Modifying innodb_ft_min_token_size or
innodb_ft_max_token_size requires restarting the server.

1538

Fine-Tuning MySQL Full-Text Search

To rebuild FULLTEXT indexes for an InnoDB table, use ALTER TABLE with the DROP INDEX and ADD
INDEX options to drop and re-create each index.

Optimizing InnoDB Full-Text Indexes

Running OPTIMIZE TABLE on a table with a full-text index rebuilds the full-text index, removing deleted
Document IDs and consolidating multiple entries for the same word, where possible.

To optimize a full-text index, enable innodb_optimize_fulltext_only and run OPTIMIZE TABLE.

mysql> set GLOBAL innodb_optimize_fulltext_only=ON;
Query OK, 0 rows affected (0.01 sec)

mysql> OPTIMIZE TABLE opening_lines;
+--------------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------------+----------+----------+----------+
| test.opening_lines | optimize | status | OK |
+--------------------+----------+----------+----------+
1 row in set (0.01 sec)

To avoid lengthy rebuild times for full-text indexes on large tables, you can use the
innodb_ft_num_word_optimize option to perform the optimization in stages. The
innodb_ft_num_word_optimize option defines the number of words that are optimized each time
OPTIMIZE TABLE is run. The default setting is 2000, which means that 2000 words are optimized each
time OPTIMIZE TABLE is run. Subsequent OPTIMIZE TABLE operations continue from where the
preceding OPTIMIZE TABLE operation ended.

Rebuilding MyISAM Full-Text Indexes

If you modify full-text variables that affect indexing (ft_min_word_len, ft_max_word_len, or
ft_stopword_file), or if you change the stopword file itself, you must rebuild your FULLTEXT indexes
after making the changes and restarting the server.

To rebuild the FULLTEXT indexes for a MyISAM table, it is sufficient to do a QUICK repair operation:

mysql> REPAIR TABLE tbl_name QUICK;

Alternatively, use ALTER TABLE as just described. In some cases, this may be faster than a repair
operation.

Each table that contains any FULLTEXT index must be repaired as just shown. Otherwise, queries for the
table may yield incorrect results, and modifications to the table cause the server to see the table as corrupt
and in need of repair.

If you use myisamchk to perform an operation that modifies MyISAM table indexes (such as repair or
analyze), the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum word
length, maximum word length, and stopword file unless you specify otherwise. This can result in queries
failing.

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length or
stopword file values used by the server, specify the same ft_min_word_len, ft_max_word_len, and
ft_stopword_file values for myisamchk that you use for mysqld. For example, if you have set the
minimum word length to 3, you can repair a table with myisamchk like this:

myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, place each one in
both the [mysqld] and [myisamchk] sections of an option file:

1539

Adding a User-Defined Collation for Full-Text Indexing

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk for MyISAM table index modification is to use the REPAIR TABLE,
ANALYZE TABLE, OPTIMIZE TABLE, or ALTER TABLE statements. These statements are performed by
the server, which knows the proper full-text parameter values to use.

12.10.7 Adding a User-Defined Collation for Full-Text Indexing

This section describes how to add a user-defined collation for full-text searches using the built-in full-text
parser. The sample collation is like latin1_swedish_ci but treats the '-' character as a letter rather
than as a punctuation character so that it can be indexed as a word character. General information about
adding collations is given in Section 10.14, “Adding a Collation to a Character Set”; it is assumed that you
have read it and are familiar with the files involved.

To add a collation for full-text indexing, use the following procedure. The instructions here add a collation
for a simple character set, which as discussed in Section 10.14, “Adding a Collation to a Character Set”,
can be created using a configuration file that describes the character set properties. For a complex
character set such as Unicode, create collations using C source files that describe the character set
properties.

1. Add a collation to the Index.xml file. The permitted range of IDs for user-defined collations is given
in Section 10.14.2, “Choosing a Collation ID”. The ID must be unused, so choose a value different from
1025 if that ID is already taken on your system.

<charset name="latin1">
...
<collation name="latin1_fulltext_ci" id="1025"/>
</charset>

2. Declare the sort order for the collation in the latin1.xml file. In this case, the order can be copied
from latin1_swedish_ci:

<collation name="latin1_fulltext_ci">
<map>
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D D7 D8 55 55 55 59 59 DE DF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D F7 D8 55 55 55 59 59 DE FF
</map>
</collation>

3. Modify the ctype array in latin1.xml. Change the value corresponding to 0x2D (which is the code
for the '-' character) from 10 (punctuation) to 01 (uppercase letter). In the following array, this is the
element in the fourth row down, third value from the end.

<ctype>

1540

Cast Functions and Operators

<map>
00
20 20 20 20 20 20 20 20 20 28 28 28 28 28 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
48 10 10 10 10 10 10 10 10 10 10 10 10 01 10 10
84 84 84 84 84 84 84 84 84 84 10 10 10 10 10 10
10 81 81 81 81 81 81 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 10 10 10 10 10
10 82 82 82 82 82 82 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 02 02 02 02 10 10 10 10 20
10 00 10 02 10 10 10 10 10 10 01 10 01 00 01 00
00 10 10 10 10 10 10 10 10 10 02 10 02 00 02 01
48 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 10 01 01 01 01 01 01 01 02
02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 10 02 02 02 02 02 02 02 02
</map>
</ctype>

4. Restart the server.

5. To employ the new collation, include it in the definition of columns that are to use it:

mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected (0.13 sec)

mysql> CREATE TABLE t1 (
 a TEXT CHARACTER SET latin1 COLLATE latin1_fulltext_ci,
 FULLTEXT INDEX(a)
) ENGINE=InnoDB;
Query OK, 0 rows affected (0.47 sec)

6. Test the collation to verify that hyphen is considered as a word character:

mysql> INSERT INTO t1 VALUEs ('----'),('....'),('abcd');
Query OK, 3 rows affected (0.22 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t1 WHERE MATCH a AGAINST ('----' IN BOOLEAN MODE);
+------+
| a |
+------+
| ---- |
+------+
1 row in set (0.00 sec)

12.11 Cast Functions and Operators
Table 12.15 Cast Functions and Operators

Name Description

BINARY Cast a string to a binary string

CAST() Cast a value as a certain type

CONVERT() Cast a value as a certain type

Cast functions and operators enable conversion of values from one data type to another.

• Cast Function and Operator Descriptions

• Character Set Conversions

1541

Cast Function and Operator Descriptions

• Character Set Conversions for String Comparisons

• Other Uses for Cast Operations

Cast Function and Operator Descriptions

• BINARY expr

The BINARY operator converts the expression to a binary string (a string that has the binary character
set and binary collation). A common use for BINARY is to force a character string comparison to be
done byte by byte using numeric byte values rather than character by character. The BINARY operator
also causes trailing spaces in comparisons to be significant. For information about the differences
between the binary collation of the binary character set and the _bin collations of nonbinary
character sets, see Section 10.8.5, “The binary Collation Compared to _bin Collations”.

mysql> SELECT 'a' = 'A';
 -> 1
mysql> SELECT BINARY 'a' = 'A';
 -> 0
mysql> SELECT 'a' = 'a ';
 -> 1
mysql> SELECT BINARY 'a' = 'a ';
 -> 0

In a comparison, BINARY affects the entire operation; it can be given before either operand with the
same result.

To convert a string expression to a binary string, these constructs are equivalent:

CONVERT(expr USING BINARY)
CAST(expr AS BINARY)
BINARY expr

If a value is a string literal, it can be designated as a binary string without converting it by using the
_binary character set introducer:

mysql> SELECT 'a' = 'A';
 -> 1
mysql> SELECT _binary 'a' = 'A';
 -> 0

For information about introducers, see Section 10.3.8, “Character Set Introducers”.

The BINARY operator in expressions differs in effect from the BINARY attribute in character column
definitions. For a character column defined with the BINARY attribute, MySQL assigns the table default
character set and the binary (_bin) collation of that character set. Every nonbinary character set has a
_bin collation. For example, if the table default character set is utf8, these two column definitions are
equivalent:

CHAR(10) BINARY
CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin

The use of CHARACTER SET binary in the definition of a CHAR, VARCHAR, or TEXT column causes the
column to be treated as the corresponding binary string data type. For example, the following pairs of
definitions are equivalent:

CHAR(10) CHARACTER SET binary
BINARY(10)

VARCHAR(10) CHARACTER SET binary
VARBINARY(10)

1542

Cast Function and Operator Descriptions

TEXT CHARACTER SET binary
BLOB

If BINARY is invoked from within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

1543

Cast Function and Operator Descriptions

• CAST(expr AS type)

CAST(expr AS type takes an expression of any type and produces a result value of the specified
type. This operation may also be expressed as CONVERT(expr, type), which is equivalent.

These type values are permitted:

• BINARY[(N)]

Produces a string with the BINARY data type. If the optional length N is given, BINARY(N) causes the
cast to use no more than N bytes of the argument. Values shorter than N bytes are padded with 0x00
bytes to a length of N.

For a description of how casting to BINARY affects comparisons, see Section 11.3.3, “The BINARY
and VARBINARY Types”.

• CHAR[(N)] [charset_info]

Produces a string with the CHAR data type. If the optional length N is given, CHAR(N) causes the
cast to use no more than N characters of the argument. No padding occurs for values shorter than N
characters.

With no charset_info clause, CHAR produces a string with the default character set. To specify the
character set explicitly, these charset_info values are permitted:

• CHARACTER SET charset_name: Produces a string with the given character set.

• ASCII: Shorthand for CHARACTER SET latin1.

• UNICODE: Shorthand for CHARACTER SET ucs2.

In all cases, the string has the character set default collation.

• DATE

Produces a DATE value.

• DATETIME

Produces a DATETIME value.

• DECIMAL[(M[,D])]

Produces a DECIMAL value. If the optional M and D values are given, they specify the maximum
number of digits (the precision) and the number of digits following the decimal point (the scale).

• NCHAR[(N)]

Like CHAR, but produces a string with the national character set. See Section 10.3.7, “The National
Character Set”.

Unlike CHAR, NCHAR does not permit trailing character set information to be specified.

• SIGNED [INTEGER]

Produces a signed integer value.

• TIME

1544

Character Set Conversions

Produces a TIME value.

• UNSIGNED [INTEGER]

Produces an unsigned integer value.

• CONVERT(expr USING transcoding_name)

CONVERT(expr,type)

CONVERT(expr USING transcoding_name) is standard SQL syntax. The non-USING form of
CONVERT() is ODBC syntax.

CONVERT(expr USING transcoding_name) converts data between different character sets. In
MySQL, transcoding names are the same as the corresponding character set names. For example, this
statement converts the string 'abc' in the default character set to the corresponding string in the utf8
character set:

SELECT CONVERT('abc' USING utf8);

CONVERT(expr, type) syntax (without USING) takes an expression and a type value specifying a
result type, and produces a result value of the specified type. This operation may also be expressed as
CAST(expr AS type), which is equivalent. For more information, see the description of CAST().

Character Set Conversions

CONVERT() with a USING clause converts data between character sets:

CONVERT(expr USING transcoding_name)

In MySQL, transcoding names are the same as the corresponding character set names.

Examples:

SELECT CONVERT('test' USING utf8);
SELECT CONVERT(_latin1'Müller' USING utf8);
INSERT INTO utf8_table (utf8_column)
 SELECT CONVERT(latin1_column USING utf8) FROM latin1_table;

To convert strings between character sets, you can also use CONVERT(expr, type) syntax (without
USING), or CAST(expr AS type), which is equivalent:

CONVERT(string, CHAR[(N)] CHARACTER SET charset_name)
CAST(string AS CHAR[(N)] CHARACTER SET charset_name)

Examples:

SELECT CONVERT('test', CHAR CHARACTER SET utf8);
SELECT CAST('test' AS CHAR CHARACTER SET utf8);

If you specify CHARACTER SET charset_name as just shown, the character set and collation
of the result are charset_name and the default collation of charset_name. If you omit
CHARACTER SET charset_name, the character set and collation of the result are defined by the
character_set_connection and collation_connection system variables that determine
the default connection character set and collation (see Section 10.4, “Connection Character Sets and
Collations”).

A COLLATE clause is not permitted within a CONVERT() or CAST() call, but you can apply it to the function
result. For example, these are legal:

1545

Character Set Conversions for String Comparisons

SELECT CONVERT('test' USING utf8) COLLATE utf8_bin;
SELECT CONVERT('test', CHAR CHARACTER SET utf8) COLLATE utf8_bin;
SELECT CAST('test' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin;

But these are illegal:

SELECT CONVERT('test' USING utf8 COLLATE utf8_bin);
SELECT CONVERT('test', CHAR CHARACTER SET utf8 COLLATE utf8_bin);
SELECT CAST('test' AS CHAR CHARACTER SET utf8 COLLATE utf8_bin);

For string literals, another way to specify the character set is to use a character set introducer. _latin1
and _latin2 in the preceding example are instances of introducers. Unlike conversion functions such
as CAST(), or CONVERT(), which convert a string from one character set to another, an introducer
designates a string literal as having a particular character set, with no conversion involved. For more
information, see Section 10.3.8, “Character Set Introducers”.

Character Set Conversions for String Comparisons

Normally, you cannot compare a BLOB value or other binary string in case-insensitive fashion because
binary strings use the binary character set, which has no collation with the concept of lettercase. To
perform a case-insensitive comparison, first use the CONVERT() or CAST() function to convert the value
to a nonbinary string. Comparisons of the resulting string use its collation. For example, if the conversion
result collation is not case-sensitive, a LIKE operation is not case-sensitive. That is true for the following
operation because the default latin1 collation (latin1_swedish_ci) is not case-sensitive:

SELECT 'A' LIKE CONVERT(blob_col USING latin1)
 FROM tbl_name;

To specify a particular collation for the converted string, use a COLLATE clause following the CONVERT()
call:

SELECT 'A' LIKE CONVERT(blob_col USING latin1) COLLATE latin1_german1_ci
 FROM tbl_name;

To use a different character set, substitute its name for latin1 in the preceding statements (and similarly
to use a different collation).

CONVERT() and CAST() can be used more generally for comparing strings represented in different
character sets. For example, a comparison of these strings results in an error because they have different
character sets:

mysql> SET @s1 = _latin1 'abc', @s2 = _latin2 'abc';
mysql> SELECT @s1 = @s2;
ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (latin2_general_ci,IMPLICIT) for operation '='

Converting one of the strings to a character set compatible with the other enables the comparison to occur
without error:

mysql> SELECT @s1 = CONVERT(@s2 USING latin1);
+---------------------------------+
| @s1 = CONVERT(@s2 USING latin1) |
+---------------------------------+
| 1 |
+---------------------------------+

Character set conversion is also useful preceding lettercase conversion of binary strings. LOWER() and
UPPER() are ineffective when applied directly to binary strings because the concept of lettercase does
not apply. To perform lettercase conversion of a binary string, first convert it to a nonbinary string using a
character set appropriate for the data stored in the string:

1546

Other Uses for Cast Operations

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));
+-------------+-----------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |
+-------------+-----------------------------------+
| New York | new york |
+-------------+-----------------------------------+

Be aware that if you apply BINARY, CAST(), or CONVERT() to an indexed column, MySQL may not be
able to use the index efficiently.

Other Uses for Cast Operations

The cast functions are useful for creating a column with a specific type in a CREATE TABLE ... SELECT
statement:

mysql> CREATE TABLE new_table SELECT CAST('2000-01-01' AS DATE) AS c1;
mysql> SHOW CREATE TABLE new_table\G
*************************** 1. row ***************************
 Table: new_table
Create Table: CREATE TABLE `new_table` (
 `c1` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1

The cast functions are useful for sorting ENUM columns in lexical order. Normally, sorting of ENUM columns
occurs using the internal numeric values. Casting the values to CHAR results in a lexical sort:

SELECT enum_col FROM tbl_name ORDER BY CAST(enum_col AS CHAR);

CAST() also changes the result if you use it as part of a more complex expression such as
CONCAT('Date: ',CAST(NOW() AS DATE)).

For temporal values, there is little need to use CAST() to extract data in different formats. Instead, use a
function such as EXTRACT(), DATE_FORMAT(), or TIME_FORMAT(). See Section 12.7, “Date and Time
Functions”.

To cast a string to a number, it normally suffices to use the string value in numeric context:

mysql> SELECT 1+'1';
 -> 2

That is also true for hexadecimal and bit literals, which are binary strings by default:

mysql> SELECT X'41', X'41'+0;
 -> 'A', 65
mysql> SELECT b'1100001', b'1100001'+0;
 -> 'a', 97

A string used in an arithmetic operation is converted to a floating-point number during expression
evaluation.

A number used in string context is converted to a string:

mysql> SELECT CONCAT('hello you ',2);
 -> 'hello you 2'

For information about implicit conversion of numbers to strings, see Section 12.3, “Type Conversion in
Expression Evaluation”.

MySQL supports arithmetic with both signed and unsigned 64-bit values. For numeric operators (such
as + or -) where one of the operands is an unsigned integer, the result is unsigned by default (see

1547

XML Functions

Section 12.6.1, “Arithmetic Operators”). To override this, use the SIGNED or UNSIGNED cast operator to
cast a value to a signed or unsigned 64-bit integer, respectively.

mysql> SELECT 1 - 2;
 -> -1
mysql> SELECT CAST(1 - 2 AS UNSIGNED);
 -> 18446744073709551615
mysql> SELECT CAST(CAST(1 - 2 AS UNSIGNED) AS SIGNED);
 -> -1

If either operand is a floating-point value, the result is a floating-point value and is not affected by the
preceding rule. (In this context, DECIMAL column values are regarded as floating-point values.)

mysql> SELECT CAST(1 AS UNSIGNED) - 2.0;
 -> -1.0

The SQL mode affects the result of conversion operations (see Section 5.1.10, “Server SQL Modes”).
Examples:

• For conversion of a “zero” date string to a date, CONVERT() and CAST() return NULL and produce a
warning when the NO_ZERO_DATE SQL mode is enabled.

• For integer subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the subtraction
result is signed even if any operand is unsigned.

12.12 XML Functions

Table 12.16 XML Functions

Name Description

ExtractValue() Extract a value from an XML string using XPath
notation

UpdateXML() Return replaced XML fragment

This section discusses XML and related functionality in MySQL.

Note

It is possible to obtain XML-formatted output from MySQL in the mysql and
mysqldump clients by invoking them with the --xml option. See Section 4.5.1,
“mysql — The MySQL Command-Line Client”, and Section 4.5.4, “mysqldump — A
Database Backup Program”.

Two functions providing basic XPath 1.0 (XML Path Language, version 1.0) capabilities are available.
Some basic information about XPath syntax and usage is provided later in this section; however, an in-
depth discussion of these topics is beyond the scope of this manual, and you should refer to the XML Path
Language (XPath) 1.0 standard for definitive information. A useful resource for those new to XPath or who
desire a refresher in the basics is the Zvon.org XPath Tutorial, which is available in several languages.

Note

These functions remain under development. We continue to improve these and
other aspects of XML and XPath functionality in MySQL 5.6 and onwards. You may
discuss these, ask questions about them, and obtain help from other users with
them in the MySQL XML User Forum.

1548

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/
https://forums.mysql.com/list.php?44

XML Functions

XPath expressions used with these functions support user variables and local stored program variables.
User variables are weakly checked; variables local to stored programs are strongly checked (see also Bug
#26518):

• User variables (weak checking). Variables using the syntax $@variable_name (that is, user
variables) are not checked. No warnings or errors are issued by the server if a variable has the wrong
type or has previously not been assigned a value. This also means the user is fully responsible for
any typographical errors, since no warnings are given if (for example) $@myvairable is used where
$@myvariable was intended.

Example:

mysql> SET @xml = '<a>XY';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @i =1, @j = 2;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @i, ExtractValue(@xml, '//b[$@i]');
+------+--------------------------------+
| @i | ExtractValue(@xml, '//b[$@i]') |
+------+--------------------------------+
| 1 | X |
+------+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @j, ExtractValue(@xml, '//b[$@j]');
+------+--------------------------------+
| @j | ExtractValue(@xml, '//b[$@j]') |
+------+--------------------------------+
| 2 | Y |
+------+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @k, ExtractValue(@xml, '//b[$@k]');
+------+--------------------------------+
| @k | ExtractValue(@xml, '//b[$@k]') |
+------+--------------------------------+
| NULL | |
+------+--------------------------------+
1 row in set (0.00 sec)

• Variables in stored programs (strong checking). Variables using the syntax $variable_name
can be declared and used with these functions when they are called inside stored programs. Such
variables are local to the stored program in which they are defined, and are strongly checked for type
and value.

Example:

mysql> DELIMITER |

mysql> CREATE PROCEDURE myproc ()
 -> BEGIN
 -> DECLARE i INT DEFAULT 1;
 -> DECLARE xml VARCHAR(25) DEFAULT '<a>X<a>Y<a>Z';
 ->
 -> WHILE i < 4 DO
 -> SELECT xml, i, ExtractValue(xml, '//a[$i]');
 -> SET i = i+1;
 -> END WHILE;
 -> END |
Query OK, 0 rows affected (0.01 sec)

mysql> DELIMITER ;

1549

XML Functions

mysql> CALL myproc();
+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 1 | X |
+--------------------------+---+------------------------------+
1 row in set (0.00 sec)

+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 2 | Y |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)

+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 3 | Z |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)

Parameters. Variables used in XPath expressions inside stored routines that are passed in as
parameters are also subject to strong checking.

Expressions containing user variables or variables local to stored programs must otherwise (except
for notation) conform to the rules for XPath expressions containing variables as given in the XPath 1.0
specification.

Note

A user variable used to store an XPath expression is treated as an empty string.
Because of this, it is not possible to store an XPath expression as a user variable.
(Bug #32911)

• ExtractValue(xml_frag, xpath_expr)

ExtractValue() takes two string arguments, a fragment of XML markup xml_frag and an XPath
expression xpath_expr (also known as a locator); it returns the text (CDATA) of the first text node which
is a child of the element or elements matched by the XPath expression.

Using this function is the equivalent of performing a match using the xpath_expr after appending
/text(). In other words, ExtractValue('<a>Sakila', '/a/b') and
ExtractValue('<a>Sakila', '/a/b/text()') produce the same result.

If multiple matches are found, the content of the first child text node of each matching element is
returned (in the order matched) as a single, space-delimited string.

If no matching text node is found for the expression (including the implicit /text())—for whatever
reason, as long as xpath_expr is valid, and xml_frag consists of elements which are properly nested
and closed—an empty string is returned. No distinction is made between a match on an empty element
and no match at all. This is by design.

If you need to determine whether no matching element was found in xml_frag or such an element was
found but contained no child text nodes, you should test the result of an expression that uses the XPath
count() function. For example, both of these statements return an empty string, as shown here:

mysql> SELECT ExtractValue('<a>', '/a/b');
+-------------------------------------+
| ExtractValue('<a>', '/a/b') |

1550

XML Functions

+-------------------------------------+
| |
+-------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a><c/>', '/a/b');
+-------------------------------------+
| ExtractValue('<a><c/>', '/a/b') |
+-------------------------------------+
| |
+-------------------------------------+
1 row in set (0.00 sec)

Note

In MySQL 5.6.28 and MySQL 5.6.29, when ExtractValue() failed to find a
match for the supplied expression, it returned NULL. This issue was resolved in
MySQL 5.6.30. (Bug #22552615)

However, you can determine whether there was actually a matching element using the following:

mysql> SELECT ExtractValue('<a>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a>', 'count(/a/b)') |
+-------------------------------------+
| 1 |
+-------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a><c/>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a><c/>', 'count(/a/b)') |
+-------------------------------------+
| 0 |
+-------------------------------------+
1 row in set (0.01 sec)

Important

ExtractValue() returns only CDATA, and does not return any tags that might
be contained within a matching tag, nor any of their content (see the result
returned as val1 in the following example).

mysql> SELECT
 -> ExtractValue('<a>cccddd', '/a') AS val1,
 -> ExtractValue('<a>cccddd', '/a/b') AS val2,
 -> ExtractValue('<a>cccddd', '//b') AS val3,
 -> ExtractValue('<a>cccddd', '/b') AS val4,
 -> ExtractValue('<a>cccdddeee', '//b') AS val5;

+------+------+------+------+---------+
| val1 | val2 | val3 | val4 | val5 |
+------+------+------+------+---------+
| ccc | ddd | ddd | | ddd eee |
+------+------+------+------+---------+

This function uses the current SQL collation for making comparisons with contains(), performing the
same collation aggregation as other string functions (such as CONCAT()), in taking into account the

1551

XML Functions

collation coercibility of their arguments; see Section 10.8.4, “Collation Coercibility in Expressions”, for an
explanation of the rules governing this behavior.

(Previously, binary—that is, case-sensitive—comparison was always used.)

NULL is returned if xml_frag contains elements which are not properly nested or closed, and a warning
is generated, as shown in this example:

mysql> SELECT ExtractValue('<a>c<b', '//a');
+-----------------------------------+
| ExtractValue('<a>c<b', '//a') |
+-----------------------------------+
| NULL |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1525
Message: Incorrect XML value: 'parse error at line 1 pos 11:
 END-OF-INPUT unexpected ('>' wanted)'
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a>c', '//a');
+-------------------------------------+
| ExtractValue('<a>c', '//a') |
+-------------------------------------+
| c |
+-------------------------------------+
1 row in set (0.00 sec)

• UpdateXML(xml_target, xpath_expr, new_xml)

This function replaces a single portion of a given fragment of XML markup xml_target with a new XML
fragment new_xml, and then returns the changed XML. The portion of xml_target that is replaced
matches an XPath expression xpath_expr supplied by the user.

If no expression matching xpath_expr is found, or if multiple matches are found, the function returns
the original xml_target XML fragment. All three arguments should be strings.

mysql> SELECT
 -> UpdateXML('<a>ccc<d></d>', '/a', '<e>fff</e>') AS val1,
 -> UpdateXML('<a>ccc<d></d>', '/b', '<e>fff</e>') AS val2,
 -> UpdateXML('<a>ccc<d></d>', '//b', '<e>fff</e>') AS val3,
 -> UpdateXML('<a>ccc<d></d>', '/a/d', '<e>fff</e>') AS val4,
 -> UpdateXML('<a><d></d>ccc<d></d>', '/a/d', '<e>fff</e>') AS val5
 -> \G

*************************** 1. row ***************************
val1: <e>fff</e>
val2: <a>ccc<d></d>
val3: <a><e>fff</e><d></d>
val4: <a>ccc<e>fff</e>
val5: <a><d></d>ccc<d></d>

Note

A discussion in depth of XPath syntax and usage are beyond the scope of this
manual. Please see the XML Path Language (XPath) 1.0 specification for definitive
information. A useful resource for those new to XPath or who are wishing a
refresher in the basics is the Zvon.org XPath Tutorial, which is available in several
languages.

1552

http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/

XML Functions

Descriptions and examples of some basic XPath expressions follow:

• /tag

Matches <tag/> if and only if <tag/> is the root element.

Example: /a has a match in <a> because it matches the outermost (root) tag. It does not
match the inner a element in <a/> because in this instance it is the child of another element.

• /tag1/tag2

Matches <tag2/> if and only if it is a child of <tag1/>, and <tag1/> is the root element.

Example: /a/b matches the b element in the XML fragment <a> because it is a child of the
root element a. It does not have a match in <a/> because in this case, b is the root element
(and hence the child of no other element). Nor does the XPath expression have a match in <a><c><b/
></c>; here, b is a descendant of a, but not actually a child of a.

This construct is extendable to three or more elements. For example, the XPath expression /a/b/c
matches the c element in the fragment <a><c/>.

• //tag

Matches any instance of <tag>.

Example: //a matches the a element in any of the following: <a><c/>; <c><a></
a>; <c><a/></c>.

// can be combined with /. For example, //a/b matches the b element in either of the fragments
<a> or <c><a></c>.

Note

//tag is the equivalent of /descendant-or-self::*/tag. A common
error is to confuse this with /descendant-or-self::tag, although the latter
expression can actually lead to very different results, as can be seen here:

mysql> SET @xml = '<a><c>w</c>x<d>y</d>z';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @xml;
+---+
| @xml |
+---+
| <a><c>w</c>x<d>y</d>z |
+---+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//b[1]');
+------------------------------+
| ExtractValue(@xml, '//b[1]') |
+------------------------------+
| x z |
+------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//b[2]');
+------------------------------+
| ExtractValue(@xml, '//b[2]') |
+------------------------------+
| |

1553

XML Functions

+------------------------------+
1 row in set (0.01 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[1]');
+---+
| ExtractValue(@xml, '/descendant-or-self::*/b[1]') |
+---+
| x z |
+---+
1 row in set (0.06 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[2]');
+---+
| ExtractValue(@xml, '/descendant-or-self::*/b[2]') |
+---+
| |
+---+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[1]');
+---+
| ExtractValue(@xml, '/descendant-or-self::b[1]') |
+---+
| z |
+---+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[2]');
+---+
| ExtractValue(@xml, '/descendant-or-self::b[2]') |
+---+
| x |
+---+
1 row in set (0.00 sec)

• The * operator acts as a “wildcard” that matches any element. For example, the expression /*/b
matches the b element in either of the XML fragments <a> or <c></c>. However, the
expression does not produce a match in the fragment <a/> because b must be a child of some
other element. The wildcard may be used in any position: The expression /*/b/* matches any child of
a b element that is itself not the root element.

• You can match any of several locators using the | (UNION) operator. For example, the expression //
b|//c matches all b and c elements in the XML target.

• It is also possible to match an element based on the value of one or more of its attributes. This done
using the syntax tag[@attribute="value"]. For example, the expression //b[@id="idB"]
matches the second b element in the fragment <a><b id="idA"/><c/><b id="idB"/></
a>. To match against any element having attribute="value", use the XPath expression //
*[attribute="value"].

To filter multiple attribute values, simply use multiple attribute-comparison clauses in succession. For
example, the expression //b[@c="x"][@d="y"] matches the element <b c="x" d="y"/> occurring
anywhere in a given XML fragment.

To find elements for which the same attribute matches any of several values, you can use multiple
locators joined by the | operator. For example, to match all b elements whose c attributes have either of

1554

XML Functions

the values 23 or 17, use the expression //b[@c="23"]|//b[@c="17"]. You can also use the logical
or operator for this purpose: //b[@c="23" or @c="17"].

Note

The difference between or and | is that or joins conditions, while | joins result
sets.

XPath Limitations. The XPath syntax supported by these functions is currently subject to the following
limitations:

• Nodeset-to-nodeset comparison (such as '/a/b[@c=@d]') is not supported.

• All of the standard XPath comparison operators are supported. (Bug #22823)

• Relative locator expressions are resolved in the context of the root node. For example, consider the
following query and result:

mysql> SELECT ExtractValue(
 -> '<a><b c="1">X<b c="2">Y',
 -> 'a/b'
 ->) AS result;
+--------+
| result |
+--------+
| X Y |
+--------+
1 row in set (0.03 sec)

In this case, the locator a/b resolves to /a/b.

Relative locators are also supported within predicates. In the following example, d[../@c="1"] is
resolved as /a/b[@c="1"]/d:

mysql> SELECT ExtractValue(
 -> '<a>
 -> <b c="1"><d>X</d>
 -> <b c="2"><d>X</d>
 -> ',
 -> 'a/b/d[../@c="1"]')
 -> AS result;
+--------+
| result |
+--------+
| X |
+--------+
1 row in set (0.00 sec)

• Locators prefixed with expressions that evaluate as scalar values—including variable references, literals,
numbers, and scalar function calls—are not permitted, and their use results in an error.

• The :: operator is not supported in combination with node types such as the following:

• axis::comment()

• axis::text()

• axis::processing-instructions()

• axis::node()

However, name tests (such as axis::name and axis::*) are supported, as shown in these examples:

1555

XML Functions

mysql> SELECT ExtractValue('<a>x<c>y</c>','/a/child::b');
+---+
| ExtractValue('<a>x<c>y</c>','/a/child::b') |
+---+
| x |
+---+
1 row in set (0.02 sec)

mysql> SELECT ExtractValue('<a>x<c>y</c>','/a/child::*');
+---+
| ExtractValue('<a>x<c>y</c>','/a/child::*') |
+---+
| x y |
+---+
1 row in set (0.01 sec)

• “Up-and-down” navigation is not supported in cases where the path would lead “above” the root element.
That is, you cannot use expressions which match on descendants of ancestors of a given element,
where one or more of the ancestors of the current element is also an ancestor of the root element (see
Bug #16321).

• The following XPath functions are not supported, or have known issues as indicated:

• id()

• lang()

• local-name()

• name()

• namespace-uri()

• normalize-space()

• starts-with()

• string()

• substring-after()

• substring-before()

• translate()

• The following axes are not supported:

• following-sibling

• following

• preceding-sibling

• preceding

XPath expressions passed as arguments to ExtractValue() and UpdateXML() may contain the colon
character (:) in element selectors, which enables their use with markup employing XML namespaces
notation. For example:

mysql> SET @xml = '<a>111<b:c>222<d>333</d><e:f>444</e:f></b:c>';

1556

XML Functions

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//e:f');
+-----------------------------+
| ExtractValue(@xml, '//e:f') |
+-----------------------------+
| 444 |
+-----------------------------+
1 row in set (0.00 sec)

mysql> SELECT UpdateXML(@xml, '//b:c', '<g:h>555</g:h>');
+--+
| UpdateXML(@xml, '//b:c', '<g:h>555</g:h>') |
+--+
| <a>111<g:h>555</g:h> |
+--+
1 row in set (0.00 sec)

This is similar in some respects to what is permitted by Apache Xalan and some other parsers, and is
much simpler than requiring namespace declarations or the use of the namespace-uri() and local-
name() functions.

Error handling. For both ExtractValue() and UpdateXML(), the XPath locator used must be valid
and the XML to be searched must consist of elements which are properly nested and closed. If the locator
is invalid, an error is generated:

mysql> SELECT ExtractValue('<a>c', '/&a');
ERROR 1105 (HY000): XPATH syntax error: '&a'

If xml_frag does not consist of elements which are properly nested and closed, NULL is returned and a
warning is generated, as shown in this example:

mysql> SELECT ExtractValue('<a>c<b', '//a');
+-----------------------------------+
| ExtractValue('<a>c<b', '//a') |
+-----------------------------------+
| NULL |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1525
Message: Incorrect XML value: 'parse error at line 1 pos 11:
 END-OF-INPUT unexpected ('>' wanted)'
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a>c', '//a');
+-------------------------------------+
| ExtractValue('<a>c', '//a') |
+-------------------------------------+
| c |
+-------------------------------------+
1 row in set (0.00 sec)

Important

The replacement XML used as the third argument to UpdateXML() is not checked
to determine whether it consists solely of elements which are properly nested and
closed.

1557

http://xalan.apache.org/

XML Functions

XPath Injection. code injection occurs when malicious code is introduced into the system to gain
unauthorized access to privileges and data. It is based on exploiting assumptions made by developers
about the type and content of data input from users. XPath is no exception in this regard.

A common scenario in which this can happen is the case of application which handles authorization by
matching the combination of a login name and password with those found in an XML file, using an XPath
expression like this one:

//user[login/text()='neapolitan' and password/text()='1c3cr34m']/attribute::id

This is the XPath equivalent of an SQL statement like this one:

SELECT id FROM users WHERE login='neapolitan' AND password='1c3cr34m';

A PHP application employing XPath might handle the login process like this:

<?php

 $file = "users.xml";

 $login = $POST["login"];
 $password = $POST["password"];

 $xpath = "//user[login/text()=$login and password/text()=$password]/attribute::id";

 if(file_exists($file))
 {
 $xml = simplexml_load_file($file);

 if($result = $xml->xpath($xpath))
 echo "You are now logged in as user $result[0].";
 else
 echo "Invalid login name or password.";
 }
 else
 exit("Failed to open $file.");

?>

No checks are performed on the input. This means that a malevolent user can “short-circuit” the test by
entering ' or 1=1 for both the login name and password, resulting in $xpath being evaluated as shown
here:

//user[login/text()='' or 1=1 and password/text()='' or 1=1]/attribute::id

Since the expression inside the square brackets always evaluates as true, it is effectively the same as
this one, which matches the id attribute of every user element in the XML document:

//user/attribute::id

One way in which this particular attack can be circumvented is simply by quoting the variable names to
be interpolated in the definition of $xpath, forcing the values passed from a Web form to be converted to
strings:

$xpath = "//user[login/text()='$login' and password/text()='$password']/attribute::id";

This is the same strategy that is often recommended for preventing SQL injection attacks. In general, the
practices you should follow for preventing XPath injection attacks are the same as for preventing SQL
injection:

• Never accepted untested data from users in your application.

• Check all user-submitted data for type; reject or convert data that is of the wrong type

1558

Bit Functions and Operators

• Test numeric data for out of range values; truncate, round, or reject values that are out of range. Test
strings for illegal characters and either strip them out or reject input containing them.

• Do not output explicit error messages that might provide an unauthorized user with clues that could be
used to compromise the system; log these to a file or database table instead.

Just as SQL injection attacks can be used to obtain information about database schemas, so can XPath
injection be used to traverse XML files to uncover their structure, as discussed in Amit Klein's paper Blind
XPath Injection (PDF file, 46KB).

It is also important to check the output being sent back to the client. Consider what can happen when we
use the MySQL ExtractValue() function:

mysql> SELECT ExtractValue(
 -> LOAD_FILE('users.xml'),
 -> '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
 ->) AS id;
+-------------------------------+
| id |
+-------------------------------+
| 00327 13579 02403 42354 28570 |
+-------------------------------+
1 row in set (0.01 sec)

Because ExtractValue() returns multiple matches as a single space-delimited string, this injection
attack provides every valid ID contained within users.xml to the user as a single row of output. As an
extra safeguard, you should also test output before returning it to the user. Here is a simple example:

mysql> SELECT @id = ExtractValue(
 -> LOAD_FILE('users.xml'),
 -> '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
 ->);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT IF(
 -> INSTR(@id, ' ') = 0,
 -> @id,
 -> 'Unable to retrieve user ID')
 -> AS singleID;
+----------------------------+
| singleID |
+----------------------------+
| Unable to retrieve user ID |
+----------------------------+
1 row in set (0.00 sec)

In general, the guidelines for returning data to users securely are the same as for accepting user input.
These can be summed up as:

• Always test outgoing data for type and permissible values.

• Never permit unauthorized users to view error messages that might provide information about the
application that could be used to exploit it.

12.13 Bit Functions and Operators

Table 12.17 Bit Functions and Operators

Name Description

& Bitwise AND

1559

http://www.packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf
http://www.packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf

Bit Functions and Operators

Name Description

>> Right shift

<< Left shift

^ Bitwise XOR

BIT_COUNT() Return the number of bits that are set

| Bitwise OR

~ Bitwise inversion

Bit functions and operators comprise BIT_COUNT(), BIT_AND(), BIT_OR(), BIT_XOR(), &, |, ^, ~, <<,
and >>. (BIT_AND(), BIT_OR(), and BIT_XOR() are aggregate functions described at Section 12.19.1,
“Aggregate Function Descriptions”.) Bit functions and operators require BIGINT (64-bit integer) arguments
and return BIGINT values, so they have a maximum range of 64 bits. Arguments of other types (such as
the BINARY and VARBINARY binary string types) are converted to BIGINT and truncation might occur.

The following list describes available bit functions and operators:

• |

Bitwise OR.

The result is an unsigned 64-bit integer.

mysql> SELECT 29 | 15;
 -> 31

• &

Bitwise AND.

The result is an unsigned 64-bit integer.

mysql> SELECT 29 & 15;
 -> 13

• ^

Bitwise XOR.

The result is an unsigned 64-bit integer.

mysql> SELECT 1 ^ 1;
 -> 0
mysql> SELECT 1 ^ 0;
 -> 1
mysql> SELECT 11 ^ 3;
 -> 8

• <<

Shifts a longlong (BIGINT) number to the left.

The result is an unsigned 64-bit integer. The value is truncated to 64 bits. In particular, if the shift count is
greater or equal to the width of an unsigned 64-bit number, the result is zero.

mysql> SELECT 1 << 2;
 -> 4

• >>

1560

Encryption and Compression Functions

Shifts a longlong (BIGINT) number to the right.

The result is an unsigned 64-bit integer. The value is truncated to 64 bits. In particular, if the shift count is
greater or equal to the width of an unsigned 64-bit number, the result is zero.

mysql> SELECT 4 >> 2;
 -> 1

• ~

Invert all bits.

The result is an unsigned 64-bit integer.

mysql> SELECT 5 & ~1;
 -> 4

• BIT_COUNT(N)

Returns the number of bits that are set in the argument N as an unsigned 64-bit integer, or NULL if the
argument is NULL.

mysql> SELECT BIT_COUNT(29), BIT_COUNT(b'101010');
 -> 4, 3

12.14 Encryption and Compression Functions
Table 12.18 Encryption Functions

Name Description Introduced Deprecated

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

COMPRESS() Return result as a binary
string

DECODE() Decode a string
encrypted using
ENCODE()

DES_DECRYPT() Decrypt a string

DES_ENCRYPT() Encrypt a string

ENCODE() Encode a string

ENCRYPT() Encrypt a string

MD5() Calculate MD5 checksum

OLD_PASSWORD() Return the value of the
pre-4.1 implementation of
PASSWORD

Yes

PASSWORD() Calculate and return a
password string

RANDOM_BYTES() Return a random byte
vector

5.6.17

SHA1(), SHA() Calculate an SHA-1 160-
bit checksum

1561

Encryption and Compression Functions

Name Description Introduced Deprecated

SHA2() Calculate an SHA-2
checksum

UNCOMPRESS() Uncompress a string
compressed

UNCOMPRESSED_LENGTH()Return the length
of a string before
compression

VALIDATE_PASSWORD_STRENGTH()Determine strength of
password

Many encryption and compression functions return strings for which the result might contain arbitrary byte
values. If you want to store these results, use a column with a VARBINARY or BLOB binary string data type.
This avoids potential problems with trailing space removal or character set conversion that would change
data values, such as may occur if you use a nonbinary string data type (CHAR, VARCHAR, TEXT).

Some encryption functions return strings of ASCII characters: MD5(), OLD_PASSWORD(), PASSWORD(),
SHA(), SHA1(), SHA2(). Their return value is a string that has a character set and collation determined
by the character_set_connection and collation_connection system variables. This is a
nonbinary string unless the character set is binary.

If an application stores values from a function such as MD5() or SHA1() that returns a string of hex
digits, more efficient storage and comparisons can be obtained by converting the hex representation to
binary using UNHEX() and storing the result in a BINARY(N) column. Each pair of hexadecimal digits
requires one byte in binary form, so the value of N depends on the length of the hex string. N is 16 for an
MD5() value and 20 for a SHA1() value. For SHA2(), N ranges from 28 to 32 depending on the argument
specifying the desired bit length of the result.

The size penalty for storing the hex string in a CHAR column is at least two times, up to eight times if the
value is stored in a column that uses the utf8 character set (where each character uses 4 bytes). Storing
the string also results in slower comparisons because of the larger values and the need to take character
set collation rules into account.

Suppose that an application stores MD5() string values in a CHAR(32) column:

CREATE TABLE md5_tbl (md5_val CHAR(32), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(MD5('abcdef'), ...);

To convert hex strings to more compact form, modify the application to use UNHEX() and BINARY(16)
instead as follows:

CREATE TABLE md5_tbl (md5_val BINARY(16), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(UNHEX(MD5('abcdef')), ...);

Applications should be prepared to handle the very rare case that a hashing function produces the same
value for two different input values. One way to make collisions detectable is to make the hash column a
primary key.

Note

Exploits for the MD5 and SHA-1 algorithms have become known. You may wish
to consider using another one-way encryption function described in this section
instead, such as SHA2().

1562

Encryption and Compression Functions

Caution

Passwords or other sensitive values supplied as arguments to encryption functions
are sent as cleartext to the MySQL server unless an SSL connection is used. Also,
such values appear in any MySQL logs to which they are written. To avoid these
types of exposure, applications can encrypt sensitive values on the client side
before sending them to the server. The same considerations apply to encryption
keys. To avoid exposing these, applications can use stored procedures to encrypt
and decrypt values on the server side.

• AES_DECRYPT(crypt_str,key_str[,init_vector])

This function decrypts data using the official AES (Advanced Encryption Standard) algorithm. For more
information, see the description of AES_ENCRYPT().

The optional initialization vector argument, init_vector, is available as of MySQL 5.6.17. As of that
version, statements that use AES_DECRYPT() are unsafe for statement-based replication and cannot be
stored in the query cache.

• AES_ENCRYPT(str,key_str[,init_vector])

AES_ENCRYPT() and AES_DECRYPT() implement encryption and decryption of data using the official
AES (Advanced Encryption Standard) algorithm, previously known as “Rijndael.” The AES standard
permits various key lengths. By default these functions implement AES with a 128-bit key length. As of
MySQL 5.6.17, key lengths of 196 or 256 bits can be used, as described later. The key length is a trade
off between performance and security.

AES_ENCRYPT() encrypts the string str using the key string key_str and returns a binary string
containing the encrypted output. AES_DECRYPT() decrypts the encrypted string crypt_str using the
key string key_str and returns the original plaintext string. If either function argument is NULL, the
function returns NULL.

The str and crypt_str arguments can be any length, and padding is automatically added to str
so it is a multiple of a block as required by block-based algorithms such as AES. This padding is
automatically removed by the AES_DECRYPT() function. The length of crypt_str can be calculated
using this formula:

16 * (trunc(string_length / 16) + 1)

For a key length of 128 bits, the most secure way to pass a key to the key_str argument is to create a
truly random 128-bit value and pass it as a binary value. For example:

INSERT INTO t
VALUES (1,AES_ENCRYPT('text',UNHEX('F3229A0B371ED2D9441B830D21A390C3')));

A passphrase can be used to generate an AES key by hashing the passphrase. For example:

INSERT INTO t

1563

Encryption and Compression Functions

VALUES (1,AES_ENCRYPT('text', UNHEX(SHA2('My secret passphrase',512))));

Do not pass a password or passphrase directly to crypt_str, hash it first. Previous versions of this
documentation suggested the former approach, but it is no longer recommended as the examples shown
here are more secure.

If AES_DECRYPT() detects invalid data or incorrect padding, it returns NULL. However, it is possible for
AES_DECRYPT() to return a non-NULL value (possibly garbage) if the input data or the key is invalid.

As of MySQL 5.6.17, AES_ENCRYPT() and AES_DECRYPT() permit control of the block encryption
mode and take an optional init_vector initialization vector argument:

• The block_encryption_mode system variable controls the mode for block-based encryption
algorithms. Its default value is aes-128-ecb, which signifies encryption using a key length of 128 bits
and ECB mode. For a description of the permitted values of this variable, see Section 5.1.7, “Server
System Variables”.

• The optional init_vector argument provides an initialization vector for block encryption modes that
require it.

For modes that require the optional init_vector argument, it must be 16 bytes or longer (bytes in
excess of 16 are ignored). An error occurs if init_vector is missing.

For modes that do not require init_vector, it is ignored and a warning is generated if it is specified.

A random string of bytes to use for the initialization vector can be produced by calling
RANDOM_BYTES(16). For encryption modes that require an initialization vector, the same vector must
be used for encryption and decryption.

mysql> SET block_encryption_mode = 'aes-256-cbc';
mysql> SET @key_str = SHA2('My secret passphrase',512);
mysql> SET @init_vector = RANDOM_BYTES(16);
mysql> SET @crypt_str = AES_ENCRYPT('text',@key_str,@init_vector);
mysql> SELECT AES_DECRYPT(@crypt_str,@key_str,@init_vector);
+---+
| AES_DECRYPT(@crypt_str,@key_str,@init_vector) |
+---+
| text |
+---+

The following table lists each permitted block encryption mode, the SSL libraries that support it, and
whether the initialization vector argument is required.

Block Encryption Mode SSL Libraries that Support
Mode

Initialization Vector Required

ECB OpenSSL, yaSSL No

CBC OpenSSL, yaSSL Yes

CFB1 OpenSSL Yes

CFB8 OpenSSL Yes

CFB128 OpenSSL Yes

1564

Encryption and Compression Functions

Block Encryption Mode SSL Libraries that Support
Mode

Initialization Vector Required

OFB OpenSSL Yes

As of MySQL 5.6.17, statements that use AES_ENCRYPT() or AES_DECRYPT() are unsafe for
statement-based replication and cannot be stored in the query cache.

If AES_ENCRYPT() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• COMPRESS(string_to_compress)

Compresses a string and returns the result as a binary string. This function requires MySQL to have
been compiled with a compression library such as zlib. Otherwise, the return value is always NULL.
The compressed string can be uncompressed with UNCOMPRESS().

mysql> SELECT LENGTH(COMPRESS(REPEAT('a',1000)));
 -> 21
mysql> SELECT LENGTH(COMPRESS(''));
 -> 0
mysql> SELECT LENGTH(COMPRESS('a'));
 -> 13
mysql> SELECT LENGTH(COMPRESS(REPEAT('a',16)));
 -> 15

The compressed string contents are stored the following way:

• Empty strings are stored as empty strings.

• Nonempty strings are stored as a 4-byte length of the uncompressed string (low byte first), followed by
the compressed string. If the string ends with space, an extra . character is added to avoid problems
with endspace trimming should the result be stored in a CHAR or VARCHAR column. (However,
use of nonbinary string data types such as CHAR or VARCHAR to store compressed strings is not
recommended anyway because character set conversion may occur. Use a VARBINARY or BLOB
binary string column instead.)

If COMPRESS() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• DECODE(crypt_str,pass_str)

Decrypts the encrypted string crypt_str using pass_str as the password. crypt_str should be a
string returned from ENCODE().

• DES_DECRYPT(crypt_str[,key_str])

Decrypts a string encrypted with DES_ENCRYPT(). If an error occurs, this function returns NULL.

This function works only if MySQL has been configured with SSL support. See Section 6.3, “Using
Encrypted Connections”.

If no key_str argument is given, DES_DECRYPT() examines the first byte of the encrypted string to
determine the DES key number that was used to encrypt the original string, and then reads the key from

1565

Encryption and Compression Functions

the DES key file to decrypt the message. For this to work, the user must have the SUPER privilege. The
key file can be specified with the --des-key-file server option.

If you pass this function a key_str argument, that string is used as the key for decrypting the message.

If the crypt_str argument does not appear to be an encrypted string, MySQL returns the given
crypt_str.

• DES_ENCRYPT(str[,{key_num|key_str}])

Encrypts the string with the given key using the Triple-DES algorithm.

This function works only if MySQL has been configured with SSL support. See Section 6.3, “Using
Encrypted Connections”.

The encryption key to use is chosen based on the second argument to DES_ENCRYPT(), if one was
given. With no argument, the first key from the DES key file is used. With a key_num argument, the
given key number (0 to 9) from the DES key file is used. With a key_str argument, the given key string
is used to encrypt str.

The key file can be specified with the --des-key-file server option.

The return string is a binary string where the first character is CHAR(128 | key_num). If an error
occurs, DES_ENCRYPT() returns NULL.

The 128 is added to make it easier to recognize an encrypted key. If you use a string key, key_num is
127.

The string length for the result is given by this formula:

new_len = orig_len + (8 - (orig_len % 8)) + 1

Each line in the DES key file has the following format:

key_num des_key_str

Each key_num value must be a number in the range from 0 to 9. Lines in the file may be in any order.
des_key_str is the string that is used to encrypt the message. There should be at least one space
between the number and the key. The first key is the default key that is used if you do not specify any
key argument to DES_ENCRYPT().

You can tell MySQL to read new key values from the key file with the FLUSH DES_KEY_FILE
statement. This requires the RELOAD privilege.

One benefit of having a set of default keys is that it gives applications a way to check for the existence of
encrypted column values, without giving the end user the right to decrypt those values.

mysql> SELECT customer_address FROM customer_table
 -> WHERE crypted_credit_card = DES_ENCRYPT('credit_card_number');

If DES_ENCRYPT() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

1566

Encryption and Compression Functions

• ENCODE(str,pass_str)

Encrypt str using pass_str as the password. The result is a binary string of the same length as str.
To decrypt the result, use DECODE().

The ENCODE() function should no longer be used. If you still need to use ENCODE(), a salt value must
be used with it to reduce risk. For example:

ENCODE('cleartext', CONCAT('my_random_salt','my_secret_password'))

A new random salt value must be used whenever a password is updated.

If ENCODE() is invoked from within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• ENCRYPT(str[,salt])

Encrypts str using the Unix crypt() system call and returns a binary string. The salt argument must
be a string with at least two characters or the result is NULL. If no salt argument is given, a random
value is used.

mysql> SELECT ENCRYPT('hello');
 -> 'VxuFAJXVARROc'

ENCRYPT() ignores all but the first eight characters of str, at least on some systems. This behavior is
determined by the implementation of the underlying crypt() system call.

The use of ENCRYPT() with the ucs2, utf16, utf16le, or utf32 multibyte character sets is not
recommended because the system call expects a string terminated by a zero byte.

If crypt() is not available on your system (as is the case with Windows), ENCRYPT() always returns
NULL.

If ENCRYPT() is invoked from within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• MD5(str)

Calculates an MD5 128-bit checksum for the string. The value is returned as a string of 32 hexadecimal
digits, or NULL if the argument was NULL. The return value can, for example, be used as a hash key.
See the notes at the beginning of this section about storing hash values efficiently.

The return value is a string in the connection character set.

mysql> SELECT MD5('testing');
 -> 'ae2b1fca515949e5d54fb22b8ed95575'

This is the “RSA Data Security, Inc. MD5 Message-Digest Algorithm.”

See the note regarding the MD5 algorithm at the beginning this section.

• OLD_PASSWORD(str)

OLD_PASSWORD() was added when the implementation of PASSWORD() was changed in MySQL 4.1 to
improve security. OLD_PASSWORD() returns the value of the pre-4.1 implementation of PASSWORD() as

1567

Encryption and Compression Functions

a string, and is intended to permit you to reset passwords for any pre-4.1 clients that need to connect to
your MySQL server without locking them out. See Section 6.1.2.4, “Password Hashing in MySQL”.

The return value is a string in the connection character set.

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated; expect support for them to be removed in a future
MySQL release. Consequently, OLD_PASSWORD() is also deprecated.

• PASSWORD(str)

Returns a hashed password string calculated from the cleartext password str. The return value is a
string in the connection character set, or NULL if the argument is NULL. This function is the SQL interface
to the algorithm used by the server to encrypt MySQL passwords for storage in the mysql.user grant
table.

The old_passwords system variable controls the password hashing method used by the PASSWORD()
function. It also influences password hashing performed by CREATE USER and GRANT statements that
specify a password using an IDENTIFIED BY clause.

The following table shows, for each password hashing method, the permitted value of old_passwords
and which authentication plugins use the hashing method.

Password Hashing Method old_passwords Value Associated Authentication
Plugin

MySQL 4.1 native hashing 0 mysql_native_password

Pre-4.1 (“old”) hashing 1 mysql_old_password

SHA-256 hashing 2 sha256_password

Note

Passwords that use the pre-4.1 hashing method are less secure than passwords
that use the native password hashing method and should be avoided. Pre-4.1
passwords are deprecated; expect support for them to be removed in a future
MySQL release. Consequently, old_passwords=1, which causes PASSWORD()
to generate pre-4.1 password hashes, is also deprecated. For account upgrade
instructions, see Section 6.4.1.3, “Migrating Away from Pre-4.1 Password
Hashing and the mysql_old_password Plugin”.

If old_passwords=1, PASSWORD(str) returns the same value as OLD_PASSWORD(str). The latter
function is not affected by the value of old_passwords.

mysql> SET old_passwords = 0;
mysql> SELECT PASSWORD('mypass'), OLD_PASSWORD('mypass');
+---+------------------------+
| PASSWORD('mypass') | OLD_PASSWORD('mypass') |
+---+------------------------+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 | 6f8c114b58f2ce9e |
+---+------------------------+

mysql> SET old_passwords = 1;
mysql> SELECT PASSWORD('mypass'), OLD_PASSWORD('mypass');
+--------------------+------------------------+
| PASSWORD('mypass') | OLD_PASSWORD('mypass') |

1568

Encryption and Compression Functions

+--------------------+------------------------+
| 6f8c114b58f2ce9e | 6f8c114b58f2ce9e |
+--------------------+------------------------+

SHA-256 password hashing (old_passwords=2) uses a random salt value, which makes the result
from PASSWORD() nondeterministic. Consequently, statements that use this function are not safe for
statement-based replication and cannot be stored in the query cache.

Encryption performed by PASSWORD() is one-way (not reversible). It is not the same type of encryption
as used for Unix passwords; for that, use ENCRYPT().

Note

PASSWORD() is used by the authentication system in MySQL Server; you should
not use it in your own applications. For that purpose, consider a more secure
function such as AES_ENCRYPT() or SHA2() instead. Also see RFC 2195,
section 2 (Challenge-Response Authentication Mechanism (CRAM)), for more
information about handling passwords and authentication securely in your
applications.

Caution

Under some circumstances, statements that invoke PASSWORD() may
be recorded in server logs or on the client side in a history file such as
~/.mysql_history, which means that cleartext passwords may be read
by anyone having read access to that information. For information about the
conditions under which this occurs for the server logs and how to control it, see
Section 6.1.2.3, “Passwords and Logging”. For similar information about client-
side logging, see Section 4.5.1.3, “mysql Client Logging”.

• RANDOM_BYTES(len)

This function returns a binary string of len random bytes generated using the random number generator
of the SSL library. Permitted values of len range from 1 to 1024. For values outside that range, an error
occurs.

RANDOM_BYTES() can be used to provide the initialization vector for the AES_DECRYPT() and
AES_ENCRYPT() functions. For use in that context, len must be at least 16. Larger values are
permitted, but bytes in excess of 16 are ignored.

RANDOM_BYTES() generates a random value, which makes its result nondeterministic. Consequently,
statements that use this function are unsafe for statement-based replication and cannot be stored in the
query cache.

If RANDOM_BYTES() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

This function is available as of MySQL 5.6.17.

• SHA1(str), SHA(str)

Calculates an SHA-1 160-bit checksum for the string, as described in RFC 3174 (Secure Hash
Algorithm). The value is returned as a string of 40 hexadecimal digits, or NULL if the argument was

1569

http://www.faqs.org/rfcs/rfc2195.html
http://www.faqs.org/rfcs/rfc2195.html

Encryption and Compression Functions

NULL. One of the possible uses for this function is as a hash key. See the notes at the beginning of this
section about storing hash values efficiently. SHA() is synonymous with SHA1().

The return value is a string in the connection character set.

mysql> SELECT SHA1('abc');
 -> 'a9993e364706816aba3e25717850c26c9cd0d89d'

SHA1() can be considered a cryptographically more secure equivalent of MD5(). However, see the note
regarding the MD5 and SHA-1 algorithms at the beginning this section.

• SHA2(str, hash_length)

Calculates the SHA-2 family of hash functions (SHA-224, SHA-256, SHA-384, and SHA-512). The first
argument is the plaintext string to be hashed. The second argument indicates the desired bit length of
the result, which must have a value of 224, 256, 384, 512, or 0 (which is equivalent to 256). If either
argument is NULL or the hash length is not one of the permitted values, the return value is NULL.
Otherwise, the function result is a hash value containing the desired number of bits. See the notes at the
beginning of this section about storing hash values efficiently.

The return value is a string in the connection character set.

mysql> SELECT SHA2('abc', 224);
 -> '23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7'

This function works only if MySQL has been configured with SSL support. See Section 6.3, “Using
Encrypted Connections”.

SHA2() can be considered cryptographically more secure than MD5() or SHA1().

• UNCOMPRESS(string_to_uncompress)

Uncompresses a string compressed by the COMPRESS() function. If the argument is not a compressed
value, the result is NULL. This function requires MySQL to have been compiled with a compression
library such as zlib. Otherwise, the return value is always NULL.

mysql> SELECT UNCOMPRESS(COMPRESS('any string'));
 -> 'any string'
mysql> SELECT UNCOMPRESS('any string');
 -> NULL

• UNCOMPRESSED_LENGTH(compressed_string)

Returns the length that the compressed string had before being compressed.

mysql> SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30)));
 -> 30

• VALIDATE_PASSWORD_STRENGTH(str)

Given an argument representing a plaintext password, this function returns an integer to indicate how
strong the password is. The return value ranges from 0 (weak) to 100 (strong).

Password assessment by VALIDATE_PASSWORD_STRENGTH() is done by the validate_password
plugin. If that plugin is not installed, the function always returns 0. For information about installing
validate_password, see Section 6.4.3, “The Password Validation Plugin”. To examine or configure

1570

Locking Functions

the parameters that affect password testing, check or set the system variables implemented by
validate_password. See Section 6.4.3.2, “Password Validation Plugin Options and Variables”.

The password is subjected to increasingly strict tests and the return value reflects which tests were
satisfied, as shown in the following table.

Password Test Return Value

Length < 4 0

Length ≥ 4 and < validate_password_length 25

Satisfies policy 1 (LOW) 50

Satisfies policy 2 (MEDIUM) 75

Satisfies policy 3 (STRONG) 100

12.15 Locking Functions

This section describes functions used to manipulate user-level locks.

Table 12.19 Locking Functions

Name Description

GET_LOCK() Get a named lock

IS_FREE_LOCK() Whether the named lock is free

IS_USED_LOCK() Whether the named lock is in use; return connection
identifier if true

RELEASE_LOCK() Release the named lock

• GET_LOCK(str,timeout)

Tries to obtain a lock with a name given by the string str, using a timeout of timeout seconds. A
negative timeout value means infinite timeout. The lock is exclusive. While held by one session, other
sessions cannot obtain a lock of the same name.

Returns 1 if the lock was obtained successfully, 0 if the attempt timed out (for example, because another
client has previously locked the name), or NULL if an error occurred (such as running out of memory or
the thread was killed with mysqladmin kill).

A lock obtained with GET_LOCK() is released explicitly by executing RELEASE_LOCK() or implicitly
when your session terminates (either normally or abnormally). Locks obtained with GET_LOCK() are not
released when transactions commit or roll back.

Important

The behavior of GET_LOCK() changes in MySQL 5.7. In consideration of
future upgrades, limit the str value to 64 characters or less and do not rely on
subsequent calls to GET_LOCK() releasing previous locks.

GET_LOCK() can be used to implement application locks or to simulate record locks. Names are locked
on a server-wide basis. If a name has been locked within one session, GET_LOCK() blocks any request
by another session for a lock with the same name. This enables clients that agree on a given lock name
to use the name to perform cooperative advisory locking. But be aware that it also enables a client that
is not among the set of cooperating clients to lock a name, either inadvertently or deliberately, and thus

1571

Information Functions

prevent any of the cooperating clients from locking that name. One way to reduce the likelihood of this is
to use lock names that are database-specific or application-specific. For example, use lock names of the
form db_name.str or app_name.str.

mysql> SELECT GET_LOCK('lock1',10);
 -> 1
mysql> SELECT IS_FREE_LOCK('lock2');
 -> 1
mysql> SELECT GET_LOCK('lock2',10);
 -> 1
mysql> SELECT RELEASE_LOCK('lock2');
 -> 1
mysql> SELECT RELEASE_LOCK('lock1');
 -> NULL

The second RELEASE_LOCK() call returns NULL because the lock 'lock1' was automatically released
by the second GET_LOCK() call.

If multiple clients are waiting for a lock, the order in which they acquire it is undefined. Applications
should not assume that clients acquire the lock in the same order that they issued the lock requests.

GET_LOCK() is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

Since GET_LOCK() establishes a lock only on a single mysqld, it is not suitable for use with
NDB Cluster, which has no way of enforcing an SQL lock across multiple MySQL servers. See
Section 18.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”, for more information.

• IS_FREE_LOCK(str)

Checks whether the lock named str is free to use (that is, not locked). Returns 1 if the lock is free (no
one is using the lock), 0 if the lock is in use, and NULL if an error occurs (such as an incorrect argument).

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

• IS_USED_LOCK(str)

Checks whether the lock named str is in use (that is, locked). If so, it returns the connection identifier of
the client session that holds the lock. Otherwise, it returns NULL.

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

• RELEASE_LOCK(str)

Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1 if the lock
was released, 0 if the lock was not established by this thread (in which case the lock is not released),
and NULL if the named lock did not exist. The lock does not exist if it was never obtained by a call to
GET_LOCK() or if it has previously been released.

The DO statement is convenient to use with RELEASE_LOCK(). See Section 13.2.3, “DO Statement”.

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

12.16 Information Functions

1572

Information Functions

Table 12.20 Information Functions

Name Description

BENCHMARK() Repeatedly execute an expression

CHARSET() Return the character set of the argument

COERCIBILITY() Return the collation coercibility value of the string
argument

COLLATION() Return the collation of the string argument

CONNECTION_ID() Return the connection ID (thread ID) for the
connection

CURRENT_USER(), CURRENT_USER The authenticated user name and host name

DATABASE() Return the default (current) database name

FOUND_ROWS() For a SELECT with a LIMIT clause, the number of
rows that would be returned were there no LIMIT
clause

LAST_INSERT_ID() Value of the AUTOINCREMENT column for the last
INSERT

ROW_COUNT() The number of rows updated

SCHEMA() Synonym for DATABASE()

SESSION_USER() Synonym for USER()

SYSTEM_USER() Synonym for USER()

USER() The user name and host name provided by the
client

VERSION() Return a string that indicates the MySQL server
version

• BENCHMARK(count,expr)

The BENCHMARK() function executes the expression expr repeatedly count times. It may be used
to time how quickly MySQL processes the expression. The result value is 0, or NULL for inappropriate
arguments such as a NULL or negative repeat count.

The intended use is from within the mysql client, which reports query execution times:

mysql> SELECT BENCHMARK(1000000,AES_ENCRYPT('hello','goodbye'));
+---+
| BENCHMARK(1000000,AES_ENCRYPT('hello','goodbye')) |
+---+
| 0 |
+---+
1 row in set (4.74 sec)

The time reported is elapsed time on the client end, not CPU time on the server end. It is advisable to
execute BENCHMARK() several times, and to interpret the result with regard to how heavily loaded the
server machine is.

BENCHMARK() is intended for measuring the runtime performance of scalar expressions, which has
some significant implications for the way that you use it and interpret the results:

1573

Information Functions

• Only scalar expressions can be used. Although the expression can be a subquery, it must return a
single column and at most a single row. For example, BENCHMARK(10, (SELECT * FROM t)) fails
if the table t has more than one column or more than one row.

• Executing a SELECT expr statement N times differs from executing SELECT BENCHMARK(N,
expr) in terms of the amount of overhead involved. The two have very different execution profiles
and you should not expect them to take the same amount of time. The former involves the parser,
optimizer, table locking, and runtime evaluation N times each. The latter involves only runtime
evaluation N times, and all the other components just once. Memory structures already allocated are
reused, and runtime optimizations such as local caching of results already evaluated for aggregate
functions can alter the results. Use of BENCHMARK() thus measures performance of the runtime
component by giving more weight to that component and removing the “noise” introduced by the
network, parser, optimizer, and so forth.

• CHARSET(str)

Returns the character set of the string argument.

mysql> SELECT CHARSET('abc');
 -> 'latin1'
mysql> SELECT CHARSET(CONVERT('abc' USING utf8));
 -> 'utf8'
mysql> SELECT CHARSET(USER());
 -> 'utf8'

• COERCIBILITY(str)

Returns the collation coercibility value of the string argument.

mysql> SELECT COERCIBILITY('abc' COLLATE latin1_swedish_ci);
 -> 0
mysql> SELECT COERCIBILITY(USER());
 -> 3
mysql> SELECT COERCIBILITY('abc');
 -> 4
mysql> SELECT COERCIBILITY(1000);
 -> 5

The return values have the meanings shown in the following table. Lower values have higher
precedence.

Coercibility Meaning Example

0 Explicit collation Value with COLLATE clause

1 No collation Concatenation of strings with
different collations

2 Implicit collation Column value, stored routine
parameter or local variable

3 System constant USER() return value

4 Coercible Literal string

5 Numeric Numeric or temporal value

6 Ignorable NULL or an expression derived
from NULL

For more information, see Section 10.8.4, “Collation Coercibility in Expressions”.

1574

Information Functions

• COLLATION(str)

Returns the collation of the string argument.

mysql> SELECT COLLATION('abc');
 -> 'latin1_swedish_ci'
mysql> SELECT COLLATION(_utf8'abc');
 -> 'utf8_general_ci'

• CONNECTION_ID()

Returns the connection ID (thread ID) for the connection. Every connection has an ID that is unique
among the set of currently connected clients.

The value returned by CONNECTION_ID() is the same type of value as displayed in the ID column of
the Information Schema PROCESSLIST table, the Id column of SHOW PROCESSLIST output, and the
PROCESSLIST_ID column of the Performance Schema threads table.

mysql> SELECT CONNECTION_ID();
 -> 23786

Warning

Changing the session value of the pseudo_thread_id system variable
changes the value returned by the CONNECTION_ID() function.

• CURRENT_USER, CURRENT_USER()

Returns the user name and host name combination for the MySQL account that the server used to
authenticate the current client. This account determines your access privileges. The return value is a
string in the utf8 character set.

The value of CURRENT_USER() can differ from the value of USER().

mysql> SELECT USER();
 -> 'davida@localhost'
mysql> SELECT * FROM mysql.user;
ERROR 1044: Access denied for user ''@'localhost' to
database 'mysql'
mysql> SELECT CURRENT_USER();
 -> '@localhost'

The example illustrates that although the client specified a user name of davida (as indicated by the
value of the USER() function), the server authenticated the client using an anonymous user account (as

1575

Information Functions

seen by the empty user name part of the CURRENT_USER() value). One way this might occur is that
there is no account listed in the grant tables for davida.

Within a stored program or view, CURRENT_USER() returns the account for the user who defined the
object (as given by its DEFINER value) unless defined with the SQL SECURITY INVOKER characteristic.
In the latter case, CURRENT_USER() returns the object's invoker.

Triggers and events have no option to define the SQL SECURITY characteristic, so for these objects,
CURRENT_USER() returns the account for the user who defined the object. To return the invoker, use
USER() or SESSION_USER().

The following statements support use of the CURRENT_USER() function to take the place of the name of
(and, possibly, a host for) an affected user or a definer; in such cases, CURRENT_USER() is expanded
where and as needed:

• DROP USER

• RENAME USER

• GRANT

• REVOKE

• CREATE FUNCTION

• CREATE PROCEDURE

• CREATE TRIGGER

• CREATE EVENT

• CREATE VIEW

• ALTER EVENT

• ALTER VIEW

• SET PASSWORD

For information about the implications that this expansion of CURRENT_USER() has for replication, see
Section 17.4.1.8, “Replication of CURRENT_USER()”.

• DATABASE()

Returns the default (current) database name as a string in the utf8 character set. If there is no default
database, DATABASE() returns NULL. Within a stored routine, the default database is the database that
the routine is associated with, which is not necessarily the same as the database that is the default in the
calling context.

mysql> SELECT DATABASE();
 -> 'test'

If there is no default database, DATABASE() returns NULL.

• FOUND_ROWS()

A SELECT statement may include a LIMIT clause to restrict the number of rows the server returns to
the client. In some cases, it is desirable to know how many rows the statement would have returned

1576

Information Functions

without the LIMIT, but without running the statement again. To obtain this row count, include an
SQL_CALC_FOUND_ROWS option in the SELECT statement, and then invoke FOUND_ROWS() afterward:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name
 -> WHERE id > 100 LIMIT 10;
mysql> SELECT FOUND_ROWS();

The second SELECT returns a number indicating how many rows the first SELECT would have returned
had it been written without the LIMIT clause.

In the absence of the SQL_CALC_FOUND_ROWS option in the most recent successful SELECT statement,
FOUND_ROWS() returns the number of rows in the result set returned by that statement. If the statement
includes a LIMIT clause, FOUND_ROWS() returns the number of rows up to the limit. For example,
FOUND_ROWS() returns 10 or 60, respectively, if the statement includes LIMIT 10 or LIMIT 50, 10.

The row count available through FOUND_ROWS() is transient and not intended to be available past the
statement following the SELECT SQL_CALC_FOUND_ROWS statement. If you need to refer to the value
later, save it:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM ... ;
mysql> SET @rows = FOUND_ROWS();

If you are using SELECT SQL_CALC_FOUND_ROWS, MySQL must calculate how many rows are in the
full result set. However, this is faster than running the query again without LIMIT, because the result set
need not be sent to the client.

SQL_CALC_FOUND_ROWS and FOUND_ROWS() can be useful in situations when you want to restrict the
number of rows that a query returns, but also determine the number of rows in the full result set without
running the query again. An example is a Web script that presents a paged display containing links to
the pages that show other sections of a search result. Using FOUND_ROWS() enables you to determine
how many other pages are needed for the rest of the result.

The use of SQL_CALC_FOUND_ROWS and FOUND_ROWS() is more complex for UNION statements than
for simple SELECT statements, because LIMIT may occur at multiple places in a UNION. It may be
applied to individual SELECT statements in the UNION, or global to the UNION result as a whole.

The intent of SQL_CALC_FOUND_ROWS for UNION is that it should return the row count that would be
returned without a global LIMIT. The conditions for use of SQL_CALC_FOUND_ROWS with UNION are:

• The SQL_CALC_FOUND_ROWS keyword must appear in the first SELECT of the UNION.

• The value of FOUND_ROWS() is exact only if UNION ALL is used. If UNION without ALL is used,
duplicate removal occurs and the value of FOUND_ROWS() is only approximate.

• If no LIMIT is present in the UNION, SQL_CALC_FOUND_ROWS is ignored and returns the number of
rows in the temporary table that is created to process the UNION.

Beyond the cases described here, the behavior of FOUND_ROWS() is undefined (for example, its value
following a SELECT statement that fails with an error).

Important

FOUND_ROWS() is not replicated reliably using statement-based replication. This
function is automatically replicated using row-based replication.

1577

Information Functions

• LAST_INSERT_ID(), LAST_INSERT_ID(expr)

With no argument, LAST_INSERT_ID() returns a 64-bit value representing the first automatically
generated value successfully inserted for an AUTO_INCREMENT column as a result of the most recently
executed INSERT statement. The value of LAST_INSERT_ID() remains unchanged if no rows are
successfully inserted.

With an argument, LAST_INSERT_ID() returns an unsigned integer.

For example, after inserting a row that generates an AUTO_INCREMENT value, you can get the value like
this:

mysql> SELECT LAST_INSERT_ID();
 -> 195

The currently executing statement does not affect the value of LAST_INSERT_ID(). Suppose that
you generate an AUTO_INCREMENT value with one statement, and then refer to LAST_INSERT_ID()
in a multiple-row INSERT statement that inserts rows into a table with its own AUTO_INCREMENT
column. The value of LAST_INSERT_ID() remains stable in the second statement; its value for the
second and later rows is not affected by the earlier row insertions. (However, if you mix references to
LAST_INSERT_ID() and LAST_INSERT_ID(expr), the effect is undefined.)

If the previous statement returned an error, the value of LAST_INSERT_ID() is undefined. For
transactional tables, if the statement is rolled back due to an error, the value of LAST_INSERT_ID() is
left undefined. For manual ROLLBACK, the value of LAST_INSERT_ID() is not restored to that before
the transaction; it remains as it was at the point of the ROLLBACK.

Prior to MySQL 5.6.15, this function was not replicated correctly if replication filtering rules were in use.
(Bug #17234370, Bug #69861)

Within the body of a stored routine (procedure or function) or a trigger, the value of LAST_INSERT_ID()
changes the same way as for statements executed outside the body of these kinds of objects. The effect
of a stored routine or trigger upon the value of LAST_INSERT_ID() that is seen by following statements
depends on the kind of routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the
changed value is seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or
trigger ends, so statements following it do not see a changed value.

The ID that was generated is maintained in the server on a per-connection basis. This means that the
value returned by the function to a given client is the first AUTO_INCREMENT value generated for most
recent statement affecting an AUTO_INCREMENT column by that client. This value cannot be affected by
other clients, even if they generate AUTO_INCREMENT values of their own. This behavior ensures that
each client can retrieve its own ID without concern for the activity of other clients, and without the need
for locks or transactions.

The value of LAST_INSERT_ID() is not changed if you set the AUTO_INCREMENT column of a row to a
non-“magic” value (that is, a value that is not NULL and not 0).

Important

If you insert multiple rows using a single INSERT statement,
LAST_INSERT_ID() returns the value generated for the first inserted row only.

1578

Information Functions

The reason for this is to make it possible to reproduce easily the same INSERT
statement against some other server.

For example:

mysql> USE test;

mysql> CREATE TABLE t (
 id INT AUTO_INCREMENT NOT NULL PRIMARY KEY,
 name VARCHAR(10) NOT NULL
);

mysql> INSERT INTO t VALUES (NULL, 'Bob');

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
| 1 | Bob |
+----+------+

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+

mysql> INSERT INTO t VALUES
 (NULL, 'Mary'), (NULL, 'Jane'), (NULL, 'Lisa');

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
1	Bob
2	Mary
3	Jane
4	Lisa
+----+------+

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 2 |
+------------------+

Although the second INSERT statement inserted three new rows into t, the ID generated for the first of
these rows was 2, and it is this value that is returned by LAST_INSERT_ID() for the following SELECT
statement.

If you use INSERT IGNORE and the row is ignored, the LAST_INSERT_ID() remains unchanged from
the current value (or 0 is returned if the connection has not yet performed a successful INSERT) and,
for non-transactional tables, the AUTO_INCREMENT counter is not incremented. For InnoDB tables,
the AUTO_INCREMENT counter is incremented if innodb_autoinc_lock_mode is set to 1 or 2, as
demonstrated in the following example:

mysql> USE test;

mysql> SELECT @@innodb_autoinc_lock_mode;
+----------------------------+
| @@innodb_autoinc_lock_mode |
+----------------------------+

1579

Information Functions

| 1 |
+----------------------------+

mysql> CREATE TABLE `t` (
 `id` INT(11) NOT NULL AUTO_INCREMENT,
 `val` INT(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `i1` (`val`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Insert two rows

mysql> INSERT INTO t (val) VALUES (1),(2);

With auto_increment_offset=1, the inserted rows
result in an AUTO_INCREMENT value of 3

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `val` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `i1` (`val`)
) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=latin1

LAST_INSERT_ID() returns the first automatically generated
value that is successfully inserted for the AUTO_INCREMENT column

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+

The attempted insertion of duplicate rows fail but errors are ignored

mysql> INSERT IGNORE INTO t (val) VALUES (1),(2);
Query OK, 0 rows affected (0.00 sec)
Records: 2 Duplicates: 2 Warnings: 0

With innodb_autoinc_lock_mode=1, the AUTO_INCREMENT counter
is incremented for the ignored rows

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `val` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `i1` (`val`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=latin1

The LAST_INSERT_ID is unchanged because the previous insert was unsuccessful

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |

1580

Information Functions

+------------------+

For more information, see Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”.

If expr is given as an argument to LAST_INSERT_ID(), the value of the argument is returned by the
function and is remembered as the next value to be returned by LAST_INSERT_ID(). This can be used
to simulate sequences:

1. Create a table to hold the sequence counter and initialize it:

mysql> CREATE TABLE sequence (id INT NOT NULL);
mysql> INSERT INTO sequence VALUES (0);

2. Use the table to generate sequence numbers like this:

mysql> UPDATE sequence SET id=LAST_INSERT_ID(id+1);
mysql> SELECT LAST_INSERT_ID();

The UPDATE statement increments the sequence counter and causes the next call to
LAST_INSERT_ID() to return the updated value. The SELECT statement retrieves that value. The
mysql_insert_id() C API function can also be used to get the value. See mysql_insert_id().

You can generate sequences without calling LAST_INSERT_ID(), but the utility of using the function
this way is that the ID value is maintained in the server as the last automatically generated value. It is
multi-user safe because multiple clients can issue the UPDATE statement and get their own sequence
value with the SELECT statement (or mysql_insert_id()), without affecting or being affected by other
clients that generate their own sequence values.

The mysql_insert_id() function is only updated after the INSERT and UPDATE statements, so you
cannot use the C API function to retrieve the value for LAST_INSERT_ID(expr) after executing other
SQL statements like SELECT or SET.

• ROW_COUNT()

ROW_COUNT() returns a value as follows:

• DDL statements: 0. This applies to statements such as CREATE TABLE or DROP TABLE.

• DML statements other than SELECT: The number of affected rows. This applies to statements such
as UPDATE, INSERT, or DELETE (as before), but now also to statements such as ALTER TABLE and
LOAD DATA.

• SELECT: -1 if the statement returns a result set, or the number of rows “affected” if it does not. For
example, for SELECT * FROM t1, ROW_COUNT() returns -1. For SELECT * FROM t1 INTO
OUTFILE 'file_name', ROW_COUNT() returns the number of rows written to the file.

• SIGNAL statements: 0.

For UPDATE statements, the affected-rows value by default is the number of rows actually changed. If
you specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to mysqld,
the affected-rows value is the number of rows “found”; that is, matched by the WHERE clause.

For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in
this case, one row was inserted after the duplicate was deleted.

For INSERT ... ON DUPLICATE KEY UPDATE statements, the affected-rows value per row is 1 if the
row is inserted as a new row, 2 if an existing row is updated, and 0 if an existing row is set to its current

1581

https://dev.mysql.com/doc/c-api/5.6/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-connect.html

Information Functions

values. If you specify the CLIENT_FOUND_ROWS flag, the affected-rows value is 1 (not 0) if an existing
row is set to its current values.

The ROW_COUNT() value is similar to the value from the mysql_affected_rows() C API function and
the row count that the mysql client displays following statement execution.

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 3 |
+-------------+
1 row in set (0.00 sec)

mysql> DELETE FROM t WHERE i IN(1,2);
Query OK, 2 rows affected (0.00 sec)

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 2 |
+-------------+
1 row in set (0.00 sec)

Important

ROW_COUNT() is not replicated reliably using statement-based replication. This
function is automatically replicated using row-based replication.

• SCHEMA()

This function is a synonym for DATABASE().

• SESSION_USER()

SESSION_USER() is a synonym for USER().

• SYSTEM_USER()

SYSTEM_USER() is a synonym for USER().

• USER()

Returns the current MySQL user name and host name as a string in the utf8 character set.

mysql> SELECT USER();
 -> 'davida@localhost'

The value indicates the user name you specified when connecting to the server, and the client host from
which you connected. The value can be different from that of CURRENT_USER().

1582

https://dev.mysql.com/doc/c-api/5.6/en/mysql-affected-rows.html

Spatial Analysis Functions

• VERSION()

Returns a string that indicates the MySQL server version. The string uses the utf8 character set. The
value might have a suffix in addition to the version number. See the description of the version system
variable in Section 5.1.7, “Server System Variables”.

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

mysql> SELECT VERSION();
 -> '5.6.51-standard'

12.17 Spatial Analysis Functions
MySQL provides functions to perform various operations on spatial data. These functions can be grouped
into several major categories according to the type of operation they perform:

• Functions that create geometries in various formats (WKT, WKB, internal)

• Functions that convert geometries between formats

• Functions that access qualitative or quantitative properties of a geometry

• Functions that describe relations between two geometries

• Functions that create new geometries from existing ones

For general background about MySQL support for using spatial data, see Section 11.4, “Spatial Data
Types”.

12.17.1 Spatial Function Reference

The following table lists each spatial function and provides a short description of each one.

Table 12.21 Spatial Functions

Name Description

Area() Return Polygon or MultiPolygon area

AsBinary(), AsWKB() Convert from internal geometry format to WKB

AsText(), AsWKT() Convert from internal geometry format to WKT

Buffer() Return geometry of points within given distance
from geometry

Centroid() Return centroid as a point

Contains() Whether MBR of one geometry contains MBR of
another

Crosses() Whether one geometry crosses another

Dimension() Dimension of geometry

Disjoint() Whether MBRs of two geometries are disjoint

EndPoint() End Point of LineString

Envelope() Return MBR of geometry

Equals() Whether MBRs of two geometries are equal

ExteriorRing() Return exterior ring of Polygon

1583

Spatial Function Reference

Name Description

GeomCollFromText(),
GeometryCollectionFromText()

Return geometry collection from WKT

GeomCollFromWKB(),
GeometryCollectionFromWKB()

Return geometry collection from WKB

GeometryCollection() Construct geometry collection from geometries

GeometryN() Return N-th geometry from geometry collection

GeometryType() Return name of geometry type

GeomFromText(), GeometryFromText() Return geometry from WKT

GeomFromWKB(), GeometryFromWKB() Return geometry from WKB

GLength() Return length of LineString

InteriorRingN() Return N-th interior ring of Polygon

Intersects() Whether MBRs of two geometries intersect

IsClosed() Whether a geometry is closed and simple

IsEmpty() Whether a geometry is empty

IsSimple() Whether a geometry is simple

LineFromText(), LineStringFromText() Construct LineString from WKT

LineFromWKB(), LineStringFromWKB() Construct LineString from WKB

LineString() Construct LineString from Point values

MBRContains() Whether MBR of one geometry contains MBR of
another

MBRDisjoint() Whether MBRs of two geometries are disjoint

MBREqual() Whether MBRs of two geometries are equal

MBRIntersects() Whether MBRs of two geometries intersect

MBROverlaps() Whether MBRs of two geometries overlap

MBRTouches() Whether MBRs of two geometries touch

MBRWithin() Whether MBR of one geometry is within MBR of
another

MLineFromText(),
MultiLineStringFromText()

Construct MultiLineString from WKT

MLineFromWKB(),
MultiLineStringFromWKB()

Construct MultiLineString from WKB

MPointFromText(), MultiPointFromText() Construct MultiPoint from WKT

MPointFromWKB(), MultiPointFromWKB() Construct MultiPoint from WKB

MPolyFromText(), MultiPolygonFromText() Construct MultiPolygon from WKT

MPolyFromWKB(), MultiPolygonFromWKB() Construct MultiPolygon from WKB

MultiLineString() Contruct MultiLineString from LineString values

MultiPoint() Construct MultiPoint from Point values

MultiPolygon() Construct MultiPolygon from Polygon values

NumGeometries() Return number of geometries in geometry collection

1584

Spatial Function Reference

Name Description

NumInteriorRings() Return number of interior rings in Polygon

NumPoints() Return number of points in LineString

Overlaps() Whether MBRs of two geometries overlap

Point() Construct Point from coordinates

PointFromText() Construct Point from WKT

PointFromWKB() Construct Point from WKB

PointN() Return N-th point from LineString

PolyFromText(), PolygonFromText() Construct Polygon from WKT

PolyFromWKB(), PolygonFromWKB() Construct Polygon from WKB

Polygon() Construct Polygon from LineString arguments

SRID() Return spatial reference system ID for geometry

ST_Area() Return Polygon or MultiPolygon area

ST_AsBinary(), ST_AsWKB() Convert from internal geometry format to WKB

ST_AsText(), ST_AsWKT() Convert from internal geometry format to WKT

ST_Buffer() Return geometry of points within given distance
from geometry

ST_Centroid() Return centroid as a point

ST_Contains() Whether one geometry contains another

ST_Crosses() Whether one geometry crosses another

ST_Difference() Return point set difference of two geometries

ST_Dimension() Dimension of geometry

ST_Disjoint() Whether one geometry is disjoint from another

ST_Distance() The distance of one geometry from another

ST_EndPoint() End Point of LineString

ST_Envelope() Return MBR of geometry

ST_Equals() Whether one geometry is equal to another

ST_ExteriorRing() Return exterior ring of Polygon

ST_GeomCollFromText(),
ST_GeometryCollectionFromText(),
ST_GeomCollFromTxt()

Return geometry collection from WKT

ST_GeomCollFromWKB(),
ST_GeometryCollectionFromWKB()

Return geometry collection from WKB

ST_GeometryN() Return N-th geometry from geometry collection

ST_GeometryType() Return name of geometry type

ST_GeomFromText(),
ST_GeometryFromText()

Return geometry from WKT

ST_GeomFromWKB(), ST_GeometryFromWKB() Return geometry from WKB

ST_InteriorRingN() Return N-th interior ring of Polygon

ST_Intersection() Return point set intersection of two geometries

1585

Argument Handling by Spatial Functions

Name Description

ST_Intersects() Whether one geometry intersects another

ST_IsClosed() Whether a geometry is closed and simple

ST_IsEmpty() Whether a geometry is empty

ST_IsSimple() Whether a geometry is simple

ST_LineFromText(),
ST_LineStringFromText()

Construct LineString from WKT

ST_LineFromWKB(),
ST_LineStringFromWKB()

Construct LineString from WKB

ST_NumGeometries() Return number of geometries in geometry collection

ST_NumInteriorRing(),
ST_NumInteriorRings()

Return number of interior rings in Polygon

ST_NumPoints() Return number of points in LineString

ST_Overlaps() Whether one geometry overlaps another

ST_PointFromText() Construct Point from WKT

ST_PointFromWKB() Construct Point from WKB

ST_PointN() Return N-th point from LineString

ST_PolyFromText(), ST_PolygonFromText() Construct Polygon from WKT

ST_PolyFromWKB(), ST_PolygonFromWKB() Construct Polygon from WKB

ST_SRID() Return spatial reference system ID for geometry

ST_StartPoint() Start Point of LineString

ST_SymDifference() Return point set symmetric difference of two
geometries

ST_Touches() Whether one geometry touches another

ST_Union() Return point set union of two geometries

ST_Within() Whether one geometry is within another

ST_X() Return X coordinate of Point

ST_Y() Return Y coordinate of Point

StartPoint() Start Point of LineString

Touches() Whether one geometry touches another

Within() Whether MBR of one geometry is within MBR of
another

X() Return X coordinate of Point

Y() Return Y coordinate of Point

12.17.2 Argument Handling by Spatial Functions

Spatial values, or geometries, have the properties described in Section 11.4.2.2, “Geometry Class”. The
following discussion lists general spatial function argument-handling characteristics. Specific functions or
groups of functions may have additional or different argument-handling characteristics, as discussed in the
sections where those function descriptions occur. Where that is true, those descriptions take precedence
over the general discussion here.

1586

Functions That Create Geometry Values from WKT Values

Spatial functions are defined only for valid geometry values. If an invalid geometry is passed to a spatial
function, the result is undefined.

The spatial reference identifier (SRID) of a geometry identifies the coordinate space in which the geometry
is defined. In MySQL, the SRID value is an integer associated with the geometry value. The maximum
usable SRID value is 232−1. If a larger value is given, only the lower 32 bits are used.

Geometry values produced by any spatial function inherit the SRID of the geometry arguments.

12.17.3 Functions That Create Geometry Values from WKT Values

These functions take as arguments a Well-Known Text (WKT) representation and, optionally, a spatial
reference system identifier (SRID). They return the corresponding geometry.

GeomFromText() and ST_GeomFromText() accept a WKT value of any geometry type as their first
argument. Other functions provide type-specific construction functions for construction of geometry values
of each geometry type.

For a description of WKT format, see Well-Known Text (WKT) Format.

• GeomCollFromText(wkt [, srid]), GeometryCollectionFromText(wkt [, srid])

ST_GeomCollFromText(), ST_GeometryCollectionFromText(), GeomCollFromText(),
and GeometryCollectionFromText() are synonyms. For more information, see the description of
ST_GeomCollFromText().

• GeomFromText(wkt [, srid]), GeometryFromText(wkt [, srid])

ST_GeomFromText(), ST_GeometryFromText(), GeomFromText(), and GeometryFromText()
are synonyms. For more information, see the description of ST_GeomFromText().

• LineFromText(wkt [, srid]), LineStringFromText(wkt [, srid])

ST_LineFromText(), ST_LineStringFromText(), LineFromText(), and
LineStringFromText() are synonyms. For more information, see the description of
ST_LineFromText().

• MLineFromText(wkt [, srid]), MultiLineStringFromText(wkt [, srid])

Constructs a MultiLineString value using its WKT representation and SRID.

The result is NULL if the geometry argument is NULL or not a syntactically well-formed geometry.

• MPointFromText(wkt [, srid]), MultiPointFromText(wkt [, srid])

Constructs a MultiPoint value using its WKT representation and SRID.

The result is NULL if the geometry argument is NULL or not a syntactically well-formed geometry.

• MPolyFromText(wkt [, srid]), MultiPolygonFromText(wkt [, srid])

Constructs a MultiPolygon value using its WKT representation and SRID.

The result is NULL if the geometry argument is NULL or not a syntactically well-formed geometry.

• PointFromText(wkt [, srid])

ST_PointFromText() and PointFromText() are synonyms. For more information, see the
description of ST_PointFromText().

1587

Functions That Create Geometry Values from WKT Values

• PolyFromText(wkt [, srid]), PolygonFromText(wkt [, srid])

ST_PolyFromText(), ST_PolygonFromText(), PolyFromText(), and PolygonFromText() are
synonyms. For more information, see the description of ST_PolyFromText().

• ST_GeomCollFromText(wkt [, srid]), ST_GeometryCollectionFromText(wkt [, srid])

Constructs a GeometryCollection value using its WKT representation and SRID.

The result is NULL if the geometry argument is NULL or not a syntactically well-formed geometry.

mysql> SET @g = "MULTILINESTRING((10 10, 11 11), (9 9, 10 10))";
mysql> SELECT ST_AsText(ST_GeomCollFromText(@g));
+--+
| ST_AsText(ST_GeomCollFromText(@g)) |
+--+
| MULTILINESTRING((10 10,11 11),(9 9,10 10)) |
+--+

ST_GeomCollFromText(), ST_GeometryCollectionFromText(), GeomCollFromText(), and
GeometryCollectionFromText() are synonyms.

• ST_GeomFromText(wkt [, srid]), ST_GeometryFromText(wkt [, srid])

Constructs a geometry value of any type using its WKT representation and SRID.

The result is NULL if the geometry argument is NULL or not a syntactically well-formed geometry.

ST_GeomFromText(), ST_GeometryFromText(), GeomFromText(), and GeometryFromText()
are synonyms.

• ST_LineFromText(wkt [, srid]), ST_LineStringFromText(wkt [, srid])

Constructs a LineString value using its WKT representation and SRID.

The result is NULL if the geometry argument is NULL or not a syntactically well-formed geometry.

ST_LineFromText(), ST_LineStringFromText(), LineFromText(), and
LineStringFromText() are synonyms.

• ST_PointFromText(wkt [, srid])

Constructs a Point value using its WKT representation and SRID.

The result is NULL if the geometry argument is NULL or not a syntactically well-formed geometry.

ST_PointFromText() and PointFromText() are synonyms.

• ST_PolyFromText(wkt [, srid]), ST_PolygonFromText(wkt [, srid])

Constructs a Polygon value using its WKT representation and SRID.

The result is NULL if the geometry argument is NULL or not a syntactically well-formed geometry.

ST_PolyFromText(), ST_PolygonFromText(), PolyFromText(), and PolygonFromText() are
synonyms.

1588

Functions That Create Geometry Values from WKB Values

12.17.4 Functions That Create Geometry Values from WKB Values

These functions take as arguments a BLOB containing a Well-Known Binary (WKB) representation and,
optionally, a spatial reference system identifier (SRID). They return the corresponding geometry.

GeomFromWKB() and ST_GeomFromWKB() accept a WKB value of any geometry type as their first
argument. Other functions provide type-specific construction functions for construction of geometry values
of each geometry type.

These functions also accept geometry objects as returned by the functions in Section 12.17.5, “MySQL-
Specific Functions That Create Geometry Values”. Thus, those functions may be used to provide the first
argument to the functions in this section.

For a description of WKB format, see Well-Known Binary (WKB) Format.

• GeomCollFromWKB(wkb [, srid]), GeometryCollectionFromWKB(wkb [, srid])

ST_GeomCollFromWKB(), ST_GeometryCollectionFromWKB(), GeomCollFromWKB(), and
GeometryCollectionFromWKB() are synonyms. For more information, see the description of
ST_GeomCollFromWKB().

• GeomFromWKB(wkb [, srid]), GeometryFromWKB(wkb [, srid])

ST_GeomFromWKB(), ST_GeometryFromWKB(), GeomFromWKB(), and GeometryFromWKB() are
synonyms. For more information, see the description of ST_GeomFromWKB().

• LineFromWKB(wkb [, srid]), LineStringFromWKB(wkb [, srid])

ST_LineFromWKB(), ST_LineStringFromWKB(), LineFromWKB(), and LineStringFromWKB()
are synonyms. For more information, see the description of ST_LineFromWKB().

• MLineFromWKB(wkb [, srid]), MultiLineStringFromWKB(wkb [, srid])

Constructs a MultiLineString value using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

• MPointFromWKB(wkb [, srid]), MultiPointFromWKB(wkb [, srid])

Constructs a MultiPoint value using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

• MPolyFromWKB(wkb [, srid]), MultiPolygonFromWKB(wkb [, srid])

Constructs a MultiPolygon value using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

• PointFromWKB(wkb [, srid])

ST_PointFromWKB() and PointFromWKB() are synonyms. For more information, see the description
of ST_PointFromWKB().

• PolyFromWKB(wkb [, srid]), PolygonFromWKB(wkb [, srid])

ST_PolyFromWKB(), ST_PolygonFromWKB(), PolyFromWKB(), and PolygonFromWKB() are
synonyms. For more information, see the description of ST_PolyFromWKB().

1589

MySQL-Specific Functions That Create Geometry Values

• ST_GeomCollFromWKB(wkb [, srid]), ST_GeometryCollectionFromWKB(wkb [, srid])

Constructs a GeometryCollection value using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

ST_GeomCollFromWKB(), ST_GeometryCollectionFromWKB(), GeomCollFromWKB(), and
GeometryCollectionFromWKB() are synonyms.

• ST_GeomFromWKB(wkb [, srid]), ST_GeometryFromWKB(wkb [, srid])

Constructs a geometry value of any type using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

ST_GeomFromWKB(), ST_GeometryFromWKB(), GeomFromWKB(), and GeometryFromWKB() are
synonyms.

• ST_LineFromWKB(wkb [, srid]), ST_LineStringFromWKB(wkb [, srid])

Constructs a LineString value using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

ST_LineFromWKB(), ST_LineStringFromWKB(), LineFromWKB(), and LineStringFromWKB()
are synonyms.

• ST_PointFromWKB(wkb [, srid])

Constructs a Point value using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

ST_PointFromWKB() and PointFromWKB() are synonyms.

• ST_PolyFromWKB(wkb [, srid]), ST_PolygonFromWKB(wkb [, srid])

Constructs a Polygon value using its WKB representation and SRID.

The result is NULL if the WKB or SRID argument is NULL.

ST_PolyFromWKB(), ST_PolygonFromWKB(), PolyFromWKB(), and PolygonFromWKB() are
synonyms.

12.17.5 MySQL-Specific Functions That Create Geometry Values

MySQL provides a set of useful nonstandard functions for creating geometry values. The functions
described in this section are MySQL extensions to the OpenGIS specification.

These functions produce geometry objects from either WKB values or geometry objects as arguments. If
any argument is not a proper WKB or geometry representation of the proper object type, the return value is
NULL.

For example, you can insert the geometry return value from Point() directly into a POINT column:

INSERT INTO t1 (pt_col) VALUES(Point(1,2));

• GeometryCollection(g [, g] ...)

1590

Geometry Format Conversion Functions

Constructs a GeometryCollection value from the geometry arguments.

If an argument contains a nonsupported geometry, the return value is NULL.

• LineString(pt [, pt] ...)

Constructs a LineString value from a number of Point or WKB Point arguments. If the number of
arguments is less than two, the return value is NULL.

• MultiLineString(ls [, ls] ...)

Constructs a MultiLineString value using LineString or WKB LineString arguments.

• MultiPoint(pt [, pt2] ...)

Constructs a MultiPoint value using Point or WKB Point arguments.

• MultiPolygon(poly [, poly] ...)

Constructs a MultiPolygon value from a set of Polygon or WKB Polygon arguments.

• Point(x, y)

Constructs a Point using its coordinates.

• Polygon(ls [, ls] ...)

Constructs a Polygon value from a number of LineString or WKB LineString arguments. If any
argument does not represent a LinearRing (that is, not a closed and simple LineString), the return
value is NULL.

12.17.6 Geometry Format Conversion Functions

MySQL supports the functions listed in this section for converting geometry values from internal geometry
format to WKT or WKB format.

There are also functions to convert a string from WKT or WKB format to internal geometry format. See
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”, and Section 12.17.4,
“Functions That Create Geometry Values from WKB Values”.

• AsBinary(g), AsWKB(g)

ST_AsBinary(), ST_AsWKB(), AsBinary(), and AsWKB() are synonyms. For more information, see
the description of ST_AsBinary().

• AsText(g), AsWKT(g)

ST_AsText(), ST_AsWKT(), AsText(), and AsWKT() are synonyms. For more information, see the
description of ST_AsText().

• ST_AsBinary(g), ST_AsWKB(g)

Converts a value in internal geometry format to its WKB representation and returns the binary result.

The result is NULL if the geometry argument is NULL or not a syntactically well-formed geometry.

SELECT ST_AsBinary(g) FROM geom;

ST_AsBinary(), ST_AsWKB(), AsBinary(), and AsWKB() are synonyms.

1591

Geometry Property Functions

• ST_AsText(g), ST_AsWKT(g)

Converts a value in internal geometry format to its WKT representation and returns the string result.

The result is NULL if the geometry argument is NULL or not a syntactically well-formed geometry.

mysql> SET @g = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_GeomFromText(@g));
+--------------------------------+
| ST_AsText(ST_GeomFromText(@g)) |
+--------------------------------+
| LINESTRING(1 1,2 2,3 3) |
+--------------------------------+

ST_AsText(), ST_AsWKT(), AsText(), and AsWKT() are synonyms.

12.17.7 Geometry Property Functions

Each function that belongs to this group takes a geometry value as its argument and returns some
quantitative or qualitative property of the geometry. Some functions restrict their argument type. Such
functions return NULL if the argument is of an incorrect geometry type. For example, the ST_Area()
polygon function returns NULL if the object type is neither Polygon nor MultiPolygon.

12.17.7.1 General Geometry Property Functions

The functions listed in this section do not restrict their argument and accept a geometry value of any type.

• Dimension(g)

ST_Dimension() and Dimension() are synonyms. For more information, see the description of
ST_Dimension().

• Envelope(g)

ST_Envelope() and Envelope() are synonyms. For more information, see the description of
ST_Envelope().

• GeometryType(g)

ST_GeometryType() and GeometryType() are synonyms. For more information, see the description
of ST_GeometryType().

• IsEmpty(g)

ST_IsEmpty() and IsEmpty() are synonyms. For more information, see the description of
ST_IsEmpty().

• IsSimple(g)

ST_IsSimple() and IsSimple() are synonyms. For more information, see the description of
ST_IsSimple().

• SRID(g)

ST_SRID() and SRID() are synonyms. For more information, see the description of ST_SRID().

• ST_Dimension(g)

1592

Geometry Property Functions

Returns the inherent dimension of the geometry value g, or NULL if the argument is NULL. The
dimension can be −1, 0, 1, or 2. The meaning of these values is given in Section 11.4.2.2, “Geometry
Class”.

mysql> SELECT ST_Dimension(ST_GeomFromText('LineString(1 1,2 2)'));
+--+
| ST_Dimension(ST_GeomFromText('LineString(1 1,2 2)')) |
+--+
| 1 |
+--+

ST_Dimension() and Dimension() are synonyms.

• ST_Envelope(g)

Returns the minimum bounding rectangle (MBR) for the geometry value g, or NULL if the argument is
NULL. The result is returned as a Polygon value that is defined by the corner points of the bounding
box:

POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

mysql> SELECT ST_AsText(ST_Envelope(ST_GeomFromText('LineString(1 1,2 2)')));
+--+
| ST_AsText(ST_Envelope(ST_GeomFromText('LineString(1 1,2 2)'))) |
+--+
| POLYGON((1 1,2 1,2 2,1 2,1 1)) |
+--+

ST_Envelope() and Envelope() are synonyms.

• ST_GeometryType(g)

Returns a binary string indicating the name of the geometry type of which the geometry instance g is a
member, or NULL if the argument is NULL. The name corresponds to one of the instantiable Geometry
subclasses.

mysql> SELECT ST_GeometryType(ST_GeomFromText('POINT(1 1)'));
+--+
| ST_GeometryType(ST_GeomFromText('POINT(1 1)')) |
+--+
| POINT |
+--+

ST_GeometryType() and GeometryType() are synonyms.

• ST_IsEmpty(g)

This function is a placeholder that returns 0 for any valid geometry value, 1 for any invalid geometry
value, or NULL if the argument is NULL.

MySQL does not support GIS EMPTY values such as POINT EMPTY.

ST_IsEmpty() and IsEmpty() are synonyms.

1593

Geometry Property Functions

• ST_IsSimple(g)

Returns 1 if the geometry value g has no anomalous geometric points, such as self-intersection or self-
tangency. ST_IsSimple() returns 0 if the argument is not simple, and NULL if the argument is NULL.

The descriptions of the instantiable geometric classes given under Section 11.4.2, “The OpenGIS
Geometry Model” includes the specific conditions that cause class instances to be classified as not
simple.

ST_IsSimple() and IsSimple() are synonyms.

• ST_SRID(g)

Returns an integer indicating the spatial reference system ID associated with the geometry value g, or
NULL if the argument is NULL.

mysql> SELECT ST_SRID(ST_GeomFromText('LineString(1 1,2 2)',101));
+---+
| ST_SRID(ST_GeomFromText('LineString(1 1,2 2)',101)) |
+---+
| 101 |
+---+

ST_SRID() and SRID() are synonyms.

12.17.7.2 Point Property Functions

A Point consists of X and Y coordinates, which may be obtained using the following functions:

• ST_X(p)

Returns the X-coordinate value for the Point object p as a double-precision number.

mysql> SELECT ST_X(Point(56.7, 53.34));
+--------------------------+
| ST_X(Point(56.7, 53.34)) |
+--------------------------+
| 56.7 |
+--------------------------+

ST_X() and X() are synonyms.

• ST_Y(p)

Returns the Y-coordinate value for the Point object p as a double-precision number.

mysql> SELECT ST_Y(Point(56.7, 53.34));
+--------------------------+
| ST_Y(Point(56.7, 53.34)) |
+--------------------------+
| 53.34 |
+--------------------------+

ST_Y() and Y() are synonyms.

• X(p)

ST_X() and X() are synonyms. For more information, see the description of ST_X().

• Y(p)

ST_Y() and Y() are synonyms. For more information, see the description of ST_Y().

1594

Geometry Property Functions

12.17.7.3 LineString and MultiLineString Property Functions

A LineString consists of Point values. You can extract particular points of a LineString, count the
number of points that it contains, or obtain its length.

Some functions in this section also work for MultiLineString values.

• EndPoint(ls)

ST_EndPoint() and EndPoint() are synonyms. For more information, see the description of
ST_EndPoint().

• GLength(ls)

Returns a double-precision number indicating the length of the LineString or MultiLineString
value ls in its associated spatial reference. The length of a MultiLineString value is equal to the
sum of the lengths of its elements. If the argument is NULL or an empty geometry, the return value is
NULL.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT GLength(GeomFromText(@ls));
+----------------------------+
| GLength(GeomFromText(@ls)) |
+----------------------------+
| 2.8284271247461903 |
+----------------------------+

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT GLength(GeomFromText(@mls));
+-----------------------------+
| GLength(GeomFromText(@mls)) |
+-----------------------------+
| 4.242640687119286 |
+-----------------------------+

GLength() is a nonstandard name. It corresponds to the OpenGIS Length() function. (There is an
existing SQL function Length() that calculates the length of string values.)

• IsClosed(ls)

ST_IsClosed() and IsClosed() are synonyms. For more information, see the description of
ST_IsClosed().

• NumPoints(ls)

ST_NumPoints() and NumPoints() are synonyms. For more information, see the description of
ST_NumPoints().

• PointN(ls, N)

ST_PointN() and PointN() are synonyms. For more information, see the description of
ST_PointN().

• ST_EndPoint(ls)

Returns the Point that is the endpoint of the LineString value ls. If the argument is NULL or an
empty geometry, the return value is NULL.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_EndPoint(ST_GeomFromText(@ls)));
+--+

1595

Geometry Property Functions

| ST_AsText(ST_EndPoint(ST_GeomFromText(@ls))) |
+--+
| POINT(3 3) |
+--+

ST_EndPoint() and EndPoint() are synonyms.

• ST_IsClosed(ls)

For a LineString value ls, ST_IsClosed() returns 1 if ls is closed (that is, its ST_StartPoint()
and ST_EndPoint() values are the same). If the argument is NULL or an empty geometry, the return
value is NULL.

For a MultiLineString value ls, ST_IsClosed() returns 1 if ls is closed (that is, the
ST_StartPoint() and ST_EndPoint() values are the same for each LineString in ls).

ST_IsClosed() returns 0 if ls is not closed.

mysql> SET @ls1 = 'LineString(1 1,2 2,3 3,2 2)';
mysql> SET @ls2 = 'LineString(1 1,2 2,3 3,1 1)';

mysql> SELECT ST_IsClosed(ST_GeomFromText(@ls1));
+------------------------------------+
| ST_IsClosed(ST_GeomFromText(@ls1)) |
+------------------------------------+
| 0 |
+------------------------------------+

mysql> SELECT ST_IsClosed(ST_GeomFromText(@ls2));
+------------------------------------+
| ST_IsClosed(ST_GeomFromText(@ls2)) |
+------------------------------------+
| 1 |
+------------------------------------+

mysql> SET @ls3 = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';

mysql> SELECT ST_IsClosed(ST_GeomFromText(@ls3));
+------------------------------------+
| ST_IsClosed(ST_GeomFromText(@ls3)) |
+------------------------------------+
| 0 |
+------------------------------------+

ST_IsClosed() and IsClosed() are synonyms.

• ST_NumPoints(ls)

Returns the number of Point objects in the LineString value ls. If the argument is NULL or an empty
geometry, the return value is NULL.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_NumPoints(ST_GeomFromText(@ls));
+------------------------------------+
| ST_NumPoints(ST_GeomFromText(@ls)) |
+------------------------------------+
| 3 |
+------------------------------------+

ST_NumPoints() and NumPoints() are synonyms.

1596

Geometry Property Functions

• ST_PointN(ls, N)

Returns the N-th Point in the Linestring value ls. Points are numbered beginning with 1. If any
argument is NULL or the geometry argument is an empty geometry, the return value is NULL.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_PointN(ST_GeomFromText(@ls),2));
+--+
| ST_AsText(ST_PointN(ST_GeomFromText(@ls),2)) |
+--+
| POINT(2 2) |
+--+

ST_PointN() and PointN() are synonyms.

• ST_StartPoint(ls)

Returns the Point that is the start point of the LineString value ls. If the argument is NULL or an
empty geometry, the return value is NULL.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_StartPoint(ST_GeomFromText(@ls)));
+--+
| ST_AsText(ST_StartPoint(ST_GeomFromText(@ls))) |
+--+
| POINT(1 1) |
+--+

ST_StartPoint() and StartPoint() are synonyms.

• StartPoint(ls)

ST_StartPoint() and StartPoint() are synonyms. For more information, see the description of
ST_StartPoint().

12.17.7.4 Polygon and MultiPolygon Property Functions

Functions in this section return properties of Polygon or MultiPolygon values.

• Area({poly|mpoly})

ST_Area() and Area() are synonyms. For more information, see the description of ST_Area().

• Centroid({poly|mpoly})

ST_Centroid() and Centroid() are synonyms. For more information, see the description of
ST_Centroid().

• ExteriorRing(poly)

ST_ExteriorRing() and ExteriorRing() are synonyms. For more information, see the description
of ST_ExteriorRing().

• InteriorRingN(poly, N)

ST_InteriorRingN() and InteriorRingN() are synonyms. For more information, see the
description of ST_InteriorRingN().

• NumInteriorRings(poly)

1597

Geometry Property Functions

ST_NumInteriorRings() and NumInteriorRings() are synonyms. For more information, see the
description of ST_NumInteriorRings().

• ST_Area({poly|mpoly})

Returns a double-precision number indicating the area of the Polygon or MultiPolygon argument,
as measured in its spatial reference system. For arguments of dimension 0 or 1, the result is 0. If the
argument is an empty geometry the return value is 0. If the argument is NULL the return value is NULL.

mysql> SET @poly =
 'Polygon((0 0,0 3,3 0,0 0),(1 1,1 2,2 1,1 1))';
mysql> SELECT ST_Area(ST_GeomFromText(@poly));
+---------------------------------+
| ST_Area(ST_GeomFromText(@poly)) |
+---------------------------------+
| 4 |
+---------------------------------+

mysql> SET @mpoly =
 'MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))';
mysql> SELECT ST_Area(ST_GeomFromText(@mpoly));
+----------------------------------+
| ST_Area(ST_GeomFromText(@mpoly)) |
+----------------------------------+
| 8 |
+----------------------------------+

ST_Area() and Area() are synonyms.

• ST_Centroid({poly|mpoly})

Returns the mathematical centroid for the Polygon or MultiPolygon argument as a Point. The
result is not guaranteed to be on the MultiPolygon. If the argument is NULL or an empty geometry, the
return value is NULL.

mysql> SET @poly =
 ST_GeomFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7,5 5))');
mysql> SELECT GeometryType(@poly),ST_AsText(ST_Centroid(@poly));
+---------------------+--+
| GeometryType(@poly) | ST_AsText(ST_Centroid(@poly)) |
+---------------------+--+
| POLYGON | POINT(4.958333333333333 4.958333333333333) |
+---------------------+--+

ST_Centroid() and Centroid() are synonyms.

• ST_ExteriorRing(poly)

Returns the exterior ring of the Polygon value poly as a LineString. If the argument is NULL or an
empty geometry, the return value is NULL.

mysql> SET @poly =
 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT ST_AsText(ST_ExteriorRing(ST_GeomFromText(@poly)));
+--+
| ST_AsText(ST_ExteriorRing(ST_GeomFromText(@poly))) |
+--+
| LINESTRING(0 0,0 3,3 3,3 0,0 0) |
+--+

ST_ExteriorRing() and ExteriorRing() are synonyms.

1598

Geometry Property Functions

• ST_InteriorRingN(poly, N)

Returns the N-th interior ring for the Polygon value poly as a LineString. Rings are numbered
beginning with 1. If the argument is NULL or an empty geometry, the return value is NULL.

mysql> SET @poly =
 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT ST_AsText(ST_InteriorRingN(ST_GeomFromText(@poly),1));
+---+
| ST_AsText(ST_InteriorRingN(ST_GeomFromText(@poly),1)) |
+---+
| LINESTRING(1 1,1 2,2 2,2 1,1 1) |
+---+

ST_InteriorRingN() and InteriorRingN() are synonyms.

• ST_NumInteriorRings(poly)

Returns the number of interior rings in the Polygon value poly. If the argument is NULL or an empty
geometry, the return value is NULL.

mysql> SET @poly =
 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT ST_NumInteriorRings(ST_GeomFromText(@poly));
+---+
| ST_NumInteriorRings(ST_GeomFromText(@poly)) |
+---+
| 1 |
+---+

ST_NumInteriorRings() and NumInteriorRings() are synonyms.

12.17.7.5 GeometryCollection Property Functions

These functions return properties of GeometryCollection values.

• GeometryN(gc, N)

ST_GeometryN() and GeometryN() are synonyms. For more information, see the description of
ST_GeometryN().

• NumGeometries(gc)

ST_NumGeometries() and NumGeometries() are synonyms. For more information, see the
description of ST_NumGeometries().

• ST_GeometryN(gc, N)

Returns the N-th geometry in the GeometryCollection value gc. Geometries are numbered
beginning with 1. If any argument is NULL or the geometry argument is an empty geometry, the return
value is NULL.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT ST_AsText(ST_GeometryN(ST_GeomFromText(@gc),1));
+---+
| ST_AsText(ST_GeometryN(ST_GeomFromText(@gc),1)) |
+---+
| POINT(1 1) |
+---+

ST_GeometryN() and GeometryN() are synonyms.

1599

Spatial Operator Functions

• ST_NumGeometries(gc)

Returns the number of geometries in the GeometryCollection value gc. If the argument is NULL or
an empty geometry, the return value is NULL.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT ST_NumGeometries(ST_GeomFromText(@gc));
+--+
| ST_NumGeometries(ST_GeomFromText(@gc)) |
+--+
| 2 |
+--+

ST_NumGeometries() and NumGeometries() are synonyms.

12.17.8 Spatial Operator Functions

OpenGIS proposes a number of functions that can produce geometries. They are designed to implement
spatial operators.

In addition, Section 12.17.7, “Geometry Property Functions”, discusses several functions that construct
new geometries from existing ones. See that section for descriptions of these functions:

• ST_Envelope(g)

• StartPoint(ls)

• ST_EndPoint(ls)

• ST_PointN(ls, N)

• ST_ExteriorRing(poly)

• ST_InteriorRingN(poly, N)

• ST_GeometryN(gc, N)

These spatial operator functions are available:

• Buffer(g, d)

ST_Buffer() and Buffer() are synonyms. For more information, see the description of
ST_Buffer().

• ST_Buffer(g, d)

Returns a geometry that represents all points whose distance from the geometry value g is less than or
equal to a distance of d, or NULL if any argument is NULL.

ST_Buffer() supports negative distances for polygons, multipolygons, and geometry collections
containing polygons or multipolygons. For point, multipoint, linestring, multilinestring, and geometry
collections not containing any polygons or multipolygons, ST_Buffer() with a negative distance returns
NULL.

ST_Buffer() and Buffer() are synonyms.

• ST_Difference(g1, g2)

Returns a geometry that represents the point set difference of the geometry values g1 and g2. If any
argument is NULL, the return value is NULL.

1600

Functions That Test Spatial Relations Between Geometry Objects

mysql> SET @g1 = Point(1,1), @g2 = Point(2,2);
mysql> SELECT ST_AsText(ST_Difference(@g1, @g2));
+------------------------------------+
| ST_AsText(ST_Difference(@g1, @g2)) |
+------------------------------------+
| POINT(1 1) |
+------------------------------------+

• ST_Intersection(g1, g2)

Returns a geometry that represents the point set intersection of the geometry values g1 and g2. If any
argument is NULL, the return value is NULL.

mysql> SET @g1 = ST_GeomFromText('LineString(1 1, 3 3)');
mysql> SET @g2 = ST_GeomFromText('LineString(1 3, 3 1)');
mysql> SELECT ST_AsText(ST_Intersection(@g1, @g2));
+--------------------------------------+
| ST_AsText(ST_Intersection(@g1, @g2)) |
+--------------------------------------+
| POINT(2 2) |
+--------------------------------------+

• ST_SymDifference(g1, g2)

Returns a geometry that represents the point set symmetric difference of the geometry values g1 and
g2, which is defined as:

g1 symdifference g2 := (g1 union g2) difference (g1 intersection g2)

Or, in function call notation:

ST_SymDifference(g1, g2) = ST_Difference(ST_Union(g1, g2), ST_Intersection(g1, g2))

If any argument is NULL, the return value is NULL.

mysql> SET @g1 = Point(1,1), @g2 = Point(2,2);
mysql> SELECT ST_AsText(ST_SymDifference(@g1, @g2));
+---------------------------------------+
| ST_AsText(ST_SymDifference(@g1, @g2)) |
+---------------------------------------+
| MULTIPOINT(1 1,2 2) |
+---------------------------------------+

• ST_Union(g1, g2)

Returns a geometry that represents the point set union of the geometry values g1 and g2. If any
argument is NULL, the return value is NULL.

mysql> SET @g1 = ST_GeomFromText('LineString(1 1, 3 3)');
mysql> SET @g2 = ST_GeomFromText('LineString(1 3, 3 1)');
mysql> SELECT ST_AsText(ST_Union(@g1, @g2));
+--------------------------------------+
| ST_AsText(ST_Union(@g1, @g2)) |
+--------------------------------------+
| MULTILINESTRING((1 1,3 3),(3 1,1 3)) |
+--------------------------------------+

12.17.9 Functions That Test Spatial Relations Between Geometry Objects

The functions described in this section take two geometries as arguments and return a qualitative or
quantitative relation between them.

1601

Functions That Test Spatial Relations Between Geometry Objects

MySQL implements two sets of functions using function names defined by the OpenGIS specification. One
set tests the relationship between two geometry values using precise object shapes, the other set uses
object minimum bounding rectangles (MBRs).

There is also a MySQL-specific set of MBR-based functions available to test the relationship between two
geometry values.

12.17.9.1 Spatial Relation Functions That Use Object Shapes

The OpenGIS specification defines the following functions to test the relationship between two geometry
values g1 and g2, using precise object shapes. The return values 1 and 0 indicate true and false,
respectively, except for ST_Distance(), which returns distance values.

• ST_Contains(g1, g2)

Returns 1 or 0 to indicate whether g1 completely contains g2. This tests the opposite relationship as
ST_Within().

• Crosses(g1, g2)

ST_Crosses() and Crosses() are synonyms. For more information, see the description of
ST_Crosses().

• ST_Crosses(g1, g2)

The term spatially crosses denotes a spatial relation between two given geometries that has the
following properties:

• The two geometries intersect.

• Their intersection results in a geometry that has a dimension that is one less than the maximum
dimension of the two given geometries.

• Their intersection is not equal to either of the two given geometries.

This function returns 1 or 0 to indicate whether g1 spatially crosses g2. If g1 is a Polygon or a
MultiPolygon, or if g2 is a Point or a MultiPoint, the return value is NULL.

ST_Crosses() and Crosses() are synonyms.

• ST_Disjoint(g1, g2)

Returns 1 or 0 to indicate whether g1 is spatially disjoint from (does not intersect) g2.

• ST_Distance(g1, g2)

Returns the distance between g1 and g2.

mysql> SET @g1 = Point(1,1);
mysql> SET @g2 = Point(2,2);
mysql> SELECT ST_Distance(@g1, @g2);
+-----------------------+
| ST_Distance(@g1, @g2) |
+-----------------------+
| 1.4142135623730951 |
+-----------------------+

• ST_Equals(g1, g2)

Returns 1 or 0 to indicate whether g1 is spatially equal to g2.

1602

Functions That Test Spatial Relations Between Geometry Objects

mysql> SET @g1 = Point(1,1), @g2 = Point(2,2);
mysql> SELECT ST_Equals(@g1, @g1), ST_Equals(@g1, @g2);
+---------------------+---------------------+
| ST_Equals(@g1, @g1) | ST_Equals(@g1, @g2) |
+---------------------+---------------------+
| 1 | 0 |
+---------------------+---------------------+

• ST_Intersects(g1, g2)

Returns 1 or 0 to indicate whether g1 spatially intersects g2.

• ST_Overlaps(g1, g2)

Two geometries spatially overlap if they intersect and their intersection results in a geometry of the same
dimension but not equal to either of the given geometries.

This function returns 1 or 0 to indicate whether g1 spatially overlaps g2.

• ST_Touches(g1, g2)

Two geometries spatially touch if their interiors do not intersect, but the boundary of one of the
geometries intersects either the boundary or the interior of the other.

This function returns 1 or 0 to indicate whether g1 spatially touches g2.

ST_Touches() and Touches() are synonyms.

• ST_Within(g1, g2)

Returns 1 or 0 to indicate whether g1 is spatially within g2. This tests the opposite relationship as
ST_Contains().

• Touches(g1, g2)

ST_Touches() and Touches() are synonyms. For more information, see the description of
ST_Touches().

12.17.9.2 Spatial Relation Functions That Use Minimum Bounding Rectangles

MySQL provides several MySQL-specific functions that test the relationship between minimum bounding
rectangles (MBRs) of two geometries g1 and g2. The return values 1 and 0 indicate true and false,
respectively.

A corresponding set of MBR functions defined according to the OpenGIS specification is described later in
this section.

• MBRContains(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 contains the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRWithin().

mysql> SET @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = ST_GeomFromText('Point(1 1)');
mysql> SELECT MBRContains(@g1,@g2), MBRWithin(@g2,@g1);
+----------------------+--------------------+
| MBRContains(@g1,@g2) | MBRWithin(@g2,@g1) |
+----------------------+--------------------+
| 1 | 1 |
+----------------------+--------------------+

1603

Functions That Test Spatial Relations Between Geometry Objects

MBRContains() and Contains() are synonyms.

• MBRDisjoint(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and g2
are disjoint (do not intersect).

MBRDisjoint() and Disjoint() are synonyms.

• MBREqual(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and g2
are the same.

• MBRIntersects(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and g2
intersect.

MBRIntersects() and Intersects() are synonyms.

• MBROverlaps(g1, g2)

Two geometries spatially overlap if they intersect and their intersection results in a geometry of the same
dimension but not equal to either of the given geometries.

This function returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries
g1 and g2 overlap.

MBROverlaps() and Overlaps() are synonyms.

• MBRTouches(g1, g2)

Two geometries spatially touch if their interiors do not intersect, but the boundary of one of the
geometries intersects either the boundary or the interior of the other.

This function returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries
g1 and g2 touch.

• MBRWithin(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 is within the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRContains().

mysql> SET @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))');
mysql> SELECT MBRWithin(@g1,@g2), MBRWithin(@g2,@g1);
+--------------------+--------------------+
| MBRWithin(@g1,@g2) | MBRWithin(@g2,@g1) |
+--------------------+--------------------+
| 1 | 0 |
+--------------------+--------------------+

MBRWithin() and Within() are synonyms.

The OpenGIS specification defines the following functions that test the relationship between two geometry
values g1 and g2. The MySQL implementation uses minimum bounding rectangles, so these functions
return the same result as the corresponding MBR-based functions described earlier in this section. The
return values 1 and 0 indicate true and false, respectively.

1604

Functions Used with Global Transaction IDs

• Contains(g1, g2)

MBRContains() and Contains() are synonyms. For more information, see the description of
MBRContains().

• Disjoint(g1, g2)

MBRDisjoint() and Disjoint() are synonyms. For more information, see the description of
MBRDisjoint().

• Equals(g1, g2)

Returns 1 or 0 to indicate whether g1 is spatially equal to g2.

• Intersects(g1, g2)

MBRIntersects() and Intersects() are synonyms. For more information, see the description of
MBRIntersects().

• Overlaps(g1, g2)

MBROverlaps() and Overlaps() are synonyms. For more information, see the description of
MBROverlaps().

• Within(g1, g2)

MBRWithin() and Within() are synonyms. For more information, see the description of
MBRWithin().

12.18 Functions Used with Global Transaction IDs
The functions described in this section are used with GTID-based replication. It is important to keep in mind
that all of these functions take string representations of GTID sets as arguments—as such, the GTID sets
must always be quoted when used with them.

The union of two GTID sets is simply their representations as strings, joined together with an interposed
comma. In other words, you can define a very simple function for obtaining the union of two GTID sets,
similar to that created here:

CREATE FUNCTION GTID_UNION(g1 TEXT, g2 TEXT)
 RETURNS TEXT DETERMINISTIC
 RETURN CONCAT(g1,',',g2);

For more information about GTIDs and how these GTID functions are used in practice, see Section 17.1.3,
“Replication with Global Transaction Identifiers”.

Table 12.22 GTID Functions

Name Description Deprecated

GTID_SUBSET() Return true if all GTIDs in subset
are also in set; otherwise false.

GTID_SUBTRACT() Return all GTIDs in set that are
not in subset.

SQL_THREAD_WAIT_AFTER_GTIDS()Obsolete. Use
WAIT_FOR_EXECUTED_GTID_SET().

Yes

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()Use
WAIT_FOR_EXECUTED_GTID_SET().

1605

Functions Used with Global Transaction IDs

• GTID_SUBSET(subset,set)

Given two sets of global transaction IDs subset and set, returns true (1) if all GTIDs in subset are
also in set. Returns false (0) otherwise.

The GTID sets used with this function are represented as strings, as shown in the following examples:

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 1
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23-25',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23-25',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 1
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 0
1 row in set (0.00 sec)

• GTID_SUBTRACT(set,subset)

Given two sets of global transaction IDs subset and set, returns only those GTIDs from set that are
not in subset.

All GTID sets used with this function are represented as strings and must be quoted, as shown in these
examples:

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:22-57
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:26-57
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:23-24')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:23-24'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:21-22:25-57
1 row in set (0.01 sec)

• SQL_THREAD_WAIT_AFTER_GTIDS(gtid_set[, timeout])

SQL_THREAD_WAIT_AFTER_GTIDS() was added in MySQL 5.6.5, and replaced by
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() in MySQL 5.6.9. (Bug #14775984)

For more information, see Section 17.1.3, “Replication with Global Transaction Identifiers”.

1606

Aggregate Functions

• WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(gtid_set[, timeout])

Wait until the replica SQL thread has executed all of the transactions whose global transaction identifiers
are contained in gtid_set (see Section 17.1.3.1, “GTID Concepts”, for a definition of “GTID sets”), or
until timeout seconds have elapsed, whichever occurs first. timeout is optional; the default timeout is
0 seconds, in which case the source simply waits until all of the transactions in the GTID set have been
executed.

Prior to MySQL 5.6.9, WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() was named
SQL_THREAD_WAIT_AFTER_GTIDS(). (Bug #14775984)

For more information, see Section 17.1.3, “Replication with Global Transaction Identifiers”.

GTID sets used with this function are represented as strings and so must be quoted as shown in the
following example:

mysql> SELECT WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS('3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5');
 -> 5

The return value is the number of transactional events that were executed. Prior to MySQL 5.6.8, this
function behaved unpredictably if no timeout was set and it was invoked while GTID-based replication
was not active; in MySQL 5.6.8 and later, the function returns NULL whenever gtid_mode is OFF. (Bug
#14640065)

12.19 Aggregate Functions

Aggregate functions operate on sets of values. They are often used with a GROUP BY clause to group
values into subsets.

12.19.1 Aggregate Function Descriptions

This section describes aggregate functions that operate on sets of values. They are often used with a
GROUP BY clause to group values into subsets.

Table 12.23 Aggregate Functions

Name Description

AVG() Return the average value of the argument

BIT_AND() Return bitwise AND

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

COUNT() Return a count of the number of rows returned

COUNT(DISTINCT) Return the count of a number of different values

GROUP_CONCAT() Return a concatenated string

MAX() Return the maximum value

MIN() Return the minimum value

STD() Return the population standard deviation

STDDEV() Return the population standard deviation

STDDEV_POP() Return the population standard deviation

STDDEV_SAMP() Return the sample standard deviation

1607

Aggregate Function Descriptions

Name Description

SUM() Return the sum

VAR_POP() Return the population standard variance

VAR_SAMP() Return the sample variance

VARIANCE() Return the population standard variance

Unless otherwise stated, aggregate functions ignore NULL values.

If you use an aggregate function in a statement containing no GROUP BY clause, it is equivalent to
grouping on all rows. For more information, see Section 12.19.3, “MySQL Handling of GROUP BY”.

For numeric arguments, the variance and standard deviation functions return a DOUBLE value. The SUM()
and AVG() functions return a DECIMAL value for exact-value arguments (integer or DECIMAL), and a
DOUBLE value for approximate-value arguments (FLOAT or DOUBLE).

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values to
numbers, losing everything after the first nonnumeric character.) To work around this problem, convert to
numeric units, perform the aggregate operation, and convert back to a temporal value. Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For SET or ENUM values, the cast operation causes the underlying numeric value to be used.

The BIT_AND(), BIT_OR(), and BIT_XOR() aggregate functions perform bit operations. They require
BIGINT (64-bit integer) arguments and return BIGINT values. Arguments of other types are converted to
BIGINT and truncation might occur.

• AVG([DISTINCT] expr)

Returns the average value of expr. The DISTINCT option can be used to return the average of the
distinct values of expr.

If there are no matching rows, AVG() returns NULL.

mysql> SELECT student_name, AVG(test_score)
 FROM student
 GROUP BY student_name;

• BIT_AND(expr)

Returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.

If there are no matching rows, BIT_AND() returns a neutral value (all bits set to 1).

• BIT_OR(expr)

Returns the bitwise OR of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.

If there are no matching rows, BIT_OR() returns a neutral value (all bits set to 0).

• BIT_XOR(expr)

Returns the bitwise XOR of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.

If there are no matching rows, BIT_XOR() returns a neutral value (all bits set to 0).

1608

Aggregate Function Descriptions

• COUNT(expr)

Returns a count of the number of non-NULL values of expr in the rows retrieved by a SELECT
statement. The result is a BIGINT value.

If there are no matching rows, COUNT() returns 0.

mysql> SELECT student.student_name,COUNT(*)
 FROM student,course
 WHERE student.student_id=course.student_id
 GROUP BY student_name;

COUNT(*) is somewhat different in that it returns a count of the number of rows retrieved, whether or not
they contain NULL values.

For transactional storage engines such as InnoDB, storing an exact row count is problematic. Multiple
transactions may be occurring at the same time, each of which may affect the count.

InnoDB does not keep an internal count of rows in a table because concurrent transactions might “see”
different numbers of rows at the same time. Consequently, SELECT COUNT(*) statements only count
rows visible to the current transaction.

To process a SELECT COUNT(*) statement, InnoDB scans an index of the table, which takes some
time if the index is not entirely in the buffer pool. For a faster count, create a counter table and let your
application update it according to the inserts and deletes it does. However, this method may not scale
well in situations where thousands of concurrent transactions are initiating updates to the same counter
table. If an approximate row count is sufficient, use SHOW TABLE STATUS.

InnoDB handles SELECT COUNT(*) and SELECT COUNT(1) operations in the same way. There is no
performance difference.

For MyISAM tables, COUNT(*) is optimized to return very quickly if the SELECT retrieves from one table,
no other columns are retrieved, and there is no WHERE clause. For example:

mysql> SELECT COUNT(*) FROM student;

This optimization only applies to MyISAM tables, because an exact row count is stored for this storage
engine and can be accessed very quickly. COUNT(1) is only subject to the same optimization if the first
column is defined as NOT NULL.

• COUNT(DISTINCT expr,[expr...])

Returns a count of the number of rows with different non-NULL expr values.

If there are no matching rows, COUNT(DISTINCT) returns 0.

mysql> SELECT COUNT(DISTINCT results) FROM student;

In MySQL, you can obtain the number of distinct expression combinations that do not contain NULL by
giving a list of expressions. In standard SQL, you would have to do a concatenation of all expressions
inside COUNT(DISTINCT ...).

• GROUP_CONCAT(expr)

This function returns a string result with the concatenated non-NULL values from a group. It returns NULL
if there are no non-NULL values. The full syntax is as follows:

GROUP_CONCAT([DISTINCT] expr [,expr ...]
 [ORDER BY {unsigned_integer | col_name | expr}

1609

Aggregate Function Descriptions

 [ASC | DESC] [,col_name ...]]
 [SEPARATOR str_val])

mysql> SELECT student_name,
 GROUP_CONCAT(test_score)
 FROM student
 GROUP BY student_name;

Or:

mysql> SELECT student_name,
 GROUP_CONCAT(DISTINCT test_score
 ORDER BY test_score DESC SEPARATOR ' ')
 FROM student
 GROUP BY student_name;

In MySQL, you can get the concatenated values of expression combinations. To eliminate duplicate
values, use the DISTINCT clause. To sort values in the result, use the ORDER BY clause. To sort
in reverse order, add the DESC (descending) keyword to the name of the column you are sorting by
in the ORDER BY clause. The default is ascending order; this may be specified explicitly using the
ASC keyword. The default separator between values in a group is comma (,). To specify a separator
explicitly, use SEPARATOR followed by the string literal value that should be inserted between group
values. To eliminate the separator altogether, specify SEPARATOR ''.

The result is truncated to the maximum length that is given by the group_concat_max_len system
variable, which has a default value of 1024. The value can be set higher, although the effective
maximum length of the return value is constrained by the value of max_allowed_packet. The syntax
to change the value of group_concat_max_len at runtime is as follows, where val is an unsigned
integer:

SET [GLOBAL | SESSION] group_concat_max_len = val;

The return value is a nonbinary or binary string, depending on whether the arguments are nonbinary or
binary strings. The result type is TEXT or BLOB unless group_concat_max_len is less than or equal to
512, in which case the result type is VARCHAR or VARBINARY.

If GROUP_CONCAT() is invoked from within the mysql client, binary string results display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information about
that option, see Section 4.5.1, “mysql — The MySQL Command-Line Client”.

See also CONCAT() and CONCAT_WS(): Section 12.8, “String Functions and Operators”.

• MAX([DISTINCT] expr)

Returns the maximum value of expr. MAX() may take a string argument; in such cases, it returns the
maximum string value. See Section 8.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword can
be used to find the maximum of the distinct values of expr, however, this produces the same result as
omitting DISTINCT.

If there are no matching rows, MAX() returns NULL.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
 FROM student
 GROUP BY student_name;

For MAX(), MySQL currently compares ENUM and SET columns by their string value rather than by the
string's relative position in the set. This differs from how ORDER BY compares them.

1610

Aggregate Function Descriptions

• MIN([DISTINCT] expr)

Returns the minimum value of expr. MIN() may take a string argument; in such cases, it returns the
minimum string value. See Section 8.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword can
be used to find the minimum of the distinct values of expr, however, this produces the same result as
omitting DISTINCT.

If there are no matching rows, MIN() returns NULL.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
 FROM student
 GROUP BY student_name;

For MIN(), MySQL currently compares ENUM and SET columns by their string value rather than by the
string's relative position in the set. This differs from how ORDER BY compares them.

• STD(expr)

Returns the population standard deviation of expr. STD() is a synonym for the standard SQL function
STDDEV_POP(), provided as a MySQL extension.

If there are no matching rows, STD() returns NULL.

• STDDEV(expr)

Returns the population standard deviation of expr. STDDEV() is a synonym for the standard SQL
function STDDEV_POP(), provided for compatibility with Oracle.

If there are no matching rows, STDDEV() returns NULL.

• STDDEV_POP(expr)

Returns the population standard deviation of expr (the square root of VAR_POP()). You can also use
STD() or STDDEV(), which are equivalent but not standard SQL.

If there are no matching rows, STDDEV_POP() returns NULL.

• STDDEV_SAMP(expr)

Returns the sample standard deviation of expr (the square root of VAR_SAMP().

If there are no matching rows, STDDEV_SAMP() returns NULL.

• SUM([DISTINCT] expr)

Returns the sum of expr. If the return set has no rows, SUM() returns NULL. The DISTINCT keyword
can be used to sum only the distinct values of expr.

If there are no matching rows, SUM() returns NULL.

• VAR_POP(expr)

Returns the population standard variance of expr. It considers rows as the whole population, not as
a sample, so it has the number of rows as the denominator. You can also use VARIANCE(), which is
equivalent but is not standard SQL.

If there are no matching rows, VAR_POP() returns NULL.

• VAR_SAMP(expr)

1611

GROUP BY Modifiers

Returns the sample variance of expr. That is, the denominator is the number of rows minus one.

If there are no matching rows, VAR_SAMP() returns NULL.

• VARIANCE(expr)

Returns the population standard variance of expr. VARIANCE() is a synonym for the standard SQL
function VAR_POP(), provided as a MySQL extension.

If there are no matching rows, VARIANCE() returns NULL.

12.19.2 GROUP BY Modifiers

The GROUP BY clause permits a WITH ROLLUP modifier that causes summary output to include extra rows
that represent higher-level (that is, super-aggregate) summary operations. ROLLUP thus enables you to
answer questions at multiple levels of analysis with a single query. For example, ROLLUP can be used to
provide support for OLAP (Online Analytical Processing) operations.

Suppose that a sales table has year, country, product, and profit columns for recording sales
profitability:

CREATE TABLE sales
(
 year INT,
 country VARCHAR(20),
 product VARCHAR(32),
 profit INT
);

To summarize table contents per year, use a simple GROUP BY like this:

mysql> SELECT year, SUM(profit) AS profit
 FROM sales
 GROUP BY year;
+------+--------+
| year | profit |
+------+--------+
| 2000 | 4525 |
| 2001 | 3010 |
+------+--------+

The output shows the total (aggregate) profit for each year. To also determine the total profit summed
over all years, you must add up the individual values yourself or run an additional query. Or you can use
ROLLUP, which provides both levels of analysis with a single query. Adding a WITH ROLLUP modifier to the
GROUP BY clause causes the query to produce another (super-aggregate) row that shows the grand total
over all year values:

mysql> SELECT year, SUM(profit) AS profit
 FROM sales
 GROUP BY year WITH ROLLUP;
+------+--------+
| year | profit |
+------+--------+
2000	4525
2001	3010
NULL	7535
+------+--------+

The NULL value in the year column identifies the grand total super-aggregate line.

1612

GROUP BY Modifiers

ROLLUP has a more complex effect when there are multiple GROUP BY columns. In this case, each
time there is a change in value in any but the last grouping column, the query produces an extra super-
aggregate summary row.

For example, without ROLLUP, a summary of the sales table based on year, country, and product
might look like this, where the output indicates summary values only at the year/country/product level of
analysis:

mysql> SELECT year, country, product, SUM(profit) AS profit
 FROM sales
 GROUP BY year, country, product;
+------+---------+------------+--------+
| year | country | product | profit |
+------+---------+------------+--------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	India	Calculator	150
2000	India	Computer	1200
2000	USA	Calculator	75
2000	USA	Computer	1500
2001	Finland	Phone	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
+------+---------+------------+--------+

With ROLLUP added, the query produces several extra rows:

mysql> SELECT year, country, product, SUM(profit) AS profit
 FROM sales
 GROUP BY year, country, product WITH ROLLUP;
+------+---------+------------+--------+
| year | country | product | profit |
+------+---------+------------+--------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
2000	India	NULL	1350
2000	USA	Calculator	75
2000	USA	Computer	1500
2000	USA	NULL	1575
2000	NULL	NULL	4525
2001	Finland	Phone	10
2001	Finland	NULL	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
2001	USA	NULL	3000
2001	NULL	NULL	3010
NULL	NULL	NULL	7535
+------+---------+------------+--------+

Now the output includes summary information at four levels of analysis, not just one:

• Following each set of product rows for a given year and country, an extra super-aggregate summary row
appears showing the total for all products. These rows have the product column set to NULL.

• Following each set of rows for a given year, an extra super-aggregate summary row appears showing
the total for all countries and products. These rows have the country and products columns set to
NULL.

1613

GROUP BY Modifiers

• Finally, following all other rows, an extra super-aggregate summary row appears showing the grand total
for all years, countries, and products. This row has the year, country, and products columns set to
NULL.

The NULL indicators in each super-aggregate row are produced when the row is sent to the client. The
server looks at the columns named in the GROUP BY clause following the leftmost one that has changed
value. For any column in the result set with a name that matches any of those names, its value is set to
NULL. (If you specify grouping columns by column position, the server identifies which columns to set to
NULL by position.)

Because the NULL values in the super-aggregate rows are placed into the result set at such a late stage in
query processing, you can test them as NULL values only in the select list or HAVING clause. You cannot
test them as NULL values in join conditions or the WHERE clause to determine which rows to select. For
example, you cannot add WHERE product IS NULL to the query to eliminate from the output all but the
super-aggregate rows.

The NULL values do appear as NULL on the client side and can be tested as such using any MySQL client
programming interface. However, at this point, you cannot distinguish whether a NULL represents a regular
grouped value or a super-aggregate value.

Other Considerations When using ROLLUP

The following discussion lists some behaviors specific to the MySQL implementation of ROLLUP.

When you use ROLLUP, you cannot also use an ORDER BY clause to sort the results. In other words,
ROLLUP and ORDER BY are mutually exclusive in MySQL. However, you still have some control over sort
order. GROUP BY in MySQL implicitly sorts results by default (in the absence of ASC or DESC designators).
However, implicit GROUP BY sorting in MySQL is deprecated. To achieve a specific sort order of grouped
results:

• Use explicit ASC and DESC keywords with columns named in the GROUP BY list to specify sort order for
individual columns. In this case, the super-aggregate summary rows added by ROLLUP still appear after
the rows from which they are calculated, regardless of the sort order.

• To work around the restriction that prevents using ROLLUP with ORDER BY, generate the grouped result
set as a derived table and apply ORDER BY to it. For example:

mysql> SELECT * FROM
 (SELECT year, SUM(profit) AS profit
 FROM sales GROUP BY year WITH ROLLUP) AS dt
 ORDER BY year DESC;
+------+--------+
| year | profit |
+------+--------+
2001	3010
2000	4525
NULL	7535
+------+--------+

In this case, the super-aggregate summary rows sort with the rows from which they are calculated, and
their placement depends on sort order (at the beginning for ascending sort, at the end for descending
sort).

LIMIT can be used to restrict the number of rows returned to the client. LIMIT is applied after ROLLUP, so
the limit applies against the extra rows added by ROLLUP. For example:

mysql> SELECT year, country, product, SUM(profit) AS profit
 FROM sales
 GROUP BY year, country, product WITH ROLLUP
 LIMIT 5;

1614

MySQL Handling of GROUP BY

+------+---------+------------+--------+
| year | country | product | profit |
+------+---------+------------+--------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
+------+---------+------------+--------+

Using LIMIT with ROLLUP may produce results that are more difficult to interpret, because there is less
context for understanding the super-aggregate rows.

A MySQL extension permits a column that does not appear in the GROUP BY list to be named in the
select list. (For information about nonaggregated columns and GROUP BY, see Section 12.19.3, “MySQL
Handling of GROUP BY”.) In this case, the server is free to choose any value from this nonaggregated
column in summary rows, and this includes the extra rows added by WITH ROLLUP. For example, in the
following query, country is a nonaggregated column that does not appear in the GROUP BY list and
values chosen for this column are nondeterministic:

mysql> SELECT year, country, SUM(profit) AS profit
 FROM sales
 GROUP BY year WITH ROLLUP;
+------+---------+--------+
| year | country | profit |
+------+---------+--------+
2000	India	4525
2001	USA	3010
NULL	USA	7535
+------+---------+--------+

This behavior is permitted when the ONLY_FULL_GROUP_BY SQL mode is not enabled. If that mode is
enabled, the server rejects the query as illegal because country is not listed in the GROUP BY clause.

12.19.3 MySQL Handling of GROUP BY

In standard SQL, a query that includes a GROUP BY clause cannot refer to nonaggregated columns in the
select list that are not named in the GROUP BY clause. For example, this query is illegal in standard SQL
because the nonaggregated name column in the select list does not appear in the GROUP BY:

SELECT o.custid, c.name, MAX(o.payment)
 FROM orders AS o, customers AS c
 WHERE o.custid = c.custid
 GROUP BY o.custid;

For the query to be legal, the name column must be omitted from the select list or named in the GROUP BY
clause.

MySQL extends the standard SQL use of GROUP BY so that the select list can refer to nonaggregated
columns not named in the GROUP BY clause. This means that the preceding query is legal in MySQL.
You can use this feature to get better performance by avoiding unnecessary column sorting and grouping.
However, this is useful primarily when all values in each nonaggregated column not named in the GROUP
BY are the same for each group. The server is free to choose any value from each group, so unless they
are the same, the values chosen are nondeterministic. Furthermore, the selection of values from each
group cannot be influenced by adding an ORDER BY clause. Result set sorting occurs after values have
been chosen, and ORDER BY does not affect which values within each group the server chooses.

A similar MySQL extension applies to the HAVING clause. In standard SQL, a query cannot refer to
nonaggregated columns in the HAVING clause that are not named in the GROUP BY clause. To simplify
calculations, a MySQL extension permits references to such columns. This extension assumes that the
nongrouped columns have the same group-wise values. Otherwise, the result is nondeterministic.

1615

Miscellaneous Functions

To disable the MySQL GROUP BY extension and enable standard SQL behavior, enable the
ONLY_FULL_GROUP_BY SQL mode. In this case, columns not named in the GROUP BY clause cannot be
used in the select list or HAVING clause unless enclosed in an aggregate function.

The select list extension also applies to ORDER BY. That is, you can refer to nonaggregated columns in the
ORDER BY clause that do not appear in the GROUP BY clause. (However, as mentioned previously, ORDER
BY does not affect which values are chosen from nonaggregated columns; it only sorts them after they
have been chosen.) This extension does not apply if the ONLY_FULL_GROUP_BY SQL mode is enabled.

If a query has aggregate functions and no GROUP BY clause, it cannot have nonaggregated columns in the
select list, HAVING condition, or ORDER BY list with ONLY_FULL_GROUP_BY enabled:

mysql> SELECT name, MAX(age) FROM t;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT(),...)
with no GROUP columns is illegal if there is no GROUP BY clause

Without GROUP BY, there is a single group and it is nondeterministic which name value to choose for the
group.

Another MySQL extension to standard SQL permits references in the HAVING clause to aliased
expressions in the select list. Enabling ONLY_FULL_GROUP_BY prevents this. For example, the following
query returns name values that occur only once in table orders; the query is accepted regardless of
whether ONLY_FULL_GROUP_BY is enabled:

SELECT name, COUNT(name) FROM orders
 GROUP BY name
 HAVING COUNT(name) = 1;

The following query is accepted only if ONLY_FULL_GROUP_BY is disabled.

SELECT name, COUNT(name) AS c FROM orders
 GROUP BY name
 HAVING c = 1;

If you are trying to follow standard SQL, you can use only column expressions in GROUP BY clauses. As a
workaround, use an alias for the expression:

SELECT id, FLOOR(value/100) AS val
 FROM tbl_name
 GROUP BY id, val;

MySQL permits noncolumn expressions in GROUP BY clauses, so the alias is unnecessary:

SELECT id, FLOOR(value/100)
 FROM tbl_name
 GROUP BY id, FLOOR(value/100);

12.20 Miscellaneous Functions
Table 12.24 Miscellaneous Functions

Name Description

DEFAULT() Return the default value for a table column

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value

INET6_ATON() Return the numeric value of an IPv6 address

INET6_NTOA() Return the IPv6 address from a numeric value

1616

Miscellaneous Functions

Name Description

IS_IPV4() Whether argument is an IPv4 address

IS_IPV4_COMPAT() Whether argument is an IPv4-compatible address

IS_IPV4_MAPPED() Whether argument is an IPv4-mapped address

IS_IPV6() Whether argument is an IPv6 address

MASTER_POS_WAIT() Block until the replica has read and applied all
updates up to the specified position

NAME_CONST() Cause the column to have the given name

SLEEP() Sleep for a number of seconds

UUID() Return a Universal Unique Identifier (UUID)

UUID_SHORT() Return an integer-valued universal identifier

VALUES() Define the values to be used during an INSERT

• DEFAULT(col_name)

Returns the default value for a table column. An error results if the column has no default value.

mysql> UPDATE t SET i = DEFAULT(i)+1 WHERE id < 100;

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the
result as a string. For details, see Section 12.8, “String Functions and Operators”.

• INET_ATON(expr)

Given the dotted-quad representation of an IPv4 network address as a string, returns an integer that
represents the numeric value of the address in network byte order (big endian). INET_ATON() returns
NULL if it does not understand its argument.

mysql> SELECT INET_ATON('10.0.5.9');
 -> 167773449

For this example, the return value is calculated as 10×2563 + 0×2562 + 5×256 + 9.

INET_ATON() may or may not return a non-NULL result for short-form IP addresses (such as '127.1'
as a representation of '127.0.0.1'). Because of this, INET_ATON()a should not be used for such
addresses.

Note

To store values generated by INET_ATON(), use an INT UNSIGNED
column rather than INT, which is signed. If you use a signed column, values
corresponding to IP addresses for which the first octet is greater than 127 cannot
be stored correctly. See Section 11.1.7, “Out-of-Range and Overflow Handling”.

• INET_NTOA(expr)

Given a numeric IPv4 network address in network byte order, returns the dotted-quad string
representation of the address as a string in the connection character set. INET_NTOA() returns NULL if
it does not understand its argument.

mysql> SELECT INET_NTOA(167773449);
 -> '10.0.5.9'

1617

Miscellaneous Functions

• INET6_ATON(expr)

Given an IPv6 or IPv4 network address as a string, returns a binary string that represents the numeric
value of the address in network byte order (big endian). Because numeric-format IPv6 addresses
require more bytes than the largest integer type, the representation returned by this function has the
VARBINARY data type: VARBINARY(16) for IPv6 addresses and VARBINARY(4) for IPv4 addresses. If
the argument is not a valid address, INET6_ATON() returns NULL.

The following examples use HEX() to display the INET6_ATON() result in printable form:

mysql> SELECT HEX(INET6_ATON('fdfe::5a55:caff:fefa:9089'));
 -> 'FDFE0000000000005A55CAFFFEFA9089'
mysql> SELECT HEX(INET6_ATON('10.0.5.9'));
 -> '0A000509'

INET6_ATON() observes several constraints on valid arguments. These are given in the following list
along with examples.

• A trailing zone ID is not permitted, as in fe80::3%1 or fe80::3%eth0.

• A trailing network mask is not permitted, as in 2001:45f:3:ba::/64 or 198.51.100.0/24.

• For values representing IPv4 addresses, only classless addresses are supported. Classful addresses
such as 198.51.1 are rejected. A trailing port number is not permitted, as in 198.51.100.2:8080.
Hexadecimal numbers in address components are not permitted, as in 198.0xa0.1.2. Octal
numbers are not supported: 198.51.010.1 is treated as 198.51.10.1, not 198.51.8.1. These
IPv4 constraints also apply to IPv6 addresses that have IPv4 address parts, such as IPv4-compatible
or IPv4-mapped addresses.

To convert an IPv4 address expr represented in numeric form as an INT value to an IPv6 address
represented in numeric form as a VARBINARY value, use this expression:

INET6_ATON(INET_NTOA(expr))

For example:

mysql> SELECT HEX(INET6_ATON(INET_NTOA(167773449)));
 -> '0A000509'

If INET6_ATON() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

1618

Miscellaneous Functions

• INET6_NTOA(expr)

Given an IPv6 or IPv4 network address represented in numeric form as a binary string, returns the string
representation of the address as a string in the connection character set. If the argument is not a valid
address, INET6_NTOA() returns NULL.

INET6_NTOA() has these properties:

• It does not use operating system functions to perform conversions, thus the output string is platform
independent.

• The return string has a maximum length of 39 (4 x 8 + 7). Given this statement:

CREATE TABLE t AS SELECT INET6_NTOA(expr) AS c1;

The resulting table would have this definition:

CREATE TABLE t (c1 VARCHAR(39) CHARACTER SET utf8 DEFAULT NULL);

• The return string uses lowercase letters for IPv6 addresses.

mysql> SELECT INET6_NTOA(INET6_ATON('fdfe::5a55:caff:fefa:9089'));
 -> 'fdfe::5a55:caff:fefa:9089'
mysql> SELECT INET6_NTOA(INET6_ATON('10.0.5.9'));
 -> '10.0.5.9'

mysql> SELECT INET6_NTOA(UNHEX('FDFE0000000000005A55CAFFFEFA9089'));
 -> 'fdfe::5a55:caff:fefa:9089'
mysql> SELECT INET6_NTOA(UNHEX('0A000509'));
 -> '10.0.5.9'

If INET6_NTOA() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option, see
Section 4.5.1, “mysql — The MySQL Command-Line Client”.

• IS_IPV4(expr)

Returns 1 if the argument is a valid IPv4 address specified as a string, 0 otherwise.

mysql> SELECT IS_IPV4('10.0.5.9'), IS_IPV4('10.0.5.256');
 -> 1, 0

For a given argument, if IS_IPV4() returns 1, INET_ATON() (and INET6_ATON()) returns a value
that is not NULL. The converse statement is not true: In some cases, INET_ATON() returns a value
other than NULL when IS_IPV4() returns 0.

As implied by the preceding remarks, IS_IPV4() is more strict than INET_ATON() about what
constitutes a valid IPv4 address, so it may be useful for applications that need to perform strong checks
against invalid values. Alternatively, use INET6_ATON() to convert IPv4 addresses to internal form
and check for a NULL result (which indicates an invalid address). INET6_ATON() is equally strong as
IS_IPV4() about checking IPv4 addresses.

• IS_IPV4_COMPAT(expr)

This function takes an IPv6 address represented in numeric form as a binary string, as returned by
INET6_ATON(). It returns 1 if the argument is a valid IPv4-compatible IPv6 address, 0 otherwise. IPv4-
compatible addresses have the form ::ipv4_address.

mysql> SELECT IS_IPV4_COMPAT(INET6_ATON('::10.0.5.9'));
 -> 1

1619

Miscellaneous Functions

mysql> SELECT IS_IPV4_COMPAT(INET6_ATON('::ffff:10.0.5.9'));
 -> 0

The IPv4 part of an IPv4-compatible address can also be represented using hexadecimal notation. For
example, 198.51.100.1 has this raw hexadecimal value:

mysql> SELECT HEX(INET6_ATON('198.51.100.1'));
 -> 'C6336401'

Expressed in IPv4-compatible form, ::198.51.100.1 is equivalent to ::c0a8:0001 or (without
leading zeros) ::c0a8:1

mysql> SELECT
 -> IS_IPV4_COMPAT(INET6_ATON('::198.51.100.1')),
 -> IS_IPV4_COMPAT(INET6_ATON('::c0a8:0001')),
 -> IS_IPV4_COMPAT(INET6_ATON('::c0a8:1'));
 -> 1, 1, 1

• IS_IPV4_MAPPED(expr)

This function takes an IPv6 address represented in numeric form as a binary string, as returned by
INET6_ATON(). It returns 1 if the argument is a valid IPv4-mapped IPv6 address, 0 otherwise. IPv4-
mapped addresses have the form ::ffff:ipv4_address.

mysql> SELECT IS_IPV4_MAPPED(INET6_ATON('::10.0.5.9'));
 -> 0
mysql> SELECT IS_IPV4_MAPPED(INET6_ATON('::ffff:10.0.5.9'));
 -> 1

As with IS_IPV4_COMPAT() the IPv4 part of an IPv4-mapped address can also be represented using
hexadecimal notation:

mysql> SELECT
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:198.51.100.1')),
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:c0a8:0001')),
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:c0a8:1'));
 -> 1, 1, 1

• IS_IPV6(expr)

Returns 1 if the argument is a valid IPv6 address specified as a string, 0 otherwise. This function does
not consider IPv4 addresses to be valid IPv6 addresses.

mysql> SELECT IS_IPV6('10.0.5.9'), IS_IPV6('::1');
 -> 0, 1

For a given argument, if IS_IPV6() returns 1, INET6_ATON() returns a value other than NULL.

• MASTER_POS_WAIT(log_name,log_pos[,timeout])

This function is useful for control of source/replica synchronization. It blocks until the replica has read
and applied all updates up to the specified position in the source log. The return value is the number of
log events the replica had to wait for to advance to the specified position. The function returns NULL if
the replica SQL thread is not started, the replica's source information is not initialized, the arguments
are incorrect, or an error occurs. It returns -1 if the timeout has been exceeded. If the replica SQL
thread stops while MASTER_POS_WAIT() is waiting, the function returns NULL. If the replica is past the
specified position, the function returns immediately.

On a multithreaded replica, the function waits until expiry of the limit set by the
slave_checkpoint_group or slave_checkpoint_period system variable, when the checkpoint

1620

Miscellaneous Functions

operation is called to update the status of the replica. Depending on the setting for the system variables,
the function might therefore return some time after the specified position was reached.

If a timeout value is specified, MASTER_POS_WAIT() stops waiting when timeout seconds have
elapsed. timeout must be greater than 0; a zero or negative timeout means no timeout.

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

• NAME_CONST(name,value)

Returns the given value. When used to produce a result set column, NAME_CONST() causes the column
to have the given name. The arguments should be constants.

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

This function is for internal use only. The server uses it when writing statements from stored programs
that contain references to local program variables, as described in Section 20.7, “Stored Program Binary
Logging”. You might see this function in the output from mysqlbinlog.

For your applications, you can obtain exactly the same result as in the example just shown by using
simple aliasing, like this:

mysql> SELECT 14 AS myname;
+--------+
| myname |
+--------+
| 14 |
+--------+
1 row in set (0.00 sec)

See Section 13.2.9, “SELECT Statement”, for more information about column aliases.

• SLEEP(duration)

Sleeps (pauses) for the number of seconds given by the duration argument, then returns 0. If
SLEEP() is interrupted, it returns 1. The duration may have a fractional part.

When sleep returns normally (without interruption), it returns 0:

mysql> SELECT SLEEP(1000);
+-------------+
| SLEEP(1000) |
+-------------+
| 0 |
+-------------+

When SLEEP() is the only thing invoked by a query that is interrupted, it returns 1 and the query itself
returns no error. This statement is interrupted using KILL QUERY from another session:

mysql> SELECT SLEEP(1000);
+-------------+
| SLEEP(1000) |
+-------------+
| 1 |

1621

Miscellaneous Functions

+-------------+

When SLEEP() is only part of a query that is interrupted, the query returns an error. This statement is
interrupted using KILL QUERY from another session:

mysql> SELECT 1 FROM t1 WHERE SLEEP(1000);
ERROR 1317 (70100): Query execution was interrupted

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

• UUID()

Returns a Universal Unique Identifier (UUID) generated according to RFC 4122, “A Universally Unique
IDentifier (UUID) URN Namespace” (http://www.ietf.org/rfc/rfc4122.txt).

A UUID is designed as a number that is globally unique in space and time. Two calls to UUID() are
expected to generate two different values, even if these calls are performed on two separate devices not
connected to each other.

Warning

Although UUID() values are intended to be unique, they are not necessarily
unguessable or unpredictable. If unpredictability is required, UUID values should
be generated some other way.

UUID() returns a value that conforms to UUID version 1 as described in RFC 4122. The value is a 128-
bit number represented as a utf8 string of five hexadecimal numbers in aaaaaaaa-bbbb-cccc-
dddd-eeeeeeeeeeee format:

• The first three numbers are generated from the low, middle, and high parts of a timestamp. The high
part also includes the UUID version number.

• The fourth number preserves temporal uniqueness in case the timestamp value loses monotonicity
(for example, due to daylight saving time).

• The fifth number is an IEEE 802 node number that provides spatial uniqueness. A random number is
substituted if the latter is not available (for example, because the host device has no Ethernet card,
or it is unknown how to find the hardware address of an interface on the host operating system). In
this case, spatial uniqueness cannot be guaranteed. Nevertheless, a collision should have very low
probability.

The MAC address of an interface is taken into account only on FreeBSD, Linux, and Windows. On
other operating systems, MySQL uses a randomly generated 48-bit number.

mysql> SELECT UUID();
 -> '6ccd780c-baba-1026-9564-5b8c656024db'

This function is unsafe for statement-based replication. A warning is logged if you use this function when
binlog_format is set to STATEMENT.

• UUID_SHORT()

Returns a “short” universal identifier as a 64-bit unsigned integer. Values returned by UUID_SHORT()
differ from the string-format 128-bit identifiers returned by the UUID() function and have different

1622

http://www.ietf.org/rfc/rfc4122.txt

Precision Math

uniqueness properties. The value of UUID_SHORT() is guaranteed to be unique if the following
conditions hold:

• The server_id value of the current server is between 0 and 255 and is unique among your set of
source and replica servers

• You do not set back the system time for your server host between mysqld restarts

• You invoke UUID_SHORT() on average fewer than 16 million times per second between mysqld
restarts

The UUID_SHORT() return value is constructed this way:

 (server_id & 255) << 56
+ (server_startup_time_in_seconds << 24)
+ incremented_variable++;

mysql> SELECT UUID_SHORT();
 -> 92395783831158784

Note

UUID_SHORT() does not work with statement-based replication.

• VALUES(col_name)

In an INSERT ... ON DUPLICATE KEY UPDATE statement, you can use the VALUES(col_name)
function in the UPDATE clause to refer to column values from the INSERT portion of the statement. In
other words, VALUES(col_name) in the UPDATE clause refers to the value of col_name that would
be inserted, had no duplicate-key conflict occurred. This function is especially useful in multiple-row
inserts. The VALUES() function is meaningful only in the ON DUPLICATE KEY UPDATE clause of
INSERT statements and returns NULL otherwise. See Section 13.2.5.2, “INSERT ... ON DUPLICATE
KEY UPDATE Statement”.

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
 -> ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

12.21 Precision Math

MySQL provides support for precision math: numeric value handling that results in extremely accurate
results and a high degree control over invalid values. Precision math is based on these two features:

• SQL modes that control how strict the server is about accepting or rejecting invalid data.

• The MySQL library for fixed-point arithmetic.

These features have several implications for numeric operations and provide a high degree of compliance
with standard SQL:

• Precise calculations: For exact-value numbers, calculations do not introduce floating-point errors.
Instead, exact precision is used. For example, MySQL treats a number such as .0001 as an exact value
rather than as an approximation, and summing it 10,000 times produces a result of exactly 1, not a value
that is merely “close” to 1.

• Well-defined rounding behavior: For exact-value numbers, the result of ROUND() depends on its
argument, not on environmental factors such as how the underlying C library works.

1623

Types of Numeric Values

• Platform independence: Operations on exact numeric values are the same across different platforms
such as Windows and Unix.

• Control over handling of invalid values: Overflow and division by zero are detectable and can be
treated as errors. For example, you can treat a value that is too large for a column as an error rather
than having the value truncated to lie within the range of the column's data type. Similarly, you can treat
division by zero as an error rather than as an operation that produces a result of NULL. The choice of
which approach to take is determined by the setting of the server SQL mode.

The following discussion covers several aspects of how precision math works, including possible
incompatibilities with older applications. At the end, some examples are given that demonstrate how
MySQL handles numeric operations precisely. For information about controlling the SQL mode, see
Section 5.1.10, “Server SQL Modes”.

12.21.1 Types of Numeric Values

The scope of precision math for exact-value operations includes the exact-value data types (integer and
DECIMAL types) and exact-value numeric literals. Approximate-value data types and numeric literals are
handled as floating-point numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed. Examples:
1, .2, 3.4, -5, -6.78, +9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-point)
number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type has
several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In MySQL,
types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

12.21.2 DECIMAL Data Type Characteristics

This section discusses the characteristics of the DECIMAL data type (and its synonyms), with particular
regard to the following topics:

• Maximum number of digits

• Storage format

• Storage requirements

• The nonstandard MySQL extension to the upper range of DECIMAL columns

The declaration syntax for a DECIMAL column is DECIMAL(M,D). The ranges of values for the arguments
are as follows:

• M is the maximum number of digits (the precision). It has a range of 1 to 65.

• D is the number of digits to the right of the decimal point (the scale). It has a range of 0 to 30 and must
be no larger than M.

If D is omitted, the default is 0. If M is omitted, the default is 10.

1624

Expression Handling

The maximum value of 65 for M means that calculations on DECIMAL values are accurate up to 65 digits.
This limit of 65 digits of precision also applies to exact-value numeric literals, so the maximum range of
such literals differs from before. (There is also a limit on how long the text of DECIMAL literals can be; see
Section 12.21.3, “Expression Handling”.)

Values for DECIMAL columns are stored using a binary format that packs nine decimal digits into 4 bytes.
The storage requirements for the integer and fractional parts of each value are determined separately.
Each multiple of nine digits requires 4 bytes, and any remaining digits left over require some fraction of 4
bytes. The storage required for remaining digits is given by the following table.

Leftover Digits Number of Bytes

0 0

1–2 1

3–4 2

5–6 3

7–9 4

For example, a DECIMAL(18,9) column has nine digits on either side of the decimal point, so the integer
part and the fractional part each require 4 bytes. A DECIMAL(20,6) column has fourteen integer digits
and six fractional digits. The integer digits require four bytes for nine of the digits and 3 bytes for the
remaining five digits. The six fractional digits require 3 bytes.

DECIMAL columns do not store a leading + character or - character or leading 0 digits. If you insert
+0003.1 into a DECIMAL(5,1) column, it is stored as 3.1. For negative numbers, a literal - character is
not stored.

DECIMAL columns do not permit values larger than the range implied by the column definition. For
example, a DECIMAL(3,0) column supports a range of -999 to 999. A DECIMAL(M,D) column permits
up to M - D digits to the left of the decimal point.

The SQL standard requires that the precision of NUMERIC(M,D) be exactly M digits. For DECIMAL(M,D),
the standard requires a precision of at least M digits but permits more. In MySQL, DECIMAL(M,D) and
NUMERIC(M,D) are the same, and both have a precision of exactly M digits.

For a full explanation of the internal format of DECIMAL values, see the file strings/decimal.c in a
MySQL source distribution. The format is explained (with an example) in the decimal2bin() function.

12.21.3 Expression Handling

With precision math, exact-value numbers are used as given whenever possible. For example, numbers in
comparisons are used exactly as given without a change in value. In strict SQL mode, for INSERT into a
column with an exact data type (DECIMAL or integer), a number is inserted with its exact value if it is within
the column range. When retrieved, the value should be the same as what was inserted. (If strict SQL mode
is not enabled, truncation for INSERT is permissible.)

Handling of a numeric expression depends on what kind of values the expression contains:

• If any approximate values are present, the expression is approximate and is evaluated using floating-
point arithmetic.

• If no approximate values are present, the expression contains only exact values. If any exact value
contains a fractional part (a value following the decimal point), the expression is evaluated using

1625

Expression Handling

DECIMAL exact arithmetic and has a precision of 65 digits. The term “exact” is subject to the limits of
what can be represented in binary. For example, 1.0/3.0 can be approximated in decimal notation as
.333..., but not written as an exact number, so (1.0/3.0)*3.0 does not evaluate to exactly 1.0.

• Otherwise, the expression contains only integer values. The expression is exact and is evaluated using
integer arithmetic and has a precision the same as BIGINT (64 bits).

If a numeric expression contains any strings, they are converted to double-precision floating-point values
and the expression is approximate.

Inserts into numeric columns are affected by the SQL mode, which is controlled by the sql_mode
system variable. (See Section 5.1.10, “Server SQL Modes”.) The following discussion mentions
strict mode (selected by the STRICT_ALL_TABLES or STRICT_TRANS_TABLES mode values) and
ERROR_FOR_DIVISION_BY_ZERO. To turn on all restrictions, you can simply use TRADITIONAL mode,
which includes both strict mode values and ERROR_FOR_DIVISION_BY_ZERO:

SET sql_mode='TRADITIONAL';

If a number is inserted into an exact type column (DECIMAL or integer), it is inserted with its exact value if it
is within the column range and precision.

If the value has too many digits in the fractional part, rounding occurs and a note is generated. Rounding
is done as described in Section 12.21.4, “Rounding Behavior”. Truncation due to rounding of the fractional
part is not an error, even in strict mode.

If the value has too many digits in the integer part, it is too large (out of range) and is handled as follows:

• If strict mode is not enabled, the value is truncated to the nearest legal value and a warning is generated.

• If strict mode is enabled, an overflow error occurs.

For DECIMAL literals, in addition to the precision limit of 65 digits, there is a limit on how long the text of
the literal can be. If the value exceeds approximately 80 characters, unexpected results can occur. For
example:

mysql> SELECT
 CAST(0020.01 AS DECIMAL(15,2)) as val;
+------------------+
| val |
+------------------+
| 9999999999999.99 |
+------------------+
1 row in set, 2 warnings (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Truncated incorrect DECIMAL value: '' |
| Warning | 1264 | Out of range value for column 'val' at row 1 |
+---------+------+--+
2 rows in set (0.00 sec)

Underflow is not detected, so underflow handling is undefined.

For inserts of strings into numeric columns, conversion from string to number is handled as follows if the
string has nonnumeric contents:

• A string that does not begin with a number cannot be used as a number and produces an error in strict
mode, or a warning otherwise. This includes the empty string.

1626

Rounding Behavior

• A string that begins with a number can be converted, but the trailing nonnumeric portion is truncated.
If the truncated portion contains anything other than spaces, this produces an error in strict mode, or a
warning otherwise.

By default, division by zero produces a result of NULL and no warning. By setting the SQL mode
appropriately, division by zero can be restricted.

With the ERROR_FOR_DIVISION_BY_ZERO SQL mode enabled, MySQL handles division by zero
differently:

• If strict mode is not enabled, a warning occurs.

• If strict mode is enabled, inserts and updates involving division by zero are prohibited, and an error
occurs.

In other words, inserts and updates involving expressions that perform division by zero can be treated as
errors, but this requires ERROR_FOR_DIVISION_BY_ZERO in addition to strict mode.

Suppose that we have this statement:

INSERT INTO t SET i = 1/0;

This is what happens for combinations of strict and ERROR_FOR_DIVISION_BY_ZERO modes.

sql_mode Value Result

'' (Default) No warning, no error; i is set to NULL.

strict No warning, no error; i is set to NULL.

ERROR_FOR_DIVISION_BY_ZERO Warning, no error; i is set to NULL.

strict,ERROR_FOR_DIVISION_BY_ZERO Error condition; no row is inserted.

12.21.4 Rounding Behavior

This section discusses precision math rounding for the ROUND() function and for inserts into columns with
exact-value types (DECIMAL and integer).

The ROUND() function rounds differently depending on whether its argument is exact or approximate:

• For exact-value numbers, ROUND() uses the “round half up” rule: A value with a fractional part of .5
or greater is rounded up to the next integer if positive or down to the next integer if negative. (In other
words, it is rounded away from zero.) A value with a fractional part less than .5 is rounded down to the
next integer if positive or up to the next integer if negative. (In other words, it is rounded toward zero.)

• For approximate-value numbers, the result depends on the C library. On many systems, this means that
ROUND() uses the “round to nearest even” rule: A value with a fractional part exactly half way between
two integers is rounded to the nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

For inserts into a DECIMAL or integer column, the target is an exact data type, so rounding uses “round half
away from zero,” regardless of whether the value to be inserted is exact or approximate:

1627

Precision Math Examples

mysql> CREATE TABLE t (d DECIMAL(10,0));
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t VALUES(2.5),(2.5E0);
Query OK, 2 rows affected, 2 warnings (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 2

mysql> SHOW WARNINGS;
+-------+------+--+
| Level | Code | Message |
+-------+------+--+
| Note | 1265 | Data truncated for column 'd' at row 1 |
| Note | 1265 | Data truncated for column 'd' at row 2 |
+-------+------+--+
2 rows in set (0.00 sec)

mysql> SELECT d FROM t;
+------+
| d |
+------+
| 3 |
| 3 |
+------+
2 rows in set (0.00 sec)

The SHOW WARNINGS statement displays the notes that are generated by truncation due to rounding of the
fractional part. Such truncation is not an error, even in strict SQL mode (see Section 12.21.3, “Expression
Handling”).

12.21.5 Precision Math Examples

This section provides some examples that show precision math query results in MySQL. These examples
demonstrate the principles described in Section 12.21.3, “Expression Handling”, and Section 12.21.4,
“Rounding Behavior”.

Example 1. Numbers are used with their exact value as given when possible:

mysql> SELECT (.1 + .2) = .3;
+----------------+
| (.1 + .2) = .3 |
+----------------+
| 1 |
+----------------+

For floating-point values, results are inexact:

mysql> SELECT (.1E0 + .2E0) = .3E0;
+----------------------+
| (.1E0 + .2E0) = .3E0 |
+----------------------+
| 0 |
+----------------------+

Another way to see the difference in exact and approximate value handling is to add a small number to a
sum many times. Consider the following stored procedure, which adds .0001 to a variable 1,000 times.

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 0;
 DECLARE d DECIMAL(10,4) DEFAULT 0;
 DECLARE f FLOAT DEFAULT 0;
 WHILE i < 10000 DO
 SET d = d + .0001;

1628

Precision Math Examples

 SET f = f + .0001E0;
 SET i = i + 1;
 END WHILE;
 SELECT d, f;
END;

The sum for both d and f logically should be 1, but that is true only for the decimal calculation. The
floating-point calculation introduces small errors:

+--------+------------------+
| d | f |
+--------+------------------+
| 1.0000 | 0.99999999999991 |
+--------+------------------+

Example 2. Multiplication is performed with the scale required by standard SQL. That is, for two numbers
X1 and X2 that have scale S1 and S2, the scale of the result is S1 + S2:

mysql> SELECT .01 * .01;
+-----------+
| .01 * .01 |
+-----------+
| 0.0001 |
+-----------+

Example 3. Rounding behavior for exact-value numbers is well-defined:

Rounding behavior (for example, with the ROUND() function) is independent of the implementation of the
underlying C library, which means that results are consistent from platform to platform.

• Rounding for exact-value columns (DECIMAL and integer) and exact-valued numbers uses the “round
half away from zero” rule. A value with a fractional part of .5 or greater is rounded away from zero to the
nearest integer, as shown here:

mysql> SELECT ROUND(2.5), ROUND(-2.5);
+------------+-------------+
| ROUND(2.5) | ROUND(-2.5) |
+------------+-------------+
| 3 | -3 |
+------------+-------------+

• Rounding for floating-point values uses the C library, which on many systems uses the “round to nearest
even” rule. A value with a fractional part exactly half way between two integers is rounded to the nearest
even integer:

mysql> SELECT ROUND(2.5E0), ROUND(-2.5E0);
+--------------+---------------+
| ROUND(2.5E0) | ROUND(-2.5E0) |
+--------------+---------------+
| 2 | -2 |
+--------------+---------------+

Example 4. In strict mode, inserting a value that is out of range for a column causes an error, rather than
truncation to a legal value.

When MySQL is not running in strict mode, truncation to a legal value occurs:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.01 sec)

1629

Precision Math Examples

mysql> INSERT INTO t SET i = 128;
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| 127 |
+------+
1 row in set (0.00 sec)

However, an error occurs if strict mode is in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 128;
ERROR 1264 (22003): Out of range value adjusted for column 'i' at row 1

mysql> SELECT i FROM t;
Empty set (0.00 sec)

Example 5: In strict mode and with ERROR_FOR_DIVISION_BY_ZERO set, division by zero causes an
error, not a result of NULL.

In nonstrict mode, division by zero has a result of NULL:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| NULL |
+------+
1 row in set (0.03 sec)

However, division by zero is an error if the proper SQL modes are in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
ERROR 1365 (22012): Division by 0

mysql> SELECT i FROM t;
Empty set (0.01 sec)

Example 6. Exact-value literals are evaluated as exact values.

Approximate-value literals are evaluated using floating point, but exact-value literals are handled as
DECIMAL:

1630

Precision Math Examples

mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.01 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESCRIBE t;
+-------+-----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-----------------------+------+-----+---------+-------+
| a | decimal(2,1) unsigned | NO | | 0.0 | |
| b | double | NO | | 0 | |
+-------+-----------------------+------+-----+---------+-------+
2 rows in set (0.01 sec)

Example 7. If the argument to an aggregate function is an exact numeric type, the result is also an exact
numeric type, with a scale at least that of the argument.

Consider these statements:

mysql> CREATE TABLE t (i INT, d DECIMAL, f FLOAT);
mysql> INSERT INTO t VALUES(1,1,1);
mysql> CREATE TABLE y SELECT AVG(i), AVG(d), AVG(f) FROM t;

The result is a double only for the floating-point argument. For exact type arguments, the result is also an
exact type:

mysql> DESCRIBE y;
+--------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------------+------+-----+---------+-------+
AVG(i)	decimal(14,4)	YES		NULL	
AVG(d)	decimal(14,4)	YES		NULL	
AVG(f)	double	YES		NULL	
+--------+---------------+------+-----+---------+-------+

The result is a double only for the floating-point argument. For exact type arguments, the result is also an
exact type.

1631

1632

Chapter 13 SQL Statements

Table of Contents
13.1 Data Definition Statements .. 1634

13.1.1 ALTER DATABASE Statement ... 1634
13.1.2 ALTER EVENT Statement .. 1635
13.1.3 ALTER FUNCTION Statement .. 1637
13.1.4 ALTER LOGFILE GROUP Statement .. 1637
13.1.5 ALTER PROCEDURE Statement .. 1639
13.1.6 ALTER SERVER Statement .. 1639
13.1.7 ALTER TABLE Statement ... 1639
13.1.8 ALTER TABLESPACE Statement ... 1660
13.1.9 ALTER VIEW Statement ... 1661
13.1.10 CREATE DATABASE Statement ... 1661
13.1.11 CREATE EVENT Statement .. 1662
13.1.12 CREATE FUNCTION Statement ... 1667
13.1.13 CREATE INDEX Statement .. 1667
13.1.14 CREATE LOGFILE GROUP Statement ... 1672
13.1.15 CREATE PROCEDURE and CREATE FUNCTION Statements 1674
13.1.16 CREATE SERVER Statement ... 1679
13.1.17 CREATE TABLE Statement .. 1681
13.1.18 CREATE TABLESPACE Statement ... 1718
13.1.19 CREATE TRIGGER Statement ... 1720
13.1.20 CREATE VIEW Statement .. 1722
13.1.21 DROP DATABASE Statement ... 1726
13.1.22 DROP EVENT Statement ... 1727
13.1.23 DROP FUNCTION Statement ... 1727
13.1.24 DROP INDEX Statement .. 1727
13.1.25 DROP LOGFILE GROUP Statement ... 1728
13.1.26 DROP PROCEDURE and DROP FUNCTION Statements .. 1728
13.1.27 DROP SERVER Statement ... 1729
13.1.28 DROP TABLE Statement .. 1729
13.1.29 DROP TABLESPACE Statement ... 1730
13.1.30 DROP TRIGGER Statement ... 1730
13.1.31 DROP VIEW Statement .. 1731
13.1.32 RENAME TABLE Statement ... 1731
13.1.33 TRUNCATE TABLE Statement ... 1732

13.2 Data Manipulation Statements ... 1733
13.2.1 CALL Statement ... 1733
13.2.2 DELETE Statement .. 1735
13.2.3 DO Statement .. 1739
13.2.4 HANDLER Statement ... 1739
13.2.5 INSERT Statement ... 1741
13.2.6 LOAD DATA Statement .. 1750
13.2.7 LOAD XML Statement .. 1762
13.2.8 REPLACE Statement .. 1769
13.2.9 SELECT Statement .. 1772
13.2.10 Subqueries ... 1788
13.2.11 UPDATE Statement .. 1801

13.3 Transactional and Locking Statements ... 1804
13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Statements 1804

1633

Data Definition Statements

13.3.2 Statements That Cannot Be Rolled Back ... 1807
13.3.3 Statements That Cause an Implicit Commit ... 1808
13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements 1809
13.3.5 LOCK TABLES and UNLOCK TABLES Statements ... 1809
13.3.6 SET TRANSACTION Statement .. 1815
13.3.7 XA Transactions ... 1818

13.4 Replication Statements .. 1822
13.4.1 SQL Statements for Controlling Replication Source Servers .. 1822
13.4.2 SQL Statements for Controlling Replica Servers .. 1825

13.5 Prepared Statements .. 1835
13.5.1 PREPARE Statement ... 1839
13.5.2 EXECUTE Statement ... 1840
13.5.3 DEALLOCATE PREPARE Statement .. 1840

13.6 Compound Statements .. 1840
13.6.1 BEGIN ... END Compound Statement .. 1840
13.6.2 Statement Labels ... 1841
13.6.3 DECLARE Statement ... 1842
13.6.4 Variables in Stored Programs ... 1842
13.6.5 Flow Control Statements .. 1844
13.6.6 Cursors .. 1848
13.6.7 Condition Handling ... 1850

13.7 Database Administration Statements .. 1875
13.7.1 Account Management Statements ... 1875
13.7.2 Table Maintenance Statements ... 1895
13.7.3 Plugin and Loadable Function Statements ... 1906
13.7.4 SET Statements ... 1909
13.7.5 SHOW Statements ... 1914
13.7.6 Other Administrative Statements ... 1964

13.8 Utility Statements .. 1975
13.8.1 DESCRIBE Statement .. 1975
13.8.2 EXPLAIN Statement ... 1975
13.8.3 HELP Statement .. 1977
13.8.4 USE Statement .. 1979

This chapter describes the syntax for the SQL statements supported by MySQL.

13.1 Data Definition Statements

13.1.1 ALTER DATABASE Statement
ALTER {DATABASE | SCHEMA} [db_name]
 alter_option ...
ALTER {DATABASE | SCHEMA} db_name
 UPGRADE DATA DIRECTORY NAME

alter_option: {
 [DEFAULT] CHARACTER SET [=] charset_name
 | [DEFAULT] COLLATE [=] collation_name
}

ALTER DATABASE enables you to change the overall characteristics of a database. These characteristics
are stored in the db.opt file in the database directory. This statement requires the ALTER privilege on the
database. ALTER SCHEMA is a synonym for ALTER DATABASE.

The database name can be omitted from the first syntax, in which case the statement applies to the default
database. An error occurs if there is no default database.

1634

ALTER EVENT Statement

• Character Set and Collation Options

• Upgrading from Versions Older than MySQL 5.1

Character Set and Collation Options

The CHARACTER SET clause changes the default database character set. The COLLATE clause changes
the default database collation. For information about character set and collation names, see Chapter 10,
Character Sets, Collations, Unicode.

To see the available character sets and collations, use the SHOW CHARACTER SET and SHOW
COLLATION statements, respectively. See Section 13.7.5.4, “SHOW CHARACTER SET Statement”, and
Section 13.7.5.5, “SHOW COLLATION Statement”.

A stored routine that uses the database defaults when the routine is created includes those defaults as part
of its definition. (In a stored routine, variables with character data types use the database defaults if the
character set or collation are not specified explicitly. See Section 13.1.15, “CREATE PROCEDURE and
CREATE FUNCTION Statements”.) If you change the default character set or collation for a database, any
stored routines that are to use the new defaults must be dropped and recreated.

Upgrading from Versions Older than MySQL 5.1

The syntax that includes the UPGRADE DATA DIRECTORY NAME clause updates the name of the directory
associated with the database to use the encoding implemented in MySQL 5.1 for mapping database
names to database directory names (see Section 9.2.4, “Mapping of Identifiers to File Names”). This
clause is for use under these conditions:

• It is intended when upgrading MySQL to 5.1 or later from older versions.

• It is intended to update a database directory name to the current encoding format if the name contains
special characters that need encoding.

• The statement is used by mysqlcheck (as invoked by mysql_upgrade).

For example, if a database in MySQL 5.0 has the name a-b-c, the name contains instances of the -
(dash) character. In MySQL 5.0, the database directory is also named a-b-c, which is not necessarily safe
for all file systems. In MySQL 5.1 and later, the same database name is encoded as a@002db@002dc to
produce a file system-neutral directory name.

When a MySQL installation is upgraded to MySQL 5.1 or later from an older version,the server displays a
name such as a-b-c (which is in the old format) as #mysql50#a-b-c, and you must refer to the name
using the #mysql50# prefix. Use UPGRADE DATA DIRECTORY NAME in this case to explicitly tell the
server to re-encode the database directory name to the current encoding format:

ALTER DATABASE `#mysql50#a-b-c` UPGRADE DATA DIRECTORY NAME;

After executing this statement, you can refer to the database as a-b-c without the special #mysql50#
prefix.

13.1.2 ALTER EVENT Statement
ALTER
 [DEFINER = user]
 EVENT event_name
 [ON SCHEDULE schedule]
 [ON COMPLETION [NOT] PRESERVE]
 [RENAME TO new_event_name]

1635

ALTER EVENT Statement

 [ENABLE | DISABLE | DISABLE ON SLAVE]
 [COMMENT 'string']
 [DO event_body]

The ALTER EVENT statement changes one or more of the characteristics of an existing event without
the need to drop and recreate it. The syntax for each of the DEFINER, ON SCHEDULE, ON COMPLETION,
COMMENT, ENABLE / DISABLE, and DO clauses is exactly the same as when used with CREATE EVENT.
(See Section 13.1.11, “CREATE EVENT Statement”.)

Any user can alter an event defined on a database for which that user has the EVENT privilege. When a
user executes a successful ALTER EVENT statement, that user becomes the definer for the affected event.

ALTER EVENT works only with an existing event:

mysql> ALTER EVENT no_such_event
 > ON SCHEDULE
 > EVERY '2:3' DAY_HOUR;
ERROR 1517 (HY000): Unknown event 'no_such_event'

In each of the following examples, assume that the event named myevent is defined as shown here:

CREATE EVENT myevent
 ON SCHEDULE
 EVERY 6 HOUR
 COMMENT 'A sample comment.'
 DO
 UPDATE myschema.mytable SET mycol = mycol + 1;

The following statement changes the schedule for myevent from once every six hours starting immediately
to once every twelve hours, starting four hours from the time the statement is run:

ALTER EVENT myevent
 ON SCHEDULE
 EVERY 12 HOUR
 STARTS CURRENT_TIMESTAMP + INTERVAL 4 HOUR;

It is possible to change multiple characteristics of an event in a single statement. This example changes
the SQL statement executed by myevent to one that deletes all records from mytable; it also changes
the schedule for the event such that it executes once, one day after this ALTER EVENT statement is run.

ALTER EVENT myevent
 ON SCHEDULE
 AT CURRENT_TIMESTAMP + INTERVAL 1 DAY
 DO
 TRUNCATE TABLE myschema.mytable;

Specify the options in an ALTER EVENT statement only for those characteristics that you want to change;
omitted options keep their existing values. This includes any default values for CREATE EVENT such as
ENABLE.

To disable myevent, use this ALTER EVENT statement:

ALTER EVENT myevent
 DISABLE;

The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables to
obtain any of the timestamp or interval values which it contains. You cannot use stored routines or
loadable functions in such expressions, and you cannot use any table references; however, you can use
SELECT FROM DUAL. This is true for both ALTER EVENT and CREATE EVENT statements. References to
stored routines, loadable functions, and tables in such cases are specifically not permitted, and fail with an
error (see Bug #22830).

1636

ALTER FUNCTION Statement

Although an ALTER EVENT statement that contains another ALTER EVENT statement in its DO clause
appears to succeed, when the server attempts to execute the resulting scheduled event, the execution fails
with an error.

To rename an event, use the ALTER EVENT statement's RENAME TO clause. This statement renames the
event myevent to yourevent:

ALTER EVENT myevent
 RENAME TO yourevent;

You can also move an event to a different database using ALTER EVENT ... RENAME TO ... and
db_name.event_name notation, as shown here:

ALTER EVENT olddb.myevent
 RENAME TO newdb.myevent;

To execute the previous statement, the user executing it must have the EVENT privilege on both the olddb
and newdb databases.

Note

There is no RENAME EVENT statement.

The value DISABLE ON SLAVE is used on a replica instead of ENABLE or DISABLE to indicate an event
that was created on the source and replicated to the replica, but that is not executed on the replica.
Normally, DISABLE ON SLAVE is set automatically as required; however, there are some circumstances
under which you may want or need to change it manually. See Section 17.4.1.16, “Replication of Invoked
Features”, for more information.

13.1.3 ALTER FUNCTION Statement
ALTER FUNCTION func_name [characteristic ...]

characteristic: {
 COMMENT 'string'
 | LANGUAGE SQL
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }
}

This statement can be used to change the characteristics of a stored function. More than one change may
be specified in an ALTER FUNCTION statement. However, you cannot change the parameters or body of
a stored function using this statement; to make such changes, you must drop and re-create the function
using DROP FUNCTION and CREATE FUNCTION.

You must have the ALTER ROUTINE privilege for the function. (That privilege is granted automatically to
the function creator.) If binary logging is enabled, the ALTER FUNCTION statement might also require the
SUPER privilege, as described in Section 20.7, “Stored Program Binary Logging”.

13.1.4 ALTER LOGFILE GROUP Statement
ALTER LOGFILE GROUP logfile_group
 ADD UNDOFILE 'file_name'
 [INITIAL_SIZE [=] size]
 [WAIT]
 ENGINE [=] engine_name

This statement adds an UNDO file named 'file_name' to an existing log file group logfile_group. An
ALTER LOGFILE GROUP statement has one and only one ADD UNDOFILE clause. No DROP UNDOFILE
clause is currently supported.

1637

ALTER LOGFILE GROUP Statement

Note

All NDB Cluster Disk Data objects share the same namespace. This means that
each Disk Data object must be uniquely named (and not merely each Disk Data
object of a given type). For example, you cannot have a tablespace and an undo
log file with the same name, or an undo log file and a data file with the same name.

The optional INITIAL_SIZE parameter sets the UNDO file's initial size in bytes; if not specified, the initial
size defaults to 134217728 (128 MB). Prior to MySQL NDB Cluster 7.3.2, this value was required to be
specified using digits; in MySQL NDB Cluster 7.3.2 and later, you may optionally follow size with a one-
letter abbreviation for an order of magnitude, similar to those used in my.cnf. Generally, this is one of the
letters M (megabytes) or G (gigabytes). (Bug #13116514, Bug #16104705, Bug #62858)

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB). (Bug
#29186)

The minimum allowed value for INITIAL_SIZE is 1048576 (1 MB). (Bug #29574)

Note

WAIT is parsed but otherwise ignored. This keyword currently has no effect, and is
intended for future expansion.

The ENGINE parameter (required) determines the storage engine which is used by this log file group,
with engine_name being the name of the storage engine. Currently, the only accepted values for
engine_name are “NDBCLUSTER” and “NDB”. The two values are equivalent.

Here is an example, which assumes that the log file group lg_3 has already been created using CREATE
LOGFILE GROUP (see Section 13.1.14, “CREATE LOGFILE GROUP Statement”):

ALTER LOGFILE GROUP lg_3
 ADD UNDOFILE 'undo_10.dat'
 INITIAL_SIZE=32M
 ENGINE=NDBCLUSTER;

When ALTER LOGFILE GROUP is used with ENGINE = NDBCLUSTER (alternatively, ENGINE = NDB), an
UNDO log file is created on each NDB Cluster data node. You can verify that the UNDO files were created
and obtain information about them by querying the Information Schema FILES table. For example:

mysql> SELECT FILE_NAME, LOGFILE_GROUP_NUMBER, EXTRA
 -> FROM INFORMATION_SCHEMA.FILES
 -> WHERE LOGFILE_GROUP_NAME = 'lg_3';
+-------------+----------------------+----------------+
| FILE_NAME | LOGFILE_GROUP_NUMBER | EXTRA |
+-------------+----------------------+----------------+
newdata.dat	0	CLUSTER_NODE=3
newdata.dat	0	CLUSTER_NODE=4
undo_10.dat	11	CLUSTER_NODE=3
undo_10.dat	11	CLUSTER_NODE=4
+-------------+----------------------+----------------+
4 rows in set (0.01 sec)

(See Section 21.5.1, “The INFORMATION_SCHEMA FILES Table”.)

Memory used for UNDO_BUFFER_SIZE comes from the global pool whose size is determined by the value
of the SharedGlobalMemory data node configuration parameter. This includes any default value implied
for this option by the setting of the InitialLogFileGroup data node configuration parameter.

ALTER LOGFILE GROUP is useful only with Disk Data storage for NDB Cluster. For more information, see
Section 18.6.11, “NDB Cluster Disk Data Tables”.

1638

ALTER PROCEDURE Statement

13.1.5 ALTER PROCEDURE Statement
ALTER PROCEDURE proc_name [characteristic ...]

characteristic: {
 COMMENT 'string'
 | LANGUAGE SQL
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }
}

This statement can be used to change the characteristics of a stored procedure. More than one change
may be specified in an ALTER PROCEDURE statement. However, you cannot change the parameters or
body of a stored procedure using this statement; to make such changes, you must drop and re-create the
procedure using DROP PROCEDURE and CREATE PROCEDURE.

You must have the ALTER ROUTINE privilege for the procedure. By default, that privilege is
granted automatically to the procedure creator. This behavior can be changed by disabling the
automatic_sp_privileges system variable. See Section 20.2.2, “Stored Routines and MySQL
Privileges”.

13.1.6 ALTER SERVER Statement
ALTER SERVER server_name
 OPTIONS (option [, option] ...)

Alters the server information for server_name, adjusting any of the options permitted in the CREATE
SERVER statement. The corresponding fields in the mysql.servers table are updated accordingly. This
statement requires the SUPER privilege.

For example, to update the USER option:

ALTER SERVER s OPTIONS (USER 'sally');

ALTER SERVER causes an implicit commit. See Section 13.3.3, “Statements That Cause an Implicit
Commit”.

ALTER SERVER is not written to the binary log, regardless of the logging format that is in use.

In MySQL 5.6.11 only, gtid_next must be set to AUTOMATIC before issuing this statement. (Bug
#16062608, Bug #16715809, Bug #69045)

13.1.7 ALTER TABLE Statement
ALTER [ONLINE | OFFLINE] [IGNORE] TABLE tbl_name
 [alter_option [, alter_option] ...]
 [partition_options]

alter_option: {
 table_options
 | ADD [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | ADD [COLUMN] (col_name column_definition,...)
 | ADD {INDEX | KEY} [index_name]
 [index_type] (key_part,...) [index_option] ...
 | ADD {FULLTEXT | SPATIAL} [INDEX | KEY] [index_name]
 (key_part,...) [index_option] ...
 | ADD [CONSTRAINT [symbol]] PRIMARY KEY
 [index_type] (key_part,...)
 [index_option] ...
 | ADD [CONSTRAINT [symbol]] UNIQUE [INDEX | KEY]
 [index_name] [index_type] (key_part,...)
 [index_option] ...

1639

ALTER TABLE Statement

 | ADD [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (col_name,...)
 reference_definition
 | ADD CHECK (expr)
 | ALGORITHM [=] {DEFAULT | INPLACE | COPY}
 | ALTER [COLUMN] col_name {
 SET DEFAULT {literal | (expr)}
 | DROP DEFAULT
 }
 | CHANGE [COLUMN] old_col_name new_col_name column_definition
 [FIRST | AFTER col_name]
 | [DEFAULT] CHARACTER SET [=] charset_name [COLLATE [=] collation_name]
 | CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]
 | {DISABLE | ENABLE} KEYS
 | {DISCARD | IMPORT} TABLESPACE
 | DROP [COLUMN] col_name
 | DROP {INDEX | KEY} index_name
 | DROP PRIMARY KEY
 | DROP FOREIGN KEY fk_symbol
 | FORCE
 | LOCK [=] {DEFAULT | NONE | SHARED | EXCLUSIVE}
 | MODIFY [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | ORDER BY col_name [, col_name] ...
 | RENAME [TO | AS] new_tbl_name
}

partition_options:
 partition_option [partition_option] ...

partition_option: {
 ADD PARTITION (partition_definition)
 | DROP PARTITION partition_names
 | TRUNCATE PARTITION {partition_names | ALL}
 | COALESCE PARTITION number
 | REORGANIZE PARTITION partition_names INTO (partition_definitions)
 | EXCHANGE PARTITION partition_name WITH TABLE tbl_name
 | ANALYZE PARTITION {partition_names | ALL}
 | CHECK PARTITION {partition_names | ALL}
 | OPTIMIZE PARTITION {partition_names | ALL}
 | REBUILD PARTITION {partition_names | ALL}
 | REPAIR PARTITION {partition_names | ALL}
 | REMOVE PARTITIONING
}

key_part:
 col_name [(length)] [ASC | DESC]

index_type:
 USING {BTREE | HASH}

index_option: {
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'
}

table_options:
 table_option [[,] table_option] ...

table_option: {
 AUTO_INCREMENT [=] value
 | AVG_ROW_LENGTH [=] value
 | [DEFAULT] CHARACTER SET [=] charset_name
 | CHECKSUM [=] {0 | 1}
 | [DEFAULT] COLLATE [=] collation_name

1640

ALTER TABLE Statement

 | COMMENT [=] 'string'
 | CONNECTION [=] 'connect_string'
 | {DATA | INDEX} DIRECTORY [=] 'absolute path to directory'
 | DELAY_KEY_WRITE [=] {0 | 1}
 | ENGINE [=] engine_name
 | INSERT_METHOD [=] { NO | FIRST | LAST }
 | KEY_BLOCK_SIZE [=] value
 | MAX_ROWS [=] value
 | MIN_ROWS [=] value
 | PACK_KEYS [=] {0 | 1 | DEFAULT}
 | PASSWORD [=] 'string'
 | ROW_FORMAT [=] {DEFAULT | DYNAMIC | FIXED | COMPRESSED | REDUNDANT | COMPACT}
 | STATS_AUTO_RECALC [=] {DEFAULT | 0 | 1}
 | STATS_PERSISTENT [=] {DEFAULT | 0 | 1}
 | STATS_SAMPLE_PAGES [=] value
 | TABLESPACE tablespace_name [STORAGE {DISK | MEMORY}]
 | UNION [=] (tbl_name[,tbl_name]...)
}

ALTER TABLE changes the structure of a table. For example, you can add or delete columns, create or
destroy indexes, change the type of existing columns, or rename columns or the table itself. You can also
change characteristics such as the storage engine used for the table or the table comment.

• To use ALTER TABLE, you need ALTER, CREATE, and INSERT privileges for the table. Renaming a
table requires ALTER and DROP on the old table, ALTER, CREATE, and INSERT on the new table.

• Following the table name, specify the alterations to be made. If none are given, ALTER TABLE does
nothing.

• The syntax for many of the permissible alterations is similar to clauses of the CREATE TABLE statement.
column_definition clauses use the same syntax for ADD and CHANGE as for CREATE TABLE. For
more information, see Section 13.1.17, “CREATE TABLE Statement”.

• The word COLUMN is optional and can be omitted.

• Multiple ADD, ALTER, DROP, and CHANGE clauses are permitted in a single ALTER TABLE statement,
separated by commas. This is a MySQL extension to standard SQL, which permits only one of each
clause per ALTER TABLE statement. For example, to drop multiple columns in a single statement, do
this:

ALTER TABLE t2 DROP COLUMN c, DROP COLUMN d;

• If a storage engine does not support an attempted ALTER TABLE operation, a warning may result.
Such warnings can be displayed with SHOW WARNINGS. See Section 13.7.5.41, “SHOW WARNINGS
Statement”. For information on troubleshooting ALTER TABLE, see Section B.3.6.1, “Problems with
ALTER TABLE”.

• For usage examples, see Section 13.1.7.2, “ALTER TABLE Examples”.

• With the mysql_info() C API function, you can find out how many rows were copied by ALTER
TABLE, and (when IGNORE is used) how many rows were deleted due to duplication of unique key
values. See mysql_info().

There are several additional aspects to the ALTER TABLE statement, described under the following topics
in this section:

• Table Options

• Performance and Space Requirements

• Concurrency Control

1641

https://dev.mysql.com/doc/c-api/5.6/en/mysql-info.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-info.html

ALTER TABLE Statement

• Adding and Dropping Columns

• Renaming, Redefining, and Reordering Columns

• Primary Keys and Indexes

• Foreign Keys and Other Constraints

• Changing the Character Set

• Discarding and Importing InnoDB Tablespaces

• Row Order for MyISAM Tables

• Partitioning Options

Table Options

table_options signifies table options of the kind that can be used in the CREATE TABLE statement,
such as ENGINE, AUTO_INCREMENT, AVG_ROW_LENGTH, MAX_ROWS, or ROW_FORMAT.

For descriptions of all table options, see Section 13.1.17, “CREATE TABLE Statement”. However, ALTER
TABLE ignores DATA DIRECTORY and INDEX DIRECTORY when given as table options. ALTER TABLE
permits them only as partitioning options, and, as of MySQL 5.6.35, requires that you have the FILE
privilege.

Use of table options with ALTER TABLE provides a convenient way of altering single table characteristics.
For example:

• If t1 is currently not an InnoDB table, this statement changes its storage engine to InnoDB:

ALTER TABLE t1 ENGINE = InnoDB;

• See Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB” for considerations when switching
tables to the InnoDB storage engine.

• When you specify an ENGINE clause, ALTER TABLE rebuilds the table. This is true even if the table
already has the specified storage engine.

• Running ALTER TABLE tbl_name ENGINE=INNODB on an existing InnoDB table performs a
“null” ALTER TABLE operation, which can be used to defragment an InnoDB table, as described in
Section 14.12.4, “Defragmenting a Table”. Running ALTER TABLE tbl_name FORCE on an InnoDB
table performs the same function.

• As of MySQL 5.6.17, ALTER TABLE tbl_name ENGINE=INNODB and ALTER TABLE tbl_name
FORCE use online DDL. For more information, see Section 14.13, “InnoDB and Online DDL”.

• The outcome of attempting to change the storage engine of a table is affected by whether the desired
storage engine is available and the setting of the NO_ENGINE_SUBSTITUTION SQL mode, as
described in Section 5.1.10, “Server SQL Modes”.

• To prevent inadvertent loss of data, ALTER TABLE cannot be used to change the storage engine of a
table to MERGE or BLACKHOLE.

• To change the InnoDB table to use compressed row-storage format:

ALTER TABLE t1 ROW_FORMAT = COMPRESSED;

• To reset the current auto-increment value:

1642

ALTER TABLE Statement

ALTER TABLE t1 AUTO_INCREMENT = 13;

You cannot reset the counter to a value less than or equal to the value that is currently in use. For
both InnoDB and MyISAM, if the value is less than or equal to the maximum value currently in the
AUTO_INCREMENT column, the value is reset to the current maximum AUTO_INCREMENT column value
plus one.

• To change the default table character set:

ALTER TABLE t1 CHARACTER SET = utf8;

See also Changing the Character Set.

• To add (or change) a table comment:

ALTER TABLE t1 COMMENT = 'New table comment';

It is also possible to set NDB_COMMENT options for columns of NDB tables as part of an ALTER TABLE
statement, like this one:

ALTER TABLE t1
 CHANGE COLUMN c1 c1 BLOB
 COMMENT = 'NDB_COLUMN=MAX_BLOB_PART_SIZE';

Bear in mind that ALTER TABLE ... COMMENT ... discards any existing comment for the table. See
Setting NDB_TABLE options, for additional information and examples.

To verify that the table options were changed as intended, use SHOW CREATE TABLE, or query the
Information Schema TABLES table.

Performance and Space Requirements

ALTER TABLE operations are processed using one of the following algorithms:

• COPY: Operations are performed on a copy of the original table, and table data is copied from the original
table to the new table row by row. Concurrent DML is not permitted.

• INPLACE: Operations avoid copying table data but may rebuild the table in place. An exclusive metadata
lock on the table may be taken briefly during preparation and execution phases of the operation.
Typically, concurrent DML is supported.

For tables using the NDB storage engine, these algorithms work as follows:

• COPY: NDB creates a copy of the table and alters it; the NDB Cluster handler then copies the data
between the old and new versions of the table. Subsequently, NDB deletes the old table and renames the
new one.

This is sometimes also referred to as a “copying” or “offline” ALTER TABLE.

• INPLACE: The data nodes make the required changes; the NDB Cluster handler does not copy data or
otherwise take part.

This is sometimes also referred to as a “non-copying” or “online” ALTER TABLE.

See Section 18.6.12, “Online Operations with ALTER TABLE in NDB Cluster”, for more information.

The ALGORITHM clause is optional. If the ALGORITHM clause is omitted (or if you specify
ALGORITHM=DEFAULT), MySQL uses ALGORITHM=INPLACE for storage engines and ALTER TABLE
clauses that support it. Otherwise, ALGORITHM=COPY is used.

1643

https://dev.mysql.com/doc/refman/5.7/en/create-table.html#create-table-comment-ndb-table-options

ALTER TABLE Statement

Note

ALGORITHM=DEFAULT, ALGORITHM=INPLACE, and ALGORITHM=COPY are not
supported for ALTER TABLE operations on partitioned tables. MySQL 5.6.11
and later supports ALGORITHM=1 and ALGORITHM=2 for use with upgrades and
downgrades; see Section 13.1.7.1, “ALTER TABLE Partition Operations”, for more
information.

Specifying an ALGORITHM clause requires the operation to use the specified algorithm for clauses and
storage engines that support it, or fail with an error otherwise. Specifying ALGORITHM=DEFAULT is the
same as omitting the ALGORITHM clause.

ALTER TABLE operations that use the COPY algorithm wait for other operations that are modifying the
table to complete. After alterations are applied to the table copy, data is copied over, the original table
is deleted, and the table copy is renamed to the name of the original table. While the ALTER TABLE
operation executes, the original table is readable by other sessions (with the exception noted shortly).
Updates and writes to the table started after the ALTER TABLE operation begins are stalled until the
new table is ready, then are automatically redirected to the new table. The temporary copy of the table is
created in the database directory of the original table unless it is a RENAME TO operation that moves the
table to a database that resides in a different directory.

The exception referred to earlier is that ALTER TABLE blocks reads (not just writes) at the point where it is
ready to install a new version of the table .frm file, discard the old file, and clear outdated table structures
from the table and table definition caches. At this point, it must acquire an exclusive lock. To do so, it waits
for current readers to finish, and blocks new reads and writes.

An ALTER TABLE operation that uses the COPY algorithm prevents concurrent DML operations.
Concurrent queries are still allowed. That is, a table-copying operation always includes at least
the concurrency restrictions of LOCK=SHARED (allow queries but not DML). You can further restrict
concurrency for operations that support the LOCK clause by specifying LOCK=EXCLUSIVE, which prevents
DML and queries. For more information, see Concurrency Control.

Note

In MySQL 5.6, LOCK is not supported for ALTER TABLE operations on partitioned
tables.

To force use of the COPY algorithm for an ALTER TABLE operation that would otherwise not use it, enable
the old_alter_table system variable or specify ALGORITHM=COPY. If there is a conflict between the
old_alter_table setting and an ALGORITHM clause with a value other than DEFAULT, the ALGORITHM
clause takes precedence.

For InnoDB tables, an ALTER TABLE operation that uses the COPY algorithm on a table that resides
in a shared tablespace such as the system tablespace can increase the amount of space used by the
tablespace. Such operations require as much additional space as the data in the table plus indexes. For a
table residing in a shared tablespace, the additional space used during the operation is not released back
to the operating system as it is for a table that resides in a file-per-table tablespace.

For information about space requirements for online DDL operations, see Section 14.13.3, “Online DDL
Space Requirements”.

ALTER TABLE operations that support the INPLACE algorithm include:

• ALTER TABLE operations supported by the InnoDB online DDL feature. See Section 14.13.1, “Online
DDL Operations”.

1644

ALTER TABLE Statement

• Renaming a table. MySQL renames files that correspond to the table tbl_name without making a copy.
(You can also use the RENAME TABLE statement to rename tables. See Section 13.1.32, “RENAME
TABLE Statement”.) Privileges granted specifically for the renamed table are not migrated to the new
name. They must be changed manually.

• Operations that only modify table metadata. These operations are immediate because the server only
alters the table .frm file, not touch table contents. Metadata-only operations include:

• Renaming a column.

• Changing the default value of a column (except for NDB tables; see Limitations of NDB online
operations).

• Modifying the definition of an ENUM or SET column by adding new enumeration or set members to the
end of the list of valid member values, as long as the storage size of the data type does not change.
For example, adding a member to a SET column that has 8 members changes the required storage
per value from 1 byte to 2 bytes; this requires a table copy. Adding members in the middle of the list
causes renumbering of existing members, which requires a table copy.

• Adding or dropping a secondary index, for InnoDB and NDB tables. See Section 14.13, “InnoDB and
Online DDL”.

• For NDB tables, operations that add and drop indexes on variable-width columns. These operations
occur online, without table copying and without blocking concurrent DML actions for most of their
duration. See Section 18.6.12, “Online Operations with ALTER TABLE in NDB Cluster”.

As of MySQL 5.6.16, ALTER TABLE upgrades MySQL 5.5 temporal columns to 5.6 format for ADD
COLUMN, CHANGE COLUMN, MODIFY COLUMN, ADD INDEX, and FORCE operations. This conversion
cannot be done using the INPLACE algorithm because the table must be rebuilt, so specifying
ALGORITHM=INPLACE in these cases results in an error. Specify ALGORITHM=COPY if necessary.

NDB Cluster supports online ALTER TABLE operations using the ALGORITHM=INPLACE syntax in MySQL
NDB Cluster 7.3 and later. NDB Cluster also supports an older syntax specific to NDB that uses the
ONLINE and OFFLINE keywords. These keywords are deprecated beginning with MySQL NDB Cluster
7.3; they continue to be supported in MySQL NDB Cluster 7.4, but are subject to removal in a future
version of NDB Cluster. See Section 18.6.12, “Online Operations with ALTER TABLE in NDB Cluster”, for
the exact syntax and other particulars.

If an ALTER TABLE operation on a multicolumn index used to partition a table by KEY changes the order of
the columns, it can only be performed using ALGORITHM=COPY.

MySQL NDB Cluster 7.3 (and later) supports online operations using the same ALGORITHM=INPLACE
syntax used with the standard MySQL Server. NDB Cluster 7.3 and 7.4 also continue to support online
ALTER TABLE operations using the ONLINE and OFFLINE keywords for backwards compatibility, but
these keywords are deprecated in NDB 7.3 and 7.4, and no longer supported as of NDB 7.5. NDB does
not support changing a tablespace online. See Section 18.6.12, “Online Operations with ALTER TABLE in
NDB Cluster”, for more information.

ALTER TABLE with ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REBUILD
PARTITION, or REORGANIZE PARTITION does not create temporary tables (except when used with NDB
tables); however, these operations can and do create temporary partition files.

ADD or DROP operations for RANGE or LIST partitions are immediate operations or nearly so. ADD or
COALESCE operations for HASH or KEY partitions copy data between all partitions, unless LINEAR HASH
or LINEAR KEY was used; this is effectively the same as creating a new table, although the ADD or
COALESCE operation is performed partition by partition. REORGANIZE operations copy only changed
partitions and do not touch unchanged ones.

1645

ALTER TABLE Statement

For MyISAM tables, you can speed up index re-creation (the slowest part of the alteration process) by
setting the myisam_sort_buffer_size system variable to a high value.

Concurrency Control

For ALTER TABLE operations that support it, you can use the LOCK clause to control the level of
concurrent reads and writes on a table while it is being altered. Specifying a non-default value for this
clause enables you to require a certain amount of concurrent access or exclusivity during the alter
operation, and halts the operation if the requested degree of locking is not available. The parameters for
the LOCK clause are:

• LOCK = DEFAULT

Maximum level of concurrency for the given ALGORITHM clause (if any) and ALTER TABLE operation:
Permit concurrent reads and writes if supported. If not, permit concurrent reads if supported. If not,
enforce exclusive access.

• LOCK = NONE

If supported, permit concurrent reads and writes. Otherwise, an error occurs.

• LOCK = SHARED

If supported, permit concurrent reads but block writes. Writes are blocked even if concurrent writes are
supported by the storage engine for the given ALGORITHM clause (if any) and ALTER TABLE operation.
If concurrent reads are not supported, an error occurs.

• LOCK = EXCLUSIVE

Enforce exclusive access. This is done even if concurrent reads/writes are supported by the storage
engine for the given ALGORITHM clause (if any) and ALTER TABLE operation.

Note

Pending INSERT DELAYED statements are lost if a table is write locked and ALTER
TABLE is used to modify the table structure.

Adding and Dropping Columns

Use ADD to add new columns to a table, and DROP to remove existing columns. DROP col_name is a
MySQL extension to standard SQL.

To add a column at a specific position within a table row, use FIRST or AFTER col_name. The default is
to add the column last.

If a table contains only one column, the column cannot be dropped. If what you intend is to remove the
table, use the DROP TABLE statement instead.

If columns are dropped from a table, the columns are also removed from any index of which they are a
part. If all columns that make up an index are dropped, the index is dropped as well.

Renaming, Redefining, and Reordering Columns

The CHANGE, MODIFY, and ALTER clauses enable the names and definitions of existing columns to be
altered. They have these comparative characteristics:

• CHANGE:

• Can rename a column and change its definition, or both.

1646

ALTER TABLE Statement

• Has more capability than MODIFY, but at the expense of convenience for some operations. CHANGE
requires naming the column twice if not renaming it.

• With FIRST or AFTER, can reorder columns.

• MODIFY:

• Can change a column definition but not its name.

• More convenient than CHANGE to change a column definition without renaming it.

• With FIRST or AFTER, can reorder columns.

• ALTER: Used only to change a column default value.

CHANGE is a MySQL extension to standard SQL. MODIFY is a MySQL extension for Oracle compatibility.

To alter a column to change both its name and definition, use CHANGE, specifying the old and new names
and the new definition. For example, to rename an INT NOT NULL column from a to b and change its
definition to use the BIGINT data type while retaining the NOT NULL attribute, do this:

ALTER TABLE t1 CHANGE a b BIGINT NOT NULL;

To change a column definition but not its name, use CHANGE or MODIFY. With CHANGE, the syntax requires
two column names, so you must specify the same name twice to leave the name unchanged. For example,
to change the definition of column b, do this:

ALTER TABLE t1 CHANGE b b INT NOT NULL;

MODIFY is more convenient to change the definition without changing the name because it requires the
column name only once:

ALTER TABLE t1 MODIFY b INT NOT NULL;

To change a column name but not its definition, use CHANGE. The syntax requires a column definition, so
to leave the definition unchanged, you must respecify the definition the column currently has. For example,
to rename an INT NOT NULL column from b to a, do this:

ALTER TABLE t1 CHANGE b a INT NOT NULL;

For column definition changes using CHANGE or MODIFY, the definition must include the data type and
all attributes that should apply to the new column, other than index attributes such as PRIMARY KEY
or UNIQUE. Attributes present in the original definition but not specified for the new definition are not
carried forward. Suppose that a column col1 is defined as INT UNSIGNED DEFAULT 1 COMMENT 'my
column' and you modify the column as follows, intending to change only INT to BIGINT:

ALTER TABLE t1 MODIFY col1 BIGINT;

That statement changes the data type from INT to BIGINT, but it also drops the UNSIGNED, DEFAULT,
and COMMENT attributes. To retain them, the statement must include them explicitly:

ALTER TABLE t1 MODIFY col1 BIGINT UNSIGNED DEFAULT 1 COMMENT 'my column';

For data type changes using CHANGE or MODIFY, MySQL tries to convert existing column values to the
new type as well as possible.

Warning

This conversion may result in alteration of data. For example, if you shorten a string
column, values may be truncated. To prevent the operation from succeeding if

1647

ALTER TABLE Statement

conversions to the new data type would result in loss of data, enable strict SQL
mode before using ALTER TABLE (see Section 5.1.10, “Server SQL Modes”).

If you use CHANGE or MODIFY to shorten a column for which an index exists on the column, and the
resulting column length is less than the index length, MySQL shortens the index automatically.

For columns renamed by CHANGE, MySQL automatically renames these references to the renamed
column:

• Indexes that refer to the old column, including indexes and disabled MyISAM indexes.

• Foreign keys that refer to the old column.

For columns renamed by CHANGE, MySQL does not automatically rename these references to the
renamed column:

• Partition expressions that refer to the renamed column. You must use CHANGE to redefine such
expressions in the same ALTER TABLE statement as the one that renames the column.

• Views and stored programs that refer to the renamed column. You must manually alter the definition of
these objects to refer to the new column name.

To reorder columns within a table, use FIRST and AFTER in CHANGE or MODIFY operations.

ALTER ... SET DEFAULT or ALTER ... DROP DEFAULT specify a new default value for a column
or remove the old default value, respectively. If the old default is removed and the column can be NULL,
the new default is NULL. If the column cannot be NULL, MySQL assigns a default value as described in
Section 11.5, “Data Type Default Values”.

Primary Keys and Indexes

DROP PRIMARY KEY drops the primary key. If there is no primary key, an error occurs. For information
about the performance characteristics of primary keys, especially for InnoDB tables, see Section 8.3.2,
“Primary Key Optimization”.

If you add a UNIQUE INDEX or PRIMARY KEY to a table, MySQL stores it before any nonunique index to
permit detection of duplicate keys as early as possible.

IGNORE is a MySQL extension to standard SQL. It controls how ALTER TABLE works if there are
duplicates on unique keys in the new table or if warnings occur when strict mode is enabled. If IGNORE is
not specified, the copy is aborted and rolled back if duplicate-key errors occur. If IGNORE is specified, only
one row is used of rows with duplicates on a unique key. The other conflicting rows are deleted. Incorrect
values are truncated to the closest matching acceptable value.

As of MySQL 5.6.17, the IGNORE clause is deprecated and its use generates a warning. IGNORE is
removed in MySQL 5.7.

DROP INDEX removes an index. This is a MySQL extension to standard SQL. See Section 13.1.24,
“DROP INDEX Statement”. To determine index names, use SHOW INDEX FROM tbl_name.

Some storage engines permit you to specify an index type when creating an index. The syntax for the
index_type specifier is USING type_name. For details about USING, see Section 13.1.13, “CREATE
INDEX Statement”. The preferred position is after the column list. Expect support for use of the option
before the column list to be removed in a future MySQL release.

index_option values specify additional options for an index. For details about permissible
index_option values, see Section 13.1.13, “CREATE INDEX Statement”.

1648

ALTER TABLE Statement

If you use ALTER TABLE on a MyISAM table, all nonunique indexes are created in a separate batch (as for
REPAIR TABLE). This should make ALTER TABLE much faster when you have many indexes.

For MyISAM tables, key updating can be controlled explicitly. Use ALTER TABLE ... DISABLE KEYS
to tell MySQL to stop updating nonunique indexes. Then use ALTER TABLE ... ENABLE KEYS to
re-create missing indexes. MyISAM does this with a special algorithm that is much faster than inserting
keys one by one, so disabling keys before performing bulk insert operations should give a considerable
speedup. Using ALTER TABLE ... DISABLE KEYS requires the INDEX privilege in addition to the
privileges mentioned earlier.

While the nonunique indexes are disabled, they are ignored for statements such as SELECT and EXPLAIN
that otherwise would use them.

After an ALTER TABLE statement, it may be necessary to run ANALYZE TABLE to update index cardinality
information. See Section 13.7.5.23, “SHOW INDEX Statement”.

Foreign Keys and Other Constraints

The FOREIGN KEY and REFERENCES clauses are supported by the InnoDB and NDB storage
engines, which implement ADD [CONSTRAINT [symbol]] FOREIGN KEY [index_name] (...)
REFERENCES ... (...). See Section 13.1.17.5, “FOREIGN KEY Constraints”. For other storage
engines, the clauses are parsed but ignored.

The CHECK constraint clause is parsed but ignored by all storage engines. See Section 13.1.17, “CREATE
TABLE Statement”. The reason for accepting but ignoring syntax clauses is for compatibility, to make it
easier to port code from other SQL servers, and to run applications that create tables with references. See
Section 1.6.2, “MySQL Differences from Standard SQL”.

For ALTER TABLE, unlike CREATE TABLE, ADD FOREIGN KEY ignores index_name if given and uses
an automatically generated foreign key name. As a workaround, include the CONSTRAINT clause to specify
the foreign key name:

ADD CONSTRAINT name FOREIGN KEY (....) ...

Important

MySQL silently ignores inline REFERENCES specifications, where the references
are defined as part of the column specification. MySQL accepts only REFERENCES
clauses defined as part of a separate FOREIGN KEY specification.

Note

Partitioned InnoDB tables do not support foreign keys. This restriction does not
apply to NDB tables, including those explicitly partitioned by [LINEAR] KEY. For
more information, see Section 19.6.2, “Partitioning Limitations Relating to Storage
Engines”.

The InnoDB and NDB storage engines support the use of ALTER TABLE to drop foreign keys:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

Adding and dropping a foreign key in the same ALTER TABLE statement is supported for ALTER
TABLE ... ALGORITHM=INPLACE but not for ALTER TABLE ... ALGORITHM=COPY.

The server prohibits changes to foreign key columns that have the potential to cause loss of referential
integrity. A workaround is to use ALTER TABLE ... DROP FOREIGN KEY before changing the column
definition and ALTER TABLE ... ADD FOREIGN KEY afterward. Examples of prohibited changes
include:

1649

ALTER TABLE Statement

• Changes to the data type of foreign key columns that may be unsafe. For example, changing
VARCHAR(20) to VARCHAR(30) is permitted, but changing it to VARCHAR(1024) is not because that
alters the number of length bytes required to store individual values.

• Changing a NULL column to NOT NULL in non-strict mode is prohibited to prevent converting NULL
values to default non-NULL values, for which there are no corresponding values in the referenced table.
The operation is permitted in strict mode, but an error is returned if any such conversion is required.

ALTER TABLE tbl_name RENAME new_tbl_name changes internally generated foreign key constraint
names and user-defined foreign key constraint names that begin with the string “tbl_name_ibfk_” to
reflect the new table name. InnoDB interprets foreign key constraint names that begin with the string
“tbl_name_ibfk_” as internally generated names.

Changing the Character Set

 To change the table default character set and all character columns (CHAR, VARCHAR, TEXT) to a new
character set, use a statement like this:

ALTER TABLE tbl_name
CONVERT TO CHARACTER SET charset_name [COLLATE collation_name];

The statement also changes the collation of all character columns. If you specify no COLLATE clause to
indicate which collation to use, the statement uses default collation for the character set. If this collation is
inappropriate for the intended table use (for example, if it would change from a case-sensitive collation to a
case-insensitive collation), specify a collation explicitly.

For a column that has a data type of VARCHAR or one of the TEXT types, CONVERT TO CHARACTER
SET changes the data type as necessary to ensure that the new column is long enough to store as many
characters as the original column. For example, a TEXT column has two length bytes, which store the byte-
length of values in the column, up to a maximum of 65,535. For a latin1 TEXT column, each character
requires a single byte, so the column can store up to 65,535 characters. If the column is converted to
utf8, each character might require up to three bytes, for a maximum possible length of 3 × 65,535 =
196,605 bytes. That length does not fit in a TEXT column's length bytes, so MySQL converts the data type
to MEDIUMTEXT, which is the smallest string type for which the length bytes can record a value of 196,605.
Similarly, a VARCHAR column might be converted to MEDIUMTEXT.

To avoid data type changes of the type just described, do not use CONVERT TO CHARACTER SET.
Instead, use MODIFY to change individual columns. For example:

ALTER TABLE t MODIFY latin1_text_col TEXT CHARACTER SET utf8;
ALTER TABLE t MODIFY latin1_varchar_col VARCHAR(M) CHARACTER SET utf8;

If you specify CONVERT TO CHARACTER SET binary, the CHAR, VARCHAR, and TEXT columns are
converted to their corresponding binary string types (BINARY, VARBINARY, BLOB). This means that the
columns no longer have a character set and a subsequent CONVERT TO operation does not apply to them.

If charset_name is DEFAULT in a CONVERT TO CHARACTER SET operation, the character set named by
the character_set_database system variable is used.

Warning

The CONVERT TO operation converts column values between the original and
named character sets. This is not what you want if you have a column in one
character set (like latin1) but the stored values actually use some other,
incompatible character set (like utf8). In this case, you have to do the following for
each such column:

ALTER TABLE t1 CHANGE c1 c1 BLOB;

1650

ALTER TABLE Statement

ALTER TABLE t1 CHANGE c1 c1 TEXT CHARACTER SET utf8;

The reason this works is that there is no conversion when you convert to or from
BLOB columns.

To change only the default character set for a table, use this statement:

ALTER TABLE tbl_name DEFAULT CHARACTER SET charset_name;

The word DEFAULT is optional. The default character set is the character set that is used if you do not
specify the character set for columns that you add to a table later (for example, with ALTER TABLE ...
ADD column).

When the foreign_key_checks system variable is enabled, which is the default setting, character
set conversion is not permitted on tables that include a character string column used in a foreign key
constraint. The workaround is to disable foreign_key_checks before performing the character set
conversion. You must perform the conversion on both tables involved in the foreign key constraint before
re-enabling foreign_key_checks. If you re-enable foreign_key_checks after converting only
one of the tables, an ON DELETE CASCADE or ON UPDATE CASCADE operation could corrupt data in
the referencing table due to implicit conversion that occurs during these operations (Bug #45290, Bug
#74816).

Discarding and Importing InnoDB Tablespaces

An InnoDB table created in its own file-per-table tablespace can be imported from a backup or from
another MySQL server instance using the DISCARD TABLEPACE and IMPORT TABLESPACE clauses. See
Section 14.6.1.3, “Importing InnoDB Tables”.

Row Order for MyISAM Tables

ORDER BY enables you to create the new table with the rows in a specific order. This option is useful
primarily when you know that you query the rows in a certain order most of the time. By using this option
after major changes to the table, you might be able to get higher performance. In some cases, it might
make sorting easier for MySQL if the table is in order by the column that you want to order it by later.

Note

The table does not remain in the specified order after inserts and deletes.

ORDER BY syntax permits one or more column names to be specified for sorting, each of which optionally
can be followed by ASC or DESC to indicate ascending or descending sort order, respectively. The default is
ascending order. Only column names are permitted as sort criteria; arbitrary expressions are not permitted.
This clause should be given last after any other clauses.

ORDER BY does not make sense for InnoDB tables because InnoDB always orders table rows according
to the clustered index.

When used on a partitioned table, ALTER TABLE ... ORDER BY orders rows within each partition only.

Partitioning Options

partition_options signifies options that can be used with partitioned tables for repartitioning, to add,
drop, discard, merge, and split partitions, and to perform partitioning maintenance.

It is possible for an ALTER TABLE statement to contain a PARTITION BY or REMOVE PARTITIONING
clause in an addition to other alter specifications, but the PARTITION BY or REMOVE PARTITIONING
clause must be specified last after any other specifications. The ADD PARTITION, DROP PARTITION,
COALESCE PARTITION, REORGANIZE PARTITION, EXCHANGE PARTITION, ANALYZE PARTITION,

1651

ALTER TABLE Statement

CHECK PARTITION, and REPAIR PARTITION options cannot be combined with other alter specifications
in a single ALTER TABLE, since the options just listed act on individual partitions.

For more information about partition options, see Section 13.1.17, “CREATE TABLE Statement”, and
Section 13.1.7.1, “ALTER TABLE Partition Operations”. For information about and examples of ALTER
TABLE ... EXCHANGE PARTITION statements, see Section 19.3.3, “Exchanging Partitions and
Subpartitions with Tables”.

13.1.7.1 ALTER TABLE Partition Operations

Partitioning-related clauses for ALTER TABLE can be used with partitioned tables for repartitioning, to add,
drop, discard, merge, and split partitions, and to perform partitioning maintenance.

• Simply using a partition_options clause with ALTER TABLE on a partitioned table repartitions
the table according to the partitioning scheme defined by the partition_options. This clause
always begins with PARTITION BY, and follows the same syntax and other rules as apply to the
partition_options clause for CREATE TABLE (for more detailed information, see Section 13.1.17,
“CREATE TABLE Statement”), and can also be used to partition an existing table that is not already
partitioned. For example, consider a (nonpartitioned) table defined as shown here:

CREATE TABLE t1 (
 id INT,
 year_col INT
);

This table can be partitioned by HASH, using the id column as the partitioning key, into 8 partitions by
means of this statement:

ALTER TABLE t1
 PARTITION BY HASH(id)
 PARTITIONS 8;

MySQL 5.6.11 and later supports an ALGORITHM option with [SUB]PARTITION BY [LINEAR] KEY.
ALGORITHM=1 causes the server to use the same key-hashing functions as MySQL 5.1 when computing
the placement of rows in partitions; ALGORITHM=2 means that the server employs the key-hashing
functions implemented and used by default for new KEY partitioned tables in MySQL 5.5 and later.
(Partitioned tables created with the key-hashing functions employed in MySQL 5.5 and later cannot be
used by a MySQL 5.1 server.) Not specifying the option has the same effect as using ALGORITHM=2.
This option is intended for use chiefly when upgrading or downgrading [LINEAR] KEY partitioned tables
between MySQL 5.1 and later MySQL versions, or for creating tables partitioned by KEY or LINEAR KEY
on a MySQL 5.5 or later server which can be used on a MySQL 5.1 server.

To upgrade a KEY partitioned table that was created in MySQL 5.1, first execute SHOW CREATE TABLE
and note the exact columns and number of partitions shown. Now execute an ALTER TABLE statement
using exactly the same column list and number of partitions as in the CREATE TABLE statement, while
adding ALGORITHM=2 immediately following the PARTITION BY keywords. (You should also include
the LINEAR keyword if it was used for the original table definition.) An example from a session in the
mysql client is shown here:

mysql> SHOW CREATE TABLE p\G
*************************** 1. row ***************************
 Table: p
Create Table: CREATE TABLE `p` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `cd` datetime NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY LINEAR KEY (id)
PARTITIONS 32 */

1652

ALTER TABLE Statement

1 row in set (0.00 sec)

mysql> ALTER TABLE p PARTITION BY LINEAR KEY ALGORITHM=2 (id) PARTITIONS 32;
Query OK, 0 rows affected (5.34 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE p\G
*************************** 1. row ***************************
 Table: p
Create Table: CREATE TABLE `p` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `cd` datetime NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY LINEAR KEY (id)
PARTITIONS 32 */
1 row in set (0.00 sec)

Downgrading a table created using the default key-hashing used in MySQL 5.5 and later to enable its
use by a MySQL 5.1 server is similar, except in this case you should use ALGORITHM=1 to force the
table's partitions to be rebuilt using the MySQL 5.1 key-hashing functions. It is recommended that you
not do this except when necessary for compatibility with a MySQL 5.1 server, as the improved KEY
hashing functions used by default in MySQL 5.5 and later provide fixes for a number of issues found in
the older implementation.

Note

A table upgraded by means of ALTER TABLE ... PARTITION BY
ALGORITHM=2 [LINEAR] KEY ... can no longer be used by a MySQL 5.1
server. (Such a table would need to be downgraded with ALTER TABLE ...
PARTITION BY ALGORITHM=1 [LINEAR] KEY ... before it could be used
again by a MySQL 5.1 server.)

The table that results from using an ALTER TABLE ... PARTITION BY statement must follow
the same rules as one created using CREATE TABLE ... PARTITION BY. This includes the rules
governing the relationship between any unique keys (including any primary key) that the table might
have, and the column or columns used in the partitioning expression, as discussed in Section 19.6.1,
“Partitioning Keys, Primary Keys, and Unique Keys”. The CREATE TABLE ... PARTITION BY rules
for specifying the number of partitions also apply to ALTER TABLE ... PARTITION BY.

The partition_definition clause for ALTER TABLE ADD PARTITION supports the same options
as the clause of the same name for the CREATE TABLE statement. (See Section 13.1.17, “CREATE
TABLE Statement”, for the syntax and description.) Suppose that you have the partitioned table created
as shown here:

CREATE TABLE t1 (
 id INT,
 year_col INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999)

1653

ALTER TABLE Statement

);

You can add a new partition p3 to this table for storing values less than 2002 as follows:

ALTER TABLE t1 ADD PARTITION (PARTITION p3 VALUES LESS THAN (2002));

DROP PARTITION can be used to drop one or more RANGE or LIST partitions. This statement cannot
be used with HASH or KEY partitions; instead, use COALESCE PARTITION (see below). Any data that
was stored in the dropped partitions named in the partition_names list is discarded. For example,
given the table t1 defined previously, you can drop the partitions named p0 and p1 as shown here:

ALTER TABLE t1 DROP PARTITION p0, p1;

Note

DROP PARTITION does not work with tables that use the NDB storage engine.
See Section 19.3.1, “Management of RANGE and LIST Partitions”, and
Section 18.2.7, “Known Limitations of NDB Cluster”.

ADD PARTITION and DROP PARTITION do not currently support IF [NOT] EXISTS.

Renames of partitioned tables are supported. You can rename individual partitions indirectly using
ALTER TABLE ... REORGANIZE PARTITION; however, this operation copies the partition's data.

To delete rows from selected partitions, use the TRUNCATE PARTITION option. This option takes a list
of one or more comma-separated partition names. For example, consider the table t1 as defined here:

CREATE TABLE t1 (
 id INT,
 year_col INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999),
 PARTITION p3 VALUES LESS THAN (2003),
 PARTITION p4 VALUES LESS THAN (2007)
);

To delete all rows from partition p0, use the following statement:

ALTER TABLE t1 TRUNCATE PARTITION p0;

The statement just shown has the same effect as the following DELETE statement:

DELETE FROM t1 WHERE year_col < 1991;

When truncating multiple partitions, the partitions do not have to be contiguous: This can greatly simplify
delete operations on partitioned tables that would otherwise require very complex WHERE conditions if
done with DELETE statements. For example, this statement deletes all rows from partitions p1 and p3:

ALTER TABLE t1 TRUNCATE PARTITION p1, p3;

An equivalent DELETE statement is shown here:

DELETE FROM t1 WHERE
 (year_col >= 1991 AND year_col < 1995)
 OR

1654

ALTER TABLE Statement

 (year_col >= 2003 AND year_col < 2007);

If you use the ALL keyword in place of the list of partition names, the statement acts on all table
partitions.

TRUNCATE PARTITION merely deletes rows; it does not alter the definition of the table itself, or of any
of its partitions.

Note

TRUNCATE PARTITION does not work with subpartitions.

To verify that the rows were dropped, check the INFORMATION_SCHEMA.PARTITIONS table, using a
query such as this one:

SELECT PARTITION_NAME, TABLE_ROWS
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_NAME = 't1';

TRUNCATE PARTITION is supported only for partitioned tables that use the MyISAM, InnoDB, or
MEMORY storage engine. It also works on BLACKHOLE tables (but has no effect). It is not supported for
ARCHIVE tables.

COALESCE PARTITION can be used with a table that is partitioned by HASH or KEY to reduce the
number of partitions by number. Suppose that you have created table t2 as follows:

CREATE TABLE t2 (
 name VARCHAR (30),
 started DATE
)
PARTITION BY HASH(YEAR(started))
PARTITIONS 6;

To reduce the number of partitions used by t2 from 6 to 4, use the following statement:

ALTER TABLE t2 COALESCE PARTITION 2;

The data contained in the last number partitions is merged into the remaining partitions. In this case,
partitions 4 and 5 are merged into the first 4 partitions (the partitions numbered 0, 1, 2, and 3).

To change some but not all the partitions used by a partitioned table, you can use REORGANIZE
PARTITION. This statement can be used in several ways:

• To merge a set of partitions into a single partition. This is done by naming several partitions in the
partition_names list and supplying a single definition for partition_definition.

• To split an existing partition into several partitions. Accomplish this by naming a single partition for
partition_names and providing multiple partition_definitions.

• To change the ranges for a subset of partitions defined using VALUES LESS THAN or the value lists
for a subset of partitions defined using VALUES IN.

• This statement may also be used without the partition_names INTO
(partition_definitions) option on tables that are automatically partitioned using HASH
partitioning to force redistribution of data. (Currently, only NDB tables are automatically partitioned in
this way.) This is useful in NDB Cluster where, after you have added new NDB Cluster data nodes
online to an existing NDB Cluster, you wish to redistribute existing NDB Cluster table data to the new

1655

ALTER TABLE Statement

data nodes. In such cases, you should invoke the statement with the ONLINE option; in other words,
as shown here:

ALTER ONLINE TABLE table REORGANIZE PARTITION;

You cannot perform other DDL concurrently with online table reorganization—that is, no other DDL
statements can be issued while an ALTER ONLINE TABLE ... REORGANIZE PARTITION
statement is executing. For more information about adding NDB Cluster data nodes online, see
Section 18.6.7, “Adding NDB Cluster Data Nodes Online”.

ALTER ONLINE TABLE ... REORGANIZE PARTITION does not work with tables which were
created using the MAX_ROWS option, because it uses the constant MAX_ROWS value specified in the
original CREATE TABLE statement to determine the number of partitions required, so no new partitions
are created. Instead, you can use ALTER ONLINE TABLE ... MAX_ROWS=rows to increase the
maximum number of rows for such a table; in this case, ALTER ONLINE TABLE ... REORGANIZE
PARTITION is not needed (and causes an error if executed). The value of rows must be greater than
the value specified for MAX_ROWS in the original CREATE TABLE statement for this to work.

Attempting to use REORGANIZE PARTITION without the partition_names INTO
(partition_definitions) option on explicitly partitioned tables results in the error REORGANIZE
PARTITION without parameters can only be used on auto-partitioned tables
using HASH partitioning.

Note

For partitions that have not been explicitly named, MySQL automatically provides
the default names p0, p1, p2, and so on. The same is true with regard to
subpartitions.

For more detailed information about and examples of ALTER TABLE ... REORGANIZE PARTITION
statements, see Section 19.3.1, “Management of RANGE and LIST Partitions”.

• To exchange a table partition or subpartition with a table, use the ALTER TABLE ... EXCHANGE
PARTITION statement—that is, to move any existing rows in the partition or subpartition to the
nonpartitioned table, and any existing rows in the nonpartitioned table to the table partition or
subpartition.

For usage information and examples, see Section 19.3.3, “Exchanging Partitions and Subpartitions with
Tables”.

• Several options provide partition maintenance and repair functionality analogous to that implemented
for nonpartitioned tables by statements such as CHECK TABLE and REPAIR TABLE (which are
also supported for partitioned tables; for more information, see Section 13.7.2, “Table Maintenance
Statements”). These include ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION,
REBUILD PARTITION, and REPAIR PARTITION. Each of these options takes a partition_names
clause consisting of one or more names of partitions, separated by commas. The partitions must already
exist in the table to be altered. You can also use the ALL keyword in place of partition_names,
in which case the statement acts on all table partitions. For more information and examples, see
Section 19.3.4, “Maintenance of Partitions”.

Some MySQL storage engines, such as InnoDB, do not support per-partition optimization. For a
partitioned table using such a storage engine, ALTER TABLE ... OPTIMIZE PARTITION causes

1656

ALTER TABLE Statement

the entire table to rebuilt and analyzed, and an appropriate warning to be issued. (Bug #11751825, Bug
#42822)

To work around this problem, use the statements ALTER TABLE ... REBUILD PARTITION and
ALTER TABLE ... ANALYZE PARTITION instead.

The ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, and REPAIR PARTITION
options are not permitted for tables which are not partitioned.

• REMOVE PARTITIONING enables you to remove a table's partitioning without otherwise affecting the
table or its data. This option can be combined with other ALTER TABLE options such as those used to
add, drop, or rename columns or indexes.

• Using the ENGINE option with ALTER TABLE changes the storage engine used by the table without
affecting the partitioning.

When ALTER TABLE ... EXCHANGE PARTITION or ALTER TABLE ... TRUNCATE PARTITION is
run against a partitioned table that uses MyISAM (or another storage engine that makes use of table-level
locking), only those partitions that are actually read from are locked. (This does not apply to partitioned
tables using a storage enginethat employs row-level locking, such as InnoDB.) See Section 19.6.4,
“Partitioning and Locking”.

It is possible for an ALTER TABLE statement to contain a PARTITION BY or REMOVE PARTITIONING
clause in an addition to other alter specifications, but the PARTITION BY or REMOVE PARTITIONING
clause must be specified last after any other specifications.

The ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REORGANIZE PARTITION,
ANALYZE PARTITION, CHECK PARTITION, and REPAIR PARTITION options cannot be combined with
other alter specifications in a single ALTER TABLE, since the options just listed act on individual partitions.
For more information, see Section 13.1.7.1, “ALTER TABLE Partition Operations”.

Only a single instance of any one of the following options can be used in a given ALTER TABLE
statement: PARTITION BY, ADD PARTITION, DROP PARTITION, TRUNCATE PARTITION, EXCHANGE
PARTITION, REORGANIZE PARTITION, or COALESCE PARTITION, ANALYZE PARTITION, CHECK
PARTITION, OPTIMIZE PARTITION, REBUILD PARTITION, REMOVE PARTITIONING.

For example, the following two statements are invalid:

ALTER TABLE t1 ANALYZE PARTITION p1, ANALYZE PARTITION p2;

ALTER TABLE t1 ANALYZE PARTITION p1, CHECK PARTITION p2;

In the first case, you can analyze partitions p1 and p2 of table t1 concurrently using a single statement
with a single ANALYZE PARTITION option that lists both of the partitions to be analyzed, like this:

ALTER TABLE t1 ANALYZE PARTITION p1, p2;

In the second case, it is not possible to perform ANALYZE and CHECK operations on different partitions of
the same table concurrently. Instead, you must issue two separate statements, like this:

ALTER TABLE t1 ANALYZE PARTITION p1;
ALTER TABLE t1 CHECK PARTITION p2;

ANALYZE, CHECK, OPTIMIZE, REBUILD, REPAIR, and TRUNCATE operations are not supported for
subpartitions.

13.1.7.2 ALTER TABLE Examples

Begin with a table t1 created as shown here:

1657

ALTER TABLE Statement

CREATE TABLE t1 (a INTEGER, b CHAR(10));

To rename the table from t1 to t2:

ALTER TABLE t1 RENAME t2;

To change column a from INTEGER to TINYINT NOT NULL (leaving the name the same), and to change
column b from CHAR(10) to CHAR(20) as well as renaming it from b to c:

ALTER TABLE t2 MODIFY a TINYINT NOT NULL, CHANGE b c CHAR(20);

To add a new TIMESTAMP column named d:

ALTER TABLE t2 ADD d TIMESTAMP;

To add an index on column d and a UNIQUE index on column a:

ALTER TABLE t2 ADD INDEX (d), ADD UNIQUE (a);

To remove column c:

ALTER TABLE t2 DROP COLUMN c;

To add a new AUTO_INCREMENT integer column named c:

ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT,
 ADD PRIMARY KEY (c);

We indexed c (as a PRIMARY KEY) because AUTO_INCREMENT columns must be indexed, and we
declare c as NOT NULL because primary key columns cannot be NULL.

For NDB tables, it is also possible to change the storage type used for a table or column. For example,
consider an NDB table created as shown here:

mysql> CREATE TABLE t1 (c1 INT) TABLESPACE ts_1 ENGINE NDB;
Query OK, 0 rows affected (1.27 sec)

To convert this table to disk-based storage, you can use the following ALTER TABLE statement:

mysql> ALTER TABLE t1 TABLESPACE ts_1 STORAGE DISK;
Query OK, 0 rows affected (2.99 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `c1` int(11) DEFAULT NULL
) /*!50100 TABLESPACE ts_1 STORAGE DISK */
ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.01 sec)

It is not necessary that the tablespace was referenced when the table was originally created; however, the
tablespace must be referenced by the ALTER TABLE:

mysql> CREATE TABLE t2 (c1 INT) ts_1 ENGINE NDB;
Query OK, 0 rows affected (1.00 sec)

mysql> ALTER TABLE t2 STORAGE DISK;
ERROR 1005 (HY000): Can't create table 'c.#sql-1750_3' (errno: 140)
mysql> ALTER TABLE t2 TABLESPACE ts_1 STORAGE DISK;
Query OK, 0 rows affected (3.42 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> SHOW CREATE TABLE t2\G
*************************** 1. row ***************************
 Table: t1

1658

ALTER TABLE Statement

Create Table: CREATE TABLE `t2` (
 `c1` int(11) DEFAULT NULL
) /*!50100 TABLESPACE ts_1 STORAGE DISK */
ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.01 sec)

To change the storage type of an individual column, you can use ALTER TABLE ... MODIFY
[COLUMN]. For example, suppose you create an NDB Cluster Disk Data table with two columns, using this
CREATE TABLE statement:

mysql> CREATE TABLE t3 (c1 INT, c2 INT)
 -> TABLESPACE ts_1 STORAGE DISK ENGINE NDB;
Query OK, 0 rows affected (1.34 sec)

To change column c2 from disk-based to in-memory storage, include a STORAGE MEMORY clause in the
column definition used by the ALTER TABLE statement, as shown here:

mysql> ALTER TABLE t3 MODIFY c2 INT STORAGE MEMORY;
Query OK, 0 rows affected (3.14 sec)
Records: 0 Duplicates: 0 Warnings: 0

You can make an in-memory column into a disk-based column by using STORAGE DISK in a similar
fashion.

Column c1 uses disk-based storage, since this is the default for the table (determined by the table-level
STORAGE DISK clause in the CREATE TABLE statement). However, column c2 uses in-memory storage,
as can be seen here in the output of SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE t3\G
*************************** 1. row ***************************
 Table: t3
Create Table: CREATE TABLE `t3` (
 `c1` int(11) DEFAULT NULL,
 `c2` int(11) /*!50120 STORAGE MEMORY */ DEFAULT NULL
) /*!50100 TABLESPACE ts_1 STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.02 sec)

When you add an AUTO_INCREMENT column, column values are filled in with sequence numbers
automatically. For MyISAM tables, you can set the first sequence number by executing SET
INSERT_ID=value before ALTER TABLE or by using the AUTO_INCREMENT=value table option.

With MyISAM tables, if you do not change the AUTO_INCREMENT column, the sequence number is not
affected. If you drop an AUTO_INCREMENT column and then add another AUTO_INCREMENT column, the
numbers are resequenced beginning with 1.

When replication is used, adding an AUTO_INCREMENT column to a table might not produce the same
ordering of the rows on the replica and the source. This occurs because the order in which the rows are
numbered depends on the specific storage engine used for the table and the order in which the rows were
inserted. If it is important to have the same order on the source and replica, the rows must be ordered
before assigning an AUTO_INCREMENT number. Assuming that you want to add an AUTO_INCREMENT
column to the table t1, the following statements produce a new table t2 identical to t1 but with an
AUTO_INCREMENT column:

CREATE TABLE t2 (id INT AUTO_INCREMENT PRIMARY KEY)
SELECT * FROM t1 ORDER BY col1, col2;

This assumes that the table t1 has columns col1 and col2.

This set of statements also produces a new table t2 identical to t1, with the addition of an
AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;

1659

ALTER TABLESPACE Statement

INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both source and replica, all columns of t1 must
be referenced in the ORDER BY clause.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column, the
final step is to drop the original table and then rename the copy:

DROP TABLE t1;
ALTER TABLE t2 RENAME t1;

13.1.8 ALTER TABLESPACE Statement
ALTER TABLESPACE tablespace_name
 {ADD | DROP} DATAFILE 'file_name'
 [INITIAL_SIZE [=] size]
 [WAIT]
 ENGINE [=] engine_name

This statement is used either to add a new data file, or to drop a data file from a tablespace.

The ADD DATAFILE variant enables you to specify an initial size using an INITIAL_SIZE clause, where
size is measured in bytes; the default value is 134217728 (128 MB). Prior to MySQL NDB Cluster 7.3.2,
this value was required to be specified using digits (Bug #13116514, Bug #16104705, Bug #62858); in
MySQL NDB Cluster 7.3.2 and later, you may optionally follow size with a one-letter abbreviation for an
order of magnitude, similar to those used in my.cnf. Generally, this is one of the letters M (megabytes) or
G (gigabytes).

Note

All NDB Cluster Disk Data objects share the same namespace. This means that
each Disk Data object must be uniquely named (and not merely each Disk Data
object of a given type). For example, you cannot have a tablespace and a data file
with the same name, or an undo log file and a tablespace with the same name.

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB). (Bug
#29186)

INITIAL_SIZE is rounded, explicitly, as for CREATE TABLESPACE.

Once a data file has been created, its size cannot be changed; however, you can add more data files to the
tablespace using additional ALTER TABLESPACE ... ADD DATAFILE statements.

Using DROP DATAFILE with ALTER TABLESPACE drops the data file 'file_name' from the tablespace.
You cannot drop a data file from a tablespace which is in use by any table; in other words, the data file
must be empty (no extents used). See Section 18.6.11.1, “NDB Cluster Disk Data Objects”. In addition, any
data file to be dropped must previously have been added to the tablespace with CREATE TABLESPACE or
ALTER TABLESPACE.

Both ALTER TABLESPACE ... ADD DATAFILE and ALTER TABLESPACE ... DROP DATAFILE
require an ENGINE clause which specifies the storage engine used by the tablespace. Currently, the only
accepted values for engine_name are NDB and NDBCLUSTER.

WAIT is parsed but otherwise ignored, and so has no effect in MySQL 5.6. It is intended for future
expansion.

When ALTER TABLESPACE ... ADD DATAFILE is used with ENGINE = NDB, a data file is created on
each Cluster data node. You can verify that the data files were created and obtain information about them

1660

ALTER VIEW Statement

by querying the Information Schema FILES table. For example, the following query shows all data files
belonging to the tablespace named newts:

mysql> SELECT LOGFILE_GROUP_NAME, FILE_NAME, EXTRA
 -> FROM INFORMATION_SCHEMA.FILES
 -> WHERE TABLESPACE_NAME = 'newts' AND FILE_TYPE = 'DATAFILE';
+--------------------+--------------+----------------+
| LOGFILE_GROUP_NAME | FILE_NAME | EXTRA |
+--------------------+--------------+----------------+
lg_3	newdata.dat	CLUSTER_NODE=3
lg_3	newdata.dat	CLUSTER_NODE=4
lg_3	newdata2.dat	CLUSTER_NODE=3
lg_3	newdata2.dat	CLUSTER_NODE=4
+--------------------+--------------+----------------+
2 rows in set (0.03 sec)

See Section 21.5.1, “The INFORMATION_SCHEMA FILES Table”.

ALTER TABLESPACE is useful only with Disk Data storage for NDB Cluster. See Section 18.6.11, “NDB
Cluster Disk Data Tables”.

13.1.9 ALTER VIEW Statement
ALTER
 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 [DEFINER = user]
 [SQL SECURITY { DEFINER | INVOKER }]
 VIEW view_name [(column_list)]
 AS select_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION]

This statement changes the definition of a view, which must exist. The syntax is similar to that for CREATE
VIEW see Section 13.1.20, “CREATE VIEW Statement”). This statement requires the CREATE VIEW and
DROP privileges for the view, and some privilege for each column referred to in the SELECT statement.
ALTER VIEW is permitted only to the definer or users with the SUPER privilege.

13.1.10 CREATE DATABASE Statement
CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name
 [create_option] ...

create_option: [DEFAULT] {
 CHARACTER SET [=] charset_name
 | COLLATE [=] collation_name
}

CREATE DATABASE creates a database with the given name. To use this statement, you need the CREATE
privilege for the database. CREATE SCHEMA is a synonym for CREATE DATABASE.

An error occurs if the database exists and you did not specify IF NOT EXISTS.

CREATE DATABASE is not permitted within a session that has an active LOCK TABLES statement.

Each create_option specifies a database characteristic. Database characteristics are stored in
the db.opt file in the database directory. The CHARACTER SET option specifies the default database
character set. The COLLATE option specifies the default database collation. For information about
character set and collation names, see Chapter 10, Character Sets, Collations, Unicode.

To see the available character sets and collations, use the SHOW CHARACTER SET and SHOW
COLLATION statements, respectively. See Section 13.7.5.4, “SHOW CHARACTER SET Statement”, and
Section 13.7.5.5, “SHOW COLLATION Statement”.

1661

CREATE EVENT Statement

A database in MySQL is implemented as a directory containing files that correspond to tables in the
database. Because there are no tables in a database when it is initially created, the CREATE DATABASE
statement creates only a directory under the MySQL data directory and the db.opt file. Rules for
permissible database names are given in Section 9.2, “Schema Object Names”. If a database name
contains special characters, the name for the database directory contains encoded versions of those
characters as described in Section 9.2.4, “Mapping of Identifiers to File Names”.

If you manually create a directory under the data directory (for example, with mkdir), the server considers
it a database directory and it shows up in the output of SHOW DATABASES.

When you create a database, let the server manage the directory and the files in it. Manipulating database
directories and files directly can cause inconsistencies and unexpected results.

MySQL has no limit on the number of databases. The underlying file system may have a limit on the
number of directories.

You can also use the mysqladmin program to create databases. See Section 4.5.2, “mysqladmin — A
MySQL Server Administration Program”.

13.1.11 CREATE EVENT Statement
CREATE
 [DEFINER = user]
 EVENT
 [IF NOT EXISTS]
 event_name
 ON SCHEDULE schedule
 [ON COMPLETION [NOT] PRESERVE]
 [ENABLE | DISABLE | DISABLE ON SLAVE]
 [COMMENT 'string']
 DO event_body;

schedule: {
 AT timestamp [+ INTERVAL interval] ...
 | EVERY interval
 [STARTS timestamp [+ INTERVAL interval] ...]
 [ENDS timestamp [+ INTERVAL interval] ...]
}

interval:
 quantity {YEAR | QUARTER | MONTH | DAY | HOUR | MINUTE |
 WEEK | SECOND | YEAR_MONTH | DAY_HOUR | DAY_MINUTE |
 DAY_SECOND | HOUR_MINUTE | HOUR_SECOND | MINUTE_SECOND}

This statement creates and schedules a new event. The event does not run unless the Event Scheduler
is enabled. For information about checking Event Scheduler status and enabling it if necessary, see
Section 20.4.2, “Event Scheduler Configuration”.

CREATE EVENT requires the EVENT privilege for the schema in which the event is to be created. If
the DEFINER clause is present, the privileges required depend on the user value, as discussed in
Section 20.6, “Stored Object Access Control”.

The minimum requirements for a valid CREATE EVENT statement are as follows:

• The keywords CREATE EVENT plus an event name, which uniquely identifies the event in a database
schema.

• An ON SCHEDULE clause, which determines when and how often the event executes.

• A DO clause, which contains the SQL statement to be executed by an event.

1662

CREATE EVENT Statement

This is an example of a minimal CREATE EVENT statement:

CREATE EVENT myevent
 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR
 DO
 UPDATE myschema.mytable SET mycol = mycol + 1;

The previous statement creates an event named myevent. This event executes once—one hour following
its creation—by running an SQL statement that increments the value of the myschema.mytable table's
mycol column by 1.

The event_name must be a valid MySQL identifier with a maximum length of 64 characters. Event
names are not case-sensitive, so you cannot have two events named myevent and MyEvent in the same
schema. In general, the rules governing event names are the same as those for names of stored routines.
See Section 9.2, “Schema Object Names”.

An event is associated with a schema. If no schema is indicated as part of event_name, the default
(current) schema is assumed. To create an event in a specific schema, qualify the event name with a
schema using schema_name.event_name syntax.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at event
execution time. If the DEFINER clause is present, the user value should be a MySQL account specified
as 'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The permitted user values
depend on the privileges you hold, as discussed in Section 20.6, “Stored Object Access Control”. Also see
that section for additional information about event security.

If the DEFINER clause is omitted, the default definer is the user who executes the CREATE EVENT
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

Within an event body, the CURRENT_USER function returns the account used to check privileges at
event execution time, which is the DEFINER user. For information about user auditing within events, see
Section 6.2.15, “SQL-Based Account Activity Auditing”.

IF NOT EXISTS has the same meaning for CREATE EVENT as for CREATE TABLE: If an event named
event_name already exists in the same schema, no action is taken, and no error results. (However, a
warning is generated in such cases.)

The ON SCHEDULE clause determines when, how often, and for how long the event_body defined for the
event repeats. This clause takes one of two forms:

• AT timestamp is used for a one-time event. It specifies that the event executes one time only
at the date and time given by timestamp, which must include both the date and time, or must be
an expression that resolves to a datetime value. You may use a value of either the DATETIME or
TIMESTAMP type for this purpose. If the date is in the past, a warning occurs, as shown here:

mysql> SELECT NOW();
+---------------------+
| NOW() |
+---------------------+
| 2006-02-10 23:59:01 |
+---------------------+
1 row in set (0.04 sec)

mysql> CREATE EVENT e_totals
 -> ON SCHEDULE AT '2006-02-10 23:59:00'
 -> DO INSERT INTO test.totals VALUES (NOW());
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note

1663

CREATE EVENT Statement

 Code: 1588
Message: Event execution time is in the past and ON COMPLETION NOT
 PRESERVE is set. The event was dropped immediately after
 creation.

CREATE EVENT statements which are themselves invalid—for whatever reason—fail with an error.

You may use CURRENT_TIMESTAMP to specify the current date and time. In such a case, the event acts
as soon as it is created.

To create an event which occurs at some point in the future relative to the current date and time—such
as that expressed by the phrase “three weeks from now”—you can use the optional clause + INTERVAL
interval. The interval portion consists of two parts, a quantity and a unit of time, and follows
the syntax rules described in Temporal Intervals, except that you cannot use any units keywords that
involving microseconds when defining an event. With some interval types, complex time units may
be used. For example, “two minutes and ten seconds” can be expressed as + INTERVAL '2:10'
MINUTE_SECOND.

You can also combine intervals. For example, AT CURRENT_TIMESTAMP + INTERVAL 3 WEEK +
INTERVAL 2 DAY is equivalent to “three weeks and two days from now”. Each portion of such a clause
must begin with + INTERVAL.

• To repeat actions at a regular interval, use an EVERY clause. The EVERY keyword is followed by an
interval as described in the previous discussion of the AT keyword. (+ INTERVAL is not used with
EVERY.) For example, EVERY 6 WEEK means “every six weeks”.

Although + INTERVAL clauses are not permitted in an EVERY clause, you can use the same complex
time units permitted in a + INTERVAL.

An EVERY clause may contain an optional STARTS clause. STARTS is followed by a timestamp value
that indicates when the action should begin repeating, and may also use + INTERVAL interval to
specify an amount of time “from now”. For example, EVERY 3 MONTH STARTS CURRENT_TIMESTAMP
+ INTERVAL 1 WEEK means “every three months, beginning one week from now”. Similarly, you
can express “every two weeks, beginning six hours and fifteen minutes from now” as EVERY 2 WEEK
STARTS CURRENT_TIMESTAMP + INTERVAL '6:15' HOUR_MINUTE. Not specifying STARTS is
the same as using STARTS CURRENT_TIMESTAMP—that is, the action specified for the event begins
repeating immediately upon creation of the event.

An EVERY clause may contain an optional ENDS clause. The ENDS keyword is followed by a timestamp
value that tells MySQL when the event should stop repeating. You may also use + INTERVAL
interval with ENDS; for instance, EVERY 12 HOUR STARTS CURRENT_TIMESTAMP + INTERVAL
30 MINUTE ENDS CURRENT_TIMESTAMP + INTERVAL 4 WEEK is equivalent to “every twelve hours,
beginning thirty minutes from now, and ending four weeks from now”. Not using ENDS means that the
event continues executing indefinitely.

ENDS supports the same syntax for complex time units as STARTS does.

You may use STARTS, ENDS, both, or neither in an EVERY clause.

If a repeating event does not terminate within its scheduling interval, the result may be multiple instances
of the event executing simultaneously. If this is undesirable, you should institute a mechanism to prevent
simultaneous instances. For example, you could use the GET_LOCK() function, or row or table locking.

The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables to
obtain any of the timestamp or interval values which it contains. You may not use stored functions
or loadable functions in such expressions, nor may you use any table references; however, you may use
SELECT FROM DUAL. This is true for both CREATE EVENT and ALTER EVENT statements. References to

1664

CREATE EVENT Statement

stored functions, loadable functions, and tables in such cases are specifically not permitted, and fail with an
error (see Bug #22830).

Times in the ON SCHEDULE clause are interpreted using the current session time_zone value. This
becomes the event time zone; that is, the time zone that is used for event scheduling and is in effect
within the event as it executes. These times are converted to UTC and stored along with the event time
zone in the mysql.event table. This enables event execution to proceed as defined regardless of any
subsequent changes to the server time zone or daylight saving time effects. For additional information
about representation of event times, see Section 20.4.4, “Event Metadata”. See also Section 13.7.5.19,
“SHOW EVENTS Statement”, and Section 21.3.8, “The INFORMATION_SCHEMA EVENTS Table”.

Normally, once an event has expired, it is immediately dropped. You can override this behavior by
specifying ON COMPLETION PRESERVE. Using ON COMPLETION NOT PRESERVE merely makes the
default nonpersistent behavior explicit.

You can create an event but prevent it from being active using the DISABLE keyword. Alternatively, you
can use ENABLE to make explicit the default status, which is active. This is most useful in conjunction with
ALTER EVENT (see Section 13.1.2, “ALTER EVENT Statement”).

A third value may also appear in place of ENABLE or DISABLE; DISABLE ON SLAVE is set for the status
of an event on a replica to indicate that the event was created on the source and replicated to the replica,
but is not executed on the replica. See Section 17.4.1.16, “Replication of Invoked Features”.

You may supply a comment for an event using a COMMENT clause. comment may be any string of up to 64
characters that you wish to use for describing the event. The comment text, being a string literal, must be
surrounded by quotation marks.

The DO clause specifies an action carried by the event, and consists of an SQL statement. Nearly any
valid MySQL statement that can be used in a stored routine can also be used as the action statement for
a scheduled event. (See Section 20.8, “Restrictions on Stored Programs”.) For example, the following
event e_hourly deletes all rows from the sessions table once per hour, where this table is part of the
site_activity schema:

CREATE EVENT e_hourly
 ON SCHEDULE
 EVERY 1 HOUR
 COMMENT 'Clears out sessions table each hour.'
 DO
 DELETE FROM site_activity.sessions;

MySQL stores the sql_mode system variable setting in effect when an event is created or altered, and
always executes the event with this setting in force, regardless of the current server SQL mode when the
event begins executing.

A CREATE EVENT statement that contains an ALTER EVENT statement in its DO clause appears to
succeed; however, when the server attempts to execute the resulting scheduled event, the execution fails
with an error.

Note

Statements such as SELECT or SHOW that merely return a result set have no effect
when used in an event; the output from these is not sent to the MySQL Monitor,
nor is it stored anywhere. However, you can use statements such as SELECT ...
INTO and INSERT INTO ... SELECT that store a result. (See the next example
in this section for an instance of the latter.)

The schema to which an event belongs is the default schema for table references in the DO clause. Any
references to tables in other schemas must be qualified with the proper schema name.

1665

CREATE EVENT Statement

As with stored routines, you can use compound-statement syntax in the DO clause by using the BEGIN and
END keywords, as shown here:

delimiter |

CREATE EVENT e_daily
 ON SCHEDULE
 EVERY 1 DAY
 COMMENT 'Saves total number of sessions then clears the table each day'
 DO
 BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END |

delimiter ;

This example uses the delimiter command to change the statement delimiter. See Section 20.1,
“Defining Stored Programs”.

More complex compound statements, such as those used in stored routines, are possible in an event. This
example uses local variables, an error handler, and a flow control construct:

delimiter |

CREATE EVENT e
 ON SCHEDULE
 EVERY 5 SECOND
 DO
 BEGIN
 DECLARE v INTEGER;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN END;

 SET v = 0;

 WHILE v < 5 DO
 INSERT INTO t1 VALUES (0);
 UPDATE t2 SET s1 = s1 + 1;
 SET v = v + 1;
 END WHILE;
 END |

delimiter ;

There is no way to pass parameters directly to or from events; however, it is possible to invoke a stored
routine with parameters within an event:

CREATE EVENT e_call_myproc
 ON SCHEDULE
 AT CURRENT_TIMESTAMP + INTERVAL 1 DAY
 DO CALL myproc(5, 27);

If an event's definer has privileges sufficient to set global system variables (see Section 5.1.8.1, “System
Variable Privileges”), the event can read and write global variables. As granting such privileges entails a
potential for abuse, extreme care must be taken in doing so.

Generally, any statements that are valid in stored routines may be used for action statements executed
by events. For more information about statements permitted within stored routines, see Section 20.2.1,
“Stored Routine Syntax”. You can create an event as part of a stored routine, but an event cannot be
created by another event.

1666

CREATE FUNCTION Statement

13.1.12 CREATE FUNCTION Statement

The CREATE FUNCTION statement is used to create stored functions and loadable functions:

• For information about creating stored functions, see Section 13.1.15, “CREATE PROCEDURE and
CREATE FUNCTION Statements”.

• For information about creating loadable functions, see Section 13.7.3.1, “CREATE FUNCTION
Statement for Loadable Functions”.

13.1.13 CREATE INDEX Statement
CREATE [ONLINE | OFFLINE] [UNIQUE | FULLTEXT | SPATIAL] INDEX index_name
 [index_type]
 ON tbl_name (key_part,...)
 [index_option]
 [algorithm_option | lock_option] ...

key_part:
 col_name [(length)] [ASC | DESC]

index_option: {
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'
}

index_type:
 USING {BTREE | HASH}

algorithm_option:
 ALGORITHM [=] {DEFAULT | INPLACE | COPY}

lock_option:
 LOCK [=] {DEFAULT | NONE | SHARED | EXCLUSIVE}

Normally, you create all indexes on a table at the time the table itself is created with CREATE TABLE. See
Section 13.1.17, “CREATE TABLE Statement”. This guideline is especially important for InnoDB tables,
where the primary key determines the physical layout of rows in the data file. CREATE INDEX enables you
to add indexes to existing tables.

CREATE INDEX is mapped to an ALTER TABLE statement to create indexes. See Section 13.1.7, “ALTER
TABLE Statement”. CREATE INDEX cannot be used to create a PRIMARY KEY; use ALTER TABLE
instead. For more information about indexes, see Section 8.3.1, “How MySQL Uses Indexes”.

When the innodb_stats_persistent setting is enabled, run the ANALYZE TABLE statement for an
InnoDB table after creating an index on that table.

An index specification of the form (key_part1, key_part2, ...) creates an index with multiple
key parts. Index key values are formed by concatenating the values of the given key parts. For example
(col1, col2, col3) specifies a multiple-column index with index keys consisting of values from col1,
col2, and col3.

A key_part specification can end with ASC or DESC. These keywords are permitted for future extensions
for specifying ascending or descending index value storage. Currently, they are parsed but ignored; index
values are always stored in ascending order.

The following sections describe different aspects of the CREATE INDEX statement:

• Column Prefix Key Parts

1667

CREATE INDEX Statement

• Unique Indexes

• Full-Text Indexes

• Spatial Indexes

• Index Options

• Table Copying and Locking Options

Column Prefix Key Parts

For string columns, indexes can be created that use only the leading part of column values, using
col_name(length) syntax to specify an index prefix length:

• Prefixes can be specified for CHAR, VARCHAR, BINARY, and VARBINARY key parts.

• Prefixes must be specified for BLOB and TEXT key parts. Additionally, BLOB and TEXT columns can be
indexed only for InnoDB, MyISAM, and BLACKHOLE tables.

• Prefix limits are measured in bytes. However, prefix lengths for index specifications in CREATE TABLE,
ALTER TABLE, and CREATE INDEX statements are interpreted as number of characters for nonbinary
string types (CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY, VARBINARY,
BLOB). Take this into account when specifying a prefix length for a nonbinary string column that uses a
multibyte character set.

Prefix support and lengths of prefixes (where supported) are storage engine dependent. For example,
a prefix can be up to 767 bytes long for InnoDB tables or 3072 bytes if the innodb_large_prefix
option is enabled. For MyISAM tables, the prefix length limit is 1000 bytes. The NDB storage engine does
not support prefixes (see Section 18.2.7.6, “Unsupported or Missing Features in NDB Cluster”).

The statement shown here creates an index using the first 10 characters of the name column (assuming
that name has a nonbinary string type):

CREATE INDEX part_of_name ON customer (name(10));

If names in the column usually differ in the first 10 characters, lookups performed using this index should
not be much slower than using an index created from the entire name column. Also, using column prefixes
for indexes can make the index file much smaller, which could save a lot of disk space and might also
speed up INSERT operations.

Unique Indexes

A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs if
you try to add a new row with a key value that matches an existing row. If you specify a prefix value for a
column in a UNIQUE index, the column values must be unique within the prefix length. A UNIQUE index
permits multiple NULL values for columns that can contain NULL.

If a table has a PRIMARY KEY or UNIQUE NOT NULL index that consists of a single column that has an
integer type, you can use _rowid to refer to the indexed column in SELECT statements, as follows:

• _rowid refers to the PRIMARY KEY column if there is a PRIMARY KEY consisting of a single integer
column. If there is a PRIMARY KEY but it does not consist of a single integer column, _rowid cannot be
used.

• Otherwise, _rowid refers to the column in the first UNIQUE NOT NULL index if that index consists of a
single integer column. If the first UNIQUE NOT NULL index does not consist of a single integer column,
_rowid cannot be used.

1668

CREATE INDEX Statement

Full-Text Indexes

FULLTEXT indexes are supported only for InnoDB and MyISAM tables and can include only CHAR,
VARCHAR, and TEXT columns. Indexing always happens over the entire column; column prefix indexing
is not supported and any prefix length is ignored if specified. See Section 12.10, “Full-Text Search
Functions”, for details of operation.

Spatial Indexes

The MyISAM, InnoDB, NDB, and ARCHIVE storage engines support spatial columns such as POINT and
GEOMETRY. (Section 11.4, “Spatial Data Types”, describes the spatial data types.) However, support for
spatial column indexing varies among engines. Spatial and nonspatial indexes on spatial columns are
available according to the following rules.

Spatial indexes on spatial columns (created using SPATIAL INDEX) have these characteristics:

• Available only for MyISAM tables. Specifying SPATIAL INDEX for other storage engines results in an
error.

• Indexed columns must be NOT NULL.

• Column prefix lengths are prohibited. The full width of each column is indexed.

Nonspatial indexes on spatial columns (created with INDEX, UNIQUE, or PRIMARY KEY) have these
characteristics:

• Permitted for any storage engine that supports spatial columns except ARCHIVE.

• Columns can be NULL unless the index is a primary key.

• For each spatial column in a non-SPATIAL index except POINT columns, a column prefix length must
be specified. (This is the same requirement as for indexed BLOB columns.) The prefix length is given in
bytes.

• The index type for a non-SPATIAL index depends on the storage engine. Currently, B-tree is used.

• Permitted for a column that can have NULL values only for InnoDB, MyISAM, and MEMORY tables.

Index Options

Following the key part list, index options can be given. An index_option value can be any of the
following:

• KEY_BLOCK_SIZE [=] value

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index key blocks.
The value is treated as a hint; a different size could be used if necessary. A KEY_BLOCK_SIZE value
specified for an individual index definition overrides a table-level KEY_BLOCK_SIZE value.

KEY_BLOCK_SIZE is not supported at the index level for InnoDB tables. See Section 13.1.17, “CREATE
TABLE Statement”.

• index_type

Some storage engines permit you to specify an index type when creating an index. For example:

CREATE TABLE lookup (id INT) ENGINE = MEMORY;
CREATE INDEX id_index ON lookup (id) USING BTREE;

1669

CREATE INDEX Statement

Table 13.1, “Index Types Per Storage Engine” shows the permissible index type values supported by
different storage engines. Where multiple index types are listed, the first one is the default when no index
type specifier is given. Storage engines not listed in the table do not support an index_type clause in
index definitions.

Table 13.1 Index Types Per Storage Engine

Storage Engine Permissible Index Types

InnoDB BTREE

MyISAM BTREE

MEMORY/HEAP HASH, BTREE

NDB HASH, BTREE (see note in text)

The index_type clause cannot be used for FULLTEXT INDEX or SPATIAL INDEX specifications.
Full-text index implementation is storage engine dependent. Spatial indexes are implemented as R-tree
indexes.

BTREE indexes are implemented by the NDB storage engine as T-tree indexes.

Note

For indexes on NDB table columns, the USING option can be specified only
for a unique index or primary key. USING HASH prevents the creation of an
ordered index; otherwise, creating a unique index or primary key on an NDB table
automatically results in the creation of both an ordered index and a hash index,
each of which indexes the same set of columns.

For unique indexes that include one or more NULL columns of an NDB table,
the hash index can be used only to look up literal values, which means that IS
[NOT] NULL conditions require a full scan of the table. One workaround is to
make sure that a unique index using one or more NULL columns on such a table
is always created in such a way that it includes the ordered index; that is, avoid
employing USING HASH when creating the index.

If you specify an index type that is not valid for a given storage engine, but another index type is
available that the engine can use without affecting query results, the engine uses the available type. The
parser recognizes RTREE as a type name, but currently this cannot be specified for any storage engine.

Note

Use of the index_type option before the ON tbl_name clause is deprecated;
expect support for use of the option in this position to be removed in a future

1670

CREATE INDEX Statement

MySQL release. If an index_type option is given in both the earlier and later
positions, the final option applies.

TYPE type_name is recognized as a synonym for USING type_name. However, USING is the
preferred form.

The following tables show index characteristics for the storage engines that support the index_type
option.

Table 13.2 InnoDB Storage Engine Index Characteristics

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Primary key BTREE No No N/A N/A

Unique BTREE Yes Yes Index Index

Key BTREE Yes Yes Index Index

FULLTEXT N/A Yes Yes Table Table

Table 13.3 MyISAM Storage Engine Index Characteristics

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Primary key BTREE No No N/A N/A

Unique BTREE Yes Yes Index Index

Key BTREE Yes Yes Index Index

FULLTEXT N/A Yes Yes Table Table

SPATIAL N/A No No N/A N/A

Table 13.4 MEMORY Storage Engine Index Characteristics

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Primary key BTREE No No N/A N/A

Unique BTREE Yes Yes Index Index

Key BTREE Yes Yes Index Index

Primary key HASH No No N/A N/A

Unique HASH Yes Yes Index Index

Key HASH Yes Yes Index Index

Table 13.5 NDB Storage Engine Index Characteristics

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Primary key BTREE No No Index Index

Unique BTREE Yes Yes Index Index
1671

CREATE LOGFILE GROUP Statement

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Key BTREE Yes Yes Index Index

Primary key HASH No No Table (see note
1)

Table (see note
1)

Unique HASH Yes Yes Table (see note
1)

Table (see note
1)

Key HASH Yes Yes Table (see note
1)

Table (see note
1)

Table note:

1. If USING HASH is specified that prevents creation of an implicit ordered index.

• WITH PARSER parser_name

This option can be used only with FULLTEXT indexes. It associates a parser plugin with the index if full-
text indexing and searching operations need special handling. See The MySQL Plugin API, for details on
creating plugins.

• COMMENT 'string'

Index definitions can include an optional comment of up to 1024 characters.

Table Copying and Locking Options

ALGORITHM and LOCK clauses may be given to influence the table copying method and level of
concurrency for reading and writing the table while its indexes are being modified. They have the same
meaning as for the ALTER TABLE statement. For more information, see Section 13.1.7, “ALTER TABLE
Statement”

Indexes on variable-width columns of NDBCLUSTER tables are created online; that is, without any table
copying. The table is not locked against access from other NDB Cluster API nodes, although it is locked
against other operations on the same API node for the duration of the operation. This is done automatically
by the server whenever it determines that it is possible to do so; you do not have to use any special SQL
syntax or server options to cause it to happen.

In standard MySQL 5.6 releases, it is not possible to override the server when it determines that an index
is to be created without table copying. In NDB Cluster, you can create indexes offline (which causes the
table to be locked to all API nodes in the cluster) using the OFFLINE keyword. The rules and limitations
governing CREATE OFFLINE INDEX and CREATE ONLINE INDEX are the same as for ALTER OFFLINE
TABLE ... ADD INDEX and ALTER ONLINE TABLE ... ADD INDEX. You cannot cause the
noncopying creation of an index that would normally be created offline by using the ONLINE keyword: If
it is not possible to perform the CREATE INDEX operation without table copying, the server ignores the
ONLINE keyword. For more information, see Section 18.6.12, “Online Operations with ALTER TABLE in
NDB Cluster”.

The ONLINE and OFFLINE keywords are available only in NDB Cluster; attempting to use these keywords
in standard MySQL Server 5.6 releases results in a syntax error. The ONLINE and OFFLINE keywords are
deprecated in MySQL NDB Cluster 7.3; they continue to be supported in MySQL NDB Cluster 7.4, but they
are subject to removal in a future NDB Cluster release.

13.1.14 CREATE LOGFILE GROUP Statement

1672

https://dev.mysql.com/doc/extending-mysql/5.6/en/plugin-api.html

CREATE LOGFILE GROUP Statement

CREATE LOGFILE GROUP logfile_group
 ADD UNDOFILE 'undo_file'
 [INITIAL_SIZE [=] initial_size]
 [UNDO_BUFFER_SIZE [=] undo_buffer_size]
 [REDO_BUFFER_SIZE [=] redo_buffer_size]
 [NODEGROUP [=] nodegroup_id]
 [WAIT]
 [COMMENT [=] 'string']
 ENGINE [=] engine_name

This statement creates a new log file group named logfile_group having a single UNDO file named
'undo_file'. A CREATE LOGFILE GROUP statement has one and only one ADD UNDOFILE clause. For
rules covering the naming of log file groups, see Section 9.2, “Schema Object Names”.

Note

All NDB Cluster Disk Data objects share the same namespace. This means that
each Disk Data object must be uniquely named (and not merely each Disk Data
object of a given type). For example, you cannot have a tablespace and a log file
group with the same name, or a tablespace and a data file with the same name.

In MySQL NDB Cluster 7.3 and later, you can have only one log file group per Cluster at any given time.
(See Bug #16386)

The optional INITIAL_SIZE parameter sets the UNDO file's initial size; if not specified, it defaults to
128M (128 megabytes). The optional UNDO_BUFFER_SIZE parameter sets the size used by the UNDO
buffer for the log file group; The default value for UNDO_BUFFER_SIZE is 8M (eight megabytes); this value
cannot exceed the amount of system memory available. Both of these parameters are specified in bytes.
In MySQL NDB Cluster 7.3.2 and later, you may optionally follow either or both of these with a one-letter
abbreviation for an order of magnitude, similar to those used in my.cnf. Generally, this is one of the letters
M (for megabytes) or G (for gigabytes). Prior to MySQL NDB Cluster 7.3.2, the values for these options
could only be specified using digits. (Bug #13116514, Bug #16104705, Bug #62858)

Memory used for UNDO_BUFFER_SIZE comes from the global pool whose size is determined by the value
of the SharedGlobalMemory data node configuration parameter. This includes any default value implied
for this option by the setting of the InitialLogFileGroup data node configuration parameter.

The maximum permitted for UNDO_BUFFER_SIZE is 629145600 (600 MB).

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB). (Bug
#29186)

The minimum allowed value for INITIAL_SIZE is 1048576 (1 MB).

The ENGINE option determines the storage engine to be used by this log file group, with engine_name
being the name of the storage engine. In MySQL 5.6, this must be NDB (or NDBCLUSTER). If ENGINE is not
set, MySQL tries to use the engine specified by the default_storage_engine server system variable
(formerly storage_engine). In any case, if the engine is not specified as NDB or NDBCLUSTER, the
CREATE LOGFILE GROUP statement appears to succeed but actually fails to create the log file group, as
shown here:

mysql> CREATE LOGFILE GROUP lg1
 -> ADD UNDOFILE 'undo.dat' INITIAL_SIZE = 10M;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+--+
| Level | Code | Message |
+-------+------+--+

1673

CREATE PROCEDURE and CREATE FUNCTION Statements

| Error | 1478 | Table storage engine 'InnoDB' does not support the create option 'TABLESPACE or LOGFILE GROUP' |
+-------+------+--+
1 row in set (0.00 sec)

mysql> DROP LOGFILE GROUP lg1 ENGINE = NDB;
ERROR 1529 (HY000): Failed to drop LOGFILE GROUP

mysql> CREATE LOGFILE GROUP lg1
 -> ADD UNDOFILE 'undo.dat' INITIAL_SIZE = 10M
 -> ENGINE = NDB;
Query OK, 0 rows affected (2.97 sec)

The fact that the CREATE LOGFILE GROUP statement does not actually return an error when a non-NDB
storage engine is named, but rather appears to succeed, is a known issue which we hope to address in a
future release of NDB Cluster.

REDO_BUFFER_SIZE, NODEGROUP, WAIT, and COMMENT are parsed but ignored, and so have no effect in
MySQL 5.6. These options are intended for future expansion.

When used with ENGINE [=] NDB, a log file group and associated UNDO log file are created on each
Cluster data node. You can verify that the UNDO files were created and obtain information about them by
querying the Information Schema FILES table. For example:

mysql> SELECT LOGFILE_GROUP_NAME, LOGFILE_GROUP_NUMBER, EXTRA
 -> FROM INFORMATION_SCHEMA.FILES
 -> WHERE FILE_NAME = 'undo_10.dat';
+--------------------+----------------------+----------------+
| LOGFILE_GROUP_NAME | LOGFILE_GROUP_NUMBER | EXTRA |
+--------------------+----------------------+----------------+
| lg_3 | 11 | CLUSTER_NODE=3 |
| lg_3 | 11 | CLUSTER_NODE=4 |
+--------------------+----------------------+----------------+
2 rows in set (0.06 sec)

CREATE LOGFILE GROUP is useful only with Disk Data storage for NDB Cluster. See Section 18.6.11,
“NDB Cluster Disk Data Tables”.

13.1.15 CREATE PROCEDURE and CREATE FUNCTION Statements
CREATE
 [DEFINER = user]
 PROCEDURE sp_name ([proc_parameter[,...]])
 [characteristic ...] routine_body

CREATE
 [DEFINER = user]
 FUNCTION sp_name ([func_parameter[,...]])
 RETURNS type
 [characteristic ...] routine_body

proc_parameter:
 [IN | OUT | INOUT] param_name type

func_parameter:
 param_name type

type:
 Any valid MySQL data type

characteristic: {
 COMMENT 'string'
 | LANGUAGE SQL
 | [NOT] DETERMINISTIC
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }

1674

CREATE PROCEDURE and CREATE FUNCTION Statements

 | SQL SECURITY { DEFINER | INVOKER }
}

routine_body:
 Valid SQL routine statement

These statements are used to create a stored routine (a stored procedure or function). That is, the
specified routine becomes known to the server. By default, a stored routine is associated with the
default database. To associate the routine explicitly with a given database, specify the name as
db_name.sp_name when you create it.

The CREATE FUNCTION statement is also used in MySQL to support loadable functions. See
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”. A loadable function can be
regarded as an external stored function. Stored functions share their namespace with loadable functions.
See Section 9.2.5, “Function Name Parsing and Resolution”, for the rules describing how the server
interprets references to different kinds of functions.

To invoke a stored procedure, use the CALL statement (see Section 13.2.1, “CALL Statement”). To invoke
a stored function, refer to it in an expression. The function returns a value during expression evaluation.

CREATE PROCEDURE and CREATE FUNCTION require the CREATE ROUTINE privilege. If the DEFINER
clause is present, the privileges required depend on the user value, as discussed in Section 20.6,
“Stored Object Access Control”. If binary logging is enabled, CREATE FUNCTION might require the SUPER
privilege, as discussed in Section 20.7, “Stored Program Binary Logging”.

By default, MySQL automatically grants the ALTER ROUTINE and EXECUTE privileges to the routine
creator. This behavior can be changed by disabling the automatic_sp_privileges system variable.
See Section 20.2.2, “Stored Routines and MySQL Privileges”.

The DEFINER and SQL SECURITY clauses specify the security context to be used when checking access
privileges at routine execution time, as described later in this section.

If the routine name is the same as the name of a built-in SQL function, a syntax error occurs unless you
use a space between the name and the following parenthesis when defining the routine or invoking it later.
For this reason, avoid using the names of existing SQL functions for your own stored routines.

The IGNORE_SPACE SQL mode applies to built-in functions, not to stored routines. It is always permissible
to have spaces after a stored routine name, regardless of whether IGNORE_SPACE is enabled.

The parameter list enclosed within parentheses must always be present. If there are no parameters, an
empty parameter list of () should be used. Parameter names are not case-sensitive.

Each parameter is an IN parameter by default. To specify otherwise for a parameter, use the keyword OUT
or INOUT before the parameter name.

Note

Specifying a parameter as IN, OUT, or INOUT is valid only for a PROCEDURE. For a
FUNCTION, parameters are always regarded as IN parameters.

An IN parameter passes a value into a procedure. The procedure might modify the value, but the
modification is not visible to the caller when the procedure returns. An OUT parameter passes a value from
the procedure back to the caller. Its initial value is NULL within the procedure, and its value is visible to the
caller when the procedure returns. An INOUT parameter is initialized by the caller, can be modified by the
procedure, and any change made by the procedure is visible to the caller when the procedure returns.

For each OUT or INOUT parameter, pass a user-defined variable in the CALL statement that invokes the
procedure so that you can obtain its value when the procedure returns. If you are calling the procedure

1675

CREATE PROCEDURE and CREATE FUNCTION Statements

from within another stored procedure or function, you can also pass a routine parameter or local routine
variable as an OUT or INOUT parameter. If you are calling the procedure from within a trigger, you can also
pass NEW.col_name as an OUT or INOUT parameter.

For information about the effect of unhandled conditions on procedure parameters, see Section 13.6.7.8,
“Condition Handling and OUT or INOUT Parameters”.

Routine parameters cannot be referenced in statements prepared within the routine; see Section 20.8,
“Restrictions on Stored Programs”.

The following example shows a simple stored procedure that, given a country code, counts the number of
cities for that country that appear in the city table of the world database. The country code is passed
using an IN parameter, and the city count is returned using an OUT parameter:

mysql> delimiter //

mysql> CREATE PROCEDURE citycount (IN country CHAR(3), OUT cities INT)
 BEGIN
 SELECT COUNT(*) INTO cities FROM world.city
 WHERE CountryCode = country;
 END//
Query OK, 0 rows affected (0.01 sec)

mysql> delimiter ;

mysql> CALL citycount('JPN', @cities); -- cities in Japan
Query OK, 1 row affected (0.00 sec)

mysql> SELECT @cities;
+---------+
| @cities |
+---------+
| 248 |
+---------+
1 row in set (0.00 sec)

mysql> CALL citycount('FRA', @cities); -- cities in France
Query OK, 1 row affected (0.00 sec)

mysql> SELECT @cities;
+---------+
| @cities |
+---------+
| 40 |
+---------+
1 row in set (0.00 sec)

The example uses the mysql client delimiter command to change the statement delimiter from ; to //
while the procedure is being defined. This enables the ; delimiter used in the procedure body to be passed
through to the server rather than being interpreted by mysql itself. See Section 20.1, “Defining Stored
Programs”.

The RETURNS clause may be specified only for a FUNCTION, for which it is mandatory. It indicates the
return type of the function, and the function body must contain a RETURN value statement. If the RETURN
statement returns a value of a different type, the value is coerced to the proper type. For example, if a
function specifies an ENUM or SET value in the RETURNS clause, but the RETURN statement returns an
integer, the value returned from the function is the string for the corresponding ENUM member of set of SET
members.

The following example function takes a parameter, performs an operation using an SQL function, and
returns the result. In this case, it is unnecessary to use delimiter because the function definition
contains no internal ; statement delimiters:

1676

CREATE PROCEDURE and CREATE FUNCTION Statements

mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
 RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)

Parameter types and function return types can be declared to use any valid data type. The COLLATE
attribute can be used if preceded by a CHARACTER SET specification.

The routine_body consists of a valid SQL routine statement. This can be a simple statement such as
SELECT or INSERT, or a compound statement written using BEGIN and END. Compound statements can
contain declarations, loops, and other control structure statements. The syntax for these statements is
described in Section 13.6, “Compound Statements”. In practice, stored functions tend to use compound
statements, unless the body consists of a single RETURN statement.

MySQL permits routines to contain DDL statements, such as CREATE and DROP. MySQL also permits
stored procedures (but not stored functions) to contain SQL transaction statements such as COMMIT.
Stored functions may not contain statements that perform explicit or implicit commit or rollback. Support for
these statements is not required by the SQL standard, which states that each DBMS vendor may decide
whether to permit them.

Statements that return a result set can be used within a stored procedure but not within a stored function.
This prohibition includes SELECT statements that do not have an INTO var_list clause and other
statements such as SHOW, EXPLAIN, and CHECK TABLE. For statements that can be determined at
function definition time to return a result set, a Not allowed to return a result set from a
function error occurs (ER_SP_NO_RETSET). For statements that can be determined only at runtime to
return a result set, a PROCEDURE %s can't return a result set in the given context error
occurs (ER_SP_BADSELECT).

USE statements within stored routines are not permitted. When a routine is invoked, an implicit USE
db_name is performed (and undone when the routine terminates). The causes the routine to have the
given default database while it executes. References to objects in databases other than the routine default
database should be qualified with the appropriate database name.

For additional information about statements that are not permitted in stored routines, see Section 20.8,
“Restrictions on Stored Programs”.

For information about invoking stored procedures from within programs written in a language that has a
MySQL interface, see Section 13.2.1, “CALL Statement”.

MySQL stores the sql_mode system variable setting in effect when a routine is created or altered, and
always executes the routine with this setting in force, regardless of the current server SQL mode when the
routine begins executing.

The switch from the SQL mode of the invoker to that of the routine occurs after evaluation of arguments
and assignment of the resulting values to routine parameters. If you define a routine in strict SQL mode
but invoke it in nonstrict mode, assignment of arguments to routine parameters does not take place in strict
mode. If you require that expressions passed to a routine be assigned in strict SQL mode, you should
invoke the routine with strict mode in effect.

The COMMENT characteristic is a MySQL extension, and may be used to describe the stored routine. This
information is displayed by the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements.

1677

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_sp_no_retset
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_sp_badselect

CREATE PROCEDURE and CREATE FUNCTION Statements

The LANGUAGE characteristic indicates the language in which the routine is written. The server ignores this
characteristic; only SQL routines are supported.

A routine is considered “deterministic” if it always produces the same result for the same input parameters,
and “not deterministic” otherwise. If neither DETERMINISTIC nor NOT DETERMINISTIC is given in the
routine definition, the default is NOT DETERMINISTIC. To declare that a function is deterministic, you must
specify DETERMINISTIC explicitly.

Assessment of the nature of a routine is based on the “honesty” of the creator: MySQL does not check that
a routine declared DETERMINISTIC is free of statements that produce nondeterministic results. However,
misdeclaring a routine might affect results or affect performance. Declaring a nondeterministic routine as
DETERMINISTIC might lead to unexpected results by causing the optimizer to make incorrect execution
plan choices. Declaring a deterministic routine as NONDETERMINISTIC might diminish performance by
causing available optimizations not to be used.

If binary logging is enabled, the DETERMINISTIC characteristic affects which routine definitions MySQL
accepts. See Section 20.7, “Stored Program Binary Logging”.

A routine that contains the NOW() function (or its synonyms) or RAND() is nondeterministic, but it might
still be replication-safe. For NOW(), the binary log includes the timestamp and replicates correctly. RAND()
also replicates correctly as long as it is called only a single time during the execution of a routine. (You can
consider the routine execution timestamp and random number seed as implicit inputs that are identical on
the source and replica.)

Several characteristics provide information about the nature of data use by the routine. In MySQL, these
characteristics are advisory only. The server does not use them to constrain what kinds of statements a
routine is permitted to execute.

• CONTAINS SQL indicates that the routine does not contain statements that read or write data. This is the
default if none of these characteristics is given explicitly. Examples of such statements are SET @x = 1
or DO RELEASE_LOCK('abc'), which execute but neither read nor write data.

• NO SQL indicates that the routine contains no SQL statements.

• READS SQL DATA indicates that the routine contains statements that read data (for example, SELECT),
but not statements that write data.

• MODIFIES SQL DATA indicates that the routine contains statements that may write data (for example,
INSERT or DELETE).

The SQL SECURITY characteristic can be DEFINER or INVOKER to specify the security context; that is,
whether the routine executes using the privileges of the account named in the routine DEFINER clause or
the user who invokes it. This account must have permission to access the database with which the routine
is associated. The default value is DEFINER. The user who invokes the routine must have the EXECUTE
privilege for it, as must the DEFINER account if the routine executes in definer security context.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at routine
execution time for routines that have the SQL SECURITY DEFINER characteristic.

If the DEFINER clause is present, the user value should be a MySQL account specified as
'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The permitted user values
depend on the privileges you hold, as discussed in Section 20.6, “Stored Object Access Control”. Also see
that section for additional information about stored routine security.

If the DEFINER clause is omitted, the default definer is the user who executes the CREATE PROCEDURE or
CREATE FUNCTION statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

1678

CREATE SERVER Statement

Within the body of a stored routine that is defined with the SQL SECURITY DEFINER characteristic, the
CURRENT_USER function returns the routine's DEFINER value. For information about user auditing within
stored routines, see Section 6.2.15, “SQL-Based Account Activity Auditing”.

Consider the following procedure, which displays a count of the number of MySQL accounts listed in the
mysql.user system table:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
BEGIN
 SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;

The procedure is assigned a DEFINER account of 'admin'@'localhost' no matter which user defines
it. It executes with the privileges of that account no matter which user invokes it (because the default
security characteristic is DEFINER). The procedure succeeds or fails depending on whether invoker has
the EXECUTE privilege for it and 'admin'@'localhost' has the SELECT privilege for the mysql.user
system table.

Now suppose that the procedure is defined with the SQL SECURITY INVOKER characteristic:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
SQL SECURITY INVOKER
BEGIN
 SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;

The procedure still has a DEFINER of 'admin'@'localhost', but in this case, it executes with the
privileges of the invoking user. Thus, the procedure succeeds or fails depending on whether the invoker
has the EXECUTE privilege for it and the SELECT privilege for the mysql.user table.

The server handles the data type of a routine parameter, local routine variable created with DECLARE, or
function return value as follows:

• Assignments are checked for data type mismatches and overflow. Conversion and overflow problems
result in warnings, or errors in strict SQL mode.

• Only scalar values can be assigned. For example, a statement such as SET x = (SELECT 1, 2) is
invalid.

• For character data types, if CHARACTER SET is includedd in the declaration, the specified character set
and its default collation is used. If the COLLATE attribute is also present, that collation is used rather than
the default collation.

If CHARACTER SET and COLLATE are not present, the database character set and collation in effect at
routine creation time are used. To avoid having the server use the database character set and collation,
provide an explicit CHARACTER SET and a COLLATE attribute for character data parameters.

If you alter the database default character set or collation, stored routines that are to use the new
database defaults must be dropped and recreated.

The database character set and collation are given by the value of the character_set_database
and collation_database system variables. For more information, see Section 10.3.3, “Database
Character Set and Collation”.

13.1.16 CREATE SERVER Statement

CREATE SERVER server_name
 FOREIGN DATA WRAPPER wrapper_name

1679

CREATE SERVER Statement

 OPTIONS (option [, option] ...)

option: {
 HOST character-literal
 | DATABASE character-literal
 | USER character-literal
 | PASSWORD character-literal
 | SOCKET character-literal
 | OWNER character-literal
 | PORT numeric-literal
}

This statement creates the definition of a server for use with the FEDERATED storage engine. The CREATE
SERVER statement creates a new row in the servers table in the mysql database. This statement
requires the SUPER privilege.

The server_name should be a unique reference to the server. Server definitions are global within the
scope of the server, it is not possible to qualify the server definition to a specific database. server_name
has a maximum length of 64 characters (names longer than 64 characters are silently truncated), and is
case-insensitive. You may specify the name as a quoted string.

The wrapper_name is an identifier and may be quoted with single quotation marks.

For each option you must specify either a character literal or numeric literal. Character literals are UTF-8,
support a maximum length of 64 characters and default to a blank (empty) string. String literals are silently
truncated to 64 characters. Numeric literals must be a number between 0 and 9999, default value is 0.

Note

The OWNER option is currently not applied, and has no effect on the ownership or
operation of the server connection that is created.

The CREATE SERVER statement creates an entry in the mysql.servers table that can later be used with
the CREATE TABLE statement when creating a FEDERATED table. The options that you specify are used
to populate the columns in the mysql.servers table. The table columns are Server_name, Host, Db,
Username, Password, Port and Socket.

For example:

CREATE SERVER s
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'Remote', HOST '198.51.100.106', DATABASE 'test');

Be sure to specify all options necessary to establish a connection to the server. The user name, host
name, and database name are mandatory. Other options might be required as well, such as password.

The data stored in the table can be used when creating a connection to a FEDERATED table:

CREATE TABLE t (s1 INT) ENGINE=FEDERATED CONNECTION='s';

For more information, see Section 15.8, “The FEDERATED Storage Engine”.

CREATE SERVER causes an implicit commit. See Section 13.3.3, “Statements That Cause an Implicit
Commit”.

CREATE SERVER is not written to the binary log, regardless of the logging format that is in use.

In MySQL 5.6.11 only, gtid_next must be set to AUTOMATIC before issuing this statement. (Bug
#16062608, Bug #16715809, Bug #69045)

1680

CREATE TABLE Statement

13.1.17 CREATE TABLE Statement

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 (create_definition,...)
 [table_options]
 [partition_options]

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 [(create_definition,...)]
 [table_options]
 [partition_options]
 [IGNORE | REPLACE]
 [AS] query_expression

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 { LIKE old_tbl_name | (LIKE old_tbl_name) }

create_definition: {
 col_name column_definition
 | {INDEX | KEY} [index_name] [index_type] (key_part,...)
 [index_option] ...
 | {FULLTEXT | SPATIAL} [INDEX | KEY] [index_name] (key_part,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] PRIMARY KEY
 [index_type] (key_part,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] UNIQUE [INDEX | KEY]
 [index_name] [index_type] (key_part,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (col_name,...)
 reference_definition
 | CHECK (expr)
}

column_definition:
 data_type [NOT NULL | NULL] [DEFAULT default_value]
 [AUTO_INCREMENT] [UNIQUE [KEY]] [[PRIMARY] KEY]
 [COMMENT 'string']
 [COLLATE collation_name]
 [COLUMN_FORMAT {FIXED | DYNAMIC | DEFAULT}]
 [STORAGE {DISK | MEMORY}]
 [reference_definition]

data_type:
 (see Chapter 11, Data Types)

key_part:
 col_name [(length)] [ASC | DESC]

index_type:
 USING {BTREE | HASH}

index_option: {
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'
}

reference_definition:
 REFERENCES tbl_name (key_part,...)
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

1681

CREATE TABLE Statement

reference_option:
 RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

table_options:
 table_option [[,] table_option] ...

table_option: {
 AUTO_INCREMENT [=] value
 | AVG_ROW_LENGTH [=] value
 | [DEFAULT] CHARACTER SET [=] charset_name
 | CHECKSUM [=] {0 | 1}
 | [DEFAULT] COLLATE [=] collation_name
 | COMMENT [=] 'string'
 | CONNECTION [=] 'connect_string'
 | {DATA | INDEX} DIRECTORY [=] 'absolute path to directory'
 | DELAY_KEY_WRITE [=] {0 | 1}
 | ENGINE [=] engine_name
 | INSERT_METHOD [=] { NO | FIRST | LAST }
 | KEY_BLOCK_SIZE [=] value
 | MAX_ROWS [=] value
 | MIN_ROWS [=] value
 | PACK_KEYS [=] {0 | 1 | DEFAULT}
 | PASSWORD [=] 'string'
 | ROW_FORMAT [=] {DEFAULT | DYNAMIC | FIXED | COMPRESSED | REDUNDANT | COMPACT}
 | STATS_AUTO_RECALC [=] {DEFAULT | 0 | 1}
 | STATS_PERSISTENT [=] {DEFAULT | 0 | 1}
 | STATS_SAMPLE_PAGES [=] value
 | tablespace_option
 | UNION [=] (tbl_name[,tbl_name]...)
}

partition_options:
 PARTITION BY
 { [LINEAR] HASH(expr)
 | [LINEAR] KEY [ALGORITHM={1 | 2}] (column_list)
 | RANGE{(expr) | COLUMNS(column_list)}
 | LIST{(expr) | COLUMNS(column_list)} }
 [PARTITIONS num]
 [SUBPARTITION BY
 { [LINEAR] HASH(expr)
 | [LINEAR] KEY [ALGORITHM={1 | 2}] (column_list) }
 [SUBPARTITIONS num]
]
 [(partition_definition [, partition_definition] ...)]

partition_definition:
 PARTITION partition_name
 [VALUES
 {LESS THAN {(expr | value_list) | MAXVALUE}
 |
 IN (value_list)}]
 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'string']
 [DATA DIRECTORY [=] 'data_dir']
 [INDEX DIRECTORY [=] 'index_dir']
 [MAX_ROWS [=] max_number_of_rows]
 [MIN_ROWS [=] min_number_of_rows]
 [TABLESPACE [=] tablespace_name]
 [NODEGROUP [=] node_group_id]
 [(subpartition_definition [, subpartition_definition] ...)]

subpartition_definition:
 SUBPARTITION logical_name
 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'string']
 [DATA DIRECTORY [=] 'data_dir']
 [INDEX DIRECTORY [=] 'index_dir']

1682

CREATE TABLE Statement

 [MAX_ROWS [=] max_number_of_rows]
 [MIN_ROWS [=] min_number_of_rows]
 [TABLESPACE [=] tablespace_name]
 [NODEGROUP [=] node_group_id]

tablespace_option:
 TABLESPACE tablespace_name [STORAGE DISK]
 | [TABLESPACE tablespace_name] STORAGE MEMORY

query_expression:
 SELECT ... (Some valid select or union statement)

CREATE TABLE creates a table with the given name. You must have the CREATE privilege for the table.

By default, tables are created in the default database, using the InnoDB storage engine. An error occurs if
the table exists, if there is no default database, or if the database does not exist.

MySQL has no limit on the number of tables. The underlying file system may have a limit on the number
of files that represent tables. Individual storage engines may impose engine-specific constraints. InnoDB
permits up to 4 billion tables.

For information about the physical representation of a table, see Section 13.1.17.1, “Files Created by
CREATE TABLE”.

There are several aspects to the CREATE TABLE statement, described under the following topics in this
section:

• Table Name

• Temporary Tables

• Table Cloning and Copying

• Column Data Types and Attributes

• Indexes and Foreign Keys

• Table Options

• Table Partitioning

Table Name

• tbl_name

The table name can be specified as db_name.tbl_name to create the table in a specific database.
This works regardless of whether there is a default database, assuming that the database exists.
If you use quoted identifiers, quote the database and table names separately. For example, write
`mydb`.`mytbl`, not `mydb.mytbl`.

Rules for permissible table names are given in Section 9.2, “Schema Object Names”.

• IF NOT EXISTS

Prevents an error from occurring if the table exists. However, there is no verification that the existing
table has a structure identical to that indicated by the CREATE TABLE statement.

1683

CREATE TABLE Statement

Temporary Tables

You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only within
the current session, and is dropped automatically when the session is closed. For more information, see
Section 13.1.17.2, “CREATE TEMPORARY TABLE Statement”.

Table Cloning and Copying

• LIKE

Use CREATE TABLE ... LIKE to create an empty table based on the definition of another table,
including any column attributes and indexes defined in the original table:

CREATE TABLE new_tbl LIKE orig_tbl;

For more information, see Section 13.1.17.3, “CREATE TABLE ... LIKE Statement”.

• [AS] query_expression

To create one table from another, add a SELECT statement at the end of the CREATE TABLE statement:

CREATE TABLE new_tbl AS SELECT * FROM orig_tbl;

For more information, see Section 13.1.17.4, “CREATE TABLE ... SELECT Statement”.

• IGNORE | REPLACE

The IGNORE and REPLACE options indicate how to handle rows that duplicate unique key values when
copying a table using a SELECT statement.

For more information, see Section 13.1.17.4, “CREATE TABLE ... SELECT Statement”.

Column Data Types and Attributes

There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given table
and depends on the factors discussed in Section 8.4.7, “Limits on Table Column Count and Row Size”.

• data_type

data_type represents the data type in a column definition. For a full description of the syntax
available for specifying column data types, as well as information about the properties of each type, see
Chapter 11, Data Types.

• Some attributes do not apply to all data types. AUTO_INCREMENT applies only to integer and floating-
point types. DEFAULT does not apply to the BLOB or TEXT types.

• Character data types (CHAR, VARCHAR, the TEXT types, ENUM, SET, and any synonyms) can include
CHARACTER SET to specify the character set for the column. CHARSET is a synonym for CHARACTER
SET. A collation for the character set can be specified with the COLLATE attribute, along with any other
attributes. For details, see Chapter 10, Character Sets, Collations, Unicode. Example:

CREATE TABLE t (c CHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);

MySQL 5.6 interprets length specifications in character column definitions in characters. Lengths for
BINARY and VARBINARY are in bytes.

• For CHAR, VARCHAR, BINARY, and VARBINARY columns, indexes can be created that use only the
leading part of column values, using col_name(length) syntax to specify an index prefix length.
BLOB and TEXT columns also can be indexed, but a prefix length must be given. Prefix lengths are

1684

CREATE TABLE Statement

given in characters for nonbinary string types and in bytes for binary string types. That is, index entries
consist of the first length characters of each column value for CHAR, VARCHAR, and TEXT columns,
and the first length bytes of each column value for BINARY, VARBINARY, and BLOB columns.
Indexing only a prefix of column values like this can make the index file much smaller. For additional
information about index prefixes, see Section 13.1.13, “CREATE INDEX Statement”.

Only the InnoDB and MyISAM storage engines support indexing on BLOB and TEXT columns. For
example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

• NOT NULL | NULL

If neither NULL nor NOT NULL is specified, the column is treated as though NULL had been specified.

In MySQL 5.6, only the InnoDB, MyISAM, and MEMORY storage engines support indexes on columns
that can have NULL values. In other cases, you must declare indexed columns as NOT NULL or an error
results.

• DEFAULT

Specifies a default value for a column. For more information about default value handling, including the
case that a column definition includes no explicit DEFAULT value, see Section 11.5, “Data Type Default
Values”.

If the NO_ZERO_DATE or NO_ZERO_IN_DATE SQL mode is enabled and a date-valued default is not
correct according to that mode, CREATE TABLE produces a warning if strict SQL mode is not enabled
and an error if strict mode is enabled. For example, with NO_ZERO_IN_DATE enabled, c1 DATE
DEFAULT '2010-00-00' produces a warning.

• AUTO_INCREMENT

An integer or floating-point column can have the additional attribute AUTO_INCREMENT. When you insert
a value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column is set to
the next sequence value. Typically this is value+1, where value is the largest value for the column
currently in the table. AUTO_INCREMENT sequences begin with 1.

To retrieve an AUTO_INCREMENT value after inserting a row, use the LAST_INSERT_ID() SQL
function or the mysql_insert_id() C API function. See Section 12.16, “Information Functions”, and
mysql_insert_id().

If the NO_AUTO_VALUE_ON_ZERO SQL mode is enabled, you can store 0 in AUTO_INCREMENT columns
as 0 without generating a new sequence value. See Section 5.1.10, “Server SQL Modes”.

There can be only one AUTO_INCREMENT column per table, it must be indexed, and it cannot have a
DEFAULT value. An AUTO_INCREMENT column works properly only if it contains only positive values.
Inserting a negative number is regarded as inserting a very large positive number. This is done to avoid

1685

https://dev.mysql.com/doc/c-api/5.6/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-insert-id.html

CREATE TABLE Statement

precision problems when numbers “wrap” over from positive to negative and also to ensure that you do
not accidentally get an AUTO_INCREMENT column that contains 0.

For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column key.
See Section 3.6.9, “Using AUTO_INCREMENT”.

To make MySQL compatible with some ODBC applications, you can find the AUTO_INCREMENT value
for the last inserted row with the following query:

SELECT * FROM tbl_name WHERE auto_col IS NULL

This method requires that sql_auto_is_null variable is not set to 0. See Section 5.1.7, “Server
System Variables”.

For information about InnoDB and AUTO_INCREMENT, see Section 14.6.1.6, “AUTO_INCREMENT
Handling in InnoDB”. For information about AUTO_INCREMENT and MySQL Replication, see
Section 17.4.1.1, “Replication and AUTO_INCREMENT”.

• COMMENT

A comment for a column can be specified with the COMMENT option, up to 1024 characters long. The
comment is displayed by the SHOW CREATE TABLE and SHOW FULL COLUMNS statements. It is also
shown in the COLUMN_COMMENT column of the Information Schema COLUMNS table.

• COLUMN_FORMAT

In NDB Cluster, it is also possible to specify a data storage format for individual columns of NDB tables
using COLUMN_FORMAT. Permissible column formats are FIXED, DYNAMIC, and DEFAULT. FIXED is
used to specify fixed-width storage, DYNAMIC permits the column to be variable-width, and DEFAULT
causes the column to use fixed-width or variable-width storage as determined by the column's data type
(possibly overridden by a ROW_FORMAT specifier).

For NDB tables, the default value for COLUMN_FORMAT is DEFAULT.

In NDB Cluster, the maximum possible offset for a column defined with COLUMN_FORMAT=FIXED is
8188 bytes. For more information and possible workarounds, see Section 18.2.7.5, “Limits Associated
with Database Objects in NDB Cluster”.

COLUMN_FORMAT currently has no effect on columns of tables using storage engines other than NDB. In
MySQL 5.6 and later, COLUMN_FORMAT is silently ignored.

• STORAGE

For NDB tables, it is possible to specify whether the column is stored on disk or in memory by using
a STORAGE clause. STORAGE DISK causes the column to be stored on disk, and STORAGE MEMORY
causes in-memory storage to be used. The CREATE TABLE statement used must still include a
TABLESPACE clause:

mysql> CREATE TABLE t1 (
 -> c1 INT STORAGE DISK,
 -> c2 INT STORAGE MEMORY
 ->) ENGINE NDB;
ERROR 1005 (HY000): Can't create table 'c.t1' (errno: 140)

mysql> CREATE TABLE t1 (
 -> c1 INT STORAGE DISK,
 -> c2 INT STORAGE MEMORY
 ->) TABLESPACE ts_1 ENGINE NDB;
Query OK, 0 rows affected (1.06 sec)

1686

CREATE TABLE Statement

For NDB tables, STORAGE DEFAULT is equivalent to STORAGE MEMORY.

The STORAGE clause has no effect on tables using storage engines other than NDB. The STORAGE
keyword is supported only in the build of mysqld that is supplied with NDB Cluster; it is not recognized
in any other version of MySQL, where any attempt to use the STORAGE keyword causes a syntax error.

Indexes and Foreign Keys

Several keywords apply to creation of indexes and foreign keys. For general background in addition to
the following descriptions, see Section 13.1.13, “CREATE INDEX Statement”, and Section 13.1.17.5,
“FOREIGN KEY Constraints”.

• CONSTRAINT symbol

The CONSTRAINT symbol clause may be given to name a constraint. If the clause is not given, or
a symbol is not included following the CONSTRAINT keyword, MySQL automatically generates a
constraint name. The symbol value, if used, must be unique per schema (database), per constraint
type. A duplicate symbol results in an error. See also the discussion about length limits of generated
constraint identifiers at Section 9.2.1, “Identifier Length Limits”.

The SQL standard specifies that all types of constraints (primary key, unique index, foreign key, check)
belong to the same namespace. In MySQL, each constraint type has its own namespace per schema.
Consequently, names for each type of constraint must be unique per schema.

• PRIMARY KEY

A unique index where all key columns must be defined as NOT NULL. If they are not explicitly declared
as NOT NULL, MySQL declares them so implicitly (and silently). A table can have only one PRIMARY
KEY. The name of a PRIMARY KEY is always PRIMARY, which thus cannot be used as the name for any
other kind of index.

If you do not have a PRIMARY KEY and an application asks for the PRIMARY KEY in your tables,
MySQL returns the first UNIQUE index that has no NULL columns as the PRIMARY KEY.

In InnoDB tables, keep the PRIMARY KEY short to minimize storage overhead for secondary indexes.
Each secondary index entry contains a copy of the primary key columns for the corresponding row. (See
Section 14.6.2.1, “Clustered and Secondary Indexes”.)

In the created table, a PRIMARY KEY is placed first, followed by all UNIQUE indexes, and then the
nonunique indexes. This helps the MySQL optimizer to prioritize which index to use and also more
quickly to detect duplicated UNIQUE keys.

A PRIMARY KEY can be a multiple-column index. However, you cannot create a multiple-column index
using the PRIMARY KEY key attribute in a column specification. Doing so only marks that single column
as primary. You must use a separate PRIMARY KEY(key_part, ...) clause.

If a table has a PRIMARY KEY or UNIQUE NOT NULL index that consists of a single column that has an
integer type, you can use _rowid to refer to the indexed column in SELECT statements, as described in
Unique Indexes.

In MySQL, the name of a PRIMARY KEY is PRIMARY. For other indexes, if you do not assign a name,
the index is assigned the same name as the first indexed column, with an optional suffix (_2, _3, ...)
to make it unique. You can see index names for a table using SHOW INDEX FROM tbl_name. See
Section 13.7.5.23, “SHOW INDEX Statement”.

• KEY | INDEX

1687

CREATE TABLE Statement

KEY is normally a synonym for INDEX. The key attribute PRIMARY KEY can also be specified as just
KEY when given in a column definition. This was implemented for compatibility with other database
systems.

• UNIQUE

A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs
if you try to add a new row with a key value that matches an existing row. For all engines, a UNIQUE
index permits multiple NULL values for columns that can contain NULL. If you specify a prefix value for a
column in a UNIQUE index, the column values must be unique within the prefix length.

If a table has a PRIMARY KEY or UNIQUE NOT NULL index that consists of a single column that has an
integer type, you can use _rowid to refer to the indexed column in SELECT statements, as described in
Unique Indexes.

• FULLTEXT

A FULLTEXT index is a special type of index used for full-text searches. Only the InnoDB and MyISAM
storage engines support FULLTEXT indexes. They can be created only from CHAR, VARCHAR, and TEXT
columns. Indexing always happens over the entire column; column prefix indexing is not supported and
any prefix length is ignored if specified. See Section 12.10, “Full-Text Search Functions”, for details of
operation. A WITH PARSER clause can be specified as an index_option value to associate a parser
plugin with the index if full-text indexing and searching operations need special handling. This clause is
valid only for FULLTEXT indexes. See The MySQL Plugin API, for details on creating plugins.

• SPATIAL

You can create SPATIAL indexes on spatial data types. Spatial types are supported only for MyISAM
tables and indexed columns must be declared as NOT NULL. See Section 11.4, “Spatial Data Types”.

• FOREIGN KEY

MySQL supports foreign keys, which let you cross-reference related data across tables, and foreign key
constraints, which help keep this spread-out data consistent. For definition and option information, see
reference_definition, and reference_option.

Partitioned tables employing the InnoDB storage engine do not support foreign keys. See Section 19.6,
“Restrictions and Limitations on Partitioning”, for more information.

• CHECK

The CHECK clause is parsed but ignored by all storage engines.

• key_part

• A key_part specification can end with ASC or DESC. These keywords are permitted for future
extensions for specifying ascending or descending index value storage. Currently, they are parsed but
ignored; index values are always stored in ascending order.

• Prefixes, defined by the length attribute, can be up to 767 bytes long for InnoDB tables or 3072
bytes if the innodb_large_prefix option is enabled. For MyISAM tables, the prefix length limit is
1000 bytes.

Prefix limits are measured in bytes. However, prefix lengths for index specifications in CREATE
TABLE, ALTER TABLE, and CREATE INDEX statements are interpreted as number of characters for
nonbinary string types (CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY,

1688

https://dev.mysql.com/doc/extending-mysql/5.6/en/plugin-api.html

CREATE TABLE Statement

VARBINARY, BLOB). Take this into account when specifying a prefix length for a nonbinary string
column that uses a multibyte character set.

• index_type

Some storage engines permit you to specify an index type when creating an index. The syntax for the
index_type specifier is USING type_name.

Example:

CREATE TABLE lookup
 (id INT, INDEX USING BTREE (id))
 ENGINE = MEMORY;

The preferred position for USING is after the index column list. It can be given before the column list, but
support for use of the option in that position is deprecated; expect it to be removed in a future MySQL
release.

• index_option

index_option values specify additional options for an index.

• KEY_BLOCK_SIZE

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index key
blocks. The value is treated as a hint; a different size could be used if necessary. A KEY_BLOCK_SIZE
value specified for an individual index definition overrides the table-level KEY_BLOCK_SIZE value.

For information about the table-level KEY_BLOCK_SIZE attribute, see Table Options.

• WITH PARSER

A WITH PARSER clause can be specified as an index_option value to associate a parser plugin
with the index if full-text indexing and searching operations need special handling. This clause is valid
only for FULLTEXT indexes. See The MySQL Plugin API, for details on creating plugins.

• COMMENT

Index definitions can include an optional comment of up to 1024 characters.

For more information about permissible index_option values, see Section 13.1.13, “CREATE INDEX
Statement”. For more information about indexes, see Section 8.3.1, “How MySQL Uses Indexes”.

• reference_definition

For reference_definition syntax details and examples, see Section 13.1.17.5, “FOREIGN KEY
Constraints”.

InnoDB and NDB tables support checking of foreign key constraints. The columns of the referenced
table must always be explicitly named. Both ON DELETE and ON UPDATE actions on foreign keys

1689

https://dev.mysql.com/doc/extending-mysql/5.6/en/plugin-api.html

CREATE TABLE Statement

are supported. For more detailed information and examples, see Section 13.1.17.5, “FOREIGN KEY
Constraints”.

For other storage engines, MySQL Server parses and ignores the FOREIGN KEY syntax in CREATE
TABLE statements.

Important

For users familiar with the ANSI/ISO SQL Standard, please note that no storage
engine, including InnoDB, recognizes or enforces the MATCH clause used in
referential integrity constraint definitions. Use of an explicit MATCH clause does
not have the specified effect, and also causes ON DELETE and ON UPDATE
clauses to be ignored. For these reasons, specifying MATCH should be avoided.

The MATCH clause in the SQL standard controls how NULL values in a composite
(multiple-column) foreign key are handled when comparing to a primary key.
InnoDB essentially implements the semantics defined by MATCH SIMPLE, which
permit a foreign key to be all or partially NULL. In that case, the (child table) row
containing such a foreign key is permitted to be inserted, and does not match any
row in the referenced (parent) table. It is possible to implement other semantics
using triggers.

Additionally, MySQL requires that the referenced columns be indexed for
performance. However, it does not enforce any requirement that the referenced
columns be declared UNIQUE or NOT NULL. The handling of foreign key
references to nonunique keys or keys that contain NULL values is not well defined
for operations such as UPDATE or DELETE CASCADE. You are advised to use
foreign keys that reference only keys that are both UNIQUE (or PRIMARY) and
NOT NULL.

MySQL parses but ignores “inline REFERENCES specifications” (as defined
in the SQL standard) where the references are defined as part of the column
specification. MySQL accepts REFERENCES clauses only when specified as
part of a separate FOREIGN KEY specification. For more information, see
Section 1.6.2.3, “FOREIGN KEY Constraint Differences”.

• reference_option

For information about the RESTRICT, CASCADE, SET NULL, NO ACTION, and SET DEFAULT options,
see Section 13.1.17.5, “FOREIGN KEY Constraints”.

Table Options

Table options are used to optimize the behavior of the table. In most cases, you do not have to specify any
of them. These options apply to all storage engines unless otherwise indicated. Options that do not apply
to a given storage engine may be accepted and remembered as part of the table definition. Such options
then apply if you later use ALTER TABLE to convert the table to use a different storage engine.

• ENGINE

Specifies the storage engine for the table, using one of the names shown in the following table. The
engine name can be unquoted or quoted. The quoted name 'DEFAULT' is recognized but ignored.

Storage Engine Description

InnoDB Transaction-safe tables with row locking and
foreign keys. The default storage engine for new

1690

CREATE TABLE Statement

Storage Engine Description
tables. See Chapter 14, The InnoDB Storage
Engine, and in particular Section 14.1, “Introduction
to InnoDB” if you have MySQL experience but are
new to InnoDB.

MyISAM The binary portable storage engine that is primarily
used for read-only or read-mostly workloads. See
Section 15.2, “The MyISAM Storage Engine”.

MEMORY The data for this storage engine is stored only
in memory. See Section 15.3, “The MEMORY
Storage Engine”.

CSV Tables that store rows in comma-separated values
format. See Section 15.4, “The CSV Storage
Engine”.

ARCHIVE The archiving storage engine. See Section 15.5,
“The ARCHIVE Storage Engine”.

EXAMPLE An example engine. See Section 15.9, “The
EXAMPLE Storage Engine”.

FEDERATED Storage engine that accesses remote tables. See
Section 15.8, “The FEDERATED Storage Engine”.

HEAP This is a synonym for MEMORY.

MERGE A collection of MyISAM tables used as one table.
Also known as MRG_MyISAM. See Section 15.7,
“The MERGE Storage Engine”.

NDB Clustered, fault-tolerant, memory-based tables,
supporting transactions and foreign keys. Also
known as NDBCLUSTER. See Chapter 18, MySQL
NDB Cluster 7.3 and NDB Cluster 7.4.

If a storage engine is specified that is not available, MySQL uses the default engine instead. Normally,
this is MyISAM. For example, if a table definition includes the ENGINE=INNODB option but the MySQL
server does not support INNODB tables, the table is created as a MyISAM table. This makes it possible
to have a replication setup where you have transactional tables on the source but tables created on the
replica are nontransactional (to get more speed). In MySQL 5.6, a warning occurs if the storage engine
specification is not honored.

Engine substitution can be controlled by the setting of the NO_ENGINE_SUBSTITUTION SQL mode, as
described in Section 5.1.10, “Server SQL Modes”.

Note

The older TYPE option that was synonymous with ENGINE was removed in
MySQL 5.5. When upgrading to MySQL 5.5 or later, you must convert existing
applications that rely on TYPE to use ENGINE instead.

• AUTO_INCREMENT

The initial AUTO_INCREMENT value for the table. In MySQL 5.6, this works for MyISAM, MEMORY,
InnoDB, and ARCHIVE tables. To set the first auto-increment value for engines that do not support the

1691

CREATE TABLE Statement

AUTO_INCREMENT table option, insert a “dummy” row with a value one less than the desired value after
creating the table, and then delete the dummy row.

For engines that support the AUTO_INCREMENT table option in CREATE TABLE statements, you can
also use ALTER TABLE tbl_name AUTO_INCREMENT = N to reset the AUTO_INCREMENT value. The
value cannot be set lower than the maximum value currently in the column.

• AVG_ROW_LENGTH

An approximation of the average row length for your table. You need to set this only for large tables with
variable-size rows.

When you create a MyISAM table, MySQL uses the product of the MAX_ROWS and AVG_ROW_LENGTH
options to decide how big the resulting table is. If you don't specify either option, the maximum size
for MyISAM data and index files is 256TB by default. (If your operating system does not support files
that large, table sizes are constrained by the file size limit.) If you want to keep down the pointer sizes
to make the index smaller and faster and you don't really need big files, you can decrease the default
pointer size by setting the myisam_data_pointer_size system variable. (See Section 5.1.7, “Server
System Variables”.) If you want all your tables to be able to grow above the default limit and are willing to
have your tables slightly slower and larger than necessary, you can increase the default pointer size by
setting this variable. Setting the value to 7 permits table sizes up to 65,536TB.

• [DEFAULT] CHARACTER SET

Specifies a default character set for the table. CHARSET is a synonym for CHARACTER SET. If the
character set name is DEFAULT, the database character set is used.

• CHECKSUM

Set this to 1 if you want MySQL to maintain a live checksum for all rows (that is, a checksum that MySQL
updates automatically as the table changes). This makes the table a little slower to update, but also
makes it easier to find corrupted tables. The CHECKSUM TABLE statement reports the checksum.
(MyISAM only.)

• [DEFAULT] COLLATE

Specifies a default collation for the table.

• COMMENT

A comment for the table, up to 2048 characters long.

• CONNECTION

The connection string for a FEDERATED table.

Note

Older versions of MySQL used a COMMENT option for the connection string.

• DATA DIRECTORY, INDEX DIRECTORY

For InnoDB, the DATA DIRECTORY='directory' clause permits creating a table outside of the data
directory. The innodb_file_per_table variable must be enabled to use the DATA DIRECTORY

1692

CREATE TABLE Statement

clause. The full directory path must be specified. For more information, see Section 14.6.1.2, “Creating
Tables Externally”.

When creating MyISAM tables, you can use the DATA DIRECTORY='directory' clause, the INDEX
DIRECTORY='directory' clause, or both. They specify where to put a MyISAM table's data file and
index file, respectively. Unlike InnoDB tables, MySQL does not create subdirectories that correspond
to the database name when creating a MyISAM table with a DATA DIRECTORY or INDEX DIRECTORY
option. Files are created in the directory that is specified.

As of MySQL 5.6.35, you must have the FILE privilege to use the DATA DIRECTORY or INDEX
DIRECTORY table option.

Important

Table-level DATA DIRECTORY and INDEX DIRECTORY options are ignored for
partitioned tables. (Bug #32091)

These options work only when you are not using the --skip-symbolic-links option. Your operating
system must also have a working, thread-safe realpath() call. See Section 8.12.3.2, “Using Symbolic
Links for MyISAM Tables on Unix”, for more complete information.

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the database
directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it. The same applies
to .MYI files for tables created with no INDEX DIRECTORY option. To suppress this behavior, start the
server with the --keep_files_on_create option, in which case MyISAM does not overwrite existing
files and returns an error instead.

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing
.MYD or .MYI file is found, MyISAM always returns an error. It does not overwrite a file in the specified
directory.

Important

You cannot use path names that contain the MySQL data directory with DATA
DIRECTORY or INDEX DIRECTORY. This includes partitioned tables and
individual table partitions. (See Bug #32167.)

• DELAY_KEY_WRITE

Set this to 1 if you want to delay key updates for the table until the table is closed. See the description of
the delay_key_write system variable in Section 5.1.7, “Server System Variables”. (MyISAM only.)

• INSERT_METHOD

If you want to insert data into a MERGE table, you must specify with INSERT_METHOD the table into which
the row should be inserted. INSERT_METHOD is an option useful for MERGE tables only. Use a value
of FIRST or LAST to have inserts go to the first or last table, or a value of NO to prevent inserts. See
Section 15.7, “The MERGE Storage Engine”.

• KEY_BLOCK_SIZE

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index key blocks.
The value is treated as a hint; a different size could be used if necessary. A KEY_BLOCK_SIZE value
specified for an individual index definition overrides the table-level KEY_BLOCK_SIZE value.

For InnoDB tables, KEY_BLOCK_SIZE specifies the page size in kilobytes to use for compressed
InnoDB tables. The KEY_BLOCK_SIZE value is treated as a hint; a different size could

1693

CREATE TABLE Statement

be used by InnoDB if necessary. KEY_BLOCK_SIZE can only be less than or equal to the
innodb_page_size value. A value of 0 represents the default compressed page size, which is half
of the innodb_page_size value. Depending on innodb_page_size, possible KEY_BLOCK_SIZE
values include 0, 1, 2, 4, 8, and 16. See InnoDB Table Compression for more information.

Oracle recommends enabling innodb_strict_mode when specifying KEY_BLOCK_SIZE for InnoDB
tables. When innodb_strict_mode is enabled, specifying an invalid KEY_BLOCK_SIZE value returns
an error. If innodb_strict_mode is disabled, an invalid KEY_BLOCK_SIZE value results in a warning,
and the KEY_BLOCK_SIZE option is ignored.

The Create_options column in response to SHOW TABLE STATUS reports the originally specified
KEY_BLOCK_SIZE option, as does SHOW CREATE TABLE.

InnoDB only supports KEY_BLOCK_SIZE at the table level.

• MAX_ROWS

The maximum number of rows you plan to store in the table. This is not a hard limit, but rather a hint to
the storage engine that the table must be able to store at least this many rows.

The NDB storage engine treats this value as a maximum. If you plan to create very large NDB Cluster
tables (containing millions of rows), you should use this option to insure that NDB allocates sufficient
number of index slots in the hash table used for storing hashes of the table's primary keys by setting
MAX_ROWS = 2 * rows, where rows is the number of rows that you expect to insert into the table.

The maximum MAX_ROWS value is 4294967295; larger values are truncated to this limit.

• MIN_ROWS

The minimum number of rows you plan to store in the table. The MEMORY storage engine uses this option
as a hint about memory use.

• PACK_KEYS

Takes effect only with MyISAM tables. Set this option to 1 if you want to have smaller indexes.
This usually makes updates slower and reads faster. Setting the option to 0 disables all packing of
keys. Setting it to DEFAULT tells the storage engine to pack only long CHAR, VARCHAR, BINARY, or
VARBINARY columns.

If you do not use PACK_KEYS, the default is to pack strings, but not numbers. If you use PACK_KEYS=1,
numbers are packed as well.

When packing binary number keys, MySQL uses prefix compression:

• Every key needs one extra byte to indicate how many bytes of the previous key are the same for the
next key.

• The pointer to the row is stored in high-byte-first order directly after the key, to improve compression.

This means that if you have many equal keys on two consecutive rows, all following “same” keys usually
only take two bytes (including the pointer to the row). Compare this to the ordinary case where the
following keys takes storage_size_for_key + pointer_size (where the pointer size is usually
4). Conversely, you get a significant benefit from prefix compression only if you have many numbers that
are the same. If all keys are totally different, you use one byte more per key, if the key is not a key that
can have NULL values. (In this case, the packed key length is stored in the same byte that is used to
mark if a key is NULL.)

1694

https://dev.mysql.com/doc/refman/5.7/en/innodb-table-compression.html

CREATE TABLE Statement

• PASSWORD

This option is unused. If you have a need to scramble your .frm files and make them unusable to any
other MySQL server, please contact our sales department.

• ROW_FORMAT

Defines the physical format in which the rows are stored.

When creating a table with strict mode disabled, the storage engine's default row format is used if the
specified row format is not supported. The actual row format of the table is reported in the Row_format
column in response to SHOW TABLE STATUS. The Create_options column shows the row format
that was specified in the CREATE TABLE statement, as does SHOW CREATE TABLE.

Row format choices differ depending on the storage engine used for the table.

For InnoDB tables:

• Rows are stored in compact format (ROW_FORMAT=COMPACT) by default.

• The noncompact format used in older versions of MySQL can still be requested by specifying
ROW_FORMAT=REDUNDANT.

• To enable compression for InnoDB tables, specify ROW_FORMAT=COMPRESSED and follow the
procedures in Section 14.9, “InnoDB Table Compression”.

• For more efficient InnoDB storage of data types, especially BLOB types, specify
ROW_FORMAT=DYNAMIC and follow the procedures in DYNAMIC Row Format. Both the
COMPRESSED and DYNAMIC row formats require creating the table with the configuration settings
innodb_file_per_table=1 and innodb_file_format=barracuda.

• When you specify a non-default ROW_FORMAT clause, consider also enabling the
innodb_strict_mode configuration option.

• ROW_FORMAT=FIXED is not supported. If ROW_FORMAT=FIXED is specified while
innodb_strict_mode is disabled, InnoDB issues a warning and assumes ROW_FORMAT=COMPACT.
If ROW_FORMAT=FIXED is specified while innodb_strict_mode is enabled, InnoDB returns an
error.

• For additional information about InnoDB row formats, see Section 14.11, “InnoDB Row Formats”.

For MyISAM tables, the option value can be FIXED or DYNAMIC for static or variable-length row format.
myisampack sets the type to COMPRESSED. See Section 15.2.3, “MyISAM Table Storage Formats”.

• STATS_AUTO_RECALC

Specifies whether to automatically recalculate persistent statistics for an InnoDB table. The
value DEFAULT causes the persistent statistics setting for the table to be determined by the
innodb_stats_auto_recalc configuration option. The value 1 causes statistics to be recalculated
when 10% of the data in the table has changed. The value 0 prevents automatic recalculation for this
table; with this setting, issue an ANALYZE TABLE statement to recalculate the statistics after making
substantial changes to the table. For more information about the persistent statistics feature, see
Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

1695

CREATE TABLE Statement

• STATS_PERSISTENT

Specifies whether to enable persistent statistics for an InnoDB table. The value DEFAULT causes
the persistent statistics setting for the table to be determined by the innodb_stats_persistent
configuration option. The value 1 enables persistent statistics for the table, while the value 0 turns off
this feature. After enabling persistent statistics through a CREATE TABLE or ALTER TABLE statement,
issue an ANALYZE TABLE statement to calculate the statistics, after loading representative data into the
table. For more information about the persistent statistics feature, see Section 14.8.11.1, “Configuring
Persistent Optimizer Statistics Parameters”.

• STATS_SAMPLE_PAGES

The number of index pages to sample when estimating cardinality and other statistics for an indexed
column, such as those calculated by ANALYZE TABLE. For more information, see Section 14.8.11.1,
“Configuring Persistent Optimizer Statistics Parameters”.

• TABLESPACE

The TABLESPACE and STORAGE table options are employed only with NDB tables.

TABLESPACE ... STORAGE DISK assigns a table to an NDB Cluster Disk Data tablespace. STORAGE
DISK cannot be used in CREATE TABLE unless preceded by TABLESPACE tablespace_name.

For STORAGE MEMORY, the tablespace name is optional, thus, you can use TABLESPACE
tablespace_name STORAGE MEMORY or simply STORAGE MEMORY to specify explicitly that the table
is in-memory.

See Section 18.6.11, “NDB Cluster Disk Data Tables”, for more information.

• UNION

Used to access a collection of identical MyISAM tables as one. This works only with MERGE tables. See
Section 15.7, “The MERGE Storage Engine”.

You must have SELECT, UPDATE, and DELETE privileges for the tables you map to a MERGE table.

Note

Formerly, all tables used had to be in the same database as the MERGE table
itself. This restriction no longer applies.

Table Partitioning

partition_options can be used to control partitioning of the table created with CREATE TABLE.

Not all options shown in the syntax for partition_options at the beginning of this section are available
for all partitioning types. Please see the listings for the following individual types for information specific to
each type, and see Chapter 19, Partitioning, for more complete information about the workings of and uses
for partitioning in MySQL, as well as additional examples of table creation and other statements relating to
MySQL partitioning.

Partitions can be modified, merged, added to tables, and dropped from tables. For basic information about
the MySQL statements to accomplish these tasks, see Section 13.1.7, “ALTER TABLE Statement”. For
more detailed descriptions and examples, see Section 19.3, “Partition Management”.

• PARTITION BY

1696

CREATE TABLE Statement

If used, a partition_options clause begins with PARTITION BY. This clause contains the function
that is used to determine the partition; the function returns an integer value ranging from 1 to num,
where num is the number of partitions. (The maximum number of user-defined partitions which a table
may contain is 1024; the number of subpartitions—discussed later in this section—is included in this
maximum.)

Note

The expression (expr) used in a PARTITION BY clause cannot refer to any
columns not in the table being created; such references are specifically not
permitted and cause the statement to fail with an error. (Bug #29444)

• HASH(expr)

Hashes one or more columns to create a key for placing and locating rows. expr is an expression
using one or more table columns. This can be any valid MySQL expression (including MySQL functions)
that yields a single integer value. For example, these are both valid CREATE TABLE statements using
PARTITION BY HASH:

CREATE TABLE t1 (col1 INT, col2 CHAR(5))
 PARTITION BY HASH(col1);

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATETIME)
 PARTITION BY HASH (YEAR(col3));

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY HASH.

PARTITION BY HASH uses the remainder of expr divided by the number of partitions (that is, the
modulus). For examples and additional information, see Section 19.2.4, “HASH Partitioning”.

The LINEAR keyword entails a somewhat different algorithm. In this case, the number of the partition in
which a row is stored is calculated as the result of one or more logical AND operations. For discussion
and examples of linear hashing, see Section 19.2.4.1, “LINEAR HASH Partitioning”.

• KEY(column_list)

This is similar to HASH, except that MySQL supplies the hashing function so as to guarantee an even
data distribution. The column_list argument is simply a list of 1 or more table columns (maximum:
16). This example shows a simple table partitioned by key, with 4 partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY KEY(col3)
 PARTITIONS 4;

For tables that are partitioned by key, you can employ linear partitioning by using the LINEAR keyword.
This has the same effect as with tables that are partitioned by HASH. That is, the partition number is
found using the & operator rather than the modulus (see Section 19.2.4.1, “LINEAR HASH Partitioning”,
and Section 19.2.5, “KEY Partitioning”, for details). This example uses linear partitioning by key to
distribute data between 5 partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY LINEAR KEY(col3)
 PARTITIONS 5;

The ALGORITHM={1 | 2} option is supported with [SUB]PARTITION BY [LINEAR] KEY beginning
with MySQL 5.6.11. ALGORITHM=1 causes the server to use the same key-hashing functions as MySQL
5.1; ALGORITHM=2 means that the server employs the key-hashing functions implemented and used
by default for new KEY partitioned tables in MySQL 5.5 and later. (Partitioned tables created with the

1697

CREATE TABLE Statement

key-hashing functions employed in MySQL 5.5 and later cannot be used by a MySQL 5.1 server.) Not
specifying the option has the same effect as using ALGORITHM=2. This option is intended for use chiefly
when upgrading or downgrading [LINEAR] KEY partitioned tables between MySQL 5.1 and later
MySQL versions, or for creating tables partitioned by KEY or LINEAR KEY on a MySQL 5.5 or later
server which can be used on a MySQL 5.1 server. For more information, see Section 13.1.7.1, “ALTER
TABLE Partition Operations”.

mysqldump in MySQL 5.6.11 and later writes this option encased in versioned comments, like this:

CREATE TABLE t1 (a INT)
/*!50100 PARTITION BY KEY */ /*!50611 ALGORITHM = 1 */ /*!50100 ()
 PARTITIONS 3 */

This causes MySQL 5.6.10 and earlier servers to ignore the option, which would otherwise cause a
syntax error in those versions. If you plan to load a dump made on a MySQL 5.5.31 or later MySQL
5.5 server where you use tables that are partitioned or subpartitioned by KEY into a MySQL 5.6
server previous to version 5.6.11, be sure to consult Section 2.11.3, “Changes in MySQL 5.6”, before
proceeding. (The information found there also applies if you are loading a dump containing KEY
partitioned or subpartitioned tables made from a MySQL 5.6.11 or later server into a MySQL 5.5.30 or
earlier server.)

Also in MySQL 5.6.11 and later, ALGORITHM=1 is shown when necessary in the output of SHOW
CREATE TABLE using versioned comments in the same manner as mysqldump. ALGORITHM=2 is
always omitted from SHOW CREATE TABLE output, even if this option was specified when creating the
original table.

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY KEY.

• RANGE(expr)

In this case, expr shows a range of values using a set of VALUES LESS THAN operators. When using
range partitioning, you must define at least one partition using VALUES LESS THAN. You cannot use
VALUES IN with range partitioning.

Note

For tables partitioned by RANGE, VALUES LESS THAN must be used with either
an integer literal value or an expression that evaluates to a single integer value.
In MySQL 5.6, you can overcome this limitation in a table that is defined using
PARTITION BY RANGE COLUMNS, as described later in this section.

Suppose that you have a table that you wish to partition on a column containing year values, according
to the following scheme.

Partition Number: Years Range:

0 1990 and earlier

1 1991 to 1994

2 1995 to 1998

3 1999 to 2002

4 2003 to 2005

5 2006 and later

A table implementing such a partitioning scheme can be realized by the CREATE TABLE statement
shown here:

1698

CREATE TABLE Statement

CREATE TABLE t1 (
 year_col INT,
 some_data INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999),
 PARTITION p3 VALUES LESS THAN (2002),
 PARTITION p4 VALUES LESS THAN (2006),
 PARTITION p5 VALUES LESS THAN MAXVALUE
);

PARTITION ... VALUES LESS THAN ... statements work in a consecutive fashion. VALUES LESS
THAN MAXVALUE works to specify “leftover” values that are greater than the maximum value otherwise
specified.

VALUES LESS THAN clauses work sequentially in a manner similar to that of the case portions of a
switch ... case block (as found in many programming languages such as C, Java, and PHP). That
is, the clauses must be arranged in such a way that the upper limit specified in each successive VALUES
LESS THAN is greater than that of the previous one, with the one referencing MAXVALUE coming last of
all in the list.

• RANGE COLUMNS(column_list)

This variant on RANGE facilitates partition pruning for queries using range conditions on multiple columns
(that is, having conditions such as WHERE a = 1 AND b < 10 or WHERE a = 1 AND b = 10
AND c < 10). It enables you to specify value ranges in multiple columns by using a list of columns
in the COLUMNS clause and a set of column values in each PARTITION ... VALUES LESS THAN
(value_list) partition definition clause. (In the simplest case, this set consists of a single column.)
The maximum number of columns that can be referenced in the column_list and value_list is 16.

The column_list used in the COLUMNS clause may contain only names of columns; each column in
the list must be one of the following MySQL data types: the integer types; the string types; and time or
date column types. Columns using BLOB, TEXT, SET, ENUM, BIT, or spatial data types are not permitted;
columns that use floating-point number types are also not permitted. You also may not use functions or
arithmetic expressions in the COLUMNS clause.

The VALUES LESS THAN clause used in a partition definition must specify a literal value for each
column that appears in the COLUMNS() clause; that is, the list of values used for each VALUES LESS
THAN clause must contain the same number of values as there are columns listed in the COLUMNS
clause. An attempt to use more or fewer values in a VALUES LESS THAN clause than there are in the
COLUMNS clause causes the statement to fail with the error Inconsistency in usage of column
lists for partitioning.... You cannot use NULL for any value appearing in VALUES LESS
THAN. It is possible to use MAXVALUE more than once for a given column other than the first, as shown in
this example:

CREATE TABLE rc (
 a INT NOT NULL,
 b INT NOT NULL
)
PARTITION BY RANGE COLUMNS(a,b) (
 PARTITION p0 VALUES LESS THAN (10,5),
 PARTITION p1 VALUES LESS THAN (20,10),
 PARTITION p2 VALUES LESS THAN (50,MAXVALUE),
 PARTITION p3 VALUES LESS THAN (65,MAXVALUE),
 PARTITION p4 VALUES LESS THAN (MAXVALUE,MAXVALUE)

1699

CREATE TABLE Statement

);

Each value used in a VALUES LESS THAN value list must match the type of the corresponding column
exactly; no conversion is made. For example, you cannot use the string '1' for a value that matches a
column that uses an integer type (you must use the numeral 1 instead), nor can you use the numeral 1
for a value that matches a column that uses a string type (in such a case, you must use a quoted string:
'1').

For more information, see Section 19.2.1, “RANGE Partitioning”, and Section 19.4, “Partition Pruning”.

• LIST(expr)

This is useful when assigning partitions based on a table column with a restricted set of possible values,
such as a state or country code. In such a case, all rows pertaining to a certain state or country can be
assigned to a single partition, or a partition can be reserved for a certain set of states or countries. It
is similar to RANGE, except that only VALUES IN may be used to specify permissible values for each
partition.

VALUES IN is used with a list of values to be matched. For instance, you could create a partitioning
scheme such as the following:

CREATE TABLE client_firms (
 id INT,
 name VARCHAR(35)
)
PARTITION BY LIST (id) (
 PARTITION r0 VALUES IN (1, 5, 9, 13, 17, 21),
 PARTITION r1 VALUES IN (2, 6, 10, 14, 18, 22),
 PARTITION r2 VALUES IN (3, 7, 11, 15, 19, 23),
 PARTITION r3 VALUES IN (4, 8, 12, 16, 20, 24)
);

When using list partitioning, you must define at least one partition using VALUES IN. You cannot use
VALUES LESS THAN with PARTITION BY LIST.

Note

For tables partitioned by LIST, the value list used with VALUES IN must consist
of integer values only. In MySQL 5.6, you can overcome this limitation using
partitioning by LIST COLUMNS, which is described later in this section.

• LIST COLUMNS(column_list)

This variant on LIST facilitates partition pruning for queries using comparison conditions on multiple
columns (that is, having conditions such as WHERE a = 5 AND b = 5 or WHERE a = 1 AND b =
10 AND c = 5). It enables you to specify values in multiple columns by using a list of columns in the
COLUMNS clause and a set of column values in each PARTITION ... VALUES IN (value_list)
partition definition clause.

The rules governing regarding data types for the column list used in LIST COLUMNS(column_list)
and the value list used in VALUES IN(value_list) are the same as those for the column list used
in RANGE COLUMNS(column_list) and the value list used in VALUES LESS THAN(value_list),
respectively, except that in the VALUES IN clause, MAXVALUE is not permitted, and you may use NULL.

There is one important difference between the list of values used for VALUES IN with PARTITION
BY LIST COLUMNS as opposed to when it is used with PARTITION BY LIST. When used with
PARTITION BY LIST COLUMNS, each element in the VALUES IN clause must be a set of column
values; the number of values in each set must be the same as the number of columns used in the

1700

CREATE TABLE Statement

COLUMNS clause, and the data types of these values must match those of the columns (and occur in the
same order). In the simplest case, the set consists of a single column. The maximum number of columns
that can be used in the column_list and in the elements making up the value_list is 16.

The table defined by the following CREATE TABLE statement provides an example of a table using LIST
COLUMNS partitioning:

CREATE TABLE lc (
 a INT NULL,
 b INT NULL
)
PARTITION BY LIST COLUMNS(a,b) (
 PARTITION p0 VALUES IN((0,0), (NULL,NULL)),
 PARTITION p1 VALUES IN((0,1), (0,2), (0,3), (1,1), (1,2)),
 PARTITION p2 VALUES IN((1,0), (2,0), (2,1), (3,0), (3,1)),
 PARTITION p3 VALUES IN((1,3), (2,2), (2,3), (3,2), (3,3))
);

• PARTITIONS num

The number of partitions may optionally be specified with a PARTITIONS num clause, where num is the
number of partitions. If both this clause and any PARTITION clauses are used, num must be equal to the
total number of any partitions that are declared using PARTITION clauses.

Note

Whether or not you use a PARTITIONS clause in creating a table that is
partitioned by RANGE or LIST, you must still include at least one PARTITION
VALUES clause in the table definition (see below).

• SUBPARTITION BY

A partition may optionally be divided into a number of subpartitions. This can be indicated by using the
optional SUBPARTITION BY clause. Subpartitioning may be done by HASH or KEY. Either of these may
be LINEAR. These work in the same way as previously described for the equivalent partitioning types. (It
is not possible to subpartition by LIST or RANGE.)

The number of subpartitions can be indicated using the SUBPARTITIONS keyword followed by an
integer value.

• Rigorous checking of the value used in PARTITIONS or SUBPARTITIONS clauses is applied and this
value must adhere to the following rules:

• The value must be a positive, nonzero integer.

• No leading zeros are permitted.

• The value must be an integer literal, and cannot not be an expression. For example, PARTITIONS
0.2E+01 is not permitted, even though 0.2E+01 evaluates to 2. (Bug #15890)

1701

CREATE TABLE Statement

• partition_definition

Each partition may be individually defined using a partition_definition clause. The individual
parts making up this clause are as follows:

• PARTITION partition_name

Specifies a logical name for the partition.

• VALUES

For range partitioning, each partition must include a VALUES LESS THAN clause; for list partitioning,
you must specify a VALUES IN clause for each partition. This is used to determine which rows are
to be stored in this partition. See the discussions of partitioning types in Chapter 19, Partitioning, for
syntax examples.

• [STORAGE] ENGINE

The partitioning handler accepts a [STORAGE] ENGINE option for both PARTITION and
SUBPARTITION. Currently, the only way in which this can be used is to set all partitions or all
subpartitions to the same storage engine, and an attempt to set different storage engines for
partitions or subpartitions in the same table raises the error ERROR 1469 (HY000): The mix of
handlers in the partitions is not permitted in this version of MySQL. We
expect to lift this restriction on partitioning in a future MySQL release.

• COMMENT

An optional COMMENT clause may be used to specify a string that describes the partition. Example:

COMMENT = 'Data for the years previous to 1999'

The maximum length for a partition comment is 1024 characters.

• DATA DIRECTORY and INDEX DIRECTORY

DATA DIRECTORY and INDEX DIRECTORY may be used to indicate the directory where, respectively,
the data and indexes for this partition are to be stored. Both the data_dir and the index_dir must
be absolute system path names.

As of MySQL 5.6.35, you must have the FILE privilege to use the DATA DIRECTORY or INDEX
DIRECTORY partition option.

Example:

CREATE TABLE th (id INT, name VARCHAR(30), adate DATE)
PARTITION BY LIST(YEAR(adate))
(
 PARTITION p1999 VALUES IN (1995, 1999, 2003)
 DATA DIRECTORY = '/var/appdata/95/data'
 INDEX DIRECTORY = '/var/appdata/95/idx',
 PARTITION p2000 VALUES IN (1996, 2000, 2004)
 DATA DIRECTORY = '/var/appdata/96/data'
 INDEX DIRECTORY = '/var/appdata/96/idx',
 PARTITION p2001 VALUES IN (1997, 2001, 2005)
 DATA DIRECTORY = '/var/appdata/97/data'
 INDEX DIRECTORY = '/var/appdata/97/idx',
 PARTITION p2002 VALUES IN (1998, 2002, 2006)
 DATA DIRECTORY = '/var/appdata/98/data'
 INDEX DIRECTORY = '/var/appdata/98/idx'

1702

CREATE TABLE Statement

);

DATA DIRECTORY and INDEX DIRECTORY behave in the same way as in the CREATE TABLE
statement's table_option clause as used for MyISAM tables.

One data directory and one index directory may be specified per partition. If left unspecified, the data
and indexes are stored by default in the table's database directory.

On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for individual
partitions or subpartitions of MyISAM tables, and the INDEX DIRECTORY option is not supported for
individual partitions or subpartitions of InnoDB tables. These options are ignored on Windows, except
that a warning is generated. (Bug #30459)

Note

The DATA DIRECTORY and INDEX DIRECTORY options are ignored for
creating partitioned tables if NO_DIR_IN_CREATE is in effect. (Bug #24633)

• MAX_ROWS and MIN_ROWS

May be used to specify, respectively, the maximum and minimum number of rows to be stored in
the partition. The values for max_number_of_rows and min_number_of_rows must be positive
integers. As with the table-level options with the same names, these act only as “suggestions” to the
server and are not hard limits.

• TABLESPACE

May be used to designate a tablespace for the partition. Used for NDB Cluster only.

• subpartition_definition

The partition definition may optionally contain one or more subpartition_definition clauses.
Each of these consists at a minimum of the SUBPARTITION name, where name is an identifier for the
subpartition. Except for the replacement of the PARTITION keyword with SUBPARTITION, the syntax for
a subpartition definition is identical to that for a partition definition.

Subpartitioning must be done by HASH or KEY, and can be done only on RANGE or LIST partitions. See
Section 19.2.6, “Subpartitioning”.

13.1.17.1 Files Created by CREATE TABLE

MySQL represents each table by an .frm table format (definition) file in the database directory. The
storage engine for the table might create other files as well.

For InnoDB tables, the file storage is controlled by the innodb_file_per_table configuration option.
For each InnoDB table created when this option is turned on, the table data and all associated indexes are
stored in a .ibd file located inside the database directory. When this option is turned off, all InnoDB tables
and indexes are stored in the system tablespace, represented by one or more ibdata* files.

For MyISAM tables, the storage engine creates data and index files. Thus, for each MyISAM table
tbl_name, there are three disk files.

File Purpose

tbl_name.frm Table format (definition) file

tbl_name.MYD Data file

1703

CREATE TABLE Statement

File Purpose

tbl_name.MYI Index file

Chapter 15, Alternative Storage Engines, describes what files each storage engine creates to represent
tables. If a table name contains special characters, the names for the table files contain encoded versions
of those characters as described in Section 9.2.4, “Mapping of Identifiers to File Names”.

Limits Imposed by .frm File Structure

As described previously, each table has an .frm file that contains the table definition. The server uses
the following expression to check some of the table information stored in the file against an upper limit of
64KB:

if (info_length+(ulong) create_fields.elements*FCOMP+288+
 n_length+int_length+com_length > 65535L || int_count > 255)

The portion of the information stored in the .frm file that is checked against the expression cannot grow
beyond the 64KB limit, so if the table definition reaches this size, no more columns can be added.

The relevant factors in the expression are:

• info_length is space needed for “screens.” This is related to MySQL's Unireg heritage.

• create_fields.elements is the number of columns.

• FCOMP is 17.

• n_length is the total length of all column names, including one byte per name as a separator.

• int_length is related to the list of values for ENUM and SET columns. In this context, “int” does not
mean “integer.” It means “interval,” a term that refers collectively to ENUM and SET columns.

• int_count is the number of unique ENUM and SET definitions.

• com_length is the total length of column comments.

The expression just described has several implications for permitted table definitions:

• Using long column names can reduce the maximum number of columns, as can the inclusion of ENUM or
SET columns, or use of column comments.

• A table can have no more than 255 unique ENUM and SET definitions. Columns with identical element
lists are considered the same against this limt. For example, if a table contains these two columns, they
count as one (not two) toward this limit because the definitions are identical:

e1 ENUM('a','b','c')
e2 ENUM('a','b','c')

• The sum of the length of element names in the unique ENUM and SET definitions counts toward the 64KB
limit, so although the theoretical limit on number of elements in a given ENUM column is 65,535, the
practical limit is less than 3000.

13.1.17.2 CREATE TEMPORARY TABLE Statement

You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only within
the current session, and is dropped automatically when the session is closed. This means that two
different sessions can use the same temporary table name without conflicting with each other or with an

1704

CREATE TABLE Statement

existing non-TEMPORARY table of the same name. (The existing table is hidden until the temporary table is
dropped.)

CREATE TABLE causes an implicit commit, except when used with the TEMPORARY keyword. See
Section 13.3.3, “Statements That Cause an Implicit Commit”.

TEMPORARY tables have a very loose relationship with databases (schemas). Dropping a database
does not automatically drop any TEMPORARY tables created within that database. Also, you can create a
TEMPORARY table in a nonexistent database if you qualify the table name with the database name in the
CREATE TABLE statement. In this case, all subsequent references to the table must be qualified with the
database name.

To create a temporary table, you must have the CREATE TEMPORARY TABLES privilege. After a session
has created a temporary table, the server performs no further privilege checks on the table. The creating
session can perform any operation on the table, such as DROP TABLE, INSERT, UPDATE, or SELECT.

One implication of this behavior is that a session can manipulate its temporary tables even if the
current user has no privilege to create them. Suppose that the current user does not have the CREATE
TEMPORARY TABLES privilege but is able to execute a definer-context stored procedure that executes with
the privileges of a user who does have CREATE TEMPORARY TABLES and that creates a temporary table.
While the procedure executes, the session uses the privileges of the defining user. After the procedure
returns, the effective privileges revert to those of the current user, which can still see the temporary table
and perform any operation on it.

13.1.17.3 CREATE TABLE ... LIKE Statement

Use CREATE TABLE ... LIKE to create an empty table based on the definition of another table,
including any column attributes and indexes defined in the original table:

CREATE TABLE new_tbl LIKE orig_tbl;

The copy is created using the same version of the table storage format as the original table. The SELECT
privilege is required on the original table.

LIKE works only for base tables, not for views.

Important

You cannot execute CREATE TABLE or CREATE TABLE ... LIKE while a LOCK
TABLES statement is in effect.

CREATE TABLE ... LIKE makes the same checks as CREATE TABLE and does
not just copy the .frm file. This means that if the current SQL mode is different
from the mode in effect when the original table was created, the table definition
might be considered invalid for the new mode and the statement fails.

CREATE TABLE ... LIKE does not preserve any DATA DIRECTORY or INDEX DIRECTORY table
options that were specified for the original table, or any foreign key definitions.

If the original table is a TEMPORARY table, CREATE TABLE ... LIKE does not preserve TEMPORARY. To
create a TEMPORARY destination table, use CREATE TEMPORARY TABLE ... LIKE.

13.1.17.4 CREATE TABLE ... SELECT Statement

You can create one table from another by adding a SELECT statement at the end of the CREATE TABLE
statement:

1705

CREATE TABLE Statement

CREATE TABLE new_tbl [AS] SELECT * FROM orig_tbl;

MySQL creates new columns for all elements in the SELECT. For example:

mysql> CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT,
 -> PRIMARY KEY (a), KEY(b))
 -> ENGINE=InnoDB SELECT b,c FROM test2;

This creates an InnoDB table with three columns, a, b, and c. The ENGINE option is part of the CREATE
TABLE statement, and should not be used following the SELECT; this would result in a syntax error. The
same is true for other CREATE TABLE options such as CHARSET.

Notice that the columns from the SELECT statement are appended to the right side of the table, not
overlapped onto it. Take the following example:

mysql> SELECT * FROM foo;
+---+
| n |
+---+
| 1 |
+---+

mysql> CREATE TABLE bar (m INT) SELECT n FROM foo;
Query OK, 1 row affected (0.02 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM bar;
+------+---+
| m | n |
+------+---+
| NULL | 1 |
+------+---+
1 row in set (0.00 sec)

For each row in table foo, a row is inserted in bar with the values from foo and default values for the new
columns.

In a table resulting from CREATE TABLE ... SELECT, columns named only in the CREATE TABLE part
come first. Columns named in both parts or only in the SELECT part come after that. The data type of
SELECT columns can be overridden by also specifying the column in the CREATE TABLE part.

If any errors occur while copying the data to the table, it is automatically dropped and not created.

You can precede the SELECT by IGNORE or REPLACE to indicate how to handle rows that duplicate unique
key values. With IGNORE, rows that duplicate an existing row on a unique key value are discarded. With
REPLACE, new rows replace rows that have the same unique key value. If neither IGNORE nor REPLACE is
specified, duplicate unique key values result in an error.

Because the ordering of the rows in the underlying SELECT statements cannot always be determined,
CREATE TABLE ... IGNORE SELECT and CREATE TABLE ... REPLACE SELECT statements are
flagged as unsafe for statement-based replication. Such statements produce a warning in the error log
when using statement-based mode and are written to the binary log using the row-based format when
using MIXED mode. See also Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and
Row-Based Replication”.

CREATE TABLE ... SELECT does not automatically create any indexes for you. This is done
intentionally to make the statement as flexible as possible. If you want to have indexes in the created table,
you should specify these before the SELECT statement:

mysql> CREATE TABLE bar (UNIQUE (n)) SELECT n FROM foo;

1706

CREATE TABLE Statement

Some conversion of data types might occur. For example, the AUTO_INCREMENT attribute is not
preserved, and VARCHAR columns can become CHAR columns. Retrained attributes are NULL (or NOT
NULL) and, for those columns that have them, CHARACTER SET, COLLATION, COMMENT, and the
DEFAULT clause.

When creating a table with CREATE TABLE ... SELECT, make sure to alias any function calls or
expressions in the query. If you do not, the CREATE statement might fail or result in undesirable column
names.

CREATE TABLE artists_and_works
 SELECT artist.name, COUNT(work.artist_id) AS number_of_works
 FROM artist LEFT JOIN work ON artist.id = work.artist_id
 GROUP BY artist.id;

You can also explicitly specify the data type for a column in the created table:

CREATE TABLE foo (a TINYINT NOT NULL) SELECT b+1 AS a FROM bar;

For CREATE TABLE ... SELECT, if IF NOT EXISTS is given and the destination table already exists,
the result is version dependent. Before MySQL 5.5.6, MySQL handles the statement as follows:

• The table definition given in the CREATE TABLE part is ignored. No error occurs, even if the definition
does not match that of the existing table. MySQL attempts to insert the rows from the SELECT part
anyway.

• If there is a mismatch between the number of columns in the table and the number of columns produced
by the SELECT part, the selected values are assigned to the rightmost columns. For example, if the
table contains n columns and the SELECT produces m columns, where m < n, the selected values are
assigned to the m rightmost columns in the table. Each of the initial n − m columns is assigned its default
value, either that specified explicitly in the column definition or the implicit column data type default if the
definition contains no default. If the SELECT part produces too many columns (m > n), an error occurs.

• If strict SQL mode is enabled and any of these initial columns do not have an explicit default value, the
statement fails with an error.

The following example illustrates IF NOT EXISTS handling:

mysql> CREATE TABLE t1 (i1 INT DEFAULT 0, i2 INT, i3 INT, i4 INT);
Query OK, 0 rows affected (0.05 sec)

mysql> CREATE TABLE IF NOT EXISTS t1 (c1 CHAR(10)) SELECT 1, 2;
Query OK, 1 row affected, 1 warning (0.01 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t1;
+------+------+------+------+
| i1 | i2 | i3 | i4 |
+------+------+------+------+
| 0 | NULL | 1 | 2 |
+------+------+------+------+
1 row in set (0.00 sec)

As of MySQL 5.5.6, handling of CREATE TABLE IF NOT EXISTS ... SELECT statements was
changed for the case that the destination table already exists. This change also involves a change in
MySQL 5.1 beginning with 5.1.51.

• Previously, for CREATE TABLE IF NOT EXISTS ... SELECT, MySQL produced a warning that
the table exists, but inserted the rows and wrote the statement to the binary log anyway. By contrast,
CREATE TABLE ... SELECT (without IF NOT EXISTS) failed with an error, but MySQL inserted no
rows and did not write the statement to the binary log.

1707

CREATE TABLE Statement

• MySQL now handles both statements the same way when the destination table exists, in that neither
statement inserts rows or is written to the binary log. The difference between them is that MySQL
produces a warning when IF NOT EXISTS is present and an error when it is not.

This change means that, for the preceding example, the CREATE TABLE IF NOT EXISTS ... SELECT
statement inserts nothing into the destination table as of MySQL 5.5.6.

This change in handling of IF NOT EXISTS results in an incompatibility for statement-based replication
from a MySQL 5.1 source with the original behavior and a MySQL 5.5 replica with the new behavior.
Suppose that CREATE TABLE IF NOT EXISTS ... SELECT is executed on the source and the
destination table exists. The result is that rows are inserted on the source but not on the replica. (Row-
based replication does not have this problem.)

To address this issue, statement-based binary logging for CREATE TABLE IF NOT EXISTS ...
SELECT is changed in MySQL 5.1 as of 5.1.51:

• If the destination table does not exist, there is no change: The statement is logged as is.

• If the destination table does exist, the statement is logged as the equivalent pair of CREATE TABLE
IF NOT EXISTS and INSERT ... SELECT statements. (If the SELECT in the original statement is
preceded by IGNORE or REPLACE, the INSERT becomes INSERT IGNORE or REPLACE, respectively.)

This change provides forward compatibility for statement-based replication from MySQL 5.1 to 5.5 because
when the destination table exists, the rows are inserted on both the source and replica. To take advantage
of this compatibility measure, the 5.1 server must be at least 5.1.51 and the 5.5 server must be at least
5.5.6.

To upgrade an existing 5.1-to-5.5 replication scenario, upgrade the source first to 5.1.51 or higher. Note
that this differs from the usual replication upgrade advice of upgrading the replica first.

A workaround for applications that wish to achieve the original effect (rows inserted regardless of whether
the destination table exists) is to use CREATE TABLE IF NOT EXISTS and INSERT ... SELECT
statements rather than CREATE TABLE IF NOT EXISTS ... SELECT statements.

Along with the change just described, the following related change was made: Previously, if an existing
view was named as the destination table for CREATE TABLE IF NOT EXISTS ... SELECT, rows were
inserted into the underlying base table and the statement was written to the binary log. As of MySQL 5.1.51
and 5.5.6, nothing is inserted or logged.

To ensure that the binary log can be used to re-create the original tables, MySQL does not permit
concurrent inserts during CREATE TABLE ... SELECT.

Important

You cannot use FOR UPDATE as part of the SELECT in a statement such as
CREATE TABLE new_table SELECT ... FROM old_table If you
attempt to do so, the statement fails. This represents a change in behavior from
MySQL 5.5 and earlier, which permitted CREATE TABLE ... SELECT statements
to make changes in tables other than the table being created.

This change can also have implications for statement-based replication from an
older source to a MySQL 5.6 or higher replica. See Section 17.4.1.7, “Replication of
CREATE TABLE ... SELECT Statements”, for more information.

13.1.17.5 FOREIGN KEY Constraints

MySQL supports foreign keys, which permit cross-referencing related data across tables, and foreign key
constraints, which help keep the related data consistent.

1708

CREATE TABLE Statement

A foreign key relationship involves a parent table that holds the initial column values, and a child table with
column values that reference the parent column values. A foreign key constraint is defined on the child
table.

The essential syntax for a defining a foreign key constraint in a CREATE TABLE or ALTER TABLE
statement includes the following:

[CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (col_name, ...)
 REFERENCES tbl_name (col_name,...)
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

reference_option:
 RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

Foreign key constraint usage is described under the following topics in this section:

• Identifiers

• Conditions and Restrictions

• Referential Actions

• Foreign Key Constraint Examples

• Adding Foreign Key Constraints

• Dropping Foreign Key Constraints

• Foreign Key Checks

• Foreign Key Definitions and Metadata

• Foreign Key Errors

Identifiers

Foreign key constraint naming is governed by the following rules:

• The CONSTRAINT symbol value is used, if defined.

• If the CONSTRAINT symbol clause is not defined, or a symbol is not included following the CONSTRAINT
keyword:

• For InnoDB tables, a constraint name is generated automatically.

• For NDB tables, the FOREIGN KEY index_name value is used, if defined. Otherwise, a constraint
name is generated automatically.

• The CONSTRAINT symbol value, if defined, must be unique in the database. A duplicate
symbol results in an error similar to: ERROR 1005 (HY000): Can't create table
'test.fk1' (errno: 121).

Table and column identifiers in a FOREIGN KEY ... REFERENCES clause can be quoted within backticks
(`). Alternatively, double quotation marks (") can be used if the ANSI_QUOTES SQL mode is enabled. The
lower_case_table_names system variable setting is also taken into account.

Conditions and Restrictions

Foreign key constraints are subject to the following conditions and restrictions:

1709

CREATE TABLE Statement

• Parent and child tables must use the same storage engine, and they cannot be defined as temporary
tables.

• Creating a foreign key constraint requires at least one of the SELECT, INSERT, UPDATE, DELETE, or
REFERENCES privileges on the parent table as of 5.6.22.

• Corresponding columns in the foreign key and the referenced key must have similar data types. The size
and sign of fixed precision types such as INTEGER and DECIMAL must be the same. The length of string
types need not be the same. For nonbinary (character) string columns, the character set and collation
must be the same.

• MySQL supports foreign key references between one column and another within a table. (A column
cannot have a foreign key reference to itself.) In these cases, a “child table record” refers to a dependent
record within the same table.

• MySQL requires indexes on foreign keys and referenced keys so that foreign key checks can be fast
and not require a table scan. In the referencing table, there must be an index where the foreign key
columns are listed as the first columns in the same order. Such an index is created on the referencing
table automatically if it does not exist. This index might be silently dropped later if you create another
index that can be used to enforce the foreign key constraint. index_name, if given, is used as described
previously.

• InnoDB permits a foreign key to reference any index column or group of columns. However, in the
referenced table, there must be an index where the referenced columns are the first columns in the
same order. Hidden columns that InnoDB adds to an index are also considered (see Section 14.6.2.1,
“Clustered and Secondary Indexes”).

NDB requires an explicit unique key (or primary key) on any column referenced as a foreign key. InnoDB
does not, which is an extension of standard SQL.

• Index prefixes on foreign key columns are not supported. Consequently, BLOB and TEXT columns
cannot be included in a foreign key because indexes on those columns must always include a prefix
length.

• InnoDB does not currently support foreign keys for tables with user-defined partitioning. This includes
both parent and child tables.

This restriction does not apply for NDB tables that are partitioned by KEY or LINEAR KEY (the only user
partitioning types supported by the NDB storage engine); these may have foreign key references or be
the targets of such references.

• A table in a foreign key relationship cannot be altered to use another storage engine. To change the
storage engine, you must drop any foreign key constraints first.

For information about how the MySQL implementation of foreign key constraints differs from the SQL
standard, see Section 1.6.2.3, “FOREIGN KEY Constraint Differences”.

Referential Actions

When an UPDATE or DELETE operation affects a key value in the parent table that has matching rows
in the child table, the result depends on the referential action specified by ON UPDATE and ON DELETE
subclauses of the FOREIGN KEY clause. Referential actions include:

• CASCADE: Delete or update the row from the parent table and automatically delete or update the
matching rows in the child table. Both ON DELETE CASCADE and ON UPDATE CASCADE are supported.
Between two tables, do not define several ON UPDATE CASCADE clauses that act on the same column
in the parent table or in the child table.

1710

CREATE TABLE Statement

Note

Cascaded foreign key actions do not activate triggers.

• SET NULL: Delete or update the row from the parent table and set the foreign key column or columns
in the child table to NULL. Both ON DELETE SET NULL and ON UPDATE SET NULL clauses are
supported.

If you specify a SET NULL action, make sure that you have not declared the columns in the child table
as NOT NULL.

• RESTRICT: Rejects the delete or update operation for the parent table. Specifying RESTRICT (or NO
ACTION) is the same as omitting the ON DELETE or ON UPDATE clause.

• NO ACTION: A keyword from standard SQL. In MySQL, equivalent to RESTRICT. The MySQL Server
rejects the delete or update operation for the parent table if there is a related foreign key value in the
referenced table. Some database systems have deferred checks, and NO ACTION is a deferred check.
In MySQL, foreign key constraints are checked immediately, so NO ACTION is the same as RESTRICT.

• SET DEFAULT: This action is recognized by the MySQL parser, but both InnoDB and NDB reject table
definitions containing ON DELETE SET DEFAULT or ON UPDATE SET DEFAULT clauses.

For storage engines that support foreign keys, MySQL rejects any INSERT or UPDATE operation that
attempts to create a foreign key value in a child table if there is no matching candidate key value in the
parent table.

For an ON DELETE or ON UPDATE that is not specified, the default action is always RESTRICT.

For NDB tables, ON UPDATE CASCADE is not supported where the reference is to the parent table's
primary key.

As of NDB 7.3.25 and NDB 7.4.24: For NDB tables, ON DELETE CASCADE is not supported where the child
table contains one or more columns of any of the TEXT or BLOB types. (Bug #89511, Bug #27484882)

InnoDB performs cascading operations using a depth-first search algorithm on the records of the index
that corresponds to the foreign key constraint.

Foreign Key Constraint Examples

This simple example relates parent and child tables through a single-column foreign key:

CREATE TABLE parent (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE child (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),
 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
 ON DELETE CASCADE
) ENGINE=INNODB;

This is a more complex example in which a product_order table has foreign keys for two other tables.
One foreign key references a two-column index in the product table. The other references a single-
column index in the customer table:

1711

CREATE TABLE Statement

CREATE TABLE product (
 category INT NOT NULL, id INT NOT NULL,
 price DECIMAL,
 PRIMARY KEY(category, id)
) ENGINE=INNODB;

CREATE TABLE customer (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE product_order (
 no INT NOT NULL AUTO_INCREMENT,
 product_category INT NOT NULL,
 product_id INT NOT NULL,
 customer_id INT NOT NULL,

 PRIMARY KEY(no),
 INDEX (product_category, product_id),
 INDEX (customer_id),

 FOREIGN KEY (product_category, product_id)
 REFERENCES product(category, id)
 ON UPDATE CASCADE ON DELETE RESTRICT,

 FOREIGN KEY (customer_id)
 REFERENCES customer(id)
) ENGINE=INNODB;

Adding Foreign Key Constraints

You can add a foreign key constraint to an existing table using the following ALTER TABLE syntax:

ALTER TABLE tbl_name
 ADD [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (col_name, ...)
 REFERENCES tbl_name (col_name,...)
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

The foreign key can be self referential (referring to the same table). When you add a foreign key constraint
to a table using ALTER TABLE, remember to first create an index on the column(s) referenced by the
foreign key.

Dropping Foreign Key Constraints

You can drop a foreign key constraint using the following ALTER TABLE syntax:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

If the FOREIGN KEY clause defined a CONSTRAINT name when you created the constraint, you can refer
to that name to drop the foreign key constraint. Otherwise, a constraint name was generated internally, and
you must use that value. To determine the foreign key constraint name, use SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE child\G
*************************** 1. row ***************************
 Table: child
Create Table: CREATE TABLE `child` (
 `id` int(11) DEFAULT NULL,
 `parent_id` int(11) DEFAULT NULL,
 KEY `par_ind` (`parent_id`),
 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`)
 REFERENCES `parent` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latin1

1712

CREATE TABLE Statement

mysql> ALTER TABLE child DROP FOREIGN KEY `child_ibfk_1`;

Adding and dropping a foreign key in the same ALTER TABLE statement is supported for ALTER
TABLE ... ALGORITHM=INPLACE. It is not supported for ALTER TABLE ... ALGORITHM=COPY.

Foreign Key Checks

In MySQL, InnoDB and NDB tables support checking of foreign key constraints. Foreign key checking
is controlled by the foreign_key_checks variable, which is enabled by default. Typically, you leave
this variable enabled during normal operation to enforce referential integrity. Beginning with MySQL
NDB Cluster 7.3.2, the foreign_key_checks variable has the same effect on NDB tables as it does for
InnoDB tables. Previously, the setting was ignored for NDB tables and all such checks were enforced (Bug
#14095855).

The foreign_key_checks variable is dynamic and supports both global and session scopes. For
information about using system variables, see Section 5.1.8, “Using System Variables”.

Disabling foreign key checking is useful when:

• Dropping a table that is referenced by a foreign key constraint. A referenced table can only be dropped
after foreign_key_checks is disabled. When you drop a table, constraints defined on the table are
also dropped.

• Reloading tables in different order than required by their foreign key relationships. For example,
mysqldump produces correct definitions of tables in the dump file, including foreign key constraints for
child tables. To make it easier to reload dump files for tables with foreign key relationships, mysqldump
automatically includes a statement in the dump output that disables foreign_key_checks. This
enables you to import the tables in any order in case the dump file contains tables that are not correctly
ordered for foreign keys. Disabling foreign_key_checks also speeds up the import operation by
avoiding foreign key checks.

• Executing LOAD DATA operations, to avoid foreign key checking.

• Performing an ALTER TABLE operation on a table that has a foreign key relationship.

When foreign_key_checks is disabled, foreign key constraints are ignored, with the following
exceptions:

• Recreating a table that was previously dropped returns an error if the table definition does not conform
to the foreign key constraints that reference the table. The table must have the correct column names
and types. It must also have indexes on the referenced keys. If these requirements are not satisfied,
MySQL returns Error 1005 that refers to errno: 150 in the error message, which means that a foreign key
constraint was not correctly formed.

• Altering a table returns an error (errno: 150) if a foreign key definition is incorrectly formed for the altered
table.

• Dropping an index required by a foreign key constraint. The foreign key constraint must be removed
before dropping the index.

• Creating a foreign key constraint where a column references a nonmatching column type.

Disabling foreign_key_checks has these additional implications:

• It is permitted to drop a database that contains tables with foreign keys that are referenced by tables
outside the database.

• It is permitted to drop a table with foreign keys referenced by other tables.

1713

CREATE TABLE Statement

• Enabling foreign_key_checks does not trigger a scan of table data, which means that rows
added to a table while foreign_key_checks is disabled are not checked for consistency when
foreign_key_checks is re-enabled.

Foreign Key Definitions and Metadata

To view a foreign key definition, use SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE child\G
*************************** 1. row ***************************
 Table: child
Create Table: CREATE TABLE `child` (
 `id` int(11) DEFAULT NULL,
 `parent_id` int(11) DEFAULT NULL,
 KEY `par_ind` (`parent_id`),
 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`)
 REFERENCES `parent` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latin1

You can obtain information about foreign keys from the Information Schema KEY_COLUMN_USAGE table.
An example of a query against this table is shown here:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, CONSTRAINT_NAME
 FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
 WHERE REFERENCED_TABLE_SCHEMA IS NOT NULL;
+--------------+------------+-------------+-----------------+
| TABLE_SCHEMA | TABLE_NAME | COLUMN_NAME | CONSTRAINT_NAME |
+--------------+------------+-------------+-----------------+
| test | child | parent_id | child_ibfk_1 |
+--------------+------------+-------------+-----------------+

You can obtain information specific to InnoDB foreign keys from the INNODB_SYS_FOREIGN and
INNODB_SYS_FOREIGN_COLS tables. Example queries are show here:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN \G
*************************** 1. row ***************************
 ID: test/child_ibfk_1
FOR_NAME: test/child
REF_NAME: test/parent
 N_COLS: 1
 TYPE: 1

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN_COLS \G
*************************** 1. row ***************************
 ID: test/child_ibfk_1
FOR_COL_NAME: parent_id
REF_COL_NAME: id
 POS: 0

Foreign Key Errors

In the event of a foreign key error involving InnoDB tables (usually Error 150 in the MySQL Server),
information about the latest foreign key error can be obtained by checking SHOW ENGINE INNODB
STATUS output.

mysql> SHOW ENGINE INNODB STATUS\G
...

LATEST FOREIGN KEY ERROR

2014-10-17 09:51:31 7f47bcde6700 Transaction:
TRANSACTION 436786, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1184, 3 row lock(s), undo log entries 3

1714

CREATE TABLE Statement

MySQL thread id 1, OS thread handle 0x7f47bcde6700, query id 96 localhost
root update
INSERT INTO child VALUES
 (NULL, 1)
 , (NULL, 2)
 , (NULL, 3)
 , (NULL, 4)
 , (NULL, 5)
 , (NULL, 6)
Foreign key constraint fails for table `mysql`.`child`:
,
 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES `parent`
 (`id`)
 ON DELETE CASCADE ON UPDATE CASCADE
Trying to add in child table, in index `par_ind` tuple:
DATA TUPLE: 2 fields;
 0: len 4; hex 80000003; asc ;;
 1: len 4; hex 80000003; asc ;;

But in parent table `mysql`.`parent`, in index `PRIMARY`,
the closest match we can find is record:
PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 80000004; asc ;;
 1: len 6; hex 00000006aa26; asc &;;
 2: len 7; hex 9d000001610137; asc a 7;;

LATEST DETECTED DEADLOCK

2014-10-17 09:52:38 7f47bcde6700
*** (1) TRANSACTION:
TRANSACTION 436801, ACTIVE 12 sec starting index read
mysql tables in use 1, locked 1
LOCK WAIT 2 lock struct(s), heap size 360, 1 row lock(s)
MySQL thread id 2, OS thread handle 0x7f47bcda5700, query id 102 localhost
root updating
DELETE FROM t WHERE i = 1
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 3693 page no 3 n bits 72 index `GEN_CLUST_INDEX` of
table `mysql`.`t` trx id 436801 lock_mode X waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info
bits 0
 0: len 6; hex 000000003a00; asc : ;;
 1: len 6; hex 00000006aa3f; asc ?;;
 2: len 7; hex ad0000021d0110; asc ;;
 3: len 4; hex 80000001; asc ;;
...

Warning

ER_NO_REFERENCED_ROW_2 and ER_ROW_IS_REFERENCED_2 error messages
for foreign key operations expose information about parent tables, even if the user
has no parent table access privileges. To hide information about parent tables,
include the appropriate condition handlers in application code and stored programs.

13.1.17.6 Silent Column Specification Changes

In some cases, MySQL silently changes column specifications from those given in a CREATE TABLE or
ALTER TABLE statement. These might be changes to a data type, to attributes associated with a data
type, or to an index specification.

All changes are subject to the internal row-size limit of 65,535 bytes, which may cause some attempts at
data type changes to fail. See Section 8.4.7, “Limits on Table Column Count and Row Size”.

• Columns that are part of a PRIMARY KEY are made NOT NULL even if not declared that way.

1715

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_no_referenced_row_2
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_row_is_referenced_2

CREATE TABLE Statement

• Trailing spaces are automatically deleted from ENUM and SET member values when the table is created.

• MySQL maps certain data types used by other SQL database vendors to MySQL types. See
Section 11.8, “Using Data Types from Other Database Engines”.

• If you include a USING clause to specify an index type that is not permitted for a given storage engine,
but there is another index type available that the engine can use without affecting query results, the
engine uses the available type.

• If strict SQL mode is not enabled, a VARCHAR column with a length specification greater than 65535
is converted to TEXT, and a VARBINARY column with a length specification greater than 65535 is
converted to BLOB. Otherwise, an error occurs in either of these cases.

• Specifying the CHARACTER SET binary attribute for a character data type causes the column
to be created as the corresponding binary data type: CHAR becomes BINARY, VARCHAR becomes
VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this does not occur; they are
created as declared. Suppose that you specify a table using this definition:

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET binary,
 c2 TEXT CHARACTER SET binary,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

The resulting table has this definition:

CREATE TABLE t
(
 c1 VARBINARY(10),
 c2 BLOB,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

To see whether MySQL used a data type other than the one you specified, issue a DESCRIBE or SHOW
CREATE TABLE statement after creating or altering the table.

Certain other data type changes can occur if you compress a table using myisampack. See
Section 15.2.3.3, “Compressed Table Characteristics”.

13.1.17.7 Setting NDB Comment Options

 In NDB Cluster, a column comment in a CREATE TABLE or ALTER TABLE statement can also be
used to specify an NDB_COLUMN option. NDB 7.3 and 7.4 support a single column comment option
MAX_BLOB_PART_SIZE; syntax for this option is shown here:

COMMENT 'NDB_COLUMN=MAX_BLOB_PART_SIZE[={0|1}]'

The = sign and the value following it are optional. Using any value other than 0 or 1 results in a syntax
error.

The effect of this option is to set the blob part size of a TEXT or BLOB column to the maximum number of
bytes supported for this by NDB (13948). This option can be applied to any blob column type supported
by MySQL except TINYBLOB or TINYTEXT (BLOB, MEDIUMBLOB, LONGBLOB, TEXT, MEDIUMTEXT, or
LONGTEXT).

To see the effects of this option, we first run the following SQL statement in the mysql client
to create a table with two BLOB columns, one (c1) with no extra options, and another (c2) with
MAX_BLOB_PART_SIZE:

1716

CREATE TABLE Statement

mysql> CREATE TABLE test.t (
 -> p INT PRIMARY KEY,
 -> c1 BLOB,
 -> c2 BLOB COMMENT 'NDB_COLUMN=MAX_BLOB_PART_SIZE'
 ->) ENGINE NDB;
Query OK, 0 rows affected (0.32 sec)

From the system shell, run the ndb_desc utility to obtain information about the table just created, as
shown in this example:

$> ndb_desc -d test t
-- t --
Version: 1
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 3
Number of primary keys: 1
Length of frm data: 324
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 2
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
HashMap: DEFAULT-HASHMAP-3840-2
-- Attributes --
p Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
c1 Blob(256,2000,0) NULL AT=MEDIUM_VAR ST=MEMORY BV=2 BT=NDB$BLOB_22_1
c2 Blob(256,13948,0) NULL AT=MEDIUM_VAR ST=MEMORY BV=2 BT=NDB$BLOB_22_2
-- Indexes --
PRIMARY KEY(p) - UniqueHashIndex
PRIMARY(p) - OrderedIndex

Column information in the output is listed under Attributes; for columns c1 and c2 it is displayed here
in emphasized text. For c1, the blob part size is 2000, the default value; for c2, it is 13948, as set by
MAX_BLOB_PART_SIZE.

You can change the blob part size for a given blob column of an NDB table using an ALTER TABLE
statement such as this one, and verifying the changes afterwards using SHOW CREATE TABLE:

mysql> ALTER TABLE test.t
 -> DROP COLUMN c1,
 -> ADD COLUMN c1 BLOB COMMENT 'NDB_COLUMN=MAX_BLOB_PART_SIZE',
 -> CHANGE COLUMN c2 c2 BLOB AFTER c1;
Query OK, 0 rows affected (0.47 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE test.t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t` (
 `p` int(11) NOT NULL,
 `c1` blob COMMENT 'NDB_COLUMN=MAX_BLOB_PART_SIZE',
 `c2` blob,
 PRIMARY KEY (`p`)
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

mysql> EXIT
Bye

1717

CREATE TABLESPACE Statement

The output of ndb_desc shows that the blob part sizes of the columns have been changed as expected:

$> ndb_desc -d test t
-- t --
Version: 16777220
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 3
Number of primary keys: 1
Length of frm data: 324
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 2
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
HashMap: DEFAULT-HASHMAP-3840-2
-- Attributes --
p Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
c1 Blob(256,13948,0) NULL AT=MEDIUM_VAR ST=MEMORY BV=2 BT=NDB$BLOB_26_1
c2 Blob(256,2000,0) NULL AT=MEDIUM_VAR ST=MEMORY BV=2 BT=NDB$BLOB_26_2
-- Indexes --
PRIMARY KEY(p) - UniqueHashIndex
PRIMARY(p) - OrderedIndex

NDBT_ProgramExit: 0 - OK

Changing a column's blob part size must be done using a copying ALTER TABLE; this operation cannot be
performed online (see Section 18.6.12, “Online Operations with ALTER TABLE in NDB Cluster”).

For more information about how NDB stores columns of blob types, see String Type Storage Requirements.

13.1.18 CREATE TABLESPACE Statement
CREATE TABLESPACE tablespace_name
 ADD DATAFILE 'file_name'
 USE LOGFILE GROUP logfile_group
 [EXTENT_SIZE [=] extent_size]
 [INITIAL_SIZE [=] initial_size]
 [AUTOEXTEND_SIZE [=] autoextend_size]
 [MAX_SIZE [=] max_size]
 [NODEGROUP [=] nodegroup_id]
 [WAIT]
 [COMMENT [=] comment_text]
 ENGINE [=] engine_name

This statement is used to create a tablespace, which can contain one or more data files, providing storage
space for tables. One data file is created and added to the tablespace using this statement. Additional data
files may be added to the tablespace by using the ALTER TABLESPACE statement (see Section 13.1.8,
“ALTER TABLESPACE Statement”). For rules covering the naming of tablespaces, see Section 9.2,
“Schema Object Names”.

Note

All NDB Cluster Disk Data objects share the same namespace. This means that
each Disk Data object must be uniquely named (and not merely each Disk Data
object of a given type). For example, you cannot have a tablespace and a log file
group with the same name, or a tablespace and a data file with the same name.

1718

CREATE TABLESPACE Statement

A log file group of one or more UNDO log files must be assigned to the tablespace to be created with the
USE LOGFILE GROUP clause. logfile_group must be an existing log file group created with CREATE
LOGFILE GROUP (see Section 13.1.14, “CREATE LOGFILE GROUP Statement”). Multiple tablespaces
may use the same log file group for UNDO logging.

The EXTENT_SIZE sets the size, in bytes, of the extents used by any files belonging to the tablespace.
The default value is 1M. The minimum size is 32K, and theoretical maximum is 2G, although the practical
maximum size depends on a number of factors. In most cases, changing the extent size does not have
any measurable effect on performance, and the default value is recommended for all but the most unusual
situations.

An extent is a unit of disk space allocation. One extent is filled with as much data as that extent can contain
before another extent is used. In theory, up to 65,535 (64K) extents may used per data file; however, the
recommended maximum is 32,768 (32K). The recommended maximum size for a single data file is 32G—
that is, 32K extents × 1 MB per extent. In addition, once an extent is allocated to a given partition, it cannot
be used to store data from a different partition; an extent cannot store data from more than one partition.
This means, for example that a tablespace having a single datafile whose INITIAL_SIZE is 256 MB and
whose EXTENT_SIZE is 128M has just two extents, and so can be used to store data from at most two
different disk data table partitions.

You can see how many extents remain free in a given data file by querying the Information Schema FILES
table, and so derive an estimate for how much space remains free in the file. For further discussion and
examples, see Section 21.5.1, “The INFORMATION_SCHEMA FILES Table”.

The INITIAL_SIZE parameter sets the data file's total size in bytes. Once the file has been created,
its size cannot be changed; however, you can add more data files to the tablespace using ALTER
TABLESPACE ... ADD DATAFILE. See Section 13.1.8, “ALTER TABLESPACE Statement”.

INITIAL_SIZE is optional; its default value is 134217728 (128 MB).

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB). (Bug
#29186)

When setting EXTENT_SIZE, you may optionally follow the number with a one-letter abbreviation for an
order of magnitude, similar to those used in my.cnf. Generally, this is one of the letters M (for megabytes)
or G (for gigabytes). In MySQL NDB Cluster 7.3.2 and later, these abbreviations are also supported when
specifying INITIAL_SIZE as well. (Bug #13116514, Bug #16104705, Bug #62858)

INITIAL_SIZE, EXTENT_SIZE, and UNDO_BUFFER_SIZE are subject to rounding as follows:

• EXTENT_SIZE and UNDO_BUFFER_SIZE are each rounded up to the nearest whole multiple of 32K.

• INITIAL_SIZE is rounded down to the nearest whole multiple of 32K.

For data files, INITIAL_SIZE is subject to further rounding; the result just obtained is rounded up to the
nearest whole multiple of EXTENT_SIZE (after any rounding).

The rounding just described is done explicitly, and a warning is issued by the MySQL Server when
any such rounding is performed. The rounded values are also used by the NDB kernel for calculating
INFORMATION_SCHEMA.FILES column values and other purposes. However, to avoid an unexpected
result, we suggest that you always use whole multiples of 32K in specifying these options.

AUTOEXTEND_SIZE, MAX_SIZE, NODEGROUP, WAIT, and COMMENT are parsed but ignored, and so
currently have no effect. These options are intended for future expansion.

The ENGINE parameter determines the storage engine which uses this tablespace, with engine_name
being the name of the storage engine. Currently, engine_name must be one of the values NDB or
NDBCLUSTER.

1719

CREATE TRIGGER Statement

When CREATE TABLESPACE is used with ENGINE = NDB, a tablespace and associated data file are
created on each Cluster data node. You can verify that the data files were created and obtain information
about them by querying the Information Schema FILES table. For example:

mysql> SELECT LOGFILE_GROUP_NAME, FILE_NAME, EXTRA
 -> FROM INFORMATION_SCHEMA.FILES
 -> WHERE TABLESPACE_NAME = 'newts' AND FILE_TYPE = 'DATAFILE';
+--------------------+-------------+----------------+
| LOGFILE_GROUP_NAME | FILE_NAME | EXTRA |
+--------------------+-------------+----------------+
| lg_3 | newdata.dat | CLUSTER_NODE=3 |
| lg_3 | newdata.dat | CLUSTER_NODE=4 |
+--------------------+-------------+----------------+
2 rows in set (0.01 sec)

(See Section 21.5.1, “The INFORMATION_SCHEMA FILES Table”.)

CREATE TABLESPACE is useful only with Disk Data storage for NDB Cluster. See Section 18.6.11, “NDB
Cluster Disk Data Tables”.

13.1.19 CREATE TRIGGER Statement
CREATE
 [DEFINER = user]
 TRIGGER trigger_name
 trigger_time trigger_event
 ON tbl_name FOR EACH ROW
 trigger_body

trigger_time: { BEFORE | AFTER }

trigger_event: { INSERT | UPDATE | DELETE }

This statement creates a new trigger. A trigger is a named database object that is associated with a table,
and that activates when a particular event occurs for the table. The trigger becomes associated with the
table named tbl_name, which must refer to a permanent table. You cannot associate a trigger with a
TEMPORARY table or a view.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names within a
schema. Triggers in different schemas can have the same name.

This section describes CREATE TRIGGER syntax. For additional discussion, see Section 20.3.1, “Trigger
Syntax and Examples”.

CREATE TRIGGER requires the TRIGGER privilege for the table associated with the trigger. If the DEFINER
clause is present, the privileges required depend on the user value, as discussed in Section 20.6, “Stored
Object Access Control”. If binary logging is enabled, CREATE TRIGGER might require the SUPER privilege,
as discussed in Section 20.7, “Stored Program Binary Logging”.

The DEFINER clause determines the security context to be used when checking access privileges at
trigger activation time, as described later in this section.

trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that the trigger activates
before or after each row to be modified.

Basic column value checks occur prior to trigger activation, so you cannot use BEFORE triggers to convert
values inappropriate for the column type to valid values.

trigger_event indicates the kind of operation that activates the trigger. These trigger_event values
are permitted:

1720

CREATE TRIGGER Statement

• INSERT: The trigger activates whenever a new row is inserted into the table (for example, through
INSERT, LOAD DATA, and REPLACE statements).

• UPDATE: The trigger activates whenever a row is modified (for example, through UPDATE statements).

• DELETE: The trigger activates whenever a row is deleted from the table (for example, through DELETE
and REPLACE statements). DROP TABLE and TRUNCATE TABLE statements on the table do not activate
this trigger, because they do not use DELETE. Dropping a partition does not activate DELETE triggers,
either.

The trigger_event does not represent a literal type of SQL statement that activates the trigger so much
as it represents a type of table operation. For example, an INSERT trigger activates not only for INSERT
statements but also LOAD DATA statements because both statements insert rows into a table.

A potentially confusing example of this is the INSERT INTO ... ON DUPLICATE KEY UPDATE ...
syntax: a BEFORE INSERT trigger activates for every row, followed by either an AFTER INSERT trigger or
both the BEFORE UPDATE and AFTER UPDATE triggers, depending on whether there was a duplicate key
for the row.

Note

Cascaded foreign key actions do not activate triggers.

There cannot be multiple triggers for a given table that have the same trigger event and action time. For
example, you cannot have two BEFORE UPDATE triggers for a table. But you can have a BEFORE UPDATE
and a BEFORE INSERT trigger, or a BEFORE UPDATE and an AFTER UPDATE trigger.

trigger_body is the statement to execute when the trigger activates. To execute multiple statements,
use the BEGIN ... END compound statement construct. This also enables you to use the same
statements that are permissible within stored routines. See Section 13.6.1, “BEGIN ... END Compound
Statement”. Some statements are not permitted in triggers; see Section 20.8, “Restrictions on Stored
Programs”.

Within the trigger body, you can refer to columns in the subject table (the table associated with the trigger)
by using the aliases OLD and NEW. OLD.col_name refers to a column of an existing row before it is
updated or deleted. NEW.col_name refers to the column of a new row to be inserted or an existing row
after it is updated.

MySQL stores the sql_mode system variable setting in effect when a trigger is created, and always
executes the trigger body with this setting in force, regardless of the current server SQL mode when the
trigger begins executing.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at trigger
activation time. If the DEFINER clause is present, the user value should be a MySQL account specified
as 'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The permitted user values
depend on the privileges you hold, as discussed in Section 20.6, “Stored Object Access Control”. Also see
that section for additional information about trigger security.

If the DEFINER clause is omitted, the default definer is the user who executes the CREATE TRIGGER
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

MySQL takes the DEFINER user into account when checking trigger privileges as follows:

• At CREATE TRIGGER time, the user who issues the statement must have the TRIGGER privilege.

• At trigger activation time, privileges are checked against the DEFINER user. This user must have these
privileges:

1721

CREATE VIEW Statement

• The TRIGGER privilege for the subject table.

• The SELECT privilege for the subject table if references to table columns occur using OLD.col_name
or NEW.col_name in the trigger body.

• The UPDATE privilege for the subject table if table columns are targets of SET NEW.col_name =
value assignments in the trigger body.

• Whatever other privileges normally are required for the statements executed by the trigger.

Within a trigger body, the CURRENT_USER function returns the account used to check privileges at trigger
activation time. This is the DEFINER user, not the user whose actions caused the trigger to be activated.
For information about user auditing within triggers, see Section 6.2.15, “SQL-Based Account Activity
Auditing”.

If you use LOCK TABLES to lock a table that has triggers, the tables used within the trigger are also locked,
as described in LOCK TABLES and Triggers.

For additional discussion of trigger use, see Section 20.3.1, “Trigger Syntax and Examples”.

13.1.20 CREATE VIEW Statement

CREATE
 [OR REPLACE]
 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 [DEFINER = user]
 [SQL SECURITY { DEFINER | INVOKER }]
 VIEW view_name [(column_list)]
 AS select_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION]

The CREATE VIEW statement creates a new view, or replaces an existing view if the OR REPLACE clause
is given. If the view does not exist, CREATE OR REPLACE VIEW is the same as CREATE VIEW. If the view
does exist, CREATE OR REPLACE VIEW replaces it.

For information about restrictions on view use, see Section 20.9, “Restrictions on Views”.

The select_statement is a SELECT statement that provides the definition of the view. (Selecting from
the view selects, in effect, using the SELECT statement.) The select_statement can select from base
tables or other views.

The view definition is “frozen” at creation time and is not affected by subsequent changes to the definitions
of the underlying tables. For example, if a view is defined as SELECT * on a table, new columns added to
the table later do not become part of the view, and columns dropped from the table result in an error when
selecting from the view.

The ALGORITHM clause affects how MySQL processes the view. The DEFINER and SQL SECURITY
clauses specify the security context to be used when checking access privileges at view invocation
time. The WITH CHECK OPTION clause can be given to constrain inserts or updates to rows in tables
referenced by the view. These clauses are described later in this section.

The CREATE VIEW statement requires the CREATE VIEW privilege for the view, and some privilege for
each column selected by the SELECT statement. For columns used elsewhere in the SELECT statement,
you must have the SELECT privilege. If the OR REPLACE clause is present, you must also have the DROP
privilege for the view. If the DEFINER clause is present, the privileges required depend on the user value,
as discussed in Section 20.6, “Stored Object Access Control”.

1722

CREATE VIEW Statement

When a view is referenced, privilege checking occurs as described later in this section.

A view belongs to a database. By default, a new view is created in the default database. To create the
view explicitly in a given database, use db_name.view_name syntax to qualify the view name with the
database name:

CREATE VIEW test.v AS SELECT * FROM t;

Unqualified table or view names in the SELECT statement are also interpreted with respect to the default
database. A view can refer to tables or views in other databases by qualifying the table or view name with
the appropriate database name.

Within a database, base tables and views share the same namespace, so a base table and a view cannot
have the same name.

Columns retrieved by the SELECT statement can be simple references to table columns, or expressions
that use functions, constant values, operators, and so forth.

A view must have unique column names with no duplicates, just like a base table. By default, the names
of the columns retrieved by the SELECT statement are used for the view column names. To define explicit
names for the view columns, specify the optional column_list clause as a list of comma-separated
identifiers. The number of names in column_list must be the same as the number of columns retrieved
by the SELECT statement.

A view can be created from many kinds of SELECT statements. It can refer to base tables or other views. It
can use joins, UNION, and subqueries. The SELECT need not even refer to any tables:

CREATE VIEW v_today (today) AS SELECT CURRENT_DATE;

The following example defines a view that selects two columns from another table as well as an expression
calculated from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
+------+-------+-------+

A view definition is subject to the following restrictions:

• The SELECT statement cannot contain a subquery in the FROM clause.

• The SELECT statement cannot refer to system variables or user-defined variables.

• Within a stored program, the SELECT statement cannot refer to program parameters or local variables.

• The SELECT statement cannot refer to prepared statement parameters.

• Any table or view referred to in the definition must exist. If, after the view has been created, a table or
view that the definition refers to is dropped, use of the view results in an error. To check a view definition
for problems of this kind, use the CHECK TABLE statement.

• The definition cannot refer to a TEMPORARY table, and you cannot create a TEMPORARY view.

• You cannot associate a trigger with a view.

1723

CREATE VIEW Statement

• Aliases for column names in the SELECT statement are checked against the maximum column length of
64 characters (not the maximum alias length of 256 characters).

ORDER BY is permitted in a view definition, but it is ignored if you select from a view using a statement that
has its own ORDER BY or filtering or grouping. When ORDER BY is combined with LIMIT or OFFSET in a
view definition, the ordering is always enforced before the query result is used by the outer query, but it
does not guarantee that the same ordering is used in the end result. As a workaround, add an ORDER BY
clause to the outer query.

For other options or clauses in the definition, they are added to the options or clauses of the statement that
references the view, but the effect is undefined. For example, if a view definition includes a LIMIT clause,
and you select from the view using a statement that has its own LIMIT clause, it is undefined which limit
applies. This same principle applies to options such as ALL, DISTINCT, or SQL_SMALL_RESULT that
follow the SELECT keyword, and to clauses such as INTO, FOR UPDATE, LOCK IN SHARE MODE, and
PROCEDURE.

The results obtained from a view may be affected if you change the query processing environment by
changing system variables:

mysql> CREATE VIEW v (mycol) AS SELECT 'abc';
Query OK, 0 rows affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| mycol |
+-------+
1 row in set (0.01 sec)

mysql> SET sql_mode = 'ANSI_QUOTES';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| abc |
+-------+
1 row in set (0.00 sec)

The DEFINER and SQL SECURITY clauses determine which MySQL account to use when checking
access privileges for the view when a statement is executed that references the view. The valid SQL
SECURITY characteristic values are DEFINER (the default) and INVOKER. These indicate that the required
privileges must be held by the user who defined or invoked the view, respectively.

If the DEFINER clause is present, the user value should be a MySQL account specified as
'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The permitted user values
depend on the privileges you hold, as discussed in Section 20.6, “Stored Object Access Control”. Also see
that section for additional information about view security.

If the DEFINER clause is omitted, the default definer is the user who executes the CREATE VIEW
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

Within a view definition, the CURRENT_USER function returns the view's DEFINER value by default. For
views defined with the SQL SECURITY INVOKER characteristic, CURRENT_USER returns the account
for the view's invoker. For information about user auditing within views, see Section 6.2.15, “SQL-Based
Account Activity Auditing”.

1724

CREATE VIEW Statement

Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic, CURRENT_USER
returns the routine's DEFINER value. This also affects a view defined within such a routine, if the view
definition contains a DEFINER value of CURRENT_USER.

MySQL checks view privileges like this:

• At view definition time, the view creator must have the privileges needed to use the top-level objects
accessed by the view. For example, if the view definition refers to table columns, the creator must have
some privilege for each column in the select list of the definition, and the SELECT privilege for each
column used elsewhere in the definition. If the definition refers to a stored function, only the privileges
needed to invoke the function can be checked. The privileges required at function invocation time can be
checked only as it executes: For different invocations, different execution paths within the function might
be taken.

• The user who references a view must have appropriate privileges to access it (SELECT to select from it,
INSERT to insert into it, and so forth.)

• When a view has been referenced, privileges for objects accessed by the view are checked against the
privileges held by the view DEFINER account or invoker, depending on whether the SQL SECURITY
characteristic is DEFINER or INVOKER, respectively.

• If reference to a view causes execution of a stored function, privilege checking for statements executed
within the function depend on whether the function SQL SECURITY characteristic is DEFINER or
INVOKER. If the security characteristic is DEFINER, the function runs with the privileges of the DEFINER
account. If the characteristic is INVOKER, the function runs with the privileges determined by the view's
SQL SECURITY characteristic.

Example: A view might depend on a stored function, and that function might invoke other stored routines.
For example, the following view invokes a stored function f():

CREATE VIEW v AS SELECT * FROM t WHERE t.id = f(t.name);

Suppose that f() contains a statement such as this:

IF name IS NULL then
 CALL p1();
ELSE
 CALL p2();
END IF;

The privileges required for executing statements within f() need to be checked when f() executes. This
might mean that privileges are needed for p1() or p2(), depending on the execution path within f().
Those privileges must be checked at runtime, and the user who must possess the privileges is determined
by the SQL SECURITY values of the view v and the function f().

The DEFINER and SQL SECURITY clauses for views are extensions to standard SQL. In standard SQL,
views are handled using the rules for SQL SECURITY DEFINER. The standard says that the definer of
the view, which is the same as the owner of the view's schema, gets applicable privileges on the view (for
example, SELECT) and may grant them. MySQL has no concept of a schema “owner”, so MySQL adds
a clause to identify the definer. The DEFINER clause is an extension where the intent is to have what the
standard has; that is, a permanent record of who defined the view. This is why the default DEFINER value
is the account of the view creator.

The optional ALGORITHM clause is a MySQL extension to standard SQL. It affects how MySQL processes
the view. ALGORITHM takes three values: MERGE, TEMPTABLE, or UNDEFINED. The default algorithm
is UNDEFINED if no ALGORITHM clause is present. For more information, see Section 20.5.2, “View
Processing Algorithms”, as well as Section 8.2.2.4, “Optimizing Derived Tables”.

1725

DROP DATABASE Statement

Some views are updatable. That is, you can use them in statements such as UPDATE, DELETE, or INSERT
to update the contents of the underlying table. For a view to be updatable, there must be a one-to-one
relationship between the rows in the view and the rows in the underlying table. There are also certain other
constructs that make a view nonupdatable.

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts or updates to
rows except those for which the WHERE clause in the select_statement is true.

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords determine
the scope of check testing when the view is defined in terms of another view. The LOCAL keyword restricts
the CHECK OPTION only to the view being defined. CASCADED causes the checks for underlying views to
be evaluated as well. When neither keyword is given, the default is CASCADED.

For more information about updatable views and the WITH CHECK OPTION clause, see Section 20.5.3,
“Updatable and Insertable Views”, and Section 20.5.4, “The View WITH CHECK OPTION Clause”.

13.1.21 DROP DATABASE Statement
DROP {DATABASE | SCHEMA} [IF EXISTS] db_name

DROP DATABASE drops all tables in the database and deletes the database. Be very careful with this
statement! To use DROP DATABASE, you need the DROP privilege on the database. DROP SCHEMA is a
synonym for DROP DATABASE.

Important

When a database is dropped, privileges granted specifically for the database are
not automatically dropped. They must be dropped manually. See Section 13.7.1.4,
“GRANT Statement”.

IF EXISTS is used to prevent an error from occurring if the database does not exist.

If the default database is dropped, the default database is unset (the DATABASE() function returns NULL).

If you use DROP DATABASE on a symbolically linked database, both the link and the original database are
deleted.

DROP DATABASE returns the number of tables that were removed. This corresponds to the number of
.frm files removed.

The DROP DATABASE statement removes from the given database directory those files and directories that
MySQL itself may create during normal operation:

• All files with the following extensions:

• .frm

• .BAK

• .DAT

• .HSH

• .MRG

• .MYD

• .MYI

1726

DROP EVENT Statement

• .TRG

• .TRN

• .db

• .ibd

• .ndb

• .par

• The db.opt file, if it exists.

If other files or directories remain in the database directory after MySQL removes those just listed, the
database directory cannot be removed. In this case, you must remove any remaining files or directories
manually and issue the DROP DATABASE statement again.

Dropping a database does not remove any TEMPORARY tables that were created in that database.
TEMPORARY tables are automatically removed when the session that created them ends. See
Section 13.1.17.2, “CREATE TEMPORARY TABLE Statement”.

You can also drop databases with mysqladmin. See Section 4.5.2, “mysqladmin — A MySQL Server
Administration Program”.

13.1.22 DROP EVENT Statement
DROP EVENT [IF EXISTS] event_name

This statement drops the event named event_name. The event immediately ceases being active, and is
deleted completely from the server.

If the event does not exist, the error ERROR 1517 (HY000): Unknown event 'event_name' results.
You can override this and cause the statement to generate a warning for nonexistent events instead using
IF EXISTS.

This statement requires the EVENT privilege for the schema to which the event to be dropped belongs.

13.1.23 DROP FUNCTION Statement

The DROP FUNCTION statement is used to drop stored functions and loadable functions:

• For information about dropping stored functions, see Section 13.1.26, “DROP PROCEDURE and DROP
FUNCTION Statements”.

• For information about dropping loadable functions, see Section 13.7.3.2, “DROP FUNCTION Statement
for Loadable Functions”.

13.1.24 DROP INDEX Statement
DROP INDEX [ONLINE | OFFLINE] index_name ON tbl_name
 [algorithm_option | lock_option] ...

algorithm_option:
 ALGORITHM [=] {DEFAULT | INPLACE | COPY}

lock_option:

1727

DROP LOGFILE GROUP Statement

 LOCK [=] {DEFAULT | NONE | SHARED | EXCLUSIVE}

DROP INDEX drops the index named index_name from the table tbl_name. This statement is mapped to
an ALTER TABLE statement to drop the index. See Section 13.1.7, “ALTER TABLE Statement”.

To drop a primary key, the index name is always PRIMARY, which must be specified as a quoted identifier
because PRIMARY is a reserved word:

DROP INDEX `PRIMARY` ON t;

Indexes on variable-width columns of NDB tables are dropped online; that is, without any table copying.
The table is not locked against access from other NDB Cluster API nodes, although it is locked against
other operations on the same API node for the duration of the operation. This is done automatically by the
server whenever it determines that it is possible to do so; you do not have to use any special SQL syntax
or server options to cause it to happen.

In NDB Cluster, you can drop indexes offline (which causes the table to be locked for all API nodes in
the cluster) using the OFFLINE keyword. The rules and limitations governing DROP OFFLINE INDEX
and DROP ONLINE INDEX are the same as for ALTER OFFLINE TABLE ... DROP INDEX and
ALTER ONLINE TABLE ... DROP INDEX. You cannot cause the noncopying dropping of an index
that would normally be dropped offline by using the ONLINE keyword: If it is not possible to perform the
DROP operation without table copying, the server ignores the ONLINE keyword. For more information, see
Section 18.6.12, “Online Operations with ALTER TABLE in NDB Cluster”.

The ONLINE and OFFLINE keywords are available only in NDB Cluster; attempting to use these keywords
in standard MySQL Server 5.6 releases results in a syntax error. The ONLINE and OFFLINE keywords are
deprecated in MySQL NDB Cluster 7.3; they continue to be supported in MySQL NDB Cluster 7.4, but are
scheduled for removal in a future NDB Cluster release.

ALGORITHM and LOCK clauses may be given to influence the table copying method and level of
concurrency for reading and writing the table while its indexes are being modified. They have the same
meaning as for the ALTER TABLE statement. For more information, see Section 13.1.7, “ALTER TABLE
Statement”

13.1.25 DROP LOGFILE GROUP Statement
DROP LOGFILE GROUP logfile_group
 ENGINE [=] engine_name

This statement drops the log file group named logfile_group. The log file group must already exist
or an error results. (For information on creating log file groups, see Section 13.1.14, “CREATE LOGFILE
GROUP Statement”.)

Important

Before dropping a log file group, you must drop all tablespaces that use that log file
group for UNDO logging.

The required ENGINE clause provides the name of the storage engine used by the log file group to be
dropped. Currently, the only permitted values for engine_name are NDB and NDBCLUSTER.

DROP LOGFILE GROUP is useful only with Disk Data storage for NDB Cluster. See Section 18.6.11, “NDB
Cluster Disk Data Tables”.

13.1.26 DROP PROCEDURE and DROP FUNCTION Statements
DROP {PROCEDURE | FUNCTION} [IF EXISTS] sp_name

1728

DROP SERVER Statement

These statements are used to drop a stored routine (a stored procedure or function). That is, the specified
routine is removed from the server. (DROP FUNCTION is also used to drop loadable functions; see
Section 13.7.3.2, “DROP FUNCTION Statement for Loadable Functions”.)

To drop a stored routine, you must have the ALTER ROUTINE privilege for it. (If the
automatic_sp_privileges system variable is enabled, that privilege and EXECUTE are granted
automatically to the routine creator when the routine is created and dropped from the creator when the
routine is dropped. See Section 20.2.2, “Stored Routines and MySQL Privileges”.)

The IF EXISTS clause is a MySQL extension. It prevents an error from occurring if the procedure or
function does not exist. A warning is produced that can be viewed with SHOW WARNINGS.

DROP FUNCTION is also used to drop loadable functions (see Section 13.7.3.2, “DROP FUNCTION
Statement for Loadable Functions”).

13.1.27 DROP SERVER Statement
DROP SERVER [IF EXISTS] server_name

Drops the server definition for the server named server_name. The corresponding row in the
mysql.servers table is deleted. This statement requires the SUPER privilege.

Dropping a server for a table does not affect any FEDERATED tables that used this connection information
when they were created. See Section 13.1.16, “CREATE SERVER Statement”.

DROP SERVER causes an implicit commit. See Section 13.3.3, “Statements That Cause an Implicit
Commit”.

DROP SERVER is not written to the binary log, regardless of the logging format that is in use.

In MySQL 5.6.11 only, gtid_next must be set to AUTOMATIC before issuing this statement. (Bug
#16062608, Bug #16715809, Bug #69045)

13.1.28 DROP TABLE Statement
DROP [TEMPORARY] TABLE [IF EXISTS]
 tbl_name [, tbl_name] ...
 [RESTRICT | CASCADE]

DROP TABLE removes one or more tables. You must have the DROP privilege for each table.

Be careful with this statement! For each table, it removes the table definition and all table data. If the table
is partitioned, the statement removes the table definition, all its partitions, all data stored in those partitions,
and all partition definitions associated with the dropped table.

Dropping a table also drops any triggers for the table.

DROP TABLE causes an implicit commit, except when used with the TEMPORARY keyword. See
Section 13.3.3, “Statements That Cause an Implicit Commit”.

Important

When a table is dropped, privileges granted specifically for the table are not
automatically dropped. They must be dropped manually. See Section 13.7.1.4,
“GRANT Statement”.

If any tables named in the argument list do not exist, DROP TABLE behavior depends on whether the IF
EXISTS clause is given:

1729

DROP TABLESPACE Statement

• Without IF EXISTS, the statement drops all named tables that do exist, and returns an error indicating
which nonexisting tables it was unable to drop.

• With IF EXISTS, no error occurs for nonexisting tables. The statement drops all named tables that do
exist, and generates a NOTE diagnostic for each nonexistent table. These notes can be displayed with
SHOW WARNINGS. See Section 13.7.5.41, “SHOW WARNINGS Statement”.

IF EXISTS can also be useful for dropping tables in unusual circumstances under which there is an .frm
file but no table managed by the storage engine. (For example, if an abnormal server exit occurs after
removal of the table from the storage engine but before .frm file removal.)

The TEMPORARY keyword has the following effects:

• The statement drops only TEMPORARY tables.

• The statement does not cause an implicit commit.

• No access rights are checked. A TEMPORARY table is visible only with the session that created it, so no
check is necessary.

Including the TEMPORARY keyword is a good way to prevent accidentally dropping non-TEMPORARY tables.

The RESTRICT and CASCADE keywords do nothing. They are permitted to make porting easier from other
database systems.

DROP TABLE is not supported with all innodb_force_recovery settings. See Section 14.21.2, “Forcing
InnoDB Recovery”.

13.1.29 DROP TABLESPACE Statement
DROP TABLESPACE tablespace_name
 ENGINE [=] engine_name

This statement drops a tablespace that was previously created using CREATE TABLESPACE (see
Section 13.1.18, “CREATE TABLESPACE Statement”).

Important

The tablespace to be dropped must not contain any data files; in other words,
before you can drop a tablespace, you must first drop each of its data files using
ALTER TABLESPACE ... DROP DATAFILE (see Section 13.1.8, “ALTER
TABLESPACE Statement”).

The ENGINE clause (required) specifies the storage engine used by the tablespace. Currently, the only
accepted values for engine_name are NDB and NDBCLUSTER.

DROP TABLESPACE is useful only with Disk Data storage for NDB Cluster. See Section 18.6.11, “NDB
Cluster Disk Data Tables”.

13.1.30 DROP TRIGGER Statement
DROP TRIGGER [IF EXISTS] [schema_name.]trigger_name

This statement drops a trigger. The schema (database) name is optional. If the schema is omitted, the
trigger is dropped from the default schema. DROP TRIGGER requires the TRIGGER privilege for the table
associated with the trigger.

Use IF EXISTS to prevent an error from occurring for a trigger that does not exist. A NOTE is generated
for a nonexistent trigger when using IF EXISTS. See Section 13.7.5.41, “SHOW WARNINGS Statement”.

1730

DROP VIEW Statement

Triggers for a table are also dropped if you drop the table.

13.1.31 DROP VIEW Statement
DROP VIEW [IF EXISTS]
 view_name [, view_name] ...
 [RESTRICT | CASCADE]

DROP VIEW removes one or more views. You must have the DROP privilege for each view.

If any views named in the argument list do not exist, the statement returns an error indicating by name
which nonexisting views it was unable to drop, but also drops all views in the list that do exist.

The IF EXISTS clause prevents an error from occurring for views that don't exist. When this clause
is given, a NOTE is generated for each nonexistent view. See Section 13.7.5.41, “SHOW WARNINGS
Statement”.

RESTRICT and CASCADE, if given, are parsed and ignored.

13.1.32 RENAME TABLE Statement
RENAME TABLE
 tbl_name TO new_tbl_name
 [, tbl_name2 TO new_tbl_name2] ...

RENAME TABLE renames one or more tables. You must have ALTER and DROP privileges for the original
table, and CREATE and INSERT privileges for the new table.

For example, to rename a table named old_table to new_table, use this statement:

RENAME TABLE old_table TO new_table;

That statement is equivalent to the following ALTER TABLE statement:

ALTER TABLE old_table RENAME new_table;

RENAME TABLE, unlike ALTER TABLE, can rename multiple tables within a single statement:

RENAME TABLE old_table1 TO new_table1,
 old_table2 TO new_table2,
 old_table3 TO new_table3;

Renaming operations are performed left to right. Thus, to swap two table names, do this (assuming that a
table with the intermediary name tmp_table does not already exist):

RENAME TABLE old_table TO tmp_table,
 new_table TO old_table,
 tmp_table TO new_table;

Metadata locks on tables are acquired in name order, which in some cases can make a difference in
operation outcome when multiple transactions execute concurrently. See Section 8.11.4, “Metadata
Locking”.

To execute RENAME TABLE, there must be no active transactions or tables locked with LOCK TABLES.
With the transaction table locking conditions satisfied, the rename operation is done atomically; no other
session can access any of the tables while the rename is in progress.

If any errors occur during a RENAME TABLE, the statement fails and no changes are made.

You can use RENAME TABLE to move a table from one database to another:

1731

TRUNCATE TABLE Statement

RENAME TABLE current_db.tbl_name TO other_db.tbl_name;

Using this method to move all tables from one database to a different one in effect renames the database
(an operation for which MySQL has no single statement), except that the original database continues to
exist, albeit with no tables.

Like RENAME TABLE, ALTER TABLE ... RENAME can also be used to move a table to a different
database. Regardless of the statement used, if the rename operation would move the table to a database
located on a different file system, the success of the outcome is platform specific and depends on the
underlying operating system calls used to move table files.

If a table has triggers, attempts to rename the table into a different database fail with a Trigger in
wrong schema (ER_TRG_IN_WRONG_SCHEMA) error.

To rename TEMPORARY tables, RENAME TABLE does not work. Use ALTER TABLE instead.

RENAME TABLE works for views, except that views cannot be renamed into a different database.

Any privileges granted specifically for a renamed table or view are not migrated to the new name. They
must be changed manually.

RENAME TABLE tbl_name TO new_tbl_name changes internally generated foreign key constraint
names and user-defined foreign key constraint names that begin with the string “tbl_name_ibfk_” to
reflect the new table name. InnoDB interprets foreign key constraint names that begin with the string
“tbl_name_ibfk_” as internally generated names.

Foreign key constraint names that point to the renamed table are automatically updated unless there is a
conflict, in which case the statement fails with an error. A conflict occurs if the renamed constraint name
already exists. In such cases, you must drop and re-create the foreign keys for them to function properly.

13.1.33 TRUNCATE TABLE Statement
TRUNCATE [TABLE] tbl_name

TRUNCATE TABLE empties a table completely. It requires the DROP privilege.

Logically, TRUNCATE TABLE is similar to a DELETE statement that deletes all rows, or a sequence of DROP
TABLE and CREATE TABLE statements. To achieve high performance, it bypasses the DML method of
deleting data. Thus, it cannot be rolled back, it does not cause ON DELETE triggers to fire, and it cannot be
performed for InnoDB tables with parent-child foreign key relationships.

Although TRUNCATE TABLE is similar to DELETE, it is classified as a DDL statement rather than a DML
statement. It differs from DELETE in the following ways:

• Truncate operations drop and re-create the table, which is much faster than deleting rows one by one,
particularly for large tables.

• Truncate operations cause an implicit commit, and so cannot be rolled back. See Section 13.3.3,
“Statements That Cause an Implicit Commit”.

• Truncation operations cannot be performed if the session holds an active table lock.

• TRUNCATE TABLE fails for an InnoDB table or NDB table if there are any FOREIGN KEY constraints
from other tables that reference the table. Foreign key constraints between columns of the same table
are permitted.

• Truncation operations do not return a meaningful value for the number of deleted rows. The usual result
is “0 rows affected,” which should be interpreted as “no information.”

1732

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_trg_in_wrong_schema

Data Manipulation Statements

• As long as the table format file tbl_name.frm is valid, the table can be re-created as an empty table
with TRUNCATE TABLE, even if the data or index files have become corrupted.

• Any AUTO_INCREMENT value is reset to its start value. This is true even for MyISAM and InnoDB, which
normally do not reuse sequence values.

• When used with partitioned tables, TRUNCATE TABLE preserves the partitioning; that is, the data and
index files are dropped and re-created, while the partition definitions (.par) file is unaffected.

• The TRUNCATE TABLE statement does not invoke ON DELETE triggers.

TRUNCATE TABLE for a table closes all handlers for the table that were opened with HANDLER OPEN.

TRUNCATE TABLE is treated for purposes of binary logging and replication as DROP TABLE followed by
CREATE TABLE—that is, as DDL rather than DML. This is due to the fact that, when using InnoDB and
other transactional storage engines where the transaction isolation level does not permit statement-based
logging (READ COMMITTED or READ UNCOMMITTED), the statement was not logged and replicated when
using STATEMENT or MIXED logging mode. (Bug #36763) However, it is still applied on replicas using
InnoDB in the manner described previously.

On a system with a large InnoDB buffer pool and innodb_adaptive_hash_index enabled, TRUNCATE
TABLE operations may cause a temporary drop in system performance due to an LRU scan that occurs
when removing an InnoDB table's adaptive hash index entries. The problem was addressed for DROP
TABLE in MySQL 5.5.23 (Bug #13704145, Bug #64284) but remains a known issue for TRUNCATE TABLE
(Bug #68184).

TRUNCATE TABLE can be used with Performance Schema summary tables, but the effect is to reset
the summary columns to 0 or NULL, not to remove rows. See Section 22.12.9, “Performance Schema
Summary Tables”.

13.2 Data Manipulation Statements

13.2.1 CALL Statement
CALL sp_name([parameter[,...]])
CALL sp_name[()]

The CALL statement invokes a stored procedure that was defined previously with CREATE PROCEDURE.

Stored procedures that take no arguments can be invoked without parentheses. That is, CALL p() and
CALL p are equivalent.

CALL can pass back values to its caller using parameters that are declared as OUT or INOUT parameters.
When the procedure returns, a client program can also obtain the number of rows affected for the final
statement executed within the routine: At the SQL level, call the ROW_COUNT() function; from the C API,
call the mysql_affected_rows() function.

For information about the effect of unhandled conditions on procedure parameters, see Section 13.6.7.8,
“Condition Handling and OUT or INOUT Parameters”.

To get back a value from a procedure using an OUT or INOUT parameter, pass the parameter by means of
a user variable, and then check the value of the variable after the procedure returns. (If you are calling the
procedure from within another stored procedure or function, you can also pass a routine parameter or local
routine variable as an IN or INOUT parameter.) For an INOUT parameter, initialize its value before passing
it to the procedure. The following procedure has an OUT parameter that the procedure sets to the current
server version, and an INOUT value that the procedure increments by one from its current value:

1733

https://dev.mysql.com/doc/c-api/5.6/en/mysql-affected-rows.html

CALL Statement

DELIMITER //

CREATE PROCEDURE p (OUT ver_param VARCHAR(25), INOUT incr_param INT)
BEGIN
 # Set value of OUT parameter
 SELECT VERSION() INTO ver_param;
 # Increment value of INOUT parameter
 SET incr_param = incr_param + 1;
END //

DELIMITER ;

Before calling the procedure, initialize the variable to be passed as the INOUT parameter. After calling the
procedure, the values of the two variables have been set or modified:

mysql> SET @increment = 10;
mysql> CALL p(@version, @increment);
mysql> SELECT @version, @increment;
+----------+------------+
| @version | @increment |
+----------+------------+
| 5.6.51 | 11 |
+----------+------------+

In prepared CALL statements used with PREPARE and EXECUTE, placeholders can be used for IN
parameters, OUT, and INOUT parameters. These types of parameters can be used as follows:

mysql> SET @increment = 10;
mysql> PREPARE s FROM 'CALL p(?, ?)';
mysql> EXECUTE s USING @version, @increment;
mysql> SELECT @version, @increment;
+----------+------------+
| @version | @increment |
+----------+------------+
| 5.6.51 | 11 |
+----------+------------+

To write C programs that use the CALL SQL statement to execute stored procedures that produce result
sets, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each CALL returns a result to
indicate the call status, in addition to any result sets that might be returned by statements executed within
the procedure. CLIENT_MULTI_RESULTS must also be enabled if CALL is used to execute any stored
procedure that contains prepared statements. It cannot be determined when such a procedure is loaded
whether those statements produce result sets, so it is necessary to assume that they do so.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(), either explicitly by
passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing CLIENT_MULTI_STATEMENTS
(which also enables CLIENT_MULTI_RESULTS). CLIENT_MULTI_RESULTS is enabled by default.

To process the result of a CALL statement executed using mysql_query() or mysql_real_query(),
use a loop that calls mysql_next_result() to determine whether there are more results. For an
example, see Multiple Statement Execution Support.

C programs can use the prepared-statement interface to execute CALL statements and access OUT and
INOUT parameters. This is done by processing the result of a CALL statement using a loop that calls
mysql_stmt_next_result() to determine whether there are more results. For an example, see
Prepared CALL Statement Support. Languages that provide a MySQL interface can use prepared CALL
statements to directly retrieve OUT and INOUT procedure parameters.

Metadata changes to objects referred to by stored programs are detected and cause automatic reparsing
of the affected statements when the program is next executed. For more information, see Section 8.10.4,
“Caching of Prepared Statements and Stored Programs”.

1734

https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-query.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-query.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-next-result.html
https://dev.mysql.com/doc/c-api/5.6/en/c-api-multiple-queries.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-stmt-next-result.html
https://dev.mysql.com/doc/c-api/5.6/en/c-api-prepared-call-statements.html

DELETE Statement

13.2.2 DELETE Statement

DELETE is a DML statement that removes rows from a table.

Single-Table Syntax

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [WHERE where_condition]
 [ORDER BY ...]
 [LIMIT row_count]

The DELETE statement deletes rows from tbl_name and returns the number of deleted rows. To check
the number of deleted rows, call the ROW_COUNT() function described in Section 12.16, “Information
Functions”.

Main Clauses

The conditions in the optional WHERE clause identify which rows to delete. With no WHERE clause, all rows
are deleted.

where_condition is an expression that evaluates to true for each row to be deleted. It is specified as
described in Section 13.2.9, “SELECT Statement”.

If the ORDER BY clause is specified, the rows are deleted in the order that is specified. The LIMIT clause
places a limit on the number of rows that can be deleted. These clauses apply to single-table deletes, but
not multi-table deletes.

Multiple-Table Syntax

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
 tbl_name[.*] [, tbl_name[.*]] ...
 FROM table_references
 [WHERE where_condition]

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
 FROM tbl_name[.*] [, tbl_name[.*]] ...
 USING table_references
 [WHERE where_condition]

Privileges

You need the DELETE privilege on a table to delete rows from it. You need only the SELECT privilege for
any columns that are only read, such as those named in the WHERE clause.

Performance

When you do not need to know the number of deleted rows, the TRUNCATE TABLE statement is a faster
way to empty a table than a DELETE statement with no WHERE clause. Unlike DELETE, TRUNCATE TABLE
cannot be used within a transaction or if you have a lock on the table. See Section 13.1.33, “TRUNCATE
TABLE Statement” and Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”.

The speed of delete operations may also be affected by factors discussed in Section 8.2.4.3, “Optimizing
DELETE Statements”.

To ensure that a given DELETE statement does not take too much time, the MySQL-specific LIMIT
row_count clause for DELETE specifies the maximum number of rows to be deleted. If the number of
rows to delete is larger than the limit, repeat the DELETE statement until the number of affected rows is
less than the LIMIT value.

1735

DELETE Statement

Subqueries

You cannot delete from a table and select from the same table in a subquery.

Partitioned Table Support

DELETE supports explicit partition selection using the PARTITION clause, which takes a list of the comma-
separated names of one or more partitions or subpartitions (or both) from which to select rows to be
dropped. Partitions not included in the list are ignored. Given a partitioned table t with a partition named
p0, executing the statement DELETE FROM t PARTITION (p0) has the same effect on the table as
executing ALTER TABLE t TRUNCATE PARTITION (p0); in both cases, all rows in partition p0 are
dropped.

PARTITION can be used along with a WHERE condition, in which case the condition is tested only on rows
in the listed partitions. For example, DELETE FROM t PARTITION (p0) WHERE c < 5 deletes rows
only from partition p0 for which the condition c < 5 is true; rows in any other partitions are not checked
and thus not affected by the DELETE.

The PARTITION clause can also be used in multiple-table DELETE statements. You can use up to one
such option per table named in the FROM option.

For more information and examples, see Section 19.5, “Partition Selection”.

Auto-Increment Columns

If you delete the row containing the maximum value for an AUTO_INCREMENT column, the value is not
reused for a MyISAM or InnoDB table. If you delete all rows in the table with DELETE FROM tbl_name
(without a WHERE clause) in autocommit mode, the sequence starts over for all storage engines except
InnoDB and MyISAM. There are some exceptions to this behavior for InnoDB tables, as discussed in
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”.

For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column key.
In this case, reuse of values deleted from the top of the sequence occurs even for MyISAM tables. See
Section 3.6.9, “Using AUTO_INCREMENT”.

Modifiers

The DELETE statement supports the following modifiers:

• If you specify the LOW_PRIORITY modifier, the server delays execution of the DELETE until no other
clients are reading from the table. This affects only storage engines that use only table-level locking
(such as MyISAM, MEMORY, and MERGE).

• For MyISAM tables, if you use the QUICK modifier, the storage engine does not merge index leaves
during delete, which may speed up some kinds of delete operations.

• The IGNORE modifier causes MySQL to ignore errors during the process of deleting rows. (Errors
encountered during the parsing stage are processed in the usual manner.) Errors that are ignored due to
the use of IGNORE are returned as warnings.

Order of Deletion

If the DELETE statement includes an ORDER BY clause, rows are deleted in the order specified by the
clause. This is useful primarily in conjunction with LIMIT. For example, the following statement finds rows
matching the WHERE clause, sorts them by timestamp_column, and deletes the first (oldest) one:

DELETE FROM somelog WHERE user = 'jcole'

1736

DELETE Statement

ORDER BY timestamp_column LIMIT 1;

ORDER BY also helps to delete rows in an order required to avoid referential integrity violations.

InnoDB Tables

If you are deleting many rows from a large table, you may exceed the lock table size for an InnoDB table.
To avoid this problem, or simply to minimize the time that the table remains locked, the following strategy
(which does not use DELETE at all) might be helpful:

1. Select the rows not to be deleted into an empty table that has the same structure as the original table:

INSERT INTO t_copy SELECT * FROM t WHERE ... ;

2. Use RENAME TABLE to atomically move the original table out of the way and rename the copy to the
original name:

RENAME TABLE t TO t_old, t_copy TO t;

3. Drop the original table:

DROP TABLE t_old;

No other sessions can access the tables involved while RENAME TABLE executes, so the rename
operation is not subject to concurrency problems. See Section 13.1.32, “RENAME TABLE Statement”.

MyISAM Tables

In MyISAM tables, deleted rows are maintained in a linked list and subsequent INSERT operations reuse
old row positions. To reclaim unused space and reduce file sizes, use the OPTIMIZE TABLE statement or
the myisamchk utility to reorganize tables. OPTIMIZE TABLE is easier to use, but myisamchk is faster.
See Section 13.7.2.4, “OPTIMIZE TABLE Statement”, and Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

The QUICK modifier affects whether index leaves are merged for delete operations. DELETE QUICK is
most useful for applications where index values for deleted rows are replaced by similar index values from
rows inserted later. In this case, the holes left by deleted values are reused.

DELETE QUICK is not useful when deleted values lead to underfilled index blocks spanning a range of
index values for which new inserts occur again. In this case, use of QUICK can lead to wasted space in the
index that remains unreclaimed. Here is an example of such a scenario:

1. Create a table that contains an indexed AUTO_INCREMENT column.

2. Insert many rows into the table. Each insert results in an index value that is added to the high end of
the index.

3. Delete a block of rows at the low end of the column range using DELETE QUICK.

In this scenario, the index blocks associated with the deleted index values become underfilled but are not
merged with other index blocks due to the use of QUICK. They remain underfilled when new inserts occur,
because new rows do not have index values in the deleted range. Furthermore, they remain underfilled
even if you later use DELETE without QUICK, unless some of the deleted index values happen to lie in
index blocks within or adjacent to the underfilled blocks. To reclaim unused index space under these
circumstances, use OPTIMIZE TABLE.

If you are going to delete many rows from a table, it might be faster to use DELETE QUICK followed by
OPTIMIZE TABLE. This rebuilds the index rather than performing many index block merge operations.

1737

DELETE Statement

Multi-Table Deletes

You can specify multiple tables in a DELETE statement to delete rows from one or more tables depending
on the condition in the WHERE clause. You cannot use ORDER BY or LIMIT in a multiple-table DELETE.
The table_references clause lists the tables involved in the join, as described in Section 13.2.9.2,
“JOIN Clause”.

For the first multiple-table syntax, only matching rows from the tables listed before the FROM clause are
deleted. For the second multiple-table syntax, only matching rows from the tables listed in the FROM clause
(before the USING clause) are deleted. The effect is that you can delete rows from many tables at the
same time and have additional tables that are used only for searching:

DELETE t1, t2 FROM t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;

Or:

DELETE FROM t1, t2 USING t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;

These statements use all three tables when searching for rows to delete, but delete matching rows only
from tables t1 and t2.

The preceding examples use INNER JOIN, but multiple-table DELETE statements can use other types of
join permitted in SELECT statements, such as LEFT JOIN. For example, to delete rows that exist in t1
that have no match in t2, use a LEFT JOIN:

DELETE t1 FROM t1 LEFT JOIN t2 ON t1.id=t2.id WHERE t2.id IS NULL;

The syntax permits .* after each tbl_name for compatibility with Access.

If you use a multiple-table DELETE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/child
relationship. In this case, the statement fails and rolls back. Instead, you should delete from a single table
and rely on the ON DELETE capabilities that InnoDB provides to cause the other tables to be modified
accordingly.

Note

If you declare an alias for a table, you must use the alias when referring to the table:

DELETE t1 FROM test AS t1, test2 WHERE ...

Table aliases in a multiple-table DELETE should be declared only in the table_references part of the
statement. Elsewhere, alias references are permitted but not alias declarations.

Correct:

DELETE a1, a2 FROM t1 AS a1 INNER JOIN t2 AS a2
WHERE a1.id=a2.id;

DELETE FROM a1, a2 USING t1 AS a1 INNER JOIN t2 AS a2
WHERE a1.id=a2.id;

Incorrect:

DELETE t1 AS a1, t2 AS a2 FROM t1 INNER JOIN t2
WHERE a1.id=a2.id;

DELETE FROM t1 AS a1, t2 AS a2 USING t1 INNER JOIN t2
WHERE a1.id=a2.id;

1738

DO Statement

13.2.3 DO Statement
DO expr [, expr] ...

DO executes the expressions but does not return any results. In most respects, DO is shorthand for SELECT
expr, ..., but has the advantage that it is slightly faster when you do not care about the result.

DO is useful primarily with functions that have side effects, such as RELEASE_LOCK().

Example: This SELECT statement pauses, but also produces a result set:

mysql> SELECT SLEEP(5);
+----------+
| SLEEP(5) |
+----------+
| 0 |
+----------+
1 row in set (5.02 sec)

DO, on the other hand, pauses without producing a result set.:

mysql> DO SLEEP(5);
Query OK, 0 rows affected (4.99 sec)

This could be useful, for example in a stored function or trigger, which prohibit statements that produce
result sets.

DO only executes expressions. It cannot be used in all cases where SELECT can be used. For example, DO
id FROM t1 is invalid because it references a table.

13.2.4 HANDLER Statement
HANDLER tbl_name OPEN [[AS] alias]

HANDLER tbl_name READ index_name { = | <= | >= | < | > } (value1,value2,...)
 [WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ index_name { FIRST | NEXT | PREV | LAST }
 [WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ { FIRST | NEXT }
 [WHERE where_condition] [LIMIT ...]

HANDLER tbl_name CLOSE

The HANDLER statement provides direct access to table storage engine interfaces. It is available for
InnoDB and MyISAM tables.

The HANDLER ... OPEN statement opens a table, making it accessible using subsequent HANDLER ...
READ statements. This table object is not shared by other sessions and is not closed until the session calls
HANDLER ... CLOSE or the session terminates.

If you open the table using an alias, further references to the open table with other HANDLER statements
must use the alias rather than the table name. If you do not use an alias, but open the table using a
table name qualified by the database name, further references must use the unqualified table name. For
example, for a table opened using mydb.mytable, further references must use mytable.

The first HANDLER ... READ syntax fetches a row where the index specified satisfies the given values
and the WHERE condition is met. If you have a multiple-column index, specify the index column values as a
comma-separated list. Either specify values for all the columns in the index, or specify values for a leftmost
prefix of the index columns. Suppose that an index my_idx includes three columns named col_a, col_b,
and col_c, in that order. The HANDLER statement can specify values for all three columns in the index, or
for the columns in a leftmost prefix. For example:

1739

HANDLER Statement

HANDLER ... READ my_idx = (col_a_val,col_b_val,col_c_val) ...
HANDLER ... READ my_idx = (col_a_val,col_b_val) ...
HANDLER ... READ my_idx = (col_a_val) ...

To employ the HANDLER interface to refer to a table's PRIMARY KEY, use the quoted identifier
`PRIMARY`:

HANDLER tbl_name READ `PRIMARY` ...

The second HANDLER ... READ syntax fetches a row from the table in index order that matches the
WHERE condition.

The third HANDLER ... READ syntax fetches a row from the table in natural row order that matches the
WHERE condition. It is faster than HANDLER tbl_name READ index_name when a full table scan is
desired. Natural row order is the order in which rows are stored in a MyISAM table data file. This statement
works for InnoDB tables as well, but there is no such concept because there is no separate data file.

Without a LIMIT clause, all forms of HANDLER ... READ fetch a single row if one is available. To return
a specific number of rows, include a LIMIT clause. It has the same syntax as for the SELECT statement.
See Section 13.2.9, “SELECT Statement”.

HANDLER ... CLOSE closes a table that was opened with HANDLER ... OPEN.

There are several reasons to use the HANDLER interface instead of normal SELECT statements:

• HANDLER is faster than SELECT:

• A designated storage engine handler object is allocated for the HANDLER ... OPEN. The object is
reused for subsequent HANDLER statements for that table; it need not be reinitialized for each one.

• There is less parsing involved.

• There is no optimizer or query-checking overhead.

• The handler interface does not have to provide a consistent look of the data (for example, dirty reads
are permitted), so the storage engine can use optimizations that SELECT does not normally permit.

• HANDLER makes it easier to port to MySQL applications that use a low-level ISAM-like interface. (See
Section 14.20, “InnoDB memcached Plugin” for an alternative way to adapt applications that use the key-
value store paradigm.)

• HANDLER enables you to traverse a database in a manner that is difficult (or even impossible) to
accomplish with SELECT. The HANDLER interface is a more natural way to look at data when working
with applications that provide an interactive user interface to the database.

HANDLER is a somewhat low-level statement. For example, it does not provide consistency. That is,
HANDLER ... OPEN does not take a snapshot of the table, and does not lock the table. This means
that after a HANDLER ... OPEN statement is issued, table data can be modified (by the current session
or other sessions) and these modifications might be only partially visible to HANDLER ... NEXT or
HANDLER ... PREV scans.

An open handler can be closed and marked for reopen, in which case the handler loses its position in the
table. This occurs when both of the following circumstances are true:

• Any session executes FLUSH TABLES or DDL statements on the handler's table.

• The session in which the handler is open executes non-HANDLER statements that use tables.

TRUNCATE TABLE for a table closes all handlers for the table that were opened with HANDLER OPEN.

1740

INSERT Statement

If a table is flushed with FLUSH TABLES tbl_name WITH READ LOCK was opened with HANDLER, the
handler is implicitly flushed and loses its position.

HANDLER is not supported with partitioned tables.

13.2.5 INSERT Statement
INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 {VALUES | VALUE} (value_list) [, (value_list)] ...
 [ON DUPLICATE KEY UPDATE assignment_list]

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 SET assignment_list
 [ON DUPLICATE KEY UPDATE assignment_list]

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 SELECT ...
 [ON DUPLICATE KEY UPDATE assignment_list]

value:
 {expr | DEFAULT}

value_list:
 value [, value] ...

assignment:
 col_name = value

assignment_list:
 assignment [, assignment] ...

INSERT inserts new rows into an existing table. The INSERT ... VALUES and INSERT ... SET forms
of the statement insert rows based on explicitly specified values. The INSERT ... SELECT form inserts
rows selected from another table or tables. INSERT with an ON DUPLICATE KEY UPDATE clause enables
existing rows to be updated if a row to be inserted would cause a duplicate value in a UNIQUE index or
PRIMARY KEY.

For additional information about INSERT ... SELECT and INSERT ... ON DUPLICATE KEY
UPDATE, see Section 13.2.5.1, “INSERT ... SELECT Statement”, and Section 13.2.5.2, “INSERT ... ON
DUPLICATE KEY UPDATE Statement”.

Inserting into a table requires the INSERT privilege for the table. If the ON DUPLICATE KEY UPDATE
clause is used and a duplicate key causes an UPDATE to be performed instead, the statement requires the
UPDATE privilege for the columns to be updated. For columns that are read but not modified you need only
the SELECT privilege (such as for a column referenced only on the right hand side of an col_name=expr
assignment in an ON DUPLICATE KEY UPDATE clause).

When inserting into a partitioned table, you can control which partitions and subpartitions accept new
rows. The PARTITION clause takes a list of the comma-separated names of one or more partitions or
subpartitions (or both) of the table. If any of the rows to be inserted by a given INSERT statement do
not match one of the partitions listed, the INSERT statement fails with the error Found a row not
matching the given partition set. For more information and examples, see Section 19.5,
“Partition Selection”.

1741

INSERT Statement

tbl_name is the table into which rows should be inserted. Specify the columns for which the statement
provides values as follows:

• Provide a parenthesized list of comma-separated column names following the table name. In this case, a
value for each named column must be provided by the VALUES list or the SELECT statement.

• If you do not specify a list of column names for INSERT ... VALUES or INSERT ... SELECT, values
for every column in the table must be provided by the VALUES list or the SELECT statement. If you do not
know the order of the columns in the table, use DESCRIBE tbl_name to find out.

• A SET clause indicates columns explicitly by name, together with the value to assign each one.

Column values can be given in several ways:

• If strict SQL mode is not enabled, any column not explicitly given a value is set to its default (explicit or
implicit) value. For example, if you specify a column list that does not name all the columns in the table,
unnamed columns are set to their default values. Default value assignment is described in Section 11.5,
“Data Type Default Values”. See also Section 1.6.3.3, “Constraints on Invalid Data”.

If strict SQL mode is enabled, an INSERT statement generates an error if it does not specify an explicit
value for every column that has no default value. See Section 5.1.10, “Server SQL Modes”.

• If both the column list and the VALUES list are empty, INSERT creates a row with each column set to its
default value:

INSERT INTO tbl_name () VALUES();

If strict mode is not enabled, MySQL uses the implicit default value for any column that has no explicitly
defined default. If strict mode is enabled, an error occurs if any column has no default value.

• Use the keyword DEFAULT to set a column explicitly to its default value. This makes it easier to write
INSERT statements that assign values to all but a few columns, because it enables you to avoid writing
an incomplete VALUES list that does not include a value for each column in the table. Otherwise, you
must provide the list of column names corresponding to each value in the VALUES list.

• In expressions, you can use DEFAULT(col_name) to produce the default value for column col_name.

• Type conversion of an expression expr that provides a column value might occur if the expression data
type does not match the column data type. Conversion of a given value can result in different inserted
values depending on the column type. For example, inserting the string '1999.0e-2' into an INT,
FLOAT, DECIMAL(10,6), or YEAR column inserts the value 1999, 19.9921, 19.992100, or 1999,
respectively. The value stored in the INT and YEAR columns is 1999 because the string-to-number
conversion looks only at as much of the initial part of the string as may be considered a valid integer or
year. For the FLOAT and DECIMAL columns, the string-to-number conversion considers the entire string
a valid numeric value.

• An expression expr can refer to any column that was set earlier in a value list. For example, you can do
this because the value for col2 refers to col1, which has previously been assigned:

INSERT INTO tbl_name (col1,col2) VALUES(15,col1*2);

But the following is not legal, because the value for col1 refers to col2, which is assigned after col1:

INSERT INTO tbl_name (col1,col2) VALUES(col2*2,15);

An exception occurs for columns that contain AUTO_INCREMENT values. Because AUTO_INCREMENT
values are generated after other value assignments, any reference to an AUTO_INCREMENT column in
the assignment returns a 0.

1742

INSERT Statement

INSERT statements that use VALUES syntax can insert multiple rows. To do this, include multiple lists
of comma-separated column values, with lists enclosed within parentheses and separated by commas.
Example:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3),(4,5,6),(7,8,9);

Each values list must contain exactly as many values as are to be inserted per row. The following
statement is invalid because it contains one list of nine values, rather than three lists of three values each:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3,4,5,6,7,8,9);

VALUE is a synonym for VALUES in this context. Neither implies anything about the number of values lists,
nor about the number of values per list. Either may be used whether there is a single values list or multiple
lists, and regardless of the number of values per list.

The affected-rows value for an INSERT can be obtained using the ROW_COUNT() SQL function or
the mysql_affected_rows() C API function. See Section 12.16, “Information Functions”, and
mysql_affected_rows().

If you use an INSERT ... VALUES statement with multiple value lists or INSERT ... SELECT, the
statement returns an information string in this format:

Records: N1 Duplicates: N2 Warnings: N3

If you are using the C API, the information string can be obtained by invoking the mysql_info() function.
See mysql_info().

Records indicates the number of rows processed by the statement. (This is not necessarily the number
of rows actually inserted because Duplicates can be nonzero.) Duplicates indicates the number of
rows that could not be inserted because they would duplicate some existing unique index value. Warnings
indicates the number of attempts to insert column values that were problematic in some way. Warnings can
occur under any of the following conditions:

• Inserting NULL into a column that has been declared NOT NULL. For multiple-row INSERT statements or
INSERT INTO ... SELECT statements, the column is set to the implicit default value for the column
data type. This is 0 for numeric types, the empty string ('') for string types, and the “zero” value for date
and time types. INSERT INTO ... SELECT statements are handled the same way as multiple-row
inserts because the server does not examine the result set from the SELECT to see whether it returns
a single row. (For a single-row INSERT, no warning occurs when NULL is inserted into a NOT NULL
column. Instead, the statement fails with an error.)

• Setting a numeric column to a value that lies outside the column range. The value is clipped to the
closest endpoint of the range.

• Assigning a value such as '10.34 a' to a numeric column. The trailing nonnumeric text is stripped off
and the remaining numeric part is inserted. If the string value has no leading numeric part, the column is
set to 0.

• Inserting a string into a string column (CHAR, VARCHAR, TEXT, or BLOB) that exceeds the column
maximum length. The value is truncated to the column maximum length.

• Inserting a value into a date or time column that is illegal for the data type. The column is set to the
appropriate zero value for the type.

• For INSERT examples involving AUTO_INCREMENT column values, see Section 3.6.9, “Using
AUTO_INCREMENT”.

1743

https://dev.mysql.com/doc/c-api/5.6/en/mysql-affected-rows.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-affected-rows.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-info.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-info.html

INSERT Statement

If INSERT inserts a row into a table that has an AUTO_INCREMENT column, you can find the value used
for that column by using the LAST_INSERT_ID() SQL function or the mysql_insert_id() C API
function.

Note

These two functions do not always behave identically. The behavior of INSERT
statements with respect to AUTO_INCREMENT columns is discussed further in
Section 12.16, “Information Functions”, and mysql_insert_id().

The INSERT statement supports the following modifiers:

• If you use the DELAYED modifier, the server puts the row or rows to be inserted into a buffer, and the
client issuing the INSERT DELAYED statement can then continue immediately. If the table is in use, the
server holds the rows. When the table is free, the server begins inserting rows, checking periodically
to see whether there are any new read requests for the table. If there are, the delayed row queue is
suspended until the table becomes free again. See Section 13.2.5.3, “INSERT DELAYED Statement”.

DELAYED is ignored with INSERT ... SELECT or INSERT ... ON DUPLICATE KEY UPDATE.

DELAYED is also disregarded for an INSERT that uses functions accessing tables or triggers, or that is
called from a function or a trigger.

Note

As of MySQL 5.6.6, INSERT DELAYED is deprecated; expect it to be removed in
a future release. Use INSERT (without DELAYED) instead.

• If you use the LOW_PRIORITY modifier, execution of the INSERT is delayed until no other clients are
reading from the table. This includes other clients that began reading while existing clients are reading,
and while the INSERT LOW_PRIORITY statement is waiting. It is possible, therefore, for a client that
issues an INSERT LOW_PRIORITY statement to wait for a very long time (or even forever) in a read-
heavy environment. (This is in contrast to INSERT DELAYED, which lets the client continue at once.)

LOW_PRIORITY affects only storage engines that use only table-level locking (such as MyISAM,
MEMORY, and MERGE).

Note

LOW_PRIORITY should normally not be used with MyISAM tables because doing
so disables concurrent inserts. See Section 8.11.3, “Concurrent Inserts”.

• If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option if the
server was started with that option. It also causes concurrent inserts not to be used. See Section 8.11.3,
“Concurrent Inserts”.

HIGH_PRIORITY affects only storage engines that use only table-level locking (such as MyISAM,
MEMORY, and MERGE).

• If you use the IGNORE modifier, errors that occur while executing the INSERT statement are ignored. For
example, without IGNORE, a row that duplicates an existing UNIQUE index or PRIMARY KEY value in the
table causes a duplicate-key error and the statement is aborted. With IGNORE, the row is discarded and
no error occurs. Ignored errors may generate warnings instead, although duplicate-key errors do not.

 IGNORE has a similar effect on inserts into partitioned tables where no partition matching a given value
is found. Without IGNORE, such INSERT statements are aborted with an error. When INSERT IGNORE

1744

https://dev.mysql.com/doc/c-api/5.6/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-insert-id.html

INSERT Statement

is used, the insert operation fails silently for rows containing the unmatched value, but inserts rows that
are matched. For an example, see Section 19.2.2, “LIST Partitioning”.

Data conversions that would trigger errors abort the statement if IGNORE is not specified. With IGNORE,
invalid values are adjusted to the closest values and inserted; warnings are produced but the statement
does not abort. You can determine with the mysql_info() C API function how many rows were
actually inserted into the table.

You can use REPLACE instead of INSERT to overwrite old rows. REPLACE is the counterpart to INSERT
IGNORE in the treatment of new rows that contain unique key values that duplicate old rows: The new
rows replace the old rows rather than being discarded. See Section 13.2.8, “REPLACE Statement”.

• If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate value
in a UNIQUE index or PRIMARY KEY, an UPDATE of the old row occurs. The affected-rows value per row
is 1 if the row is inserted as a new row, 2 if an existing row is updated, and 0 if an existing row is set to
its current values. If you specify the CLIENT_FOUND_ROWS flag to the mysql_real_connect() C API
function when connecting to mysqld, the affected-rows value is 1 (not 0) if an existing row is set to its
current values. See Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”.

An INSERT statement affecting a partitioned table using a storage engine such as MyISAM that employs
table-level locks locks only those partitions into which rows are actually inserted. (For storage engines such
as InnoDB that employ row-level locking, no locking of partitions takes place.) For more information, see
Section 19.6.4, “Partitioning and Locking”.

13.2.5.1 INSERT ... SELECT Statement

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 SELECT ...
 [ON DUPLICATE KEY UPDATE assignment_list]

value:
 {expr | DEFAULT}

assignment:
 col_name = value

assignment_list:
 assignment [, assignment] ...

With INSERT ... SELECT, you can quickly insert many rows into a table from the result of a SELECT
statement, which can select from one or many tables. For example:

INSERT INTO tbl_temp2 (fld_id)
 SELECT tbl_temp1.fld_order_id
 FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

The following conditions hold for INSERT ... SELECT statements:

• Specify IGNORE to ignore rows that would cause duplicate-key violations.

• DELAYED is ignored with INSERT ... SELECT.

• The target table of the INSERT statement may appear in the FROM clause of the SELECT part of the
query. However, you cannot insert into a table and select from the same table in a subquery.

When selecting from and inserting into the same table, MySQL creates an internal temporary table
to hold the rows from the SELECT and then inserts those rows into the target table. However, you

1745

https://dev.mysql.com/doc/c-api/5.6/en/mysql-info.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-connect.html

INSERT Statement

cannot use INSERT INTO t ... SELECT ... FROM t when t is a TEMPORARY table, because
TEMPORARY tables cannot be referred to twice in the same statement. See Section 8.4.4, “Internal
Temporary Table Use in MySQL”, and Section B.3.6.2, “TEMPORARY Table Problems”.

• AUTO_INCREMENT columns work as usual.

• To ensure that the binary log can be used to re-create the original tables, MySQL does not permit
concurrent inserts for INSERT ... SELECT statements (see Section 8.11.3, “Concurrent Inserts”).

• To avoid ambiguous column reference problems when the SELECT and the INSERT refer to the same
table, provide a unique alias for each table used in the SELECT part, and qualify column names in that
part with the appropriate alias.

You can explicitly select which partitions or subpartitions (or both) of the source or target table (or both) are
to be used with a PARTITION clause following the name of the table. When PARTITION is used with the
name of the source table in the SELECT portion of the statement, rows are selected only from the partitions
or subpartitions named in its partition list. When PARTITION is used with the name of the target table
for the INSERT portion of the statement, it must be possible to insert all rows selected into the partitions
or subpartitions named in the partition list following the option. Otherwise, the INSERT ... SELECT
statement fails. For more information and examples, see Section 19.5, “Partition Selection”.

For INSERT ... SELECT statements, see Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE
Statement” for conditions under which the SELECT columns can be referred to in an ON DUPLICATE KEY
UPDATE clause.

The order in which a SELECT statement with no ORDER BY clause returns rows is nondeterministic. This
means that, when using replication, there is no guarantee that such a SELECT returns rows in the same
order on the source and the replica, which can lead to inconsistencies between them. To prevent this
from occurring, always write INSERT ... SELECT statements that are to be replicated using an ORDER
BY clause that produces the same row order on the source and the replica. See also Section 17.4.1.17,
“Replication and LIMIT”.

Due to this issue, INSERT ... SELECT ON DUPLICATE KEY UPDATE and INSERT IGNORE ...
SELECT statements are flagged as unsafe for statement-based replication. Such statements produce a
warning in the error log when using statement-based mode and are written to the binary log using the row-
based format when using MIXED mode. (Bug #11758262, Bug #50439)

See also Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based
Replication”.

An INSERT ... SELECT statement affecting partitioned tables using a storage engine such as MyISAM
that employs table-level locks locks all partitions of the target table; however, only those partitions that
are actually read from the source table are locked. (This does not occur with tables using storage engines
such as InnoDB that employ row-level locking.) For more information, see Section 19.6.4, “Partitioning and
Locking”.

13.2.5.2 INSERT ... ON DUPLICATE KEY UPDATE Statement

If you specify an ON DUPLICATE KEY UPDATE clause and a row to be inserted would cause a duplicate
value in a UNIQUE index or PRIMARY KEY, an UPDATE of the old row occurs. For example, if column a is
declared as UNIQUE and contains the value 1, the following two statements have similar effect:

INSERT INTO t1 (a,b,c) VALUES (1,2,3)
 ON DUPLICATE KEY UPDATE c=c+1;

UPDATE t1 SET c=c+1 WHERE a=1;

1746

INSERT Statement

The effects are not quite identical: For an InnoDB table where a is an auto-increment column, the INSERT
statement increases the auto-increment value but the UPDATE does not.

If column b is also unique, the INSERT is equivalent to this UPDATE statement instead:

UPDATE t1 SET c=c+1 WHERE a=1 OR b=2 LIMIT 1;

If a=1 OR b=2 matches several rows, only one row is updated. In general, you should try to avoid using
an ON DUPLICATE KEY UPDATE clause on tables with multiple unique indexes.

With ON DUPLICATE KEY UPDATE, the affected-rows value per row is 1 if the row is inserted as a new
row, 2 if an existing row is updated, and 0 if an existing row is set to its current values. If you specify the
CLIENT_FOUND_ROWS flag to the mysql_real_connect() C API function when connecting to mysqld,
the affected-rows value is 1 (not 0) if an existing row is set to its current values.

If a table contains an AUTO_INCREMENT column and INSERT ... ON DUPLICATE KEY UPDATE inserts
or updates a row, the LAST_INSERT_ID() function returns the AUTO_INCREMENT value.

The ON DUPLICATE KEY UPDATE clause can contain multiple column assignments, separated by
commas.

In assignment value expressions in the ON DUPLICATE KEY UPDATE clause, you can use the
VALUES(col_name) function to refer to column values from the INSERT portion of the INSERT ...
ON DUPLICATE KEY UPDATE statement. In other words, VALUES(col_name) in the ON DUPLICATE
KEY UPDATE clause refers to the value of col_name that would be inserted, had no duplicate-key conflict
occurred. This function is especially useful in multiple-row inserts. The VALUES() function is meaningful
only in the ON DUPLICATE KEY UPDATE clause or INSERT statements and returns NULL otherwise.
Example:

INSERT INTO t1 (a,b,c) VALUES (1,2,3),(4,5,6)
 ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

That statement is identical to the following two statements:

INSERT INTO t1 (a,b,c) VALUES (1,2,3)
 ON DUPLICATE KEY UPDATE c=3;
INSERT INTO t1 (a,b,c) VALUES (4,5,6)
 ON DUPLICATE KEY UPDATE c=9;

The DELAYED option is ignored when you use ON DUPLICATE KEY UPDATE.

For INSERT ... SELECT statements, these rules apply regarding acceptable forms of SELECT query
expressions that you can refer to in an ON DUPLICATE KEY UPDATE clause:

• References to columns from queries on a single table, which may be a derived table.

• References to columns from queries on a join over multiple tables.

• References to columns from DISTINCT queries.

• References to columns in other tables, as long as the SELECT does not use GROUP BY. One side effect
is that you must qualify references to nonunique column names.

References to columns from a UNION do not work reliably. To work around this restriction, rewrite the
UNION as a derived table so that its rows can be treated as a single-table result set. For example, this
statement can produce incorrect results:

INSERT INTO t1 (a, b)
 SELECT c, d FROM t2
 UNION

1747

https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-connect.html

INSERT Statement

 SELECT e, f FROM t3
ON DUPLICATE KEY UPDATE b = b + c;

Instead, use an equivalent statement that rewrites the UNION as a derived table:

INSERT INTO t1 (a, b)
SELECT * FROM
 (SELECT c, d FROM t2
 UNION
 SELECT e, f FROM t3) AS dt
ON DUPLICATE KEY UPDATE b = b + c;

The technique of rewriting a query as a derived table also enables references to columns from GROUP BY
queries.

Because the results of INSERT ... SELECT statements depend on the ordering of rows from the
SELECT and this order cannot always be guaranteed, it is possible when logging INSERT ... SELECT
ON DUPLICATE KEY UPDATE statements for the source and the replica to diverge. Thus, INSERT ...
SELECT ON DUPLICATE KEY UPDATE statements are flagged as unsafe for statement-based replication.
Such statements produce a warning in the error log when using statement-based mode and are written to
the binary log using the row-based format when using MIXED mode. An INSERT ... ON DUPLICATE
KEY UPDATE statement against a table having more than one unique or primary key is also marked as
unsafe. (Bug #11765650, Bug #58637)

See also Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based
Replication”.

An INSERT ... ON DUPLICATE KEY UPDATE on a partitioned table using a storage engine such as
MyISAM that employs table-level locks locks any partitions of the table in which a partitioning key column
is updated. (This does not occur with tables using storage engines such as InnoDB that employ row-level
locking.) For more information, see Section 19.6.4, “Partitioning and Locking”.

13.2.5.3 INSERT DELAYED Statement

INSERT DELAYED ...

The DELAYED option for the INSERT statement is a MySQL extension to standard SQL that can be used
for certain kinds of tables (such as MyISAM). When a client uses INSERT DELAYED, it gets an okay from
the server at once, and the row is queued to be inserted when the table is not in use by any other thread.

Note

INSERT DELAYED is slower than a normal INSERT if the table is not otherwise
in use. There is also the additional overhead for the server to handle a separate
thread for each table for which there are delayed rows. This means that you should
use INSERT DELAYED only when you are really sure that you need it.

As of MySQL 5.6.6, INSERT DELAYED is deprecated; expect it to be removed in a
future release. Use INSERT (without DELAYED) instead.

The queued rows are held only in memory until they are inserted into the table. This means that if you
terminate mysqld forcibly (for example, with kill -9) or if mysqld dies unexpectedly, any queued rows
that have not been written to disk are lost.

There are some constraints on the use of DELAYED:

• INSERT DELAYED works only with MyISAM, MEMORY, ARCHIVE, and BLACKHOLE tables. For engines
that do not support DELAYED, an error occurs.

1748

INSERT Statement

• An error occurs for INSERT DELAYED if used with a table that has been locked with LOCK TABLES
because the insert must be handled by a separate thread, not by the session that holds the lock.

• For MyISAM tables, if there are no free blocks in the middle of the data file, concurrent SELECT and
INSERT statements are supported. Under these circumstances, you very seldom need to use INSERT
DELAYED with MyISAM.

• INSERT DELAYED should be used only for INSERT statements that specify value lists. The server
ignores DELAYED for INSERT ... SELECT or INSERT ... ON DUPLICATE KEY UPDATE
statements.

• Because the INSERT DELAYED statement returns immediately, before the rows are inserted, you cannot
use LAST_INSERT_ID() to get the AUTO_INCREMENT value that the statement might generate.

• DELAYED rows are not visible to SELECT statements until they actually have been inserted.

• INSERT DELAYED is handled as a simple INSERT (that is, without the DELAYED option) whenever the
value of binlog_format is STATEMENT or MIXED. (In the latter case, the statement does not trigger a
switch to row-based logging, and so is logged using the statement-based format.)

This does not apply when using row-based binary logging mode (binlog_format set to ROW), in which
INSERT DELAYED statements are always executed using the DELAYED option as specified, and logged
as row-update events.

• DELAYED is ignored on replica servers, so that INSERT DELAYED is treated as a normal INSERT on
replicas. This is because DELAYED could cause the slave to have different data than the source.

• Pending INSERT DELAYED statements are lost if a table is write locked and ALTER TABLE is used to
modify the table structure.

• INSERT DELAYED is not supported for views.

• INSERT DELAYED is not supported for partitioned tables.

The following describes in detail what happens when you use the DELAYED option to INSERT or REPLACE.
In this description, the “thread” is the thread that received an INSERT DELAYED statement and “handler” is
the thread that handles all INSERT DELAYED statements for a particular table.

• When a thread executes a DELAYED statement for a table, a handler thread is created to process all
DELAYED statements for the table, if no such handler already exists.

• The thread checks whether the handler has previously acquired a DELAYED lock; if not, it tells the
handler thread to do so. The DELAYED lock can be obtained even if other threads have a READ or WRITE
lock on the table. However, the handler waits for all ALTER TABLE locks or FLUSH TABLES statements
to finish, to ensure that the table structure is up to date.

• The thread executes the INSERT statement, but instead of writing the row to the table, it puts a copy of
the final row into a queue that is managed by the handler thread. Any syntax errors are noticed by the
thread and reported to the client program.

• The client cannot obtain from the server the number of duplicate rows or the AUTO_INCREMENT value for
the resulting row, because the INSERT returns before the insert operation has been completed. (If you
use the C API, the mysql_info() function does not return anything meaningful, for the same reason.)

• The binary log is updated by the handler thread when the row is inserted into the table. In case of
multiple-row inserts, the binary log is updated when the first row is inserted.

• Each time that delayed_insert_limit rows are written, the handler checks whether any SELECT
statements are still pending. If so, it permits these to execute before continuing.

1749

https://dev.mysql.com/doc/c-api/5.6/en/mysql-info.html

LOAD DATA Statement

• When the handler has no more rows in its queue, the table is unlocked. If no new INSERT DELAYED
statements are received within delayed_insert_timeout seconds, the handler terminates.

• If more than delayed_queue_size rows are pending in a specific handler queue, the thread
requesting INSERT DELAYED waits until there is room in the queue. This is done to ensure that mysqld
does not use all memory for the delayed memory queue.

• The handler thread shows up in the MySQL process list with delayed_insert in the Command column.
It is killed if you execute a FLUSH TABLES statement or kill it with KILL thread_id. However, before
exiting, it first stores all queued rows into the table. During this time it does not accept any new INSERT
statements from other threads. If you execute an INSERT DELAYED statement after this, a new handler
thread is created.

This means that INSERT DELAYED statements have higher priority than normal INSERT statements
if there is an INSERT DELAYED handler running. Other update statements have to wait until the
INSERT DELAYED queue is empty, someone terminates the handler thread (with KILL thread_id), or
someone executes a FLUSH TABLES.

• The following status variables provide information about INSERT DELAYED statements.

Status Variable Meaning

Delayed_insert_threads Number of handler threads

Delayed_writes Number of rows written with INSERT DELAYED

Not_flushed_delayed_rows Number of rows waiting to be written

You can view these variables by issuing a SHOW STATUS statement or by executing a mysqladmin
extended-status command.

13.2.6 LOAD DATA Statement
LOAD DATA
 [LOW_PRIORITY | CONCURRENT] [LOCAL]
 INFILE 'file_name'
 [REPLACE | IGNORE]
 INTO TABLE tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [CHARACTER SET charset_name]
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]
 [IGNORE number {LINES | ROWS}]
 [(col_name_or_user_var
 [, col_name_or_user_var] ...)]
 [SET col_name={expr | DEFAULT}
 [, col_name={expr | DEFAULT}] ...]

The LOAD DATA statement reads rows from a text file into a table at a very high speed. The file can be
read from the server host or the client host, depending on whether the LOCAL modifier is given. LOCAL also
affects data interpretation and error handling.

LOAD DATA is the complement of SELECT ... INTO OUTFILE. (See Section 13.2.9.1, “SELECT ...
INTO Statement”.) To write data from a table to a file, use SELECT ... INTO OUTFILE. To read the

1750

LOAD DATA Statement

file back into a table, use LOAD DATA. The syntax of the FIELDS and LINES clauses is the same for both
statements.

The mysqlimport utility provides another way to load data files; it operates by sending a LOAD DATA
statement to the server. See Section 4.5.5, “mysqlimport — A Data Import Program”.

For information about the efficiency of INSERT versus LOAD DATA and speeding up LOAD DATA, see
Section 8.2.4.1, “Optimizing INSERT Statements”.

• Non-LOCAL Versus LOCAL Operation

• Input File Character Set

• Input File Location

• Security Requirements

• Duplicate-Key and Error Handling

• Index Handling

• Field and Line Handling

• Column List Specification

• Input Preprocessing

• Column Value Assignment

• Partitioned Table Support

• Concurrency Considerations

• Statement Result Information

• Replication Considerations

• Miscellaneous Topics

Non-LOCAL Versus LOCAL Operation

The LOCAL modifier affects these aspects of LOAD DATA, compared to non-LOCAL operation:

• It changes the expected location of the input file; see Input File Location.

• It changes the statement security requirements; see Security Requirements.

• It has the same effect as the IGNORE modifier on the interpretation of input file contents and error
handling; see Duplicate-Key and Error Handling, and Column Value Assignment.

LOCAL works only if the server and your client both have been configured to permit it. For example, if
mysqld was started with the local_infile system variable disabled, LOCAL produces an error. See
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”.

Input File Character Set

The file name must be given as a literal string. On Windows, specify backslashes in path names as forward
slashes or doubled backslashes. The server interprets the file name using the character set indicated by
the character_set_filesystem system variable.

1751

LOAD DATA Statement

By default, the server interprets the file contents using the character set indicated by the
character_set_database system variable. If the file contents use a character set different from this
default, it is a good idea to specify that character set by using the CHARACTER SET clause. A character set
of binary specifies “no conversion.”

SET NAMES and the setting of character_set_client do not affect interpretation of file contents.

LOAD DATA interprets all fields in the file as having the same character set, regardless of the data types of
the columns into which field values are loaded. For proper interpretation of the file, you must ensure that it
was written with the correct character set. For example, if you write a data file with mysqldump -T or by
issuing a SELECT ... INTO OUTFILE statement in mysql, be sure to use a --default-character-
set option to write output in the character set to be used when the file is loaded with LOAD DATA.

Note

It is not possible to load data files that use the ucs2, utf16, utf16le, or utf32
character set.

Input File Location

These rules determine the LOAD DATA input file location:

• If LOCAL is not specified, the file must be located on the server host. The server reads the file directly,
locating it as follows:

• If the file name is an absolute path name, the server uses it as given.

• If the file name is a relative path name with leading components, the server looks for the file relative to
its data directory.

• If the file name has no leading components, the server looks for the file in the database directory of the
default database.

• If LOCAL is specified, the file must be located on the client host. The client program reads the file,
locating it as follows:

• If the file name is an absolute path name, the client program uses it as given.

• If the file name is a relative path name, the client program looks for the file relative to its invocation
directory.

When LOCAL is used, the client program reads the file and sends its contents to the server. The server
creates a copy of the file in the directory where it stores temporary files. See Section B.3.3.5, “Where
MySQL Stores Temporary Files”. Lack of sufficient space for the copy in this directory can cause the
LOAD DATA LOCAL statement to fail.

The non-LOCAL rules mean that the server reads a file named as ./myfile.txt relative to its data
directory, whereas it reads a file named as myfile.txt from the database directory of the default
database. For example, if the following LOAD DATA statement is executed while db1 is the default
database, the server reads the file data.txt from the database directory for db1, even though the
statement explicitly loads the file into a table in the db2 database:

LOAD DATA INFILE 'data.txt' INTO TABLE db2.my_table;

Security Requirements

For a non-LOCAL load operation, the server reads a text file located on the server host, so these security
requirements must be satisified:

1752

LOAD DATA Statement

• You must have the FILE privilege. See Section 6.2.2, “Privileges Provided by MySQL”.

• The operation is subject to the secure_file_priv system variable setting:

• If the variable value is a nonempty directory name, the file must be located in that directory.

• If the variable value is empty (which is insecure), the file need only be readable by the server.

For a LOCAL load operation, the client program reads a text file located on the client host. Because the file
contents are sent over the connection by the client to the server, using LOCAL is a bit slower than when the
server accesses the file directly. On the other hand, you do not need the FILE privilege, and the file can be
located in any directory the client program can access.

Duplicate-Key and Error Handling

The REPLACE and IGNORE modifiers control handling of new (input) rows that duplicate existing table rows
on unique key values (PRIMARY KEY or UNIQUE index values):

• With REPLACE, new rows that have the same value as a unique key value in an existing row replace the
existing row. See Section 13.2.8, “REPLACE Statement”.

• With IGNORE, new rows that duplicate an existing row on a unique key value are discarded.

The LOCAL modifier has the same effect as IGNORE. This occurs because the server has no way to stop
transmission of the file in the middle of the operation.

If none of REPLACE, IGNORE, or LOCAL is specified, an error occurs when a duplicate key value is found,
and the rest of the text file is ignored.

In addition to affecting duplicate-key handling as just described, IGNORE and LOCAL also affect error
handling:

• With neither IGNORE nor LOCAL, data-interpretation errors terminate the operation.

• With IGNORE or LOCAL, data-interpretation errors become warnings and the load operation continues,
even if the SQL mode is restrictive. For examples, see Column Value Assignment.

Index Handling

To ignore foreign key constraints during the load operation, execute a SET foreign_key_checks = 0
statement before executing LOAD DATA.

If you use LOAD DATA on an empty MyISAM table, all nonunique indexes are created in a separate batch
(as for REPAIR TABLE). Normally, this makes LOAD DATA much faster when you have many indexes. In
some extreme cases, you can create the indexes even faster by turning them off with ALTER TABLE ...
DISABLE KEYS before loading the file into the table and re-creating the indexes with ALTER TABLE ...
ENABLE KEYS after loading the file. See Section 8.2.4.1, “Optimizing INSERT Statements”.

Field and Line Handling

For both the LOAD DATA and SELECT ... INTO OUTFILE statements, the syntax of the FIELDS
and LINES clauses is the same. Both clauses are optional, but FIELDS must precede LINES if both are
specified.

If you specify a FIELDS clause, each of its subclauses (TERMINATED BY, [OPTIONALLY] ENCLOSED
BY, and ESCAPED BY) is also optional, except that you must specify at least one of them. Arguments to
these clauses are permitted to contain only ASCII characters.

1753

LOAD DATA Statement

If you specify no FIELDS or LINES clause, the defaults are the same as if you had written this:

FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPED BY '\\'
LINES TERMINATED BY '\n' STARTING BY ''

Backslash is the MySQL escape character within strings in SQL statements. Thus, to specify a literal
backslash, you must specify two backslashes for the value to be interpreted as a single backslash. The
escape sequences '\t' and '\n' specify tab and newline characters, respectively.

In other words, the defaults cause LOAD DATA to act as follows when reading input:

• Look for line boundaries at newlines.

• Do not skip any line prefix.

• Break lines into fields at tabs.

• Do not expect fields to be enclosed within any quoting characters.

• Interpret characters preceded by the escape character \ as escape sequences. For example, \t, \n,
and \\ signify tab, newline, and backslash, respectively. See the discussion of FIELDS ESCAPED BY
later for the full list of escape sequences.

Conversely, the defaults cause SELECT ... INTO OUTFILE to act as follows when writing output:

• Write tabs between fields.

• Do not enclose fields within any quoting characters.

• Use \ to escape instances of tab, newline, or \ that occur within field values.

• Write newlines at the ends of lines.

Note

For a text file generated on a Windows system, proper file reading might require
LINES TERMINATED BY '\r\n' because Windows programs typically use two
characters as a line terminator. Some programs, such as WordPad, might use \r
as a line terminator when writing files. To read such files, use LINES TERMINATED
BY '\r'.

If all the input lines have a common prefix that you want to ignore, you can use LINES STARTING BY
'prefix_string' to skip the prefix and anything before it. If a line does not include the prefix, the entire
line is skipped. Suppose that you issue the following statement:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test
 FIELDS TERMINATED BY ',' LINES STARTING BY 'xxx';

If the data file looks like this:

xxx"abc",1
something xxx"def",2
"ghi",3

The resulting rows are ("abc",1) and ("def",2). The third row in the file is skipped because it does
not contain the prefix.

The IGNORE number LINES clause can be used to ignore lines at the start of the file. For example, you
can use IGNORE 1 LINES to skip an initial header line containing column names:

1754

LOAD DATA Statement

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test IGNORE 1 LINES;

When you use SELECT ... INTO OUTFILE in tandem with LOAD DATA to write data from a database
into a file and then read the file back into the database later, the field- and line-handling options for both
statements must match. Otherwise, LOAD DATA does not interpret the contents of the file properly.
Suppose that you use SELECT ... INTO OUTFILE to write a file with fields delimited by commas:

SELECT * INTO OUTFILE 'data.txt'
 FIELDS TERMINATED BY ','
 FROM table2;

To read the comma-delimited file, the correct statement is:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
 FIELDS TERMINATED BY ',';

If instead you tried to read the file with the statement shown following, it would not work because it instructs
LOAD DATA to look for tabs between fields:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
 FIELDS TERMINATED BY '\t';

The likely result is that each input line would be interpreted as a single field.

LOAD DATA can be used to read files obtained from external sources. For example, many programs can
export data in comma-separated values (CSV) format, such that lines have fields separated by commas
and enclosed within double quotation marks, with an initial line of column names. If the lines in such a file
are terminated by carriage return/newline pairs, the statement shown here illustrates the field- and line-
handling options you would use to load the file:

LOAD DATA INFILE 'data.txt' INTO TABLE tbl_name
 FIELDS TERMINATED BY ',' ENCLOSED BY '"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES;

If the input values are not necessarily enclosed within quotation marks, use OPTIONALLY before the
ENCLOSED BY option.

Any of the field- or line-handling options can specify an empty string (''). If not empty, the FIELDS
[OPTIONALLY] ENCLOSED BY and FIELDS ESCAPED BY values must be a single character. The
FIELDS TERMINATED BY, LINES STARTING BY, and LINES TERMINATED BY values can be more
than one character. For example, to write lines that are terminated by carriage return/linefeed pairs, or to
read a file containing such lines, specify a LINES TERMINATED BY '\r\n' clause.

To read a file containing jokes that are separated by lines consisting of %%, you can do this

CREATE TABLE jokes
 (a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joke TEXT NOT NULL);
LOAD DATA INFILE '/tmp/jokes.txt' INTO TABLE jokes
 FIELDS TERMINATED BY ''
 LINES TERMINATED BY '\n%%\n' (joke);

FIELDS [OPTIONALLY] ENCLOSED BY controls quoting of fields. For output (SELECT ... INTO
OUTFILE), if you omit the word OPTIONALLY, all fields are enclosed by the ENCLOSED BY character. An
example of such output (using a comma as the field delimiter) is shown here:

"1","a string","100.20"
"2","a string containing a , comma","102.20"
"3","a string containing a \" quote","102.20"

1755

LOAD DATA Statement

"4","a string containing a \", quote and comma","102.20"

If you specify OPTIONALLY, the ENCLOSED BY character is used only to enclose values from columns that
have a string data type (such as CHAR, BINARY, TEXT, or ENUM):

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a \" quote",102.20
4,"a string containing a \", quote and comma",102.20

Occurrences of the ENCLOSED BY character within a field value are escaped by prefixing them with the
ESCAPED BY character. Also, if you specify an empty ESCAPED BY value, it is possible to inadvertently
generate output that cannot be read properly by LOAD DATA. For example, the preceding output just
shown would appear as follows if the escape character is empty. Observe that the second field in the fourth
line contains a comma following the quote, which (erroneously) appears to terminate the field:

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a " quote",102.20
4,"a string containing a ", quote and comma",102.20

For input, the ENCLOSED BY character, if present, is stripped from the ends of field values. (This is true
regardless of whether OPTIONALLY is specified; OPTIONALLY has no effect on input interpretation.)
Occurrences of the ENCLOSED BY character preceded by the ESCAPED BY character are interpreted as
part of the current field value.

If the field begins with the ENCLOSED BY character, instances of that character are recognized as
terminating a field value only if followed by the field or line TERMINATED BY sequence. To avoid
ambiguity, occurrences of the ENCLOSED BY character within a field value can be doubled and are
interpreted as a single instance of the character. For example, if ENCLOSED BY '"' is specified,
quotation marks are handled as shown here:

"The ""BIG"" boss" -> The "BIG" boss
The "BIG" boss -> The "BIG" boss
The ""BIG"" boss -> The ""BIG"" boss

FIELDS ESCAPED BY controls how to read or write special characters:

• For input, if the FIELDS ESCAPED BY character is not empty, occurrences of that character are stripped
and the following character is taken literally as part of a field value. Some two-character sequences that
are exceptions, where the first character is the escape character. These sequences are shown in the
following table (using \ for the escape character). The rules for NULL handling are described later in this
section.

Character Escape Sequence

\0 An ASCII NUL (X'00') character

\b A backspace character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character.

\Z ASCII 26 (Control+Z)

\N NULL

For more information about \-escape syntax, see Section 9.1.1, “String Literals”.

If the FIELDS ESCAPED BY character is empty, escape-sequence interpretation does not occur.

1756

LOAD DATA Statement

• For output, if the FIELDS ESCAPED BY character is not empty, it is used to prefix the following
characters on output:

• The FIELDS ESCAPED BY character.

• The FIELDS [OPTIONALLY] ENCLOSED BY character.

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values, if the
ENCLOSED BY character is empty or unspecified.

• ASCII 0 (what is actually written following the escape character is ASCII 0, not a zero-valued byte).

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if field
values in your data contain any of the characters in the list just given.

In certain cases, field- and line-handling options interact:

• If LINES TERMINATED BY is an empty string and FIELDS TERMINATED BY is nonempty, lines are
also terminated with FIELDS TERMINATED BY.

• If the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values are both empty (''), a fixed-row
(nondelimited) format is used. With fixed-row format, no delimiters are used between fields (but you can
still have a line terminator). Instead, column values are read and written using a field width wide enough
to hold all values in the field. For TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT, the field widths
are 4, 6, 8, 11, and 20, respectively, no matter what the declared display width is.

LINES TERMINATED BY is still used to separate lines. If a line does not contain all fields, the rest of the
columns are set to their default values. If you do not have a line terminator, you should set this to ''. In
this case, the text file must contain all fields for each row.

Fixed-row format also affects handling of NULL values, as described later.

Note

Fixed-size format does not work if you are using a multibyte character set.

Handling of NULL values varies according to the FIELDS and LINES options in use:

• For the default FIELDS and LINES values, NULL is written as a field value of \N for output, and a field
value of \N is read as NULL for input (assuming that the ESCAPED BY character is \).

• If FIELDS ENCLOSED BY is not empty, a field containing the literal word NULL as its value is read as a
NULL value. This differs from the word NULL enclosed within FIELDS ENCLOSED BY characters, which
is read as the string 'NULL'.

• If FIELDS ESCAPED BY is empty, NULL is written as the word NULL.

• With fixed-row format (which is used when FIELDS TERMINATED BY and FIELDS ENCLOSED BY are
both empty), NULL is written as an empty string. This causes both NULL values and empty strings in the
table to be indistinguishable when written to the file because both are written as empty strings. If you
need to be able to tell the two apart when reading the file back in, you should not use fixed-row format.

An attempt to load NULL into a NOT NULL column produces either a warning or an error according to the
rules described in Column Value Assignment.

Some cases are not supported by LOAD DATA:

1757

LOAD DATA Statement

• Fixed-size rows (FIELDS TERMINATED BY and FIELDS ENCLOSED BY both empty) and BLOB or
TEXT columns.

• If you specify one separator that is the same as or a prefix of another, LOAD DATA cannot interpret the
input properly. For example, the following FIELDS clause would cause problems:

FIELDS TERMINATED BY '"' ENCLOSED BY '"'

• If FIELDS ESCAPED BY is empty, a field value that contains an occurrence of FIELDS ENCLOSED
BY or LINES TERMINATED BY followed by the FIELDS TERMINATED BY value causes LOAD DATA
to stop reading a field or line too early. This happens because LOAD DATA cannot properly determine
where the field or line value ends.

Column List Specification

The following example loads all columns of the persondata table:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata;

By default, when no column list is provided at the end of the LOAD DATA statement, input lines are
expected to contain a field for each table column. If you want to load only some of a table's columns,
specify a column list:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata
(col_name_or_user_var [, col_name_or_user_var] ...);

You must also specify a column list if the order of the fields in the input file differs from the order of the
columns in the table. Otherwise, MySQL cannot tell how to match input fields with table columns.

Input Preprocessing

Each instance of col_name_or_user_var in LOAD DATA syntax is either a column name or a user
variable. With user variables, the SET clause enables you to perform preprocessing transformations on
their values before assigning the result to columns.

User variables in the SET clause can be used in several ways. The following example uses the first input
column directly for the value of t1.column1, and assigns the second input column to a user variable that
is subjected to a division operation before being used for the value of t1.column2:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, @var1)
 SET column2 = @var1/100;

The SET clause can be used to supply values not derived from the input file. The following statement sets
column3 to the current date and time:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, column2)
 SET column3 = CURRENT_TIMESTAMP;

You can also discard an input value by assigning it to a user variable and not assigning the variable to any
table column:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, @dummy, column2, @dummy, column3);

1758

LOAD DATA Statement

Use of the column/variable list and SET clause is subject to the following restrictions:

• Assignments in the SET clause should have only column names on the left hand side of assignment
operators.

• You can use subqueries in the right hand side of SET assignments. A subquery that returns a value to be
assigned to a column may be a scalar subquery only. Also, you cannot use a subquery to select from the
table that is being loaded.

• Lines ignored by an IGNORE number LINES clause are not processed for the column/variable list or
SET clause.

• User variables cannot be used when loading data with fixed-row format because user variables do not
have a display width.

Column Value Assignment

To process an input line, LOAD DATA splits it into fields and uses the values according to the column/
variable list and the SET clause, if they are present. Then the resulting row is inserted into the table. If there
are BEFORE INSERT or AFTER INSERT triggers for the table, they are activated before or after inserting
the row, respectively.

Interpretation of field values and assignment to table columns depends on these factors:

• The SQL mode (the value of the sql_mode system variable). The mode can be nonstrictive, or
restrictive in various ways. For example, strict SQL mode can be enabled, or the mode can include
values such as NO_ZERO_DATE or NO_ZERO_IN_DATE.

• Presence or absence of the IGNORE and LOCAL modifiers.

Those factors combine to produce restrictive or nonrestrictive data interpretation by LOAD DATA:

• Data interpretation is restrictive if the SQL mode is restrictive and neither the IGNORE nor the LOCAL
modifier is specified. Errors terminate the load operation.

• Data interpretation is nonrestrictive if the SQL mode is nonrestrictive or the IGNORE or LOCAL modifier
is specified. (In particular, either modifier if specified overrides a restrictive SQL mode.) Errors become
warnings and the load operation continues.

Restrictive data interpretation uses these rules:

• Too many or too few fields results an error.

• Assigning NULL (that is, \N) to a non-NULL column results in an error.

• A value that is out of range for the column data type results in an error.

• Invalid values produce errors. For example, a value such as 'x' for a numeric column results in an
error, not conversion to 0.

By contrast, nonrestrictive data interpretation uses these rules:

• If an input line has too many fields, the extra fields are ignored and the number of warnings is
incremented.

• If an input line has too few fields, the columns for which input fields are missing are assigned their
default values. Default value assignment is described in Section 11.5, “Data Type Default Values”.

1759

LOAD DATA Statement

• Assigning NULL (that is, \N) to a non-NULL column results in assignment of the implicit default value for
the column data type. Implicit default values are described in Section 11.5, “Data Type Default Values”.

• Invalid values produce warnings rather than errors, and are converted to the “closest” valid value for the
column data type. Examples:

• A value such as 'x' for a numeric column results in conversion to 0.

• An out-of-range numeric or temporal value is clipped to the closest endpoint of the range for the
column data type.

• An invalid value for a DATETIME, DATE, or TIME column is inserted as the implicit default value,
regardless of the SQL mode NO_ZERO_DATE setting. The implicit default is the appropriate “zero”
value for the type ('0000-00-00 00:00:00', '0000-00-00', or '00:00:00'). See Section 11.2,
“Date and Time Data Types”.

• LOAD DATA interprets an empty field value differently from a missing field:

• For string types, the column is set to the empty string.

• For numeric types, the column is set to 0.

• For date and time types, the column is set to the appropriate “zero” value for the type. See
Section 11.2, “Date and Time Data Types”.

These are the same values that result if you assign an empty string explicitly to a string, numeric, or date
or time type explicitly in an INSERT or UPDATE statement.

TIMESTAMP columns are set to the current date and time only if there is a NULL value for the column (that
is, \N) and the column is not declared to permit NULL values, or if the TIMESTAMP column default value is
the current timestamp and it is omitted from the field list when a field list is specified.

LOAD DATA regards all input as strings, so you cannot use numeric values for ENUM or SET columns the
way you can with INSERT statements. All ENUM and SET values must be specified as strings.

BIT values cannot be loaded directly using binary notation (for example, b'011010'). To work around
this, use the SET clause to strip off the leading b' and trailing ' and perform a base-2 to base-10
conversion so that MySQL loads the values into the BIT column properly:

$> cat /tmp/bit_test.txt
b'10'
b'1111111'
$> mysql test
mysql> LOAD DATA INFILE '/tmp/bit_test.txt'
 INTO TABLE bit_test (@var1)
 SET b = CAST(CONV(MID(@var1, 3, LENGTH(@var1)-3), 2, 10) AS UNSIGNED);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT BIN(b+0) FROM bit_test;
+----------+
| BIN(b+0) |
+----------+
| 10 |
| 1111111 |
+----------+
2 rows in set (0.00 sec)

For BIT values in 0b binary notation (for example, 0b011010), use this SET clause instead to strip off the
leading 0b:

1760

LOAD DATA Statement

SET b = CAST(CONV(MID(@var1, 3, LENGTH(@var1)-2), 2, 10) AS UNSIGNED)

Partitioned Table Support

LOAD DATA supports explicit partition selection using the PARTITION clause with a list of one or more
comma-separated names of partitions, subpartitions, or both. When this clause is used, if any rows from
the file cannot be inserted into any of the partitions or subpartitions named in the list, the statement fails
with the error Found a row not matching the given partition set. For more information and
examples, see Section 19.5, “Partition Selection”.

For partitioned tables using storage engines that employ table locks, such as MyISAM, LOAD DATA cannot
prune any partition locks. This does not apply to tables using storage engines that employ row-level
locking, such as InnoDB. For more information, see Section 19.6.4, “Partitioning and Locking”.

Concurrency Considerations

With the LOW_PRIORITY modifier, execution of the LOAD DATA statement is delayed until no other clients
are reading from the table. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

With the CONCURRENT modifier and a MyISAM table that satisfies the condition for concurrent inserts (that
is, it contains no free blocks in the middle), other threads can retrieve data from the table while LOAD DATA
is executing. This modifier affects the performance of LOAD DATA a bit, even if no other thread is using the
table at the same time.

Statement Result Information

When the LOAD DATA statement finishes, it returns an information string in the following format:

Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

Warnings occur under the same circumstances as when values are inserted using the INSERT statement
(see Section 13.2.5, “INSERT Statement”), except that LOAD DATA also generates warnings when there
are too few or too many fields in the input row.

You can use SHOW WARNINGS to get a list of the first max_error_count warnings as information about
what went wrong. See Section 13.7.5.41, “SHOW WARNINGS Statement”.

If you are using the C API, you can get information about the statement by calling the mysql_info()
function. See mysql_info().

Replication Considerations

For information about LOAD DATA in relation to replication, see Section 17.4.1.18, “Replication and LOAD
DATA”.

Miscellaneous Topics

On Unix, if you need LOAD DATA to read from a pipe, you can use the following technique (the example
loads a listing of the / directory into the table db1.t1):

mkfifo /mysql/data/db1/ls.dat
chmod 666 /mysql/data/db1/ls.dat
find / -ls > /mysql/data/db1/ls.dat &
mysql -e "LOAD DATA INFILE 'ls.dat' INTO TABLE t1" db1

1761

https://dev.mysql.com/doc/c-api/5.6/en/mysql-info.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-info.html

LOAD XML Statement

Here you must run the command that generates the data to be loaded and the mysql commands either
on separate terminals, or run the data generation process in the background (as shown in the preceding
example). If you do not do this, the pipe blocks until data is read by the mysql process.

13.2.7 LOAD XML Statement

LOAD XML
 [LOW_PRIORITY | CONCURRENT] [LOCAL]
 INFILE 'file_name'
 [REPLACE | IGNORE]
 INTO TABLE [db_name.]tbl_name
 [CHARACTER SET charset_name]
 [ROWS IDENTIFIED BY '<tagname>']
 [IGNORE number {LINES | ROWS}]
 [(field_name_or_user_var
 [, field_name_or_user_var] ...)]
 [SET col_name={expr | DEFAULT}
 [, col_name={expr | DEFAULT}] ...]

The LOAD XML statement reads data from an XML file into a table. The file_name must be given as a
literal string. The tagname in the optional ROWS IDENTIFIED BY clause must also be given as a literal
string, and must be surrounded by angle brackets (< and >).

LOAD XML acts as the complement of running the mysql client in XML output mode (that is, starting the
client with the --xml option). To write data from a table to an XML file, you can invoke the mysql client
with the --xml and -e options from the system shell, as shown here:

$> mysql --xml -e 'SELECT * FROM mydb.mytable' > file.xml

To read the file back into a table, use LOAD XML. By default, the <row> element is considered to be the
equivalent of a database table row; this can be changed using the ROWS IDENTIFIED BY clause.

This statement supports three different XML formats:

• Column names as attributes and column values as attribute values:

<row column1="value1" column2="value2" .../>

• Column names as tags and column values as the content of these tags:

<row>
 <column1>value1</column1>
 <column2>value2</column2>
</row>

• Column names are the name attributes of <field> tags, and values are the contents of these tags:

<row>
 <field name='column1'>value1</field>
 <field name='column2'>value2</field>
</row>

This is the format used by other MySQL tools, such as mysqldump.

All three formats can be used in the same XML file; the import routine automatically detects the format for
each row and interprets it correctly. Tags are matched based on the tag or attribute name and the column
name.

Prior to MySQL 5.6.27, LOAD XML did not handle empty XML elements in the form <element/> correctly.
(Bug #67542, Bug #16171518)

1762

LOAD XML Statement

In MySQL 5.6, LOAD XML does not support CDATA sections in the source XML. This limitation is removed
in MySQL 8.0. (Bug #30753708, Bug #98199)

The following clauses work essentially the same way for LOAD XML as they do for LOAD DATA:

• LOW_PRIORITY or CONCURRENT

• LOCAL

• REPLACE or IGNORE

• CHARACTER SET

• SET

See Section 13.2.6, “LOAD DATA Statement”, for more information about these clauses.

(field_name_or_user_var, ...) is a list of one or more comma-separated XML fields or user
variables. The name of a user variable used for this purpose must match the name of a field from the XML
file, prefixed with @. You can use field names to select only desired fields. User variables can be employed
to store the corresponding field values for subsequent re-use.

The IGNORE number LINES or IGNORE number ROWS clause causes the first number rows in the XML
file to be skipped. It is analogous to the LOAD DATA statement's IGNORE ... LINES clause.

Suppose that we have a table named person, created as shown here:

USE test;

CREATE TABLE person (
 person_id INT NOT NULL PRIMARY KEY,
 fname VARCHAR(40) NULL,
 lname VARCHAR(40) NULL,
 created TIMESTAMP
);

Suppose further that this table is initially empty.

Now suppose that we have a simple XML file person.xml, whose contents are as shown here:

<list>
 <person person_id="1" fname="Kapek" lname="Sainnouine"/>
 <person person_id="2" fname="Sajon" lname="Rondela"/>
 <person person_id="3"><fname>Likame</fname><lname>Örrtmons</lname></person>
 <person person_id="4"><fname>Slar</fname><lname>Manlanth</lname></person>
 <person><field name="person_id">5</field><field name="fname">Stoma</field>
 <field name="lname">Milu</field></person>
 <person><field name="person_id">6</field><field name="fname">Nirtam</field>
 <field name="lname">Sklöd</field></person>
 <person person_id="7"><fname>Sungam</fname><lname>Dulbåd</lname></person>
 <person person_id="8" fname="Sraref" lname="Encmelt"/>
</list>

Each of the permissible XML formats discussed previously is represented in this example file.

To import the data in person.xml into the person table, you can use this statement:

mysql> LOAD XML LOCAL INFILE 'person.xml'
 -> INTO TABLE person
 -> ROWS IDENTIFIED BY '<person>';

Query OK, 8 rows affected (0.00 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

1763

LOAD XML Statement

Here, we assume that person.xml is located in the MySQL data directory. If the file cannot be found, the
following error results:

ERROR 2 (HY000): File '/person.xml' not found (Errcode: 2)

The ROWS IDENTIFIED BY '<person>' clause means that each <person> element in the XML file
is considered equivalent to a row in the table into which the data is to be imported. In this case, this is the
person table in the test database.

As can be seen by the response from the server, 8 rows were imported into the test.person table. This
can be verified by a simple SELECT statement:

mysql> SELECT * FROM person;
+-----------+--------+------------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+------------+---------------------+
1	Kapek	Sainnouine	2007-07-13 16:18:47
2	Sajon	Rondela	2007-07-13 16:18:47
3	Likame	Örrtmons	2007-07-13 16:18:47
4	Slar	Manlanth	2007-07-13 16:18:47
5	Stoma	Nilu	2007-07-13 16:18:47
6	Nirtam	Sklöd	2007-07-13 16:18:47
7	Sungam	Dulbåd	2007-07-13 16:18:47
8	Sreraf	Encmelt	2007-07-13 16:18:47
+-----------+--------+------------+---------------------+
8 rows in set (0.00 sec)

This shows, as stated earlier in this section, that any or all of the 3 permitted XML formats may appear in a
single file and be read using LOAD XML.

The inverse of the import operation just shown—that is, dumping MySQL table data into an XML file—can
be accomplished using the mysql client from the system shell, as shown here:

$> mysql --xml -e "SELECT * FROM test.person" > person-dump.xml
$> cat person-dump.xml
<?xml version="1.0"?>

<resultset statement="SELECT * FROM test.person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <row>
 <field name="person_id">1</field>
 <field name="fname">Kapek</field>
 <field name="lname">Sainnouine</field>
 </row>

 <row>
 <field name="person_id">2</field>
 <field name="fname">Sajon</field>
 <field name="lname">Rondela</field>
 </row>

 <row>
 <field name="person_id">3</field>
 <field name="fname">Likema</field>
 <field name="lname">Örrtmons</field>
 </row>

 <row>
 <field name="person_id">4</field>
 <field name="fname">Slar</field>
 <field name="lname">Manlanth</field>
 </row>

 <row>
 <field name="person_id">5</field>

1764

LOAD XML Statement

 <field name="fname">Stoma</field>
 <field name="lname">Nilu</field>
 </row>

 <row>
 <field name="person_id">6</field>
 <field name="fname">Nirtam</field>
 <field name="lname">Sklöd</field>
 </row>

 <row>
 <field name="person_id">7</field>
 <field name="fname">Sungam</field>
 <field name="lname">Dulbåd</field>
 </row>

 <row>
 <field name="person_id">8</field>
 <field name="fname">Sreraf</field>
 <field name="lname">Encmelt</field>
 </row>
</resultset>

Note

The --xml option causes the mysql client to use XML formatting for its output; the
-e option causes the client to execute the SQL statement immediately following the
option. See Section 4.5.1, “mysql — The MySQL Command-Line Client”.

You can verify that the dump is valid by creating a copy of the person table and importing the dump file
into the new table, like this:

mysql> USE test;
mysql> CREATE TABLE person2 LIKE person;
Query OK, 0 rows affected (0.00 sec)

mysql> LOAD XML LOCAL INFILE 'person-dump.xml'
 -> INTO TABLE person2;
Query OK, 8 rows affected (0.01 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT * FROM person2;
+-----------+--------+------------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+------------+---------------------+
1	Kapek	Sainnouine	2007-07-13 16:18:47
2	Sajon	Rondela	2007-07-13 16:18:47
3	Likema	Örrtmons	2007-07-13 16:18:47
4	Slar	Manlanth	2007-07-13 16:18:47
5	Stoma	Nilu	2007-07-13 16:18:47
6	Nirtam	Sklöd	2007-07-13 16:18:47
7	Sungam	Dulbåd	2007-07-13 16:18:47
8	Sreraf	Encmelt	2007-07-13 16:18:47
+-----------+--------+------------+---------------------+
8 rows in set (0.00 sec)

There is no requirement that every field in the XML file be matched with a column in the corresponding
table. Fields which have no corresponding columns are skipped. You can see this by first emptying the
person2 table and dropping the created column, then using the same LOAD XML statement we just
employed previously, like this:

mysql> TRUNCATE person2;
Query OK, 8 rows affected (0.26 sec)

mysql> ALTER TABLE person2 DROP COLUMN created;

1765

LOAD XML Statement

Query OK, 0 rows affected (0.52 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE person2\G
*************************** 1. row ***************************
 Table: person2
Create Table: CREATE TABLE `person2` (
 `person_id` int(11) NOT NULL,
 `fname` varchar(40) DEFAULT NULL,
 `lname` varchar(40) DEFAULT NULL,
 PRIMARY KEY (`person_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

mysql> LOAD XML LOCAL INFILE 'person-dump.xml'
 -> INTO TABLE person2;
Query OK, 8 rows affected (0.01 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT * FROM person2;
+-----------+--------+------------+
| person_id | fname | lname |
+-----------+--------+------------+
1	Kapek	Sainnouine
2	Sajon	Rondela
3	Likema	Örrtmons
4	Slar	Manlanth
5	Stoma	Nilu
6	Nirtam	Sklöd
7	Sungam	Dulbåd
8	Sreraf	Encmelt
+-----------+--------+------------+
8 rows in set (0.00 sec)

The order in which the fields are given within each row of the XML file does not affect the operation of
LOAD XML; the field order can vary from row to row, and is not required to be in the same order as the
corresponding columns in the table.

As mentioned previously, you can use a (field_name_or_user_var, ...) list of one or more XML
fields (to select desired fields only) or user variables (to store the corresponding field values for later
use). User variables can be especially useful when you want to insert data from an XML file into table
columns whose names do not match those of the XML fields. To see how this works, we first create a table
named individual whose structure matches that of the person table, but whose columns are named
differently:

mysql> CREATE TABLE individual (
 -> individual_id INT NOT NULL PRIMARY KEY,
 -> name1 VARCHAR(40) NULL,
 -> name2 VARCHAR(40) NULL,
 -> made TIMESTAMP
 ->);
Query OK, 0 rows affected (0.42 sec)

In this case, you cannot simply load the XML file directly into the table, because the field and column
names do not match:

mysql> LOAD XML INFILE '../bin/person-dump.xml' INTO TABLE test.individual;
ERROR 1263 (22004): Column set to default value; NULL supplied to NOT NULL column 'individual_id' at row 1

This happens because the MySQL server looks for field names matching the column names of the target
table. You can work around this problem by selecting the field values into user variables, then setting the
target table's columns equal to the values of those variables using SET. You can perform both of these
operations in a single statement, as shown here:

1766

LOAD XML Statement

mysql> LOAD XML INFILE '../bin/person-dump.xml'
 -> INTO TABLE test.individual (@person_id, @fname, @lname, @created)
 -> SET individual_id=@person_id, name1=@fname, name2=@lname, made=@created;
Query OK, 8 rows affected (0.05 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT * FROM individual;
+---------------+--------+------------+---------------------+
| individual_id | name1 | name2 | made |
+---------------+--------+------------+---------------------+
1	Kapek	Sainnouine	2007-07-13 16:18:47
2	Sajon	Rondela	2007-07-13 16:18:47
3	Likema	Örrtmons	2007-07-13 16:18:47
4	Slar	Manlanth	2007-07-13 16:18:47
5	Stoma	Nilu	2007-07-13 16:18:47
6	Nirtam	Sklöd	2007-07-13 16:18:47
7	Sungam	Dulbåd	2007-07-13 16:18:47
8	Srraf	Encmelt	2007-07-13 16:18:47
+---------------+--------+------------+---------------------+
8 rows in set (0.00 sec)

The names of the user variables must match those of the corresponding fields from the XML file, with the
addition of the required @ prefix to indicate that they are variables. The user variables need not be listed or
assigned in the same order as the corresponding fields.

Using a ROWS IDENTIFIED BY '<tagname>' clause, it is possible to import data from the same XML
file into database tables with different definitions. For this example, suppose that you have a file named
address.xml which contains the following XML:

<?xml version="1.0"?>

<list>
 <person person_id="1">
 <fname>Robert</fname>
 <lname>Jones</lname>
 <address address_id="1" street="Mill Creek Road" zip="45365" city="Sidney"/>
 <address address_id="2" street="Main Street" zip="28681" city="Taylorsville"/>
 </person>

 <person person_id="2">
 <fname>Mary</fname>
 <lname>Smith</lname>
 <address address_id="3" street="River Road" zip="80239" city="Denver"/>
 <!-- <address address_id="4" street="North Street" zip="37920" city="Knoxville"/> -->
 </person>

</list>

You can again use the test.person table as defined previously in this section, after clearing all the
existing records from the table and then showing its structure as shown here:

mysql< TRUNCATE person;
Query OK, 0 rows affected (0.04 sec)

mysql< SHOW CREATE TABLE person\G
*************************** 1. row ***************************
 Table: person
Create Table: CREATE TABLE `person` (
 `person_id` int(11) NOT NULL,
 `fname` varchar(40) DEFAULT NULL,
 `lname` varchar(40) DEFAULT NULL,
 `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (`person_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

1767

LOAD XML Statement

Now create an address table in the test database using the following CREATE TABLE statement:

CREATE TABLE address (
 address_id INT NOT NULL PRIMARY KEY,
 person_id INT NULL,
 street VARCHAR(40) NULL,
 zip INT NULL,
 city VARCHAR(40) NULL,
 created TIMESTAMP
);

To import the data from the XML file into the person table, execute the following LOAD XML statement,
which specifies that rows are to be specified by the <person> element, as shown here;

mysql> LOAD XML LOCAL INFILE 'address.xml'
 -> INTO TABLE person
 -> ROWS IDENTIFIED BY '<person>';
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

You can verify that the records were imported using a SELECT statement:

mysql> SELECT * FROM person;
+-----------+--------+-------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+-------+---------------------+
| 1 | Robert | Jones | 2007-07-24 17:37:06 |
| 2 | Mary | Smith | 2007-07-24 17:37:06 |
+-----------+--------+-------+---------------------+
2 rows in set (0.00 sec)

Since the <address> elements in the XML file have no corresponding columns in the person table, they
are skipped.

To import the data from the <address> elements into the address table, use the LOAD XML statement
shown here:

mysql> LOAD XML LOCAL INFILE 'address.xml'
 -> INTO TABLE address
 -> ROWS IDENTIFIED BY '<address>';
Query OK, 3 rows affected (0.00 sec)
Records: 3 Deleted: 0 Skipped: 0 Warnings: 0

You can see that the data was imported using a SELECT statement such as this one:

mysql> SELECT * FROM address;
+------------+-----------+-----------------+-------+--------------+---------------------+
| address_id | person_id | street | zip | city | created |
+------------+-----------+-----------------+-------+--------------+---------------------+
1	1	Mill Creek Road	45365	Sidney	2007-07-24 17:37:37
2	1	Main Street	28681	Taylorsville	2007-07-24 17:37:37
3	2	River Road	80239	Denver	2007-07-24 17:37:37
+------------+-----------+-----------------+-------+--------------+---------------------+
3 rows in set (0.00 sec)

The data from the <address> element that is enclosed in XML comments is not imported. However, since
there is a person_id column in the address table, the value of the person_id attribute from the parent
<person> element for each <address> is imported into the address table.

Security Considerations. As with the LOAD DATA statement, the transfer of the XML file from the
client host to the server host is initiated by the MySQL server. In theory, a patched server could be built
that would tell the client program to transfer a file of the server's choosing rather than the file named by the

1768

REPLACE Statement

client in the LOAD XML statement. Such a server could access any file on the client host to which the client
user has read access.

In a Web environment, clients usually connect to MySQL from a Web server. A user that can run any
command against the MySQL server can use LOAD XML LOCAL to read any files to which the Web server
process has read access. In this environment, the client with respect to the MySQL server is actually the
Web server, not the remote program being run by the user who connects to the Web server.

You can disable loading of XML files from clients by starting the server with --local-infile=0 or --
local-infile=OFF. This option can also be used when starting the mysql client to disable LOAD XML
for the duration of the client session.

To prevent a client from loading XML files from the server, do not grant the FILE privilege to the
corresponding MySQL user account, or revoke this privilege if the client user account already has it.

Important

Revoking the FILE privilege (or not granting it in the first place) keeps the user only
from executing the LOAD XML statement (as well as the LOAD_FILE() function;
it does not prevent the user from executing LOAD XML LOCAL. To disallow this
statement, you must start the server or the client with --local-infile=OFF.

In other words, the FILE privilege affects only whether the client can read files on
the server; it has no bearing on whether the client can read files on the local file
system.

For partitioned tables using storage engines that employ table locks, such as MyISAM, any locks caused by
LOAD XML perform locks on all partitions of the table. This does not apply to tables using storage engines
which employ row-level locking, such as InnoDB. For more information, see Section 19.6.4, “Partitioning
and Locking”.

13.2.8 REPLACE Statement

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 {VALUES | VALUE} (value_list) [, (value_list)] ...

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 SET assignment_list

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 SELECT ...

value:
 {expr | DEFAULT}

value_list:
 value [, value] ...

assignment:
 col_name = value

assignment_list:

1769

REPLACE Statement

 assignment [, assignment] ...

REPLACE works exactly like INSERT, except that if an old row in the table has the same value as a new
row for a PRIMARY KEY or a UNIQUE index, the old row is deleted before the new row is inserted. See
Section 13.2.5, “INSERT Statement”.

REPLACE is a MySQL extension to the SQL standard. It either inserts, or deletes and inserts. For another
MySQL extension to standard SQL—that either inserts or updates—see Section 13.2.5.2, “INSERT ... ON
DUPLICATE KEY UPDATE Statement”.

Note

REPLACE makes sense only if a table has a PRIMARY KEY or UNIQUE index.
Otherwise, it becomes equivalent to INSERT, because there is no index to be used
to determine whether a new row duplicates another.

Values for all columns are taken from the values specified in the REPLACE statement. Any missing columns
are set to their default values, just as happens for INSERT. You cannot refer to values from the current
row and use them in the new row. If you use an assignment such as SET col_name = col_name +
1, the reference to the column name on the right hand side is treated as DEFAULT(col_name), so the
assignment is equivalent to SET col_name = DEFAULT(col_name) + 1.

To use REPLACE, you must have both the INSERT and DELETE privileges for the table.

REPLACE supports explicit partition selection using the PARTITION clause with a list of comma-separated
names of partitions, subpartitions, or both. As with INSERT, if it is not possible to insert the new row
into any of these partitions or subpartitions, the REPLACE statement fails with the error Found a row
not matching the given partition set. For more information and examples, see Section 19.5,
“Partition Selection”.

The REPLACE statement returns a count to indicate the number of rows affected. This is the sum of the
rows deleted and inserted. If the count is 1 for a single-row REPLACE, a row was inserted and no rows
were deleted. If the count is greater than 1, one or more old rows were deleted before the new row was
inserted. It is possible for a single row to replace more than one old row if the table contains multiple
unique indexes and the new row duplicates values for different old rows in different unique indexes.

The affected-rows count makes it easy to determine whether REPLACE only added a row or whether it also
replaced any rows: Check whether the count is 1 (added) or greater (replaced).

If you are using the C API, the affected-rows count can be obtained using the mysql_affected_rows()
function.

You cannot replace into a table and select from the same table in a subquery.

MySQL uses the following algorithm for REPLACE (and LOAD DATA ... REPLACE):

1. Try to insert the new row into the table

2. While the insertion fails because a duplicate-key error occurs for a primary key or unique index:

a. Delete from the table the conflicting row that has the duplicate key value

b. Try again to insert the new row into the table

It is possible that in the case of a duplicate-key error, a storage engine may perform the REPLACE as an
update rather than a delete plus insert, but the semantics are the same. There are no user-visible effects
other than a possible difference in how the storage engine increments Handler_xxx status variables.

1770

https://dev.mysql.com/doc/c-api/5.6/en/mysql-affected-rows.html

REPLACE Statement

Because the results of REPLACE ... SELECT statements depend on the ordering of rows from the
SELECT and this order cannot always be guaranteed, it is possible when logging these statements for
the source and the slave to diverge. For this reason, REPLACE ... SELECT statements are flagged as
unsafe for statement-based replication. such statements produce a warning in the error log when using
statement-based mode and are written to the binary log using the row-based format when using MIXED
mode. See also Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based
Replication”.

When modifying an existing table that is not partitioned to accommodate partitioning, or, when modifying
the partitioning of an already partitioned table, you may consider altering the table's primary key (see
Section 19.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”). You should be aware that, if you do
this, the results of REPLACE statements may be affected, just as they would be if you modified the primary
key of a nonpartitioned table. Consider the table created by the following CREATE TABLE statement:

CREATE TABLE test (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 data VARCHAR(64) DEFAULT NULL,
 ts TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (id)
);

When we create this table and run the statements shown in the mysql client, the result is as follows:

mysql> REPLACE INTO test VALUES (1, 'Old', '2014-08-20 18:47:00');
Query OK, 1 row affected (0.04 sec)

mysql> REPLACE INTO test VALUES (1, 'New', '2014-08-20 18:47:42');
Query OK, 2 rows affected (0.04 sec)

mysql> SELECT * FROM test;
+----+------+---------------------+
| id | data | ts |
+----+------+---------------------+
| 1 | New | 2014-08-20 18:47:42 |
+----+------+---------------------+
1 row in set (0.00 sec)

Now we create a second table almost identical to the first, except that the primary key now covers 2
columns, as shown here (emphasized text):

CREATE TABLE test2 (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 data VARCHAR(64) DEFAULT NULL,
 ts TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (id, ts)
);

When we run on test2 the same two REPLACE statements as we did on the original test table, we
obtain a different result:

mysql> REPLACE INTO test2 VALUES (1, 'Old', '2014-08-20 18:47:00');
Query OK, 1 row affected (0.05 sec)

mysql> REPLACE INTO test2 VALUES (1, 'New', '2014-08-20 18:47:42');
Query OK, 1 row affected (0.06 sec)

mysql> SELECT * FROM test2;
+----+------+---------------------+
| id | data | ts |
+----+------+---------------------+
| 1 | Old | 2014-08-20 18:47:00 |
| 1 | New | 2014-08-20 18:47:42 |
+----+------+---------------------+

1771

SELECT Statement

2 rows in set (0.00 sec)

This is due to the fact that, when run on test2, both the id and ts column values must match those of an
existing row for the row to be replaced; otherwise, a row is inserted.

A REPLACE statement affecting a partitioned table using a storage engine such as MyISAM that employs
table-level locks locks only those partitions containing rows that match the REPLACE statement WHERE
clause, as long as none of the table partitioning columns are updated; otherwise the entire table is locked.
(For storage engines such as InnoDB that employ row-level locking, no locking of partitions takes place.)
For more information, see Section 19.6.4, “Partitioning and Locking”.

13.2.9 SELECT Statement
SELECT
 [ALL | DISTINCT | DISTINCTROW]
 [HIGH_PRIORITY]
 [STRAIGHT_JOIN]
 [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
 [SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]
 select_expr [, select_expr] ...
 [into_option]
 [FROM table_references
 [PARTITION partition_list]]
 [WHERE where_condition]
 [GROUP BY {col_name | expr | position}
 [ASC | DESC], ... [WITH ROLLUP]]
 [HAVING where_condition]
 [ORDER BY {col_name | expr | position}
 [ASC | DESC], ...]
 [LIMIT {[offset,] row_count | row_count OFFSET offset}]
 [PROCEDURE procedure_name(argument_list)]
 [into_option]
 [FOR UPDATE | LOCK IN SHARE MODE]

into_option: {
 INTO OUTFILE 'file_name'
 [CHARACTER SET charset_name]
 export_options
 | INTO DUMPFILE 'file_name'
 | INTO var_name [, var_name] ...
}

SELECT is used to retrieve rows selected from one or more tables, and can include UNION statements and
subqueries. See Section 13.2.9.3, “UNION Clause”, and Section 13.2.10, “Subqueries”.

The most commonly used clauses of SELECT statements are these:

• Each select_expr indicates a column that you want to retrieve. There must be at least one
select_expr.

• table_references indicates the table or tables from which to retrieve rows. Its syntax is described in
Section 13.2.9.2, “JOIN Clause”.

• SELECT supports explicit partition selection using the PARTITION clause with a list of partitions or
subpartitions (or both) following the name of the table in a table_reference (see Section 13.2.9.2,
“JOIN Clause”). In this case, rows are selected only from the partitions listed, and any other partitions of
the table are ignored. For more information and examples, see Section 19.5, “Partition Selection”.

SELECT ... PARTITION from tables using storage engines such as MyISAM that perform table-level
locks (and thus partition locks) lock only the partitions or subpartitions named by the PARTITION option.

For more information, see Section 19.6.4, “Partitioning and Locking”.

1772

SELECT Statement

• The WHERE clause, if given, indicates the condition or conditions that rows must satisfy to be selected.
where_condition is an expression that evaluates to true for each row to be selected. The statement
selects all rows if there is no WHERE clause.

In the WHERE expression, you can use any of the functions and operators that MySQL supports, except
for aggregate (group) functions. See Section 9.5, “Expressions”, and Chapter 12, Functions and
Operators.

SELECT can also be used to retrieve rows computed without reference to any table.

For example:

mysql> SELECT 1 + 1;
 -> 2

 You are permitted to specify DUAL as a dummy table name in situations where no tables are referenced:

mysql> SELECT 1 + 1 FROM DUAL;
 -> 2

DUAL is purely for the convenience of people who require that all SELECT statements should have FROM
and possibly other clauses. MySQL may ignore the clauses. MySQL does not require FROM DUAL if no
tables are referenced.

In general, clauses used must be given in exactly the order shown in the syntax description. For example,
a HAVING clause must come after any GROUP BY clause and before any ORDER BY clause. The
INTO clause, if present, can appear in any position indicated by the syntax description, but within a
given statement can appear only once, not in multiple positions. For more information about INTO, see
Section 13.2.9.1, “SELECT ... INTO Statement”.

The list of select_expr terms comprises the select list that indicates which columns to retrieve. Terms
specify a column or expression or can use *-shorthand:

• A select list consisting only of a single unqualified * can be used as shorthand to select all columns from
all tables:

SELECT * FROM t1 INNER JOIN t2 ...

• tbl_name.* can be used as a qualified shorthand to select all columns from the named table:

SELECT t1.*, t2.* FROM t1 INNER JOIN t2 ...

• Use of an unqualified * with other items in the select list may produce a parse error. To avoid this
problem, use a qualified tbl_name.* reference:

SELECT AVG(score), t1.* FROM t1 ...

The following list provides additional information about other SELECT clauses:

• A select_expr can be given an alias using AS alias_name. The alias is used as the expression's
column name and can be used in GROUP BY, ORDER BY, or HAVING clauses. For example:

SELECT CONCAT(last_name,', ',first_name) AS full_name
 FROM mytable ORDER BY full_name;

The AS keyword is optional when aliasing a select_expr with an identifier. The preceding example
could have been written like this:

SELECT CONCAT(last_name,', ',first_name) full_name
 FROM mytable ORDER BY full_name;

1773

SELECT Statement

However, because the AS is optional, a subtle problem can occur if you forget the comma between
two select_expr expressions: MySQL interprets the second as an alias name. For example, in the
following statement, columnb is treated as an alias name:

SELECT columna columnb FROM mytable;

For this reason, it is good practice to be in the habit of using AS explicitly when specifying column
aliases.

It is not permissible to refer to a column alias in a WHERE clause, because the column value might not
yet be determined when the WHERE clause is executed. See Section B.3.4.4, “Problems with Column
Aliases”.

• The FROM table_references clause indicates the table or tables from which to retrieve rows.
If you name more than one table, you are performing a join. For information on join syntax, see
Section 13.2.9.2, “JOIN Clause”. For each table specified, you can optionally specify an alias.

tbl_name [[AS] alias] [index_hint]

The use of index hints provides the optimizer with information about how to choose indexes during query
processing. For a description of the syntax for specifying these hints, see Section 8.9.3, “Index Hints”.

You can use SET max_seeks_for_key=value as an alternative way to force MySQL to prefer key
scans instead of table scans. See Section 5.1.7, “Server System Variables”.

• You can refer to a table within the default database as tbl_name, or as db_name.tbl_name to
specify a database explicitly. You can refer to a column as col_name, tbl_name.col_name, or
db_name.tbl_name.col_name. You need not specify a tbl_name or db_name.tbl_name prefix for a
column reference unless the reference would be ambiguous. See Section 9.2.2, “Identifier Qualifiers”, for
examples of ambiguity that require the more explicit column reference forms.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name.
These statements are equivalent:

SELECT t1.name, t2.salary FROM employee AS t1, info AS t2
 WHERE t1.name = t2.name;

SELECT t1.name, t2.salary FROM employee t1, info t2
 WHERE t1.name = t2.name;

• Columns selected for output can be referred to in ORDER BY and GROUP BY clauses using column
names, column aliases, or column positions. Column positions are integers and begin with 1:

SELECT college, region, seed FROM tournament
 ORDER BY region, seed;

SELECT college, region AS r, seed AS s FROM tournament
 ORDER BY r, s;

SELECT college, region, seed FROM tournament
 ORDER BY 2, 3;

To sort in reverse order, add the DESC (descending) keyword to the name of the column in the ORDER
BY clause that you are sorting by. The default is ascending order; this can be specified explicitly using
the ASC keyword.

If ORDER BY occurs within a parenthesized query expression and also is applied in the outer query, the
results are undefined and may change in a future MySQL version.

1774

SELECT Statement

Use of column positions is deprecated because the syntax has been removed from the SQL standard.

• MySQL extends the GROUP BY clause so that you can also specify ASC and DESC after columns named
in the clause:

SELECT a, COUNT(b) FROM test_table GROUP BY a DESC;

• If you use GROUP BY, output rows are sorted according to the GROUP BY columns as if you had an
ORDER BY for the same columns. To avoid the overhead of sorting that GROUP BY produces, add
ORDER BY NULL:

SELECT a, COUNT(b) FROM test_table GROUP BY a ORDER BY NULL;

Relying on implicit GROUP BY sorting (that is, sorting in the absence of ASC or DESC designators) is
deprecated. To produce a given sort order, use explicit ASC or DESC designators for GROUP BY columns
or provide an ORDER BY clause.

• When you use ORDER BY or GROUP BY to sort a column in a SELECT, the server sorts values using
only the initial number of bytes indicated by the max_sort_length system variable.

• MySQL extends the use of GROUP BY to permit selecting fields that are not mentioned in the GROUP BY
clause. If you are not getting the results that you expect from your query, please read the description of
GROUP BY found in Section 12.19, “Aggregate Functions”.

• GROUP BY permits a WITH ROLLUP modifier. See Section 12.19.2, “GROUP BY Modifiers”.

• The HAVING clause, like the WHERE clause, specifies selection conditions. The WHERE clause specifies
conditions on columns in the select list, but cannot refer to aggregate functions. The HAVING clause
specifies conditions on groups, typically formed by the GROUP BY clause. The query result includes only
groups satisfying the HAVING conditions. (If no GROUP BY is present, all rows implicitly form a single
aggregate group.)

The HAVING clause is applied nearly last, just before items are sent to the client, with no optimization.
(LIMIT is applied after HAVING.)

The SQL standard requires that HAVING must reference only columns in the GROUP BY clause or
columns used in aggregate functions. However, MySQL supports an extension to this behavior, and
permits HAVING to refer to columns in the SELECT list and columns in outer subqueries as well.

If the HAVING clause refers to a column that is ambiguous, a warning occurs. In the following statement,
col2 is ambiguous because it is used as both an alias and a column name:

SELECT COUNT(col1) AS col2 FROM t GROUP BY col2 HAVING col2 = 2;

Preference is given to standard SQL behavior, so if a HAVING column name is used both in GROUP BY
and as an aliased column in the select column list, preference is given to the column in the GROUP BY
column.

• Do not use HAVING for items that should be in the WHERE clause. For example, do not write the
following:

SELECT col_name FROM tbl_name HAVING col_name > 0;

Write this instead:

SELECT col_name FROM tbl_name WHERE col_name > 0;

• The HAVING clause can refer to aggregate functions, which the WHERE clause cannot:

1775

SELECT Statement

SELECT user, MAX(salary) FROM users
 GROUP BY user HAVING MAX(salary) > 10;

(This did not work in some older versions of MySQL.)

• MySQL permits duplicate column names. That is, there can be more than one select_expr with
the same name. This is an extension to standard SQL. Because MySQL also permits GROUP BY and
HAVING to refer to select_expr values, this can result in an ambiguity:

SELECT 12 AS a, a FROM t GROUP BY a;

In that statement, both columns have the name a. To ensure that the correct column is used for
grouping, use different names for each select_expr.

• MySQL resolves unqualified column or alias references in ORDER BY clauses by searching in the
select_expr values, then in the columns of the tables in the FROM clause. For GROUP BY or HAVING
clauses, it searches the FROM clause before searching in the select_expr values. (For GROUP BY and
HAVING, this differs from the pre-MySQL 5.0 behavior that used the same rules as for ORDER BY.)

• The LIMIT clause can be used to constrain the number of rows returned by the SELECT statement.
LIMIT takes one or two numeric arguments, which must both be nonnegative integer constants, with
these exceptions:

• Within prepared statements, LIMIT parameters can be specified using ? placeholder markers.

• Within stored programs, LIMIT parameters can be specified using integer-valued routine parameters
or local variables.

With two arguments, the first argument specifies the offset of the first row to return, and the second
specifies the maximum number of rows to return. The offset of the initial row is 0 (not 1):

SELECT * FROM tbl LIMIT 5,10; # Retrieve rows 6-15

To retrieve all rows from a certain offset up to the end of the result set, you can use some large number
for the second parameter. This statement retrieves all rows from the 96th row to the last:

SELECT * FROM tbl LIMIT 95,18446744073709551615;

With one argument, the value specifies the number of rows to return from the beginning of the result set:

SELECT * FROM tbl LIMIT 5; # Retrieve first 5 rows

In other words, LIMIT row_count is equivalent to LIMIT 0, row_count.

For prepared statements, you can use placeholders. The following statements return one row from the
tbl table:

SET @a=1;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?';
EXECUTE STMT USING @a;

The following statements return the second to sixth row from the tbl table:

SET @skip=1; SET @numrows=5;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?, ?';
EXECUTE STMT USING @skip, @numrows;

For compatibility with PostgreSQL, MySQL also supports the LIMIT row_count OFFSET offset
syntax.

1776

SELECT Statement

If LIMIT occurs within a parenthesized query expression and also is applied in the outer query, the
results are undefined and may change in a future MySQL version.

• A PROCEDURE clause names a procedure that should process the data in the result set. For an example,
see Section 8.4.2.4, “Using PROCEDURE ANALYSE”, which describes ANALYSE, a procedure that can
be used to obtain suggestions for optimal column data types that may help reduce table sizes.

A PROCEDURE clause is not permitted in a UNION statement.

• The SELECT ... INTO form of SELECT enables the query result to be written to a file or stored in
variables. For more information, see Section 13.2.9.1, “SELECT ... INTO Statement”.

• If you use FOR UPDATE with a storage engine that uses page or row locks, rows examined by the
query are write-locked until the end of the current transaction. Using LOCK IN SHARE MODE sets a
shared lock that permits other transactions to read the examined rows but not to update or delete them.
See Section 14.7.2.4, “Locking Reads”.

In addition, you cannot use FOR UPDATE as part of the SELECT in a statement such as CREATE TABLE
new_table SELECT ... FROM old_table (If you attempt to do so, the statement is rejected
with the error Can't update table 'old_table' while 'new_table' is being created.)
This is a change in behavior from MySQL 5.5 and earlier, which permitted CREATE TABLE ...
SELECT statements to make changes in tables other than the table being created.

Following the SELECT keyword, you can use a number of modifiers that affect the operation of the
statement. HIGH_PRIORITY, STRAIGHT_JOIN, and modifiers beginning with SQL_ are MySQL
extensions to standard SQL.

• The ALL and DISTINCT modifiers specify whether duplicate rows should be returned. ALL (the default)
specifies that all matching rows should be returned, including duplicates. DISTINCT specifies removal of
duplicate rows from the result set. It is an error to specify both modifiers. DISTINCTROW is a synonym for
DISTINCT.

• HIGH_PRIORITY gives the SELECT higher priority than a statement that updates a table. You should
use this only for queries that are very fast and must be done at once. A SELECT HIGH_PRIORITY
query that is issued while the table is locked for reading runs even if there is an update statement waiting
for the table to be free. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION.

• STRAIGHT_JOIN forces the optimizer to join the tables in the order in which they are listed in the
FROM clause. You can use this to speed up a query if the optimizer joins the tables in nonoptimal order.
STRAIGHT_JOIN also can be used in the table_references list. See Section 13.2.9.2, “JOIN
Clause”.

STRAIGHT_JOIN does not apply to any table that the optimizer treats as a const or system table.
Such a table produces a single row, is read during the optimization phase of query execution, and
references to its columns are replaced with the appropriate column values before query execution
proceeds. These tables appear first in the query plan displayed by EXPLAIN. See Section 8.8.1,
“Optimizing Queries with EXPLAIN”. This exception may not apply to const or system tables that are
used on the NULL-complemented side of an outer join (that is, the right-side table of a LEFT JOIN or the
left-side table of a RIGHT JOIN.

• SQL_BIG_RESULT or SQL_SMALL_RESULT can be used with GROUP BY or DISTINCT to tell the
optimizer that the result set has many rows or is small, respectively. For SQL_BIG_RESULT, MySQL
directly uses disk-based temporary tables if they are created, and prefers sorting to using a temporary

1777

SELECT Statement

table with a key on the GROUP BY elements. For SQL_SMALL_RESULT, MySQL uses in-memory
temporary tables to store the resulting table instead of using sorting. This should not normally be
needed.

• SQL_BUFFER_RESULT forces the result to be put into a temporary table. This helps MySQL free the
table locks early and helps in cases where it takes a long time to send the result set to the client. This
modifier can be used only for top-level SELECT statements, not for subqueries or following UNION.

• SQL_CALC_FOUND_ROWS tells MySQL to calculate how many rows there would be in the result
set, disregarding any LIMIT clause. The number of rows can then be retrieved with SELECT
FOUND_ROWS(). See Section 12.16, “Information Functions”.

• The SQL_CACHE and SQL_NO_CACHE modifiers affect caching of query results in the query cache (see
Section 8.10.3, “The MySQL Query Cache”). SQL_CACHE tells MySQL to store the result in the query
cache if it is cacheable and the value of the query_cache_type system variable is 2 or DEMAND. With
SQL_NO_CACHE, the server does not use the query cache. It neither checks the query cache to see
whether the result is already cached, nor does it cache the query result. (Due to a limitation in the parser,
a space character must precede and follow the SQL_NO_CACHE keyword; a nonspace such as a newline
causes the server to check the query cache to see whether the result is already cached.)

These two modifiers are mutually exclusive and an error occurs if they are both specified. Also, these
modifiers are not permitted in subqueries (including subqueries in the FROM clause), and SELECT
statements in unions other than the first SELECT.

For views, SQL_NO_CACHE applies if it appears in any SELECT in the query. For a cacheable query,
SQL_CACHE applies if it appears in the first SELECT of a view referred to by the query.

A SELECT from a partitioned table using a storage engine such as MyISAM that employs table-level locks
locks only those partitions containing rows that match the SELECT statement WHERE clause. (This does
not occur with storage engines such as InnoDB that employ row-level locking.) For more information, see
Section 19.6.4, “Partitioning and Locking”.

13.2.9.1 SELECT ... INTO Statement

The SELECT ... INTO form of SELECT enables a query result to be stored in variables or written to a
file:

• SELECT ... INTO var_list selects column values and stores them into variables.

• SELECT ... INTO OUTFILE writes the selected rows to a file. Column and line terminators can be
specified to produce a specific output format.

• SELECT ... INTO DUMPFILE writes a single row to a file without any formatting.

A given SELECT statement can contain at most one INTO clause, although as shown by the SELECT
syntax description (see Section 13.2.9, “SELECT Statement”), the INTO can appear in different positions:

• Before FROM. Example:

SELECT * INTO @myvar FROM t1;

• Before a trailing locking clause. Example:

SELECT * FROM t1 INTO @myvar FOR UPDATE;

An INTO clause should not be used in a nested SELECT because such a SELECT must return its result
to the outer context. There are also constraints on the use of INTO within UNION statements; see
Section 13.2.9.3, “UNION Clause”.

1778

SELECT Statement

For the INTO var_list variant:

• var_list names a list of one or more variables, each of which can be a user-defined variable, stored
procedure or function parameter, or stored program local variable. (Within a prepared SELECT ...
INTO var_list statement, only user-defined variables are permitted; see Section 13.6.4.2, “Local
Variable Scope and Resolution”.)

• The selected values are assigned to the variables. The number of variables must match the number of
columns. The query should return a single row. If the query returns no rows, a warning with error code
1329 occurs (No data), and the variable values remain unchanged. If the query returns multiple rows,
error 1172 occurs (Result consisted of more than one row). If it is possible that the statement
may retrieve multiple rows, you can use LIMIT 1 to limit the result set to a single row.

SELECT id, data INTO @x, @y FROM test.t1 LIMIT 1;

User variable names are not case-sensitive. See Section 9.4, “User-Defined Variables”.

The SELECT ... INTO OUTFILE 'file_name' form of SELECT writes the selected rows to a
file. The file is created on the server host, so you must have the FILE privilege to use this syntax.
file_name cannot be an existing file, which among other things prevents files such as /etc/passwd and
database tables from being modified. The character_set_filesystem system variable controls the
interpretation of the file name.

The SELECT ... INTO OUTFILE statement is intended to enable dumping a table to a text file on the
server host. To create the resulting file on some other host, SELECT ... INTO OUTFILE normally is
unsuitable because there is no way to write a path to the file relative to the server host file system, unless
the location of the file on the remote host can be accessed using a network-mapped path on the server
host file system.

Alternatively, if the MySQL client software is installed on the remote host, you can use a client command
such as mysql -e "SELECT ..." > file_name to generate the file on that host.

SELECT ... INTO OUTFILE is the complement of LOAD DATA. Column values are written converted to
the character set specified in the CHARACTER SET clause. If no such clause is present, values are dumped
using the binary character set. In effect, there is no character set conversion. If a result set contains
columns in several character sets, so does the output data file, and it may not be possible to reload the file
correctly.

The syntax for the export_options part of the statement consists of the same FIELDS and LINES
clauses that are used with the LOAD DATA statement. For information about the FIELDS and LINES
clauses, including their default values and permissible values, see Section 13.2.6, “LOAD DATA
Statement”.

FIELDS ESCAPED BY controls how to write special characters. If the FIELDS ESCAPED BY character is
not empty, it is used when necessary to avoid ambiguity as a prefix that precedes following characters on
output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII NUL (the zero-valued byte; what is actually written following the escape character is ASCII 0, not a
zero-valued byte)

The FIELDS TERMINATED BY, ENCLOSED BY, ESCAPED BY, or LINES TERMINATED BY characters
must be escaped so that you can read the file back in reliably. ASCII NUL is escaped to make it easier to
view with some pagers.

1779

SELECT Statement

The resulting file need not conform to SQL syntax, so nothing else need be escaped.

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as NULL,
not \N. It is probably not a good idea to specify an empty escape character, particularly if field values in
your data contain any of the characters in the list just given.

Here is an example that produces a file in the comma-separated values (CSV) format used by many
programs:

SELECT a,b,a+b INTO OUTFILE '/tmp/result.txt'
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 LINES TERMINATED BY '\n'
 FROM test_table;

If you use INTO DUMPFILE instead of INTO OUTFILE, MySQL writes only one row into the file, without
any column or line termination and without performing any escape processing. This is useful for selecting a
BLOB value and storing it in a file.

Note

Any file created by INTO OUTFILE or INTO DUMPFILE is writable by all users
on the server host. The reason for this is that the MySQL server cannot create a
file that is owned by anyone other than the user under whose account it is running.
(You should never run mysqld as root for this and other reasons.) The file thus
must be world-writable so that you can manipulate its contents.

If the secure_file_priv system variable is set to a nonempty directory name,
the file to be written must be located in that directory.

In the context of SELECT ... INTO statements that occur as part of events executed by the Event
Scheduler, diagnostics messages (not only errors, but also warnings) are written to the error log, and, on
Windows, to the application event log. For additional information, see Section 20.4.5, “Event Scheduler
Status”.

13.2.9.2 JOIN Clause

MySQL supports the following JOIN syntax for the table_references part of SELECT statements and
multiple-table DELETE and UPDATE statements:

table_references:
 escaped_table_reference [, escaped_table_reference] ...

escaped_table_reference: {
 table_reference
 | { OJ table_reference }
}

table_reference: {
 table_factor
 | joined_table
}

table_factor: {
 tbl_name [PARTITION (partition_names)]
 [[AS] alias] [index_hint_list]
 | table_subquery [AS] alias
 | (table_references)
}

joined_table: {

1780

SELECT Statement

 table_reference [INNER | CROSS] JOIN table_factor [join_specification]
 | table_reference STRAIGHT_JOIN table_factor
 | table_reference STRAIGHT_JOIN table_factor ON search_condition
 | table_reference {LEFT|RIGHT} [OUTER] JOIN table_reference join_specification
 | table_reference NATURAL [{LEFT|RIGHT} [OUTER]] JOIN table_factor
}

join_specification: {
 ON search_condition
 | USING (join_column_list)
}

join_column_list:
 column_name [, column_name] ...

index_hint_list:
 index_hint [, index_hint] ...

index_hint: {
 USE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
 | {IGNORE|FORCE} {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
}

index_list:
 index_name [, index_name] ...

A table reference is also known as a join expression.

A table reference (when it refers to a partitioned table) may contain a PARTITION clause, including a list of
comma-separated partitions, subpartitions, or both. This option follows the name of the table and precedes
any alias declaration. The effect of this option is that rows are selected only from the listed partitions or
subpartitions. Any partitions or subpartitions not named in the list are ignored. For more information and
examples, see Section 19.5, “Partition Selection”.

The syntax of table_factor is extended in MySQL in comparison with standard SQL. The standard
accepts only table_reference, not a list of them inside a pair of parentheses.

This is a conservative extension if each comma in a list of table_reference items is considered as
equivalent to an inner join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
 ON (t2.a = t1.a AND t3.b = t1.b AND t4.c = t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
 ON (t2.a = t1.a AND t3.b = t1.b AND t4.c = t1.c)

In MySQL, JOIN, CROSS JOIN, and INNER JOIN are syntactic equivalents (they can replace each other).
In standard SQL, they are not equivalent. INNER JOIN is used with an ON clause, CROSS JOIN is used
otherwise.

In general, parentheses can be ignored in join expressions containing only inner join operations. MySQL
also supports nested joins. See Section 8.2.1.7, “Nested Join Optimization”.

Index hints can be specified to affect how the MySQL optimizer makes use of indexes. For more
information, see Section 8.9.3, “Index Hints”. The optimizer_switch system variable is another way to
influence optimizer use of indexes. See Section 8.9.2, “Switchable Optimizations”.

The following list describes general factors to take into account when writing joins:

1781

SELECT Statement

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:

SELECT t1.name, t2.salary
 FROM employee AS t1 INNER JOIN info AS t2 ON t1.name = t2.name;

SELECT t1.name, t2.salary
 FROM employee t1 INNER JOIN info t2 ON t1.name = t2.name;

• A table_subquery is also known as a derived table or subquery in the FROM clause. See
Section 13.2.10.8, “Derived Tables”. Such subqueries must include an alias to give the subquery result a
table name. A trivial example follows:

SELECT * FROM (SELECT 1, 2, 3) AS t1;

• The maximum number of tables that can be referenced in a single join is 61.

• INNER JOIN and , (comma) are semantically equivalent in the absence of a join condition: both
produce a Cartesian product between the specified tables (that is, each and every row in the first table is
joined to each and every row in the second table).

However, the precedence of the comma operator is less than that of INNER JOIN, CROSS JOIN, LEFT
JOIN, and so on. If you mix comma joins with the other join types when there is a join condition, an error
of the form Unknown column 'col_name' in 'on clause' may occur. Information about dealing
with this problem is given later in this section.

• The search_condition used with ON is any conditional expression of the form that can be used in
a WHERE clause. Generally, the ON clause serves for conditions that specify how to join tables, and the
WHERE clause restricts which rows to include in the result set.

• If there is no matching row for the right table in the ON or USING part in a LEFT JOIN, a row with all
columns set to NULL is used for the right table. You can use this fact to find rows in a table that have no
counterpart in another table:

SELECT left_tbl.*
 FROM left_tbl LEFT JOIN right_tbl ON left_tbl.id = right_tbl.id
 WHERE right_tbl.id IS NULL;

This example finds all rows in left_tbl with an id value that is not present in right_tbl (that is,
all rows in left_tbl with no corresponding row in right_tbl). See Section 8.2.1.8, “Outer Join
Optimization”.

• The USING(join_column_list) clause names a list of columns that must exist in both tables. If
tables a and b both contain columns c1, c2, and c3, the following join compares corresponding columns
from the two tables:

a LEFT JOIN b USING (c1, c2, c3)

• The NATURAL [LEFT] JOIN of two tables is defined to be semantically equivalent to an INNER JOIN
or a LEFT JOIN with a USING clause that names all columns that exist in both tables.

• RIGHT JOIN works analogously to LEFT JOIN. To keep code portable across databases, it is
recommended that you use LEFT JOIN instead of RIGHT JOIN.

• The { OJ ... } syntax shown in the join syntax description exists only for compatibility with ODBC.
The curly braces in the syntax should be written literally; they are not metasyntax as used elsewhere in
syntax descriptions.

SELECT left_tbl.*
 FROM { OJ left_tbl LEFT OUTER JOIN right_tbl
 ON left_tbl.id = right_tbl.id }

1782

SELECT Statement

 WHERE right_tbl.id IS NULL;

You can use other types of joins within { OJ ... }, such as INNER JOIN or RIGHT OUTER JOIN.
This helps with compatibility with some third-party applications, but is not official ODBC syntax.

• STRAIGHT_JOIN is similar to JOIN, except that the left table is always read before the right table. This
can be used for those (few) cases for which the join optimizer processes the tables in a suboptimal
order.

Some join examples:

SELECT * FROM table1, table2;

SELECT * FROM table1 INNER JOIN table2 ON table1.id = table2.id;

SELECT * FROM table1 LEFT JOIN table2 ON table1.id = table2.id;

SELECT * FROM table1 LEFT JOIN table2 USING (id);

SELECT * FROM table1 LEFT JOIN table2 ON table1.id = table2.id
 LEFT JOIN table3 ON table2.id = table3.id;

Natural joins and joins with USING, including outer join variants, are processed according to the SQL:2003
standard:

• Redundant columns of a NATURAL join do not appear. Consider this set of statements:

CREATE TABLE t1 (i INT, j INT);
CREATE TABLE t2 (k INT, j INT);
INSERT INTO t1 VALUES(1, 1);
INSERT INTO t2 VALUES(1, 1);
SELECT * FROM t1 NATURAL JOIN t2;
SELECT * FROM t1 JOIN t2 USING (j);

In the first SELECT statement, column j appears in both tables and thus becomes a join column, so,
according to standard SQL, it should appear only once in the output, not twice. Similarly, in the second
SELECT statement, column j is named in the USING clause and should appear only once in the output,
not twice.

Thus, the statements produce this output:

+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+
+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+

Redundant column elimination and column ordering occurs according to standard SQL, producing this
display order:

• First, coalesced common columns of the two joined tables, in the order in which they occur in the first
table

• Second, columns unique to the first table, in order in which they occur in that table

• Third, columns unique to the second table, in order in which they occur in that table

1783

SELECT Statement

The single result column that replaces two common columns is defined using the coalesce operation.
That is, for two t1.a and t2.a the resulting single join column a is defined as a = COALESCE(t1.a,
t2.a), where:

COALESCE(x, y) = (CASE WHEN x IS NOT NULL THEN x ELSE y END)

If the join operation is any other join, the result columns of the join consist of the concatenation of all
columns of the joined tables.

A consequence of the definition of coalesced columns is that, for outer joins, the coalesced column
contains the value of the non-NULL column if one of the two columns is always NULL. If neither or
both columns are NULL, both common columns have the same value, so it doesn't matter which one
is chosen as the value of the coalesced column. A simple way to interpret this is to consider that a
coalesced column of an outer join is represented by the common column of the inner table of a JOIN.
Suppose that the tables t1(a, b) and t2(a, c) have the following contents:

t1 t2
---- ----
1 x 2 z
2 y 3 w

Then, for this join, column a contains the values of t1.a:

mysql> SELECT * FROM t1 NATURAL LEFT JOIN t2;
+------+------+------+
| a | b | c |
+------+------+------+
| 1 | x | NULL |
| 2 | y | z |
+------+------+------+

By contrast, for this join, column a contains the values of t2.a.

mysql> SELECT * FROM t1 NATURAL RIGHT JOIN t2;
+------+------+------+
| a | c | b |
+------+------+------+
| 2 | z | y |
| 3 | w | NULL |
+------+------+------+

Compare those results to the otherwise equivalent queries with JOIN ... ON:

mysql> SELECT * FROM t1 LEFT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 1 | x | NULL | NULL |
| 2 | y | 2 | z |
+------+------+------+------+

mysql> SELECT * FROM t1 RIGHT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 2 | y | 2 | z |
| NULL | NULL | 3 | w |
+------+------+------+------+

1784

SELECT Statement

• A USING clause can be rewritten as an ON clause that compares corresponding columns. However,
although USING and ON are similar, they are not quite the same. Consider the following two queries:

a LEFT JOIN b USING (c1, c2, c3)
a LEFT JOIN b ON a.c1 = b.c1 AND a.c2 = b.c2 AND a.c3 = b.c3

With respect to determining which rows satisfy the join condition, both joins are semantically identical.

With respect to determining which columns to display for SELECT * expansion, the two joins are not
semantically identical. The USING join selects the coalesced value of corresponding columns, whereas
the ON join selects all columns from all tables. For the USING join, SELECT * selects these values:

COALESCE(a.c1, b.c1), COALESCE(a.c2, b.c2), COALESCE(a.c3, b.c3)

For the ON join, SELECT * selects these values:

a.c1, a.c2, a.c3, b.c1, b.c2, b.c3

With an inner join, COALESCE(a.c1, b.c1) is the same as either a.c1 or b.c1 because both
columns have the same value. With an outer join (such as LEFT JOIN), one of the two columns can be
NULL. That column is omitted from the result.

• An ON clause can refer only to its operands.

Example:

CREATE TABLE t1 (i1 INT);
CREATE TABLE t2 (i2 INT);
CREATE TABLE t3 (i3 INT);
SELECT * FROM t1 JOIN t2 ON (i1 = i3) JOIN t3;

The statement fails with an Unknown column 'i3' in 'on clause' error because i3 is a
column in t3, which is not an operand of the ON clause. To enable the join to be processed, rewrite the
statement as follows:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (i1 = i3);

• JOIN has higher precedence than the comma operator (,), so the join expression t1, t2 JOIN t3
is interpreted as (t1, (t2 JOIN t3)), not as ((t1, t2) JOIN t3). This affects statements that
use an ON clause because that clause can refer only to columns in the operands of the join, and the
precedence affects interpretation of what those operands are.

Example:

CREATE TABLE t1 (i1 INT, j1 INT);
CREATE TABLE t2 (i2 INT, j2 INT);
CREATE TABLE t3 (i3 INT, j3 INT);
INSERT INTO t1 VALUES(1, 1);
INSERT INTO t2 VALUES(1, 1);
INSERT INTO t3 VALUES(1, 1);

1785

SELECT Statement

SELECT * FROM t1, t2 JOIN t3 ON (t1.i1 = t3.i3);

The JOIN takes precedence over the comma operator, so the operands for the ON clause are t2 and
t3. Because t1.i1 is not a column in either of the operands, the result is an Unknown column
't1.i1' in 'on clause' error.

To enable the join to be processed, use either of these strategies:

• Group the first two tables explicitly with parentheses so that the operands for the ON clause are (t1,
t2) and t3:

SELECT * FROM (t1, t2) JOIN t3 ON (t1.i1 = t3.i3);

• Avoid the use of the comma operator and use JOIN instead:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (t1.i1 = t3.i3);

The same precedence interpretation also applies to statements that mix the comma operator with INNER
JOIN, CROSS JOIN, LEFT JOIN, and RIGHT JOIN, all of which have higher precedence than the
comma operator.

• A MySQL extension compared to the SQL:2003 standard is that MySQL permits you to qualify the
common (coalesced) columns of NATURAL or USING joins, whereas the standard disallows that.

13.2.9.3 UNION Clause

SELECT ...
UNION [ALL | DISTINCT] SELECT ...
[UNION [ALL | DISTINCT] SELECT ...]

UNION combines the result from multiple SELECT statements into a single result set.

• Result Set Column Names and Data Types

• UNION DISTINCT and UNION ALL

• ORDER BY and LIMIT in Unions

• UNION Restrictions

Result Set Column Names and Data Types

The result set column names are taken from the column names of the first SELECT statement.

Selected columns listed in corresponding positions of each SELECT statement should have the same
data type. For example, the first column selected by the first statement should have the same type as
the first column selected by the other statements. If the data types of corresponding SELECT columns
do not match, the types and lengths of the columns in the UNION result take into account the values
retrieved by all the SELECT statements. For example, consider the following, where the column length is
not constrained to the length of the value from the first SELECT:

mysql> SELECT REPEAT('a',1) UNION SELECT REPEAT('b',20);
+----------------------+
| REPEAT('a',1) |
+----------------------+
| a |
| bbbbbbbbbbbbbbbbbbbb |
+----------------------+

1786

SELECT Statement

UNION DISTINCT and UNION ALL

By default, duplicate rows are removed from UNION results. The optional DISTINCT keyword has the
same effect but makes it explicit. With the optional ALL keyword, duplicate-row removal does not occur and
the result includes all matching rows from all the SELECT statements.

You can mix UNION ALL and UNION DISTINCT in the same query. Mixed UNION types are treated such
that a DISTINCT union overrides any ALL union to its left. A DISTINCT union can be produced explicitly
by using UNION DISTINCT or implicitly by using UNION with no following DISTINCT or ALL keyword.

ORDER BY and LIMIT in Unions

To apply an ORDER BY or LIMIT clause to an individual SELECT, parenthesize the SELECT and place the
clause inside the parentheses:

(SELECT a FROM t1 WHERE a=10 AND B=1 ORDER BY a LIMIT 10)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2 ORDER BY a LIMIT 10);

Use of ORDER BY for individual SELECT statements implies nothing about the order in which the rows
appear in the final result because UNION by default produces an unordered set of rows. Therefore, ORDER
BY in this context typically is used in conjunction with LIMIT, to determine the subset of the selected rows
to retrieve for the SELECT, even though it does not necessarily affect the order of those rows in the final
UNION result. If ORDER BY appears without LIMIT in a SELECT, it is optimized away because it has no
effect.

To use an ORDER BY or LIMIT clause to sort or limit the entire UNION result, parenthesize the individual
SELECT statements and place the ORDER BY or LIMIT after the last one:

(SELECT a FROM t1 WHERE a=10 AND B=1)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2)
ORDER BY a LIMIT 10;

A statement without parentheses is equivalent to one parenthesized as just shown.

This kind of ORDER BY cannot use column references that include a table name (that is, names in
tbl_name.col_name format). Instead, provide a column alias in the first SELECT statement and refer to
the alias in the ORDER BY. (Alternatively, refer to the column in the ORDER BY using its column position.
However, use of column positions is deprecated.)

Also, if a column to be sorted is aliased, the ORDER BY clause must refer to the alias, not the column
name. The first of the following statements is permitted, but the second fails with an Unknown column
'a' in 'order clause' error:

(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY b;
(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY a;

To cause rows in a UNION result to consist of the sets of rows retrieved by each SELECT one after the
other, select an additional column in each SELECT to use as a sort column and add an ORDER BY that
sorts on that column following the last SELECT:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col;

To additionally maintain sort order within individual SELECT results, add a secondary column to the ORDER
BY clause:

1787

Subqueries

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col, col1a;

Use of an additional column also enables you to determine which SELECT each row comes from. Extra
columns can provide other identifying information as well, such as a string that indicates a table name.

UNION Restrictions

In a UNION, the SELECT statements are normal select statements, but with the following restrictions:

• HIGH_PRIORITY in the first SELECT has no effect. HIGH_PRIORITY in any subsequent SELECT
produces a syntax error.

• Only the last SELECT statement can use an INTO clause. However, the entire UNION result is written to
the INTO output destination.

13.2.10 Subqueries

A subquery is a SELECT statement within another statement.

All subquery forms and operations that the SQL standard requires are supported, as well as a few features
that are MySQL-specific.

Here is an example of a subquery:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

In this example, SELECT * FROM t1 ... is the outer query (or outer statement), and (SELECT
column1 FROM t2) is the subquery. We say that the subquery is nested within the outer query, and in
fact it is possible to nest subqueries within other subqueries, to a considerable depth. A subquery must
always appear within parentheses.

The main advantages of subqueries are:

• They allow queries that are structured so that it is possible to isolate each part of a statement.

• They provide alternative ways to perform operations that would otherwise require complex joins and
unions.

• Many people find subqueries more readable than complex joins or unions. Indeed, it was the innovation
of subqueries that gave people the original idea of calling the early SQL “Structured Query Language.”

Here is an example statement that shows the major points about subquery syntax as specified by the SQL
standard and supported in MySQL:

DELETE FROM t1
WHERE s11 > ANY
 (SELECT COUNT(*) /* no hint */ FROM t2
 WHERE NOT EXISTS
 (SELECT * FROM t3
 WHERE ROW(5*t2.s1,77)=
 (SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM
 (SELECT * FROM t5) AS t5)));

A subquery can return a scalar (a single value), a single row, a single column, or a table (one or more rows
of one or more columns). These are called scalar, column, row, and table subqueries. Subqueries that

1788

Subqueries

return a particular kind of result often can be used only in certain contexts, as described in the following
sections.

There are few restrictions on the type of statements in which subqueries can be used. A subquery can
contain many of the keywords or clauses that an ordinary SELECT can contain: DISTINCT, GROUP BY,
ORDER BY, LIMIT, joins, index hints, UNION constructs, comments, functions, and so on.

A subquery's outer statement can be any one of: SELECT, INSERT, UPDATE, DELETE, SET, or DO.

In MySQL, you cannot modify a table and select from the same table in a subquery. This applies to
statements such as DELETE, INSERT, REPLACE, UPDATE, and (because subqueries can be used in the
SET clause) LOAD DATA.

For information about how the optimizer handles subqueries, see Section 8.2.2, “Optimizing Subqueries
and Derived Tables”. For a discussion of restrictions on subquery use, including performance issues for
certain forms of subquery syntax, see Section 13.2.10.12, “Restrictions on Subqueries”.

13.2.10.1 The Subquery as Scalar Operand

In its simplest form, a subquery is a scalar subquery that returns a single value. A scalar subquery is a
simple operand, and you can use it almost anywhere a single column value or literal is legal, and you can
expect it to have those characteristics that all operands have: a data type, a length, an indication that it can
be NULL, and so on. For example:

CREATE TABLE t1 (s1 INT, s2 CHAR(5) NOT NULL);
INSERT INTO t1 VALUES(100, 'abcde');
SELECT (SELECT s2 FROM t1);

The subquery in this SELECT returns a single value ('abcde') that has a data type of CHAR, a length of 5,
a character set and collation equal to the defaults in effect at CREATE TABLE time, and an indication that
the value in the column can be NULL. Nullability of the value selected by a scalar subquery is not copied
because if the subquery result is empty, the result is NULL. For the subquery just shown, if t1 were empty,
the result would be NULL even though s2 is NOT NULL.

There are a few contexts in which a scalar subquery cannot be used. If a statement permits only a literal
value, you cannot use a subquery. For example, LIMIT requires literal integer arguments, and LOAD
DATA requires a literal string file name. You cannot use subqueries to supply these values.

When you see examples in the following sections that contain the rather spartan construct (SELECT
column1 FROM t1), imagine that your own code contains much more diverse and complex
constructions.

Suppose that we make two tables:

CREATE TABLE t1 (s1 INT);
INSERT INTO t1 VALUES (1);
CREATE TABLE t2 (s1 INT);
INSERT INTO t2 VALUES (2);

Then perform a SELECT:

SELECT (SELECT s1 FROM t2) FROM t1;

The result is 2 because there is a row in t2 containing a column s1 that has a value of 2.

A scalar subquery can be part of an expression, but remember the parentheses, even if the subquery is an
operand that provides an argument for a function. For example:

1789

Subqueries

SELECT UPPER((SELECT s1 FROM t1)) FROM t2;

13.2.10.2 Comparisons Using Subqueries

The most common use of a subquery is in the form:

non_subquery_operand comparison_operator (subquery)

Where comparison_operator is one of these operators:

= > < >= <= <> != <=>

For example:

... WHERE 'a' = (SELECT column1 FROM t1)

MySQL also permits this construct:

non_subquery_operand LIKE (subquery)

At one time the only legal place for a subquery was on the right side of a comparison, and you might still
find some old DBMSs that insist on this.

Here is an example of a common-form subquery comparison that you cannot do with a join. It finds all the
rows in table t1 for which the column1 value is equal to a maximum value in table t2:

SELECT * FROM t1
 WHERE column1 = (SELECT MAX(column2) FROM t2);

Here is another example, which again is impossible with a join because it involves aggregating for one of
the tables. It finds all rows in table t1 containing a value that occurs twice in a given column:

SELECT * FROM t1 AS t
 WHERE 2 = (SELECT COUNT(*) FROM t1 WHERE t1.id = t.id);

For a comparison of the subquery to a scalar, the subquery must return a scalar. For a comparison of the
subquery to a row constructor, the subquery must be a row subquery that returns a row with the same
number of values as the row constructor. See Section 13.2.10.5, “Row Subqueries”.

13.2.10.3 Subqueries with ANY, IN, or SOME

Syntax:

operand comparison_operator ANY (subquery)
operand IN (subquery)
operand comparison_operator SOME (subquery)

Where comparison_operator is one of these operators:

= > < >= <= <> !=

The ANY keyword, which must follow a comparison operator, means “return TRUE if the comparison is
TRUE for ANY of the values in the column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(21,14,7) because there is a value 7 in t2 that is less than 10. The expression is FALSE if table t2

1790

Subqueries

contains (20,10), or if table t2 is empty. The expression is unknown (that is, NULL) if table t2 contains
(NULL,NULL,NULL).

When used with a subquery, the word IN is an alias for = ANY. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 IN (SELECT s1 FROM t2);

IN and = ANY are not synonyms when used with an expression list. IN can take an expression list, but =
ANY cannot. See Section 12.4.2, “Comparison Functions and Operators”.

NOT IN is not an alias for <> ANY, but for <> ALL. See Section 13.2.10.4, “Subqueries with ALL”.

The word SOME is an alias for ANY. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 <> SOME (SELECT s1 FROM t2);

Use of the word SOME is rare, but this example shows why it might be useful. To most people, the English
phrase “a is not equal to any b” means “there is no b which is equal to a,” but that is not what is meant by
the SQL syntax. The syntax means “there is some b to which a is not equal.” Using <> SOME instead helps
ensure that everyone understands the true meaning of the query.

13.2.10.4 Subqueries with ALL

Syntax:

operand comparison_operator ALL (subquery)

The word ALL, which must follow a comparison operator, means “return TRUE if the comparison is TRUE for
ALL of the values in the column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(-5,0,+5) because 10 is greater than all three values in t2. The expression is FALSE if table t2
contains (12,6,NULL,-100) because there is a single value 12 in table t2 that is greater than 10. The
expression is unknown (that is, NULL) if table t2 contains (0,NULL,1).

Finally, the expression is TRUE if table t2 is empty. So, the following expression is TRUE when table t2 is
empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT s1 FROM t2);

But this expression is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM t2);

In addition, the following expression is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2);

In general, tables containing NULL values and empty tables are “edge cases.” When writing subqueries,
always consider whether you have taken those two possibilities into account.

NOT IN is an alias for <> ALL. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ALL (SELECT s1 FROM t2);

1791

Subqueries

SELECT s1 FROM t1 WHERE s1 NOT IN (SELECT s1 FROM t2);

13.2.10.5 Row Subqueries

Scalar or column subqueries return a single value or a column of values. A row subquery is a subquery
variant that returns a single row and can thus return more than one column value. Legal operators for row
subquery comparisons are:

= > < >= <= <> != <=>

Here are two examples:

SELECT * FROM t1
 WHERE (col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);
SELECT * FROM t1
 WHERE ROW(col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);

For both queries, if the table t2 contains a single row with id = 10, the subquery returns a single row.
If this row has col3 and col4 values equal to the col1 and col2 values of any rows in t1, the WHERE
expression is TRUE and each query returns those t1 rows. If the t2 row col3 and col4 values are not
equal the col1 and col2 values of any t1 row, the expression is FALSE and the query returns an empty
result set. The expression is unknown (that is, NULL) if the subquery produces no rows. An error occurs if
the subquery produces multiple rows because a row subquery can return at most one row.

For information about how each operator works for row comparisons, see Section 12.4.2, “Comparison
Functions and Operators”.

The expressions (1,2) and ROW(1,2) are sometimes called row constructors. The two are equivalent.
The row constructor and the row returned by the subquery must contain the same number of values.

A row constructor is used for comparisons with subqueries that return two or more columns. When a
subquery returns a single column, this is regarded as a scalar value and not as a row, so a row constructor
cannot be used with a subquery that does not return at least two columns. Thus, the following query fails
with a syntax error:

SELECT * FROM t1 WHERE ROW(1) = (SELECT column1 FROM t2)

Row constructors are legal in other contexts. For example, the following two statements are semantically
equivalent (and are handled in the same way by the optimizer):

SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

The following query answers the request, “find all rows in table t1 that also exist in table t2”:

SELECT column1,column2,column3
 FROM t1
 WHERE (column1,column2,column3) IN
 (SELECT column1,column2,column3 FROM t2);

For more information about the optimizer and row constructors, see Section 8.2.1.18, “Row Constructor
Expression Optimization”

13.2.10.6 Subqueries with EXISTS or NOT EXISTS

If a subquery returns any rows at all, EXISTS subquery is TRUE, and NOT EXISTS subquery is
FALSE. For example:

1792

Subqueries

SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);

Traditionally, an EXISTS subquery starts with SELECT *, but it could begin with SELECT 5 or SELECT
column1 or anything at all. MySQL ignores the SELECT list in such a subquery, so it makes no difference.

For the preceding example, if t2 contains any rows, even rows with nothing but NULL values, the EXISTS
condition is TRUE. This is actually an unlikely example because a [NOT] EXISTS subquery almost always
contains correlations. Here are some more realistic examples:

• What kind of store is present in one or more cities?

SELECT DISTINCT store_type FROM stores
 WHERE EXISTS (SELECT * FROM cities_stores
 WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in no cities?

SELECT DISTINCT store_type FROM stores
 WHERE NOT EXISTS (SELECT * FROM cities_stores
 WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in all cities?

SELECT DISTINCT store_type FROM stores s1
 WHERE NOT EXISTS (
 SELECT * FROM cities WHERE NOT EXISTS (
 SELECT * FROM cities_stores
 WHERE cities_stores.city = cities.city
 AND cities_stores.store_type = stores.store_type));

The last example is a double-nested NOT EXISTS query. That is, it has a NOT EXISTS clause within
a NOT EXISTS clause. Formally, it answers the question “does a city exist with a store that is not in
Stores”? But it is easier to say that a nested NOT EXISTS answers the question “is x TRUE for all y?”

13.2.10.7 Correlated Subqueries

A correlated subquery is a subquery that contains a reference to a table that also appears in the outer
query. For example:

SELECT * FROM t1
 WHERE column1 = ANY (SELECT column1 FROM t2
 WHERE t2.column2 = t1.column2);

Notice that the subquery contains a reference to a column of t1, even though the subquery's FROM clause
does not mention a table t1. So, MySQL looks outside the subquery, and finds t1 in the outer query.

Suppose that table t1 contains a row where column1 = 5 and column2 = 6; meanwhile, table t2
contains a row where column1 = 5 and column2 = 7. The simple expression ... WHERE column1
= ANY (SELECT column1 FROM t2) would be TRUE, but in this example, the WHERE clause within the
subquery is FALSE (because (5,6) is not equal to (5,7)), so the expression as a whole is FALSE.

Scoping rule: MySQL evaluates from inside to outside. For example:

SELECT column1 FROM t1 AS x
 WHERE x.column1 = (SELECT column1 FROM t2 AS x
 WHERE x.column1 = (SELECT column1 FROM t3
 WHERE x.column2 = t3.column1));

In this statement, x.column2 must be a column in table t2 because SELECT column1 FROM t2 AS
x ... renames t2. It is not a column in table t1 because SELECT column1 FROM t1 ... is an outer
query that is farther out.

1793

Subqueries

For subqueries in HAVING or ORDER BY clauses, MySQL also looks for column names in the outer select
list.

For certain cases, a correlated subquery is optimized. For example:

val IN (SELECT key_val FROM tbl_name WHERE correlated_condition)

Otherwise, they are inefficient and likely to be slow. Rewriting the query as a join might improve
performance.

Aggregate functions in correlated subqueries may contain outer references, provided the function contains
nothing but outer references, and provided the function is not contained in another function or expression.

13.2.10.8 Derived Tables

A derived table is an expression that generates a table within the scope of a query FROM clause. For
example, a subquery in a SELECT statement FROM clause is a derived table:

SELECT ... FROM (subquery) [AS] tbl_name ...

The [AS] tbl_name clause is mandatory because every table in a FROM clause must have a name. Any
columns in the derived table must have unique names.

For the sake of illustration, assume that you have this table:

CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);

Here is how to use a subquery in the FROM clause, using the example table:

INSERT INTO t1 VALUES (1,'1',1.0);
INSERT INTO t1 VALUES (2,'2',2.0);
SELECT sb1,sb2,sb3
 FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb
 WHERE sb1 > 1;

Result:

+------+------+------+
| sb1 | sb2 | sb3 |
+------+------+------+
| 2 | 2 | 4 |
+------+------+------+

Here is another example: Suppose that you want to know the average of a set of sums for a grouped table.
This does not work:

SELECT AVG(SUM(column1)) FROM t1 GROUP BY column1;

However, this query provides the desired information:

SELECT AVG(sum_column1)
 FROM (SELECT SUM(column1) AS sum_column1
 FROM t1 GROUP BY column1) AS t1;

Notice that the column name used within the subquery (sum_column1) is recognized in the outer query.

A derived table can return a scalar, column, row, or table.

Derived tables are subject to these restrictions:

1794

Subqueries

• A derived table cannot be a correlated subquery.

• A derived table cannot contain references to other tables of the same SELECT.

• A derived table cannot contain outer references. This is a MySQL restriction, not a restriction of the SQL
standard.

The optimizer determines information about derived tables in such a way that EXPLAIN does not need to
materialize them. See Section 8.2.2.4, “Optimizing Derived Tables”.

It is possible under certain circumstances that using EXPLAIN SELECT modifies table data. This can occur
if the outer query accesses any tables and an inner query invokes a stored function that changes one or
more rows of a table. Suppose that there are two tables t1 and t2 in database d1, and a stored function
f1 that modifies t2, created as shown here:

CREATE DATABASE d1;
USE d1;
CREATE TABLE t1 (c1 INT);
CREATE TABLE t2 (c1 INT);
CREATE FUNCTION f1(p1 INT) RETURNS INT
 BEGIN
 INSERT INTO t2 VALUES (p1);
 RETURN p1;
 END;

Referencing the function directly in an EXPLAIN SELECT has no effect on t2, as shown here:

mysql> SELECT * FROM t2;
Empty set (0.02 sec)

mysql> EXPLAIN SELECT f1(5)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: NULL
 type: NULL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: No tables used
1 row in set (0.01 sec)

mysql> SELECT * FROM t2;
Empty set (0.01 sec)

This is because the SELECT statement did not reference any tables, as can be seen in the table and
Extra columns of the output. This is also true of the following nested SELECT:

mysql> EXPLAIN SELECT NOW() AS a1, (SELECT f1(5)) AS a2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: NULL
 type: NULL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 filtered: NULL
 Extra: No tables used
1 row in set, 1 warning (0.00 sec)

1795

Subqueries

mysql> SHOW WARNINGS;
+-------+------+--+
| Level | Code | Message |
+-------+------+--+
| Note | 1249 | Select 2 was reduced during optimization |
+-------+------+--+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

However, if the outer SELECT references any tables, the optimizer executes the statement in the subquery
as well, with the result that t2 is modified:

mysql> EXPLAIN SELECT * FROM t1 AS a1, (SELECT f1(5)) AS a2\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: system
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 1
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: PRIMARY
 table: a1
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 1
 Extra: NULL
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: NULL
 type: NULL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: No tables used
3 rows in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+
| c1 |
+------+
| 5 |
+------+
1 row in set (0.00 sec)

13.2.10.9 Subquery Errors

There are some errors that apply only to subqueries. This section describes them.

• Unsupported subquery syntax:

ERROR 1235 (ER_NOT_SUPPORTED_YET)
SQLSTATE = 42000

1796

Subqueries

Message = "This version of MySQL doesn't yet support
'LIMIT & IN/ALL/ANY/SOME subquery'"

This means that MySQL does not support statements of the following form:

SELECT * FROM t1 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1)

• Incorrect number of columns from subquery:

ERROR 1241 (ER_OPERAND_COL)
SQLSTATE = 21000
Message = "Operand should contain 1 column(s)"

This error occurs in cases like this:

SELECT (SELECT column1, column2 FROM t2) FROM t1;

You may use a subquery that returns multiple columns, if the purpose is row comparison. In other
contexts, the subquery must be a scalar operand. See Section 13.2.10.5, “Row Subqueries”.

• Incorrect number of rows from subquery:

ERROR 1242 (ER_SUBSELECT_NO_1_ROW)
SQLSTATE = 21000
Message = "Subquery returns more than 1 row"

This error occurs for statements where the subquery must return at most one row but returns multiple
rows. Consider the following example:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

If SELECT column1 FROM t2 returns just one row, the previous query works. If the subquery returns
more than one row, error 1242 occurs. In that case, the query should be rewritten as:

SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2);

• Incorrectly used table in subquery:

Error 1093 (ER_UPDATE_TABLE_USED)
SQLSTATE = HY000
Message = "You can't specify target table 'x'
for update in FROM clause"

This error occurs in cases such as the following, which attempts to modify a table and select from the
same table in the subquery:

UPDATE t1 SET column2 = (SELECT MAX(column1) FROM t1);

You can use a subquery for assignment within an UPDATE statement because subqueries are legal in
UPDATE and DELETE statements as well as in SELECT statements. However, you cannot use the same
table (in this case, table t1) for both the subquery FROM clause and the update target.

For transactional storage engines, the failure of a subquery causes the entire statement to fail. For
nontransactional storage engines, data modifications made before the error was encountered are
preserved.

13.2.10.10 Optimizing Subqueries

Development is ongoing, so no optimization tip is reliable for the long term. The following list provides
some interesting tricks that you might want to play with. See also Section 8.2.2, “Optimizing Subqueries
and Derived Tables”.

1797

Subqueries

• Use subquery clauses that affect the number or order of the rows in the subquery. For example:

SELECT * FROM t1 WHERE t1.column1 IN
 (SELECT column1 FROM t2 ORDER BY column1);
SELECT * FROM t1 WHERE t1.column1 IN
 (SELECT DISTINCT column1 FROM t2);
SELECT * FROM t1 WHERE EXISTS
 (SELECT * FROM t2 LIMIT 1);

• Replace a join with a subquery. For example, try this:

SELECT DISTINCT column1 FROM t1 WHERE t1.column1 IN (
 SELECT column1 FROM t2);

Instead of this:

SELECT DISTINCT t1.column1 FROM t1, t2
 WHERE t1.column1 = t2.column1;

• Some subqueries can be transformed to joins for compatibility with older versions of MySQL that do not
support subqueries. However, in some cases, converting a subquery to a join may improve performance.
See Section 13.2.10.11, “Rewriting Subqueries as Joins”.

• Move clauses from outside to inside the subquery. For example, use this query:

SELECT * FROM t1
 WHERE s1 IN (SELECT s1 FROM t1 UNION ALL SELECT s1 FROM t2);

Instead of this query:

SELECT * FROM t1
 WHERE s1 IN (SELECT s1 FROM t1) OR s1 IN (SELECT s1 FROM t2);

For another example, use this query:

SELECT (SELECT column1 + 5 FROM t1) FROM t2;

Instead of this query:

SELECT (SELECT column1 FROM t1) + 5 FROM t2;

• Use a row subquery instead of a correlated subquery. For example, use this query:

SELECT * FROM t1
 WHERE (column1,column2) IN (SELECT column1,column2 FROM t2);

Instead of this query:

SELECT * FROM t1
 WHERE EXISTS (SELECT * FROM t2 WHERE t2.column1=t1.column1
 AND t2.column2=t1.column2);

• Use NOT (a = ANY (...)) rather than a <> ALL (...).

• Use x = ANY (table containing (1,2)) rather than x=1 OR x=2.

• Use = ANY rather than EXISTS.

• For uncorrelated subqueries that always return one row, IN is always slower than =. For example, use
this query:

SELECT * FROM t1
 WHERE t1.col_name = (SELECT a FROM t2 WHERE b = some_const);

1798

Subqueries

Instead of this query:

SELECT * FROM t1
 WHERE t1.col_name IN (SELECT a FROM t2 WHERE b = some_const);

These tricks might cause programs to go faster or slower. Using MySQL facilities like the BENCHMARK()
function, you can get an idea about what helps in your own situation. See Section 12.16, “Information
Functions”.

Some optimizations that MySQL itself makes are:

• MySQL executes uncorrelated subqueries only once. Use EXPLAIN to make sure that a given subquery
really is uncorrelated.

• MySQL rewrites IN, ALL, ANY, and SOME subqueries in an attempt to take advantage of the possibility
that the select-list columns in the subquery are indexed.

• MySQL replaces subqueries of the following form with an index-lookup function, which EXPLAIN
describes as a special join type (unique_subquery or index_subquery):

... IN (SELECT indexed_column FROM single_table ...)

• MySQL enhances expressions of the following form with an expression involving MIN() or MAX(),
unless NULL values or empty sets are involved:

value {ALL|ANY|SOME} {> | < | >= | <=} (uncorrelated subquery)

For example, this WHERE clause:

WHERE 5 > ALL (SELECT x FROM t)

might be treated by the optimizer like this:

WHERE 5 > (SELECT MAX(x) FROM t)

See also MySQL Internals: How MySQL Transforms Subqueries.

13.2.10.11 Rewriting Subqueries as Joins

Sometimes there are other ways to test membership in a set of values than by using a subquery. Also, on
some occasions, it is not only possible to rewrite a query without a subquery, but it can be more efficient to
make use of some of these techniques rather than to use subqueries. One of these is the IN() construct:

For example, this query:

SELECT * FROM t1 WHERE id IN (SELECT id FROM t2);

Can be rewritten as:

SELECT DISTINCT t1.* FROM t1, t2 WHERE t1.id=t2.id;

The queries:

SELECT * FROM t1 WHERE id NOT IN (SELECT id FROM t2);
SELECT * FROM t1 WHERE NOT EXISTS (SELECT id FROM t2 WHERE t1.id=t2.id);

Can be rewritten as:

SELECT table1.*
 FROM table1 LEFT JOIN table2 ON table1.id=table2.id
 WHERE table2.id IS NULL;

1799

https://dev.mysql.com/doc/internals/en/transformations.html

Subqueries

A LEFT [OUTER] JOIN can be faster than an equivalent subquery because the server might be able to
optimize it better—a fact that is not specific to MySQL Server alone. Prior to SQL-92, outer joins did not
exist, so subqueries were the only way to do certain things. Today, MySQL Server and many other modern
database systems offer a wide range of outer join types.

MySQL Server supports multiple-table DELETE statements that can be used to efficiently delete rows
based on information from one table or even from many tables at the same time. Multiple-table UPDATE
statements are also supported. See Section 13.2.2, “DELETE Statement”, and Section 13.2.11, “UPDATE
Statement”.

13.2.10.12 Restrictions on Subqueries

• In general, you cannot modify a table and select from the same table in a subquery. For example, this
limitation applies to statements of the following forms:

DELETE FROM t WHERE ... (SELECT ... FROM t ...);
UPDATE t ... WHERE col = (SELECT ... FROM t ...);
{INSERT|REPLACE} INTO t (SELECT ... FROM t ...);

Exception: The preceding prohibition does not apply if for the modified table you are using a derived
table and that derived table is materialized rather than merged into the outer query. Example:

UPDATE t ... WHERE col = (SELECT * FROM (SELECT ... FROM t...) AS _t ...);

Here the result from the derived table is materialized as a temporary table, so the relevant rows in t
have already been selected by the time the update to t takes place.

• Row comparison operations are only partially supported:

• For expr [NOT] IN subquery, expr can be an n-tuple (specified using row constructor syntax)
and the subquery can return rows of n-tuples. The permitted syntax is therefore more specifically
expressed as row_constructor [NOT] IN table_subquery

• For expr op {ALL|ANY|SOME} subquery, expr must be a scalar value and the subquery must
be a column subquery; it cannot return multiple-column rows.

In other words, for a subquery that returns rows of n-tuples, this is supported:

(expr_1, ..., expr_n) [NOT] IN table_subquery

But this is not supported:

(expr_1, ..., expr_n) op {ALL|ANY|SOME} subquery

The reason for supporting row comparisons for IN but not for the others is that IN is implemented by
rewriting it as a sequence of = comparisons and AND operations. This approach cannot be used for ALL,
ANY, or SOME.

• Subqueries in the FROM clause cannot be correlated subqueries. They are materialized in whole
(evaluated to produce a result set) during query execution, so they cannot be evaluated per row of the
outer query. Before MySQL 5.6.3, materialization takes place before evaluation of the outer query. As of
5.6.3, the optimizer delays materialization until the result is needed, which may permit materialization to
be avoided. See Section 8.2.2.4, “Optimizing Derived Tables”.

• MySQL does not support LIMIT in subqueries for certain subquery operators:

mysql> SELECT * FROM t1
 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1);
ERROR 1235 (42000): This version of MySQL doesn't yet support

1800

UPDATE Statement

 'LIMIT & IN/ALL/ANY/SOME subquery'

• MySQL permits a subquery to refer to a stored function that has data-modifying side effects such as
inserting rows into a table. For example, if f() inserts rows, the following query can modify data:

SELECT ... WHERE x IN (SELECT f() ...);

This behavior is an extension to the SQL standard. In MySQL, it can produce nondeterministic results
because f() might be executed a different number of times for different executions of a given query
depending on how the optimizer chooses to handle it.

For statement-based or mixed-format replication, one implication of this indeterminism is that such a
query can produce different results on the source and its slaves.

• Before MySQL 5.6.3, a subquery in the FROM clause is evaluated by materializing the result into a
temporary table, and this table does not use indexes. As of 5.6.3, the optimizer creates an index on
the materialized table if this results in faster query execution. See Section 8.2.2.4, “Optimizing Derived
Tables”.

13.2.11 UPDATE Statement

UPDATE is a DML statement that modifies rows in a table.

Single-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_reference
 SET assignment_list
 [WHERE where_condition]
 [ORDER BY ...]
 [LIMIT row_count]

value:
 {expr | DEFAULT}

assignment:
 col_name = value

assignment_list:
 assignment [, assignment] ...

Multiple-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_references
 SET assignment_list
 [WHERE where_condition]

For the single-table syntax, the UPDATE statement updates columns of existing rows in the named table
with new values. The SET clause indicates which columns to modify and the values they should be given.
Each value can be given as an expression, or the keyword DEFAULT to set a column explicitly to its default
value. The WHERE clause, if given, specifies the conditions that identify which rows to update. With no
WHERE clause, all rows are updated. If the ORDER BY clause is specified, the rows are updated in the order
that is specified. The LIMIT clause places a limit on the number of rows that can be updated.

For the multiple-table syntax, UPDATE updates rows in each table named in table_references that
satisfy the conditions. Each matching row is updated once, even if it matches the conditions multiple times.
For multiple-table syntax, ORDER BY and LIMIT cannot be used.

For partitioned tables, both the single-single and multiple-table forms of this statement support the use
of a PARTITION clause as part of a table reference. This option takes a list of one or more partitions or
subpartitions (or both). Only the partitions (or subpartitions) listed are checked for matches, and a row that

1801

UPDATE Statement

is not in any of these partitions or subpartitions is not updated, whether it satisfies the where_condition
or not.

Note

Unlike the case when using PARTITION with an INSERT or REPLACE statement, an
otherwise valid UPDATE ... PARTITION statement is considered successful even
if no rows in the listed partitions (or subpartitions) match the where_condition.

For more information and examples, see Section 19.5, “Partition Selection”.

where_condition is an expression that evaluates to true for each row to be updated. For expression
syntax, see Section 9.5, “Expressions”.

table_references and where_condition are specified as described in Section 13.2.9, “SELECT
Statement”.

You need the UPDATE privilege only for columns referenced in an UPDATE that are actually updated. You
need only the SELECT privilege for any columns that are read but not modified.

The UPDATE statement supports the following modifiers:

• With the LOW_PRIORITY modifier, execution of the UPDATE is delayed until no other clients are reading
from the table. This affects only storage engines that use only table-level locking (such as MyISAM,
MEMORY, and MERGE).

• With the IGNORE modifier, the update statement does not abort even if errors occur during the update.
Rows for which duplicate-key conflicts occur on a unique key value are not updated. Rows updated to
values that would cause data conversion errors are updated to the closest valid values instead.

UPDATE IGNORE statements, including those having an ORDER BY clause, are flagged as unsafe for
statement-based replication. (This is because the order in which the rows are updated determines which
rows are ignored.) Such statements produce a warning in the error log when using statement-based mode
and are written to the binary log using the row-based format when using MIXED mode. (Bug #11758262,
Bug #50439) See Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”, for
more information.

If you access a column from the table to be updated in an expression, UPDATE uses the current value of
the column. For example, the following statement sets col1 to one more than its current value:

UPDATE t1 SET col1 = col1 + 1;

The second assignment in the following statement sets col2 to the current (updated) col1 value, not the
original col1 value. The result is that col1 and col2 have the same value. This behavior differs from
standard SQL.

UPDATE t1 SET col1 = col1 + 1, col2 = col1;

Single-table UPDATE assignments are generally evaluated from left to right. For multiple-table updates,
there is no guarantee that assignments are carried out in any particular order.

If you set a column to the value it currently has, MySQL notices this and does not update it.

If you update a column that has been declared NOT NULL by setting to NULL, an error occurs if strict SQL
mode is enabled; otherwise, the column is set to the implicit default value for the column data type and the
warning count is incremented. The implicit default value is 0 for numeric types, the empty string ('') for
string types, and the “zero” value for date and time types. See Section 11.5, “Data Type Default Values”.

1802

UPDATE Statement

UPDATE returns the number of rows that were actually changed. The mysql_info() C API function
returns the number of rows that were matched and updated and the number of warnings that occurred
during the UPDATE.

You can use LIMIT row_count to restrict the scope of the UPDATE. A LIMIT clause is a rows-matched
restriction. The statement stops as soon as it has found row_count rows that satisfy the WHERE clause,
whether or not they actually were changed.

If an UPDATE statement includes an ORDER BY clause, the rows are updated in the order specified by the
clause. This can be useful in certain situations that might otherwise result in an error. Suppose that a table
t contains a column id that has a unique index. The following statement could fail with a duplicate-key
error, depending on the order in which rows are updated:

UPDATE t SET id = id + 1;

For example, if the table contains 1 and 2 in the id column and 1 is updated to 2 before 2 is updated to 3,
an error occurs. To avoid this problem, add an ORDER BY clause to cause the rows with larger id values
to be updated before those with smaller values:

UPDATE t SET id = id + 1 ORDER BY id DESC;

You can also perform UPDATE operations covering multiple tables. However, you cannot use ORDER BY or
LIMIT with a multiple-table UPDATE. The table_references clause lists the tables involved in the join.
Its syntax is described in Section 13.2.9.2, “JOIN Clause”. Here is an example:

UPDATE items,month SET items.price=month.price
WHERE items.id=month.id;

The preceding example shows an inner join that uses the comma operator, but multiple-table UPDATE
statements can use any type of join permitted in SELECT statements, such as LEFT JOIN.

If you use a multiple-table UPDATE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/child
relationship. In this case, the statement fails and rolls back. Instead, update a single table and rely on the
ON UPDATE capabilities that InnoDB provides to cause the other tables to be modified accordingly. See
Section 13.1.17.5, “FOREIGN KEY Constraints”.

You cannot update a table and select directly from the same table in a subquery. You can work around
this by using a multi-table update in which one of the tables is derived from the table that you actually wish
to update, and referring to the derived table using an alias. Suppose you wish to update a table named
items which is defined using the statement shown here:

CREATE TABLE items (
 id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 wholesale DECIMAL(6,2) NOT NULL DEFAULT 0.00,
 retail DECIMAL(6,2) NOT NULL DEFAULT 0.00,
 quantity BIGINT NOT NULL DEFAULT 0
);

To reduce the retail price of any items for which the markup is 30% or greater and of which you have fewer
than one hundred in stock, you might try to use an UPDATE statement such as the one following, which
uses a subquery in the WHERE clause. As shown here, this statement does not work:

mysql> UPDATE items
 > SET retail = retail * 0.9
 > WHERE id IN
 > (SELECT id FROM items
 > WHERE retail / wholesale >= 1.3 AND quantity > 100);
ERROR 1093 (HY000): You can't specify target table 'items' for update in FROM clause

1803

https://dev.mysql.com/doc/c-api/5.6/en/mysql-info.html

Transactional and Locking Statements

Instead, you can employ a multi-table update in which the subquery is moved into the list of tables to be
updated, using an alias to reference it in the outermost WHERE clause, like this:

UPDATE items,
 (SELECT id FROM items
 WHERE id IN
 (SELECT id FROM items
 WHERE retail / wholesale >= 1.3 AND quantity < 100))
 AS discounted
SET items.retail = items.retail * 0.9
WHERE items.id = discounted.id;

Because the optimizer tries by default to merge the derived table discounted into the outermost query
block, this works only if you force materialization of the derived table. You can do this by setting the
derived_merge flag of the optimizer_switch system variable to off before running the update, or by
using the NO_MERGE optimizer hint, as shown here:

UPDATE /*+ NO_MERGE(discounted) */ items,
 (SELECT id FROM items
 WHERE retail / wholesale >= 1.3 AND quantity < 100)
 AS discounted
 SET items.retail = items.retail * 0.9
 WHERE items.id = discounted.id;

The advantage of using the optimizer hint in such a case is that it applies only within the query block where
it is used, so that it is not necessary to change the value of optimizer_switch again after executing the
UPDATE.

Another possibility is to rewrite the subquery so that it does not use IN or EXISTS, like this:

UPDATE items,
 (SELECT id, retail / wholesale AS markup, quantity FROM items)
 AS discounted
 SET items.retail = items.retail * 0.9
 WHERE discounted.markup >= 1.3
 AND discounted.quantity < 100
 AND items.id = discounted.id;

In this case, the subquery is materialized by default rather than merged, so it is not necessary to disable
merging of the derived table.

An UPDATE on a partitioned table using a storage engine such as MyISAM that employs table-level locks
locks only those partitions containing rows that match the UPDATE statement WHERE clause, as long as
none of the table partitioning columns are updated. (For storage engines such as InnoDB that employ row-
level locking, no locking of partitions takes place.) For more information, see Section 19.6.4, “Partitioning
and Locking”.

13.3 Transactional and Locking Statements
MySQL supports local transactions (within a given client session) through statements such as SET
autocommit, START TRANSACTION, COMMIT, and ROLLBACK. See Section 13.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Statements”. XA transaction support enables MySQL to
participate in distributed transactions as well. See Section 13.3.7, “XA Transactions”.

13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Statements
START TRANSACTION
 [transaction_characteristic [, transaction_characteristic] ...]

transaction_characteristic: {
 WITH CONSISTENT SNAPSHOT

1804

https://dev.mysql.com/doc/refman/5.7/en/switchable-optimizations.html#optflag_derived-merge
https://dev.mysql.com/doc/refman/5.7/en/optimizer-hints.html#optimizer-hints-table-level

START TRANSACTION, COMMIT, and ROLLBACK Statements

 | READ WRITE
 | READ ONLY
}

BEGIN [WORK]
COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
SET autocommit = {0 | 1}

These statements provide control over use of transactions:

• START TRANSACTION or BEGIN start a new transaction.

• COMMIT commits the current transaction, making its changes permanent.

• ROLLBACK rolls back the current transaction, canceling its changes.

• SET autocommit disables or enables the default autocommit mode for the current session.

By default, MySQL runs with autocommit mode enabled. This means that, when not otherwise inside a
transaction, each statement is atomic, as if it were surrounded by START TRANSACTION and COMMIT.
You cannot use ROLLBACK to undo the effect; however, if an error occurs during statement execution, the
statement is rolled back.

To disable autocommit mode implicitly for a single series of statements, use the START TRANSACTION
statement:

START TRANSACTION;
SELECT @A:=SUM(salary) FROM table1 WHERE type=1;
UPDATE table2 SET summary=@A WHERE type=1;
COMMIT;

With START TRANSACTION, autocommit remains disabled until you end the transaction with COMMIT or
ROLLBACK. The autocommit mode then reverts to its previous state.

START TRANSACTION permits several modifiers that control transaction characteristics. To specify
multiple modifiers, separate them by commas.

• The WITH CONSISTENT SNAPSHOT modifier starts a consistent read for storage engines that are
capable of it. This applies only to InnoDB. The effect is the same as issuing a START TRANSACTION
followed by a SELECT from any InnoDB table. See Section 14.7.2.3, “Consistent Nonlocking Reads”.
The WITH CONSISTENT SNAPSHOT modifier does not change the current transaction isolation level,
so it provides a consistent snapshot only if the current isolation level is one that permits a consistent
read. The only isolation level that permits a consistent read is REPEATABLE READ. For all other isolation
levels, the WITH CONSISTENT SNAPSHOT clause is ignored.

• The READ WRITE and READ ONLY modifiers set the transaction access mode. They permit or prohibit
changes to tables used in the transaction. The READ ONLY restriction prevents the transaction from
modifying or locking both transactional and nontransactional tables that are visible to other transactions;
the transaction can still modify or lock temporary tables. These modifiers are available as of MySQL
5.6.5.

MySQL enables extra optimizations for queries on InnoDB tables when the transaction is known to be
read-only. Specifying READ ONLY ensures these optimizations are applied in cases where the read-
only status cannot be determined automatically. See Section 8.5.3, “Optimizing InnoDB Read-Only
Transactions” for more information.

If no access mode is specified, the default mode applies. Unless the default has been changed, it is
read/write. It is not permitted to specify both READ WRITE and READ ONLY in the same statement.

1805

START TRANSACTION, COMMIT, and ROLLBACK Statements

In read-only mode, it remains possible to change tables created with the TEMPORARY keyword using
DML statements. Changes made with DDL statements are not permitted, just as with permanent tables.

For additional information about transaction access mode, including ways to change the default mode,
see Section 13.3.6, “SET TRANSACTION Statement”.

If the read_only system variable is enabled, explicitly starting a transaction with START TRANSACTION
READ WRITE requires the SUPER privilege.

Important

Many APIs used for writing MySQL client applications (such as JDBC) provide
their own methods for starting transactions that can (and sometimes should) be
used instead of sending a START TRANSACTION statement from the client. See
Chapter 23, Connectors and APIs, or the documentation for your API, for more
information.

To disable autocommit mode explicitly, use the following statement:

SET autocommit=0;

After disabling autocommit mode by setting the autocommit variable to zero, changes to transaction-safe
tables (such as those for InnoDB or NDB) are not made permanent immediately. You must use COMMIT to
store your changes to disk or ROLLBACK to ignore the changes.

autocommit is a session variable and must be set for each session. To disable autocommit mode for
each new connection, see the description of the autocommit system variable at Section 5.1.7, “Server
System Variables”.

BEGIN and BEGIN WORK are supported as aliases of START TRANSACTION for initiating a transaction.
START TRANSACTION is standard SQL syntax, is the recommended way to start an ad-hoc transaction,
and permits modifiers that BEGIN does not.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END compound
statement. The latter does not begin a transaction. See Section 13.6.1, “BEGIN ... END Compound
Statement”.

Note

Within all stored programs (stored procedures and functions, triggers, and events),
the parser treats BEGIN [WORK] as the beginning of a BEGIN ... END block.
Begin a transaction in this context with START TRANSACTION instead.

The optional WORK keyword is supported for COMMIT and ROLLBACK, as are the CHAIN and RELEASE
clauses. CHAIN and RELEASE can be used for additional control over transaction completion. The value of
the completion_type system variable determines the default completion behavior. See Section 5.1.7,
“Server System Variables”.

The AND CHAIN clause causes a new transaction to begin as soon as the current one ends, and the
new transaction has the same isolation level as the just-terminated transaction. The new transaction
also uses the same access mode (READ WRITE or READ ONLY) as the just-terminated transaction. The
RELEASE clause causes the server to disconnect the current client session after terminating the current
transaction. Including the NO keyword suppresses CHAIN or RELEASE completion, which can be useful if
the completion_type system variable is set to cause chaining or release completion by default.

Beginning a transaction causes any pending transaction to be committed. See Section 13.3.3, “Statements
That Cause an Implicit Commit”, for more information.

1806

Statements That Cannot Be Rolled Back

Beginning a transaction also causes table locks acquired with LOCK TABLES to be released, as though
you had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock acquired
with FLUSH TABLES WITH READ LOCK.

For best results, transactions should be performed using only tables managed by a single transaction-safe
storage engine. Otherwise, the following problems can occur:

• If you use tables from more than one transaction-safe storage engine (such as InnoDB), and the
transaction isolation level is not SERIALIZABLE, it is possible that when one transaction commits,
another ongoing transaction that uses the same tables sees only some of the changes made by
the first transaction. That is, the atomicity of transactions is not guaranteed with mixed engines
and inconsistencies can result. (If mixed-engine transactions are infrequent, you can use SET
TRANSACTION ISOLATION LEVEL to set the isolation level to SERIALIZABLE on a per-transaction
basis as necessary.)

• If you use tables that are not transaction-safe within a transaction, changes to those tables are stored at
once, regardless of the status of autocommit mode.

• If you issue a ROLLBACK statement after updating a nontransactional table within a transaction, an
ER_WARNING_NOT_COMPLETE_ROLLBACK warning occurs. Changes to transaction-safe tables are
rolled back, but not changes to nontransaction-safe tables.

Each transaction is stored in the binary log in one chunk, upon COMMIT. Transactions that are rolled back
are not logged. (Exception: Modifications to nontransactional tables cannot be rolled back. If a transaction
that is rolled back includes modifications to nontransactional tables, the entire transaction is logged with a
ROLLBACK statement at the end to ensure that modifications to the nontransactional tables are replicated.)
See Section 5.4.4, “The Binary Log”.

You can change the isolation level or access mode for transactions with the SET TRANSACTION
statement. See Section 13.3.6, “SET TRANSACTION Statement”.

Rolling back can be a slow operation that may occur implicitly without the user having explicitly asked for
it (for example, when an error occurs). Because of this, SHOW PROCESSLIST displays Rolling back in
the State column for the session, not only for explicit rollbacks performed with the ROLLBACK statement
but also for implicit rollbacks.

Note

In MySQL 5.6, BEGIN, COMMIT, and ROLLBACK are not affected by --replicate-
do-db or --replicate-ignore-db rules.

When InnoDB performs a complete rollback of a transaction, all locks set by the transaction are released.
If a single SQL statement within a transaction rolls back as a result of an error, such as a duplicate
key error, locks set by the statement are preserved while the transaction remains active. This happens
because InnoDB stores row locks in a format such that it cannot know afterward which lock was set by
which statement.

If a SELECT statement within a transaction calls a stored function, and a statement within the stored
function fails, that statement rolls back. If ROLLBACK is executed for the transaction subsequently, the
entire transaction rolls back.

13.3.2 Statements That Cannot Be Rolled Back

Some statements cannot be rolled back. In general, these include data definition language (DDL)
statements, such as those that create or drop databases, those that create, drop, or alter tables or stored
routines.

1807

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_warning_not_complete_rollback

Statements That Cause an Implicit Commit

You should design your transactions not to include such statements. If you issue a statement early in
a transaction that cannot be rolled back, and then another statement later fails, the full effect of the
transaction cannot be rolled back in such cases by issuing a ROLLBACK statement.

13.3.3 Statements That Cause an Implicit Commit

The statements listed in this section (and any synonyms for them) implicitly end any transaction active in
the current session, as if you had done a COMMIT before executing the statement.

Most of these statements also cause an implicit commit after executing. The intent is to handle each such
statement in its own special transaction because it cannot be rolled back anyway. Transaction-control and
locking statements are exceptions: If an implicit commit occurs before execution, another does not occur
after.

• Data definition language (DDL) statements that define or modify database objects. ALTER
DATABASE ... UPGRADE DATA DIRECTORY NAME, ALTER EVENT, ALTER PROCEDURE, ALTER
SERVER, ALTER TABLE, ALTER TABLESPACE, ALTER VIEW, CREATE DATABASE, CREATE EVENT,
CREATE INDEX, CREATE PROCEDURE, CREATE SERVER, CREATE TABLE, CREATE TABLESPACE,
CREATE TRIGGER, CREATE VIEW, DROP DATABASE, DROP EVENT, DROP INDEX, DROP PROCEDURE,
DROP SERVER, DROP TABLE, DROP TABLESPACE, DROP TRIGGER, DROP VIEW, RENAME TABLE,
TRUNCATE TABLE.

ALTER FUNCTION, CREATE FUNCTION and DROP FUNCTION also cause an implicit commit when used
with stored functions, but not with loadable functions. (ALTER FUNCTION can only be used with stored
functions.)

CREATE TABLE and DROP TABLE statements do not commit a transaction if the TEMPORARY keyword
is used. (This does not apply to other operations on temporary tables such as ALTER TABLE and
CREATE INDEX, which do cause a commit.) However, although no implicit commit occurs, neither
can the statement be rolled back, which means that the use of such statements causes transactional
atomicity to be violated. For example, if you use CREATE TEMPORARY TABLE and then roll back the
transaction, the table remains in existence.

The CREATE TABLE statement in InnoDB is processed as a single transaction. This means that
a ROLLBACK from the user does not undo CREATE TABLE statements the user made during that
transaction.

CREATE TABLE ... SELECT causes an implicit commit before and after the statement is executed
when you are creating nontemporary tables. (No commit occurs for CREATE TEMPORARY TABLE ...
SELECT.)

• Statements that implicitly use or modify tables in the mysql database. ALTER USER, CREATE
USER, DROP USER, GRANT, RENAME USER, REVOKE, SET PASSWORD.

• Transaction-control and locking statements. BEGIN, LOCK TABLES, SET autocommit = 1 (if the
value is not already 1), START TRANSACTION, UNLOCK TABLES.

UNLOCK TABLES commits a transaction only if any tables currently have been locked with LOCK
TABLES to acquire nontransactional table locks. A commit does not occur for UNLOCK TABLES following
FLUSH TABLES WITH READ LOCK because the latter statement does not acquire table-level locks.

Transactions cannot be nested. This is a consequence of the implicit commit performed for any current
transaction when you issue a START TRANSACTION statement or one of its synonyms.

Statements that cause an implicit commit cannot be used in an XA transaction while the transaction is in
an ACTIVE state.

1808

SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END
compound statement. The latter does not cause an implicit commit. See Section 13.6.1, “BEGIN ... END
Compound Statement”.

• Data loading statements. LOAD DATA. LOAD DATA causes an implicit commit only for tables using the
NDB storage engine.

• Administrative statements. ANALYZE TABLE, CACHE INDEX, CHECK TABLE, FLUSH, LOAD INDEX
INTO CACHE, OPTIMIZE TABLE, REPAIR TABLE, RESET.

• Replication control statements. START SLAVE, STOP SLAVE, RESET SLAVE, CHANGE MASTER TO.

13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT
Statements

SAVEPOINT identifier
ROLLBACK [WORK] TO [SAVEPOINT] identifier
RELEASE SAVEPOINT identifier

InnoDB supports the SQL statements SAVEPOINT, ROLLBACK TO SAVEPOINT, RELEASE SAVEPOINT
and the optional WORK keyword for ROLLBACK.

The SAVEPOINT statement sets a named transaction savepoint with a name of identifier. If the current
transaction has a savepoint with the same name, the old savepoint is deleted and a new one is set.

The ROLLBACK TO SAVEPOINT statement rolls back a transaction to the named savepoint without
terminating the transaction. Modifications that the current transaction made to rows after the savepoint
was set are undone in the rollback, but InnoDB does not release the row locks that were stored in memory
after the savepoint. (For a new inserted row, the lock information is carried by the transaction ID stored
in the row; the lock is not separately stored in memory. In this case, the row lock is released in the undo.)
Savepoints that were set at a later time than the named savepoint are deleted.

If the ROLLBACK TO SAVEPOINT statement returns the following error, it means that no savepoint with the
specified name exists:

ERROR 1305 (42000): SAVEPOINT identifier does not exist

The RELEASE SAVEPOINT statement removes the named savepoint from the set of savepoints of the
current transaction. No commit or rollback occurs. It is an error if the savepoint does not exist.

All savepoints of the current transaction are deleted if you execute a COMMIT, or a ROLLBACK that does not
name a savepoint.

A new savepoint level is created when a stored function is invoked or a trigger is activated. The savepoints
on previous levels become unavailable and thus do not conflict with savepoints on the new level. When the
function or trigger terminates, any savepoints it created are released and the previous savepoint level is
restored.

13.3.5 LOCK TABLES and UNLOCK TABLES Statements

LOCK TABLES
 tbl_name [[AS] alias] lock_type
 [, tbl_name [[AS] alias] lock_type] ...

lock_type: {
 READ [LOCAL]

1809

LOCK TABLES and UNLOCK TABLES Statements

 | [LOW_PRIORITY] WRITE
}

UNLOCK TABLES

MySQL enables client sessions to acquire table locks explicitly for the purpose of cooperating with other
sessions for access to tables, or to prevent other sessions from modifying tables during periods when
a session requires exclusive access to them. A session can acquire or release locks only for itself. One
session cannot acquire locks for another session or release locks held by another session.

Locks may be used to emulate transactions or to get more speed when updating tables. This is explained
in more detail in Table-Locking Restrictions and Conditions.

LOCK TABLES explicitly acquires table locks for the current client session. Table locks can be acquired
for base tables or views. You must have the LOCK TABLES privilege, and the SELECT privilege for each
object to be locked.

For view locking, LOCK TABLES adds all base tables used in the view to the set of tables to be locked and
locks them automatically. As of MySQL 5.6.50, LOCK TABLES checks that the view definer has the proper
privileges on the tables underlying the view.

If you lock a table explicitly with LOCK TABLES, any tables used in triggers are also locked implicitly, as
described in LOCK TABLES and Triggers.

UNLOCK TABLES explicitly releases any table locks held by the current session. LOCK TABLES implicitly
releases any table locks held by the current session before acquiring new locks.

Another use for UNLOCK TABLES is to release the global read lock acquired with the FLUSH TABLES
WITH READ LOCK statement, which enables you to lock all tables in all databases. See Section 13.7.6.3,
“FLUSH Statement”. (This is a very convenient way to get backups if you have a file system such as
Veritas that can take snapshots in time.)

A table lock protects only against inappropriate reads or writes by other sessions. A session holding a
WRITE lock can perform table-level operations such as DROP TABLE or TRUNCATE TABLE. For sessions
holding a READ lock, DROP TABLE and TRUNCATE TABLE operations are not permitted.

The following discussion applies only to non-TEMPORARY tables. LOCK TABLES is permitted (but ignored)
for a TEMPORARY table. The table can be accessed freely by the session within which it was created,
regardless of what other locking may be in effect. No lock is necessary because no other session can see
the table.

• Table Lock Acquisition

• Table Lock Release

• Interaction of Table Locking and Transactions

• LOCK TABLES and Triggers

• Table-Locking Restrictions and Conditions

Table Lock Acquisition

To acquire table locks within the current session, use the LOCK TABLES statement, which acquires
metadata locks (see Section 8.11.4, “Metadata Locking”).

The following lock types are available:

1810

LOCK TABLES and UNLOCK TABLES Statements

READ [LOCAL] lock:

• The session that holds the lock can read the table (but not write it).

• Multiple sessions can acquire a READ lock for the table at the same time.

• Other sessions can read the table without explicitly acquiring a READ lock.

• The LOCAL modifier enables nonconflicting INSERT statements (concurrent inserts) by other sessions
to execute while the lock is held. (See Section 8.11.3, “Concurrent Inserts”.) However, READ LOCAL
cannot be used if you are going to manipulate the database using processes external to the server while
you hold the lock. For InnoDB tables, READ LOCAL is the same as READ.

[LOW_PRIORITY] WRITE lock:

• The session that holds the lock can read and write the table.

• Only the session that holds the lock can access the table. No other session can access it until the lock is
released.

• Lock requests for the table by other sessions block while the WRITE lock is held.

• The LOW_PRIORITY modifier has no effect. In previous versions of MySQL, it affected locking behavior,
but this is no longer true. It is now deprecated and its use produces a warning. Use WRITE without
LOW_PRIORITY instead.

WRITE locks normally have higher priority than READ locks to ensure that updates are processed as
soon as possible. This means that if one session obtains a READ lock and then another session requests
a WRITE lock, subsequent READ lock requests wait until the session that requested the WRITE lock
has obtained the lock and released it. (An exception to this policy can occur for small values of the
max_write_lock_count system variable; see Section 8.11.4, “Metadata Locking”.)

If the LOCK TABLES statement must wait due to locks held by other sessions on any of the tables, it blocks
until all locks can be acquired.

A session that requires locks must acquire all the locks that it needs in a single LOCK TABLES statement.
While the locks thus obtained are held, the session can access only the locked tables. For example, in the
following sequence of statements, an error occurs for the attempt to access t2 because it was not locked
in the LOCK TABLES statement:

mysql> LOCK TABLES t1 READ;
mysql> SELECT COUNT(*) FROM t1;
+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+
mysql> SELECT COUNT(*) FROM t2;
ERROR 1100 (HY000): Table 't2' was not locked with LOCK TABLES

Tables in the INFORMATION_SCHEMA database are an exception. They can be accessed without being
locked explicitly even while a session holds table locks obtained with LOCK TABLES.

You cannot refer to a locked table multiple times in a single query using the same name. Use aliases
instead, and obtain a separate lock for the table and each alias:

mysql> LOCK TABLE t WRITE, t AS t1 READ;
mysql> INSERT INTO t SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> INSERT INTO t SELECT * FROM t AS t1;

1811

LOCK TABLES and UNLOCK TABLES Statements

The error occurs for the first INSERT because there are two references to the same name for a locked
table. The second INSERT succeeds because the references to the table use different names.

If your statements refer to a table by means of an alias, you must lock the table using that same alias. It
does not work to lock the table without specifying the alias:

mysql> LOCK TABLE t READ;
mysql> SELECT * FROM t AS myalias;
ERROR 1100: Table 'myalias' was not locked with LOCK TABLES

Conversely, if you lock a table using an alias, you must refer to it in your statements using that alias:

mysql> LOCK TABLE t AS myalias READ;
mysql> SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> SELECT * FROM t AS myalias;

Note

LOCK TABLES or UNLOCK TABLES, when applied to a partitioned table, always
locks or unlocks the entire table; these statements do not support partition lock
pruning. See Section 19.6.4, “Partitioning and Locking”.

Table Lock Release

When the table locks held by a session are released, they are all released at the same time. A session can
release its locks explicitly, or locks may be released implicitly under certain conditions.

• A session can release its locks explicitly with UNLOCK TABLES.

• If a session issues a LOCK TABLES statement to acquire a lock while already holding locks, its existing
locks are released implicitly before the new locks are granted.

• If a session begins a transaction (for example, with START TRANSACTION), an implicit UNLOCK
TABLES is performed, which causes existing locks to be released. (For additional information about the
interaction between table locking and transactions, see Interaction of Table Locking and Transactions.)

If the connection for a client session terminates, whether normally or abnormally, the server implicitly
releases all table locks held by the session (transactional and nontransactional). If the client reconnects,
the locks are no longer be in effect. In addition, if the client had an active transaction, the server rolls
back the transaction upon disconnect, and if reconnect occurs, the new session begins with autocommit
enabled. For this reason, clients may wish to disable auto-reconnect. With auto-reconnect in effect, the
client is not notified if reconnect occurs but any table locks or current transaction are lost. With auto-
reconnect disabled, if the connection drops, an error occurs for the next statement issued. The client can
detect the error and take appropriate action such as reacquiring the locks or redoing the transaction. See
Automatic Reconnection Control.

Note

If you use ALTER TABLE on a locked table, it may become unlocked. For example,
if you attempt a second ALTER TABLE operation, the result may be an error Table
'tbl_name' was not locked with LOCK TABLES. To handle this, lock the
table again prior to the second alteration. See also Section B.3.6.1, “Problems with
ALTER TABLE”.

Interaction of Table Locking and Transactions

LOCK TABLES and UNLOCK TABLES interact with the use of transactions as follows:

1812

https://dev.mysql.com/doc/c-api/5.6/en/c-api-auto-reconnect.html

LOCK TABLES and UNLOCK TABLES Statements

• LOCK TABLES is not transaction-safe and implicitly commits any active transaction before attempting to
lock the tables.

• UNLOCK TABLES implicitly commits any active transaction, but only if LOCK TABLES has been used
to acquire table locks. For example, in the following set of statements, UNLOCK TABLES releases the
global read lock but does not commit the transaction because no table locks are in effect:

FLUSH TABLES WITH READ LOCK;
START TRANSACTION;
SELECT ... ;
UNLOCK TABLES;

• Beginning a transaction (for example, with START TRANSACTION) implicitly commits any current
transaction and releases existing table locks.

• FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not
subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking
and implicit commits. For example, START TRANSACTION does not release the global read lock. See
Section 13.7.6.3, “FLUSH Statement”.

• Other statements that implicitly cause transactions to be committed do not release existing table locks.
For a list of such statements, see Section 13.3.3, “Statements That Cause an Implicit Commit”.

• The correct way to use LOCK TABLES and UNLOCK TABLES with transactional tables, such as InnoDB
tables, is to begin a transaction with SET autocommit = 0 (not START TRANSACTION) followed by
LOCK TABLES, and to not call UNLOCK TABLES until you commit the transaction explicitly. For example,
if you need to write to table t1 and read from table t2, you can do this:

SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;

When you call LOCK TABLES, InnoDB internally takes its own table lock, and MySQL takes its own
table lock. InnoDB releases its internal table lock at the next commit, but for MySQL to release its table
lock, you have to call UNLOCK TABLES. You should not have autocommit = 1, because then InnoDB
releases its internal table lock immediately after the call of LOCK TABLES, and deadlocks can very
easily happen. InnoDB does not acquire the internal table lock at all if autocommit = 1, to help old
applications avoid unnecessary deadlocks.

• ROLLBACK does not release table locks.

LOCK TABLES and Triggers

If you lock a table explicitly with LOCK TABLES, any tables used in triggers are also locked implicitly:

• The locks are taken as the same time as those acquired explicitly with the LOCK TABLES statement.

• The lock on a table used in a trigger depends on whether the table is used only for reading. If so, a read
lock suffices. Otherwise, a write lock is used.

• If a table is locked explicitly for reading with LOCK TABLES, but needs to be locked for writing because it
might be modified within a trigger, a write lock is taken rather than a read lock. (That is, an implicit write
lock needed due to the table's appearance within a trigger causes an explicit read lock request for the
table to be converted to a write lock request.)

Suppose that you lock two tables, t1 and t2, using this statement:

1813

LOCK TABLES and UNLOCK TABLES Statements

LOCK TABLES t1 WRITE, t2 READ;

If t1 or t2 have any triggers, tables used within the triggers are also locked. Suppose that t1 has a trigger
defined like this:

CREATE TRIGGER t1_a_ins AFTER INSERT ON t1 FOR EACH ROW
BEGIN
 UPDATE t4 SET count = count+1
 WHERE id = NEW.id AND EXISTS (SELECT a FROM t3);
 INSERT INTO t2 VALUES(1, 2);
END;

The result of the LOCK TABLES statement is that t1 and t2 are locked because they appear in the
statement, and t3 and t4 are locked because they are used within the trigger:

• t1 is locked for writing per the WRITE lock request.

• t2 is locked for writing, even though the request is for a READ lock. This occurs because t2 is inserted
into within the trigger, so the READ request is converted to a WRITE request.

• t3 is locked for reading because it is only read from within the trigger.

• t4 is locked for writing because it might be updated within the trigger.

Table-Locking Restrictions and Conditions

You can safely use KILL to terminate a session that is waiting for a table lock. See Section 13.7.6.4, “KILL
Statement”.

Do not lock any tables that you are using with INSERT DELAYED. An INSERT DELAYED in this case
results in an error because the insert must be handled by a separate thread, not by the session which
holds the lock.

LOCK TABLES and UNLOCK TABLES cannot be used within stored programs.

Tables in the performance_schema database cannot be locked with LOCK TABLES, except the
setup_xxx tables.

The scope of a lock generated by LOCK TABLES is a single MySQL server. It is not compatible with NDB
Cluster, which has no way of enforcing an SQL-level lock across multiple instances of mysqld. You can
enforce locking in an API application instead. See Section 18.2.7.10, “Limitations Relating to Multiple NDB
Cluster Nodes”, for more information.

The following statements are prohibited while a LOCK TABLES statement is in effect: CREATE TABLE,
CREATE TABLE ... LIKE, CREATE VIEW, DROP VIEW, and DDL statements on stored functions and
procedures and events.

For some operations, system tables in the mysql database must be accessed. For example, the HELP
statement requires the contents of the server-side help tables, and CONVERT_TZ() might need to read the
time zone tables. The server implicitly locks the system tables for reading as necessary so that you need
not lock them explicitly. These tables are treated as just described:

mysql.help_category
mysql.help_keyword
mysql.help_relation
mysql.help_topic
mysql.proc
mysql.time_zone
mysql.time_zone_leap_second
mysql.time_zone_name
mysql.time_zone_transition

1814

SET TRANSACTION Statement

mysql.time_zone_transition_type

If you want to explicitly place a WRITE lock on any of those tables with a LOCK TABLES statement, the
table must be the only one locked; no other table can be locked with the same statement.

Normally, you do not need to lock tables, because all single UPDATE statements are atomic; no other
session can interfere with any other currently executing SQL statement. However, there are a few cases
when locking tables may provide an advantage:

• If you are going to run many operations on a set of MyISAM tables, it is much faster to lock the tables you
are going to use. Locking MyISAM tables speeds up inserting, updating, or deleting on them because
MySQL does not flush the key cache for the locked tables until UNLOCK TABLES is called. Normally, the
key cache is flushed after each SQL statement.

The downside to locking the tables is that no session can update a READ-locked table (including the one
holding the lock) and no session can access a WRITE-locked table other than the one holding the lock.

• If you are using tables for a nontransactional storage engine, you must use LOCK TABLES if you want
to ensure that no other session modifies the tables between a SELECT and an UPDATE. The example
shown here requires LOCK TABLES to execute safely:

LOCK TABLES trans READ, customer WRITE;
SELECT SUM(value) FROM trans WHERE customer_id=some_id;
UPDATE customer
 SET total_value=sum_from_previous_statement
 WHERE customer_id=some_id;
UNLOCK TABLES;

Without LOCK TABLES, it is possible that another session might insert a new row in the trans table
between execution of the SELECT and UPDATE statements.

You can avoid using LOCK TABLES in many cases by using relative updates (UPDATE customer SET
value=value+new_value) or the LAST_INSERT_ID() function.

You can also avoid locking tables in some cases by using the user-level advisory lock functions
GET_LOCK() and RELEASE_LOCK(). These locks are saved in a hash table in the server and
implemented with pthread_mutex_lock() and pthread_mutex_unlock() for high speed. See
Section 12.15, “Locking Functions”.

See Section 8.11.1, “Internal Locking Methods”, for more information on locking policy.

13.3.6 SET TRANSACTION Statement
SET [GLOBAL | SESSION] TRANSACTION
 transaction_characteristic [, transaction_characteristic] ...

transaction_characteristic: {
 ISOLATION LEVEL level
 | access_mode
}

level: {
 REPEATABLE READ
 | READ COMMITTED
 | READ UNCOMMITTED
 | SERIALIZABLE
}

access_mode: {
 READ WRITE
 | READ ONLY

1815

SET TRANSACTION Statement

}

This statement specifies transaction characteristics. It takes a list of one or more characteristic values
separated by commas. Each characteristic value sets the transaction isolation level or access mode. The
isolation level is used for operations on InnoDB tables. The access mode specifies whether transactions
operate in read/write or read-only mode.

In addition, SET TRANSACTION can include an optional GLOBAL or SESSION keyword to indicate the
scope of the statement.

• Transaction Isolation Levels

• Transaction Access Mode

• Transaction Characteristic Scope

Transaction Isolation Levels

To set the transaction isolation level, use an ISOLATION LEVEL level clause. It is not permitted to
specify multiple ISOLATION LEVEL clauses in the same SET TRANSACTION statement.

The default isolation level is REPEATABLE READ. Other permitted values are READ COMMITTED, READ
UNCOMMITTED, and SERIALIZABLE. For information about these isolation levels, see Section 14.7.2.1,
“Transaction Isolation Levels”.

Transaction Access Mode

To set the transaction access mode, use a READ WRITE or READ ONLY clause. It is not permitted to
specify multiple access-mode clauses in the same SET TRANSACTION statement.

By default, a transaction takes place in read/write mode, with both reads and writes permitted to tables
used in the transaction. This mode may be specified explicitly using SET TRANSACTION with an access
mode of READ WRITE.

If the transaction access mode is set to READ ONLY, changes to tables are prohibited. This may enable
storage engines to make performance improvements that are possible when writes are not permitted.

In read-only mode, it remains possible to change tables created with the TEMPORARY keyword using DML
statements. Changes made with DDL statements are not permitted, just as with permanent tables.

The READ WRITE and READ ONLY access modes also may be specified for an individual transaction using
the START TRANSACTION statement.

Transaction Characteristic Scope

You can set transaction characteristics globally, for the current session, or for the next transaction only:

• With the GLOBAL keyword:

• The statement applies globally for all subsequent sessions.

• Existing sessions are unaffected.

• With the SESSION keyword:

• The statement applies to all subsequent transactions performed within the current session.

• The statement is permitted within transactions, but does not affect the current ongoing transaction.

1816

SET TRANSACTION Statement

• If executed between transactions, the statement overrides any preceding statement that sets the next-
transaction value of the named characteristics.

• Without any SESSION or GLOBAL keyword:

• The statement applies only to the next single transaction performed within the session.

• Subsequent transactions revert to using the session value of the named characteristics.

• The statement is not permitted within transactions:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.02 sec)

mysql> SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
ERROR 1568 (25001): Transaction characteristics can't be changed
while a transaction is in progress

A change to global transaction characteristics requires the SUPER privilege. Any session is free to change
its session characteristics (even in the middle of a transaction), or the characteristics for its next transaction
(prior to the start of that transaction).

To set the global isolation level at server startup, use the --transaction-isolation=level option
on the command line or in an option file. Values of level for this option use dashes rather than spaces,
so the permissible values are READ-UNCOMMITTED, READ-COMMITTED, REPEATABLE-READ, or
SERIALIZABLE.

Similarly, to set the global transaction access mode at server startup, use the --transaction-read-
only option. The default is OFF (read/write mode) but the value can be set to ON for a mode of read only.

For example, to set the isolation level to REPEATABLE READ and the access mode to READ WRITE, use
these lines in the [mysqld] section of an option file:

[mysqld]
transaction-isolation = REPEATABLE-READ
transaction-read-only = OFF

At runtime, characteristics at the global, session, and next-transaction scope levels can be set indirectly
using the SET TRANSACTION statement, as described previously. They can also be set directly using the
SET statement to assign values to the tx_isolation and tx_read_only system variables:

• SET TRANSACTION permits optional GLOBAL and SESSION keywords for setting transaction
characteristics at different scope levels.

• The SET statement for assigning values to the tx_isolation and tx_read_only system variables
has syntaxes for setting these variables at different scope levels.

The following tables show the characteristic scope level set by each SET TRANSACTION and variable-
assignment syntax.

Table 13.6 SET TRANSACTION Syntax for Transaction Characteristics

Syntax Affected Characteristic Scope

SET GLOBAL TRANSACTION
transaction_characteristic

Global

SET SESSION TRANSACTION
transaction_characteristic

Session

1817

XA Transactions

Syntax Affected Characteristic Scope

SET TRANSACTION
transaction_characteristic

Next transaction only

Table 13.7 SET Syntax for Transaction Characteristics

Syntax Affected Characteristic Scope

SET GLOBAL var_name = value Global

SET @@GLOBAL.var_name = value Global

SET PERSIST var_name = value Global

SET @@PERSIST.var_name = value Global

SET PERSIST_ONLY var_name = value No runtime effect

SET @@PERSIST_ONLY.var_name = value No runtime effect

SET SESSION var_name = value Session

SET @@SESSION.var_name = value Session

SET var_name = value Session

SET @@var_name = value Next transaction only

It is possible to check the global and session values of transaction characteristics at runtime:

SELECT @@GLOBAL.tx_isolation, @@GLOBAL.tx_read_only;
SELECT @@SESSION.tx_isolation, @@SESSION.tx_read_only;

13.3.7 XA Transactions

Support for XA transactions is available for the InnoDB storage engine. The MySQL XA implementation
is based on the X/Open CAE document Distributed Transaction Processing: The XA Specification. This
document is published by The Open Group and available at http://www.opengroup.org/public/pubs/catalog/
c193.htm. Limitations of the current XA implementation are described in Section 13.3.7.3, “Restrictions on
XA Transactions”.

On the client side, there are no special requirements. The XA interface to a MySQL server consists of SQL
statements that begin with the XA keyword. MySQL client programs must be able to send SQL statements
and to understand the semantics of the XA statement interface. They do not need be linked against a
recent client library. Older client libraries also work.

Among the MySQL Connectors, MySQL Connector/J 5.0.0 and higher supports XA directly, by means of a
class interface that handles the XA SQL statement interface for you.

XA supports distributed transactions, that is, the ability to permit multiple separate transactional resources
to participate in a global transaction. Transactional resources often are RDBMSs but may be other kinds of
resources.

A global transaction involves several actions that are transactional in themselves, but that all must
either complete successfully as a group, or all be rolled back as a group. In essence, this extends ACID
properties “up a level” so that multiple ACID transactions can be executed in concert as components of
a global operation that also has ACID properties. (As with nondistributed transactions, SERIALIZABLE
may be preferred if your applications are sensitive to read phenomena. REPEATABLE READ may not be
sufficient for distributed transactions.)

Some examples of distributed transactions:

1818

http://www.opengroup.org/public/pubs/catalog/c193.htm
http://www.opengroup.org/public/pubs/catalog/c193.htm

XA Transactions

• An application may act as an integration tool that combines a messaging service with an RDBMS.
The application makes sure that transactions dealing with message sending, retrieval, and processing
that also involve a transactional database all happen in a global transaction. You can think of this as
“transactional email.”

• An application performs actions that involve different database servers, such as a MySQL server and an
Oracle server (or multiple MySQL servers), where actions that involve multiple servers must happen as
part of a global transaction, rather than as separate transactions local to each server.

• A bank keeps account information in an RDBMS and distributes and receives money through automated
teller machines (ATMs). It is necessary to ensure that ATM actions are correctly reflected in the
accounts, but this cannot be done with the RDBMS alone. A global transaction manager integrates the
ATM and database resources to ensure overall consistency of financial transactions.

Applications that use global transactions involve one or more Resource Managers and a Transaction
Manager:

• A Resource Manager (RM) provides access to transactional resources. A database server is one kind of
resource manager. It must be possible to either commit or roll back transactions managed by the RM.

• A Transaction Manager (TM) coordinates the transactions that are part of a global transaction. It
communicates with the RMs that handle each of these transactions. The individual transactions within a
global transaction are “branches” of the global transaction. Global transactions and their branches are
identified by a naming scheme described later.

The MySQL implementation of XA enables a MySQL server to act as a Resource Manager that handles
XA transactions within a global transaction. A client program that connects to the MySQL server acts as
the Transaction Manager.

To carry out a global transaction, it is necessary to know which components are involved, and bring each
component to a point when it can be committed or rolled back. Depending on what each component
reports about its ability to succeed, they must all commit or roll back as an atomic group. That is, either
all components must commit, or all components must roll back. To manage a global transaction, it is
necessary to take into account that any component or the connecting network might fail.

The process for executing a global transaction uses two-phase commit (2PC). This takes place after the
actions performed by the branches of the global transaction have been executed.

1. In the first phase, all branches are prepared. That is, they are told by the TM to get ready to commit.
Typically, this means each RM that manages a branch records the actions for the branch in stable
storage. The branches indicate whether they are able to do this, and these results are used for the
second phase.

2. In the second phase, the TM tells the RMs whether to commit or roll back. If all branches indicated
when they were prepared that they are able to commit, all branches are told to commit. If any branch
indicated when it was prepared that it was not able to commit, all branches are told to roll back.

In some cases, a global transaction might use one-phase commit (1PC). For example, when a Transaction
Manager finds that a global transaction consists of only one transactional resource (that is, a single
branch), that resource can be told to prepare and commit at the same time.

13.3.7.1 XA Transaction SQL Statements

To perform XA transactions in MySQL, use the following statements:

XA {START|BEGIN} xid [JOIN|RESUME]

1819

XA Transactions

XA END xid [SUSPEND [FOR MIGRATE]]

XA PREPARE xid

XA COMMIT xid [ONE PHASE]

XA ROLLBACK xid

XA RECOVER

For XA START, the JOIN and RESUME clauses are recognized but have no effect.

For XA END the SUSPEND [FOR MIGRATE] clause is recognized but has no effect.

Each XA statement begins with the XA keyword, and most of them require an xid value. An xid is an XA
transaction identifier. It indicates which transaction the statement applies to. xid values are supplied by
the client, or generated by the MySQL server. An xid value has from one to three parts:

xid: gtrid [, bqual [, formatID]]

gtrid is a global transaction identifier, bqual is a branch qualifier, and formatID is a number that
identifies the format used by the gtrid and bqual values. As indicated by the syntax, bqual and
formatID are optional. The default bqual value is '' if not given. The default formatID value is 1 if not
given.

gtrid and bqual must be string literals, each up to 64 bytes (not characters) long. gtrid and bqual can
be specified in several ways. You can use a quoted string ('ab'), hex string (X'6162', 0x6162), or bit
value (b'nnnn').

formatID is an unsigned integer.

The gtrid and bqual values are interpreted in bytes by the MySQL server's underlying XA support
routines. However, while an SQL statement containing an XA statement is being parsed, the server works
with some specific character set. To be safe, write gtrid and bqual as hex strings.

xid values typically are generated by the Transaction Manager. Values generated by one TM must be
different from values generated by other TMs. A given TM must be able to recognize its own xid values in
a list of values returned by the XA RECOVER statement.

XA START xid starts an XA transaction with the given xid value. Each XA transaction must have a
unique xid value, so the value must not currently be used by another XA transaction. Uniqueness is
assessed using the gtrid and bqual values. All following XA statements for the XA transaction must
be specified using the same xid value as that given in the XA START statement. If you use any of those
statements but specify an xid value that does not correspond to some existing XA transaction, an error
occurs.

One or more XA transactions can be part of the same global transaction. All XA transactions within a given
global transaction must use the same gtrid value in the xid value. For this reason, gtrid values must
be globally unique so that there is no ambiguity about which global transaction a given XA transaction
is part of. The bqual part of the xid value must be different for each XA transaction within a global
transaction. (The requirement that bqual values be different is a limitation of the current MySQL XA
implementation. It is not part of the XA specification.)

The XA RECOVER statement returns information for those XA transactions on the MySQL server that are in
the PREPARED state. (See Section 13.3.7.2, “XA Transaction States”.) The output includes a row for each
such XA transaction on the server, regardless of which client started it.

XA RECOVER output rows look like this (for an example xid value consisting of the parts 'abc', 'def',
and 7):

1820

XA Transactions

mysql> XA RECOVER;
+----------+--------------+--------------+--------+
| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+--------+
| 7 | 3 | 3 | abcdef |
+----------+--------------+--------------+--------+

The output columns have the following meanings:

• formatID is the formatID part of the transaction xid

• gtrid_length is the length in bytes of the gtrid part of the xid

• bqual_length is the length in bytes of the bqual part of the xid

• data is the concatenation of the gtrid and bqual parts of the xid

13.3.7.2 XA Transaction States

An XA transaction progresses through the following states:

1. Use XA START to start an XA transaction and put it in the ACTIVE state.

2. For an ACTIVE XA transaction, issue the SQL statements that make up the transaction, and then issue
an XA END statement. XA END puts the transaction in the IDLE state.

3. For an IDLE XA transaction, you can issue either an XA PREPARE statement or an XA COMMIT ...
ONE PHASE statement:

• XA PREPARE puts the transaction in the PREPARED state. An XA RECOVER statement at this point
includes the transaction's xid value in its output, because XA RECOVER lists all XA transactions that
are in the PREPARED state.

• XA COMMIT ... ONE PHASE prepares and commits the transaction. The xid value is not listed by
XA RECOVER because the transaction terminates.

4. For a PREPARED XA transaction, you can issue an XA COMMIT statement to commit and terminate the
transaction, or XA ROLLBACK to roll back and terminate the transaction.

Here is a simple XA transaction that inserts a row into a table as part of a global transaction:

mysql> XA START 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO mytable (i) VALUES(10);
Query OK, 1 row affected (0.04 sec)

mysql> XA END 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA PREPARE 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA COMMIT 'xatest';
Query OK, 0 rows affected (0.00 sec)

Within the context of a given client connection, XA transactions and local (non-XA) transactions are
mutually exclusive. For example, if XA START has been issued to begin an XA transaction, a local
transaction cannot be started until the XA transaction has been committed or rolled back. Conversely, if
a local transaction has been started with START TRANSACTION, no XA statements can be used until the
transaction has been committed or rolled back.

1821

Replication Statements

If an XA transaction is in the ACTIVE state, you cannot issue any statements that cause an implicit commit.
That would violate the XA contract because you could not roll back the XA transaction. You receive the
following error if you try to execute such a statement:

ERROR 1399 (XAE07): XAER_RMFAIL: The command cannot be executed
when global transaction is in the ACTIVE state

Statements to which the preceding remark applies are listed at Section 13.3.3, “Statements That Cause an
Implicit Commit”.

13.3.7.3 Restrictions on XA Transactions

XA transaction support is limited to the InnoDB storage engine.

For “external XA,” a MySQL server acts as a Resource Manager and client programs act as Transaction
Managers. For “Internal XA”, storage engines within a MySQL server act as RMs, and the server itself
acts as a TM. Internal XA support is limited by the capabilities of individual storage engines. Internal XA
is required for handling XA transactions that involve more than one storage engine. The implementation
of internal XA requires that a storage engine support two-phase commit at the table handler level, and
currently this is true only for InnoDB.

For XA START, the JOIN and RESUME clauses are recognized but have no effect.

For XA END the SUSPEND [FOR MIGRATE] clause is recognized but has no effect.

The requirement that the bqual part of the xid value be different for each XA transaction within a global
transaction is a limitation of the current MySQL XA implementation. It is not part of the XA specification.

If an XA transaction has reached the PREPARED state and the MySQL server is killed (for example, with
kill -9 on Unix) or shuts down abnormally, the transaction can be continued after the server restarts.
However, if the client reconnects and commits the transaction, the transaction is absent from the binary log
even though it has been committed. This means the data and the binary log have gone out of synchrony.
An implication is that XA cannot be used safely together with replication.

It is possible that the server rolls back a pending XA transaction, even one that has reached the PREPARED
state. This happens if a client connection terminates and the server continues to run, or if clients are
connected and the server shuts down gracefully. (In the latter case, the server marks each connection to
be terminated, and then rolls back the PREPARED XA transaction associated with it.) It should be possible
to commit or roll back a PREPARED XA transaction, but this cannot be done without changes to the binary
logging mechanism.

FLUSH TABLES WITH READ LOCK is not compatible with XA transactions.

13.4 Replication Statements
Replication can be controlled through the SQL interface using the statements described in this section.
One group of statements controls replication source servers, the other controls replicas.

13.4.1 SQL Statements for Controlling Replication Source Servers

This section discusses statements for managing replication source servers. Section 13.4.2, “SQL
Statements for Controlling Replica Servers”, discusses statements for managing replica servers.

In addition to the statements described here, the following SHOW statements are used with replication
source servers. For information about these statements, see Section 13.7.5, “SHOW Statements”.

• SHOW BINARY LOGS

1822

SQL Statements for Controlling Replication Source Servers

• SHOW BINLOG EVENTS

• SHOW MASTER STATUS

• SHOW SLAVE HOSTS

13.4.1.1 PURGE BINARY LOGS Statement

PURGE { BINARY | MASTER } LOGS {
 TO 'log_name'
 | BEFORE datetime_expr
}

The binary log is a set of files that contain information about data modifications made by the MySQL
server. The log consists of a set of binary log files, plus an index file (see Section 5.4.4, “The Binary Log”).

The PURGE BINARY LOGS statement deletes all the binary log files listed in the log index file prior to the
specified log file name or date. BINARY and MASTER are synonyms. Deleted log files also are removed
from the list recorded in the index file, so that the given log file becomes the first in the list.

This statement has no effect if the server was not started with the --log-bin option to enable binary
logging.

Examples:

PURGE BINARY LOGS TO 'mysql-bin.010';
PURGE BINARY LOGS BEFORE '2019-04-02 22:46:26';

The BEFORE variant's datetime_expr argument should evaluate to a DATETIME value (a value in
'YYYY-MM-DD hh:mm:ss' format).

This statement is safe to run while replicas are replicating. You need not stop them. If you have an active
replica that currently is reading one of the log files you are trying to delete, this statement does not delete
the log file that is in use or any log files later than that one, but it deletes any earlier log files. In MySQL
5.6.12 and later, a warning message is issued in this situation. (Bug #13727933) However, if a replica is
not connected and you happen to purge one of the log files it has yet to read, the replica cannot replicate
after it reconnects.

To safely purge binary log files, follow this procedure:

1. On each replica server, use SHOW SLAVE STATUS to check which log file it is reading.

2. Obtain a listing of the binary log files on the source with SHOW BINARY LOGS.

3. Determine the earliest log file among all the replicas. This is the target file. If all the replicas are up to
date, this is the last log file on the list.

4. Make a backup of all the log files you are about to delete. (This step is optional, but always advisable.)

5. Purge all log files up to but not including the target file.

You can also set the expire_logs_days system variable to expire binary log files automatically after
a given number of days (see Section 5.1.7, “Server System Variables”). If you are using replication, you
should set the variable no lower than the maximum number of days your replicas might lag behind the
source.

PURGE BINARY LOGS TO and PURGE BINARY LOGS BEFORE both fail with an error when binary log
files listed in the .index file had been removed from the system by some other means (such as using

1823

SQL Statements for Controlling Replication Source Servers

rm on Linux). (Bug #18199, Bug #18453) To handle such errors, edit the .index file (which is a simple
text file) manually to ensure that it lists only the binary log files that are actually present, then run again the
PURGE BINARY LOGS statement that failed.

13.4.1.2 RESET MASTER Statement

RESET MASTER

Deletes all binary log files listed in the index file, resets the binary log index file to be empty, and creates a
new binary log file.

RESET MASTER also clears the values of the gtid_purged system variable as well as the global value
of the gtid_executed system variable (but not its session value); that is, executing this statement sets
each of these values to an empty string ('').

This statement is intended to be used only when the source is started for the first time.

Important

The effects of RESET MASTER differ from those of PURGE BINARY LOGS in 2 key
ways:

1. RESET MASTER removes all binary log files that are listed in the index file,
leaving only a single, empty binary log file with a numeric suffix of .000001,
whereas the numbering is not reset by PURGE BINARY LOGS.

2. RESET MASTER is not intended to be used while any replicas are running. The
behavior of RESET MASTER when used while replicas are running is undefined
(and thus unsupported), whereas PURGE BINARY LOGS may be safely used
while replicas are running.

See also Section 13.4.1.1, “PURGE BINARY LOGS Statement”.

RESET MASTER can prove useful when you first set up the source and the replica, so that you can verify
the setup as follows:

1. Start the source and replica, and start replication (see Section 17.1.1, “How to Set Up Replication”).

2. Execute a few test queries on the source.

3. Check that the queries were replicated to the replica.

4. When replication is running correctly, issue STOP SLAVE followed by RESET SLAVE on the replica,
then verify that any unwanted data no longer exists on the replica.

5. Issue RESET MASTER on the source to clean up the test queries.

After verifying the setup and getting rid of any unwanted and log files generated by testing, you can start
the replica and begin replicating.

13.4.1.3 SET sql_log_bin Statement

SET sql_log_bin = {OFF|ON}

The sql_log_bin variable controls whether logging to the binary log is enabled for the current session
(assuming that the binary log itself is enabled). The default value is ON. To disable or enable binary logging
for the current session, set the session sql_log_bin variable to OFF or ON.

1824

SQL Statements for Controlling Replica Servers

Set this variable to OFF for a session to temporarily disable binary logging while making changes to the
source you do not want replicated to the replica.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

It is not possible to set the session value of sql_log_bin within a transaction or subquery.

Setting this variable to OFF prevents GTIDs from being assigned to transactions in the binary log. If you
are using GTIDs for replication, this means that, even when binary logging is later enabled once again, the
GTIDs written into the log from this point do not account for any transactions that occurred in the meantime
—in effect, those transactions are lost.

As of MySQL 5.6.22, the global sql_log_bin variable is read only and cannot be modified. The global
scope is deprecated; expect it to be removed in a future MySQL release. Prior to 5.6.22, sql_log_bin
can be set as a global or session variable. Setting sql_log_bin globally is only detected when a new
session is started. Any sessions previously running are not impacted when setting sql_log_bin globally.

Warning

Incorrect use of sql_log_bin with a global scope means any changes made in
an already running session are still being recorded to the binary log and therefore
replicated. Exercise extreme caution using sql_log_bin with a global scope as
the above situation could cause unexpected results including replication failure.

13.4.2 SQL Statements for Controlling Replica Servers

This section discusses statements for managing replica servers. Section 13.4.1, “SQL Statements for
Controlling Replication Source Servers”, discusses statements for managing source servers.

In addition to the statements described here, SHOW SLAVE STATUS and SHOW RELAYLOG EVENTS are
also used with replicas. For information about these statements, see Section 13.7.5.35, “SHOW SLAVE
STATUS Statement”, and Section 13.7.5.33, “SHOW RELAYLOG EVENTS Statement”.

13.4.2.1 CHANGE MASTER TO Statement

CHANGE MASTER TO option [, option] ...

option: {
 MASTER_BIND = 'interface_name'
 | MASTER_HOST = 'host_name'
 | MASTER_USER = 'user_name'
 | MASTER_PASSWORD = 'password'
 | MASTER_PORT = port_num
 | MASTER_CONNECT_RETRY = interval
 | MASTER_RETRY_COUNT = count
 | MASTER_DELAY = interval
 | MASTER_HEARTBEAT_PERIOD = interval
 | MASTER_LOG_FILE = 'source_log_name'
 | MASTER_LOG_POS = source_log_pos
 | MASTER_AUTO_POSITION = {0|1}
 | RELAY_LOG_FILE = 'relay_log_name'
 | RELAY_LOG_POS = relay_log_pos
 | MASTER_SSL = {0|1}
 | MASTER_SSL_CA = 'ca_file_name'
 | MASTER_SSL_CAPATH = 'ca_directory_name'
 | MASTER_SSL_CERT = 'cert_file_name'
 | MASTER_SSL_CRL = 'crl_file_name'
 | MASTER_SSL_CRLPATH = 'crl_directory_name'
 | MASTER_SSL_KEY = 'key_file_name'
 | MASTER_SSL_CIPHER = 'cipher_list'

1825

SQL Statements for Controlling Replica Servers

 | MASTER_SSL_VERIFY_SERVER_CERT = {0|1}
 | IGNORE_SERVER_IDS = (server_id_list)
}

server_id_list:
 [server_id [, server_id] ...]

CHANGE MASTER TO changes the parameters that the replica uses for connecting to the replication
source server, for reading the source's binary log, and reading the replica's relay log. It also updates the
contents of the replication metadata repositories (see Section 17.2.2, “Relay Log and Replication Metadata
Repositories”). CHANGE MASTER TO requires the SUPER privilege.

To use CHANGE MASTER TO, the replication threads must be stopped (use STOP SLAVE if necessary). In
MySQL 5.6.11 and later, gtid_next must also be set to AUTOMATIC (Bug #16062608).

Options not specified retain their value, except as indicated in the following discussion. Thus, in most
cases, there is no need to specify options that do not change. For example, if the password to connect to
your MySQL source has changed, issue these statements to tell the replica about the new password:

STOP SLAVE; -- if replication was running
CHANGE MASTER TO MASTER_PASSWORD='new3cret';
START SLAVE; -- if you want to restart replication

MASTER_HOST, MASTER_USER, MASTER_PASSWORD, and MASTER_PORT provide information to the replica
about how to connect to its source:

• MASTER_HOST and MASTER_PORT are the host name (or IP address) of the source host and its TCP/IP
port.

Note

Replication cannot use Unix socket files. You must be able to connect to the
source MySQL server using TCP/IP.

If you specify the MASTER_HOST or MASTER_PORT option, the replica assumes that the source server
is different from before (even if the option value is the same as its current value). In this case, the old
values for the source's binary log file name and position are considered no longer applicable, so if you do
not specify MASTER_LOG_FILE and MASTER_LOG_POS in the statement, MASTER_LOG_FILE='' and
MASTER_LOG_POS=4 are silently appended to it.

Setting MASTER_HOST='' (that is, setting its value explicitly to an empty string) is not the same as
not setting MASTER_HOST at all. Beginning with MySQL 5.5, trying to set MASTER_HOST to an empty
string fails with an error. Previously, setting MASTER_HOST to an empty string caused START SLAVE
subsequently to fail. (Bug #28796)

In MySQL 5.6.5 and later, values used for MASTER_HOST and other CHANGE MASTER TO options are
checked for linefeed (\n or 0x0A) characters; the presence of such characters in these values causes
the statement to fail with ER_MASTER_INFO. (Bug #11758581, Bug #50801)

• MASTER_USER and MASTER_PASSWORD are the user name and password of the account to use for
connecting to the source. If you specify MASTER_PASSWORD, MASTER_USER is also required. The
password used for a replication user account in a CHANGE MASTER TO statement is limited to 32
characters in length; if the password is longer, the statement succeeds, but any excess characters are
silently truncated. This is an issue specific to MySQL Replication, which is fixed in MySQL 5.7. (Bug
#11752299, Bug #43439)

It is possible to set an empty user name by specifying MASTER_USER='', but the replication channel
cannot be started with an empty user name. Only set an empty MASTER_USER user name if you need to

1826

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_master_info

SQL Statements for Controlling Replica Servers

clear previously used credentials from the replica's repositories for security purposes, and do not attempt
to use the channel afterwards. (Bug #13427949)

The text of a running CHANGE MASTER TO statement, including values for MASTER_USER and
MASTER_PASSWORD, can be seen in the output of a concurrent SHOW PROCESSLIST statement. (The
complete text of a START SLAVE statement is also visible to SHOW PROCESSLIST.)

The MASTER_SSL_xxx options provide information about using SSL for the connection. They correspond
to the --ssl-xxx options described in Command Options for Encrypted Connections, and Section 17.3.8,
“Setting Up Replication to Use Encrypted Connections”. These options can be changed even on replicas
that are compiled without SSL support. They are saved to the connection metadata repository, but are
ignored if the replica does not have SSL support enabled. MASTER_SSL_CRL and MASTER_SSL_CRLPATH
were added in MySQL 5.6.3.

Important

To help prevent sophisticated man-in-the-middle attacks, it is important for the
replica to verify the server’s identity. With the additional MASTER_SSL_xxx settings,
the replica checks that the server’s certificate is valid. To implement this level of
verification, you must first ensure that the CA certificate for the server is reliably
available to the replica, otherwise availability issues will result.

MASTER_CONNECT_RETRY specifies how many seconds to wait between connect retries. The default is 60.

MASTER_RETRY_COUNT, added in MySQL 5.6.1, limits the number of reconnection attempts and updates
the value of the Master_Retry_Count column in the output of SHOW SLAVE STATUS (also added in
MySQL 5.6.1). The default value is 24 * 3600 = 86400. MASTER_RETRY_COUNT is intended to replace
the older --master-retry-count server option, and is now the preferred method for setting this limit.
You are encouraged not to rely on --master-retry-count in new applications and, when upgrading to
MySQL 5.6.1 or later from earlier versions of MySQL, to update any existing applications that rely on it, so
that they use CHANGE MASTER TO ... MASTER_RETRY_COUNT instead.

MASTER_DELAY specifies how many seconds behind the source the replica must lag. An event received
from the source is not executed until at least interval seconds later than its execution on the source.
The default is 0. An error occurs if interval is not a nonnegative integer in the range from 0 to 231−1. For
more information, see Section 17.3.10, “Delayed Replication”. This option was added in MySQL 5.6.0.

MASTER_BIND is for use on replicas having multiple network interfaces, and determines which of the
replica's network interfaces is chosen for connecting to the source.

The address configured with this option, if any, can be seen in the Master_Bind column of the output
from SHOW SLAVE STATUS. If you are using tables for the replication metadata repositories (the server
was started with master_info_repository=TABLE), the value can also be seen as the Master_bind
column of the mysql.slave_master_info table.

The ability to bind a replica to a specific network interface was added in MySQL 5.6.2. This is also
supported in MySQL NDB Cluster 7.3 and later.

MASTER_HEARTBEAT_PERIOD sets the interval in seconds between replication heartbeats. Whenever the
source's binary log is updated with an event, the waiting period for the next heartbeat is reset. interval
is a decimal value having the range 0 to 4294967 seconds and a resolution in milliseconds; the smallest
nonzero value is 0.001. Heartbeats are sent by the source only if there are no unsent events in the binary
log file for a period longer than interval.

If you are logging source connection information to tables, MASTER_HEARTBEAT_PERIOD can be seen as
the value of the Heartbeat column of the mysql.slave_master_info table.

1827

SQL Statements for Controlling Replica Servers

Setting interval to 0 disables heartbeats altogether. The default value for interval is equal to the
value of slave_net_timeout divided by 2.

Setting @@GLOBAL.slave_net_timeout to a value less than that of the current heartbeat interval results
in a warning being issued. The effect of issuing RESET SLAVE on the heartbeat interval is to reset it to the
default value.

MASTER_LOG_FILE and MASTER_LOG_POS are the coordinates at which the replication I/O thread should
begin reading from the source the next time the thread starts. RELAY_LOG_FILE and RELAY_LOG_POS
are the coordinates at which the replication SQL thread should begin reading from the relay log the
next time the thread starts. If you specify either of MASTER_LOG_FILE or MASTER_LOG_POS, you
cannot specify RELAY_LOG_FILE or RELAY_LOG_POS. In MySQL 5.6.5 and later, if you specify either
of MASTER_LOG_FILE or MASTER_LOG_POS, you also cannot specify MASTER_AUTO_POSITION =
1 (described later in this section). If neither of MASTER_LOG_FILE or MASTER_LOG_POS is specified,
the replica uses the last coordinates of the replication SQL thread before CHANGE MASTER TO was
issued. This ensures that there is no discontinuity in replication, even if the replication SQL thread was late
compared to the replication I/O thread, when you merely want to change, say, the password to use.

MASTER_AUTO_POSITION was added in MySQL 5.6.5. If MASTER_AUTO_POSITION = 1 is used with
CHANGE MASTER TO, the replica attempts to connect to the source using the GTID-based replication
protocol.

When using GTIDs, the replica tells the source which transactions it has already received, executed,
or both. To compute this set, it reads the global value of gtid_executed and the value of the
Retrieved_gtid_set column from SHOW SLAVE STATUS. Since the GTID of the last transmitted
transaction is included in Retrieved_gtid_set even if the transaction was only partially transmitted, the
last received GTID is subtracted from this set. Thus, the replica computes the following set:

UNION(@@GLOBAL.gtid_executed, Retrieved_gtid_set - last_received_GTID)

This set is sent to the source as part of the initial handshake, and the source sends back all transactions
that it has executed which are not part of the set. If any of these transactions have been already purged
from the source's binary log, the source sends the error ER_MASTER_HAS_PURGED_REQUIRED_GTIDS to
the replica, and replication does not start.

When GTID-based replication is employed, the coordinates represented by MASTER_LOG_FILE and
MASTER_LOG_POS are not used, and global transaction identifiers are used instead. Thus the use of either
or both of these options together with MASTER_AUTO_POSITION causes an error.

Beginning with MySQL 5.6.10, you can see whether replication is running with autopositioning enabled by
checking the output of SHOW SLAVE STATUS. (Bug #15992220)

gtid_mode must also be enabled before issuing CHANGE MASTER TO ... MASTER_AUTO_POSITION
= 1. Otherwise, the statement fails with an error.

To revert to the older file-based replication protocol after using GTIDs, you can issue a new CHANGE
MASTER TO statement that specifies MASTER_AUTO_POSITION = 0, as well as at least one of
MASTER_LOG_FILE or MASTER_LOG_POS.

CHANGE MASTER TO deletes all relay log files and starts a new one, unless you specify
RELAY_LOG_FILE or RELAY_LOG_POS. In that case, relay log files are kept; the relay_log_purge
global variable is set silently to 0.

Prior to MySQL 5.6.2, RELAY_LOG_FILE required an absolute path. Beginning with MySQL 5.6.2, the path
can be relative, in which case it is assumed to be relative to the replica's data directory. (Bug #12190)

1828

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_master_has_purged_required_gtids

SQL Statements for Controlling Replica Servers

IGNORE_SERVER_IDS takes a comma-separated list of 0 or more server IDs. Events originating from the
corresponding servers are ignored, with the exception of log rotation and deletion events, which are still
recorded in the relay log.

In circular replication, the originating server normally acts as the terminator of its own events, so that they
are not applied more than once. Thus, this option is useful in circular replication when one of the servers
in the circle is removed. Suppose that you have a circular replication setup with 4 servers, having server
IDs 1, 2, 3, and 4, and server 3 fails. When bridging the gap by starting replication from server 2 to server
4, you can include IGNORE_SERVER_IDS = (3) in the CHANGE MASTER TO statement that you issue on
server 4 to tell it to use server 2 as its source instead of server 3. Doing so causes it to ignore and not to
propagate any statements that originated with the server that is no longer in use.

When a CHANGE MASTER TO statement is issued without any IGNORE_SERVER_IDS option, any existing
list is preserved. To clear the list of ignored servers, it is necessary to use the option with an empty list:

CHANGE MASTER TO IGNORE_SERVER_IDS = ();

RESET SLAVE ALL has no effect on the server ID list. This issue is fixed in MySQL 5.7. (Bug #18816897)

If IGNORE_SERVER_IDS contains the server's own ID and the server was started with the --replicate-
same-server-id option enabled, an error results.

In MySQL 5.6, the connection metadata repository and the output of SHOW SLAVE STATUS provide the
list of servers that are currently ignored. For more information, see Section 17.2.2.2, “Replication Metadata
Repositories”, and Section 13.7.5.35, “SHOW SLAVE STATUS Statement”.

In MySQL 5.6, invoking CHANGE MASTER TO causes the previous values for MASTER_HOST,
MASTER_PORT, MASTER_LOG_FILE, and MASTER_LOG_POS to be written to the error log, along with other
information about the replica's state prior to execution.

In MySQL 5.6.7 and later, CHANGE MASTER TO causes an implicit commit of an ongoing transaction. See
Section 13.3.3, “Statements That Cause an Implicit Commit”.

CHANGE MASTER TO is useful for setting up a replica when you have the snapshot of the source and
have recorded the source binary log coordinates corresponding to the time of the snapshot. After
loading the snapshot into the replica to synchronize it with the source, you can run CHANGE MASTER
TO MASTER_LOG_FILE='log_name', MASTER_LOG_POS=log_pos on the replica to specify the
coordinates at which the replica should begin reading the source's binary log.

The following example changes the source server the replica uses and establishes the source's binary
log coordinates from which the replica begins reading. This is used when you want to set up the replica to
replicate the source:

CHANGE MASTER TO
 MASTER_HOST='source2.example.com',
 MASTER_USER='replication',
 MASTER_PASSWORD='bigs3cret',
 MASTER_PORT=3306,
 MASTER_LOG_FILE='source2-bin.001',
 MASTER_LOG_POS=4,
 MASTER_CONNECT_RETRY=10;

The next example shows an operation that is less frequently employed. It is used when the replica
has relay log files that you want it to execute again for some reason. To do this, the source need not
be reachable. You need only use CHANGE MASTER TO and start the SQL thread (START SLAVE
SQL_THREAD):

CHANGE MASTER TO
 RELAY_LOG_FILE='replica-relay-bin.006',

1829

SQL Statements for Controlling Replica Servers

 RELAY_LOG_POS=4025;

The following table shows the maximum permissible length for the string-valued options.

Option Maximum Length

MASTER_HOST 60

MASTER_USER 16

MASTER_PASSWORD 32

MASTER_LOG_FILE 255

RELAY_LOG_FILE 255

MASTER_SSL_CA 255

MASTER_SSL_CAPATH 255

MASTER_SSL_CERT 255

MASTER_SSL_CRL 255

MASTER_SSL_CRLPATH 255

MASTER_SSL_KEY 255

MASTER_SSL_CIPHER 511

13.4.2.2 MASTER_POS_WAIT() Statement

SELECT MASTER_POS_WAIT('source_log_file', source_log_pos [, timeout])

This is actually a function, not a statement. It is used to ensure that the replica has read and executed
events up to a given position in the source's binary log. See Section 12.20, “Miscellaneous Functions”, for
a full description.

13.4.2.3 RESET SLAVE Statement

RESET SLAVE [ALL]

RESET SLAVE makes the replica forget its replication position in the source's binary log. This statement
is meant to be used for a clean start: It clears the replication metadata repositories, deletes all the
relay log files, and starts a new relay log file. It also resets to 0 the replication delay specified with
the MASTER_DELAY option to CHANGE MASTER TO. RESET SLAVE does not change the values of
gtid_executed or gtid_purged. To use RESET SLAVE, the replication threads must be stopped, so
on a running replica use STOP SLAVE before issuing RESET SLAVE.

Note

All relay log files are deleted, even if they have not been completely executed by
the replication SQL thread. (This is a condition likely to exist on a replica if you have
issued a STOP SLAVE statement or if the replica is highly loaded.)

In MySQL 5.6 (unlike the case in MySQL 5.1 and earlier), RESET SLAVE does not change any replication
connection parameters such as the source's host name and port or the replication user account name and
password, which are retained in memory. This means that START SLAVE can be issued without requiring a
CHANGE MASTER TO statement following RESET SLAVE.

Connection parameters are reset if the replica mysqld is shut down following RESET SLAVE. In MySQL
5.6.3 and later, you can instead use RESET SLAVE ALL to reset these connection parameters (Bug
#11809016).

1830

SQL Statements for Controlling Replica Servers

RESET SLAVE ALL does not clear the IGNORE_SERVER_IDS list set by CHANGE MASTER TO. This issue
is fixed in MySQL 5.7. (Bug #18816897)

In MySQL 5.6.7 and later, RESET SLAVE causes an implicit commit of an ongoing transaction. See
Section 13.3.3, “Statements That Cause an Implicit Commit”.

If the replication SQL thread was in the middle of replicating temporary tables when it was stopped, and
RESET SLAVE is issued, these replicated temporary tables are deleted on the replica.

Note

When used on an NDB Cluster replica SQL node, RESET SLAVE clears the
mysql.ndb_apply_status table. You should keep in mind when using this
statement that ndb_apply_status uses the NDB storage engine and so is shared
by all SQL nodes attached to the replica cluster.

Beginning with MySQL NDB Cluster 7.4.9, you can override this behavior by issuing
SET GLOBAL @@ndb_clear_apply_status=OFF prior to executing RESET
SLAVE, which keeps the replica from purging the ndb_apply_status table in
such cases.

13.4.2.4 SET GLOBAL sql_slave_skip_counter Statement

SET GLOBAL sql_slave_skip_counter = N

This statement skips the next N events from the source. This is useful for recovering from replication stops
caused by a statement.

This statement is valid only when the replication threads are not running. Otherwise, it produces an error.

When using this statement, it is important to understand that the binary log is actually organized as a
sequence of groups known as event groups. Each event group consists of a sequence of events.

• For transactional tables, an event group corresponds to a transaction.

• For nontransactional tables, an event group corresponds to a single SQL statement.

Note

A single transaction can contain changes to both transactional and nontransactional
tables.

When you use SET GLOBAL sql_slave_skip_counter to skip events and the result is in the middle
of a group, the replica continues to skip events until it reaches the end of the group. Execution then starts
with the next event group.

13.4.2.5 START SLAVE Statement

START SLAVE [thread_types] [until_option] [connection_options]

thread_types:
 [thread_type [, thread_type] ...]

thread_type:
 IO_THREAD | SQL_THREAD

until_option:
 UNTIL { {SQL_BEFORE_GTIDS | SQL_AFTER_GTIDS} = gtid_set

1831

SQL Statements for Controlling Replica Servers

 | MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos
 | RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos
 | SQL_AFTER_MTS_GAPS }

connection_options:
 [USER='user_name'] [PASSWORD='user_pass'] [DEFAULT_AUTH='plugin_name'] [PLUGIN_DIR='plugin_dir']

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

h:
 [0-9,A-F]

interval:
 n[-n]

 (n >= 1)

START SLAVE with no thread_type options starts both of the replication threads. The I/O thread reads
events from the replication source server and stores them in the relay log. The SQL thread reads events
from the relay log and executes them. START SLAVE requires the SUPER privilege.

If START SLAVE succeeds in starting the replication threads, it returns without any error. However, even
in that case, it might be that the replication threads start and then later stop (for example, because they
do not manage to connect to the source or read its binary log, or some other problem). START SLAVE
does not warn you about this. You must check the replica's error log for error messages generated by the
replication threads, or check that they are running satisfactorily with SHOW SLAVE STATUS.

START SLAVE causes an implicit commit of an ongoing transaction. See Section 13.3.3, “Statements That
Cause an Implicit Commit”.

Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing this statement (Bug
#16062608).

START SLAVE supports pluggable user-password authentication with the USER, PASSWORD,
DEFAULT_AUTH and PLUGIN_DIR options, as described in the following list:

• USER: User name. Cannot be set to an empty or null string, or left unset if PASSWORD is used.

• PASSWORD: Password.

• DEFAULT_AUTH: Name of plugin; default is MySQL native authentication.

• PLUGIN_DIR: Location of plugin.

You cannot use the SQL_THREAD option when specifying any of USER, PASSWORD, DEFAULT_AUTH, or
PLUGIN_DIR, unless the IO_THREAD option is also provided.

For more information, see Section 6.2.11, “Pluggable Authentication”.

If an insecure connection is used with any these options, the server issues the warning Sending
passwords in plain text without SSL/TLS is extremely insecure.

1832

SQL Statements for Controlling Replica Servers

START SLAVE ... UNTIL supports two additional options for use with global transaction identifiers
(GTIDs) (see Section 17.1.3, “Replication with Global Transaction Identifiers”). Each of these takes a
set of one or more global transaction identifiers gtid_set as an argument (see GTID Sets, for more
information).

When no thread_type is specified, START SLAVE UNTIL SQL_BEFORE_GTIDS causes the replication
SQL thread to process transactions until it has reached the first transaction whose GTID is listed in the
gtid_set. START SLAVE UNTIL SQL_AFTER_GTIDS causes the replication threads to process all
transactions until the last transaction in the gtid_set has been processed by both threads. In other
words, START SLAVE UNTIL SQL_BEFORE_GTIDS causes the replication SQL thread to process all
transactions occurring before the first GTID in the gtid_set is reached, and START SLAVE UNTIL
SQL_AFTER_GTIDS causes the replication threads to handle all transactions, including those whose
GTIDs are found in gtid_set, until each has encountered a transaction whose GTID is not part of the set.
SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS each support the SQL_THREAD and IO_THREAD options,
although using IO_THREAD with them currently has no effect.

For example, START SLAVE SQL_THREAD UNTIL SQL_BEFORE_GTIDS =
3E11FA47-71CA-11E1-9E33-C80AA9429562:11-56 causes the replication SQL thread to process
all transactions originating from the source whose server_uuid is 3E11FA47-71CA-11E1-9E33-
C80AA9429562 until it encounters the transaction having sequence number 11; it then stops without
processing this transaction. In other words, all transactions up to and including the transaction
with sequence number 10 are processed. Executing START SLAVE SQL_THREAD UNTIL
SQL_AFTER_GTIDS = 3E11FA47-71CA-11E1-9E33-C80AA9429562:11-56, on the other hand,
would cause the replication SQL thread to obtain all transactions just mentioned from the source, including
all of the transactions having the sequence numbers 11 through 56, and then to stop without processing
any additional transactions; that is, the transaction having sequence number 56 would be the last
transaction fetched by the replication SQL thread.

Prior to MySQL 5.6.14, SQL_AFTER_GTIDS did not stop the replica once the indicated transaction was
completed, but waited until another GTID event was received (Bug #14767986).

Use the START SLAVE UNTIL SQL_AFTER_MTS_GAPS statement to cause a multithreaded replica's
SQL threads to run until no more gaps are found in the relay log, and then to stop. This statement can
take an SQL_THREAD option, but the effects of the statement remain unchanged. It has no effect on
the replication I/O thread (and cannot be used with the IO_THREAD option). START SLAVE UNTIL
SQL_AFTER_MTS_GAPS should be used before switching the replica from multithreaded mode to single-
threaded mode (that is, when resetting slave_parallel_workers back to 0 from a positive, nonzero
value) after the replica has failed with errors in multithreaded mode.

To change a failed multithreaded replica to single-threaded mode, you can issue the following series of
statements, in the order shown:

START SLAVE UNTIL SQL_AFTER_MTS_GAPS;

SET @@GLOBAL.slave_parallel_workers = 0;

START SLAVE SQL_THREAD;

If you were running the failed multithreaded replica with relay_log_recovery enabled, then you must
issue START SLAVE UNTIL SQL_AFTER_MTS_GAPS prior to executing CHANGE MASTER TO. Otherwise
the latter statement fails.

Note

It is possible to view the entire text of a running START SLAVE ...
statement, including any USER or PASSWORD values used, in the output of

1833

SQL Statements for Controlling Replica Servers

SHOW PROCESSLIST. This is also true for the text of a running CHANGE
MASTER TO statement, including any values it employs for MASTER_USER or
MASTER_PASSWORD.

START SLAVE sends an acknowledgment to the user after both the I/O thread and the SQL thread have
started. However, the I/O thread may not yet have connected. For this reason, a successful START SLAVE
causes SHOW SLAVE STATUS to show Slave_SQL_Running=Yes, but this does not guarantee that
Slave_IO_Running=Yes (because Slave_IO_Running=Yes only if the I/O thread is running and
connected). For more information, see Section 13.7.5.35, “SHOW SLAVE STATUS Statement”, and
Section 17.1.5.1, “Checking Replication Status”.

You can add IO_THREAD and SQL_THREAD options to the statement to name which of the threads to
start. The SQL_THREAD option is disallowed when specifying any of USER, PASSWORD, DEFAULT_AUTH, or
PLUGIN_DIR, unless the IO_THREAD option is also provided.

An UNTIL clause (until_option, in the preceding grammar) may be added to specify that the replica
should start and run until the SQL thread reaches a given point in the source's binary log, specified by the
MASTER_LOG_POS and MASTER_LOG_FILE options, or a given point in the replica's relay log, indicated
with the RELAY_LOG_POS and RELAY_LOG_FILE options. When the SQL thread reaches the point
specified, it stops. If the SQL_THREAD option is specified in the statement, it starts only the SQL thread.
Otherwise, it starts both replication threads. If the SQL thread is running, the UNTIL clause is ignored and
a warning is issued. You cannot use an UNTIL clause with the IO_THREAD option.

It is also possible with START SLAVE UNTIL to specify a stop point relative to a given GTID or set of
GTIDs using one of the options SQL_BEFORE_GTIDS or SQL_AFTER_GTIDS, as explained previously in
this section. When using one of these options, you can specify SQL_THREAD, IO_THREAD, both of these,
or neither of them. If you specify only SQL_THREAD, then only the replication SQL thread is affected by the
statement; if only IO_THREAD is used, then only the replication I/O thread is affected. If both SQL_THREAD
and IO_THREAD are used, or if neither of them is used, then both the replication threads are affected by
the statement.

The UNTIL clause is not supported for multithreaded replicas except when also using
SQL_AFTER_MTS_GAPS.

For an UNTIL clause, you must specify any one of the following:

• Both a log file name and a position in that file

• Either of SQL_BEFORE_GTIDS or SQL_AFTER_GTIDS

• SQL_AFTER_MTS_GAPS

Do not mix binary log and relay log options. Do not mix log file options with GTID options.

Any UNTIL condition is reset by a subsequent STOP SLAVE statement, a START SLAVE statement that
includes no UNTIL clause, or a server restart.

When specifying a log file and position, you can use the IO_THREAD option with START SLAVE ...
UNTIL even though only the SQL thread is affected by this statement. The IO_THREAD option is
ignored in such cases. The preceding restriction does not apply when using one of the GTID options
(SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS); the GTID options support both SQL_THREAD and
IO_THREAD, as explained previously in this section.

The UNTIL clause can be useful for debugging replication, or to cause replication to proceed until just
before the point where you want to avoid having the replica replicate an event. For example, if an unwise
DROP TABLE statement was executed on the source, you can use UNTIL to tell the replica to execute up

1834

Prepared Statements

to that point but no farther. To find what the event is, use mysqlbinlog with the source's binary log or the
replica's relay log, or by using a SHOW BINLOG EVENTS statement.

If you are using UNTIL to have the replica process replicated queries in sections, it is recommended that
you start the replica with the --skip-slave-start option to prevent the SQL thread from running when
the replica server starts. It is probably best to use this option in an option file rather than on the command
line, so that an unexpected server restart does not cause it to be forgotten.

The SHOW SLAVE STATUS statement includes output fields that display the current values of the UNTIL
condition.

13.4.2.6 STOP SLAVE Statement

STOP SLAVE [thread_types]

thread_types:
 [thread_type [, thread_type] ...]

thread_type: IO_THREAD | SQL_THREAD

Stops the replication threads. STOP SLAVE requires the SUPER privilege. Recommended best practice is
to execute STOP SLAVE on the replica before stopping the replica server (see Section 5.1.15, “The Server
Shutdown Process”, for more information).

When using the row-based logging format: You should execute STOP SLAVE or STOP SLAVE
SQL_THREAD on the replica prior to shutting down the replica server if you are replicating any tables that
use a nontransactional storage engine (see the Note later in this section).

Like START SLAVE, this statement may be used with the IO_THREAD and SQL_THREAD options to name
the thread or threads to be stopped.

STOP SLAVE causes an implicit commit of an ongoing transaction. See Section 13.3.3, “Statements That
Cause an Implicit Commit”.

Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing this statement (Bug
#16062608).

In MySQL 5.6.13 and later, you can control how long STOP SLAVE waits before timing out by setting
the rpl_stop_slave_timeout system variable. This can be used to avoid deadlocks between STOP
SLAVE and other SQL statements using different client connections to the replica. When the timeout value
is reached, the issuing client returns an error message and stops waiting, but the STOP SLAVE instruction
remains in effect. Once the replication threads are no longer busy, the STOP SLAVE statement is executed
and the replica stops. (Bug #16856735)

If the current replication event group has modified one or more nontransactional tables, STOP SLAVE
waits for up to 60 seconds for the event group to complete, unless you issue a KILL QUERY or KILL
CONNECTION statement for the replication SQL thread. If the event group remains incomplete after the
timeout, an error message is logged. (Bug #319, Bug #38205)

In old versions of MySQL (before 4.0.5), this statement was called SLAVE STOP. That syntax is no longer
accepted as of MySQL 5.6.1.

13.5 Prepared Statements

MySQL 5.6 provides support for server-side prepared statements. This support takes advantage of the
efficient client/server binary protocol. Using prepared statements with placeholders for parameter values
has the following benefits:

1835

Prepared Statements in Application Programs

• Less overhead for parsing the statement each time it is executed. Typically, database applications
process large volumes of almost-identical statements, with only changes to literal or variable values in
clauses such as WHERE for queries and deletes, SET for updates, and VALUES for inserts.

• Protection against SQL injection attacks. The parameter values can contain unescaped SQL quote and
delimiter characters.

The following sections provide an overview of the characteristics of prepared statements:

• Prepared Statements in Application Programs

• Prepared Statements in SQL Scripts

• PREPARE, EXECUTE, and DEALLOCATE PREPARE Statements

• SQL Syntax Permitted in Prepared Statements

Prepared Statements in Application Programs

You can use server-side prepared statements through client programming interfaces, including the MySQL
C API client library for C programs, MySQL Connector/J for Java programs, and MySQL Connector/NET
for programs using .NET technologies. For example, the C API provides a set of function calls that make
up its prepared statement API. See C API Prepared Statement Interface. Other language interfaces can
provide support for prepared statements that use the binary protocol by linking in the C client library, one
example being the mysqli extension, available in PHP 5.0 and higher.

Prepared Statements in SQL Scripts

An alternative SQL interface to prepared statements is available. This interface is not as efficient as using
the binary protocol through a prepared statement API, but requires no programming because it is available
directly at the SQL level:

• You can use it when no programming interface is available to you.

• You can use it from any program that can send SQL statements to the server to be executed, such as
the mysql client program.

• You can use it even if the client is using an old version of the client library.

SQL syntax for prepared statements is intended to be used for situations such as these:

• To test how prepared statements work in your application before coding it.

• To use prepared statements when you do not have access to a programming API that supports them.

• To interactively troubleshoot application issues with prepared statements.

• To create a test case that reproduces a problem with prepared statements, so that you can file a bug
report.

PREPARE, EXECUTE, and DEALLOCATE PREPARE Statements

SQL syntax for prepared statements is based on three SQL statements:

• PREPARE prepares a statement for execution (see Section 13.5.1, “PREPARE Statement”).

• EXECUTE executes a prepared statement (see Section 13.5.2, “EXECUTE Statement”).

1836

https://dev.mysql.com/doc/c-api/5.6/en/
https://dev.mysql.com/doc/c-api/5.6/en/
https://dev.mysql.com/doc/connector-j/8.0/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/c-api/5.6/en/c-api-prepared-statement-interface.html
http://php.net/mysqli

PREPARE, EXECUTE, and DEALLOCATE PREPARE Statements

• DEALLOCATE PREPARE releases a prepared statement (see Section 13.5.3, “DEALLOCATE PREPARE
Statement”).

The following examples show two equivalent ways of preparing a statement that computes the hypotenuse
of a triangle given the lengths of the two sides.

The first example shows how to create a prepared statement by using a string literal to supply the text of
the statement:

mysql> PREPARE stmt1 FROM 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> SET @a = 3;
mysql> SET @b = 4;
mysql> EXECUTE stmt1 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 5 |
+------------+
mysql> DEALLOCATE PREPARE stmt1;

The second example is similar, but supplies the text of the statement as a user variable:

mysql> SET @s = 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> PREPARE stmt2 FROM @s;
mysql> SET @a = 6;
mysql> SET @b = 8;
mysql> EXECUTE stmt2 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 10 |
+------------+
mysql> DEALLOCATE PREPARE stmt2;

Here is an additional example that demonstrates how to choose the table on which to perform a query at
runtime, by storing the name of the table as a user variable:

mysql> USE test;
mysql> CREATE TABLE t1 (a INT NOT NULL);
mysql> INSERT INTO t1 VALUES (4), (8), (11), (32), (80);

mysql> SET @table = 't1';
mysql> SET @s = CONCAT('SELECT * FROM ', @table);

mysql> PREPARE stmt3 FROM @s;
mysql> EXECUTE stmt3;
+----+
| a |
+----+
| 4 |
| 8 |
| 11 |
| 32 |
| 80 |
+----+

mysql> DEALLOCATE PREPARE stmt3;

A prepared statement is specific to the session in which it was created. If you terminate a session without
deallocating a previously prepared statement, the server deallocates it automatically.

A prepared statement is also global to the session. If you create a prepared statement within a stored
routine, it is not deallocated when the stored routine ends.

1837

SQL Syntax Permitted in Prepared Statements

To guard against too many prepared statements being created simultaneously, set the
max_prepared_stmt_count system variable. To prevent the use of prepared statements, set the value
to 0.

SQL Syntax Permitted in Prepared Statements

The following SQL statements can be used as prepared statements:

ALTER TABLE
ALTER USER
ANALYZE TABLE
CACHE INDEX
CALL
CHANGE MASTER
CHECKSUM {TABLE | TABLES}
COMMIT
{CREATE | RENAME | DROP} DATABASE
{CREATE | DROP} INDEX
{CREATE | RENAME | DROP} TABLE
{CREATE | RENAME | DROP} USER
{CREATE | DROP} VIEW
DELETE
DO
FLUSH {TABLE | TABLES | TABLES WITH READ LOCK | HOSTS | PRIVILEGES
 | LOGS | STATUS | MASTER | SLAVE | DES_KEY_FILE | USER_RESOURCES}
GRANT
INSERT
INSTALL PLUGIN
KILL
LOAD INDEX INTO CACHE
OPTIMIZE TABLE
REPAIR TABLE
REPLACE
RESET {MASTER | SLAVE | QUERY CACHE}
REVOKE
SELECT
SET
SHOW {AUTHORS | CONTRIBUTORS | WARNINGS | ERRORS}
SHOW BINLOG EVENTS
SHOW CREATE {PROCEDURE | FUNCTION | EVENT | TABLE | VIEW}
SHOW {MASTER | BINARY} LOGS
SHOW {MASTER | SLAVE} STATUS
SLAVE {START | STOP}
TRUNCATE TABLE
UNINSTALL PLUGIN
UPDATE

Other statements are not supported.

Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. Exceptions are noted in Section 20.8, “Restrictions on Stored Programs”.

Metadata changes to tables or views referred to by prepared statements are detected and cause automatic
repreparation of the statement when it is next executed. For more information, see Section 8.10.4,
“Caching of Prepared Statements and Stored Programs”.

Placeholders can be used for the arguments of the LIMIT clause when using prepared statements. See
Section 13.2.9, “SELECT Statement”.

In prepared CALL statements used with PREPARE and EXECUTE, placeholder support for OUT and INOUT
parameters is available beginning with MySQL 5.6. See Section 13.2.1, “CALL Statement”, for an example
and a workaround for earlier versions. Placeholders can be used for IN parameters regardless of version.

1838

PREPARE Statement

SQL syntax for prepared statements cannot be used in nested fashion. That is, a statement passed to
PREPARE cannot itself be a PREPARE, EXECUTE, or DEALLOCATE PREPARE statement.

SQL syntax for prepared statements is distinct from using prepared statement API calls. For example,
you cannot use the mysql_stmt_prepare() C API function to prepare a PREPARE, EXECUTE, or
DEALLOCATE PREPARE statement.

SQL syntax for prepared statements can be used within stored procedures, but not in stored functions or
triggers. However, a cursor cannot be used for a dynamic statement that is prepared and executed with
PREPARE and EXECUTE. The statement for a cursor is checked at cursor creation time, so the statement
cannot be dynamic.

SQL syntax for prepared statements does not support multi-statements (that is, multiple statements within
a single string separated by ; characters).

Prepared statements use the query cache under the conditions described in Section 8.10.3.1, “How the
Query Cache Operates”.

To write C programs that use the CALL SQL statement to execute stored procedures that contain prepared
statements, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each CALL returns
a result to indicate the call status, in addition to any result sets that might be returned by statements
executed within the procedure.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(), either explicitly by
passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing CLIENT_MULTI_STATEMENTS
(which also enables CLIENT_MULTI_RESULTS). For additional information, see Section 13.2.1, “CALL
Statement”.

13.5.1 PREPARE Statement
PREPARE stmt_name FROM preparable_stmt

The PREPARE statement prepares a SQL statement and assigns it a name, stmt_name, by which to refer
to the statement later. The prepared statement is executed with EXECUTE and released with DEALLOCATE
PREPARE. For examples, see Section 13.5, “Prepared Statements”.

Statement names are not case-sensitive. preparable_stmt is either a string literal or a user variable
that contains the text of the SQL statement. The text must represent a single statement, not multiple
statements. Within the statement, ? characters can be used as parameter markers to indicate where data
values are to be bound to the query later when you execute it. The ? characters should not be enclosed
within quotation marks, even if you intend to bind them to string values. Parameter markers can be used
only where data values should appear, not for SQL keywords, identifiers, and so forth.

If a prepared statement with the given name already exists, it is deallocated implicitly before the new
statement is prepared. This means that if the new statement contains an error and cannot be prepared, an
error is returned and no statement with the given name exists.

The scope of a prepared statement is the session within which it is created, which as several implications:

• A prepared statement created in one session is not available to other sessions.

• When a session ends, whether normally or abnormally, its prepared statements no longer exist. If auto-
reconnect is enabled, the client is not notified that the connection was lost. For this reason, clients may
wish to disable auto-reconnect. See Automatic Reconnection Control.

• A prepared statement created within a stored program continues to exist after the program finishes
executing and can be executed outside the program later.

1839

https://dev.mysql.com/doc/c-api/5.6/en/mysql-stmt-prepare.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/5.6/en/c-api-auto-reconnect.html

EXECUTE Statement

• A statement prepared in stored program context cannot refer to stored procedure or function parameters
or local variables because they go out of scope when the program ends and would be unavailable were
the statement to be executed later outside the program. As a workaround, refer instead to user-defined
variables, which also have session scope; see Section 9.4, “User-Defined Variables”.

13.5.2 EXECUTE Statement
EXECUTE stmt_name
 [USING @var_name [, @var_name] ...]

After preparing a statement with PREPARE, you execute it with an EXECUTE statement that refers to
the prepared statement name. If the prepared statement contains any parameter markers, you must
supply a USING clause that lists user variables containing the values to be bound to the parameters.
Parameter values can be supplied only by user variables, and the USING clause must name exactly as
many variables as the number of parameter markers in the statement.

You can execute a given prepared statement multiple times, passing different variables to it or setting the
variables to different values before each execution.

For examples, see Section 13.5, “Prepared Statements”.

13.5.3 DEALLOCATE PREPARE Statement
{DEALLOCATE | DROP} PREPARE stmt_name

To deallocate a prepared statement produced with PREPARE, use a DEALLOCATE PREPARE statement
that refers to the prepared statement name. Attempting to execute a prepared statement after deallocating
it results in an error. If too many prepared statements are created and not deallocated by either the
DEALLOCATE PREPARE statement or the end of the session, you might encounter the upper limit enforced
by the max_prepared_stmt_count system variable.

For examples, see Section 13.5, “Prepared Statements”.

13.6 Compound Statements

This section describes the syntax for the BEGIN ... END compound statement and other statements that
can be used in the body of stored programs: Stored procedures and functions, triggers, and events. These
objects are defined in terms of SQL code that is stored on the server for later invocation (see Chapter 20,
Stored Objects).

A compound statement is a block that can contain other blocks; declarations for variables, condition
handlers, and cursors; and flow control constructs such as loops and conditional tests.

13.6.1 BEGIN ... END Compound Statement
[begin_label:] BEGIN
 [statement_list]
END [end_label]

BEGIN ... END syntax is used for writing compound statements, which can appear within stored
programs (stored procedures and functions, triggers, and events). A compound statement can contain
multiple statements, enclosed by the BEGIN and END keywords. statement_list represents a list of one
or more statements, each terminated by a semicolon (;) statement delimiter. The statement_list itself
is optional, so the empty compound statement (BEGIN END) is legal.

BEGIN ... END blocks can be nested.

1840

Statement Labels

Use of multiple statements requires that a client is able to send statement strings containing the ;
statement delimiter. In the mysql command-line client, this is handled with the delimiter command.
Changing the ; end-of-statement delimiter (for example, to //) permit ; to be used in a program body. For
an example, see Section 20.1, “Defining Stored Programs”.

A BEGIN ... END block can be labeled. See Section 13.6.2, “Statement Labels”.

The optional [NOT] ATOMIC clause is not supported. This means that no transactional savepoint is set
at the start of the instruction block and the BEGIN clause used in this context has no effect on the current
transaction.

Note

Within all stored programs, the parser treats BEGIN [WORK] as the beginning
of a BEGIN ... END block. To begin a transaction in this context, use START
TRANSACTION instead.

13.6.2 Statement Labels

[begin_label:] BEGIN
 [statement_list]
END [end_label]

[begin_label:] LOOP
 statement_list
END LOOP [end_label]

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

Labels are permitted for BEGIN ... END blocks and for the LOOP, REPEAT, and WHILE statements. Label
use for those statements follows these rules:

• begin_label must be followed by a colon.

• begin_label can be given without end_label. If end_label is present, it must be the same as
begin_label.

• end_label cannot be given without begin_label.

• Labels at the same nesting level must be distinct.

• Labels can be up to 16 characters long.

To refer to a label within the labeled construct, use an ITERATE or LEAVE statement. The following
example uses those statements to continue iterating or terminate the loop:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN ITERATE label1; END IF;
 LEAVE label1;
 END LOOP label1;

1841

DECLARE Statement

END;

The scope of a block label does not include the code for handlers declared within the block. For details,
see Section 13.6.7.2, “DECLARE ... HANDLER Statement”.

13.6.3 DECLARE Statement

The DECLARE statement is used to define various items local to a program:

• Local variables. See Section 13.6.4, “Variables in Stored Programs”.

• Conditions and handlers. See Section 13.6.7, “Condition Handling”.

• Cursors. See Section 13.6.6, “Cursors”.

DECLARE is permitted only inside a BEGIN ... END compound statement and must be at its start, before
any other statements.

Declarations must follow a certain order. Cursor declarations must appear before handler declarations.
Variable and condition declarations must appear before cursor or handler declarations.

13.6.4 Variables in Stored Programs

System variables and user-defined variables can be used in stored programs, just as they can be used
outside stored-program context. In addition, stored programs can use DECLARE to define local variables,
and stored routines (procedures and functions) can be declared to take parameters that communicate
values between the routine and its caller.

• To declare local variables, use the DECLARE statement, as described in Section 13.6.4.1, “Local Variable
DECLARE Statement”.

• Variables can be set directly with the SET statement. See Section 13.7.4.1, “SET Syntax for Variable
Assignment”.

• Results from queries can be retrieved into local variables using SELECT ... INTO var_list or by
opening a cursor and using FETCH ... INTO var_list. See Section 13.2.9.1, “SELECT ... INTO
Statement”, and Section 13.6.6, “Cursors”.

For information about the scope of local variables and how MySQL resolves ambiguous names, see
Section 13.6.4.2, “Local Variable Scope and Resolution”.

It is not permitted to assign the value DEFAULT to stored procedure or function parameters or stored
program local variables (for example with a SET var_name = DEFAULT statement). As of MySQL 5.6.6,
this results in a syntax error.

13.6.4.1 Local Variable DECLARE Statement

DECLARE var_name [, var_name] ... type [DEFAULT value]

This statement declares local variables within stored programs. To provide a default value for a variable,
include a DEFAULT clause. The value can be specified as an expression; it need not be a constant. If the
DEFAULT clause is missing, the initial value is NULL.

Local variables are treated like stored routine parameters with respect to data type and overflow checking.
See Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”.

Variable declarations must appear before cursor or handler declarations.

1842

Variables in Stored Programs

Local variable names are not case-sensitive. Permissible characters and quoting rules are the same as for
other identifiers, as described in Section 9.2, “Schema Object Names”.

The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can be
referred to in blocks nested within the declaring block, except those blocks that declare a variable with the
same name.

For examples of variable declarations, see Section 13.6.4.2, “Local Variable Scope and Resolution”.

13.6.4.2 Local Variable Scope and Resolution

The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can be
referred to in blocks nested within the declaring block, except those blocks that declare a variable with the
same name.

Because local variables are in scope only during stored program execution, references to them are not
permitted in prepared statements created within a stored program. Prepared statement scope is the current
session, not the stored program, so the statement could be executed after the program ends, at which
point the variables would no longer be in scope. For example, SELECT ... INTO local_var cannot be
used as a prepared statement. This restriction also applies to stored procedure and function parameters.
See Section 13.5.1, “PREPARE Statement”.

A local variable should not have the same name as a table column. If an SQL statement, such as a
SELECT ... INTO statement, contains a reference to a column and a declared local variable with the
same name, MySQL currently interprets the reference as the name of a variable. Consider the following
procedure definition:

CREATE PROCEDURE sp1 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;

 SELECT xname, id INTO newname, xid
 FROM table1 WHERE xname = xname;
 SELECT newname;
END;

MySQL interprets xname in the SELECT statement as a reference to the xname variable rather than the
xname column. Consequently, when the procedure sp1()is called, the newname variable returns the value
'bob' regardless of the value of the table1.xname column.

Similarly, the cursor definition in the following procedure contains a SELECT statement that refers to
xname. MySQL interprets this as a reference to the variable of that name rather than a column reference.

CREATE PROCEDURE sp2 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;
 DECLARE done TINYINT DEFAULT 0;
 DECLARE cur1 CURSOR FOR SELECT xname, id FROM table1;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;

 OPEN cur1;
 read_loop: LOOP
 FETCH FROM cur1 INTO newname, xid;
 IF done THEN LEAVE read_loop; END IF;
 SELECT newname;
 END LOOP;

1843

Flow Control Statements

 CLOSE cur1;
END;

See also Section 20.8, “Restrictions on Stored Programs”.

13.6.5 Flow Control Statements

MySQL supports the IF, CASE, ITERATE, LEAVE LOOP, WHILE, and REPEAT constructs for flow control
within stored programs. It also supports RETURN within stored functions.

Many of these constructs contain other statements, as indicated by the grammar specifications in the
following sections. Such constructs may be nested. For example, an IF statement might contain a WHILE
loop, which itself contains a CASE statement.

MySQL does not support FOR loops.

13.6.5.1 CASE Statement

CASE case_value
 WHEN when_value THEN statement_list
 [WHEN when_value THEN statement_list] ...
 [ELSE statement_list]
END CASE

Or:

CASE
 WHEN search_condition THEN statement_list
 [WHEN search_condition THEN statement_list] ...
 [ELSE statement_list]
END CASE

The CASE statement for stored programs implements a complex conditional construct.

Note

There is also a CASE operator, which differs from the CASE statement described
here. See Section 12.5, “Flow Control Functions”. The CASE statement cannot have
an ELSE NULL clause, and it is terminated with END CASE instead of END.

For the first syntax, case_value is an expression. This value is compared to the when_value
expression in each WHEN clause until one of them is equal. When an equal when_value is found, the
corresponding THEN clause statement_list executes. If no when_value is equal, the ELSE clause
statement_list executes, if there is one.

This syntax cannot be used to test for equality with NULL because NULL = NULL is false. See
Section 3.3.4.6, “Working with NULL Values”.

For the second syntax, each WHEN clause search_condition expression is evaluated until one is true,
at which point its corresponding THEN clause statement_list executes. If no search_condition is
equal, the ELSE clause statement_list executes, if there is one.

If no when_value or search_condition matches the value tested and the CASE statement contains no
ELSE clause, a Case not found for CASE statement error results.

Each statement_list consists of one or more SQL statements; an empty statement_list is not
permitted.

1844

Flow Control Statements

To handle situations where no value is matched by any WHEN clause, use an ELSE containing an empty
BEGIN ... END block, as shown in this example. (The indentation used here in the ELSE clause is for
purposes of clarity only, and is not otherwise significant.)

DELIMITER |

CREATE PROCEDURE p()
 BEGIN
 DECLARE v INT DEFAULT 1;

 CASE v
 WHEN 2 THEN SELECT v;
 WHEN 3 THEN SELECT 0;
 ELSE
 BEGIN
 END;
 END CASE;
 END;
 |

13.6.5.2 IF Statement

IF search_condition THEN statement_list
 [ELSEIF search_condition THEN statement_list] ...
 [ELSE statement_list]
END IF

The IF statement for stored programs implements a basic conditional construct.

Note

There is also an IF() function, which differs from the IF statement described here.
See Section 12.5, “Flow Control Functions”. The IF statement can have THEN,
ELSE, and ELSEIF clauses, and it is terminated with END IF.

If a given search_condition evaluates to true, the corresponding THEN or ELSEIF clause
statement_list executes. If no search_condition matches, the ELSE clause statement_list
executes.

Each statement_list consists of one or more SQL statements; an empty statement_list is not
permitted.

An IF ... END IF block, like all other flow-control blocks used within stored programs, must be
terminated with a semicolon, as shown in this example:

DELIMITER //

CREATE FUNCTION SimpleCompare(n INT, m INT)
 RETURNS VARCHAR(20)

 BEGIN
 DECLARE s VARCHAR(20);

 IF n > m THEN SET s = '>';
 ELSEIF n = m THEN SET s = '=';
 ELSE SET s = '<';
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m);

 RETURN s;
 END //

1845

Flow Control Statements

DELIMITER ;

As with other flow-control constructs, IF ... END IF blocks may be nested within other flow-control
constructs, including other IF statements. Each IF must be terminated by its own END IF followed by a
semicolon. You can use indentation to make nested flow-control blocks more easily readable by humans
(although this is not required by MySQL), as shown here:

DELIMITER //

CREATE FUNCTION VerboseCompare (n INT, m INT)
 RETURNS VARCHAR(50)

 BEGIN
 DECLARE s VARCHAR(50);

 IF n = m THEN SET s = 'equals';
 ELSE
 IF n > m THEN SET s = 'greater';
 ELSE SET s = 'less';
 END IF;

 SET s = CONCAT('is ', s, ' than');
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m, '.');

 RETURN s;
 END //

DELIMITER ;

In this example, the inner IF is evaluated only if n is not equal to m.

13.6.5.3 ITERATE Statement

ITERATE label

ITERATE can appear only within LOOP, REPEAT, and WHILE statements. ITERATE means “start the loop
again.”

For an example, see Section 13.6.5.5, “LOOP Statement”.

13.6.5.4 LEAVE Statement

LEAVE label

This statement is used to exit the flow control construct that has the given label. If the label is for the
outermost stored program block, LEAVE exits the program.

LEAVE can be used within BEGIN ... END or loop constructs (LOOP, REPEAT, WHILE).

For an example, see Section 13.6.5.5, “LOOP Statement”.

13.6.5.5 LOOP Statement

[begin_label:] LOOP
 statement_list
END LOOP [end_label]

LOOP implements a simple loop construct, enabling repeated execution of the statement list, which consists
of one or more statements, each terminated by a semicolon (;) statement delimiter. The statements within

1846

Flow Control Statements

the loop are repeated until the loop is terminated. Usually, this is accomplished with a LEAVE statement.
Within a stored function, RETURN can also be used, which exits the function entirely.

Neglecting to include a loop-termination statement results in an infinite loop.

A LOOP statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Labels”.

Example:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN
 ITERATE label1;
 END IF;
 LEAVE label1;
 END LOOP label1;
 SET @x = p1;
END;

13.6.5.6 REPEAT Statement

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

The statement list within a REPEAT statement is repeated until the search_condition expression is
true. Thus, a REPEAT always enters the loop at least once. statement_list consists of one or more
statements, each terminated by a semicolon (;) statement delimiter.

A REPEAT statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Labels”.

Example:

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 BEGIN
 SET @x = 0;
 REPEAT
 SET @x = @x + 1;
 UNTIL @x > p1 END REPEAT;
 END
 //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL dorepeat(1000)//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

13.6.5.7 RETURN Statement

RETURN expr

1847

Cursors

The RETURN statement terminates execution of a stored function and returns the value expr to the
function caller. There must be at least one RETURN statement in a stored function. There may be more than
one if the function has multiple exit points.

This statement is not used in stored procedures, triggers, or events. The LEAVE statement can be used to
exit a stored program of those types.

13.6.5.8 WHILE Statement

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

The statement list within a WHILE statement is repeated as long as the search_condition expression
is true. statement_list consists of one or more SQL statements, each terminated by a semicolon (;)
statement delimiter.

A WHILE statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Labels”.

Example:

CREATE PROCEDURE dowhile()
BEGIN
 DECLARE v1 INT DEFAULT 5;

 WHILE v1 > 0 DO
 ...
 SET v1 = v1 - 1;
 END WHILE;
END;

13.6.6 Cursors

MySQL supports cursors inside stored programs. The syntax is as in embedded SQL. Cursors have these
properties:

• Asensitive: The server may or may not make a copy of its result table

• Read only: Not updatable

• Nonscrollable: Can be traversed only in one direction and cannot skip rows

Cursor declarations must appear before handler declarations and after variable and condition declarations.

Example:

CREATE PROCEDURE curdemo()
BEGIN
 DECLARE done INT DEFAULT FALSE;
 DECLARE a CHAR(16);
 DECLARE b, c INT;
 DECLARE cur1 CURSOR FOR SELECT id,data FROM test.t1;
 DECLARE cur2 CURSOR FOR SELECT i FROM test.t2;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

 OPEN cur1;
 OPEN cur2;

 read_loop: LOOP
 FETCH cur1 INTO a, b;

1848

Cursors

 FETCH cur2 INTO c;
 IF done THEN
 LEAVE read_loop;
 END IF;
 IF b < c THEN
 INSERT INTO test.t3 VALUES (a,b);
 ELSE
 INSERT INTO test.t3 VALUES (a,c);
 END IF;
 END LOOP;

 CLOSE cur1;
 CLOSE cur2;
END;

13.6.6.1 Cursor CLOSE Statement

CLOSE cursor_name

This statement closes a previously opened cursor. For an example, see Section 13.6.6, “Cursors”.

An error occurs if the cursor is not open.

If not closed explicitly, a cursor is closed at the end of the BEGIN ... END block in which it was declared.

13.6.6.2 Cursor DECLARE Statement

DECLARE cursor_name CURSOR FOR select_statement

This statement declares a cursor and associates it with a SELECT statement that retrieves the rows to be
traversed by the cursor. To fetch the rows later, use a FETCH statement. The number of columns retrieved
by the SELECT statement must match the number of output variables specified in the FETCH statement.

The SELECT statement cannot have an INTO clause.

Cursor declarations must appear before handler declarations and after variable and condition declarations.

A stored program may contain multiple cursor declarations, but each cursor declared in a given block must
have a unique name. For an example, see Section 13.6.6, “Cursors”.

For information available through SHOW statements, it is possible in many cases to obtain equivalent
information by using a cursor with an INFORMATION_SCHEMA table.

13.6.6.3 Cursor FETCH Statement

FETCH [[NEXT] FROM] cursor_name INTO var_name [, var_name] ...

This statement fetches the next row for the SELECT statement associated with the specified cursor (which
must be open), and advances the cursor pointer. If a row exists, the fetched columns are stored in the
named variables. The number of columns retrieved by the SELECT statement must match the number of
output variables specified in the FETCH statement.

If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'. To detect
this condition, you can set up a handler for it (or for a NOT FOUND condition). For an example, see
Section 13.6.6, “Cursors”.

Be aware that another operation, such as a SELECT or another FETCH, may also cause the handler to
execute by raising the same condition. If it is necessary to distinguish which operation raised the condition,
place the operation within its own BEGIN ... END block so that it can be associated with its own handler.

1849

Condition Handling

13.6.6.4 Cursor OPEN Statement

OPEN cursor_name

This statement opens a previously declared cursor. For an example, see Section 13.6.6, “Cursors”.

13.6.6.5 Restrictions on Server-Side Cursors

Server-side cursors are implemented in the C API using the mysql_stmt_attr_set() function. The
same implementation is used for cursors in stored routines. A server-side cursor enables a result set to be
generated on the server side, but not transferred to the client except for those rows that the client requests.
For example, if a client executes a query but is only interested in the first row, the remaining rows are not
transferred.

In MySQL, a server-side cursor is materialized into an internal temporary table. Initially, this is a
MEMORY table, but is converted to a MyISAM table when its size exceeds the minimum value of the
max_heap_table_size and tmp_table_size system variables. The same restrictions apply to internal
temporary tables created to hold the result set for a cursor as for other uses of internal temporary tables.
See Section 8.4.4, “Internal Temporary Table Use in MySQL”. One limitation of the implementation is that
for a large result set, retrieving its rows through a cursor might be slow.

Cursors are read only; you cannot use a cursor to update rows.

UPDATE WHERE CURRENT OF and DELETE WHERE CURRENT OF are not implemented, because
updatable cursors are not supported.

Cursors are nonholdable (not held open after a commit).

Cursors are asensitive.

Cursors are nonscrollable.

Cursors are not named. The statement handler acts as the cursor ID.

You can have open only a single cursor per prepared statement. If you need several cursors, you must
prepare several statements.

You cannot use a cursor for a statement that generates a result set if the statement is not supported in
prepared mode. This includes statements such as CHECK TABLE, HANDLER READ, and SHOW BINLOG
EVENTS.

13.6.7 Condition Handling

Conditions may arise during stored program execution that require special handling, such as exiting the
current program block or continuing execution. Handlers can be defined for general conditions such as
warnings or exceptions, or for specific conditions such as a particular error code. Specific conditions can
be assigned names and referred to that way in handlers.

To name a condition, use the DECLARE ... CONDITION statement. To declare a handler, use the
DECLARE ... HANDLER statement. See Section 13.6.7.1, “DECLARE ... CONDITION Statement”, and
Section 13.6.7.2, “DECLARE ... HANDLER Statement”. For information about how the server chooses
handlers when a condition occurs, see Section 13.6.7.6, “Scope Rules for Handlers”.

To raise a condition, use the SIGNAL statement. To modify condition information within a condition handler,
use RESIGNAL. See Section 13.6.7.1, “DECLARE ... CONDITION Statement”, and Section 13.6.7.2,
“DECLARE ... HANDLER Statement”.

1850

https://dev.mysql.com/doc/c-api/5.6/en/mysql-stmt-attr-set.html

Condition Handling

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Statement”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

13.6.7.1 DECLARE ... CONDITION Statement

DECLARE condition_name CONDITION FOR condition_value

condition_value: {
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value
}

The DECLARE ... CONDITION statement declares a named error condition, associating a name with
a condition that needs specific handling. The name can be referred to in a subsequent DECLARE ...
HANDLER statement (see Section 13.6.7.2, “DECLARE ... HANDLER Statement”).

Condition declarations must appear before cursor or handler declarations.

The condition_value for DECLARE ... CONDITION indicates the specific condition or class of
conditions to associate with the condition name. It can take the following forms:

• mysql_error_code: An integer literal indicating a MySQL error code.

Do not use MySQL error code 0 because that indicates success rather than an error condition. For a list
of MySQL error codes, see Server Error Message Reference.

• SQLSTATE [VALUE] sqlstate_value: A 5-character string literal indicating an SQLSTATE value.

Do not use SQLSTATE values that begin with '00' because those indicate success rather than an error
condition. For a list of SQLSTATE values, see Server Error Message Reference.

Condition names referred to in SIGNAL or use RESIGNAL statements must be associated with SQLSTATE
values, not MySQL error codes.

Using names for conditions can help make stored program code clearer. For example, this handler applies
to attempts to drop a nonexistent table, but that is apparent only if you know that 1051 is the MySQL error
code for “unknown table”:

DECLARE CONTINUE HANDLER FOR 1051
 BEGIN
 -- body of handler
 END;

By declaring a name for the condition, the purpose of the handler is more readily seen:

DECLARE no_such_table CONDITION FOR 1051;
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;

Here is a named condition for the same condition, but based on the corresponding SQLSTATE value
rather than the MySQL error code:

DECLARE no_such_table CONDITION FOR SQLSTATE '42S02';
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;

1851

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html

Condition Handling

13.6.7.2 DECLARE ... HANDLER Statement

DECLARE handler_action HANDLER
 FOR condition_value [, condition_value] ...
 statement

handler_action: {
 CONTINUE
 | EXIT
 | UNDO
}

condition_value: {
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value
 | condition_name
 | SQLWARNING
 | NOT FOUND
 | SQLEXCEPTION
}

The DECLARE ... HANDLER statement specifies a handler that deals with one or more conditions.
If one of these conditions occurs, the specified statement executes. statement can be a simple
statement such as SET var_name = value, or a compound statement written using BEGIN and END
(see Section 13.6.1, “BEGIN ... END Compound Statement”).

Handler declarations must appear after variable or condition declarations.

The handler_action value indicates what action the handler takes after execution of the handler
statement:

• CONTINUE: Execution of the current program continues.

• EXIT: Execution terminates for the BEGIN ... END compound statement in which the handler is
declared. This is true even if the condition occurs in an inner block.

• UNDO: Not supported.

The condition_value for DECLARE ... HANDLER indicates the specific condition or class of
conditions that activates the handler. It can take the following forms:

• mysql_error_code: An integer literal indicating a MySQL error code, such as 1051 to specify
“unknown table”:

DECLARE CONTINUE HANDLER FOR 1051
 BEGIN
 -- body of handler
 END;

Do not use MySQL error code 0 because that indicates success rather than an error condition. For a list
of MySQL error codes, see Server Error Message Reference.

• SQLSTATE [VALUE] sqlstate_value: A 5-character string literal indicating an SQLSTATE value,
such as '42S01' to specify “unknown table”:

DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 BEGIN
 -- body of handler
 END;

Do not use SQLSTATE values that begin with '00' because those indicate success rather than an error
condition. For a list of SQLSTATE values, see Server Error Message Reference.

1852

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html

Condition Handling

• condition_name: A condition name previously specified with DECLARE ... CONDITION. A
condition name can be associated with a MySQL error code or SQLSTATE value. See Section 13.6.7.1,
“DECLARE ... CONDITION Statement”.

• SQLWARNING: Shorthand for the class of SQLSTATE values that begin with '01'.

DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 -- body of handler
 END;

• NOT FOUND: Shorthand for the class of SQLSTATE values that begin with '02'. This is relevant within
the context of cursors and is used to control what happens when a cursor reaches the end of a data set.
If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'. To detect
this condition, you can set up a handler for it or for a NOT FOUND condition.

DECLARE CONTINUE HANDLER FOR NOT FOUND
 BEGIN
 -- body of handler
 END;

For another example, see Section 13.6.6, “Cursors”. The NOT FOUND condition also occurs for
SELECT ... INTO var_list statements that retrieve no rows.

• SQLEXCEPTION: Shorthand for the class of SQLSTATE values that do not begin with '00', '01', or
'02'.

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 -- body of handler
 END;

For information about how the server chooses handlers when a condition occurs, see Section 13.6.7.6,
“Scope Rules for Handlers”.

If a condition occurs for which no handler has been declared, the action taken depends on the condition
class:

• For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the condition,
as if there were an EXIT handler. If the program was called by another stored program, the calling
program handles the condition using the handler selection rules applied to its own handlers.

• For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE handler.

• For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was raised
by SIGNAL or RESIGNAL, the action is EXIT.

The following example uses a handler for SQLSTATE '23000', which occurs for a duplicate-key error:

mysql> CREATE TABLE test.t (s1 INT, PRIMARY KEY (s1));
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter //

mysql> CREATE PROCEDURE handlerdemo ()
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1;
 SET @x = 1;
 INSERT INTO test.t VALUES (1);
 SET @x = 2;
 INSERT INTO test.t VALUES (1);
 SET @x = 3;

1853

Condition Handling

 END;
 //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL handlerdemo()//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
 +------+
 | @x |
 +------+
 | 3 |
 +------+
 1 row in set (0.00 sec)

Notice that @x is 3 after the procedure executes, which shows that execution continued to the end of
the procedure after the error occurred. If the DECLARE ... HANDLER statement had not been present,
MySQL would have taken the default action (EXIT) after the second INSERT failed due to the PRIMARY
KEY constraint, and SELECT @x would have returned 2.

To ignore a condition, declare a CONTINUE handler for it and associate it with an empty block. For
example:

DECLARE CONTINUE HANDLER FOR SQLWARNING BEGIN END;

The scope of a block label does not include the code for handlers declared within the block. Therefore,
the statement associated with a handler cannot use ITERATE or LEAVE to refer to labels for blocks that
enclose the handler declaration. Consider the following example, where the REPEAT block has a label of
retry:

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 3;
 retry:
 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 ITERATE retry; # illegal
 END;
 IF i < 0 THEN
 LEAVE retry; # legal
 END IF;
 SET i = i - 1;
 END;
 UNTIL FALSE END REPEAT;
END;

The retry label is in scope for the IF statement within the block. It is not in scope for the CONTINUE
handler, so the reference there is invalid and results in an error:

ERROR 1308 (42000): LEAVE with no matching label: retry

To avoid references to outer labels in handlers, use one of these strategies:

• To leave the block, use an EXIT handler. If no block cleanup is required, the BEGIN ... END handler
body can be empty:

DECLARE EXIT HANDLER FOR SQLWARNING BEGIN END;

Otherwise, put the cleanup statements in the handler body:

DECLARE EXIT HANDLER FOR SQLWARNING

1854

Condition Handling

 BEGIN
 block cleanup statements
 END;

• To continue execution, set a status variable in a CONTINUE handler that can be checked in the enclosing
block to determine whether the handler was invoked. The following example uses the variable done for
this purpose:

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 3;
 DECLARE done INT DEFAULT FALSE;
 retry:
 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 SET done = TRUE;
 END;
 IF done OR i < 0 THEN
 LEAVE retry;
 END IF;
 SET i = i - 1;
 END;
 UNTIL FALSE END REPEAT;
END;

13.6.7.3 GET DIAGNOSTICS Statement

GET [CURRENT] DIAGNOSTICS {
 statement_information_item
 [, statement_information_item] ...
 | CONDITION condition_number
 condition_information_item
 [, condition_information_item] ...
}

statement_information_item:
 target = statement_information_item_name

condition_information_item:
 target = condition_information_item_name

statement_information_item_name: {
 NUMBER
 | ROW_COUNT
}

condition_information_item_name: {
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | RETURNED_SQLSTATE
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME
}

condition_number, target:
 (see following discussion)

1855

Condition Handling

SQL statements produce diagnostic information that populates the diagnostics area. The GET
DIAGNOSTICS statement enables applications to inspect this information. It is available as of MySQL 5.6.4.
(You can also use SHOW WARNINGS or SHOW ERRORS to see conditions or errors.)

No special privileges are required to execute GET DIAGNOSTICS.

The keyword CURRENT means to retrieve information from the current diagnostics area. In MySQL, it has
no effect because that is the default behavior.

GET DIAGNOSTICS is typically used in a handler within a stored program, but it is a MySQL extension that
it is permitted outside handler context to check the execution of any SQL statement. For example, if you
invoke the mysql client program, you can enter these statements at the prompt:

mysql> DROP TABLE test.no_such_table;
ERROR 1051 (42S02): Unknown table 'test.no_such_table'
mysql> GET DIAGNOSTICS CONDITION 1
 @p1 = RETURNED_SQLSTATE, @p2 = MESSAGE_TEXT;
mysql> SELECT @p1, @p2;
+-------+------------------------------------+
| @p1 | @p2 |
+-------+------------------------------------+
| 42S02 | Unknown table 'test.no_such_table' |
+-------+------------------------------------+

For a description of the diagnostics area, see Section 13.6.7.7, “The MySQL Diagnostics Area”. Briefly, it
contains two kinds of information:

• Statement information, such as the number of conditions that occurred or the affected-rows count.

• Condition information, such as the error code and message. If a statement raises multiple conditions,
this part of the diagnostics area has a condition area for each one. If a statement raises no conditions,
this part of the diagnostics area is empty.

For a statement that produces three conditions, the diagnostics area contains statement and condition
information like this:

Statement information:
 row count
 ... other statement information items ...
Condition area list:
 Condition area 1:
 error code for condition 1
 error message for condition 1
 ... other condition information items ...
 Condition area 2:
 error code for condition 2:
 error message for condition 2
 ... other condition information items ...
 Condition area 3:
 error code for condition 3
 error message for condition 3
 ... other condition information items ...

GET DIAGNOSTICS can obtain either statement or condition information, but not both in the same
statement:

• To obtain statement information, retrieve the desired statement items into target variables. This instance
of GET DIAGNOSTICS assigns the number of available conditions and the rows-affected count to the
user variables @p1 and @p2:

GET DIAGNOSTICS @p1 = NUMBER, @p2 = ROW_COUNT;

1856

Condition Handling

• To obtain condition information, specify the condition number and retrieve the desired condition items
into target variables. This instance of GET DIAGNOSTICS assigns the SQLSTATE value and error
message to the user variables @p3 and @p4:

GET DIAGNOSTICS CONDITION 1
 @p3 = RETURNED_SQLSTATE, @p4 = MESSAGE_TEXT;

The retrieval list specifies one or more target = item_name assignments, separated by commas.
Each assignment names a target variable and either a statement_information_item_name or
condition_information_item_name designator, depending on whether the statement retrieves
statement or condition information.

Valid target designators for storing item information can be stored procedure or function parameters,
stored program local variables declared with DECLARE, or user-defined variables.

Valid condition_number designators can be stored procedure or function parameters, stored program
local variables declared with DECLARE, user-defined variables, system variables, or literals. A character
literal may include a _charset introducer. A warning occurs if the condition number is not in the range
from 1 to the number of condition areas that have information. In this case, the warning is added to the
diagnostics area without clearing it.

When a condition occurs, MySQL does not populate all condition items recognized by GET DIAGNOSTICS.
For example:

mysql> GET DIAGNOSTICS CONDITION 1
 @p5 = SCHEMA_NAME, @p6 = TABLE_NAME;
mysql> SELECT @p5, @p6;
+------+------+
| @p5 | @p6 |
+------+------+
| | |
+------+------+

In standard SQL, if there are multiple conditions, the first condition relates to the SQLSTATE value returned
for the previous SQL statement. In MySQL, this is not guaranteed. To get the main error, you cannot do
this:

GET DIAGNOSTICS CONDITION 1 @errno = MYSQL_ERRNO;

Instead, retrieve the condition count first, then use it to specify which condition number to inspect:

GET DIAGNOSTICS @cno = NUMBER;
GET DIAGNOSTICS CONDITION @cno @errno = MYSQL_ERRNO;

For information about permissible statement and condition information items, and which ones are
populated when a condition occurs, see Diagnostics Area Information Items.

Here is an example that uses GET DIAGNOSTICS and an exception handler in stored procedure context
to assess the outcome of an insert operation. If the insert was successful, the procedure uses GET
DIAGNOSTICS to get the rows-affected count. This shows that you can use GET DIAGNOSTICS multiple
times to retrieve information about a statement as long as the diagnostics area has not been cleared.

CREATE PROCEDURE do_insert(value INT)
BEGIN
 -- Declare variables to hold diagnostics area information
 DECLARE code CHAR(5) DEFAULT '00000';
 DECLARE msg TEXT;
 DECLARE nrows INT;
 DECLARE result TEXT;
 -- Declare exception handler for failed insert

1857

Condition Handling

 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 GET DIAGNOSTICS CONDITION 1
 code = RETURNED_SQLSTATE, msg = MESSAGE_TEXT;
 END;

 -- Perform the insert
 INSERT INTO t1 (int_col) VALUES(value);
 -- Check whether the insert was successful
 IF code = '00000' THEN
 GET DIAGNOSTICS nrows = ROW_COUNT;
 SET result = CONCAT('insert succeeded, row count = ',nrows);
 ELSE
 SET result = CONCAT('insert failed, error = ',code,', message = ',msg);
 END IF;
 -- Say what happened
 SELECT result;
END;

Suppose that t1.int_col is an integer column that is declared as NOT NULL. The procedure produces
these results when invoked to insert non-NULL and NULL values, respectively:

mysql> CALL do_insert(1);
+---------------------------------+
| result |
+---------------------------------+
| insert succeeded, row count = 1 |
+---------------------------------+

mysql> CALL do_insert(NULL);
+---+
| result |
+---+
| insert failed, error = 23000, message = Column 'int_col' cannot be null |
+---+

Within a condition handler, GET DIAGNOSTICS should be used before other statements that might clear
the diagnostics area and cause information to be lost about the condition that activated the handler.
For information about when the diagnostics area is set and cleared, see Section 13.6.7.7, “The MySQL
Diagnostics Area”.

13.6.7.4 RESIGNAL Statement

RESIGNAL [condition_value]
 [SET signal_information_item
 [, signal_information_item] ...]

condition_value: {
 SQLSTATE [VALUE] sqlstate_value
 | condition_name
}

signal_information_item:
 condition_information_item_name = simple_value_specification

condition_information_item_name: {
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME

1858

Condition Handling

 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME
}

condition_name, simple_value_specification:
 (see following discussion)

RESIGNAL passes on the error condition information that is available during execution of a condition
handler within a compound statement inside a stored procedure or function, trigger, or event. RESIGNAL
may change some or all information before passing it on. RESIGNAL is related to SIGNAL, but instead of
originating a condition as SIGNAL does, RESIGNAL relays existing condition information, possibly after
modifying it.

RESIGNAL makes it possible to both handle an error and return the error information. Otherwise, by
executing an SQL statement within the handler, information that caused the handler's activation is
destroyed. RESIGNAL also can make some procedures shorter if a given handler can handle part of a
situation, then pass the condition “up the line” to another handler.

No privileges are required to execute the RESIGNAL statement.

All forms of RESIGNAL require that the current context be a condition handler. Otherwise, RESIGNAL is
illegal and a RESIGNAL when handler not active error occurs.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Statement”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

• RESIGNAL Overview

• RESIGNAL Alone

• RESIGNAL with New Signal Information

• RESIGNAL with a Condition Value and Optional New Signal Information

• RESIGNAL Requires Condition Handler Context

RESIGNAL Overview

For condition_value and signal_information_item, the definitions and rules are the same
for RESIGNAL as for SIGNAL. For example, the condition_value can be an SQLSTATE value, and
the value can indicate errors, warnings, or “not found.” For additional information, see Section 13.6.7.5,
“SIGNAL Statement”.

The RESIGNAL statement takes condition_value and SET clauses, both of which are optional. This
leads to several possible uses:

• RESIGNAL alone:

RESIGNAL;

• RESIGNAL with new signal information:

RESIGNAL SET signal_information_item [, signal_information_item] ...;

• RESIGNAL with a condition value and possibly new signal information:

RESIGNAL condition_value

1859

Condition Handling

 [SET signal_information_item [, signal_information_item] ...];

These use cases all cause changes to the diagnostics and condition areas:

• A diagnostics area contains one or more condition areas.

• A condition area contains condition information items, such as the SQLSTATE value, MYSQL_ERRNO, or
MESSAGE_TEXT.

The maximum number of condition areas in a diagnostics area is determined by the value of the
max_error_count system variable. See Diagnostics Area-Related System Variables.

RESIGNAL Alone

A simple RESIGNAL alone means “pass on the error with no change.” It restores the last diagnostics area
and makes it the current diagnostics area. That is, it “pops” the diagnostics area stack.

Within a condition handler that catches a condition, one use for RESIGNAL alone is to perform some other
actions, and then pass on without change the original condition information (the information that existed
before entry into the handler).

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();

Suppose that the DROP TABLE xx statement fails. The diagnostics area stack looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

Then execution enters the EXIT handler. It starts by pushing a diagnostics area to the top of the stack,
which now looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'
DA 2. ERROR 1051 (42S02): Unknown table 'xx'

At this point, the contents of the first (current) and second (stacked) diagnostics areas are the same. The
first diagnostics area may be modified by statements executing subsequently within the handler.

Usually a procedure statement clears the first diagnostics area. BEGIN is an exception, it does not clear,
it does nothing. SET is not an exception, it clears, performs the operation, and produces a result of
“success.” The diagnostics area stack now looks like this:

DA 1. ERROR 0000 (00000): Successful operation
DA 2. ERROR 1051 (42S02): Unknown table 'xx'

At this point, if @a = 0, RESIGNAL pops the diagnostics area stack, which now looks like this:

1860

Condition Handling

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

And that is what the caller sees.

If @a is not 0, the handler simply ends, which means that there is no more use for the current diagnostics
area (it has been “handled”), so it can be thrown away, causing the stacked diagnostics area to become
the current diagnostics area again. The diagnostics area stack looks like this:

DA 1. ERROR 0000 (00000): Successful operation

The details make it look complex, but the end result is quite useful: Handlers can execute without
destroying information about the condition that caused activation of the handler.

RESIGNAL with New Signal Information

RESIGNAL with a SET clause provides new signal information, so the statement means “pass on the error
with changes”:

RESIGNAL SET signal_information_item [, signal_information_item] ...;

As with RESIGNAL alone, the idea is to pop the diagnostics area stack so that the original information goes
out. Unlike RESIGNAL alone, anything specified in the SET clause changes.

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL SET MYSQL_ERRNO = 5; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();

Remember from the previous discussion that RESIGNAL alone results in a diagnostics area stack like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

The RESIGNAL SET MYSQL_ERRNO = 5 statement results in this stack instead, which is what the caller
sees:

DA 1. ERROR 5 (42S02): Unknown table 'xx'

In other words, it changes the error number, and nothing else.

The RESIGNAL statement can change any or all of the signal information items, making the first condition
area of the diagnostics area look quite different.

RESIGNAL with a Condition Value and Optional New Signal Information

RESIGNAL with a condition value means “push a condition into the current diagnostics area.” If the SET
clause is present, it also changes the error information.

RESIGNAL condition_value

1861

Condition Handling

 [SET signal_information_item [, signal_information_item] ...];

This form of RESIGNAL restores the last diagnostics area and makes it the current diagnostics area. That
is, it “pops” the diagnostics area stack, which is the same as what a simple RESIGNAL alone would do.
However, it also changes the diagnostics area depending on the condition value or signal information.

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL SQLSTATE '45000' SET MYSQL_ERRNO=5; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
SET @@max_error_count = 2;
CALL p();
SHOW ERRORS;

This is similar to the previous example, and the effects are the same, except that if RESIGNAL happens,
the current condition area looks different at the end. (The reason the condition adds to rather than replaces
the existing condition is the use of a condition value.)

The RESIGNAL statement includes a condition value (SQLSTATE '45000'), so it adds a new condition
area, resulting in a diagnostics area stack that looks like this:

DA 1. (condition 2) ERROR 1051 (42S02): Unknown table 'xx'
 (condition 1) ERROR 5 (45000) Unknown table 'xx'

The result of CALL p() and SHOW ERRORS for this example is:

mysql> CALL p();
ERROR 5 (45000): Unknown table 'xx'
mysql> SHOW ERRORS;
+-------+------+----------------------------------+
| Level | Code | Message |
+-------+------+----------------------------------+
| Error | 1051 | Unknown table 'xx' |
| Error | 5 | Unknown table 'xx' |
+-------+------+----------------------------------+

RESIGNAL Requires Condition Handler Context

All forms of RESIGNAL require that the current context be a condition handler. Otherwise, RESIGNAL is
illegal and a RESIGNAL when handler not active error occurs. For example:

mysql> CREATE PROCEDURE p () RESIGNAL;
Query OK, 0 rows affected (0.00 sec)

mysql> CALL p();
ERROR 1645 (0K000): RESIGNAL when handler not active

Here is a more difficult example:

delimiter //
CREATE FUNCTION f () RETURNS INT

1862

Condition Handling

BEGIN
 RESIGNAL;
 RETURN 5;
END//
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION SET @a=f();
 SIGNAL SQLSTATE '55555';
END//
delimiter ;
CALL p();

RESIGNAL occurs within the stored function f(). Although f() itself is invoked within the context of the
EXIT handler, execution within f() has its own context, which is not handler context. Thus, RESIGNAL
within f() results in a “handler not active” error.

In MySQL 5.5, handler scope rules are less developed. f() is considered to execute within handler
context and RESIGNAL within f() is legal.

13.6.7.5 SIGNAL Statement

SIGNAL condition_value
 [SET signal_information_item
 [, signal_information_item] ...]

condition_value: {
 SQLSTATE [VALUE] sqlstate_value
 | condition_name
}

signal_information_item:
 condition_information_item_name = simple_value_specification

condition_information_item_name: {
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME
}

condition_name, simple_value_specification:
 (see following discussion)

SIGNAL is the way to “return” an error. SIGNAL provides error information to a handler, to an outer portion
of the application, or to the client. Also, it provides control over the error's characteristics (error number,
SQLSTATE value, message). Without SIGNAL, it is necessary to resort to workarounds such as deliberately
referring to a nonexistent table to cause a routine to return an error.

No privileges are required to execute the SIGNAL statement.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Statement”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

• SIGNAL Overview

1863

Condition Handling

• Signal Condition Information Items

• Effect of Signals on Handlers, Cursors, and Statements

SIGNAL Overview

The condition_value in a SIGNAL statement indicates the error value to be returned. It can be an
SQLSTATE value (a 5-character string literal) or a condition_name that refers to a named condition
previously defined with DECLARE ... CONDITION (see Section 13.6.7.1, “DECLARE ... CONDITION
Statement”).

An SQLSTATE value can indicate errors, warnings, or “not found.” The first two characters of the value
indicate its error class, as discussed in Signal Condition Information Items. Some signal values cause
statement termination; see Effect of Signals on Handlers, Cursors, and Statements.

The SQLSTATE value for a SIGNAL statement should not start with '00' because such values indicate
success and are not valid for signaling an error. This is true whether the SQLSTATE value is specified
directly in the SIGNAL statement or in a named condition referred to in the statement. If the value is invalid,
a Bad SQLSTATE error occurs.

To signal a generic SQLSTATE value, use '45000', which means “unhandled user-defined exception.”

The SIGNAL statement optionally includes a SET clause that contains multiple signal items, in a list of
condition_information_item_name = simple_value_specification assignments, separated
by commas.

Each condition_information_item_name may be specified only once in the SET clause. Otherwise,
a Duplicate condition information item error occurs.

Valid simple_value_specification designators can be specified using stored procedure or function
parameters, stored program local variables declared with DECLARE, user-defined variables, system
variables, or literals. A character literal may include a _charset introducer.

For information about permissible condition_information_item_name values, see Signal Condition
Information Items.

The following procedure signals an error or warning depending on the value of pval, its input parameter:

CREATE PROCEDURE p (pval INT)
BEGIN
 DECLARE specialty CONDITION FOR SQLSTATE '45000';
 IF pval = 0 THEN
 SIGNAL SQLSTATE '01000';
 ELSEIF pval = 1 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'An error occurred';
 ELSEIF pval = 2 THEN
 SIGNAL specialty
 SET MESSAGE_TEXT = 'An error occurred';
 ELSE
 SIGNAL SQLSTATE '01000'
 SET MESSAGE_TEXT = 'A warning occurred', MYSQL_ERRNO = 1000;
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'An error occurred', MYSQL_ERRNO = 1001;
 END IF;
END;

If pval is 0, p() signals a warning because SQLSTATE values that begin with '01' are signals in the
warning class. The warning does not terminate the procedure, and can be seen with SHOW WARNINGS
after the procedure returns.

1864

Condition Handling

If pval is 1, p() signals an error and sets the MESSAGE_TEXT condition information item. The error
terminates the procedure, and the text is returned with the error information.

If pval is 2, the same error is signaled, although the SQLSTATE value is specified using a named condition
in this case.

If pval is anything else, p() first signals a warning and sets the message text and error number condition
information items. This warning does not terminate the procedure, so execution continues and p() then
signals an error. The error does terminate the procedure. The message text and error number set by the
warning are replaced by the values set by the error, which are returned with the error information.

SIGNAL is typically used within stored programs, but it is a MySQL extension that it is permitted outside
handler context. For example, if you invoke the mysql client program, you can enter any of these
statements at the prompt:

SIGNAL SQLSTATE '77777';

CREATE TRIGGER t_bi BEFORE INSERT ON t
 FOR EACH ROW SIGNAL SQLSTATE '77777';

CREATE EVENT e ON SCHEDULE EVERY 1 SECOND
 DO SIGNAL SQLSTATE '77777';

SIGNAL executes according to the following rules:

If the SIGNAL statement indicates a particular SQLSTATE value, that value is used to signal the condition
specified. Example:

CREATE PROCEDURE p (divisor INT)
BEGIN
 IF divisor = 0 THEN
 SIGNAL SQLSTATE '22012';
 END IF;
END;

If the SIGNAL statement uses a named condition, the condition must be declared in some scope that
applies to the SIGNAL statement, and must be defined using an SQLSTATE value, not a MySQL error
number. Example:

CREATE PROCEDURE p (divisor INT)
BEGIN
 DECLARE divide_by_zero CONDITION FOR SQLSTATE '22012';
 IF divisor = 0 THEN
 SIGNAL divide_by_zero;
 END IF;
END;

If the named condition does not exist in the scope of the SIGNAL statement, an Undefined CONDITION
error occurs.

If SIGNAL refers to a named condition that is defined with a MySQL error number rather than an
SQLSTATE value, a SIGNAL/RESIGNAL can only use a CONDITION defined with SQLSTATE
error occurs. The following statements cause that error because the named condition is associated with a
MySQL error number:

DECLARE no_such_table CONDITION FOR 1051;
SIGNAL no_such_table;

If a condition with a given name is declared multiple times in different scopes, the declaration with the most
local scope applies. Consider the following procedure:

1865

Condition Handling

CREATE PROCEDURE p (divisor INT)
BEGIN
 DECLARE my_error CONDITION FOR SQLSTATE '45000';
 IF divisor = 0 THEN
 BEGIN
 DECLARE my_error CONDITION FOR SQLSTATE '22012';
 SIGNAL my_error;
 END;
 END IF;
 SIGNAL my_error;
END;

If divisor is 0, the first SIGNAL statement executes. The innermost my_error condition declaration
applies, raising SQLSTATE '22012'.

If divisor is not 0, the second SIGNAL statement executes. The outermost my_error condition
declaration applies, raising SQLSTATE '45000'.

For information about how the server chooses handlers when a condition occurs, see Section 13.6.7.6,
“Scope Rules for Handlers”.

Signals can be raised within exception handlers:

CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SIGNAL SQLSTATE VALUE '99999'
 SET MESSAGE_TEXT = 'An error occurred';
 END;
 DROP TABLE no_such_table;
END;

CALL p() reaches the DROP TABLE statement. There is no table named no_such_table, so the error
handler is activated. The error handler destroys the original error (“no such table”) and makes a new error
with SQLSTATE '99999' and message An error occurred.

Signal Condition Information Items

The following table lists the names of diagnostics area condition information items that can be set in a
SIGNAL (or RESIGNAL) statement. All items are standard SQL except MYSQL_ERRNO, which is a MySQL
extension. For more information about these items see Section 13.6.7.7, “The MySQL Diagnostics Area”.

Item Name Definition
--------- ----------
CLASS_ORIGIN VARCHAR(64)
SUBCLASS_ORIGIN VARCHAR(64)
CONSTRAINT_CATALOG VARCHAR(64)
CONSTRAINT_SCHEMA VARCHAR(64)
CONSTRAINT_NAME VARCHAR(64)
CATALOG_NAME VARCHAR(64)
SCHEMA_NAME VARCHAR(64)
TABLE_NAME VARCHAR(64)
COLUMN_NAME VARCHAR(64)
CURSOR_NAME VARCHAR(64)
MESSAGE_TEXT VARCHAR(128)
MYSQL_ERRNO SMALLINT UNSIGNED

The character set for character items is UTF-8.

It is illegal to assign NULL to a condition information item in a SIGNAL statement.

1866

Condition Handling

A SIGNAL statement always specifies an SQLSTATE value, either directly, or indirectly by referring to a
named condition defined with an SQLSTATE value. The first two characters of an SQLSTATE value are its
class, and the class determines the default value for the condition information items:

• Class = '00' (success)

Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.

• Class = '01' (warning)

MESSAGE_TEXT = 'Unhandled user-defined warning condition';
MYSQL_ERRNO = ER_SIGNAL_WARN

• Class = '02' (not found)

MESSAGE_TEXT = 'Unhandled user-defined not found condition';
MYSQL_ERRNO = ER_SIGNAL_NOT_FOUND

• Class > '02' (exception)

MESSAGE_TEXT = 'Unhandled user-defined exception condition';
MYSQL_ERRNO = ER_SIGNAL_EXCEPTION

For legal classes, the other condition information items are set as follows:

CLASS_ORIGIN = SUBCLASS_ORIGIN = '';
CONSTRAINT_CATALOG = CONSTRAINT_SCHEMA = CONSTRAINT_NAME = '';
CATALOG_NAME = SCHEMA_NAME = TABLE_NAME = COLUMN_NAME = '';
CURSOR_NAME = '';

The error values that are accessible after SIGNAL executes are the SQLSTATE value raised by the SIGNAL
statement and the MESSAGE_TEXT and MYSQL_ERRNO items. These values are available from the C API:

• mysql_sqlstate() returns the SQLSTATE value.

• mysql_errno() returns the MYSQL_ERRNO value.

• mysql_error() returns the MESSAGE_TEXT value.

At the SQL level, the output from SHOW WARNINGS and SHOW ERRORS indicates the MYSQL_ERRNO and
MESSAGE_TEXT values in the Code and Message columns.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 13.6.7.3, “GET DIAGNOSTICS Statement”). For information about the diagnostics area, see
Section 13.6.7.7, “The MySQL Diagnostics Area”.

Effect of Signals on Handlers, Cursors, and Statements

Signals have different effects on statement execution depending on the signal class. The class determines
how severe an error is. MySQL ignores the value of the sql_mode system variable; in particular, strict
SQL mode does not matter. MySQL also ignores IGNORE: The intent of SIGNAL is to raise a user-
generated error explicitly, so a signal is never ignored.

In the following descriptions, “unhandled” means that no handler for the signaled SQLSTATE value has
been defined with DECLARE ... HANDLER.

• Class = '00' (success)

Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.

• Class = '01' (warning)

1867

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_signal_warn
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_signal_not_found
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_signal_exception
https://dev.mysql.com/doc/c-api/5.6/en/mysql-sqlstate.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-errno.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-error.html

Condition Handling

The value of the warning_count system variable goes up. SHOW WARNINGS shows the signal.
SQLWARNING handlers catch the signal.

Warnings cannot be returned from stored functions because the RETURN statement that causes the
function to return clears the diagnostic area. The statement thus clears any warnings that may have
been present there (and resets warning_count to 0).

• Class = '02' (not found)

NOT FOUND handlers catch the signal. There is no effect on cursors. If the signal is unhandled in a
stored function, statements end.

• Class > '02' (exception)

SQLEXCEPTION handlers catch the signal. If the signal is unhandled in a stored function, statements
end.

• Class = '40'

Treated as an ordinary exception.

13.6.7.6 Scope Rules for Handlers

A stored program may include handlers to be invoked when certain conditions occur within the program.
The applicability of each handler depends on its location within the program definition and on the condition
or conditions that it handles:

• A handler declared in a BEGIN ... END block is in scope only for the SQL statements following the
handler declarations in the block. If the handler itself raises a condition, it cannot handle that condition,
nor can any other handlers declared in the block. In the following example, handlers H1 and H2 are in
scope for conditions raised by statements stmt1 and stmt2. But neither H1 nor H2 are in scope for
conditions raised in the body of H1 or H2.

BEGIN -- outer block
 DECLARE EXIT HANDLER FOR ...; -- handler H1
 DECLARE EXIT HANDLER FOR ...; -- handler H2
 stmt1;
 stmt2;
END;

• A handler is in scope only for the block in which it is declared, and cannot be activated for conditions
occurring outside that block. In the following example, handler H1 is in scope for stmt1 in the inner
block, but not for stmt2 in the outer block:

BEGIN -- outer block
 BEGIN -- inner block
 DECLARE EXIT HANDLER FOR ...; -- handler H1
 stmt1;
 END;
 stmt2;
END;

• A handler can be specific or general. A specific handler is for a MySQL error code, SQLSTATE value,
or condition name. A general handler is for a condition in the SQLWARNING, SQLEXCEPTION, or NOT
FOUND class. Condition specificity is related to condition precedence, as described later.

Multiple handlers can be declared in different scopes and with different specificities. For example, there
might be a specific MySQL error code handler in an outer block, and a general SQLWARNING handler in

1868

Condition Handling

an inner block. Or there might be handlers for a specific MySQL error code and the general SQLWARNING
class in the same block.

Whether a handler is activated depends not only on its own scope and condition value, but on what other
handlers are present. When a condition occurs in a stored program, the server searches for applicable
handlers in the current scope (current BEGIN ... END block). If there are no applicable handlers, the
search continues outward with the handlers in each successive containing scope (block). When the server
finds one or more applicable handlers at a given scope, it chooses among them based on condition
precedence:

• A MySQL error code handler takes precedence over an SQLSTATE value handler.

• An SQLSTATE value handler takes precedence over general SQLWARNING, SQLEXCEPTION, or NOT
FOUND handlers.

• An SQLEXCEPTION handler takes precedence over an SQLWARNING handler.

• It is possible to have several applicable handlers with the same precedence. For example, a statement
could generate multiple warnings with different error codes, for each of which an error-specific handler
exists. In this case, the choice of which handler the server activates is nondeterministic, and may change
depending on the circumstances under which the condition occurs.

One implication of the handler selection rules is that if multiple applicable handlers occur in different
scopes, handlers with the most local scope take precedence over handlers in outer scopes, even over
those for more specific conditions.

If there is no appropriate handler when a condition occurs, the action taken depends on the class of the
condition:

• For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the condition,
as if there were an EXIT handler. If the program was called by another stored program, the calling
program handles the condition using the handler selection rules applied to its own handlers.

• For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE handler.

• For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was raised
by SIGNAL or RESIGNAL, the action is EXIT.

The following examples demonstrate how MySQL applies the handler selection rules.

This procedure contains two handlers, one for the specific SQLSTATE value ('42S02') that occurs for
attempts to drop a nonexistent table, and one for the general SQLEXCEPTION class:

CREATE PROCEDURE p1()
BEGIN
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;

 DROP TABLE test.t;
END;

Both handlers are declared in the same block and have the same scope. However, SQLSTATE handlers
take precedence over SQLEXCEPTION handlers, so if the table t is nonexistent, the DROP TABLE
statement raises a condition that activates the SQLSTATE handler:

mysql> CALL p1();
+--------------------------------+
| msg |

1869

Condition Handling

+--------------------------------+
| SQLSTATE handler was activated |
+--------------------------------+

This procedure contains the same two handlers. But this time, the DROP TABLE statement and
SQLEXCEPTION handler are in an inner block relative to the SQLSTATE handler:

CREATE PROCEDURE p2()
BEGIN -- outer block
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;

 DROP TABLE test.t; -- occurs within inner block
 END;
END;

In this case, the handler that is more local to where the condition occurs takes precedence. The
SQLEXCEPTION handler activates, even though it is more general than the SQLSTATE handler:

mysql> CALL p2();
+------------------------------------+
| msg |
+------------------------------------+
| SQLEXCEPTION handler was activated |
+------------------------------------+

In this procedure, one of the handlers is declared in a block inner to the scope of the DROP TABLE
statement:

CREATE PROCEDURE p3()
BEGIN -- outer block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 END;

 DROP TABLE test.t; -- occurs within outer block
END;

Only the SQLEXCEPTION handler applies because the other one is not in scope for the condition raised by
the DROP TABLE:

mysql> CALL p3();
+------------------------------------+
| msg |
+------------------------------------+
| SQLEXCEPTION handler was activated |
+------------------------------------+

In this procedure, both handlers are declared in a block inner to the scope of the DROP TABLE statement:

CREATE PROCEDURE p4()
BEGIN -- outer block
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 END;

 DROP TABLE test.t; -- occurs within outer block

1870

Condition Handling

END;

Neither handler applies because they are not in scope for the DROP TABLE. The condition raised by the
statement goes unhandled and terminates the procedure with an error:

mysql> CALL p4();
ERROR 1051 (42S02): Unknown table 'test.t'

13.6.7.7 The MySQL Diagnostics Area

SQL statements produce diagnostic information that populates the diagnostics area. Standard SQL has
a diagnostics area stack, containing a diagnostics area for each nested execution context. Standard SQL
also supports GET STACKED DIAGNOSTICS syntax for referring to the second diagnostics area during
condition handler execution. MySQL does not support the STACKED keyword until MySQL 5.7. In MySQL
5.6, there is a single diagnostics area containing information from the most recent statement that wrote to
it.

The following discussion describes the structure of the diagnostics area in MySQL, the information items
recognized by MySQL and how statements clear and set the diagnostics area.

• Diagnostics Area Structure

• Diagnostics Area Information Items

• How the Diagnostics Area is Cleared and Populated

• Diagnostics Area-Related System Variables

Diagnostics Area Structure

The diagnostics area contains two kinds of information:

• Statement information, such as the number of conditions that occurred or the affected-rows count.

• Condition information, such as the error code and message. If a statement raises multiple conditions,
this part of the diagnostics area has a condition area for each one. If a statement raises no conditions,
this part of the diagnostics area is empty.

For a statement that produces three conditions, the diagnostics area contains statement and condition
information like this:

Statement information:
 row count
 ... other statement information items ...
Condition area list:
 Condition area 1:
 error code for condition 1
 error message for condition 1
 ... other condition information items ...
 Condition area 2:
 error code for condition 2:
 error message for condition 2
 ... other condition information items ...
 Condition area 3:
 error code for condition 3
 error message for condition 3
 ... other condition information items ...

Diagnostics Area Information Items

The diagnostics area contains statement and condition information items. Numeric items are integers. The
character set for character items is UTF-8. No item can be NULL. If a statement or condition item is not

1871

Condition Handling

set by a statement that populates the diagnostics area, its value is 0 or the empty string, depending on the
item data type.

The statement information part of the diagnostics area contains these items:

• NUMBER: An integer indicating the number of condition areas that have information.

• ROW_COUNT: An integer indicating the number of rows affected by the statement. ROW_COUNT has the
same value as the ROW_COUNT() function (see Section 12.16, “Information Functions”).

The condition information part of the diagnostics area contains a condition area for each condition.
Condition areas are numbered from 1 to the value of the NUMBER statement condition item. If NUMBER is 0,
there are no condition areas.

Each condition area contains the items in the following list. All items are standard SQL except
MYSQL_ERRNO, which is a MySQL extension. The definitions apply for conditions generated other than
by a signal (that is, by a SIGNAL or RESIGNAL statement). For nonsignal conditions, MySQL populates
only those condition items not described as always empty. The effects of signals on the condition area are
described later.

• CLASS_ORIGIN: A string containing the class of the RETURNED_SQLSTATE value. If the
RETURNED_SQLSTATE value begins with a class value defined in SQL standards document ISO 9075-2
(section 24.1, SQLSTATE), CLASS_ORIGIN is 'ISO 9075'. Otherwise, CLASS_ORIGIN is 'MySQL'.

• SUBCLASS_ORIGIN: A string containing the subclass of the RETURNED_SQLSTATE value. If
CLASS_ORIGIN is 'ISO 9075' or RETURNED_SQLSTATE ends with '000', SUBCLASS_ORIGIN is
'ISO 9075'. Otherwise, SUBCLASS_ORIGIN is 'MySQL'.

• RETURNED_SQLSTATE: A string that indicates the SQLSTATE value for the condition.

• MESSAGE_TEXT: A string that indicates the error message for the condition.

• MYSQL_ERRNO: An integer that indicates the MySQL error code for the condition.

• CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME: Strings that indicate the catalog,
schema, and name for a violated constraint. They are always empty.

• CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, COLUMN_NAME: Strings that indicate the catalog,
schema, table, and column related to the condition. They are always empty.

• CURSOR_NAME: A string that indicates the cursor name. This is always empty.

For the RETURNED_SQLSTATE, MESSAGE_TEXT, and MYSQL_ERRNO values for particular errors, see
Server Error Message Reference.

If a SIGNAL (or RESIGNAL) statement populates the diagnostics area, its SET clause can assign to any
condition information item except RETURNED_SQLSTATE any value that is legal for the item data type.
SIGNAL also sets the RETURNED_SQLSTATE value, but not directly in its SET clause. That value comes
from the SIGNAL statement SQLSTATE argument.

SIGNAL also sets statement information items. It sets NUMBER to 1. It sets ROW_COUNT to −1 for errors and
0 otherwise.

How the Diagnostics Area is Cleared and Populated

Most nondiagnostic SQL statements populate the diagnostics area automatically, and its contents can be
set explicitly with the SIGNAL and RESIGNAL statements. The diagnostics area can be examined with GET

1872

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html

Condition Handling

DIAGNOSTICS to extract specific items, or with SHOW WARNINGS or SHOW ERRORS to see conditions or
errors.

SQL statements clear and set the diagnostics area as follows:

• When the server starts executing a statement after parsing it, it clears the diagnostics area for
nondiagnostic statements that use tables. Diagnostic statements do not clear the diagnostics area.
These statements are diagnostic:

• GET DIAGNOSTICS

• SHOW ERRORS

• SHOW WARNINGS

• If a statement raises a condition, the diagnostics area is cleared of conditions that belong to earlier
statements. The exception is that conditions raised by GET DIAGNOSTICS and RESIGNAL are added to
the diagnostics area without clearing it.

Thus, even a statement that does not normally clear the diagnostics area when it begins executing clears it
if the statement raises a condition.

The following example shows the effect of various statements on the diagnostics area, using SHOW
WARNINGS to display information about conditions stored there.

This DROP TABLE statement uses a table, so it clears the diagnostics area and populates it when the
condition occurs:

mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)

This SET statement does not use tables and does not generate warnings, so it leaves the diagnostics area
unchanged:

mysql> SET @x = 1;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)

This SET statement generates an error, so it clears and populates the diagnostics area:

mysql> SET @x = @@x;
ERROR 1193 (HY000): Unknown system variable 'x'

mysql> SHOW WARNINGS;
+-------+------+-----------------------------+
| Level | Code | Message |
+-------+------+-----------------------------+
| Error | 1193 | Unknown system variable 'x' |

1873

Condition Handling

+-------+------+-----------------------------+
1 row in set (0.00 sec)

The previous SET statement produced a single condition, so 1 is the only valid condition number for GET
DIAGNOSTICS at this point. The following statement uses a condition number of 2, which produces a
warning that is added to the diagnostics area without clearing it:

mysql> GET DIAGNOSTICS CONDITION 2 @p = MESSAGE_TEXT;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------+
| Level | Code | Message |
+-------+------+------------------------------+
| Error | 1193 | Unknown system variable 'xx' |
| Error | 1753 | Invalid condition number |
+-------+------+------------------------------+
2 rows in set (0.00 sec)

Now there are two conditions in the diagnostics area, so the same GET DIAGNOSTICS statement
succeeds:

mysql> GET DIAGNOSTICS CONDITION 2 @p = MESSAGE_TEXT;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @p;
+--------------------------+
| @p |
+--------------------------+
| Invalid condition number |
+--------------------------+
1 row in set (0.01 sec)

Diagnostics Area-Related System Variables

Certain system variables control or are related to some aspects of the diagnostics area:

• max_error_count controls the number of condition areas in the diagnostics area. If more conditions
than this occur, MySQL silently discards information for the excess conditions. (Conditions added by
RESIGNAL are always added, with older conditions being discarded as necessary to make room.)

• warning_count indicates the number of conditions that occurred. This includes errors, warnings, and
notes. Normally, NUMBER and warning_count are the same. However, as the number of conditions
generated exceeds max_error_count, the value of warning_count continues to rise whereas
NUMBER remains capped at max_error_count because no additional conditions are stored in the
diagnostics area.

• error_count indicates the number of errors that occurred. This value includes “not found” and
exception conditions, but excludes warnings and notes. Like warning_count, its value can exceed
max_error_count.

• If the sql_notes system variable is set to 0, notes are not stored and do not increment
warning_count.

Example: If max_error_count is 10, the diagnostics area can contain a maximum of 10 condition areas.
Suppose that a statement raises 20 conditions, 12 of which are errors. In that case, the diagnostics area
contains the first 10 conditions, NUMBER is 10, warning_count is 20, and error_count is 12.

Changes to the value of max_error_count have no effect until the next attempt to modify the diagnostics
area. If the diagnostics area contains 10 condition areas and max_error_count is set to 5, that has no
immediate effect on the size or content of the diagnostics area.

1874

Database Administration Statements

Before MySQL 5.6, statement information items are not available directly. ROW_COUNT can be obtained by
calling the ROW_COUNT() function. NUMBER is approximated by the value of the warning_count system
variable. However, whereas NUMBER is capped to the value of max_error_count, warning_count is
not.

13.6.7.8 Condition Handling and OUT or INOUT Parameters

If a stored procedure exits with an unhandled exception, modified values of OUT and INOUT parameters
are not propogated back to the caller.

If an exception is handled by a CONTINUE or EXIT handler that contains a RESIGNAL statement,
execution of RESIGNAL pops the Diagnostics Area stack, thus signalling the exception (that is, the
information that existed before entry into the handler). If the exception is an error, the values of OUT and
INOUT parameters are not propogated back to the caller.

13.6.7.9 Restrictions on Condition Handling

SIGNAL, RESIGNAL, and GET DIAGNOSTICS are not permissible as prepared statements. For example,
this statement is invalid:

PREPARE stmt1 FROM 'SIGNAL SQLSTATE "02000"';

SQLSTATE values in class '04' are not treated specially. They are handled the same as other exceptions.

Standard SQL has a diagnostics area stack, containing a diagnostics area for each nested execution
context. Standard SQL syntax includes GET STACKED DIAGNOSTICS for referring to stacked areas.
MySQL does not support the STACKED keyword because there is a single diagnostics area containing
information from the most recent statement that wrote to it. See also Section 13.6.7.7, “The MySQL
Diagnostics Area”.

In standard SQL, the first condition relates to the SQLSTATE value returned for the previous SQL
statement. In MySQL, this is not guaranteed, so to get the main error, you cannot do this:

GET DIAGNOSTICS CONDITION 1 @errno = MYSQL_ERRNO;

Instead, do this:

GET DIAGNOSTICS @cno = NUMBER;
GET DIAGNOSTICS CONDITION @cno @errno = MYSQL_ERRNO;

13.7 Database Administration Statements

13.7.1 Account Management Statements

MySQL account information is stored in the tables of the mysql system database. This database and the
access control system are discussed extensively in Chapter 5, MySQL Server Administration, which you
should consult for additional details.

Important

Some MySQL releases introduce changes to the grant tables to add new privileges
or features. To make sure that you can take advantage of any new capabilities,
update your grant tables to the current structure whenever you upgrade MySQL.
See Section 2.11, “Upgrading MySQL”.

When the read_only system variable is enabled, account-management statements require the SUPER
privilege, in addition to any other required privileges. This is because they modify tables in the mysql
system database.

1875

Account Management Statements

13.7.1.1 ALTER USER Statement

ALTER USER user_specification [, user_specification] ...

user_specification:
 user PASSWORD EXPIRE

The ALTER USER statement modifies MySQL accounts. An error occurs if you try to modify a nonexistent
account.

To use ALTER USER, you must have the global CREATE USER privilege or the UPDATE privilege for the
mysql system database. When the read_only system variable is enabled, ALTER USER additionally
requires the SUPER privilege.

Each account name uses the format described in Section 6.2.4, “Specifying Account Names”. The host
name part of the account name, if omitted, defaults to '%'. It is also possible to specify CURRENT_USER or
CURRENT_USER() to refer to the account associated with the current session.

For each account, ALTER USER expires its password. For example:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE;

Password expiration for an account affects the corresponding row of the mysql.user system table: The
server sets the password_expired column to 'Y'.

A client session operates in restricted mode if the account password has been expired. In restricted
mode, operations performed within the session result in an error until the user establishes a new account
password:

mysql> SELECT 1;
ERROR 1820 (HY000): You must SET PASSWORD before executing this statement

mysql> SET PASSWORD = PASSWORD('new_password');
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

This restricted mode of operation permits SET statements, which is useful if the account password has a
hashing format that requires old_passwords to be set to a value different from its default before using
SET PASSWORD.

It is possible for an administrative user to reset the account password, but any existing sessions for the
account remain restricted. A client using the account must disconnect and reconnect before statements
can be executed successfully.

Note

Although it is possible to “reset” an expired password by setting it to its current
value, it is preferable, as a matter of good policy, to choose a different password.

13.7.1.2 CREATE USER Statement

CREATE USER
 user [auth_option] [, user [auth_option]] ...

1876

Account Management Statements

user:
 (see Section 6.2.4, “Specifying Account Names”)

auth_option: {
 IDENTIFIED BY [PASSWORD] 'auth_string'
 | IDENTIFIED WITH auth_plugin [AS 'auth_string']
}

The CREATE USER statement creates new MySQL accounts. An error occurs if you try to create an
account that already exists.

To use CREATE USER, you must have the global CREATE USER privilege, or the INSERT privilege for the
mysql system database. When the read_only system variable is enabled, CREATE USER additionally
requires the SUPER privilege.

Important

Under some circumstances, CREATE USER may be recorded in server logs or on
the client side in a history file such as ~/.mysql_history, which means that
cleartext passwords may be read by anyone having read access to that information.
For information about the conditions under which this occurs for the server logs
and how to control it, see Section 6.1.2.3, “Passwords and Logging”. For similar
information about client-side logging, see Section 4.5.1.3, “mysql Client Logging”.

For each account, CREATE USER creates a new row in the mysql.user system table with no privileges
and assigns the account an authentication plugin. Depending on the syntax used, CREATE USER may also
assign the account a password.

An account when first created has no privileges. To assign privileges, use the GRANT statement.

Each user value naming an account may be followed by an optional auth_option value that specifies
how authentication occurs for clients that use the account. This part of CREATE USER syntax is shared with
GRANT, so the description here applies to GRANT as well.

Each account name uses the format described in Section 6.2.4, “Specifying Account Names”. For example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';

The host name part of the account name, if omitted, defaults to '%'.

The server assigns an authentication plugin and password to each account as follows, depending on
whether the user specification clause includes IDENTIFIED BY or IDENTIFIED WITH to specify
authentication information:

• With IDENTIFIED BY, the server assigns the plugin implicitly. The 'auth_string' value is cleartext
and is passed to the plugin for possible hashing. The result returned by the plugin is stored as the
password. A plugin may use the value as specified, in which case no hashing occurs. If the optional
PASSWORD keyword is given, the behavior is the same except that if the plugin requires a hashed string,
the string is assumed to be already hashed in the format the plugin requires, and is stored as is as the
password.

• With IDENTIFIED WITH, the server assigns the specified plugin and the account has no password. If
the optional AS 'auth_string' clause is given, the string is stored as is as the password. If the plugin
requires a hashed string, the string is assumed to be already hashed in the format the plugin requires.

• With neither IDENTIFIED BY nor IDENTIFIED WITH, the server assigns the plugin implicitly and the
account has no password.

1877

Account Management Statements

If the account has no password, the password information in the account row in the mysql.user table
remains empty, which is insecure. To set the password, use SET PASSWORD. See Section 13.7.1.7, “SET
PASSWORD Statement”.

For implicit plugin assignment, the default plugin becomes the value of the plugin column in the account's
mysql.user system table row. The default plugin is mysql_native_password unless the --default-
authentication-plugin option is set otherwise at server startup.

For client connections that use a given account, the server invokes the authentication plugin assigned
to the account and the client must provide credentials as required by the authentication method that the
plugin implements. If the server cannot find the plugin, either at account-creation time or connect time, an
error occurs.

If an account's mysql.user table row has a nonempty plugin column:

• The server authenticates client connection attempts using the named plugin.

• Changes to the account password using SET PASSWORD with PASSWORD() must be made with
the old_passwords system variable set to the value required by the authentication plugin, so that
PASSWORD() uses the appropriate password hashing method. If the plugin is mysql_old_password,
the password can also be changed using SET PASSWORD with OLD_PASSWORD(), which uses pre-4.1
password hashing regardless of the value of old_passwords.

If an account's mysql.user table row has an empty plugin column:

• The server authenticates client connection attempts using the mysql_native_password or
mysql_old_password authentication plugin, depending on the hash format of the password stored in
the Password column.

• Changes to the account password using SET PASSWORD can be made with PASSWORD(),
with old_passwords set to 0 or 1 for 4.1 or pre-4.1 password hashing, respectively, or with
OLD_PASSWORD(), which uses pre-4.1 password hashing regardless of the value of old_passwords.

CREATE USER examples:

• To specify an authentication plugin for an account, use IDENTIFIED WITH auth_plugin. The plugin
name can be a quoted string literal or an unquoted name. 'auth_string' is an optional quoted string
literal to pass to the plugin. The plugin interprets the meaning of the string, so its format is plugin specific
and it is stored in the authentication_string column as given. (This value is meaningful only for
plugins that use that column.) Consult the documentation for a given plugin for information about the
authentication string values it accepts, if any.

CREATE USER 'jeffrey'@'localhost' IDENTIFIED WITH mysql_native_password;

The server assigns the given authentication plugin to the account but no password. Clients must provide
no password when they connect. However, an account with no password is insecure. To ensure that an
account uses a specific authentication plugin and has a password with the corresponding hash format,
specify the plugin explicitly with IDENTIFIED WITH, then use SET PASSWORD to set the password:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED WITH mysql_native_password;
SET old_passwords = 0;
SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('password');

Changes to the account password using SET PASSWORD with PASSWORD() must be made with
the old_passwords system variable set to the value required by the account's authentication
plugin, so that PASSWORD() uses the appropriate password hashing method. Therefore, to use the
sha256_password or mysql_old_password plugin instead, name that plugin in the CREATE USER
statement and set old_passwords to 2 or 1, respectively, before using SET PASSWORD. (Use of

1878

Account Management Statements

mysql_old_password is not recommended. It is deprecated; expect support for it to removed in a
future MySQL release.)

• To specify a password for an account at account-creation time, use IDENTIFIED BY with the literal
cleartext password value:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';

The server assigns an authentication plugin to the account implicitly, as described previously, and
assigns the given password. Clients must provide the given password when they connect.

If the implicitly assigned plugin is mysql_native_password, the old_passwords system variable
must be set to 0. Otherwise, CREATE USER does not hash the password in the format required by the
plugin and an error occurs:

mysql> SET old_passwords = 1;
mysql> CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';
ERROR 1827 (HY000): The password hash doesn't have the expected
format. Check if the correct password algorithm is being used with
the PASSWORD() function.

mysql> SET old_passwords = 0;
mysql> CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';
Query OK, 0 rows affected (0.00 sec)

• To avoid specifying the cleartext password if you know its hash value (the value that PASSWORD() would
return for the password), specify the hash value preceded by the keyword PASSWORD:

CREATE USER 'jeffrey'@'localhost'
IDENTIFIED BY PASSWORD '*90E462C37378CED12064BB3388827D2BA3A9B689';

The server assigns an authentication plugin to the account implicitly, as described previously, and
assigns the given password. The password hash must be in the format required by the assigned plugin.
Clients must provide the password when they connect.

• To enable the user to connect with no password, include no IDENTIFIED BY clause:

CREATE USER 'jeffrey'@'localhost';

The server assigns an authentication plugin to the account implicitly, as described previously, but
no password. Clients must provide no password when they connect. However, an account with no
password is insecure. To avoid this, use SET PASSWORD to set the account password.

As mentioned previously, implicit plugin assignment depends on the default authentication plugin.
Permitted values of --default-authentication-plugin are mysql_native_plugin and
sha256_password, but not mysql_old_password. This means it is not possible to set the default
plugin so as to be able to create an account that uses mysql_old_password with CREATE USER ...
IDENTIFIED BY syntax. To create an account that uses mysql_old_password, use CREATE
USER ... IDENTIFIED WITH to name the plugin explicitly, then set the password:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED WITH mysql_old_password;
SET old_passwords = 1;
SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('password');

However, the preceding procedure is not recommended because mysql_old_password is deprecated.

For additional information about setting passwords and authentication plugins, see Section 6.2.9,
“Assigning Account Passwords”, and Section 6.2.11, “Pluggable Authentication”.

13.7.1.3 DROP USER Statement

1879

Account Management Statements

DROP USER user [, user] ...

The DROP USER statement removes one or more MySQL accounts and their privileges. It removes
privilege rows for the account from all grant tables. An error occurs for accounts that do not exist.

To use DROP USER, you must have the global CREATE USER privilege, or the DELETE privilege for the
mysql system database. When the read_only system variable is enabled, DROP USER additionally
requires the SUPER privilege.

Each account name uses the format described in Section 6.2.4, “Specifying Account Names”. For example:

DROP USER 'jeffrey'@'localhost';

The host name part of the account name, if omitted, defaults to '%'.

Important

DROP USER does not automatically close any open user sessions. Rather, in the
event that a user with an open session is dropped, the statement does not take
effect until that user's session is closed. Once the session is closed, the user is
dropped, and that user's next attempt to log in fails. This is by design.

DROP USER does not automatically drop or invalidate databases or objects within them that the old user
created. This includes stored programs or views for which the DEFINER attribute names the dropped user.
Attempts to access such objects may produce an error if they execute in definer security context. (For
information about security context, see Section 20.6, “Stored Object Access Control”.)

13.7.1.4 GRANT Statement

GRANT
 priv_type [(column_list)]
 [, priv_type [(column_list)]] ...
 ON [object_type] priv_level
 TO user [auth_option] [, user [auth_option]] ...
 [REQUIRE {NONE | tls_option [[AND] tls_option] ...}]
 [WITH {GRANT OPTION | resource_option} ...]

GRANT PROXY ON user
 TO user [, user] ...
 [WITH GRANT OPTION]

object_type: {
 TABLE
 | FUNCTION
 | PROCEDURE
}

priv_level: {
 *
 | *.*
 | db_name.*
 | db_name.tbl_name
 | tbl_name
 | db_name.routine_name
}

user:
 (see Section 6.2.4, “Specifying Account Names”)

auth_option: {
 IDENTIFIED BY [PASSWORD] 'auth_string'

1880

Account Management Statements

 | IDENTIFIED WITH auth_plugin
 | IDENTIFIED WITH auth_plugin AS 'auth_string'
}

tls_option: {
 SSL
 | X509
 | CIPHER 'cipher'
 | ISSUER 'issuer'
 | SUBJECT 'subject'
}

resource_option: {
 | MAX_QUERIES_PER_HOUR count
 | MAX_UPDATES_PER_HOUR count
 | MAX_CONNECTIONS_PER_HOUR count
 | MAX_USER_CONNECTIONS count
}

The GRANT statement grants privileges to MySQL user accounts. There are several aspects to the GRANT
statement, described under the following topics:

• GRANT General Overview

• Object Quoting Guidelines

• Account Names and Passwords

• Privileges Supported by MySQL

• Global Privileges

• Database Privileges

• Table Privileges

• Column Privileges

• Stored Routine Privileges

• Proxy User Privileges

• Implicit Account Creation

• Other Account Characteristics

• MySQL and Standard SQL Versions of GRANT

GRANT General Overview

The GRANT statement grants privileges to MySQL user accounts. GRANT also serves to specify other
account characteristics such as use of secure connections and limits on access to server resources.

To grant a privilege with GRANT, you must have the GRANT OPTION privilege, and you must have the
privileges that you are granting. (Alternatively, if you have the UPDATE privilege for the grant tables in the
mysql system database, you can grant any account any privilege.) When the read_only system variable
is enabled, GRANT additionally requires the SUPER privilege.

The REVOKE statement is related to GRANT and enables administrators to remove account privileges. See
Section 13.7.1.6, “REVOKE Statement”.

1881

Account Management Statements

Each account name uses the format described in Section 6.2.4, “Specifying Account Names”. For example:

GRANT ALL ON db1.* TO 'jeffrey'@'localhost';

The host name part of the account, if omitted, defaults to '%'.

Normally, a database administrator first uses CREATE USER to create an account, then GRANT to define its
privileges and characteristics. For example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';
GRANT ALL ON db1.* TO 'jeffrey'@'localhost';
GRANT SELECT ON db2.invoice TO 'jeffrey'@'localhost';
GRANT USAGE ON *.* TO 'jeffrey'@'localhost' WITH MAX_QUERIES_PER_HOUR 90;

Note

Examples shown here include no IDENTIFIED clause. It is assumed that you
establish passwords with CREATE USER at account-creation time to avoid creating
insecure accounts.

If an account named in a GRANT statement does not already exist, GRANT may create it under the
conditions described later in the discussion of the NO_AUTO_CREATE_USER SQL mode.

From the mysql program, GRANT responds with Query OK, 0 rows affected when executed
successfully. To determine what privileges result from the operation, use SHOW GRANTS. See
Section 13.7.5.22, “SHOW GRANTS Statement”.

Important

Under some circumstances, GRANT may be recorded in server logs or on the client
side in a history file such as ~/.mysql_history, which means that cleartext
passwords may be read by anyone having read access to that information. For
information about the conditions under which this occurs for the server logs and
how to control it, see Section 6.1.2.3, “Passwords and Logging”. For similar
information about client-side logging, see Section 4.5.1.3, “mysql Client Logging”.

GRANT supports host names up to 60 characters long. User names can be up to 16 characters. Database,
table, column, and routine names can be up to 64 characters.

Warning

Do not attempt to change the permissible length for user names by altering the
mysql.user system table. Doing so results in unpredictable behavior which may
even make it impossible for users to log in to the MySQL server. Never alter the
structure of tables in the mysql system database in any manner except by means
of the procedure described in Section 2.11, “Upgrading MySQL”.

Object Quoting Guidelines

Several objects within GRANT statements are subject to quoting, although quoting is optional in many
cases: Account, database, table, column, and routine names. For example, if a user_name or host_name
value in an account name is legal as an unquoted identifier, you need not quote it. However, quotation
marks are necessary to specify a user_name string containing special characters (such as -), or a
host_name string containing special characters or wildcard characters such as % (for example, 'test-
user'@'%.com'). Quote the user name and host name separately.

To specify quoted values:

1882

Account Management Statements

• Quote database, table, column, and routine names as identifiers.

• Quote user names and host names as identifiers or as strings.

• Quote passwords as strings.

For string-quoting and identifier-quoting guidelines, see Section 9.1.1, “String Literals”, and Section 9.2,
“Schema Object Names”.

The _ and % wildcards are permitted when specifying database names in GRANT statements that grant
privileges at the database level (GRANT ... ON db_name.*). This means, for example, that to use
a _ character as part of a database name, specify it using the \ escape character as _ in the GRANT
statement, to prevent the user from being able to access additional databases matching the wildcard
pattern (for example, GRANT ... ON `foo_bar`.* TO ...).

When a database name is not used to grant privileges at the database level, but as a qualifier for
granting privileges to some other object such as a table or routine (for example, GRANT ... ON
db_name.tbl_name), MySQL interprets wildcard characters as literal characters.

Account Names and Passwords

A user value in a GRANT statement indicates a MySQL account to which the statement applies. To
accommodate granting rights to users from arbitrary hosts, MySQL supports specifying the user value in
the form 'user_name'@'host_name'.

You can specify wildcards in the host name. For example, 'user_name'@'%.example.com' applies to
user_name for any host in the example.com domain, and 'user_name'@'198.51.100.%' applies to
user_name for any host in the 198.51.100 class C subnet.

The simple form 'user_name' is a synonym for 'user_name'@'%'.

MySQL does not support wildcards in user names. To refer to an anonymous user, specify an account with
an empty user name with the GRANT statement:

GRANT ALL ON test.* TO ''@'localhost' ...;

In this case, any user who connects from the local host with the correct password for the anonymous user
is permitted access, with the privileges associated with the anonymous-user account.

For additional information about user name and host name values in account names, see Section 6.2.4,
“Specifying Account Names”.

Warning

If you permit local anonymous users to connect to the MySQL server, you should
also grant privileges to all local users as 'user_name'@'localhost'. Otherwise,
the anonymous user account for localhost in the mysql.user system table
(created during MySQL installation) is used when named users try to log in to the
MySQL server from the local machine. For details, see Section 6.2.5, “Access
Control, Stage 1: Connection Verification”.

To determine whether this issue applies to you, execute the following query, which
lists any anonymous users:

SELECT Host, User FROM mysql.user WHERE User='';

To avoid the problem just described, delete the local anonymous user account
using this statement:

1883

Account Management Statements

DROP USER ''@'localhost';

For GRANT syntax that permits an auth_option value to follow a user value, auth_option begins with
IDENTIFIED and indicates how the account authenticates by specifying an account authentication plugin,
credentials (for example, a password), or both. Syntax of the auth_option clause is the same as for the
CREATE USER statement. For details, see Section 13.7.1.2, “CREATE USER Statement”.

When IDENTIFIED is present and you have the global grant privilege (GRANT OPTION), any password
specified becomes the new password for the account, even if the account exists and already has a
password. Without IDENTIFIED, the account password remains unchanged.

Privileges Supported by MySQL

The following table summarizes the permissible priv_type privilege types that can be specified for the
GRANT and REVOKE statements, and the levels at which each privilege can be granted. For additional
information about each privilege, see Section 6.2.2, “Privileges Provided by MySQL”.

Table 13.8 Permissible Privileges for GRANT and REVOKE

Privilege Meaning and Grantable Levels

ALL [PRIVILEGES] Grant all privileges at specified access level except
GRANT OPTION and PROXY.

ALTER Enable use of ALTER TABLE. Levels: Global,
database, table.

ALTER ROUTINE Enable stored routines to be altered or dropped.
Levels: Global, database, routine.

CREATE Enable database and table creation. Levels: Global,
database, table.

CREATE ROUTINE Enable stored routine creation. Levels: Global,
database.

CREATE TABLESPACE Enable tablespaces and log file groups to be
created, altered, or dropped. Level: Global.

CREATE TEMPORARY TABLES Enable use of CREATE TEMPORARY TABLE.
Levels: Global, database.

CREATE USER Enable use of CREATE USER, DROP USER, RENAME
USER, and REVOKE ALL PRIVILEGES. Level:
Global.

CREATE VIEW Enable views to be created or altered. Levels:
Global, database, table.

DELETE Enable use of DELETE. Level: Global, database,
table.

DROP Enable databases, tables, and views to be dropped.
Levels: Global, database, table.

EVENT Enable use of events for the Event Scheduler.
Levels: Global, database.

EXECUTE Enable the user to execute stored routines. Levels:
Global, database, routine.

1884

Account Management Statements

Privilege Meaning and Grantable Levels

FILE Enable the user to cause the server to read or write
files. Level: Global.

GRANT OPTION Enable privileges to be granted to or removed from
other accounts. Levels: Global, database, table,
routine, proxy.

INDEX Enable indexes to be created or dropped. Levels:
Global, database, table.

INSERT Enable use of INSERT. Levels: Global, database,
table, column.

LOCK TABLES Enable use of LOCK TABLES on tables for which
you have the SELECT privilege. Levels: Global,
database.

PROCESS Enable the user to see all processes with SHOW
PROCESSLIST. Level: Global.

PROXY Enable user proxying. Level: From user to user.

REFERENCES Enable foreign key creation. Levels: Global,
database, table, column.

RELOAD Enable use of FLUSH operations. Level: Global.

REPLICATION CLIENT Enable the user to ask where source or replica
servers are. Level: Global.

REPLICATION SLAVE Enable replicas to read binary log events from the
source. Level: Global.

SELECT Enable use of SELECT. Levels: Global, database,
table, column.

SHOW DATABASES Enable SHOW DATABASES to show all databases.
Level: Global.

SHOW VIEW Enable use of SHOW CREATE VIEW. Levels: Global,
database, table.

SHUTDOWN Enable use of mysqladmin shutdown. Level:
Global.

SUPER Enable use of other administrative operations such
as CHANGE MASTER TO, KILL, PURGE BINARY
LOGS, SET GLOBAL, and mysqladmin debug
command. Level: Global.

TRIGGER Enable trigger operations. Levels: Global, database,
table.

UPDATE Enable use of UPDATE. Levels: Global, database,
table, column.

USAGE Synonym for “no privileges”

A trigger is associated with a table. To create or drop a trigger, you must have the TRIGGER privilege for
the table, not the trigger.

In GRANT statements, the ALL [PRIVILEGES] or PROXY privilege must be named by itself and cannot be
specified along with other privileges. ALL [PRIVILEGES] stands for all privileges available for the level at
which privileges are to be granted except for the GRANT OPTION and PROXY privileges.

1885

Account Management Statements

USAGE can be specified to create a user that has no privileges, or to specify the REQUIRE or WITH clauses
for an account without changing its existing privileges.

MySQL account information is stored in the tables of the mysql system database. For additional details,
consult Section 6.2, “Access Control and Account Management”, which discusses the mysql system
database and the access control system extensively.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to revoke
these privileges. It is necessary to manipulate the grant tables directly. (GRANT does not create such rows
when lower_case_table_names is set, but such rows might have been created prior to setting that
variable.)

Privileges can be granted at several levels, depending on the syntax used for the ON clause. For REVOKE,
the same ON syntax specifies which privileges to remove.

For the global, database, table, and routine levels, GRANT ALL assigns only the privileges that exist at
the level you are granting. For example, GRANT ALL ON db_name.* is a database-level statement, so it
does not grant any global-only privileges such as FILE. Granting ALL does not assign the GRANT OPTION
or PROXY privilege.

The object_type clause, if present, should be specified as TABLE, FUNCTION, or PROCEDURE when the
following object is a table, a stored function, or a stored procedure.

The privileges that a user holds for a database, table, column, or routine are formed additively as the
logical OR of the account privileges at each of the privilege levels, including the global level. It is not
possible to deny a privilege granted at a higher level by absence of that privilege at a lower level. For
example, this statement grants the SELECT and INSERT privileges globally:

GRANT SELECT, INSERT ON *.* TO u1;

The globally granted privileges apply to all databases, tables, and columns, even though not granted at any
of those lower levels.

Details of the privilege-checking procedure are presented in Section 6.2.6, “Access Control, Stage 2:
Request Verification”.

If you are using table, column, or routine privileges for even one user, the server examines table, column,
and routine privileges for all users and this slows down MySQL a bit. Similarly, if you limit the number of
queries, updates, or connections for any users, the server must monitor these values.

MySQL enables you to grant privileges on databases or tables that do not exist. For tables, the privileges
to be granted must include the CREATE privilege. This behavior is by design, and is intended to enable
the database administrator to prepare user accounts and privileges for databases or tables that are to be
created at a later time.

Important

MySQL does not automatically revoke any privileges when you drop a database or
table. However, if you drop a routine, any routine-level privileges granted for that
routine are revoked.

Global Privileges

Global privileges are administrative or apply to all databases on a given server. To assign global privileges,
use ON *.* syntax:

1886

Account Management Statements

GRANT ALL ON *.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON *.* TO 'someuser'@'somehost';

The CREATE TABLESPACE, CREATE USER, FILE, PROCESS, RELOAD, REPLICATION CLIENT,
REPLICATION SLAVE, SHOW DATABASES, SHUTDOWN, and SUPER privileges are administrative and can
only be granted globally.

Other privileges can be granted globally or at more specific levels.

GRANT OPTION granted at the global level for any global privilege applies to all global privileges.

MySQL stores global privileges in the mysql.user system table.

Database Privileges

Database privileges apply to all objects in a given database. To assign database-level privileges, use ON
db_name.* syntax:

GRANT ALL ON mydb.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.* TO 'someuser'@'somehost';

If you use ON * syntax (rather than ON *.*), privileges are assigned at the database level for the default
database. An error occurs if there is no default database.

The CREATE, DROP, EVENT, GRANT OPTION, LOCK TABLES, and REFERENCES privileges can be
specified at the database level. Table or routine privileges also can be specified at the database level, in
which case they apply to all tables or routines in the database.

MySQL stores database privileges in the mysql.db system table.

Table Privileges

Table privileges apply to all columns in a given table. To assign table-level privileges, use ON
db_name.tbl_name syntax:

GRANT ALL ON mydb.mytbl TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.mytbl TO 'someuser'@'somehost';

If you specify tbl_name rather than db_name.tbl_name, the statement applies to tbl_name in the
default database. An error occurs if there is no default database.

The permissible priv_type values at the table level are ALTER, CREATE VIEW, CREATE, DELETE, DROP,
GRANT OPTION, INDEX, INSERT, REFERENCES, SELECT, SHOW VIEW, TRIGGER, and UPDATE.

Table-level privileges apply to base tables and views. They do not apply to tables created with CREATE
TEMPORARY TABLE, even if the table names match. For information about TEMPORARY table privileges,
see Section 13.1.17.2, “CREATE TEMPORARY TABLE Statement”.

MySQL stores table privileges in the mysql.tables_priv system table.

Column Privileges

Column privileges apply to single columns in a given table. Each privilege to be granted at the column level
must be followed by the column or columns, enclosed within parentheses.

GRANT SELECT (col1), INSERT (col1, col2) ON mydb.mytbl TO 'someuser'@'somehost';

The permissible priv_type values for a column (that is, when you use a column_list clause) are
INSERT, REFERENCES, SELECT, and UPDATE.

1887

Account Management Statements

MySQL stores column privileges in the mysql.columns_priv system table.

Stored Routine Privileges

The ALTER ROUTINE, CREATE ROUTINE, EXECUTE, and GRANT OPTION privileges apply to stored
routines (procedures and functions). They can be granted at the global and database levels. Except for
CREATE ROUTINE, these privileges can be granted at the routine level for individual routines.

GRANT CREATE ROUTINE ON mydb.* TO 'someuser'@'somehost';
GRANT EXECUTE ON PROCEDURE mydb.myproc TO 'someuser'@'somehost';

The permissible priv_type values at the routine level are ALTER ROUTINE, EXECUTE, and GRANT
OPTION. CREATE ROUTINE is not a routine-level privilege because you must have the privilege at the
global or database level to create a routine in the first place.

MySQL stores routine-level privileges in the mysql.procs_priv system table.

Proxy User Privileges

The PROXY privilege enables one user to be a proxy for another. The proxy user impersonates or takes the
identity of the proxied user; that is, it assumes the privileges of the proxied user.

GRANT PROXY ON 'localuser'@'localhost' TO 'externaluser'@'somehost';

When PROXY is granted, it must be the only privilege named in the GRANT statement, the REQUIRE clause
cannot be given, and the only permitted WITH option is WITH GRANT OPTION.

Proxying requires that the proxy user authenticate through a plugin that returns the name of the proxied
user to the server when the proxy user connects, and that the proxy user have the PROXY privilege for the
proxied user. For details and examples, see Section 6.2.12, “Proxy Users”.

MySQL stores proxy privileges in the mysql.proxies_priv system table.

Implicit Account Creation

If an account named in a GRANT statement does not exist, the action taken depends on the
NO_AUTO_CREATE_USER SQL mode:

• If NO_AUTO_CREATE_USER is not enabled, GRANT creates the account. This is very insecure unless you
specify a nonempty password using IDENTIFIED BY.

• If NO_AUTO_CREATE_USER is enabled, GRANT fails and does not create the account, unless you specify
a nonempty password using IDENTIFIED BY or name an authentication plugin using IDENTIFIED
WITH.

As of MySQL 5.6.12, if the account already exists, IDENTIFIED WITH is prohibited because it is intended
only for use when creating new accounts.

Other Account Characteristics

MySQL can check X.509 certificate attributes in addition to the usual authentication that is based on the
user name and credentials. For background information on the use of SSL with MySQL, see Section 6.3,
“Using Encrypted Connections”.

The optional REQUIRE clause specifies SSL-related options for a MySQL account, using one or more
tls_option values.

1888

Account Management Statements

Order of REQUIRE options does not matter, but no option can be specified twice. The AND keyword is
optional between REQUIRE options.

GRANT permits these tls_option values:

• NONE

Indicates that the account has no SSL or X.509 requirements.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 REQUIRE NONE;

Unencrypted connections are permitted if the user name and password are valid. Encrypted connections
can be used, at the client's option, if the client has the proper certificate and key files. That is, the client
need not specify any SSL command options, in which case the connection is unencrypted. To use an
encrypted connection, the client must specify either the --ssl-ca option, or all three of the --ssl-ca,
--ssl-key, and --ssl-cert options.

NONE is the default if no SSL-related REQUIRE options are specified.

• SSL

Tells the server to permit only encrypted connections for the account.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 REQUIRE SSL;

To connect, the client must specify the --ssl-ca option to authenticate the server certificate, and may
additionally specify the --ssl-key and --ssl-cert options. If neither the --ssl-ca option nor --
ssl-capath option is specified, the client does not authenticate the server certificate.

• X509

Requires that clients present a valid certificate, but the exact certificate, issuer, and subject do not
matter. The only requirement is that it should be possible to verify its signature with one of the CA
certificates. Use of X.509 certificates always implies encryption, so the SSL option is unnecessary in this
case.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 REQUIRE X509;

For accounts with REQUIRE X509, clients must specify the --ssl-key and --ssl-cert options
to connect. (It is recommended but not required that --ssl-ca also be specified so that the public
certificate provided by the server can be verified.) This is true for ISSUER and SUBJECT as well because
those REQUIRE options imply the requirements of X509.

• ISSUER 'issuer'

Requires that clients present a valid X.509 certificate issued by CA 'issuer'. If a client presents
a certificate that is valid but has a different issuer, the server rejects the connection. Use of X.509
certificates always implies encryption, so the SSL option is unnecessary in this case.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 REQUIRE ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com';

Because ISSUER implies the requirements of X509, clients must specify the --ssl-key and --ssl-
cert options to connect. (It is recommended but not required that --ssl-ca also be specified so that
the public certificate provided by the server can be verified.)

1889

Account Management Statements

Note

If MySQL is linked against a version of OpenSSL older than 0.9.6h, use Email
rather than emailAddress in the 'issuer' value.

• SUBJECT 'subject'

Requires that clients present a valid X.509 certificate containing the subject subject. If a client presents
a certificate that is valid but has a different subject, the server rejects the connection. Use of X.509
certificates always implies encryption, so the SSL option is unnecessary in this case.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com';

MySQL does a simple string comparison of the 'subject' value to the value in the certificate, so
lettercase and component ordering must be given exactly as present in the certificate.

Note

Regarding emailAddress, see the note in the description of REQUIRE ISSUER.

Because SUBJECT implies the requirements of X509, clients must specify the --ssl-key and --ssl-
cert options to connect. (It is recommended but not required that --ssl-ca also be specified so that
the public certificate provided by the server can be verified.)

• CIPHER 'cipher'

Requires a specific cipher method for encrypting connections. This option is needed to ensure that
ciphers and key lengths of sufficient strength are used. SSL itself can be weak if old algorithms using
short encryption keys are used.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause like this:

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com'
 AND ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com'
 AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

The optional WITH clause is used for these purposes:

• To enable a user to grant privileges to other users

• To specify resource limits for a user

The WITH GRANT OPTION clause gives the user the ability to give to other users any privileges the user
has at the specified privilege level.

To grant the GRANT OPTION privilege to an account without otherwise changing its privileges, do this:

GRANT USAGE ON *.* TO 'someuser'@'somehost' WITH GRANT OPTION;

1890

Account Management Statements

Be careful to whom you give the GRANT OPTION privilege because two users with different privileges may
be able to combine privileges!

You cannot grant another user a privilege which you yourself do not have; the GRANT OPTION privilege
enables you to assign only those privileges which you yourself possess.

Be aware that when you grant a user the GRANT OPTION privilege at a particular privilege level, any
privileges the user possesses (or may be given in the future) at that level can also be granted by that user
to other users. Suppose that you grant a user the INSERT privilege on a database. If you then grant the
SELECT privilege on the database and specify WITH GRANT OPTION, that user can give to other users
not only the SELECT privilege, but also INSERT. If you then grant the UPDATE privilege to the user on the
database, the user can grant INSERT, SELECT, and UPDATE.

For a nonadministrative user, you should not grant the ALTER privilege globally or for the mysql system
database. If you do that, the user can try to subvert the privilege system by renaming tables!

For additional information about security risks associated with particular privileges, see Section 6.2.2,
“Privileges Provided by MySQL”.

It is possible to place limits on use of server resources by an account, as discussed in Section 6.2.13,
“Setting Account Resource Limits”. To do so, use a WITH clause that specifies one or more
resource_option values. Limits not specified retain their current values.

Order of WITH options does not matter, except that if a given resource limit is specified multiple times, the
last instance takes precedence.

GRANT permits these resource_option values:

• MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count,
MAX_CONNECTIONS_PER_HOUR count

These options restrict how many queries, updates, and connections to the server are permitted to this
account during any given one-hour period. (Queries for which results are served from the query cache
do not count against the MAX_QUERIES_PER_HOUR limit.) If count is 0 (the default), this means that
there is no limitation for the account.

• MAX_USER_CONNECTIONS count

Restricts the maximum number of simultaneous connections to the server by the account. A
nonzero count specifies the limit for the account explicitly. If count is 0 (the default), the server
determines the number of simultaneous connections for the account from the global value of the
max_user_connections system variable. If max_user_connections is also zero, there is no limit
for the account.

To specify resource limits for an existing user without affecting existing privileges, use GRANT USAGE at
the global level (ON *.*) and name the limits to be changed. For example:

GRANT USAGE ON *.* TO ...
 WITH MAX_QUERIES_PER_HOUR 500 MAX_UPDATES_PER_HOUR 100;

MySQL and Standard SQL Versions of GRANT

The biggest differences between the MySQL and standard SQL versions of GRANT are:

• MySQL associates privileges with the combination of a host name and user name and not with only a
user name.

1891

Account Management Statements

• Standard SQL does not have global or database-level privileges, nor does it support all the privilege
types that MySQL supports.

• MySQL does not support the standard SQL UNDER privilege.

• Standard SQL privileges are structured in a hierarchical manner. If you remove a user, all privileges
the user has been granted are revoked. This is also true in MySQL if you use DROP USER. See
Section 13.7.1.3, “DROP USER Statement”.

• In standard SQL, when you drop a table, all privileges for the table are revoked. In standard SQL, when
you revoke a privilege, all privileges that were granted based on that privilege are also revoked. In
MySQL, privileges can be dropped with DROP USER or REVOKE statements.

• In MySQL, it is possible to have the INSERT privilege for only some of the columns in a table. In this
case, you can still execute INSERT statements on the table, provided that you insert values only for
those columns for which you have the INSERT privilege. The omitted columns are set to their implicit
default values if strict SQL mode is not enabled. In strict mode, the statement is rejected if any of the
omitted columns have no default value. (Standard SQL requires you to have the INSERT privilege on all
columns.) For information about strict SQL mode and implicit default values, see Section 5.1.10, “Server
SQL Modes”, and Section 11.5, “Data Type Default Values”.

13.7.1.5 RENAME USER Statement

RENAME USER old_user TO new_user
 [, old_user TO new_user] ...

The RENAME USER statement renames existing MySQL accounts. An error occurs for old accounts that do
not exist or new accounts that already exist.

To use RENAME USER, you must have the global CREATE USER privilege, or the UPDATE privilege for the
mysql system database. When the read_only system variable is enabled, RENAME USER additionally
requires the SUPER privilege.

Each account name uses the format described in Section 6.2.4, “Specifying Account Names”. For example:

RENAME USER 'jeffrey'@'localhost' TO 'jeff'@'127.0.0.1';

The host name part of the account name, if omitted, defaults to '%'.

RENAME USER causes the privileges held by the old user to be those held by the new user. However,
RENAME USER does not automatically drop or invalidate databases or objects within them that the old
user created. This includes stored programs or views for which the DEFINER attribute names the old user.
Attempts to access such objects may produce an error if they execute in definer security context. (For
information about security context, see Section 20.6, “Stored Object Access Control”.)

The privilege changes take effect as indicated in Section 6.2.8, “When Privilege Changes Take Effect”.

13.7.1.6 REVOKE Statement

REVOKE
 priv_type [(column_list)]
 [, priv_type [(column_list)]] ...
 ON [object_type] priv_level
 FROM user [, user] ...

REVOKE ALL [PRIVILEGES], GRANT OPTION
 FROM user [, user] ...

REVOKE PROXY ON user

1892

Account Management Statements

 FROM user [, user] ...

The REVOKE statement enables system administrators to revoke privileges from MySQL accounts.

For details on the levels at which privileges exist, the permissible priv_type, priv_level, and
object_type values, and the syntax for specifying users and passwords, see Section 13.7.1.4, “GRANT
Statement”.

When the read_only system variable is enabled, REVOKE requires the SUPER privilege in addition to any
other required privileges described in the following discussion.

Each account name uses the format described in Section 6.2.4, “Specifying Account Names”. For example:

REVOKE INSERT ON *.* FROM 'jeffrey'@'localhost';

The host name part of the account name, if omitted, defaults to '%'.

To use the first REVOKE syntax, you must have the GRANT OPTION privilege, and you must have the
privileges that you are revoking.

To revoke all privileges, use the second syntax, which drops all global, database, table, column, and
routine privileges for the named user or users:

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

To use this REVOKE syntax, you must have the global CREATE USER privilege, or the UPDATE privilege for
the mysql system database.

User accounts from which privileges are to be revoked must exist, but the privileges to be revoked need
not be currently granted to them.

REVOKE removes privileges, but does not remove rows from the mysql.user system table. To remove a
user account entirely, use DROP USER. See Section 13.7.1.3, “DROP USER Statement”.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to revoke
these privileges. It is necessary to manipulate the grant tables directly. (GRANT does not create such rows
when lower_case_table_names is set, but such rows might have been created prior to setting the
variable.)

When successfully executed from the mysql program, REVOKE responds with Query OK, 0
rows affected. To determine what privileges remain after the operation, use SHOW GRANTS. See
Section 13.7.5.22, “SHOW GRANTS Statement”.

13.7.1.7 SET PASSWORD Statement

SET PASSWORD [FOR user] = password_option

password_option: {
 PASSWORD('auth_string')
 | OLD_PASSWORD('auth_string')
 | 'hash_string'
}

The SET PASSWORD statement assigns a password to a MySQL user account, specified as either a
cleartext (unencrypted) or encrypted value:

• 'auth_string' represents a cleartext password.

• 'hash_string' represents an encrypted password.

1893

Account Management Statements

Important

Under some circumstances, SET PASSWORD may be recorded in server logs or
on the client side in a history file such as ~/.mysql_history, which means that
cleartext passwords may be read by anyone having read access to that information.
For information about the conditions under which this occurs for the server logs
and how to control it, see Section 6.1.2.3, “Passwords and Logging”. For similar
information about client-side logging, see Section 4.5.1.3, “mysql Client Logging”.

SET PASSWORD can be used with or without a FOR clause that explicitly names a user account:

• With a FOR user clause, the statement sets the password for the named account, which must exist:

SET PASSWORD FOR 'jeffrey'@'localhost' = password_option;

• With no FOR user clause, the statement sets the password for the current user:

SET PASSWORD = password_option;

Any client who connects to the server using a nonanonymous account can change the password for
that account. (In particular, you can change your own password.) To see which account the server
authenticated you as, invoke the CURRENT_USER() function:

SELECT CURRENT_USER();

If a FOR user clause is given, the account name uses the format described in Section 6.2.4, “Specifying
Account Names”. For example:

SET PASSWORD FOR 'bob'@'%.example.org' = PASSWORD('auth_string');

The host name part of the account name, if omitted, defaults to '%'.

Setting the password for a named account (with a FOR clause) requires the UPDATE privilege for the mysql
system database. Setting the password for yourself (for a nonanonymous account with no FOR clause)
requires no special privileges. When the read_only system variable is enabled, SET PASSWORD requires
the SUPER privilege in addition to any other required privileges.

The password can be specified in these ways:

• Use the PASSWORD() function

The PASSWORD() argument is the cleartext (unencrypted) password. PASSWORD() hashes the
password and returns the encrypted password string for storage in the account row in the mysql.user
system table.

The PASSWORD() function hashes the password using the hashing method determined by the
value of the old_passwords system variable value. If SET PASSWORD rejects the hashed
password value returned by PASSWORD() as not being in the correct format, it may be necessary
to change old_passwords to change the hashing method. For example, if the account uses the
mysql_native_password plugin, the old_passwords value must be 0:

SET old_passwords = 0;
SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('password');

If the old_passwords value differs from that required by the authentication plugin, the hashed
password value returned by PASSWORD() is not acceptable for that plugin, and attempts to set the
password produce an error. For example:

mysql> SET old_passwords = 1;

1894

Table Maintenance Statements

mysql> SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('password');
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number

Permitted old_passwords values are described later in this section.

• Use the OLD_PASSWORD() function:

The 'auth_string' function argument is the cleartext (unencrypted) password. OLD_PASSWORD()
hashes the password using pre-4.1 hashing and returns the encrypted password string for storage in the
account row in the mysql.user system table. This hashing method is appropriate only for accounts that
use the mysql_old_password authentication plugin.

• Use an already encrypted password string

The password is specified as a string literal. It must represent the already encrypted password value, in
the hash format required by the authentication method used for the account.

The following table shows, for each password hashing method, the permitted value of old_passwords
and which authentication plugins use the hashing method.

Password Hashing Method old_passwords Value Associated Authentication
Plugin

MySQL 4.1 native hashing 0 mysql_native_password

Pre-4.1 (“old”) hashing 1 mysql_old_password

SHA-256 hashing 2 sha256_password

Caution

If you are connecting to a MySQL 4.1 or later server using a pre-4.1 client program,
do not change your password without first reading Section 6.1.2.4, “Password
Hashing in MySQL”. The default password hashing format changed in MySQL 4.1,
and if you change your password, it might be stored using a hashing format that
pre-4.1 clients cannot generate, thus preventing you from connecting to the server
afterward.

For additional information about setting passwords and authentication plugins, see Section 6.2.9,
“Assigning Account Passwords”, and Section 6.2.11, “Pluggable Authentication”.

13.7.2 Table Maintenance Statements

13.7.2.1 ANALYZE TABLE Statement

ANALYZE [NO_WRITE_TO_BINLOG | LOCAL]
 TABLE tbl_name [, tbl_name] ...

ANALYZE TABLE performs a key distribution analysis and stores the distribution for the named table or
tables. For MyISAM tables, this statement is equivalent to using myisamchk --analyze.

This statement requires SELECT and INSERT privileges for the table.

ANALYZE TABLE works with InnoDB, NDB, and MyISAM tables. It does not work with views.

ANALYZE TABLE is supported for partitioned tables, and you can use ALTER TABLE ... ANALYZE
PARTITION to analyze one or more partitions; for more information, see Section 13.1.7, “ALTER TABLE
Statement”, and Section 19.3.4, “Maintenance of Partitions”.

During the analysis, the table is locked with a read lock for InnoDB and MyISAM.

1895

Table Maintenance Statements

ANALYZE TABLE removes the table from the table definition cache, which requires a flush lock. If there
are long running statements or transactions still using the table, subsequent statements and transactions
must wait for those operations to finish before the flush lock is released. Because ANALYZE TABLE itself
typically finishes quickly, it may not be apparent that delayed transactions or statements involving the same
table are due to the remaining flush lock.

By default, the server writes ANALYZE TABLE statements to the binary log so that they replicate to
replicas. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

• ANALYZE TABLE Output

• Key Distribution Analysis

• Other Considerations

ANALYZE TABLE Output

ANALYZE TABLE returns a result set with the columns shown in the following table.

Column Value

Table The table name

Op Always analyze

Msg_type status, error, info, note, or warning

Msg_text An informational message

Key Distribution Analysis

If the table has not changed since the last key distribution analysis, the table is not analyzed again.

MySQL uses the stored key distribution to decide the table join order for joins on something other than a
constant. In addition, key distributions can be used when deciding which indexes to use for a specific table
within a query.

To check the stored key distribution cardinality, use the SHOW INDEX statement or the
INFORMATION_SCHEMA STATISTICS table. See Section 13.7.5.23, “SHOW INDEX Statement”, and
Section 21.3.22, “The INFORMATION_SCHEMA STATISTICS Table”.

For InnoDB tables, ANALYZE TABLE determines index cardinality by performing random dives on each
of the index trees and updating index cardinality estimates accordingly. Because these are only estimates,
repeated runs of ANALYZE TABLE could produce different numbers. This makes ANALYZE TABLE fast on
InnoDB tables but not 100% accurate because it does not take all rows into account.

You can make the statistics collected by ANALYZE TABLE more precise and more stable by enabling
innodb_stats_persistent, as explained in Section 14.8.11.1, “Configuring Persistent Optimizer
Statistics Parameters”. When innodb_stats_persistent is enabled, it is important to run ANALYZE
TABLE after major changes to index column data, as statistics are not recalculated periodically (such as
after a server restart).

If innodb_stats_persistent is enabled, you can change the number of random dives by modifying
the innodb_stats_persistent_sample_pages system variable. If innodb_stats_persistent is
disabled, modify innodb_stats_transient_sample_pages instead.

For more information about key distribution analysis in InnoDB, see Section 14.8.11.1, “Configuring
Persistent Optimizer Statistics Parameters”, and Section 14.8.11.3, “Estimating ANALYZE TABLE
Complexity for InnoDB Tables”.

1896

Table Maintenance Statements

MySQL uses index cardinality estimates in join optimization. If a join is not optimized in the right way, try
running ANALYZE TABLE. In the few cases that ANALYZE TABLE does not produce values good enough
for your particular tables, you can use FORCE INDEX with your queries to force the use of a particular
index, or set the max_seeks_for_key system variable to ensure that MySQL prefers index lookups over
table scans. See Section B.3.5, “Optimizer-Related Issues”.

Other Considerations

ANALYZE TABLE clears table statistics from the Information Schema INNODB_SYS_TABLESTATS table
and sets the STATS_INITIALIZED column to Uninitialized. Statistics are collected again the next
time the table is accessed.

In MySQL 5.6.11 only, gtid_next must be set to AUTOMATIC before issuing this statement. (Bug
#16062608, Bug #16715809, Bug #69045)

13.7.2.2 CHECK TABLE Statement

CHECK TABLE tbl_name [, tbl_name] ... [option] ...

option: {
 FOR UPGRADE
 | QUICK
 | FAST
 | MEDIUM
 | EXTENDED
 | CHANGED
}

CHECK TABLE checks a table or tables for errors. For MyISAM tables, the key statistics are updated as
well. CHECK TABLE can also check views for problems, such as tables that are referenced in the view
definition that no longer exist.

To check a table, you must have some privilege for it.

CHECK TABLE works for InnoDB, MyISAM, ARCHIVE, and CSV tables.

Before running CHECK TABLE on InnoDB tables, see CHECK TABLE Usage Notes for InnoDB Tables.

CHECK TABLE is supported for partitioned tables, and you can use ALTER TABLE ... CHECK
PARTITION to check one or more partitions; for more information, see Section 13.1.7, “ALTER TABLE
Statement”, and Section 19.3.4, “Maintenance of Partitions”.

In MySQL 5.6.11 only, gtid_next must be set to AUTOMATIC before issuing this statement. (Bug
#16062608, Bug #16715809, Bug #69045)

• CHECK TABLE Output

• Checking Version Compatibility

• Checking Data Consistency

• CHECK TABLE Usage Notes for InnoDB Tables

CHECK TABLE Output

CHECK TABLE returns a result set with the columns shown in the following table.

Column Value

Table The table name

1897

Table Maintenance Statements

Column Value

Op Always check

Msg_type status, error, info, note, or warning

Msg_text An informational message

The statement might produce many rows of information for each checked table. The last row has a
Msg_type value of status and the Msg_text normally should be OK. For a MyISAM table, if you
don't get OK or Table is already up to date, you should normally run a repair of the table. See
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”. Table is already up to date
means that the storage engine for the table indicated that there was no need to check the table.

Checking Version Compatibility

The FOR UPGRADE option checks whether the named tables are compatible with the current version of
MySQL. With FOR UPGRADE, the server checks each table to determine whether there have been any
incompatible changes in any of the table's data types or indexes since the table was created. If not, the
check succeeds. Otherwise, if there is a possible incompatibility, the server runs a full check on the table
(which might take some time). If the full check succeeds, the server marks the table's .frm file with the
current MySQL version number. Marking the .frm file ensures that further checks for the table with the
same version of the server are fast.

Incompatibilities might occur because the storage format for a data type has changed or because its sort
order has changed. Our aim is to avoid these changes, but occasionally they are necessary to correct
problems that would be worse than an incompatibility between releases.

FOR UPGRADE discovers these incompatibilities:

• The indexing order for end-space in TEXT columns for InnoDB and MyISAM tables changed between
MySQL 4.1 and 5.0.

• The storage method of the new DECIMAL data type changed between MySQL 5.0.3 and 5.0.5.

• If your table was created by a different version of the MySQL server than the one you are currently
running, FOR UPGRADE indicates that the table has an .frm file with an incompatible version. In this
case, the result set returned by CHECK TABLE contains a line with a Msg_type value of error and a
Msg_text value of Table upgrade required. Please do "REPAIR TABLE `tbl_name`" to
fix it!

• Changes are sometimes made to character sets or collations that require table indexes to be rebuilt.
For details about such changes, see Section 2.11.3, “Changes in MySQL 5.6”. For information about
rebuilding tables, see Section 2.11.10, “Rebuilding or Repairing Tables or Indexes”.

• The YEAR(2) data type is deprecated as of MySQL 5.6.6. For tables containing YEAR(2) columns,
CHECK TABLE recommends REPAIR TABLE, which converts 2-digit YEAR(2) columns to 4-digit YEAR
columns.

• As of MySQL 5.6.4, MySQL permits fractional seconds for TIME, DATETIME, and TIMESTAMP column
values. As a result, encoding and storage requirements for these temporal column types differ in
tables created in MySQL 5.6.4 and later. This incompatible change is described in Section 2.11.3,
“Changes in MySQL 5.6”. When upgrading to MySQL 5.6.4 or later, be aware that CHECK TABLE ...
FOR UPGRADE does not report temporal columns that use the pre-MySQL 5.6.4 format (Bug #73008,
Bug #18985579). In MySQL 5.6.24, two new system variables, avoid_temporal_upgrade and
show_old_temporals, were added to provide control over temporal column upgrades (Bug #72997,
Bug #18985760).

1898

Table Maintenance Statements

Checking Data Consistency

The following table shows the other check options that can be given. These options are passed to the
storage engine, which may use or ignore them.

Type Meaning

QUICK Do not scan the rows to check for incorrect links.
Applies to InnoDB and MyISAM tables and views.

FAST Check only tables that have not been closed
properly. Applies only to MyISAM tables and views;
ignored for InnoDB.

CHANGED Check only tables that have been changed since
the last check or that have not been closed properly.
Applies only to MyISAM tables and views; ignored
for InnoDB.

MEDIUM Scan rows to verify that deleted links are valid. This
also calculates a key checksum for the rows and
verifies this with a calculated checksum for the keys.
Applies only to MyISAM tables and views; ignored
for InnoDB.

EXTENDED Do a full key lookup for all keys for each row. This
ensures that the table is 100% consistent, but takes
a long time. Applies only to MyISAM tables and
views; ignored for InnoDB.

If none of the options QUICK, MEDIUM, or EXTENDED are specified, the default check type for dynamic-
format MyISAM tables is MEDIUM. This has the same result as running myisamchk --medium-check
tbl_name on the table. The default check type also is MEDIUM for static-format MyISAM tables, unless
CHANGED or FAST is specified. In that case, the default is QUICK. The row scan is skipped for CHANGED
and FAST because the rows are very seldom corrupted.

You can combine check options, as in the following example that does a quick check on the table to
determine whether it was closed properly:

CHECK TABLE test_table FAST QUICK;

Note

If CHECK TABLE finds no problems with a table that is marked as “corrupted” or “not
closed properly”, CHECK TABLE may remove the mark.

If a table is corrupted, the problem is most likely in the indexes and not in the data part. All of the preceding
check types check the indexes thoroughly and should thus find most errors.

To check a table that you assume is okay, use no check options or the QUICK option. The latter should be
used when you are in a hurry and can take the very small risk that QUICK does not find an error in the data
file. (In most cases, under normal usage, MySQL should find any error in the data file. If this happens, the
table is marked as “corrupted” and cannot be used until it is repaired.)

FAST and CHANGED are mostly intended to be used from a script (for example, to be executed from cron)
to check tables periodically. In most cases, FAST is to be preferred over CHANGED. (The only case when it
is not preferred is when you suspect that you have found a bug in the MyISAM code.)

1899

Table Maintenance Statements

EXTENDED is to be used only after you have run a normal check but still get errors from a table when
MySQL tries to update a row or find a row by key. This is very unlikely if a normal check has succeeded.

Use of CHECK TABLE ... EXTENDED might influence execution plans generated by the query optimizer.

Some problems reported by CHECK TABLE cannot be corrected automatically:

• Found row where the auto_increment column has the value 0.

This means that you have a row in the table where the AUTO_INCREMENT index column contains the
value 0. (It is possible to create a row where the AUTO_INCREMENT column is 0 by explicitly setting the
column to 0 with an UPDATE statement.)

This is not an error in itself, but could cause trouble if you decide to dump the table and restore it or do
an ALTER TABLE on the table. In this case, the AUTO_INCREMENT column changes value according to
the rules of AUTO_INCREMENT columns, which could cause problems such as a duplicate-key error.

To get rid of the warning, execute an UPDATE statement to set the column to some value other than 0.

CHECK TABLE Usage Notes for InnoDB Tables

The following notes apply to InnoDB tables:

• If CHECK TABLE encounters a corrupt page, the server exits to prevent error propagation (Bug #10132).
If the corruption occurs in a secondary index but table data is readable, running CHECK TABLE can still
cause a server exit.

• If CHECK TABLE encounters a corrupted DB_TRX_ID or DB_ROLL_PTR field in a clustered index, CHECK
TABLE can cause InnoDB to access an invalid undo log record, resulting in an MVCC-related server
exit.

• If CHECK TABLE encounters errors in InnoDB tables or indexes, it reports an error, and usually marks
the index and sometimes marks the table as corrupted, preventing further use of the index or table. Such
errors include an incorrect number of entries in a secondary index or incorrect links.

• If CHECK TABLE finds an incorrect number of entries in a secondary index, it reports an error but does
not cause a server exit or prevent access to the file.

• CHECK TABLE surveys the index page structure, then surveys each key entry. It does not validate the
key pointer to a clustered record or follow the path for BLOB pointers.

• When an InnoDB table is stored in its own .ibd file, the first 3 pages of the .ibd file contain
header information rather than table or index data. The CHECK TABLE statement does not detect
inconsistencies that affect only the header data. To verify the entire contents of an InnoDB .ibd file,
use the innochecksum command.

• When running CHECK TABLE on large InnoDB tables, other threads may be blocked during CHECK
TABLE execution. To avoid timeouts, the semaphore wait threshold (600 seconds) is extended by 2
hours (7200 seconds) for CHECK TABLE operations. If InnoDB detects semaphore waits of 240 seconds
or more, it starts printing InnoDB monitor output to the error log. If a lock request extends beyond the
semaphore wait threshold, InnoDB aborts the process. To avoid the possibility of a semaphore wait
timeout entirely, run CHECK TABLE QUICK instead of CHECK TABLE.

13.7.2.3 CHECKSUM TABLE Statement

CHECKSUM TABLE tbl_name [, tbl_name] ... [QUICK | EXTENDED]

1900

Table Maintenance Statements

CHECKSUM TABLE reports a checksum for the contents of a table. You can use this statement to verify that
the contents are the same before and after a backup, rollback, or other operation that is intended to put the
data back to a known state.

This statement requires the SELECT privilege for the table.

This statement is not supported for views. If you run CHECKSUM TABLE against a view, the Checksum
value is always NULL, and a warning is returned.

For a nonexistent table, CHECKSUM TABLE returns NULL and generates a warning.

During the checksum operation, the table is locked with a read lock for InnoDB and MyISAM.

Performance Considerations

By default, the entire table is read row by row and the checksum is calculated. For large tables, this could
take a long time, thus you would only perform this operation occasionally. This row-by-row calculation is
what you get with the EXTENDED clause, with InnoDB and all other storage engines other than MyISAM,
and with MyISAM tables not created with the CHECKSUM=1 clause.

For MyISAM tables created with the CHECKSUM=1 clause, CHECKSUM TABLE or CHECKSUM TABLE ...
QUICK returns the “live” table checksum that can be returned very fast. If the table does not meet all these
conditions, the QUICK method returns NULL. The QUICK method is not supported with InnoDB tables. See
Section 13.1.17, “CREATE TABLE Statement” for the syntax of the CHECKSUM clause.

The checksum value depends on the table row format. If the row format changes, the checksum also
changes. For example, the change in storage format for temporal types such as TIME, DATETIME, and
TIMESTAMP just described mean that, if a 5.5 table is upgraded to MySQL 5.6, the checksum value may
change.

Important

If the checksums for two tables are different, then it is almost certain that the
tables are different in some way. However, because the hashing function used by
CHECKSUM TABLE is not guaranteed to be collision-free, there is a slight chance
that two tables which are not identical can produce the same checksum.

13.7.2.4 OPTIMIZE TABLE Statement

OPTIMIZE [NO_WRITE_TO_BINLOG | LOCAL]
 TABLE tbl_name [, tbl_name] ...

OPTIMIZE TABLE reorganizes the physical storage of table data and associated index data, to reduce
storage space and improve I/O efficiency when accessing the table. The exact changes made to each
table depend on the storage engine used by that table.

Use OPTIMIZE TABLE in these cases, depending on the type of table:

• After doing substantial insert, update, or delete operations on an InnoDB table that has its own .ibd file
because it was created with the innodb_file_per_table option enabled. The table and indexes are
reorganized, and disk space can be reclaimed for use by the operating system.

• After doing substantial insert, update, or delete operations on columns that are part of a FULLTEXT index
in an InnoDB table. Set the configuration option innodb_optimize_fulltext_only=1 first. To keep
the index maintenance period to a reasonable time, set the innodb_ft_num_word_optimize option

1901

Table Maintenance Statements

to specify how many words to update in the search index, and run a sequence of OPTIMIZE TABLE
statements until the search index is fully updated.

• After deleting a large part of a MyISAM or ARCHIVE table, or making many changes to a MyISAM or
ARCHIVE table with variable-length rows (tables that have VARCHAR, VARBINARY, BLOB, or TEXT
columns). Deleted rows are maintained in a linked list and subsequent INSERT operations reuse old row
positions. You can use OPTIMIZE TABLE to reclaim the unused space and to defragment the data file.
After extensive changes to a table, this statement may also improve performance of statements that use
the table, sometimes significantly.

This statement requires SELECT and INSERT privileges for the table.

OPTIMIZE TABLE works for InnoDB, MyISAM, and ARCHIVE tables. OPTIMIZE TABLE is also supported
for dynamic columns of in-memory NDB tables. It does not work for fixed-width columns of in-memory
tables, nor does it work for Disk Data tables. The performance of OPTIMIZE on NDB Cluster tables can be
tuned using --ndb-optimization-delay, which controls the length of time to wait between processing
batches of rows by OPTIMIZE TABLE. For more information, see Section 18.2.7.11, “Previous NDB
Cluster Issues Resolved in NDB Cluster 7.3”.

For NDB Cluster tables, OPTIMIZE TABLE can be interrupted by (for example) killing the SQL thread
performing the OPTIMIZE operation.

By default, OPTIMIZE TABLE does not work for tables created using any other storage engine and returns
a result indicating this lack of support. You can make OPTIMIZE TABLE work for other storage engines by
starting mysqld with the --skip-new option. In this case, OPTIMIZE TABLE is just mapped to ALTER
TABLE.

This statement does not work with views.

OPTIMIZE TABLE is supported for partitioned tables. For information about using this statement with
partitioned tables and table partitions, see Section 19.3.4, “Maintenance of Partitions”.

By default, the server writes OPTIMIZE TABLE statements to the binary log so that they replicate to
replicas. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

In MySQL 5.6.11 only, gtid_next must be set to AUTOMATIC before issuing this statement. (Bug
#16062608, Bug #16715809, Bug #69045)

• OPTIMIZE TABLE Output

• InnoDB Details

• MyISAM Details

• Other Considerations

OPTIMIZE TABLE Output

OPTIMIZE TABLE returns a result set with the columns shown in the following table.

Column Value

Table The table name

Op Always optimize

Msg_type status, error, info, note, or warning

1902

Table Maintenance Statements

Column Value

Msg_text An informational message

OPTIMIZE TABLE table catches and throws any errors that occur while copying table statistics from the
old file to the newly created file. For example. if the user ID of the owner of the .frm, .MYD, or .MYI
file is different from the user ID of the mysqld process, OPTIMIZE TABLE generates a "cannot change
ownership of the file" error unless mysqld is started by the root user.

InnoDB Details

For InnoDB tables, OPTIMIZE TABLE is mapped to ALTER TABLE ... FORCE, which rebuilds the table
to update index statistics and free unused space in the clustered index. This is displayed in the output of
OPTIMIZE TABLE when you run it on an InnoDB table, as shown here:

mysql> OPTIMIZE TABLE foo;
+----------+----------+----------+---+
| Table | Op | Msg_type | Msg_text |
+----------+----------+----------+---+
| test.foo | optimize | note | Table does not support optimize, doing recreate + analyze instead |
| test.foo | optimize | status | OK |
+----------+----------+----------+---+

Prior to Mysql 5.6.17, OPTIMIZE TABLE does not use online DDL. Consequently, concurrent DML
(INSERT, UPDATE, DELETE) is not permitted on a table while OPTIMIZE TABLE is running, and secondary
indexes are not created as efficiently.

As of MySQL 5.6.17, OPTIMIZE TABLE uses online DDL for regular and partitioned InnoDB tables, which
reduces downtime for concurrent DML operations. The table rebuild triggered by OPTIMIZE TABLE is
completed in place. An exclusive table lock is only taken briefly during the prepare phase and the commit
phase of the operation. During the prepare phase, metadata is updated and an intermediate table is
created. During the commit phase, table metadata changes are committed.

OPTIMIZE TABLE rebuilds the table using the table copy method under the following conditions:

• When the old_alter_table system variable is enabled.

• When the server is started with the --skip-new option.

OPTIMIZE TABLE using online DDL is not supported for InnoDB tables that contain FULLTEXT indexes.
The table copy method is used instead.

InnoDB stores data using a page-allocation method and does not suffer from fragmentation in the same
way that legacy storage engines (such as MyISAM) do. When considering whether or not to run optimize,
consider the workload of transactions that your server is expected to process:

• Some level of fragmentation is expected. InnoDB only fills pages 93% full, to leave room for updates
without having to split pages.

• Delete operations might leave gaps that leave pages less filled than desired, which could make it
worthwhile to optimize the table.

• Updates to rows usually rewrite the data within the same page, depending on the data type and row
format, when sufficient space is available. See Section 14.9.5, “How Compression Works for InnoDB
Tables” and Section 14.11, “InnoDB Row Formats”.

• High-concurrency workloads might leave gaps in indexes over time, as InnoDB retains multiple versions
of the same data due through its MVCC mechanism. See Section 14.3, “InnoDB Multi-Versioning”.

1903

Table Maintenance Statements

MyISAM Details

For MyISAM tables, OPTIMIZE TABLE works as follows:

1. If the table has deleted or split rows, repair the table.

2. If the index pages are not sorted, sort them.

3. If the table's statistics are not up to date (and the repair could not be accomplished by sorting the
index), update them.

Other Considerations

For InnoDB tables prior to 5.6.17 and other table types, MySQL locks the table during the time OPTIMIZE
TABLE is running. As of MySQL 5.6.17, OPTIMIZE TABLE is performed online for regular and partitioned
InnoDB tables.

OPTIMIZE TABLE does not sort R-tree indexes, such as spatial indexes on POINT columns. (Bug
#23578)

13.7.2.5 REPAIR TABLE Statement

REPAIR [NO_WRITE_TO_BINLOG | LOCAL]
 TABLE tbl_name [, tbl_name] ...
 [QUICK] [EXTENDED] [USE_FRM]

REPAIR TABLE repairs a possibly corrupted table, for certain storage engines only.

This statement requires SELECT and INSERT privileges for the table.

Although normally you should never have to run REPAIR TABLE, if disaster strikes, this statement is very
likely to get back all your data from a MyISAM table. If your tables become corrupted often, try to find the
reason for it, to eliminate the need to use REPAIR TABLE. See Section B.3.3.3, “What to Do If MySQL
Keeps Crashing”, and Section 15.2.4, “MyISAM Table Problems”.

REPAIR TABLE checks the table to see whether an upgrade is required. If so, it performs the upgrade,
following the same rules as CHECK TABLE ... FOR UPGRADE. See Section 13.7.2.2, “CHECK TABLE
Statement”, for more information.

Important

• Make a backup of a table before performing a table repair operation; under some
circumstances the operation might cause data loss. Possible causes include but
are not limited to file system errors. See Chapter 7, Backup and Recovery.

• If the server exits during a REPAIR TABLE operation, it is essential after
restarting it that you immediately execute another REPAIR TABLE statement
for the table before performing any other operations on it. In the worst case, you
might have a new clean index file without information about the data file, and then
the next operation you perform could overwrite the data file. This is an unlikely
but possible scenario that underscores the value of making a backup first.

• In the event that a table on the source becomes corrupted and you run REPAIR
TABLE on it, any resulting changes to the original table are not propagated to
replicas.

• In MySQL 5.6.11 only, gtid_next must be set to AUTOMATIC before issuing this
statement. (Bug #16062608, Bug #16715809, Bug #69045)

1904

Table Maintenance Statements

• REPAIR TABLE Storage Engine and Partitioning Support

• REPAIR TABLE Options

• REPAIR TABLE Output

• Table Repair Considerations

REPAIR TABLE Storage Engine and Partitioning Support

REPAIR TABLE works for MyISAM, ARCHIVE, and CSV tables. For MyISAM tables, it has the same effect
as myisamchk --recover tbl_name by default. This statement does not work with views.

REPAIR TABLE is supported for partitioned tables. However, the USE_FRM option cannot be used with this
statement on a partitioned table.

You can use ALTER TABLE ... REPAIR PARTITION to repair one or more partitions; for more
information, see Section 13.1.7, “ALTER TABLE Statement”, and Section 19.3.4, “Maintenance of
Partitions”.

REPAIR TABLE Options

• NO_WRITE_TO_BINLOG or LOCAL

By default, the server writes REPAIR TABLE statements to the binary log so that they replicate to
replicas. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

• QUICK

If you use the QUICK option, REPAIR TABLE tries to repair only the index file, and not the data file. This
type of repair is like that done by myisamchk --recover --quick.

• EXTENDED

If you use the EXTENDED option, MySQL creates the index row by row instead of creating one index at a
time with sorting. This type of repair is like that done by myisamchk --safe-recover.

• USE_FRM

The USE_FRM option is available for use if the .MYI index file is missing or if its header is corrupted.
This option tells MySQL not to trust the information in the .MYI file header and to re-create it using
information from the .frm file. This kind of repair cannot be done with myisamchk.

Caution

Use the USE_FRM option only if you cannot use regular REPAIR modes. Telling
the server to ignore the .MYI file makes important table metadata stored
in the .MYI unavailable to the repair process, which can have deleterious
consequences:

• The current AUTO_INCREMENT value is lost.

• The link to deleted records in the table is lost, which means that free space for
deleted records remains unoccupied thereafter.

• The .MYI header indicates whether the table is compressed. If the server
ignores this information, it cannot tell that a table is compressed and repair

1905

Plugin and Loadable Function Statements

can cause change or loss of table contents. This means that USE_FRM should
not be used with compressed tables. That should not be necessary, anyway:
Compressed tables are read only, so they should not become corrupt.

If you use USE_FRM for a table that was created by a different version of the
MySQL server than the one you are currently running, REPAIR TABLE does
not attempt to repair the table. In this case, the result set returned by REPAIR
TABLE contains a line with a Msg_type value of error and a Msg_text value
of Failed repairing incompatible .FRM file.

If USE_FRM is used, REPAIR TABLE does not check the table to see whether an
upgrade is required.

REPAIR TABLE Output

REPAIR TABLE returns a result set with the columns shown in the following table.

Column Value

Table The table name

Op Always repair

Msg_type status, error, info, note, or warning

Msg_text An informational message

The REPAIR TABLE statement might produce many rows of information for each repaired table. The last
row has a Msg_type value of status and Msg_test normally should be OK. For a MyISAM table, if you
do not get OK, you should try repairing it with myisamchk --safe-recover. (REPAIR TABLE does not
implement all the options of myisamchk. With myisamchk --safe-recover, you can also use options
that REPAIR TABLE does not support, such as --max-record-length.)

REPAIR TABLE table catches and throws any errors that occur while copying table statistics from the
old corrupted file to the newly created file. For example. if the user ID of the owner of the .frm, .MYD, or
.MYI file is different from the user ID of the mysqld process, REPAIR TABLE generates a "cannot change
ownership of the file" error unless mysqld is started by the root user.

Table Repair Considerations

You may be able to increase REPAIR TABLE performance by setting certain system variables. See
Section 8.6.3, “Optimizing REPAIR TABLE Statements”.

13.7.3 Plugin and Loadable Function Statements

13.7.3.1 CREATE FUNCTION Statement for Loadable Functions

CREATE [AGGREGATE] FUNCTION function_name
 RETURNS {STRING|INTEGER|REAL|DECIMAL}
 SONAME shared_library_name

This statement loads the loadable function named function_name. (CREATE FUNCTION is also used
to created stored functions; see Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION
Statements”.)

A loadable function is a way to extend MySQL with a new function that works like a native (built-in) MySQL
function such as ABS() or CONCAT(). See Adding a Loadable Function.

1906

https://dev.mysql.com/doc/extending-mysql/5.6/en/adding-loadable-function.html

Plugin and Loadable Function Statements

function_name is the name that should be used in SQL statements to invoke the function. The RETURNS
clause indicates the type of the function's return value. DECIMAL is a legal value after RETURNS, but
currently DECIMAL functions return string values and should be written like STRING functions.

The AGGREGATE keyword, if given, signifies that the function is an aggregate (group) function. An
aggregate function works exactly like a native MySQL aggregate function such as SUM() or COUNT().

shared_library_name is the base name of the shared library file containing the code that implements
the function. The file must be located in the plugin directory. This directory is given by the value of the
plugin_dir system variable. For more information, see Section 5.6.1, “Installing and Uninstalling
Loadable Functions”.

CREATE FUNCTION requires the INSERT privilege for the mysql system database because it adds a row
to the mysql.func system table to register the function.

During the normal startup sequence, the server loads functions registered in the mysql.func table. If the
server is started with the --skip-grant-tables option, functions registered in the table are not loaded
and are unavailable.

Note

To upgrade the shared library associated with a loadable function, issue a DROP
FUNCTION statement, upgrade the shared library, and then issue a CREATE
FUNCTION statement. If you upgrade the shared library first and then use DROP
FUNCTION, the server may unexpectedly shut down.

13.7.3.2 DROP FUNCTION Statement for Loadable Functions

DROP FUNCTION [IF EXISTS] function_name

This statement drops the loadable function named function_name. (DROP FUNCTION is also used to
drop stored functions; see Section 13.1.26, “DROP PROCEDURE and DROP FUNCTION Statements”.)

DROP FUNCTION is the complement of CREATE FUNCTION. It requires the DELETE privilege for the
mysql system database because it removes the row from the mysql.func system table that registers the
function.

During the normal startup sequence, the server loads functions registered in the mysql.func table.
Because DROP FUNCTION removes the mysql.func row for the dropped function, the server does not
load the function during subsequent restarts.

Note

To upgrade the shared library associated with a loadable function, issue a DROP
FUNCTION statement, upgrade the shared library, and then issue a CREATE
FUNCTION statement. If you upgrade the shared library first and then use DROP
FUNCTION, the server may unexpectedly shut down.

13.7.3.3 INSTALL PLUGIN Statement

INSTALL PLUGIN plugin_name SONAME 'shared_library_name'

This statement installs a server plugin. It requires the INSERT privilege for the mysql.plugin system
table because it adds a row to that table to register the plugin.

plugin_name is the name of the plugin as defined in the plugin descriptor structure contained in the
library file (see Plugin Data Structures). Plugin names are not case-sensitive. For maximal compatibility,

1907

https://dev.mysql.com/doc/extending-mysql/5.6/en/plugin-data-structures.html

Plugin and Loadable Function Statements

plugin names should be limited to ASCII letters, digits, and underscore because they are used in C source
files, shell command lines, M4 and Bourne shell scripts, and SQL environments.

shared_library_name is the name of the shared library that contains the plugin code. The
name includes the file name extension (for example, libmyplugin.so, libmyplugin.dll, or
libmyplugin.dylib).

The shared library must be located in the plugin directory (the directory named by the plugin_dir system
variable). The library must be in the plugin directory itself, not in a subdirectory. By default, plugin_dir
is the plugin directory under the directory named by the pkglibdir configuration variable, but it can be
changed by setting the value of plugin_dir at server startup. For example, set its value in a my.cnf file:

[mysqld]
plugin_dir=/path/to/plugin/directory

If the value of plugin_dir is a relative path name, it is taken to be relative to the MySQL base directory
(the value of the basedir system variable).

INSTALL PLUGIN loads and initializes the plugin code to make the plugin available for use. A plugin is
initialized by executing its initialization function, which handles any setup that the plugin must perform
before it can be used. When the server shuts down, it executes the deinitialization function for each plugin
that is loaded so that the plugin has a chance to perform any final cleanup.

INSTALL PLUGIN also registers the plugin by adding a line that indicates the plugin name and library
file name to the mysql.plugin system table. During the normal startup sequence, the server loads
and initializes plugins registered in mysql.plugin. This means that a plugin is installed with INSTALL
PLUGIN only once, not every time the server starts. If the server is started with the --skip-grant-
tables option, plugins registered in the mysql.plugin table are not loaded and are unavailable.

A plugin library can contain multiple plugins. For each of them to be installed, use a separate INSTALL
PLUGIN statement. Each statement names a different plugin, but all of them specify the same library name.

INSTALL PLUGIN causes the server to read option (my.cnf) files just as during server startup. This
enables the plugin to pick up any relevant options from those files. It is possible to add plugin options to an
option file even before loading a plugin (if the loose prefix is used). It is also possible to uninstall a plugin,
edit my.cnf, and install the plugin again. Restarting the plugin this way enables it to the new option values
without a server restart.

For options that control individual plugin loading at server startup, see Section 5.5.1, “Installing and
Uninstalling Plugins”. If you need to load plugins for a single server startup when the --skip-grant-
tables option is given (which tells the server not to read system tables), use the --plugin-load option.
See Section 5.1.6, “Server Command Options”.

To remove a plugin, use the UNINSTALL PLUGIN statement.

For additional information about plugin loading, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To see what plugins are installed, use the SHOW PLUGINS statement or query the INFORMATION_SCHEMA
the PLUGINS table.

If you recompile a plugin library and need to reinstall it, you can use either of the following methods:

• Use UNINSTALL PLUGIN to uninstall all plugins in the library, install the new plugin library file in the
plugin directory, and then use INSTALL PLUGIN to install all plugins in the library. This procedure has
the advantage that it can be used without stopping the server. However, if the plugin library contains
many plugins, you must issue many INSTALL PLUGIN and UNINSTALL PLUGIN statements.

1908

SET Statements

• Stop the server, install the new plugin library file in the plugin directory, and restart the server.

13.7.3.4 UNINSTALL PLUGIN Statement

UNINSTALL PLUGIN plugin_name

This statement removes an installed server plugin. UNINSTALL PLUGIN is the complement of INSTALL
PLUGIN. It requires the DELETE privilege for the mysql.plugin system table because it removes the row
from that table that registers the plugin.

plugin_name must be the name of some plugin that is listed in the mysql.plugin table. The server
executes the plugin's deinitialization function and removes the row for the plugin from the mysql.plugin
system table, so that subsequent server restarts do not load and initialize the plugin. UNINSTALL PLUGIN
does not remove the plugin's shared library file.

You cannot uninstall a plugin if any table that uses it is open.

Plugin removal has implications for the use of associated tables. For example, if a full-text parser plugin
is associated with a FULLTEXT index on the table, uninstalling the plugin makes the table unusable. Any
attempt to access the table results in an error. The table cannot even be opened, so you cannot drop an
index for which the plugin is used. This means that uninstalling a plugin is something to do with care unless
you do not care about the table contents. If you are uninstalling a plugin with no intention of reinstalling it
later and you care about the table contents, you should dump the table with mysqldump and remove the
WITH PARSER clause from the dumped CREATE TABLE statement so that you can reload the table later.
If you do not care about the table, DROP TABLE can be used even if any plugins associated with the table
are missing.

For additional information about plugin loading, see Section 5.5.1, “Installing and Uninstalling Plugins”.

13.7.4 SET Statements

The SET statement has several forms. Descriptions for those forms that are not associated with a specific
server capability appear in subsections of this section:

• SET var_name = value enables you to assign values to variables that affect the operation of the
server or clients. See Section 13.7.4.1, “SET Syntax for Variable Assignment”.

• SET CHARACTER SET and SET NAMES assign values to character set and collation variables
associated with the current connection to the server. See Section 13.7.4.2, “SET CHARACTER SET
Statement”, and Section 13.7.4.3, “SET NAMES Statement”.

Descriptions for the other forms appear elsewhere, grouped with other statements related to the capability
they help implement:

• SET PASSWORD assigns account passwords. See Section 13.7.1.7, “SET PASSWORD Statement”.

• SET TRANSACTION ISOLATION LEVEL sets the isolation level for transaction processing. See
Section 13.3.6, “SET TRANSACTION Statement”.

13.7.4.1 SET Syntax for Variable Assignment

SET variable = expr [, variable = expr] ...

variable: {
 user_var_name
 | param_name
 | local_var_name

1909

SET Statements

 | {GLOBAL | @@GLOBAL.} system_var_name
 | [SESSION | @@SESSION. | @@] system_var_name
}

SET ONE_SHOT system_var_name = expr

SET syntax for variable assignment enables you to assign values to different types of variables that affect
the operation of the server or clients:

• User-defined variables. See Section 9.4, “User-Defined Variables”.

• Stored procedure and function parameters, and stored program local variables. See Section 13.6.4,
“Variables in Stored Programs”.

• System variables. See Section 5.1.7, “Server System Variables”. System variables also can be set at
server startup, as described in Section 5.1.8, “Using System Variables”.

A SET statement that assigns variable values is not written to the binary log, so in replication scenarios it
affects only the host on which you execute it. To affect all replication hosts, execute the statement on each
host.

The following sections describe SET syntax for setting variables. They use the = assignment operator, but
the := assignment operator is also permitted for this purpose.

• User-Defined Variable Assignment

• Parameter and Local Variable Assignment

• System Variable Assignment

• SET Error Handling

• Multiple Variable Assignment

• System Variable References in Expressions

• ONE_SHOT Assignment

User-Defined Variable Assignment

User-defined variables are created locally within a session and exist only within the context of that session;
see Section 9.4, “User-Defined Variables”.

A user-defined variable is written as @var_name and is assigned an expression value as follows:

SET @var_name = expr;

Examples:

SET @name = 43;
SET @total_tax = (SELECT SUM(tax) FROM taxable_transactions);

As demonstrated by those statements, expr can range from simple (a literal value) to more complex (the
value returned by a scalar subquery).

Parameter and Local Variable Assignment

SET applies to parameters and local variables in the context of the stored object within which they are
defined. The following procedure uses the increment procedure parameter and counter local variable:

1910

SET Statements

CREATE PROCEDURE p(increment INT)
BEGIN
 DECLARE counter INT DEFAULT 0;
 WHILE counter < 10 DO
 -- ... do work ...
 SET counter = counter + increment;
 END WHILE;
END;

System Variable Assignment

The MySQL server maintains system variables that configure its operation. A system variable can have a
global value that affects server operation as a whole, a session value that affects the current session, or
both. Many system variables are dynamic and can be changed at runtime using the SET statement to affect
operation of the current server instance. (To make a global system variable setting permanent so that it
applies across server restarts, you should also set it in an option file.)

If you change a session system variable, the value remains in effect within your session until you change
the variable to a different value or the session ends. The change has no effect on other sessions.

If you change a global system variable, the value is remembered and used to initialize the session value
for new sessions until you change the variable to a different value or the server exits. The change is visible
to any client that accesses the global value. However, the change affects the corresponding session value
only for clients that connect after the change. The global variable change does not affect the session value
for any current client sessions (not even the session within which the global value change occurs).

Note

Setting a global system variable value always requires special privileges. Setting
a session system variable value normally requires no special privileges and can
be done by any user, although there are exceptions. For more information, see
Section 5.1.8.1, “System Variable Privileges”.

The following discussion describes the syntax options for setting system variables:

• To assign a value to a global system variable, precede the variable name by the GLOBAL keyword or the
@@GLOBAL. qualifier:

SET GLOBAL max_connections = 1000;
SET @@GLOBAL.max_connections = 1000;

• To assign a value to a session system variable, precede the variable name by the SESSION or LOCAL
keyword, by the @@SESSION., @@LOCAL., or @@ qualifier, or by no keyword or no modifier at all:

SET SESSION sql_mode = 'TRADITIONAL';
SET LOCAL sql_mode = 'TRADITIONAL';
SET @@SESSION.sql_mode = 'TRADITIONAL';
SET @@LOCAL.sql_mode = 'TRADITIONAL';
SET @@sql_mode = 'TRADITIONAL';
SET sql_mode = 'TRADITIONAL';

A client can change its own session variables, but not those of any other client.

To set a global system variable value to the compiled-in MySQL default value or a session system variable
to the current corresponding global value, set the variable to the value DEFAULT. For example, the
following two statements are identical in setting the session value of max_join_size to the current global
value:

SET @@SESSION.max_join_size = DEFAULT;

1911

SET Statements

SET @@SESSION.max_join_size = @@GLOBAL.max_join_size;

To display system variable names and values:

• Use the SHOW VARIABLES statement; see Section 13.7.5.40, “SHOW VARIABLES Statement”.

• Several INFORMATION_SCHEMA tables provide system variable information. See Section 21.3.10, “The
INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables”.

SET Error Handling

If any variable assignment in a SET statement fails, the entire statement fails and no variables are
changed.

SET produces an error under the circumstances described here. Most of the examples show SET
statements that use keyword syntax (for example, GLOBAL or SESSION), but the principles are also true for
statements that use the corresponding modifiers (for example, @@GLOBAL. or @@SESSION.).

• Use of SET (any variant) to set a read-only variable:

mysql> SET GLOBAL version = 'abc';
ERROR 1238 (HY000): Variable 'version' is a read only variable

• Use of GLOBAL to set a variable that has only a session value:

mysql> SET GLOBAL sql_log_bin = ON;
ERROR 1231 (42000): Variable 'sql_log_bin' can't be
set to the value of 'ON'

• Use of SESSION to set a variable that has only a global value:

mysql> SET SESSION max_connections = 1000;
ERROR 1229 (HY000): Variable 'max_connections' is a
GLOBAL variable and should be set with SET GLOBAL

• Omission of GLOBAL to set a variable that has only a global value:

mysql> SET max_connections = 1000;
ERROR 1229 (HY000): Variable 'max_connections' is a
GLOBAL variable and should be set with SET GLOBAL

• The @@GLOBAL., @@SESSION., and @@ modifiers apply only to system variables. An error occurs for
attempts to apply them to user-defined variables, stored procedure or function parameters, or stored
program local variables.

• Not all system variables can be set to DEFAULT. In such cases, assigning DEFAULT results in an error.

• An error occurs for attempts to assign DEFAULT to user-defined variables, stored procedure or function
parameters, or stored program local variables.

Multiple Variable Assignment

A SET statement can contain multiple variable assignments, separated by commas. This statement assigns
a value to a user-defined variable and a system variable:

SET @x = 1, SESSION sql_mode = '';

If you set multiple system variables in a single statement, the most recent GLOBAL or SESSION keyword in
the statement is used for following assignments that have no keyword specified.

1912

SET Statements

Examples of multiple-variable assignment:

SET GLOBAL sort_buffer_size = 1000000, SESSION sort_buffer_size = 1000000;
SET @@GLOBAL.sort_buffer_size = 1000000, @@LOCAL.sort_buffer_size = 1000000;
SET GLOBAL max_connections = 1000, sort_buffer_size = 1000000;

The @@GLOBAL., @@SESSION., and @@ modifiers apply only to the immediately following system variable,
not any remaining system variables. This statement sets the sort_buffer_size global value to 50000
and the session value to 1000000:

SET @@GLOBAL.sort_buffer_size = 50000, sort_buffer_size = 1000000;

System Variable References in Expressions

To refer to the value of a system variable in expressions, use one of the @@-modifiers. For example, you
can retrieve system variable values in a SELECT statement like this:

SELECT @@GLOBAL.sql_mode, @@SESSION.sql_mode, @@sql_mode;

Note

A reference to a system variable in an expression as @@var_name (with @@ rather
than @@GLOBAL. or @@SESSION.) returns the session value if it exists and the
global value otherwise. This differs from SET @@var_name = expr, which always
refers to the session value.

ONE_SHOT Assignment

The SET ONE_SHOT syntax is for internal use only, has been deprecated since MySQL 5.0, and was
removed in MySQL 5.6.1.

13.7.4.2 SET CHARACTER SET Statement

SET {CHARACTER SET | CHARSET}
 {'charset_name' | DEFAULT}

This statement maps all strings sent between the server and the current client with the given mapping.
SET CHARACTER SET sets three session system variables: character_set_client and
character_set_results are set to the given character set, and character_set_connection to the
value of character_set_database. See Section 10.4, “Connection Character Sets and Collations”.

charset_name may be quoted or unquoted.

The default character set mapping can be restored by using the value DEFAULT. The default depends on
the server configuration.

Some character sets cannot be used as the client character set. Attempting to use them with SET
CHARACTER SET produces an error. See Impermissible Client Character Sets.

13.7.4.3 SET NAMES Statement

SET NAMES {'charset_name'
 [COLLATE 'collation_name'] | DEFAULT}

This statement sets the three session system variables character_set_client,
character_set_connection, and character_set_results to the given character set. Setting

1913

SHOW Statements

character_set_connection to charset_name also sets collation_connection to the default
collation for charset_name. See Section 10.4, “Connection Character Sets and Collations”.

The optional COLLATE clause may be used to specify a collation explicitly. If given, the collation must one
of the permitted collations for charset_name.

charset_name and collation_name may be quoted or unquoted.

The default mapping can be restored by using a value of DEFAULT. The default depends on the server
configuration.

Some character sets cannot be used as the client character set. Attempting to use them with SET NAMES
produces an error. See Impermissible Client Character Sets.

13.7.5 SHOW Statements

SHOW has many forms that provide information about databases, tables, columns, or status information
about the server. This section describes those following:

SHOW AUTHORS
SHOW {BINARY | MASTER} LOGS
SHOW BINLOG EVENTS [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]
SHOW {CHARACTER SET | CHARSET} [like_or_where]
SHOW COLLATION [like_or_where]
SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [like_or_where]
SHOW CONTRIBUTORS
SHOW CREATE DATABASE db_name
SHOW CREATE EVENT event_name
SHOW CREATE FUNCTION func_name
SHOW CREATE PROCEDURE proc_name
SHOW CREATE TABLE tbl_name
SHOW CREATE TRIGGER trigger_name
SHOW CREATE VIEW view_name
SHOW DATABASES [like_or_where]
SHOW ENGINE engine_name {STATUS | MUTEX}
SHOW [STORAGE] ENGINES
SHOW ERRORS [LIMIT [offset,] row_count]
SHOW EVENTS
SHOW FUNCTION CODE func_name
SHOW FUNCTION STATUS [like_or_where]
SHOW GRANTS FOR user
SHOW INDEX FROM tbl_name [FROM db_name]
SHOW MASTER STATUS
SHOW OPEN TABLES [FROM db_name] [like_or_where]
SHOW PLUGINS
SHOW PROCEDURE CODE proc_name
SHOW PROCEDURE STATUS [like_or_where]
SHOW PRIVILEGES
SHOW [FULL] PROCESSLIST
SHOW PROFILE [types] [FOR QUERY n] [OFFSET n] [LIMIT n]
SHOW PROFILES
SHOW RELAYLOG EVENTS [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]
SHOW SLAVE HOSTS
SHOW SLAVE STATUS
SHOW [GLOBAL | SESSION] STATUS [like_or_where]
SHOW TABLE STATUS [FROM db_name] [like_or_where]
SHOW [FULL] TABLES [FROM db_name] [like_or_where]
SHOW TRIGGERS [FROM db_name] [like_or_where]
SHOW [GLOBAL | SESSION] VARIABLES [like_or_where]
SHOW WARNINGS [LIMIT [offset,] row_count]

like_or_where: {
 LIKE 'pattern'

1914

SHOW Statements

 | WHERE expr
}

If the syntax for a given SHOW statement includes a LIKE 'pattern' part, 'pattern' is a string that
can contain the SQL % and _ wildcard characters. The pattern is useful for restricting statement output to
matching values.

Several SHOW statements also accept a WHERE clause that provides more flexibility in specifying which
rows to display. See Section 21.9, “Extensions to SHOW Statements”.

Many MySQL APIs (such as PHP) enable you to treat the result returned from a SHOW statement as you
would a result set from a SELECT; see Chapter 23, Connectors and APIs, or your API documentation
for more information. In addition, you can work in SQL with results from queries on tables in the
INFORMATION_SCHEMA database, which you cannot easily do with results from SHOW statements. See
Chapter 21, INFORMATION_SCHEMA Tables.

13.7.5.1 SHOW AUTHORS Statement

SHOW AUTHORS

The SHOW AUTHORS statement displays information about the people who work on MySQL. For each
author, it displays Name, Location, and Comment values.

This statement is removed as of MySQL 5.6.8.

13.7.5.2 SHOW BINARY LOGS Statement

SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as part of the procedure described in
Section 13.4.1.1, “PURGE BINARY LOGS Statement”, that shows how to determine which logs can be
purged.

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+

SHOW MASTER LOGS is equivalent to SHOW BINARY LOGS.

A user with the SUPER or REPLICATION CLIENT privilege may execute this statement.

13.7.5.3 SHOW BINLOG EVENTS Statement

SHOW BINLOG EVENTS
 [IN 'log_name']
 [FROM pos]
 [LIMIT [offset,] row_count]

Shows the events in the binary log. If you do not specify 'log_name', the first binary log is displayed.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Statement”.

1915

SHOW Statements

Note

Issuing a SHOW BINLOG EVENTS with no LIMIT clause could start a very time-
and resource-consuming process because the server returns to the client the
complete contents of the binary log (which includes all statements executed by
the server that modify data). As an alternative to SHOW BINLOG EVENTS, use the
mysqlbinlog utility to save the binary log to a text file for later examination and
analysis. See Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”.

SHOW BINLOG EVENTS displays the following fields for each event in the binary log:

• Log_name

The name of the file that is being listed.

• Pos

The position at which the event occurs.

• Event_type

An identifier that describes the event type.

• Server_id

The server ID of the server on which the event originated.

• End_log_pos

The position at which the next event begins, which is equal to Pos plus the size of the event.

• Info

More detailed information about the event type. The format of this information depends on the event
type.

Note

Some events relating to the setting of user and system variables are not included in
the output from SHOW BINLOG EVENTS. To get complete coverage of events within
a binary log, use mysqlbinlog.

Note

SHOW BINLOG EVENTS does not work with relay log files. You can use SHOW
RELAYLOG EVENTS for this purpose.

13.7.5.4 SHOW CHARACTER SET Statement

SHOW {CHARACTER SET | CHARSET}
 [LIKE 'pattern' | WHERE expr]

The SHOW CHARACTER SET statement shows all available character sets. The LIKE clause, if present,
indicates which character set names to match. The WHERE clause can be given to select rows using more
general conditions, as discussed in Section 21.9, “Extensions to SHOW Statements”. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+

1916

SHOW Statements

| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

SHOW CHARACTER SET output has these columns:

• Charset

The character set name.

• Description

A description of the character set.

• Default collation

The default collation for the character set.

• Maxlen

The maximum number of bytes required to store one character.

The filename character set is for internal use only; consequently, SHOW CHARACTER SET does not
display it.

Character set information is also available from the INFORMATION_SCHEMA CHARACTER_SETS table.

13.7.5.5 SHOW COLLATION Statement

SHOW COLLATION
 [LIKE 'pattern' | WHERE expr]

This statement lists collations supported by the server. By default, the output from SHOW COLLATION
includes all available collations. The LIKE clause, if present, indicates which collation names to match. The
WHERE clause can be given to select rows using more general conditions, as discussed in Section 21.9,
“Extensions to SHOW Statements”. For example:

mysql> SHOW COLLATION WHERE Charset = 'latin1';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5		Yes	1
latin1_swedish_ci	latin1	8	Yes	Yes	1
latin1_danish_ci	latin1	15		Yes	1
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	1
latin1_general_ci	latin1	48		Yes	1
latin1_general_cs	latin1	49		Yes	1
latin1_spanish_ci	latin1	94		Yes	1
+-------------------+---------+----+---------+----------+---------+

SHOW COLLATION output has these columns:

• Collation

The collation name.

1917

SHOW Statements

• Charset

The name of the character set with which the collation is associated.

• Id

The collation ID.

• Default

Whether the collation is the default for its character set.

• Compiled

Whether the character set is compiled into the server.

• Sortlen

This is related to the amount of memory required to sort strings expressed in the character set.

To see the default collation for each character set, use the following statement. Default is a reserved
word, so to use it as an identifier, it must be quoted as such:

mysql> SHOW COLLATION WHERE `Default` = 'Yes';
+---------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------------+----------+----+---------+----------+---------+
big5_chinese_ci	big5	1	Yes	Yes	1
dec8_swedish_ci	dec8	3	Yes	Yes	1
cp850_general_ci	cp850	4	Yes	Yes	1
hp8_english_ci	hp8	6	Yes	Yes	1
koi8r_general_ci	koi8r	7	Yes	Yes	1
latin1_swedish_ci	latin1	8	Yes	Yes	1
...

Collation information is also available from the INFORMATION_SCHEMA COLLATIONS table. See
Section 21.3.3, “The INFORMATION_SCHEMA COLLATIONS Table”.

13.7.5.6 SHOW COLUMNS Statement

SHOW [FULL] {COLUMNS | FIELDS}
 {FROM | IN} tbl_name
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW COLUMNS displays information about the columns in a given table. It also works for views. SHOW
COLUMNS displays information only for those columns for which you have some privilege.

mysql> SHOW COLUMNS FROM City;
+-------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+----------+------+-----+---------+----------------+
ID	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
CountryCode	char(3)	NO	MUL		
District	char(20)	NO			
Population	int(11)	NO		0	
+-------------+----------+------+-----+---------+----------------+

An alternative to tbl_name FROM db_name syntax is db_name.tbl_name. These two statements are
equivalent:

1918

SHOW Statements

SHOW COLUMNS FROM mytable FROM mydb;
SHOW COLUMNS FROM mydb.mytable;

The optional FULL keyword causes the output to include the column collation and comments, as well as
the privileges you have for each column.

The LIKE clause, if present, indicates which column names to match. The WHERE clause can be given
to select rows using more general conditions, as discussed in Section 21.9, “Extensions to SHOW
Statements”.

The data types may differ from what you expect them to be based on a CREATE TABLE statement
because MySQL sometimes changes data types when you create or alter a table. The conditions under
which this occurs are described in Section 13.1.17.6, “Silent Column Specification Changes”.

SHOW COLUMNS displays the following values for each table column:

• Field

The column name.

• Type

The column data type.

• Collation

The collation for nonbinary string columns, or NULL for other columns. This value is displayed only if you
use the FULL keyword.

• Null

The column nullability. The value is YES if NULL values can be stored in the column, NO if not.

• Key

Whether the column is indexed:

• If Key is empty, the column either is not indexed or is indexed only as a secondary column in a
multiple-column, nonunique index.

• If Key is PRI, the column is a PRIMARY KEY or is one of the columns in a multiple-column PRIMARY
KEY.

• If Key is UNI, the column is the first column of a UNIQUE index. (A UNIQUE index permits multiple
NULL values, but you can tell whether the column permits NULL by checking the Null field.)

• If Key is MUL, the column is the first column of a nonunique index in which multiple occurrences of a
given value are permitted within the column.

If more than one of the Key values applies to a given column of a table, Key displays the one with the
highest priority, in the order PRI, UNI, MUL.

A UNIQUE index may be displayed as PRI if it cannot contain NULL values and there is no PRIMARY
KEY in the table. A UNIQUE index may display as MUL if several columns form a composite UNIQUE
index; although the combination of the columns is unique, each column can still hold multiple
occurrences of a given value.

• Default

1919

SHOW Statements

The default value for the column. This is NULL if the column has an explicit default of NULL, or if the
column definition includes no DEFAULT clause.

• Extra

Any additional information that is available about a given column. The value is nonempty in
these cases: auto_increment for columns that have the AUTO_INCREMENT attribute; on
update CURRENT_TIMESTAMP for TIMESTAMP or DATETIME columns that have the ON UPDATE
CURRENT_TIMESTAMP attribute.

• Privileges

The privileges you have for the column. This value is displayed only if you use the FULL keyword.

• Comment

Any comment included in the column definition. This value is displayed only if you use the FULL
keyword.

Table column information is also available from the INFORMATION_SCHEMA COLUMNS table. See
Section 21.3.5, “The INFORMATION_SCHEMA COLUMNS Table”.

You can list a table's columns with the mysqlshow db_name tbl_name command.

The DESCRIBE statement provides information similar to SHOW COLUMNS. See Section 13.8.1,
“DESCRIBE Statement”.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide
information about tables. See Section 13.7.5, “SHOW Statements”.

13.7.5.7 SHOW CONTRIBUTORS Statement

SHOW CONTRIBUTORS

The SHOW CONTRIBUTORS statement displays information about the people who contribute to MySQL
source or to causes that we support. For each contributor, it displays Name, Location, and Comment
values.

This statement is removed as of MySQL 5.6.8.

13.7.5.8 SHOW CREATE DATABASE Statement

SHOW CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name

Shows the CREATE DATABASE statement that creates the named database. If the SHOW statement
includes an IF NOT EXISTS clause, the output too includes such a clause. SHOW CREATE SCHEMA is a
synonym for SHOW CREATE DATABASE.

mysql> SHOW CREATE DATABASE test\G
*************************** 1. row ***************************
 Database: test
Create Database: CREATE DATABASE `test`
 /*!40100 DEFAULT CHARACTER SET latin1 */

mysql> SHOW CREATE SCHEMA test\G
*************************** 1. row ***************************

1920

SHOW Statements

 Database: test
Create Database: CREATE DATABASE `test`
 /*!40100 DEFAULT CHARACTER SET latin1 */

SHOW CREATE DATABASE quotes table and column names according to the value of the
sql_quote_show_create option. See Section 5.1.7, “Server System Variables”.

13.7.5.9 SHOW CREATE EVENT Statement

SHOW CREATE EVENT event_name

This statement displays the CREATE EVENT statement needed to re-create a given event. It requires the
EVENT privilege for the database from which the event is to be shown. For example (using the same event
e_daily defined and then altered in Section 13.7.5.19, “SHOW EVENTS Statement”):

mysql> SHOW CREATE EVENT myschema.e_daily\G
*************************** 1. row ***************************
 Event: e_daily
 sql_mode: NO_ENGINE_SUBSTITUTION
 time_zone: SYSTEM
 Create Event: CREATE DEFINER=`jon`@`ghidora` EVENT `e_daily`
 ON SCHEDULE EVERY 1 DAY
 STARTS CURRENT_TIMESTAMP + INTERVAL 6 HOUR
 ON COMPLETION NOT PRESERVE
 ENABLE
 COMMENT 'Saves total number of sessions then
 clears the table each day'
 DO BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system variable when
the event was created. collation_connection is the session value of the collation_connection
system variable when the event was created. Database Collation is the collation of the database with
which the event is associated.

The output reflects the current status of the event (ENABLE) rather than the status with which it was
created.

13.7.5.10 SHOW CREATE FUNCTION Statement

SHOW CREATE FUNCTION func_name

This statement is similar to SHOW CREATE PROCEDURE but for stored functions. See Section 13.7.5.11,
“SHOW CREATE PROCEDURE Statement”.

13.7.5.11 SHOW CREATE PROCEDURE Statement

SHOW CREATE PROCEDURE proc_name

This statement is a MySQL extension. It returns the exact string that can be used to re-create the named
stored procedure. A similar statement, SHOW CREATE FUNCTION, displays information about stored
functions (see Section 13.7.5.10, “SHOW CREATE FUNCTION Statement”).

1921

SHOW Statements

To use either statement, you must be the user named in the routine DEFINER clause or have SELECT
access to the mysql.proc table. If you do not have privileges for the routine itself, the value displayed for
the Create Procedure or Create Function column is NULL.

mysql> SHOW CREATE PROCEDURE test.citycount\G
*************************** 1. row ***************************
 Procedure: citycount
 sql_mode: STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION
 Create Procedure: CREATE DEFINER=`me`@`localhost`
 PROCEDURE `citycount`(IN country CHAR(3), OUT cities INT)
 BEGIN
 SELECT COUNT(*) INTO cities FROM world.city
 WHERE CountryCode = country;
 END
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

mysql> SHOW CREATE FUNCTION test.hello\G
*************************** 1. row ***************************
 Function: hello
 sql_mode: STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION
 Create Function: CREATE DEFINER=`me`@`localhost`
 FUNCTION `hello`(s CHAR(20))
 RETURNS char(50) CHARSET latin1
 DETERMINISTIC
 RETURN CONCAT('Hello, ',s,'!')
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system variable when
the routine was created. collation_connection is the session value of the collation_connection
system variable when the routine was created. Database Collation is the collation of the database
with which the routine is associated.

13.7.5.12 SHOW CREATE TABLE Statement

SHOW CREATE TABLE tbl_name

Shows the CREATE TABLE statement that creates the named table. To use this statement, you must have
some privilege for the table. This statement also works with views.

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `s` char(60) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1

SHOW CREATE TABLE quotes table and column names according to the value of the
sql_quote_show_create option. See Section 5.1.7, “Server System Variables”.

When altering the storage engine of a table, table options that are not applicable to the new storage engine
are retained in the table definition to enable reverting the table with its previously defined options to the
original storage engine, if necessary. For example, when changing the storage engine from InnoDB to
MyISAM, InnoDB-specific options such as ROW_FORMAT=COMPACT are retained.

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) ROW_FORMAT=COMPACT ENGINE=InnoDB;
mysql> ALTER TABLE t1 ENGINE=MyISAM;

1922

SHOW Statements

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `c1` int(11) NOT NULL,
 PRIMARY KEY (`c1`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 ROW_FORMAT=COMPACT

When creating a table with strict mode disabled, the storage engine's default row format is used if the
specified row format is not supported. The actual row format of the table is reported in the Row_format
column in response to SHOW TABLE STATUS. SHOW CREATE TABLE shows the row format that was
specified in the CREATE TABLE statement.

13.7.5.13 SHOW CREATE TRIGGER Statement

SHOW CREATE TRIGGER trigger_name

This statement shows the CREATE TRIGGER statement that creates the named trigger. This statement
requires the TRIGGER privilege for the table associated with the trigger.

mysql> SHOW CREATE TRIGGER ins_sum\G
*************************** 1. row ***************************
 Trigger: ins_sum
 sql_mode: NO_ENGINE_SUBSTITUTION
SQL Original Statement: CREATE DEFINER=`me`@`localhost` TRIGGER ins_sum
 BEFORE INSERT ON account
 FOR EACH ROW SET @sum = @sum + NEW.amount
 character_set_client: utf8
 collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

SHOW CREATE TRIGGER output has these columns:

• Trigger: The trigger name.

• sql_mode: The SQL mode in effect when the trigger executes.

• SQL Original Statement: The CREATE TRIGGER statement that defines the trigger.

• character_set_client: The session value of the character_set_client system variable when
the trigger was created.

• collation_connection: The session value of the collation_connection system variable when
the trigger was created.

• Database Collation: The collation of the database with which the trigger is associated.

Trigger information is also available from the INFORMATION_SCHEMA TRIGGERS table. See
Section 21.3.27, “The INFORMATION_SCHEMA TRIGGERS Table”.

13.7.5.14 SHOW CREATE VIEW Statement

SHOW CREATE VIEW view_name

This statement shows the CREATE VIEW statement that creates the named view.

mysql> SHOW CREATE VIEW v\G
*************************** 1. row ***************************
 View: v
 Create View: CREATE ALGORITHM=UNDEFINED
 DEFINER=`bob`@`localhost`

1923

SHOW Statements

 SQL SECURITY DEFINER VIEW
 `v` AS select 1 AS `a`,2 AS `b`
character_set_client: utf8
collation_connection: utf8_general_ci

character_set_client is the session value of the character_set_client system variable when
the view was created. collation_connection is the session value of the collation_connection
system variable when the view was created.

Use of SHOW CREATE VIEW requires the SHOW VIEW privilege, and the SELECT privilege for the view in
question.

View information is also available from the INFORMATION_SCHEMA VIEWS table. See Section 21.3.29,
“The INFORMATION_SCHEMA VIEWS Table”.

MySQL lets you use different sql_mode settings to tell the server the type of SQL syntax to support. For
example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard SQL
concatenation operator, the double bar (||), in your queries. If you then create a view that concatenates
items, you might worry that changing the sql_mode setting to a value different from ANSI could cause
the view to become invalid. But this is not the case. No matter how you write out a view definition, MySQL
always stores it the same way, in a canonical form. Here is an example that shows how the server changes
a double bar concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW CREATE VIEW test.v\G
*************************** 1. row ***************************
 View: v
 Create View: CREATE VIEW "v" AS select concat('a','b') AS "col1"
...
1 row in set (0.00 sec)

The advantage of storing a view definition in canonical form is that changes made later to the value of
sql_mode does not affect the results from the view. However an additional consequence is that comments
prior to SELECT are stripped from the definition by the server.

13.7.5.15 SHOW DATABASES Statement

SHOW {DATABASES | SCHEMAS}
 [LIKE 'pattern' | WHERE expr]

SHOW DATABASES lists the databases on the MySQL server host. SHOW SCHEMAS is a synonym for SHOW
DATABASES. The LIKE clause, if present, indicates which database names to match. The WHERE clause
can be given to select rows using more general conditions, as discussed in Section 21.9, “Extensions to
SHOW Statements”.

You see only those databases for which you have some kind of privilege, unless you have the global SHOW
DATABASES privilege. You can also get this list using the mysqlshow command.

If the server was started with the --skip-show-database option, you cannot use this statement at all
unless you have the SHOW DATABASES privilege.

MySQL implements databases as directories in the data directory, so this statement simply lists directories
in that location. However, the output may include names of directories that do not correspond to actual
databases.

1924

SHOW Statements

Database information is also available from the INFORMATION_SCHEMA SCHEMATA table. See
Section 21.3.20, “The INFORMATION_SCHEMA SCHEMATA Table”.

Caution

Because a global privilege is considered a privilege for all databases, any global
privilege enables a user to see all database names with SHOW DATABASES or by
examining the INFORMATION_SCHEMA SCHEMATA table.

13.7.5.16 SHOW ENGINE Statement

SHOW ENGINE engine_name {STATUS | MUTEX}

SHOW ENGINE displays operational information about a storage engine. It requires the PROCESS privilege.
The statement has these variants:

SHOW ENGINE INNODB STATUS
SHOW ENGINE INNODB MUTEX
SHOW ENGINE {NDB | NDBCLUSTER} STATUS
SHOW ENGINE PERFORMANCE_SCHEMA STATUS

SHOW ENGINE INNODB STATUS displays extensive information from the standard InnoDB Monitor about
the state of the InnoDB storage engine. For information about the standard monitor and other InnoDB
Monitors that provide information about InnoDB processing, see Section 14.17, “InnoDB Monitors”.

SHOW ENGINE INNODB MUTEX displays InnoDB mutex and rw-lock statistics.

Note

Most SHOW ENGINE INNODB MUTEX output is removed in 5.6.14. SHOW ENGINE
INNODB MUTEX output is removed entirely in MySQL 5.7.2. InnoDB mutexes
can be monitored using Performance Schema tables. For an example, see
Section 14.16.1, “Monitoring InnoDB Mutex Waits Using Performance Schema”.

• Type

Always InnoDB.

• Name

The source file where the mutex is implemented, and the line number in the file where the mutex is
created. The line number is specific to your version of MySQL.

• Status

The mutex status. This field displays several values if WITH_DEBUG was defined at MySQL compilation
time. If WITH_DEBUG was not defined, the statement displays only the os_waits value. In the latter
case (without WITH_DEBUG), the information on which the output is based is insufficient to distinguish
regular mutexes and mutexes that protect rw-locks (which permit multiple readers or a single writer).
Consequently, the output may appear to contain multiple rows for the same mutex.

• count indicates how many times the mutex was requested.

• spin_waits indicates how many times the spinlock had to run.

• spin_rounds indicates the number of spinlock rounds. (spin_rounds divided by spin_waits
provides the average round count.)

1925

SHOW Statements

• os_waits indicates the number of operating system waits. This occurs when the spinlock did not
work (the mutex was not locked during the spinlock and it was necessary to yield to the operating
system and wait).

• os_yields indicates the number of times a thread trying to lock a mutex gave up its timeslice and
yielded to the operating system (on the presumption that permitting other threads to run frees the
mutex so that it can be locked).

• os_wait_times indicates the amount of time (in ms) spent in operating system waits. In MySQL 5.6
timing is disabled and this value is always 0.

SHOW ENGINE INNODB MUTEX does not list mutexes and rw-locks for each buffer pool block, as the
amount of output would be overwhelming on systems with a large buffer pool. SHOW ENGINE INNODB
MUTEX does, however, print aggregate BUF_BLOCK_MUTEX spin, wait, and call values for buffer pool
block mutexes and rw-locks. SHOW ENGINE INNODB MUTEX also does not list any mutexes or rw-locks
that have never been waited on (os_waits=0). Thus, SHOW ENGINE INNODB MUTEX only displays
information about mutexes and rw-locks outside of the buffer pool that have caused at least one OS-level
wait.

SHOW ENGINE INNODB MUTEX information can be used to diagnose system problems. For example,
large values of spin_waits and spin_rounds may indicate scalability problems.

Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the Performance
Schema code:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
 Type: performance_schema
 Name: events_waits_history.row_size
Status: 76
*************************** 4. row ***************************
 Type: performance_schema
 Name: events_waits_history.row_count
Status: 10000
*************************** 5. row ***************************
 Type: performance_schema
 Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
 Type: performance_schema
 Name: performance_schema.memory
Status: 26459600
...

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements.

Name values consist of two parts, which name an internal buffer and a buffer attribute, respectively.
Interpret buffer names as follows:

• An internal buffer that is not exposed as a table is named within parentheses. Examples:
(pfs_cond_class).row_size, (pfs_mutex_class).memory.

• An internal buffer that is exposed as a table in the performance_schema database is named
after the table, without parentheses. Examples: events_waits_history.row_size,
mutex_instances.row_count.

1926

SHOW Statements

• A value that applies to the Performance Schema as a whole begins with performance_schema.
Example: performance_schema.memory.

Buffer attributes have these meanings:

• row_size is the size of the internal record used by the implementation, such as the size of a row in a
table. row_size values cannot be changed.

• row_count is the number of internal records, such as the number of rows in a table. row_count values
can be changed using Performance Schema configuration options.

• For a table, tbl_name.memory is the product of row_size and row_count. For the Performance
Schema as a whole, performance_schema.memory is the sum of all the memory used (the sum of all
other memory values).

In some cases, there is a direct relationship between a Performance Schema configuration
parameter and a SHOW ENGINE value. For example, events_waits_history_long.row_count
corresponds to performance_schema_events_waits_history_long_size. In other cases, the
relationship is more complex. For example, events_waits_history.row_count corresponds to
performance_schema_events_waits_history_size (the number of rows per thread) multiplied by
performance_schema_max_thread_instances (the number of threads).

SHOW ENGINE NDB STATUS. If the server has the NDB storage engine enabled, SHOW ENGINE
NDB STATUS displays cluster status information such as the number of connected data nodes, the cluster
connectstring, and cluster binary log epochs, as well as counts of various Cluster API objects created by
the MySQL Server when connected to the cluster. Sample output from this statement is shown here:

mysql> SHOW ENGINE NDB STATUS;
+------------+-----------------------+--+
| Type | Name | Status |
+------------+-----------------------+--+
| ndbcluster | connection | cluster_node_id=7,
 connected_host=198.51.100.103, connected_port=1186, number_of_data_nodes=4,
 number_of_ready_data_nodes=3, connect_count=0 |
ndbcluster	NdbTransaction	created=6, free=0, sizeof=212
ndbcluster	NdbOperation	created=8, free=8, sizeof=660
ndbcluster	NdbIndexScanOperation	created=1, free=1, sizeof=744
ndbcluster	NdbIndexOperation	created=0, free=0, sizeof=664
ndbcluster	NdbRecAttr	created=1285, free=1285, sizeof=60
ndbcluster	NdbApiSignal	created=16, free=16, sizeof=136
ndbcluster	NdbLabel	created=0, free=0, sizeof=196
ndbcluster	NdbBranch	created=0, free=0, sizeof=24
ndbcluster	NdbSubroutine	created=0, free=0, sizeof=68
ndbcluster	NdbCall	created=0, free=0, sizeof=16
ndbcluster	NdbBlob	created=1, free=1, sizeof=264
ndbcluster	NdbReceiver	created=4, free=0, sizeof=68
ndbcluster	binlog	latest_epoch=155467, latest_trans_epoch=148126,
 latest_received_binlog_epoch=0, latest_handled_binlog_epoch=0,
 latest_applied_binlog_epoch=0 |
+------------+-----------------------+--+

The Status column in each of these rows provides information about the MySQL server's connection to
the cluster and about the cluster binary log's status, respectively. The Status information is in the form of
comma-delimited set of name/value pairs.

The connection row's Status column contains the name/value pairs described in the following table.

Name Value

cluster_node_id The node ID of the MySQL server in the cluster

1927

SHOW Statements

Name Value

connected_host The host name or IP address of the cluster
management server to which the MySQL server is
connected

connected_port The port used by the MySQL server to connect to
the management server (connected_host)

number_of_data_nodes The number of data nodes configured for the cluster
(that is, the number of [ndbd] sections in the
cluster config.ini file)

number_of_ready_data_nodes The number of data nodes in the cluster that are
actually running

connect_count The number of times this mysqld has connected or
reconnected to cluster data nodes

The binlog row's Status column contains information relating to NDB Cluster Replication. The name/
value pairs it contains are described in the following table.

Name Value

latest_epoch The most recent epoch most recently run on this
MySQL server (that is, the sequence number of the
most recent transaction run on the server)

latest_trans_epoch The most recent epoch processed by the cluster's
data nodes

latest_received_binlog_epoch The most recent epoch received by the binary log
thread

latest_handled_binlog_epoch The most recent epoch processed by the binary log
thread (for writing to the binary log)

latest_applied_binlog_epoch The most recent epoch actually written to the binary
log

See Section 18.7, “NDB Cluster Replication”, for more information.

The remaining rows from the output of SHOW ENGINE NDB STATUS which are most likely to prove useful
in monitoring the cluster are listed here by Name:

• NdbTransaction: The number and size of NdbTransaction objects that have been created. An
NdbTransaction is created each time a table schema operation (such as CREATE TABLE or ALTER
TABLE) is performed on an NDB table.

• NdbOperation: The number and size of NdbOperation objects that have been created.

• NdbIndexScanOperation: The number and size of NdbIndexScanOperation objects that have
been created.

• NdbIndexOperation: The number and size of NdbIndexOperation objects that have been created.

• NdbRecAttr: The number and size of NdbRecAttr objects that have been created. In general, one of
these is created each time a data manipulation statement is performed by an SQL node.

• NdbBlob: The number and size of NdbBlob objects that have been created. An NdbBlob is created for
each new operation involving a BLOB column in an NDB table.

1928

SHOW Statements

• NdbReceiver: The number and size of any NdbReceiver object that have been created. The number
in the created column is the same as the number of data nodes in the cluster to which the MySQL
server has connected.

Note

SHOW ENGINE NDB STATUS returns an empty result if no operations involving
NDB tables have been performed during the current session by the MySQL client
accessing the SQL node on which this statement is run.

13.7.5.17 SHOW ENGINES Statement

SHOW [STORAGE] ENGINES

SHOW ENGINES displays status information about the server's storage engines. This is particularly useful
for checking whether a storage engine is supported, or to see what the default engine is.

For information about MySQL storage engines, see Chapter 14, The InnoDB Storage Engine, and
Chapter 15, Alternative Storage Engines.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: FEDERATED
 Support: NO
 Comment: Federated MySQL storage engine
Transactions: NULL
 XA: NULL
 Savepoints: NULL
*************************** 2. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 3. row ***************************
 Engine: MyISAM
 Support: YES
 Comment: MyISAM storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 4. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: CSV
 Support: YES
 Comment: CSV storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 6. row ***************************
 Engine: MEMORY
 Support: YES
 Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 7. row ***************************

1929

SHOW Statements

 Engine: ARCHIVE
 Support: YES
 Comment: Archive storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 8. row ***************************
 Engine: InnoDB
 Support: DEFAULT
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 9. row ***************************
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO

The output from SHOW ENGINES may vary according to the MySQL version used and other factors.

SHOW ENGINES output has these columns:

• Engine

The name of the storage engine.

• Support

The server's level of support for the storage engine, as shown in the following table.

Value Meaning

YES The engine is supported and is active

DEFAULT Like YES, plus this is the default engine

NO The engine is not supported

DISABLED The engine is supported but has been disabled

A value of NO means that the server was compiled without support for the engine, so it cannot be
enabled at runtime.

A value of DISABLED occurs either because the server was started with an option that disables the
engine, or because not all options required to enable it were given. In the latter case, the error log should
contain a reason indicating why the option is disabled. See Section 5.4.2, “The Error Log”.

You might also see DISABLED for a storage engine if the server was compiled to support it, but was
started with a --skip-engine_name option. For the NDB storage engine, DISABLED means the server
was compiled with support for NDB Cluster, but was not started with the --ndbcluster option.

All MySQL servers support MyISAM tables. It is not possible to disable MyISAM.

• Comment

A brief description of the storage engine.

• Transactions

Whether the storage engine supports transactions.

1930

SHOW Statements

• XA

Whether the storage engine supports XA transactions.

• Savepoints

Whether the storage engine supports savepoints.

Storage engine information is also available from the INFORMATION_SCHEMA ENGINES table. See
Section 21.3.7, “The INFORMATION_SCHEMA ENGINES Table”.

13.7.5.18 SHOW ERRORS Statement

SHOW ERRORS [LIMIT [offset,] row_count]
SHOW COUNT(*) ERRORS

SHOW ERRORS is a diagnostic statement that is similar to SHOW WARNINGS, except that it displays
information only for errors, rather than for errors, warnings, and notes.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Statement”.

The SHOW COUNT(*) ERRORS statement displays the number of errors. You can also retrieve this number
from the error_count variable:

SHOW COUNT(*) ERRORS;
SELECT @@error_count;

SHOW ERRORS and error_count apply only to errors, not warnings or notes. In other respects, they
are similar to SHOW WARNINGS and warning_count. In particular, SHOW ERRORS cannot display
information for more than max_error_count messages, and error_count can exceed the value of
max_error_count if the number of errors exceeds max_error_count.

For more information, see Section 13.7.5.41, “SHOW WARNINGS Statement”.

13.7.5.19 SHOW EVENTS Statement

SHOW EVENTS
 [{FROM | IN} schema_name]
 [LIKE 'pattern' | WHERE expr]

This statement displays information about Event Manager events, which are discussed in Section 20.4,
“Using the Event Scheduler”. It requires the EVENT privilege for the database from which the events are to
be shown.

In its simplest form, SHOW EVENTS lists all of the events in the current schema:

mysql> SELECT CURRENT_USER(), SCHEMA();
+----------------+----------+
| CURRENT_USER() | SCHEMA() |
+----------------+----------+
| jon@ghidora | myschema |
+----------------+----------+
1 row in set (0.00 sec)

mysql> SHOW EVENTS\G
*************************** 1. row ***************************
 Db: myschema
 Name: e_daily
 Definer: jon@ghidora
 Time zone: SYSTEM

1931

SHOW Statements

 Type: RECURRING
 Execute at: NULL
 Interval value: 1
 Interval field: DAY
 Starts: 2018-08-08 11:06:34
 Ends: NULL
 Status: ENABLED
 Originator: 1
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

To see events for a specific schema, use the FROM clause. For example, to see events for the test
schema, use the following statement:

SHOW EVENTS FROM test;

The LIKE clause, if present, indicates which event names to match. The WHERE clause can be given
to select rows using more general conditions, as discussed in Section 21.9, “Extensions to SHOW
Statements”.

SHOW EVENTS output has these columns:

• Db

The name of the schema (database) to which the event belongs.

• Name

The name of the event.

• Definer

The account of the user who created the event, in 'user_name'@'host_name' format.

• Time zone

The event time zone, which is the time zone used for scheduling the event and that is in effect within the
event as it executes. The default value is SYSTEM.

• Type

The event repetition type, either ONE TIME (transient) or RECURRING (repeating).

• Execute At

For a one-time event, this is the DATETIME value specified in the AT clause of the CREATE EVENT
statement used to create the event, or of the last ALTER EVENT statement that modified the event. The
value shown in this column reflects the addition or subtraction of any INTERVAL value included in the
event's AT clause. For example, if an event is created using ON SCHEDULE AT CURRENT_TIMESTAMP
+ '1:6' DAY_HOUR, and the event was created at 2018-02-09 14:05:30, the value shown in this
column would be '2018-02-10 20:05:30'. If the event's timing is determined by an EVERY clause
instead of an AT clause (that is, if the event is recurring), the value of this column is NULL.

• Interval Value

For a recurring event, the number of intervals to wait between event executions. For a transient event,
the value of this column is always NULL.

• Interval Field

1932

SHOW Statements

The time units used for the interval which a recurring event waits before repeating. For a transient event,
the value of this column is always NULL.

• Starts

The start date and time for a recurring event. This is displayed as a DATETIME value, and is NULL if
no start date and time are defined for the event. For a transient event, this column is always NULL. For
a recurring event whose definition includes a STARTS clause, this column contains the corresponding
DATETIME value. As with the Execute At column, this value resolves any expressions used. If there is
no STARTS clause affecting the timing of the event, this column is NULL

• Ends

For a recurring event whose definition includes a ENDS clause, this column contains the corresponding
DATETIME value. As with the Execute At column, this value resolves any expressions used. If there is
no ENDS clause affecting the timing of the event, this column is NULL.

• Status

The event status. One of ENABLED, DISABLED, or SLAVESIDE_DISABLED. SLAVESIDE_DISABLED
indicates that the creation of the event occurred on another MySQL server acting as a replication source
and replicated to the current MySQL server which is acting as a replica, but the event is not presently
being executed on the replica. For more information, see Section 17.4.1.16, “Replication of Invoked
Features”. information.

• Originator

The server ID of the MySQL server on which the event was created; used in replication. This value may
be updated by ALTER EVENT to the server ID of the server on which that statement occurs, if executed
on a source server. The default value is 0.

• character_set_client

The session value of the character_set_client system variable when the event was created.

• collation_connection

The session value of the collation_connection system variable when the event was created.

• Database Collation

The collation of the database with which the event is associated.

For more information about SLAVESIDE_DISABLED and the Originator column, see Section 17.4.1.16,
“Replication of Invoked Features”.

Times displayed by SHOW EVENTS are given in the event time zone, as discussed in Section 20.4.4, “Event
Metadata”.

Event information is also available from the INFORMATION_SCHEMA EVENTS table. See Section 21.3.8,
“The INFORMATION_SCHEMA EVENTS Table”.

The event action statement is not shown in the output of SHOW EVENTS. Use SHOW CREATE EVENT or the
INFORMATION_SCHEMA EVENTS table.

13.7.5.20 SHOW FUNCTION CODE Statement

SHOW FUNCTION CODE func_name

1933

SHOW Statements

This statement is similar to SHOW PROCEDURE CODE but for stored functions. See Section 13.7.5.28,
“SHOW PROCEDURE CODE Statement”.

13.7.5.21 SHOW FUNCTION STATUS Statement

SHOW FUNCTION STATUS
 [LIKE 'pattern' | WHERE expr]

This statement is similar to SHOW PROCEDURE STATUS but for stored functions. See Section 13.7.5.29,
“SHOW PROCEDURE STATUS Statement”.

13.7.5.22 SHOW GRANTS Statement

SHOW GRANTS [FOR user]

This statement displays the privileges that are assigned to a MySQL user account, in the form of GRANT
statements that must be executed to duplicate the privilege assignments.

SHOW GRANTS requires the SELECT privilege for the mysql system database, except to display privileges
for the current user. For output that includes an IDENTIFIED BY PASSWORD clause displaying an account
password hash value, the SUPER privilege is required to see the actual hash value. Otherwise, the value
displays as <secret>.

To name the account for SHOW GRANTS, use the same format as for the GRANT statement (for example,
'jeffrey'@'localhost'):

mysql> SHOW GRANTS FOR 'jeffrey'@'localhost';
+--+
| Grants for jeffrey@localhost |
+--+
| GRANT USAGE ON *.* TO `jeffrey`@`localhost` |
| GRANT SELECT, INSERT, UPDATE ON `db1`.* TO `jeffrey`@`localhost` |
+--+

The host part, if omitted, defaults to '%'. For additional information about specifying account names, see
Section 6.2.4, “Specifying Account Names”.

To display the privileges granted to the current user (the account you are using to connect to the server),
you can use any of the following statements:

SHOW GRANTS;
SHOW GRANTS FOR CURRENT_USER;
SHOW GRANTS FOR CURRENT_USER();

If SHOW GRANTS FOR CURRENT_USER (or any equivalent syntax) is used in definer context, such as
within a stored procedure that executes with definer rather than invoker privileges, the grants displayed are
those of the definer and not the invoker.

SHOW GRANTS does not display privileges that are available to the named account but are granted to a
different account. For example, if an anonymous account exists, the named account might be able to use
its privileges, but SHOW GRANTS does not display them.

13.7.5.23 SHOW INDEX Statement

SHOW {INDEX | INDEXES | KEYS}
 {FROM | IN} tbl_name
 [{FROM | IN} db_name]
 [WHERE expr]

SHOW INDEX returns table index information. The format resembles that of the SQLStatistics call in
ODBC. This statement requires some privilege for any column in the table.

1934

SHOW Statements

mysql> SHOW INDEX FROM City\G
*************************** 1. row ***************************
 Table: city
 Non_unique: 0
 Key_name: PRIMARY
 Seq_in_index: 1
 Column_name: ID
 Collation: A
 Cardinality: 4188
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
Index_comment:
*************************** 2. row ***************************
 Table: city
 Non_unique: 1
 Key_name: CountryCode
 Seq_in_index: 1
 Column_name: CountryCode
 Collation: A
 Cardinality: 4188
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
Index_comment:

An alternative to tbl_name FROM db_name syntax is db_name.tbl_name. These two statements are
equivalent:

SHOW INDEX FROM mytable FROM mydb;
SHOW INDEX FROM mydb.mytable;

The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 21.9, “Extensions to SHOW Statements”.

SHOW INDEX returns the following fields:

• Table

The name of the table.

• Non_unique

0 if the index cannot contain duplicates, 1 if it can.

• Key_name

The name of the index. If the index is the primary key, the name is always PRIMARY.

• Seq_in_index

The column sequence number in the index, starting with 1.

• Column_name

The name of the column.

• Collation

How the column is sorted in the index. This can have values A (ascending) or NULL (not sorted).

1935

SHOW Statements

• Cardinality

An estimate of the number of unique values in the index. To update this number, run ANALYZE TABLE
or (for MyISAM tables) myisamchk -a.

Cardinality is counted based on statistics stored as integers, so the value is not necessarily exact
even for small tables. The higher the cardinality, the greater the chance that MySQL uses the index
when doing joins.

• Sub_part

The index prefix. That is, the number of indexed characters if the column is only partly indexed, NULL if
the entire column is indexed.

Note

Prefix limits are measured in bytes. However, prefix lengths for index
specifications in CREATE TABLE, ALTER TABLE, and CREATE INDEX
statements are interpreted as number of characters for nonbinary string types
(CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY,
VARBINARY, BLOB). Take this into account when specifying a prefix length for a
nonbinary string column that uses a multibyte character set.

For additional information about index prefixes, see Section 8.3.4, “Column Indexes”, and
Section 13.1.13, “CREATE INDEX Statement”.

• Packed

Indicates how the key is packed. NULL if it is not.

• Null

Contains YES if the column may contain NULL values and '' if not.

• Index_type

The index method used (BTREE, FULLTEXT, HASH, RTREE).

• Comment

Information about the index not described in its own column, such as disabled if the index is disabled.

• Index_comment

Any comment provided for the index with a COMMENT attribute when the index was created.

Information about table indexes is also available from the INFORMATION_SCHEMA STATISTICS table. See
Section 21.3.22, “The INFORMATION_SCHEMA STATISTICS Table”.

You can list a table's indexes with the mysqlshow -k db_name tbl_name command.

13.7.5.24 SHOW MASTER STATUS Statement

SHOW MASTER STATUS

This statement provides status information about the binary log files of the source. It requires either the
SUPER or REPLICATION CLIENT privilege.

Example:

1936

SHOW Statements

mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: source-bin.000002
 Position: 1307
 Binlog_Do_DB: test
 Binlog_Ignore_DB: manual, mysql
Executed_Gtid_Set: 3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5
1 row in set (0.00 sec)

When global transaction IDs are in use, this column shows the set of GTIDs for transactions that have
been executed on the source. This is the same as the value for the gtid_executed system variable on
this server, as well as the value for Executed_Gtid_Set in the output of SHOW SLAVE STATUS on this
server.

13.7.5.25 SHOW OPEN TABLES Statement

SHOW OPEN TABLES
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW OPEN TABLES lists the non-TEMPORARY tables that are currently open in the table cache. See
Section 8.4.3.1, “How MySQL Opens and Closes Tables”. The FROM clause, if present, restricts the
tables shown to those present in the db_name database. The LIKE clause, if present, indicates which
table names to match. The WHERE clause can be given to select rows using more general conditions, as
discussed in Section 21.9, “Extensions to SHOW Statements”.

SHOW OPEN TABLES output has these columns:

• Database

The database containing the table.

• Table

The table name.

• In_use

The number of table locks or lock requests there are for the table. For example, if one client acquires
a lock for a table using LOCK TABLE t1 WRITE, In_use is 1. If another client issues LOCK TABLE
t1 WRITE while the table remains locked, the client blocks waiting for the lock, but the lock request
causes In_use to be 2. If the count is zero, the table is open but not currently being used. In_use is
also increased by the HANDLER ... OPEN statement and decreased by HANDLER ... CLOSE.

• Name_locked

Whether the table name is locked. Name locking is used for operations such as dropping or renaming
tables.

If you have no privileges for a table, it does not show up in the output from SHOW OPEN TABLES.

13.7.5.26 SHOW PLUGINS Statement

SHOW PLUGINS

SHOW PLUGINS displays information about server plugins.

Example of SHOW PLUGINS output:

mysql> SHOW PLUGINS\G

1937

SHOW Statements

*************************** 1. row ***************************
 Name: binlog
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 2. row ***************************
 Name: CSV
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 3. row ***************************
 Name: MEMORY
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 4. row ***************************
 Name: MyISAM
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
...

SHOW PLUGINS output has these columns:

• Name

The name used to refer to the plugin in statements such as INSTALL PLUGIN and UNINSTALL
PLUGIN.

• Status

The plugin status, one of ACTIVE, INACTIVE, DISABLED, or DELETED.

• Type

The type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or AUTHENTICATION.

• Library

The name of the plugin shared library file. This is the name used to refer to the plugin file in statements
such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in the directory named by
the plugin_dir system variable. If the library name is NULL, the plugin is compiled in and cannot be
uninstalled with UNINSTALL PLUGIN.

• License

How the plugin is licensed (for example, GPL).

For plugins installed with INSTALL PLUGIN, the Name and Library values are also registered in the
mysql.plugin system table.

For information about plugin data structures that form the basis of the information displayed by SHOW
PLUGINS, see The MySQL Plugin API.

Plugin information is also available from the INFORMATION_SCHEMA .PLUGINS table. See
Section 21.3.15, “The INFORMATION_SCHEMA PLUGINS Table”.

13.7.5.27 SHOW PRIVILEGES Statement

1938

https://dev.mysql.com/doc/extending-mysql/5.6/en/plugin-api.html

SHOW Statements

SHOW PRIVILEGES

SHOW PRIVILEGES shows the list of system privileges that the MySQL server supports. The exact list of
privileges depends on the version of your server.

mysql> SHOW PRIVILEGES\G
*************************** 1. row ***************************
Privilege: Alter
 Context: Tables
 Comment: To alter the table
*************************** 2. row ***************************
Privilege: Alter routine
 Context: Functions,Procedures
 Comment: To alter or drop stored functions/procedures
*************************** 3. row ***************************
Privilege: Create
 Context: Databases,Tables,Indexes
 Comment: To create new databases and tables
*************************** 4. row ***************************
Privilege: Create routine
 Context: Databases
 Comment: To use CREATE FUNCTION/PROCEDURE
*************************** 5. row ***************************
Privilege: Create temporary tables
 Context: Databases
 Comment: To use CREATE TEMPORARY TABLE
...

Privileges belonging to a specific user are displayed by the SHOW GRANTS statement. See
Section 13.7.5.22, “SHOW GRANTS Statement”, for more information.

13.7.5.28 SHOW PROCEDURE CODE Statement

SHOW PROCEDURE CODE proc_name

This statement is a MySQL extension that is available only for servers that have been built with
debugging support. It displays a representation of the internal implementation of the named stored
procedure. A similar statement, SHOW FUNCTION CODE, displays information about stored functions (see
Section 13.7.5.20, “SHOW FUNCTION CODE Statement”).

To use either statement, you must be the owner of the routine or have SELECT access to the mysql.proc
table.

If the named routine is available, each statement produces a result set. Each row in the result set
corresponds to one “instruction” in the routine. The first column is Pos, which is an ordinal number
beginning with 0. The second column is Instruction, which contains an SQL statement (usually
changed from the original source), or a directive which has meaning only to the stored-routine handler.

mysql> DELIMITER //
mysql> CREATE PROCEDURE p1 ()
 BEGIN
 DECLARE fanta INT DEFAULT 55;
 DROP TABLE t2;
 LOOP
 INSERT INTO t3 VALUES (fanta);
 END LOOP;
 END//
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW PROCEDURE CODE p1//
+-----+--+
| Pos | Instruction |
+-----+--+

1939

SHOW Statements

0	set fanta@0 55
1	stmt 9 "DROP TABLE t2"
2	stmt 5 "INSERT INTO t3 VALUES (fanta)"
3	jump 2
+-----+--+
4 rows in set (0.00 sec)

mysql> CREATE FUNCTION test.hello (s CHAR(20))
 RETURNS CHAR(50) DETERMINISTIC
 RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW FUNCTION CODE test.hello;
+-----+---------------------------------------+
| Pos | Instruction |
+-----+---------------------------------------+
| 0 | freturn 254 concat('Hello, ',s@0,'!') |
+-----+---------------------------------------+
1 row in set (0.00 sec)

In this example, the nonexecutable BEGIN and END statements have disappeared, and for the DECLARE
variable_name statement, only the executable part appears (the part where the default is assigned). For
each statement that is taken from source, there is a code word stmt followed by a type (9 means DROP, 5
means INSERT, and so on). The final row contains an instruction jump 2, meaning GOTO instruction
#2.

13.7.5.29 SHOW PROCEDURE STATUS Statement

SHOW PROCEDURE STATUS
 [LIKE 'pattern' | WHERE expr]

This statement is a MySQL extension. It returns characteristics of a stored procedure, such as the
database, name, type, creator, creation and modification dates, and character set information. A similar
statement, SHOW FUNCTION STATUS, displays information about stored functions (see Section 13.7.5.21,
“SHOW FUNCTION STATUS Statement”).

To use either statement, you must be the owner of the routine or have SELECT access to the mysql.proc
table.

The LIKE clause, if present, indicates which procedure or function names to match. The WHERE clause can
be given to select rows using more general conditions, as discussed in Section 21.9, “Extensions to SHOW
Statements”.

mysql> SHOW PROCEDURE STATUS LIKE 'sp1'\G
*************************** 1. row ***************************
 Db: test
 Name: sp1
 Type: PROCEDURE
 Definer: testuser@localhost
 Modified: 2018-08-08 13:54:11
 Created: 2018-08-08 13:54:11
 Security_type: DEFINER
 Comment:
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

mysql> SHOW FUNCTION STATUS LIKE 'hello'\G
*************************** 1. row ***************************
 Db: test
 Name: hello
 Type: FUNCTION
 Definer: testuser@localhost

1940

SHOW Statements

 Modified: 2020-03-10 11:14:27
 Created: 2020-03-10 11:14:27
 Security_type: DEFINER
 Comment:
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system variable when
the routine was created. collation_connection is the session value of the collation_connection
system variable when the routine was created. Database Collation is the collation of the database
with which the routine is associated.

Stored routine information is also available from the INFORMATION_SCHEMA PARAMETERS and ROUTINES
tables. See Section 21.3.13, “The INFORMATION_SCHEMA PARAMETERS Table”, and Section 21.3.19,
“The INFORMATION_SCHEMA ROUTINES Table”.

13.7.5.30 SHOW PROCESSLIST Statement

SHOW [FULL] PROCESSLIST

The MySQL process list indicates the operations currently being performed by the set of threads executing
within the server. The SHOW PROCESSLIST statement is one source of process information. For a
comparison of this statement with other sources, see Sources of Process Information.

If you have the PROCESS privilege, you can see all threads, even those belonging to other users. Otherwise
(without the PROCESS privilege), nonanonymous users have access to information about their own threads
but not threads for other users, and anonymous users have no access to thread information.

Without the FULL keyword, SHOW PROCESSLIST displays only the first 100 characters of each statement
in the Info field.

The SHOW PROCESSLIST statement is very useful if you get the “too many connections” error message
and want to find out what is going on. MySQL reserves one extra connection to be used by accounts that
have the SUPER privilege, to ensure that administrators should always be able to connect and check the
system (assuming that you are not giving this privilege to all your users).

Threads can be killed with the KILL statement. See Section 13.7.6.4, “KILL Statement”.

Example of SHOW PROCESSLIST output:

mysql> SHOW FULL PROCESSLIST\G
*************************** 1. row ***************************
 Id: 1
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 1030455
 State: Waiting for master to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 2
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 1004
 State: Has read all relay log; waiting for the slave
 I/O thread to update it
 Info: NULL
*************************** 3. row ***************************

1941

SHOW Statements

 Id: 3112
 User: replikator
 Host: artemis:2204
 db: NULL
Command: Binlog Dump
 Time: 2144
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL
*************************** 4. row ***************************
 Id: 3113
 User: replikator
 Host: iconnect2:45781
 db: NULL
Command: Binlog Dump
 Time: 2086
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL
*************************** 5. row ***************************
 Id: 3123
 User: stefan
 Host: localhost
 db: apollon
Command: Query
 Time: 0
 State: NULL
 Info: SHOW FULL PROCESSLIST

SHOW PROCESSLIST output has these columns:

• Id

The connection identifier. This is the same value displayed in the ID column of the
INFORMATION_SCHEMA PROCESSLIST table, displayed in the PROCESSLIST_ID column of the
Performance Schema threads table, and returned by the CONNECTION_ID() function within the
thread.

• User

The MySQL user who issued the statement. A value of system user refers to a nonclient thread
spawned by the server to handle tasks internally, for example, a delayed-row handler thread or an I/O
or SQL thread used on replica hosts. For system user, there is no host specified in the Host column.
unauthenticated user refers to a thread that has become associated with a client connection but for
which authentication of the client user has not yet occurred. event_scheduler refers to the thread that
monitors scheduled events (see Section 20.4, “Using the Event Scheduler”).

• Host

The host name of the client issuing the statement (except for system user, for which there is no host).
The host name for TCP/IP connections is reported in host_name:client_port format to make it
easier to determine which client is doing what.

• db

The default database for the thread, or NULL if none has been selected.

• Command

The type of command the thread is executing on behalf of the client, or Sleep if the session is idle. For
descriptions of thread commands, see Section 8.14, “Examining Server Thread (Process) Information”.
The value of this column corresponds to the COM_xxx commands of the client/server protocol and
Com_xxx status variables. See Section 5.1.9, “Server Status Variables”.

1942

SHOW Statements

• Time

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Section 17.2.1, “Replication Threads”.

• State

An action, event, or state that indicates what the thread is doing. For descriptions of State values, see
Section 8.14, “Examining Server Thread (Process) Information”.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• Info

The statement the thread is executing, or NULL if it is executing no statement. The statement might be
the one sent to the server, or an innermost statement if the statement executes other statements. For
example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the
Info value shows the SELECT statement.

13.7.5.31 SHOW PROFILE Statement

SHOW PROFILE [type [, type] ...]
 [FOR QUERY n]
 [LIMIT row_count [OFFSET offset]]

type: {
 ALL
 | BLOCK IO
 | CONTEXT SWITCHES
 | CPU
 | IPC
 | MEMORY
 | PAGE FAULTS
 | SOURCE
 | SWAPS
}

The SHOW PROFILE and SHOW PROFILES statements display profiling information that indicates resource
usage for statements executed during the course of the current session.

Note

These statements are deprecated as of MySQL 5.6.7; expect them to be
removed in a future MySQL release. Use the Performance Schema instead; see
Section 22.18.1, “Query Profiling Using Performance Schema”.

To control profiling, use the profiling session variable, which has a default value of 0 (OFF). Enable
profiling by setting profiling to 1 or ON:

mysql> SET profiling = 1;

SHOW PROFILES displays a list of the most recent statements sent to the server. The size of the list is
controlled by the profiling_history_size session variable, which has a default value of 15. The
maximum value is 100. Setting the value to 0 has the practical effect of disabling profiling.

All statements are profiled except SHOW PROFILE and SHOW PROFILES, so you find neither of those
statements in the profile list. Malformed statements are profiled. For example, SHOW PROFILING is an
illegal statement, and a syntax error occurs if you try to execute it, but it shows up in the profiling list.

1943

SHOW Statements

SHOW PROFILE displays detailed information about a single statement. Without the FOR QUERY n clause,
the output pertains to the most recently executed statement. If FOR QUERY n is included, SHOW PROFILE
displays information for statement n. The values of n correspond to the Query_ID values displayed by
SHOW PROFILES.

The LIMIT row_count clause may be given to limit the output to row_count rows. If LIMIT is given,
OFFSET offset may be added to begin the output offset rows into the full set of rows.

By default, SHOW PROFILE displays Status and Duration columns. The Status values are like the
State values displayed by SHOW PROCESSLIST, although there might be some minor differences in
interpretion for the two statements for some status values (see Section 8.14, “Examining Server Thread
(Process) Information”).

Optional type values may be specified to display specific additional types of information:

• ALL displays all information

• BLOCK IO displays counts for block input and output operations

• CONTEXT SWITCHES displays counts for voluntary and involuntary context switches

• CPU displays user and system CPU usage times

• IPC displays counts for messages sent and received

• MEMORY is not currently implemented

• PAGE FAULTS displays counts for major and minor page faults

• SOURCE displays the names of functions from the source code, together with the name and line number
of the file in which the function occurs

• SWAPS displays swap counts

Profiling is enabled per session. When a session ends, its profiling information is lost.

mysql> SELECT @@profiling;
+-------------+
| @@profiling |
+-------------+
| 0 |
+-------------+
1 row in set (0.00 sec)

mysql> SET profiling = 1;
Query OK, 0 rows affected (0.00 sec)

mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> CREATE TABLE T1 (id INT);
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW PROFILES;
+----------+----------+--------------------------+
| Query_ID | Duration | Query |
+----------+----------+--------------------------+
0	0.000088	SET PROFILING = 1
1	0.000136	DROP TABLE IF EXISTS t1
2	0.011947	CREATE TABLE t1 (id INT)
+----------+----------+--------------------------+
3 rows in set (0.00 sec)

1944

SHOW Statements

mysql> SHOW PROFILE;
+----------------------+----------+
| Status | Duration |
+----------------------+----------+
checking permissions	0.000040
creating table	0.000056
After create	0.011363
query end	0.000375
freeing items	0.000089
logging slow query	0.000019
cleaning up	0.000005
+----------------------+----------+
7 rows in set (0.00 sec)

mysql> SHOW PROFILE FOR QUERY 1;
+--------------------+----------+
| Status | Duration |
+--------------------+----------+
query end	0.000107
freeing items	0.000008
logging slow query	0.000015
cleaning up	0.000006
+--------------------+----------+
4 rows in set (0.00 sec)

mysql> SHOW PROFILE CPU FOR QUERY 2;
+----------------------+----------+----------+------------+
| Status | Duration | CPU_user | CPU_system |
+----------------------+----------+----------+------------+
checking permissions	0.000040	0.000038	0.000002
creating table	0.000056	0.000028	0.000028
After create	0.011363	0.000217	0.001571
query end	0.000375	0.000013	0.000028
freeing items	0.000089	0.000010	0.000014
logging slow query	0.000019	0.000009	0.000010
cleaning up	0.000005	0.000003	0.000002
+----------------------+----------+----------+------------+
7 rows in set (0.00 sec)

Note

Profiling is only partially functional on some architectures. For values that depend
on the getrusage() system call, NULL is returned on systems such as Windows
that do not support the call. In addition, profiling is per process and not per thread.
This means that activity on threads within the server other than your own may affect
the timing information that you see.

Profiling information is also available from the INFORMATION_SCHEMA PROFILING table. See
Section 21.3.17, “The INFORMATION_SCHEMA PROFILING Table”. For example, the following queries
are equivalent:

SHOW PROFILE FOR QUERY 2;

SELECT STATE, FORMAT(DURATION, 6) AS DURATION
FROM INFORMATION_SCHEMA.PROFILING
WHERE QUERY_ID = 2 ORDER BY SEQ;

13.7.5.32 SHOW PROFILES Statement

SHOW PROFILES

The SHOW PROFILES statement, together with SHOW PROFILE, displays profiling information that
indicates resource usage for statements executed during the course of the current session. For more
information, see Section 13.7.5.31, “SHOW PROFILE Statement”.

1945

SHOW Statements

Note

These statements are deprecated as of MySQL 5.6.7; expect them to be removed
in a future MySQL release. Use the Performance Schema instead; see Chapter 22,
MySQL Performance Schema.

13.7.5.33 SHOW RELAYLOG EVENTS Statement

SHOW RELAYLOG EVENTS
 [IN 'log_name']
 [FROM pos]
 [LIMIT [offset,] row_count]

Shows the events in the relay log of a replica. If you do not specify 'log_name', the first relay log is
displayed. This statement has no effect on the source.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Statement”.

Note

Issuing a SHOW RELAYLOG EVENTS with no LIMIT clause could start a very
time- and resource-consuming process because the server returns to the client the
complete contents of the relay log (including all statements modifying data that have
been received by the replica).

SHOW RELAYLOG EVENTS displays the following fields for each event in the relay log:

• Log_name

The name of the file that is being listed.

• Pos

The position at which the event occurs.

• Event_type

An identifier that describes the event type.

• Server_id

The server ID of the server on which the event originated.

• End_log_pos

The value of End_log_pos for this event in the source's binary log.

• Info

More detailed information about the event type. The format of this information depends on the event
type.

Note

Some events relating to the setting of user and system variables are not included
in the output from SHOW RELAYLOG EVENTS. To get complete coverage of events
within a relay log, use mysqlbinlog.

1946

SHOW Statements

13.7.5.34 SHOW SLAVE HOSTS Statement

SHOW SLAVE HOSTS

Displays a list of replicas currently registered with the source.

SHOW SLAVE HOSTS should be executed on a server that acts as a replication source. The statement
displays information about servers that are or have been connected as replicas, with each row of the result
corresponding to one replica server, as shown here:

mysql> SHOW SLAVE HOSTS;
+------------+-----------+------+-----------+--------------------------------------+
| Server_id | Host | Port | Master_id | Slave_UUID |
+------------+-----------+------+-----------+--------------------------------------+
| 192168010 | iconnect2 | 3306 | 192168011 | 14cb6624-7f93-11e0-b2c0-c80aa9429562 |
| 1921680101 | athena | 3306 | 192168011 | 07af4990-f41f-11df-a566-7ac56fdaf645 |
+------------+-----------+------+-----------+--------------------------------------+

• Server_id: The unique server ID of the replica server, as configured in the replica server's option file,
or on the command line with --server-id=value.

• Host: The host name of the replica server as specified on the replica with the --report-host option.
This can differ from the machine name as configured in the operating system.

• User: The replica server user name as, specified on the replica with the --report-user option.
Statement output includes this column only if the source server is started with the --show-slave-
auth-info option.

• Password: The replica server password as, specified on the replica with the --report-password
option. Statement output includes this column only if the source server is started with the --show-
slave-auth-info option.

• Port: The port on the source to which the replica server is listening, as specified on the replica with the
--report-port option.

A zero in this column means that the replica port (--report-port) was not set.

• Master_id: The unique server ID of the source server that the replica server is replicating from. This is
the server ID of the server on which SHOW SLAVE HOSTS is executed, so this same value is listed for
each row in the result.

• Slave_UUID: The globally unique ID of this replica, as generated on the replica and found in the
replica's auto.cnf file.

13.7.5.35 SHOW SLAVE STATUS Statement

SHOW SLAVE STATUS

This statement provides status information on essential parameters of the replica threads. It requires either
the SUPER or REPLICATION CLIENT privilege.

If you issue this statement using the mysql client, you can use a \G statement terminator rather than a
semicolon to obtain a more readable vertical layout:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: localhost
 Master_User: root
 Master_Port: 13000
 Connect_Retry: 60

1947

SHOW Statements

 Master_Log_File: source-bin.000002
 Read_Master_Log_Pos: 1307
 Relay_Log_File: replica-relay-bin.000003
 Relay_Log_Pos: 1508
 Relay_Master_Log_File: source-bin.000002
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 1307
 Relay_Log_Space: 1858
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Master_Server_Id: 1
 Master_UUID: 3e11fa47-71ca-11e1-9e33-c80aa9429562
 Master_Info_File: /var/mysqld.2/data/master.info
 SQL_Delay: 0
 SQL_Remaining_Delay: NULL
 Slave_SQL_Running_State: Reading event from the relay log
 Master_Retry_Count: 10
 Master_Bind:
 Last_IO_Error_Timestamp:
 Last_SQL_Error_Timestamp:
 Master_SSL_Crl:
 Master_SSL_Crlpath:
 Retrieved_Gtid_Set: 3e11fa47-71ca-11e1-9e33-c80aa9429562:1-5
 Executed_Gtid_Set: 3e11fa47-71ca-11e1-9e33-c80aa9429562:1-5
 Auto_Position: 1

The following list describes the fields returned by SHOW SLAVE STATUS. For additional information about
interpreting their meanings, see Section 8.14.7, “Replication Replica I/O Thread States”.

• Slave_IO_State

A copy of the State field of the SHOW PROCESSLIST output for the replica I/O thread. This tells
you what the thread is doing: trying to connect to the source, waiting for events from the source,
reconnecting to the source, and so on. For a listing of possible states, see Section 8.14.7, “Replication
Replica I/O Thread States”.

• Master_Host

The source host that the replica is connected to.

• Master_User

1948

SHOW Statements

The user name of the account used to connect to the source.

• Master_Port

The port used to connect to the source.

• Connect_Retry

The number of seconds between connect retries (default 60). This can be set with the CHANGE MASTER
TO statement.

• Master_Log_File

The name of the source binary log file from which the I/O thread is currently reading.

• Read_Master_Log_Pos

The position in the current source binary log file up to which the I/O thread has read.

• Relay_Log_File

The name of the relay log file from which the SQL thread is currently reading and executing.

• Relay_Log_Pos

The position in the current relay log file up to which the SQL thread has read and executed.

• Relay_Master_Log_File

The name of the source binary log file containing the most recent event executed by the SQL thread.

• Slave_IO_Running

Whether the I/O thread is started and has connected successfully to the source. Internally, the state of
this thread is represented by one of the following three values:

• MYSQL_SLAVE_NOT_RUN. The replica I/O thread is not running. For this state,
Slave_IO_Running is No.

• MYSQL_SLAVE_RUN_NOT_CONNECT. The replica I/O thread is running, but is not connected to
a replication source. For this state, Slave_IO_Running is Connecting.

• MYSQL_SLAVE_RUN_CONNECT. The replica I/O thread is running, and is connected to a
replication source. For this state, Slave_IO_Running is Yes.

The value of the Slave_running system status variable corresponds with this value.

• Slave_SQL_Running

Whether the SQL thread is started.

• Replicate_Do_DB, Replicate_Ignore_DB

The lists of databases that were specified with the --replicate-do-db and --replicate-ignore-
db options, if any.

• Replicate_Do_Table, Replicate_Ignore_Table, Replicate_Wild_Do_Table,
Replicate_Wild_Ignore_Table

1949

SHOW Statements

The lists of tables that were specified with the --replicate-do-table, --replicate-ignore-
table, --replicate-wild-do-table, and --replicate-wild-ignore-table options, if any.

• Last_Errno, Last_Error

These columns are aliases for Last_SQL_Errno and Last_SQL_Error.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

Note

When the replica SQL thread receives an error, it reports the error first, then
stops the SQL thread. This means that there is a small window of time during
which SHOW SLAVE STATUS shows a nonzero value for Last_SQL_Errno even
though Slave_SQL_Running still displays Yes.

• Skip_Counter

The current value of the sql_slave_skip_counter system variable. See Section 13.4.2.4, “SET
GLOBAL sql_slave_skip_counter Statement”.

• Exec_Master_Log_Pos

The position in the current source binary log file to which the SQL thread has read and executed,
marking the start of the next transaction or event to be processed. You can use this value with
the CHANGE MASTER TO statement's MASTER_LOG_POS option when starting a new replica
from an existing replica, so that the new replica reads from this point. The coordinates given by
(Relay_Master_Log_File, Exec_Master_Log_Pos) in the source's binary log correspond to the
coordinates given by (Relay_Log_File, Relay_Log_Pos) in the relay log.

When using a multithreaded replica (by setting slave_parallel_workers to a nonzero value), the
value in this column actually represents a “low-water” mark, before which no uncommitted transactions
remain. Because the current implementation allows execution of transactions on different databases in a
different order on the replica than on the source, this is not necessarily the position of the most recently
executed transaction.

• Relay_Log_Space

The total combined size of all existing relay log files.

• Until_Condition, Until_Log_File, Until_Log_Pos

The values specified in the UNTIL clause of the START SLAVE statement.

Until_Condition has these values:

• None if no UNTIL clause was specified

• Master if the replica is reading until a given position in the source's binary log

• Relay if the replica is reading until a given position in its relay log

• SQL_BEFORE_GTIDS if the replica SQL thread is processing transactions until it has reached the first
transaction whose GTID is listed in the gtid_set.

• SQL_AFTER_GTIDS if the replica threads are processing all transactions until the last transaction in
the gtid_set has been processed by both threads.

1950

SHOW Statements

• SQL_AFTER_MTS_GAPS if a multithreaded replica's SQL threads are running until no more gaps are
found in the relay log.

Until_Log_File and Until_Log_Pos indicate the log file name and position that define the
coordinates at which the SQL thread stops executing.

For more information on UNTIL clauses, see Section 13.4.2.5, “START SLAVE Statement”.

• Master_SSL_Allowed, Master_SSL_CA_File, Master_SSL_CA_Path, Master_SSL_Cert,
Master_SSL_Cipher, Master_SSL_CRL_File, Master_SSL_CRL_Path, Master_SSL_Key,
Master_SSL_Verify_Server_Cert

These fields show the SSL parameters used by the replica to connect to the source, if any.

Master_SSL_Allowed has these values:

• Yes if an SSL connection to the source is permitted

• No if an SSL connection to the source is not permitted

• Ignored if an SSL connection is permitted but the replica server does not have SSL support enabled

The values of the other SSL-related fields correspond to the values of the MASTER_SSL_CA,
MASTER_SSL_CAPATH, MASTER_SSL_CERT, MASTER_SSL_CIPHER, MASTER_SSL_CRL,
MASTER_SSL_CRLPATH, MASTER_SSL_KEY, and MASTER_SSL_VERIFY_SERVER_CERT options to the
CHANGE MASTER TO statement. See Section 13.4.2.1, “CHANGE MASTER TO Statement”.

• Seconds_Behind_Master

This field is an indication of how “late” the replica is:

• When the replica is actively processing updates, this field shows the difference between the current
timestamp on the replica and the original timestamp logged on the source for the event currently being
processed on the replica.

• When no event is currently being processed on the replica, this value is 0.

In essence, this field measures the time difference in seconds between the replica SQL thread and the
replica I/O thread. If the network connection between source and replica is fast, the replica I/O thread
is very close to the source, so this field is a good approximation of how late the replica SQL thread is
compared to the source. If the network is slow, this is not a good approximation; the replica SQL thread
may quite often be caught up with the slow-reading replica I/O thread, so Seconds_Behind_Master
often shows a value of 0, even if the I/O thread is late compared to the source. In other words, this
column is useful only for fast networks.

This time difference computation works even if the source and replica do not have identical clock
times, provided that the difference, computed when the replica I/O thread starts, remains constant from
then on. Any changes—including NTP updates—can lead to clock skews that can make calculation of
Seconds_Behind_Master less reliable.

In MySQL 5.6.9 and later, this field is NULL (undefined or unknown) if the replica SQL thread is not
running, or if the SQL thread has consumed all of the relay log and the replica I/O thread is not running.
Previously, this field was NULL if the replica SQL thread or the replica I/O thread was not running or was
not connected to the source. (Bug #12946333) For example, if (prior to MySQL 5.6.9) the replica I/O
thread was running but was not connected to the source and was sleeping for the number of seconds
given by the CHANGE MASTER TO statement or --master-connect-retry option (default 60) before

1951

SHOW Statements

reconnecting, the value was NULL. Now in such cases, the connection to the source is not tested;
instead, if the I/O thread is running but the relay log is exhausted, Seconds_Behind_Master is set to
0.

The value of Seconds_Behind_Master is based on the timestamps stored in events, which are
preserved through replication. This means that if a source M1 is itself a replica of M0, any event from
M1's binary log that originates from M0's binary log has M0's timestamp for that event. This enables
MySQL to replicate TIMESTAMP successfully. However, the problem for Seconds_Behind_Master
is that if M1 also receives direct updates from clients, the Seconds_Behind_Master value randomly
fluctuates because sometimes the last event from M1 originates from M0 and sometimes is the result of
a direct update on M1.

When using a multithreaded replica, you should keep in mind that this value is based on
Exec_Master_Log_Pos, and so may not reflect the position of the most recently committed
transaction.

• Last_IO_Errno, Last_IO_Error

The error number and error message of the most recent error that caused the I/O thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the Last_IO_Error value is not
empty, the error values also appear in the replica's error log.

I/O error information includes a timestamp showing when the most recent I/O thread error occurred. This
timestamp uses the format YYMMDD hh:mm:ss, and appears in the Last_IO_Error_Timestamp
column.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

• Last_SQL_Errno, Last_SQL_Error

The error number and error message of the most recent error that caused the SQL thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the Last_SQL_Error value is
not empty, the error values also appear in the replica's error log.

SQL error information includes a timestamp showing when the most recent SQL thread
error occurred. This timestamp uses the format YYMMDD hh:mm:ss, and appears in the
Last_SQL_Error_Timestamp column.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

• Replicate_Ignore_Server_Ids

In MySQL 5.6, you set a replica to ignore events from 0 or more sources using the
IGNORE_SERVER_IDS option of the CHANGE MASTER TO statement. By default this is blank, and is
usually modified only when using a circular or other multi-source replication setup. The message shown
for Replicate_Ignore_Server_Ids when not blank consists of a comma-delimited list of one or
more numbers, indicating the server IDs to be ignored. For example:

 Replicate_Ignore_Server_Ids: 2, 6, 9

Note

Ignored_server_ids also shows the server IDs to be ignored, but is a
space-delimited list, which is preceded by the total number of server IDs to
be ignored. For example, if a CHANGE MASTER TO statement containing the
IGNORE_SERVER_IDS = (2,6,9) option has been issued to tell a replica to
ignore sources having the server ID 2, 6, or 9, that information appears as:

1952

SHOW Statements

 Ignored_server_ids: 3 2 6 9

where 3 is the total number of server IDs being ignored.

Replicate_Ignore_Server_Ids filtering is performed by the I/O thread, rather than by the SQL
thread, which means that events which are filtered out are not written to the relay log. This differs from
the filtering actions taken by server options such --replicate-do-table, which apply to the SQL
thread.

• Master_Server_Id

The server_id value from the source.

• Master_UUID

The server_uuid value from the source.

• Master_Info_File

The location of the master.info file.

• SQL_Delay

The number of seconds that the replica must lag the source.

• SQL_Remaining_Delay

When Slave_SQL_Running_State is Waiting until MASTER_DELAY seconds after master
executed event, this field contains the number of delay seconds remaining. At other times, this field is
NULL.

• Slave_SQL_Running_State

The state of the SQL thread (analogous to Slave_IO_State). The value is identical to the State
value of the SQL thread as displayed by SHOW PROCESSLIST; Section 8.14.8, “Replication Replica SQL
Thread States”, provides a listing of possible states.

• Master_Retry_Count

The number of times the replica can attempt to reconnect to the source in the event of a lost connection.
This value can be set using the MASTER_RETRY_COUNT option of the CHANGE MASTER TO statement
(preferred) or the older --master-retry-count server option (still supported for backward
compatibility).

• Master_Bind

The network interface that the replica is bound to, if any. This is set using the MASTER_BIND option for
the CHANGE MASTER TO statement.

• Last_IO_Error_Timestamp

A timestamp in YYMMDD hh:mm:ss format that shows when the most recent I/O error took place.

• Last_SQL_Error_Timestamp

A timestamp in YYMMDD hh:mm:ss format that shows when the most recent SQL error occurred.

• Retrieved_Gtid_Set

1953

SHOW Statements

The set of global transaction IDs corresponding to all transactions received by this replica. Empty if
GTIDs are not in use.

This is the set of all GTIDs that exist or have existed in the relay logs. Each GTID is added as soon as
the Gtid_log_event is received. This can cause partially transmitted transactions to have their GTIDs
included in the set.

When all relay logs are lost due to executing RESET SLAVE or CHANGE MASTER TO, or due to the
effects of the --relay-log-recovery option, the set is cleared. When relay_log_purge = 1, the
newest relay log is always kept, and the set is not cleared.

• Executed_Gtid_Set

The set of global transaction IDs written in the binary log. This is the same as the value for the global
gtid_executed system variable on this server, as well as the value for Executed_Gtid_Set in the
output of SHOW MASTER STATUS on this server. Empty if GTIDs are not in use. See GTID Sets for more
information.

• Auto_Position

1 if autopositioning is in use; otherwise 0.

13.7.5.36 SHOW STATUS Statement

SHOW [GLOBAL | SESSION] STATUS
 [LIKE 'pattern' | WHERE expr]

SHOW STATUS provides server status information (see Section 5.1.9, “Server Status Variables”). This
statement does not require any privilege. It requires only the ability to connect to the server.

Status variable information is also available from these sources:

• The GLOBAL_STATUS and SESSION_STATUS tables. See Section 21.3.9, “The
INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”.

• The mysqladmin extended-status command. See Section 4.5.2, “mysqladmin — A MySQL Server
Administration Program”.

For SHOW STATUS, a LIKE clause, if present, indicates which variable names to match. A WHERE clause
can be given to select rows using more general conditions, as discussed in Section 21.9, “Extensions to
SHOW Statements”.

SHOW STATUS accepts an optional GLOBAL or SESSION variable scope modifier:

• With a GLOBAL modifier, the statement displays the global status values. A global status variable
may represent status for some aspect of the server itself (for example, Aborted_connects), or the
aggregated status over all connections to MySQL (for example, Bytes_received and Bytes_sent). If
a variable has no global value, the session value is displayed.

• With a SESSION modifier, the statement displays the status variable values for the current connection. If
a variable has no session value, the global value is displayed. LOCAL is a synonym for SESSION.

• If no modifier is present, the default is SESSION.

The scope for each status variable is listed at Section 5.1.9, “Server Status Variables”.

1954

SHOW Statements

Each invocation of the SHOW STATUS statement uses an internal temporary table and increments the
global Created_tmp_tables value.

Partial output is shown here. The list of names and values may differ for your server. The meaning of each
variable is given in Section 5.1.9, “Server Status Variables”.

mysql> SHOW STATUS;
+--------------------------+------------+
| Variable_name | Value |
+--------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_tables	8340
Created_tmp_files	60
...	
Open_tables	1
Open_files	2
Open_streams	0
Opened_tables	44600
Questions	2026873
...	
Table_locks_immediate	1920382
Table_locks_waited	0
Threads_cached	0
Threads_created	30022
Threads_connected	1
Threads_running	1
Uptime	80380
+--------------------------+------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the
pattern:

mysql> SHOW STATUS LIKE 'Key%';
+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
Key_blocks_used	14955
Key_read_requests	96854827
Key_reads	162040
Key_write_requests	7589728
Key_writes	3813196
+--------------------+----------+

13.7.5.37 SHOW TABLE STATUS Statement

SHOW TABLE STATUS
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TABLE STATUS works likes SHOW TABLES, but provides a lot of information about each
non-TEMPORARY table. You can also get this list using the mysqlshow --status db_name command.
The LIKE clause, if present, indicates which table names to match. The WHERE clause can be given
to select rows using more general conditions, as discussed in Section 21.9, “Extensions to SHOW
Statements”.

This statement also displays information about views.

SHOW TABLE STATUS output has these columns:

• Name

1955

SHOW Statements

The name of the table.

• Engine

The storage engine for the table. See Chapter 14, The InnoDB Storage Engine, and Chapter 15,
Alternative Storage Engines.

For partitioned tables, Engine shows the name of the storage engine used by all partitions.

• Version

The version number of the table's .frm file.

• Row_format

The row-storage format (Fixed, Dynamic, Compressed, Redundant, Compact). For MyISAM tables,
Dynamic corresponds to what myisamchk -dvv reports as Packed. InnoDB table format is either
Redundant or Compact when using the Antelope file format, or Compressed or Dynamic when
using the Barracuda file format.

• Rows

The number of rows. Some storage engines, such as MyISAM, store the exact count. For other storage
engines, such as InnoDB, this value is an approximation, and may vary from the actual value by as
much as 40% to 50%. In such cases, use SELECT COUNT(*) to obtain an accurate count.

The Rows value is NULL for INFORMATION_SCHEMA tables.

For InnoDB tables, the row count is only a rough estimate used in SQL optimization. (This is also true if
the InnoDB table is partitioned.)

• Avg_row_length

The average row length.

Refer to the notes at the end of this section for related information.

• Data_length

For MyISAM, Data_length is the length of the data file, in bytes.

For InnoDB, Data_length is the approximate amount of space allocated for the clustered index, in
bytes. Specifically, it is the clustered index size, in pages, multiplied by the InnoDB page size.

Refer to the notes at the end of this section for information regarding other storage engines.

• Max_data_length

For MyISAM, Max_data_length is maximum length of the data file. This is the total number of bytes of
data that can be stored in the table, given the data pointer size used.

Unused for InnoDB.

Refer to the notes at the end of this section for information regarding other storage engines.

• Index_length

For MyISAM, Index_length is the length of the index file, in bytes.

1956

SHOW Statements

For InnoDB, Index_length is the approximate amount of space allocated for non-clustered indexes,
in bytes. Specifically, it is the sum of non-clustered index sizes, in pages, multiplied by the InnoDB page
size.

Refer to the notes at the end of this section for information regarding other storage engines.

• Data_free

The number of allocated but unused bytes.

InnoDB tables report the free space of the tablespace to which the table belongs. For a table located
in the shared tablespace, this is the free space of the shared tablespace. If you are using multiple
tablespaces and the table has its own tablespace, the free space is for only that table. Free space
means the number of bytes in completely free extents minus a safety margin. Even if free space displays
as 0, it may be possible to insert rows as long as new extents need not be allocated.

For NDB Cluster, Data_free shows the space allocated on disk for, but not used by, a Disk Data table
or fragment on disk. (In-memory data resource usage is reported by the Data_length column.)

For partitioned tables, this value is only an estimate and may not be absolutely correct. A more accurate
method of obtaining this information in such cases is to query the INFORMATION_SCHEMA PARTITIONS
table, as shown in this example:

SELECT SUM(DATA_FREE)
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_SCHEMA = 'mydb'
 AND TABLE_NAME = 'mytable';

For more information, see Section 21.3.14, “The INFORMATION_SCHEMA PARTITIONS Table”.

• Auto_increment

The next AUTO_INCREMENT value.

• Create_time

When the table was created.

Prior to MySQL 5.6.25, for partitioned InnoDB tables, the Create_time column shows NULL.
This column shows the correct table creation time for such tables in MySQL 5.6.25 and later. (Bug
#17299181, Bug #69990)

• Update_time

When the data file was last updated. For some storage engines, this value is NULL. For example,
InnoDB stores multiple tables in its system tablespace and the data file timestamp does not apply. Even
with file-per-table mode with each InnoDB table in a separate .ibd file, change buffering can delay the
write to the data file, so the file modification time is different from the time of the last insert, update, or
delete. For MyISAM, the data file timestamp is used; however, on Windows the timestamp is not updated
by updates, so the value is inaccurate.

For partitioned InnoDB tables, Update_time is always NULL.

• Check_time

When the table was last checked. Not all storage engines update this time, in which case, the value is
always NULL.

1957

SHOW Statements

For partitioned InnoDB tables, Check_time is always NULL.

• Collation

The table default collation. The output does not explicitly list the table default character set, but the
collation name begins with the character set name.

• Checksum

The live checksum value, if any.

• Create_options

Extra options used with CREATE TABLE.

Create_options shows partitioned for partitioned tables.

When creating a table with strict mode disabled, the storage engine's default row format is used if the
specified row format is not supported. The actual row format of the table is reported in the Row_format
column. Create_options shows the row format that was specified in the CREATE TABLE statement.

When altering the storage engine of a table, table options that are not applicable to the new storage
engine are retained in the table definition to enable reverting the table with its previously defined options
to the original storage engine, if necessary. Create_options may show retained options.

• Comment

The comment used when creating the table (or information as to why MySQL could not access the table
information).

Notes

• For InnoDB tables, SHOW TABLE STATUS does not give accurate statistics except for the physical size
reserved by the table. The row count is only a rough estimate used in SQL optimization.

• For NDB tables, the output of this statement shows appropriate values for the Avg_row_length and
Data_length columns, with the exception that BLOB columns are not taken into account.

• For NDB tables, Data_length includes data stored in main memory only; the Max_data_length and
Data_free columns apply to Disk Data.

• For NDB Cluster Disk Data tables, Max_data_length shows the space allocated for the disk part of a
Disk Data table or fragment. (In-memory data resource usage is reported by the Data_length column.)

• For MEMORY tables, the Data_length, Max_data_length, and Index_length values approximate
the actual amount of allocated memory. The allocation algorithm reserves memory in large amounts to
reduce the number of allocation operations.

• For views, all columns displayed by SHOW TABLE STATUS are NULL except that Name indicates the
view name and Comment says VIEW.

Table information is also available from the INFORMATION_SCHEMA TABLES table. See Section 21.3.23,
“The INFORMATION_SCHEMA TABLES Table”.

13.7.5.38 SHOW TABLES Statement

SHOW [FULL] TABLES
 [{FROM | IN} db_name]

1958

SHOW Statements

 [LIKE 'pattern' | WHERE expr]

SHOW TABLES lists the non-TEMPORARY tables in a given database. You can also get this list using the
mysqlshow db_name command. The LIKE clause, if present, indicates which table names to match. The
WHERE clause can be given to select rows using more general conditions, as discussed in Section 21.9,
“Extensions to SHOW Statements”.

Matching performed by the LIKE clause is dependent on the setting of the lower_case_table_names
system variable.

This statement also lists any views in the database. The optional FULL modifier causes SHOW TABLES to
display a second output column with values of BASE TABLE for a table, VIEW for a view, or SYSTEM VIEW
for an INFORMATION_SCHEMA table.

If you have no privileges for a base table or view, it does not show up in the output from SHOW TABLES or
mysqlshow db_name.

Table information is also available from the INFORMATION_SCHEMA TABLES table. See Section 21.3.23,
“The INFORMATION_SCHEMA TABLES Table”.

13.7.5.39 SHOW TRIGGERS Statement

SHOW TRIGGERS
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TRIGGERS lists the triggers currently defined for tables in a database (the default database unless a
FROM clause is given). This statement returns results only for databases and tables for which you have the
TRIGGER privilege. The LIKE clause, if present, indicates which table names (not trigger names) to match
and causes the statement to display triggers for those tables. The WHERE clause can be given to select
rows using more general conditions, as discussed in Section 21.9, “Extensions to SHOW Statements”.

For the ins_sum trigger defined in Section 20.3, “Using Triggers”, the output of SHOW TRIGGERS is as
shown here:

mysql> SHOW TRIGGERS LIKE 'acc%'\G
*************************** 1. row ***************************
 Trigger: ins_sum
 Event: INSERT
 Table: account
 Statement: SET @sum = @sum + NEW.amount
 Timing: BEFORE
 Created: NULL
 sql_mode: NO_ENGINE_SUBSTITUTION
 Definer: me@localhost
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci

SHOW TRIGGERS output has these columns:

• Trigger

The name of the trigger.

• Event

The trigger event. This is the type of operation on the associated table for which the trigger activates.
The value is INSERT (a row was inserted), DELETE (a row was deleted), or UPDATE (a row was
modified).

1959

SHOW Statements

• Table

The table for which the trigger is defined.

• Statement

The trigger body; that is, the statement executed when the trigger activates.

• Timing

Whether the trigger activates before or after the triggering event. The value is BEFORE or AFTER.

• Created

The value of this column is always NULL.

• sql_mode

The SQL mode in effect when the trigger was created, and under which the trigger executes. For the
permitted values, see Section 5.1.10, “Server SQL Modes”.

• Definer

The account of the user who created the trigger, in 'user_name'@'host_name' format.

• character_set_client

The session value of the character_set_client system variable when the trigger was created.

• collation_connection

The session value of the collation_connection system variable when the trigger was created.

• Database Collation

The collation of the database with which the trigger is associated.

Trigger information is also available from the INFORMATION_SCHEMA TRIGGERS table. See
Section 21.3.27, “The INFORMATION_SCHEMA TRIGGERS Table”.

13.7.5.40 SHOW VARIABLES Statement

SHOW [GLOBAL | SESSION] VARIABLES
 [LIKE 'pattern' | WHERE expr]

SHOW VARIABLES shows the values of MySQL system variables (see Section 5.1.7, “Server System
Variables”). This statement does not require any privilege. It requires only the ability to connect to the
server.

System variable information is also available from these sources:

• The GLOBAL_VARIABLES and SESSION_VARIABLES tables. See Section 21.3.10, “The
INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables”.

• The mysqladmin variables command. See Section 4.5.2, “mysqladmin — A MySQL Server
Administration Program”.

For SHOW VARIABLES, a LIKE clause, if present, indicates which variable names to match. A WHERE
clause can be given to select rows using more general conditions, as discussed in Section 21.9,
“Extensions to SHOW Statements”.

1960

SHOW Statements

SHOW VARIABLES accepts an optional GLOBAL or SESSION variable scope modifier:

• With a GLOBAL modifier, the statement displays global system variable values. These are the values
used to initialize the corresponding session variables for new connections to MySQL. If a variable has no
global value, no value is displayed.

• With a SESSION modifier, the statement displays the system variable values that are in effect for the
current connection. If a variable has no session value, the global value is displayed. LOCAL is a synonym
for SESSION.

• If no modifier is present, the default is SESSION.

The scope for each system variable is listed at Section 5.1.7, “Server System Variables”.

SHOW VARIABLES is subject to a version-dependent display-width limit. For variables with very long values
that are not completely displayed, use SELECT as a workaround. For example:

SELECT @@GLOBAL.innodb_data_file_path;

Most system variables can be set at server startup (read-only variables such as version_comment are
exceptions). Many can be changed at runtime with the SET statement. See Section 5.1.8, “Using System
Variables”, and Section 13.7.4.1, “SET Syntax for Variable Assignment”.

Partial output is shown here. The list of names and values may differ for your server. Section 5.1.7, “Server
System Variables”, describes the meaning of each variable, and Section 5.1.1, “Configuring the Server”,
provides information about tuning them.

mysql> SHOW VARIABLES;
+---+---------------------------+
| Variable_name | Value |
+---+---------------------------+
auto_increment_increment	1
auto_increment_offset	1
autocommit	ON
automatic_sp_privileges	ON
back_log	50
basedir	/home/jon/bin/mysql-5.5
big_tables	OFF
binlog_cache_size	32768
binlog_direct_non_transactional_updates	OFF
binlog_format	STATEMENT
binlog_stmt_cache_size	32768
bulk_insert_buffer_size	8388608
...	
max_allowed_packet	4194304
max_binlog_cache_size	18446744073709547520
max_binlog_size	1073741824
max_binlog_stmt_cache_size	18446744073709547520
max_connect_errors	100
max_connections	151
max_delayed_threads	20
max_error_count	64
max_heap_table_size	16777216
max_insert_delayed_threads	20
max_join_size	18446744073709551615
...

thread_handling	one-thread-per-connection
thread_stack	262144
time_format	%H:%i:%s
time_zone	SYSTEM
timed_mutexes	OFF
timestamp	1316689732

1961

SHOW Statements

tmp_table_size	16777216
tmpdir	/tmp
transaction_alloc_block_size	8192
transaction_prealloc_size	4096
tx_isolation	REPEATABLE-READ
unique_checks	ON
updatable_views_with_limit	YES
version	5.5.17-log
version_comment	Source distribution
version_compile_machine	x86_64
version_compile_os	Linux
wait_timeout	28800
warning_count	0
+---+---------------------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the
pattern. To obtain the row for a specific variable, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the % wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking,
because _ is a wildcard that matches any single character, you should escape it as _ to match it literally.
In practice, this is rarely necessary.

13.7.5.41 SHOW WARNINGS Statement

SHOW WARNINGS [LIMIT [offset,] row_count]
SHOW COUNT(*) WARNINGS

SHOW WARNINGS is a diagnostic statement that displays information about the conditions (errors,
warnings, and notes) resulting from executing a statement in the current session. Warnings are generated
for DML statements such as INSERT, UPDATE, and LOAD DATA as well as DDL statements such as
CREATE TABLE and ALTER TABLE.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Statement”.

SHOW WARNINGS is also used following EXPLAIN EXTENDED, to display the extra information generated
by EXPLAIN when the EXTENDED keyword is used. See Section 8.8.3, “Extended EXPLAIN Output
Format”.

SHOW WARNINGS displays information about the conditions resulting from the most recent statement in
the current session that generated messages. It shows nothing if the most recent statement used a table
and generated no messages. (That is, statements that use a table but generate no messages clear the
message list.) Statements that do not use tables and do not generate messages have no effect on the
message list.

The SHOW COUNT(*) WARNINGS diagnostic statement displays the total number of errors, warnings, and
notes. You can also retrieve this number from the warning_count system variable:

SHOW COUNT(*) WARNINGS;
SELECT @@warning_count;

A related diagnostic statement, SHOW ERRORS, shows only error conditions (it excludes warnings
and notes), and SHOW COUNT(*) ERRORS statement displays the total number of errors. See

1962

SHOW Statements

Section 13.7.5.18, “SHOW ERRORS Statement”. GET DIAGNOSTICS can be used to examine information
for individual conditions. See Section 13.6.7.3, “GET DIAGNOSTICS Statement”.

Here is a simple example that shows data-conversion warnings for INSERT. The example assumes that
strict SQL mode is disabled. With strict mode enabled, the warnings would become errors and terminate
the INSERT.

mysql> CREATE TABLE t1 (a TINYINT NOT NULL, b CHAR(4));
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t1 VALUES(10,'mysql'), (NULL,'test'), (300,'xyz');
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1265
Message: Data truncated for column 'b' at row 1
*************************** 2. row ***************************
 Level: Warning
 Code: 1048
Message: Column 'a' cannot be null
*************************** 3. row ***************************
 Level: Warning
 Code: 1264
Message: Out of range value for column 'a' at row 3
3 rows in set (0.00 sec)

The max_error_count system variable controls the maximum number of error, warning, and note
messages for which the server stores information, and thus the number of messages that SHOW
WARNINGS displays. To change the number of messages the server can store, change the value of
max_error_count. The default is 64.

max_error_count controls only how many messages are stored, not how many are counted. The
value of warning_count is not limited by max_error_count, even if the number of messages
generated exceeds max_error_count. The following example demonstrates this. The ALTER TABLE
statement produces three warning messages (strict SQL mode is disabled for the example to prevent
an error from occuring after a single conversion issue). Only one message is stored and displayed
because max_error_count has been set to 1, but all three are counted (as shown by the value of
warning_count):

mysql> SHOW VARIABLES LIKE 'max_error_count';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| max_error_count | 64 |
+-----------------+-------+
1 row in set (0.00 sec)

mysql> SET max_error_count=1, sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE t1 MODIFY b CHAR;
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1263 | Data truncated for column 'b' at row 1 |
+---------+------+--+
1 row in set (0.00 sec)

1963

Other Administrative Statements

mysql> SELECT @@warning_count;
+-----------------+
| @@warning_count |
+-----------------+
| 3 |
+-----------------+
1 row in set (0.01 sec)

To disable message storage, set max_error_count to 0. In this case, warning_count still indicates
how many warnings occurred, but messages are not stored and cannot be displayed.

The sql_notes system variable controls whether note messages increment warning_count and
whether the server stores them. By default, sql_notes is 1, but if set to 0, notes do not increment
warning_count and the server does not store them:

mysql> SET sql_notes = 1;
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)

mysql> SET sql_notes = 0;
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected (0.00 sec)
mysql> SHOW WARNINGS;
Empty set (0.00 sec)

The MySQL server sends to each client a count indicating the total number of errors, warnings, and
notes resulting from the most recent statement executed by that client. From the C API, this value can be
obtained by calling mysql_warning_count(). See mysql_warning_count().

In the mysql client, you can enable and disable automatic warnings display using the warnings and
nowarning commands, respectively, or their shortcuts, \W and \w (see Section 4.5.1.2, “mysql Client
Commands”). For example:

mysql> \W
Show warnings enabled.
mysql> SELECT 1/0;
+------+
| 1/0 |
+------+
| NULL |
+------+
1 row in set, 1 warning (0.03 sec)

Warning (Code 1365): Division by 0
mysql> \w
Show warnings disabled.

13.7.6 Other Administrative Statements

13.7.6.1 BINLOG Statement

BINLOG 'str'

BINLOG is an internal-use statement. It is generated by the mysqlbinlog program as the printable
representation of certain events in binary log files. (See Section 4.6.8, “mysqlbinlog — Utility for Processing

1964

https://dev.mysql.com/doc/c-api/5.6/en/mysql-warning-count.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-warning-count.html

Other Administrative Statements

Binary Log Files”.) The 'str' value is a base 64-encoded string the that server decodes to determine the
data change indicated by the corresponding event. This statement requires the SUPER privilege.

This statement can execute only format description events and row events.

13.7.6.2 CACHE INDEX Statement

CACHE INDEX {
 tbl_index_list [, tbl_index_list] ...
 | tbl_name PARTITION (partition_list)
 }
 IN key_cache_name

tbl_index_list:
 tbl_name [{INDEX|KEY} (index_name[, index_name] ...)]

partition_list: {
 partition_name[, partition_name] ...
 | ALL
}

The CACHE INDEX statement assigns table indexes to a specific key cache. It applies only to MyISAM
tables, including partitioned MyISAM tables. After the indexes have been assigned, they can be preloaded
into the cache if desired with LOAD INDEX INTO CACHE.

The following statement assigns indexes from the tables t1, t2, and t3 to the key cache named
hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

The syntax of CACHE INDEX enables you to specify that only particular indexes from a table should be
assigned to the cache. However, the implementation assigns all the table's indexes to the cache, so there
is no reason to specify anything other than the table name.

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a parameter
setting statement or in the server parameter settings. For example:

SET GLOBAL keycache1.key_buffer_size=128*1024;

Key cache parameters are accessed as members of a structured system variable. See Section 5.1.8.3,
“Structured System Variables”.

A key cache must exist before you assign indexes to it, or an error occurs:

mysql> CACHE INDEX t1 IN non_existent_cache;
ERROR 1284 (HY000): Unknown key cache 'non_existent_cache'

By default, table indexes are assigned to the main (default) key cache created at the server startup. When
a key cache is destroyed, all indexes assigned to it are reassigned to the default key cache.

Index assignment affects the server globally: If one client assigns an index to a given cache, this cache is
used for all queries involving the index, no matter which client issues the queries.

CACHE INDEX is supported for partitioned MyISAM tables. You can assign one or more indexes for one,
several, or all partitions to a given key cache. For example, you can do the following:

1965

Other Administrative Statements

CREATE TABLE pt (c1 INT, c2 VARCHAR(50), INDEX i(c1))
 ENGINE=MyISAM
 PARTITION BY HASH(c1)
 PARTITIONS 4;

SET GLOBAL kc_fast.key_buffer_size = 128 * 1024;
SET GLOBAL kc_slow.key_buffer_size = 128 * 1024;

CACHE INDEX pt PARTITION (p0) IN kc_fast;
CACHE INDEX pt PARTITION (p1, p3) IN kc_slow;

The previous set of statements performs the following actions:

• Creates a partitioned table with 4 partitions; these partitions are automatically named p0, ..., p3; this
table has an index named i on column c1.

• Creates 2 key caches named kc_fast and kc_slow

• Assigns the index for partition p0 to the kc_fast key cache and the index for partitions p1 and p3 to the
kc_slow key cache; the index for the remaining partition (p2) uses the server's default key cache.

If you wish instead to assign the indexes for all partitions in table pt to a single key cache named kc_all,
you can use either of the following two statements:

CACHE INDEX pt PARTITION (ALL) IN kc_all;

CACHE INDEX pt IN kc_all;

The two statements just shown are equivalent, and issuing either one has exactly the same effect. In other
words, if you wish to assign indexes for all partitions of a partitioned table to the same key cache, the
PARTITION (ALL) clause is optional.

When assigning indexes for multiple partitions to a key cache, the partitions need not be contiguous, and
you need not list their names in any particular order. Indexes for any partitions not explicitly assigned to a
key cache automatically use the server default key cache.

Index preloading is also supported for partitioned MyISAM tables. For more information, see
Section 13.7.6.5, “LOAD INDEX INTO CACHE Statement”.

In MySQL 5.6.11 only, gtid_next must be set to AUTOMATIC before issuing this statement. (Bug
#16062608, Bug #16715809, Bug #69045)

13.7.6.3 FLUSH Statement

FLUSH [NO_WRITE_TO_BINLOG | LOCAL] {
 flush_option [, flush_option] ...
 | tables_option
}

flush_option: {
 BINARY LOGS
 | DES_KEY_FILE
 | ENGINE LOGS
 | ERROR LOGS
 | GENERAL LOGS
 | HOSTS
 | LOGS
 | PRIVILEGES
 | QUERY CACHE
 | RELAY LOGS
 | SLOW LOGS
 | STATUS
 | USER_RESOURCES

1966

Other Administrative Statements

}

tables_option: {
 TABLES
 | TABLES tbl_name [, tbl_name] ...
 | TABLES WITH READ LOCK
 | TABLES tbl_name [, tbl_name] ... WITH READ LOCK
 | TABLES tbl_name [, tbl_name] ... FOR EXPORT
}

The FLUSH statement has several variant forms that clear or reload various internal caches, flush tables, or
acquire locks. To execute FLUSH, you must have the RELOAD privilege. Specific flush options might require
additional privileges, as indicated in the option descriptions.

Note

It is not possible to issue FLUSH statements within stored functions or triggers.
However, you may use FLUSH in stored procedures, so long as these are not
called from stored functions or triggers. See Section 20.8, “Restrictions on Stored
Programs”.

By default, the server writes FLUSH statements to the binary log so that they replicate to replicas. To
suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

Note

FLUSH LOGS, FLUSH BINARY LOGS, FLUSH TABLES WITH READ LOCK (with
or without a table list), and FLUSH TABLES tbl_name ... FOR EXPORT are
not written to the binary log in any case because they would cause problems if
replicated to a replica.

The FLUSH statement causes an implicit commit. See Section 13.3.3, “Statements That Cause an Implicit
Commit”.

The mysqladmin utility provides a command-line interface to some flush operations, using commands
such as flush-hosts, flush-logs, flush-privileges, flush-status, and flush-tables. See
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”.

Sending a SIGHUP signal to the server causes several flush operations to occur that are similar to various
forms of the FLUSH statement. Signals can be sent by the root system account or the system account
that owns the server process. This enables the flush operations to be performed without having to connect
to the server, which requires a MySQL account that has privileges sufficient for those operations. See
Section 4.10, “Unix Signal Handling in MySQL”.

The RESET statement is similar to FLUSH. See Section 13.7.6.6, “RESET Statement”, for information about
using RESET with replication.

The following list describes the permitted FLUSH statement flush_option values. For descriptions of the
permitted tables_option values, see FLUSH TABLES Syntax.

• FLUSH BINARY LOGS

Closes and reopens any binary log file to which the server is writing. If binary logging is enabled, the
sequence number of the binary log file is incremented by one relative to the previous file.

This operation has no effect on tables used for the binary and relay logs (as controlled by the
master_info_repository and relay_log_info_repository system variables).

• FLUSH DES_KEY_FILE

1967

Other Administrative Statements

Reloads the DES keys from the file that was specified with the --des-key-file option at server
startup time.

• FLUSH ENGINE LOGS

Closes and reopens any flushable logs for installed storage engines. This causes InnoDB to flush its
logs to disk.

• FLUSH ERROR LOGS

Closes and reopens any error log file to which the server is writing.

• FLUSH GENERAL LOGS

Closes and reopens any general query log file to which the server is writing.

This operation has no effect on tables used for the general query log (see Section 5.4.1, “Selecting
General Query Log and Slow Query Log Output Destinations”).

• FLUSH HOSTS

Empties the host cache and the Performance Schema host_cache table that exposes the cache
contents, and unblocks any blocked hosts.

For information about why host cache flushing might be advisable or desirable, see Section 5.1.11.2,
“DNS Lookups and the Host Cache”.

Note

The statement TRUNCATE TABLE performance_schema.host_cache,
unlike FLUSH HOSTS, is not written to the binary log. To obtain the same
behavior from the latter, specify NO_WRITE_TO_BINLOG or LOCAL as part of the
FLUSH HOSTS statement.

• FLUSH LOGS

Closes and reopens any log file to which the server is writing.

The effect of this operation is equivalent to the combined effects of these operations:

FLUSH BINARY LOGS
FLUSH ENGINE LOGS
FLUSH ERROR LOGS
FLUSH GENERAL LOGS
FLUSH RELAY LOGS
FLUSH SLOW LOGS

• FLUSH PRIVILEGES

Re-reads the privileges from the grant tables in the mysql system database.

Reloading the grant tables is necessary to enable updates to MySQL privileges and users only if you
make such changes directly to the grant tables; it is not needed for account management statements
such as GRANT or REVOKE, which take effect immediately. See Section 6.2.8, “When Privilege Changes
Take Effect”, for more information.

If the --skip-grant-tables option was specified at server startup to disable the MySQL privilege
system, FLUSH PRIVILEGES provides a way to enable the privilege system at runtime.

1968

Other Administrative Statements

Frees memory cached by the server as a result of GRANT, CREATE USER, CREATE SERVER, and
INSTALL PLUGIN statements. This memory is not released by the corresponding REVOKE, DROP
USER, DROP SERVER, and UNINSTALL PLUGIN statements, so for a server that executes many
instances of the statements that cause caching, there is likely to be an increase in cached memory use
unless it is freed with FLUSH PRIVILEGES.

• FLUSH QUERY CACHE

Defragment the query cache to better utilize its memory. FLUSH QUERY CACHE does not remove any
queries from the cache, unlike FLUSH TABLES or RESET QUERY CACHE.

• FLUSH RELAY LOGS

Closes and reopens any relay log file to which the server is writing. If relay logging is enabled, the
sequence number of the relay log file is incremented by one relative to the previous file.

This operation has no effect on tables used for the binary and relay logs (as controlled by the
master_info_repository and relay_log_info_repository system variables).

• FLUSH SLOW LOGS

Closes and reopens any slow query log file to which the server is writing.

This operation has no effect on tables used for the slow query log (see Section 5.4.1, “Selecting General
Query Log and Slow Query Log Output Destinations”).

• FLUSH STATUS

Flushes status indicators.

This operation adds the current thread's session status variable values to the global values and resets
the session values to zero. Some global variables may be reset to zero as well. It also resets the
counters for key caches (default and named) to zero and sets Max_used_connections to the current
number of open connections. This information may be of use when debugging a query. See Section 1.5,
“How to Report Bugs or Problems”.

FLUSH STATUS is unaffected by read_only or super_read_only, and is always written to the binary
log.

• FLUSH USER_RESOURCES

Resets all per-hour user resource indicators to zero.

Resetting resource indicators enables clients that have reached their hourly connection, query, or update
limits to resume activity immediately. FLUSH USER_RESOURCES does not apply to the limit on maximum
simultaneous connections that is controlled by the max_user_connections system variable. See
Section 6.2.13, “Setting Account Resource Limits”.

In MySQL 5.6.11 only, gtid_next must be set to AUTOMATIC before issuing this statement. (Bug
#16062608, Bug #16715809, Bug #69045)

FLUSH TABLES Syntax

FLUSH TABLES flushes tables, and, depending on the variant used, acquires locks. Any TABLES variant
used in a FLUSH statement must be the only option used. FLUSH TABLE is a synonym for FLUSH
TABLES.

1969

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_super_read_only

Other Administrative Statements

Note

The descriptions here that indicate tables are flushed by closing them apply
differently for InnoDB, which flushes table contents to disk but leaves them open.
This still permits table files to be copied while the tables are open, as long as other
activity does not modify them.

• FLUSH TABLES

Closes all open tables, forces all tables in use to be closed, and flushes the query cache and prepared
statement cache. FLUSH TABLES also removes all query results from the query cache, like the RESET
QUERY CACHE statement. For information about query caching and prepared statement caching, see
Section 8.10.3, “The MySQL Query Cache”. and Section 8.10.4, “Caching of Prepared Statements and
Stored Programs”.

FLUSH TABLES is not permitted when there is an active LOCK TABLES ... READ. To flush and lock
tables, use FLUSH TABLES tbl_name ... WITH READ LOCK instead.

• FLUSH TABLES tbl_name [, tbl_name] ...

With a list of one or more comma-separated table names, this operation is like FLUSH TABLES with no
names except that the server flushes only the named tables. If a named table does not exist, no error
occurs.

• FLUSH TABLES WITH READ LOCK

Closes all open tables and locks all tables for all databases with a global read lock.

This operation is a very convenient way to get backups if you have a file system such as Veritas or ZFS
that can take snapshots in time. Use UNLOCK TABLES to release the lock.

FLUSH TABLES WITH READ LOCK acquires a global read lock rather than table locks, so it is not
subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking and
implicit commits:

• UNLOCK TABLES implicitly commits any active transaction only if any tables currently have been
locked with LOCK TABLES. The commit does not occur for UNLOCK TABLES following FLUSH
TABLES WITH READ LOCK because the latter statement does not acquire table locks.

• Beginning a transaction causes table locks acquired with LOCK TABLES to be released, as though you
had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock acquired
with FLUSH TABLES WITH READ LOCK.

FLUSH TABLES WITH READ LOCK is not compatible with XA transactions.

FLUSH TABLES WITH READ LOCK does not prevent the server from inserting rows into the log tables
(see Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”).

• FLUSH TABLES tbl_name [, tbl_name] ... WITH READ LOCK

Flushes and acquires read locks for the named tables.

Because this operation acquires table locks, it requires the LOCK TABLES privilege for each table, in
addition to the RELOAD privilege.

The operation first acquires exclusive metadata locks for the tables, so it waits for transactions that have
those tables open to complete. Then the operation flushes the tables from the table cache, reopens

1970

Other Administrative Statements

the tables, acquires table locks (like LOCK TABLES ... READ), and downgrades the metadata locks
from exclusive to shared. After the operation acquires locks and downgrades the metadata locks, other
sessions can read but not modify the tables.

This operation applies only to existing base (non-TEMPORARY) tables. If a name refers to a base
table, that table is used. If it refers to a TEMPORARY table, it is ignored. If a name applies to a view, an
ER_WRONG_OBJECT error occurs. Otherwise, an ER_NO_SUCH_TABLE error occurs.

Use UNLOCK TABLES to release the locks, LOCK TABLES to release the locks and acquire other locks,
or START TRANSACTION to release the locks and begin a new transaction.

This FLUSH TABLES variant enables tables to be flushed and locked in a single operation. It provides
a workaround for the restriction that FLUSH TABLES is not permitted when there is an active LOCK
TABLES ... READ.

This operation does not perform an implicit UNLOCK TABLES, so an error results if you perform the
operation while there is any active LOCK TABLES or use it a second time without first releasing the locks
acquired.

If a flushed table was opened with HANDLER, the handler is implicitly flushed and loses its position.

• FLUSH TABLES tbl_name [, tbl_name] ... FOR EXPORT

This FLUSH TABLES variant applies to InnoDB tables. It ensures that changes to the named tables
have been flushed to disk so that binary table copies can be made while the server is running.

Because the FLUSH TABLES ... FOR EXPORT operation acquires locks on tables in preparation for
exporting them, it requires the LOCK TABLES and SELECT privileges for each table, in addition to the
RELOAD privilege.

The operation works like this:

1. It acquires shared metadata locks for the named tables. The operation blocks as long as other
sessions have active transactions that have modified those tables or hold table locks for them. When
the locks have been acquired, the operation blocks transactions that attempt to update the tables,
while permitting read-only operations to continue.

2. It checks whether all storage engines for the tables support FOR EXPORT. If any do not, an
ER_ILLEGAL_HA error occurs and the operation fails.

3. The operation notifies the storage engine for each table to make the table ready for export. The
storage engine must ensure that any pending changes are written to disk.

4. The operation puts the session in lock-tables mode so that the metadata locks acquired earlier are
not released when the FOR EXPORT operation completes.

This operation applies only to existing base (non-TEMPORARY) tables. If a name refers to a base
table, that table is used. If it refers to a TEMPORARY table, it is ignored. If a name applies to a view, an
ER_WRONG_OBJECT error occurs. Otherwise, an ER_NO_SUCH_TABLE error occurs.

InnoDB supports FOR EXPORT for tables that have their own .ibd file file (that is, tables created with
the innodb_file_per_table setting enabled). InnoDB ensures when notified by the FOR EXPORT
operation that any changes have been flushed to disk. This permits a binary copy of table contents to be
made while the FOR EXPORT operation is in effect because the .ibd file is transaction consistent and

1971

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_wrong_object
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_no_such_table
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_illegal_ha
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_wrong_object
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_no_such_table

Other Administrative Statements

can be copied while the server is running. FOR EXPORT does not apply to InnoDB system tablespace
files, or to InnoDB tables that have FULLTEXT indexes.

FLUSH TABLES ...FOR EXPORT does not work with partitioned InnoDB tables prior to MySQL 5.6.17,
but is supported for such tables in MySQL 5.6.17 and higher.

When notified by FOR EXPORT, InnoDB writes to disk certain kinds of data that is normally held in
memory or in separate disk buffers outside the tablespace files. For each table, InnoDB also produces
a file named table_name.cfg in the same database directory as the table. The .cfg file contains
metadata needed to reimport the tablespace files later, into the same or different server.

When the FOR EXPORT operation completes, InnoDB has flushed all dirty pages to the table data files.
Any change buffer entries are merged prior to flushing. At this point, the tables are locked and quiescent:
The tables are in a transactionally consistent state on disk and you can copy the .ibd tablespace files
along with the corresponding .cfg files to get a consistent snapshot of those tables.

For the procedure to reimport the copied table data into a MySQL instance, see Section 14.6.1.3,
“Importing InnoDB Tables”.

After you are done with the tables, use UNLOCK TABLES to release the locks, LOCK TABLES to release
the locks and acquire other locks, or START TRANSACTION to release the locks and begin a new
transaction.

While any of these statements is in effect within the session, attempts to use FLUSH TABLES ... FOR
EXPORT produce an error:

FLUSH TABLES ... WITH READ LOCK
FLUSH TABLES ... FOR EXPORT
LOCK TABLES ... READ
LOCK TABLES ... WRITE

While FLUSH TABLES ... FOR EXPORT is in effect within the session, attempts to use any of these
statements produce an error:

FLUSH TABLES WITH READ LOCK
FLUSH TABLES ... WITH READ LOCK
FLUSH TABLES ... FOR EXPORT

13.7.6.4 KILL Statement

KILL [CONNECTION | QUERY] processlist_id

Each connection to mysqld runs in a separate thread. You can kill a thread with the KILL
processlist_id statement.

Thread processlist identifiers can be determined from the ID column of the INFORMATION_SCHEMA
PROCESSLIST table, the Id column of SHOW PROCESSLIST output, and the PROCESSLIST_ID
column of the Performance Schema threads table. The value for the current thread is returned by the
CONNECTION_ID() function.

KILL permits an optional CONNECTION or QUERY modifier:

• KILL CONNECTION is the same as KILL with no modifier: It terminates the connection associated with
the given processlist_id, after terminating any statement the connection is executing.

• KILL QUERY terminates the statement the connection is currently executing, but leaves the connection
itself intact.

The ability to see which threads are available to be killed depends on the PROCESS privilege:

1972

Other Administrative Statements

• Without PROCESS, you can see only your own threads.

• With PROCESS, you can see all threads.

The ability to kill threads and statements depends on the SUPER privilege:

• Without SUPER, you can kill only your own threads and statements.

• With SUPER, you can kill all threads and statements.

You can also use the mysqladmin processlist and mysqladmin kill commands to examine and
kill threads.

Note

You cannot use KILL with the Embedded MySQL Server library because the
embedded server merely runs inside the threads of the host application. It does not
create any connection threads of its own.

When you use KILL, a thread-specific kill flag is set for the thread. In most cases, it might take some time
for the thread to die because the kill flag is checked only at specific intervals:

• During SELECT operations, for ORDER BY and GROUP BY loops, the flag is checked after reading a
block of rows. If the kill flag is set, the statement is aborted.

• ALTER TABLE operations that make a table copy check the kill flag periodically for each few copied rows
read from the original table. If the kill flag was set, the statement is aborted and the temporary table is
deleted.

The KILL statement returns without waiting for confirmation, but the kill flag check aborts the operation
within a reasonably small amount of time. Aborting the operation to perform any necessary cleanup also
takes some time.

• During UPDATE or DELETE operations, the kill flag is checked after each block read and after each
updated or deleted row. If the kill flag is set, the statement is aborted. If you are not using transactions,
the changes are not rolled back.

• GET_LOCK() aborts and returns NULL.

• An INSERT DELAYED thread quickly flushes (inserts) all rows it has in memory and then terminates.

• If the thread is in the table lock handler (state: Locked), the table lock is quickly aborted.

• If the thread is waiting for free disk space in a write call, the write is aborted with a “disk full” error
message.

Warning

Killing a REPAIR TABLE or OPTIMIZE TABLE operation on a MyISAM table results
in a table that is corrupted and unusable. Any reads or writes to such a table fail
until you optimize or repair it again (without interruption).

13.7.6.5 LOAD INDEX INTO CACHE Statement

LOAD INDEX INTO CACHE
 tbl_index_list [, tbl_index_list] ...

tbl_index_list:
 tbl_name

1973

Other Administrative Statements

 [PARTITION (partition_list)]
 [{INDEX|KEY} (index_name[, index_name] ...)]
 [IGNORE LEAVES]

partition_list: {
 partition_name[, partition_name] ...
 | ALL
}

The LOAD INDEX INTO CACHE statement preloads a table index into the key cache to which it has been
assigned by an explicit CACHE INDEX statement, or into the default key cache otherwise.

LOAD INDEX INTO CACHE applies only to MyISAM tables, including partitioned MyISAM tables. In
addition, indexes on partitioned tables can be preloaded for one, several, or all partitions.

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.

IGNORE LEAVES is also supported for partitioned MyISAM tables.

The following statement preloads nodes (index blocks) of indexes for the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

This statement preloads all index blocks from t1. It preloads only blocks for the nonleaf nodes from t2.

The syntax of LOAD INDEX INTO CACHE enables you to specify that only particular indexes from a table
should be preloaded. However, the implementation preloads all the table's indexes into the cache, so there
is no reason to specify anything other than the table name.

In MySQL 5.6.11 only, gtid_next must be set to AUTOMATIC before issuing this statement. (Bug
#16062608, Bug #16715809, Bug #69045)

It is possible to preload indexes on specific partitions of partitioned MyISAM tables. For example, of the
following 2 statements, the first preloads indexes for partition p0 of a partitioned table pt, while the second
preloads the indexes for partitions p1 and p3 of the same table:

LOAD INDEX INTO CACHE pt PARTITION (p0);
LOAD INDEX INTO CACHE pt PARTITION (p1, p3);

To preload the indexes for all partitions in table pt, you can use either of the following two statements:

LOAD INDEX INTO CACHE pt PARTITION (ALL);

LOAD INDEX INTO CACHE pt;

The two statements just shown are equivalent, and issuing either one has exactly the same effect. In other
words, if you wish to preload indexes for all partitions of a partitioned table, the PARTITION (ALL) clause
is optional.

When preloading indexes for multiple partitions, the partitions need not be contiguous, and you need not
list their names in any particular order.

LOAD INDEX INTO CACHE ... IGNORE LEAVES fails unless all indexes in a table have the same
block size. To determine index block sizes for a table, use myisamchk -dv and check the Blocksize
column.

1974

Utility Statements

13.7.6.6 RESET Statement

RESET reset_option [, reset_option] ...

reset_option: {
 MASTER
 | QUERY CACHE
 | SLAVE
}

The RESET statement is used to clear the state of various server operations. You must have the RELOAD
privilege to execute RESET.

RESET acts as a stronger version of the FLUSH statement. See Section 13.7.6.3, “FLUSH Statement”.

The RESET statement causes an implicit commit. See Section 13.3.3, “Statements That Cause an Implicit
Commit”.

In MySQL 5.6.11 only, gtid_next must be set to AUTOMATIC before issuing this statement. (Bug
#16062608, Bug #16715809, Bug #69045)

The following list describes the permitted RESET statement reset_option values:

• RESET MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and creates a
new binary log file.

• RESET QUERY CACHE

Removes all query results from the query cache.

• RESET SLAVE

Makes the replica forget its replication position in the source binary logs. Also resets the relay log by
deleting any existing relay log files and beginning a new one.

13.8 Utility Statements

13.8.1 DESCRIBE Statement

The DESCRIBE and EXPLAIN statements are synonyms, used either to obtain information about table
structure or query execution plans. For more information, see Section 13.7.5.6, “SHOW COLUMNS
Statement”, and Section 13.8.2, “EXPLAIN Statement”.

13.8.2 EXPLAIN Statement
{EXPLAIN | DESCRIBE | DESC}
 tbl_name [col_name | wild]

{EXPLAIN | DESCRIBE | DESC}
 [explain_type]
 explainable_stmt

explain_type: {
 EXTENDED
 | PARTITIONS
 | FORMAT = format_name
}

1975

EXPLAIN Statement

format_name: {
 TRADITIONAL
 | JSON
}

explainable_stmt: {
 SELECT statement
 | DELETE statement
 | INSERT statement
 | REPLACE statement
 | UPDATE statement
}

The DESCRIBE and EXPLAIN statements are synonyms. In practice, the DESCRIBE keyword is more often
used to obtain information about table structure, whereas EXPLAIN is used to obtain a query execution
plan (that is, an explanation of how MySQL would execute a query).

The following discussion uses the DESCRIBE and EXPLAIN keywords in accordance with those uses, but
the MySQL parser treats them as completely synonymous.

• Obtaining Table Structure Information

• Obtaining Execution Plan Information

Obtaining Table Structure Information

DESCRIBE provides information about the columns in a table:

mysql> DESCRIBE City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
Id	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
Country	char(3)	NO	UNI		
District	char(20)	YES	MUL		
Population	int(11)	NO		0	
+------------+----------+------+-----+---------+----------------+

DESCRIBE is a shortcut for SHOW COLUMNS. These statements also display information for views. The
description for SHOW COLUMNS provides more information about the output columns. See Section 13.7.5.6,
“SHOW COLUMNS Statement”.

By default, DESCRIBE displays information about all columns in the table. col_name, if given, is the name
of a column in the table. In this case, the statement displays information only for the named column. wild,
if given, is a pattern string. It can contain the SQL % and _ wildcard characters. In this case, the statement
displays output only for the columns with names matching the string. There is no need to enclose the string
within quotation marks unless it contains spaces or other special characters.

The DESCRIBE statement is provided for compatibility with Oracle.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide
information about tables. See Section 13.7.5, “SHOW Statements”.

Obtaining Execution Plan Information

The EXPLAIN statement provides information about how MySQL executes statements:

• EXPLAIN works with SELECT, DELETE, INSERT, REPLACE, and UPDATE statements.

1976

HELP Statement

• When EXPLAIN is used with an explainable statement, MySQL displays information from the optimizer
about the statement execution plan. That is, MySQL explains how it would process the statement,
including information about how tables are joined and in which order. For information about using
EXPLAIN to obtain execution plan information, see Section 8.8.2, “EXPLAIN Output Format”.

• EXPLAIN EXTENDED produces additional execution plan information that can be displayed using SHOW
WARNINGS. See Section 8.8.3, “Extended EXPLAIN Output Format”.

• EXPLAIN PARTITIONS is useful for examining queries involving partitioned tables. See Section 19.3.5,
“Obtaining Information About Partitions”.

• The FORMAT option can be used to select the output format. TRADITIONAL presents the output in
tabular format. This is the default if no FORMAT option is present. JSON format displays the information in
JSON format. With FORMAT = JSON, the output includes extended and partition information.

EXPLAIN requires the same privileges required to execute the explained statement. Additionally, EXPLAIN
also requires the SHOW VIEW privilege for any explained view.

With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement
executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the optimizer
joins the tables in an optimal order. To give a hint to the optimizer to use a join order corresponding
to the order in which the tables are named in a SELECT statement, begin the statement with SELECT
STRAIGHT_JOIN rather than just SELECT. (See Section 13.2.9, “SELECT Statement”.)

If you have a problem with indexes not being used when you believe that they should be, run ANALYZE
TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer
makes. See Section 13.7.2.1, “ANALYZE TABLE Statement”.

Note

MySQL Workbench has a Visual Explain capability that provides a visual
representation of EXPLAIN output. See Tutorial: Using Explain to Improve Query
Performance.

13.8.3 HELP Statement
HELP 'search_string'

The HELP statement returns online information from the MySQL Reference Manual. Its proper operation
requires that the help tables in the mysql database be initialized with help topic information (see
Section 5.1.14, “Server-Side Help Support”).

The HELP statement searches the help tables for the given search string and displays the result of the
search. The search string is not case-sensitive.

The search string can contain the wildcard characters % and _. These have the same meaning as for
pattern-matching operations performed with the LIKE operator. For example, HELP 'rep%' returns a list
of topics that begin with rep.

The HELP statement understands several types of search strings:

• At the most general level, use contents to retrieve a list of the top-level help categories:

HELP 'contents'

• For a list of topics in a given help category, such as Data Types, use the category name:

HELP 'data types'

1977

https://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html
https://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html

HELP Statement

• For help on a specific help topic, such as the ASCII() function or the CREATE TABLE statement, use
the associated keyword or keywords:

HELP 'ascii'
HELP 'create table'

In other words, the search string matches a category, many topics, or a single topic. You cannot
necessarily tell in advance whether a given search string returns a list of items or the help information for a
single help topic. However, you can tell what kind of response HELP returned by examining the number of
rows and columns in the result set.

The following descriptions indicate the forms that the result set can take. Output for the example
statements is shown using the familiar “tabular” or “vertical” format that you see when using the mysql
client.

Note

The mysql itself reformats HELP result sets in a different way.

• Empty result set

No match could be found for the search string.

• Result set containing a single row with three columns

This means that the search string yielded a hit for the help topic. The result has three columns:

• name: The topic name.

• description: Descriptive help text for the topic.

• example: Usage example or examples. This column might be blank.

Example: HELP 'replace'

Yields:

name: REPLACE
description: Syntax:
REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str
replaced by the string to_str. REPLACE() performs a case-sensitive
match when searching for from_str.
example: mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
 -> 'WwWwWw.mysql.com'

• Result set containing multiple rows with two columns

This means that the search string matched many help topics. The result set indicates the help topic
names:

• name: The help topic name.

• is_it_category: Y if the name represents a help category, N if it does not. If it does not, the name
value when specified as the argument to the HELP statement should yield a single-row result set
containing a description for the named item.

Example: HELP 'status'

1978

USE Statement

Yields:

+-----------------------+----------------+
| name | is_it_category |
+-----------------------+----------------+
SHOW	N
SHOW ENGINE	N
SHOW MASTER STATUS	N
SHOW PROCEDURE STATUS	N
SHOW SLAVE STATUS	N
SHOW STATUS	N
SHOW TABLE STATUS	N
+-----------------------+----------------+

• Result set containing multiple rows with three columns

This means the search string matches a category. The result set contains category entries:

• source_category_name: The help category name.

• name: The category or topic name

• is_it_category: Y if the name represents a help category, N if it does not. If it does not, the name
value when specified as the argument to the HELP statement should yield a single-row result set
containing a description for the named item.

Example: HELP 'functions'

Yields:

+----------------------+-------------------------+----------------+
| source_category_name | name | is_it_category |
+----------------------+-------------------------+----------------+
Functions	CREATE FUNCTION	N
Functions	DROP FUNCTION	N
Functions	Bit Functions	Y
Functions	Comparison operators	Y
Functions	Control flow functions	Y
Functions	Date and Time Functions	Y
Functions	Encryption Functions	Y
Functions	Information Functions	Y
Functions	Logical operators	Y
Functions	Miscellaneous Functions	Y
Functions	Numeric Functions	Y
Functions	String Functions	Y
+----------------------+-------------------------+----------------+

13.8.4 USE Statement
USE db_name

The USE statement tells MySQL to use the named database as the default (current) database for
subsequent statements. This statement requires some privilege for the database or some object within it.

The named database remains the default until the end of the session or another USE statement is issued:

USE db1;
SELECT COUNT(*) FROM mytable; # selects from db1.mytable
USE db2;
SELECT COUNT(*) FROM mytable; # selects from db2.mytable

The database name must be specified on a single line. Newlines in database names are not supported.

1979

USE Statement

Making a particular database the default by means of the USE statement does not preclude accessing
tables in other databases. The following example accesses the author table from the db1 database and
the editor table from the db2 database:

USE db1;
SELECT author_name,editor_name FROM author,db2.editor
 WHERE author.editor_id = db2.editor.editor_id;

1980

Chapter 14 The InnoDB Storage Engine

Table of Contents
14.1 Introduction to InnoDB ... 1983

14.1.1 Benefits of Using InnoDB Tables .. 1984
14.1.2 Best Practices for InnoDB Tables ... 1985
14.1.3 Checking InnoDB Availability .. 1986
14.1.4 Testing and Benchmarking with InnoDB .. 1986
14.1.5 Turning Off InnoDB .. 1987

14.2 InnoDB and the ACID Model ... 1988
14.3 InnoDB Multi-Versioning .. 1989
14.4 InnoDB Architecture .. 1990
14.5 InnoDB In-Memory Structures .. 1991

14.5.1 Buffer Pool ... 1991
14.5.2 Change Buffer .. 1997
14.5.3 Adaptive Hash Index .. 2001
14.5.4 Log Buffer .. 2002

14.6 InnoDB On-Disk Structures .. 2002
14.6.1 Tables ... 2002
14.6.2 Indexes .. 2022
14.6.3 Tablespaces ... 2028
14.6.4 InnoDB Data Dictionary .. 2035
14.6.5 Doublewrite Buffer .. 2035
14.6.6 Redo Log ... 2035
14.6.7 Undo Logs ... 2036

14.7 InnoDB Locking and Transaction Model ... 2037
14.7.1 InnoDB Locking .. 2038
14.7.2 InnoDB Transaction Model .. 2042
14.7.3 Locks Set by Different SQL Statements in InnoDB ... 2050
14.7.4 Phantom Rows ... 2053
14.7.5 Deadlocks in InnoDB .. 2054

14.8 InnoDB Configuration .. 2057
14.8.1 InnoDB Startup Configuration .. 2057
14.8.2 Configuring InnoDB for Read-Only Operation ... 2062
14.8.3 InnoDB Buffer Pool Configuration .. 2063
14.8.4 Configuring the Memory Allocator for InnoDB .. 2070
14.8.5 Configuring Thread Concurrency for InnoDB .. 2070
14.8.6 Configuring the Number of Background InnoDB I/O Threads .. 2072
14.8.7 Using Asynchronous I/O on Linux ... 2072
14.8.8 Configuring InnoDB I/O Capacity .. 2073
14.8.9 Configuring Spin Lock Polling ... 2074
14.8.10 Purge Configuration .. 2075
14.8.11 Configuring Optimizer Statistics for InnoDB .. 2076
14.8.12 Configuring the Merge Threshold for Index Pages .. 2088

14.9 InnoDB Table Compression ... 2090
14.9.1 Overview of Table Compression ... 2090
14.9.2 Enabling Compression for a Table .. 2091
14.9.3 Tuning Compression for InnoDB Tables .. 2092
14.9.4 Monitoring InnoDB Table Compression at Runtime .. 2096
14.9.5 How Compression Works for InnoDB Tables ... 2097
14.9.6 Compression for OLTP Workloads .. 2100

1981

14.9.7 SQL Compression Syntax Warnings and Errors ... 2101
14.10 InnoDB File-Format Management ... 2103

14.10.1 Enabling File Formats ... 2104
14.10.2 Verifying File Format Compatibility .. 2104
14.10.3 Identifying the File Format in Use .. 2107
14.10.4 Modifying the File Format ... 2108

14.11 InnoDB Row Formats .. 2108
14.12 InnoDB Disk I/O and File Space Management .. 2114

14.12.1 InnoDB Disk I/O ... 2114
14.12.2 File Space Management ... 2115
14.12.3 InnoDB Checkpoints ... 2116
14.12.4 Defragmenting a Table ... 2116
14.12.5 Reclaiming Disk Space with TRUNCATE TABLE ... 2117

14.13 InnoDB and Online DDL .. 2117
14.13.1 Online DDL Operations ... 2118
14.13.2 Online DDL Performance and Concurrency ... 2127
14.13.3 Online DDL Space Requirements .. 2130
14.13.4 Simplifying DDL Statements with Online DDL .. 2131
14.13.5 Online DDL Failure Conditions .. 2131
14.13.6 Online DDL Limitations ... 2132

14.14 InnoDB Startup Options and System Variables ... 2133
14.15 InnoDB INFORMATION_SCHEMA Tables .. 2205

14.15.1 InnoDB INFORMATION_SCHEMA Tables about Compression 2206
14.15.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Information 2207
14.15.3 InnoDB INFORMATION_SCHEMA System Tables ... 2213
14.15.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables 2219
14.15.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables ... 2222
14.15.6 InnoDB INFORMATION_SCHEMA Metrics Table ... 2226

14.16 InnoDB Integration with MySQL Performance Schema .. 2235
14.16.1 Monitoring InnoDB Mutex Waits Using Performance Schema 2236

14.17 InnoDB Monitors ... 2240
14.17.1 InnoDB Monitor Types .. 2240
14.17.2 Enabling InnoDB Monitors .. 2241
14.17.3 InnoDB Standard Monitor and Lock Monitor Output .. 2244
14.17.4 InnoDB Tablespace Monitor Output ... 2249
14.17.5 InnoDB Table Monitor Output .. 2251

14.18 InnoDB Backup and Recovery ... 2255
14.18.1 InnoDB Backup .. 2255
14.18.2 InnoDB Recovery ... 2256

14.19 InnoDB and MySQL Replication ... 2258
14.20 InnoDB memcached Plugin .. 2260

14.20.1 Benefits of the InnoDB memcached Plugin .. 2260
14.20.2 InnoDB memcached Architecture .. 2261
14.20.3 Setting Up the InnoDB memcached Plugin .. 2265
14.20.4 Security Considerations for the InnoDB memcached Plugin .. 2271
14.20.5 Writing Applications for the InnoDB memcached Plugin .. 2273
14.20.6 The InnoDB memcached Plugin and Replication .. 2285
14.20.7 InnoDB memcached Plugin Internals ... 2289
14.20.8 Troubleshooting the InnoDB memcached Plugin .. 2294

14.21 InnoDB Troubleshooting .. 2296
14.21.1 Troubleshooting InnoDB I/O Problems ... 2296
14.21.2 Forcing InnoDB Recovery ... 2297
14.21.3 Troubleshooting InnoDB Data Dictionary Operations .. 2298
14.21.4 InnoDB Error Handling .. 2302

1982

Introduction to InnoDB

14.22 InnoDB Limits ... 2303
14.23 InnoDB Restrictions and Limitations ... 2304

14.1 Introduction to InnoDB

InnoDB is a general-purpose storage engine that balances high reliability and high performance. In
MySQL 5.6, InnoDB is the default MySQL storage engine. Unless you have configured a different default
storage engine, issuing a CREATE TABLE statement without an ENGINE clause creates an InnoDB table.

InnoDB includes all the features that were part of the InnoDB Plugin for MySQL 5.1, plus new features
specific to MySQL 5.5 and higher.

Note

The mysql and INFORMATION_SCHEMA databases that implement some of the
MySQL internals still use MyISAM. In particular, you cannot switch the grant tables
to use InnoDB.

Key Advantages of InnoDB

• Its DML operations follow the ACID model, with transactions featuring commit, rollback, and crash-
recovery capabilities to protect user data. See Section 14.2, “InnoDB and the ACID Model”.

• Row-level locking and Oracle-style consistent reads increase multi-user concurrency and performance.
See Section 14.7, “InnoDB Locking and Transaction Model”.

• InnoDB tables arrange your data on disk to optimize queries based on primary keys. Each InnoDB table
has a primary key index called the clustered index that organizes the data to minimize I/O for primary
key lookups. See Section 14.6.2.1, “Clustered and Secondary Indexes”.

• To maintain data integrity, InnoDB supports FOREIGN KEY constraints. With foreign keys, inserts,
updates, and deletes are checked to ensure they do not result in inconsistencies across related tables.
See Section 13.1.17.5, “FOREIGN KEY Constraints”.

Table 14.1 InnoDB Storage Engine Features

Feature Support

B-tree indexes Yes

Backup/point-in-time recovery (Implemented in
the server, rather than in the storage engine.)

Yes

Cluster database support No

Clustered indexes Yes

Compressed data Yes

Data caches Yes

Encrypted data Yes (Implemented in the server via encryption
functions; In MySQL 5.7 and later, data-at-rest
encryption is supported.)

Foreign key support Yes

Full-text search indexes Yes (Support for FULLTEXT indexes is available in
MySQL 5.6 and later.)

Geospatial data type support Yes

1983

InnoDB Enhancements and New Features

Feature Support

Geospatial indexing support Yes (Support for geospatial indexing is available in
MySQL 5.7 and later.)

Hash indexes No (InnoDB utilizes hash indexes internally for its
Adaptive Hash Index feature.)

Index caches Yes

Locking granularity Row

MVCC Yes

Replication support (Implemented in the server,
rather than in the storage engine.)

Yes

Storage limits 64TB

T-tree indexes No

Transactions Yes

Update statistics for data dictionary Yes

To compare the features of InnoDB with other storage engines provided with MySQL, see the Storage
Engine Features table in Chapter 15, Alternative Storage Engines.

InnoDB Enhancements and New Features

For information about InnoDB enhancements and new features, refer to:

• The InnoDB enhancements list in Section 1.3, “What Is New in MySQL 5.6”.

• The Release Notes.

Additional InnoDB Information and Resources

• For InnoDB-related terms and definitions, see the MySQL Glossary.

• For a forum dedicated to the InnoDB storage engine, see MySQL Forums::InnoDB.

• InnoDB is published under the same GNU GPL License Version 2 (of June 1991) as MySQL. For more
information on MySQL licensing, see http://www.mysql.com/company/legal/licensing/.

14.1.1 Benefits of Using InnoDB Tables

InnoDB tables have the following benefits:

• If the server unexpectedly exits because of a hardware or software issue, regardless of what was
happening in the database at the time, you don't need to do anything special after restarting the
database. InnoDB crash recovery automatically finalizes changes that were committed before the time
of the crash, and undoes changes that were in process but not committed, permitting you to restart and
continue from where you left off. See Section 14.18.2, “InnoDB Recovery”.

• The InnoDB storage engine maintains its own buffer pool that caches table and index data in main
memory as data is accessed. Frequently used data is processed directly from memory. This cache
applies to many types of information and speeds up processing. On dedicated database servers, up to
80% of physical memory is often assigned to the buffer pool. See Section 14.5.1, “Buffer Pool”.

• If you split up related data into different tables, you can set up foreign keys that enforce referential
integrity. See Section 13.1.17.5, “FOREIGN KEY Constraints”.

1984

https://dev.mysql.com/doc/relnotes/mysql/5.6/en/
http://forums.mysql.com/list.php?22
http://www.mysql.com/company/legal/licensing/

Best Practices for InnoDB Tables

• If data becomes corrupted on disk or in memory, a checksum mechanism alerts you to the bogus data
before you use it. The innodb_checksum_algorithm variable defines the checksum algorithm used
by InnoDB.

• When you design a database with appropriate primary key columns for each table, operations involving
those columns are automatically optimized. It is very fast to reference the primary key columns in WHERE
clauses, ORDER BY clauses, GROUP BY clauses, and join operations. See Section 14.6.2.1, “Clustered
and Secondary Indexes”.

• Inserts, updates, and deletes are optimized by an automatic mechanism called change buffering.
InnoDB not only allows concurrent read and write access to the same table, it caches changed data to
streamline disk I/O. See Section 14.5.2, “Change Buffer”.

• Performance benefits are not limited to large tables with long-running queries. When the same rows are
accessed over and over from a table, the Adaptive Hash Index takes over to make these lookups even
faster, as if they came out of a hash table. See Section 14.5.3, “Adaptive Hash Index”.

• You can compress tables and associated indexes. See Section 14.9, “InnoDB Table Compression”.

• You can create and drop indexes and perform other DDL operations with much less impact on
performance and availability. See Section 14.13.1, “Online DDL Operations”.

• Truncating a file-per-table tablespace is very fast and can free up disk space for the operating system to
reuse rather than only InnoDB. See Section 14.6.3.2, “File-Per-Table Tablespaces”.

• The storage layout for table data is more efficient for BLOB and long text fields, with the DYNAMIC row
format. See Section 14.11, “InnoDB Row Formats”.

• You can monitor the internal workings of the storage engine by querying INFORMATION_SCHEMA tables.
See Section 14.15, “InnoDB INFORMATION_SCHEMA Tables”.

• You can monitor the performance details of the storage engine by querying Performance Schema tables.
See Section 14.16, “InnoDB Integration with MySQL Performance Schema”.

• You can mix InnoDB tables with tables from other MySQL storage engines, even within the same
statement. For example, you can use a join operation to combine data from InnoDB and MEMORY tables
in a single query.

• InnoDB has been designed for CPU efficiency and maximum performance when processing large data
volumes.

• InnoDB tables can handle large quantities of data, even on operating systems where file size is limited
to 2GB.

For InnoDB-specific tuning techniques you can apply to your MySQL server and application code, see
Section 8.5, “Optimizing for InnoDB Tables”.

14.1.2 Best Practices for InnoDB Tables

This section describes best practices when using InnoDB tables.

• Specify a primary key for every table using the most frequently queried column or columns, or an auto-
increment value if there is no obvious primary key.

• Use joins wherever data is pulled from multiple tables based on identical ID values from those tables.
For fast join performance, define foreign keys on the join columns, and declare those columns with the
same data type in each table. Adding foreign keys ensures that referenced columns are indexed, which

1985

Checking InnoDB Availability

can improve performance. Foreign keys also propagate deletes and updates to all affected tables, and
prevent insertion of data in a child table if the corresponding IDs are not present in the parent table.

• Turn off autocommit. Committing hundreds of times a second puts a cap on performance (limited by the
write speed of your storage device).

• Group sets of related DML operations into transactions by bracketing them with START TRANSACTION
and COMMIT statements. While you don't want to commit too often, you also don't want to issue huge
batches of INSERT, UPDATE, or DELETE statements that run for hours without committing.

• Do not use LOCK TABLES statements. InnoDB can handle multiple sessions all reading and writing to
the same table at once without sacrificing reliability or high performance. To get exclusive write access to
a set of rows, use the SELECT ... FOR UPDATE syntax to lock just the rows you intend to update.

• Enable the innodb_file_per_table variable to put the data and indexes for individual tables into
separate files instead of the system tablespace. This setting is required to use other features, such as
table compression. The innodb_file_per_table variable is enabled by default.

• Evaluate whether your data and access patterns benefit from the InnoDB table compression feature.
You can compress InnoDB tables without sacrificing read/write capability.

• Run the server with the --sql_mode=NO_ENGINE_SUBSTITUTION option to prevent tables from being
created with storage engines that you do not want to use.

14.1.3 Checking InnoDB Availability

To determine whether your server supports InnoDB:

• Issue the SHOW ENGINES statement to view the available MySQL storage engines.

mysql> SHOW ENGINES;

Alternatively, query the Information Schema ENGINES table.

mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES;

(Now that InnoDB is the default MySQL storage engine, only very specialized environments might not
support it.)

• If InnoDB is not present, you have a mysqld binary that was compiled without InnoDB support and you
need to get a different one.

• If InnoDB is present but disabled, go back through your startup options and configuration file and get rid
of any --skip-innodb option.

14.1.4 Testing and Benchmarking with InnoDB

If InnoDB is not the default storage engine, you can determine if your database server and applications
work correctly with InnoDB by restarting the server with --default-storage-engine=InnoDB on
the command line or with default-storage-engine=innodb defined in the [mysqld] section of the
MySQL server option file.

Since changing the default storage engine only affects newly created tables, run your application
installation and setup steps to confirm that everything installs properly, then exercise the application
features to make sure the data loading, editing, and querying features work. If a table relies on
a feature that is specific to another storage engine, you receive an error. In this case, add the
ENGINE=other_engine_name clause to the CREATE TABLE statement to avoid the error.

1986

Turning Off InnoDB

If you did not make a deliberate decision about the storage engine, and you want to preview how
certain tables work when created using InnoDB, issue the command ALTER TABLE table_name
ENGINE=InnoDB; for each table. Alternatively, to run test queries and other statements without disturbing
the original table, make a copy:

CREATE TABLE ... ENGINE=InnoDB AS SELECT * FROM other_engine_table;

To assess performance with a full application under a realistic workload, install the latest MySQL server
and run benchmarks.

Test the full application lifecycle, from installation, through heavy usage, and server restart. Kill the server
process while the database is busy to simulate a power failure, and verify that the data is recovered
successfully when you restart the server.

Test any replication configurations, especially if you use different MySQL versions and options on the
source server and replicas.

14.1.5 Turning Off InnoDB

Oracle recommends InnoDB as the preferred storage engine for typical database applications, from single-
user wikis and blogs running on a local system, to high-end applications pushing the limits of performance.
In MySQL 5.6, InnoDB is the default storage engine for new tables.

If you do not want to use InnoDB tables:

• Start the server with the --innodb=OFF or --skip-innodb option to disable the InnoDB storage
engine.

Note

As of MySQL 5.6.21, the --skip-innodb option still works but it is deprecated
and returns a warning when used. Expect it to be removed in a future MySQL
release. This also applies to its synonyms (--innodb=OFF, --disable-
innodb, and so forth).

• Because the default storage engine is InnoDB, the server cannot start unless you also use --
default-storage-engine and --default-tmp-storage-engine to set the default to some other
engine for both permanent and TEMPORARY tables.

• To prevent the server from crashing when the InnoDB-related information_schema tables are
queried, also disable the plugins associated with those tables. Specify in the [mysqld] section of the
MySQL configuration file:

loose-innodb-trx=0
loose-innodb-locks=0
loose-innodb-lock-waits=0
loose-innodb-cmp=0
loose-innodb-cmp-per-index=0
loose-innodb-cmp-per-index-reset=0
loose-innodb-cmp-reset=0
loose-innodb-cmpmem=0
loose-innodb-cmpmem-reset=0
loose-innodb-buffer-page=0
loose-innodb-buffer-page-lru=0
loose-innodb-buffer-pool-stats=0
loose-innodb-metrics=0
loose-innodb-ft-default-stopword=0
loose-innodb-ft-inserted=0
loose-innodb-ft-deleted=0
loose-innodb-ft-being-deleted=0

1987

InnoDB and the ACID Model

loose-innodb-ft-config=0
loose-innodb-ft-index-cache=0
loose-innodb-ft-index-table=0
loose-innodb-sys-tables=0
loose-innodb-sys-tablestats=0
loose-innodb-sys-indexes=0
loose-innodb-sys-columns=0
loose-innodb-sys-fields=0
loose-innodb-sys-foreign=0
loose-innodb-sys-foreign-cols=0

14.2 InnoDB and the ACID Model
The ACID model is a set of database design principles that emphasize aspects of reliability that are
important for business data and mission-critical applications. MySQL includes components such as the
InnoDB storage engine that adhere closely to the ACID model so that data is not corrupted and results are
not distorted by exceptional conditions such as software crashes and hardware malfunctions. When you
rely on ACID-compliant features, you do not need to reinvent the wheel of consistency checking and crash
recovery mechanisms. In cases where you have additional software safeguards, ultra-reliable hardware,
or an application that can tolerate a small amount of data loss or inconsistency, you can adjust MySQL
settings to trade some of the ACID reliability for greater performance or throughput.

The following sections discuss how MySQL features, in particular the InnoDB storage engine, interact with
the categories of the ACID model:

• A: atomicity.

• C: consistency.

• I:: isolation.

• D: durability.

Atomicity

The atomicity aspect of the ACID model mainly involves InnoDB transactions. Related MySQL features
include:

• The autocommit setting.

• The COMMIT statement.

• The ROLLBACK statement.

Consistency

The consistency aspect of the ACID model mainly involves internal InnoDB processing to protect data
from crashes. Related MySQL features include:

• The InnoDB doublewrite buffer. See Section 14.6.5, “Doublewrite Buffer”.

• InnoDB crash recovery. See InnoDB Crash Recovery.

Isolation

The isolation aspect of the ACID model mainly involves InnoDB transactions, in particular the isolation
level that applies to each transaction. Related MySQL features include:

• The autocommit setting.

1988

Durability

• Transaction isolation levels and the SET TRANSACTION statement. See Section 14.7.2.1, “Transaction
Isolation Levels”.

• The low-level details of InnoDB locking. Details can be viewed in the INFORMATION_SCHEMA tables.
See Section 14.15.2, “InnoDB INFORMATION_SCHEMA Transaction and Locking Information”.

Durability

The durability aspect of the ACID model involves MySQL software features interacting with your particular
hardware configuration. Because of the many possibilities depending on the capabilities of your CPU,
network, and storage devices, this aspect is the most complicated to provide concrete guidelines for. (And
those guidelines might take the form of “buy new hardware”.) Related MySQL features include:

• The InnoDB doublewrite buffer. See Section 14.6.5, “Doublewrite Buffer”.

• The innodb_flush_log_at_trx_commit variable.

• The sync_binlog variable.

• The innodb_file_per_table variable.

• The write buffer in a storage device, such as a disk drive, SSD, or RAID array.

• A battery-backed cache in a storage device.

• The operating system used to run MySQL, in particular its support for the fsync() system call.

• An uninterruptible power supply (UPS) protecting the electrical power to all computer servers and
storage devices that run MySQL servers and store MySQL data.

• Your backup strategy, such as frequency and types of backups, and backup retention periods.

• For distributed or hosted data applications, the particular characteristics of the data centers where the
hardware for the MySQL servers is located, and network connections between the data centers.

14.3 InnoDB Multi-Versioning
InnoDB is a multi-version storage engine. It keeps information about old versions of changed rows to
support transactional features such as concurrency and rollback. This information is stored in the system
tablespace or undo tablespaces in a data structure called a rollback segment. See Section 14.6.3.3,
“Undo Tablespaces”. InnoDB uses the information in the rollback segment to perform the undo operations
needed in a transaction rollback. It also uses the information to build earlier versions of a row for a
consistent read. See Section 14.7.2.3, “Consistent Nonlocking Reads”.

Internally, InnoDB adds three fields to each row stored in the database:

• A 6-byte DB_TRX_ID field indicates the transaction identifier for the last transaction that inserted or
updated the row. Also, a deletion is treated internally as an update where a special bit in the row is set to
mark it as deleted.

• A 7-byte DB_ROLL_PTR field called the roll pointer. The roll pointer points to an undo log record written
to the rollback segment. If the row was updated, the undo log record contains the information necessary
to rebuild the content of the row before it was updated.

• A 6-byte DB_ROW_ID field contains a row ID that increases monotonically as new rows are inserted. If
InnoDB generates a clustered index automatically, the index contains row ID values. Otherwise, the
DB_ROW_ID column does not appear in any index.

1989

Multi-Versioning and Secondary Indexes

Undo logs in the rollback segment are divided into insert and update undo logs. Insert undo logs are
needed only in transaction rollback and can be discarded as soon as the transaction commits. Update
undo logs are used also in consistent reads, but they can be discarded only after there is no transaction
present for which InnoDB has assigned a snapshot that in a consistent read could require the information
in the update undo log to build an earlier version of a database row. For additional information about undo
logs, see Section 14.6.7, “Undo Logs”.

It is recommend that you commit transactions regularly, including transactions that issue only consistent
reads. Otherwise, InnoDB cannot discard data from the update undo logs, and the rollback segment
may grow too big, filling up the tablespace in which it resides. For information about managing undo
tablespaces, see Section 14.6.3.3, “Undo Tablespaces”.

The physical size of an undo log record in the rollback segment is typically smaller than the corresponding
inserted or updated row. You can use this information to calculate the space needed for your rollback
segment.

In the InnoDB multi-versioning scheme, a row is not physically removed from the database immediately
when you delete it with an SQL statement. InnoDB only physically removes the corresponding row and its
index records when it discards the update undo log record written for the deletion. This removal operation
is called a purge, and it is quite fast, usually taking the same order of time as the SQL statement that did
the deletion.

If you insert and delete rows in smallish batches at about the same rate in the table, the purge thread
can start to lag behind and the table can grow bigger and bigger because of all the “dead” rows, making
everything disk-bound and very slow. In such cases, throttle new row operations, and allocate more
resources to the purge thread by tuning the innodb_max_purge_lag system variable. For more
information, see Section 14.8.10, “Purge Configuration”.

Multi-Versioning and Secondary Indexes

InnoDB multiversion concurrency control (MVCC) treats secondary indexes differently than clustered
indexes. Records in a clustered index are updated in-place, and their hidden system columns point undo
log entries from which earlier versions of records can be reconstructed. Unlike clustered index records,
secondary index records do not contain hidden system columns nor are they updated in-place.

When a secondary index column is updated, old secondary index records are delete-marked, new records
are inserted, and delete-marked records are eventually purged. When a secondary index record is delete-
marked or the secondary index page is updated by a newer transaction, InnoDB looks up the database
record in the clustered index. In the clustered index, the record's DB_TRX_ID is checked, and the correct
version of the record is retrieved from the undo log if the record was modified after the reading transaction
was initiated.

If a secondary index record is marked for deletion or the secondary index page is updated by a newer
transaction, the covering index technique is not used. Instead of returning values from the index structure,
InnoDB looks up the record in the clustered index.

However, if the index condition pushdown (ICP) optimization is enabled, and parts of the WHERE condition
can be evaluated using only fields from the index, the MySQL server still pushes this part of the WHERE
condition down to the storage engine where it is evaluated using the index. If no matching records are
found, the clustered index lookup is avoided. If matching records are found, even among delete-marked
records, InnoDB looks up the record in the clustered index.

14.4 InnoDB Architecture

1990

InnoDB In-Memory Structures

The following diagram shows in-memory and on-disk structures that comprise the InnoDB storage engine
architecture. For information about each structure, see Section 14.5, “InnoDB In-Memory Structures”, and
Section 14.6, “InnoDB On-Disk Structures”.

Figure 14.1 InnoDB Architecture

14.5 InnoDB In-Memory Structures

This section describes InnoDB in-memory structures and related topics.

14.5.1 Buffer Pool

The buffer pool is an area in main memory where InnoDB caches table and index data as it is accessed.
The buffer pool permits frequently used data to be accessed directly from memory, which speeds up
processing. On dedicated servers, up to 80% of physical memory is often assigned to the buffer pool.

For efficiency of high-volume read operations, the buffer pool is divided into pages that can potentially
hold multiple rows. For efficiency of cache management, the buffer pool is implemented as a linked list of
pages; data that is rarely used is aged out of the cache using a variation of the least recently used (LRU)
algorithm.

1991

Buffer Pool

Knowing how to take advantage of the buffer pool to keep frequently accessed data in memory is an
important aspect of MySQL tuning.

Buffer Pool LRU Algorithm

The buffer pool is managed as a list using a variation of the LRU algorithm. When room is needed to add a
new page to the buffer pool, the least recently used page is evicted and a new page is added to the middle
of the list. This midpoint insertion strategy treats the list as two sublists:

• At the head, a sublist of new (“young”) pages that were accessed recently

• At the tail, a sublist of old pages that were accessed less recently

1992

Buffer Pool

Figure 14.2 Buffer Pool List

1993

Buffer Pool

The algorithm keeps frequently used pages in the new sublist. The old sublist contains less frequently used
pages; these pages are candidates for eviction.

By default, the algorithm operates as follows:

• 3/8 of the buffer pool is devoted to the old sublist.

• The midpoint of the list is the boundary where the tail of the new sublist meets the head of the old sublist.

• When InnoDB reads a page into the buffer pool, it initially inserts it at the midpoint (the head of the old
sublist). A page can be read because it is required for a user-initiated operation such as an SQL query,
or as part of a read-ahead operation performed automatically by InnoDB.

• Accessing a page in the old sublist makes it “young”, moving it to the head of the new sublist. If the page
was read because it was required by a user-initiated operation, the first access occurs immediately and
the page is made young. If the page was read due to a read-ahead operation, the first access does not
occur immediately and might not occur at all before the page is evicted.

• As the database operates, pages in the buffer pool that are not accessed “age” by moving toward the tail
of the list. Pages in both the new and old sublists age as other pages are made new. Pages in the old
sublist also age as pages are inserted at the midpoint. Eventually, a page that remains unused reaches
the tail of the old sublist and is evicted.

By default, pages read by queries are immediately moved into the new sublist, meaning they stay in the
buffer pool longer. A table scan, performed for a mysqldump operation or a SELECT statement with no
WHERE clause, for example, can bring a large amount of data into the buffer pool and evict an equivalent
amount of older data, even if the new data is never used again. Similarly, pages that are loaded by the
read-ahead background thread and accessed only once are moved to the head of the new list. These
situations can push frequently used pages to the old sublist where they become subject to eviction. For
information about optimizing this behavior, see Section 14.8.3.2, “Making the Buffer Pool Scan Resistant”,
and Section 14.8.3.3, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”.

InnoDB Standard Monitor output contains several fields in the BUFFER POOL AND MEMORY section
regarding operation of the buffer pool LRU algorithm. For details, see Monitoring the Buffer Pool Using the
InnoDB Standard Monitor.

Buffer Pool Configuration

You can configure the various aspects of the buffer pool to improve performance.

• Ideally, you set the size of the buffer pool to as large a value as practical, leaving enough memory
for other processes on the server to run without excessive paging. The larger the buffer pool,
the more InnoDB acts like an in-memory database, reading data from disk once and then
accessing the data from memory during subsequent reads. Buffer pool size is configured using the
innodb_buffer_pool_size configuration option.

• On 64-bit systems with sufficient memory, you can split the buffer pool into multiple parts to minimize
contention for memory structures among concurrent operations. For details, see Section 14.8.3.1,
“Configuring Multiple Buffer Pool Instances”.

• You can keep frequently accessed data in memory regardless of sudden spikes of activity from
operations that would bring large amounts of infrequently accessed data into the buffer pool. For details,
see Section 14.8.3.2, “Making the Buffer Pool Scan Resistant”.

• You can control how and when to perform read-ahead requests to prefetch pages into the buffer pool
asynchronously in anticipation that the pages may be needed soon. For details, see Section 14.8.3.3,
“Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”.

1994

Buffer Pool

• You can control when background flushing occurs and whether or not the rate of flushing is dynamically
adjusted based on workload. For details, see Section 14.8.3.4, “Configuring Buffer Pool Flushing”.

• You can configure how InnoDB preserves the current buffer pool state to avoid a lengthy warmup period
after a server restart. For details, see Section 14.8.3.5, “Saving and Restoring the Buffer Pool State”.

Monitoring the Buffer Pool Using the InnoDB Standard Monitor

InnoDB Standard Monitor output, which can be accessed using SHOW ENGINE INNODB STATUS,
provides metrics regarding operation of the buffer pool. Buffer pool metrics are located in the BUFFER
POOL AND MEMORY section of InnoDB Standard Monitor output:

BUFFER POOL AND MEMORY

Total memory allocated 2197815296; in additional pool allocated 0
Dictionary memory allocated 155455
Buffer pool size 131071
Free buffers 92158
Database pages 38770
Old database pages 14271
Modified db pages 619
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 4, not young 0
0.00 youngs/s, 0.00 non-youngs/s
Pages read 322, created 38448, written 42083
0.00 reads/s, 222.30 creates/s, 159.47 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead
0.00/s
LRU len: 38770, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]

The following table describes buffer pool metrics reported by the InnoDB Standard Monitor.

Per second averages provided in InnoDB Standard Monitor output are based on the elapsed time since
InnoDB Standard Monitor output was last printed.

Table 14.2 InnoDB Buffer Pool Metrics

Name Description

Total memory allocated The total memory allocated for the buffer pool in
bytes.

additional pool allocated The total memory allocated for the additional pool in
bytes.

Dictionary memory allocated The total memory allocated for the InnoDB data
dictionary in bytes.

Buffer pool size The total size in pages allocated to the buffer pool.

Free buffers The total size in pages of the buffer pool free list.

Database pages The total size in pages of the buffer pool LRU list.

Old database pages The total size in pages of the buffer pool old LRU
sublist.

Modified db pages The current number of pages modified in the buffer
pool.

Pending reads The number of buffer pool pages waiting to be read
into the buffer pool.

1995

Buffer Pool

Name Description

Pending writes LRU The number of old dirty pages within the buffer pool
to be written from the bottom of the LRU list.

Pending writes flush list The number of buffer pool pages to be flushed
during checkpointing.

Pending writes single page The number of pending independent page writes
within the buffer pool.

Pages made young The total number of pages made young in the buffer
pool LRU list (moved to the head of sublist of “new”
pages).

Pages made not young The total number of pages not made young in the
buffer pool LRU list (pages that have remained in
the “old” sublist without being made young).

youngs/s The per second average of accesses to old pages in
the buffer pool LRU list that have resulted in making
pages young. See the notes that follow this table for
more information.

non-youngs/s The per second average of accesses to old pages
in the buffer pool LRU list that have resulted in not
making pages young. See the notes that follow this
table for more information.

Pages read The total number of pages read from the buffer pool.

Pages created The total number of pages created within the buffer
pool.

Pages written The total number of pages written from the buffer
pool.

reads/s The per second average number of buffer pool page
reads per second.

creates/s The average number of buffer pool pages created
per second.

writes/s The average number of buffer pool page writes per
second.

Buffer pool hit rate The buffer pool page hit rate for pages read from the
buffer pool vs from disk storage.

young-making rate The average hit rate at which page accesses have
resulted in making pages young. See the notes that
follow this table for more information.

not (young-making rate) The average hit rate at which page accesses have
not resulted in making pages young. See the notes
that follow this table for more information.

Pages read ahead The per second average of read ahead operations.

Pages evicted without access The per second average of the pages evicted
without being accessed from the buffer pool.

Random read ahead The per second average of random read ahead
operations.

LRU len The total size in pages of the buffer pool LRU list.

1996

Change Buffer

Name Description

unzip_LRU len The length (in pages) of the buffer pool unzip_LRU
list.

I/O sum The total number of buffer pool LRU list pages
accessed.

I/O cur The total number of buffer pool LRU list pages
accessed in the current interval.

I/O unzip sum The total number of buffer pool unzip_LRU list
pages decompressed.

I/O unzip cur The total number of buffer pool unzip_LRU list
pages decompressed in the current interval.

Notes:

• The youngs/s metric is applicable only to old pages. It is based on the number of page accesses.
There can be multiple accesses for a given page, all of which are counted. If you see very low youngs/
s values when there are no large scans occurring, consider reducing the delay time or increasing the
percentage of the buffer pool used for the old sublist. Increasing the percentage makes the old sublist
larger so that it takes longer for pages in that sublist to move to the tail, which increases the likelihood
that those pages are accessed again and made young. See Section 14.8.3.2, “Making the Buffer Pool
Scan Resistant”.

• The non-youngs/s metric is applicable only to old pages. It is based on the number of page accesses.
There can be multiple accesses for a given page, all of which are counted. If you do not see a higher
non-youngs/s value when performing large table scans (and a higher youngs/s value), increase the
delay value. See Section 14.8.3.2, “Making the Buffer Pool Scan Resistant”.

• The young-making rate accounts for all buffer pool page accesses, not just accesses for pages in the
old sublist. The young-making rate and not rate do not normally add up to the overall buffer pool hit
rate. Page hits in the old sublist cause pages to move to the new sublist, but page hits in the new sublist
cause pages to move to the head of the list only if they are a certain distance from the head.

• not (young-making rate) is the average hit rate at which page accesses have not resulted in
making pages young due to the delay defined by innodb_old_blocks_time not being met, or due to
page hits in the new sublist that did not result in pages being moved to the head. This rate accounts for
all buffer pool page accesses, not just accesses for pages in the old sublist.

Buffer pool server status variables and the INNODB_BUFFER_POOL_STATS table provide many of
the same buffer pool metrics found in InnoDB Standard Monitor output. For more information, see
Example 14.10, “Querying the INNODB_BUFFER_POOL_STATS Table”.

14.5.2 Change Buffer

The change buffer is a special data structure that caches changes to secondary index pages when those
pages are not in the buffer pool. The buffered changes, which may result from INSERT, UPDATE, or
DELETE operations (DML), are merged later when the pages are loaded into the buffer pool by other read
operations.

1997

Change Buffer

Figure 14.3 Change Buffer

Unlike clustered indexes, secondary indexes are usually nonunique, and inserts into secondary indexes
happen in a relatively random order. Similarly, deletes and updates may affect secondary index pages
that are not adjacently located in an index tree. Merging cached changes at a later time, when affected
pages are read into the buffer pool by other operations, avoids substantial random access I/O that would
be required to read secondary index pages into the buffer pool from disk.

Periodically, the purge operation that runs when the system is mostly idle, or during a slow shutdown,
writes the updated index pages to disk. The purge operation can write disk blocks for a series of index
values more efficiently than if each value were written to disk immediately.

Change buffer merging may take several hours when there are many affected rows and numerous
secondary indexes to update. During this time, disk I/O is increased, which can cause a significant
slowdown for disk-bound queries. Change buffer merging may also continue to occur after a transaction is
committed, and even after a server shutdown and restart (see Section 14.21.2, “Forcing InnoDB Recovery”
for more information).

In memory, the change buffer occupies part of the buffer pool. On disk, the change buffer is part of the
system tablespace, where index changes are buffered when the database server is shut down.

The type of data cached in the change buffer is governed by the innodb_change_buffering variable.
For more information, see Configuring Change Buffering. You can also configure the maximum change
buffer size. For more information, see Configuring the Change Buffer Maximum Size.

Change buffering is not supported for a secondary index if the index contains a descending index column
or if the primary key includes a descending index column.

1998

Change Buffer

For answers to frequently asked questions about the change buffer, see Section A.16, “MySQL 5.6 FAQ:
InnoDB Change Buffer”.

Configuring Change Buffering

When INSERT, UPDATE, and DELETE operations are performed on a table, the values of indexed columns
(particularly the values of secondary keys) are often in an unsorted order, requiring substantial I/O to bring
secondary indexes up to date. The change buffer caches changes to secondary index entries when the
relevant page is not in the buffer pool, thus avoiding expensive I/O operations by not immediately reading
in the page from disk. The buffered changes are merged when the page is loaded into the buffer pool, and
the updated page is later flushed to disk. The InnoDB main thread merges buffered changes when the
server is nearly idle, and during a slow shutdown.

Because it can result in fewer disk reads and writes, change buffering is most valuable for workloads that
are I/O-bound; for example, applications with a high volume of DML operations such as bulk inserts benefit
from change buffering.

However, the change buffer occupies a part of the buffer pool, reducing the memory available to cache
data pages. If the working set almost fits in the buffer pool, or if your tables have relatively few secondary
indexes, it may be useful to disable change buffering. If the working data set fits entirely within the buffer
pool, change buffering does not impose extra overhead, because it only applies to pages that are not in the
buffer pool.

The innodb_change_buffering variable controls the extent to which InnoDB performs change
buffering. You can enable or disable buffering for inserts, delete operations (when index records are
initially marked for deletion) and purge operations (when index records are physically deleted). An update
operation is a combination of an insert and a delete. The default innodb_change_buffering value is
all.

Permitted innodb_change_buffering values include:

• all

The default value: buffer inserts, delete-marking operations, and purges.

• none

Do not buffer any operations.

• inserts

Buffer insert operations.

• deletes

Buffer delete-marking operations.

• changes

Buffer both inserts and delete-marking operations.

• purges

Buffer physical deletion operations that happen in the background.

You can set the innodb_change_buffering variable in the MySQL option file (my.cnf or my.ini) or
change it dynamically with the SET GLOBAL statement, which requires privileges sufficient to set global

1999

Change Buffer

system variables. See Section 5.1.8.1, “System Variable Privileges”. Changing the setting affects the
buffering of new operations; the merging of existing buffered entries is not affected.

Configuring the Change Buffer Maximum Size

The innodb_change_buffer_max_size variable permits configuring the maximum
size of the change buffer as a percentage of the total size of the buffer pool. By default,
innodb_change_buffer_max_size is set to 25. The maximum setting is 50.

Consider increasing innodb_change_buffer_max_size on a MySQL server with heavy insert, update,
and delete activity, where change buffer merging does not keep pace with new change buffer entries,
causing the change buffer to reach its maximum size limit.

Consider decreasing innodb_change_buffer_max_size on a MySQL server with static data used for
reporting, or if the change buffer consumes too much of the memory space shared with the buffer pool,
causing pages to age out of the buffer pool sooner than desired.

Test different settings with a representative workload to determine an optimal configuration. The
innodb_change_buffer_max_size variable is dynamic, which permits modifying the setting without
restarting the server.

Monitoring the Change Buffer

The following options are available for change buffer monitoring:

• InnoDB Standard Monitor output includes change buffer status information. To view monitor data, issue
the SHOW ENGINE INNODB STATUS statement.

mysql> SHOW ENGINE INNODB STATUS\G

Change buffer status information is located under the INSERT BUFFER AND ADAPTIVE HASH INDEX
heading and appears similar to the following:

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 0, seg size 2, 0 merges
merged operations:
 insert 0, delete mark 0, delete 0
discarded operations:
 insert 0, delete mark 0, delete 0
Hash table size 4425293, used cells 32, node heap has 1 buffer(s)
13577.57 hash searches/s, 202.47 non-hash searches/s

For more information, see Section 14.17.3, “InnoDB Standard Monitor and Lock Monitor Output”.

• The Information Schema INNODB_METRICS table provides most of the data points found in InnoDB
Standard Monitor output plus other data points. To view change buffer metrics and a description of each,
issue the following query:

mysql> SELECT NAME, COMMENT FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME LIKE '%ibuf%'\G

For INNODB_METRICS table usage information, see Section 14.15.6, “InnoDB
INFORMATION_SCHEMA Metrics Table”.

• The Information Schema INNODB_BUFFER_PAGE table provides metadata about each page in the buffer
pool, including change buffer index and change buffer bitmap pages. Change buffer pages are identified
by PAGE_TYPE. IBUF_INDEX is the page type for change buffer index pages, and IBUF_BITMAP is the
page type for change buffer bitmap pages.

2000

Adaptive Hash Index

Warning

Querying the INNODB_BUFFER_PAGE table can introduce significant performance
overhead. To avoid impacting performance, reproduce the issue you want to
investigate on a test instance and run your queries on the test instance.

For example, you can query the INNODB_BUFFER_PAGE table to determine the approximate number of
IBUF_INDEX and IBUF_BITMAP pages as a percentage of total buffer pool pages.

mysql> SELECT (SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE PAGE_TYPE LIKE 'IBUF%') AS change_buffer_pages,
 (SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE) AS total_pages,
 (SELECT ((change_buffer_pages/total_pages)*100))
 AS change_buffer_page_percentage;
+---------------------+-------------+-------------------------------+
| change_buffer_pages | total_pages | change_buffer_page_percentage |
+---------------------+-------------+-------------------------------+
| 25 | 8192 | 0.3052 |
+---------------------+-------------+-------------------------------+

For information about other data provided by the INNODB_BUFFER_PAGE table, see Section 21.4.2,
“The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”. For related usage information, see
Section 14.15.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”.

• Performance Schema provides change buffer mutex wait instrumentation for advanced performance
monitoring. To view change buffer instrumentation, issue the following query:

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%wait/synch/mutex/innodb/ibuf%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/ibuf_bitmap_mutex	YES	YES
wait/synch/mutex/innodb/ibuf_mutex	YES	YES
wait/synch/mutex/innodb/ibuf_pessimistic_insert_mutex	YES	YES
+---+---------+-------+

For information about monitoring InnoDB mutex waits, see Section 14.16.1, “Monitoring InnoDB Mutex
Waits Using Performance Schema”.

14.5.3 Adaptive Hash Index

The adaptive hash index enables InnoDB to perform more like an in-memory database on
systems with appropriate combinations of workload and sufficient memory for the buffer pool
without sacrificing transactional features or reliability. The adaptive hash index is enabled by the
innodb_adaptive_hash_index variable, or turned off at server startup by --skip-innodb-
adaptive-hash-index.

Based on the observed pattern of searches, a hash index is built using a prefix of the index key. The
prefix can be any length, and it may be that only some values in the B-tree appear in the hash index. Hash
indexes are built on demand for the pages of the index that are accessed often.

If a table fits almost entirely in main memory, a hash index speeds up queries by enabling direct lookup of
any element, turning the index value into a sort of pointer. InnoDB has a mechanism that monitors index
searches. If InnoDB notices that queries could benefit from building a hash index, it does so automatically.

With some workloads, the speedup from hash index lookups greatly outweighs the extra work to monitor
index lookups and maintain the hash index structure. Access to the adaptive hash index can sometimes
become a source of contention under heavy workloads, such as multiple concurrent joins. Queries with

2001

Log Buffer

LIKE operators and % wildcards also tend not to benefit. For workloads that do not benefit from the
adaptive hash index, turning it off reduces unnecessary performance overhead. Because it is difficult to
predict in advance whether the adaptive hash index is appropriate for a particular system and workload,
consider running benchmarks with it enabled and disabled.

You can monitor adaptive hash index use and contention in the SEMAPHORES section of SHOW ENGINE
INNODB STATUS output. If there are numerous threads waiting on rw-latches created in btr0sea.c, it
might be useful to disable the adaptive hash index.

For information about the performance characteristics of hash indexes, see Section 8.3.8, “Comparison of
B-Tree and Hash Indexes”.

14.5.4 Log Buffer

The log buffer is the memory area that holds data to be written to the log files on disk. Log buffer size is
defined by the innodb_log_buffer_size variable. The default size is 16MB. The contents of the log
buffer are periodically flushed to disk. A large log buffer enables large transactions to run without the need
to write redo log data to disk before the transactions commit. Thus, if you have transactions that update,
insert, or delete many rows, increasing the size of the log buffer saves disk I/O.

The innodb_flush_log_at_trx_commit variable controls how the contents of the log buffer are
written and flushed to disk. The innodb_flush_log_at_timeout variable controls log flushing
frequency.

For related information, see Memory Configuration, and Section 8.5.4, “Optimizing InnoDB Redo Logging”.

14.6 InnoDB On-Disk Structures
This section describes InnoDB on-disk structures and related topics.

14.6.1 Tables

This section covers topics related to InnoDB tables.

14.6.1.1 Creating InnoDB Tables

InnoDB tables are created using the CREATE TABLE statement; for example:

CREATE TABLE t1 (a INT, b CHAR (20), PRIMARY KEY (a)) ENGINE=InnoDB;

The ENGINE=InnoDB clause is not required when InnoDB is defined as the default storage engine, which
it is by default. However, the ENGINE clause is useful if the CREATE TABLE statement is to be replayed on
a different MySQL Server instance where the default storage engine is not InnoDB or is unknown. You can
determine the default storage engine on a MySQL Server instance by issuing the following statement:

mysql> SELECT @@default_storage_engine;
+--------------------------+
| @@default_storage_engine |
+--------------------------+
| InnoDB |
+--------------------------+

InnoDB tables are created in file-per-table tablespaces by default. To create an InnoDB table in the
InnoDB system tablespace, disable the innodb_file_per_table variable before creating the table. For
more information, see Section 14.6.3, “Tablespaces”.

.frm Files

2002

Tables

MySQL stores data dictionary information for tables in .frm files in database directories. Unlike other
MySQL storage engines, InnoDB also encodes information about the table in its own internal data
dictionary inside the system tablespace. When MySQL drops a table or a database, it deletes one or
more .frm files as well as the corresponding entries inside the InnoDB data dictionary. You cannot move
InnoDB tables between databases simply by moving the .frm files. For information about moving InnoDB
tables, see Section 14.6.1.4, “Moving or Copying InnoDB Tables”.

InnoDB Tables and Row Formats

The row format of an InnoDB table determines how its rows are physically stored on disk. InnoDB
supports four row formats, each with different storage characteristics. Supported row formats include
REDUNDANT, COMPACT, DYNAMIC, and COMPRESSED. The COMPACT row format is the default. For
information about row format characteristics, see Section 14.11, “InnoDB Row Formats”.

Although the COMPACT row format is fine for basic experimentation, consider using the DYNAMIC or
COMPRESSED row format to take advantage of InnoDB features such as table compression and efficient
off-page storage of long column values.

The row format of a table is defined using the ROW_FORMAT table option in a CREATE TABLE or ALTER
TABLE statement. See Defining the Row Format of a Table

Primary Keys

It is recommended that you define a primary key for each table that you create. When selecting primary
key columns, choose columns with the following characteristics:

• Columns that are referenced by the most important queries.

• Columns that are never left blank.

• Columns that never have duplicate values.

• Columns that rarely if ever change value once inserted.

For example, in a table containing information about people, you would not create a primary key on
(firstname, lastname) because more than one person can have the same name, a name column
may be left blank, and sometimes people change their names. With so many constraints, often there is not
an obvious set of columns to use as a primary key, so you create a new column with a numeric ID to serve
as all or part of the primary key. You can declare an auto-increment column so that ascending values are
filled in automatically as rows are inserted:

The value of ID can act like a pointer between related items in different tables.
CREATE TABLE t5 (id INT AUTO_INCREMENT, b CHAR (20), PRIMARY KEY (id));

The primary key can consist of more than one column. Any autoinc column must come first.
CREATE TABLE t6 (id INT AUTO_INCREMENT, a INT, b CHAR (20), PRIMARY KEY (id,a));

For more information about auto-increment columns, see Section 14.6.1.6, “AUTO_INCREMENT Handling
in InnoDB”.

Although a table works correctly without defining a primary key, the primary key is involved with many
aspects of performance and is a crucial design aspect for any large or frequently used table. It is
recommended that you always specify a primary key in the CREATE TABLE statement. If you create the
table, load data, and then run ALTER TABLE to add a primary key later, that operation is much slower
than defining the primary key when creating the table. For more information about primary keys, see
Section 14.6.2.1, “Clustered and Secondary Indexes”.

Viewing InnoDB Table Properties

To view the properties of an InnoDB table, issue a SHOW TABLE STATUS statement:

2003

Tables

mysql> SHOW TABLE STATUS FROM test LIKE 't%' \G;
*************************** 1. row ***************************
 Name: t1
 Engine: InnoDB
 Version: 10
 Row_format: Compact
 Rows: 0
 Avg_row_length: 0
 Data_length: 16384
Max_data_length: 0
 Index_length: 0
 Data_free: 0
 Auto_increment: NULL
 Create_time: 2015-03-16 16:26:52
 Update_time: NULL
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:
1 row in set (0.00 sec)

For information about SHOW TABLE STATUS output, see Section 13.7.5.37, “SHOW TABLE STATUS
Statement”.

You can also access InnoDB table properties by querying the InnoDB Information Schema system tables:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME='test/t1' \G
*************************** 1. row ***************************
 TABLE_ID: 42
 NAME: test/t1
 FLAG: 1
 N_COLS: 5
 SPACE: 24
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0
1 row in set (0.02 sec)

For more information, see Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”.

14.6.1.2 Creating Tables Externally

There are different reasons for creating InnoDB tables externally; that is, creating tables outside of the
data directory. Those reasons might include space management, I/O optimization, or placing tables on a
storage device with particular performance or capacity characteristics, for example.

You can create an InnoDB table in an external directory by specifying a DATA DIRECTORY clause in the
CREATE TABLE statement.

CREATE TABLE t1 (c1 INT PRIMARY KEY) DATA DIRECTORY = '/external/directory';

The DATA DIRECTORY clause is supported for tables created in file-per-table tablespaces. Tables are
implicitly created in file-per-table tablespaces when the innodb_file_per_table variable is enabled,
which it is by default.

mysql> SELECT @@innodb_file_per_table;
+-------------------------+
| @@innodb_file_per_table |
+-------------------------+
| 1 |
+-------------------------+

For more information about file-per-table tablespaces, see Section 14.6.3.2, “File-Per-Table Tablespaces”.

2004

Tables

Be sure of the directory location you choose, as the DATA DIRECTORY clause cannot be used with ALTER
TABLE to change the location later.

When you specify a DATA DIRECTORY clause in a CREATE TABLE statement, the table's data file
(table_name.ibd) is created in a schema directory under the specified directory, and an .isl file
(table_name.isl) that contains the data file path is created in the schema directory under the MySQL
data directory. An .isl file is similar in function to a symbolic link. (Actual symbolic links are not supported
for use with InnoDB data files.)

The following example demonstrates creating a table in an external directory using the DATA DIRECTORY
clause. It is assumed that the innodb_file_per_table variable is enabled.

mysql> USE test;
Database changed

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) DATA DIRECTORY = '/external/directory';

MySQL creates the table's data file in a schema directory
under the external directory

$> cd /external/directory/test
$> ls
t1.ibd

An .isl file that contains the data file path is created
in the schema directory under the MySQL data directory

$> cd /path/to/mysql/data/test
$> ls
db.opt t1.frm t1.isl

Usage Notes:

• MySQL initially holds the tablespace data file open, preventing you from dismounting the device, but
might eventually close the file if the server is busy. Be careful not to accidentally dismount an external
device while MySQL is running, or start MySQL while the device is disconnected. Attempting to access a
table when the associated data file is missing causes a serious error that requires a server restart.

A server restart might fail if the data file is not found at the expected path. In this case, manually remove
the .isl file from the schema directory. After restarting, drop the table to remove the .frm file and the
information about the table from the data dictionary.

• Before placing a table on an NFS-mounted volume, review potential issues outlined in Using NFS with
MySQL.

• If using an LVM snapshot, file copy, or other file-based mechanism to back up the table's data file,
always use the FLUSH TABLES ... FOR EXPORT statement first to ensure that all changes buffered in
memory are flushed to disk before the backup occurs.

• Using the DATA DIRECTORY clause to create a table in an external directory is an alternative to using
symbolic links, which InnoDB does not support.

• The DATA DIRECTORY clause is not supported in a replication environment where the source and
replica reside on the same host. The DATA DIRECTORY clause requires a full directory path. Replicating
the path in this case would cause the source and replica to create the table in same location.

14.6.1.3 Importing InnoDB Tables

This section describes how to import tables using the Transportable Tablespaces feature, which permits
importing tables that reside in file-per-table tablespaces. There are many reasons why you might want to
import tables:

2005

Tables

• To run reports on a non-production MySQL server instance to avoid placing extra load on a production
server.

• To copy data to a new replica server.

• To restore a table from a backed-up tablespace file.

• As a faster way of moving data than importing a dump file, which requires reinserting data and rebuilding
indexes.

• To move a data to a server with storage media that is better suited to your storage requirements. For
example, you might move busy tables to an SSD device, or move large tables to a high-capacity HDD
device.

The Transportable Tablespaces feature is described under the following topics in this section:

• Prerequisites

• Importing a Tablespace

• Limitations

• Usage Notes

• Internals

Prerequisites

• The innodb_file_per_table variable must be enabled, which it is by default.

• The page size of the tablespace must match the page size of the destination MySQL server instance.
InnoDB page size is defined by the innodb_page_size variable, which is configured when initializing
a MySQL server instance.

• If the table has a foreign key relationship, foreign_key_checks must be disabled before executing
DISCARD TABLESPACE. Also, you should export all foreign key related tables at the same logical
point in time, as the ALTER TABLE ... IMPORT TABLESPACE feature does not enforce foreign key
constraints on imported data. To do so, stop updating the related tables, commit all transactions, acquire
shared locks on the tables, and perform the export operations.

• When importing a table from another MySQL server instance, both MySQL server instances must have
General Availability (GA) status and must be the same version. Otherwise, the table must be created on
the same MySQL server instance into which it is being imported.

• If the table was created outside of the data directory by specifying the DATA DIRECTORY clause in the
CREATE TABLE statement, the table that you replace on the destination instance must be defined with
the same DATA DIRECTORY clause. A schema mismatch error is reported if the clauses do not match.
To determine if the source table was defined with a DATA DIRECTORY clause, use SHOW CREATE
TABLE to view the table definition. For information about using the DATA DIRECTORY clause, see
Section 14.6.1.2, “Creating Tables Externally”.

Importing a Tablespace

This example demonstrates how to import a table that resides in a file-per-table tablespace.

1. On the destination instance, create a table with the same definition as the table you intend to import.
(You can obtain the table definition using SHOW CREATE TABLE syntax.) If the table definition does not
match, a schema mismatch error is reported when you attempt the import operation.

mysql> USE test;

2006

Tables

mysql> CREATE TABLE t1 (c1 INT) ENGINE=INNODB;

2. On the destination instance, discard the tablespace of the table that you just created. (Before importing,
you must discard the tablespace of the receiving table.)

mysql> ALTER TABLE t1 DISCARD TABLESPACE;

3. On the source instance, run FLUSH TABLES ... FOR EXPORT to quiesce the table you intend to
import. When a table is quiesced, only read-only transactions are permitted on the table.

mysql> USE test;
mysql> FLUSH TABLES t1 FOR EXPORT;

FLUSH TABLES ... FOR EXPORT ensures that changes to the named table are flushed to disk so
that a binary table copy can be made while the server is running. When FLUSH TABLES ... FOR
EXPORT is run, InnoDB generates a .cfg metadata file in the schema directory of the table. The .cfg
file contains metadata that is used for schema verification during the import operation.

4. Copy the .ibd file and .cfg metadata file from the source instance to the destination instance. For
example:

$> scp /path/to/datadir/test/t1.{ibd,cfg} destination-server:/path/to/datadir/test

The .ibd file and .cfg file must be copied before releasing the shared locks, as described in the next
step.

5. On the source instance, use UNLOCK TABLES to release the locks acquired by the FLUSH
TABLES ... FOR EXPORT statement:

mysql> USE test;
mysql> UNLOCK TABLES;

6. On the destination instance, import the tablespace:

mysql> USE test;
mysql> ALTER TABLE t1 IMPORT TABLESPACE;

Limitations

• The Transportable Tablespaces feature is only supported for tables that reside in file-per-table
tablespaces. It is not supported for the tables that reside in the system tablespace. Tables in the system
tablespace cannot be quiesced.

• DISCARD TABLESPACE is not supported for partitioned tables, which means that importing partitioned
tables is not supported. If you run ALTER TABLE ... DISCARD TABLESPACE on a partitioned table,
the following error is returned: ERROR 1031 (HY000): Table storage engine for 'part'
doesn't have this option.

• FLUSH TABLES ... FOR EXPORT is not supported on tables with a FULLTEXT index, as full-text
search auxiliary tables cannot be flushed. After importing a table with a FULLTEXT index, run OPTIMIZE
TABLE to rebuild the FULLTEXT indexes. Alternatively, drop FULLTEXT indexes before the export
operation and recreate the indexes after importing the table on the destination instance.

Usage Notes

• A .cfg metadata file is not required to import a table. However, metadata checks are not performed
when importing without a .cfg file, and a warning similar to the following is issued:

Message: InnoDB: IO Read error: (2, No such file or directory) Error opening '.\
test\t.cfg', will attempt to import without schema verification

2007

Tables

1 row in set (0.00 sec)

Importing without a .cfg metadata file should only be considered if no schema mismatches are
expected. The ability to import without a .cfg file could be useful in crash recovery scenarios where
metadata is not accessible.

• On Windows, InnoDB stores database, tablespace, and table names internally in lowercase. To avoid
import problems on case-sensitive operating systems such as Linux and Unix, create all databases,
tablespaces, and tables using lowercase names. A convenient way to accomplish this is to add
lower_case_table_names=1 to the [mysqld] section of your my.cnf or my.ini file before
creating databases, tablespaces, or tables:

[mysqld]
lower_case_table_names=1

Internals

The following information describes internals and messages written to the error log during a table import
procedure.

When ALTER TABLE ... DISCARD TABLESPACE is run on the destination instance:

• The table is locked in X mode.

• The tablespace is detached from the table.

When FLUSH TABLES ... FOR EXPORT is run on the source instance:

• The table being flushed for export is locked in shared mode.

• The purge coordinator thread is stopped.

• Dirty pages are synchronized to disk.

• Table metadata is written to the binary .cfg file.

Expected error log messages for this operation:

[Note] InnoDB: Sync to disk of '"test"."t1"' started.
[Note] InnoDB: Stopping purge
[Note] InnoDB: Writing table metadata to './test/t1.cfg'
[Note] InnoDB: Table '"test"."t1"' flushed to disk

When UNLOCK TABLES is run on the source instance:

• The binary .cfg file is deleted.

• The shared lock on the table being imported is released and the purge coordinator thread is restarted.

Expected error log messages for this operation:

[Note] InnoDB: Deleting the meta-data file './test/t1.cfg'
[Note] InnoDB: Resuming purge

When ALTER TABLE ... IMPORT TABLESPACE is run on the destination instance, the import algorithm
performs the following operations for the tablespace being imported:

• Each tablespace page is checked for corruption.

• The space ID and log sequence numbers (LSNs) on each page are updated.

• Flags are validated and LSN updated for the header page.

2008

Tables

• Btree pages are updated.

• The page state is set to dirty so that it is written to disk.

Expected error log messages for this operation:

[Note] InnoDB: Importing tablespace for table 'test/t1' that was exported
from host 'host_name'
[Note] InnoDB: Phase I - Update all pages
[Note] InnoDB: Sync to disk
[Note] InnoDB: Sync to disk - done!
[Note] InnoDB: Phase III - Flush changes to disk
[Note] InnoDB: Phase IV - Flush complete

Note

You may also receive a warning that a tablespace is discarded (if you discarded the
tablespace for the destination table) and a message stating that statistics could not
be calculated due to a missing .ibd file:

[Warning] InnoDB: Table "test"."t1" tablespace is set as discarded.
7f34d9a37700 InnoDB: cannot calculate statistics for table
"test"."t1" because the .ibd file is missing. For help, please refer to
http://dev.mysql.com/doc/refman/5.6/en/innodb-troubleshooting.html

14.6.1.4 Moving or Copying InnoDB Tables

This section describes techniques for moving or copying some or all InnoDB tables to a different server
or instance. For example, you might move an entire MySQL instance to a larger, faster server; you might
clone an entire MySQL instance to a new replica server; you might copy individual tables to another
instance to develop and test an application, or to a data warehouse server to produce reports.

On Windows, InnoDB always stores database and table names internally in lowercase. To move
databases in a binary format from Unix to Windows or from Windows to Unix, create all databases and
tables using lowercase names. A convenient way to accomplish this is to add the following line to the
[mysqld] section of your my.cnf or my.ini file before creating any databases or tables:

[mysqld]
lower_case_table_names=1

Techniques for moving or copying InnoDB tables include:

• Importing Tables

• MySQL Enterprise Backup

• Copying Data Files (Cold Backup Method)

• Restoring from a Logical Backup

Importing Tables

A table that resides in a file-per-table tablespace can be imported from another MySQL server instance
or from a backup using the Transportable Tablespace feature. See Section 14.6.1.3, “Importing InnoDB
Tables”.

MySQL Enterprise Backup

The MySQL Enterprise Backup product lets you back up a running MySQL database with minimal
disruption to operations while producing a consistent snapshot of the database. When MySQL Enterprise
Backup is copying tables, reads and writes can continue. In addition, MySQL Enterprise Backup can create

2009

Tables

compressed backup files, and back up subsets of tables. In conjunction with the MySQL binary log, you
can perform point-in-time recovery. MySQL Enterprise Backup is included as part of the MySQL Enterprise
subscription.

For more details about MySQL Enterprise Backup, see Section 24.2, “MySQL Enterprise Backup
Overview”.

Copying Data Files (Cold Backup Method)

You can move an InnoDB database simply by copying all the relevant files listed under "Cold Backups" in
Section 14.18.1, “InnoDB Backup”.

InnoDB data and log files are binary-compatible on all platforms having the same floating-point number
format. If the floating-point formats differ but you have not used FLOAT or DOUBLE data types in your
tables, then the procedure is the same: simply copy the relevant files.

When you move or copy .ibd files, the database directory name must be the same on the source and
destination systems. The table definition stored in the InnoDB shared tablespace includes the database
name. The transaction IDs and log sequence numbers stored in the tablespace files also differ between
databases.

To move an .ibd file and the associated table from one database to another, use a RENAME TABLE
statement:

RENAME TABLE db1.tbl_name TO db2.tbl_name;

If you have a “clean” backup of an .ibd file, you can restore it to the MySQL installation from which it
originated as follows:

1. The table must not have been dropped or truncated since you copied the .ibd file, because doing so
changes the table ID stored inside the tablespace.

2. Issue this ALTER TABLE statement to delete the current .ibd file:

ALTER TABLE tbl_name DISCARD TABLESPACE;

3. Copy the backup .ibd file to the proper database directory.

4. Issue this ALTER TABLE statement to tell InnoDB to use the new .ibd file for the table:

ALTER TABLE tbl_name IMPORT TABLESPACE;

Note

The ALTER TABLE ... IMPORT TABLESPACE feature does not enforce
foreign key constraints on imported data.

In this context, a “clean” .ibd file backup is one for which the following requirements are satisfied:

• There are no uncommitted modifications by transactions in the .ibd file.

• There are no unmerged insert buffer entries in the .ibd file.

• Purge has removed all delete-marked index records from the .ibd file.

• mysqld has flushed all modified pages of the .ibd file from the buffer pool to the file.

You can make a clean backup .ibd file using the following method:

1. Stop all activity from the mysqld server and commit all transactions.

2010

Tables

2. Wait until SHOW ENGINE INNODB STATUS shows that there are no active transactions in the
database, and the main thread status of InnoDB is Waiting for server activity. Then you can
make a copy of the .ibd file.

Another method for making a clean copy of an .ibd file is to use the MySQL Enterprise Backup product:

1. Use MySQL Enterprise Backup to back up the InnoDB installation.

2. Start a second mysqld server on the backup and let it clean up the .ibd files in the backup.

Restoring from a Logical Backup

You can use a utility such as mysqldump to perform a logical backup, which produces a set of SQL
statements that can be executed to reproduce the original database object definitions and table data for
transfer to another SQL server. Using this method, it does not matter whether the formats differ or if your
tables contain floating-point data.

To improve the performance of this method, disable autocommit when importing data. Perform a commit
only after importing an entire table or segment of a table.

14.6.1.5 Converting Tables from MyISAM to InnoDB

If you have MyISAM tables that you want to convert to InnoDB for better reliability and scalability, review
the following guidelines and tips before converting.

• Adjusting Memory Usage for MyISAM and InnoDB

• Handling Too-Long Or Too-Short Transactions

• Handling Deadlocks

• Storage Layout

• Converting an Existing Table

• Cloning the Structure of a Table

• Transferring Data

• Storage Requirements

• Defining Primary Keys

• Application Performance Considerations

• Understanding Files Associated with InnoDB Tables

Adjusting Memory Usage for MyISAM and InnoDB

As you transition away from MyISAM tables, lower the value of the key_buffer_size
configuration option to free memory no longer needed for caching results. Increase the value of the
innodb_buffer_pool_size configuration option, which performs a similar role of allocating cache
memory for InnoDB tables. The InnoDB buffer pool caches both table data and index data, speeding up
lookups for queries and keeping query results in memory for reuse. For guidance regarding buffer pool size
configuration, see Section 8.12.4.1, “How MySQL Uses Memory”.

On a busy server, run benchmarks with the query cache turned off. The InnoDB buffer pool provides
similar benefits, so the query cache might be tying up memory unnecessarily. For information about the
query cache, see Section 8.10.3, “The MySQL Query Cache”.

2011

Tables

Handling Too-Long Or Too-Short Transactions

Because MyISAM tables do not support transactions, you might not have paid much attention to the
autocommit configuration option and the COMMIT and ROLLBACK statements. These keywords are
important to allow multiple sessions to read and write InnoDB tables concurrently, providing substantial
scalability benefits in write-heavy workloads.

While a transaction is open, the system keeps a snapshot of the data as seen at the beginning of the
transaction, which can cause substantial overhead if the system inserts, updates, and deletes millions of
rows while a stray transaction keeps running. Thus, take care to avoid transactions that run for too long:

• If you are using a mysql session for interactive experiments, always COMMIT (to finalize the changes) or
ROLLBACK (to undo the changes) when finished. Close down interactive sessions rather than leave them
open for long periods, to avoid keeping transactions open for long periods by accident.

• Make sure that any error handlers in your application also ROLLBACK incomplete changes or COMMIT
completed changes.

• ROLLBACK is a relatively expensive operation, because INSERT, UPDATE, and DELETE operations are
written to InnoDB tables prior to the COMMIT, with the expectation that most changes are committed
successfully and rollbacks are rare. When experimenting with large volumes of data, avoid making
changes to large numbers of rows and then rolling back those changes.

• When loading large volumes of data with a sequence of INSERT statements, periodically COMMIT the
results to avoid having transactions that last for hours. In typical load operations for data warehousing,
if something goes wrong, you truncate the table (using TRUNCATE TABLE) and start over from the
beginning rather than doing a ROLLBACK.

The preceding tips save memory and disk space that can be wasted during too-long transactions. When
transactions are shorter than they should be, the problem is excessive I/O. With each COMMIT, MySQL
makes sure each change is safely recorded to disk, which involves some I/O.

• For most operations on InnoDB tables, you should use the setting autocommit=0. From an efficiency
perspective, this avoids unnecessary I/O when you issue large numbers of consecutive INSERT,
UPDATE, or DELETE statements. From a safety perspective, this allows you to issue a ROLLBACK
statement to recover lost or garbled data if you make a mistake on the mysql command line, or in an
exception handler in your application.

• autocommit=1 is suitable for InnoDB tables when running a sequence of queries for generating
reports or analyzing statistics. In this situation, there is no I/O penalty related to COMMIT or ROLLBACK,
and InnoDB can automatically optimize the read-only workload.

• If you make a series of related changes, finalize all the changes at once with a single COMMIT at the
end. For example, if you insert related pieces of information into several tables, do a single COMMIT
after making all the changes. Or if you run many consecutive INSERT statements, do a single COMMIT
after all the data is loaded; if you are doing millions of INSERT statements, perhaps split up the huge
transaction by issuing a COMMIT every ten thousand or hundred thousand records, so the transaction
does not grow too large.

• Remember that even a SELECT statement opens a transaction, so after running some report or
debugging queries in an interactive mysql session, either issue a COMMIT or close the mysql session.

For related information, see Section 14.7.2.2, “autocommit, Commit, and Rollback”.

Handling Deadlocks

You might see warning messages referring to “deadlocks” in the MySQL error log, or the output of SHOW
ENGINE INNODB STATUS. A deadlock is not a serious issue for InnoDB tables, and often does not

2012

Tables

require any corrective action. When two transactions start modifying multiple tables, accessing the tables
in a different order, they can reach a state where each transaction is waiting for the other and neither can
proceed. MySQL immediately detects this condition and cancels (rolls back) the “smaller” transaction,
allowing the other to proceed.

Your applications do need error-handling logic to restart a transaction that is forcibly cancelled like this.
When you re-issue the same SQL statements as before, the original timing issue no longer applies.
Either the other transaction has already finished and yours can proceed, or the other transaction is still in
progress and your transaction waits until it finishes.

If deadlock warnings occur constantly, you might review the application code to reorder the
SQL operations in a consistent way, or to shorten the transactions. You can test with the
innodb_print_all_deadlocks option enabled to see all deadlock warnings in the MySQL error log,
rather than only the last warning in the SHOW ENGINE INNODB STATUS output.

For more information, see Section 14.7.5, “Deadlocks in InnoDB”.

Storage Layout

To get the best performance from InnoDB tables, you can adjust a number of parameters related to
storage layout.

When you convert MyISAM tables that are large, frequently accessed, and hold vital data, investigate and
consider the innodb_file_per_table, innodb_file_format, and innodb_page_size variables,
and the ROW_FORMAT and KEY_BLOCK_SIZE clauses of the CREATE TABLE statement.

During your initial experiments, the most important setting is innodb_file_per_table. When this
setting is enabled, which is the default as of MySQL 5.6.6, new InnoDB tables are implicitly created in file-
per-table tablespaces. In contrast with the InnoDB system tablespace, file-per-table tablespaces allow
disk space to be reclaimed by the operating system when a table is truncated or dropped. File-per-table
tablespaces also support the Barracuda file format and associated features such as table compression,
efficient off-page storage for long variable-length columns, and large index prefixes. For more information,
see Section 14.6.3.2, “File-Per-Table Tablespaces”.

Converting an Existing Table

To convert a non-InnoDB table to use InnoDB use ALTER TABLE:

ALTER TABLE table_name ENGINE=InnoDB;

Warning

Do not convert MySQL system tables in the mysql database from MyISAM to
InnoDB tables. This is an unsupported operation. If you do this, MySQL does not
restart until you restore the old system tables from a backup or regenerate them by
reinitializing the data directory (see Section 2.10.1, “Initializing the Data Directory”).

Cloning the Structure of a Table

You might make an InnoDB table that is a clone of a MyISAM table, rather than using ALTER TABLE to
perform conversion, to test the old and new table side-by-side before switching.

Create an empty InnoDB table with identical column and index definitions. Use SHOW CREATE TABLE
table_name\G to see the full CREATE TABLE statement to use. Change the ENGINE clause to
ENGINE=INNODB.

Transferring Data

2013

Tables

To transfer a large volume of data into an empty InnoDB table created as shown in the previous section,
insert the rows with INSERT INTO innodb_table SELECT * FROM myisam_table ORDER BY
primary_key_columns.

You can also create the indexes for the InnoDB table after inserting the data. Historically, creating new
secondary indexes was a slow operation for InnoDB, but now you can create the indexes after the data is
loaded with relatively little overhead from the index creation step.

If you have UNIQUE constraints on secondary keys, you can speed up a table import by turning off the
uniqueness checks temporarily during the import operation:

SET unique_checks=0;
... import operation ...
SET unique_checks=1;

For big tables, this saves disk I/O because InnoDB can use its change buffer to write secondary index
records as a batch. Be certain that the data contains no duplicate keys. unique_checks permits but does
not require storage engines to ignore duplicate keys.

For better control over the insertion process, you can insert big tables in pieces:

INSERT INTO newtable SELECT * FROM oldtable
 WHERE yourkey > something AND yourkey <= somethingelse;

After all records are inserted, you can rename the tables.

During the conversion of big tables, increase the size of the InnoDB buffer pool to reduce disk I/O.
Typically, the recommended buffer pool size is 50 to 75 percent of system memory. You can also increase
the size of InnoDB log files.

Storage Requirements

If you intend to make several temporary copies of your data in InnoDB tables during the conversion
process, it is recommended that you create the tables in file-per-table tablespaces so that you can reclaim
the disk space when you drop the tables. When the innodb_file_per_table configuration option is
enabled (the default), newly created InnoDB tables are implicitly created in file-per-table tablespaces.

Whether you convert the MyISAM table directly or create a cloned InnoDB table, make sure that you have
sufficient disk space to hold both the old and new tables during the process. InnoDB tables require more
disk space than MyISAM tables. If an ALTER TABLE operation runs out of space, it starts a rollback, and
that can take hours if it is disk-bound. For inserts, InnoDB uses the insert buffer to merge secondary index
records to indexes in batches. That saves a lot of disk I/O. For rollback, no such mechanism is used, and
the rollback can take 30 times longer than the insertion.

In the case of a runaway rollback, if you do not have valuable data in your database, it may be advisable to
kill the database process rather than wait for millions of disk I/O operations to complete. For the complete
procedure, see Section 14.21.2, “Forcing InnoDB Recovery”.

Defining Primary Keys

The PRIMARY KEY clause is a critical factor affecting the performance of MySQL queries and the space
usage for tables and indexes. The primary key uniquely identifies a row in a table. Every row in the table
should have a primary key value, and no two rows can have the same primary key value.

These are guidelines for the primary key, followed by more detailed explanations.

• Declare a PRIMARY KEY for each table. Typically, it is the most important column that you refer to in
WHERE clauses when looking up a single row.

2014

Tables

• Declare the PRIMARY KEY clause in the original CREATE TABLE statement, rather than adding it later
through an ALTER TABLE statement.

• Choose the column and its data type carefully. Prefer numeric columns over character or string ones.

• Consider using an auto-increment column if there is not another stable, unique, non-null, numeric
column to use.

• An auto-increment column is also a good choice if there is any doubt whether the value of the primary
key column could ever change. Changing the value of a primary key column is an expensive operation,
possibly involving rearranging data within the table and within each secondary index.

Consider adding a primary key to any table that does not already have one. Use the smallest practical
numeric type based on the maximum projected size of the table. This can make each row slightly more
compact, which can yield substantial space savings for large tables. The space savings are multiplied if
the table has any secondary indexes, because the primary key value is repeated in each secondary index
entry. In addition to reducing data size on disk, a small primary key also lets more data fit into the buffer
pool, speeding up all kinds of operations and improving concurrency.

If the table already has a primary key on some longer column, such as a VARCHAR, consider adding a
new unsigned AUTO_INCREMENT column and switching the primary key to that, even if that column is
not referenced in queries. This design change can produce substantial space savings in the secondary
indexes. You can designate the former primary key columns as UNIQUE NOT NULL to enforce the same
constraints as the PRIMARY KEY clause, that is, to prevent duplicate or null values across all those
columns.

If you spread related information across multiple tables, typically each table uses the same column for its
primary key. For example, a personnel database might have several tables, each with a primary key of
employee number. A sales database might have some tables with a primary key of customer number, and
other tables with a primary key of order number. Because lookups using the primary key are very fast, you
can construct efficient join queries for such tables.

If you leave the PRIMARY KEY clause out entirely, MySQL creates an invisible one for you. It is a 6-byte
value that might be longer than you need, thus wasting space. Because it is hidden, you cannot refer to it
in queries.

Application Performance Considerations

The reliability and scalability features of InnoDB require more disk storage than equivalent MyISAM tables.
You might change the column and index definitions slightly, for better space utilization, reduced I/O and
memory consumption when processing result sets, and better query optimization plans making efficient
use of index lookups.

If you set up a numeric ID column for the primary key, use that value to cross-reference with related values
in any other tables, particularly for join queries. For example, rather than accepting a country name as
input and doing queries searching for the same name, do one lookup to determine the country ID, then
do other queries (or a single join query) to look up relevant information across several tables. Rather than
storing a customer or catalog item number as a string of digits, potentially using up several bytes, convert it
to a numeric ID for storing and querying. A 4-byte unsigned INT column can index over 4 billion items (with
the US meaning of billion: 1000 million). For the ranges of the different integer types, see Section 11.1.2,
“Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT”.

Understanding Files Associated with InnoDB Tables

InnoDB files require more care and planning than MyISAM files do.

• You must not delete the ibdata files that represent the InnoDB system tablespace.

2015

Tables

• Methods of moving or copying InnoDB tables to a different server are described in Section 14.6.1.4,
“Moving or Copying InnoDB Tables”.

14.6.1.6 AUTO_INCREMENT Handling in InnoDB

InnoDB provides a configurable locking mechanism that can significantly improve scalability and
performance of SQL statements that add rows to tables with AUTO_INCREMENT columns. To use the
AUTO_INCREMENT mechanism with an InnoDB table, an AUTO_INCREMENT column must be defined
as the first or only column of some index such that it is possible to perform the equivalent of an indexed
SELECT MAX(ai_col) lookup on the table to obtain the maximum column value. The index is not
required to be a PRIMARY KEY or UNIQUE, but to avoid duplicate values in the AUTO_INCREMENT column,
those index types are recommended.

This section describes the AUTO_INCREMENT lock modes, usage implications of different
AUTO_INCREMENT lock mode settings, and how InnoDB initializes the AUTO_INCREMENT counter.

• InnoDB AUTO_INCREMENT Lock Modes

• InnoDB AUTO_INCREMENT Lock Mode Usage Implications

• InnoDB AUTO_INCREMENT Counter Initialization

• Notes

InnoDB AUTO_INCREMENT Lock Modes

This section describes the AUTO_INCREMENT lock modes used to generate auto-increment values, and
how each lock mode affects replication. The auto-increment lock mode is configured at startup using the
innodb_autoinc_lock_mode variable.

The following terms are used in describing innodb_autoinc_lock_mode settings:

• “INSERT-like” statements

All statements that generate new rows in a table, including INSERT, INSERT ... SELECT, REPLACE,
REPLACE ... SELECT, and LOAD DATA. Includes “simple-inserts”, “bulk-inserts”, and “mixed-mode”
inserts.

• “Simple inserts”

Statements for which the number of rows to be inserted can be determined in advance (when the
statement is initially processed). This includes single-row and multiple-row INSERT and REPLACE
statements that do not have a nested subquery, but not INSERT ... ON DUPLICATE KEY UPDATE.

• “Bulk inserts”

Statements for which the number of rows to be inserted (and the number of required auto-increment
values) is not known in advance. This includes INSERT ... SELECT, REPLACE ... SELECT, and
LOAD DATA statements, but not plain INSERT. InnoDB assigns new values for the AUTO_INCREMENT
column one at a time as each row is processed.

• “Mixed-mode inserts”

These are “simple insert” statements that specify the auto-increment value for some (but not all) of the
new rows. An example follows, where c1 is an AUTO_INCREMENT column of table t1:

INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

2016

Tables

Another type of “mixed-mode insert” is INSERT ... ON DUPLICATE KEY UPDATE, which in the worst
case is in effect an INSERT followed by a UPDATE, where the allocated value for the AUTO_INCREMENT
column may or may not be used during the update phase.

There are three possible settings for the innodb_autoinc_lock_mode variable. The settings are 0, 1, or
2, for “traditional”, “consecutive”, or “interleaved” lock mode, respectively.

• innodb_autoinc_lock_mode = 0 (“traditional” lock mode)

The traditional lock mode provides the same behavior that existed before the
innodb_autoinc_lock_mode variable was introduced. The traditional lock mode option is provided
for backward compatibility, performance testing, and working around issues with “mixed-mode inserts”,
due to possible differences in semantics.

In this lock mode, all “INSERT-like” statements obtain a special table-level AUTO-INC lock for inserts
into tables with AUTO_INCREMENT columns. This lock is normally held to the end of the statement (not
to the end of the transaction) to ensure that auto-increment values are assigned in a predictable and
repeatable order for a given sequence of INSERT statements, and to ensure that auto-increment values
assigned by any given statement are consecutive.

In the case of statement-based replication, this means that when an SQL statement is replicated on
a replica server, the same values are used for the auto-increment column as on the source server.
The result of execution of multiple INSERT statements is deterministic, and the replica reproduces the
same data as on the source. If auto-increment values generated by multiple INSERT statements were
interleaved, the result of two concurrent INSERT statements would be nondeterministic, and could not
reliably be propagated to a replica server using statement-based replication.

To make this clear, consider an example that uses this table:

CREATE TABLE t1 (
 c1 INT(11) NOT NULL AUTO_INCREMENT,
 c2 VARCHAR(10) DEFAULT NULL,
 PRIMARY KEY (c1)
) ENGINE=InnoDB;

Suppose that there are two transactions running, each inserting rows into a table with an
AUTO_INCREMENT column. One transaction is using an INSERT ... SELECT statement that inserts
1000 rows, and another is using a simple INSERT statement that inserts one row:

Tx1: INSERT INTO t1 (c2) SELECT 1000 rows from another table ...
Tx2: INSERT INTO t1 (c2) VALUES ('xxx');

InnoDB cannot tell in advance how many rows are retrieved from the SELECT in the INSERT statement
in Tx1, and it assigns the auto-increment values one at a time as the statement proceeds. With a table-
level lock, held to the end of the statement, only one INSERT statement referring to table t1 can execute
at a time, and the generation of auto-increment numbers by different statements is not interleaved. The
auto-increment values generated by the Tx1 INSERT ... SELECT statement are consecutive, and the
(single) auto-increment value used by the INSERT statement in Tx2 is either smaller or larger than all
those used for Tx1, depending on which statement executes first.

As long as the SQL statements execute in the same order when replayed from the binary log (when
using statement-based replication, or in recovery scenarios), the results are the same as they were when
Tx1 and Tx2 first ran. Thus, table-level locks held until the end of a statement make INSERT statements
using auto-increment safe for use with statement-based replication. However, those table-level locks
limit concurrency and scalability when multiple transactions are executing insert statements at the same
time.

2017

Tables

In the preceding example, if there were no table-level lock, the value of the auto-increment column
used for the INSERT in Tx2 depends on precisely when the statement executes. If the INSERT of Tx2
executes while the INSERT of Tx1 is running (rather than before it starts or after it completes), the
specific auto-increment values assigned by the two INSERT statements are nondeterministic, and may
vary from run to run.

Under the consecutive lock mode, InnoDB can avoid using table-level AUTO-INC locks for “simple
insert” statements where the number of rows is known in advance, and still preserve deterministic
execution and safety for statement-based replication.

If you are not using the binary log to replay SQL statements as part of recovery or replication, the
interleaved lock mode can be used to eliminate all use of table-level AUTO-INC locks for even greater
concurrency and performance, at the cost of permitting gaps in auto-increment numbers assigned
by a statement and potentially having the numbers assigned by concurrently executing statements
interleaved.

• innodb_autoinc_lock_mode = 1 (“consecutive” lock mode)

This is the default lock mode. In this mode, “bulk inserts” use the special AUTO-INC table-level lock and
hold it until the end of the statement. This applies to all INSERT ... SELECT, REPLACE ... SELECT,
and LOAD DATA statements. Only one statement holding the AUTO-INC lock can execute at a time.
If the source table of the bulk insert operation is different from the target table, the AUTO-INC lock on
the target table is taken after a shared lock is taken on the first row selected from the source table. If
the source and target of the bulk insert operation are the same table, the AUTO-INC lock is taken after
shared locks are taken on all selected rows.

“Simple inserts” (for which the number of rows to be inserted is known in advance) avoid table-level
AUTO-INC locks by obtaining the required number of auto-increment values under the control of a
mutex (a light-weight lock) that is only held for the duration of the allocation process, not until the
statement completes. No table-level AUTO-INC lock is used unless an AUTO-INC lock is held by another
transaction. If another transaction holds an AUTO-INC lock, a “simple insert” waits for the AUTO-INC
lock, as if it were a “bulk insert”.

This lock mode ensures that, in the presence of INSERT statements where the number of rows is not
known in advance (and where auto-increment numbers are assigned as the statement progresses), all
auto-increment values assigned by any “INSERT-like” statement are consecutive, and operations are
safe for statement-based replication.

Simply put, this lock mode significantly improves scalability while being safe for use with statement-
based replication. Further, as with “traditional” lock mode, auto-increment numbers assigned by any
given statement are consecutive. There is no change in semantics compared to “traditional” mode for
any statement that uses auto-increment, with one important exception.

The exception is for “mixed-mode inserts”, where the user provides explicit values for an
AUTO_INCREMENT column for some, but not all, rows in a multiple-row “simple insert”. For such inserts,
InnoDB allocates more auto-increment values than the number of rows to be inserted. However, all
values automatically assigned are consecutively generated (and thus higher than) the auto-increment
value generated by the most recently executed previous statement. “Excess” numbers are lost.

• innodb_autoinc_lock_mode = 2 (“interleaved” lock mode)

In this lock mode, no “INSERT-like” statements use the table-level AUTO-INC lock, and multiple
statements can execute at the same time. This is the fastest and most scalable lock mode, but it is not
safe when using statement-based replication or recovery scenarios when SQL statements are replayed
from the binary log.

2018

Tables

In this lock mode, auto-increment values are guaranteed to be unique and monotonically increasing
across all concurrently executing “INSERT-like” statements. However, because multiple statements
can be generating numbers at the same time (that is, allocation of numbers is interleaved across
statements), the values generated for the rows inserted by any given statement may not be consecutive.

If the only statements executing are “simple inserts” where the number of rows to be inserted is known
ahead of time, there are no gaps in the numbers generated for a single statement, except for “mixed-
mode inserts”. However, when “bulk inserts” are executed, there may be gaps in the auto-increment
values assigned by any given statement.

InnoDB AUTO_INCREMENT Lock Mode Usage Implications

• Using auto-increment with replication

If you are using statement-based replication, set innodb_autoinc_lock_mode to 0 or 1 and use the
same value on the source and its replicas. Auto-increment values are not ensured to be the same on the
replicas as on the source if you use innodb_autoinc_lock_mode = 2 (“interleaved”) or configurations
where the source and replicas do not use the same lock mode.

If you are using row-based or mixed-format replication, all of the auto-increment lock modes are safe,
since row-based replication is not sensitive to the order of execution of the SQL statements (and the
mixed format uses row-based replication for any statements that are unsafe for statement-based
replication).

• “Lost” auto-increment values and sequence gaps

In all lock modes (0, 1, and 2), if a transaction that generated auto-increment values rolls back, those
auto-increment values are “lost”. Once a value is generated for an auto-increment column, it cannot be
rolled back, whether or not the “INSERT-like” statement is completed, and whether or not the containing
transaction is rolled back. Such lost values are not reused. Thus, there may be gaps in the values stored
in an AUTO_INCREMENT column of a table.

• Specifying NULL or 0 for the AUTO_INCREMENT column

In all lock modes (0, 1, and 2), if a user specifies NULL or 0 for the AUTO_INCREMENT column in an
INSERT, InnoDB treats the row as if the value was not specified and generates a new value for it.

• Assigning a negative value to the AUTO_INCREMENT column

In all lock modes (0, 1, and 2), the behavior of the auto-increment mechanism is undefined if you assign
a negative value to the AUTO_INCREMENT column.

• If the AUTO_INCREMENT value becomes larger than the maximum integer for the specified integer type

In all lock modes (0, 1, and 2), the behavior of the auto-increment mechanism is undefined if the value
becomes larger than the maximum integer that can be stored in the specified integer type.

• Gaps in auto-increment values for “bulk inserts”

With innodb_autoinc_lock_mode set to 0 (“traditional”) or 1 (“consecutive”), the auto-increment
values generated by any given statement are consecutive, without gaps, because the table-level AUTO-
INC lock is held until the end of the statement, and only one such statement can execute at a time.

With innodb_autoinc_lock_mode set to 2 (“interleaved”), there may be gaps in the auto-increment
values generated by “bulk inserts,” but only if there are concurrently executing “INSERT-like” statements.

2019

Tables

For lock modes 1 or 2, gaps may occur between successive statements because for bulk inserts
the exact number of auto-increment values required by each statement may not be known and
overestimation is possible.

• Auto-increment values assigned by “mixed-mode inserts”

Consider a “mixed-mode insert,” where a “simple insert” specifies the auto-increment value for some
(but not all) resulting rows. Such a statement behaves differently in lock modes 0, 1, and 2. For example,
assume c1 is an AUTO_INCREMENT column of table t1, and that the most recent automatically
generated sequence number is 100.

mysql> CREATE TABLE t1 (
 -> c1 INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> c2 CHAR(1)
 ->) ENGINE = INNODB;

Now, consider the following “mixed-mode insert” statement:

mysql> INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

With innodb_autoinc_lock_mode set to 0 (“traditional”), the four new rows are:

mysql> SELECT c1, c2 FROM t1 ORDER BY c2;
+-----+------+
| c1 | c2 |
+-----+------+
1	a
101	b
5	c
102	d
+-----+------+

The next available auto-increment value is 103 because the auto-increment values are allocated one at
a time, not all at once at the beginning of statement execution. This result is true whether or not there are
concurrently executing “INSERT-like” statements (of any type).

With innodb_autoinc_lock_mode set to 1 (“consecutive”), the four new rows are also:

mysql> SELECT c1, c2 FROM t1 ORDER BY c2;
+-----+------+
| c1 | c2 |
+-----+------+
1	a
101	b
5	c
102	d
+-----+------+

However, in this case, the next available auto-increment value is 105, not 103 because four auto-
increment values are allocated at the time the statement is processed, but only two are used. This result
is true whether or not there are concurrently executing “INSERT-like” statements (of any type).

With innodb_autoinc_lock_mode set to 2 (“interleaved”), the four new rows are:

mysql> SELECT c1, c2 FROM t1 ORDER BY c2;
+-----+------+
| c1 | c2 |
+-----+------+
1	a
x	b
5	c

2020

Tables

| y | d |
+-----+------+

The values of x and y are unique and larger than any previously generated rows. However, the specific
values of x and y depend on the number of auto-increment values generated by concurrently executing
statements.

Finally, consider the following statement, issued when the most-recently generated sequence number is
100:

mysql> INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (101,'c'), (NULL,'d');

With any innodb_autoinc_lock_mode setting, this statement generates a duplicate-key error 23000
(Can't write; duplicate key in table) because 101 is allocated for the row (NULL, 'b')
and insertion of the row (101, 'c') fails.

• Modifying AUTO_INCREMENT column values in the middle of a sequence of INSERT statements

In all lock modes (0, 1, and 2), modifying an AUTO_INCREMENT column value in the middle of a
sequence of INSERT statements could lead to “Duplicate entry” errors. For example, if you perform an
UPDATE operation that changes an AUTO_INCREMENT column value to a value larger than the current
maximum auto-increment value, subsequent INSERT operations that do not specify an unused auto-
increment value could encounter “Duplicate entry” errors. This behavior is demonstrated in the following
example.

mysql> CREATE TABLE t1 (
 -> c1 INT NOT NULL AUTO_INCREMENT,
 -> PRIMARY KEY (c1)
 ->) ENGINE = InnoDB;

mysql> INSERT INTO t1 VALUES(0), (0), (3);

mysql> SELECT c1 FROM t1;
+----+
| c1 |
+----+
| 1 |
| 2 |
| 3 |
+----+

mysql> UPDATE t1 SET c1 = 4 WHERE c1 = 1;

mysql> SELECT c1 FROM t1;
+----+
| c1 |
+----+
| 2 |
| 3 |
| 4 |
+----+

mysql> INSERT INTO t1 VALUES(0);
ERROR 1062 (23000): Duplicate entry '4' for key 'PRIMARY'

InnoDB AUTO_INCREMENT Counter Initialization

This section describes how InnoDB initializes AUTO_INCREMENT counters.

If you specify an AUTO_INCREMENT column for an InnoDB table, the table handle in the InnoDB data
dictionary contains a special counter called the auto-increment counter that is used in assigning new
values for the column. This counter is stored only in main memory, not on disk.

2021

Indexes

To initialize an auto-increment counter after a server restart, InnoDB executes the equivalent of the
following statement on the first insert into a table containing an AUTO_INCREMENT column.

SELECT MAX(ai_col) FROM table_name FOR UPDATE;

InnoDB increments the value retrieved by the statement and assigns it to the column and to the auto-
increment counter for the table. By default, the value is incremented by 1. This default can be overridden
by the auto_increment_increment configuration setting.

If the table is empty, InnoDB uses the value 1. This default can be overridden by the
auto_increment_offset configuration setting.

If a SHOW TABLE STATUS statement examines the table before the auto-increment counter is initialized,
InnoDB initializes but does not increment the value. The value is stored for use by later inserts. This
initialization uses a normal exclusive-locking read on the table and the lock lasts to the end of the
transaction. InnoDB follows the same procedure for initializing the auto-increment counter for a newly
created table.

After the auto-increment counter has been initialized, if you do not explicitly specify a value for an
AUTO_INCREMENT column, InnoDB increments the counter and assigns the new value to the column. If
you insert a row that explicitly specifies the column value, and the value is greater than the current counter
value, the counter is set to the specified column value.

InnoDB uses the in-memory auto-increment counter as long as the server runs. When the server is
stopped and restarted, InnoDB reinitializes the counter for each table for the first INSERT to the table, as
described earlier.

A server restart also cancels the effect of the AUTO_INCREMENT = N table option in CREATE TABLE and
ALTER TABLE statements, which you can use with InnoDB tables to set the initial counter value or alter
the current counter value.

Notes

• When an AUTO_INCREMENT integer column runs out of values, a subsequent INSERT operation returns
a duplicate-key error. This is general MySQL behavior.

• When you restart the MySQL server, InnoDB may reuse an old value that was generated for an
AUTO_INCREMENT column but never stored (that is, a value that was generated during an old
transaction that was rolled back).

14.6.2 Indexes

This section covers topics related to InnoDB indexes.

14.6.2.1 Clustered and Secondary Indexes

Each InnoDB table has a special index called the clustered index that stores row data. Typically, the
clustered index is synonymous with the primary key. To get the best performance from queries, inserts,
and other database operations, it is important to understand how InnoDB uses the clustered index to
optimize the common lookup and DML operations.

• When you define a PRIMARY KEY on a table, InnoDB uses it as the clustered index. A primary key
should be defined for each table. If there is no logical unique and non-null column or set of columns to
use a the primary key, add an auto-increment column. Auto-increment column values are unique and are
added automatically as new rows are inserted.

• If you do not define a PRIMARY KEY for a table, InnoDB uses the first UNIQUE index with all key
columns defined as NOT NULL as the clustered index.

2022

Indexes

• If a table has no PRIMARY KEY or suitable UNIQUE index, InnoDB generates a hidden clustered index
named GEN_CLUST_INDEX on a synthetic column that contains row ID values. The rows are ordered by
the row ID that InnoDB assigns. The row ID is a 6-byte field that increases monotonically as new rows
are inserted. Thus, the rows ordered by the row ID are physically in order of insertion.

How the Clustered Index Speeds Up Queries

Accessing a row through the clustered index is fast because the index search leads directly to the page
that contains the row data. If a table is large, the clustered index architecture often saves a disk I/O
operation when compared to storage organizations that store row data using a different page from the
index record.

How Secondary Indexes Relate to the Clustered Index

Indexes other than the clustered index are known as secondary indexes. In InnoDB, each record in a
secondary index contains the primary key columns for the row, as well as the columns specified for the
secondary index. InnoDB uses this primary key value to search for the row in the clustered index.

If the primary key is long, the secondary indexes use more space, so it is advantageous to have a short
primary key.

For guidelines to take advantage of InnoDB clustered and secondary indexes, see Section 8.3,
“Optimization and Indexes”.

14.6.2.2 The Physical Structure of an InnoDB Index

All InnoDB indexes are B-trees where the index records are stored in the leaf pages of the tree. The
default size of an index page is 16KB. The page size is determined by the innodb_page_size setting
when the MySQL instance is initialized. See Section 14.8.1, “InnoDB Startup Configuration”.

When new records are inserted into an InnoDB clustered index, InnoDB tries to leave 1/16 of the page
free for future insertions and updates of the index records. If index records are inserted in a sequential
order (ascending or descending), the resulting index pages are about 15/16 full. If records are inserted
in a random order, the pages are from 1/2 to 15/16 full. If the fill factor of an index page drops below 1/2,
InnoDB tries to contract the index tree to free the page.

14.6.2.3 InnoDB Full-Text Indexes

Full-text indexes are created on text-based columns (CHAR, VARCHAR, or TEXT columns) to speed up
queries and DML operations on data contained within those columns.

A full-text index is defined as part of a CREATE TABLE statement or added to an existing table using
ALTER TABLE or CREATE INDEX.

Full-text search is performed using MATCH() ... AGAINST syntax. For usage information, see
Section 12.10, “Full-Text Search Functions”.

InnoDB full-text indexes are described under the following topics in this section:

• InnoDB Full-Text Index Design

• InnoDB Full-Text Index Tables

• InnoDB Full-Text Index Cache

• InnoDB Full-Text Index DOC_ID and FTS_DOC_ID Column

• InnoDB Full-Text Index Deletion Handling

2023

Indexes

• InnoDB Full-Text Index Transaction Handling

• Monitoring InnoDB Full-Text Indexes

InnoDB Full-Text Index Design

InnoDB full-text indexes have an inverted index design. Inverted indexes store a list of words, and for each
word, a list of documents that the word appears in. To support proximity search, position information for
each word is also stored, as a byte offset.

InnoDB Full-Text Index Tables

When an InnoDB full-text index is created, a set of index tables is created, as shown in the following
example:

mysql> CREATE TABLE opening_lines (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 opening_line TEXT(500),
 author VARCHAR(200),
 title VARCHAR(200),
 FULLTEXT idx (opening_line)
) ENGINE=InnoDB;

mysql> SELECT table_id, name, space from INFORMATION_SCHEMA.INNODB_SYS_TABLES
 WHERE name LIKE 'test/%';
+----------+--+-------+
| table_id | name | space |
+----------+--+-------+
333	test/FTS_0000000000000147_00000000000001c9_INDEX_1	289
334	test/FTS_0000000000000147_00000000000001c9_INDEX_2	290
335	test/FTS_0000000000000147_00000000000001c9_INDEX_3	291
336	test/FTS_0000000000000147_00000000000001c9_INDEX_4	292
337	test/FTS_0000000000000147_00000000000001c9_INDEX_5	293
338	test/FTS_0000000000000147_00000000000001c9_INDEX_6	294
330	test/FTS_0000000000000147_BEING_DELETED	286
331	test/FTS_0000000000000147_BEING_DELETED_CACHE	287
332	test/FTS_0000000000000147_CONFIG	288
328	test/FTS_0000000000000147_DELETED	284
329	test/FTS_0000000000000147_DELETED_CACHE	285
327	test/opening_lines	283
+----------+--+-------+

The first six index tables comprise the inverted index and are referred to as auxiliary index tables. When
incoming documents are tokenized, the individual words (also referred to as “tokens”) are inserted into the
index tables along with position information and an associated DOC_ID. The words are fully sorted and
partitioned among the six index tables based on the character set sort weight of the word's first character.

The inverted index is partitioned into six auxiliary index tables to support parallel index creation. By default,
two threads tokenize, sort, and insert words and associated data into the index tables. The number
of threads that perform this work is configurable using the innodb_ft_sort_pll_degree variable.
Consider increasing the number of threads when creating full-text indexes on large tables.

Auxiliary index table names are prefixed with fts_ and postfixed with index_#. Each auxiliary index table
is associated with the indexed table by a hex value in the auxiliary index table name that matches the
table_id of the indexed table. For example, the table_id of the test/opening_lines table is 327,
for which the hex value is 0x147. As shown in the preceding example, the “147” hex value appears in the
names of auxiliary index tables that are associated with the test/opening_lines table.

A hex value representing the index_id of the full-text index also appears in
auxiliary index table names. For example, in the auxiliary table name test/
FTS_0000000000000147_00000000000001c9_INDEX_1, the hex value 1c9 has a decimal value of

2024

Indexes

457. The index defined on the opening_lines table (idx) can be identified by querying the Information
Schema INNODB_SYS_INDEXES table for this value (457).

mysql> SELECT index_id, name, table_id, space from INFORMATION_SCHEMA.INNODB_SYS_INDEXES
 WHERE index_id=457;
+----------+------+----------+-------+
| index_id | name | table_id | space |
+----------+------+----------+-------+
| 457 | idx | 327 | 283 |
+----------+------+----------+-------+

Index tables are stored in their own tablespace when innodb_file_per_table is enabled. If
innodb_file_per_table is disabled, index tables are stored in the InnoDB system tablespace (space
0).

Note

Due to a bug introduced in MySQL 5.6.5, index tables are created in the InnoDB
system tablespace (space 0) when innodb_file_per_table is enabled. The
bug is fixed in MySQL 5.6.20 and MySQL 5.7.5 (Bug#18635485).

The other index tables shown in the preceding example are referred to as common index tables and are
used for deletion handling and storing the internal state of full-text indexes. Unlike the inverted index
tables, which are created for each full-text index, this set of tables is common to all full-text indexes created
on a particular table.

Common index tables are retained even if full-text indexes are dropped. When a full-text index is dropped,
the FTS_DOC_ID column that was created for the index is retained, as removing the FTS_DOC_ID column
would require rebuilding the previously indexed table. Common index tables are required to manage the
FTS_DOC_ID column.

• FTS_*_DELETED and FTS_*_DELETED_CACHE

Contain the document IDs (DOC_ID) for documents that are deleted but whose data is not yet removed
from the full-text index. The FTS_*_DELETED_CACHE is the in-memory version of the FTS_*_DELETED
table.

• FTS_*_BEING_DELETED and FTS_*_BEING_DELETED_CACHE

Contain the document IDs (DOC_ID) for documents that are deleted and whose data is currently in the
process of being removed from the full-text index. The FTS_*_BEING_DELETED_CACHE table is the in-
memory version of the FTS_*_BEING_DELETED table.

• FTS_*_CONFIG

Stores information about the internal state of the full-text index. Most importantly, it stores the
FTS_SYNCED_DOC_ID, which identifies documents that have been parsed and flushed to disk. In case
of crash recovery, FTS_SYNCED_DOC_ID values are used to identify documents that have not been
flushed to disk so that the documents can be re-parsed and added back to the full-text index cache. To
view the data in this table, query the Information Schema INNODB_FT_CONFIG table.

InnoDB Full-Text Index Cache

When a document is inserted, it is tokenized, and the individual words and associated data are inserted
into the full-text index. This process, even for small documents, can result in numerous small insertions
into the auxiliary index tables, making concurrent access to these tables a point of contention. To
avoid this problem, InnoDB uses a full-text index cache to temporarily cache index table insertions
for recently inserted rows. This in-memory cache structure holds insertions until the cache is full and

2025

Indexes

then batch flushes them to disk (to the auxiliary index tables). You can query the Information Schema
INNODB_FT_INDEX_CACHE table to view tokenized data for recently inserted rows.

The caching and batch flushing behavior avoids frequent updates to auxiliary index tables, which could
result in concurrent access issues during busy insert and update times. The batching technique also
avoids multiple insertions for the same word, and minimizes duplicate entries. Instead of flushing each
word individually, insertions for the same word are merged and flushed to disk as a single entry, improving
insertion efficiency while keeping auxiliary index tables as small as possible.

The innodb_ft_cache_size variable is used to configure the full-text index cache size (on a per-
table basis), which affects how often the full-text index cache is flushed. You can also define a global full-
text index cache size limit for all tables in a given instance using the innodb_ft_total_cache_size
variable.

The full-text index cache stores the same information as auxiliary index tables. However, the full-text index
cache only caches tokenized data for recently inserted rows. The data that is already flushed to disk (to the
auxiliary index tables) is not brought back into the full-text index cache when queried. The data in auxiliary
index tables is queried directly, and results from the auxiliary index tables are merged with results from the
full-text index cache before being returned.

InnoDB Full-Text Index DOC_ID and FTS_DOC_ID Column

InnoDB uses a unique document identifier referred to as the DOC_ID to map words in the full-text index to
document records where the word appears. The mapping requires an FTS_DOC_ID column on the indexed
table. If an FTS_DOC_ID column is not defined, InnoDB automatically adds a hidden FTS_DOC_ID column
when the full-text index is created. The following example demonstrates this behavior.

The following table definition does not include an FTS_DOC_ID column:

mysql> CREATE TABLE opening_lines (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 opening_line TEXT(500),
 author VARCHAR(200),
 title VARCHAR(200)
) ENGINE=InnoDB;

When you create a full-text index on the table using CREATE FULLTEXT INDEX syntax, a warning is
returned which reports that InnoDB is rebuilding the table to add the FTS_DOC_ID column.

mysql> CREATE FULLTEXT INDEX idx ON opening_lines(opening_line);
Query OK, 0 rows affected, 1 warning (0.19 sec)
Records: 0 Duplicates: 0 Warnings: 1

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 124 | InnoDB rebuilding table to add column FTS_DOC_ID |
+---------+------+--+

The same warning is returned when using ALTER TABLE to add a full-text index to a table that does not
have an FTS_DOC_ID column. If you create a full-text index at CREATE TABLE time and do not specify an
FTS_DOC_ID column, InnoDB adds a hidden FTS_DOC_ID column, without warning.

Defining an FTS_DOC_ID column at CREATE TABLE time is less expensive than creating a full-text
index on a table that is already loaded with data. If an FTS_DOC_ID column is defined on a table prior
to loading data, the table and its indexes do not have to be rebuilt to add the new column. If you are not
concerned with CREATE FULLTEXT INDEX performance, leave out the FTS_DOC_ID column to have
InnoDB create it for you. InnoDB creates a hidden FTS_DOC_ID column along with a unique index
(FTS_DOC_ID_INDEX) on the FTS_DOC_ID column. If you want to create your own FTS_DOC_ID column,

2026

Indexes

the column must be defined as BIGINT UNSIGNED NOT NULL and named FTS_DOC_ID (all uppercase),
as in the following example:

Note

The FTS_DOC_ID column does not need to be defined as an AUTO_INCREMENT
column, but doing so could make loading data easier.

mysql> CREATE TABLE opening_lines (
 FTS_DOC_ID BIGINT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 opening_line TEXT(500),
 author VARCHAR(200),
 title VARCHAR(200)
) ENGINE=InnoDB;

If you choose to define the FTS_DOC_ID column yourself, you are responsible for managing the column
to avoid empty or duplicate values. FTS_DOC_ID values cannot be reused, which means FTS_DOC_ID
values must be ever increasing.

Optionally, you can create the required unique FTS_DOC_ID_INDEX (all uppercase) on the FTS_DOC_ID
column.

mysql> CREATE UNIQUE INDEX FTS_DOC_ID_INDEX on opening_lines(FTS_DOC_ID);

If you do not create the FTS_DOC_ID_INDEX, InnoDB creates it automatically.

Before MySQL 5.6.31, the permitted gap between the largest used FTS_DOC_ID value and new
FTS_DOC_ID value is 10000. In MySQL 5.6.31 and later, the permitted gap is 65535.

To avoid rebuilding the table, the FTS_DOC_ID column is retained when dropping a full-text index.

InnoDB Full-Text Index Deletion Handling

Deleting a record that has a full-text index column could result in numerous small deletions in the auxiliary
index tables, making concurrent access to these tables a point of contention. To avoid this problem, the
DOC_ID of a deleted document is logged in a special FTS_*_DELETED table whenever a record is deleted
from an indexed table, and the indexed record remains in the full-text index. Before returning query results,
information in the FTS_*_DELETED table is used to filter out deleted DOC_IDs. The benefit of this design
is that deletions are fast and inexpensive. The drawback is that the size of the index is not immediately
reduced after deleting records. To remove full-text index entries for deleted records, run OPTIMIZE TABLE
on the indexed table with innodb_optimize_fulltext_only=ON to rebuild the full-text index. For more
information, see Optimizing InnoDB Full-Text Indexes.

InnoDB Full-Text Index Transaction Handling

InnoDB full-text indexes have special transaction handling characteristics due its caching and batch
processing behavior. Specifically, updates and insertions on a full-text index are processed at transaction
commit time, which means that a full-text search can only see committed data. The following example
demonstrates this behavior. The full-text search only returns a result after the inserted lines are committed.

mysql> CREATE TABLE opening_lines (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 opening_line TEXT(500),
 author VARCHAR(200),
 title VARCHAR(200),
 FULLTEXT idx (opening_line)
) ENGINE=InnoDB;

mysql> BEGIN;

2027

Tablespaces

mysql> INSERT INTO opening_lines(opening_line,author,title) VALUES
 ('Call me Ishmael.','Herman Melville','Moby-Dick'),
 ('A screaming comes across the sky.','Thomas Pynchon','Gravity\'s Rainbow'),
 ('I am an invisible man.','Ralph Ellison','Invisible Man'),
 ('Where now? Who now? When now?','Samuel Beckett','The Unnamable'),
 ('It was love at first sight.','Joseph Heller','Catch-22'),
 ('All this happened, more or less.','Kurt Vonnegut','Slaughterhouse-Five'),
 ('Mrs. Dalloway said she would buy the flowers herself.','Virginia Woolf','Mrs. Dalloway'),
 ('It was a pleasure to burn.','Ray Bradbury','Fahrenheit 451');

mysql> SELECT COUNT(*) FROM opening_lines WHERE MATCH(opening_line) AGAINST('Ishmael');
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+

mysql> COMMIT;

mysql> SELECT COUNT(*) FROM opening_lines WHERE MATCH(opening_line) AGAINST('Ishmael');
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+

Monitoring InnoDB Full-Text Indexes

You can monitor and examine the special text-processing aspects of InnoDB full-text indexes by querying
the following INFORMATION_SCHEMA tables:

• INNODB_FT_CONFIG

• INNODB_FT_INDEX_TABLE

• INNODB_FT_INDEX_CACHE

• INNODB_FT_DEFAULT_STOPWORD

• INNODB_FT_DELETED

• INNODB_FT_BEING_DELETED

You can also view basic information for full-text indexes and tables by querying INNODB_SYS_INDEXES
and INNODB_SYS_TABLES.

For more information, see Section 14.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”.

14.6.3 Tablespaces

This section covers topics related to InnoDB tablespaces.

14.6.3.1 The System Tablespace

The system tablespace is the storage area for the InnoDB data dictionary, the doublewrite buffer, the
change buffer, and undo logs. It may also contain table and index data if tables are created in the system
tablespace rather than file-per-table tablespaces.

The system tablespace can have one or more data files. By default, a single system tablespace data file,
named ibdata1, is created in the data directory. The size and number of system tablespace data files
is defined by the innodb_data_file_path startup option. For configuration information, see System
Tablespace Data File Configuration.

2028

Tablespaces

Additional information about the system tablespace is provided under the following topics in the section:

• Resizing the System Tablespace

• Using Raw Disk Partitions for the System Tablespace

Resizing the System Tablespace

This section describes how to increase or decrease the size of the system tablespace.

Increasing the Size of the System Tablespace

The easiest way to increase the size of the system tablespace is to configure it to be auto-extending. To do
so, specify the autoextend attribute for the last data file in the innodb_data_file_path setting, and
restart the server. For example:

innodb_data_file_path=ibdata1:10M:autoextend

When the autoextend attribute is specified, the data file automatically increases in size by 8MB
increments as space is required. The innodb_autoextend_increment variable controls the increment
size.

You can also increase system tablespace size by adding another data file. To do so:

1. Stop the MySQL server.

2. If the last data file in the innodb_data_file_path setting is defined with the autoextend attribute,
remove it, and modify the size attribute to reflect the current data file size. To determine the appropriate
data file size to specify, check your file system for the file size, and round that value down to the closest
MB value, where a MB is equal to 1024 x 1024 bytes.

3. Append a new data file to the innodb_data_file_path setting, optionally specifying the
autoextend attribute. The autoextend attribute can be specified only for the last data file in the
innodb_data_file_path setting.

4. Start the MySQL server.

For example, this tablespace has one auto-extending data file:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:10M:autoextend

Suppose that the data file has grown to 988MB over time. This is the innodb_data_file_path setting
after modifying the size attribute to reflect the current data file size, and after specifying a new 50MB auto-
extending data file:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:988M;/disk2/ibdata2:50M:autoextend

When adding a new data file, do not specify an existing file name. InnoDB creates and initializes the new
data file when you start the server.

Note

You cannot increase the size of an existing system tablespace data file by changing
its size attribute. For example, changing the innodb_data_file_path setting
from ibdata1:10M:autoextend to ibdata1:12M:autoextend produces the
following error when starting the server:

[ERROR] [MY-012263] [InnoDB] The Auto-extending innodb_system
data file './ibdata1' is of a different size 640 pages (rounded down to MB) than

2029

Tablespaces

specified in the .cnf file: initial 768 pages, max 0 (relevant if non-zero) pages!

The error indicates that the existing data file size (expressed in InnoDB pages) is
different from the data file size specified in the configuration file. If you encounter
this error, restore the previous innodb_data_file_path setting, and refer to the
system tablespace resizing instructions.

Decreasing the Size of the InnoDB System Tablespace

You cannot remove a data file from the system tablespace. To decrease the system tablespace size, use
this procedure:

1. Use mysqldump to dump all of your InnoDB tables, including InnoDB tables located in the mysql
schema. Identify InnoDB tables in the mysql schema using the following query:

mysql> SELECT TABLE_NAME from INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA='mysql' and ENGINE='InnoDB';
+----------------------+
| table_name |
+----------------------+
| innodb_index_stats |
| innodb_table_stats |
| slave_master_info |
| slave_relay_log_info |
| slave_worker_info |
+----------------------+
5 rows in set (0.00 sec)

2. Stop the server.

3. Remove all of the existing tablespace files (*.ibd), including the ibdata and ib_log files. Do not
forget to remove *.ibd files for tables located in the mysql schema.

4. Remove any .frm files for InnoDB tables.

5. Configure the data files for the new system tablespace. See System Tablespace Data File
Configuration.

6. Restart the server.

7. Import the dump files.

Note

If your databases only use the InnoDB engine, it may be simpler to dump all
databases, stop the server, remove all databases and InnoDB log files, restart the
server, and import the dump files.

To avoid large system tablespaces, consider using file-per-table tablespaces for your data. File-per-table
tablespaces are the default tablespace type and are used implicitly when creating an InnoDB table. Unlike
the system tablespace, file-per-table tablespaces return disk space to the operating system when they are
truncated or dropped. For more information, see Section 14.6.3.2, “File-Per-Table Tablespaces”.

Using Raw Disk Partitions for the System Tablespace

Raw disk partitions can be used as system tablespace data files. This technique enables nonbuffered I/
O on Windows and some Linux and Unix systems without file system overhead. Perform tests with and
without raw partitions to verify whether they improve performance on your system.

When using a raw disk partition, ensure that the user ID that runs the MySQL server has read and write
privileges for that partition. For example, if running the server as the mysql user, the partition must be

2030

Tablespaces

readable and writeable by mysql. If running the server with the --memlock option, the server must be run
as root, so the partition must be readable and writeable by root.

The procedures described below involve option file modification. For additional information, see
Section 4.2.2.2, “Using Option Files”.

Allocating a Raw Disk Partition on Linux and Unix Systems

1. When creating a new data file, specify the keyword newraw immediately after the data file size for the
innodb_data_file_path option. The partition must be at least as large as the size that you specify.
Note that 1MB in InnoDB is 1024 × 1024 bytes, whereas 1MB in disk specifications usually means
1,000,000 bytes.

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Gnewraw;/dev/hdd2:2Gnewraw

2. Restart the server. InnoDB notices the newraw keyword and initializes the new partition. However,
do not create or change any InnoDB tables yet. Otherwise, when you next restart the server, InnoDB
reinitializes the partition and your changes are lost. (As a safety measure InnoDB prevents users from
modifying data when any partition with newraw is specified.)

3. After InnoDB has initialized the new partition, stop the server, change newraw in the data file
specification to raw:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Graw;/dev/hdd2:2Graw

4. Restart the server. InnoDB now permits changes to be made.

Allocating a Raw Disk Partition on Windows

On Windows systems, the same steps and accompanying guidelines described for Linux and Unix systems
apply except that the innodb_data_file_path setting differs slightly on Windows.

1. When creating a new data file, specify the keyword newraw immediately after the data file size for the
innodb_data_file_path option:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Gnewraw

The //./ corresponds to the Windows syntax of \\.\ for accessing physical drives. In the example
above, D: is the drive letter of the partition.

2. Restart the server. InnoDB notices the newraw keyword and initializes the new partition.

3. After InnoDB has initialized the new partition, stop the server, change newraw in the data file
specification to raw:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Graw

4. Restart the server. InnoDB now permits changes to be made.

14.6.3.2 File-Per-Table Tablespaces

A file-per-table tablespace contains data and indexes for a single InnoDB table, and is stored on the file
system in a single data file.

2031

Tablespaces

File-per-table tablespace characteristics are described under the following topics in this section:

• File-Per-Table Tablespace Configuration

• File-Per-Table Tablespace Data Files

• File-Per-Table Tablespace Advantages

• File-Per-Table Tablespace Disadvantages

File-Per-Table Tablespace Configuration

InnoDB creates tables in file-per-table tablespaces by default. This behavior is controlled by the
innodb_file_per_table variable. Disabling innodb_file_per_table causes InnoDB to create
tables in the system tablespace.

An innodb_file_per_table setting can be specified in an option file or configured at runtime using a
SET GLOBAL statement. Changing the setting at runtime requires privileges sufficient to set global system
variables. See Section 5.1.8.1, “System Variable Privileges”.

Option file:

[mysqld]
innodb_file_per_table=ON

Using SET GLOBAL at runtime:

mysql> SET GLOBAL innodb_file_per_table=ON;

innodb_file_per_table is enabled by default in MySQL 5.6 and higher. You might consider disabling
it if backward compatibility with earlier versions of MySQL is a concern.

Warning

Disabling innodb_file_per_table prevents table-copying ALTER TABLE
operations from implicitly moving a table that resides in the system tablespace to
a file-per-table tablespace. A table-copying ALTER TABLE operation recreates the
table using the current innodb_file_per_table setting. This behavior does
not apply when adding or dropping secondary indexes, nor does it apply to ALTER
TABLE operations that use the INPLACE algorithm.

File-Per-Table Tablespace Data Files

A file-per-table tablespace is created in an .ibd data file in a schema directory under the MySQL data
directory. The .ibd file is named for the table (table_name.ibd). For example, the data file for table
test.t1 is created in the test directory under the MySQL data directory:

mysql> USE test;

mysql> CREATE TABLE t1 (
 id INT PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(100)
) ENGINE = InnoDB;

$> cd /path/to/mysql/data/test
$> ls
t1.ibd

You can use the DATA DIRECTORY clause of the CREATE TABLE statement to implicitly create a file-
per-table tablespace data file outside of the data directory. For more information, see Section 14.6.1.2,
“Creating Tables Externally”.

2032

Tablespaces

File-Per-Table Tablespace Advantages

File-per-table tablespaces have the following advantages over the shared system tablespace.

• Disk space is returned to the operating system after truncating or dropping a table created in a file-
per-table tablespace. Truncating or dropping a table stored in the system tablespace creates free
space within the system tablespace, which can only be used for InnoDB data. In other words, a system
tablespace does not shrink in size after a table is truncated or dropped.

• A table-copying ALTER TABLE operation on a table that resides in the system tablespace can increase
the amount of disk space occupied by the tablespace. Such operations may require as much additional
space as the data in the table plus indexes. This space is not released back to the operating system as it
is for file-per-table tablespaces.

• TRUNCATE TABLE performance is better when executed on tables that reside in file-per-table
tablespaces.

• File-per-table tablespace data files can be created on separate storage devices for I/O optimization,
space management, or backup purposes. See Section 14.6.1.2, “Creating Tables Externally”.

• You can import table that resides in a file-per-table tablespace from another MySQL instance. See
Section 14.6.1.3, “Importing InnoDB Tables”.

• Tables created in file-per-table tablespaces use the Barracuda file format. See Section 14.10, “InnoDB
File-Format Management”. The Barracuda file format enables features associated with DYNAMIC and
COMPRESSED row formats. See Section 14.11, “InnoDB Row Formats”.

• Tables stored in individual tablespace data files can save time and improve chances for a successful
recovery when data corruption occurs, when backups or binary logs are unavailable, or when the MySQL
server instance cannot be restarted.

• Tables created in file-per-table tablespaces cab be backed up or restored quickly using MySQL
Enterprise Backup, without interrupting the use of other InnoDB tables. This is beneficial for tables
on varying backup schedules or that require backup less frequently. See Making a Partial Backup for
details.

• File-per-table tablespaces permit monitoring table size on the file system by monitoring the size of the
tablespace data file.

• Common Linux file systems do not permit concurrent writes to a single file such as a system tablespace
data file when innodb_flush_method is set to O_DIRECT. As a result, there are possible performance
improvements when using file-per-table tablespaces in conjunction with this setting.

• Tables in the shared system tablespace, which contains other structures such as the InnoDB data
dictionary and undo logs, are limited in size by the 64TB tablespace size limit. By comparison, each file-
per-table tablespace has a 64TB size limit, which provides plenty of room for individual tables to grow in
size.

File-Per-Table Tablespace Disadvantages

File-per-table tablespaces have the following disadvantages compared to the shared system tablespace.

• With file-per-table tablespaces, each table may have unused space that can only be utilized by rows of
the same table, which can lead to wasted space if not properly managed.

• fsync operations are performed on multiple file-per-table data files instead of a shared system
tablespace data file. Because fsync operations are per file, write operations for multiple tables cannot
be combined, which can result in a higher total number of fsync operations.

2033

https://dev.mysql.com/doc/mysql-enterprise-backup/3.12/en/partial.html

Tablespaces

• mysqld must keep an open file handle for each file-per-table tablespace, which may impact
performance if you have numerous tables in file-per-table tablespaces.

• More file descriptors are required when each table has its own data file.

• There is potential for more fragmentation, which can impede DROP TABLE and table scan performance.
However, if fragmentation is managed, file-per-table tablespaces can improve performance for these
operations.

• The buffer pool is scanned when dropping a table that resides in a file-per-table tablespace, which can
take several seconds for large buffer pools. The scan is performed with a broad internal lock, which may
delay other operations.

• The innodb_autoextend_increment variable, which defines the increment size for extending
the size of an auto-extending system tablespace file when it becomes full, does not apply to file-per-
table tablespace files, which are auto-extending regardless of the innodb_autoextend_increment
setting. Initial file-per-table tablespace extensions are by small amounts, after which extensions occur in
increments of 4MB.

14.6.3.3 Undo Tablespaces

Undo tablespaces contain undo logs, which are collections of records containing information about how to
undo the latest change by a transaction to a clustered index record.

Undo logs are stored in the system tablespace by default but can be stored in one or more undo
tablespaces instead. Using undo tablespaces can reducing the amount of space required for undo logs in
any one tablespace. The I/O patterns for undo logs also make undo tablespaces good candidates for SSD
storage.

The number of undo tablespaces used by InnoDB is controlled by the innodb_undo_tablespaces
option. This option can only be configured when initializing the MySQL instance. It cannot be changed
afterward.

Undo tablespaces and individual segments inside those tablespaces cannot be dropped.

Configuring Undo Tablespaces

This procedure describes how to configure undo tablespaces. When undo tablespaces are configured,
undo logs are stored in the undo tablespaces instead of the system tablespace.

The number of undo tablespaces can only be configured when initializing a MySQL instance and is
fixed for the life of the instance, so it is recommended that you perform the following procedure on a test
instance with a representative workload before deploying the configuration to a production system.

To configure undo tablespaces:

1. Specify a directory location for undo tablespaces using the innodb_undo_directory variable. If a
directory location is not specified, undo tablespaces are created in the data directory.

2. Define the number of rollback segments using the innodb_rollback_segments variable. Start with
a relatively low value and increase it incrementally over time to examine the effect on performance. The
default setting for innodb_rollback_segments is 128, which is also the maximum value.

One rollback segment is always assigned to the system tablespace. Therefore, to allocate rollback
segments to undo tablespaces, set innodb_rollback_segments to a value greater than 1. For
example, if you have two undo tablespaces, set innodb_rollback_segments to 3 to assign one
rollback segment to each of the two undo tablespaces. Rollback segments are distributed among undo
tablespaces in a circular fashion.

2034

InnoDB Data Dictionary

When you add undo tablespaces, the rollback segment in the system tablespace is rendered inactive.

3. Define the number of undo tablespaces using the innodb_undo_tablespaces option. The specified
number of undo tablespaces is fixed for the life of the MySQL instance, so if you are uncertain about an
optimal value, estimate on the high side.

4. Create a new MySQL test instance using the configuration settings you have chosen.

5. Use a realistic workload on your test instance with data volume similar to your production servers to
test the configuration.

6. Benchmark the performance of I/O intensive workloads.

7. Periodically increase the value of innodb_rollback_segments and rerun performance tests until
there are no further improvements in I/O performance.

14.6.4 InnoDB Data Dictionary

The InnoDB data dictionary is comprised of internal system tables that contain metadata used to keep
track of objects such as tables, indexes, and table columns. The metadata is physically located in the
InnoDB system tablespace. For historical reasons, data dictionary metadata overlaps to some degree with
information stored in InnoDB table metadata files (.frm files).

14.6.5 Doublewrite Buffer

The doublewrite buffer is a storage area where InnoDB writes pages flushed from the buffer pool before
writing the pages to their proper positions in the InnoDB data files. If there is an operating system, storage
subsystem, or unexpected mysqld process exit in the middle of a page write, InnoDB can find a good
copy of the page from the doublewrite buffer during crash recovery.

Although data is written twice, the doublewrite buffer does not require twice as much I/O overhead or
twice as many I/O operations. Data is written to the doublewrite buffer in a large sequential chunk, with a
single fsync() call to the operating system (except in the case that innodb_flush_method is set to
O_DIRECT_NO_FSYNC).

The doublewrite buffer is enabled by default. To disable the doublewrite buffer, set
innodb_doublewrite to 0.

14.6.6 Redo Log

The redo log is a disk-based data structure used during crash recovery to correct data written by
incomplete transactions. During normal operations, the redo log encodes requests to change table
data that result from SQL statements or low-level API calls. Modifications that did not finish updating
the data files before an unexpected shutdown are replayed automatically during initialization, and
before connections are accepted. For information about the role of the redo log in crash recovery, see
Section 14.18.2, “InnoDB Recovery”.

By default, the redo log is physically represented on disk by two files named ib_logfile0 and
ib_logfile1. MySQL writes to the redo log files in a circular fashion. Data in the redo log is encoded in
terms of records affected; this data is collectively referred to as redo. The passage of data through the redo
log is represented by an ever-increasing LSN value.

Information and procedures related to redo logs are described under the following topics in the section:

• Changing the Number or Size of Redo Log Files

2035

Undo Logs

• Related Topics

Changing the Number or Size of Redo Log Files

To change the number or size of InnoDB redo log files in MySQL 5.6.7 or earlier, perform the following
steps:

1. If innodb_fast_shutdown is set to 2, set innodb_fast_shutdown to 1:

mysql> SET GLOBAL innodb_fast_shutdown = 1;

2. After ensuring that innodb_fast_shutdown is not set to 2, stop the MySQL server and make sure
that it shuts down without errors (to ensure that there is no information for outstanding transactions in
the log).

3. Copy the old log files into a safe place in case something went wrong during the shutdown and you
need them to recover the tablespace.

4. Delete the old log files from the log file directory.

5. Edit my.cnf to change the log file configuration.

6. Start the MySQL server again. mysqld sees that no InnoDB log files exist at startup and creates new
ones.

The innodb_fast_shutdown setting is no longer relevant when changing the number or the size of
InnoDB log files. Additionally, you are no longer required to remove old log files, although you may still
want to copy the old log files to a safe place, as a backup. To change the number or size of InnoDB log
files, perform the following steps:

1. Stop the MySQL server and make sure that it shuts down without errors.

2. Edit my.cnf to change the log file configuration. To change the log file size,
configure innodb_log_file_size. To increase the number of log files, configure
innodb_log_files_in_group.

3. Start the MySQL server again.

If InnoDB detects that the innodb_log_file_size differs from the redo log file size, it writes a log
checkpoint, closes and removes the old log files, creates new log files at the requested size, and opens the
new log files.

Related Topics

• Redo Log File Configuration

• Section 8.5.4, “Optimizing InnoDB Redo Logging”

14.6.7 Undo Logs

An undo log is a collection of undo log records associated with a single read-write transaction. An undo
log record contains information about how to undo the latest change by a transaction to a clustered index
record. If another transaction needs to see the original data as part of a consistent read operation, the
unmodified data is retrieved from undo log records. Undo logs exist within undo log segments, which
are contained within rollback segments. By default, rollback segments are physically part of the system
tablespace, but they can also reside in undo tablespaces. For more information, see Section 14.6.3.3,
“Undo Tablespaces”.

2036

InnoDB Locking and Transaction Model

InnoDB supports 128 rollback segments. The innodb_rollback_segments variable defines the
number of rollback segments used by InnoDB.

The number of transactions that a rollback segment supports depends on the number of undo slots in the
rollback segment and the number of undo logs required by each transaction. The number of undo slots in a
rollback segment differs according to InnoDB page size.

InnoDB Page Size Number of Undo Slots in a Rollback Segment
(InnoDB Page Size / 16)

4096 (4KB) 256

8192 (8KB) 512

16384 (16KB) 1024

A transaction is assigned up to two undo logs, one for each of the following operation types:

1. INSERT operations

2. UPDATE and DELETE operations

Undo logs are assigned as needed. For example, a transaction that performs INSERT, UPDATE, and
DELETE operations is assigned two undo logs. A transaction that performs only INSERT operations is
assigned a single undo log. Undo logs are assigned to a transaction from a rollback segment that is also
assigned to the transaction.

An undo log assigned to a transaction remains attached to the transaction for its duration. For example, an
undo log assigned to a transaction for an INSERT operation is used for all INSERT operations performed
by that transaction.

Given the factors described above, the following formulas can be used to estimate the number of
concurrent read-write transactions that InnoDB is capable of supporting.

Note

It is possible to encounter a concurrent transaction limit error before reaching the
number of concurrent read-write transactions that InnoDB is capable of supporting.
This occurs when the rollback segment assigned to a transaction runs out of undo
slots. In such cases, try rerunning the transaction.

• If each transaction performs either an INSERT or an UPDATE or DELETE operation, the number of
concurrent read-write transactions that InnoDB is capable of supporting is:

(innodb_page_size / 16) * innodb_rollback_segments

• If each transaction performs an INSERT and an UPDATE or DELETE operation, the number of concurrent
read-write transactions that InnoDB is capable of supporting is:

(innodb_page_size / 16 / 2) * innodb_rollback_segments

14.7 InnoDB Locking and Transaction Model
To implement a large-scale, busy, or highly reliable database application, to port substantial code from a
different database system, or to tune MySQL performance, it is important to understand InnoDB locking
and the InnoDB transaction model.

This section discusses several topics related to InnoDB locking and the InnoDB transaction model with
which you should be familiar.

2037

InnoDB Locking

• Section 14.7.1, “InnoDB Locking” describes lock types used by InnoDB.

• Section 14.7.2, “InnoDB Transaction Model” describes transaction isolation levels and the locking
strategies used by each. It also discusses the use of autocommit, consistent non-locking reads, and
locking reads.

• Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB” discusses specific types of locks set
in InnoDB for various statements.

• Section 14.7.4, “Phantom Rows” describes how InnoDB uses next-key locking to avoid phantom rows.

• Section 14.7.5, “Deadlocks in InnoDB” provides a deadlock example, discusses deadlock detection, and
provides tips for minimizing and handling deadlocks in InnoDB.

14.7.1 InnoDB Locking

This section describes lock types used by InnoDB.

• Shared and Exclusive Locks

• Intention Locks

• Record Locks

• Gap Locks

• Next-Key Locks

• Insert Intention Locks

• AUTO-INC Locks

Shared and Exclusive Locks

InnoDB implements standard row-level locking where there are two types of locks, shared (S) locks and
exclusive (X) locks.

• A shared (S) lock permits the transaction that holds the lock to read a row.

• An exclusive (X) lock permits the transaction that holds the lock to update or delete a row.

If transaction T1 holds a shared (S) lock on row r, then requests from some distinct transaction T2 for a
lock on row r are handled as follows:

• A request by T2 for an S lock can be granted immediately. As a result, both T1 and T2 hold an S lock on
r.

• A request by T2 for an X lock cannot be granted immediately.

If a transaction T1 holds an exclusive (X) lock on row r, a request from some distinct transaction T2 for a
lock of either type on r cannot be granted immediately. Instead, transaction T2 has to wait for transaction
T1 to release its lock on row r.

Intention Locks

InnoDB supports multiple granularity locking which permits coexistence of row locks and table locks.
For example, a statement such as LOCK TABLES ... WRITE takes an exclusive lock (an X lock) on
the specified table. To make locking at multiple granularity levels practical, InnoDB uses intention locks.
Intention locks are table-level locks that indicate which type of lock (shared or exclusive) a transaction
requires later for a row in a table. There are two types of intention locks:

2038

InnoDB Locking

• An intention shared lock (IS) indicates that a transaction intends to set a shared lock on individual rows
in a table.

• An intention exclusive lock (IX) indicates that a transaction intends to set an exclusive lock on individual
rows in a table.

For example, SELECT ... LOCK IN SHARE MODE sets an IS lock, and SELECT ... FOR UPDATE
sets an IX lock.

The intention locking protocol is as follows:

• Before a transaction can acquire a shared lock on a row in a table, it must first acquire an IS lock or
stronger on the table.

• Before a transaction can acquire an exclusive lock on a row in a table, it must first acquire an IX lock on
the table.

Table-level lock type compatibility is summarized in the following matrix.

X IX S IS

X Conflict Conflict Conflict Conflict

IX Conflict Compatible Conflict Compatible

S Conflict Conflict Compatible Compatible

IS Conflict Compatible Compatible Compatible

A lock is granted to a requesting transaction if it is compatible with existing locks, but not if it conflicts with
existing locks. A transaction waits until the conflicting existing lock is released. If a lock request conflicts
with an existing lock and cannot be granted because it would cause deadlock, an error occurs.

Intention locks do not block anything except full table requests (for example, LOCK TABLES ... WRITE).
The main purpose of intention locks is to show that someone is locking a row, or going to lock a row in the
table.

Transaction data for an intention lock appears similar to the following in SHOW ENGINE INNODB STATUS
and InnoDB monitor output:

TABLE LOCK table `test`.`t` trx id 10080 lock mode IX

Record Locks

A record lock is a lock on an index record. For example, SELECT c1 FROM t WHERE c1 = 10 FOR
UPDATE; prevents any other transaction from inserting, updating, or deleting rows where the value of t.c1
is 10.

Record locks always lock index records, even if a table is defined with no indexes. For such cases,
InnoDB creates a hidden clustered index and uses this index for record locking. See Section 14.6.2.1,
“Clustered and Secondary Indexes”.

Transaction data for a record lock appears similar to the following in SHOW ENGINE INNODB STATUS and
InnoDB monitor output:

RECORD LOCKS space id 58 page no 3 n bits 72 index `PRIMARY` of table `test`.`t`
trx id 10078 lock_mode X locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 8000000a; asc ;;
 1: len 6; hex 00000000274f; asc 'O;;

2039

InnoDB Locking

 2: len 7; hex b60000019d0110; asc ;;

Gap Locks

A gap lock is a lock on a gap between index records, or a lock on the gap before the first or after the last
index record. For example, SELECT c1 FROM t WHERE c1 BETWEEN 10 and 20 FOR UPDATE;
prevents other transactions from inserting a value of 15 into column t.c1, whether or not there was
already any such value in the column, because the gaps between all existing values in the range are
locked.

A gap might span a single index value, multiple index values, or even be empty.

Gap locks are part of the tradeoff between performance and concurrency, and are used in some
transaction isolation levels and not others.

Gap locking is not needed for statements that lock rows using a unique index to search for a unique row.
(This does not include the case that the search condition includes only some columns of a multiple-column
unique index; in that case, gap locking does occur.) For example, if the id column has a unique index, the
following statement uses only an index-record lock for the row having id value 100 and it does not matter
whether other sessions insert rows in the preceding gap:

SELECT * FROM child WHERE id = 100;

If id is not indexed or has a nonunique index, the statement does lock the preceding gap.

It is also worth noting here that conflicting locks can be held on a gap by different transactions. For
example, transaction A can hold a shared gap lock (gap S-lock) on a gap while transaction B holds an
exclusive gap lock (gap X-lock) on the same gap. The reason conflicting gap locks are allowed is that if a
record is purged from an index, the gap locks held on the record by different transactions must be merged.

Gap locks in InnoDB are “purely inhibitive”, which means that their only purpose is to prevent other
transactions from inserting to the gap. Gap locks can co-exist. A gap lock taken by one transaction does
not prevent another transaction from taking a gap lock on the same gap. There is no difference between
shared and exclusive gap locks. They do not conflict with each other, and they perform the same function.

Gap locking can be disabled explicitly. This occurs if you change the transaction isolation level to READ
COMMITTED or enable the innodb_locks_unsafe_for_binlog system variable (which is now
deprecated). In this case, gap locking is disabled for searches and index scans and is used only for
foreign-key constraint checking and duplicate-key checking.

There are also other effects of using the READ COMMITTED isolation level or enabling
innodb_locks_unsafe_for_binlog. Record locks for nonmatching rows are released after MySQL
has evaluated the WHERE condition. For UPDATE statements, InnoDB does a “semi-consistent” read,
such that it returns the latest committed version to MySQL so that MySQL can determine whether the row
matches the WHERE condition of the UPDATE.

Next-Key Locks

A next-key lock is a combination of a record lock on the index record and a gap lock on the gap before the
index record.

InnoDB performs row-level locking in such a way that when it searches or scans a table index, it sets
shared or exclusive locks on the index records it encounters. Thus, the row-level locks are actually index-
record locks. A next-key lock on an index record also affects the “gap” before that index record. That is, a
next-key lock is an index-record lock plus a gap lock on the gap preceding the index record. If one session
has a shared or exclusive lock on record R in an index, another session cannot insert a new index record in
the gap immediately before R in the index order.

2040

InnoDB Locking

Suppose that an index contains the values 10, 11, 13, and 20. The possible next-key locks for this index
cover the following intervals, where a round bracket denotes exclusion of the interval endpoint and a
square bracket denotes inclusion of the endpoint:

(negative infinity, 10]
(10, 11]
(11, 13]
(13, 20]
(20, positive infinity)

For the last interval, the next-key lock locks the gap above the largest value in the index and the
“supremum” pseudo-record having a value higher than any value actually in the index. The supremum is
not a real index record, so, in effect, this next-key lock locks only the gap following the largest index value.

By default, InnoDB operates in REPEATABLE READ transaction isolation level and with the
innodb_locks_unsafe_for_binlog system variable disabled. In this case, InnoDB uses next-key
locks for searches and index scans, which prevents phantom rows (see Section 14.7.4, “Phantom Rows”).

Transaction data for a next-key lock appears similar to the following in SHOW ENGINE INNODB STATUS
and InnoDB monitor output:

RECORD LOCKS space id 58 page no 3 n bits 72 index `PRIMARY` of table `test`.`t`
trx id 10080 lock_mode X
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
 0: len 8; hex 73757072656d756d; asc supremum;;

Record lock, heap no 2 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 8000000a; asc ;;
 1: len 6; hex 00000000274f; asc 'O;;
 2: len 7; hex b60000019d0110; asc ;;

Insert Intention Locks

An insert intention lock is a type of gap lock set by INSERT operations prior to row insertion. This lock
signals the intent to insert in such a way that multiple transactions inserting into the same index gap need
not wait for each other if they are not inserting at the same position within the gap. Suppose that there
are index records with values of 4 and 7. Separate transactions that attempt to insert values of 5 and 6,
respectively, each lock the gap between 4 and 7 with insert intention locks prior to obtaining the exclusive
lock on the inserted row, but do not block each other because the rows are nonconflicting.

The following example demonstrates a transaction taking an insert intention lock prior to obtaining an
exclusive lock on the inserted record. The example involves two clients, A and B.

Client A creates a table containing two index records (90 and 102) and then starts a transaction that places
an exclusive lock on index records with an ID greater than 100. The exclusive lock includes a gap lock
before record 102:

mysql> CREATE TABLE child (id int(11) NOT NULL, PRIMARY KEY(id)) ENGINE=InnoDB;
mysql> INSERT INTO child (id) values (90),(102);

mysql> START TRANSACTION;
mysql> SELECT * FROM child WHERE id > 100 FOR UPDATE;
+-----+
| id |
+-----+
| 102 |
+-----+

Client B begins a transaction to insert a record into the gap. The transaction takes an insert intention lock
while it waits to obtain an exclusive lock.

mysql> START TRANSACTION;

2041

InnoDB Transaction Model

mysql> INSERT INTO child (id) VALUES (101);

Transaction data for an insert intention lock appears similar to the following in SHOW ENGINE INNODB
STATUS and InnoDB monitor output:

RECORD LOCKS space id 31 page no 3 n bits 72 index `PRIMARY` of table `test`.`child`
trx id 8731 lock_mode X locks gap before rec insert intention waiting
Record lock, heap no 3 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 80000066; asc f;;
 1: len 6; hex 000000002215; asc " ;;
 2: len 7; hex 9000000172011c; asc r ;;...

AUTO-INC Locks

An AUTO-INC lock is a special table-level lock taken by transactions inserting into tables with
AUTO_INCREMENT columns. In the simplest case, if one transaction is inserting values into the table,
any other transactions must wait to do their own inserts into that table, so that rows inserted by the first
transaction receive consecutive primary key values.

The innodb_autoinc_lock_mode variable controls the algorithm used for auto-increment locking.
It allows you to choose how to trade off between predictable sequences of auto-increment values and
maximum concurrency for insert operations.

For more information, see Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”.

14.7.2 InnoDB Transaction Model

The InnoDB transaction model aims combine the best properties of a multi-versioning database with
traditional two-phase locking. InnoDB performs locking at the row level and runs queries as nonlocking
consistent reads by default, in the style of Oracle. The lock information in InnoDB is stored space-
efficiently so that lock escalation is not needed. Typically, several users are permitted to lock every row in
InnoDB tables, or any random subset of the rows, without causing InnoDB memory exhaustion.

14.7.2.1 Transaction Isolation Levels

Transaction isolation is one of the foundations of database processing. Isolation is the I in the acronym
ACID; the isolation level is the setting that fine-tunes the balance between performance and reliability,
consistency, and reproducibility of results when multiple transactions are making changes and performing
queries at the same time.

InnoDB offers all four transaction isolation levels described by the SQL:1992 standard: READ
UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE. The default isolation level
for InnoDB is REPEATABLE READ.

A user can change the isolation level for a single session or for all subsequent connections with the
SET TRANSACTION statement. To set the server's default isolation level for all connections, use the --
transaction-isolation option on the command line or in an option file. For detailed information about
isolation levels and level-setting syntax, see Section 13.3.6, “SET TRANSACTION Statement”.

InnoDB supports each of the transaction isolation levels described here using different locking strategies.
You can enforce a high degree of consistency with the default REPEATABLE READ level, for operations
on crucial data where ACID compliance is important. Or you can relax the consistency rules with
READ COMMITTED or even READ UNCOMMITTED, in situations such as bulk reporting where precise
consistency and repeatable results are less important than minimizing the amount of overhead for locking.
SERIALIZABLE enforces even stricter rules than REPEATABLE READ, and is used mainly in specialized
situations, such as with XA transactions and for troubleshooting issues with concurrency and deadlocks.

The following list describes how MySQL supports the different transaction levels. The list goes from the
most commonly used level to the least used.

2042

InnoDB Transaction Model

• REPEATABLE READ

This is the default isolation level for InnoDB. Consistent reads within the same transaction read the
snapshot established by the first read. This means that if you issue several plain (nonlocking) SELECT
statements within the same transaction, these SELECT statements are consistent also with respect to
each other. See Section 14.7.2.3, “Consistent Nonlocking Reads”.

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE, and DELETE
statements, locking depends on whether the statement uses a unique index with a unique search
condition, or a range-type search condition.

• For a unique index with a unique search condition, InnoDB locks only the index record found, not the
gap before it.

• For other search conditions, InnoDB locks the index range scanned, using gap locks or next-key locks
to block insertions by other sessions into the gaps covered by the range. For information about gap
locks and next-key locks, see Section 14.7.1, “InnoDB Locking”.

• READ COMMITTED

Each consistent read, even within the same transaction, sets and reads its own fresh snapshot. For
information about consistent reads, see Section 14.7.2.3, “Consistent Nonlocking Reads”.

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE statements, and
DELETE statements, InnoDB locks only index records, not the gaps before them, and thus permits the
free insertion of new records next to locked records. Gap locking is only used for foreign-key constraint
checking and duplicate-key checking.

Because gap locking is disabled, phantom row problems may occur, as other sessions can insert new
rows into the gaps. For information about phantom rows, see Section 14.7.4, “Phantom Rows”.

Only row-based binary logging is supported with the READ COMMITTED isolation level. If you use READ
COMMITTED with binlog_format=MIXED, the server automatically uses row-based logging.

Using READ COMMITTED has additional effects:

• For UPDATE or DELETE statements, InnoDB holds locks only for rows that it updates or deletes.
Record locks for nonmatching rows are released after MySQL has evaluated the WHERE condition.
This greatly reduces the probability of deadlocks, but they can still happen.

• For UPDATE statements, if a row is already locked, InnoDB performs a “semi-consistent” read,
returning the latest committed version to MySQL so that MySQL can determine whether the row
matches the WHERE condition of the UPDATE. If the row matches (must be updated), MySQL reads the
row again and this time InnoDB either locks it or waits for a lock on it.

Consider the following example, beginning with this table:

CREATE TABLE t (a INT NOT NULL, b INT) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2),(2,3),(3,2),(4,3),(5,2);
COMMIT;

In this case, the table has no indexes, so searches and index scans use the hidden clustered index for
record locking (see Section 14.6.2.1, “Clustered and Secondary Indexes”) rather than indexed columns.

Suppose that one session performs an UPDATE using these statements:

Session A
START TRANSACTION;

2043

InnoDB Transaction Model

UPDATE t SET b = 5 WHERE b = 3;

Suppose also that a second session performs an UPDATE by executing this statement following those of
the first session:

Session B
UPDATE t SET b = 4 WHERE b = 2;

As InnoDB executes each UPDATE, it first acquires an exclusive lock for each row that it reads, and
then determines whether to modify it. If InnoDB does not modify the row, it releases the lock. Otherwise,
InnoDB retains the lock until the end of the transaction. This affects transaction processing as follows.

When using the default REPEATABLE READ isolation level, the first UPDATE acquires an x-lock on each
row that it reads and does not release any of them:

x-lock(1,2); retain x-lock
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); retain x-lock
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); retain x-lock

The second UPDATE blocks as soon as it tries to acquire any locks (because first update has retained
locks on all rows), and does not proceed until the first UPDATE commits or rolls back:

x-lock(1,2); block and wait for first UPDATE to commit or roll back

If READ COMMITTED is used instead, the first UPDATE acquires an x-lock on each row that it reads and
releases those for rows that it does not modify:

x-lock(1,2); unlock(1,2)
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); unlock(3,2)
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); unlock(5,2)

For the second UPDATE, InnoDB does a “semi-consistent” read, returning the latest committed version
of each row that it reads to MySQL so that MySQL can determine whether the row matches the WHERE
condition of the UPDATE:

x-lock(1,2); update(1,2) to (1,4); retain x-lock
x-lock(2,3); unlock(2,3)
x-lock(3,2); update(3,2) to (3,4); retain x-lock
x-lock(4,3); unlock(4,3)
x-lock(5,2); update(5,2) to (5,4); retain x-lock

However, if the WHERE condition includes an indexed column, and InnoDB uses the index, only the
indexed column is considered when taking and retaining record locks. In the following example, the first
UPDATE takes and retains an x-lock on each row where b = 2. The second UPDATE blocks when it tries
to acquire x-locks on the same records, as it also uses the index defined on column b.

CREATE TABLE t (a INT NOT NULL, b INT, c INT, INDEX (b)) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2,3),(2,2,4);
COMMIT;

Session A
START TRANSACTION;
UPDATE t SET b = 3 WHERE b = 2 AND c = 3;

Session B

2044

InnoDB Transaction Model

UPDATE t SET b = 4 WHERE b = 2 AND c = 4;

The effects of using the READ COMMITTED isolation level are the same as enabling the deprecated
innodb_locks_unsafe_for_binlog variable, with these exceptions:

• Enabling innodb_locks_unsafe_for_binlog is a global setting and affects all sessions, whereas
the isolation level can be set globally for all sessions, or individually per session.

• innodb_locks_unsafe_for_binlog can be set only at server startup, whereas the isolation level
can be set at startup or changed at runtime.

READ COMMITTED therefore offers finer and more flexible control than
innodb_locks_unsafe_for_binlog.

• READ UNCOMMITTED

SELECT statements are performed in a nonlocking fashion, but a possible earlier version of a row might
be used. Thus, using this isolation level, such reads are not consistent. This is also called a dirty read.
Otherwise, this isolation level works like READ COMMITTED.

• SERIALIZABLE

This level is like REPEATABLE READ, but InnoDB implicitly converts all plain SELECT statements to
SELECT ... LOCK IN SHARE MODE if autocommit is disabled. If autocommit is enabled, the
SELECT is its own transaction. It therefore is known to be read only and can be serialized if performed
as a consistent (nonlocking) read and need not block for other transactions. (To force a plain SELECT to
block if other transactions have modified the selected rows, disable autocommit.)

14.7.2.2 autocommit, Commit, and Rollback

In InnoDB, all user activity occurs inside a transaction. If autocommit mode is enabled, each SQL
statement forms a single transaction on its own. By default, MySQL starts the session for each new
connection with autocommit enabled, so MySQL does a commit after each SQL statement if that
statement did not return an error. If a statement returns an error, the commit or rollback behavior depends
on the error. See Section 14.21.4, “InnoDB Error Handling”.

A session that has autocommit enabled can perform a multiple-statement transaction by starting it
with an explicit START TRANSACTION or BEGIN statement and ending it with a COMMIT or ROLLBACK
statement. See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”.

If autocommit mode is disabled within a session with SET autocommit = 0, the session always has a
transaction open. A COMMIT or ROLLBACK statement ends the current transaction and a new one starts.

If a session that has autocommit disabled ends without explicitly committing the final transaction, MySQL
rolls back that transaction.

Some statements implicitly end a transaction, as if you had done a COMMIT before executing the
statement. For details, see Section 13.3.3, “Statements That Cause an Implicit Commit”.

A COMMIT means that the changes made in the current transaction are made permanent and become
visible to other sessions. A ROLLBACK statement, on the other hand, cancels all modifications made by the
current transaction. Both COMMIT and ROLLBACK release all InnoDB locks that were set during the current
transaction.

Grouping DML Operations with Transactions

By default, connection to the MySQL server begins with autocommit mode enabled, which automatically
commits every SQL statement as you execute it. This mode of operation might be unfamiliar if you have

2045

InnoDB Transaction Model

experience with other database systems, where it is standard practice to issue a sequence of DML
statements and commit them or roll them back all together.

To use multiple-statement transactions, switch autocommit off with the SQL statement SET autocommit
= 0 and end each transaction with COMMIT or ROLLBACK as appropriate. To leave autocommit on, begin
each transaction with START TRANSACTION and end it with COMMIT or ROLLBACK. The following example
shows two transactions. The first is committed; the second is rolled back.

$> mysql test

mysql> CREATE TABLE customer (a INT, b CHAR (20), INDEX (a));
Query OK, 0 rows affected (0.00 sec)
mysql> -- Do a transaction with autocommit turned on.
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (10, 'Heikki');
Query OK, 1 row affected (0.00 sec)
mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)
mysql> -- Do another transaction with autocommit turned off.
mysql> SET autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (15, 'John');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO customer VALUES (20, 'Paul');
Query OK, 1 row affected (0.00 sec)
mysql> DELETE FROM customer WHERE b = 'Heikki';
Query OK, 1 row affected (0.00 sec)
mysql> -- Now we undo those last 2 inserts and the delete.
mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT * FROM customer;
+------+--------+
| a | b |
+------+--------+
| 10 | Heikki |
+------+--------+
1 row in set (0.00 sec)
mysql>

Transactions in Client-Side Languages

In APIs such as PHP, Perl DBI, JDBC, ODBC, or the standard C call interface of MySQL, you can send
transaction control statements such as COMMIT to the MySQL server as strings just like any other SQL
statements such as SELECT or INSERT. Some APIs also offer separate special transaction commit and
rollback functions or methods.

14.7.2.3 Consistent Nonlocking Reads

A consistent read means that InnoDB uses multi-versioning to present to a query a snapshot of the
database at a point in time. The query sees the changes made by transactions that committed before that
point in time, and no changes made by later or uncommitted transactions. The exception to this rule is
that the query sees the changes made by earlier statements within the same transaction. This exception
causes the following anomaly: If you update some rows in a table, a SELECT sees the latest version of the
updated rows, but it might also see older versions of any rows. If other sessions simultaneously update the
same table, the anomaly means that you might see the table in a state that never existed in the database.

If the transaction isolation level is REPEATABLE READ (the default level), all consistent reads within the
same transaction read the snapshot established by the first such read in that transaction. You can get a
fresher snapshot for your queries by committing the current transaction and after that issuing new queries.

2046

InnoDB Transaction Model

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its own
fresh snapshot.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ COMMITTED
and REPEATABLE READ isolation levels. A consistent read does not set any locks on the tables it
accesses, and therefore other sessions are free to modify those tables at the same time a consistent read
is being performed on the table.

Suppose that you are running in the default REPEATABLE READ isolation level. When you issue a
consistent read (that is, an ordinary SELECT statement), InnoDB gives your transaction a timepoint
according to which your query sees the database. If another transaction deletes a row and commits after
your timepoint was assigned, you do not see the row as having been deleted. Inserts and updates are
treated similarly.

Note

The snapshot of the database state applies to SELECT statements within a
transaction, not necessarily to DML statements. If you insert or modify some
rows and then commit that transaction, a DELETE or UPDATE statement issued
from another concurrent REPEATABLE READ transaction could affect those just-
committed rows, even though the session could not query them. If a transaction
does update or delete rows committed by a different transaction, those changes
do become visible to the current transaction. For example, you might encounter a
situation like the following:

SELECT COUNT(c1) FROM t1 WHERE c1 = 'xyz';
-- Returns 0: no rows match.
DELETE FROM t1 WHERE c1 = 'xyz';
-- Deletes several rows recently committed by other transaction.

SELECT COUNT(c2) FROM t1 WHERE c2 = 'abc';
-- Returns 0: no rows match.
UPDATE t1 SET c2 = 'cba' WHERE c2 = 'abc';
-- Affects 10 rows: another txn just committed 10 rows with 'abc' values.
SELECT COUNT(c2) FROM t1 WHERE c2 = 'cba';
-- Returns 10: this txn can now see the rows it just updated.

You can advance your timepoint by committing your transaction and then doing another SELECT or START
TRANSACTION WITH CONSISTENT SNAPSHOT.

This is called multi-versioned concurrency control.

In the following example, session A sees the row inserted by B only when B has committed the insert and
A has committed as well, so that the timepoint is advanced past the commit of B.

 Session A Session B

 SET autocommit=0; SET autocommit=0;
time
| SELECT * FROM t;
| empty set
| INSERT INTO t VALUES (1, 2);
|
v SELECT * FROM t;
 empty set
 COMMIT;

 SELECT * FROM t;
 empty set

 COMMIT;

2047

InnoDB Transaction Model

 SELECT * FROM t;

 | 1 | 2 |

If you want to see the “freshest” state of the database, use either the READ COMMITTED isolation level or a
locking read:

SELECT * FROM t LOCK IN SHARE MODE;

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its own
fresh snapshot. With LOCK IN SHARE MODE, a locking read occurs instead: A SELECT blocks until the
transaction containing the freshest rows ends (see Section 14.7.2.4, “Locking Reads”).

Consistent read does not work over certain DDL statements:

• Consistent read does not work over DROP TABLE, because MySQL cannot use a table that has been
dropped and InnoDB destroys the table.

• Consistent read does not work over ALTER TABLE operations that make a temporary copy of the
original table and delete the original table when the temporary copy is built. When you reissue a
consistent read within a transaction, rows in the new table are not visible because those rows did
not exist when the transaction's snapshot was taken. In this case, the transaction returns an error:
ER_TABLE_DEF_CHANGED, “Table definition has changed, please retry transaction”.

The type of read varies for select operations in clauses like INSERT INTO ... SELECT, UPDATE ...
(SELECT), and CREATE TABLE ... SELECT that do not specify FOR UPDATE or LOCK IN SHARE
MODE:

• By default, InnoDB uses stronger locks in those statements and the SELECT part acts like READ
COMMITTED, where each consistent read, even within the same transaction, sets and reads its own fresh
snapshot.

• To perform a nonlocking read in such cases, enable the innodb_locks_unsafe_for_binlog
option and set the isolation level of the transaction to READ UNCOMMITTED, READ COMMITTED, or
REPEATABLE READ to avoid setting locks on rows read from the selected table.

14.7.2.4 Locking Reads

If you query data and then insert or update related data within the same transaction, the regular SELECT
statement does not give enough protection. Other transactions can update or delete the same rows you
just queried. InnoDB supports two types of locking reads that offer extra safety:

• SELECT ... LOCK IN SHARE MODE

Sets a shared mode lock on any rows that are read. Other sessions can read the rows, but cannot
modify them until your transaction commits. If any of these rows were changed by another transaction
that has not yet committed, your query waits until that transaction ends and then uses the latest values.

• SELECT ... FOR UPDATE

For index records the search encounters, locks the rows and any associated index entries, the same as
if you issued an UPDATE statement for those rows. Other transactions are blocked from updating those
rows, from doing SELECT ... LOCK IN SHARE MODE, or from reading the data in certain transaction
isolation levels. Consistent reads ignore any locks set on the records that exist in the read view. (Old
versions of a record cannot be locked; they are reconstructed by applying undo logs on an in-memory
copy of the record.)

2048

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_table_def_changed

InnoDB Transaction Model

These clauses are primarily useful when dealing with tree-structured or graph-structured data, either in a
single table or split across multiple tables. You traverse edges or tree branches from one place to another,
while reserving the right to come back and change any of these “pointer” values.

All locks set by LOCK IN SHARE MODE and FOR UPDATE queries are released when the transaction is
committed or rolled back.

Note

Locking reads are only possible when autocommit is disabled (either by beginning
transaction with START TRANSACTION or by setting autocommit to 0.

A locking read clause in an outer statement does not lock the rows of a table in a nested subquery unless
a locking read clause is also specified in the subquery. For example, the following statement does not lock
rows in table t2.

SELECT * FROM t1 WHERE c1 = (SELECT c1 FROM t2) FOR UPDATE;

To lock rows in table t2, add a locking read clause to the subquery:

SELECT * FROM t1 WHERE c1 = (SELECT c1 FROM t2 FOR UPDATE) FOR UPDATE;

Locking Read Examples

Suppose that you want to insert a new row into a table child, and make sure that the child row has
a parent row in table parent. Your application code can ensure referential integrity throughout this
sequence of operations.

First, use a consistent read to query the table PARENT and verify that the parent row exists. Can you safely
insert the child row to table CHILD? No, because some other session could delete the parent row in the
moment between your SELECT and your INSERT, without you being aware of it.

To avoid this potential issue, perform the SELECT using LOCK IN SHARE MODE:

SELECT * FROM parent WHERE NAME = 'Jones' LOCK IN SHARE MODE;

After the LOCK IN SHARE MODE query returns the parent 'Jones', you can safely add the child record
to the CHILD table and commit the transaction. Any transaction that tries to acquire an exclusive lock in
the applicable row in the PARENT table waits until you are finished, that is, until the data in all tables is in a
consistent state.

For another example, consider an integer counter field in a table CHILD_CODES, used to assign a unique
identifier to each child added to table CHILD. Do not use either consistent read or a shared mode read to
read the present value of the counter, because two users of the database could see the same value for the
counter, and a duplicate-key error occurs if two transactions attempt to add rows with the same identifier to
the CHILD table.

Here, LOCK IN SHARE MODE is not a good solution because if two users read the counter at the same
time, at least one of them ends up in deadlock when it attempts to update the counter.

To implement reading and incrementing the counter, first perform a locking read of the counter using FOR
UPDATE, and then increment the counter. For example:

SELECT counter_field FROM child_codes FOR UPDATE;
UPDATE child_codes SET counter_field = counter_field + 1;

A SELECT ... FOR UPDATE reads the latest available data, setting exclusive locks on each row it reads.
Thus, it sets the same locks a searched SQL UPDATE would set on the rows.

2049

Locks Set by Different SQL Statements in InnoDB

The preceding description is merely an example of how SELECT ... FOR UPDATE works. In MySQL, the
specific task of generating a unique identifier actually can be accomplished using only a single access to
the table:

UPDATE child_codes SET counter_field = LAST_INSERT_ID(counter_field + 1);
SELECT LAST_INSERT_ID();

The SELECT statement merely retrieves the identifier information (specific to the current connection). It
does not access any table.

14.7.3 Locks Set by Different SQL Statements in InnoDB

A locking read, an UPDATE, or a DELETE generally set record locks on every index record that is scanned
in the processing of an SQL statement. It does not matter whether there are WHERE conditions in the
statement that would exclude the row. InnoDB does not remember the exact WHERE condition, but only
knows which index ranges were scanned. The locks are normally next-key locks that also block inserts
into the “gap” immediately before the record. However, gap locking can be disabled explicitly, which
causes next-key locking not to be used. For more information, see Section 14.7.1, “InnoDB Locking”. The
transaction isolation level can also affect which locks are set; see Section 14.7.2.1, “Transaction Isolation
Levels”.

If a secondary index is used in a search and the index record locks to be set are exclusive, InnoDB also
retrieves the corresponding clustered index records and sets locks on them.

If you have no indexes suitable for your statement and MySQL must scan the entire table to process the
statement, every row of the table becomes locked, which in turn blocks all inserts by other users to the
table. It is important to create good indexes so that your queries do not scan more rows than necessary.

InnoDB sets specific types of locks as follows.

• SELECT ... FROM is a consistent read, reading a snapshot of the database and setting no locks
unless the transaction isolation level is set to SERIALIZABLE. For SERIALIZABLE level, the search
sets shared next-key locks on the index records it encounters. However, only an index record lock is
required for statements that lock rows using a unique index to search for a unique row.

• For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE, and DELETE
statements, the locks that are taken depend on whether the statement uses a unique index with a unique
search condition or a range-type search condition.

• For a unique index with a unique search condition, InnoDB locks only the index record found, not the
gap before it.

• For other search conditions, and for non-unique indexes, InnoDB locks the index range scanned,
using gap locks or next-key locks to block insertions by other sessions into the gaps covered by the
range. For information about gap locks and next-key locks, see Section 14.7.1, “InnoDB Locking”.

• For index records the search encounters, SELECT ... FOR UPDATE blocks other sessions from doing
SELECT ... LOCK IN SHARE MODE or from reading in certain transaction isolation levels. Consistent
reads ignore any locks set on the records that exist in the read view.

• UPDATE ... WHERE ... sets an exclusive next-key lock on every record the search encounters.
However, only an index record lock is required for statements that lock rows using a unique index to
search for a unique row.

• When UPDATE modifies a clustered index record, implicit locks are taken on affected secondary index
records. The UPDATE operation also takes shared locks on affected secondary index records when

2050

Locks Set by Different SQL Statements in InnoDB

performing duplicate check scans prior to inserting new secondary index records, and when inserting
new secondary index records.

• DELETE FROM ... WHERE ... sets an exclusive next-key lock on every record the search
encounters. However, only an index record lock is required for statements that lock rows using a unique
index to search for a unique row.

• INSERT sets an exclusive lock on the inserted row. This lock is an index-record lock, not a next-key lock
(that is, there is no gap lock) and does not prevent other sessions from inserting into the gap before the
inserted row.

Prior to inserting the row, a type of gap lock called an insert intention gap lock is set. This lock signals
the intent to insert in such a way that multiple transactions inserting into the same index gap need not
wait for each other if they are not inserting at the same position within the gap. Suppose that there are
index records with values of 4 and 7. Separate transactions that attempt to insert values of 5 and 6
each lock the gap between 4 and 7 with insert intention locks prior to obtaining the exclusive lock on the
inserted row, but do not block each other because the rows are nonconflicting.

If a duplicate-key error occurs, a shared lock on the duplicate index record is set. This use of a shared
lock can result in deadlock should there be multiple sessions trying to insert the same row if another
session already has an exclusive lock. This can occur if another session deletes the row. Suppose that
an InnoDB table t1 has the following structure:

CREATE TABLE t1 (i INT, PRIMARY KEY (i)) ENGINE = InnoDB;

Now suppose that three sessions perform the following operations in order:

Session 1:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 2:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 3:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 1:

ROLLBACK;

The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions 2 and
3 both result in a duplicate-key error and they both request a shared lock for the row. When session 1
rolls back, it releases its exclusive lock on the row and the queued shared lock requests for sessions 2
and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an exclusive lock for the
row because of the shared lock held by the other.

A similar situation occurs if the table already contains a row with key value 1 and three sessions perform
the following operations in order:

Session 1:

START TRANSACTION;
DELETE FROM t1 WHERE i = 1;

2051

Locks Set by Different SQL Statements in InnoDB

Session 2:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 3:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 1:

COMMIT;

The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions 2 and
3 both result in a duplicate-key error and they both request a shared lock for the row. When session 1
commits, it releases its exclusive lock on the row and the queued shared lock requests for sessions 2
and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an exclusive lock for the
row because of the shared lock held by the other.

• INSERT ... ON DUPLICATE KEY UPDATE differs from a simple INSERT in that an exclusive lock
rather than a shared lock is placed on the row to be updated when a duplicate-key error occurs. An
exclusive index-record lock is taken for a duplicate primary key value. An exclusive next-key lock is
taken for a duplicate unique key value.

• REPLACE is done like an INSERT if there is no collision on a unique key. Otherwise, an exclusive next-
key lock is placed on the row to be replaced.

• INSERT INTO T SELECT ... FROM S WHERE ... sets an exclusive index record lock (without
a gap lock) on each row inserted into T. If the transaction isolation level is READ COMMITTED,
or innodb_locks_unsafe_for_binlog is enabled and the transaction isolation level is not
SERIALIZABLE, InnoDB does the search on S as a consistent read (no locks). Otherwise, InnoDB sets
shared next-key locks on rows from S. InnoDB has to set locks in the latter case: During roll-forward
recovery using a statement-based binary log, every SQL statement must be executed in exactly the
same way it was done originally.

CREATE TABLE ... SELECT ... performs the SELECT with shared next-key locks or as a consistent
read, as for INSERT ... SELECT.

When a SELECT is used in the constructs REPLACE INTO t SELECT ... FROM s WHERE ... or
UPDATE t ... WHERE col IN (SELECT ... FROM s ...), InnoDB sets shared next-key locks
on rows from table s.

• InnoDB sets an exclusive lock on the end of the index associated with the AUTO_INCREMENT column
while initializing a previously specified AUTO_INCREMENT column on a table.

With innodb_autoinc_lock_mode=0, InnoDB uses a special AUTO-INC table lock mode
where the lock is obtained and held to the end of the current SQL statement (not to the end
of the entire transaction) while accessing the auto-increment counter. Other clients cannot
insert into the table while the AUTO-INC table lock is held. The same behavior occurs for “bulk
inserts” with innodb_autoinc_lock_mode=1. Table-level AUTO-INC locks are not used with
innodb_autoinc_lock_mode=2. For more information, See Section 14.6.1.6, “AUTO_INCREMENT
Handling in InnoDB”.

InnoDB fetches the value of a previously initialized AUTO_INCREMENT column without setting any locks.

2052

Phantom Rows

• If a FOREIGN KEY constraint is defined on a table, any insert, update, or delete that requires the
constraint condition to be checked sets shared record-level locks on the records that it looks at to check
the constraint. InnoDB also sets these locks in the case where the constraint fails.

• LOCK TABLES sets table locks, but it is the higher MySQL layer above the InnoDB layer that sets these
locks. InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and autocommit =
0, and the MySQL layer above InnoDB knows about row-level locks.

Otherwise, InnoDB's automatic deadlock detection cannot detect deadlocks where such table locks are
involved. Also, because in this case the higher MySQL layer does not know about row-level locks, it is
possible to get a table lock on a table where another session currently has row-level locks. However, this
does not endanger transaction integrity, as discussed in Section 14.7.5.2, “Deadlock Detection”.

• LOCK TABLES acquires two locks on each table if innodb_table_locks=1 (the default). In addition to
a table lock on the MySQL layer, it also acquires an InnoDB table lock. To avoid acquiring InnoDB table
locks, set innodb_table_locks=0. If no InnoDB table lock is acquired, LOCK TABLES completes
even if some records of the tables are being locked by other transactions.

In MySQL 5.6, innodb_table_locks=0 has no effect for tables locked explicitly with LOCK
TABLES ... WRITE. It does have an effect for tables locked for read or write by LOCK TABLES ...
WRITE implicitly (for example, through triggers) or by LOCK TABLES ... READ.

• All InnoDB locks held by a transaction are released when the transaction is committed or aborted. Thus,
it does not make much sense to invoke LOCK TABLES on InnoDB tables in autocommit=1 mode
because the acquired InnoDB table locks would be released immediately.

• You cannot lock additional tables in the middle of a transaction because LOCK TABLES performs an
implicit COMMIT and UNLOCK TABLES.

14.7.4 Phantom Rows

The so-called phantom problem occurs within a transaction when the same query produces different sets
of rows at different times. For example, if a SELECT is executed twice, but returns a row the second time
that was not returned the first time, the row is a “phantom” row.

Suppose that there is an index on the id column of the child table and that you want to read and lock all
rows from the table having an identifier value larger than 100, with the intention of updating some column
in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

The query scans the index starting from the first record where id is bigger than 100. Let the table contain
rows having id values of 90 and 102. If the locks set on the index records in the scanned range do not
lock out inserts made in the gaps (in this case, the gap between 90 and 102), another session can insert
a new row into the table with an id of 101. If you were to execute the same SELECT within the same
transaction, you would see a new row with an id of 101 (a “phantom”) in the result set returned by the
query. If we regard a set of rows as a data item, the new phantom child would violate the isolation principle
of transactions that a transaction should be able to run so that the data it has read does not change during
the transaction.

To prevent phantoms, InnoDB uses an algorithm called next-key locking that combines index-row locking
with gap locking. InnoDB performs row-level locking in such a way that when it searches or scans a table
index, it sets shared or exclusive locks on the index records it encounters. Thus, the row-level locks are
actually index-record locks. In addition, a next-key lock on an index record also affects the “gap” before
the index record. That is, a next-key lock is an index-record lock plus a gap lock on the gap preceding the

2053

Deadlocks in InnoDB

index record. If one session has a shared or exclusive lock on record R in an index, another session cannot
insert a new index record in the gap immediately before R in the index order.

When InnoDB scans an index, it can also lock the gap after the last record in the index. Just that happens
in the preceding example: To prevent any insert into the table where id would be bigger than 100, the
locks set by InnoDB include a lock on the gap following id value 102.

You can use next-key locking to implement a uniqueness check in your application: If you read your data
in share mode and do not see a duplicate for a row you are going to insert, then you can safely insert
your row and know that the next-key lock set on the successor of your row during the read prevents
anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you to “lock” the
nonexistence of something in your table.

Gap locking can be disabled as discussed in Section 14.7.1, “InnoDB Locking”. This may cause phantom
problems because other sessions can insert new rows into the gaps when gap locking is disabled.

14.7.5 Deadlocks in InnoDB

A deadlock is a situation where different transactions are unable to proceed because each holds a lock that
the other needs. Because both transactions are waiting for a resource to become available, neither ever
release the locks it holds.

A deadlock can occur when transactions lock rows in multiple tables (through statements such as
UPDATE or SELECT ... FOR UPDATE), but in the opposite order. A deadlock can also occur when
such statements lock ranges of index records and gaps, with each transaction acquiring some locks but
not others due to a timing issue. For a deadlock example, see Section 14.7.5.1, “An InnoDB Deadlock
Example”.

To reduce the possibility of deadlocks, use transactions rather than LOCK TABLES statements; keep
transactions that insert or update data small enough that they do not stay open for long periods of
time; when different transactions update multiple tables or large ranges of rows, use the same order of
operations (such as SELECT ... FOR UPDATE) in each transaction; create indexes on the columns used
in SELECT ... FOR UPDATE and UPDATE ... WHERE statements. The possibility of deadlocks is not
affected by the isolation level, because the isolation level changes the behavior of read operations, while
deadlocks occur because of write operations. For more information about avoiding and recovering from
deadlock conditions, see Section 14.7.5.3, “How to Minimize and Handle Deadlocks”.

If a deadlock does occur, InnoDB detects the condition and rolls back one of the transactions (the victim).
Thus, even if your application logic is correct, you must still handle the case where a transaction must be
retried. To view the last deadlock in an InnoDB user transaction, use tSHOW ENGINE INNODB STATUS.
If frequent deadlocks highlight a problem with transaction structure or application error handling, enable
innodb_print_all_deadlocks to print information about all deadlocks to the mysqld error log. For
more information about how deadlocks are automatically detected and handled, see Section 14.7.5.2,
“Deadlock Detection”.

14.7.5.1 An InnoDB Deadlock Example

The following example illustrates how an error can occur when a lock request causes a deadlock. The
example involves two clients, A and B.

First, client A creates a table containing one row, and then begins a transaction. Within the transaction, A
obtains an S lock on the row by selecting it in share mode:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
Query OK, 0 rows affected (1.07 sec)

2054

Deadlocks in InnoDB

mysql> INSERT INTO t (i) VALUES(1);
Query OK, 1 row affected (0.09 sec)

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t WHERE i = 1 LOCK IN SHARE MODE;
+------+
| i |
+------+
| 1 |
+------+

Next, client B begins a transaction and attempts to delete the row from the table:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> DELETE FROM t WHERE i = 1;

The delete operation requires an X lock. The lock cannot be granted because it is incompatible with the S
lock that client A holds, so the request goes on the queue of lock requests for the row and client B blocks.

Finally, client A also attempts to delete the row from the table:

mysql> DELETE FROM t WHERE i = 1;

Deadlock occurs here because client A needs an X lock to delete the row. However, that lock request
cannot be granted because client B already has a request for an X lock and is waiting for client A to release
its S lock. Nor can the S lock held by A be upgraded to an X lock because of the prior request by B for an X
lock. As a result, InnoDB generates an error for one of the clients and releases its locks. The client returns
this error:

ERROR 1213 (40001): Deadlock found when trying to get lock;
try restarting transaction

At that point, the lock request for the other client can be granted and it deletes the row from the table.

14.7.5.2 Deadlock Detection

InnoDB automatically detects transaction deadlocks and rolls back a transaction or transactions to break
the deadlock. InnoDB tries to pick small transactions to roll back, where the size of a transaction is
determined by the number of rows inserted, updated, or deleted.

InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and autocommit = 0, and
the MySQL layer above it knows about row-level locks. Otherwise, InnoDB cannot detect deadlocks where
a table lock set by a MySQL LOCK TABLES statement or a lock set by a storage engine other than InnoDB
is involved. Resolve these situations by setting the value of the innodb_lock_wait_timeout system
variable.

If the LATEST DETECTED DEADLOCK section of InnoDB Monitor output includes a message stating,
“TOO DEEP OR LONG SEARCH IN THE LOCK TABLE WAITS-FOR GRAPH, WE WILL ROLL BACK
FOLLOWING TRANSACTION,” this indicates that the number of transactions on the wait-for list has reached
a limit of 200. A wait-for list that exceeds 200 transactions is treated as a deadlock and the transaction
attempting to check the wait-for list is rolled back. The same error may also occur if the locking thread must
look at more than 1,000,000 locks owned by transactions on the wait-for list.

For techniques to organize database operations to avoid deadlocks, see Section 14.7.5, “Deadlocks in
InnoDB”.

2055

Deadlocks in InnoDB

14.7.5.3 How to Minimize and Handle Deadlocks

This section builds on the conceptual information about deadlocks in Section 14.7.5.2, “Deadlock
Detection”. It explains how to organize database operations to minimize deadlocks and the subsequent
error handling required in applications.

Deadlocks are a classic problem in transactional databases, but they are not dangerous unless they are so
frequent that you cannot run certain transactions at all. Normally, you must write your applications so that
they are always prepared to re-issue a transaction if it gets rolled back because of a deadlock.

InnoDB uses automatic row-level locking. You can get deadlocks even in the case of transactions that just
insert or delete a single row. That is because these operations are not really “atomic”; they automatically
set locks on the (possibly several) index records of the row inserted or deleted.

You can cope with deadlocks and reduce the likelihood of their occurrence with the following techniques:

• At any time, issue SHOW ENGINE INNODB STATUS to determine the cause of the most recent
deadlock. That can help you to tune your application to avoid deadlocks.

• If frequent deadlock warnings cause concern, collect more extensive debugging information by enabling
the innodb_print_all_deadlocks variable. Information about each deadlock, not just the latest
one, is recorded in the MySQL error log. Disable this option when you are finished debugging.

• Always be prepared to re-issue a transaction if it fails due to deadlock. Deadlocks are not dangerous.
Just try again.

• Keep transactions small and short in duration to make them less prone to collision.

• Commit transactions immediately after making a set of related changes to make them less prone
to collision. In particular, do not leave an interactive mysql session open for a long time with an
uncommitted transaction.

• If you use locking reads (SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE), try
using a lower isolation level such as READ COMMITTED.

• When modifying multiple tables within a transaction, or different sets of rows in the same table, do
those operations in a consistent order each time. Then transactions form well-defined queues and do
not deadlock. For example, organize database operations into functions within your application, or
call stored routines, rather than coding multiple similar sequences of INSERT, UPDATE, and DELETE
statements in different places.

• Add well-chosen indexes to your tables so that your queries scan fewer index records and set fewer
locks. Use EXPLAIN SELECT to determine which indexes the MySQL server regards as the most
appropriate for your queries.

• Use less locking. If you can afford to permit a SELECT to return data from an old snapshot, do not add
a FOR UPDATE or LOCK IN SHARE MODE clause to it. Using the READ COMMITTED isolation level is
good here, because each consistent read within the same transaction reads from its own fresh snapshot.

• If nothing else helps, serialize your transactions with table-level locks. The correct way to use
LOCK TABLES with transactional tables, such as InnoDB tables, is to begin a transaction with SET
autocommit = 0 (not START TRANSACTION) followed by LOCK TABLES, and to not call UNLOCK
TABLES until you commit the transaction explicitly. For example, if you need to write to table t1 and read
from table t2, you can do this:

SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;

2056

InnoDB Configuration

... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;

Table-level locks prevent concurrent updates to the table, avoiding deadlocks at the expense of less
responsiveness for a busy system.

• Another way to serialize transactions is to create an auxiliary “semaphore” table that contains just
a single row. Have each transaction update that row before accessing other tables. In that way, all
transactions happen in a serial fashion. Note that the InnoDB instant deadlock detection algorithm also
works in this case, because the serializing lock is a row-level lock. With MySQL table-level locks, the
timeout method must be used to resolve deadlocks.

14.8 InnoDB Configuration

This section provides configuration information and procedures for InnoDB initialization, startup, and
various components and features of the InnoDB storage engine. For information about optimizing
database operations for InnoDB tables, see Section 8.5, “Optimizing for InnoDB Tables”.

14.8.1 InnoDB Startup Configuration

The first decisions to make about InnoDB configuration involve the configuration of data files, log files,
page size, and memory buffers, which should be configured before initializing InnoDB. Modifying the
configuration after InnoDB is initialized may involve non-trivial procedures.

This section provides information about specifying InnoDB settings in a configuration file, viewing InnoDB
initialization information, and important storage considerations.

• Specifying Options in a MySQL Configuration File

• Viewing InnoDB Initialization Information

• Important Storage Considerations

• System Tablespace Data File Configuration

• Redo Log File Configuration

• Undo Tablespace Configuration

• Page Size Configuration

• Memory Configuration

Specifying Options in a MySQL Configuration File

Because MySQL uses data file, log file, and page size settings to initialize InnoDB, it is recommended
that you define these settings in an option file that MySQL reads at startup, prior to initializing InnoDB.
Normally, InnoDB is initialized when the MySQL server is started for the first time.

You can place InnoDB settings in the [mysqld] group of any option file that your server reads when it
starts. The locations of MySQL option files are described in Section 4.2.2.2, “Using Option Files”.

To make sure that mysqld reads options only from a specific file, use the --defaults-file option as
the first option on the command line when starting the server:

mysqld --defaults-file=path_to_option_file

2057

InnoDB Startup Configuration

Viewing InnoDB Initialization Information

To view InnoDB initialization information during startup, start mysqld from a command prompt, which
prints initialization information to the console.

For example, on Windows, if mysqld is located in C:\Program Files\MySQL\MySQL Server
5.6\bin, start the MySQL server like this:

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld" --console

On Unix-like systems, mysqld is located in the bin directory of your MySQL installation:

$> bin/mysqld --user=mysql &

If you do not send server output to the console, check the error log after startup to see the initialization
information InnoDB printed during the startup process.

For information about starting MySQL using other methods, see Section 2.10.5, “Starting and Stopping
MySQL Automatically”.

Note

InnoDB does not open all user tables and associated data files at startup. However,
InnoDB does check for the existence of tablespace files referenced in the data
dictionary. If a tablespace file is not found, InnoDB logs an error and continues
the startup sequence. Tablespace files referenced in the redo log may be opened
during crash recovery for redo application.

Important Storage Considerations

Review the following storage-related considerations before proceeding with your startup configuration.

• In some cases, you can improve database performance by placing data and log files on separate
physical disks. You can also use raw disk partitions (raw devices) for InnoDB data files, which may
speed up I/O. See Using Raw Disk Partitions for the System Tablespace.

• InnoDB is a transaction-safe (ACID compliant) storage engine with commit, rollback, and crash-
recovery capabilities to protect user data. However, it cannot do so if the underlying operating system
or hardware does not work as advertised. Many operating systems or disk subsystems may delay
or reorder write operations to improve performance. On some operating systems, the very fsync()
system call that should wait until all unwritten data for a file has been flushed might actually return before
the data has been flushed to stable storage. Because of this, an operating system crash or a power
outage may destroy recently committed data, or in the worst case, even corrupt the database because
write operations have been reordered. If data integrity is important to you, perform “pull-the-plug” tests
before using anything in production. On macOS, InnoDB uses a special fcntl() file flush method.
Under Linux, it is advisable to disable the write-back cache.

On ATA/SATA disk drives, a command such hdparm -W0 /dev/hda may work to disable the write-
back cache. Beware that some drives or disk controllers may be unable to disable the write-back
cache.

• With regard to InnoDB recovery capabilities that protect user data, InnoDB uses a file flush
technique involving a structure called the doublewrite buffer, which is enabled by default
(innodb_doublewrite=ON). The doublewrite buffer adds safety to recovery following an unexpected
exit or power outage, and improves performance on most varieties of Unix by reducing the need for
fsync() operations. It is recommended that the innodb_doublewrite option remains enabled if you

2058

InnoDB Startup Configuration

are concerned with data integrity or possible failures. For information about the doublewrite buffer, see
Section 14.12.1, “InnoDB Disk I/O”.

• Before using NFS with InnoDB, review potential issues outlined in Using NFS with MySQL.

• Running MySQL server on a 4K sector hard drive on Windows is not supported with
innodb_flush_method=async_unbuffered, which is the default setting. The workaround is to use
innodb_flush_method=normal.

System Tablespace Data File Configuration

The innodb_data_file_path option defines the name, size, and attributes of InnoDB system
tablespace data files. If you do not configure this option prior to initializing the MySQL server, the default
behavior is to create a single auto-extending data file, slightly larger than 12MB, named ibdata1:

mysql> SHOW VARIABLES LIKE 'innodb_data_file_path';
+-----------------------+------------------------+
| Variable_name | Value |
+-----------------------+------------------------+
| innodb_data_file_path | ibdata1:12M:autoextend |
+-----------------------+------------------------+

The full data file specification syntax includes the file name, file size, autoextend attribute, and max
attribute:

file_name:file_size[:autoextend[:max:max_file_size]]

File sizes are specified in kilobytes, megabytes, or gigabytes by appending K, M or G to the size value. If
specifying the data file size in kilobytes, do so in multiples of 1024. Otherwise, kilobyte values are rounded
to nearest megabyte (MB) boundary. The sum of file sizes must be, at a minimum, slightly larger than
12MB.

You can specify more than one data file using a semicolon-separated list. For example:

[mysqld]
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

The autoextend and max attributes can be used only for the data file that is specified last.

When the autoextend attribute is specified, the data file automatically increases in size by 64MB
increments as space is required. The innodb_autoextend_increment variable controls the increment
size.

To specify a maximum size for an auto-extending data file, use the max attribute following the
autoextend attribute. Use the max attribute only in cases where constraining disk usage is of critical
importance. The following configuration permits ibdata1 to grow to a limit of 500MB:

[mysqld]
innodb_data_file_path=ibdata1:12M:autoextend:max:500M

If your disk becomes full, you can add a data file on another disk. For instructions, see Resizing the
System Tablespace.

The size limit for individual files is determined by your operating system. You can set the file size to more
than 4GB on operating systems that support large files. You can also use raw disk partitions as data files.
See Using Raw Disk Partitions for the System Tablespace.

InnoDB is not aware of the file system maximum file size, so be cautious on file systems where the
maximum file size is a small value such as 2GB.

2059

InnoDB Startup Configuration

System tablespace files are created in the data directory by default (datadir). To specify an alternate
location, use the innodb_data_home_dir option. For example, to create a system tablespace data file in
a directory named myibdata, use this configuration:

[mysqld]
innodb_data_home_dir = /myibdata/
innodb_data_file_path=ibdata1:50M:autoextend

A trailing slash is required when specifying a value for innodb_data_home_dir. InnoDB does not create
directories, so ensure that the specified directory exists before you start the server. Also, ensure sure that
the MySQL server has the proper access rights to create files in the directory.

InnoDB forms the directory path for each data file by textually concatenating the value of
innodb_data_home_dir to the data file name. If innodb_data_home_dir is not defined, the default
value is “./”, which is the data directory. (The MySQL server changes its current working directory to the
data directory when it begins executing.)

If you specify innodb_data_home_dir as an empty string, you can specify absolute paths for data files
listed in the innodb_data_file_path value. The following configuration is equivalent to the preceding
one:

[mysqld]
innodb_data_home_dir =
innodb_data_file_path=/myibdata/ibdata1:50M:autoextend

Redo Log File Configuration

InnoDB creates two 5MB redo log files named ib_logfile0 and ib_logfile1 in the data directory by
default.

The following options can be used to modify the default configuration:

• innodb_log_group_home_dir defines directory path to the InnoDB log files. If this option is not
configured, InnoDB log files are created in the MySQL data directory (datadir).

You might use this option to place InnoDB log files in a different physical storage location than InnoDB
data files to avoid potential I/O resource conflicts. For example:

[mysqld]
innodb_log_group_home_dir = /dr3/iblogs

Note

InnoDB does not create directories, so make sure that the log directory exists
before you start the server. Use the Unix or DOS mkdir command to create any
necessary directories.

Make sure that the MySQL server has the proper access rights to create files
in the log directory. More generally, the server must have access rights in any
directory where it needs to create log files.

• innodb_log_files_in_group defines the number of log files in the log group. The default and
recommended value is 2.

• innodb_log_file_size defines the size in bytes of each log file in the log group. The combined log
file size (innodb_log_file_size * innodb_log_files_in_group) cannot exceed the maximum
value, which is slightly less than 512GB. A pair of 255 GB log files, for example, approaches the limit
but does not exceed it. The default log file size is 48MB. Generally, the combined size of the log files
should be large enough that the server can smooth out peaks and troughs in workload activity, which

2060

InnoDB Startup Configuration

often means that there is enough redo log space to handle more than an hour of write activity. A larger
log file size means less checkpoint flush activity in the buffer pool, which reduces disk I/O. For additional
information, see Section 8.5.4, “Optimizing InnoDB Redo Logging”.

Undo Tablespace Configuration

Undo logs are part of the system tablespace by default. However, you can choose to store undo logs in
one or more separate undo tablespaces, typically on a different storage device.

The innodb_undo_directory configuration option defines the path where InnoDB creates
separate tablespaces for the undo logs. This option is typically used in conjunction with the
innodb_rollback_segments and innodb_undo_tablespaces options, which determine the disk
layout of the undo logs outside the system tablespace.

For more information, see Section 14.6.3.3, “Undo Tablespaces”.

Page Size Configuration

The innodb_page_size option specifies the page size for all InnoDB tablespaces in a MySQL instance.
This value is set when the instance is created and remains constant afterward. Valid values are 16KB (the
default), 8KB, and 4KB. Alternatively, you can specify page size in bytes (16384, 8192, 4096).

The default 16KB page size is appropriate for a wide range of workloads, particularly for queries involving
table scans and DML operations involving bulk updates. Smaller page sizes might be more efficient for
OLTP workloads involving many small writes, where contention can be an issue when a single page
contains many rows. Smaller pages can also be more efficient for SSD storage devices, which typically
use small block sizes. Keeping the InnoDB page size close to the storage device block size minimizes the
amount of unchanged data that is rewritten to disk.

Memory Configuration

MySQL allocates memory to various caches and buffers to improve performance of database operations.
When allocating memory for InnoDB, always consider memory required by the operating system, memory
allocated to other applications, and memory allocated for other MySQL buffers and caches. For example, if
you use MyISAM tables, consider the amount of memory allocated for the key buffer (key_buffer_size).
For an overview of MySQL buffers and caches, see Section 8.12.4.1, “How MySQL Uses Memory”.

Buffers specific to InnoDB are configured using the following parameters:

• innodb_buffer_pool_size defines size of the buffer pool, which is the memory area that holds
cached data for InnoDB tables, indexes, and other auxiliary buffers. The size of the buffer pool is
important for system performance, and it is typically recommended that innodb_buffer_pool_size
is configured to 50 to 75 percent of system memory. The default buffer pool size is 128MB. For
additional guidance, see Section 8.12.4.1, “How MySQL Uses Memory”. For information about how to
configure InnoDB buffer pool size, see Configuring InnoDB Buffer Pool Size. Buffer pool size can be
configured at startup.

On systems with a large amount of memory, you can improve concurrency by dividing the buffer
pool into multiple buffer pool instances. The number of buffer pool instances is controlled by the by
innodb_buffer_pool_instances option. By default, InnoDB creates one buffer pool instance.
The number of buffer pool instances can be configured at startup. For more information, see
Section 14.8.3.1, “Configuring Multiple Buffer Pool Instances”.

• innodb_additional_mem_pool_size defines size in bytes of a memory pool InnoDB uses to
store data dictionary information and other internal data structures. The more tables you have in your
application, the more memory you allocate here. If InnoDB runs out of memory in this pool, it starts to

2061

https://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool-resize.html

Configuring InnoDB for Read-Only Operation

allocate memory from the operating system and writes warning messages to the MySQL error log. The
default value is 8MB. innodb_additional_mem_pool_size is deprecated in MySQL 5.6.3.

• innodb_log_buffer_size defines the size of the buffer that InnoDB uses to write to the log files on
disk. The default size is 8MB. A large log buffer enables large transactions to run without writing the log
to disk before the transactions commit. If you have transactions that update, insert, or delete many rows,
you might consider increasing the size of the log buffer to save disk I/O. innodb_log_buffer_size
can be configured at startup. For related information, see Section 8.5.4, “Optimizing InnoDB Redo
Logging”.

Warning

On 32-bit GNU/Linux x86, if memory usage is set too high, glibc may permit the
process heap to grow over the thread stacks, causing a server failure. It is a risk if
the memory allocated to the mysqld process for global and per-thread buffers and
caches is close to or exceeds 2GB.

A formula similar to the following that calculates global and per-thread memory
allocation for MySQL can be used to estimate MySQL memory usage. You may
need to modify the formula to account for buffers and caches in your MySQL
version and configuration. For an overview of MySQL buffers and caches, see
Section 8.12.4.1, “How MySQL Uses Memory”.

innodb_buffer_pool_size
+ key_buffer_size
+ max_connections*(sort_buffer_size+read_buffer_size+binlog_cache_size)
+ max_connections*2MB

Each thread uses a stack (often 2MB, but only 256KB in MySQL binaries provided
by Oracle Corporation.) and in the worst case also uses sort_buffer_size +
read_buffer_size additional memory.

On Linux, if the kernel is enabled for large page support, InnoDB can use large pages to allocate memory
for its buffer pool and additional memory pool. See Section 8.12.4.2, “Enabling Large Page Support”.

14.8.2 Configuring InnoDB for Read-Only Operation

You can query InnoDB tables where the MySQL data directory is on read-only media by enabling the --
innodb-read-only configuration option at server startup.

How to Enable

To prepare an instance for read-only operation, make sure all the necessary information is flushed to
the data files before storing it on the read-only medium. Run the server with change buffering disabled
(innodb_change_buffering=0) and do a slow shutdown.

To enable read-only mode for an entire MySQL instance, specify the following configuration options at
server startup:

• --innodb-read-only=1

• If the instance is on read-only media such as a DVD or CD, or the /var directory is not writeable by all:
--pid-file=path_on_writeable_media and --event-scheduler=disabled

Usage Scenarios

This mode of operation is appropriate in situations such as:

2062

InnoDB Buffer Pool Configuration

• Distributing a MySQL application, or a set of MySQL data, on a read-only storage medium such as a
DVD or CD.

• Multiple MySQL instances querying the same data directory simultaneously, typically in a data
warehousing configuration. You might use this technique to avoid bottlenecks that can occur with
a heavily loaded MySQL instance, or you might use different configuration options for the various
instances to tune each one for particular kinds of queries.

• Querying data that has been put into a read-only state for security or data integrity reasons, such as
archived backup data.

Note

This feature is mainly intended for flexibility in distribution and deployment,
rather than raw performance based on the read-only aspect. See Section 8.5.3,
“Optimizing InnoDB Read-Only Transactions” for ways to tune the performance of
read-only queries, which do not require making the entire server read-only.

How It Works

When the server is run in read-only mode through the --innodb-read-only option, certain InnoDB
features and components are reduced or turned off entirely:

• No change buffering is done, in particular no merges from the change buffer. To make sure the change
buffer is empty when you prepare the instance for read-only operation, disable change buffering
(innodb_change_buffering=0) and do a slow shutdown first.

• There is no crash recovery phase at startup. The instance must have performed a slow shutdown before
being put into the read-only state.

• Because the redo log is not used in read-only operation, you can set innodb_log_file_size to the
smallest size possible (1 MB) before making the instance read-only.

• All background threads other than I/O read threads are turned off. As a consequence, a read-only
instance cannot encounter any deadlocks.

• Information about deadlocks, monitor output, and so on is not written to temporary files. As a
consequence, SHOW ENGINE INNODB STATUS does not produce any output.

• If the MySQL server is started with --innodb-read-only but the data directory is still on writeable
media, the root user can still perform DCL operations such as GRANT and REVOKE.

• Changes to configuration option settings that would normally change the behavior of write operations,
have no effect when the server is in read-only mode.

• The MVCC processing to enforce isolation levels is turned off. All queries read the latest version of a
record, because update and deletes are not possible.

• The undo log is not used. Disable any settings for the innodb_undo_tablespaces and
innodb_undo_directory configuration options.

14.8.3 InnoDB Buffer Pool Configuration

This section provides configuration and tuning information for the InnoDB buffer pool.

14.8.3.1 Configuring Multiple Buffer Pool Instances

2063

InnoDB Buffer Pool Configuration

For systems with buffer pools in the multi-gigabyte range, dividing the buffer pool into separate instances
can improve concurrency, by reducing contention as different threads read and write to cached pages. This
feature is typically intended for systems with a buffer pool size in the multi-gigabyte range. Multiple buffer
pool instances are configured using the innodb_buffer_pool_instances configuration option, and
you might also adjust the innodb_buffer_pool_size value.

When the InnoDB buffer pool is large, many data requests can be satisfied by retrieving from memory.
You might encounter bottlenecks from multiple threads trying to access the buffer pool at once. You can
enable multiple buffer pools to minimize this contention. Each page that is stored in or read from the buffer
pool is assigned to one of the buffer pools randomly, using a hashing function. Each buffer pool manages
its own free lists, flush lists, LRUs, and all other data structures connected to a buffer pool, and is protected
by its own buffer pool mutex.

To enable multiple buffer pool instances, set the innodb_buffer_pool_instances configuration option
to a value greater than 1 (the default) up to 64 (the maximum). This option takes effect only when you set
innodb_buffer_pool_size to a size of 1GB or more. The total size you specify is divided among all
the buffer pools. For best efficiency, specify a combination of innodb_buffer_pool_instances and
innodb_buffer_pool_size so that each buffer pool instance is at least 1GB.

14.8.3.2 Making the Buffer Pool Scan Resistant

Rather than using a strict LRU algorithm, InnoDB uses a technique to minimize the amount of data that is
brought into the buffer pool and never accessed again. The goal is to make sure that frequently accessed
(“hot”) pages remain in the buffer pool, even as read-ahead and full table scans bring in new blocks that
might or might not be accessed afterward.

Newly read blocks are inserted into the middle of the LRU list. All newly read pages are inserted at a
location that by default is 3/8 from the tail of the LRU list. The pages are moved to the front of the list (the
most-recently used end) when they are accessed in the buffer pool for the first time. Thus, pages that are
never accessed never make it to the front portion of the LRU list, and “age out” sooner than with a strict
LRU approach. This arrangement divides the LRU list into two segments, where the pages downstream of
the insertion point are considered “old” and are desirable victims for LRU eviction.

For an explanation of the inner workings of the InnoDB buffer pool and specifics about the LRU algorithm,
see Section 14.5.1, “Buffer Pool”.

You can control the insertion point in the LRU list and choose whether InnoDB applies the same
optimization to blocks brought into the buffer pool by table or index scans. The configuration parameter
innodb_old_blocks_pct controls the percentage of “old” blocks in the LRU list. The default value of
innodb_old_blocks_pct is 37, corresponding to the original fixed ratio of 3/8. The value range is 5
(new pages in the buffer pool age out very quickly) to 95 (only 5% of the buffer pool is reserved for hot
pages, making the algorithm close to the familiar LRU strategy).

The optimization that keeps the buffer pool from being churned by read-ahead can avoid similar problems
due to table or index scans. In these scans, a data page is typically accessed a few times in quick
succession and is never touched again. The configuration parameter innodb_old_blocks_time
specifies the time window (in milliseconds) after the first access to a page during which it can be
accessed without being moved to the front (most-recently used end) of the LRU list. The default value of
innodb_old_blocks_time is 1000. Increasing this value makes more and more blocks likely to age out
faster from the buffer pool.

Both innodb_old_blocks_pct and innodb_old_blocks_time can be specified in the MySQL option
file (my.cnf or my.ini) or changed at runtime with the SET GLOBAL statement. Changing the value at
runtime requires privileges sufficient to set global system variables. See Section 5.1.8.1, “System Variable
Privileges”.

2064

InnoDB Buffer Pool Configuration

To help you gauge the effect of setting these parameters, the SHOW ENGINE INNODB STATUS command
reports buffer pool statistics. For details, see Monitoring the Buffer Pool Using the InnoDB Standard
Monitor.

Because the effects of these parameters can vary widely based on your hardware configuration, your data,
and the details of your workload, always benchmark to verify the effectiveness before changing these
settings in any performance-critical or production environment.

In mixed workloads where most of the activity is OLTP type with periodic batch reporting queries which
result in large scans, setting the value of innodb_old_blocks_time during the batch runs can help
keep the working set of the normal workload in the buffer pool.

When scanning large tables that cannot fit entirely in the buffer pool, setting innodb_old_blocks_pct to
a small value keeps the data that is only read once from consuming a significant portion of the buffer pool.
For example, setting innodb_old_blocks_pct=5 restricts this data that is only read once to 5% of the
buffer pool.

When scanning small tables that do fit into memory, there is less overhead for moving pages around within
the buffer pool, so you can leave innodb_old_blocks_pct at its default value, or even higher, such as
innodb_old_blocks_pct=50.

The effect of the innodb_old_blocks_time parameter is harder to predict than the
innodb_old_blocks_pct parameter, is relatively small, and varies more with the workload. To arrive
at an optimal value, conduct your own benchmarks if the performance improvement from adjusting
innodb_old_blocks_pct is not sufficient.

14.8.3.3 Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)

A read-ahead request is an I/O request to prefetch multiple pages in the buffer pool asynchronously, in
anticipation that these pages may be needed soon. The requests bring in all the pages in one extent.
InnoDB uses two read-ahead algorithms to improve I/O performance:

Linear read-ahead is a technique that predicts what pages might be needed soon based on pages in
the buffer pool being accessed sequentially. You control when InnoDB performs a read-ahead operation
by adjusting the number of sequential page accesses required to trigger an asynchronous read request,
using the configuration parameter innodb_read_ahead_threshold. Before this parameter was added,
InnoDB would only calculate whether to issue an asynchronous prefetch request for the entire next extent
when it read the last page of the current extent.

The configuration parameter innodb_read_ahead_threshold controls how sensitive InnoDB is in
detecting patterns of sequential page access. If the number of pages read sequentially from an extent is
greater than or equal to innodb_read_ahead_threshold, InnoDB initiates an asynchronous read-
ahead operation of the entire following extent. innodb_read_ahead_threshold can be set to any value
from 0-64. The default value is 56. The higher the value, the more strict the access pattern check. For
example, if you set the value to 48, InnoDB triggers a linear read-ahead request only when 48 pages in
the current extent have been accessed sequentially. If the value is 8, InnoDB triggers an asynchronous
read-ahead even if as few as 8 pages in the extent are accessed sequentially. You can set the value of
this parameter in the MySQL configuration file, or change it dynamically with the SET GLOBAL statement,
which requires privileges sufficient to set global system variables. See Section 5.1.8.1, “System Variable
Privileges”.

Random read-ahead is a technique that predicts when pages might be needed soon based on pages
already in the buffer pool, regardless of the order in which those pages were read. If 13 consecutive
pages from the same extent are found in the buffer pool, InnoDB asynchronously issues a request

2065

InnoDB Buffer Pool Configuration

to prefetch the remaining pages of the extent. To enable this feature, set the configuration variable
innodb_random_read_ahead to ON.

The SHOW ENGINE INNODB STATUS command displays statistics to help you evaluate the effectiveness
of the read-ahead algorithm. Statistics include counter information for the following global status variables:

• Innodb_buffer_pool_read_ahead

• Innodb_buffer_pool_read_ahead_evicted

• Innodb_buffer_pool_read_ahead_rnd

This information can be useful when fine-tuning the innodb_random_read_ahead setting.

For more information about I/O performance, see Section 8.5.8, “Optimizing InnoDB Disk I/O” and
Section 8.12.2, “Optimizing Disk I/O”.

14.8.3.4 Configuring Buffer Pool Flushing

InnoDB performs certain tasks in the background, including flushing of dirty pages from the buffer pool.
Dirty pages are those that have been modified but are not yet written to the data files on disk.

Buffer pool flushing is initiated when the percentage of dirty pages reaches the low water mark value
defined by the innodb_max_dirty_pages_pct_lwm variable. The default low water mark is 0, which
disables this early flushing behaviour.

The purpose of the innodb_max_dirty_pages_pct_lwm threshold is to control the percentage
dirty pages in the buffer pool and to prevent the amount of dirty pages from reaching the threshold
defined by the innodb_max_dirty_pages_pct variable, which has a default value of 75. InnoDB
aggressively flushes buffer pool pages if the percentage of dirty pages in the buffer pool reaches the
innodb_max_dirty_pages_pct threshold.

When configuring innodb_max_dirty_pages_pct_lwm, the value should always be lower than the
innodb_max_dirty_pages_pct value.

Additional variables permit fine-tuning of buffer pool flushing behavior:

• The innodb_flush_neighbors variable defines whether flushing a page from the buffer pool also
flushes other dirty pages in the same extent.

• A setting of 0 disables innodb_flush_neighbors. Dirty pages in the same extent are not flushed.

• The default setting of 1 flushes contiguous dirty pages in the same extent.

• A setting of 2 flushes dirty pages in the same extent.

When table data is stored on a traditional HDD storage device, flushing neighbor pages in one operation
reduces I/O overhead (primarily for disk seek operations) compared to flushing individual pages at
different times. For table data stored on SSD, seek time is not a significant factor and you can disable
this setting to spread out write operations.

• The innodb_lru_scan_depth variable specifies, per buffer pool instance, how far down the buffer
pool LRU list the page cleaner thread scans looking for dirty pages to flush. This is a background
operation performed by a page cleaner thread once per second.

A setting smaller than the default is generally suitable for most workloads. A value that is significantly
higher than necessary may impact performance. Only consider increasing the value if you have spare

2066

InnoDB Buffer Pool Configuration

I/O capacity under a typical workload. Conversely, if a write-intensive workload saturates your I/O
capacity, decrease the value, especially in the case of a large buffer pool.

When tuning innodb_lru_scan_depth, start with a low value and configure the setting upward
with the goal of rarely seeing zero free pages. Also, consider adjusting innodb_lru_scan_depth
when changing the number of buffer pool instances, since innodb_lru_scan_depth *
innodb_buffer_pool_instances defines the amount of work performed by the page cleaner thread
each second.

The innodb_flush_neighbors and innodb_lru_scan_depth variables are primarily intended for
write-intensive workloads. With heavy DML activity, flushing can fall behind if it is not aggressive enough,
or disk writes can saturate I/O capacity if flushing is too aggressive. The ideal settings depend on your
workload, data access patterns, and storage configuration (for example, whether data is stored on HDD or
SSD devices).

Adaptive Flushing

InnoDB uses an adaptive flushing algorithm to dynamically adjust the rate of flushing based on the speed
of redo log generation and the current rate of flushing. The intent is to smooth overall performance by
ensuring that flushing activity keeps pace with the current workload. Automatically adjusting the flushing
rate helps avoid sudden dips in throughput that can occur when bursts of I/O activity due to buffer pool
flushing affects the I/O capacity available for ordinary read and write activity.

Sharp checkpoints, which are typically associated with write-intensive workloads that generate a lot of redo
entries, can cause a sudden change in throughput, for example. A sharp checkpoint occurs when InnoDB
wants to reuse a portion of a log file. Before doing so, all dirty pages with redo entries in that portion of the
log file must be flushed. If log files become full, a sharp checkpoint occurs, causing a temporary reduction
in throughput. This scenario can occur even if innodb_max_dirty_pages_pct threshold is not reached.

The adaptive flushing algorithm helps avoid such scenarios by tracking the number of dirty pages in
the buffer pool and the rate at which redo log records are being generated. Based on this information,
it decides how many dirty pages to flush from the buffer pool each second, which permits it to manage
sudden changes in workload.

The innodb_adaptive_flushing_lwm variable defines a low water mark for redo log capacity. When
that threshold is crossed, adaptive flushing is enabled, even if the innodb_adaptive_flushing variable
is disabled.

Internal benchmarking has shown that the algorithm not only maintains throughput over time, but can
also improve overall throughput significantly. However, adaptive flushing can affect the I/O pattern of a
workload significantly and may not be appropriate in all cases. It gives the most benefit when the redo
log is in danger of filling up. If adaptive flushing is not appropriate to the characteristics of your workload,
you can disable it. Adaptive flushing controlled by the innodb_adaptive_flushing variable, which is
enabled by default.

innodb_flushing_avg_loops defines the number of iterations that InnoDB keeps the previously
calculated snapshot of the flushing state, controlling how quickly adaptive flushing responds to foreground
workload changes. A high innodb_flushing_avg_loops value means that InnoDB keeps the
previously calculated snapshot longer, so adaptive flushing responds more slowly. When setting a high
value it is important to ensure that redo log utilization does not reach 75% (the hardcoded limit at which
asynchronous flushing starts), and that the innodb_max_dirty_pages_pct threshold keeps the number
of dirty pages to a level that is appropriate for the workload.

Systems with consistent workloads, a large log file size (innodb_log_file_size), and small spikes that
do not reach 75% log space utilization should use a high innodb_flushing_avg_loops value to keep

2067

InnoDB Buffer Pool Configuration

flushing as smooth as possible. For systems with extreme load spikes or log files that do not provide a lot
of space, a smaller value allows flushing to closely track workload changes, and helps to avoid reaching
75% log space utilization.

Be aware that if flushing falls behind, the rate of buffer pool flushing can exceed the I/O capacity available
to InnoDB, as defined by innodb_io_capacity setting. The innodb_io_capacity_max value
defines an upper limit on I/O capacity in such situations, so that a spike in I/O activity does not consume
the entire I/O capacity of the server.

The innodb_io_capacity setting is applicable to all buffer pool instances. When dirty pages are
flushed, I/O capacity is divided equally among buffer pool instances.

14.8.3.5 Saving and Restoring the Buffer Pool State

To avoid a lengthy warmup period after restarting the server, particularly for instances with large buffer
pools, you can save the buffer pool state at server shutdown and restore the buffer pool to the same state
at server startup.

After restarting a busy server, there is typically a warmup period with steadily increasing throughput,
as disk pages that were in the buffer pool are brought back into memory (as the same data is queried,
updated, and so on). The ability to restore the buffer pool to the pre-shutdown state shortens the warmup
period by reloading disk pages that were in the buffer pool before the restart rather than waiting for DML
operations to access corresponding rows. Also, I/O requests can be performed in large batches, making
the overall I/O faster. Page loading happens in the background, and does not delay database startup.

In addition to saving the buffer pool state at shutdown and restoring it at startup, you can save and restore
the buffer pool state at any time, while the server is running. For example, you can save the state of the
buffer pool after reaching a stable throughput under a steady workload. You could also restore the previous
buffer pool state after running reports or maintenance jobs that bring data pages into the buffer pool that
are only requited for those operations, or after running some other non-typical workload.

Even though a buffer pool can be many gigabytes in size, the buffer pool data that InnoDB saves to disk
is tiny by comparison. Only tablespace IDs and page IDs necessary to locate the appropriate pages are
saved to disk. This information is derived from the INNODB_BUFFER_PAGE_LRU INFORMATION_SCHEMA
table. By default, tablespace ID and page ID data is saved in a file named ib_buffer_pool,
which is saved to the InnoDB data directory. The file name and location can be modified using the
innodb_buffer_pool_filename configuration parameter.

Because data is cached in and aged out of the buffer pool as it is with regular database operations, there
is no problem if the disk pages are recently updated, or if a DML operation involves data that has not yet
been loaded. The loading mechanism skips requested pages that no longer exist.

The underlying mechanism involves a background thread that is dispatched to perform the dump and load
operations.

Disk pages from compressed tables are loaded into the buffer pool in their compressed form. Pages
are uncompressed as usual when page contents are accessed during DML operations. Because
uncompressing pages is a CPU-intensive process, it is more efficient for concurrency to perform the
operation in a connection thread rather than in the single thread that performs the buffer pool restore
operation.

Operations related to saving and restoring the buffer pool state are described in the following topics:

• Saving the Buffer Pool State at Shutdown and Restoring it at Startup

• Saving and Restoring the Buffer Pool State Online

2068

InnoDB Buffer Pool Configuration

• Displaying Buffer Pool Dump Progress

• Displaying Buffer Pool Load Progress

• Aborting a Buffer Pool Load Operation

Saving the Buffer Pool State at Shutdown and Restoring it at Startup

To save the state of the buffer pool at server shutdown, issue the following statement prior to shutting
down the server:

SET GLOBAL innodb_buffer_pool_dump_at_shutdown=ON;

To restore the buffer pool state at server startup, specify the --innodb-buffer-pool-load-at-
startup option when starting the server:

mysqld --innodb-buffer-pool-load-at-startup=ON;

Saving and Restoring the Buffer Pool State Online

To save the state of the buffer pool while MySQL server is running, issue the following statement:

SET GLOBAL innodb_buffer_pool_dump_now=ON;

To restore the buffer pool state while MySQL is running, issue the following statement:

SET GLOBAL innodb_buffer_pool_load_now=ON;

Displaying Buffer Pool Dump Progress

To display progress when saving the buffer pool state to disk, use one of the following options:

SHOW STATUS LIKE 'Innodb_buffer_pool_dump_status';

or:

SELECT variable_value FROM information_schema.global_status WHERE
variable_name = 'INNODB_BUFFER_POOL_DUMP_STATUS';

If the operation has not yet started, “not started” is returned. If the operation is complete, the completion
time is printed (e.g. Finished at 110505 12:18:02). If the operation is in progress, status information is
provided (e.g. Dumping buffer pool 5/7, page 237/2873).

Displaying Buffer Pool Load Progress

To display progress when loading the buffer pool, use one of the following options:

SHOW STATUS LIKE 'Innodb_buffer_pool_load_status';

or:

SELECT variable_value FROM information_schema.global_status WHERE
variable_name = 'INNODB_BUFFER_POOL_LOAD_STATUS';

If the operation has not yet started, “not started” is returned. If the operation is complete, the completion
time is printed (e.g. Finished at 110505 12:23:24). If the operation is in progress, status information is
provided (e.g. Loaded 123/22301 pages).

2069

Configuring the Memory Allocator for InnoDB

Aborting a Buffer Pool Load Operation

To abort a buffer pool load operation, issue the following statement:

SET GLOBAL innodb_buffer_pool_load_abort=ON;

14.8.4 Configuring the Memory Allocator for InnoDB

When InnoDB was developed, the memory allocators supplied with operating systems and run-time
libraries were often lacking in performance and scalability. At that time, there were no memory allocator
libraries tuned for multi-core CPUs. Therefore, InnoDB implemented its own memory allocator in the mem
subsystem. This allocator is guarded by a single mutex, which may become a bottleneck. InnoDB also
implements a wrapper interface around the system allocator (malloc and free) that is likewise guarded
by a single mutex.

Today, as multi-core systems have become more widely available, and as operating systems have
matured, significant improvements have been made in the memory allocators provided with operating
systems. These new memory allocators perform better and are more scalable than they were in the past.
Most workloads, especially those where memory is frequently allocated and released (such as multi-
table joins), benefit from using a more highly tuned memory allocator as opposed to the internal, InnoDB-
specific memory allocator.

You can control whether InnoDB uses its own memory allocator or an allocator of the operating system,
by setting the value of the system configuration parameter innodb_use_sys_malloc in the MySQL
option file (my.cnf or my.ini). If set to ON or 1 (the default), InnoDB uses the malloc and free
functions of the underlying system rather than manage memory pools itself. This parameter is not dynamic,
and takes effect only when the system is started. To continue to use the InnoDB memory allocator, set
innodb_use_sys_malloc to 0.

When the InnoDB memory allocator is disabled, InnoDB ignores the value of the parameter
innodb_additional_mem_pool_size. The InnoDB memory allocator uses an additional memory
pool for satisfying allocation requests without having to fall back to the system memory allocator. When
the InnoDB memory allocator is disabled, all such allocation requests are fulfilled by the system memory
allocator.

On Unix-like systems that use dynamic linking, replacing the memory allocator may be as easy as making
the environment variable LD_PRELOAD or LD_LIBRARY_PATH point to the dynamic library that implements
the allocator. On other systems, some relinking may be necessary. Please refer to the documentation of
the memory allocator library of your choice.

Since InnoDB cannot track all memory use when the system memory allocator is used
(innodb_use_sys_malloc is ON), the section “BUFFER POOL AND MEMORY” in the output of the
SHOW ENGINE INNODB STATUS command only includes the buffer pool statistics in the “Total memory
allocated”. Any memory allocated using the mem subsystem or using ut_malloc is excluded.

Note

innodb_use_sys_malloc and innodb_additional_mem_pool_size were
deprecated in MySQL 5.6.3 and are removed in MySQL 5.7.4.

For more information about the performance implications of InnoDB memory usage, see Section 8.10,
“Buffering and Caching”.

14.8.5 Configuring Thread Concurrency for InnoDB

2070

Configuring Thread Concurrency for InnoDB

InnoDB uses operating system threads to process requests from user transactions. (Transactions may
issue many requests to InnoDB before they commit or roll back.) On modern operating systems and
servers with multi-core processors, where context switching is efficient, most workloads run well without
any limit on the number of concurrent threads. Scalability improvements in MySQL 5.5 and up reduce the
need to limit the number of concurrently executing threads inside InnoDB.

In situations where it is helpful to minimize context switching between threads, InnoDB can use a number
of techniques to limit the number of concurrently executing operating system threads (and thus the number
of requests that are processed at any one time). When InnoDB receives a new request from a user
session, if the number of threads concurrently executing is at a pre-defined limit, the new request sleeps
for a short time before it tries again. A request that cannot be rescheduled after the sleep is put in a first-
in/first-out queue and eventually is processed. Threads waiting for locks are not counted in the number of
concurrently executing threads.

You can limit the number of concurrent threads by setting the configuration parameter
innodb_thread_concurrency. Once the number of executing threads reaches this limit,
additional threads sleep for a number of microseconds, set by the configuration parameter
innodb_thread_sleep_delay, before being placed into the queue.

Previously, it required experimentation to find the optimal value for innodb_thread_sleep_delay, and
the optimal value could change depending on the workload. In MySQL 5.6.3 and higher, you can set the
configuration option innodb_adaptive_max_sleep_delay to the highest value you would allow for
innodb_thread_sleep_delay, and InnoDB automatically adjusts innodb_thread_sleep_delay
up or down depending on the current thread-scheduling activity. This dynamic adjustment helps the thread
scheduling mechanism to work smoothly during times when the system is lightly loaded and when it is
operating near full capacity.

The default value for innodb_thread_concurrency and the implied default limit on the number of
concurrent threads has been changed in various releases of MySQL and InnoDB. The default value of
innodb_thread_concurrency is 0, so that by default there is no limit on the number of concurrently
executing threads.

InnoDB causes threads to sleep only when the number of concurrent threads is limited. When
there is no limit on the number of threads, all contend equally to be scheduled. That is, if
innodb_thread_concurrency is 0, the value of innodb_thread_sleep_delay is ignored.

When there is a limit on the number of threads (when innodb_thread_concurrency is > 0), InnoDB
reduces context switching overhead by permitting multiple requests made during the execution of a single
SQL statement to enter InnoDB without observing the limit set by innodb_thread_concurrency. Since
an SQL statement (such as a join) may comprise multiple row operations within InnoDB, InnoDB assigns
a specified number of “tickets” that allow a thread to be scheduled repeatedly with minimal overhead.

When a new SQL statement starts, a thread has no tickets, and it must observe
innodb_thread_concurrency. Once the thread is entitled to enter InnoDB, it is assigned a number
of tickets that it can use for subsequently entering InnoDB to perform row operations. If the tickets run
out, the thread is evicted, and innodb_thread_concurrency is observed again which may place the
thread back into the first-in/first-out queue of waiting threads. When the thread is once again entitled to
enter InnoDB, tickets are assigned again. The number of tickets assigned is specified by the global option
innodb_concurrency_tickets, which is 5000 by default. A thread that is waiting for a lock is given
one ticket once the lock becomes available.

The correct values of these variables depend on your environment and workload. Try a range of different
values to determine what value works for your applications. Before limiting the number of concurrently

2071

Configuring the Number of Background InnoDB I/O Threads

executing threads, review configuration options that may improve the performance of InnoDB on multi-core
and multi-processor computers, such as innodb_adaptive_hash_index.

For general performance information about MySQL thread handling, see Section 5.1.11.1, “Connection
Interfaces”.

14.8.6 Configuring the Number of Background InnoDB I/O Threads

InnoDB uses background threads to service various types of I/O requests. You can configure
the number of background threads that service read and write I/O on data pages using the
innodb_read_io_threads and innodb_write_io_threads configuration parameters. These
parameters signify the number of background threads used for read and write requests, respectively. They
are effective on all supported platforms. You can set values for these parameters in the MySQL option file
(my.cnf or my.ini); you cannot change values dynamically. The default value for these parameters is 4
and permissible values range from 1-64.

The purpose of these configuration options to make InnoDB more scalable on high end systems. Each
background thread can handle up to 256 pending I/O requests. A major source of background I/O is
read-ahead requests. InnoDB tries to balance the load of incoming requests in such way that most
background threads share work equally. InnoDB also attempts to allocate read requests from the same
extent to the same thread, to increase the chances of coalescing the requests. If you have a high end
I/O subsystem and you see more than 64 × innodb_read_io_threads pending read requests in
SHOW ENGINE INNODB STATUS output, you might improve performance by increasing the value of
innodb_read_io_threads.

On Linux systems, InnoDB uses the asynchronous I/O subsystem by default to perform read-ahead and
write requests for data file pages, which changes the way that InnoDB background threads service these
types of I/O requests. For more information, see Section 14.8.7, “Using Asynchronous I/O on Linux”.

For more information about InnoDB I/O performance, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

14.8.7 Using Asynchronous I/O on Linux

InnoDB uses the asynchronous I/O subsystem (native AIO) on Linux to perform read-ahead and write
requests for data file pages. This behavior is controlled by the innodb_use_native_aio configuration
option, which applies to Linux systems only and is enabled by default. On other Unix-like systems, InnoDB
uses synchronous I/O only. Historically, InnoDB only used asynchronous I/O on Windows systems. Using
the asynchronous I/O subsystem on Linux requires the libaio library.

With synchronous I/O, query threads queue I/O requests, and InnoDB background threads retrieve the
queued requests one at a time, issuing a synchronous I/O call for each. When an I/O request is completed
and the I/O call returns, the InnoDB background thread that is handling the request calls an I/O completion
routine and returns to process the next request. The number of requests that can be processed in parallel
is n, where n is the number of InnoDB background threads. The number of InnoDB background threads
is controlled by innodb_read_io_threads and innodb_write_io_threads. See Section 14.8.6,
“Configuring the Number of Background InnoDB I/O Threads”.

With native AIO, query threads dispatch I/O requests directly to the operating system, thereby removing
the limit imposed by the number of background threads. InnoDB background threads wait for I/O events
to signal completed requests. When a request is completed, a background thread calls an I/O completion
routine and resumes waiting for I/O events.

The advantage of native AIO is scalability for heavily I/O-bound systems that typically show many pending
reads/writes in SHOW ENGINE INNODB STATUS\G output. The increase in parallel processing when using

2072

Configuring InnoDB I/O Capacity

native AIO means that the type of I/O scheduler or properties of the disk array controller have a greater
influence on I/O performance.

A potential disadvantage of native AIO for heavily I/O-bound systems is lack of control over the number of
I/O write requests dispatched to the operating system at once. Too many I/O write requests dispatched to
the operating system for parallel processing could, in some cases, result in I/O read starvation, depending
on the amount of I/O activity and system capabilities.

If a problem with the asynchronous I/O subsystem in the OS prevents InnoDB from starting, you can start
the server with innodb_use_native_aio=0. This option may also be disabled automatically during
startup if InnoDB detects a potential problem such as a combination of tmpdir location, tmpfs file
system, and Linux kernel that does not support asynchronous I/O on tmpfs.

14.8.8 Configuring InnoDB I/O Capacity

The InnoDB master thread and other threads perform various tasks in the background, most of which are
I/O related, such as flushing dirty pages from the buffer pool and writing changes from the change buffer
to the appropriate secondary indexes. InnoDB attempts to perform these tasks in a way that does not
adversely affect the normal working of the server. It tries to estimate the available I/O bandwidth and tune
its activities to take advantage of available capacity.

The innodb_io_capacity variable defines the overall I/O capacity available to InnoDB. It should be
set to approximately the number of I/O operations that the system can perform per second (IOPS). When
innodb_io_capacity is set, InnoDB estimates the I/O bandwidth available for background tasks based
on the set value.

You can set innodb_io_capacity to a value of 100 or greater. The default value is 200. Typically,
values around 100 are appropriate for consumer-level storage devices, such as hard drives up to 7200
RPMs. Faster hard drives, RAID configurations, and solid state drives (SSDs) benefit from higher values.

Ideally, keep the setting as low as practical, but not so low that background activities fall behind. If the
value is too high, data is removed from the buffer pool and change buffer too quickly for caching to provide
a significant benefit. For busy systems capable of higher I/O rates, you can set a higher value to help the
server handle the background maintenance work associated with a high rate of row changes. Generally,
you can increase the value as a function of the number of drives used for InnoDB I/O. For example, you
can increase the value on systems that use multiple disks or SSDs.

The default setting of 200 is generally sufficient for a lower-end SSD. For a higher-end, bus-attached SSD,
consider a higher setting such as 1000, for example. For systems with individual 5400 RPM or 7200 RPM
drives, you might lower the value to 100, which represents an estimated proportion of the I/O operations
per second (IOPS) available to older-generation disk drives that can perform about 100 IOPS.

Although you can specify a high value such as a million, in practice such large values have little benefit.
Generally, a value higher than 20000 is not recommended unless you are certain that lower values are
insufficient for your workload.

Consider write workload when tuning innodb_io_capacity. Systems with large write workloads are
likely to benefit from a higher setting. A lower setting may be sufficient for systems with a small write
workload.

The innodb_io_capacity setting is not a per buffer pool instance setting. Available I/O capacity is
distributed equally among buffer pool instances for flushing activities.

You can set the innodb_io_capacity value in the MySQL option file (my.cnf or my.ini) or modify
it at runtime using a SET GLOBAL statement, which requires privileges sufficient to set global system
variables. See Section 5.1.8.1, “System Variable Privileges”.

2073

Configuring Spin Lock Polling

Configuring an I/O Capacity Maximum

If flushing activity falls behind, InnoDB can flush more aggressively, at a higher rate of I/O operations per
second (IOPS) than defined by the innodb_io_capacity variable. The innodb_io_capacity_max
variable defines a maximum number of IOPS performed by InnoDB background tasks in such situations.

If you specify an innodb_io_capacity setting at startup but do not specify a value for
innodb_io_capacity_max, innodb_io_capacity_max defaults to twice the value of
innodb_io_capacity or 2000, whichever value is greater.

When configuring innodb_io_capacity_max, twice the innodb_io_capacity is often a good starting
point. The default value of 2000 is intended for workloads that use an SSD or more than one regular
disk drive. A setting of 2000 is likely too high for workloads that do not use SSDs or multiple disk drives,
and could allow too much flushing. For a single regular disk drive, a setting between 200 and 400 is
recommended. For a high-end, bus-attached SSD, consider a higher setting such as 2500. As with the
innodb_io_capacity setting, keep the setting as low as practical, but not so low that InnoDB cannot
sufficiently extend rate of IOPS beyond the innodb_io_capacity setting.

Consider write workload when tuning innodb_io_capacity_max. Systems with large write workloads
may benefit from a higher setting. A lower setting may be sufficient for systems with a small write workload.

innodb_io_capacity_max cannot be set to a value lower than the innodb_io_capacity value.

Setting innodb_io_capacity_max to DEFAULT using a SET statement (SET GLOBAL
innodb_io_capacity_max=DEFAULT) sets innodb_io_capacity_max to the maximum value.

The innodb_io_capacity_max limit applies to all buffer pool instances. It is not a per buffer pool
instance setting.

14.8.9 Configuring Spin Lock Polling

InnoDB mutexes and rw-locks are typically reserved for short intervals. On a multi-core system, it can be
more efficient for a thread to continuously check if it can acquire a mutex or rw-lock for a period of time
before it sleeps. If the mutex or rw-lock becomes available during this period, the thread can continue
immediately, in the same time slice. However, too-frequent polling of a shared object such as a mutex
or rw-lock by multiple threads can cause “cache ping pong”, which results in processors invalidating
portions of each other's cache. InnoDB minimizes this issue by forcing a random delay between polls to
desychronize polling activity. The random delay is implemented as a spin-wait loop.

The duration of a spin-wait loop is determined by the number of PAUSE instructions that occur in the loop.
That number is generated by randomly selecting an integer ranging from 0 up to but not including the
innodb_spin_wait_delay value, and multiplying that value by 50. For example, an integer is randomly
selected from the following range for an innodb_spin_wait_delay setting of 6:

{0,1,2,3,4,5}

The selected integer is multiplied by 50, resulting in one of six possible PAUSE instruction values:

{0,50,100,150,200,250}

For that set of values, 250 is the maximum number of PAUSE instructions that can occur in a spin-
wait loop. An innodb_spin_wait_delay setting of 5 results in a set of five possible values
{0,50,100,150,200}, where 200 is the maximum number of PAUSE instructions, and so on. In this
way, the innodb_spin_wait_delay setting controls the maximum delay between spin lock polls.

The duration of the delay loop depends on the C compiler and the target processor. In the 100MHz
Pentium era, an innodb_spin_wait_delay unit was calibrated to be equivalent to one microsecond.

2074

Purge Configuration

That time equivalence did not hold, but PAUSE instruction duration has remained fairly constant in terms of
processor cycles relative to other CPU instructions on most processor architectures.

On a system where all processor cores share a fast cache memory, you might reduce the maximum
delay or disable the busy loop altogether by setting innodb_spin_wait_delay=0. On a system with
multiple processor chips, the effect of cache invalidation can be more significant and you might increase
the maximum delay.

The innodb_spin_wait_delay variable is dynamic. It can be specified in a MySQL option file or
modified at runtime using a SET GLOBAL statement. Runtime modification requires privileges sufficient to
set global system variables. See Section 5.1.8.1, “System Variable Privileges”.

14.8.10 Purge Configuration

InnoDB does not physically remove a row from the database immediately when you delete it with an SQL
statement. A row and its index records are only physically removed when InnoDB discards the undo log
record written for the deletion. This removal operation, which only occurs after the row is no longer required
for multi-version concurrency control (MVCC) or rollback, is called a purge.

Purge runs on a periodic schedule. It parses and processes undo log pages from the history list, which is
a list of undo log pages for committed transactions that is maintained by the InnoDB transaction system.
Purge frees the undo log pages from the history list after processing them.

Configuring Purge Threads

Purge operations are performed in the background by one or more purge threads. The number of purge
threads is controlled by the innodb_purge_threads variable. The default value is 1. If DML action is
concentrated on a single table, purge operations for the table are performed by a single purge thread. If
DML action is concentrated on a few tables, keep the innodb_purge_threads setting low so that the
threads do not contend with each other for access to the busy tables. If DML operations are spread across
many tables, consider a higher innodb_purge_threads setting. The maximum number of purge threads
is 32.

The innodb_purge_threads setting is the maximum number of purge threads permitted. The purge
system automatically adjusts the number of purge threads that are used.

Configuring Purge Batch Size

The innodb_purge_batch_size variable defines the number of undo log pages that purge
parses and processes in one batch from the history list. The default value is 300. In a multithreaded
purge configuration, the coordinator purge thread divides innodb_purge_batch_size by
innodb_purge_threads and assigns that number of pages to each purge thread.

The purge system also frees the undo log pages that are no longer required. It does so every 128 iterations
through the undo logs. In addition to defining the number of undo log pages parsed and processed in a
batch, the innodb_purge_batch_size variable defines the number of undo log pages that purge frees
every 128 iterations through the undo logs.

The innodb_purge_batch_size variable is intended for advanced performance tuning and
experimentation. Most users need not change innodb_purge_batch_size from its default value.

Configuring the Maximum Purge Lag

The innodb_max_purge_lag variable defines the desired maximum purge lag. When the purge lag
exceeds the innodb_max_purge_lag threshold, a delay is imposed on INSERT, UPDATE, and DELETE

2075

Configuring Optimizer Statistics for InnoDB

operations to allow time for purge operations to catch up. The default value is 0, which means there is no
maximum purge lag and no delay.

The InnoDB transaction system maintains a list of transactions that have index records delete-marked by
UPDATE or DELETE operations. The length of the list is the purge lag. The purge lag delay is calculated by
the following formula, which results in a minimum delay of 5000 microseconds:

(purge lag/innodb_max_purge_lag - 0.5) * 10000

The delay is calculated at the beginning of a purge batch.

A typical innodb_max_purge_lag setting for a problematic workload might be 1000000 (1 million),
assuming that transactions are small, only 100 bytes in size, and it is permissible to have 100MB of
unpurged table rows.

The purge lag is presented as the History list length value in the TRANSACTIONS section of SHOW
ENGINE INNODB STATUS output.

mysql> SHOW ENGINE INNODB STATUS;
...

TRANSACTIONS

Trx id counter 0 290328385
Purge done for trx's n:o < 0 290315608 undo n:o < 0 17
History list length 20

The History list length is typically a low value, usually less than a few thousand, but a write-
heavy workload or long running transactions can cause it to increase, even for transactions that are read
only. The reason that a long running transaction can cause the History list length to increase is
that under a consistent read transaction isolation level such as REPEATABLE READ, a transaction must
return the same result as when the read view for that transaction was created. Consequently, the InnoDB
multi-version concurrency control (MVCC) system must keep a copy of the data in the undo log until
all transactions that depend on that data have completed. The following are examples of long running
transactions that could cause the History list length to increase:

• A mysqldump operation that uses the --single-transaction option while there is a significant
amount of concurrent DML.

• Running a SELECT query after disabling autocommit, and forgetting to issue an explicit COMMIT or
ROLLBACK.

To prevent excessive delays in extreme situations where the purge lag becomes huge, you can limit the
delay by setting the innodb_max_purge_lag_delay variable. The innodb_max_purge_lag_delay
variable specifies the maximum delay in microseconds for the delay imposed when the
innodb_max_purge_lag threshold is exceeded. The specified innodb_max_purge_lag_delay value
is an upper limit on the delay period calculated by the innodb_max_purge_lag formula.

14.8.11 Configuring Optimizer Statistics for InnoDB

This section describes how to configure persistent and non-persistent optimizer statistics for InnoDB
tables. Persistent optimizer statistics were introduced in MySQL 5.6.2 and were made the default in
MySQL 5.6.6 (innodb_stats_persistent=ON).

Persistent optimizer statistics are persisted across server restarts, allowing for greater plan stability and
more consistent query performance. Persistent optimizer statistics also provide control and flexibility with
these additional benefits:

2076

Configuring Optimizer Statistics for InnoDB

• You can use the innodb_stats_auto_recalc configuration option to control whether statistics are
updated automatically after substantial changes to a table.

• You can use the STATS_PERSISTENT, STATS_AUTO_RECALC, and STATS_SAMPLE_PAGES clauses
with CREATE TABLE and ALTER TABLE statements to configure optimizer statistics for individual tables.

• You can query optimizer statistics data in the mysql.innodb_table_stats and
mysql.innodb_index_stats tables.

• You can view the last_update column of the mysql.innodb_table_stats and
mysql.innodb_index_stats tables to see when statistics were last updated.

• You can manually modify the mysql.innodb_table_stats and mysql.innodb_index_stats
tables to force a specific query optimization plan or to test alternative plans without modifying the
database.

Non-persistent optimizer statistics are cleared on each server restart and after some other operations, and
recomputed on the next table access. As a result, different estimates could be produced when recomputing
statistics, leading to different choices in execution plans and variations in query performance.

This section also provides information about estimating ANALYZE TABLE complexity, which may be useful
when attempting to achieve a balance between accurate statistics and ANALYZE TABLE execution time.

14.8.11.1 Configuring Persistent Optimizer Statistics Parameters

The persistent optimizer statistics feature improves plan stability by storing statistics to disk and making
them persistent across server restarts so that the optimizer is more likely to make consistent choices each
time for a given query.

Optimizer statistics are persisted to disk when innodb_stats_persistent=ON or when individual
tables are defined with STATS_PERSISTENT=1. innodb_stats_persistent is enabled by default as of
MySQL 5.6.6.

Formerly, optimizer statistics were cleared when restarting the server and after some other types of
operations, and recomputed on the next table access. Consequently, different estimates could be
produced when recalculating statistics leading to different choices in query execution plans and variation in
query performance.

Persistent statistics are stored in the mysql.innodb_table_stats and mysql.innodb_index_stats
tables. See InnoDB Persistent Statistics Tables.

If you prefer not to persist optimizer statistics to disk, see Section 14.8.11.2, “Configuring Non-Persistent
Optimizer Statistics Parameters”

Configuring Automatic Statistics Calculation for Persistent Optimizer Statistics

The innodb_stats_auto_recalc variable, which is enabled by default, controls whether statistics are
calculated automatically when a table undergoes changes to more than 10% of its rows. You can also
configure automatic statistics recalculation for individual tables by specifying the STATS_AUTO_RECALC
clause when creating or altering a table.

Because of the asynchronous nature of automatic statistics recalculation, which occurs in the background,
statistics may not be recalculated instantly after running a DML operation that affects more than 10% of
a table, even when innodb_stats_auto_recalc is enabled. Statistics recalculation can be delayed
by few seconds in some cases. If up-to-date statistics are required immediately, run ANALYZE TABLE to
initiate a synchronous (foreground) recalculation of statistics.

2077

Configuring Optimizer Statistics for InnoDB

If innodb_stats_auto_recalc is disabled, you can ensure the accuracy of optimizer statistics by
executing the ANALYZE TABLE statement after making substantial changes to indexed columns. You
might also consider adding ANALYZE TABLE to setup scripts that you run after loading data, and running
ANALYZE TABLE on a schedule at times of low activity.

When an index is added to an existing table, or when a column is added or dropped, index
statistics are calculated and added to the innodb_index_stats table regardless of the value of
innodb_stats_auto_recalc.

Configuring Optimizer Statistics Parameters for Individual Tables

innodb_stats_persistent, innodb_stats_auto_recalc, and
innodb_stats_persistent_sample_pages are global variables. To override these system-
wide settings and configure optimizer statistics parameters for individual tables, you can define
STATS_PERSISTENT, STATS_AUTO_RECALC, and STATS_SAMPLE_PAGES clauses in CREATE TABLE or
ALTER TABLE statements.

• STATS_PERSISTENT specifies whether to enable persistent statistics for an InnoDB table. The
value DEFAULT causes the persistent statistics setting for the table to be determined by the
innodb_stats_persistent setting. A value of 1 enables persistent statistics for the table, while a
value of 0 disables the feature. After enabling persistent statistics for an individual table, use ANALYZE
TABLE to calculate statistics after table data is loaded.

• STATS_AUTO_RECALC specifies whether to automatically recalculate persistent statistics. The
value DEFAULT causes the persistent statistics setting for the table to be determined by the
innodb_stats_auto_recalc setting. A value of 1 causes statistics to be recalculated when 10% of
table data has changed. A value 0 prevents automatic recalculation for the table. When using a value of
0, use ANALYZE TABLE to recalculate statistics after making substantial changes to the table.

• STATS_SAMPLE_PAGES specifies the number of index pages to sample when cardinality and other
statistics are calculated for an indexed column, by an ANALYZE TABLE operation, for example.

All three clauses are specified in the following CREATE TABLE example:

CREATE TABLE `t1` (
`id` int(8) NOT NULL auto_increment,
`data` varchar(255),
`date` datetime,
PRIMARY KEY (`id`),
INDEX `DATE_IX` (`date`)
) ENGINE=InnoDB,
 STATS_PERSISTENT=1,
 STATS_AUTO_RECALC=1,
 STATS_SAMPLE_PAGES=25;

Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics

The optimizer uses estimated statistics about key distributions to choose the indexes for an execution
plan, based on the relative selectivity of the index. Operations such as ANALYZE TABLE cause InnoDB
to sample random pages from each index on a table to estimate the cardinality of the index. This sampling
technique is known as a random dive.

The innodb_stats_persistent_sample_pages controls the number of sampled pages. You can
adjust the setting at runtime to manage the quality of statistics estimates used by the optimizer. The default
value is 20. Consider modifying the setting when encountering the following issues:

1. Statistics are not accurate enough and the optimizer chooses suboptimal plans, as shown in
EXPLAIN output. You can check the accuracy of statistics by comparing the actual cardinality of an

2078

Configuring Optimizer Statistics for InnoDB

index (determined by running SELECT DISTINCT on the index columns) with the estimates in the
mysql.innodb_index_stats table.

If it is determined that statistics are not accurate enough, the value of
innodb_stats_persistent_sample_pages should be increased until the statistics estimates are
sufficiently accurate. Increasing innodb_stats_persistent_sample_pages too much, however,
could cause ANALYZE TABLE to run slowly.

2. ANALYZE TABLE is too slow. In this case innodb_stats_persistent_sample_pages should
be decreased until ANALYZE TABLE execution time is acceptable. Decreasing the value too much,
however, could lead to the first problem of inaccurate statistics and suboptimal query execution plans.

If a balance cannot be achieved between accurate statistics and ANALYZE TABLE execution time,
consider decreasing the number of indexed columns in the table or limiting the number of partitions
to reduce ANALYZE TABLE complexity. The number of columns in the table's primary key is also
important to consider, as primary key columns are appended to each nonunique index.

For related information, see Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB
Tables”.

Including Delete-marked Records in Persistent Statistics Calculations

By default, InnoDB reads uncommitted data when calculating statistics. In the case of an uncommitted
transaction that deletes rows from a table, delete-marked records are excluded when calculating row
estimates and index statistics, which can lead to non-optimal execution plans for other transactions that are
operating on the table concurrently using a transaction isolation level other than READ UNCOMMITTED. To
avoid this scenario, innodb_stats_include_delete_marked can be enabled to ensure that delete-
marked records are included when calculating persistent optimizer statistics.

When innodb_stats_include_delete_marked is enabled, ANALYZE TABLE considers delete-
marked records when recalculating statistics.

innodb_stats_include_delete_marked is a global setting that affects all InnoDB tables, and it is
only applicable to persistent optimizer statistics.

innodb_stats_include_delete_marked was introduced in MySQL 5.6.34.

InnoDB Persistent Statistics Tables

The persistent statistics feature relies on the internally managed tables in the mysql database, named
innodb_table_stats and innodb_index_stats. These tables are set up automatically in all install,
upgrade, and build-from-source procedures.

Table 14.3 Columns of innodb_table_stats

Column name Description

database_name Database name

table_name Table name, partition name, or subpartition name

last_update A timestamp indicating the last time that InnoDB
updated this row

n_rows The number of rows in the table

clustered_index_size The size of the primary index, in pages

2079

Configuring Optimizer Statistics for InnoDB

Column name Description

sum_of_other_index_sizes The total size of other (non-primary) indexes, in
pages

Table 14.4 Columns of innodb_index_stats

Column name Description

database_name Database name

table_name Table name, partition name, or subpartition name

index_name Index name

last_update A timestamp indicating the last time that InnoDB
updated this row

stat_name The name of the statistic, whose value is reported in
the stat_value column

stat_value The value of the statistic that is named in
stat_name column

sample_size The number of pages sampled for the estimate
provided in the stat_value column

stat_description Description of the statistic that is named in the
stat_name column

The innodb_table_stats and innodb_index_stats tables include a last_update column that
shows when index statistics were last updated:

mysql> SELECT * FROM innodb_table_stats \G
*************************** 1. row ***************************
 database_name: sakila
 table_name: actor
 last_update: 2014-05-28 16:16:44
 n_rows: 200
 clustered_index_size: 1
sum_of_other_index_sizes: 1
...

mysql> SELECT * FROM innodb_index_stats \G
*************************** 1. row ***************************
 database_name: sakila
 table_name: actor
 index_name: PRIMARY
 last_update: 2014-05-28 16:16:44
 stat_name: n_diff_pfx01
 stat_value: 200
 sample_size: 1
 ...

The innodb_table_stats and innodb_index_stats tables can be updated manually, which makes it
possible to force a specific query optimization plan or test alternative plans without modifying the database.
If you manually update statistics, use the FLUSH TABLE tbl_name statement to load the updated
statistics.

Persistent statistics are considered local information, because they relate to the server instance. The
innodb_table_stats and innodb_index_stats tables are therefore not replicated when automatic
statistics recalculation takes place. If you run ANALYZE TABLE to initiate a synchronous recalculation of
statistics, this statement is replicated (unless you suppressed logging for it), and recalculation takes place
on the replicas.

2080

Configuring Optimizer Statistics for InnoDB

InnoDB Persistent Statistics Tables Example

The innodb_table_stats table contains one row for each table. The following example demonstrates
the type of data collected.

Table t1 contains a primary index (columns a, b) secondary index (columns c, d), and unique index
(columns e, f):

CREATE TABLE t1 (
a INT, b INT, c INT, d INT, e INT, f INT,
PRIMARY KEY (a, b), KEY i1 (c, d), UNIQUE KEY i2uniq (e, f)
) ENGINE=INNODB;

After inserting five rows of sample data, table t1 appears as follows:

mysql> SELECT * FROM t1;
+---+---+------+------+------+------+
| a | b | c | d | e | f |
+---+---+------+------+------+------+
1	1	10	11	100	101
1	2	10	11	200	102
1	3	10	11	100	103
1	4	10	12	200	104
1	5	10	12	100	105
+---+---+------+------+------+------+

To immediately update statistics, run ANALYZE TABLE (if innodb_stats_auto_recalc is enabled,
statistics are updated automatically within a few seconds assuming that the 10% threshold for changed
table rows is reached):

mysql> ANALYZE TABLE t1;
+---------+---------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+---------+----------+----------+
| test.t1 | analyze | status | OK |
+---------+---------+----------+----------+

Table statistics for table t1 show the last time InnoDB updated the table statistics (2014-03-14
14:36:34), the number of rows in the table (5), the clustered index size (1 page), and the combined size
of the other indexes (2 pages).

mysql> SELECT * FROM mysql.innodb_table_stats WHERE table_name like 't1'\G
*************************** 1. row ***************************
 database_name: test
 table_name: t1
 last_update: 2014-03-14 14:36:34
 n_rows: 5
 clustered_index_size: 1
sum_of_other_index_sizes: 2

The innodb_index_stats table contains multiple rows for each index. Each row in the
innodb_index_stats table provides data related to a particular index statistic which is named in the
stat_name column and described in the stat_description column. For example:

mysql> SELECT index_name, stat_name, stat_value, stat_description
 FROM mysql.innodb_index_stats WHERE table_name like 't1';
+------------+--------------+------------+-----------------------------------+
| index_name | stat_name | stat_value | stat_description |
+------------+--------------+------------+-----------------------------------+
PRIMARY	n_diff_pfx01	1	a
PRIMARY	n_diff_pfx02	5	a,b
PRIMARY	n_leaf_pages	1	Number of leaf pages in the index
PRIMARY	size	1	Number of pages in the index

2081

Configuring Optimizer Statistics for InnoDB

i1	n_diff_pfx01	1	c
i1	n_diff_pfx02	2	c,d
i1	n_diff_pfx03	2	c,d,a
i1	n_diff_pfx04	5	c,d,a,b
i1	n_leaf_pages	1	Number of leaf pages in the index
i1	size	1	Number of pages in the index
i2uniq	n_diff_pfx01	2	e
i2uniq	n_diff_pfx02	5	e,f
i2uniq	n_leaf_pages	1	Number of leaf pages in the index
i2uniq	size	1	Number of pages in the index
+------------+--------------+------------+-----------------------------------+

The stat_name column shows the following types of statistics:

• size: Where stat_name=size, the stat_value column displays the total number of pages in the
index.

• n_leaf_pages: Where stat_name=n_leaf_pages, the stat_value column displays the number of
leaf pages in the index.

• n_diff_pfxNN: Where stat_name=n_diff_pfx01, the stat_value column displays the number
of distinct values in the first column of the index. Where stat_name=n_diff_pfx02, the stat_value
column displays the number of distinct values in the first two columns of the index, and so on. Where
stat_name=n_diff_pfxNN, the stat_description column shows a comma separated list of the
index columns that are counted.

To further illustrate the n_diff_pfxNN statistic, which provides cardinality data, consider once again the
t1 table example that was introduced previously. As shown below, the t1 table is created with a primary
index (columns a, b), a secondary index (columns c, d), and a unique index (columns e, f):

CREATE TABLE t1 (
 a INT, b INT, c INT, d INT, e INT, f INT,
 PRIMARY KEY (a, b), KEY i1 (c, d), UNIQUE KEY i2uniq (e, f)
) ENGINE=INNODB;

After inserting five rows of sample data, table t1 appears as follows:

mysql> SELECT * FROM t1;
+---+---+------+------+------+------+
| a | b | c | d | e | f |
+---+---+------+------+------+------+
1	1	10	11	100	101
1	2	10	11	200	102
1	3	10	11	100	103
1	4	10	12	200	104
1	5	10	12	100	105
+---+---+------+------+------+------+

When you query the index_name, stat_name, stat_value, and stat_description, where
stat_name LIKE 'n_diff%', the following result set is returned:

mysql> SELECT index_name, stat_name, stat_value, stat_description
 FROM mysql.innodb_index_stats
 WHERE table_name like 't1' AND stat_name LIKE 'n_diff%';
+------------+--------------+------------+------------------+
| index_name | stat_name | stat_value | stat_description |
+------------+--------------+------------+------------------+
PRIMARY	n_diff_pfx01	1	a
PRIMARY	n_diff_pfx02	5	a,b
i1	n_diff_pfx01	1	c
i1	n_diff_pfx02	2	c,d
i1	n_diff_pfx03	2	c,d,a
i1	n_diff_pfx04	5	c,d,a,b

2082

Configuring Optimizer Statistics for InnoDB

| i2uniq | n_diff_pfx01 | 2 | e |
| i2uniq | n_diff_pfx02 | 5 | e,f |
+------------+--------------+------------+------------------+

For the PRIMARY index, there are two n_diff% rows. The number of rows is equal to the number of
columns in the index.

Note

For nonunique indexes, InnoDB appends the columns of the primary key.

• Where index_name=PRIMARY and stat_name=n_diff_pfx01, the stat_value is 1, which
indicates that there is a single distinct value in the first column of the index (column a). The number of
distinct values in column a is confirmed by viewing the data in column a in table t1, in which there is a
single distinct value (1). The counted column (a) is shown in the stat_description column of the
result set.

• Where index_name=PRIMARY and stat_name=n_diff_pfx02, the stat_value is 5, which
indicates that there are five distinct values in the two columns of the index (a,b). The number of distinct
values in columns a and b is confirmed by viewing the data in columns a and b in table t1, in which
there are five distinct values: (1,1), (1,2), (1,3), (1,4) and (1,5). The counted columns (a,b) are
shown in the stat_description column of the result set.

For the secondary index (i1), there are four n_diff% rows. Only two columns are defined for the
secondary index (c,d) but there are four n_diff% rows for the secondary index because InnoDB suffixes
all nonunique indexes with the primary key. As a result, there are four n_diff% rows instead of two to
account for the both the secondary index columns (c,d) and the primary key columns (a,b).

• Where index_name=i1 and stat_name=n_diff_pfx01, the stat_value is 1, which indicates that
there is a single distinct value in the first column of the index (column c). The number of distinct values
in column c is confirmed by viewing the data in column c in table t1, in which there is a single distinct
value: (10). The counted column (c) is shown in the stat_description column of the result set.

• Where index_name=i1 and stat_name=n_diff_pfx02, the stat_value is 2, which indicates
that there are two distinct values in the first two columns of the index (c,d). The number of distinct
values in columns c an d is confirmed by viewing the data in columns c and d in table t1, in which
there are two distinct values: (10,11) and (10,12). The counted columns (c,d) are shown in the
stat_description column of the result set.

• Where index_name=i1 and stat_name=n_diff_pfx03, the stat_value is 2, which indicates
that there are two distinct values in the first three columns of the index (c,d,a). The number of distinct
values in columns c, d, and a is confirmed by viewing the data in column c, d, and a in table t1, in
which there are two distinct values: (10,11,1) and (10,12,1). The counted columns (c,d,a) are
shown in the stat_description column of the result set.

• Where index_name=i1 and stat_name=n_diff_pfx04, the stat_value is 5, which indicates
that there are five distinct values in the four columns of the index (c,d,a,b). The number of distinct
values in columns c, d, a and b is confirmed by viewing the data in columns c, d, a, and b in table t1,
in which there are five distinct values: (10,11,1,1), (10,11,1,2), (10,11,1,3), (10,12,1,4), and
(10,12,1,5). The counted columns (c,d,a,b) are shown in the stat_description column of the
result set.

For the unique index (i2uniq), there are two n_diff% rows.

• Where index_name=i2uniq and stat_name=n_diff_pfx01, the stat_value is 2, which indicates
that there are two distinct values in the first column of the index (column e). The number of distinct

2083

Configuring Optimizer Statistics for InnoDB

values in column e is confirmed by viewing the data in column e in table t1, in which there are two
distinct values: (100) and (200). The counted column (e) is shown in the stat_description column
of the result set.

• Where index_name=i2uniq and stat_name=n_diff_pfx02, the stat_value is 5, which indicates
that there are five distinct values in the two columns of the index (e,f). The number of distinct values in
columns e and f is confirmed by viewing the data in columns e and f in table t1, in which there are five
distinct values: (100,101), (200,102), (100,103), (200,104), and (100,105). The counted columns
(e,f) are shown in the stat_description column of the result set.

Retrieving Index Size Using the innodb_index_stats Table

You can retrieve the index size for tables, partitions, or subpartitions can using the innodb_index_stats
table. In the following example, index sizes are retrieved for table t1. For a definition of table t1 and
corresponding index statistics, see InnoDB Persistent Statistics Tables Example.

mysql> SELECT SUM(stat_value) pages, index_name,
 SUM(stat_value)*@@innodb_page_size size
 FROM mysql.innodb_index_stats WHERE table_name='t1'
 AND stat_name = 'size' GROUP BY index_name;
+-------+------------+-------+
| pages | index_name | size |
+-------+------------+-------+
1	PRIMARY	16384
1	i1	16384
1	i2uniq	16384
+-------+------------+-------+

For partitions or subpartitions, you can use the same query with a modified WHERE clause to retrieve index
sizes. For example, the following query retrieves index sizes for partitions of table t1:

mysql> SELECT SUM(stat_value) pages, index_name,
 SUM(stat_value)*@@innodb_page_size size
 FROM mysql.innodb_index_stats WHERE table_name like 't1#P%'
 AND stat_name = 'size' GROUP BY index_name;

14.8.11.2 Configuring Non-Persistent Optimizer Statistics Parameters

This section describes how to configure non-persistent optimizer statistics. Optimizer statistics are not
persisted to disk when innodb_stats_persistent=OFF or when individual tables are created or
altered with STATS_PERSISTENT=0. Instead, statistics are stored in memory, and are lost when the server
is shut down. Statistics are also updated periodically by certain operations and under certain conditions.

As of MySQL 5.6.6, optimizer statistics are persisted to disk by default, enabled by the
innodb_stats_persistent configuration option. For information about persistent optimizer statistics,
see Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

Optimizer Statistics Updates

Non-persistent optimizer statistics are updated when:

• Running ANALYZE TABLE.

• Running SHOW TABLE STATUS, SHOW INDEX, or querying the Information Schema TABLES or
STATISTICS tables with the innodb_stats_on_metadata option enabled.

The default setting for innodb_stats_on_metadata was changed to OFF when persistent optimizer
statistics were enabled by default in MySQL 5.6.6. Enabling innodb_stats_on_metadata may

2084

Configuring Optimizer Statistics for InnoDB

reduce access speed for schemas that have a large number of tables or indexes, and reduce stability of
execution plans for queries that involve InnoDB tables. innodb_stats_on_metadata is configured
globally using a SET statement.

SET GLOBAL innodb_stats_on_metadata=ON

Note

innodb_stats_on_metadata only applies when optimizer statistics are
configured to be non-persistent (when innodb_stats_persistent is
disabled).

• Starting a mysql client with the --auto-rehash option enabled, which is the default. The auto-
rehash option causes all InnoDB tables to be opened, and the open table operations cause statistics to
be recalculated.

To improve the start up time of the mysql client and to updating statistics, you can turn off auto-
rehash using the --disable-auto-rehash option. The auto-rehash feature enables automatic
name completion of database, table, and column names for interactive users.

• A table is first opened.

• InnoDB detects that 1 / 16 of table has been modified since the last time statistics were updated.

Configuring the Number of Sampled Pages

The MySQL query optimizer uses estimated statistics about key distributions to choose the indexes for an
execution plan, based on the relative selectivity of the index. When InnoDB updates optimizer statistics, it
samples random pages from each index on a table to estimate the cardinality of the index. (This technique
is known as random dives.)

To give you control over the quality of the statistics estimate (and thus better information for
the query optimizer), you can change the number of sampled pages using the parameter
innodb_stats_transient_sample_pages. The default number of sampled pages is 8, which could
be insufficient to produce an accurate estimate, leading to poor index choices by the query optimizer. This
technique is especially important for large tables and tables used in joins. Unnecessary full table scans for
such tables can be a substantial performance issue. See Section 8.2.1.19, “Avoiding Full Table Scans” for
tips on tuning such queries. innodb_stats_transient_sample_pages is a global parameter that can
be set at runtime.

The value of innodb_stats_transient_sample_pages affects the index sampling for all InnoDB
tables and indexes when innodb_stats_persistent=0. Be aware of the following potentially
significant impacts when you change the index sample size:

• Small values like 1 or 2 can result in inaccurate estimates of cardinality.

• Increasing the innodb_stats_transient_sample_pages value might require more disk reads.
Values much larger than 8 (say, 100), can cause a significant slowdown in the time it takes to open a
table or execute SHOW TABLE STATUS.

• The optimizer might choose very different query plans based on different estimates of index selectivity.

Whatever value of innodb_stats_transient_sample_pages works best for a system, set the option
and leave it at that value. Choose a value that results in reasonably accurate estimates for all tables in your
database without requiring excessive I/O. Because the statistics are automatically recalculated at various
times other than on execution of ANALYZE TABLE, it does not make sense to increase the index sample
size, run ANALYZE TABLE, then decrease sample size again.

2085

Configuring Optimizer Statistics for InnoDB

Smaller tables generally require fewer index samples than larger tables. If your database has many large
tables, consider using a higher value for innodb_stats_transient_sample_pages than if you have
mostly smaller tables.

14.8.11.3 Estimating ANALYZE TABLE Complexity for InnoDB Tables

ANALYZE TABLE complexity for InnoDB tables is dependent on:

• The number of pages sampled, as defined by innodb_stats_persistent_sample_pages.

• The number of indexed columns in a table

• The number of partitions. If a table has no partitions, the number of partitions is considered to be 1.

Using these parameters, an approximate formula for estimating ANALYZE TABLE complexity would be:

The value of innodb_stats_persistent_sample_pages * number of indexed columns in a table * the
number of partitions

Typically, the greater the resulting value, the greater the execution time for ANALYZE TABLE.

Note

innodb_stats_persistent_sample_pages defines the number of pages
sampled at a global level. To set the number of pages sampled for an individual
table, use the STATS_SAMPLE_PAGES option with CREATE TABLE or ALTER
TABLE. For more information, see Section 14.8.11.1, “Configuring Persistent
Optimizer Statistics Parameters”.

If innodb_stats_persistent=OFF, the number of pages sampled is defined
by innodb_stats_transient_sample_pages. See Section 14.8.11.2,
“Configuring Non-Persistent Optimizer Statistics Parameters” for additional
information.

For a more in-depth approach to estimating ANALYZE TABLE complexity, consider the following example.

In Big O notation, ANALYZE TABLE complexity is described as:

O(n_sample
 * (n_cols_in_uniq_i
 + n_cols_in_non_uniq_i
 + n_cols_in_pk * (1 + n_non_uniq_i))
 * n_part)

where:

• n_sample is the number of pages sampled (defined by
innodb_stats_persistent_sample_pages)

• n_cols_in_uniq_i is total number of all columns in all unique indexes (not counting the primary key
columns)

• n_cols_in_non_uniq_i is the total number of all columns in all nonunique indexes

• n_cols_in_pk is the number of columns in the primary key (if a primary key is not defined, InnoDB
creates a single column primary key internally)

• n_non_uniq_i is the number of nonunique indexes in the table

2086

http://en.wikipedia.org/wiki/Big_O_notation

Configuring Optimizer Statistics for InnoDB

• n_part is the number of partitions. If no partitions are defined, the table is considered to be a single
partition.

Now, consider the following table (table t), which has a primary key (2 columns), a unique index (2
columns), and two nonunique indexes (two columns each):

CREATE TABLE t (
 a INT,
 b INT,
 c INT,
 d INT,
 e INT,
 f INT,
 g INT,
 h INT,
 PRIMARY KEY (a, b),
 UNIQUE KEY i1uniq (c, d),
 KEY i2nonuniq (e, f),
 KEY i3nonuniq (g, h)
);

For the column and index data required by the algorithm described above, query the
mysql.innodb_index_stats persistent index statistics table for table t. The n_diff_pfx% statistics
show the columns that are counted for each index. For example, columns a and b are counted for the
primary key index. For the nonunique indexes, the primary key columns (a,b) are counted in addition to the
user defined columns.

Note

For additional information about the InnoDB persistent statistics tables, see
Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”

mysql> SELECT index_name, stat_name, stat_description
 FROM mysql.innodb_index_stats WHERE
 database_name='test' AND
 table_name='t' AND
 stat_name like 'n_diff_pfx%';
 +------------+--------------+------------------+
 | index_name | stat_name | stat_description |
 +------------+--------------+------------------+
PRIMARY	n_diff_pfx01	a
PRIMARY	n_diff_pfx02	a,b
i1uniq	n_diff_pfx01	c
i1uniq	n_diff_pfx02	c,d
i2nonuniq	n_diff_pfx01	e
i2nonuniq	n_diff_pfx02	e,f
i2nonuniq	n_diff_pfx03	e,f,a
i2nonuniq	n_diff_pfx04	e,f,a,b
i3nonuniq	n_diff_pfx01	g
i3nonuniq	n_diff_pfx02	g,h
i3nonuniq	n_diff_pfx03	g,h,a
i3nonuniq	n_diff_pfx04	g,h,a,b
 +------------+--------------+------------------+

Based on the index statistics data shown above and the table definition, the following values can be
determined:

• n_cols_in_uniq_i, the total number of all columns in all unique indexes not counting the primary key
columns, is 2 (c and d)

• n_cols_in_non_uniq_i, the total number of all columns in all nonunique indexes, is 4 (e, f, g and h)

• n_cols_in_pk, the number of columns in the primary key, is 2 (a and b)

2087

Configuring the Merge Threshold for Index Pages

• n_non_uniq_i, the number of nonunique indexes in the table, is 2 (i2nonuniq and i3nonuniq))

• n_part, the number of partitions, is 1.

You can now calculate innodb_stats_persistent_sample_pages * (2 +
4 + 2 * (1 + 2)) * 1 to determine the number of leaf pages that are scanned. With
innodb_stats_persistent_sample_pages set to the default value of 20, and with a default page
size of 16 KiB (innodb_page_size=16384), you can then estimate that 20 * 12 * 16384 bytes are read
for table t, or about 4 MiB.

Note

All 4 MiB may not be read from disk, as some leaf pages may already be cached in
the buffer pool.

14.8.12 Configuring the Merge Threshold for Index Pages

Staring in MySQL 5.7.6, you can configure the MERGE_THRESHOLD value for index pages. If the “page-full”
percentage for an index page falls below the MERGE_THRESHOLD value when a row is deleted or when a
row is shortened by an UPDATE operation, InnoDB attempts to merge the index page with a neighboring
index page. The default MERGE_THRESHOLD value is 50, which is the previously hardcoded value. The
minimum MERGE_THRESHOLD value is 1 and the maximum value is 50.

When the “page-full” percentage for an index page falls below 50%, which is the default
MERGE_THRESHOLD setting, InnoDB attempts to merge the index page with a neighboring page. If both
pages are close to 50% full, a page split can occur soon after the pages are merged. If this merge-split
behavior occurs frequently, it can have an adverse affect on performance. To avoid frequent merge-splits,
you can lower the MERGE_THRESHOLD value so that InnoDB attempts page merges at a lower “page-full”
percentage. Merging pages at a lower page-full percentage leaves more room in index pages and helps
reduce merge-split behavior.

The MERGE_THRESHOLD for index pages can be defined for a table or for individual indexes. A
MERGE_THRESHOLD value defined for an individual index takes priority over a MERGE_THRESHOLD value
defined for the table. If undefined, the MERGE_THRESHOLD value defaults to 50.

Setting MERGE_THRESHOLD for a Table

You can set the MERGE_THRESHOLD value for a table using the table_option COMMENT clause of the
CREATE TABLE statement. For example:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id)
) COMMENT='MERGE_THRESHOLD=45';

You can also set the MERGE_THRESHOLD value for an existing table using the table_option COMMENT
clause with ALTER TABLE:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id)
);

ALTER TABLE t1 COMMENT='MERGE_THRESHOLD=40';

Setting MERGE_THRESHOLD for Individual Indexes

To set the MERGE_THRESHOLD value for an individual index, you can use the index_option COMMENT
clause with CREATE TABLE, ALTER TABLE, or CREATE INDEX, as shown in the following examples:

2088

Configuring the Merge Threshold for Index Pages

• Setting MERGE_THRESHOLD for an individual index using CREATE TABLE:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id) COMMENT 'MERGE_THRESHOLD=40'
);

• Setting MERGE_THRESHOLD for an individual index using ALTER TABLE:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id)
);

ALTER TABLE t1 DROP KEY id_index;
ALTER TABLE t1 ADD KEY id_index (id) COMMENT 'MERGE_THRESHOLD=40';

• Setting MERGE_THRESHOLD for an individual index using CREATE INDEX:

CREATE TABLE t1 (id INT);
CREATE INDEX id_index ON t1 (id) COMMENT 'MERGE_THRESHOLD=40';

Note

You cannot modify the MERGE_THRESHOLD value at the index level for
GEN_CLUST_INDEX, which is the clustered index created by InnoDB when an
InnoDB table is created without a primary key or unique key index. You can
only modify the MERGE_THRESHOLD value for GEN_CLUST_INDEX by setting
MERGE_THRESHOLD for the table.

Querying the MERGE_THRESHOLD Value for an Index

The current MERGE_THRESHOLD value for an index can be obtained by querying the
INNODB_SYS_INDEXES table. For example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_INDEXES WHERE NAME='id_index' \G
*************************** 1. row ***************************
 INDEX_ID: 91
 NAME: id_index
 TABLE_ID: 68
 TYPE: 0
 N_FIELDS: 1
 PAGE_NO: 4
 SPACE: 57
MERGE_THRESHOLD: 40

You can use SHOW CREATE TABLE to view the MERGE_THRESHOLD value for a table, if explicitly defined
using the table_option COMMENT clause:

mysql> SHOW CREATE TABLE t2 \G
*************************** 1. row ***************************
 Table: t2
Create Table: CREATE TABLE `t2` (
 `id` int(11) DEFAULT NULL,
 KEY `id_index` (`id`) COMMENT 'MERGE_THRESHOLD=40'
) ENGINE=InnoDB DEFAULT CHARSET=latin1

Note

A MERGE_THRESHOLD value defined at the index level takes priority over a
MERGE_THRESHOLD value defined for the table. If undefined, MERGE_THRESHOLD
defaults to 50% (MERGE_THRESHOLD=50, which is the previously hardcoded value.

2089

InnoDB Table Compression

Likewise, you can use SHOW INDEX to view the MERGE_THRESHOLD value for an index, if explicitly defined
using the index_option COMMENT clause:

mysql> SHOW INDEX FROM t2 \G
*************************** 1. row ***************************
 Table: t2
 Non_unique: 1
 Key_name: id_index
 Seq_in_index: 1
 Column_name: id
 Collation: A
 Cardinality: 0
 Sub_part: NULL
 Packed: NULL
 Null: YES
 Index_type: BTREE
 Comment:
Index_comment: MERGE_THRESHOLD=40

Measuring the Effect of MERGE_THRESHOLD Settings

The INNODB_METRICS table provides two counters that can be used to measure the effect of a
MERGE_THRESHOLD setting on index page merges.

mysql> SELECT NAME, COMMENT FROM INFORMATION_SCHEMA.INNODB_METRICS
 WHERE NAME like '%index_page_merge%';
+-----------------------------+--+
| NAME | COMMENT |
+-----------------------------+--+
| index_page_merge_attempts | Number of index page merge attempts |
| index_page_merge_successful | Number of successful index page merges |
+-----------------------------+--+

When lowering the MERGE_THRESHOLD value, the objectives are:

• A smaller number of page merge attempts and successful page merges

• A similar number of page merge attempts and successful page merges

A MERGE_THRESHOLD setting that is too small could result in large data files due to an excessive amount
of empty page space.

For information about using INNODB_METRICS counters, see Section 14.15.6, “InnoDB
INFORMATION_SCHEMA Metrics Table”.

14.9 InnoDB Table Compression
By using the SQL syntax and MySQL configuration options for compression, you can create tables where
the data is stored in compressed form. Compression can help to improve both raw performance and
scalability. The compression means less data is transferred between disk and memory, and takes up less
space on disk and in memory. The benefits are amplified for tables with secondary indexes, because index
data is compressed also. Compression can be especially important for SSD storage devices, because they
tend to have lower capacity than HDD devices.

14.9.1 Overview of Table Compression

Because processors and cache memories have increased in speed more than disk storage devices, many
workloads are disk-bound. Data compression enables smaller database size, reduced I/O, and improved
throughput, at the small cost of increased CPU utilization. Compression is especially valuable for read-
intensive applications, on systems with enough RAM to keep frequently used data in memory.

2090

Enabling Compression for a Table

An InnoDB table created with ROW_FORMAT=COMPRESSED can use a smaller page size on disk than the
usual 16KB default. Smaller pages require less I/O to read from and write to disk, which is especially
valuable for SSD devices.

The page size is specified through the KEY_BLOCK_SIZE parameter. The different page size means
the table must be in its own .ibd file rather than in the system tablespace, which requires enabling
the innodb_file_per_table option. The level of compression is the same regardless of the
KEY_BLOCK_SIZE value. As you specify smaller values for KEY_BLOCK_SIZE, you get the I/O benefits
of increasingly smaller pages. But if you specify a value that is too small, there is additional overhead to
reorganize the pages when data values cannot be compressed enough to fit multiple rows in each page.
There is a hard limit on how small KEY_BLOCK_SIZE can be for a table, based on the lengths of the
key columns for each of its indexes. Specify a value that is too small, and the CREATE TABLE or ALTER
TABLE statement fails.

In the buffer pool, the compressed data is held in small pages, with a page size based on the
KEY_BLOCK_SIZE value. For extracting or updating the column values, MySQL also creates a 16KB page
in the buffer pool with the uncompressed data. Within the buffer pool, any updates to the uncompressed
page are also re-written back to the equivalent compressed page. You might need to size your buffer
pool to accommodate the additional data of both compressed and uncompressed pages, although the
uncompressed pages are evicted from the buffer pool when space is needed, and then uncompressed
again on the next access.

14.9.2 Enabling Compression for a Table

Before creating a compressed table, make sure the innodb_file_per_table configuration option is
enabled, and innodb_file_format is set to Barracuda. You can set these parameters in the MySQL
configuration file my.cnf or my.ini, or with the SET statement without shutting down the MySQL server.

To enable compression for a table, you use the clauses ROW_FORMAT=COMPRESSED, KEY_BLOCK_SIZE,
or both in a CREATE TABLE or ALTER TABLE statement.

To create a compressed table, you might use statements like these:

SET GLOBAL innodb_file_per_table=1;
SET GLOBAL innodb_file_format=Barracuda;
CREATE TABLE t1
 (c1 INT PRIMARY KEY)
 ROW_FORMAT=COMPRESSED
 KEY_BLOCK_SIZE=8;

• If you specify ROW_FORMAT=COMPRESSED, you can omit KEY_BLOCK_SIZE; the default page size value
is used, which is half the innodb_page_size value.

• If you specify KEY_BLOCK_SIZE, you can omit ROW_FORMAT=COMPRESSED; compression is enabled
automatically.

• To determine the best value for KEY_BLOCK_SIZE, typically you create several copies of the same table
with different values for this clause, then measure the size of the resulting .ibd files and see how well
each performs with a realistic workload.

• The KEY_BLOCK_SIZE value is treated as a hint; a different size could be used by InnoDB if necessary.
A value of 0 represents the default compressed page size, which is half of the innodb_page_size
value. The KEY_BLOCK_SIZE can only be less than or equal to the innodb_page_size value.
If you specify a value greater than the innodb_page_size value, the specified value is ignored,
a warning is issued, and KEY_BLOCK_SIZE is set to half of the innodb_page_size value. If
innodb_strict_mode=ON, specifying an invalid KEY_BLOCK_SIZE value returns an error.

2091

Tuning Compression for InnoDB Tables

• For additional performance-related configuration options, see Section 14.9.3, “Tuning Compression for
InnoDB Tables”.

The default uncompressed size of InnoDB data pages is 16KB. Depending on the combination of option
values, MySQL uses a page size of 1KB, 2KB, 4KB, 8KB, or 16KB for the .ibd file of the table. The actual
compression algorithm is not affected by the KEY_BLOCK_SIZE value; the value determines how large
each compressed chunk is, which in turn affects how many rows can be packed into each compressed
page.

Setting KEY_BLOCK_SIZE equal to the InnoDB page size does not typically result in much compression.
For example, setting KEY_BLOCK_SIZE=16 typically would not result in much compression, since the
normal InnoDB page size is 16KB. This setting may still be useful for tables with many long BLOB,
VARCHAR or TEXT columns, because such values often do compress well, and might therefore require
fewer overflow pages as described in Section 14.9.5, “How Compression Works for InnoDB Tables”.

All indexes of a table (including the clustered index) are compressed using the same page size, as
specified in the CREATE TABLE or ALTER TABLE statement. Table attributes such as ROW_FORMAT and
KEY_BLOCK_SIZE are not part of the CREATE INDEX syntax for InnoDB tables, and are ignored if they
are specified (although you see them in the output of the SHOW CREATE TABLE statement).

Restrictions on Compressed Tables

Because MySQL versions prior to 5.1 cannot process compressed tables, using compression requires
specifying the configuration parameter innodb_file_format=Barracuda, to avoid accidentally
introducing compatibility issues.

Table compression is also not available for the InnoDB system tablespace. The system tablespace
(space 0, the ibdata* files) can contain user data, but it also contains internal system information, and
therefore is never compressed. Thus, compression applies only to tables (and indexes) stored in their own
tablespaces, that is, created with the innodb_file_per_table option enabled.

Compression applies to an entire table and all its associated indexes, not to individual rows, despite the
clause name ROW_FORMAT.

14.9.3 Tuning Compression for InnoDB Tables

Most often, the internal optimizations described in InnoDB Data Storage and Compression ensure that the
system runs well with compressed data. However, because the efficiency of compression depends on the
nature of your data, you can make decisions that affect the performance of compressed tables:

• Which tables to compress.

• What compressed page size to use.

• Whether to adjust the size of the buffer pool based on run-time performance characteristics, such as the
amount of time the system spends compressing and uncompressing data. Whether the workload is more
like a data warehouse (primarily queries) or an OLTP system (mix of queries and DML).

• If the system performs DML operations on compressed tables, and the way the data is distributed
leads to expensive compression failures at runtime, you might adjust additional advanced configuration
options.

Use the guidelines in this section to help make those architectural and configuration choices. When you
are ready to conduct long-term testing and put compressed tables into production, see Section 14.9.4,
“Monitoring InnoDB Table Compression at Runtime” for ways to verify the effectiveness of those choices
under real-world conditions.

2092

Tuning Compression for InnoDB Tables

When to Use Compression

In general, compression works best on tables that include a reasonable number of character string
columns and where the data is read far more often than it is written. Because there are no guaranteed
ways to predict whether or not compression benefits a particular situation, always test with a specific
workload and data set running on a representative configuration. Consider the following factors when
deciding which tables to compress.

Data Characteristics and Compression

A key determinant of the efficiency of compression in reducing the size of data files is the nature of
the data itself. Recall that compression works by identifying repeated strings of bytes in a block of
data. Completely randomized data is the worst case. Typical data often has repeated values, and so
compresses effectively. Character strings often compress well, whether defined in CHAR, VARCHAR, TEXT
or BLOB columns. On the other hand, tables containing mostly binary data (integers or floating point
numbers) or data that is previously compressed (for example JPEG or PNG images) may not generally
compress well, significantly or at all.

You choose whether to turn on compression for each InnoDB table. A table and all of its indexes use
the same (compressed) page size. It might be that the primary key (clustered) index, which contains the
data for all columns of a table, compresses more effectively than the secondary indexes. For those cases
where there are long rows, the use of compression might result in long column values being stored “off-
page”, as discussed in DYNAMIC Row Format. Those overflow pages may compress well. Given these
considerations, for many applications, some tables compress more effectively than others, and you might
find that your workload performs best only with a subset of tables compressed.

To determine whether or not to compress a particular table, conduct experiments. You can get a
rough estimate of how efficiently your data can be compressed by using a utility that implements LZ77
compression (such as gzip or WinZip) on a copy of the .ibd file for an uncompressed table. You can
expect less compression from a MySQL compressed table than from file-based compression tools,
because MySQL compresses data in chunks based on the page size, 16KB by default. In addition to user
data, the page format includes some internal system data that is not compressed. File-based compression
utilities can examine much larger chunks of data, and so might find more repeated strings in a huge file
than MySQL can find in an individual page.

Another way to test compression on a specific table is to copy some data from your uncompressed table
to a similar, compressed table (having all the same indexes) and look at the size of the resulting .ibd file.
For example:

USE test;
SET GLOBAL innodb_file_per_table=1;
SET GLOBAL innodb_file_format=Barracuda;
SET GLOBAL autocommit=0;

-- Create an uncompressed table with a million or two rows.
CREATE TABLE big_table AS SELECT * FROM information_schema.columns;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
COMMIT;
ALTER TABLE big_table ADD id int unsigned NOT NULL PRIMARY KEY auto_increment;

2093

Tuning Compression for InnoDB Tables

SHOW CREATE TABLE big_table\G

select count(id) from big_table;

-- Check how much space is needed for the uncompressed table.
\! ls -l data/test/big_table.ibd

CREATE TABLE key_block_size_4 LIKE big_table;
ALTER TABLE key_block_size_4 key_block_size=4 row_format=compressed;

INSERT INTO key_block_size_4 SELECT * FROM big_table;
commit;

-- Check how much space is needed for a compressed table
-- with particular compression settings.
\! ls -l data/test/key_block_size_4.ibd

This experiment produced the following numbers, which of course could vary considerably depending on
your table structure and data:

-rw-rw---- 1 cirrus staff 310378496 Jan 9 13:44 data/test/big_table.ibd
-rw-rw---- 1 cirrus staff 83886080 Jan 9 15:10 data/test/key_block_size_4.ibd

To see whether compression is efficient for your particular workload:

• For simple tests, use a MySQL instance with no other compressed tables and run queries against the
Information Schema INNODB_CMP table.

• For more elaborate tests involving workloads with multiple compressed tables, run queries
against the Information Schema INNODB_CMP_PER_INDEX table. Because the statistics in the
INNODB_CMP_PER_INDEX table are expensive to collect, you must enable the configuration option
innodb_cmp_per_index_enabled before querying that table, and you might restrict such testing to a
development server or a non-critical replica server.

• Run some typical SQL statements against the compressed table you are testing.

• Examine the ratio of successful compression operations to overall compression operations by
querying the Information Schema INNODB_CMP or INNODB_CMP_PER_INDEX table, and comparing
COMPRESS_OPS to COMPRESS_OPS_OK.

• If a high percentage of compression operations complete successfully, the table might be a good
candidate for compression.

• If you get a high proportion of compression failures, you can adjust innodb_compression_level,
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max
options as described in Section 14.9.6, “Compression for OLTP Workloads”, and try further tests.

Database Compression versus Application Compression

Decide whether to compress data in your application or in the table; do not use both types of compression
for the same data. When you compress the data in the application and store the results in a compressed
table, extra space savings are extremely unlikely, and the double compression just wastes CPU cycles.

Compressing in the Database

When enabled, MySQL table compression is automatic and applies to all columns and index values.
The columns can still be tested with operators such as LIKE, and sort operations can still use indexes
even when the index values are compressed. Because indexes are often a significant fraction of the total
size of a database, compression could result in significant savings in storage, I/O or processor time. The

2094

Tuning Compression for InnoDB Tables

compression and decompression operations happen on the database server, which likely is a powerful
system that is sized to handle the expected load.

Compressing in the Application

If you compress data such as text in your application, before it is inserted into the database, You might
save overhead for data that does not compress well by compressing some columns and not others. This
approach uses CPU cycles for compression and uncompression on the client machine rather than the
database server, which might be appropriate for a distributed application with many clients, or where the
client machine has spare CPU cycles.

Hybrid Approach

Of course, it is possible to combine these approaches. For some applications, it may be appropriate to use
some compressed tables and some uncompressed tables. It may be best to externally compress some
data (and store it in uncompressed tables) and allow MySQL to compress (some of) the other tables in the
application. As always, up-front design and real-life testing are valuable in reaching the right decision.

Workload Characteristics and Compression

In addition to choosing which tables to compress (and the page size), the workload is another key
determinant of performance. If the application is dominated by reads, rather than updates, fewer pages
need to be reorganized and recompressed after the index page runs out of room for the per-page
“modification log” that MySQL maintains for compressed data. If the updates predominantly change
non-indexed columns or those containing BLOBs or large strings that happen to be stored “off-page”,
the overhead of compression may be acceptable. If the only changes to a table are INSERTs that use
a monotonically increasing primary key, and there are few secondary indexes, there is little need to
reorganize and recompress index pages. Since MySQL can “delete-mark” and delete rows on compressed
pages “in place” by modifying uncompressed data, DELETE operations on a table are relatively efficient.

For some environments, the time it takes to load data can be as important as run-time retrieval. Especially
in data warehouse environments, many tables may be read-only or read-mostly. In those cases, it might
or might not be acceptable to pay the price of compression in terms of increased load time, unless the
resulting savings in fewer disk reads or in storage cost is significant.

Fundamentally, compression works best when the CPU time is available for compressing and
uncompressing data. Thus, if your workload is I/O bound, rather than CPU-bound, you might find that
compression can improve overall performance. When you test your application performance with different
compression configurations, test on a platform similar to the planned configuration of the production
system.

Configuration Characteristics and Compression

Reading and writing database pages from and to disk is the slowest aspect of system performance.
Compression attempts to reduce I/O by using CPU time to compress and uncompress data, and is most
effective when I/O is a relatively scarce resource compared to processor cycles.

This is often especially the case when running in a multi-user environment with fast, multi-core CPUs.
When a page of a compressed table is in memory, MySQL often uses additional memory, typically 16KB,
in the buffer pool for an uncompressed copy of the page. The adaptive LRU algorithm attempts to balance
the use of memory between compressed and uncompressed pages to take into account whether the
workload is running in an I/O-bound or CPU-bound manner. Still, a configuration with more memory
dedicated to the buffer pool tends to run better when using compressed tables than a configuration where
memory is highly constrained.

2095

Monitoring InnoDB Table Compression at Runtime

Choosing the Compressed Page Size

The optimal setting of the compressed page size depends on the type and distribution of data that the table
and its indexes contain. The compressed page size should always be bigger than the maximum record
size, or operations may fail as noted in Compression of B-Tree Pages.

Setting the compressed page size too large wastes some space, but the pages do not have to be
compressed as often. If the compressed page size is set too small, inserts or updates may require time-
consuming recompression, and the B-tree nodes may have to be split more frequently, leading to bigger
data files and less efficient indexing.

Typically, you set the compressed page size to 8K or 4K bytes. Given that the maximum row size for an
InnoDB table is around 8K, KEY_BLOCK_SIZE=8 is usually a safe choice.

14.9.4 Monitoring InnoDB Table Compression at Runtime

Overall application performance, CPU and I/O utilization and the size of disk files are good indicators of
how effective compression is for your application. This section builds on the performance tuning advice
from Section 14.9.3, “Tuning Compression for InnoDB Tables”, and shows how to find problems that might
not turn up during initial testing.

To dig deeper into performance considerations for compressed tables, you can monitor compression
performance at runtime using the Information Schema tables described in Example 14.1, “Using the
Compression Information Schema Tables”. These tables reflect the internal use of memory and the rates of
compression used overall.

The INNODB_CMP table reports information about compression activity for each compressed page
size (KEY_BLOCK_SIZE) in use. The information in these tables is system-wide: it summarizes the
compression statistics across all compressed tables in your database. You can use this data to help decide
whether or not to compress a table by examining these tables when no other compressed tables are
being accessed. It involves relatively low overhead on the server, so you might query it periodically on a
production server to check the overall efficiency of the compression feature.

The INNODB_CMP_PER_INDEX table reports information about compression activity for individual tables
and indexes. This information is more targeted and more useful for evaluating compression efficiency
and diagnosing performance issues one table or index at a time. (Because that each InnoDB table is
represented as a clustered index, MySQL does not make a big distinction between tables and indexes
in this context.) The INNODB_CMP_PER_INDEX table does involve substantial overhead, so it is more
suitable for development servers, where you can compare the effects of different workloads, data, and
compression settings in isolation. To guard against imposing this monitoring overhead by accident, you
must enable the innodb_cmp_per_index_enabled configuration option before you can query the
INNODB_CMP_PER_INDEX table.

The key statistics to consider are the number of, and amount of time spent performing, compression
and uncompression operations. Since MySQL splits B-tree nodes when they are too full to contain
the compressed data following a modification, compare the number of “successful” compression
operations with the number of such operations overall. Based on the information in the INNODB_CMP and
INNODB_CMP_PER_INDEX tables and overall application performance and hardware resource utilization,
you might make changes in your hardware configuration, adjust the size of the buffer pool, choose a
different page size, or select a different set of tables to compress.

If the amount of CPU time required for compressing and uncompressing is high, changing to faster or
multi-core CPUs can help improve performance with the same data, application workload and set of
compressed tables. Increasing the size of the buffer pool might also help performance, so that more

2096

How Compression Works for InnoDB Tables

uncompressed pages can stay in memory, reducing the need to uncompress pages that exist in memory
only in compressed form.

A large number of compression operations overall (compared to the number of INSERT, UPDATE and
DELETE operations in your application and the size of the database) could indicate that some of your
compressed tables are being updated too heavily for effective compression. If so, choose a larger page
size, or be more selective about which tables you compress.

If the number of “successful” compression operations (COMPRESS_OPS_OK) is a high percentage of the
total number of compression operations (COMPRESS_OPS), then the system is likely performing well. If
the ratio is low, then MySQL is reorganizing, recompressing, and splitting B-tree nodes more often than
is desirable. In this case, avoid compressing some tables, or increase KEY_BLOCK_SIZE for some of the
compressed tables. You might turn off compression for tables that cause the number of “compression
failures” in your application to be more than 1% or 2% of the total. (Such a failure ratio might be acceptable
during a temporary operation such as a data load).

14.9.5 How Compression Works for InnoDB Tables

This section describes some internal implementation details about compression for InnoDB tables. The
information presented here may be helpful in tuning for performance, but is not necessary to know for basic
use of compression.

Compression Algorithms

Some operating systems implement compression at the file system level. Files are typically divided into
fixed-size blocks that are compressed into variable-size blocks, which easily leads into fragmentation.
Every time something inside a block is modified, the whole block is recompressed before it is written
to disk. These properties make this compression technique unsuitable for use in an update-intensive
database system.

MySQL implements compression with the help of the well-known zlib library, which implements the LZ77
compression algorithm. This compression algorithm is mature, robust, and efficient in both CPU utilization
and in reduction of data size. The algorithm is “lossless”, so that the original uncompressed data can
always be reconstructed from the compressed form. LZ77 compression works by finding sequences of
data that are repeated within the data to be compressed. The patterns of values in your data determine
how well it compresses, but typical user data often compresses by 50% or more.

Note

Prior to MySQL 5.6.42, InnoDB supports the zlib library up to version 1.2.3. In
MySQL 5.6.42 and later, InnoDB supports the zlib library up to version 1.2.11.

Unlike compression performed by an application, or compression features of some other database
management systems, InnoDB compression applies both to user data and to indexes. In many cases,
indexes can constitute 40-50% or more of the total database size, so this difference is significant. When
compression is working well for a data set, the size of the InnoDB data files (the .ibd files) is 25% to 50%
of the uncompressed size or possibly smaller. Depending on the workload, this smaller database can in
turn lead to a reduction in I/O, and an increase in throughput, at a modest cost in terms of increased CPU
utilization. You can adjust the balance between compression level and CPU overhead by modifying the
innodb_compression_level configuration option.

InnoDB Data Storage and Compression

All user data in InnoDB tables is stored in pages comprising a B-tree index (the clustered index). In some
other database systems, this type of index is called an “index-organized table”. Each row in the index node

2097

http://www.zlib.net/

How Compression Works for InnoDB Tables

contains the values of the (user-specified or system-generated) primary key and all the other columns of
the table.

Secondary indexes in InnoDB tables are also B-trees, containing pairs of values: the index key and a
pointer to a row in the clustered index. The pointer is in fact the value of the primary key of the table, which
is used to access the clustered index if columns other than the index key and primary key are required.
Secondary index records must always fit on a single B-tree page.

The compression of B-tree nodes (of both clustered and secondary indexes) is handled differently from
compression of overflow pages used to store long VARCHAR, BLOB, or TEXT columns, as explained in the
following sections.

Compression of B-Tree Pages

Because they are frequently updated, B-tree pages require special treatment. It is important to minimize
the number of times B-tree nodes are split, as well as to minimize the need to uncompress and recompress
their content.

One technique MySQL uses is to maintain some system information in the B-tree node in uncompressed
form, thus facilitating certain in-place updates. For example, this allows rows to be delete-marked and
deleted without any compression operation.

In addition, MySQL attempts to avoid unnecessary uncompression and recompression of index pages
when they are changed. Within each B-tree page, the system keeps an uncompressed “modification log” to
record changes made to the page. Updates and inserts of small records may be written to this modification
log without requiring the entire page to be completely reconstructed.

When the space for the modification log runs out, InnoDB uncompresses the page, applies the changes
and recompresses the page. If recompression fails (a situation known as a compression failure), the B-tree
nodes are split and the process is repeated until the update or insert succeeds.

To avoid frequent compression failures in write-intensive workloads, such as for OLTP applications,
MySQL sometimes reserves some empty space (padding) in the page, so that the modification log
fills up sooner and the page is recompressed while there is still enough room to avoid splitting it.
The amount of padding space left in each page varies as the system keeps track of the frequency
of page splits. On a busy server doing frequent writes to compressed tables, you can adjust the
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max
configuration options to fine-tune this mechanism.

Generally, MySQL requires that each B-tree page in an InnoDB table can accommodate at least two
records. For compressed tables, this requirement has been relaxed. Leaf pages of B-tree nodes (whether
of the primary key or secondary indexes) only need to accommodate one record, but that record must fit, in
uncompressed form, in the per-page modification log. If innodb_strict_mode is ON, MySQL checks the
maximum row size during CREATE TABLE or CREATE INDEX. If the row does not fit, the following error
message is issued: ERROR HY000: Too big row.

If you create a table when innodb_strict_mode is OFF, and a subsequent INSERT or UPDATE
statement attempts to create an index entry that does not fit in the size of the compressed page, the
operation fails with ERROR 42000: Row size too large. (This error message does not name the
index for which the record is too large, or mention the length of the index record or the maximum record
size on that particular index page.) To solve this problem, rebuild the table with ALTER TABLE and select
a larger compressed page size (KEY_BLOCK_SIZE), shorten any column prefix indexes, or disable
compression entirely with ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPACT.

Compressing BLOB, VARCHAR, and TEXT Columns

2098

How Compression Works for InnoDB Tables

In an InnoDB table, BLOB, VARCHAR, and TEXT columns that are not part of the primary key may be stored
on separately allocated overflow pages. We refer to these columns as off-page columns. Their values are
stored on singly-linked lists of overflow pages.

For tables created in ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED, the values of BLOB, TEXT,
or VARCHAR columns may be stored fully off-page, depending on their length and the length of the entire
row. For columns that are stored off-page, the clustered index record only contains 20-byte pointers to
the overflow pages, one per column. Whether any columns are stored off-page depends on the page size
and the total size of the row. When the row is too long to fit entirely within the page of the clustered index,
MySQL chooses the longest columns for off-page storage until the row fits on the clustered index page. As
noted above, if a row does not fit by itself on a compressed page, an error occurs.

Note

For tables created in ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED,
TEXT and BLOB columns that are less than or equal to 40 bytes are always stored
in-line.

Tables created in older versions of MySQL use the Antelope file format, which supports only
ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT. In these formats, MySQL stores the first 768
bytes of BLOB, VARCHAR, and TEXT columns in the clustered index record along with the primary key. The
768-byte prefix is followed by a 20-byte pointer to the overflow pages that contain the rest of the column
value.

When a table is in COMPRESSED format, all data written to overflow pages is compressed “as is”; that is,
MySQL applies the zlib compression algorithm to the entire data item. Other than the data, compressed
overflow pages contain an uncompressed header and trailer comprising a page checksum and a link to the
next overflow page, among other things. Therefore, very significant storage savings can be obtained for
longer BLOB, TEXT, or VARCHAR columns if the data is highly compressible, as is often the case with text
data. Image data, such as JPEG, is typically already compressed and so does not benefit much from being
stored in a compressed table; the double compression can waste CPU cycles for little or no space savings.

The overflow pages are of the same size as other pages. A row containing ten columns stored off-page
occupies ten overflow pages, even if the total length of the columns is only 8K bytes. In an uncompressed
table, ten uncompressed overflow pages occupy 160K bytes. In a compressed table with an 8K page size,
they occupy only 80K bytes. Thus, it is often more efficient to use compressed table format for tables with
long column values.

Using a 16K compressed page size can reduce storage and I/O costs for BLOB, VARCHAR, or TEXT
columns, because such data often compress well, and might therefore require fewer overflow pages, even
though the B-tree nodes themselves take as many pages as in the uncompressed form.

Compression and the InnoDB Buffer Pool

In a compressed InnoDB table, every compressed page (whether 1K, 2K, 4K or 8K) corresponds to
an uncompressed page of 16K bytes (or a smaller size if innodb_page_size is set). To access the
data in a page, MySQL reads the compressed page from disk if it is not already in the buffer pool, then
uncompresses the page to its original form. This section describes how InnoDB manages the buffer pool
with respect to pages of compressed tables.

To minimize I/O and to reduce the need to uncompress a page, at times the buffer pool contains both
the compressed and uncompressed form of a database page. To make room for other required database
pages, MySQL can evict from the buffer pool an uncompressed page, while leaving the compressed page

2099

Compression for OLTP Workloads

in memory. Or, if a page has not been accessed in a while, the compressed form of the page might be
written to disk, to free space for other data. Thus, at any given time, the buffer pool might contain both the
compressed and uncompressed forms of the page, or only the compressed form of the page, or neither.

MySQL keeps track of which pages to keep in memory and which to evict using a least-recently-used
(LRU) list, so that hot (frequently accessed) data tends to stay in memory. When compressed tables are
accessed, MySQL uses an adaptive LRU algorithm to achieve an appropriate balance of compressed
and uncompressed pages in memory. This adaptive algorithm is sensitive to whether the system is
running in an I/O-bound or CPU-bound manner. The goal is to avoid spending too much processing time
uncompressing pages when the CPU is busy, and to avoid doing excess I/O when the CPU has spare
cycles that can be used for uncompressing compressed pages (that may already be in memory). When
the system is I/O-bound, the algorithm prefers to evict the uncompressed copy of a page rather than both
copies, to make more room for other disk pages to become memory resident. When the system is CPU-
bound, MySQL prefers to evict both the compressed and uncompressed page, so that more memory can
be used for “hot” pages and reducing the need to uncompress data in memory only in compressed form.

Compression and the InnoDB Redo Log Files

Before a compressed page is written to a data file, MySQL writes a copy of the page to the redo log (if
it has been recompressed since the last time it was written to the database). This is done to ensure that
redo logs are usable for crash recovery, even in the unlikely case that the zlib library is upgraded and
that change introduces a compatibility problem with the compressed data. Therefore, some increase in
the size of log files, or a need for more frequent checkpoints, can be expected when using compression.
The amount of increase in the log file size or checkpoint frequency depends on the number of times
compressed pages are modified in a way that requires reorganization and recompression.

Compressed tables use a different file format for the redo log and the per-table tablespaces than in MySQL
5.1 and earlier. The MySQL Enterprise Backup product supports this latest Barracuda file format for
compressed InnoDB tables.

14.9.6 Compression for OLTP Workloads

Traditionally, the InnoDB compression feature was recommended primarily for read-only or read-mostly
workloads, such as in a data warehouse configuration. The rise of SSD storage devices, which are fast
but relatively small and expensive, makes compression attractive also for OLTP workloads: high-traffic,
interactive websites can reduce their storage requirements and their I/O operations per second (IOPS) by
using compressed tables with applications that do frequent INSERT, UPDATE, and DELETE operations.

Configuration options introduced in MySQL 5.6 let you adjust the way compression works for a particular
MySQL instance, with an emphasis on performance and scalability for write-intensive operations:

• innodb_compression_level lets you turn the degree of compression up or down. A higher value lets
you fit more data onto a storage device, at the expense of more CPU overhead during compression. A
lower value lets you reduce CPU overhead when storage space is not critical, or you expect the data is
not especially compressible.

• innodb_compression_failure_threshold_pct specifies a cutoff point for compression failures
during updates to a compressed table. When this threshold is passed, MySQL begins to leave additional
free space within each new compressed page, dynamically adjusting the amount of free space up to the
percentage of page size specified by innodb_compression_pad_pct_max

• innodb_compression_pad_pct_max lets you adjust the maximum amount of space reserved within
each page to record changes to compressed rows, without needing to compress the entire page again.
The higher the value, the more changes can be recorded without recompressing the page. MySQL uses

2100

SQL Compression Syntax Warnings and Errors

a variable amount of free space for the pages within each compressed table, only when a designated
percentage of compression operations “fail” at runtime, requiring an expensive operation to split the
compressed page.

• innodb_log_compressed_pages lets you disable writing of images of re-compressed pages to
the redo log. Re-compression may occur when changes are made to compressed data. This option is
enabled by default to prevent corruption that could occur if a different version of the zlib compression
algorithm is used during recovery. If you are certain that the zlib version is not subject to change,
disable innodb_log_compressed_pages to reduce redo log generation for workloads that modify
compressed data.

Because working with compressed data sometimes involves keeping both compressed and uncompressed
versions of a page in memory at the same time, when using compression with an OLTP-style workload, be
prepared to increase the value of the innodb_buffer_pool_size configuration option.

14.9.7 SQL Compression Syntax Warnings and Errors

Specifying ROW_FORMAT=COMPRESSED or KEY_BLOCK_SIZE in CREATE TABLE or ALTER TABLE
statements produces the following warnings if the Barracuda file format is not enabled. You can view them
with the SHOW WARNINGS statement.

Level Code Message

Warning 1478 InnoDB: KEY_BLOCK_SIZE
requires
innodb_file_per_table.

Warning 1478 InnoDB: KEY_BLOCK_SIZE
requires
innodb_file_format=1

Warning 1478 InnoDB: ignoring
KEY_BLOCK_SIZE=4.

Warning 1478 InnoDB:
ROW_FORMAT=COMPRESSED
requires
innodb_file_per_table.

Warning 1478 InnoDB: assuming
ROW_FORMAT=COMPACT.

Notes:

• By default, these messages are only warnings, not errors, and the table is created without compression,
as if the options were not specified.

• When innodb_strict_mode is enabled, MySQL generates an error, not a warning, for these cases.
The table is not created if the current configuration does not permit using compressed tables.

The “non-strict” behavior lets you import a mysqldump file into a database that does not support
compressed tables, even if the source database contained compressed tables. In that case, MySQL
creates the table in ROW_FORMAT=COMPACT instead of preventing the operation.

To import the dump file into a new database, and have the tables re-created as they exist in the
original database, ensure the server has the proper settings for the configuration parameters
innodb_file_format and innodb_file_per_table.

2101

SQL Compression Syntax Warnings and Errors

The attribute KEY_BLOCK_SIZE is permitted only when ROW_FORMAT is specified as COMPRESSED or is
omitted. Specifying a KEY_BLOCK_SIZE with any other ROW_FORMAT generates a warning that you can
view with SHOW WARNINGS. However, the table is non-compressed; the specified KEY_BLOCK_SIZE is
ignored).

Level Code Message

Warning 1478 InnoDB: ignoring
KEY_BLOCK_SIZE=n unless
ROW_FORMAT=COMPRESSED.

If you are running with innodb_strict_mode enabled, the combination of a KEY_BLOCK_SIZE with any
ROW_FORMAT other than COMPRESSED generates an error, not a warning, and the table is not created.

Table 14.5, “ROW_FORMAT and KEY_BLOCK_SIZE Options” provides an overview the ROW_FORMAT
and KEY_BLOCK_SIZE options that are used with CREATE TABLE or ALTER TABLE.

Table 14.5 ROW_FORMAT and KEY_BLOCK_SIZE Options

Option Usage Notes Description

ROW_FORMAT=REDUNDANT Storage format used prior to
MySQL 5.0.3

Less efficient than
ROW_FORMAT=COMPACT; for
backward compatibility

ROW_FORMAT=COMPACT Default storage format since
MySQL 5.0.3

Stores a prefix of 768 bytes
of long column values in the
clustered index page, with the
remaining bytes stored in an
overflow page

ROW_FORMAT=DYNAMIC Available only with innodb_file
_format=Barracuda

Store values within the clustered
index page if they fit; if not, stores
only a 20-byte pointer to an
overflow page (no prefix)

ROW_FORMAT=COMPRESSED Available only with innodb_file
_format=Barracuda

Compresses the table and
indexes using zlib

KEY_BLOCK_SIZE=n Available only with innodb_file
_format=Barracuda

Specifies compressed
page size of 1, 2, 4, 8
or 16 kilobytes; implies
ROW_FORMAT=COMPRESSED

Table 14.6, “CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF” summarizes
error conditions that occur with certain combinations of configuration parameters and options on the
CREATE TABLE or ALTER TABLE statements, and how the options appear in the output of SHOW TABLE
STATUS.

When innodb_strict_mode is OFF, MySQL creates or alters the table, but ignores certain settings as
shown below. You can see the warning messages in the MySQL error log. When innodb_strict_mode
is ON, these specified combinations of options generate errors, and the table is not created or altered. To
see the full description of the error condition, issue the SHOW ERRORS statement: example:

mysql> CREATE TABLE x (id INT PRIMARY KEY, c INT)

-> ENGINE=INNODB KEY_BLOCK_SIZE=33333;

2102

InnoDB File-Format Management

ERROR 1005 (HY000): Can't create table 'test.x' (errno: 1478)

mysql> SHOW ERRORS;
+-------+------+---+
| Level | Code | Message |
+-------+------+---+
| Error | 1478 | InnoDB: invalid KEY_BLOCK_SIZE=33333. |
| Error | 1005 | Can't create table 'test.x' (errno: 1478) |
+-------+------+---+

Table 14.6 CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF

Syntax Warning or Error Condition Resulting ROW_FORMAT, as
shown in SHOW TABLE STATUS

ROW_FORMAT=REDUNDANT None REDUNDANT

ROW_FORMAT=COMPACT None COMPACT

ROW_FORMAT=COMPRESSED
or ROW_FORMAT=DYNAMIC or
KEY_BLOCK_SIZE is specified

Ignored unless both
innodb_file_format=Barracuda
and innodb_file_per_table
are enabled

COMPACT

Invalid KEY_BLOCK_SIZE is
specified (not 1, 2, 4, 8 or 16)

KEY_BLOCK_SIZE is ignored the requested row format, or
COMPACT by default

ROW_FORMAT=COMPRESSED
and valid KEY_BLOCK_SIZE are
specified

None; KEY_BLOCK_SIZE
specified is used

COMPRESSED

KEY_BLOCK_SIZE is specified
with REDUNDANT, COMPACT or
DYNAMIC row format

KEY_BLOCK_SIZE is ignored REDUNDANT, COMPACT or
DYNAMIC

ROW_FORMAT is not one of
REDUNDANT, COMPACT, DYNAMIC
or COMPRESSED

Ignored if recognized by the
MySQL parser. Otherwise, an
error is issued.

COMPACT or N/A

When innodb_strict_mode is ON, MySQL rejects invalid ROW_FORMAT or KEY_BLOCK_SIZE
parameters. For compatibility with earlier versions of MySQL, strict mode is not enabled by default; instead,
MySQL issues warnings (not errors) for ignored invalid parameters.

It is not possible to see the chosen KEY_BLOCK_SIZE using SHOW TABLE STATUS. The statement SHOW
CREATE TABLE displays the KEY_BLOCK_SIZE (even if it was ignored when creating the table). The real
compressed page size of the table cannot be displayed by MySQL.

14.10 InnoDB File-Format Management

As InnoDB evolves, data file formats that are not compatible with prior versions of InnoDB are sometimes
required to support new features. To help manage compatibility in upgrade and downgrade situations, and
systems that run different versions of MySQL, InnoDB uses named file formats. InnoDB currently supports
two named file formats, Antelope and Barracuda.

• Antelope is the original InnoDB file format, which previously did not have a name. It supports COMPACT
and REDUNDANT row formats for InnoDB tables and is the default file format in MySQL 5.6 to ensure
maximum compatibility with earlier MySQL versions that do not support the Barracuda file format.

• Barracuda is the newest file format. It supports all InnoDB row formats including the newer
COMPRESSED and DYNAMIC row formats. The features associated with COMPRESSED and

2103

Enabling File Formats

DYNAMIC row formats include compressed tables, efficient storage of off-page columns, and index key
prefixes up to 3072 bytes (innodb_large_prefix). See Section 14.11, “InnoDB Row Formats”.

This section discusses enabling InnoDB file formats, verifying compatibility of different file formats between
MySQL releases, identifying the file format in use, and downgrading the file format.

14.10.1 Enabling File Formats

The innodb_file_format configuration option enables an InnoDB file format for file-per-table
tablespaces.

Antelope is the default innodb_file_format.

To preclude the use of features supported by the Barracuda file that make your database inaccessible
to the built-in InnoDB in MySQL 5.1 and prior releases, set innodb_file_format to Antelope.
Alternatively, you can disable innodb_file_per_table to have new tables created in the system
tablespace. The system tablespace is stored in the original Antelope file format.

You can set the value of innodb_file_format on the command line when you start mysqld, or in
the option file (my.cnf on Unix, my.ini on Windows). You can also change it dynamically with a SET
GLOBAL statement.

SET GLOBAL innodb_file_format=Barracuda;

Although Oracle recommends using the Barracuda format for new tables where practical, in MySQL 5.6 the
default file format is Antelope, for maximum compatibility with replication configurations containing earlier
MySQL releases.

14.10.2 Verifying File Format Compatibility

InnoDB incorporates several checks to guard against the possible crashes and data corruptions that might
occur if you run an old release of the MySQL server on InnoDB data files that use a newer file format.
These checks take place when the server is started, and when you first access a table. This section
describes these checks, how you can control them, and error and warning conditions that might arise.

Backward Compatibility

You only need to consider backward file format compatibility when using a recent version of InnoDB
(MySQL 5.5 and higher with InnoDB) alongside an older version (MySQL 5.1 or earlier, with the built-
in InnoDB rather than the InnoDB Plugin). To minimize the chance of compatibility issues, you can
standardize on the InnoDB Plugin for all your MySQL 5.1 and earlier database servers.

In general, a newer version of InnoDB may create a table or index that cannot safely be read or written with
an older version of InnoDB without risk of crashes, hangs, wrong results or corruptions. InnoDB includes a
mechanism to guard against these conditions, and to help preserve compatibility among database files and
versions of InnoDB. This mechanism lets you take advantage of some new features of an InnoDB release
(such as performance improvements and bug fixes), and still preserve the option of using your database
with a prior version of InnoDB, by preventing accidental use of new features that create downward-
incompatible disk files.

If a version of InnoDB supports a particular file format (whether or not that format is the default), you can
query and update any table that requires that format or an earlier format. Only the creation of new tables
using new features is limited based on the particular file format enabled. Conversely, if a tablespace
contains a table or index that uses a file format that is not supported, it cannot be accessed at all, even for
read access.

2104

Verifying File Format Compatibility

The only way to “downgrade” an InnoDB tablespace to the earlier Antelope file format is to copy the data to
a new table, in a tablespace that uses the earlier format.

The easiest way to determine the file format of an existing InnoDB tablespace is to examine the
properties of the table it contains, using the SHOW TABLE STATUS command or querying the table
INFORMATION_SCHEMA.TABLES. If the Row_format of the table is reported as 'Compressed' or
'Dynamic', the tablespace containing the table uses the Barracuda format. Otherwise, it uses the prior
InnoDB file format, Antelope.

Internal Details

Every InnoDB file-per-table tablespace (represented by a *.ibd file) file is labeled with a file format
identifier. The system tablespace (represented by the ibdata files) is tagged with the “highest” file format
in use in a group of InnoDB database files, and this tag is checked when the files are opened.

Creating a compressed table, or a table with ROW_FORMAT=DYNAMIC, updates the file header of the
corresponding file-per-table .ibd file and the table type in the InnoDB data dictionary with the identifier
for the Barracuda file format. From that point forward, the table cannot be used with a version of InnoDB
that does not support the Barracuda file format. To protect against anomalous behavior, InnoDB performs
a compatibility check when the table is opened. (In many cases, the ALTER TABLE statement recreates a
table and thus changes its properties. The special case of adding or dropping indexes without rebuilding
the table is described in Section 14.13.1, “Online DDL Operations”.)

Definition of ib-file set

To avoid confusion, for the purposes of this discussion we define the term “ib-file set” to mean the set of
operating system files that InnoDB manages as a unit. The ib-file set includes the following files:

• The system tablespace (one or more ibdata files) that contain internal system information (including
internal catalogs and undo information) and may include user data and indexes.

• Zero or more single-table tablespaces (also called “file per table” files, named *.ibd files).

• InnoDB log files; usually two, ib_logfile0 and ib_logfile1. Used for crash recovery and in
backups.

An “ib-file set” does not include the corresponding .frm files that contain metadata about InnoDB tables.
The .frm files are created and managed by MySQL, and can sometimes get out of sync with the internal
metadata in InnoDB.

Multiple tables, even from more than one database, can be stored in a single “ib-file set”. (In MySQL, a
“database” is a logical collection of tables, what other systems refer to as a “schema” or “catalog”.)

14.10.2.1 Compatibility Check When InnoDB Is Started

To prevent possible crashes or data corruptions when InnoDB opens an ib-file set, it checks that it can fully
support the file formats in use within the ib-file set. If the system is restarted following a crash, or a “fast
shutdown” (i.e., innodb_fast_shutdown is greater than zero), there may be on-disk data structures
(such as redo or undo entries, or doublewrite pages) that are in a “too-new” format for the current software.
During the recovery process, serious damage can be done to your data files if these data structures
are accessed. The startup check of the file format occurs before any recovery process begins, thereby
preventing consistency issues with the new tables or startup problems for the MySQL server.

Beginning with version InnoDB 1.0.1, the system tablespace records an identifier or tag for the “highest”
file format used by any table in any of the tablespaces that is part of the ib-file set. Checks against this file

2105

Verifying File Format Compatibility

format tag are controlled by the configuration parameter innodb_file_format_check, which is ON by
default.

If the file format tag in the system tablespace is newer or higher than the highest version supported by the
particular currently executing software and if innodb_file_format_check is ON, the following error is
issued when the server is started:

InnoDB: Error: the system tablespace is in a
file format that this version doesn't support

You can also set innodb_file_format to a file format name. Doing so prevents InnoDB from starting
if the current software does not support the file format specified. It also sets the “high water mark” to the
value you specify. The ability to set innodb_file_format_check is useful (with future releases) if you
manually “downgrade” all of the tables in an ib-file set. You can then rely on the file format check at startup
if you subsequently use an older version of InnoDB to access the ib-file set.

In some limited circumstances, you might want to start the server and use an ib-file set that is in a new
file format that is not supported by the software you are using. If you set the configuration parameter
innodb_file_format_check to OFF, InnoDB opens the database, but issues this warning message in
the error log:

InnoDB: Warning: the system tablespace is in a
file format that this version doesn't support

Note

This is a dangerous setting, as it permits the recovery process to run, possibly
corrupting your database if the previous shutdown was an unexpected exit or “fast
shutdown”. You should only set innodb_file_format_check to OFF if you are
sure that the previous shutdown was done with innodb_fast_shutdown=0, so
that essentially no recovery process occurs.

The parameter innodb_file_format_check affects only what happens when a database is opened,
not subsequently. Conversely, the parameter innodb_file_format (which enables a specific format)
only determines whether or not a new table can be created in the enabled format and has no effect on
whether or not a database can be opened.

The file format tag is a “high water mark”, and as such it is increased after the server is started, if a table
in a “higher” format is created or an existing table is accessed for read or write (assuming its format
is supported). If you access an existing table in a format higher than the format the running software
supports, the system tablespace tag is not updated, but table-level compatibility checking applies (and
an error is issued), as described in Section 14.10.2.2, “Compatibility Check When a Table Is Opened”.
Any time the high water mark is updated, the value of innodb_file_format_check is updated as
well, so the command SELECT @@innodb_file_format_check; displays the name of the latest file
format known to be used by tables in the currently open ib-file set and supported by the currently executing
software.

14.10.2.2 Compatibility Check When a Table Is Opened

When a table is first accessed, InnoDB (including some releases prior to InnoDB 1.0) checks that the file
format of the tablespace in which the table is stored is fully supported. This check prevents crashes or
corruptions that would otherwise occur when tables using a “too new” data structure are encountered.

All tables using any file format supported by a release can be read or written (assuming the user has
sufficient privileges). The setting of the system configuration parameter innodb_file_format can
prevent creating a new table that uses a specific file format, even if the file format is supported by a

2106

Identifying the File Format in Use

given release. Such a setting might be used to preserve backward compatibility, but it does not prevent
accessing any table that uses a supported format.

Versions of MySQL older than 5.0.21 cannot reliably use database files created by newer versions if a
new file format was used when a table was created. To prevent various error conditions or corruptions,
InnoDB checks file format compatibility when it opens a file (for example, upon first access to a table). If
the currently running version of InnoDB does not support the file format identified by the table type in the
InnoDB data dictionary, MySQL reports the following error:

ERROR 1146 (42S02): Table 'test.t1' doesn't exist

InnoDB also writes a message to the error log:

InnoDB: table test/t1: unknown table type 33

The table type should be equal to the tablespace flags, which contains the file format version as discussed
in Section 14.10.3, “Identifying the File Format in Use”.

Versions of InnoDB prior to MySQL 4.1 did not include table format identifiers in the database files, and
versions prior to MySQL 5.0.21 did not include a table format compatibility check. Therefore, there is no
way to ensure proper operations if a table in a newer file format is used with versions of InnoDB prior to
5.0.21.

The file format management capability in InnoDB 1.0 and higher (tablespace tagging and run-time checks)
allows InnoDB to verify as soon as possible that the running version of software can properly process the
tables existing in the database.

If you permit InnoDB to open a database containing files in a format it does not support (by setting the
parameter innodb_file_format_check to OFF), the table-level checking described in this section still
applies.

Users are strongly urged not to use database files that contain Barracuda file format tables with releases of
InnoDB older than the MySQL 5.1 with the InnoDB Plugin. It may be possible to rebuild such tables to use
the Antelope format.

14.10.3 Identifying the File Format in Use

If you enable a different file format using the innodb_file_format configuration option, the change
only applies to newly created tables. Also, when you create a new table, the tablespace containing the
table is tagged with the “earliest” or “simplest” file format that is required to support the table's features. For
example, if you enable the Barracuda file format, and create a new table that does not use the Dynamic
or Compressed row format, the new tablespace that contains the table is tagged as using the Antelope
file format .

It is easy to identify the file format used by a given table. The table uses the Antelope file format if the
row format reported by SHOW TABLE STATUS is either Compact or Redundant. The table uses the
Barracuda file format if the row format reported by SHOW TABLE STATUS is either Compressed or
Dynamic.

mysql> SHOW TABLE STATUS\G
*************************** 1. row ***************************
 Name: t1
 Engine: InnoDB
 Version: 10
 Row_format: Compact
 Rows: 0

2107

Modifying the File Format

 Avg_row_length: 0
 Data_length: 16384
Max_data_length: 0
 Index_length: 16384
 Data_free: 0
 Auto_increment: 1
 Create_time: 2014-11-03 13:32:10
 Update_time: NULL
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:

You can also identify the file format used by a given table or tablespace using InnoDB
INFORMATION_SCHEMA tables. For example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME='test/t1'\G
*************************** 1. row ***************************
 TABLE_ID: 44
 NAME: test/t1
 FLAG: 1
 N_COLS: 6
 SPACE: 30
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES WHERE NAME='test/t1'\G
*************************** 1. row ***************************
 SPACE: 30
 NAME: test/t1
 FLAG: 0
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact or Redundant
 PAGE_SIZE: 16384
ZIP_PAGE_SIZE: 0

14.10.4 Modifying the File Format

Each InnoDB tablespace file (with a name matching *.ibd) is tagged with the file format used to create its
table and indexes. The way to modify the file format is to re-create the table and its indexes. The easiest
way to recreate a table and its indexes is to use the following command on each table that you want to
modify:

ALTER TABLE t ROW_FORMAT=format_name;

If you are modifying the file format to downgrade to an older MySQL version, there may be incompatibilities
in table storage formats that require additional steps. For information about downgrading to a previous
MySQL version, see Section 2.12, “Downgrading MySQL”.

14.11 InnoDB Row Formats

The row format of a table determines how its rows are physically stored, which in turn can affect the
performance of queries and DML operations. As more rows fit into a single disk page, queries and index
lookups can work faster, less cache memory is required in the buffer pool, and less I/O is required to write
out updated values.

The data in each table is divided into pages. The pages that make up each table are arranged in a tree
data structure called a B-tree index. Table data and secondary indexes both use this type of structure. The

2108

REDUNDANT Row Format

B-tree index that represents an entire table is known as the clustered index, which is organized according
to the primary key columns. The nodes of a clustered index data structure contain the values of all columns
in the row. The nodes of a secondary index structure contain the values of index columns and primary key
columns.

Variable-length columns are an exception to the rule that column values are stored in B-tree index nodes.
Variable-length columns that are too long to fit on a B-tree page are stored on separately allocated disk
pages called overflow pages. Such columns are referred to as off-page columns. The values of off-page
columns are stored in singly-linked lists of overflow pages, with each such column having its own list of one
or more overflow pages. Depending on column length, all or a prefix of variable-length column values are
stored in the B-tree to avoid wasting storage and having to read a separate page.

The InnoDB storage engine supports four row formats: REDUNDANT, COMPACT, DYNAMIC, and
COMPRESSED.

Table 14.7 InnoDB Row Format Overview

Row Format Compact
Storage
Characteristics

Enhanced
Variable-
Length
Column
Storage

Large Index
Key Prefix
Support

Compression
Support

Supported
Tablespace
Types

Required
File Format

REDUNDANT No No No No system, file-
per-table

Antelope or
Barracuda

COMPACT Yes No No No system, file-
per-table

Antelope or
Barracuda

DYNAMIC Yes Yes Yes No file-per-table Barracuda

COMPRESSED Yes Yes Yes Yes file-per-table Barracuda

The topics that follow describe row format storage characteristics and how to define and determine the row
format of a table.

• REDUNDANT Row Format

• COMPACT Row Format

• DYNAMIC Row Format

• COMPRESSED Row Format

• Defining the Row Format of a Table

• Determining the Row Format of a Table

REDUNDANT Row Format

The REDUNDANT format provides compatibility with older versions of MySQL.

The REDUNDANT row format is supported by both InnoDB file formats (Antelope and Barracuda). For
more information, see Section 14.10, “InnoDB File-Format Management”.

Tables that use the REDUNDANT row format store the first 768 bytes of variable-length column values
(VARCHAR, VARBINARY, and BLOB and TEXT types) in the index record within the B-tree node, with the

2109

COMPACT Row Format

remainder stored on overflow pages. Fixed-length columns greater than or equal to 768 bytes are encoded
as variable-length columns, which can be stored off-page. For example, a CHAR(255) column can exceed
768 bytes if the maximum byte length of the character set is greater than 3, as it is with utf8mb4.

If the value of a column is 768 bytes or less, an overflow page is not used, and some savings in I/O may
result, since the value is stored entirely in the B-tree node. This works well for relatively short BLOB column
values, but may cause B-tree nodes to fill with data rather than key values, reducing their efficiency. Tables
with many BLOB columns could cause B-tree nodes to become too full, and contain too few rows, making
the entire index less efficient than if rows were shorter or column values were stored off-page.

REDUNDANT Row Format Storage Characteristics

The REDUNDANT row format has the following storage characteristics:

• Each index record contains a 6-byte header. The header is used to link together consecutive records,
and for row-level locking.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-byte
transaction ID field and a 7-byte roll pointer field.

• If no primary key is defined for a table, each clustered index record also contains a 6-byte row ID field.

• Each secondary index record contains all the primary key columns defined for the clustered index key
that are not in the secondary index.

• A record contains a pointer to each field of the record. If the total length of the fields in a record is less
than 128 bytes, the pointer is one byte; otherwise, two bytes. The array of pointers is called the record
directory. The area where the pointers point is the data part of the record.

• Internally, fixed-length character columns such as CHAR(10) are stored in fixed-length format. Trailing
spaces are not truncated from VARCHAR columns.

• Fixed-length columns greater than or equal to 768 bytes are encoded as variable-length columns, which
can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the maximum byte
length of the character set is greater than 3, as it is with utf8mb4.

• An SQL NULL value reserves one or two bytes in the record directory. An SQL NULL value reserves
zero bytes in the data part of the record if stored in a variable-length column. For a fixed-length column,
the fixed length of the column is reserved in the data part of the record. Reserving fixed space for NULL
values permits columns to be updated in place from NULL to non-NULL values without causing index
page fragmentation.

COMPACT Row Format

The COMPACT row format reduces row storage space by about 20% compared to the REDUNDANT row
format, at the cost of increasing CPU use for some operations. If your workload is a typical one that is
limited by cache hit rates and disk speed, COMPACT format is likely to be faster. If the workload is limited by
CPU speed, compact format might be slower.

The COMPACT row format is supported by both InnoDB file formats (Antelope and Barracuda). For
more information, see Section 14.10, “InnoDB File-Format Management”.

Tables that use the COMPACT row format store the first 768 bytes of variable-length column values
(VARCHAR, VARBINARY, and BLOB and TEXT types) in the index record within the B-tree node, with the
remainder stored on overflow pages. Fixed-length columns greater than or equal to 768 bytes are encoded

2110

COMPACT Row Format

as variable-length columns, which can be stored off-page. For example, a CHAR(255) column can exceed
768 bytes if the maximum byte length of the character set is greater than 3, as it is with utf8mb4.

If the value of a column is 768 bytes or less, an overflow page is not used, and some savings in I/O may
result, since the value is stored entirely in the B-tree node. This works well for relatively short BLOB column
values, but may cause B-tree nodes to fill with data rather than key values, reducing their efficiency. Tables
with many BLOB columns could cause B-tree nodes to become too full, and contain too few rows, making
the entire index less efficient than if rows were shorter or column values were stored off-page.

COMPACT Row Format Storage Characteristics

The COMPACT row format has the following storage characteristics:

• Each index record contains a 5-byte header that may be preceded by a variable-length header. The
header is used to link together consecutive records, and for row-level locking.

• The variable-length part of the record header contains a bit vector for indicating NULL columns. If the
number of columns in the index that can be NULL is N, the bit vector occupies CEILING(N/8) bytes.
(For example, if there are anywhere from 9 to 16 columns that can be NULL, the bit vector uses two
bytes.) Columns that are NULL do not occupy space other than the bit in this vector. The variable-length
part of the header also contains the lengths of variable-length columns. Each length takes one or two
bytes, depending on the maximum length of the column. If all columns in the index are NOT NULL and
have a fixed length, the record header has no variable-length part.

• For each non-NULL variable-length field, the record header contains the length of the column in one or
two bytes. Two bytes are only needed if part of the column is stored externally in overflow pages or the
maximum length exceeds 255 bytes and the actual length exceeds 127 bytes. For an externally stored
column, the 2-byte length indicates the length of the internally stored part plus the 20-byte pointer to the
externally stored part. The internal part is 768 bytes, so the length is 768+20. The 20-byte pointer stores
the true length of the column.

• The record header is followed by the data contents of non-NULL columns.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-byte
transaction ID field and a 7-byte roll pointer field.

• If no primary key is defined for a table, each clustered index record also contains a 6-byte row ID field.

• Each secondary index record contains all the primary key columns defined for the clustered index key
that are not in the secondary index. If any of the primary key columns are variable length, the record
header for each secondary index has a variable-length part to record their lengths, even if the secondary
index is defined on fixed-length columns.

• Internally, for nonvariable-length character sets, fixed-length character columns such as CHAR(10) are
stored in a fixed-length format.

Trailing spaces are not truncated from VARCHAR columns.

• Internally, for variable-length character sets such as utf8mb3 and utf8mb4, InnoDB attempts to store
CHAR(N) in N bytes by trimming trailing spaces. If the byte length of a CHAR(N) column value exceeds N
bytes, trailing spaces are trimmed to a minimum of the column value byte length. The maximum length of
a CHAR(N) column is the maximum character byte length × N.

A minimum of N bytes is reserved for CHAR(N). Reserving the minimum space N in many cases
enables column updates to be done in place without causing index page fragmentation. By comparison,
CHAR(N) columns occupy the maximum character byte length × N when using the REDUNDANT row
format.

2111

DYNAMIC Row Format

Fixed-length columns greater than or equal to 768 bytes are encoded as variable-length fields, which
can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the maximum byte
length of the character set is greater than 3, as it is with utf8mb4.

DYNAMIC Row Format

The DYNAMIC row format offers the same storage characteristics as the COMPACT row format but adds
enhanced storage capabilities for long variable-length columns and supports large index key prefixes.

The DYNAMIC row format is supported by the Barracuda file format. For more information, see
Section 14.10, “InnoDB File-Format Management”. To create tables that use the DYNAMIC row format, the
innodb_file_format variable must be set to Barracuda, and the innodb_file_per_table variable
must be enabled.

When a table is created with ROW_FORMAT=DYNAMIC, InnoDB can store long variable-length column
values (for VARCHAR, VARBINARY, and BLOB and TEXT types) fully off-page, with the clustered index
record containing only a 20-byte pointer to the overflow page. Fixed-length fields greater than or equal to
768 bytes are encoded as variable-length fields. For example, a CHAR(255) column can exceed 768 bytes
if the maximum byte length of the character set is greater than 3, as it is with utf8mb4.

Whether columns are stored off-page depends on the page size and the total size of the row. When a row
is too long, the longest columns are chosen for off-page storage until the clustered index record fits on the
B-tree page. TEXT and BLOB columns that are less than or equal to 40 bytes are stored in line.

The DYNAMIC row format maintains the efficiency of storing the entire row in the index node if it fits (as do
the COMPACT and REDUNDANT formats), but the DYNAMIC row format avoids the problem of filling B-tree
nodes with a large number of data bytes of long columns. The DYNAMIC row format is based on the idea
that if a portion of a long data value is stored off-page, it is usually most efficient to store the entire value
off-page. With DYNAMIC format, shorter columns are likely to remain in the B-tree node, minimizing the
number of overflow pages required for a given row.

The DYNAMIC row format supports index key prefixes up to 3072 bytes. This feature is controlled by the
innodb_large_prefix variable, which is disabled by default. See the innodb_large_prefix variable
description for more information.

DYNAMIC Row Format Storage Characteristics

The DYNAMIC row format is a variation of the COMPACT row format. For storage characteristics, see
COMPACT Row Format Storage Characteristics.

COMPRESSED Row Format

The COMPRESSED row format offers the same the storage characteristics and capabilities as the DYNAMIC
row format but adds support for table and index data compression.

The COMPRESSED row format is supported by the Barracuda file format. For more information, see
Section 14.10, “InnoDB File-Format Management”. To create tables that use the COMPRESSED row format,
the innodb_file_format variable must be set to Barracuda, and the innodb_file_per_table
variable must be enabled.

The COMPRESSED row format uses similar internal details for off-page storage as the DYNAMIC row format,
with additional storage and performance considerations from the table and index data being compressed
and using smaller page sizes. With the COMPRESSED row format, the KEY_BLOCK_SIZE option controls

2112

Defining the Row Format of a Table

how much column data is stored in the clustered index, and how much is placed on overflow pages. For
more information about the COMPRESSED row format, see InnoDB Table Compression.

The COMPRESSED row format supports index key prefixes up to 3072 bytes. This feature is controlled by
the innodb_large_prefix variable, which is disabled by default. See the innodb_large_prefix
variable description for more information.

Compressed Row Format Storage Characteristics

The COMPRESSED row format is a variation of the COMPACT row format. For storage characteristics, see
COMPACT Row Format Storage Characteristics.

Defining the Row Format of a Table

The default row format for InnoDB tables is COMPACT.

The row format of a table can be defined explicitly using the ROW_FORMAT table option in a CREATE
TABLE or ALTER TABLE statement. For example:

CREATE TABLE t1 (c1 INT) ROW_FORMAT=COMPACT;

ROW_FORMAT options include REDUNDANT, COMPACT, DYNAMIC, and COMPRESSED.

To create tables that use the DYNAMIC or COMPRESSED row format, the innodb_file_format variable
must be set to Barracuda, and the innodb_file_per_table variable must be enabled. Otherwise, if
innodb_strict_mode is not enabled, InnoDB tables are created with the default COMPACT row format.

Oracle recommends enabling innodb_strict_mode when using the ROW_FORMAT table option in
CREATE TABLE and ALTER TABLE statements.

Determining the Row Format of a Table

To determine the row format of a table, use SHOW TABLE STATUS:

mysql> SHOW TABLE STATUS IN test1\G
*************************** 1. row ***************************
 Name: t1
 Engine: InnoDB
 Version: 10
 Row_format: Compact
 Rows: 0
 Avg_row_length: 0
 Data_length: 16384
Max_data_length: 0
 Index_length: 16384
 Data_free: 0
 Auto_increment: 1
 Create_time: 2014-10-31 16:02:01
 Update_time: NULL
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment:

Alternatively, query the Information Schema INNODB_SYS_TABLES table:

mysql> SELECT NAME, ROW_FORMAT FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME='test1/t1';
+----------+------------+
| NAME | ROW_FORMAT |

2113

https://dev.mysql.com/doc/refman/5.7/en/innodb-table-compression.html

InnoDB Disk I/O and File Space Management

+----------+------------+
| test1/t1 | Dynamic |
+----------+------------+

14.12 InnoDB Disk I/O and File Space Management

As a DBA, you must manage disk I/O to keep the I/O subsystem from becoming saturated, and manage
disk space to avoid filling up storage devices. The ACID design model requires a certain amount of I/
O that might seem redundant, but helps to ensure data reliability. Within these constraints, InnoDB
tries to optimize the database work and the organization of disk files to minimize the amount of disk I/O.
Sometimes, I/O is postponed until the database is not busy, or until everything needs to be brought to a
consistent state, such as during a database restart after a fast shutdown.

This section discusses the main considerations for I/O and disk space with the default kind of MySQL
tables (also known as InnoDB tables):

• Controlling the amount of background I/O used to improve query performance.

• Enabling or disabling features that provide extra durability at the expense of additional I/O.

• Organizing tables into many small files, a few larger files, or a combination of both.

• Balancing the size of redo log files against the I/O activity that occurs when the log files become full.

• How to reorganize a table for optimal query performance.

14.12.1 InnoDB Disk I/O

InnoDB uses asynchronous disk I/O where possible, by creating a number of threads to handle I/O
operations, while permitting other database operations to proceed while the I/O is still in progress. On
Linux and Windows platforms, InnoDB uses the available OS and library functions to perform “native”
asynchronous I/O. On other platforms, InnoDB still uses I/O threads, but the threads may actually wait for
I/O requests to complete; this technique is known as “simulated” asynchronous I/O.

Read-Ahead

If InnoDB can determine there is a high probability that data might be needed soon, it performs read-
ahead operations to bring that data into the buffer pool so that it is available in memory. Making a few large
read requests for contiguous data can be more efficient than making several small, spread-out requests.
There are two read-ahead heuristics in InnoDB:

• In sequential read-ahead, if InnoDB notices that the access pattern to a segment in the tablespace is
sequential, it posts in advance a batch of reads of database pages to the I/O system.

• In random read-ahead, if InnoDB notices that some area in a tablespace seems to be in the process of
being fully read into the buffer pool, it posts the remaining reads to the I/O system.

For information about configuring read-ahead heuristics, see Section 14.8.3.3, “Configuring InnoDB Buffer
Pool Prefetching (Read-Ahead)”.

Doublewrite Buffer

InnoDB uses a novel file flush technique involving a structure called the doublewrite buffer, which is
enabled by default (innodb_doublewrite=ON). It adds safety to recovery following an unexpected exit
or power outage, and improves performance on most varieties of Unix by reducing the need for fsync()
operations.

2114

File Space Management

Before writing pages to a data file, InnoDB first writes them to a contiguous tablespace area called the
doublewrite buffer. Only after the write and the flush to the doublewrite buffer has completed does InnoDB
write the pages to their proper positions in the data file. If there is an operating system, storage subsystem,
or unexpected mysqld process exit in the middle of a page write (causing a torn page condition), InnoDB
can later find a good copy of the page from the doublewrite buffer during recovery.

14.12.2 File Space Management

The data files that you define in the configuration file using the innodb_data_file_path configuration
option form the InnoDB system tablespace. The files are logically concatenated to form the system
tablespace. There is no striping in use. You cannot define where within the system tablespace your tables
are allocated. In a newly created system tablespace, InnoDB allocates space starting from the first data
file.

To avoid the issues that come with storing all tables and indexes inside the system tablespace, you
can enable the innodb_file_per_table configuration option (the default), which stores each newly
created table in a separate tablespace file (with extension .ibd). For tables stored this way, there is less
fragmentation within the disk file, and when the table is truncated, the space is returned to the operating
system rather than still being reserved by InnoDB within the system tablespace.

Pages, Extents, Segments, and Tablespaces

Each tablespace consists of database pages. Every tablespace in a MySQL instance has the same page
size. By default, all tablespaces have a page size of 16KB; you can reduce the page size to 8KB or 4KB by
specifying the innodb_page_size option when you create the MySQL instance.

The pages are grouped into extents of size 1MB (64 consecutive 16KB pages, or 128 8KB pages, or 256
4KB pages). The “files” inside a tablespace are called segments in InnoDB. (These segments are different
from the rollback segment, which actually contains many tablespace segments.)

When a segment grows inside the tablespace, InnoDB allocates the first 32 pages to it one at a time. After
that, InnoDB starts to allocate whole extents to the segment. InnoDB can add up to 4 extents at a time to
a large segment to ensure good sequentiality of data.

Two segments are allocated for each index in InnoDB. One is for nonleaf nodes of the B-tree, the other
is for the leaf nodes. Keeping the leaf nodes contiguous on disk enables better sequential I/O operations,
because these leaf nodes contain the actual table data.

Some pages in the tablespace contain bitmaps of other pages, and therefore a few extents in an InnoDB
tablespace cannot be allocated to segments as a whole, but only as individual pages.

When you ask for available free space in the tablespace by issuing a SHOW TABLE STATUS statement,
InnoDB reports the extents that are definitely free in the tablespace. InnoDB always reserves some
extents for cleanup and other internal purposes; these reserved extents are not included in the free space.

When you delete data from a table, InnoDB contracts the corresponding B-tree indexes. Whether the freed
space becomes available for other users depends on whether the pattern of deletes frees individual pages
or extents to the tablespace. Dropping a table or deleting all rows from it is guaranteed to release the
space to other users, but remember that deleted rows are physically removed only by the purge operation,
which happens automatically some time after they are no longer needed for transaction rollbacks or
consistent reads. (See Section 14.3, “InnoDB Multi-Versioning”.)

To see information about the tablespace, use the Tablespace Monitor. See Section 14.17, “InnoDB
Monitors”.

2115

InnoDB Checkpoints

How Pages Relate to Table Rows

The maximum row length is slightly less than half a database page. For example, the maximum
row length is slightly less than 8KB for the default 16KB InnoDB page size, which is defined by the
innodb_page_size configuration option.

If a row does not exceed the half page limit, all of it is stored locally within the page. If a row exceeds the
half page limit, variable-length columns are chosen for external off-page storage until the row fits within half
a page. External off-page storage for variable-length columns differs by row format:

• COMPACT and REDUNDANT Row Formats

When a variable-length column is chosen for external off-page storage, InnoDB stores the first 768
bytes locally in the row, and the rest externally into overflow pages. Each such column has its own list of
overflow pages. The 768-byte prefix is accompanied by a 20-byte value that stores the true length of the
column and points into the overflow list where the rest of the value is stored. See Section 14.11, “InnoDB
Row Formats”.

• DYNAMIC and COMPRESSED Row Formats

When a variable-length column is chosen for external off-page storage, InnoDB stores a 20-byte
pointer locally in the row, and the rest externally into overflow pages. See Section 14.11, “InnoDB Row
Formats”.

LONGBLOB and LONGTEXT columns must be less than 4GB, and the total row length, including BLOB and
TEXT columns, must be less than 4GB.

14.12.3 InnoDB Checkpoints

Making your log files very large may reduce disk I/O during checkpointing. It often makes sense to set
the total size of the log files as large as the buffer pool or even larger. Although in the past large log files
could make crash recovery take excessive time, starting with MySQL 5.5, performance enhancements to
crash recovery make it possible to use large log files with fast startup after a crash. (Strictly speaking, this
performance improvement is available for MySQL 5.1 with the InnoDB Plugin 1.0.7 and higher. It is with
MySQL 5.5 that this improvement is available in the default InnoDB storage engine.)

How Checkpoint Processing Works

InnoDB implements a checkpoint mechanism known as fuzzy checkpointing. InnoDB flushes modified
database pages from the buffer pool in small batches. There is no need to flush the buffer pool in one
single batch, which would disrupt processing of user SQL statements during the checkpointing process.

During crash recovery, InnoDB looks for a checkpoint label written to the log files. It knows that all
modifications to the database before the label are present in the disk image of the database. Then InnoDB
scans the log files forward from the checkpoint, applying the logged modifications to the database.

14.12.4 Defragmenting a Table

Random insertions into or deletions from a secondary index can cause the index to become fragmented.
Fragmentation means that the physical ordering of the index pages on the disk is not close to the index
ordering of the records on the pages, or that there are many unused pages in the 64-page blocks that were
allocated to the index.

One symptom of fragmentation is that a table takes more space than it “should” take. How much that is
exactly, is difficult to determine. All InnoDB data and indexes are stored in B-trees, and their fill factor may
vary from 50% to 100%. Another symptom of fragmentation is that a table scan such as this takes more
time than it “should” take:

2116

Reclaiming Disk Space with TRUNCATE TABLE

SELECT COUNT(*) FROM t WHERE non_indexed_column <> 12345;

The preceding query requires MySQL to perform a full table scan, the slowest type of query for a large
table.

To speed up index scans, you can periodically perform a “null” ALTER TABLE operation, which causes
MySQL to rebuild the table:

ALTER TABLE tbl_name ENGINE=INNODB

As of MySQL 5.6.3, you can also use ALTER TABLE tbl_name FORCE to perform a “null” alter operation
that rebuilds the table. Previously the FORCE option was recognized but ignored.

As of MySQL 5.6.17, both ALTER TABLE tbl_name ENGINE=INNODB and ALTER TABLE tbl_name
FORCE use online DDL. For more information, see Section 14.13, “InnoDB and Online DDL”.

Another way to perform a defragmentation operation is to use mysqldump to dump the table to a text file,
drop the table, and reload it from the dump file.

If the insertions into an index are always ascending and records are deleted only from the end, the InnoDB
filespace management algorithm guarantees that fragmentation in the index does not occur.

14.12.5 Reclaiming Disk Space with TRUNCATE TABLE

To reclaim operating system disk space when truncating an InnoDB table, the table must be stored in
its own .ibd file. For a table to be stored in its own .ibd file, innodb_file_per_table must enabled
when the table is created. Additionally, there cannot be a foreign key constraint between the table being
truncated and other tables, otherwise the TRUNCATE TABLE operation fails. A foreign key constraint
between two columns in the same table, however, is permitted.

When a table is truncated, it is dropped and re-created in a new .ibd file, and the freed space is returned
to the operating system. This is in contrast to truncating InnoDB tables that are stored within the InnoDB
system tablespace (tables created when innodb_file_per_table=OFF), where only InnoDB can use
the freed space after the table is truncated.

The ability to truncate tables and return disk space to the operating system also means that physical
backups can be smaller. Truncating tables that are stored in the system tablespace (tables created when
innodb_file_per_table=OFF) leaves blocks of unused space in the system tablespace.

14.13 InnoDB and Online DDL
The online DDL feature provides support for in-place table alterations and concurrent DML. Benefits of this
feature include:

• Improved responsiveness and availability in busy production environments, where making a table
unavailable for minutes or hours is not practical.

• The ability to adjust the balance between performance and concurrency during DDL operations using the
LOCK clause. See The LOCK clause.

• Less disk space usage and I/O overhead than the table-copy method.

The online DDL feature builds on the fast index creation feature that is available in MySQL 5.5, which
optimized CREATE INDEX and DROP INDEX to avoid table-copying behavior.

The NDB Cluster NDB storage engine also supports online table schema changes, but uses its own syntax
that is not compatible with the syntax used for InnoDB online DDL operations. For more information, see
Section 18.6.12, “Online Operations with ALTER TABLE in NDB Cluster”.

2117

Online DDL Operations

Typically, you do not need to do anything special to enable online DDL. By default, MySQL performs the
operation in place, as permitted, with as little locking as possible.

You can control aspects of a DDL operation using the ALGORITHM and LOCK clauses of the ALTER TABLE
statement. These clauses are placed at the end of the statement, separated from the table and column
specifications by commas. For example:

ALTER TABLE tbl_name ADD PRIMARY KEY (column), ALGORITHM=INPLACE, LOCK=NONE;

The LOCK clause is useful for fine-tuning the degree of concurrent access to the table. The ALGORITHM
clause is primarily intended for performance comparisons and as a fallback to the older table-copying
behavior in case you encounter any issues. For example:

• To avoid accidentally making the table unavailable for reads, writes, or both, specify a clause on the
ALTER TABLE statement such as LOCK=NONE (permit reads and writes) or LOCK=SHARED (permit
reads). The operation halts immediately if the requested level of concurrency is not available.

• To compare performance, run a statement with ALGORITHM=INPLACE and ALGORITHM=COPY.
Alternatively, run a statement with the old_alter_table configuration option disabled and enabled.

• To avoid tying up the server with an ALTER TABLE operation that copies the table, include
ALGORITHM=INPLACE. The statement halts immediately if it cannot use the in-place mechanism.

14.13.1 Online DDL Operations

Online support details, syntax examples, and usage notes for DDL operations are provided under the
following topics in this section.

• Index Operations

• Primary Key Operations

• Column Operations

• Foreign Key Operations

• Table Operations

• Partitioning Operations

Index Operations

The following table provides an overview of online DDL support for index operations. An asterisk indicates
additional information, an exception, or a dependency. For details, see Syntax and Usage Notes.

Table 14.8 Online DDL Support for Index Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Creating or adding
a secondary index

Yes No Yes No

Dropping an index Yes No Yes Yes

Adding a FULLTEXT
index

Yes* No* No No

Changing the index
type

Yes No Yes Yes

2118

Online DDL Operations

Syntax and Usage Notes

• Creating or adding a secondary index

CREATE INDEX name ON table (col_list);

ALTER TABLE tbl_name ADD INDEX name (col_list);

The table remains available for read and write operations while the index is being created. The CREATE
INDEX statement only finishes after all transactions that are accessing the table are completed, so that
the initial state of the index reflects the most recent contents of the table.

Online DDL support for adding secondary indexes means that you can generally speed the overall
process of creating and loading a table and associated indexes by creating the table without secondary
indexes, then adding secondary indexes after the data is loaded.

A newly created secondary index contains only the committed data in the table at the time the CREATE
INDEX or ALTER TABLE statement finishes executing. It does not contain any uncommitted values, old
versions of values, or values marked for deletion but not yet removed from the old index.

If the server exits while creating a secondary index, upon recovery, MySQL drops any partially created
indexes. You must re-run the ALTER TABLE or CREATE INDEX statement.

Some factors affect the performance, space usage, and semantics of this operation. For details, see
Section 14.13.6, “Online DDL Limitations”.

• Dropping an index

DROP INDEX name ON table;

ALTER TABLE tbl_name DROP INDEX name;

The table remains available for read and write operations while the index is being dropped. The DROP
INDEX statement only finishes after all transactions that are accessing the table are completed, so that
the initial state of the index reflects the most recent contents of the table.

• Adding a FULLTEXT index

CREATE FULLTEXT INDEX name ON table(column);

Adding the first FULLTEXT index rebuilds the table if there is no user-defined FTS_DOC_ID column.
Additional FULLTEXT indexes may be added without rebuilding the table.

• Changing the index type (USING {BTREE | HASH})

ALTER TABLE tbl_name DROP INDEX i1, ADD INDEX i1(key_part,...) USING BTREE, ALGORITHM=INPLACE;

Primary Key Operations

The following table provides an overview of online DDL support for primary key operations. An asterisk
indicates additional information, an exception, or a dependency. See Syntax and Usage Notes.

Table 14.9 Online DDL Support for Primary Key Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Adding a primary
key

Yes* Yes* Yes No

2119

Online DDL Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Dropping a primary
key

No Yes No No

Dropping a primary
key and adding
another

Yes Yes Yes No

Syntax and Usage Notes

• Adding a primary key

ALTER TABLE tbl_name ADD PRIMARY KEY (column), ALGORITHM=INPLACE, LOCK=NONE;

Rebuilds the table in place. Data is reorganized substantially, making it an expensive operation.
ALGORITHM=INPLACE is not permitted under certain conditions if columns have to be converted to NOT
NULL.

Restructuring the clustered index always requires copying table data. Thus, it is best to define the
primary key when you create a table, rather than issuing ALTER TABLE ... ADD PRIMARY KEY later.

When you create a UNIQUE or PRIMARY KEY index, MySQL must do some extra work. For UNIQUE
indexes, MySQL checks that the table contains no duplicate values for the key. For a PRIMARY KEY
index, MySQL also checks that none of the PRIMARY KEY columns contains a NULL.

When you add a primary key using the ALGORITHM=COPY clause, MySQL converts NULL values in
the associated columns to default values: 0 for numbers, an empty string for character-based columns
and BLOBs, and 0000-00-00 00:00:00 for DATETIME. This is a non-standard behavior that Oracle
recommends you not rely on. Adding a primary key using ALGORITHM=INPLACE is only permitted when
the SQL_MODE setting includes the strict_trans_tables or strict_all_tables flags; when
the SQL_MODE setting is strict, ALGORITHM=INPLACE is permitted, but the statement can still fail if the
requested primary key columns contain NULL values. The ALGORITHM=INPLACE behavior is more
standard-compliant.

If you create a table without a primary key, InnoDB chooses one for you, which can be the first UNIQUE
key defined on NOT NULL columns, or a system-generated key. To avoid uncertainty and the potential
space requirement for an extra hidden column, specify the PRIMARY KEY clause as part of the CREATE
TABLE statement.

MySQL creates a new clustered index by copying the existing data from the original table to a temporary
table that has the desired index structure. Once the data is completely copied to the temporary table, the
original table is renamed with a different temporary table name. The temporary table comprising the new
clustered index is renamed with the name of the original table, and the original table is dropped from the
database.

The online performance enhancements that apply to operations on secondary indexes do not apply to
the primary key index. The rows of an InnoDB table are stored in a clustered index organized based
on the primary key, forming what some database systems call an “index-organized table”. Because the
table structure is closely tied to the primary key, redefining the primary key still requires copying the data.

When an operation on the primary key uses ALGORITHM=INPLACE, even though the data is still copied,
it is more efficient than using ALGORITHM=COPY because:

• No undo logging or associated redo logging is required for ALGORITHM=INPLACE. These operations
add overhead to DDL statements that use ALGORITHM=COPY.

2120

Online DDL Operations

• The secondary index entries are pre-sorted, and so can be loaded in order.

• The change buffer is not used, because there are no random-access inserts into the secondary
indexes.

If the server exits while creating a new clustered index, no data is lost, but you must complete the
recovery process using the temporary tables that exist during the process. Since it is rare to re-create
a clustered index or re-define primary keys on large tables, or to encounter a system crash during this
operation, this manual does not provide information on recovering from this scenario.

• Dropping a primary key

ALTER TABLE tbl_name DROP PRIMARY KEY, ALGORITHM=COPY;

Only ALGORITHM=COPY supports dropping a primary key without adding a new one in the same ALTER
TABLE statement.

• Dropping a primary key and adding another

ALTER TABLE tbl_name DROP PRIMARY KEY, ADD PRIMARY KEY (column), ALGORITHM=INPLACE, LOCK=NONE;

Data is reorganized substantially, making it an expensive operation.

Column Operations

The following table provides an overview of online DDL support for column operations. An asterisk
indicates additional information, an exception, or a dependency. For details, see Syntax and Usage Notes.

Table 14.10 Online DDL Support for Column Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Adding a column Yes Yes Yes* No

Dropping a column Yes Yes Yes No

Renaming a column Yes No Yes* Yes

Reordering columns Yes Yes Yes No

Setting a column
default value

Yes No Yes Yes

Changing the
column data type

No Yes No No

Dropping the
column default
value

Yes No Yes Yes

Changing the auto-
increment value

Yes No Yes No*

Making a column
NULL

Yes Yes* Yes No

Making a column
NOT NULL

Yes* Yes* Yes No

Modifying the
definition of an

Yes No Yes Yes

2121

Online DDL Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

ENUM or SET
column

Syntax and Usage Notes

• Adding a column

ALTER TABLE tbl_name ADD COLUMN column_name column_definition, ALGORITHM=INPLACE, LOCK=NONE;

Concurrent DML is not permitted when adding an auto-increment column. Data is reorganized
substantially, making it an expensive operation. At a minimum, ALGORITHM=INPLACE, LOCK=SHARED
is required.

• Dropping a column

ALTER TABLE tbl_name DROP COLUMN column_name, ALGORITHM=INPLACE, LOCK=NONE;

Data is reorganized substantially, making it an expensive operation.

• Renaming a column

ALTER TABLE tbl CHANGE old_col_name new_col_name data_type, ALGORITHM=INPLACE, LOCK=NONE;

To permit concurrent DML, keep the same data type and only change the column name.

When you keep the same data type and [NOT] NULL attribute, only changing the column name, the
operation can always be performed online.

You can also rename a column that is part of a foreign key constraint. The foreign key definition is
automatically updated to use the new column name. Renaming a column participating in a foreign
key only works with ALGORITHM=INPLACE. If you use the ALGORITHM=COPY clause, or some other
condition causes the operation to use ALGORITHM=COPY, the ALTER TABLE statement fails.

• Reordering columns

To reorder columns, use FIRST or AFTER in CHANGE or MODIFY operations.

ALTER TABLE tbl_name MODIFY COLUMN col_name column_definition FIRST, ALGORITHM=INPLACE, LOCK=NONE;

Data is reorganized substantially, making it an expensive operation.

• Changing the column data type

ALTER TABLE tbl_name CHANGE c1 c1 BIGINT, ALGORITHM=COPY;

Changing the column data type is only supported with ALGORITHM=COPY.

• Setting a column default value

ALTER TABLE tbl_name ALTER COLUMN col SET DEFAULT literal, ALGORITHM=INPLACE, LOCK=NONE;

Only modifies table metadata. Default column values are stored in the .frm file for the table, not the
InnoDB data dictionary.

• Dropping a column default value

ALTER TABLE tbl ALTER COLUMN col DROP DEFAULT, ALGORITHM=INPLACE, LOCK=NONE;

2122

Online DDL Operations

• Changing the auto-increment value

ALTER TABLE table AUTO_INCREMENT=next_value, ALGORITHM=INPLACE, LOCK=NONE;

Modifies a value stored in memory, not the data file.

In a distributed system using replication or sharding, you sometimes reset the auto-increment counter
for a table to a specific value. The next row inserted into the table uses the specified value for its auto-
increment column. You might also use this technique in a data warehousing environment where you
periodically empty all the tables and reload them, and restart the auto-increment sequence from 1.

• Making a column NULL

ALTER TABLE tbl_name MODIFY COLUMN column_name data_type NULL, ALGORITHM=INPLACE, LOCK=NONE;

Rebuilds the table in place. Data is reorganized substantially, making it an expensive operation.

• Making a column NOT NULL

ALTER TABLE tbl_name MODIFY COLUMN column_name data_type NOT NULL, ALGORITHM=INPLACE, LOCK=NONE;

Rebuilds the table in place. STRICT_ALL_TABLES or STRICT_TRANS_TABLES SQL_MODE is required
for the operation to succeed. The operation fails if the column contains NULL values. The server
prohibits changes to foreign key columns that have the potential to cause loss of referential integrity. See
Section 13.1.7, “ALTER TABLE Statement”. Data is reorganized substantially, making it an expensive
operation.

• Modifying the definition of an ENUM or SET column

CREATE TABLE t1 (c1 ENUM('a', 'b', 'c'));
ALTER TABLE t1 MODIFY COLUMN c1 ENUM('a', 'b', 'c', 'd'), ALGORITHM=INPLACE, LOCK=NONE;

Modifying the definition of an ENUM or SET column by adding new enumeration or set members to the
end of the list of valid member values may be performed in place, as long as the storage size of the data
type does not change. For example, adding a member to a SET column that has 8 members changes
the required storage per value from 1 byte to 2 bytes; this requires a table copy. Adding members in the
middle of the list causes renumbering of existing members, which requires a table copy.

Foreign Key Operations

The following table provides an overview of online DDL support for foreign key operations. An asterisk
indicates additional information, an exception, or a dependency. For details, see Syntax and Usage Notes.

Table 14.11 Online DDL Support for Foreign Key Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Adding a foreign
key constraint

Yes* No Yes Yes

Dropping a foreign
key constraint

Yes No Yes Yes

Syntax and Usage Notes

• Adding a foreign key constraint

The INPLACE algorithm is supported when foreign_key_checks is disabled. Otherwise, only the
COPY algorithm is supported.

2123

Online DDL Operations

ALTER TABLE tbl1 ADD CONSTRAINT fk_name FOREIGN KEY index (col1)
 REFERENCES tbl2(col2) referential_actions;

• Dropping a foreign key constraint

ALTER TABLE tbl DROP FOREIGN KEY fk_name;

Dropping a foreign key can be performed online with the foreign_key_checks option enabled or
disabled.

If you do not know the names of the foreign key constraints on a particular table, issue the following
statement and find the constraint name in the CONSTRAINT clause for each foreign key:

SHOW CREATE TABLE table\G

Or, query the Information Schema TABLE_CONSTRAINTS table and use the CONSTRAINT_NAME and
CONSTRAINT_TYPE columns to identify the foreign key names.

You can also drop a foreign key and its associated index in a single statement:

ALTER TABLE table DROP FOREIGN KEY constraint, DROP INDEX index;

Note

If foreign keys are already present in the table being altered (that is, it is a child
table containing a FOREIGN KEY ... REFERENCE clause), additional restrictions
apply to online DDL operations, even those not directly involving the foreign key
columns:

• An ALTER TABLE on the child table could wait for another transaction to commit,
if a change to the parent table causes associated changes in the child table
through an ON UPDATE or ON DELETE clause using the CASCADE or SET NULL
parameters.

• In the same way, if a table is the parent table in a foreign key relationship, even
though it does not contain any FOREIGN KEY clauses, it could wait for the ALTER
TABLE to complete if an INSERT, UPDATE, or DELETE statement causes an ON
UPDATE or ON DELETE action in the child table.

Table Operations

The following table provides an overview of online DDL support for table operations. An asterisk indicates
additional information, an exception, or a dependency. For details, see Syntax and Usage Notes.

Table 14.12 Online DDL Support for Table Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Changing the
ROW_FORMAT

Yes Yes Yes No

Changing the
KEY_BLOCK_SIZE

Yes Yes Yes No

Setting persistent
table statistics

Yes No Yes Yes

Specifying a
character set

Yes Yes* No No

2124

Online DDL Operations

Operation In Place Rebuilds Table Permits
Concurrent DML

Only Modifies
Metadata

Converting a
character set

No Yes No No

Optimizing a table Yes* Yes Yes No

Rebuilding with the
FORCE option

Yes* Yes Yes No

Performing a null
rebuild

Yes* Yes Yes No

Renaming a table Yes No Yes Yes

Syntax and Usage Notes

• Changing the ROW_FORMAT

ALTER TABLE tbl_name ROW_FORMAT = row_format, ALGORITHM=INPLACE, LOCK=NONE;

Data is reorganized substantially, making it an expensive operation.

For additional information about the ROW_FORMAT option, see Table Options.

• Changing the KEY_BLOCK_SIZE

ALTER TABLE tbl_name KEY_BLOCK_SIZE = value, ALGORITHM=INPLACE, LOCK=NONE;

Data is reorganized substantially, making it an expensive operation.

For additional information about the KEY_BLOCK_SIZE option, see Table Options.

• Setting persistent table statistics options

ALTER TABLE tbl_name STATS_PERSISTENT=0, STATS_SAMPLE_PAGES=20, STATS_AUTO_RECALC=1, ALGORITHM=INPLACE, LOCK=NONE;

Only modifies table metadata.

Persistent statistics include STATS_PERSISTENT, STATS_AUTO_RECALC, and STATS_SAMPLE_PAGES.
For more information, see Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

• Specifying a character set

ALTER TABLE tbl_name CHARACTER SET = charset_name, ALGORITHM=INPLACE, LOCK=NONE;

Rebuilds the table if the new character encoding is different.

• Converting a character set

ALTER TABLE tbl_name CONVERT TO CHARACTER SET charset_name, ALGORITHM=COPY;

Rebuilds the table if the new character encoding is different.

• Optimizing a table

OPTIMIZE TABLE tbl_name;

Performed in-place as of MySQL 5.6.17. In-place operation is not supported for tables with FULLTEXT
indexes. The operation uses the INPLACE algorithm, but ALGORITHM and LOCK syntax is not permitted.

• Rebuilding a table with the FORCE option

2125

Online DDL Operations

ALTER TABLE tbl_name FORCE, ALGORITHM=INPLACE, LOCK=NONE;

Uses ALGORITHM=INPLACE as of MySQL 5.6.17. ALGORITHM=INPLACE is not supported for tables
with FULLTEXT indexes.

• Performing a "null" rebuild

ALTER TABLE tbl_name ENGINE=InnoDB, ALGORITHM=INPLACE, LOCK=NONE;

Uses ALGORITHM=INPLACE as of MySQL 5.6.17. ALGORITHM=INPLACE is not supported for tables
with FULLTEXT indexes.

• Renaming a table

ALTER TABLE old_tbl_name RENAME TO new_tbl_name, ALGORITHM=INPLACE, LOCK=NONE;

MySQL renames files that correspond to the table tbl_name without making a copy. (You can also use
the RENAME TABLE statement to rename tables. See Section 13.1.32, “RENAME TABLE Statement”.)
Privileges granted specifically for the renamed table are not migrated to the new name. They must be
changed manually.

Partitioning Operations

With the exception of ALTER TABLE partitioning clauses, online DDL operations for partitioned InnoDB
tables follow the same rules that apply to regular InnoDB tables.

ALTER TABLE partitioning clauses do not go through the same internal online DDL API as regular non-
partitioned InnoDB tables, and most do not support ALGORITHM and LOCK clauses.

If you use a partitioning clause in an ALTER TABLE statement, the partitioned table is repartitioned
using the ALTER TABLE COPY algorithm. In other words, a new partitioned table is created with the
new partitioning scheme. The newly created table includes any changes applied by the ALTER TABLE
statement and the table data is copied into the new table structure.

If you do not modify table partitioning using ALTER TABLE partitioning clauses that use the COPY algorithm
or perform any other partition management in your ALTER TABLE statement, ALTER TABLE performs
supported INPLACE operations on each table partition. Be aware, however, that when INPLACE ALTER
TABLE operations are performed on each partition, there is increased demand on system resources due to
operations being performed on multiple partitions.

Even though partitioning clauses of the ALTER TABLE statement do not go through the same internal
online DDL API as regular non-partitioned InnoDB tables, MySQL still attempts to minimize data copying
and locking where possible:

• ADD PARTITION and DROP PARTITION for tables partitioned by RANGE or LIST do not copy existing
data.

• TRUNCATE PARTITION does not copy existing data.

• Concurrent queries are allowed during ADD PARTITION and COALESCE PARTITION for tables
partitioned by HASH or LIST. MySQL copies the data while holding a shared lock.

• For REORGANIZE PARTITION, REBUILD PARTITION, or ADD PARTITION or COALESCE PARTITION
for a table partitioned by LINEAR HASH or LIST, concurrent queries are allowed. Data from the affected
partitions is copied while holding a shared metadata (read) lock on the table.

• PARTITION BY and REMOVE PARTITIONING permit concurrent queries.

2126

Online DDL Performance and Concurrency

ALTER TABLE statements that change a table's partitioning cannot use ALGORITHM with DEFAULT, COPY,
or INPLACE. (MySQL 5.6.11 and later support such statements using ALGORITHM=1 or ALGORITHM=2
when performing upgrades or downgrades.) Such ALTER TABLE statements also do not support a LOCK
clause.

For additional information about ALTER TABLE partitioning clauses, see Partitioning Options, and
Section 13.1.7.1, “ALTER TABLE Partition Operations”. For information about partitioning in general, see
Chapter 19, Partitioning.

14.13.2 Online DDL Performance and Concurrency

Online DDL improves several aspects of MySQL operation:

• Applications that access the table are more responsive because queries and DML operations on the
table can proceed while the DDL operation is in progress. Reduced locking and waiting for MySQL
server resources leads to greater scalability, even for operations that are not involved in the DDL
operation.

• In-place operations avoid the disk I/O and CPU cycles associated with the table-copy method, which
minimizes overall load on the database. Minimizing load helps maintain good performance and high
throughput during the DDL operation.

• In-place operations read less data into the buffer pool than the table-copy operations, which reduces
purging of frequently accessed data from memory. Purging of frequently accessed data can cause a
temporary performance dip after a DDL operation.

The LOCK clause

By default, MySQL uses as little locking as possible during a DDL operation. The LOCK clause can be
specified to enforce more restrictive locking, if required. If the LOCK clause specifies a less restrictive level
of locking than is permitted for a particular DDL operation, the statement fails with an error. LOCK clauses
are described below, in order of least to most restrictive:

• LOCK=NONE:

Permits concurrent queries and DML.

For example, use this clause for tables involving customer signups or purchases, to avoid making the
tables unavailable during lengthy DDL operations.

• LOCK=SHARED:

Permits concurrent queries but blocks DML.

For example, use this clause on data warehouse tables, where you can delay data load operations until
the DDL operation is finished, but queries cannot be delayed for long periods.

• LOCK=DEFAULT:

Permits as much concurrency as possible (concurrent queries, DML, or both). Omitting the LOCK clause
is the same as specifying LOCK=DEFAULT.

Use this clause when you know that the default locking level of the DDL statement does not cause
availability problems for the table.

• LOCK=EXCLUSIVE:

2127

Online DDL Performance and Concurrency

Blocks concurrent queries and DML.

Use this clause if the primary concern is finishing the DDL operation in the shortest amount of time
possible, and concurrent query and DML access is not necessary. You might also use this clause if the
server is supposed to be idle, to avoid unexpected table accesses.

Online DDL and Metadata Locks

Online DDL operations can be viewed as having three phases:

• Phase 1: Initialization

In the initialization phase, the server determines how much concurrency is permitted during the
operation, taking into account storage engine capabilities, operations specified in the statement, and
user-specified ALGORITHM and LOCK options. During this phase, a shared upgradeable metadata lock is
taken to protect the current table definition.

• Phase 2: Execution

In this phase, the statement is prepared and executed. Whether the metadata lock is upgraded to
exclusive depends on the factors assessed in the initialization phase. If an exclusive metadata lock is
required, it is only taken briefly during statement preparation.

• Phase 3: Commit Table Definition

In the commit table definition phase, the metadata lock is upgraded to exclusive to evict the old table
definition and commit the new one. Once granted, the duration of the exclusive metadata lock is brief.

Due to the exclusive metadata lock requirements outlined above, an online DDL operation may have to
wait for concurrent transactions that hold metadata locks on the table to commit or rollback. Transactions
started before or during the DDL operation can hold metadata locks on the table being altered. In the case
of a long running or inactive transaction, an online DDL operation can time out waiting for an exclusive
metadata lock. Additionally, a pending exclusive metadata lock requested by an online DDL operation
blocks subsequent transactions on the table.

The following example demonstrates an online DDL operation waiting for an exclusive metadata lock, and
how a pending metadata lock blocks subsequent transactions on the table.

Session 1:

mysql> CREATE TABLE t1 (c1 INT) ENGINE=InnoDB;
mysql> START TRANSACTION;
mysql> SELECT * FROM t1;

The session 1 SELECT statement takes a shared metadata lock on table t1.

Session 2:

mysql> ALTER TABLE t1 ADD COLUMN x INT, ALGORITHM=INPLACE, LOCK=NONE;

The online DDL operation in session 2, which requires an exclusive metadata lock on table t1 to commit
table definition changes, must wait for the session 1 transaction to commit or roll back.

Session 3:

mysql> SELECT * FROM t1;

The SELECT statement issued in session 3 is blocked waiting for the exclusive metadata lock requested by
the ALTER TABLE operation in session 2 to be granted.

2128

Online DDL Performance and Concurrency

You can use SHOW FULL PROCESSLIST to determine if transactions are waiting for a metadata lock.

mysql> SHOW FULL PROCESSLIST\G
...
*************************** 2. row ***************************
 Id: 5
 User: root
 Host: localhost
 db: test
Command: Query
 Time: 44
 State: Waiting for table metadata lock
 Info: ALTER TABLE t1 ADD COLUMN x INT, ALGORITHM=INPLACE, LOCK=NONE
...
*************************** 4. row ***************************
 Id: 7
 User: root
 Host: localhost
 db: test
Command: Query
 Time: 5
 State: Waiting for table metadata lock
 Info: SELECT * FROM t1
4 rows in set (0.00 sec)

Online DDL Performance

The performance of a DDL operation is largely determined by whether the operation is performed in place
and whether it rebuilds the table.

To assess the relative performance of a DDL operation, you can compare results using
ALGORITHM=INPLACE with results using ALGORITHM=COPY. Alternatively, you can compare results with
old_alter_table disabled and enabled.

For DDL operations that modify table data, you can determine whether a DDL operation performs changes
in place or performs a table copy by looking at the “rows affected” value displayed after the command
finishes. For example:

• Changing the default value of a column (fast, does not affect the table data):

Query OK, 0 rows affected (0.07 sec)

• Adding an index (takes time, but 0 rows affected shows that the table is not copied):

Query OK, 0 rows affected (21.42 sec)

• Changing the data type of a column (takes substantial time and requires rebuilding all the rows of the
table):

Query OK, 1671168 rows affected (1 min 35.54 sec)

Before running a DDL operation on a large table, check whether the operation is fast or slow as follows:

1. Clone the table structure.

2. Populate the cloned table with a small amount of data.

3. Run the DDL operation on the cloned table.

4. Check whether the “rows affected” value is zero or not. A nonzero value means the operation copies
table data, which might require special planning. For example, you might do the DDL operation during a
period of scheduled downtime, or on each replica server one at a time.

2129

Online DDL Space Requirements

Note

For a greater understanding of the MySQL processing associated with a DDL
operation, examine Performance Schema and INFORMATION_SCHEMA tables
related to InnoDB before and after DDL operations to see the number of physical
reads, writes, memory allocations, and so on.

Because there is some processing work involved with recording the changes made by concurrent DML
operations, then applying those changes at the end, an online DDL operation could take longer overall than
the table-copy mechanism that blocks table access from other sessions. The reduction in raw performance
is balanced against better responsiveness for applications that use the table. When evaluating the
techniques for changing table structure, consider end-user perception of performance, based on factors
such as load times for web pages.

14.13.3 Online DDL Space Requirements

Online DDL operations have the following space requirements:

• Temporary log files:

A temporary log file records concurrent DML when an online DDL operation creates an index or alters
a table. The temporary log file is extended as required by the value of innodb_sort_buffer_size
up to a maximum specified by innodb_online_alter_log_max_size. If the operation takes
a long time and concurrent DML modifies the table so much that the size of the temporary log file
exceeds the value of innodb_online_alter_log_max_size, the online DDL operation fails with a
DB_ONLINE_LOG_TOO_BIG error and uncommitted concurrent DML operations are rolled back. A large
innodb_online_alter_log_max_size setting permits more DML during an online DDL operation,
but it also extends the period of time at the end of the DDL operation when the table is locked to apply
logged DML.

The innodb_sort_buffer_size variable also defines the size of the temporary log file read buffer
and write buffer.

• Temporary sort files:

Online DDL operations that rebuild the table write temporary sort files to the MySQL temporary directory
($TMPDIR on Unix, %TEMP% on Windows, or the directory specified by --tmpdir) during index creation.
Temporary sort files are not created in the directory that contains the original table. Each temporary sort
file is large enough to hold one column of data, and each sort file is removed when its data is merged
into the final table or index. Operations involving temporary sort files may require temporary space equal
to the amount of data in the table plus indexes. An error is reported if online DDL operation uses all of
the available disk space on the file system where the data directory resides.

If the MySQL temporary directory is not large enough to hold the sort files, set tmpdir to a different
directory. Alternatively, define a separate temporary directory for online DDL operations using
innodb_tmpdir. This option was introduced in MySQL 5.6.29 to help avoid temporary directory
overflows that could occur as a result of large temporary sort files.

• Intermediate table files:

Some online DDL operations that rebuild the table create a temporary intermediate table file in the
same directory as the original table. An intermediate table file may require space equal to the size of the
original table. Intermediate table file names begin with #sql-ib prefix and only appear briefly during the
online DDL operation.

The innodb_tmpdir option is not applicable to intermediate table files.

2130

Simplifying DDL Statements with Online DDL

14.13.4 Simplifying DDL Statements with Online DDL

Before the introduction of online DDL, it was common practice to combine many DDL operations into a
single ALTER TABLE statement. Because each ALTER TABLE statement involved copying and rebuilding
the table, it was more efficient to make several changes to the same table at once, since those changes
could all be done with a single rebuild operation for the table. The downside was that SQL code involving
DDL operations was harder to maintain and to reuse in different scripts. If the specific changes were
different each time, you might have to construct a new complex ALTER TABLE for each slightly different
scenario.

For DDL operations that can be done in place, you can separate them into individual ALTER TABLE
statements for easier scripting and maintenance, without sacrificing efficiency. For example, you might take
a complicated statement such as:

ALTER TABLE t1 ADD INDEX i1(c1), ADD UNIQUE INDEX i2(c2),
 CHANGE c4_old_name c4_new_name INTEGER UNSIGNED;

and break it down into simpler parts that can be tested and performed independently, such as:

ALTER TABLE t1 ADD INDEX i1(c1);
ALTER TABLE t1 ADD UNIQUE INDEX i2(c2);
ALTER TABLE t1 CHANGE c4_old_name c4_new_name INTEGER UNSIGNED NOT NULL;

You might still use multi-part ALTER TABLE statements for:

• Operations that must be performed in a specific sequence, such as creating an index followed by a
foreign key constraint that uses that index.

• Operations all using the same specific LOCK clause, that you want to either succeed or fail as a group.

• Operations that cannot be performed in place, that is, that still use the table-copy method.

• Operations for which you specify ALGORITHM=COPY or old_alter_table=1, to force the table-
copying behavior if needed for precise backward-compatibility in specialized scenarios.

14.13.5 Online DDL Failure Conditions

The failure of an online DDL operation is typically due to one of the following conditions:

• An ALGORITHM clause specifies an algorithm that is not compatible with the particular type of DDL
operation or storage engine.

• A LOCK clause specifies a low degree of locking (SHARED or NONE) that is not compatible with the
particular type of DDL operation.

• A timeout occurs while waiting for an exclusive lock on the table, which may be needed briefly during the
initial and final phases of the DDL operation.

• The tmpdir or innodb_tmpdir file system runs out of disk space, while MySQL writes temporary
sort files on disk during index creation. For more information, see Section 14.13.3, “Online DDL Space
Requirements”.

• The operation takes a long time and concurrent DML modifies the table so much that the size of the
temporary online log exceeds the value of the innodb_online_alter_log_max_size configuration
option. This condition causes a DB_ONLINE_LOG_TOO_BIG error.

• Concurrent DML makes changes to the table that are allowed with the original table definition, but not
with the new one. The operation only fails at the very end, when MySQL tries to apply all the changes
from concurrent DML statements. For example, you might insert duplicate values into a column while a
unique index is being created, or you might insert NULL values into a column while creating a primary

2131

Online DDL Limitations

key index on that column. The changes made by the concurrent DML take precedence, and the ALTER
TABLE operation is effectively rolled back.

14.13.6 Online DDL Limitations

The following limitations apply to online DDL operations:

• The table is copied when creating an index on a TEMPORARY TABLE.

• The ALTER TABLE clause LOCK=NONE is not permitted if there are ON...CASCADE or ON...SET NULL
constraints on the table.

• Before an online DDL operation can finish, it must wait for transactions that hold metadata locks on the
table to commit or roll back. An online DDL operation may briefly require an exclusive metadata lock on
the table during its execution phase, and always requires one in the final phase of the operation when
updating the table definition. Consequently, transactions holding metadata locks on the table can cause
an online DDL operation to block. The transactions that hold metadata locks on the table may have been
started before or during the online DDL operation. A long running or inactive transaction that holds a
metadata lock on the table can cause an online DDL operation to timeout.

• An online DDL operation on a table in a foreign key relationship does not wait for a transaction executing
on the other table in the foreign key relationship to commit or rollback. The transaction holds an
exclusive metadata lock on the table it is updating and shared metadata lock on the foreign-key-related
table (required for foreign key checking). The shared metadata lock permits the online DDL operation
to proceed but blocks the operation in its final phase, when an exclusive metadata lock is required to
update the table definition. This scenario can result in deadlocks as other transactions wait for the online
DDL operation to finish.

• When running an online DDL operation, the thread that runs the ALTER TABLE statement applies
an online log of DML operations that were run concurrently on the same table from other connection
threads. When the DML operations are applied, it is possible to encounter a duplicate key entry error
(ERROR 1062 (23000): Duplicate entry), even if the duplicate entry is only temporary and would
be reverted by a later entry in the online log. This is similar to the idea of a foreign key constraint check
in InnoDB in which constraints must hold during a transaction.

• OPTIMIZE TABLE for an InnoDB table is mapped to an ALTER TABLE operation to rebuild the table
and update index statistics and free unused space in the clustered index. Prior to 5.6.17, there is no
online DDL support for this operation. Secondary indexes are not created as efficiently because keys are
inserted in the order they appeared in the primary key. As of 5.6.17, OPTIMIZE TABLE is supported with
the addition of online DDL support for rebuilding regular and partitioned InnoDB tables.

• Tables created before MySQL 5.6 that include temporal columns (DATE, DATETIME or TIMESTAMP) and
have not been rebuilt using ALGORITHM=COPY do not support ALGORITHM=INPLACE. In this case, an
ALTER TABLE ... ALGORITHM=INPLACE operation returns the following error:

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported.
Reason: Cannot change column type INPLACE. Try ALGORITHM=COPY.

• The following limitations are generally applicable to online DDL operations on large tables that involve
rebuilding the table:

• There is no mechanism to pause an online DDL operation or to throttle I/O or CPU usage for an online
DDL operation.

• Progress monitoring capability for online DDL operations is limited until MySQL 5.7.6, which
introduces Performance Schema stage events for monitoring ALTER TABLE progress. See Monitoring
ALTER TABLE Progress for InnoDB Tables Using Performance Schema.

2132

https://dev.mysql.com/doc/refman/5.7/en/monitor-alter-table-performance-schema.html
https://dev.mysql.com/doc/refman/5.7/en/monitor-alter-table-performance-schema.html

InnoDB Startup Options and System Variables

• Rollback of an online DDL operation can be expensive should the operation fail.

• Long running online DDL operations can cause replication lag. An online DDL operation must finish
running on the source before it is run on the replica. Also, DML that was processed concurrently on
the source is only processed on the replica after the DDL operation on the replica is completed.

For additional information related to running online DDL operations on large tables, see Section 14.13.2,
“Online DDL Performance and Concurrency”.

14.14 InnoDB Startup Options and System Variables
• System variables that are true or false can be enabled at server startup by naming them, or disabled

by using a --skip- prefix. For example, to enable or disable the InnoDB adaptive hash index, you
can use --innodb-adaptive-hash-index or --skip-innodb-adaptive-hash-index on the
command line, or innodb_adaptive_hash_index or skip_innodb_adaptive_hash_index in an
option file.

• System variables that take a numeric value can be specified as --var_name=value on the command
line or as var_name=value in option files.

• Many system variables can be changed at runtime (see Section 5.1.8.2, “Dynamic System Variables”).

• For information about GLOBAL and SESSION variable scope modifiers, refer to the SET statement
documentation.

• Certain options control the locations and layout of the InnoDB data files. Section 14.8.1, “InnoDB
Startup Configuration” explains how to use these options.

• Some options, which you might not use initially, help tune InnoDB performance characteristics based on
machine capacity and your database workload.

• For more information on specifying options and system variables, see Section 4.2.2, “Specifying
Program Options”.

Table 14.13 InnoDB Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

foreign_key_checks Yes Both Yes

ignore_builtin_innodbYes Yes Yes Global No

innodb Yes Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

2133

InnoDB Startup Options and System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_additional_mem_pool_sizeYes Yes Yes Global No

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_levelYes Yes Yes Global Yes

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

Innodb_available_undo_logs Yes Global No

Innodb_buffer_pool_bytes_data Yes Global No

Innodb_buffer_pool_bytes_dirty Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

Innodb_buffer_pool_dump_status Yes Global No

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

Innodb_buffer_pool_load_status Yes Global No

Innodb_buffer_pool_pages_data Yes Global No

Innodb_buffer_pool_pages_dirty Yes Global No

Innodb_buffer_pool_pages_flushed Yes Global No

Innodb_buffer_pool_pages_free Yes Global No

Innodb_buffer_pool_pages_latched Yes Global No

Innodb_buffer_pool_pages_misc Yes Global No

Innodb_buffer_pool_pages_total Yes Global No

Innodb_buffer_pool_read_ahead Yes Global No

Innodb_buffer_pool_read_ahead_evicted Yes Global No

Innodb_buffer_pool_read_ahead_rnd Yes Global No

Innodb_buffer_pool_read_requests Yes Global No

Innodb_buffer_pool_reads Yes Global No

innodb_buffer_pool_sizeYes Yes Yes Global No

Innodb_buffer_pool_wait_free Yes Global No

Innodb_buffer_pool_write_requests Yes Global No

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_change_buffering_debugYes Yes Yes Global Yes

2134

InnoDB Startup Options and System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_checksumsYes Yes Yes Global No

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

Innodb_data_fsyncs Yes Global No

innodb_data_home_dirYes Yes Yes Global No

Innodb_data_pending_fsyncs Yes Global No

Innodb_data_pending_reads Yes Global No

Innodb_data_pending_writes Yes Global No

Innodb_data_read Yes Global No

Innodb_data_reads Yes Global No

Innodb_data_writes Yes Global No

Innodb_data_written Yes Global No

Innodb_dblwr_pages_written Yes Global No

Innodb_dblwr_writes Yes Global No

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

innodb_doublewriteYes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_fil_make_page_dirty_debugYes Yes Yes Global Yes

innodb_file_formatYes Yes Yes Global Yes

innodb_file_format_checkYes Yes Yes Global No

innodb_file_format_maxYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_flush_log_at_timeoutYes Yes Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_ft_aux_table Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

2135

InnoDB Startup Options and System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_ft_enable_stopwordYes Yes Yes Both Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

Innodb_have_atomic_builtins Yes Global No

innodb_io_capacityYes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

innodb_large_prefixYes Yes Yes Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_checkpoint_nowYes Yes Yes Global Yes

innodb_log_compressed_pagesYes Yes Yes Global Yes

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

Innodb_log_waits Yes Global No

Innodb_log_write_requests Yes Global No

Innodb_log_writes Yes Global No

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_mirrored_log_groupsYes Yes Yes Global No

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

innodb_monitor_reset_allYes Yes Yes Global Yes

Innodb_num_open_files Yes Global No

innodb_numa_interleaveYes Yes Yes Global No

innodb_old_blocks_pctYes Yes Yes Global Yes

2136

InnoDB Startup Options and System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_filesYes Yes Yes Global No

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

Innodb_os_log_fsyncs Yes Global No

Innodb_os_log_pending_fsyncs Yes Global No

Innodb_os_log_pending_writes Yes Global No

Innodb_os_log_written Yes Global No

Innodb_page_size Yes Global No

innodb_page_sizeYes Yes Yes Global No

Innodb_pages_created Yes Global No

Innodb_pages_read Yes Global No

Innodb_pages_written Yes Global No

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_onlyYes Yes Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

Innodb_row_lock_current_waits Yes Global No

Innodb_row_lock_time Yes Global No

Innodb_row_lock_time_avg Yes Global No

Innodb_row_lock_time_max Yes Global No

Innodb_row_lock_waits Yes Global No

Innodb_rows_deleted Yes Global No

Innodb_rows_inserted Yes Global No

Innodb_rows_read Yes Global No

Innodb_rows_updated Yes Global No

innodb_saved_page_number_debugYes Yes Yes Global Yes

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_include_delete_markedYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

2137

InnoDB Command Options

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_persistentYes Yes Yes Global Yes

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

innodb_stats_sample_pagesYes Yes Yes Global Yes

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

innodb-
status-file

Yes Yes

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_modeYes Yes Yes Both Yes

innodb_support_xaYes Yes Yes Both Yes

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locksYes Yes Yes Both Yes

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_tmpdir Yes Yes Yes Both Yes

Innodb_truncated_status_writes Yes Global No

innodb_trx_purge_view_update_only_debugYes Yes Yes Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes Global Yes

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_logsYes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global No

innodb_use_native_aioYes Yes Yes Global No

innodb_use_sys_mallocYes Yes Yes Global No

innodb_version Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

timed_mutexesYes Yes Yes Global Yes

unique_checks Yes Both Yes

InnoDB Command Options

• --innodb[=value]

Command-Line Format --innodb[=value]

Deprecated 5.6.21

Type Enumeration

Default Value ON

Valid Values OFF

ON

2138

InnoDB System Variables

FORCE

Controls loading of the InnoDB storage engine, if the server was compiled with InnoDB support. This
option has a tristate format, with possible values of OFF, ON, or FORCE. See Section 5.5.1, “Installing and
Uninstalling Plugins”.

To disable InnoDB, use --innodb=OFF or --skip-innodb. In this case, because the default storage
engine is InnoDB, the server does not start unless you also use --default-storage-engine and
--default-tmp-storage-engine to set the default to some other engine for both permanent and
TEMPORARY tables.

As of MySQL 5.6.21, --innodb=OFF and --skip-innodb options are deprecated and their use
results in a warning. Expect these options to be removed in a future MySQL release.

• --innodb-status-file

Command-Line Format --innodb-status-file[={OFF|ON}]

Type Boolean

Default Value OFF

The --innodb-status-file startup option controls whether InnoDB creates a file named
innodb_status.pid in the data directory and writes SHOW ENGINE INNODB STATUS output to it
every 15 seconds, approximately.

The innodb_status.pid file is not created by default. To create it, start mysqld with the --innodb-
status-file option. InnoDB removes the file when the server is shut down normally. If an abnormal
shutdown occurs, the status file may have to be removed manually.

The --innodb-status-file option is intended for temporary use, as SHOW ENGINE INNODB
STATUS output generation can affect performance, and the innodb_status.pid file can become quite
large over time.

For related information, see Section 14.17.2, “Enabling InnoDB Monitors”.

• --skip-innodb

Disable the InnoDB storage engine. See the description of --innodb.

InnoDB System Variables

• daemon_memcached_enable_binlog

Command-Line Format --daemon-memcached-enable-
binlog[={OFF|ON}]

System Variable daemon_memcached_enable_binlog

Scope Global

Dynamic No

Type Boolean

Default Value OFF

2139

InnoDB System Variables

Enable this option on the source server to use the InnoDB memcached plugin (daemon_memcached)
with the MySQL binary log. This option can only be set at server startup. You must also enable the
MySQL binary log on the source server using the --log-bin option.

For more information, see Section 14.20.6, “The InnoDB memcached Plugin and Replication”.

• daemon_memcached_engine_lib_name

Command-Line Format --daemon-memcached-engine-lib-
name=file_name

System Variable daemon_memcached_engine_lib_name

Scope Global

Dynamic No

Type File name

Default Value innodb_engine.so

Specifies the shared library that implements the InnoDB memcached plugin.

For more information, see Section 14.20.3, “Setting Up the InnoDB memcached Plugin”.

• daemon_memcached_engine_lib_path

Command-Line Format --daemon-memcached-engine-lib-
path=dir_name

System Variable daemon_memcached_engine_lib_path

Scope Global

Dynamic No

Type Directory name

Default Value NULL

The path of the directory containing the shared library that implements the InnoDB memcached plugin.
The default value is NULL, representing the MySQL plugin directory. You should not need to modify this
parameter unless specifying a memcached plugin for a different storage engine that is located outside of
the MySQL plugin directory.

For more information, see Section 14.20.3, “Setting Up the InnoDB memcached Plugin”.

• daemon_memcached_option

Command-Line Format --daemon-memcached-option=options

System Variable daemon_memcached_option

Scope Global

Dynamic No

Type String

Default Value

Used to pass space-separated memcached options to the underlying memcached memory object
caching daemon on startup. For example, you might change the port that memcached listens on, reduce

2140

InnoDB System Variables

the maximum number of simultaneous connections, change the maximum memory size for a key-value
pair, or enable debugging messages for the error log.

See Section 14.20.3, “Setting Up the InnoDB memcached Plugin” for usage details. For information
about memcached options, refer to the memcached man page.

• daemon_memcached_r_batch_size

Command-Line Format --daemon-memcached-r-batch-size=#

System Variable daemon_memcached_r_batch_size

Scope Global

Dynamic No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 1073741824

Specifies how many memcached read operations (get operations) to perform before doing a COMMIT to
start a new transaction. Counterpart of daemon_memcached_w_batch_size.

This value is set to 1 by default, so that any changes made to the table through SQL statements
are immediately visible to memcached operations. You might increase it to reduce the overhead
from frequent commits on a system where the underlying table is only being accessed through the
memcached interface. If you set the value too large, the amount of undo or redo data could impose some
storage overhead, as with any long-running transaction.

For more information, see Section 14.20.3, “Setting Up the InnoDB memcached Plugin”.

• daemon_memcached_w_batch_size

Command-Line Format --daemon-memcached-w-batch-size=#

System Variable daemon_memcached_w_batch_size

Scope Global

Dynamic No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 1048576

Specifies how many memcached write operations, such as add, set, and incr, to perform before doing
a COMMIT to start a new transaction. Counterpart of daemon_memcached_r_batch_size.

This value is set to 1 by default, on the assumption that data being stored is important to preserve in
case of an outage and should immediately be committed. When storing non-critical data, you might
increase this value to reduce the overhead from frequent commits; but then the last N-1 uncommitted
write operations could be lost if an unexpected exit occurs.

For more information, see Section 14.20.3, “Setting Up the InnoDB memcached Plugin”.

• ignore_builtin_innodb

2141

InnoDB System Variables

Command-Line Format --ignore-builtin-innodb[={OFF|ON}]

Deprecated Yes

System Variable ignore_builtin_innodb

Scope Global

Dynamic No

Type Boolean

In earlier versions of MySQL, enabling this variable caused the server to behave as if the built-in InnoDB
were not present, which enabled the InnoDB Plugin to be used instead. In MySQL 5.6, InnoDB is the
default storage engine and InnoDB Plugin is not used, so this variable has no effect. As of MySQL
5.6.5, it is ignored.

• innodb_adaptive_flushing

Command-Line Format --innodb-adaptive-flushing[={OFF|ON}]

System Variable innodb_adaptive_flushing

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Specifies whether to dynamically adjust the rate of flushing dirty pages in the InnoDB buffer pool
based on the workload. Adjusting the flush rate dynamically is intended to avoid bursts of I/O activity.
This setting is enabled by default. See Section 14.8.3.4, “Configuring Buffer Pool Flushing” for more
information. For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_adaptive_flushing_lwm

Command-Line Format --innodb-adaptive-flushing-lwm=#

System Variable innodb_adaptive_flushing_lwm

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 70

Defines the low water mark representing percentage of redo log capacity at which adaptive flushing is
enabled. For more information, see Section 14.8.3.4, “Configuring Buffer Pool Flushing”.

• innodb_adaptive_hash_index

Command-Line Format --innodb-adaptive-hash-index[={OFF|
ON}]

System Variable innodb_adaptive_hash_index
2142

InnoDB System Variables

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Whether the InnoDB adaptive hash index is enabled or disabled. It may be desirable, depending on
your workload, to dynamically enable or disable adaptive hash indexing to improve query performance.
Because the adaptive hash index may not be useful for all workloads, conduct benchmarks with it both
enabled and disabled, using realistic workloads. See Section 14.5.3, “Adaptive Hash Index” for details.

This variable is enabled by default. You can modify this parameter using the SET GLOBAL statement,
without restarting the server. Changing the setting at runtime requires privileges sufficient to set global
system variables. See Section 5.1.8.1, “System Variable Privileges”. You can also use --skip-
innodb-adaptive-hash-index at server startup to disable it.

Disabling the adaptive hash index empties the hash table immediately. Normal operations can continue
while the hash table is emptied, and executing queries that were using the hash table access the index
B-trees directly instead. When the adaptive hash index is re-enabled, the hash table is populated again
during normal operation.

• innodb_adaptive_max_sleep_delay

Command-Line Format --innodb-adaptive-max-sleep-delay=#

System Variable innodb_adaptive_max_sleep_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 150000

Minimum Value 0

Maximum Value 1000000

Unit microseconds

Permits InnoDB to automatically adjust the value of innodb_thread_sleep_delay up
or down according to the current workload. Any nonzero value enables automated, dynamic
adjustment of the innodb_thread_sleep_delay value, up to the maximum value specified in the
innodb_adaptive_max_sleep_delay option. The value represents the number of microseconds.
This option can be useful in busy systems, with greater than 16 InnoDB threads. (In practice, it is most
valuable for MySQL systems with hundreds or thousands of simultaneous connections.)

For more information, see Section 14.8.5, “Configuring Thread Concurrency for InnoDB”.

• innodb_additional_mem_pool_size

Command-Line Format --innodb-additional-mem-pool-size=#

Deprecated Yes

System Variable innodb_additional_mem_pool_size

Scope Global

Dynamic No

2143

InnoDB System Variables

Type Integer

Default Value 8388608

Minimum Value 2097152

Maximum Value 4294967295

Unit bytes

The size in bytes of a memory pool InnoDB uses to store data dictionary information and other internal
data structures. The more tables you have in your application, the more memory you allocate here. If
InnoDB runs out of memory in this pool, it starts to allocate memory from the operating system and
writes warning messages to the MySQL error log. The default value is 8MB.

This variable relates to the InnoDB internal memory allocator, which is unused if
innodb_use_sys_malloc is enabled. For more information, see Section 14.8.4, “Configuring the
Memory Allocator for InnoDB”.

As of MySQL 5.6.3, innodb_additional_mem_pool_size is deprecated; expect it to be removed in
a future MySQL release.

• innodb_api_bk_commit_interval

Command-Line Format --innodb-api-bk-commit-interval=#

System Variable innodb_api_bk_commit_interval

Scope Global

Dynamic Yes

Type Integer

Default Value 5

Minimum Value 1

Maximum Value 1073741824

Unit seconds

How often to auto-commit idle connections that use the InnoDB memcached interface, in seconds. For
more information, see Section 14.20.5.4, “Controlling Transactional Behavior of the InnoDB memcached
Plugin”.

• innodb_api_disable_rowlock

Command-Line Format --innodb-api-disable-rowlock[={OFF|
ON}]

System Variable innodb_api_disable_rowlock

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Use this option to disable row locks when InnoDB memcached performs DML operations. By default,
innodb_api_disable_rowlock is disabled, which means that memcached requests row locks for
get and set operations. When innodb_api_disable_rowlock is enabled, memcached requests a
table lock instead of row locks.

2144

InnoDB System Variables

innodb_api_disable_rowlock is not dynamic. It must be specified on the mysqld command line
or entered in the MySQL configuration file. Configuration takes effect when the plugin is installed, which
occurs when the MySQL server is started.

For more information, see Section 14.20.5.4, “Controlling Transactional Behavior of the InnoDB
memcached Plugin”.

• innodb_api_enable_binlog

Command-Line Format --innodb-api-enable-binlog[={OFF|ON}]

System Variable innodb_api_enable_binlog

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Lets you use the InnoDB memcached plugin with the MySQL binary log. For more information, see
Enabling the InnoDB memcached Binary Log.

• innodb_api_enable_mdl

Command-Line Format --innodb-api-enable-mdl[={OFF|ON}]

System Variable innodb_api_enable_mdl

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Locks the table used by the InnoDB memcached plugin, so that it cannot be dropped or altered by
DDL through the SQL interface. For more information, see Section 14.20.5.4, “Controlling Transactional
Behavior of the InnoDB memcached Plugin”.

• innodb_api_trx_level

Command-Line Format --innodb-api-trx-level=#

System Variable innodb_api_trx_level

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 3

Controls the transaction isolation level on queries processed by the memcached interface. The constants
corresponding to the familiar names are:

• 0 = READ UNCOMMITTED
2145

InnoDB System Variables

• 1 = READ COMMITTED

• 2 = REPEATABLE READ

• 3 = SERIALIZABLE

For more information, see Section 14.20.5.4, “Controlling Transactional Behavior of the InnoDB
memcached Plugin”.

• innodb_autoextend_increment

Command-Line Format --innodb-autoextend-increment=#

System Variable innodb_autoextend_increment

Scope Global

Dynamic Yes

Type Integer

Default Value 64

Minimum Value 1

Maximum Value 1000

Unit megabytes

The increment size (in megabytes) for extending the size of an auto-extending InnoDB system
tablespace file when it becomes full. The default value is 64. For related information, see System
Tablespace Data File Configuration, and Resizing the System Tablespace.

The innodb_autoextend_increment setting does not affect file-per-table tablespace files. These
files are auto-extending regardless of of the innodb_autoextend_increment setting. The initial
extensions are by small amounts, after which extensions occur in increments of 4MB.

• innodb_autoinc_lock_mode

Command-Line Format --innodb-autoinc-lock-mode=#

System Variable innodb_autoinc_lock_mode

Scope Global

Dynamic No

Type Integer

Default Value 1

Valid Values 0

1

2

The lock mode to use for generating auto-increment values. Permissible values are 0, 1, or 2, for
traditional, consecutive, or interleaved, respectively. The default setting is 1 (consecutive). For the
characteristics of each lock mode, see InnoDB AUTO_INCREMENT Lock Modes.

2146

InnoDB System Variables

• innodb_buffer_pool_dump_at_shutdown

Command-Line Format --innodb-buffer-pool-dump-at-
shutdown[={OFF|ON}]

System Variable innodb_buffer_pool_dump_at_shutdown

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Specifies whether to record the pages cached in the InnoDB buffer pool when the MySQL server
is shut down, to shorten the warmup process at the next restart. Typically used in combination with
innodb_buffer_pool_load_at_startup.

For more information, see Section 14.8.3.5, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_dump_now

Command-Line Format --innodb-buffer-pool-dump-now[={OFF|
ON}]

System Variable innodb_buffer_pool_dump_now

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Immediately records the pages cached in the InnoDB buffer pool. Typically used in combination with
innodb_buffer_pool_load_now.

For more information, see Section 14.8.3.5, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_filename

Command-Line Format --innodb-buffer-pool-
filename=file_name

System Variable innodb_buffer_pool_filename

Scope Global

Dynamic Yes

Type File name

Default Value ib_buffer_pool

Specifies the name of the file that holds the list of tablespace IDs and page IDs produced by
innodb_buffer_pool_dump_at_shutdown or innodb_buffer_pool_dump_now. Tablespace
IDs and page IDs are saved in the following format: space, page_id. By default, the file is named

2147

InnoDB System Variables

ib_buffer_pool and is located in the InnoDB data directory. A non-default location must be specified
relative to the data directory.

A file name can be specified at runtime, using a SET statement:

SET GLOBAL innodb_buffer_pool_filename='file_name';

You can also specify a file name at startup, in a startup string or MySQL configuration file. When
specifying a file name at startup, the file must exist or InnoDB returns a startup error indicating that there
is no such file or directory.

For more information, see Section 14.8.3.5, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_instances

Command-Line Format --innodb-buffer-pool-instances=#

System Variable innodb_buffer_pool_instances

Scope Global

Dynamic No

Type Integer

Default Value (Windows, 32-bit platforms) (autosized)

Default Value (Other) 8 (or 1 if innodb_buffer_pool_size <
1GB)

Minimum Value 1

Maximum Value 64

The number of regions that the InnoDB buffer pool is divided into. For systems with buffer pools in
the multi-gigabyte range, dividing the buffer pool into separate instances can improve concurrency, by
reducing contention as different threads read and write to cached pages. Each page that is stored in
or read from the buffer pool is assigned to one of the buffer pool instances randomly, using a hashing
function. Each buffer pool manages its own free lists, flush lists, LRUs, and all other data structures
connected to a buffer pool, and is protected by its own buffer pool mutex.

This option only takes effect when setting innodb_buffer_pool_size to a size of 1GB or more. The
total size you specify is divided among all the buffer pools. For best efficiency, specify a combination
of innodb_buffer_pool_instances and innodb_buffer_pool_size so that each buffer pool
instance is at least 1GB.

Before MySQL 5.6.6, the default is 1. The default value in MySQL 5.6.6 and higher on 32-bit Windows
systems depends on the value of innodb_buffer_pool_size, as described below:

• If innodb_buffer_pool_size is greater than 1.3GB, the default for
innodb_buffer_pool_instances is innodb_buffer_pool_size/128MB, with individual
memory allocation requests for each chunk. 1.3GB was chosen as the boundary at which there is
significant risk for 32-bit Windows to be unable to allocate the contiguous address space needed for a
single buffer pool.

2148

InnoDB System Variables

• Otherwise, the default is 1.

On all other platforms, the default value in MySQL 5.6.6 and higher is 8 when
innodb_buffer_pool_size is greater than or equal to 1GB. Otherwise, the default is 1.

Note

A bug in MySQL 5.6 causes SHOW VARIABLES to report
an innodb_buffer_pool_instances value of 8 when
innodb_buffer_pool_size is less than 1GB and only one buffer pool
instance is present (Bug #18343670). As an alternative, you can use SHOW
ENGINE INNODB STATUS to check the number of buffer pool instances. If there
are multiple buffer pool instances, SHOW ENGINE INNODB STATUS output
includes an INDIVIDUAL BUFFER POOL INFO section.

• innodb_buffer_pool_load_abort

Command-Line Format --innodb-buffer-pool-load-
abort[={OFF|ON}]

System Variable innodb_buffer_pool_load_abort

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Interrupts the process of restoring InnoDB buffer pool contents triggered by
innodb_buffer_pool_load_at_startup or innodb_buffer_pool_load_now.

For more information, see Section 14.8.3.5, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_load_at_startup

Command-Line Format --innodb-buffer-pool-load-at-
startup[={OFF|ON}]

System Variable innodb_buffer_pool_load_at_startup

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Specifies that, on MySQL server startup, the InnoDB buffer pool is automatically warmed
up by loading the same pages it held at an earlier time. Typically used in combination with
innodb_buffer_pool_dump_at_shutdown.

For more information, see Section 14.8.3.5, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_load_now

Command-Line Format --innodb-buffer-pool-load-now[={OFF|
ON}]

2149

InnoDB System Variables

System Variable innodb_buffer_pool_load_now

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Immediately warms up the InnoDB buffer pool by loading a set of data pages, without waiting for a
server restart. Can be useful to bring cache memory back to a known state during benchmarking, or to
ready the MySQL server to resume its normal workload after running queries for reports or maintenance.

For more information, see Section 14.8.3.5, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_size

Command-Line Format --innodb-buffer-pool-size=#

System Variable innodb_buffer_pool_size

Scope Global

Dynamic No

Type Integer

Default Value 134217728

Minimum Value 5242880

Maximum Value (64-bit platforms) 2**64-1

Maximum Value (32-bit platforms) 2**32-1

Unit bytes

The size in bytes of the buffer pool, the memory area where InnoDB caches table and index data. The
default value is 134217728 bytes (128MB). The maximum value depends on the CPU architecture;
the maximum is 4294967295 (232-1) on 32-bit systems and 18446744073709551615 (264-1) on 64-bit
systems. On 32-bit systems, the CPU architecture and operating system may impose a lower practical
maximum size than the stated maximum. When the size of the buffer pool is greater than 1GB, setting
innodb_buffer_pool_instances to a value greater than 1 can improve the scalability on a busy
server.

A larger buffer pool requires less disk I/O to access the same table data more than once. On a dedicated
database server, you might set the buffer pool size to 80% of the machine's physical memory size. Be
aware of the following potential issues when configuring buffer pool size, and be prepared to scale back
the size of the buffer pool if necessary.

• Competition for physical memory can cause paging in the operating system.

• InnoDB reserves additional memory for buffers and control structures, so that the total allocated
space is approximately 10% greater than the specified buffer pool size.

• Address space for the buffer pool must be contiguous, which can be an issue on Windows systems
with DLLs that load at specific addresses.

• The time to initialize the buffer pool is roughly proportional to its size. On instances with large buffer
pools, initialization time might be significant. To reduce the initialization period, you can save the
buffer pool state at server shutdown and restore it at server startup. See Section 14.8.3.5, “Saving and
Restoring the Buffer Pool State”.

2150

InnoDB System Variables

• innodb_change_buffer_max_size

Command-Line Format --innodb-change-buffer-max-size=#

System Variable innodb_change_buffer_max_size

Scope Global

Dynamic Yes

Type Integer

Default Value 25

Minimum Value 0

Maximum Value 50

Maximum size for the InnoDB change buffer, as a percentage of the total size of the buffer pool. You
might increase this value for a MySQL server with heavy insert, update, and delete activity, or decrease
it for a MySQL server with unchanging data used for reporting. For more information, see Section 14.5.2,
“Change Buffer”. For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_change_buffering

Command-Line Format --innodb-change-buffering=value

System Variable innodb_change_buffering

Scope Global

Dynamic Yes

Type Enumeration

Default Value all

Valid Values none

inserts

deletes

changes

purges

all

Whether InnoDB performs change buffering, an optimization that delays write operations to secondary
indexes so that the I/O operations can be performed sequentially. Permitted values are described in the
following table.

Table 14.14 Permitted Values for innodb_change_buffering

Value Description

none Do not buffer any operations.

inserts Buffer insert operations.

deletes Buffer delete marking operations; strictly speaking,
the writes that mark index records for later deletion
during a purge operation.

changes Buffer inserts and delete-marking operations.

2151

InnoDB System Variables

Value Description

purges Buffer the physical deletion operations that happen
in the background.

all The default. Buffer inserts, delete-marking
operations, and purges.

For more information, see Section 14.5.2, “Change Buffer”. For general I/O tuning advice, see
Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_change_buffering_debug

Command-Line Format --innodb-change-buffering-debug=#

System Variable innodb_change_buffering_debug

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2

Sets a debug flag for InnoDB change buffering. A value of 1 forces all changes to the change buffer. A
value of 2 causes an unexpected exit at merge. A default value of 0 indicates that the change buffering
debug flag is not set. This option is only available when debugging support is compiled in using the
WITH_DEBUG CMake option.

• innodb_checksum_algorithm

Command-Line Format --innodb-checksum-algorithm=value

System Variable innodb_checksum_algorithm

Scope Global

Dynamic Yes

Type Enumeration

Default Value innodb

Valid Values crc32

strict_crc32

innodb

strict_innodb

none

2152

InnoDB System Variables

strict_none

Specifies how to generate and verify the checksum stored in the disk blocks of InnoDB tablespaces.

innodb_checksum_algorithm replaces the innodb_checksums option in MySQL 5.6.3. The
following values are provided for compatibility:

• innodb_checksum_algorithm=innodb is the same as innodb_checksums=ON

• innodb_checksum_algorithm=none is the same as innodb_checksums=OFF

To avoid conflicts, remove references to innodb_checksums from MySQL configuration files and
startup scripts.

The value innodb is backward-compatible with earlier versions of MySQL. The value crc32 uses an
algorithm that is faster to compute the checksum for every modified block, and to check the checksums
for each disk read. It scans blocks 64 bits at a time, which is faster than the innodb checksum
algorithm, which scans blocks 8 bits at a time. The value none writes a constant value in the checksum
field rather than computing a value based on the block data. The blocks in a tablespace can use a mix
of old, new, and no checksum values, being updated gradually as the data is modified; once blocks in
a tablespace are modified to use the crc32 algorithm, the associated tables cannot be read by earlier
versions of MySQL.

The strict form of a checksum algorithm reports an error if it encounters a valid but non-matching
checksum value in a tablespace. It is recommended that you only use strict settings in a new instance,
to set up tablespaces for the first time. Strict settings are somewhat faster, because they do not need to
compute all checksum values during disk reads.

Note

Prior to MySQL 5.6.25, a strict mode setting for innodb_checksum_algorithm
caused InnoDB to halt when encountering a valid but non-matching checksum.
In MySQL 5.6.25 and later, only an error message is printed, and the page is
accepted as valid if it has a valid innodb, crc32 or none checksum.

The following table shows the difference between the none, innodb, and crc32 option values, and
their strict counterparts. none, innodb, and crc32 write the specified type of checksum value into each
data block, but for compatibility accept other checksum values when verifying a block during a read
operation. Strict settings also accept valid checksum values but print an error message when a valid
non-matching checksum value is encountered. Using the strict form can make verification faster if all
InnoDB data files in an instance are created under an identical innodb_checksum_algorithm value.

Table 14.15 Permitted innodb_checksum_algorithm Values

Value Generated checksum (when
writing)

Permitted checksums (when
reading)

none A constant number. Any of the checksums generated
by none, innodb, or crc32.

innodb A checksum calculated in
software, using the original
algorithm from InnoDB.

Any of the checksums generated
by none, innodb, or crc32.

2153

InnoDB System Variables

Value Generated checksum (when
writing)

Permitted checksums (when
reading)

crc32 A checksum calculated using the
crc32 algorithm, possibly done
with a hardware assist.

Any of the checksums generated
by none, innodb, or crc32.

strict_none A constant number Any of the checksums generated
by none, innodb, or crc32.
InnoDB prints an error message
if a valid but non-matching
checksum is encountered.

strict_innodb A checksum calculated in
software, using the original
algorithm from InnoDB.

Any of the checksums generated
by none, innodb, or crc32.
InnoDB prints an error message
if a valid but non-matching
checksum is encountered.

strict_crc32 A checksum calculated using the
crc32 algorithm, possibly done
with a hardware assist.

Any of the checksums generated
by none, innodb, or crc32.
InnoDB prints an error message
if a valid but non-matching
checksum is encountered.

The default value for innodb_checksum_algorithm was changed from innodb to crc32 in MySQL
5.6.6, but switched back to innodb in 5.6.7 for backward compatibility of InnoDB data files, and for use
with MySQL Enterprise Backup. The limitations encountered included:

• .ibd files containing CRC32 checksums could cause problems downgrading to MySQL versions
prior to 5.6.3. MySQL 5.6.3 and up recognizes either the new or old checksum values for the block
as correct when reading the block from disk, ensuring that data blocks are compatible during upgrade
and downgrade regardless of the algorithm setting. If data written with new checksum values is
processed by a version of MySQL earlier than 5.6.3, it could be reported as corrupted.

• Versions of MySQL Enterprise Backup up to 3.8.0 do not support backing up tablespaces that use
CRC32 checksums. MySQL Enterprise Backup adds CRC32 checksum support in 3.8.1, with some
limitations. Refer to the MySQL Enterprise Backup 3.8.1 Change History for more information.

• innodb_checksums

Command-Line Format --innodb-checksums[={OFF|ON}]

Deprecated Yes

System Variable innodb_checksums

Scope Global

Dynamic No

Type Boolean

Default Value ON

InnoDB can use checksum validation on all tablespace pages read from disk to ensure extra fault
tolerance against hardware faults or corrupted data files. This validation is enabled by default. Under
specialized circumstances (such as when running benchmarks) this safety feature can be disabled with

2154

InnoDB System Variables

--skip-innodb-checksums. You can specify the method of calculating the checksum using the
innodb_checksum_algorithm option.

In MySQL 5.6.3 and higher, innodb_checksums is deprecated, replaced by
innodb_checksum_algorithm. innodb_checksum_algorithm=innodb is the same as
innodb_checksums=ON (the default). innodb_checksum_algorithm=none is the same as
innodb_checksums=OFF. Remove innodb_checksums options from your configuration files and
startup scripts to avoid conflicts with innodb_checksum_algorithm: innodb_checksums=OFF
automatically sets innodb_checksum_algorithm=none; innodb_checksums=ON is ignored and
overridden by any other setting for innodb_checksum_algorithm.

• innodb_cmp_per_index_enabled

Command-Line Format --innodb-cmp-per-index-enabled[={OFF|
ON}]

System Variable innodb_cmp_per_index_enabled

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enables per-index compression-related statistics in the Information Schema INNODB_CMP_PER_INDEX
table. Because these statistics can be expensive to gather, only enable this option on development, test,
or replica instances during performance tuning related to InnoDB compressed tables.

For more information, see Section 21.4.7, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX
and INNODB_CMP_PER_INDEX_RESET Tables”, and Section 14.9.4, “Monitoring InnoDB Table
Compression at Runtime”.

• innodb_commit_concurrency

Command-Line Format --innodb-commit-concurrency=#

System Variable innodb_commit_concurrency

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1000

The number of threads that can commit at the same time. A value of 0 (the default) permits any number
of transactions to commit simultaneously.

The value of innodb_commit_concurrency cannot be changed at runtime from zero to nonzero or
vice versa. The value can be changed from one nonzero value to another.

• innodb_compression_failure_threshold_pct

Command-Line Format --innodb-compression-failure-
threshold-pct=# 2155

InnoDB System Variables

System Variable innodb_compression_failure_threshold_pct

Scope Global

Dynamic Yes

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 100

Defines the compression failure rate threshold for a table, as a percentage, at which point MySQL
begins adding padding within compressed pages to avoid expensive compression failures. When
this threshold is passed, MySQL begins to leave additional free space within each new compressed
page, dynamically adjusting the amount of free space up to the percentage of page size specified
by innodb_compression_pad_pct_max. A value of zero disables the mechanism that monitors
compression efficiency and dynamically adjusts the padding amount.

For more information, see Section 14.9.6, “Compression for OLTP Workloads”.

• innodb_compression_level

Command-Line Format --innodb-compression-level=#

System Variable innodb_compression_level

Scope Global

Dynamic Yes

Type Integer

Default Value 6

Minimum Value 0

Maximum Value 9

Specifies the level of zlib compression to use for InnoDB compressed tables and indexes. A higher
value lets you fit more data onto a storage device, at the expense of more CPU overhead during
compression. A lower value lets you reduce CPU overhead when storage space is not critical, or you
expect the data is not especially compressible.

For more information, see Section 14.9.6, “Compression for OLTP Workloads”.

• innodb_compression_pad_pct_max

Command-Line Format --innodb-compression-pad-pct-max=#

System Variable innodb_compression_pad_pct_max

Scope Global

Dynamic Yes

Type Integer

Default Value 50

Minimum Value 0

2156

InnoDB System Variables

Maximum Value 75

Specifies the maximum percentage that can be reserved as free space within each compressed
page, allowing room to reorganize the data and modification log within the page when a
compressed table or index is updated and the data might be recompressed. Only applies when
innodb_compression_failure_threshold_pct is set to a nonzero value, and the rate of
compression failures passes the cutoff point.

For more information, see Section 14.9.6, “Compression for OLTP Workloads”.

• innodb_concurrency_tickets

Command-Line Format --innodb-concurrency-tickets=#

System Variable innodb_concurrency_tickets

Scope Global

Dynamic Yes

Type Integer

Default Value 5000

Minimum Value 1

Maximum Value 4294967295

Determines the number of threads that can enter InnoDB concurrently. A thread is placed in a queue
when it tries to enter InnoDB if the number of threads has already reached the concurrency limit.
When a thread is permitted to enter InnoDB, it is given a number of “ tickets” equal to the value of
innodb_concurrency_tickets, and the thread can enter and leave InnoDB freely until it has used
up its tickets. After that point, the thread again becomes subject to the concurrency check (and possible
queuing) the next time it tries to enter InnoDB. The default value is 5000 as of MySQL 5.6.6, 500 before
that.

With a small innodb_concurrency_tickets value, small transactions that only need to process a
few rows compete fairly with larger transactions that process many rows. The disadvantage of a small
innodb_concurrency_tickets value is that large transactions must loop through the queue many
times before they can complete, which extends the amount of time required to complete their task.

With a large innodb_concurrency_tickets value, large transactions spend less time waiting for
a position at the end of the queue (controlled by innodb_thread_concurrency) and more time
retrieving rows. Large transactions also require fewer trips through the queue to complete their task. The
disadvantage of a large innodb_concurrency_tickets value is that too many large transactions
running at the same time can starve smaller transactions by making them wait a longer time before
executing.

With a nonzero innodb_thread_concurrency value, you may need to adjust the
innodb_concurrency_tickets value up or down to find the optimal balance between larger
and smaller transactions. The SHOW ENGINE INNODB STATUS report shows the number of tickets
remaining for an executing transaction in its current pass through the queue. This data may also be
obtained from the TRX_CONCURRENCY_TICKETS column of the Information Schema INNODB_TRX table.

For more information, see Section 14.8.5, “Configuring Thread Concurrency for InnoDB”.

• innodb_data_file_path

Command-Line Format --innodb-data-file-path=file_name 2157

InnoDB System Variables

System Variable innodb_data_file_path

Scope Global

Dynamic No

Type String

Default Value ibdata1:12M:autoextend

Defines the name, size, and attributes of InnoDB system tablespace data files. If you do not specify a
value for innodb_data_file_path, the default behavior is to create a single auto-extending data file,
slightly larger than 12MB, named ibdata1.

The full syntax for a data file specification includes the file name, file size, autoextend attribute, and
max attribute:

file_name:file_size[:autoextend[:max:max_file_size]]

File sizes are specified in kilobytes, megabytes, or gigabytes by appending K, M or G to the size value.
If specifying the data file size in kilobytes, do so in multiples of 1024. Otherwise, KB values are rounded
to nearest megabyte (MB) boundary. The sum of file sizes must be, at a minimum, slightly larger than
12MB.

For additional configuration information, see System Tablespace Data File Configuration. For resizing
instructions, see Resizing the System Tablespace.

• innodb_data_home_dir

Command-Line Format --innodb-data-home-dir=dir_name

System Variable innodb_data_home_dir

Scope Global

Dynamic No

Type Directory name

The common part of the directory path for InnoDB system tablespace data files. The default value is the
MySQL data directory. The setting is concatenated with the innodb_data_file_path setting. If you
specify the value as an empty string, you can specify an absolute path for innodb_data_file_path.

A trailing slash is required when specifying a value for innodb_data_home_dir. For example:

[mysqld]
innodb_data_home_dir = /path/to/myibdata/

This setting does not affect the location of file-per-table tablespaces.

For related information, see Section 14.8.1, “InnoDB Startup Configuration”.

• innodb_disable_sort_file_cache

Command-Line Format --innodb-disable-sort-file-
cache[={OFF|ON}]

System Variable innodb_disable_sort_file_cache

Scope Global

Dynamic Yes
2158

InnoDB System Variables

Type Boolean

Default Value OFF

Disables the operating system file system cache for merge-sort temporary files. The effect is to open
such files with the equivalent of O_DIRECT.

• innodb_doublewrite

Command-Line Format --innodb-doublewrite[={OFF|ON}]

System Variable innodb_doublewrite

Scope Global

Dynamic No

Type Boolean

Default Value ON

When enabled (the default), InnoDB stores all data twice, first to the doublewrite buffer, then to the
actual data files. This variable can be turned off with --skip-innodb-doublewrite for benchmarks
or cases when top performance is needed rather than concern for data integrity or possible failures.

For related information, see Section 14.6.5, “Doublewrite Buffer”.

• innodb_fast_shutdown

Command-Line Format --innodb-fast-shutdown=#

System Variable innodb_fast_shutdown

Scope Global

Dynamic Yes

Type Integer

Default Value 1

Valid Values 0

1

2

The InnoDB shutdown mode. If the value is 0, InnoDB does a slow shutdown, a full purge and a change
buffer merge before shutting down. If the value is 1 (the default), InnoDB skips these operations at
shutdown, a process known as a fast shutdown. If the value is 2, InnoDB flushes its logs and shuts
down cold, as if MySQL had crashed; no committed transactions are lost, but the crash recovery
operation makes the next startup take longer.

The slow shutdown can take minutes, or even hours in extreme cases where substantial amounts of
data are still buffered. Use the slow shutdown technique before upgrading or downgrading between
MySQL major releases, so that all data files are fully prepared in case the upgrade process updates the
file format.

Use innodb_fast_shutdown=2 in emergency or troubleshooting situations, to get the absolute fastest
shutdown if data is at risk of corruption.

2159

InnoDB System Variables

• innodb_fil_make_page_dirty_debug

Command-Line Format --innodb-fil-make-page-dirty-debug=#

Introduced 5.6.17

System Variable innodb_fil_make_page_dirty_debug

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2**32-1

By default, setting innodb_fil_make_page_dirty_debug to the ID of a tablespace immediately
dirties the first page of the tablespace. If innodb_saved_page_number_debug is set to a non-
default value, setting innodb_fil_make_page_dirty_debug dirties the specified page. The
innodb_fil_make_page_dirty_debug option is only available if debugging support is compiled in
using the WITH_DEBUG CMake option.

• innodb_file_format

Command-Line Format --innodb-file-format=value

System Variable innodb_file_format

Scope Global

Dynamic Yes

Type String

Default Value Antelope

Valid Values Antelope

Barracuda

Enables an InnoDB file format for file-per-table tablespaces. Supported file formats are Antelope and
Barracuda. Antelope is the original InnoDB file format, which supports REDUNDANT and COMPACT
row formats for InnoDB tables. Barracuda is the newer file format, which supports COMPRESSED and
DYNAMIC row formats.

COMPRESSED and DYNAMIC row formats enable important storage features for InnoDB tables. See
Section 14.11, “InnoDB Row Formats”.

To create tables that use COMPRESSED or DYNAMIC row format, the Barracuda file format and
innodb_file_per_table must be enabled.

Changing the innodb_file_format setting does not affect the file format of existing InnoDB
tablespace files.

For more information, see Section 14.10, “InnoDB File-Format Management”.

• innodb_file_format_check

Command-Line Format --innodb-file-format-check[={OFF|ON}]2160

InnoDB System Variables

System Variable innodb_file_format_check

Scope Global

Dynamic No

Type Boolean

Default Value ON

This variable can be set to 1 or 0 at server startup to enable or disable whether InnoDB checks the file
format tag in the system tablespace (for example, Antelope or Barracuda). If the tag is checked and
is higher than that supported by the current version of InnoDB, an error occurs and InnoDB does not
start. If the tag is not higher, InnoDB sets the value of innodb_file_format_max to the file format
tag.

Note

Despite the default value sometimes being displayed as ON or OFF, always use
the numeric values 1 or 0 to turn this option on or off in your configuration file or
command line string.

For more information, see Section 14.10.2.1, “Compatibility Check When InnoDB Is Started”.

• innodb_file_format_max

Command-Line Format --innodb-file-format-max=value

System Variable innodb_file_format_max

Scope Global

Dynamic Yes

Type String

Default Value Antelope

Valid Values Antelope

Barracuda

At server startup, InnoDB sets the value of this variable to the file format tag in the system tablespace
(for example, Antelope or Barracuda). If the server creates or opens a table with a “higher” file
format, it sets the value of innodb_file_format_max to that format.

For related information, see Section 14.10, “InnoDB File-Format Management”.

• innodb_file_per_table

Command-Line Format --innodb-file-per-table[={OFF|ON}]

System Variable innodb_file_per_table

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

When innodb_file_per_table is enabled, tables are created in file-per-table tablespaces. When
disabled, tables are created in the system tablespace. For information about file-per-table tablespaces,2161

InnoDB System Variables

see Section 14.6.3.2, “File-Per-Table Tablespaces”. For information about the InnoDB system
tablespace, see Section 14.6.3.1, “The System Tablespace”.

The innodb_file_per_table variable can be configured at runtime using a SET GLOBAL statement,
specified on the command line at startup, or specified in an option file. Configuration at runtime requires
privileges sufficient to set global system variables (see Section 5.1.8.1, “System Variable Privileges”)
and immediately affects the operation of all connections.

When a table that resides in a file-per-table tablespace is truncated or dropped, the freed space is
returned to the operating system. Truncating or dropping a table that resides in the system tablespace
only frees space in the system tablespace. Freed space in the system tablespace can be used again for
InnoDB data but is not returned to the operating system, as system tablespace data files never shrink.

When innodb_file_per_table is enabled, a table-copying ALTER TABLE operation on a table that
resides in the system tablespace implicitly re-creates the table in a file-per-table tablespace. To prevent
this from occurring, disable innodb_file_per_table before executing table-copying ALTER TABLE
operations on tables that reside in the system tablespace.

• innodb_flush_log_at_timeout

Command-Line Format --innodb-flush-log-at-timeout=#

System Variable innodb_flush_log_at_timeout

Scope Global

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 2700

Unit seconds

Write and flush the logs every N seconds. innodb_flush_log_at_timeout allows the timeout period
between flushes to be increased in order to reduce flushing and avoid impacting performance of binary
log group commit. Prior to the introduction of this configuration option, flushing frequency was once per
second. The default setting for innodb_flush_log_at_timeout is also once per second.

• innodb_flush_log_at_trx_commit

Command-Line Format --innodb-flush-log-at-trx-commit=#

System Variable innodb_flush_log_at_trx_commit

Scope Global

Dynamic Yes

Type Enumeration

Default Value 1

Valid Values 0

1

2162

InnoDB System Variables

2

Controls the balance between strict ACID compliance for commit operations and higher performance that
is possible when commit-related I/O operations are rearranged and done in batches. You can achieve
better performance by changing the default value but then you can lose transactions in a crash.

• The default setting of 1 is required for full ACID compliance. Logs are written and flushed to disk at
each transaction commit.

• With a setting of 0, logs are written and flushed to disk once per second. Transactions for which logs
have not been flushed can be lost in a crash.

• With a setting of 2, logs are written after each transaction commit and flushed to disk once per second.
Transactions for which logs have not been flushed can be lost in a crash.

• For settings 0 and 2, once-per-second flushing is not 100% guaranteed. Flushing may occur more
frequently due to DDL changes and other internal InnoDB activities that cause logs to be flushed
independently of the innodb_flush_log_at_trx_commit setting, and sometimes less frequently
due to scheduling issues. If logs are flushed once per second, up to one second of transactions can
be lost in a crash. If logs are flushed more or less frequently than once per second, the amount of
transactions that can be lost varies accordingly.

• Log flushing frequency is controlled by innodb_flush_log_at_timeout, which allows you to set
log flushing frequency to N seconds (where N is 1 ... 2700, with a default value of 1). However, any
unexpected mysqld process exit can erase up to N seconds of transactions.

• DDL changes and other internal InnoDB activities flush the log independently of the
innodb_flush_log_at_trx_commit setting.

• InnoDB crash recovery works regardless of the innodb_flush_log_at_trx_commit setting.
Transactions are either applied entirely or erased entirely.

For durability and consistency in a replication setup that uses InnoDB with transactions:

• If binary logging is enabled, set sync_binlog=1.

• Always set innodb_flush_log_at_trx_commit=1.

Caution

Many operating systems and some disk hardware fool the flush-to-disk operation.
They may tell mysqld that the flush has taken place, even though it has not.
In this case, the durability of transactions is not guaranteed even with the
recommended settings, and in the worst case, a power outage can corrupt
InnoDB data. Using a battery-backed disk cache in the SCSI disk controller or in
the disk itself speeds up file flushes, and makes the operation safer. You can also
try to disable the caching of disk writes in hardware caches.

• innodb_flush_method

Command-Line Format --innodb-flush-method=value

System Variable innodb_flush_method

Scope Global

Dynamic No

2163

InnoDB System Variables

Type String

Default Value NULL

Valid Values (Unix) fsync

O_DSYNC

littlesync

nosync

O_DIRECT

O_DIRECT_NO_FSYNC

Valid Values (Windows) async_unbuffered

normal

unbuffered

Defines the method used to flush data to InnoDB data files and log files, which can affect I/O
throughput.

If innodb_flush_method is set to NULL on a Unix-like system, the fsync option is used by default.
If innodb_flush_method is set to NULL on Windows, the async_unbuffered option is used by
default.

The innodb_flush_method options for Unix-like systems include:

• fsync: InnoDB uses the fsync() system call to flush both the data and log files. fsync is the
default setting.

• O_DSYNC: InnoDB uses O_SYNC to open and flush the log files, and fsync() to flush the data files.
InnoDB does not use O_DSYNC directly because there have been problems with it on many varieties
of Unix.

• littlesync: This option is used for internal performance testing and is currently unsupported. Use at
your own risk.

• nosync: This option is used for internal performance testing and is currently unsupported. Use at your
own risk.

• O_DIRECT: InnoDB uses O_DIRECT (or directio() on Solaris) to open the data files, and uses
fsync() to flush both the data and log files. This option is available on some GNU/Linux versions,
FreeBSD, and Solaris.

• O_DIRECT_NO_FSYNC: InnoDB uses O_DIRECT during flushing I/O, but skips the fsync() system
call after each write operation.

This setting is not suitable for file systems such as XFS and EXT4, which require an fsync() system
call to synchronize file system metadata changes. If you are not sure whether your file system requires
an fsync() system call to synchronize file system metadata changes, use O_DIRECT instead.

Data loss is possible if redo log files and data files reside on different storage devices, and an
unexpected exit occurs before data file writes are flushed from a device cache that is not battery-

2164

InnoDB System Variables

backed. If you use or intend to use different storage devices for redo log files and data files, and your
data files reside on a device with a cache that is not battery-backed, use O_DIRECT instead.

The innodb_flush_method options for Windows systems include:

• async_unbuffered: InnoDB uses Windows asynchronous I/O and non-buffered I/O.
async_unbuffered is the default setting on Windows systems.

Running MySQL server on a 4K sector hard drive on Windows is not supported with
async_unbuffered. The workaround is to use innodb_flush_method=normal.

• normal: InnoDB uses simulated asynchronous I/O and buffered I/O. This option is used for internal
performance testing and is currently unsupported. Use at your own risk.

• unbuffered: InnoDB uses simulated asynchronous I/O and non-buffered I/O. This option is used for
internal performance testing and is currently unsupported. Use at your own risk.

How each setting affects performance depends on hardware configuration and workload. Benchmark
your particular configuration to decide which setting to use, or whether to keep the default setting.
Examine the Innodb_data_fsyncs status variable to see the overall number of fsync() calls for
each setting. The mix of read and write operations in your workload can affect how a setting performs.
For example, on a system with a hardware RAID controller and battery-backed write cache, O_DIRECT
can help to avoid double buffering between the InnoDB buffer pool and the operating system file system
cache. On some systems where InnoDB data and log files are located on a SAN, the default value or
O_DSYNC might be faster for a read-heavy workload with mostly SELECT statements. Always test this
parameter with hardware and workload that reflect your production environment. For general I/O tuning
advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_flush_neighbors

Command-Line Format --innodb-flush-neighbors=#

System Variable innodb_flush_neighbors

Scope Global

Dynamic Yes

Type Enumeration

Default Value 1

Valid Values 0

1

2

Specifies whether flushing a page from the InnoDB buffer pool also flushes other dirty pages in the
same extent.

• A setting of 0 disables innodb_flush_neighbors. Dirty pages in the same extent are not flushed.

• The default setting of 1 flushes contiguous dirty pages in the same extent.

• A setting of 2 flushes dirty pages in the same extent.

When the table data is stored on a traditional HDD storage device, flushing such neighbor pages in
one operation reduces I/O overhead (primarily for disk seek operations) compared to flushing individual
pages at different times. For table data stored on SSD, seek time is not a significant factor and you

2165

InnoDB System Variables

can turn this setting off to spread out write operations. For related information, see Section 14.8.3.4,
“Configuring Buffer Pool Flushing”.

• innodb_flushing_avg_loops

Command-Line Format --innodb-flushing-avg-loops=#

System Variable innodb_flushing_avg_loops

Scope Global

Dynamic Yes

Type Integer

Default Value 30

Minimum Value 1

Maximum Value 1000

Number of iterations for which InnoDB keeps the previously calculated snapshot of the flushing state,
controlling how quickly adaptive flushing responds to changing workloads. Increasing the value makes
the rate of flush operations change smoothly and gradually as the workload changes. Decreasing the
value makes adaptive flushing adjust quickly to workload changes, which can cause spikes in flushing
activity if the workload increases and decreases suddenly.

For related information, see Section 14.8.3.4, “Configuring Buffer Pool Flushing”.

• innodb_force_load_corrupted

Command-Line Format --innodb-force-load-corrupted[={OFF|
ON}]

System Variable innodb_force_load_corrupted

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Permits InnoDB to load tables at startup that are marked as corrupted. Use only during troubleshooting,
to recover data that is otherwise inaccessible. When troubleshooting is complete, disable this setting and
restart the server.

• innodb_force_recovery

Command-Line Format --innodb-force-recovery=#

System Variable innodb_force_recovery

Scope Global

Dynamic No

Type Integer

Default Value 0

Minimum Value 0

2166

InnoDB System Variables

Maximum Value 6

The crash recovery mode, typically only changed in serious troubleshooting situations. Possible
values are from 0 to 6. For the meanings of these values and important information about
innodb_force_recovery, see Section 14.21.2, “Forcing InnoDB Recovery”.

Warning

Only set this variable to a value greater than 0 in an emergency situation
so that you can start InnoDB and dump your tables. As a safety
measure, InnoDB prevents INSERT, UPDATE, or DELETE operations
when innodb_force_recovery is greater than 0. As of 5.6.15, an
innodb_force_recovery setting of 4 or greater places InnoDB into read-only
mode.

These restrictions may cause replication administration
commands to fail with an error because replication settings
such as relay_log_info_repository=TABLE and
master_info_repository=TABLE store information in InnoDB tables.

• innodb_ft_aux_table

System Variable innodb_ft_aux_table

Scope Global

Dynamic Yes

Type String

Specifies the qualified name of an InnoDB table containing a FULLTEXT index. This variable is intended
for diagnostic purposes and can only be set at runtime. For example:

SET GLOBAL innodb_ft_aux_table = 'test/t1';

After you set this variable to a name in the format db_name/table_name, the INFORMATION_SCHEMA
tables INNODB_FT_INDEX_TABLE, INNODB_FT_INDEX_CACHE, INNODB_FT_CONFIG,
INNODB_FT_DELETED, and INNODB_FT_BEING_DELETED show information about the search index for
the specified table.

For more information, see Section 14.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index
Tables”.

• innodb_ft_cache_size

Command-Line Format --innodb-ft-cache-size=#

System Variable innodb_ft_cache_size

Scope Global

Dynamic No

Type Integer

Default Value 8000000

Minimum Value 1600000

Maximum Value 80000000

Unit bytes

2167

InnoDB System Variables

The memory allocated, in bytes, for the InnoDB FULLTEXT search index cache, which holds
a parsed document in memory while creating an InnoDB FULLTEXT index. Index inserts and
updates are only committed to disk when the innodb_ft_cache_size size limit is reached.
innodb_ft_cache_size defines the cache size on a per table basis. To set a global limit for all tables,
see innodb_ft_total_cache_size.

For more information, see InnoDB Full-Text Index Cache.

• innodb_ft_enable_diag_print

Command-Line Format --innodb-ft-enable-diag-print[={OFF|
ON}]

System Variable innodb_ft_enable_diag_print

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether to enable additional full-text search (FTS) diagnostic output. This option is primarily intended
for advanced FTS debugging and is not of interest to most users. Output is printed to the error log and
includes information such as:

• FTS index sync progress (when the FTS cache limit is reached). For example:

FTS SYNC for table test, deleted count: 100 size: 10000 bytes
SYNC words: 100

• FTS optimize progress. For example:

FTS start optimize test
FTS_OPTIMIZE: optimize "mysql"
FTS_OPTIMIZE: processed "mysql"

• FTS index build progress. For example:

Number of doc processed: 1000

• For FTS queries, the query parsing tree, word weight, query processing time, and memory usage are
printed. For example:

FTS Search Processing time: 1 secs: 100 millisec: row(s) 10000
Full Search Memory: 245666 (bytes), Row: 10000

• innodb_ft_enable_stopword

Command-Line Format --innodb-ft-enable-stopword[={OFF|
ON}]

System Variable innodb_ft_enable_stopword

Scope Global, Session

Dynamic Yes

Type Boolean

2168

InnoDB System Variables

Default Value ON

Specifies that a set of stopwords is associated with an InnoDB FULLTEXT index at the time the index is
created. If the innodb_ft_user_stopword_table option is set, the stopwords are taken from that
table. Else, if the innodb_ft_server_stopword_table option is set, the stopwords are taken from
that table. Otherwise, a built-in set of default stopwords is used.

For more information, see Section 12.10.4, “Full-Text Stopwords”.

• innodb_ft_max_token_size

Command-Line Format --innodb-ft-max-token-size=#

System Variable innodb_ft_max_token_size

Scope Global

Dynamic No

Type Integer

Default Value 84

Minimum Value 10

Maximum Value (≥ 5.6.14) 84

Maximum Value (≤ 5.6.13) 252

Maximum character length of words that are stored in an

InnoDB

FULLTEXT index. Setting a limit on this value reduces the size of the index, thus speeding up queries,
by omitting long keywords or arbitrary collections of letters that are not real words and are not likely to be
search terms.

For more information, see Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”.

• innodb_ft_min_token_size

Command-Line Format --innodb-ft-min-token-size=#

System Variable innodb_ft_min_token_size

Scope Global

Dynamic No

Type Integer

Default Value 3

Minimum Value 0

Maximum Value 16

Minimum length of words that are stored in an InnoDB FULLTEXT index. Increasing this value reduces
the size of the index, thus speeding up queries, by omitting common words that are unlikely to be
significant in a search context, such as the English words “a” and “to”. For content using a CJK (Chinese,
Japanese, Korean) character set, specify a value of 1.

For more information, see Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”.

• innodb_ft_num_word_optimize

2169

InnoDB System Variables

Command-Line Format --innodb-ft-num-word-optimize=#

System Variable innodb_ft_num_word_optimize

Scope Global

Dynamic Yes

Type Integer

Default Value 2000

Minimum Value 1000

Maximum Value 10000

Number of words to process during each OPTIMIZE TABLE operation on an InnoDB FULLTEXT index.
Because a bulk insert or update operation to a table containing a full-text search index could require
substantial index maintenance to incorporate all changes, you might do a series of OPTIMIZE TABLE
statements, each picking up where the last left off.

For more information, see Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”.

• innodb_ft_result_cache_limit

Command-Line Format --innodb-ft-result-cache-limit=#

Introduced 5.6.13

System Variable innodb_ft_result_cache_limit

Scope Global

Dynamic Yes

Type Integer

Default Value 2000000000

Minimum Value 1000000

Maximum Value (≥ 5.6.17) 2**32-1

Maximum Value (Unix, 64-bit platforms, ≥ 5.6.13, ≤
5.6.16)

2**64-1

Maximum Value (Unix, 32-bit platforms, ≥ 5.6.13, ≤
5.6.16)

2**32-1

Maximum Value (Windows, ≥ 5.6.13, ≤ 5.6.16) 2**32-1

Unit bytes

The InnoDB full-text search query result cache limit (defined in bytes) per full-text search query or
per thread. Intermediate and final InnoDB full-text search query results are handled in memory. Use
innodb_ft_result_cache_limit to place a size limit on the full-text search query result cache
to avoid excessive memory consumption in case of very large InnoDB full-text search query results
(millions or hundreds of millions of rows, for example). Memory is allocated as required when a full-text
search query is processed. If the result cache size limit is reached, an error is returned indicating that the
query exceeds the maximum allowed memory.

As of MySQL 5.6.17, the maximum value of innodb_ft_result_cache_limit for all platform types
and bit sizes is 2**32-1.

2170

InnoDB System Variables

• innodb_ft_server_stopword_table

Command-Line Format --innodb-ft-server-stopword-
table=db_name/table_name

System Variable innodb_ft_server_stopword_table

Scope Global

Dynamic Yes

Type String

Default Value NULL

This option is used to specify your own InnoDB FULLTEXT index stopword list for all
InnoDB tables. To configure your own stopword list for a specific InnoDB table, use
innodb_ft_user_stopword_table.

Set innodb_ft_server_stopword_table to the name of the table containing a list of stopwords, in
the format db_name/table_name.

The stopword table must exist before you configure innodb_ft_server_stopword_table.
innodb_ft_enable_stopword must be enabled and innodb_ft_server_stopword_table
option must be configured before you create the FULLTEXT index.

The stopword table must be an InnoDB table, containing a single VARCHAR column named value.

For more information, see Section 12.10.4, “Full-Text Stopwords”.

• innodb_ft_sort_pll_degree

Command-Line Format --innodb-ft-sort-pll-degree=#

System Variable innodb_ft_sort_pll_degree

Scope Global

Dynamic No

Type Integer

Default Value 2

Minimum Value 1

Maximum Value 32

Number of threads used in parallel to index and tokenize text in an InnoDB FULLTEXT index when
building a search index.

For related information, see Section 14.6.2.3, “InnoDB Full-Text Indexes”, and
innodb_sort_buffer_size.

• innodb_ft_total_cache_size

Command-Line Format --innodb-ft-total-cache-size=#

Introduced 5.6.13

System Variable innodb_ft_total_cache_size

Scope Global

Dynamic No

2171

InnoDB System Variables

Type Integer

Default Value 640000000

Minimum Value 32000000

Maximum Value 1600000000

Unit bytes

The total memory allocated, in bytes, for the InnoDB full-text search index cache for all tables. Creating
numerous tables, each with a FULLTEXT search index, could consume a significant portion of available
memory. innodb_ft_total_cache_size defines a global memory limit for all full-text search indexes
to help avoid excessive memory consumption. If the global limit is reached by an index operation, a
forced sync is triggered.

For more information, see InnoDB Full-Text Index Cache.

• innodb_ft_user_stopword_table

Command-Line Format --innodb-ft-user-stopword-
table=db_name/table_name

System Variable innodb_ft_user_stopword_table

Scope Global, Session

Dynamic Yes

Type String

Default Value NULL

This option is used to specify your own InnoDB FULLTEXT index stopword list on a specific table. To
configure your own stopword list for all InnoDB tables, use innodb_ft_server_stopword_table.

Set innodb_ft_user_stopword_table to the name of the table containing a list of stopwords, in the
format db_name/table_name.

The stopword table must exist before you configure innodb_ft_user_stopword_table.
innodb_ft_enable_stopword must be enabled and innodb_ft_user_stopword_table must be
configured before you create the FULLTEXT index.

The stopword table must be an InnoDB table, containing a single VARCHAR column named value.

For more information, see Section 12.10.4, “Full-Text Stopwords”.

• innodb_io_capacity

Command-Line Format --innodb-io-capacity=#

System Variable innodb_io_capacity

Scope Global

Dynamic Yes

Type Integer

Default Value 200

Minimum Value 100

Maximum Value (64-bit platforms) 2**64-1
2172

InnoDB System Variables

Maximum Value (32-bit platforms) 2**32-1

The innodb_io_capacity variable defines the number of I/O operations per second (IOPS) available
to InnoDB background tasks, such as flushing pages from the buffer pool and merging data from the
change buffer.

For information about configuring the innodb_io_capacity variable, see Section 14.8.8, “Configuring
InnoDB I/O Capacity”.

• innodb_io_capacity_max

Command-Line Format --innodb-io-capacity-max=#

System Variable innodb_io_capacity_max

Scope Global

Dynamic Yes

Type Integer

Default Value see description

Minimum Value 100

Maximum Value (32-bit platforms) 2**32-1

Maximum Value (Unix, 64-bit platforms) 2**64-1

Maximum Value (Windows, 64-bit platforms) 2**32-1

If flushing activity falls behind, InnoDB can flush more aggressively, at a higher rate of I/
O operations per second (IOPS) than defined by the innodb_io_capacity variable. The
innodb_io_capacity_max variable defines a maximum number of IOPS performed by InnoDB
background tasks in such situations.

For information about configuring the innodb_io_capacity_max variable, see Section 14.8.8,
“Configuring InnoDB I/O Capacity”.

• innodb_large_prefix

Command-Line Format --innodb-large-prefix[={OFF|ON}]

System Variable innodb_large_prefix

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enable this option to allow index key prefixes longer than 767 bytes (up to 3072 bytes) for InnoDB tables
that use DYNAMIC or COMPRESSED row format. (Creating such tables also requires the option values
innodb_file_format=barracuda and innodb_file_per_table=true.) See Section 14.22,
“InnoDB Limits” for maximums associated with index key prefixes under various settings.

For tables that use REDUNDANT or COMPACT row format, this option does not affect the permitted index
key prefix length.

2173

InnoDB System Variables

• innodb_limit_optimistic_insert_debug

Command-Line Format --innodb-limit-optimistic-insert-
debug=#

System Variable innodb_limit_optimistic_insert_debug

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2**32-1

Limits the number of records per B-tree page. A default value of 0 means that no limit is imposed. This
option is only available if debugging support is compiled in using the WITH_DEBUG CMake option.

• innodb_lock_wait_timeout

Command-Line Format --innodb-lock-wait-timeout=#

System Variable innodb_lock_wait_timeout

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 50

Minimum Value 1

Maximum Value 1073741824

Unit seconds

The length of time in seconds an InnoDB transaction waits for a row lock before giving up. The
default value is 50 seconds. A transaction that tries to access a row that is locked by another InnoDB
transaction waits at most this many seconds for write access to the row before issuing the following
error:

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

When a lock wait timeout occurs, the current statement is rolled back (not the entire transaction). To
have the entire transaction roll back, start the server with the --innodb-rollback-on-timeout
option. See also Section 14.21.4, “InnoDB Error Handling”.

You might decrease this value for highly interactive applications or OLTP systems, to display user
feedback quickly or put the update into a queue for processing later. You might increase this value for

2174

InnoDB System Variables

long-running back-end operations, such as a transform step in a data warehouse that waits for other
large insert or update operations to finish.

innodb_lock_wait_timeout applies to InnoDB row locks only. A MySQL table lock does not
happen inside InnoDB and this timeout does not apply to waits for table locks.

The lock wait timeout value does not apply to deadlocks, because InnoDB detects them immediately
and rolls back one of the deadlocked transactions. See Section 14.7.5.2, “Deadlock Detection”.

innodb_lock_wait_timeout can be set at runtime with the SET GLOBAL or SET SESSION
statement. Changing the GLOBAL setting requires privileges sufficient to set global system variables (see
Section 5.1.8.1, “System Variable Privileges”) and affects the operation of all clients that subsequently
connect. Any client can change the SESSION setting for innodb_lock_wait_timeout, which affects
only that client.

• innodb_locks_unsafe_for_binlog

Command-Line Format --innodb-locks-unsafe-for-
binlog[={OFF|ON}]

Deprecated Yes

System Variable innodb_locks_unsafe_for_binlog

Scope Global

Dynamic No

Type Boolean

Default Value OFF

This variable affects how InnoDB uses gap locking for searches and index scans.
innodb_locks_unsafe_for_binlog is deprecated; expect it to be removed in a future MySQL
release.

Normally, InnoDB uses an algorithm called next-key locking that combines index-row locking with
gap locking. InnoDB performs row-level locking in such a way that when it searches or scans a table
index, it sets shared or exclusive locks on the index records it encounters. Thus, row-level locks are
actually index-record locks. In addition, a next-key lock on an index record also affects the gap before
the index record. That is, a next-key lock is an index-record lock plus a gap lock on the gap preceding
the index record. If one session has a shared or exclusive lock on record R in an index, another session
cannot insert a new index record in the gap immediately before R in the index order. See Section 14.7.1,
“InnoDB Locking”.

By default, the value of innodb_locks_unsafe_for_binlog is 0 (disabled), which means that gap
locking is enabled: InnoDB uses next-key locks for searches and index scans. To enable the variable,

2175

InnoDB System Variables

set it to 1. This causes gap locking to be disabled: InnoDB uses only index-record locks for searches
and index scans.

Enabling innodb_locks_unsafe_for_binlog does not disable the use of gap locking for foreign-
key constraint checking or duplicate-key checking.

The effects of enabling innodb_locks_unsafe_for_binlog are the same as setting the transaction
isolation level to READ COMMITTED, with these exceptions:

• Enabling innodb_locks_unsafe_for_binlog is a global setting and affects all sessions, whereas
the isolation level can be set globally for all sessions, or individually per session.

• innodb_locks_unsafe_for_binlog can be set only at server startup, whereas the isolation level
can be set at startup or changed at runtime.

READ COMMITTED therefore offers finer and more flexible control than
innodb_locks_unsafe_for_binlog. For more information about the effect of isolation level on gap
locking, see Section 14.7.2.1, “Transaction Isolation Levels”.

Enabling innodb_locks_unsafe_for_binlog may cause phantom problems because other
sessions can insert new rows into the gaps when gap locking is disabled. Suppose that there is an index
on the id column of the child table and that you want to read and lock all rows from the table having
an identifier value larger than 100, with the intention of updating some column in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

The query scans the index starting from the first record where the id is greater than 100. If the locks
set on the index records in that range do not lock out inserts made in the gaps, another session can
insert a new row into the table. Consequently, if you were to execute the same SELECT again within the
same transaction, you would see a new row in the result set returned by the query. This also means
that if new items are added to the database, InnoDB does not guarantee serializability. Therefore, if
innodb_locks_unsafe_for_binlog is enabled, InnoDB guarantees at most an isolation level of
READ COMMITTED. (Conflict serializability is still guaranteed.) For more information about phantoms,
see Section 14.7.4, “Phantom Rows”.

Enabling innodb_locks_unsafe_for_binlog has additional effects:

• For UPDATE or DELETE statements, InnoDB holds locks only for rows that it updates or deletes.
Record locks for nonmatching rows are released after MySQL has evaluated the WHERE condition.
This greatly reduces the probability of deadlocks, but they can still happen.

• For UPDATE statements, if a row is already locked, InnoDB performs a “semi-consistent” read,
returning the latest committed version to MySQL so that MySQL can determine whether the row
matches the WHERE condition of the UPDATE. If the row matches (must be updated), MySQL reads the
row again and this time InnoDB either locks it or waits for a lock on it.

Consider the following example, beginning with this table:

CREATE TABLE t (a INT NOT NULL, b INT) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2),(2,3),(3,2),(4,3),(5,2);

2176

InnoDB System Variables

COMMIT;

In this case, table has no indexes, so searches and index scans use the hidden clustered index for
record locking (see Section 14.6.2.1, “Clustered and Secondary Indexes”).

Suppose that one client performs an UPDATE using these statements:

SET autocommit = 0;
UPDATE t SET b = 5 WHERE b = 3;

Suppose also that a second client performs an UPDATE by executing these statements following those of
the first client:

SET autocommit = 0;
UPDATE t SET b = 4 WHERE b = 2;

As InnoDB executes each UPDATE, it first acquires an exclusive lock for each row, and then determines
whether to modify it. If InnoDB does not modify the row and innodb_locks_unsafe_for_binlog
is enabled, it releases the lock. Otherwise, InnoDB retains the lock until the end of the transaction. This
affects transaction processing as follows.

If innodb_locks_unsafe_for_binlog is disabled, the first UPDATE acquires x-locks and does not
release any of them:

x-lock(1,2); retain x-lock
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); retain x-lock
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); retain x-lock

The second UPDATE blocks as soon as it tries to acquire any locks (because the first update has
retained locks on all rows), and does not proceed until the first UPDATE commits or rolls back:

x-lock(1,2); block and wait for first UPDATE to commit or roll back

If innodb_locks_unsafe_for_binlog is enabled, the first UPDATE acquires x-locks and releases
those for rows that it does not modify:

x-lock(1,2); unlock(1,2)
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); unlock(3,2)
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); unlock(5,2)

For the second UPDATE, InnoDB does a “semi-consistent” read, returning the latest committed version
of each row to MySQL so that MySQL can determine whether the row matches the WHERE condition of
the UPDATE:

x-lock(1,2); update(1,2) to (1,4); retain x-lock
x-lock(2,3); unlock(2,3)
x-lock(3,2); update(3,2) to (3,4); retain x-lock
x-lock(4,3); unlock(4,3)
x-lock(5,2); update(5,2) to (5,4); retain x-lock

• innodb_log_buffer_size

Command-Line Format --innodb-log-buffer-size=#

System Variable innodb_log_buffer_size

Scope Global
2177

InnoDB System Variables

Dynamic No

Type Integer

Default Value 8388608

Minimum Value 262144

Maximum Value 4294967295

The size in bytes of the buffer that InnoDB uses to write to the log files on disk. The default value
is 8MB. A large log buffer enables large transactions to run without the need to write the log to disk
before the transactions commit. Thus, if you have transactions that update, insert, or delete many rows,
making the log buffer larger saves disk I/O. For related information, see Memory Configuration, and
Section 8.5.4, “Optimizing InnoDB Redo Logging”. For general I/O tuning advice, see Section 8.5.8,
“Optimizing InnoDB Disk I/O”.

• innodb_log_checkpoint_now

Command-Line Format --innodb-log-checkpoint-now[={OFF|
ON}]

Introduced 5.6.12

System Variable innodb_log_checkpoint_now

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enable this debug option to force InnoDB to write a checkpoint. This option is only available if debugging
support is compiled in using the WITH_DEBUG CMake option.

• innodb_log_compressed_pages

Command-Line Format --innodb-log-compressed-pages[={OFF|
ON}]

Introduced 5.6.11

System Variable innodb_log_compressed_pages

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Specifies whether images of re-compressed pages are written to the redo log. Re-compression may
occur when changes are made to compressed data.

innodb_log_compressed_pages is enabled by default to prevent corruption that could occur if a
different version of the zlib compression algorithm is used during recovery. If you are certain that the
zlib version is not subject to change, you can disable innodb_log_compressed_pages to reduce
redo log generation for workloads that modify compressed data.

To measure the effect of enabling or disabling innodb_log_compressed_pages, compare redo log
generation for both settings under the same workload. Options for measuring redo log generation include

2178

InnoDB System Variables

observing the Log sequence number (LSN) in the LOG section of SHOW ENGINE INNODB STATUS
output, or monitoring Innodb_os_log_written status for the number of bytes written to the redo log
files.

For related information, see Section 14.9.6, “Compression for OLTP Workloads”.

• innodb_log_file_size

Command-Line Format --innodb-log-file-size=#

System Variable innodb_log_file_size

Scope Global

Dynamic No

Type Integer

Default Value 50331648

Minimum Value 1048576

Maximum Value 512GB / innodb_log_files_in_group

Unit bytes

The size in bytes of each log file in a log group. The combined size of log files
(innodb_log_file_size * innodb_log_files_in_group) cannot exceed a maximum value that
is slightly less than 512GB. A pair of 255 GB log files, for example, approaches the limit but does not
exceed it. The default value is 48MB.

Generally, the combined size of the log files should be large enough that the server can smooth out
peaks and troughs in workload activity, which often means that there is enough redo log space to handle
more than an hour of write activity. The larger the value, the less checkpoint flush activity is required in
the buffer pool, saving disk I/O. Larger log files also make crash recovery slower.

Important

Due to Bug #69477, redo log writes for large, externally stored BLOB fields could
overwrite the most recent checkpoint. To address this bug, a patch introduced in
MySQL 5.6.20 limits the size of redo log BLOB writes to 10% of the redo log file
size. As a result of this limit, innodb_log_file_size should be set to a value
greater than 10 times the largest BLOB data size found in the rows of your tables
plus the length of other variable length fields (VARCHAR, VARBINARY, and TEXT
type fields).

In MySQL 5.6.22, the redo log BLOB write limit is relaxed to 10% of the total redo
log size (innodb_log_file_size * innodb_log_files_in_group). (Bug
#19498877)

For related information, see Redo Log File Configuration. For general I/O tuning advice, see
Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_log_files_in_group

Command-Line Format --innodb-log-files-in-group=#

System Variable innodb_log_files_in_group

Scope Global

Dynamic No

2179

InnoDB System Variables

Type Integer

Default Value 2

Minimum Value 2

Maximum Value 100

The number of log files in the log group. InnoDB writes to the files in a circular fashion. The default (and
recommended) value is 2. The location of the files is specified by innodb_log_group_home_dir. The
combined size of log files (innodb_log_file_size * innodb_log_files_in_group) can be up to
512GB.

For related information, see Redo Log File Configuration.

• innodb_log_group_home_dir

Command-Line Format --innodb-log-group-home-dir=dir_name

System Variable innodb_log_group_home_dir

Scope Global

Dynamic No

Type Directory name

The directory path to the InnoDB redo log files, whose number is specified by
innodb_log_files_in_group. If you do not specify any InnoDB log variables, the default is to
create two files named ib_logfile0 and ib_logfile1 in the MySQL data directory. Log file size is
given by the innodb_log_file_size system variable.

For related information, see Redo Log File Configuration.

• innodb_lru_scan_depth

Command-Line Format --innodb-lru-scan-depth=#

System Variable innodb_lru_scan_depth

Scope Global

Dynamic Yes

Type Integer

Default Value 1024

Minimum Value 100

Maximum Value (64-bit platforms) 2**64-1

Maximum Value (32-bit platforms) 2**32-1

A parameter that influences the algorithms and heuristics for the flush operation for the InnoDB buffer
pool. Primarily of interest to performance experts tuning I/O-intensive workloads. It specifies, per buffer
pool instance, how far down the buffer pool LRU page list the page cleaner thread scans looking for dirty
pages to flush. This is a background operation performed once per second.

A setting smaller than the default is generally suitable for most workloads. A value that is much higher
than necessary may impact performance. Only consider increasing the value if you have spare I/O

2180

InnoDB System Variables

capacity under a typical workload. Conversely, if a write-intensive workload saturates your I/O capacity,
decrease the value, especially in the case of a large buffer pool.

When tuning innodb_lru_scan_depth, start with a low value and configure the setting upward
with the goal of rarely seeing zero free pages. Also, consider adjusting innodb_lru_scan_depth
when changing the number of buffer pool instances, since innodb_lru_scan_depth *
innodb_buffer_pool_instances defines the amount of work performed by the page cleaner thread
each second.

For related information, see Section 14.8.3.4, “Configuring Buffer Pool Flushing”. For general I/O tuning
advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_max_dirty_pages_pct

Command-Line Format --innodb-max-dirty-pages-pct=#

System Variable innodb_max_dirty_pages_pct

Scope Global

Dynamic Yes

Type Numeric

Default Value 75

Minimum Value 0

Maximum Value 99

InnoDB tries to flush data from the buffer pool so that the percentage of dirty pages does not exceed
this value. Specify an integer in the range from 0 to 99. The default value is 75.

The innodb_max_dirty_pages_pct setting establishes a target for flushing activity. It does not
affect the rate of flushing. For information about managing the rate of flushing, see Section 14.8.3.4,
“Configuring Buffer Pool Flushing”.

For related information, see Section 14.8.3.4, “Configuring Buffer Pool Flushing”. For general I/O tuning
advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_max_dirty_pages_pct_lwm

Command-Line Format --innodb-max-dirty-pages-pct-lwm=#

System Variable innodb_max_dirty_pages_pct_lwm

Scope Global

Dynamic Yes

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value 99

Defines a low water mark representing the percentage of dirty pages at which preflushing is enabled to
control the dirty page ratio. The default of 0 disables the pre-flushing behavior entirely. The configured
value should always be lower than the innodb_max_dirty_pages_pct value. For more information,
see Section 14.8.3.4, “Configuring Buffer Pool Flushing”.

• innodb_max_purge_lag

2181

InnoDB System Variables

Command-Line Format --innodb-max-purge-lag=#

System Variable innodb_max_purge_lag

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Defines the desired maximum purge lag. If this value is exceeded, a delay is imposed on INSERT,
UPDATE, and DELETE operations to allow time for purge to catch up. The default value is 0, which means
there is no maximum purge lag and no delay.

For more information, see Section 14.8.10, “Purge Configuration”.

• innodb_max_purge_lag_delay

Command-Line Format --innodb-max-purge-lag-delay=#

System Variable innodb_max_purge_lag_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 10000000

Unit microseconds

Specifies the maximum delay in microseconds for the delay imposed when the
innodb_max_purge_lag threshold is exceeded. The specified innodb_max_purge_lag_delay
value is an upper limit on the delay period calculated by the innodb_max_purge_lag formula.

For more information, see Section 14.8.10, “Purge Configuration”.

• innodb_mirrored_log_groups

Has no effect. This variable is deprecated as of MySQL 5.6.11; expect it to be removed in a future
MySQL release.

• innodb_monitor_disable

Command-Line Format --innodb-monitor-disable={counter|
module|pattern|all}

System Variable innodb_monitor_disable

Scope Global

Dynamic Yes

2182

InnoDB System Variables

Type String

This variable acts as a switch, disabling InnoDB metrics counters. Counter data may be queried using
the Information Schema INNODB_METRICS table. For usage information, see Section 14.15.6, “InnoDB
INFORMATION_SCHEMA Metrics Table”.

• innodb_monitor_enable

Command-Line Format --innodb-monitor-enable={counter|
module|pattern|all}

System Variable innodb_monitor_enable

Scope Global

Dynamic Yes

Type String

This variable acts as a switch, enabling InnoDB metrics counters. Counter data may be queried using
the Information Schema INNODB_METRICS table. For usage information, see Section 14.15.6, “InnoDB
INFORMATION_SCHEMA Metrics Table”.

• innodb_monitor_reset

Command-Line Format --innodb-monitor-reset={counter|
module|pattern|all}

System Variable innodb_monitor_reset

Scope Global

Dynamic Yes

Type Enumeration

Default Value NULL

Valid Values counter

module

pattern

all

This variable acts as a switch, resetting the count value for InnoDB metrics counters to zero. Counter
data may be queried using the Information Schema INNODB_METRICS table. For usage information, see
Section 14.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”.

• innodb_monitor_reset_all

Command-Line Format --innodb-monitor-reset-all={counter|
module|pattern|all}

System Variable innodb_monitor_reset_all

Scope Global

Dynamic Yes

Type Enumeration

Default Value NULL

2183

InnoDB System Variables

Valid Values counter

module

pattern

all

This variable acts as a switch, resetting all values (minimum, maximum, and so on) for InnoDB metrics
counters. Counter data may be queried using the Information Schema INNODB_METRICS table. For
usage information, see Section 14.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”.

• innodb_numa_interleave

Command-Line Format --innodb-numa-interleave[={OFF|ON}]

Introduced 5.6.27

System Variable innodb_numa_interleave

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Enables the NUMA interleave memory policy for allocation of the InnoDB buffer pool. When
innodb_numa_interleave is enabled, the NUMA memory policy is set to MPOL_INTERLEAVE for
the mysqld process. After the InnoDB buffer pool is allocated, the NUMA memory policy is set back to
MPOL_DEFAULT. For the innodb_numa_interleave option to be available, MySQL must be compiled
on a NUMA-enabled Linux system.

• innodb_old_blocks_pct

Command-Line Format --innodb-old-blocks-pct=#

System Variable innodb_old_blocks_pct

Scope Global

Dynamic Yes

Type Integer

Default Value 37

Minimum Value 5

Maximum Value 95

Specifies the approximate percentage of the InnoDB buffer pool used for the old block sublist. The
range of values is 5 to 95. The default value is 37 (that is, 3/8 of the pool). Often used in combination
with innodb_old_blocks_time.

For more information, see Section 14.8.3.2, “Making the Buffer Pool Scan Resistant”. For information
about buffer pool management, the LRU algorithm, and eviction policies, see Section 14.5.1, “Buffer
Pool”.

• innodb_old_blocks_time

Command-Line Format --innodb-old-blocks-time=#

2184

InnoDB System Variables

System Variable innodb_old_blocks_time

Scope Global

Dynamic Yes

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 2**32-1

Unit milliseconds

Non-zero values protect against the buffer pool being filled by data that is referenced only for a brief
period, such as during a full table scan. Increasing this value offers more protection against full table
scans interfering with data cached in the buffer pool.

Specifies how long in milliseconds a block inserted into the old sublist must stay there after its first
access before it can be moved to the new sublist. If the value is 0, a block inserted into the old sublist
moves immediately to the new sublist the first time it is accessed, no matter how soon after insertion the
access occurs. If the value is greater than 0, blocks remain in the old sublist until an access occurs at
least that many milliseconds after the first access. For example, a value of 1000 causes blocks to stay in
the old sublist for 1 second after the first access before they become eligible to move to the new sublist.

The default value is 1000 as of MySQL 5.6.6, 0 before that.

This variable is often used in combination with innodb_old_blocks_pct. For more information,
see Section 14.8.3.2, “Making the Buffer Pool Scan Resistant”. For information about buffer pool
management, the LRU algorithm, and eviction policies, see Section 14.5.1, “Buffer Pool”.

• innodb_online_alter_log_max_size

Command-Line Format --innodb-online-alter-log-max-size=#

System Variable innodb_online_alter_log_max_size

Scope Global

Dynamic Yes

Type Integer

Default Value 134217728

Minimum Value 65536

Maximum Value 2**64-1

Unit bytes

Specifies an upper limit in bytes on the size of the temporary log files used during online DDL operations
for InnoDB tables. There is one such log file for each index being created or table being altered. This log
file stores data inserted, updated, or deleted in the table during the DDL operation. The temporary log file
is extended when needed by the value of innodb_sort_buffer_size, up to the maximum specified
by innodb_online_alter_log_max_size. If a temporary log file exceeds the upper size limit, the
ALTER TABLE operation fails and all uncommitted concurrent DML operations are rolled back. Thus, a
large value for this option allows more DML to happen during an online DDL operation, but also extends
the period of time at the end of the DDL operation when the table is locked to apply the data from the
log.

• innodb_open_files

2185

InnoDB System Variables

Command-Line Format --innodb-open-files=#

System Variable innodb_open_files

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value 10

Maximum Value 2147483647

Specifies the maximum number of files that InnoDB can have open at one time. The minimum value is
10. If innodb_file_per_table is disabled, the default value is 300; otherwise, the default value is
300 or the table_open_cache setting, whichever is higher.

• innodb_optimize_fulltext_only

Command-Line Format --innodb-optimize-fulltext-
only[={OFF|ON}]

System Variable innodb_optimize_fulltext_only

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Changes the way OPTIMIZE TABLE operates on InnoDB tables. Intended to be enabled temporarily,
during maintenance operations for InnoDB tables with FULLTEXT indexes.

By default, OPTIMIZE TABLE reorganizes data in the clustered index of the table. When this option is
enabled, OPTIMIZE TABLE skips the reorganization of table data, and instead processes newly added,
deleted, and updated token data for InnoDB FULLTEXT indexes. For more information, see Optimizing
InnoDB Full-Text Indexes.

• innodb_page_size

Command-Line Format --innodb-page-size=#

System Variable innodb_page_size

Scope Global

Dynamic No

Type Enumeration

Default Value 16384

Valid Values 4096

8192

2186

InnoDB System Variables

16384

Specifies the page size for InnoDB tablespaces. Values can be specified in bytes or kilobytes. For
example, a 16 kilobyte page size value can be specified as 16384, 16KB, or 16k.

innodb_page_size can only be configured prior to initializing the MySQL instance and cannot be
changed afterward. If no value is specified, the instance is initialized using the default page size. See
Section 14.8.1, “InnoDB Startup Configuration”.

The default 16KB page size is appropriate for a wide range of workloads, particularly for queries
involving table scans and DML operations involving bulk updates. Smaller page sizes might be more
efficient for OLTP workloads involving many small writes, where contention can be an issue when
single pages contain many rows. Smaller pages might also be efficient with SSD storage devices, which
typically use small block sizes. Keeping the InnoDB page size close to the storage device block size
minimizes the amount of unchanged data that is rewritten to disk. For general I/O tuning advice, see
Section 8.5.8, “Optimizing InnoDB Disk I/O”.

A MySQL instance using a particular InnoDB page size cannot use data files or log files from an
instance that uses a different page size.

• innodb_print_all_deadlocks

Command-Line Format --innodb-print-all-deadlocks[={OFF|
ON}]

System Variable innodb_print_all_deadlocks

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

When this option is enabled, information about all deadlocks in InnoDB user transactions is recorded
in the mysqld error log. Otherwise, you see information about only the last deadlock, using the SHOW
ENGINE INNODB STATUS command. An occasional InnoDB deadlock is not necessarily an issue,
because InnoDB detects the condition immediately and rolls back one of the transactions automatically.
You might use this option to troubleshoot why deadlocks are occurring if an application does not
have appropriate error-handling logic to detect the rollback and retry its operation. A large number of
deadlocks might indicate the need to restructure transactions that issue DML or SELECT ... FOR
UPDATE statements for multiple tables, so that each transaction accesses the tables in the same order,
thus avoiding the deadlock condition.

For related information, see Section 14.7.5, “Deadlocks in InnoDB”.

• innodb_purge_batch_size

Command-Line Format --innodb-purge-batch-size=#

System Variable innodb_purge_batch_size

Scope Global

Dynamic Yes

Type Integer

2187

InnoDB System Variables

Default Value 300

Minimum Value 1

Maximum Value 5000

Defines the number of undo log pages that purge parses and processes in one batch from
the history list. In a multithreaded purge configuration, the coordinator purge thread divides
innodb_purge_batch_size by innodb_purge_threads and assigns that number of pages to each
purge thread. The innodb_purge_batch_size variable also defines the number of undo log pages
that purge frees after every 128 iterations through the undo logs.

The innodb_purge_batch_size option is intended for advanced performance tuning in combination
with the innodb_purge_threads setting. Most users need not change innodb_purge_batch_size
from its default value.

For related information, see Section 14.8.10, “Purge Configuration”.

• innodb_purge_threads

Command-Line Format --innodb-purge-threads=#

System Variable innodb_purge_threads

Scope Global

Dynamic No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 32

The number of background threads devoted to the InnoDB purge operation. Increasing the value
creates additional purge threads, which can improve efficiency on systems where DML operations are
performed on multiple tables.

For related information, see Section 14.8.10, “Purge Configuration”.

• innodb_random_read_ahead

Command-Line Format --innodb-random-read-ahead[={OFF|ON}]

System Variable innodb_random_read_ahead

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enables the random read-ahead technique for optimizing InnoDB I/O.

For details about performance considerations for different types of read-ahead requests, see
Section 14.8.3.3, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”. For general I/O tuning
advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

2188

InnoDB System Variables

• innodb_read_ahead_threshold

Command-Line Format --innodb-read-ahead-threshold=#

System Variable innodb_read_ahead_threshold

Scope Global

Dynamic Yes

Type Integer

Default Value 56

Minimum Value 0

Maximum Value 64

Controls the sensitivity of linear read-ahead that InnoDB uses to prefetch pages into the buffer pool.
If InnoDB reads at least innodb_read_ahead_threshold pages sequentially from an extent (64
pages), it initiates an asynchronous read for the entire following extent. The permissible range of values
is 0 to 64. As of MySQL 5.6.1, a value of 0 disables read-ahead. Prior to 5.6.1, a value of 0 would trigger
a read-ahead upon reading the boundary page of a 64 page extent. For the default of 56, InnoDB must
read at least 56 pages sequentially from an extent to initiate an asynchronous read for the following
extent.

Knowing how many pages are read through the read-ahead mechanism, and how many of
these pages are evicted from the buffer pool without ever being accessed, can be useful when
fine-tuning the innodb_read_ahead_threshold setting. SHOW ENGINE INNODB STATUS
output displays counter information from the Innodb_buffer_pool_read_ahead and
Innodb_buffer_pool_read_ahead_evicted global status variables, which report the number of
pages brought into the buffer pool by read-ahead requests, and the number of such pages evicted from
the buffer pool without ever being accessed, respectively. The status variables report global values since
the last server restart.

SHOW ENGINE INNODB STATUS also shows the rate at which the read-ahead pages are read and the
rate at which such pages are evicted without being accessed. The per-second averages are based on
the statistics collected since the last invocation of SHOW ENGINE INNODB STATUS and are displayed in
the BUFFER POOL AND MEMORY section of the SHOW ENGINE INNODB STATUS output.

For more information, see Section 14.8.3.3, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”.
For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_read_io_threads

Command-Line Format --innodb-read-io-threads=#

System Variable innodb_read_io_threads

Scope Global

Dynamic No

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 64

The number of I/O threads for read operations in InnoDB. Its counterpart for write threads is
innodb_write_io_threads. For more information, see Section 14.8.6, “Configuring the Number of

2189

InnoDB System Variables

Background InnoDB I/O Threads”. For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB
Disk I/O”.

Note

On Linux systems, running multiple MySQL servers (typically more
than 12) with default settings for innodb_read_io_threads,
innodb_write_io_threads, and the Linux aio-max-nr setting can exceed
system limits. Ideally, increase the aio-max-nr setting; as a workaround, you
might reduce the settings for one or both of the MySQL variables.

• innodb_read_only

Command-Line Format --innodb-read-only[={OFF|ON}]

System Variable innodb_read_only

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Starts InnoDB in read-only mode. For distributing database applications or data sets on read-only
media. Can also be used in data warehouses to share the same data directory between multiple
instances. For more information, see Section 14.8.2, “Configuring InnoDB for Read-Only Operation”.

• innodb_replication_delay

Command-Line Format --innodb-replication-delay=#

System Variable innodb_replication_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit milliseconds

The replication thread delay in milliseconds on a replica server if innodb_thread_concurrency is
reached.

• innodb_rollback_on_timeout

Command-Line Format --innodb-rollback-on-timeout[={OFF|
ON}]

System Variable innodb_rollback_on_timeout

Scope Global

Dynamic No

Type Boolean

Default Value OFF

2190

InnoDB System Variables

InnoDB rolls back only the last statement on a transaction timeout by default. If --innodb-rollback-
on-timeout is specified, a transaction timeout causes InnoDB to abort and roll back the entire
transaction (the same behavior as in MySQL 4.1).

For more information, see Section 14.21.4, “InnoDB Error Handling”.

• innodb_rollback_segments

Command-Line Format --innodb-rollback-segments=#

System Variable innodb_rollback_segments

Scope Global

Dynamic Yes

Type Integer

Default Value 128

Minimum Value 1

Maximum Value 128

Defines the number of rollback segments used by InnoDB for transactions that generate undo records.
The number of transactions that each rollback segment supports depends on the InnoDB page size and
the number of undo logs assigned to each transaction. For more information, see Section 14.6.7, “Undo
Logs”.

This setting is appropriate for tuning performance if you observe mutex contention related to the undo
logs.

Although you can increase or decrease the number of rollback segments used by InnoDB, the number
of rollback segments physically present in the system never decreases. Thus, you might start with a
low value and gradually increase it to avoid allocating rollback segments that are not required. The
innodb_rollback_segments default and maximum value is 128.

For related information, see Section 14.3, “InnoDB Multi-Versioning”. For information about configuring
separate undo tablespaces, see Section 14.6.3.3, “Undo Tablespaces”.

• innodb_saved_page_number_debug

Command-Line Format --innodb-saved-page-number-debug=#

Introduced 5.6.17

System Variable innodb_saved_page_number_debug

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2**23-1

Saves a page number. Setting the innodb_fil_make_page_dirty_debug option dirties the page
defined by innodb_saved_page_number_debug. The innodb_saved_page_number_debug
option is only available if debugging support is compiled in using the WITH_DEBUG CMake option.

2191

InnoDB System Variables

• innodb_sort_buffer_size

Command-Line Format --innodb-sort-buffer-size=#

System Variable innodb_sort_buffer_size

Scope Global

Dynamic No

Type Integer

Default Value 1048576

Minimum Value 65536

Maximum Value 67108864

Unit bytes

This variable defines:

• The sort buffer size for online DDL operations that create or rebuild secondary indexes.

• The amount by which the temporary log file is extended when recording concurrent DML during an
online DDL operation, and the size of the temporary log file read buffer and write buffer.

For related information, see Section 14.13.3, “Online DDL Space Requirements”.

• innodb_spin_wait_delay

Command-Line Format --innodb-spin-wait-delay=#

System Variable innodb_spin_wait_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 6

Minimum Value 0

Maximum Value (64-bit platforms) 2**64-1

Maximum Value (32-bit platforms) 2**32-1

The maximum delay between polls for a spin lock. The low-level implementation of this mechanism
varies depending on the combination of hardware and operating system, so the delay does not
correspond to a fixed time interval. For more information, see Section 14.8.9, “Configuring Spin Lock
Polling”.

• innodb_stats_auto_recalc

Command-Line Format --innodb-stats-auto-recalc[={OFF|ON}]

System Variable innodb_stats_auto_recalc

Scope Global

Dynamic Yes

Type Boolean

2192

InnoDB System Variables

Default Value ON

Causes InnoDB to automatically recalculate persistent statistics after the data in a table is changed
substantially. The threshold value is 10% of the rows in the table. This setting applies to tables
created when the innodb_stats_persistent option is enabled. Automatic statistics recalculation
may also be configured by specifying STATS_PERSISTENT=1 in a CREATE TABLE or ALTER
TABLE statement. The amount of data sampled to produce the statistics is controlled by the
innodb_stats_persistent_sample_pages variable.

For more information, see Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

• innodb_stats_include_delete_marked

Command-Line Format --innodb-stats-include-delete-
marked[={OFF|ON}]

Introduced 5.6.35

System Variable innodb_stats_include_delete_marked

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

By default, InnoDB reads uncommitted data when calculating statistics. In the case of an uncommitted
transaction that deletes rows from a table, InnoDB excludes records that are delete-marked when
calculating row estimates and index statistics, which can lead to non-optimal execution plans for other
transactions that are operating on the table concurrently using a transaction isolation level other than
READ UNCOMMITTED. To avoid this scenario, innodb_stats_include_delete_marked can be
enabled to ensure that InnoDB includes delete-marked records when calculating persistent optimizer
statistics.

When innodb_stats_include_delete_marked is enabled, ANALYZE TABLE considers delete-
marked records when recalculating statistics.

innodb_stats_include_delete_marked is a global setting that affects all InnoDB tables. It is only
applicable to persistent optimizer statistics.

For related information, see Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

• innodb_stats_method

Command-Line Format --innodb-stats-method=value

System Variable innodb_stats_method

Scope Global

Dynamic Yes

Type Enumeration

Default Value nulls_equal

Valid Values nulls_equal

nulls_unequal

2193

InnoDB System Variables

nulls_ignored

How the server treats NULL values when collecting statistics about the distribution of index values for
InnoDB tables. Permitted values are nulls_equal, nulls_unequal, and nulls_ignored. For
nulls_equal, all NULL index values are considered equal and form a single value group with a size
equal to the number of NULL values. For nulls_unequal, NULL values are considered unequal, and
each NULL forms a distinct value group of size 1. For nulls_ignored, NULL values are ignored.

The method used to generate table statistics influences how the optimizer chooses indexes for query
execution, as described in Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.

• innodb_stats_on_metadata

Command-Line Format --innodb-stats-on-metadata[={OFF|ON}]

System Variable innodb_stats_on_metadata

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

This option only applies when optimizer statistics are configured to be non-persistent. Optimizer statistics
are not persisted to disk when innodb_stats_persistent is disabled or when individual tables
are created or altered with STATS_PERSISTENT=0. For more information, see Section 14.8.11.2,
“Configuring Non-Persistent Optimizer Statistics Parameters”.

When innodb_stats_on_metadata is enabled, InnoDB updates non-persistent statistics when
metadata statements such as SHOW TABLE STATUS or SHOW INDEX are run, or when accessing the
Information Schema TABLES or STATISTICS tables. (These updates are similar to what happens for
ANALYZE TABLE.) When disabled, InnoDB does not update statistics during these operations. Leaving
the setting disabled can improve access speed for schemas that have a large number of tables or
indexes. It can also improve the stability of execution plans for queries that involve InnoDB tables.

To change the setting, issue the statement SET GLOBAL innodb_stats_on_metadata=mode,
where mode is either ON or OFF (or 1 or 0). Changing the setting requires privileges sufficient to set
global system variables (see Section 5.1.8.1, “System Variable Privileges”) and immediately affects the
operation of all connections.

• innodb_stats_persistent

Command-Line Format --innodb-stats-persistent[={OFF|ON}]

System Variable innodb_stats_persistent

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Specifies whether InnoDB index statistics are persisted to disk. Otherwise, statistics may be
recalculated frequently which can lead to variations in query execution plans. This setting is stored with
each table when the table is created. You can set innodb_stats_persistent at the global level
before creating a table, or use the STATS_PERSISTENT clause of the CREATE TABLE and ALTER

2194

InnoDB System Variables

TABLE statements to override the system-wide setting and configure persistent statistics for individual
tables.

For more information, see Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.

• innodb_stats_persistent_sample_pages

Command-Line Format --innodb-stats-persistent-sample-
pages=#

System Variable innodb_stats_persistent_sample_pages

Scope Global

Dynamic Yes

Type Integer

Default Value 20

Minimum Value 1

Maximum Value 18446744073709551615

The number of index pages to sample when estimating cardinality and other statistics for an indexed
column, such as those calculated by ANALYZE TABLE. Increasing the value improves the accuracy of
index statistics, which can improve the query execution plan, at the expense of increased I/O during
the execution of ANALYZE TABLE for an InnoDB table. For more information, see Section 14.8.11.1,
“Configuring Persistent Optimizer Statistics Parameters”.

Note

Setting a high value for innodb_stats_persistent_sample_pages could
result in lengthy ANALYZE TABLE execution time. To estimate the number
of database pages accessed by ANALYZE TABLE, see Section 14.8.11.3,
“Estimating ANALYZE TABLE Complexity for InnoDB Tables”.

innodb_stats_persistent_sample_pages only applies when innodb_stats_persistent
is enabled for a table; when innodb_stats_persistent is disabled,
innodb_stats_transient_sample_pages applies instead.

• innodb_stats_sample_pages

Command-Line Format --innodb-stats-sample-pages=#

Deprecated Yes

System Variable innodb_stats_sample_pages

Scope Global

Dynamic Yes

Type Integer

Default Value 8

Minimum Value 1

Maximum Value 2**64-1

Deprecated. Use innodb_stats_transient_sample_pages instead.

2195

InnoDB System Variables

• innodb_stats_transient_sample_pages

Command-Line Format --innodb-stats-transient-sample-
pages=#

System Variable innodb_stats_transient_sample_pages

Scope Global

Dynamic Yes

Type Integer

Default Value 8

Minimum Value 1

Maximum Value 18446744073709551615

The number of index pages to sample when estimating cardinality and other statistics for an indexed
column, such as those calculated by ANALYZE TABLE. The default value is 8. Increasing the value
improves the accuracy of index statistics, which can improve the query execution plan, at the expense
of increased I/O when opening an InnoDB table or recalculating statistics. For more information, see
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”.

Note

Setting a high value for innodb_stats_transient_sample_pages could
result in lengthy ANALYZE TABLE execution time. To estimate the number
of database pages accessed by ANALYZE TABLE, see Section 14.8.11.3,
“Estimating ANALYZE TABLE Complexity for InnoDB Tables”.

innodb_stats_transient_sample_pages only applies when innodb_stats_persistent
is disabled for a table; when innodb_stats_persistent is enabled,
innodb_stats_persistent_sample_pages applies instead. Takes the place of
innodb_stats_sample_pages. For more information, see Section 14.8.11.2, “Configuring Non-
Persistent Optimizer Statistics Parameters”.

• innodb_status_output

Command-Line Format --innodb-status-output[={OFF|ON}]

Introduced 5.6.16

System Variable innodb_status_output

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enables or disables periodic output for the standard InnoDB Monitor. Also used in combination with
innodb_status_output_locks to enable or disable periodic output for the InnoDB Lock Monitor.
For more information, see Section 14.17.2, “Enabling InnoDB Monitors”.

• innodb_status_output_locks

Command-Line Format --innodb-status-output-locks[={OFF|
ON}]

2196

InnoDB System Variables

Introduced 5.6.16

System Variable innodb_status_output_locks

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enables or disables the InnoDB Lock Monitor. When enabled, the InnoDB Lock Monitor prints additional
information about locks in SHOW ENGINE INNODB STATUS output and in periodic output printed to the
MySQL error log. Periodic output for the InnoDB Lock Monitor is printed as part of the standard InnoDB
Monitor output. The standard InnoDB Monitor must therefore be enabled for the InnoDB Lock Monitor
to print data to the MySQL error log periodically. For more information, see Section 14.17.2, “Enabling
InnoDB Monitors”.

• innodb_strict_mode

Command-Line Format --innodb-strict-mode[={OFF|ON}]

System Variable innodb_strict_mode

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

When innodb_strict_mode is enabled, InnoDB returns errors rather than warnings when checking
for invalid or incompatible table options.

It checks that KEY_BLOCK_SIZE, ROW_FORMAT, DATA DIRECTORY, TEMPORARY, and TABLESPACE
options are compatible with each other and other settings.

innodb_strict_mode=ON also enables a row size check when creating or altering a table, to prevent
INSERT or UPDATE from failing due to the record being too large for the selected page size.

You can enable or disable innodb_strict_mode on the command line when starting mysqld, or in
a MySQL configuration file. You can also enable or disable innodb_strict_mode at runtime with
the statement SET [GLOBAL|SESSION] innodb_strict_mode=mode, where mode is either ON
or OFF. Changing the GLOBAL setting requires privileges sufficient to set global system variables (see
Section 5.1.8.1, “System Variable Privileges”) and affects the operation of all clients that subsequently
connect. Any client can change the SESSION setting for innodb_strict_mode, and the setting affects
only that client.

• innodb_support_xa

Command-Line Format --innodb-support-xa[={OFF|ON}]

System Variable innodb_support_xa

Scope Global, Session

Dynamic Yes

Type Boolean

2197

InnoDB System Variables

Default Value ON

Enables InnoDB support for two-phase commit in XA transactions, causing an extra disk flush for
transaction preparation. The XA mechanism is used internally and is essential for any server that has
its binary log turned on and is accepting changes to its data from more than one thread. If you disable
innodb_support_xa, transactions can be written to the binary log in a different order than the live
database is committing them, which can produce different data when the binary log is replayed in
disaster recovery or on a replica. Do not disable innodb_support_xa on a replication source server
unless you have an unusual setup where only one thread is able to change data.

For a server that is accepting data changes from only one thread, it is safe and recommended to disable
this option to improve performance for InnoDB tables. For example, you can turn it off on replicas where
only the replication SQL thread is changing data.

You can also disable this option if you do not need it for safe binary logging or replication, and you also
do not use an external XA transaction manager.

• innodb_sync_array_size

Command-Line Format --innodb-sync-array-size=#

System Variable innodb_sync_array_size

Scope Global

Dynamic No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 1024

Defines the size of the mutex/lock wait array. Increasing the value splits the internal data structure used
to coordinate threads, for higher concurrency in workloads with large numbers of waiting threads. This
setting must be configured when the MySQL instance is starting up, and cannot be changed afterward.
Increasing the value is recommended for workloads that frequently produce a large number of waiting
threads, typically greater than 768.

• innodb_sync_spin_loops

Command-Line Format --innodb-sync-spin-loops=#

System Variable innodb_sync_spin_loops

Scope Global

Dynamic Yes

Type Integer

Default Value 30

Minimum Value 0

Maximum Value 4294967295

The number of times a thread waits for an InnoDB mutex to be freed before the thread is suspended.

2198

InnoDB System Variables

• innodb_table_locks

Command-Line Format --innodb-table-locks[={OFF|ON}]

System Variable innodb_table_locks

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

If autocommit = 0, InnoDB honors LOCK TABLES; MySQL does not return from LOCK TABLES ...
WRITE until all other threads have released all their locks to the table. The default value of
innodb_table_locks is 1, which means that LOCK TABLES causes InnoDB to lock a table internally
if autocommit = 0.

innodb_table_locks = 0 has no effect for tables locked explicitly with LOCK TABLES ... WRITE.
It does have an effect for tables locked for read or write by LOCK TABLES ... WRITE implicitly (for
example, through triggers) or by LOCK TABLES ... READ.

For related information, see Section 14.7, “InnoDB Locking and Transaction Model”.

• innodb_thread_concurrency

Command-Line Format --innodb-thread-concurrency=#

System Variable innodb_thread_concurrency

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1000

Defines the maximum number of threads permitted inside of InnoDB. A value of 0 (the default) is
interpreted as infinite concurrency (no limit). This variable is intended for performance tuning on high
concurrency systems.

InnoDB tries to keep the number of threads inside InnoDB less than or equal to the
innodb_thread_concurrency limit. Once the limit is reached, additional threads are placed into a
“First In, First Out” (FIFO) queue for waiting threads. Threads waiting for locks are not counted in the
number of concurrently executing threads.

The correct setting depends on workload and computing environment. Consider setting this variable
if your MySQL instance shares CPU resources with other applications or if your workload or number
of concurrent users is growing. Test a range of values to determine the setting that provides the best
performance. innodb_thread_concurrency is a dynamic variable, which permits experimenting

2199

InnoDB System Variables

with different settings on a live test system. If a particular setting performs poorly, you can quickly set
innodb_thread_concurrency back to 0.

Use the following guidelines to help find and maintain an appropriate setting:

• If the number of concurrent user threads for a workload is consistently small and does not affect
performance, set innodb_thread_concurrency=0 (no limit).

• If your workload is consistently heavy or occasionally spikes, set an innodb_thread_concurrency
value and adjust it until you find the number of threads that provides the best performance. For
example, suppose that your system typically has 40 to 50 users, but periodically the number increases
to 60, 70, or more. Through testing, you find that performance remains largely stable with a limit of 80
concurrent users. In this case, set innodb_thread_concurrency to 80.

• If you do not want InnoDB to use more than a certain number of virtual CPUs for user threads (20
virtual CPUs, for example), set innodb_thread_concurrency to this number (or possibly lower,
depending on performance testing). If your goal is to isolate MySQL from other applications, consider
binding the mysqld process exclusively to the virtual CPUs. Be aware, however, that exclusive
binding can result in non-optimal hardware usage if the mysqld process is not consistently busy. In
this case, you can bind the mysqld process to the virtual CPUs but allow other applications to use
some or all of the virtual CPUs.

Note

From an operating system perspective, using a resource management solution
to manage how CPU time is shared among applications may be preferable to
binding the mysqld process. For example, you could assign 90% of virtual
CPU time to a given application while other critical processes are not running,
and scale that value back to 40% when other critical processes are running.

• In some cases, the optimal innodb_thread_concurrency setting can be smaller than the number
of virtual CPUs.

• An innodb_thread_concurrency value that is too high can cause performance regression due to
increased contention on system internals and resources.

• Monitor and analyze your system regularly. Changes to workload, number of users, or computing
environment may require that you adjust the innodb_thread_concurrency setting.

A value of 0 disables the queries inside InnoDB and queries in queue counters in the ROW
OPERATIONS section of SHOW ENGINE INNODB STATUS output.

For related information, see Section 14.8.5, “Configuring Thread Concurrency for InnoDB”.

• innodb_thread_sleep_delay

Command-Line Format --innodb-thread-sleep-delay=#

System Variable innodb_thread_sleep_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 10000

Minimum Value 0

2200

InnoDB System Variables

Maximum Value (64-bit platforms, ≤ 5.6.16) 18446744073709551615

Maximum Value (32-bit platforms, ≤ 5.6.16) 4294967295

Maximum Value (≥ 5.6.17) 1000000

Unit microseconds

Defines how long InnoDB threads sleep before joining the InnoDB queue, in microseconds. The default
value is 10000. A value of 0 disables sleep. You can set innodb_adaptive_max_sleep_delay to the
highest value you would allow for innodb_thread_sleep_delay, and InnoDB automatically adjusts
innodb_thread_sleep_delay up or down depending on current thread-scheduling activity. This
dynamic adjustment helps the thread scheduling mechanism to work smoothly during times when the
system is lightly loaded or when it is operating near full capacity.

For more information, see Section 14.8.5, “Configuring Thread Concurrency for InnoDB”.

• innodb_tmpdir

Command-Line Format --innodb-tmpdir=dir_name

Introduced 5.6.29

System Variable innodb_tmpdir

Scope Global, Session

Dynamic Yes

Type Directory name

Default Value NULL

Used to define an alternate directory for temporary sort files created during online ALTER TABLE
operations that rebuild the table.

Online ALTER TABLE operations that rebuild the table also create an intermediate table file in the same
directory as the original table. The innodb_tmpdir option is not applicable to intermediate table files.

A valid value is any directory path other than the MySQL data directory path. If the value is NULL
(the default), temporary files are created MySQL temporary directory ($TMPDIR on Unix, %TEMP% on
Windows, or the directory specified by the --tmpdir configuration option). If a directory is specified,
existence of the directory and permissions are only checked when innodb_tmpdir is configured using
a SET statement. If a symlink is provided in a directory string, the symlink is resolved and stored as an
absolute path. The path should not exceed 512 bytes. An online ALTER TABLE operation reports an
error if innodb_tmpdir is set to an invalid directory. innodb_tmpdir overrides the MySQL tmpdir
setting but only for online ALTER TABLE operations.

The FILE privilege is required to configure innodb_tmpdir.

The innodb_tmpdir option was introduced to help avoid overflowing a temporary file directory located
on a tmpfs file system. Such overflows could occur as a result of large temporary sort files created
during online ALTER TABLE operations that rebuild the table.

In replication environments, only consider replicating the innodb_tmpdir setting if all servers have the
same operating system environment. Otherwise, replicating the innodb_tmpdir setting could result
in a replication failure when running online ALTER TABLE operations that rebuild the table. If server

2201

InnoDB System Variables

operating environments differ, it is recommended that you configure innodb_tmpdir on each server
individually.

For more information, see Section 14.13.3, “Online DDL Space Requirements”. For information about
online ALTER TABLE operations, see Section 14.13, “InnoDB and Online DDL”.

• innodb_trx_purge_view_update_only_debug

Command-Line Format --innodb-trx-purge-view-update-only-
debug[={OFF|ON}]

System Variable innodb_trx_purge_view_update_only_debug

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Pauses purging of delete-marked records while allowing the purge view to be updated. This option
artificially creates a situation in which the purge view is updated but purges have not yet been
performed. This option is only available if debugging support is compiled in using the WITH_DEBUG
CMake option.

• innodb_trx_rseg_n_slots_debug

Command-Line Format --innodb-trx-rseg-n-slots-debug=#

System Variable innodb_trx_rseg_n_slots_debug

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1024

Sets a debug flag that limits TRX_RSEG_N_SLOTS to a given value for the
trx_rsegf_undo_find_free function that looks for free slots for undo log segments. This option is
only available if debugging support is compiled in using the WITH_DEBUG CMake option.

• innodb_undo_directory

Command-Line Format --innodb-undo-directory=dir_name

System Variable innodb_undo_directory

Scope Global

Dynamic No

Type Directory name

Default Value .

The relative or absolute directory path where InnoDB creates undo tablespaces. Typically used to place
undo logs on a different storage device. Used in conjunction with innodb_rollback_segments and

2202

InnoDB System Variables

innodb_undo_tablespaces. The default value of “.” represents the same directory where InnoDB
creates its other log files by default.

Note

An absolute directory path must be set for embedded MySQL installations.
Otherwise, the server may not be able to locate undo tablespaces that are
created when the MySQL instance is initialized.

For more information, see Section 14.6.3.3, “Undo Tablespaces”.

• innodb_undo_logs

Command-Line Format --innodb-undo-logs=#

System Variable innodb_undo_logs

Scope Global

Dynamic Yes

Type Integer

Default Value 128

Minimum Value 1

Maximum Value 128

Defines the number of rollback segments used by InnoDB. The innodb_undo_logs option
is an alias for innodb_rollback_segments. For more information, see the description of
innodb_rollback_segments.

• innodb_undo_tablespaces

Command-Line Format --innodb-undo-tablespaces=#

System Variable innodb_undo_tablespaces

Scope Global

Dynamic No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 126

The number of undo tablespaces used by InnoDB. The default value is 0.

Because undo logs can become large during long-running transactions, having undo logs in multiple
tablespaces reduces the maximum size of any one tablespace. The undo tablespace files are created
in the location defined by innodb_undo_directory, with names in the form of undoN, where N is a
sequential series of integers (including leading zeros) representing the space ID. The default size of an
undo tablespace file is 10MiB.

Important

innodb_undo_tablespaces can only be configured prior to initializing the
MySQL instance and cannot be changed afterward. If no value is specified,
the instance is initialized using the default setting of 0. Attempting to restart

2203

InnoDB System Variables

InnoDB with a greater number of undo tablespaces than specified when the
MySQL instance was initialized results in a startup failure and an error stating that
InnoDB did not find the expected number of undo tablespaces.

For more information, see Section 14.6.3.3, “Undo Tablespaces”.

• innodb_use_native_aio

Command-Line Format --innodb-use-native-aio[={OFF|ON}]

System Variable innodb_use_native_aio

Scope Global

Dynamic No

Type Boolean

Default Value ON

Specifies whether to use the Linux asynchronous I/O subsystem. This variable applies to Linux systems
only, and cannot be changed while the server is running. Normally, you do not need to configure this
option, because it is enabled by default.

The asynchronous I/O capability that InnoDB has on Windows systems is available on Linux systems.
(Other Unix-like systems continue to use synchronous I/O calls.) This feature improves the scalability of
heavily I/O-bound systems, which typically show many pending reads/writes in SHOW ENGINE INNODB
STATUS\G output.

Running with a large number of InnoDB I/O threads, and especially running multiple such instances on
the same server machine, can exceed capacity limits on Linux systems. In this case, you may receive
the following error:

EAGAIN: The specified maxevents exceeds the user's limit of available events.

You can typically address this error by writing a higher limit to /proc/sys/fs/aio-max-nr.

However, if a problem with the asynchronous I/O subsystem in the OS prevents InnoDB from starting,
you can start the server with innodb_use_native_aio=0. This option may also be disabled
automatically during startup if InnoDB detects a potential problem such as a combination of tmpdir
location, tmpfs file system, and Linux kernel that does not support AIO on tmpfs.

For more information, see Section 14.8.7, “Using Asynchronous I/O on Linux”.

• innodb_use_sys_malloc

Command-Line Format --innodb-use-sys-malloc[={OFF|ON}]

Deprecated Yes

System Variable innodb_use_sys_malloc

Scope Global

Dynamic No

Type Boolean

2204

InnoDB INFORMATION_SCHEMA Tables

Default Value ON

Enables the operating system memory allocator. If disabled, InnoDB uses its own allocator. The default
value is ON. For more information, see Section 14.8.4, “Configuring the Memory Allocator for InnoDB”.

innodb_use_sys_malloc is deprecated; expect it to be removed in a future MySQL release.

• innodb_version

The InnoDB version number. Starting in MySQL 5.6.11, separate version numbering for InnoDB is
discontinued and this value is the same the version number of the server.

• innodb_write_io_threads

Command-Line Format --innodb-write-io-threads=#

System Variable innodb_write_io_threads

Scope Global

Dynamic No

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 64

The number of I/O threads for write operations in InnoDB. The default value is 4. Its counterpart for
read threads is innodb_read_io_threads. For more information, see Section 14.8.6, “Configuring
the Number of Background InnoDB I/O Threads”. For general I/O tuning advice, see Section 8.5.8,
“Optimizing InnoDB Disk I/O”.

Note

On Linux systems, running multiple MySQL servers (typically more
than 12) with default settings for innodb_read_io_threads,
innodb_write_io_threads, and the Linux aio-max-nr setting can exceed
system limits. Ideally, increase the aio-max-nr setting; as a workaround, you
might reduce the settings for one or both of the MySQL variables.

Also take into consideration the value of sync_binlog, which controls synchronization of the binary log to
disk.

For general I/O tuning advice, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

14.15 InnoDB INFORMATION_SCHEMA Tables
This section provides information and usage examples for InnoDB INFORMATION_SCHEMA tables.

InnoDB INFORMATION_SCHEMA tables provide metadata, status information, and statistics about various
aspects of the InnoDB storage engine. You can view a list of InnoDB INFORMATION_SCHEMA tables by
issuing a SHOW TABLES statement on the INFORMATION_SCHEMA database:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB%';

For table definitions, see Section 21.4, “INFORMATION_SCHEMA InnoDB Tables”. For
general information regarding the MySQL INFORMATION_SCHEMA database, see Chapter 21,
INFORMATION_SCHEMA Tables.

2205

InnoDB INFORMATION_SCHEMA Tables about Compression

14.15.1 InnoDB INFORMATION_SCHEMA Tables about Compression

There are two pairs of InnoDB INFORMATION_SCHEMA tables about compression that can provide insight
into how well compression is working overall:

• INNODB_CMP and INNODB_CMP_RESET provide information about the number of compression
operations and the amount of time spent performing compression.

• INNODB_CMPMEM and INNODB_CMPMEM_RESET provide information about the way memory is allocated
for compression.

14.15.1.1 INNODB_CMP and INNODB_CMP_RESET

The INNODB_CMP and INNODB_CMP_RESET tables provide status information about operations related to
compressed tables, which are described in Section 14.9, “InnoDB Table Compression”. The PAGE_SIZE
column reports the compressed page size.

These two tables have identical contents, but reading from INNODB_CMP_RESET resets the
statistics on compression and uncompression operations. For example, if you archive the output of
INNODB_CMP_RESET every 60 minutes, you see the statistics for each hourly period. If you monitor
the output of INNODB_CMP (making sure never to read INNODB_CMP_RESET), you see the cumulative
statistics since InnoDB was started.

For the table definition, see Section 21.4.5, “The INFORMATION_SCHEMA INNODB_CMP and
INNODB_CMP_RESET Tables”.

14.15.1.2 INNODB_CMPMEM and INNODB_CMPMEM_RESET

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables provide status information about compressed
pages that reside in the buffer pool. Please consult Section 14.9, “InnoDB Table Compression” for
further information on compressed tables and the use of the buffer pool. The INNODB_CMP and
INNODB_CMP_RESET tables should provide more useful statistics on compression.

Internal Details

InnoDB uses a buddy allocator system to manage memory allocated to pages of various sizes, from 1KB
to 16KB. Each row of the two tables described here corresponds to a single page size.

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables have identical contents, but reading from
INNODB_CMPMEM_RESET resets the statistics on relocation operations. For example, if every 60 minutes
you archived the output of INNODB_CMPMEM_RESET, it would show the hourly statistics. If you never
read INNODB_CMPMEM_RESET and monitored the output of INNODB_CMPMEM instead, it would show the
cumulative statistics since InnoDB was started.

For the table definition, see Section 21.4.6, “The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables”.

14.15.1.3 Using the Compression Information Schema Tables

Example 14.1 Using the Compression Information Schema Tables

The following is sample output from a database that contains compressed tables (see Section 14.9,
“InnoDB Table Compression”, INNODB_CMP, INNODB_CMP_PER_INDEX, and INNODB_CMPMEM).

The following table shows the contents of the Information Schema INNODB_CMP table under a
light workload. The only compressed page size that the buffer pool contains is 8K. Compressing or
uncompressing pages has consumed less than a second since the time the statistics were reset, because
the columns COMPRESS_TIME and UNCOMPRESS_TIME are zero.

2206

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

page size compress ops compress ops
ok

compress time uncompress
ops

uncompress
time

1024 0 0 0 0 0

2048 0 0 0 0 0

4096 0 0 0 0 0

8192 1048 921 0 61 0

16384 0 0 0 0 0

According to INNODB_CMPMEM, there are 6169 compressed 8KB pages in the buffer pool. The only
other allocated block size is 64 bytes. The smallest PAGE_SIZE in INNODB_CMPMEM is used for block
descriptors of those compressed pages for which no uncompressed page exists in the buffer pool. We see
that there are 5910 such pages. Indirectly, we see that 259 (6169-5910) compressed pages also exist in
the buffer pool in uncompressed form.

The following table shows the contents of the Information Schema INNODB_CMPMEM table under
a light workload. Some memory is unusable due to fragmentation of the memory allocator for
compressed pages: SUM(PAGE_SIZE*PAGES_FREE)=6784. This is because small memory
allocation requests are fulfilled by splitting bigger blocks, starting from the 16K blocks that are
allocated from the main buffer pool, using the buddy allocation system. The fragmentation is this low
because some allocated blocks have been relocated (copied) to form bigger adjacent free blocks.
This copying of SUM(PAGE_SIZE*RELOCATION_OPS) bytes has consumed less than a second
(SUM(RELOCATION_TIME)=0).

page size pages used pages free relocation ops relocation time

64 5910 0 2436 0

128 0 1 0 0

256 0 0 0 0

512 0 1 0 0

1024 0 0 0 0

2048 0 1 0 0

4096 0 1 0 0

8192 6169 0 5 0

16384 0 0 0 0

14.15.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Information

Three InnoDB INFORMATION_SCHEMA tables enable you to monitor transactions and diagnose potential
locking problems:

• INNODB_TRX: Provides information about every transaction currently executing inside InnoDB, including
the transaction state (for example, whether it is running or waiting for a lock), when the transaction
started, and the particular SQL statement the transaction is executing.

• INNODB_LOCKS: Each transaction in InnoDB that is waiting for another transaction to release a lock
(INNODB_TRX.TRX_STATE is LOCK WAIT) is blocked by exactly one blocking lock request. That
blocking lock request is for a row or table lock held by another transaction in an incompatible mode.
A lock that blocks a transaction is always held in a mode incompatible with the mode of requested
lock (read vs. write, shared vs. exclusive). The blocked transaction cannot proceed until the other
transaction commits or rolls back, thereby releasing the requested lock. For every blocked transaction,

2207

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

INNODB_LOCKS contains one row that describes each lock the transaction has requested, and for which
it is waiting. INNODB_LOCKS also contains one row for each lock that is blocking another transaction,
whatever the state of the transaction that holds the lock (INNODB_TRX.TRX_STATE is RUNNING, LOCK
WAIT, ROLLING BACK or COMMITTING).

• INNODB_LOCK_WAITS: This table indicates which transactions are waiting for a given lock, or for
which lock a given transaction is waiting. This table contains one or more rows for each blocked
transaction, indicating the lock it has requested and any locks that are blocking that request. The
REQUESTED_LOCK_ID value refers to the lock requested by a transaction, and the BLOCKING_LOCK_ID
value refers to the lock (held by another transaction) that prevents the first transaction from proceeding.
For any given blocked transaction, all rows in INNODB_LOCK_WAITS have the same value for
REQUESTED_LOCK_ID and different values for BLOCKING_LOCK_ID.

For more information about the preceding tables, see Section 21.4.26, “The INFORMATION_SCHEMA
INNODB_TRX Table”, Section 21.4.14, “The INFORMATION_SCHEMA INNODB_LOCKS Table”, and
Section 21.4.15, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”.

14.15.2.1 Using InnoDB Transaction and Locking Information

Identifying Blocking Transactions

It is sometimes helpful to identify which transaction blocks another. The tables that contain information
about InnoDB transactions and data locks enable you to determine which transaction is waiting for
another, and which resource is being requested. (For descriptions of these tables, see Section 14.15.2,
“InnoDB INFORMATION_SCHEMA Transaction and Locking Information”.)

Suppose that three sessions are running concurrently. Each session corresponds to a MySQL thread, and
executes one transaction after another. Consider the state of the system when these sessions have issued
the following statements, but none has yet committed its transaction:

• Session A:

BEGIN;
SELECT a FROM t FOR UPDATE;
SELECT SLEEP(100);

• Session B:

SELECT b FROM t FOR UPDATE;

• Session C:

SELECT c FROM t FOR UPDATE;

In this scenario, use the following query to see which transactions are waiting and which transactions are
blocking them:

SELECT
 r.trx_id waiting_trx_id,
 r.trx_mysql_thread_id waiting_thread,
 r.trx_query waiting_query,
 b.trx_id blocking_trx_id,
 b.trx_mysql_thread_id blocking_thread,
 b.trx_query blocking_query
FROM information_schema.innodb_lock_waits w
INNER JOIN information_schema.innodb_trx b
 ON b.trx_id = w.blocking_trx_id
INNER JOIN information_schema.innodb_trx r
 ON r.trx_id = w.requesting_trx_id;

2208

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

waiting trx id waiting thread waiting query blocking trx id blocking thread blocking query

A4 6 SELECT b
FROM t FOR
UPDATE

A3 5 SELECT
SLEEP(100)

A5 7 SELECT c
FROM t FOR
UPDATE

A3 5 SELECT
SLEEP(100)

A5 7 SELECT c
FROM t FOR
UPDATE

A4 6 SELECT b
FROM t FOR
UPDATE

In the preceding table, you can identify sessions by the “waiting query” or “blocking query” columns. As you
can see:

• Session B (trx id A4, thread 6) and Session C (trx id A5, thread 7) are both waiting for Session A (trx id
A3, thread 5).

• Session C is waiting for Session B as well as Session A.

You can see the underlying data in the tables INNODB_TRX, INNODB_LOCKS, and INNODB_LOCK_WAITS.

The following table shows some sample contents of the Information Schema INNODB_TRX table.

trx id trx state trx started trx
requested
lock id

trx wait
started

trx weight trx mysql
thread id

trx query

A3 RUNNING 2008-01-15
16:44:54

NULL NULL 2 5 SELECT
SLEEP(100)

A4 LOCK WAIT 2008-01-15
16:45:09

A4:1:3:2 2008-01-15
16:45:09

2 6 SELECT
b FROM
t FOR
UPDATE

A5 LOCK WAIT 2008-01-15
16:45:14

A5:1:3:2 2008-01-15
16:45:14

2 7 SELECT
c FROM
t FOR
UPDATE

The following table shows some sample contents of the Information Schema INNODB_LOCKS table.

lock id lock trx id lock mode lock type lock table lock index lock data

A3:1:3:2 A3 X RECORD test.t PRIMARY 0x0200

A4:1:3:2 A4 X RECORD test.t PRIMARY 0x0200

A5:1:3:2 A5 X RECORD test.t PRIMARY 0x0200

The following table shows some sample contents of the Information Schema INNODB_LOCK_WAITS table.

requesting trx id requested lock id blocking trx id blocking lock id

A4 A4:1:3:2 A3 A3:1:3:2

A5 A5:1:3:2 A3 A3:1:3:2

A5 A5:1:3:2 A4 A4:1:3:2

2209

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

Correlating InnoDB Transactions with MySQL Sessions

Sometimes it is useful to correlate internal InnoDB locking information with the session-level information
maintained by MySQL. For example, you might like to know, for a given InnoDB transaction ID, the
corresponding MySQL session ID and name of the session that may be holding a lock, and thus blocking
other transactions.

The following output from the INFORMATION_SCHEMA tables is taken from a somewhat loaded system. As
can be seen, there are several transactions running.

The following INNODB_LOCKS and INNODB_LOCK_WAITS tables show that:

• Transaction 77F (executing an INSERT) is waiting for transactions 77E, 77D, and 77B to commit.

• Transaction 77E (executing an INSERT) is waiting for transactions 77D and 77B to commit.

• Transaction 77D (executing an INSERT) is waiting for transaction 77B to commit.

• Transaction 77B (executing an INSERT) is waiting for transaction 77A to commit.

• Transaction 77A is running, currently executing SELECT.

• Transaction E56 (executing an INSERT) is waiting for transaction E55 to commit.

• Transaction E55 (executing an INSERT) is waiting for transaction 19C to commit.

• Transaction 19C is running, currently executing an INSERT.

Note

There may be inconsistencies between queries shown in the
INFORMATION_SCHEMA PROCESSLIST and INNODB_TRX tables. For an
explanation, see Section 14.15.2.3, “Persistence and Consistency of InnoDB
Transaction and Locking Information”.

The following table shows the contents of the Information Schema PROCESSLIST table for a system
running a heavy workload.

ID USER HOST DB COMMAND TIME STATE INFO

384 root localhost test Query 10 update INSERT
INTO t2
VALUES …

257 root localhost test Query 3 update INSERT
INTO t2
VALUES …

130 root localhost test Query 0 update INSERT
INTO t2
VALUES …

61 root localhost test Query 1 update INSERT
INTO t2
VALUES …

8 root localhost test Query 1 update INSERT
INTO t2
VALUES …

2210

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

ID USER HOST DB COMMAND TIME STATE INFO

4 root localhost test Query 0 preparing SELECT
* FROM
PROCESSLIST

2 root localhost test Sleep 566 NULL

The following table shows the contents of the Information Schema INNODB_TRX table for a system running
a heavy workload.

trx id trx state trx started trx
requested
lock id

trx wait
started

trx weight trx mysql
thread id

trx query

77F LOCK WAIT 2008-01-15
13:10:16

77F 2008-01-15
13:10:16

1 876 INSERT
INTO t09
(D, B, C)
VALUES …

77E LOCK WAIT 2008-01-15
13:10:16

77E 2008-01-15
13:10:16

1 875 INSERT
INTO t09
(D, B, C)
VALUES …

77D LOCK WAIT 2008-01-15
13:10:16

77D 2008-01-15
13:10:16

1 874 INSERT
INTO t09
(D, B, C)
VALUES …

77B LOCK WAIT 2008-01-15
13:10:16

77B:733:12:12008-01-15
13:10:16

4 873 INSERT
INTO t09
(D, B, C)
VALUES …

77A RUNNING 2008-01-15
13:10:16

NULL NULL 4 872 SELECT
b, c FROM
t09 WHERE
…

E56 LOCK WAIT 2008-01-15
13:10:06

E56:743:6:22008-01-15
13:10:06

5 384 INSERT
INTO t2
VALUES …

E55 LOCK WAIT 2008-01-15
13:10:06

E55:743:38:22008-01-15
13:10:13

965 257 INSERT
INTO t2
VALUES …

19C RUNNING 2008-01-15
13:09:10

NULL NULL 2900 130 INSERT
INTO t2
VALUES …

E15 RUNNING 2008-01-15
13:08:59

NULL NULL 5395 61 INSERT
INTO t2
VALUES …

51D RUNNING 2008-01-15
13:08:47

NULL NULL 9807 8 INSERT
INTO t2
VALUES …

The following table shows the contents of the Information Schema INNODB_LOCK_WAITS table for a
system running a heavy workload.

2211

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

requesting trx id requested lock id blocking trx id blocking lock id

77F 77F:806 77E 77E:806

77F 77F:806 77D 77D:806

77F 77F:806 77B 77B:806

77E 77E:806 77D 77D:806

77E 77E:806 77B 77B:806

77D 77D:806 77B 77B:806

77B 77B:733:12:1 77A 77A:733:12:1

E56 E56:743:6:2 E55 E55:743:6:2

E55 E55:743:38:2 19C 19C:743:38:2

The following table shows the contents of the Information Schema INNODB_LOCKS table for a system
running a heavy workload.

lock id lock trx id lock mode lock type lock table lock index lock data

77F:806 77F AUTO_INC TABLE test.t09 NULL NULL

77E:806 77E AUTO_INC TABLE test.t09 NULL NULL

77D:806 77D AUTO_INC TABLE test.t09 NULL NULL

77B:806 77B AUTO_INC TABLE test.t09 NULL NULL

77B:733:12:177B X RECORD test.t09 PRIMARY supremum
pseudo-
record

77A:733:12:177A X RECORD test.t09 PRIMARY supremum
pseudo-
record

E56:743:6:2E56 S RECORD test.t2 PRIMARY 0, 0

E55:743:6:2E55 X RECORD test.t2 PRIMARY 0, 0

E55:743:38:2E55 S RECORD test.t2 PRIMARY 1922, 1922

19C:743:38:219C X RECORD test.t2 PRIMARY 1922, 1922

14.15.2.2 InnoDB Lock and Lock-Wait Information

When a transaction updates a row in a table, or locks it with SELECT FOR UPDATE, InnoDB establishes a
list or queue of locks on that row. Similarly, InnoDB maintains a list of locks on a table for table-level locks.
If a second transaction wants to update a row or lock a table already locked by a prior transaction in an
incompatible mode, InnoDB adds a lock request for the row to the corresponding queue. For a lock to be
acquired by a transaction, all incompatible lock requests previously entered into the lock queue for that row
or table must be removed (which occurs when the transactions holding or requesting those locks either
commit or roll back).

A transaction may have any number of lock requests for different rows or tables. At any given time, a
transaction may request a lock that is held by another transaction, in which case it is blocked by that other
transaction. The requesting transaction must wait for the transaction that holds the blocking lock to commit
or roll back. If a transaction is not waiting for a lock, it is in a RUNNING state. If a transaction is waiting for
a lock, it is in a LOCK WAIT state. (The INFORMATION_SCHEMA INNODB_TRX table indicates transaction
state values.)

2212

InnoDB INFORMATION_SCHEMA System Tables

The INNODB_LOCKS table holds one or more rows for each LOCK WAIT transaction, indicating any lock
requests that prevent its progress. This table also contains one row describing each lock in a queue of
locks pending for a given row or table. The INNODB_LOCK_WAITS table shows which locks already held by
a transaction are blocking locks requested by other transactions.

14.15.2.3 Persistence and Consistency of InnoDB Transaction and Locking Information

The data exposed by the transaction and locking tables (INNODB_TRX, INNODB_LOCKS, and
INNODB_LOCK_WAITS) represents a glimpse into fast-changing data. This is not like user tables, where
the data changes only when application-initiated updates occur. The underlying data is internal system-
managed data, and can change very quickly.

For performance reasons, and to minimize the chance of misleading joins between the transaction and
locking tables, InnoDB collects the required transaction and locking information into an intermediate buffer
whenever a SELECT on any of the tables is issued. This buffer is refreshed only if more than 0.1 seconds
has elapsed since the last time the buffer was read. The data needed to fill the three tables is fetched
atomically and consistently and is saved in this global internal buffer, forming a point-in-time “snapshot”. If
multiple table accesses occur within 0.1 seconds (as they almost certainly do when MySQL processes a
join among these tables), then the same snapshot is used to satisfy the query.

A correct result is returned when you join any of these tables together in a single query, because the data
for the three tables comes from the same snapshot. Because the buffer is not refreshed with every query
of any of these tables, if you issue separate queries against these tables within a tenth of a second, the
results are the same from query to query. On the other hand, two separate queries of the same or different
tables issued more than a tenth of a second apart may see different results, since the data come from
different snapshots.

Because InnoDB must temporarily stall while the transaction and locking data is collected, too frequent
queries of these tables can negatively impact performance as seen by other users.

As these tables contain sensitive information (at least INNODB_LOCKS.LOCK_DATA and
INNODB_TRX.TRX_QUERY), for security reasons, only the users with the PROCESS privilege are allowed to
SELECT from them.

As described previously, the data that fills the transaction and locking tables (INNODB_TRX,
INNODB_LOCKS and INNODB_LOCK_WAITS) is fetched automatically and saved to an intermediate buffer
that provides a “point-in-time” snapshot. The data across all three tables is consistent when queried
from the same snapshot. However, the underlying data changes so fast that similar glimpses at other,
similarly fast-changing data, may not be in synchrony. Thus, you should be careful when comparing data
in the InnoDB transaction and locking tables with data in the PROCESSLIST table. The data from the
PROCESSLIST table does not come from the same snapshot as the data about locking and transactions.
Even if you issue a single SELECT (joining INNODB_TRX and PROCESSLIST, for example), the content
of those tables is generally not consistent. INNODB_TRX may reference rows that are not present in
PROCESSLIST or the currently executing SQL query of a transaction shown in INNODB_TRX.TRX_QUERY
may differ from the one in PROCESSLIST.INFO.

14.15.3 InnoDB INFORMATION_SCHEMA System Tables

As of MySQL 5.6, you can extract metadata about schema objects managed by InnoDB using InnoDB
INFORMATION_SCHEMA system tables. This information comes from the InnoDB internal system tables
(also referred to as the InnoDB data dictionary), which cannot be queried directly like regular InnoDB
tables. Traditionally, you would get this type of information using the techniques from Section 14.17,
“InnoDB Monitors”, setting up InnoDB monitors and parsing the output from the SHOW ENGINE INNODB
STATUS statement. The InnoDB INFORMATION_SCHEMA table interface allows you to query this data
using SQL.

2213

InnoDB INFORMATION_SCHEMA System Tables

With the exception of INNODB_SYS_TABLESTATS, for which there is no corresponding internal system
table, InnoDB INFORMATION_SCHEMA system tables are populated with data read directly from internal
InnoDB system tables rather than from metadata that is cached in memory.

InnoDB INFORMATION_SCHEMA system tables include the tables listed below. INNODB_SYS_DATAFILES
and INNODB_SYS_TABLESPACES were added in MySQL 5.6.6 with the introduction of support for the
DATA DIRECTORY='directory' clause of the CREATE TABLE statement, which allows InnoDB file-
per-table tablespaces (.ibd files) to be created in a location outside the MySQL data directory.

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_SYS%';
+--+
| Tables_in_information_schema (INNODB_SYS%) |
+--+
| INNODB_SYS_DATAFILES |
| INNODB_SYS_TABLESTATS |
| INNODB_SYS_FOREIGN |
| INNODB_SYS_COLUMNS |
| INNODB_SYS_INDEXES |
| INNODB_SYS_FIELDS |
| INNODB_SYS_TABLESPACES |
| INNODB_SYS_FOREIGN_COLS |
| INNODB_SYS_TABLES |
+--+

The table names are indicative of the type of data provided:

• INNODB_SYS_TABLES provides metadata about InnoDB tables, equivalent to the information in the
SYS_TABLES table in the InnoDB data dictionary.

• INNODB_SYS_COLUMNS provides metadata about InnoDB table columns, equivalent to the information
in the SYS_COLUMNS table in the InnoDB data dictionary.

• INNODB_SYS_INDEXES provides metadata about InnoDB indexes, equivalent to the information in the
SYS_INDEXES table in the InnoDB data dictionary.

• INNODB_SYS_FIELDS provides metadata about the key columns (fields) of InnoDB indexes, equivalent
to the information in the SYS_FIELDS table in the InnoDB data dictionary.

• INNODB_SYS_TABLESTATS provides a view of low-level status information about InnoDB tables that is
derived from in-memory data structures. There is no corresponding internal InnoDB system table.

• INNODB_SYS_DATAFILES provides data file path information for InnoDB file-per-table tablespaces,
equivalent to information in the SYS_DATAFILES table in the InnoDB data dictionary.

• INNODB_SYS_TABLESPACES provides metadata about InnoDB file-per-table tablespaces, equivalent to
the information in the SYS_TABLESPACES table in the InnoDB data dictionary.

• INNODB_SYS_FOREIGN provides metadata about foreign keys defined on InnoDB tables, equivalent to
the information in the SYS_FOREIGN table in the InnoDB data dictionary.

• INNODB_SYS_FOREIGN_COLS provides metadata about the columns of foreign keys that are defined
on InnoDB tables, equivalent to the information in the SYS_FOREIGN_COLS table in the InnoDB data
dictionary.

InnoDB INFORMATION_SCHEMA system tables can be joined together through fields such as TABLE_ID,
INDEX_ID, and SPACE, allowing you to easily retrieve all available data for an object you want to study or
monitor.

Refer to the InnoDB INFORMATION_SCHEMA documentation for information about the columns of each
table.

2214

InnoDB INFORMATION_SCHEMA System Tables

Example 14.2 InnoDB INFORMATION_SCHEMA System Tables

This example uses a simple table (t1) with a single index (i1) to demonstrate the type of metadata found
in the InnoDB INFORMATION_SCHEMA system tables.

1. Create a test database and table t1:

mysql> CREATE DATABASE test;

mysql> USE test;

mysql> CREATE TABLE t1 (
 col1 INT,
 col2 CHAR(10),
 col3 VARCHAR(10))
 ENGINE = InnoDB;

mysql> CREATE INDEX i1 ON t1(col1);

2. After creating the table t1, query INNODB_SYS_TABLES to locate the metadata for test/t1:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME='test/t1' \G
*************************** 1. row ***************************
 TABLE_ID: 71
 NAME: test/t1
 FLAG: 1
 N_COLS: 6
 SPACE: 57
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0
...

Table t1 has a TABLE_ID of 71. The FLAG field provides bit level information about table format and
storage characteristics. There are six columns, three of which are hidden columns created by InnoDB
(DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR). The ID of the table's SPACE is 57 (a value of 0 would
indicate that the table resides in the system tablespace). The FILE_FORMAT is Antelope, and the
ROW_FORMAT is Compact. ZIP_PAGE_SIZE only applies to tables with a Compressed row format.

3. Using the TABLE_ID information from INNODB_SYS_TABLES, query the INNODB_SYS_COLUMNS table
for information about the table's columns.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_COLUMNS where TABLE_ID = 71 \G
*************************** 1. row ***************************
TABLE_ID: 71
 NAME: col1
 POS: 0
 MTYPE: 6
 PRTYPE: 1027
 LEN: 4
*************************** 2. row ***************************
TABLE_ID: 71
 NAME: col2
 POS: 1
 MTYPE: 2
 PRTYPE: 524542
 LEN: 10
*************************** 3. row ***************************
TABLE_ID: 71
 NAME: col3
 POS: 2
 MTYPE: 1
 PRTYPE: 524303
 LEN: 10

2215

InnoDB INFORMATION_SCHEMA System Tables

In addition to the TABLE_ID and column NAME, INNODB_SYS_COLUMNS provides the ordinal position
(POS) of each column (starting from 0 and incrementing sequentially), the column MTYPE or “main
type” (6 = INT, 2 = CHAR, 1 = VARCHAR), the PRTYPE or “precise type” (a binary value with bits that
represent the MySQL data type, character set code, and nullability), and the column length (LEN).

4. Using the TABLE_ID information from INNODB_SYS_TABLES once again, query
INNODB_SYS_INDEXES for information about the indexes associated with table t1.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_INDEXES WHERE TABLE_ID = 71 \G
*************************** 1. row ***************************
INDEX_ID: 111
 NAME: GEN_CLUST_INDEX
TABLE_ID: 71
 TYPE: 1
N_FIELDS: 0
 PAGE_NO: 3
 SPACE: 57
*************************** 2. row ***************************
INDEX_ID: 112
 NAME: i1
TABLE_ID: 71
 TYPE: 0
N_FIELDS: 1
 PAGE_NO: 4
 SPACE: 57

INNODB_SYS_INDEXES returns data for two indexes. The first index is GEN_CLUST_INDEX, which is
a clustered index created by InnoDB if the table does not have a user-defined clustered index. The
second index (i1) is the user-defined secondary index.

The INDEX_ID is an identifier for the index that is unique across all databases in an instance. The
TABLE_ID identifies the table that the index is associated with. The index TYPE value indicates the
type of index (1 = Clustered Index, 0 = Secondary index). The N_FILEDS value is the number of fields
that comprise the index. PAGE_NO is the root page number of the index B-tree, and SPACE is the ID of
the tablespace where the index resides. A nonzero value indicates that the index does not reside in the
system tablespace.

5. Using the INDEX_ID information from INNODB_SYS_INDEXES, query INNODB_SYS_FIELDS for
information about the fields of index i1.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FIELDS where INDEX_ID = 112 \G
*************************** 1. row ***************************
INDEX_ID: 112
 NAME: col1
 POS: 0

INNODB_SYS_FIELDS provides the NAME of the indexed field and its ordinal position within the index.
If the index (i1) had been defined on multiple fields, INNODB_SYS_FIELDS would provide metadata for
each of the indexed fields.

6. Using the SPACE information from INNODB_SYS_TABLES, query INNODB_SYS_TABLESPACES table
for information about the table's tablespace.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES WHERE SPACE = 57 \G
*************************** 1. row ***************************
 SPACE: 57
 NAME: test/t1
 FLAG: 0
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact or Redundant
 PAGE_SIZE: 16384

2216

InnoDB INFORMATION_SCHEMA System Tables

ZIP_PAGE_SIZE: 0

In addition to the SPACE ID of the tablespace and the NAME of the associated table,
INNODB_SYS_TABLESPACES provides tablespace FLAG data, which is bit level information about
tablespace format and storage characteristics. Also provided are tablespace FILE_FORMAT,
ROW_FORMAT, PAGE_SIZE, and several other tablespace metadata items.

7. Using the SPACE information from INNODB_SYS_TABLES once again, query
INNODB_SYS_DATAFILES for the location of the tablespace data file.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_DATAFILES WHERE SPACE = 57 \G
*************************** 1. row ***************************
SPACE: 57
 PATH: ./test/t1.ibd

The datafile is located in the test directory under MySQL's data directory. If a file-per-table
tablespace were created in a location outside the MySQL data directory using the DATA DIRECTORY
clause of the CREATE TABLE statement, the tablespace PATH would be a fully qualified directory path.

8. As a final step, insert a row into table t1 (TABLE_ID = 71) and view the data in the
INNODB_SYS_TABLESTATS table. The data in this table is used by the MySQL optimizer to calculate
which index to use when querying an InnoDB table. This information is derived from in-memory data
structures. There is no corresponding internal InnoDB system table.

mysql> INSERT INTO t1 VALUES(5, 'abc', 'def');
Query OK, 1 row affected (0.06 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS where TABLE_ID = 71 \G
*************************** 1. row ***************************
 TABLE_ID: 71
 NAME: test/t1
STATS_INITIALIZED: Initialized
 NUM_ROWS: 1
 CLUST_INDEX_SIZE: 1
 OTHER_INDEX_SIZE: 0
 MODIFIED_COUNTER: 1
 AUTOINC: 0
 REF_COUNT: 1

The STATS_INITIALIZED field indicates whether or not statistics have been collected for the table.
NUM_ROWS is the current estimated number of rows in the table. The CLUST_INDEX_SIZE and
OTHER_INDEX_SIZE fields report the number of pages on disk that store clustered and secondary
indexes for the table, respectively. The MODIFIED_COUNTER value shows the number of rows modified
by DML operations and cascade operations from foreign keys. The AUTOINC value is the next number
to be issued for any autoincrement-based operation. There are no autoincrement columns defined on
table t1, so the value is 0. The REF_COUNT value is a counter. When the counter reaches 0, it signifies
that the table metadata can be evicted from the table cache.

Example 14.3 Foreign Key INFORMATION_SCHEMA System Tables

The INNODB_SYS_FOREIGN and INNODB_SYS_FOREIGN_COLS tables provide data about foreign
key relationships. This example uses a parent table and child table with a foreign key relationship to
demonstrate the data found in the INNODB_SYS_FOREIGN and INNODB_SYS_FOREIGN_COLS tables.

1. Create the test database with parent and child tables:

mysql> CREATE DATABASE test;

mysql> USE test;

mysql> CREATE TABLE parent (id INT NOT NULL,

2217

InnoDB INFORMATION_SCHEMA System Tables

 PRIMARY KEY (id)) ENGINE=INNODB;

mysql> CREATE TABLE child (id INT, parent_id INT,
 INDEX par_ind (parent_id),
 CONSTRAINT fk1
 FOREIGN KEY (parent_id) REFERENCES parent(id)
 ON DELETE CASCADE) ENGINE=INNODB;

2. After the parent and child tables are created, query INNODB_SYS_FOREIGN and locate the foreign key
data for the test/child and test/parent foreign key relationship:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN \G
*************************** 1. row ***************************
 ID: test/fk1
FOR_NAME: test/child
REF_NAME: test/parent
 N_COLS: 1
 TYPE: 1

Metadata includes the foreign key ID (fk1), which is named for the CONSTRAINT that was defined
on the child table. The FOR_NAME is the name of the child table where the foreign key is defined.
REF_NAME is the name of the parent table (the “referenced” table). N_COLS is the number of columns
in the foreign key index. TYPE is a numerical value representing bit flags that provide additional
information about the foreign key column. In this case, the TYPE value is 1, which indicates that the
ON DELETE CASCADE option was specified for the foreign key. See the INNODB_SYS_FOREIGN table
definition for more information about TYPE values.

3. Using the foreign key ID, query INNODB_SYS_FOREIGN_COLS to view data about the columns of the
foreign key.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN_COLS WHERE ID = 'test/fk1' \G
*************************** 1. row ***************************
 ID: test/fk1
FOR_COL_NAME: parent_id
REF_COL_NAME: id
 POS: 0

FOR_COL_NAME is the name of the foreign key column in the child table, and REF_COL_NAME is the
name of the referenced column in the parent table. The POS value is the ordinal position of the key field
within the foreign key index, starting at zero.

Example 14.4 Joining InnoDB INFORMATION_SCHEMA System Tables

This example demonstrates joining three InnoDB INFORMATION_SCHEMA system tables
(INNODB_SYS_TABLES, INNODB_SYS_TABLESPACES, and INNODB_SYS_TABLESTATS) to gather file
format, row format, page size, and index size information about tables in the employees sample database.

The following table name aliases are used to shorten the query string:

• INFORMATION_SCHEMA.INNODB_SYS_TABLES: a

• INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES: b

• INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS: c

An IF() control flow function is used to account for compressed tables. If a table is compressed, the
index size is calculated using ZIP_PAGE_SIZE rather than PAGE_SIZE. CLUST_INDEX_SIZE and
OTHER_INDEX_SIZE, which are reported in bytes, are divided by 1024*1024 to provide index sizes in
megabytes (MBs). MB values are rounded to zero decimal spaces using the ROUND() function.

mysql> SELECT a.NAME, a.FILE_FORMAT, a.ROW_FORMAT,
 @page_size :=

2218

InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

 IF(a.ROW_FORMAT='Compressed',
 b.ZIP_PAGE_SIZE, b.PAGE_SIZE)
 AS page_size,
 ROUND((@page_size * c.CLUST_INDEX_SIZE)
 /(1024*1024)) AS pk_mb,
 ROUND((@page_size * c.OTHER_INDEX_SIZE)
 /(1024*1024)) AS secidx_mb
 FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES a
 INNER JOIN INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES b on a.NAME = b.NAME
 INNER JOIN INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS c on b.NAME = c.NAME
 WHERE a.NAME LIKE 'employees/%'
 ORDER BY a.NAME DESC;
+------------------------+-------------+------------+-----------+-------+-----------+
| NAME | FILE_FORMAT | ROW_FORMAT | page_size | pk_mb | secidx_mb |
+------------------------+-------------+------------+-----------+-------+-----------+
employees/titles	Antelope	Compact	16384	20	11
employees/salaries	Antelope	Compact	16384	91	33
employees/employees	Antelope	Compact	16384	15	0
employees/dept_manager	Antelope	Compact	16384	0	0
employees/dept_emp	Antelope	Compact	16384	12	10
employees/departments	Antelope	Compact	16384	0	0
+------------------------+-------------+------------+-----------+-------+-----------+

14.15.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

The following tables provide metadata for FULLTEXT indexes:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_FT%';
+---+
| Tables_in_INFORMATION_SCHEMA (INNODB_FT%) |
+---+
| INNODB_FT_CONFIG |
| INNODB_FT_BEING_DELETED |
| INNODB_FT_DELETED |
| INNODB_FT_DEFAULT_STOPWORD |
| INNODB_FT_INDEX_TABLE |
| INNODB_FT_INDEX_CACHE |
+---+

Table Overview

• INNODB_FT_CONFIG: Provides metadata about the FULLTEXT index and associated processing for an
InnoDB table.

• Provides a snapshot of the INNODB_FT_DELETED table; it is used only during an OPTIMIZE TABLE
maintenance operation. When OPTIMIZE TABLE is run, the INNODB_FT_BEING_DELETED table
is emptied, and DOC_ID values are removed from the INNODB_FT_DELETED table. Because the
contents of INNODB_FT_BEING_DELETED typically have a short lifetime, this table has limited utility for
monitoring or debugging. For information about running OPTIMIZE TABLE on tables with FULLTEXT
indexes, see Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”.

• INNODB_FT_DELETED: Stores rows that are deleted from the FULLTEXT index for an InnoDB table.
To avoid expensive index reorganization during DML operations for an InnoDB FULLTEXT index, the
information about newly deleted words is stored separately, filtered out of search results when you do
a text search, and removed from the main search index only when you issue an OPTIMIZE TABLE
statement for the InnoDB table.

• INNODB_FT_DEFAULT_STOPWORD: Holds a list of stopwords that are used by default when creating a
FULLTEXT index on InnoDB tables.

For information about the INNODB_FT_DEFAULT_STOPWORD table, see Section 12.10.4, “Full-Text
Stopwords”.

2219

InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

• INNODB_FT_INDEX_TABLE: Provides information about the inverted index used to process text
searches against the FULLTEXT index of an InnoDB table.

• INNODB_FT_INDEX_CACHE: Provides token information about newly inserted rows in a FULLTEXT
index. To avoid expensive index reorganization during DML operations, the information about newly
indexed words is stored separately, and combined with the main search index only when OPTIMIZE
TABLE is run, when the server is shut down, or when the cache size exceeds a limit defined by the
innodb_ft_cache_size or innodb_ft_total_cache_size system variable.

Note

With the exception of the INNODB_FT_DEFAULT_STOPWORD table, these
tables are empty initially. Before querying any of them, set the value of the
innodb_ft_aux_table system variable to the name (including the database
name) of the table that contains the FULLTEXT index (for example, test/
articles).

Example 14.5 InnoDB FULLTEXT Index INFORMATION_SCHEMA Tables

This example uses a table with a FULLTEXT index to demonstrate the data contained in the FULLTEXT
index INFORMATION_SCHEMA tables.

1. Create a table with a FULLTEXT index and insert some data:

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;

mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');

2. Set the innodb_ft_aux_table variable to the name of the table with the FULLTEXT index. If
this variable is not set, the InnoDB FULLTEXT INFORMATION_SCHEMA tables are empty, with the
exception of INNODB_FT_DEFAULT_STOPWORD.

SET GLOBAL innodb_ft_aux_table = 'test/articles';

3. Query the INNODB_FT_INDEX_CACHE table, which shows information about newly inserted rows in
a FULLTEXT index. To avoid expensive index reorganization during DML operations, data for newly
inserted rows remains in the FULLTEXT index cache until OPTIMIZE TABLE is run (or until the server
is shut down or cache limits are exceeded).

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE LIMIT 5;
+------------+--------------+-------------+-----------+--------+----------+
| WORD | FIRST_DOC_ID | LAST_DOC_ID | DOC_COUNT | DOC_ID | POSITION |
+------------+--------------+-------------+-----------+--------+----------+
1001	5	5	1	5	0
after	3	3	1	3	22
comparison	6	6	1	6	44
configured	7	7	1	7	20
database	2	6	2	2	31
+------------+--------------+-------------+-----------+--------+----------+

2220

InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

4. Enable the innodb_optimize_fulltext_only system variable and run OPTIMIZE TABLE on the
table that contains the FULLTEXT index. This operation flushes the contents of the FULLTEXT index
cache to the main FULLTEXT index. innodb_optimize_fulltext_only changes the way the
OPTIMIZE TABLE statement operates on InnoDB tables, and is intended to be enabled temporarily,
during maintenance operations on InnoDB tables with FULLTEXT indexes.

mysql> SET GLOBAL innodb_optimize_fulltext_only=ON;

mysql> OPTIMIZE TABLE articles;
+---------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------------+----------+----------+----------+
| test.articles | optimize | status | OK |
+---------------+----------+----------+----------+

5. Query the INNODB_FT_INDEX_TABLE table to view information about data in the main FULLTEXT
index, including information about the data that was just flushed from the FULLTEXT index cache.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_TABLE LIMIT 5;
+------------+--------------+-------------+-----------+--------+----------+
| WORD | FIRST_DOC_ID | LAST_DOC_ID | DOC_COUNT | DOC_ID | POSITION |
+------------+--------------+-------------+-----------+--------+----------+
1001	5	5	1	5	0
after	3	3	1	3	22
comparison	6	6	1	6	44
configured	7	7	1	7	20
database	2	6	2	2	31
+------------+--------------+-------------+-----------+--------+----------+

The INNODB_FT_INDEX_CACHE table is now empty since the OPTIMIZE TABLE operation flushed the
FULLTEXT index cache.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE LIMIT 5;
Empty set (0.00 sec)

6. Delete some records from the test/articles table.

mysql> DELETE FROM test.articles WHERE id < 4;

7. Query the INNODB_FT_DELETED table. This table records rows that are deleted from the FULLTEXT
index. To avoid expensive index reorganization during DML operations, information about newly
deleted records is stored separately, filtered out of search results when you do a text search, and
removed from the main search index when you run OPTIMIZE TABLE.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;
+--------+
| DOC_ID |
+--------+
| 2 |
| 3 |
| 4 |
+--------+

8. Run OPTIMIZE TABLE to remove the deleted records.

mysql> OPTIMIZE TABLE articles;
+---------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------------+----------+----------+----------+
| test.articles | optimize | status | OK |
+---------------+----------+----------+----------+

The INNODB_FT_DELETED table should now be empty.

2221

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;
Empty set (0.00 sec)

9. Query the INNODB_FT_CONFIG table. This table contains metadata about the FULLTEXT index and
related processing:

• optimize_checkpoint_limit: The number of seconds after which an OPTIMIZE TABLE run
stops.

• synced_doc_id: The next DOC_ID to be issued.

• stopword_table_name: The database/table name for a user-defined stopword table. The
VALUE column is empty if there is no user-defined stopword table.

• use_stopword: Indicates whether a stopword table is used, which is defined when the FULLTEXT
index is created.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_CONFIG;
+---------------------------+-------+
| KEY | VALUE |
+---------------------------+-------+
optimize_checkpoint_limit	180
synced_doc_id	8
stopword_table_name	
use_stopword	1
+---------------------------+-------+

10. Disable innodb_optimize_fulltext_only, since it is intended to be enabled only temporarily:

mysql> SET GLOBAL innodb_optimize_fulltext_only=OFF;

14.15.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables

The InnoDB INFORMATION_SCHEMA buffer pool tables provide buffer pool status information and
metadata about the pages within the InnoDB buffer pool.

The InnoDB INFORMATION_SCHEMA buffer pool tables include those listed below:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_BUFFER%';
+---+
| Tables_in_INFORMATION_SCHEMA (INNODB_BUFFER%) |
+---+
| INNODB_BUFFER_PAGE_LRU |
| INNODB_BUFFER_PAGE |
| INNODB_BUFFER_POOL_STATS |
+---+

Table Overview

• INNODB_BUFFER_PAGE: Holds information about each page in the InnoDB buffer pool.

• INNODB_BUFFER_PAGE_LRU: Holds information about the pages in the InnoDB buffer pool,
in particular how they are ordered in the LRU list that determines which pages to evict from the
buffer pool when it becomes full. The INNODB_BUFFER_PAGE_LRU table has the same columns
as the INNODB_BUFFER_PAGE table, except that the INNODB_BUFFER_PAGE_LRU table has an
LRU_POSITION column instead of a BLOCK_ID column.

• INNODB_BUFFER_POOL_STATS: Provides buffer pool status information. Much of the same information
is provided by SHOW ENGINE INNODB STATUS output, or may be obtained using InnoDB buffer pool
server status variables.

2222

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

Warning

Querying the INNODB_BUFFER_PAGE or INNODB_BUFFER_PAGE_LRU table can
affect performance. Do not query these tables on a production system unless you
are aware of the performance impact and have determined it to be acceptable. To
avoid impacting performance on a production system, reproduce the issue you want
to investigate and query buffer pool statistics on a test instance.

Example 14.6 Querying System Data in the INNODB_BUFFER_PAGE Table

This query provides an approximate count of pages that contain system data by excluding pages where the
TABLE_NAME value is either NULL or includes a slash / or period . in the table name, which indicates a
user-defined table.

mysql> SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0);
+----------+
| COUNT(*) |
+----------+
| 1320 |
+----------+

This query returns the approximate number of pages that contain system data, the total number of buffer
pool pages, and an approximate percentage of pages that contain system data.

mysql> SELECT
 (SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0)
) AS system_pages,
 (
 SELECT COUNT(*)
 FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
) AS total_pages,
 (
 SELECT ROUND((system_pages/total_pages) * 100)
) AS system_page_percentage;
+--------------+-------------+------------------------+
| system_pages | total_pages | system_page_percentage |
+--------------+-------------+------------------------+
| 1320 | 8192 | 16 |
+--------------+-------------+------------------------+

The type of system data in the buffer pool can be determined by querying the PAGE_TYPE value. For
example, the following query returns eight distinct PAGE_TYPE values among the pages that contain
system data:

mysql> SELECT DISTINCT PAGE_TYPE FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0);
+-------------------+
| PAGE_TYPE |
+-------------------+
| SYSTEM |
| IBUF_BITMAP |
| UNDO_LOG |
| UNKNOWN |
| FILE_SPACE_HEADER |
| INODE |
| ALLOCATED |
| TRX_SYSTEM |
+-------------------+

2223

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

Example 14.7 Querying User Data in the INNODB_BUFFER_PAGE Table

This query provides an approximate count of pages containing user data by counting pages where the
TABLE_NAME value is NOT NULL and NOT LIKE '%INNODB_SYS_TABLES%'.

mysql> SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NOT NULL;
+----------+
| COUNT(*) |
+----------+
| 6872 |
+----------+

This query returns the approximate number of pages that contain user data, the total number of buffer pool
pages, and an approximate percentage of pages that contain user data.

mysql> SELECT
 (SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NOT NULL AND (INSTR(TABLE_NAME, '/') > 0 OR INSTR(TABLE_NAME, '.') > 0)
) AS user_pages,
 (
 SELECT COUNT(*)
 FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
) AS total_pages,
 (
 SELECT ROUND((user_pages/total_pages) * 100)
) AS user_page_percentage;
+------------+-------------+----------------------+
| user_pages | total_pages | user_page_percentage |
+------------+-------------+----------------------+
| 6872 | 8192 | 84 |
+------------+-------------+----------------------+

This query identifies user-defined tables with pages in the buffer pool:

mysql> SELECT DISTINCT TABLE_NAME FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NOT NULL AND (INSTR(TABLE_NAME, '/') > 0 OR INSTR(TABLE_NAME, '.') > 0)
 AND TABLE_NAME NOT LIKE '`mysql`.`innodb_%';
+-------------------------+
| TABLE_NAME |
+-------------------------+
| `employees`.`salaries` |
| `employees`.`employees` |
+-------------------------+

Example 14.8 Querying Index Data in the INNODB_BUFFER_PAGE Table

For information about index pages, query the INDEX_NAME column using the name of the index. For
example, the following query returns the number of pages and total data size of pages for the emp_no
index that is defined on the employees.salaries table:

mysql> SELECT INDEX_NAME, COUNT(*) AS Pages,
 ROUND(SUM(IF(COMPRESSED_SIZE = 0, @@GLOBAL.innodb_page_size, COMPRESSED_SIZE))/1024/1024)
 AS 'Total Data (MB)'
 FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE INDEX_NAME='emp_no' AND TABLE_NAME = '`employees`.`salaries`';
+------------+-------+-----------------+
| INDEX_NAME | Pages | Total Data (MB) |
+------------+-------+-----------------+
| emp_no | 1756 | 27 |
+------------+-------+-----------------+

This query returns the number of pages and total data size of pages for all indexes defined on the
employees.salaries table:

2224

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

mysql> SELECT INDEX_NAME, COUNT(*) AS Pages,
 ROUND(SUM(IF(COMPRESSED_SIZE = 0, @@GLOBAL.innodb_page_size, COMPRESSED_SIZE))/1024/1024)
 AS 'Total Data (MB)'
 FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME = '`employees`.`salaries`'
 GROUP BY INDEX_NAME;
+------------+-------+-----------------+
| INDEX_NAME | Pages | Total Data (MB) |
+------------+-------+-----------------+
| emp_no | 1756 | 27 |
| PRIMARY | 4838 | 76 |
+------------+-------+-----------------+

Example 14.9 Querying LRU_POSITION Data in the INNODB_BUFFER_PAGE_LRU Table

The INNODB_BUFFER_PAGE_LRU table holds information about the pages in the InnoDB buffer pool, in
particular how they are ordered that determines which pages to evict from the buffer pool when it becomes
full. The definition for this page is the same as for INNODB_BUFFER_PAGE, except this table has an
LRU_POSITION column instead of a BLOCK_ID column.

This query counts the number of positions at a specific location in the LRU list occupied by pages of the
employees.employees table.

mysql> SELECT COUNT(LRU_POSITION) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE_LRU
 WHERE TABLE_NAME='`employees`.`employees`' AND LRU_POSITION < 3072;
+---------------------+
| COUNT(LRU_POSITION) |
+---------------------+
| 275 |
+---------------------+

Example 14.10 Querying the INNODB_BUFFER_POOL_STATS Table

The INNODB_BUFFER_POOL_STATS table provides information similar to SHOW ENGINE INNODB
STATUS and InnoDB buffer pool status variables.

mysql> SELECT * FROM information_schema.INNODB_BUFFER_POOL_STATS \G
*************************** 1. row ***************************
 POOL_ID: 0
 POOL_SIZE: 8192
 FREE_BUFFERS: 1024
 DATABASE_PAGES: 7029
 OLD_DATABASE_PAGES: 2574
 MODIFIED_DATABASE_PAGES: 0
 PENDING_DECOMPRESS: 0
 PENDING_READS: 0
 PENDING_FLUSH_LRU: 0
 PENDING_FLUSH_LIST: 0
 PAGES_MADE_YOUNG: 173
 PAGES_NOT_MADE_YOUNG: 3721891
 PAGES_MADE_YOUNG_RATE: 0
 PAGES_MADE_NOT_YOUNG_RATE: 0
 NUMBER_PAGES_READ: 1075
 NUMBER_PAGES_CREATED: 12594
 NUMBER_PAGES_WRITTEN: 13525
 PAGES_READ_RATE: 0
 PAGES_CREATE_RATE: 0
 PAGES_WRITTEN_RATE: 0
 NUMBER_PAGES_GET: 27873240
 HIT_RATE: 0
 YOUNG_MAKE_PER_THOUSAND_GETS: 0
NOT_YOUNG_MAKE_PER_THOUSAND_GETS: 0
 NUMBER_PAGES_READ_AHEAD: 576
 NUMBER_READ_AHEAD_EVICTED: 0
 READ_AHEAD_RATE: 0

2225

InnoDB INFORMATION_SCHEMA Metrics Table

 READ_AHEAD_EVICTED_RATE: 0
 LRU_IO_TOTAL: 0
 LRU_IO_CURRENT: 0
 UNCOMPRESS_TOTAL: 0
 UNCOMPRESS_CURRENT: 0

For comparison, SHOW ENGINE INNODB STATUS output and InnoDB buffer pool status variable output is
shown below, based on the same data set.

For more information about SHOW ENGINE INNODB STATUS output, see Section 14.17.3, “InnoDB
Standard Monitor and Lock Monitor Output”.

mysql> SHOW ENGINE INNODB STATUS \G
...

BUFFER POOL AND MEMORY

Total memory allocated 137363456; in additional pool allocated 0
Dictionary memory allocated 99725
Buffer pool size 8192
Free buffers 1024
Database pages 7029
Old database pages 2574
Modified db pages 0
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 173, not young 3721891
0.00 youngs/s, 0.00 non-youngs/s
Pages read 1075, created 12594, written 13525
0.00 reads/s, 0.00 creates/s, 0.00 writes/s
No buffer pool page gets since the last printout
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead 0.00/s
LRU len: 7029, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]
...

For status variable descriptions, see Section 5.1.9, “Server Status Variables”.

mysql> SHOW STATUS LIKE 'Innodb_buffer%';
+---------------------------------------+-------------+
| Variable_name | Value |
+---------------------------------------+-------------+
Innodb_buffer_pool_dump_status	not started
Innodb_buffer_pool_load_status	not started
Innodb_buffer_pool_pages_data	7029
Innodb_buffer_pool_bytes_data	115163136
Innodb_buffer_pool_pages_dirty	0
Innodb_buffer_pool_bytes_dirty	0
Innodb_buffer_pool_pages_flushed	13525
Innodb_buffer_pool_pages_free	1024
Innodb_buffer_pool_pages_misc	139
Innodb_buffer_pool_pages_total	8192
Innodb_buffer_pool_read_ahead_rnd	0
Innodb_buffer_pool_read_ahead	576
Innodb_buffer_pool_read_ahead_evicted	0
Innodb_buffer_pool_read_requests	27873240
Innodb_buffer_pool_reads	500
Innodb_buffer_pool_wait_free	0
Innodb_buffer_pool_write_requests	11966441
+---------------------------------------+-------------+

14.15.6 InnoDB INFORMATION_SCHEMA Metrics Table

The INNODB_METRICS table provides information about InnoDB performance and resource-related
counters.

2226

InnoDB INFORMATION_SCHEMA Metrics Table

INNODB_METRICS table columns are shown below. For column descriptions, see Section 21.4.16, “The
INFORMATION_SCHEMA INNODB_METRICS Table”.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts" \G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 46273
 MAX_COUNT: 46273
 MIN_COUNT: NULL
 AVG_COUNT: 492.2659574468085
 COUNT_RESET: 46273
MAX_COUNT_RESET: 46273
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-11-28 16:07:53
 TIME_DISABLED: NULL
 TIME_ELAPSED: 94
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

Enabling, Disabling, and Resetting Counters

You can enable, disable, and reset counters using the following variables:

• innodb_monitor_enable: Enables counters.

SET GLOBAL innodb_monitor_enable = [counter-name|module_name|pattern|all];

• innodb_monitor_disable: Disables counters.

SET GLOBAL innodb_monitor_disable = [counter-name|module_name|pattern|all];

• innodb_monitor_reset: Resets counter values to zero.

SET GLOBAL innodb_monitor_reset = [counter-name|module_name|pattern|all];

• innodb_monitor_reset_all: Resets all counter values. A counter must be disabled before using
innodb_monitor_reset_all.

SET GLOBAL innodb_monitor_reset_all = [counter-name|module_name|pattern|all];

Counters and counter modules can also be enabled at startup using the MySQL server configuration
file. For example, to enable the log module, metadata_table_handles_opened and
metadata_table_handles_closed counters, enter the following line in the [mysqld] section of the
MySQL server configuration file.

[mysqld]
innodb_monitor_enable = module_recovery,metadata_table_handles_opened,metadata_table_handles_closed

When enabling multiple counters or modules in a configuration file, specify the innodb_monitor_enable
variable followed by counter and module names separated by a comma, as shown above. Only the
innodb_monitor_enable variable can be used in a configuration file. The innodb_monitor_disable
and innodb_monitor_reset variables are supported on the command line only.

Note

Because each counter adds a degree of runtime overhead, use counters
conservatively on production servers to diagnose specific issues or monitor specific
functionality. A test or development server is recommended for more extensive use
of counters.

2227

InnoDB INFORMATION_SCHEMA Metrics Table

Counters

The list of available counters is subject to change. Query the Information Schema INNODB_METRICS table
for counters available in your MySQL server version.

The counters enabled by default correspond to those shown in SHOW ENGINE INNODB STATUS output.
Counters shown in SHOW ENGINE INNODB STATUS output are always enabled at a system level but can
be disable for the INNODB_METRICS table. Counter status is not persistent. Unless configured otherwise,
counters revert to their default enabled or disabled status when the server is restarted.

If you run programs that would be affected by the addition or removal of counters, it is recommended that
you review the releases notes and query the INNODB_METRICS table to identify those changes as part of
your upgrade process.

mysql> SELECT name, subsystem, status FROM INFORMATION_SCHEMA.INNODB_METRICS ORDER BY NAME;
+--+---------------------+----------+
| name | subsystem | status |
+--+---------------------+----------+
adaptive_hash_pages_added	adaptive_hash_index	disabled
adaptive_hash_pages_removed	adaptive_hash_index	disabled
adaptive_hash_rows_added	adaptive_hash_index	disabled
adaptive_hash_rows_deleted_no_hash_entry	adaptive_hash_index	disabled
adaptive_hash_rows_removed	adaptive_hash_index	disabled
adaptive_hash_rows_updated	adaptive_hash_index	disabled
adaptive_hash_searches	adaptive_hash_index	enabled
adaptive_hash_searches_btree	adaptive_hash_index	disabled
buffer_data_reads	buffer	enabled
buffer_data_written	buffer	enabled
buffer_flush_adaptive	buffer	disabled
buffer_flush_adaptive_pages	buffer	disabled
buffer_flush_adaptive_total_pages	buffer	disabled
buffer_flush_avg_page_rate	buffer	disabled
buffer_flush_background	buffer	disabled
buffer_flush_background_pages	buffer	disabled
buffer_flush_background_total_pages	buffer	disabled
buffer_flush_batches	buffer	disabled
buffer_flush_batch_num_scan	buffer	disabled
buffer_flush_batch_pages	buffer	disabled
buffer_flush_batch_rescan	buffer	disabled
buffer_flush_batch_scanned	buffer	disabled
buffer_flush_batch_scanned_per_call	buffer	disabled
buffer_flush_batch_total_pages	buffer	disabled
buffer_flush_lsn_avg_rate	buffer	disabled
buffer_flush_neighbor	buffer	disabled
buffer_flush_neighbor_pages	buffer	disabled
buffer_flush_neighbor_total_pages	buffer	disabled
buffer_flush_n_to_flush_requested	buffer	disabled
buffer_flush_pct_for_dirty	buffer	disabled
buffer_flush_pct_for_lsn	buffer	disabled
buffer_flush_sync	buffer	disabled
buffer_flush_sync_pages	buffer	disabled
buffer_flush_sync_total_pages	buffer	disabled
buffer_flush_sync_waits	buffer	disabled
buffer_LRU_batches	buffer	disabled
buffer_LRU_batch_num_scan	buffer	disabled
buffer_LRU_batch_pages	buffer	disabled
buffer_LRU_batch_scanned	buffer	disabled
buffer_LRU_batch_scanned_per_call	buffer	disabled
buffer_LRU_batch_total_pages	buffer	disabled
buffer_LRU_get_free_search	Buffer	disabled
buffer_LRU_search_num_scan	buffer	disabled
buffer_LRU_search_scanned	buffer	disabled
buffer_LRU_search_scanned_per_call	buffer	disabled
buffer_LRU_single_flush_failure_count	Buffer	disabled
buffer_LRU_single_flush_num_scan	buffer	disabled

2228

InnoDB INFORMATION_SCHEMA Metrics Table

buffer_LRU_single_flush_scanned	buffer	disabled
buffer_LRU_single_flush_scanned_per_call	buffer	disabled
buffer_LRU_unzip_search_num_scan	buffer	disabled
buffer_LRU_unzip_search_scanned	buffer	disabled
buffer_LRU_unzip_search_scanned_per_call	buffer	disabled
buffer_pages_created	buffer	enabled
buffer_pages_read	buffer	enabled
buffer_pages_written	buffer	enabled
buffer_page_read_blob	buffer_page_io	disabled
buffer_page_read_fsp_hdr	buffer_page_io	disabled
buffer_page_read_ibuf_bitmap	buffer_page_io	disabled
buffer_page_read_ibuf_free_list	buffer_page_io	disabled
buffer_page_read_index_ibuf_leaf	buffer_page_io	disabled
buffer_page_read_index_ibuf_non_leaf	buffer_page_io	disabled
buffer_page_read_index_inode	buffer_page_io	disabled
buffer_page_read_index_leaf	buffer_page_io	disabled
buffer_page_read_index_non_leaf	buffer_page_io	disabled
buffer_page_read_other	buffer_page_io	disabled
buffer_page_read_system_page	buffer_page_io	disabled
buffer_page_read_trx_system	buffer_page_io	disabled
buffer_page_read_undo_log	buffer_page_io	disabled
buffer_page_read_xdes	buffer_page_io	disabled
buffer_page_read_zblob	buffer_page_io	disabled
buffer_page_read_zblob2	buffer_page_io	disabled
buffer_page_written_blob	buffer_page_io	disabled
buffer_page_written_fsp_hdr	buffer_page_io	disabled
buffer_page_written_ibuf_bitmap	buffer_page_io	disabled
buffer_page_written_ibuf_free_list	buffer_page_io	disabled
buffer_page_written_index_ibuf_leaf	buffer_page_io	disabled
buffer_page_written_index_ibuf_non_leaf	buffer_page_io	disabled
buffer_page_written_index_inode	buffer_page_io	disabled
buffer_page_written_index_leaf	buffer_page_io	disabled
buffer_page_written_index_non_leaf	buffer_page_io	disabled
buffer_page_written_other	buffer_page_io	disabled
buffer_page_written_system_page	buffer_page_io	disabled
buffer_page_written_trx_system	buffer_page_io	disabled
buffer_page_written_undo_log	buffer_page_io	disabled
buffer_page_written_xdes	buffer_page_io	disabled
buffer_page_written_zblob	buffer_page_io	disabled
buffer_page_written_zblob2	buffer_page_io	disabled
buffer_pool_bytes_data	buffer	enabled
buffer_pool_bytes_dirty	buffer	enabled
buffer_pool_pages_data	buffer	enabled
buffer_pool_pages_dirty	buffer	enabled
buffer_pool_pages_free	buffer	enabled
buffer_pool_pages_misc	buffer	enabled
buffer_pool_pages_total	buffer	enabled
buffer_pool_reads	buffer	enabled
buffer_pool_read_ahead	buffer	enabled
buffer_pool_read_ahead_evicted	buffer	enabled
buffer_pool_read_requests	buffer	enabled
buffer_pool_size	server	enabled
buffer_pool_wait_free	buffer	enabled
buffer_pool_write_requests	buffer	enabled
compression_pad_decrements	compression	disabled
compression_pad_increments	compression	disabled
compress_pages_compressed	compression	disabled
compress_pages_decompressed	compression	disabled
ddl_background_drop_indexes	ddl	disabled
ddl_background_drop_tables	ddl	disabled
ddl_online_create_index	ddl	disabled
ddl_pending_alter_table	ddl	disabled
dml_deletes	dml	enabled
dml_inserts	dml	enabled
dml_reads	dml	enabled
dml_updates	dml	enabled
file_num_open_files	file_system	enabled

2229

InnoDB INFORMATION_SCHEMA Metrics Table

ibuf_merges	change_buffer	enabled
ibuf_merges_delete	change_buffer	enabled
ibuf_merges_delete_mark	change_buffer	enabled
ibuf_merges_discard_delete	change_buffer	enabled
ibuf_merges_discard_delete_mark	change_buffer	enabled
ibuf_merges_discard_insert	change_buffer	enabled
ibuf_merges_insert	change_buffer	enabled
ibuf_size	change_buffer	enabled
icp_attempts	icp	disabled
icp_match	icp	disabled
icp_no_match	icp	disabled
icp_out_of_range	icp	disabled
index_page_discards	index	disabled
index_page_merge_attempts	index	disabled
index_page_merge_successful	index	disabled
index_page_reorg_attempts	index	disabled
index_page_reorg_successful	index	disabled
index_page_splits	index	disabled
innodb_activity_count	server	enabled
innodb_background_drop_table_usec	server	disabled
innodb_checkpoint_usec	server	disabled
innodb_dblwr_pages_written	server	enabled
innodb_dblwr_writes	server	enabled
innodb_dict_lru_usec	server	disabled
innodb_ibuf_merge_usec	server	disabled
innodb_log_flush_usec	server	disabled
innodb_master_active_loops	server	disabled
innodb_master_idle_loops	server	disabled
innodb_master_purge_usec	server	disabled
innodb_master_thread_sleeps	server	disabled
innodb_mem_validate_usec	server	disabled
innodb_page_size	server	enabled
innodb_rwlock_s_os_waits	server	enabled
innodb_rwlock_s_spin_rounds	server	enabled
innodb_rwlock_s_spin_waits	server	enabled
innodb_rwlock_x_os_waits	server	enabled
innodb_rwlock_x_spin_rounds	server	enabled
innodb_rwlock_x_spin_waits	server	enabled
lock_deadlocks	lock	enabled
lock_rec_locks	lock	disabled
lock_rec_lock_created	lock	disabled
lock_rec_lock_removed	lock	disabled
lock_rec_lock_requests	lock	disabled
lock_rec_lock_waits	lock	disabled
lock_row_lock_current_waits	lock	enabled
lock_row_lock_time	lock	enabled
lock_row_lock_time_avg	lock	enabled
lock_row_lock_time_max	lock	enabled
lock_row_lock_waits	lock	enabled
lock_table_locks	lock	disabled
lock_table_lock_created	lock	disabled
lock_table_lock_removed	lock	disabled
lock_table_lock_waits	lock	disabled
lock_timeouts	lock	enabled
log_checkpoints	recovery	disabled
log_lsn_buf_pool_oldest	recovery	disabled
log_lsn_checkpoint_age	recovery	disabled
log_lsn_current	recovery	disabled
log_lsn_last_checkpoint	recovery	disabled
log_lsn_last_flush	recovery	disabled
log_max_modified_age_async	recovery	disabled
log_max_modified_age_sync	recovery	disabled
log_num_log_io	recovery	disabled
log_pending_checkpoint_writes	recovery	disabled
log_pending_log_writes	recovery	disabled
log_waits	recovery	enabled
log_writes	recovery	enabled

2230

InnoDB INFORMATION_SCHEMA Metrics Table

log_write_requests	recovery	enabled
metadata_mem_pool_size	metadata	enabled
metadata_table_handles_closed	metadata	disabled
metadata_table_handles_opened	metadata	disabled
metadata_table_reference_count	metadata	disabled
os_data_fsyncs	os	enabled
os_data_reads	os	enabled
os_data_writes	os	enabled
os_log_bytes_written	os	enabled
os_log_fsyncs	os	enabled
os_log_pending_fsyncs	os	enabled
os_log_pending_writes	os	enabled
os_pending_reads	os	disabled
os_pending_writes	os	disabled
purge_del_mark_records	purge	disabled
purge_dml_delay_usec	purge	disabled
purge_invoked	purge	disabled
purge_resume_count	purge	disabled
purge_stop_count	purge	disabled
purge_undo_log_pages	purge	disabled
purge_upd_exist_or_extern_records	purge	disabled
trx_active_transactions	transaction	disabled
trx_commits_insert_update	transaction	disabled
trx_nl_ro_commits	transaction	disabled
trx_rollbacks	transaction	disabled
trx_rollbacks_savepoint	transaction	disabled
trx_rollback_active	transaction	disabled
trx_ro_commits	transaction	disabled
trx_rseg_current_size	transaction	disabled
trx_rseg_history_len	transaction	enabled
trx_rw_commits	transaction	disabled
trx_undo_slots_cached	transaction	disabled
trx_undo_slots_used	transaction	disabled
+--+---------------------+----------+
214 rows in set (0.00 sec)

Counter Modules

Each counter is associated with a particular module. Module names can be used to enable, disable,
or reset all counters for a particular subsystem. For example, use module_dml to enable all counters
associated with the dml subsystem.

mysql> SET GLOBAL innodb_monitor_enable = module_dml;

mysql> SELECT name, subsystem, status FROM INFORMATION_SCHEMA.INNODB_METRICS
 WHERE subsystem ='dml';
+-------------+-----------+---------+
| name | subsystem | status |
+-------------+-----------+---------+
dml_reads	dml	enabled
dml_inserts	dml	enabled
dml_deletes	dml	enabled
dml_updates	dml	enabled
+-------------+-----------+---------+

Module names can be used with innodb_monitor_enable and related variables.

Module names and corresponding SUBSYSTEM names are listed below.

• module_adaptive_hash (subsystem = adaptive_hash_index)

• module_buffer (subsystem = buffer)

• module_buffer_page (subsystem = buffer_page_io)

• module_compress (subsystem = compression)

2231

InnoDB INFORMATION_SCHEMA Metrics Table

• module_ddl (subsystem = ddl)

• module_dml (subsystem = dml)

• module_file (subsystem = file_system)

• module_ibuf_system (subsystem = change_buffer)

• module_icp (subsystem = icp)

• module_index (subsystem = index)

• module_innodb (subsystem = innodb)

• module_lock (subsystem = lock)

• module_log (subsystem = recovery)

• module_metadata (subsystem = metadata)

• module_os (subsystem = os)

• module_purge (subsystem = purge)

• module_trx (subsystem = transaction)

Example 14.11 Working with INNODB_METRICS Table Counters

This example demonstrates enabling, disabling, and resetting a counter, and querying counter data in the
INNODB_METRICS table.

1. Create a simple InnoDB table:

mysql> USE test;
Database changed

mysql> CREATE TABLE t1 (c1 INT) ENGINE=INNODB;
Query OK, 0 rows affected (0.02 sec)

2. Enable the dml_inserts counter.

mysql> SET GLOBAL innodb_monitor_enable = dml_inserts;
Query OK, 0 rows affected (0.01 sec)

A description of the dml_inserts counter can be found in the COMMENT column of the
INNODB_METRICS table:

mysql> SELECT NAME, COMMENT FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts";
+-------------+-------------------------+
| NAME | COMMENT |
+-------------+-------------------------+
| dml_inserts | Number of rows inserted |
+-------------+-------------------------+

3. Query the INNODB_METRICS table for the dml_inserts counter data. Because no DML operations
have been performed, the counter values are zero or NULL. The TIME_ENABLED and TIME_ELAPSED
values indicate when the counter was last enabled and how many seconds have elapsed since that
time.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts" \G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 0

2232

InnoDB INFORMATION_SCHEMA Metrics Table

 MAX_COUNT: 0
 MIN_COUNT: NULL
 AVG_COUNT: 0
 COUNT_RESET: 0
MAX_COUNT_RESET: 0
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 28
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

4. Insert three rows of data into the table.

mysql> INSERT INTO t1 values(1);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 values(2);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 values(3);
Query OK, 1 row affected (0.00 sec)

5. Query the INNODB_METRICS table again for the dml_inserts counter data. A number of counter
values have now incremented including COUNT, MAX_COUNT, AVG_COUNT, and COUNT_RESET. Refer
to the INNODB_METRICS table definition for descriptions of these values.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.046153846153846156
 COUNT_RESET: 3
MAX_COUNT_RESET: 3
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 65
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

6. Reset the dml_inserts counter and query the INNODB_METRICS table again for the dml_inserts
counter data. The %_RESET values that were reported previously, such as COUNT_RESET and
MAX_RESET, are set back to zero. Values such as COUNT, MAX_COUNT, and AVG_COUNT, which
cumulatively collect data from the time the counter is enabled, are unaffected by the reset.

mysql> SET GLOBAL innodb_monitor_reset = dml_inserts;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL

2233

InnoDB INFORMATION_SCHEMA Metrics Table

 AVG_COUNT: 0.03529411764705882
 COUNT_RESET: 0
MAX_COUNT_RESET: 0
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: 0
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 85
 TIME_RESET: 2014-12-04 14:19:44
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

7. To reset all counter values, you must first disable the counter. Disabling the counter sets the STATUS
value to disabled.

mysql> SET GLOBAL innodb_monitor_disable = dml_inserts;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.030612244897959183
 COUNT_RESET: 0
MAX_COUNT_RESET: 0
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: 0
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: 2014-12-04 14:20:06
 TIME_ELAPSED: 98
 TIME_RESET: NULL
 STATUS: disabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

Note

Wildcard match is supported for counter and module names. For example,
instead of specifying the full dml_inserts counter name, you can specify
dml_i%. You can also enable, disable, or reset multiple counters or modules at
once using a wildcard match. For example, specify dml_% to enable, disable, or
reset all counters that begin with dml_.

8. After the counter is disabled, you can reset all counter values using the
innodb_monitor_reset_all option. All values are set to zero or NULL.

mysql> SET GLOBAL innodb_monitor_reset_all = dml_inserts;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 0
 MAX_COUNT: NULL
 MIN_COUNT: NULL
 AVG_COUNT: NULL
 COUNT_RESET: 0
MAX_COUNT_RESET: NULL
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL

2234

InnoDB Integration with MySQL Performance Schema

 TIME_ENABLED: NULL
 TIME_DISABLED: NULL
 TIME_ELAPSED: NULL
 TIME_RESET: NULL
 STATUS: disabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

14.16 InnoDB Integration with MySQL Performance Schema

This section provides a brief introduction to InnoDB integration with Performance Schema. For
comprehensive Performance Schema documentation, see Chapter 22, MySQL Performance Schema.

You can profile certain internal InnoDB operations using the MySQL Performance Schema feature. This
type of tuning is primarily for expert users who evaluate optimization strategies to overcome performance
bottlenecks. DBAs can also use this feature for capacity planning, to see whether their typical workload
encounters any performance bottlenecks with a particular combination of CPU, RAM, and disk storage;
and if so, to judge whether performance can be improved by increasing the capacity of some part of the
system.

To use this feature to examine InnoDB performance:

• You must be generally familiar with how to use the Performance Schema feature. For example, you
should know how enable instruments and consumers, and how to query performance_schema tables
to retrieve data. For an introductory overview, see Section 22.1, “Performance Schema Quick Start”.

• You should be familiar with Performance Schema instruments that are available for InnoDB. To view
InnoDB-related instruments, you can query the setup_instruments table for instrument names that
contain 'innodb'.

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/commit_cond_mutex	NO	NO
wait/synch/mutex/innodb/innobase_share_mutex	NO	NO
wait/synch/mutex/innodb/autoinc_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_zip_mutex	NO	NO
wait/synch/mutex/innodb/cache_last_read_mutex	NO	NO
wait/synch/mutex/innodb/dict_foreign_err_mutex	NO	NO
wait/synch/mutex/innodb/dict_sys_mutex	NO	NO
wait/synch/mutex/innodb/file_format_max_mutex	NO	NO
wait/synch/mutex/innodb/fil_system_mutex	NO	NO
wait/synch/mutex/innodb/flush_list_mutex	NO	NO
wait/synch/mutex/innodb/fts_bg_threads_mutex	NO	NO
wait/synch/mutex/innodb/fts_delete_mutex	NO	NO
wait/synch/mutex/innodb/fts_optimize_mutex	NO	NO
...		
wait/synch/rwlock/innodb/btr_search_latch	NO	NO
wait/synch/rwlock/innodb/dict_operation_lock	NO	NO
wait/synch/rwlock/innodb/fil_space_latch	NO	NO
wait/synch/rwlock/innodb/checkpoint_lock	NO	NO
wait/synch/rwlock/innodb/fts_cache_rw_lock	NO	NO
wait/synch/rwlock/innodb/fts_cache_init_rw_lock	NO	NO
wait/synch/rwlock/innodb/trx_i_s_cache_lock	NO	NO
wait/synch/rwlock/innodb/trx_purge_latch	NO	NO
wait/synch/rwlock/innodb/index_tree_rw_lock	NO	NO
wait/synch/rwlock/innodb/index_online_log	NO	NO
wait/synch/rwlock/innodb/dict_table_stats	NO	NO

2235

Monitoring InnoDB Mutex Waits Using Performance Schema

wait/synch/rwlock/innodb/hash_table_locks	NO	NO
wait/synch/cond/innodb/commit_cond	NO	NO
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
+---+---------+-------+
62 rows in set (0.00 sec)

For additional information about the instrumented InnoDB objects, you can query Performance Schema
instances tables, which provide additional information about instrumented objects. Instance tables
relevant to InnoDB include:

• The mutex_instances table

• The rwlock_instances table

• The cond_instances table

• The file_instances table

Note

Mutexes and RW-locks related to the InnoDB buffer pool are not included in this
coverage; the same applies to the output of the SHOW ENGINE INNODB MUTEX
command.

For example, to view information about instrumented InnoDB file objects seen by the Performance
Schema when executing file I/O instrumentation, you might issue the following query:

mysql> SELECT *
 FROM performance_schema.file_instances
 WHERE EVENT_NAME LIKE '%innodb%'\G
*************************** 1. row ***************************
 FILE_NAME: /path/to/mysql-5.6/data/ibdata1
EVENT_NAME: wait/io/file/innodb/innodb_data_file
OPEN_COUNT: 2
*************************** 2. row ***************************
 FILE_NAME: /path/to/mysql-5.6/data/ib_logfile0
EVENT_NAME: wait/io/file/innodb/innodb_log_file
OPEN_COUNT: 2
*************************** 3. row ***************************
 FILE_NAME: /path/to/mysql-5.6/data/ib_logfile1
EVENT_NAME: wait/io/file/innodb/innodb_log_file
OPEN_COUNT: 2
...

• You should be familiar with performance_schema tables that store InnoDB event data. Tables
relevant to InnoDB-related events include:

• The Wait Event tables, which store wait events.

• The Summary tables, which provide aggregated information for terminated events over time. Summary
tables include file I/O summary tables, which aggregate information about I/O operations.

If you are only interested in InnoDB-related objects, use the clause WHERE EVENT_NAME LIKE
'%innodb%' or WHERE NAME LIKE '%innodb%' (as required) when querying these tables.

14.16.1 Monitoring InnoDB Mutex Waits Using Performance Schema

A mutex is a synchronization mechanism used in the code to enforce that only one thread at a given time
can have access to a common resource. When two or more threads executing in the server need to access

2236

Monitoring InnoDB Mutex Waits Using Performance Schema

the same resource, the threads compete against each other. The first thread to obtain a lock on the mutex
causes the other threads to wait until the lock is released.

For InnoDB mutexes that are instrumented, mutex waits can be monitored using Performance Schema.
Wait event data collected in Performance Schema tables can help identify mutexes with the most waits or
the greatest total wait time, for example.

The following example demonstrates how to enable InnoDB mutex wait instruments, how to enable
associated consumers, and how to query wait event data.

1. To view available InnoDB mutex wait instruments, query the Performance Schema
setup_instruments table, as shown below. All InnoDB mutex wait instruments are disabled by
default.

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%wait/synch/mutex/innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/commit_cond_mutex	NO	NO
wait/synch/mutex/innodb/innobase_share_mutex	NO	NO
wait/synch/mutex/innodb/autoinc_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_zip_mutex	NO	NO
wait/synch/mutex/innodb/cache_last_read_mutex	NO	NO
wait/synch/mutex/innodb/dict_foreign_err_mutex	NO	NO
wait/synch/mutex/innodb/dict_sys_mutex	NO	NO
wait/synch/mutex/innodb/file_format_max_mutex	NO	NO
wait/synch/mutex/innodb/fil_system_mutex	NO	NO
wait/synch/mutex/innodb/flush_list_mutex	NO	NO
wait/synch/mutex/innodb/fts_bg_threads_mutex	NO	NO
wait/synch/mutex/innodb/fts_delete_mutex	NO	NO
wait/synch/mutex/innodb/fts_optimize_mutex	NO	NO
wait/synch/mutex/innodb/fts_doc_id_mutex	NO	NO
wait/synch/mutex/innodb/fts_pll_tokenize_mutex	NO	NO
wait/synch/mutex/innodb/log_flush_order_mutex	NO	NO
wait/synch/mutex/innodb/hash_table_mutex	NO	NO
wait/synch/mutex/innodb/ibuf_bitmap_mutex	NO	NO
wait/synch/mutex/innodb/ibuf_mutex	NO	NO
wait/synch/mutex/innodb/ibuf_pessimistic_insert_mutex	NO	NO
wait/synch/mutex/innodb/log_sys_mutex	NO	NO
wait/synch/mutex/innodb/mem_pool_mutex	NO	NO
wait/synch/mutex/innodb/mutex_list_mutex	NO	NO
wait/synch/mutex/innodb/page_zip_stat_per_index_mutex	NO	NO
wait/synch/mutex/innodb/purge_sys_bh_mutex	NO	NO
wait/synch/mutex/innodb/recv_sys_mutex	NO	NO
wait/synch/mutex/innodb/recv_writer_mutex	NO	NO
wait/synch/mutex/innodb/rseg_mutex	NO	NO
wait/synch/mutex/innodb/rw_lock_list_mutex	NO	NO
wait/synch/mutex/innodb/rw_lock_mutex	NO	NO
wait/synch/mutex/innodb/srv_dict_tmpfile_mutex	NO	NO
wait/synch/mutex/innodb/srv_innodb_monitor_mutex	NO	NO
wait/synch/mutex/innodb/srv_misc_tmpfile_mutex	NO	NO
wait/synch/mutex/innodb/srv_monitor_file_mutex	NO	NO
wait/synch/mutex/innodb/buf_dblwr_mutex	NO	NO
wait/synch/mutex/innodb/trx_undo_mutex	NO	NO
wait/synch/mutex/innodb/srv_sys_mutex	NO	NO
wait/synch/mutex/innodb/lock_mutex	NO	NO
wait/synch/mutex/innodb/lock_wait_mutex	NO	NO
wait/synch/mutex/innodb/trx_mutex	NO	NO
wait/synch/mutex/innodb/srv_threads_mutex	NO	NO
wait/synch/mutex/innodb/os_mutex	NO	NO
wait/synch/mutex/innodb/ut_list_mutex	NO	NO
wait/synch/mutex/innodb/trx_sys_mutex	NO	NO

2237

Monitoring InnoDB Mutex Waits Using Performance Schema

| wait/synch/mutex/innodb/zip_pad_mutex | NO | NO |
+---+---------+-------+
46 rows in set (0.00 sec)

2. Some InnoDB mutex instances are created at server startup and are only instrumented if the
associated instrument is also enabled at server startup. To ensure that all InnoDB mutex instances
are instrumented and enabled, add the following performance-schema-instrument rule to your
MySQL configuration file:

performance-schema-instrument='wait/synch/mutex/innodb/%=ON'

If you do not require wait event data for all InnoDB mutexes, you can disable specific instruments by
adding additional performance-schema-instrument rules to your MySQL configuration file. For
example, to disable InnoDB mutex wait event instruments related to full-text search, add the following
rule:

performance-schema-instrument='wait/synch/mutex/innodb/fts%=OFF'

Note

Rules with a longer prefix such as wait/synch/mutex/innodb/fts% take
precedence over rules with shorter prefixes such as wait/synch/mutex/
innodb/%.

After adding the performance-schema-instrument rules to your configuration file, restart the
server. All the InnoDB mutexes except for those related to full text search are enabled. To verify,
query the setup_instruments table. The ENABLED and TIMED columns should be set to YES for the
instruments that you enabled.

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%wait/synch/mutex/innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/commit_cond_mutex	YES	YES
wait/synch/mutex/innodb/innobase_share_mutex	YES	YES
wait/synch/mutex/innodb/autoinc_mutex	YES	YES
...		
wait/synch/mutex/innodb/zip_pad_mutex	YES	YES
+---+---------+-------+
46 rows in set (0.00 sec)

3. Enable wait event consumers by updating the setup_consumers table. Wait event consumers are
disabled by default.

mysql> UPDATE performance_schema.setup_consumers
 SET enabled = 'YES'
 WHERE name like 'events_waits%';
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

You can verify that wait event consumers are enabled by querying the setup_consumers table.
The events_waits_current, events_waits_history, and events_waits_history_long
consumers should be enabled.

mysql> SELECT * FROM performance_schema.setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
| events_stages_current | NO |
| events_stages_history | NO |

2238

Monitoring InnoDB Mutex Waits Using Performance Schema

events_stages_history_long	NO
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	YES
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+--------------------------------+---------+
12 rows in set (0.00 sec)

4. Once instruments and consumers are enabled, run the workload that you want to monitor. In this
example, the mysqlslap load emulation client is used to simulate a workload.

$> ./mysqlslap --auto-generate-sql --concurrency=100 --iterations=10
 --number-of-queries=1000 --number-char-cols=6 --number-int-cols=6;

5. Query the wait event data. In this example, wait event data is queried from the
events_waits_summary_global_by_event_name table which aggregates data found in the
events_waits_current, events_waits_history, and events_waits_history_long tables.
Data is summarized by event name (EVENT_NAME), which is the name of the instrument that produced
the event. Summarized data includes:

• COUNT_STAR

The number of summarized wait events.

• SUM_TIMER_WAIT

The total wait time of the summarized timed wait events.

• MIN_TIMER_WAIT

The minimum wait time of the summarized timed wait events.

• AVG_TIMER_WAIT

The average wait time of the summarized timed wait events.

• MAX_TIMER_WAIT

The maximum wait time of the summarized timed wait events.

The following query returns the instrument name (EVENT_NAME), the number of wait events
(COUNT_STAR), and the total wait time for the events for that instrument (SUM_TIMER_WAIT).
Because waits are timed in picoseconds (trillionths of a second) by default, wait times are divided by
1000000000 to show wait times in milliseconds. Data is presented in descending order, by the number
of summarized wait events (COUNT_STAR). You can adjust the ORDER BY clause to order the data by
total wait time.

mysql> SELECT EVENT_NAME, COUNT_STAR, SUM_TIMER_WAIT/1000000000 SUM_TIMER_WAIT_MS
 FROM performance_schema.events_waits_summary_global_by_event_name
 WHERE SUM_TIMER_WAIT > 0 AND EVENT_NAME LIKE 'wait/synch/mutex/innodb/%'
 ORDER BY COUNT_STAR DESC;
+--+------------+-------------------+
| EVENT_NAME | COUNT_STAR | SUM_TIMER_WAIT_MS |
+--+------------+-------------------+
| wait/synch/mutex/innodb/srv_threads_mutex | 454474 | 16.3490 |
| wait/synch/mutex/innodb/trx_mutex | 107586 | 8.2415 |

2239

InnoDB Monitors

wait/synch/mutex/innodb/log_sys_mutex	37292	460.9484
wait/synch/mutex/innodb/redo_rseg_mutex	31077	3.2212
wait/synch/mutex/innodb/trx_sys_mutex	20005	447.8246
wait/synch/mutex/innodb/lock_mutex	19293	728.4862
wait/synch/mutex/innodb/fil_system_mutex	15789	1.3710
wait/synch/mutex/innodb/dict_sys_mutex	9606	319.7662
wait/synch/mutex/innodb/rw_lock_list_mutex	8351	0.2046
wait/synch/mutex/innodb/trx_undo_mutex	6274	0.5573
wait/synch/mutex/innodb/buf_pool_mutex	3230	7.3861
wait/synch/mutex/innodb/trx_pool_mutex	2225	9591.4174
wait/synch/mutex/innodb/innobase_share_mutex	2025	0.1891
wait/synch/mutex/innodb/flush_list_mutex	1421	0.1452
wait/synch/mutex/innodb/trx_pool_manager_mutex	1115	0.1503
wait/synch/mutex/innodb/file_format_max_mutex	1032	0.0445
wait/synch/mutex/innodb/buf_dblwr_mutex	594	0.0950
wait/synch/mutex/innodb/log_flush_order_mutex	502	0.0489
wait/synch/mutex/innodb/srv_sys_mutex	417	0.6856
wait/synch/mutex/innodb/recalc_pool_mutex	406	0.0842
wait/synch/mutex/innodb/purge_sys_pq_mutex	365	0.0302
wait/synch/mutex/innodb/recv_sys_mutex	273	0.0121
wait/synch/mutex/innodb/lock_wait_mutex	170	0.0852
wait/synch/mutex/innodb/noredo_rseg_mutex	32	0.0008
wait/synch/mutex/innodb/ibuf_mutex	10	0.0024
wait/synch/mutex/innodb/srv_innodb_monitor_mutex	2	0.0005
wait/synch/mutex/innodb/autoinc_mutex	2	0.0004
wait/synch/mutex/innodb/recv_writer_mutex	1	0.0001
+--+------------+-------------------+
28 rows in set (0.03 sec)

Note

The preceding result set includes wait event data produced during
the startup process. To exclude this data, you can truncate the
events_waits_summary_global_by_event_name table immediately after
startup and before running your workload. However, the truncate operation itself
may produce a negligible amount wait event data.

mysql> TRUNCATE performance_schema.events_waits_summary_global_by_event_name;

14.17 InnoDB Monitors

InnoDB monitors provide information about the InnoDB internal state. This information is useful for
performance tuning.

14.17.1 InnoDB Monitor Types

There are four types of InnoDB monitors:

• The standard InnoDB Monitor displays the following types of information:

• Work done by the main background thread

• Semaphore waits

• Data about the most recent foreign key and deadlock errors

• Lock waits for transactions

• Table and record locks held by active transactions

• Pending I/O operations and related statistics

2240

Enabling InnoDB Monitors

• Insert buffer and adaptive hash index statistics

• Redo log data

• Buffer pool statistics

• Row operation data

• The InnoDB Lock Monitor prints additional lock information as part of the standard InnoDB Monitor
output.

• The InnoDB Tablespace Monitor prints a list of file segments in the shared tablespace and validates the
tablespace allocation data structures.

• The InnoDB Table Monitor prints the contents of the InnoDB internal data dictionary.

Note

The Tablespace Monitor and Table Monitor are deprecated; expect them to be
removed in a future MySQL release. Similar information for the Table Monitor
can be obtained from InnoDB INFORMATION_SCHEMA tables. See Section 21.4,
“INFORMATION_SCHEMA InnoDB Tables”.

For additional information about InnoDB table and tablespace monitors, see Mark Leith: InnoDB Table and
Tablespace Monitors.

14.17.2 Enabling InnoDB Monitors

When InnoDB monitors are enabled for periodic output, InnoDB writes the output to mysqld server
standard error output (stderr) every 15 seconds, approximately.

InnoDB sends the monitor output to stderr rather than to stdout or fixed-size memory buffers to avoid
potential buffer overflows.

On Windows, stderr is directed to the default log file unless configured otherwise. If you want to direct
the output to the console window rather than to the error log, start the server from a command prompt in a
console window with the --console option. For more information, see Section 5.4.2.1, “Error Logging on
Windows”.

On Unix and Unix-like systems, stderr is typically directed to the terminal unless configured otherwise.
For more information, see Section 5.4.2.2, “Error Logging on Unix and Unix-Like Systems”.

InnoDB monitors should only be enabled when you actually want to see monitor information because
output generation causes some performance decrement. Also, if monitor output is directed to the error log,
the log may become quite large if you forget to disable the monitor later by dropping the monitor table.

Note

To assist with troubleshooting, InnoDB temporarily enables standard InnoDB
Monitor output under certain conditions. For more information, see Section 14.21,
“InnoDB Troubleshooting”.

Each monitor begins with a header containing a timestamp and the monitor name. For example:

=====================================
2014-10-16 16:28:15 7feee43c5700 INNODB MONITOR OUTPUT
=====================================

2241

http://www.markleith.co.uk/?p=25
http://www.markleith.co.uk/?p=25

Enabling InnoDB Monitors

The header for the standard InnoDB Monitor (INNODB MONITOR OUTPUT) is also used for the Lock
Monitor because the latter produces the same output with the addition of extra lock information.

Enabling the InnoDB Standard Monitor and Lock Monitor for periodic output may be performed in one of
two ways:

• Using a CREATE TABLE statement to create a specially named InnoDB table that is associated with
the monitor. For example, to enable the standard InnoDB Monitor, you would create an InnoDB table
named innodb_monitor. The Tablespace Monitor and Table Monitor are also enabled using the
CREATE TABLE method.

Using CREATE TABLE syntax is just a way to pass a command to the InnoDB engine through MySQL's
SQL parser. The only things that matter are the table name and that it be an InnoDB table. The structure
of the table and the database where the table is created are not relevant. If you shut down the server,
the monitor does not restart automatically when you restart the server. Drop the monitor table and issue
a new CREATE TABLE statement to start the monitor.

Note

The CREATE TABLE method of enabling InnoDB monitors is deprecated
and may be removed in a future release. As of MySQL 5.6.16, you can
enable the standard InnoDB Monitor and InnoDB Lock Monitor using the
innodb_status_output and innodb_status_output_locks system
variables.

• Using the innodb_status_output and innodb_status_output_locks system variables,
introduced in MySQL 5.6.16.

The PROCESS privilege is required to enable or disable InnoDB Monitors.

Enabling the Standard InnoDB Monitor

To enable the standard InnoDB Monitor for periodic output, create the innodb_monitor table:

CREATE TABLE innodb_monitor (a INT) ENGINE=INNODB;

To disable the standard InnoDB Monitor, drop the table:

DROP TABLE innodb_monitor;

As of MySQL 5.6.16, you can also enable the standard InnoDB Monitor by setting the
innodb_status_output system variable to ON.

SET GLOBAL innodb_status_output=ON;

To disable the standard InnoDB Monitor, set innodb_status_output to OFF.

When you shut down the server, the innodb_status_output variable is set to the default OFF value.

Enabling the InnoDB Lock Monitor

To enable the InnoDB Lock Monitor for periodic output, create the innodb_lock_monitor table:

CREATE TABLE innodb_lock_monitor (a INT) ENGINE=INNODB;

To disable the InnoDB Lock Monitor, drop the table:

DROP TABLE innodb_lock_monitor;

As of MySQL 5.6.16, you can also enable the InnoDB Lock Monitor by setting the
innodb_status_output_locks system variable to ON. As with the CREATE TABLE method for

2242

Enabling InnoDB Monitors

enabling InnoDB Monitors, both the InnoDB standard Monitor and InnoDB Lock Monitor must be enabled
to have InnoDBLock Monitor data printed periodically:

SET GLOBAL innodb_status_output=ON;
SET GLOBAL innodb_status_output_locks=ON;

When you shut down the server, the innodb_status_output and innodb_status_output_locks
variables are set to the default OFF value.

To disable the InnoDB Lock Monitor, set innodb_status_output_locks to OFF. Set
innodb_status_output to OFF to also disable the standard InnoDB Monitor.

Note

To enable the InnoDB Lock Monitor for SHOW ENGINE INNODB STATUS output,
you are only required to enable innodb_status_output_locks.

Obtaining Standard InnoDB Monitor Output On Demand

As an alternative to enabling the standard InnoDB Monitor for periodic output, you can obtain standard
InnoDB Monitor output on demand using the SHOW ENGINE INNODB STATUS SQL statement, which
fetches the output to your client program. If you are using the mysql interactive client, the output is more
readable if you replace the usual semicolon statement terminator with \G:

mysql> SHOW ENGINE INNODB STATUS\G

SHOW ENGINE INNODB STATUS output also includes InnoDB Lock Monitor data if the InnoDB Lock
Monitor is enabled.

Directing Standard InnoDB Monitor Output to a Status File

Standard InnoDB Monitor output can be enabled and directed to a status file by specifying the --
innodb-status-file option at startup. When this option is used, InnoDB creates a file named
innodb_status.pid in the data directory and writes output to it every 15 seconds, approximately.

InnoDB removes the status file when the server is shut down normally. If an abnormal shutdown occurs,
the status file may have to be removed manually.

The --innodb-status-file option is intended for temporary use, as output generation can affect
performance, and the innodb_status.pid file can become quite large over time.

Enabling the InnoDB Tablespace Monitor

To enable the InnoDB Tablespace Monitor for periodic output, create the
innodb_tablespace_monitor table:

CREATE TABLE innodb_tablespace_monitor (a INT) ENGINE=INNODB;

To disable the standard InnoDB Tablespace Monitor, drop the table:

DROP TABLE innodb_tablespace_monitor;

Note

The Tablespace Monitor is deprecated; expect it to be removed in a future MySQL
release.

Enabling the InnoDB Table Monitor

To enable the InnoDB Table Monitor for periodic output, create the innodb_table_monitor table:

2243

InnoDB Standard Monitor and Lock Monitor Output

CREATE TABLE innodb_table_monitor (a INT) ENGINE=INNODB;

To disable the InnoDB Table Monitor, drop the table:

DROP TABLE innodb_table_monitor;

Note

The Table Monitor is deprecated; expect it to be removed in a future MySQL
release.

14.17.3 InnoDB Standard Monitor and Lock Monitor Output

The Lock Monitor is the same as the Standard Monitor except that it includes additional lock information.
Enabling either monitor for periodic output turns on the same output stream, but the stream includes extra
information if the Lock Monitor is enabled. For example, if you enable the Standard Monitor and Lock
Monitor, that turns on a single output stream. The stream includes extra lock information until you disable
the Lock Monitor.

Standard Monitor output is limited to 1MB when produced using the SHOW ENGINE INNODB STATUS
statement. This limit does not apply to output written to server standard error output (stderr).

Example Standard Monitor output:

mysql> SHOW ENGINE INNODB STATUS\G
*************************** 1. row ***************************
 Type: InnoDB
 Name:
Status:
=====================================
2014-10-17 10:33:50 7f47bcd64700 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 6 seconds

BACKGROUND THREAD

srv_master_thread loops: 167 srv_active, 0 srv_shutdown, 3023 srv_idle
srv_master_thread log flush and writes: 3190

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 1040
OS WAIT ARRAY INFO: signal count 959
Mutex spin waits 677, rounds 20336, OS waits 644
RW-shared spins 180, rounds 5400, OS waits 180
RW-excl spins 0, rounds 6420, OS waits 214
Spin rounds per wait: 30.04 mutex, 30.00 RW-shared, 6420.00 RW-excl

LATEST FOREIGN KEY ERROR

2014-10-17 09:51:31 7f47bcde6700 Transaction:
TRANSACTION 436786, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1184, 3 row lock(s), undo log entries 3
MySQL thread id 1, OS thread handle 0x7f47bcde6700, query id 96 localhost
root update
INSERT INTO child VALUES
 (NULL, 1)
 , (NULL, 2)
 , (NULL, 3)
 , (NULL, 4)
 , (NULL, 5)
 , (NULL, 6)
Foreign key constraint fails for table `mysql`.`child`:

2244

InnoDB Standard Monitor and Lock Monitor Output

,
 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES `parent`
 (`id`)
 ON DELETE CASCADE ON UPDATE CASCADE
Trying to add in child table, in index `par_ind` tuple:
DATA TUPLE: 2 fields;
 0: len 4; hex 80000003; asc ;;
 1: len 4; hex 80000003; asc ;;

But in parent table `mysql`.`parent`, in index `PRIMARY`,
the closest match we can find is record:
PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 80000004; asc ;;
 1: len 6; hex 00000006aa26; asc &;;
 2: len 7; hex 9d000001610137; asc a 7;;

LATEST DETECTED DEADLOCK

2014-10-17 09:52:38 7f47bcde6700
*** (1) TRANSACTION:
TRANSACTION 436801, ACTIVE 12 sec starting index read
mysql tables in use 1, locked 1
LOCK WAIT 2 lock struct(s), heap size 360, 1 row lock(s)
MySQL thread id 2, OS thread handle 0x7f47bcda5700, query id 102 localhost
root updating
DELETE FROM t WHERE i = 1
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 3693 page no 3 n bits 72 index `GEN_CLUST_INDEX` of
table `mysql`.`t` trx id 436801 lock_mode X waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info
bits 0
 0: len 6; hex 000000003a00; asc : ;;
 1: len 6; hex 00000006aa3f; asc ?;;
 2: len 7; hex ad0000021d0110; asc ;;
 3: len 4; hex 80000001; asc ;;

*** (2) TRANSACTION:
TRANSACTION 436800, ACTIVE 34 sec starting index read
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1184, 3 row lock(s)
MySQL thread id 1, OS thread handle 0x7f47bcde6700, query id 103 localhost
root updating
DELETE FROM t WHERE i = 1
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 3693 page no 3 n bits 72 index `GEN_CLUST_INDEX` of
table `mysql`.`t` trx id 436800 lock mode S
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info
bits 0 0: len 8; hex 73757072656d756d; asc supremum;;

Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info
bits 0
 0: len 6; hex 000000003a00; asc : ;;
 1: len 6; hex 00000006aa3f; asc ?;;
 2: len 7; hex ad0000021d0110; asc ;;
 3: len 4; hex 80000001; asc ;;

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 3693 page no 3 n bits 72 index `GEN_CLUST_INDEX` of
table `mysql`.`t` trx id 436800 lock_mode X waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info
bits 0
 0: len 6; hex 000000003a00; asc : ;;
 1: len 6; hex 00000006aa3f; asc ?;;
 2: len 7; hex ad0000021d0110; asc ;;
 3: len 4; hex 80000001; asc ;;

*** WE ROLL BACK TRANSACTION (1)

2245

InnoDB Standard Monitor and Lock Monitor Output

TRANSACTIONS

Trx id counter 437661
Purge done for trx's n:o < 437657 undo n:o < 0 state: running but
idle History list length 371
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 0, not started
MySQL thread id 10, OS thread handle 0x7f47bcd64700, query id 1001 localhost
root init
SHOW ENGINE INNODB STATUS
---TRANSACTION 436801, not started
MySQL thread id 2, OS thread handle 0x7f47bcda5700, query id 102 localhost
root ceaning up
---TRANSACTION 437660, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
43 lock struct(s), heap size 6544, 6474 row lock(s), undo log entries 7124
MySQL thread id 14, OS thread handle 0x7f47bcde6700, query id 1000 localhost
root update
INSERT INTO `dept_emp` VALUES (100258,'d002','1994-03-21','9999-01-01'),
(100259, 'd005','1998-11-04','9999-01-01'),(100259,'d008','1988-02-03',
'1998-11-04'),(100 260,'d005','1998-09-18','9999-01-01'),(100261,'d004',
'1989-03-11','9999-01-01'), (100262,'d008','1996-08-12','9999-01-01'),
(100263,'d002','1998-06-24','1998-10-0 5'),(100264,'d005','1989-11-09',
'9999-01-01'),(100265,'d001','1992-06-27','9999- 01-01'),(100266,'d009',
'1990-09-10','9999-01-01'),(100267,'d009','1992-04-14','9 999-01-01'),
(100268,'d005','1998-05-01','2000-04-07'),(100269,'d007','1994-01-02',
'1999-09-18'),(100269,'d009','1999-09-

FILE I/O

I/O thread 0 state: waiting for completed aio requests (insert buffer thread)
I/O thread 1 state: waiting for completed aio requests (log thread)
I/O thread 2 state: waiting for completed aio requests (read thread)
I/O thread 3 state: waiting for completed aio requests (read thread)
I/O thread 4 state: waiting for completed aio requests (read thread)
I/O thread 5 state: waiting for completed aio requests (read thread)
I/O thread 6 state: waiting for completed aio requests (write thread)
I/O thread 7 state: waiting for completed aio requests (write thread)
I/O thread 8 state: waiting for completed aio requests (write thread)
I/O thread 9 state: waiting for completed aio requests (write thread)
Pending normal aio reads: 0 [0, 0, 0, 0] , aio writes: 0 [0, 0, 0, 0] ,
 ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0
Pending flushes (fsync) log: 0; buffer pool: 0
344 OS file reads, 45666 OS file writes, 4030 OS fsyncs
0.00 reads/s, 0 avg bytes/read, 202.80 writes/s, 48.33 fsyncs/s

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 0, seg size 2, 0 merges
merged operations:
 insert 0, delete mark 0, delete 0
discarded operations:
 insert 0, delete mark 0, delete 0
Hash table size 4425293, node heap has 143 buffer(s)
137083.82 hash searches/s, 2495.92 non-hash searches/s

LOG

Log sequence number 3091027710
Log flushed up to 3090240098
Pages flushed up to 3074432960
Last checkpoint at 3050856266
0 pending log writes, 0 pending chkp writes
1187 log i/o's done, 14.67 log i/o's/second

BUFFER POOL AND MEMORY

2246

InnoDB Standard Monitor and Lock Monitor Output

Total memory allocated 2197815296; in additional pool allocated 0
Dictionary memory allocated 155455
Buffer pool size 131071
Free buffers 92158
Database pages 38770
Old database pages 14271
Modified db pages 619
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 4, not young 0
0.00 youngs/s, 0.00 non-youngs/s
Pages read 322, created 38448, written 42083
0.00 reads/s, 222.30 creates/s, 159.47 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead
0.00/s
LRU len: 38770, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]

INDIVIDUAL BUFFER POOL INFO

---BUFFER POOL 0
Buffer pool size 65536
Free buffers 46120
Database pages 19345
Old database pages 7121
Modified db pages 291
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 3, not young 0
0.00 youngs/s, 0.00 non-youngs/s
Pages read 163, created 19182, written 21149
0.00 reads/s, 103.48 creates/s, 83.15 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead
0.00/s
LRU len: 19345, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]
---BUFFER POOL 1
Buffer pool size 65535
Free buffers 46038
Database pages 19425
Old database pages 7150
Modified db pages 328
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 1, not young 0
0.00 youngs/s, 0.00 non-youngs/s
Pages read 159, created 19266, written 20934
0.00 reads/s, 118.81 creates/s, 76.32 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead
0.00/s
LRU len: 19425, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]

ROW OPERATIONS

0 queries inside InnoDB, 0 queries in queue
0 read views open inside InnoDB
Main thread process no. 54607, id 139946075744000, state: sleeping
Number of rows inserted 12163964, updated 0, deleted 3, read 4
67807.03 inserts/s, 0.00 updates/s, 0.00 deletes/s, 0.00 reads/s

END OF INNODB MONITOR OUTPUT
============================

2247

InnoDB Standard Monitor and Lock Monitor Output

Standard Monitor Output Sections

For a description of each metric reported by the Standard Monitor, refer to the Metrics chapter in the
Oracle Enterprise Manager for MySQL Database User's Guide.

• Status

This section shows the timestamp, the monitor name, and the number of seconds that per-second
averages are based on. The number of seconds is the elapsed time between the current time and the
last time InnoDB Monitor output was printed.

• BACKGROUND THREAD

The srv_master_thread lines shows work done by the main background thread.

• SEMAPHORES

This section reports threads waiting for a semaphore and statistics on how many times threads have
needed a spin or a wait on a mutex or a rw-lock semaphore. A large number of threads waiting for
semaphores may be a result of disk I/O, or contention problems inside InnoDB. Contention can be
due to heavy parallelism of queries or problems in operating system thread scheduling. Setting the
innodb_thread_concurrency system variable smaller than the default value might help in such
situations. The Spin rounds per wait line shows the number of spinlock rounds per OS wait for a
mutex.

• LATEST FOREIGN KEY ERROR

This section provides information about the most recent foreign key constraint error. It is not present if no
such error has occurred. The contents include the statement that failed as well as information about the
constraint that failed and the referenced and referencing tables.

• LATEST DETECTED DEADLOCK

This section provides information about the most recent deadlock. It is not present if no deadlock has
occurred. The contents show which transactions are involved, the statement each was attempting to
execute, the locks they have and need, and which transaction InnoDB decided to roll back to break the
deadlock. The lock modes reported in this section are explained in Section 14.7.1, “InnoDB Locking”.

• TRANSACTIONS

If this section reports lock waits, your applications might have lock contention. The output can also help
to trace the reasons for transaction deadlocks.

• FILE I/O

This section provides information about threads that InnoDB uses to perform various types of I/O. The
first few of these are dedicated to general InnoDB processing. The contents also display information for
pending I/O operations and statistics for I/O performance.

The number of these threads are controlled by the innodb_read_io_threads and
innodb_write_io_threads parameters. See Section 14.14, “InnoDB Startup Options and System
Variables”.

• INSERT BUFFER AND ADAPTIVE HASH INDEX

This section shows the status of the InnoDB insert buffer (also referred to as the change buffer) and the
adaptive hash index.

2248

http://dev.mysql.com/doc/mysql-em-plugin/en/myoem-metrics.html
http://dev.mysql.com/doc/mysql-em-plugin/en/

InnoDB Tablespace Monitor Output

For related information, see Section 14.5.2, “Change Buffer”, and Section 14.5.3, “Adaptive Hash Index”.

• LOG

This section displays information about the InnoDB log. The contents include the current log sequence
number, how far the log has been flushed to disk, and the position at which InnoDB last took a
checkpoint. (See Section 14.12.3, “InnoDB Checkpoints”.) The section also displays information about
pending writes and write performance statistics.

• BUFFER POOL AND MEMORY

This section gives you statistics on pages read and written. You can calculate from these numbers how
many data file I/O operations your queries currently are doing.

For buffer pool statistics descriptions, see Monitoring the Buffer Pool Using the InnoDB Standard
Monitor. For additional information about the operation of the buffer pool, see Section 14.5.1, “Buffer
Pool”.

• ROW OPERATIONS

This section shows what the main thread is doing, including the number and performance rate for each
type of row operation.

14.17.4 InnoDB Tablespace Monitor Output

Note

The InnoDB Tablespace Monitor is deprecated and may be removed in a future
release.

The InnoDB Tablespace Monitor prints information about the file segments in the shared tablespace and
validates the tablespace allocation data structures. The Tablespace Monitor does not describe file-per-
table tablespaces created with the innodb_file_per_table option.

Example InnoDB Tablespace Monitor output:

==
090408 21:28:09 INNODB TABLESPACE MONITOR OUTPUT
==
FILE SPACE INFO: id 0
size 13440, free limit 3136, free extents 28
not full frag extents 2: used pages 78, full frag extents 3
first seg id not used 0 23845
SEGMENT id 0 1 space 0; page 2; res 96 used 46; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 14
SEGMENT id 0 2 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 3 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
...
SEGMENT id 0 15 space 0; page 2; res 160 used 160; full ext 2
fragm pages 32; free extents 0; not full extents 0: pages 0
SEGMENT id 0 488 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 17 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
...
SEGMENT id 0 171 space 0; page 2; res 592 used 481; full ext 7
fragm pages 16; free extents 0; not full extents 2: pages 17
SEGMENT id 0 172 space 0; page 2; res 1 used 1; full ext 0

2249

InnoDB Tablespace Monitor Output

fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 173 space 0; page 2; res 96 used 44; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 12
...
SEGMENT id 0 601 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
NUMBER of file segments: 73
Validating tablespace
Validation ok

END OF INNODB TABLESPACE MONITOR OUTPUT
=======================================

The Tablespace Monitor output includes information about the shared tablespace as a whole, followed by a
list containing a breakdown for each segment within the tablespace.

In this example using the default page size, the tablespace consists of database pages that are 16KB
each. The pages are grouped into extents of size 1MB (64 consecutive pages).

The initial part of the output that displays overall tablespace information has this format:

FILE SPACE INFO: id 0
size 13440, free limit 3136, free extents 28
not full frag extents 2: used pages 78, full frag extents 3
first seg id not used 0 23845

Overall tablespace information includes these values:

• id

The tablespace ID. A value of 0 refers to the shared tablespace.

• size

The current tablespace size in pages.

• free limit

The minimum page number for which the free list has not been initialized. Pages at or above this limit
are free.

• free extents

The number of free extents.

• not full frag extents, used pages

The number of fragment extents that are not completely filled, and the number of pages in those extents
that have been allocated.

• full frag extents

The number of completely full fragment extents.

• first seg id not used

The first unused segment ID.

Individual segment information has this format:

SEGMENT id 0 15 space 0; page 2; res 160 used 160; full ext 2

2250

InnoDB Table Monitor Output

fragm pages 32; free extents 0; not full extents 0: pages 0

Segment information includes these values:

• id:

The segment ID.

• space, page

The tablespace number and page within the tablespace where the segment “inode” is located. A
tablespace number of 0 indicates the shared tablespace. InnoDB uses inodes to keep track of segments
in the tablespace. The other fields displayed for a segment (id, res, and so forth) are derived from
information in the inode.

• res

The number of pages allocated (reserved) for the segment.

• used

The number of allocated pages in use by the segment.

• full ext

The number of extents allocated for the segment that are completely used.

• fragm pages

The number of initial pages that have been allocated to the segment.

• free extents

The number of extents allocated for the segment that are completely unused.

• not full extents

The number of extents allocated for the segment that are partially used.

• pages

The number of pages used within the not-full extents.

When a segment grows, it starts as a single page, and InnoDB allocates the first pages for it one at a time,
up to 32 pages (this is the fragm pages value). After that, InnoDB allocates complete extents. InnoDB
can add up to 4 extents at a time to a large segment to ensure good sequentiality of data.

For the example segment shown earlier, it has 32 fragment pages, plus 2 full extents (64 pages each), for
a total of 160 pages used out of 160 pages allocated. The following segment has 32 fragment pages and
one partially full extent using 14 pages for a total of 46 pages used out of 96 pages allocated:

SEGMENT id 0 1 space 0; page 2; res 96 used 46; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 14

It is possible for a segment that has extents allocated to it to have a fragm pages value less than 32 if
some of the individual pages have been deallocated subsequent to extent allocation.

14.17.5 InnoDB Table Monitor Output

2251

InnoDB Table Monitor Output

Note

The InnoDB Table Monitor is deprecated and may be removed in a future release.
Similar information can be obtained from InnoDB INFORMATION_SCHEMA tables.
See Section 21.4, “INFORMATION_SCHEMA InnoDB Tables”.

The InnoDB Table Monitor prints the contents of the InnoDB internal data dictionary.

The output contains one section per table. The SYS_FOREIGN and SYS_FOREIGN_COLS sections are for
internal data dictionary tables that maintain information about foreign keys. There are also sections for the
Table Monitor table and each user-created InnoDB table. Suppose that the following two tables have been
created in the test database:

CREATE TABLE parent
(
 par_id INT NOT NULL,
 fname CHAR(20),
 lname CHAR(20),
 PRIMARY KEY (par_id),
 UNIQUE INDEX (lname, fname)
) ENGINE = INNODB;

CREATE TABLE child
(
 par_id INT NOT NULL,
 child_id INT NOT NULL,
 name VARCHAR(40),
 birth DATE,
 weight DECIMAL(10,2),
 misc_info VARCHAR(255),
 last_update TIMESTAMP,
 PRIMARY KEY (par_id, child_id),
 INDEX (name),
 FOREIGN KEY (par_id) REFERENCES parent (par_id)
 ON DELETE CASCADE
 ON UPDATE CASCADE
) ENGINE = INNODB;

Then the Table Monitor output looks something like this (reformatted slightly):

===
090420 12:09:32 INNODB TABLE MONITOR OUTPUT
===

TABLE: name SYS_FOREIGN, id 0 11, columns 7, indexes 3, appr.rows 1
 COLUMNS: ID: DATA_VARCHAR DATA_ENGLISH len 0;
 FOR_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
 REF_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
 N_COLS: DATA_INT len 4;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name ID_IND, id 0 11, fields 1/6, uniq 1, type 3
 root page 46, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: ID DB_TRX_ID DB_ROLL_PTR FOR_NAME REF_NAME N_COLS
 INDEX: name FOR_IND, id 0 12, fields 1/2, uniq 2, type 0
 root page 47, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: FOR_NAME ID
 INDEX: name REF_IND, id 0 13, fields 1/2, uniq 2, type 0
 root page 48, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: REF_NAME ID

TABLE: name SYS_FOREIGN_COLS, id 0 12, columns 7, indexes 1, appr.rows 1
 COLUMNS: ID: DATA_VARCHAR DATA_ENGLISH len 0;
 POS: DATA_INT len 4;
 FOR_COL_NAME: DATA_VARCHAR DATA_ENGLISH len 0;

2252

InnoDB Table Monitor Output

 REF_COL_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name ID_IND, id 0 14, fields 2/6, uniq 2, type 3
 root page 49, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: ID POS DB_TRX_ID DB_ROLL_PTR FOR_COL_NAME REF_COL_NAME

TABLE: name test/child, id 0 14, columns 10, indexes 2, appr.rows 201
 COLUMNS: par_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;
 child_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;
 name: DATA_VARCHAR prtype 524303 len 40;
 birth: DATA_INT DATA_BINARY_TYPE len 3;
 weight: DATA_FIXBINARY DATA_BINARY_TYPE len 5;
 misc_info: DATA_VARCHAR prtype 524303 len 255;
 last_update: DATA_INT DATA_UNSIGNED DATA_BINARY_TYPE DATA_NOT_NULL len 4;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name PRIMARY, id 0 17, fields 2/9, uniq 2, type 3
 root page 52, appr.key vals 201, leaf pages 5, size pages 6
 FIELDS: par_id child_id DB_TRX_ID DB_ROLL_PTR name birth weight misc_info last_update
 INDEX: name name, id 0 18, fields 1/3, uniq 3, type 0
 root page 53, appr.key vals 210, leaf pages 1, size pages 1
 FIELDS: name par_id child_id
 FOREIGN KEY CONSTRAINT test/child_ibfk_1: test/child (par_id)
 REFERENCES test/parent (par_id)

TABLE: name test/innodb_table_monitor, id 0 15, columns 4, indexes 1, appr.rows 0
 COLUMNS: i: DATA_INT DATA_BINARY_TYPE len 4;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name GEN_CLUST_INDEX, id 0 19, fields 0/4, uniq 1, type 1
 root page 193, appr.key vals 0, leaf pages 1, size pages 1
 FIELDS: DB_ROW_ID DB_TRX_ID DB_ROLL_PTR i

TABLE: name test/parent, id 0 13, columns 6, indexes 2, appr.rows 299
 COLUMNS: par_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;
 fname: DATA_CHAR prtype 524542 len 20;
 lname: DATA_CHAR prtype 524542 len 20;
 DB_ROW_ID: DATA_SYS prtype 256 len 6;
 DB_TRX_ID: DATA_SYS prtype 257 len 6;
 INDEX: name PRIMARY, id 0 15, fields 1/5, uniq 1, type 3
 root page 50, appr.key vals 299, leaf pages 2, size pages 3
 FIELDS: par_id DB_TRX_ID DB_ROLL_PTR fname lname
 INDEX: name lname, id 0 16, fields 2/3, uniq 2, type 2
 root page 51, appr.key vals 300, leaf pages 1, size pages 1
 FIELDS: lname fname par_id
 FOREIGN KEY CONSTRAINT test/child_ibfk_1: test/child (par_id)
 REFERENCES test/parent (par_id)

END OF INNODB TABLE MONITOR OUTPUT
==================================

For each table, Table Monitor output contains a section that displays general information about the table
and specific information about its columns, indexes, and foreign keys.

The general information for each table includes the table name (in db_name/tbl_name format except for
internal tables), its ID, the number of columns and indexes, and an approximate row count.

The COLUMNS part of a table section lists each column in the table. Information for each column indicates
its name and data type characteristics. Some internal columns are added by InnoDB, such as DB_ROW_ID
(row ID), DB_TRX_ID (transaction ID), and DB_ROLL_PTR (a pointer to the rollback/undo data).

• DATA_xxx

These symbols indicate the data type. There may be multiple DATA_xxx symbols for a given column.

2253

InnoDB Table Monitor Output

• prtype

The column's “precise” type. This field includes information such as the column data type, character set
code, nullability, signedness, and whether it is a binary string. This field is described in the innobase/
include/data0type.h source file.

• len

The column length in bytes.

Each INDEX part of the table section provides the name and characteristics of one table index:

• name

The index name. If the name is PRIMARY, the index is a primary key. If the name is GEN_CLUST_INDEX,
the index is the clustered index that is created automatically if the table definition doesn't include a
primary key or non-NULL unique index. See Section 14.6.2.1, “Clustered and Secondary Indexes”.

• id

The index ID.

• fields

The number of fields in the index, as a value in m/n format:

• m is the number of user-defined columns; that is, the number of columns you would see in the index
definition in a CREATE TABLE statement.

• n is the total number of index columns, including those added internally. For the clustered index,
the total includes the other columns in the table definition, plus any columns added internally. For
a secondary index, the total includes the columns from the primary key that are not part of the
secondary index.

• uniq

The number of leading fields that are enough to determine index values uniquely.

• type

The index type. This is a bit field. For example, 1 indicates a clustered index and 2 indicates a unique
index, so a clustered index (which always contains unique values), has the type value 3. An index with
type value 0 is neither clustered nor unique. The flag values are defined in the innobase/include/
dict0mem.h source file.

• root page

The index root page number.

• appr. key vals

The approximate index cardinality.

• leaf pages

The approximate number of leaf pages in the index.

• size pages

2254

InnoDB Backup and Recovery

The approximate total number of pages in the index.

• FIELDS

The names of the fields in the index. For a clustered index that was generated automatically, the field list
begins with the internal DB_ROW_ID (row ID) field. DB_TRX_ID and DB_ROLL_PTR are always added
internally to the clustered index, following the fields that comprise the primary key. For a secondary
index, the final fields are those from the primary key that are not part of the secondary index.

The end of the table section lists the FOREIGN KEY definitions that apply to the table. This information
appears whether the table is a referencing or referenced table.

14.18 InnoDB Backup and Recovery

This section covers topics related to InnoDB backup and recovery.

• For information about backup techniques applicable to InnoDB, see Section 14.18.1, “InnoDB Backup”.

• For information about point-in-time recovery, recovery from disk failure or corruption, and how InnoDB
performs crash recovery, see Section 14.18.2, “InnoDB Recovery”.

14.18.1 InnoDB Backup

The key to safe database management is making regular backups. Depending on your data volume,
number of MySQL servers, and database workload, you can use these backup techniques, alone or in
combination: hot backup with MySQL Enterprise Backup; cold backup by copying files while the MySQL
server is shut down; logical backup with mysqldump for smaller data volumes or to record the structure of
schema objects. Hot and cold backups are physical backups that copy actual data files, which can be used
directly by the mysqld server for faster restore.

Using MySQL Enterprise Backup is the recommended method for backing up InnoDB data.

Note

InnoDB does not support databases that are restored using third-party backup
tools.

Hot Backups

The mysqlbackup command, part of the MySQL Enterprise Backup component, lets you back up a
running MySQL instance, including InnoDB tables, with minimal disruption to operations while producing
a consistent snapshot of the database. When mysqlbackup is copying InnoDB tables, reads and writes
to InnoDB tables can continue. MySQL Enterprise Backup can also create compressed backup files, and
back up subsets of tables and databases. In conjunction with the MySQL binary log, users can perform
point-in-time recovery. MySQL Enterprise Backup is part of the MySQL Enterprise subscription. For more
details, see Section 24.2, “MySQL Enterprise Backup Overview”.

Cold Backups

If you can shut down the MySQL server, you can make a physical backup that consists of all files used by
InnoDB to manage its tables. Use the following procedure:

1. Perform a slow shutdown of the MySQL server and make sure that it stops without errors.

2. Copy all InnoDB data files (ibdata files and .ibd files) into a safe place.

2255

InnoDB Recovery

3. Copy all the .frm files for InnoDB tables to a safe place.

4. Copy all InnoDB log files (ib_logfile files) to a safe place.

5. Copy your my.cnf configuration file or files to a safe place.

Logical Backups Using mysqldump

In addition to physical backups, it is recommended that you regularly create logical backups by dumping
your tables using mysqldump. A binary file might be corrupted without you noticing it. Dumped tables are
stored into text files that are human-readable, so spotting table corruption becomes easier. Also, because
the format is simpler, the chance for serious data corruption is smaller. mysqldump also has a --single-
transaction option for making a consistent snapshot without locking out other clients. See Section 7.3.1,
“Establishing a Backup Policy”.

Replication works with InnoDB tables, so you can use MySQL replication capabilities to keep a copy
of your database at database sites requiring high availability. See Section 14.19, “InnoDB and MySQL
Replication”.

14.18.2 InnoDB Recovery

This section describes InnoDB recovery. Topics include:

• Point-in-Time Recovery

• Recovery from Data Corruption or Disk Failure

• InnoDB Crash Recovery

Point-in-Time Recovery

To recover an InnoDB database to the present from the time at which the physical backup was made, you
must run MySQL server with binary logging enabled, even before taking the backup. To achieve point-in-
time recovery after restoring a backup, you can apply changes from the binary log that occurred after the
backup was made. See Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”.

Recovery from Data Corruption or Disk Failure

If your database becomes corrupted or disk failure occurs, you must perform the recovery using a backup.
In the case of corruption, first find a backup that is not corrupted. After restoring the base backup, do a
point-in-time recovery from the binary log files using mysqlbinlog and mysql to restore the changes that
occurred after the backup was made.

In some cases of database corruption, it is enough to dump, drop, and re-create one or a few corrupt
tables. You can use the CHECK TABLE statement to check whether a table is corrupt, although CHECK
TABLE naturally cannot detect every possible kind of corruption. You can use the Tablespace Monitor to
check the integrity of the file space management inside the tablespace files.

In some cases, apparent database page corruption is actually due to the operating system corrupting its
own file cache, and the data on disk may be okay. It is best to try restarting the computer first. Doing so
may eliminate errors that appeared to be database page corruption. If MySQL still has trouble starting
because of InnoDB consistency problems, see Section 14.21.2, “Forcing InnoDB Recovery” for steps to
start the instance in recovery mode, which permits you to dump the data.

InnoDB Crash Recovery

2256

InnoDB Recovery

To recover from an unexpected MySQL server exit, the only requirement is to restart the MySQL server.
InnoDB automatically checks the logs and performs a roll-forward of the database to the present. InnoDB
automatically rolls back uncommitted transactions that were present at the time of the crash. During
recovery, mysqld displays output similar to this:

InnoDB: Log scan progressed past the checkpoint lsn 430875675
InnoDB: Database was not shutdown normally!
InnoDB: Starting crash recovery.
InnoDB: Reading tablespace information from the .ibd files...
InnoDB: Restoring possible half-written data pages
InnoDB: from the doublewrite buffer...
InnoDB: Doing recovery: scanned up to log sequence number 436118528
InnoDB: Doing recovery: scanned up to log sequence number 441361408
InnoDB: Doing recovery: scanned up to log sequence number 446604288
InnoDB: Doing recovery: scanned up to log sequence number 451847168
InnoDB: Doing recovery: scanned up to log sequence number 457090048
InnoDB: Doing recovery: scanned up to log sequence number 462332928
InnoDB: Doing recovery: scanned up to log sequence number 467575808
InnoDB: Doing recovery: scanned up to log sequence number 472818688
InnoDB: Doing recovery: scanned up to log sequence number 478061568
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Progress in percent: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
InnoDB: Apply batch completed
InnoDB: Doing recovery: scanned up to log sequence number 483304448
InnoDB: Doing recovery: scanned up to log sequence number 488547328
InnoDB: Doing recovery: scanned up to log sequence number 493790208
InnoDB: Doing recovery: scanned up to log sequence number 496426509
InnoDB: 1 transaction(s) which must be rolled back or cleaned up
InnoDB: in total 1441473 row operations to undo
InnoDB: Trx id counter is 2304
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Progress in percent: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
InnoDB: Apply batch completed
...
InnoDB: Waiting for purge to start
Starting in background the rollback of uncommitted transactions
InnoDB: Rolling back trx with id 2022, 1441473 rows to undo
...
InnoDB: 5.6.36 started; log sequence number 496426509
...
./mysqld: ready for connections.

The InnoDB crash recovery process consists of several steps:

• Redo log application

Redo log application is the first step and is performed during initialization, before accepting any
connections. If all changes are flushed from the buffer pool to the tablespaces (ibdata* and *.ibd
files) at the time of the shutdown or crash, redo log application is skipped. InnoDB also skips redo log
application if redo log files are missing at startup.

Removing redo logs to speed up recovery is not recommended, even if some data loss is acceptable.
Removing redo logs should only be considered after a clean shutdown, with innodb_fast_shutdown
set to 0 or 1.

2257

InnoDB and MySQL Replication

• Roll back of incomplete transactions

Incomplete transactions are any transactions that were active at the time of unexpected exit or fast
shutdown. The time it takes to roll back an incomplete transaction can be three or four times the amount
of time a transaction is active before it is interrupted, depending on server load.

You cannot cancel transactions that are being rolled back. In extreme cases, when rolling back
transactions is expected to take an exceptionally long time, it may be faster to start InnoDB with an
innodb_force_recovery setting of 3 or greater. See Section 14.21.2, “Forcing InnoDB Recovery”.

• Change buffer merge

Applying changes from the change buffer (part of the system tablespace) to leaf pages of secondary
indexes, as the index pages are read to the buffer pool.

• Purge

Deleting delete-marked records that are no longer visible to active transactions.

The steps that follow redo log application do not depend on the redo log (other than for logging the writes)
and are performed in parallel with normal processing. Of these, only rollback of incomplete transactions is
special to crash recovery. The insert buffer merge and the purge are performed during normal processing.

After redo log application, InnoDB attempts to accept connections as early as possible, to reduce
downtime. As part of crash recovery, InnoDB rolls back transactions that were not committed or in XA
PREPARE state when the server exited. The rollback is performed by a background thread, executed in
parallel with transactions from new connections. Until the rollback operation is completed, new connections
may encounter locking conflicts with recovered transactions.

In most situations, even if the MySQL server was killed unexpectedly in the middle of heavy activity,
the recovery process happens automatically and no action is required of the DBA. If a hardware
failure or severe system error corrupted InnoDB data, MySQL might refuse to start. In this case, see
Section 14.21.2, “Forcing InnoDB Recovery”.

For information about the binary log and InnoDB crash recovery, see Section 5.4.4, “The Binary Log”.

14.19 InnoDB and MySQL Replication

It is possible to use replication in a way where the storage engine on the replica is not the same as the
storage engine on the source. For example, you can replicate modifications to an InnoDB table on the
source to a MyISAM table on the replica. For more information see, Section 17.3.3, “Using Replication with
Different Source and Replica Storage Engines”.

For information about setting up a replica, see Section 17.1.1.8, “Setting Up Replication with Existing
Data”. To make a new replica without taking down the source or an existing replica, use the MySQL
Enterprise Backup product.

Transactions that fail on the source do not affect replication. MySQL replication is based on the binary log
where MySQL writes SQL statements that modify data. A transaction that fails (for example, because of a
foreign key violation, or because it is rolled back) is not written to the binary log, so it is not sent to replicas.
See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”.

Replication and CASCADE. Cascading actions for InnoDB tables on the source are executed on the
replica only if the tables sharing the foreign key relation use InnoDB on both the source and replica. This
is true whether you are using statement-based or row-based replication. Suppose that you have started
replication, and then create two tables on the source using the following CREATE TABLE statements:

2258

InnoDB and MySQL Replication

CREATE TABLE fc1 (
 i INT PRIMARY KEY,
 j INT
) ENGINE = InnoDB;

CREATE TABLE fc2 (
 m INT PRIMARY KEY,
 n INT,
 FOREIGN KEY ni (n) REFERENCES fc1 (i)
 ON DELETE CASCADE
) ENGINE = InnoDB;

If the replica does not have InnoDB support enabled, the tables on the replica are created, but they use
the MyISAM storage engine, and the FOREIGN KEY option is ignored. Now we insert some rows into the
tables on the source:

source> INSERT INTO fc1 VALUES (1, 1), (2, 2);
Query OK, 2 rows affected (0.09 sec)
Records: 2 Duplicates: 0 Warnings: 0

source> INSERT INTO fc2 VALUES (1, 1), (2, 2), (3, 1);
Query OK, 3 rows affected (0.19 sec)
Records: 3 Duplicates: 0 Warnings: 0

At this point, on both the source and the replica, table fc1 contains 2 rows, and table fc2 contains 3 rows,
as shown here:

source> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)

source> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
1	1
2	2
3	1
+---+------+
3 rows in set (0.00 sec)

replica> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)

replica> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
1	1
2	2
3	1
+---+------+
3 rows in set (0.00 sec)

Now suppose that you perform the following DELETE statement on the source:

2259

InnoDB memcached Plugin

source> DELETE FROM fc1 WHERE i=1;
Query OK, 1 row affected (0.09 sec)

Due to the cascade, table fc2 on the source now contains only 1 row:

source> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
| 2 | 2 |
+---+---+
1 row in set (0.00 sec)

However, the cascade does not propagate on the replica because on the replica the DELETE for fc1
deletes no rows from fc2. The replica's copy of fc2 still contains all of the rows that were originally
inserted:

replica> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
1	1
3	1
2	2
+---+---+
3 rows in set (0.00 sec)

This difference is due to the fact that the cascading deletes are handled internally by the InnoDB storage
engine, which means that none of the changes are logged.

14.20 InnoDB memcached Plugin
The InnoDB memcached plugin (daemon_memcached) provides an integrated memcached daemon that
automatically stores and retrieves data from InnoDB tables, turning the MySQL server into a fast “key-
value store”. Instead of formulating queries in SQL, you can use simple get, set, and incr operations
that avoid the performance overhead associated with SQL parsing and constructing a query optimization
plan. You can also access the same InnoDB tables through SQL for convenience, complex queries, bulk
operations, and other strengths of traditional database software.

This “NoSQL-style” interface uses the memcached API to speed up database operations, letting InnoDB
handle memory caching using its buffer pool mechanism. Data modified through memcached operations
such as add, set, and incr are stored to disk, in InnoDB tables. The combination of memcached
simplicity and InnoDB reliability and consistency provides users with the best of both worlds, as explained
in Section 14.20.1, “Benefits of the InnoDB memcached Plugin”. For an architectural overview, see
Section 14.20.2, “InnoDB memcached Architecture”.

14.20.1 Benefits of the InnoDB memcached Plugin

This section outlines advantages the daemon_memcached plugin. The combination of InnoDB tables and
memcached offers advantages over using either by themselves.

• Direct access to the InnoDB storage engine avoids the parsing and planning overhead of SQL.

• Running memcached in the same process space as the MySQL server avoids the network overhead of
passing requests back and forth.

• Data written using the memcached protocol is transparently written to an InnoDB table, without going
through the MySQL SQL layer. You can control frequency of writes to achieve higher raw performance
when updating non-critical data.

2260

InnoDB memcached Architecture

• Data requested through the memcached protocol is transparently queried from an InnoDB table, without
going through the MySQL SQL layer.

• Subsequent requests for the same data is served from the InnoDB buffer pool. The buffer pool
handles the in-memory caching. You can tune performance of data-intensive operations using InnoDB
configuration options.

• Data can be unstructured or structured, depending on the type of application. You can create a new
table for data, or use existing tables.

• InnoDB can handle composing and decomposing multiple column values into a single memcached
item value, reducing the amount of string parsing and concatenation required in your application. For
example, you can store the string value 2|4|6|8 in the memcached cache, and have InnoDB split the
value based on a separator character, then store the result in four numeric columns.

• The transfer between memory and disk is handled automatically, simplifying application logic.

• Data is stored in a MySQL database to protect against crashes, outages, and corruption.

• You can access the underlying InnoDB table through SQL for reporting, analysis, ad hoc queries, bulk
loading, multi-step transactional computations, set operations such as union and intersection, and other
operations suited to the expressiveness and flexibility of SQL.

• You can ensure high availability by using the daemon_memcached plugin on a source server in
combination with MySQL replication.

• The integration of memcached with MySQL provides a way to make in-memory data persistent, so you
can use it for more significant kinds of data. You can use more add, incr, and similar write operations
in your application without concern that data could be lost. You can stop and start the memcached
server without losing updates made to cached data. To guard against unexpected outages, you can take
advantage of InnoDB crash recovery, replication, and backup capabilities.

• The way InnoDB does fast primary key lookups is a natural fit for memcached single-item queries. The
direct, low-level database access path used by the daemon_memcached plugin is much more efficient
for key-value lookups than equivalent SQL queries.

• The serialization features of memcached, which can turn complex data structures, binary files, or even
code blocks into storeable strings, offer a simple way to get such objects into a database.

• Because you can access the underlying data through SQL, you can produce reports, search or update
across multiple keys, and call functions such as AVG() and MAX() on memcached data. All of these
operations are expensive or complicated using memcached by itself.

• You do not need to manually load data into memcached at startup. As particular keys are requested by
an application, values are retrieved from the database automatically, and cached in memory using the
InnoDB buffer pool.

• Because memcached consumes relatively little CPU, and its memory footprint is easy to control, it can
run comfortably alongside a MySQL instance on the same system.

• Because data consistency is enforced by mechanisms used for regular InnoDB tables, you do not have
to worry about stale memcached data or fallback logic to query the database in the case of a missing
key.

14.20.2 InnoDB memcached Architecture

The InnoDB memcached plugin implements memcached as a MySQL plugin daemon that accesses the
InnoDB storage engine directly, bypassing the MySQL SQL layer.

2261

InnoDB memcached Architecture

The following diagram illustrates how an application accesses data through the daemon_memcached
plugin, compared with SQL.

Figure 14.4 MySQL Server with Integrated memcached Server

Features of the daemon_memcached plugin:

• memcached as a daemon plugin of mysqld. Both mysqld and memcached run in the same process
space, with very low latency access to data.

• Direct access to InnoDB tables, bypassing the SQL parser, the optimizer, and even the Handler API
layer.

2262

InnoDB memcached Architecture

• Standard memcached protocols, including the text-based protocol and the binary protocol. The
daemon_memcached plugin passes all 55 compatibility tests of the memcapable command.

• Multi-column support. You can map multiple columns into the “value” part of the key-value store, with
column values delimited by a user-specified separator character.

• By default, the memcached protocol is used to read and write data directly to InnoDB, letting MySQL
manage in-memory caching using the InnoDB buffer pool. The default settings represent a combination
of high reliability and the fewest surprises for database applications. For example, default settings avoid
uncommitted data on the database side, or stale data returned for memcached get requests.

• Advanced users can configure the system as a traditional memcached server, with all data cached only
in the memcached engine (memory caching), or use a combination of the “memcached engine” (memory
caching) and the InnoDB memcached engine (InnoDB as back-end persistent storage).

• Control over how often data is passed back and forth between InnoDB and memcached operations
through the innodb_api_bk_commit_interval, daemon_memcached_r_batch_size, and
daemon_memcached_w_batch_size configuration options. Batch size options default to a value of 1
for maximum reliability.

• The ability to specify memcached options through the daemon_memcached_option configuration
parameter. For example, you can change the port that memcached listens on, reduce the maximum
number of simultaneous connections, change the maximum memory size for a key-value pair, or enable
debugging messages for the error log.

• The innodb_api_trx_level configuration option controls the transaction isolation level on queries
processed by memcached. Although memcached has no concept of transactions, you can use this
option to control how soon memcached sees changes caused by SQL statements issued on the
table used by the daemon_memcached plugin. By default, innodb_api_trx_level is set to READ
UNCOMMITTED.

• The innodb_api_enable_mdl option can be used to lock the table at the MySQL level, so that the
mapped table cannot be dropped or altered by DDL through the SQL interface. Without the lock, the
table can be dropped from the MySQL layer, but kept in InnoDB storage until memcached or some other
user stops using it. “MDL” stands for “metadata locking”.

Differences Between InnoDB memcached and Traditional memcached

You may already be familiar with using memcached with MySQL, as described in Section 16.2, “Using
MySQL with memcached”. This section describes how features of the integrated InnoDB memcached
plugin differ from traditional memcached.

• Installation: The memcached library comes with the MySQL server, making installation and setup
relatively easy. Installation involves running the innodb_memcached_config.sql script to create
a demo_test table for memcached to use, issuing an INSTALL PLUGIN statement to enable the
daemon_memcached plugin, and adding desired memcached options to a MySQL configuration file or
startup script. You might still install the traditional memcached distribution for additional utilities such as
memcp, memcat, and memcapable.

For comparison with traditional memcached, see Section 16.2.1, “Installing memcached”.

• Deployment: With traditional memcached, it is typical to run large numbers of low-capacity memcached
servers. A typical deployment of the daemon_memcached plugin, however, involves a smaller number of
moderate or high-powered servers that are already running MySQL. The benefit of this configuration is in
improving efficiency of individual database servers rather than exploiting unused memory or distributing
lookups across large numbers of servers. In the default configuration, very little memory is used for

2263

InnoDB memcached Architecture

memcached, and in-memory lookups are served from the InnoDB buffer pool, which automatically
caches the most recently and frequently used data. As with a traditional MySQL server instance, keep
the value of the innodb_buffer_pool_size configuration option as high as practical (without causing
paging at the OS level), so that as much work as possible is performed in memory.

For comparison with traditional memcached, see Section 16.2.2.2, “memcached Deployment”.

• Expiry: By default (that is, using the innodb_only caching policy), the latest data from the InnoDB
table is always returned, so the expiry options have no practical effect. If you change the caching policy
to caching or cache_only, the expiry options work as usual, but requested data might be stale if it is
updated in the underlying table before it expires from the memory cache.

For comparison with traditional memcached, see Section 16.2.2.4, “Data Expiry”.

• Namespaces: memcached is like a large directory where you give files elaborate names with
prefixes and suffixes to keep the files from conflicting. The daemon_memcached plugin lets
you use similar naming conventions for keys, with one addition. Key names in the format
@@table_id.key.table_id are decoded to reference a specific a table, using mapping data from the
innodb_memcache.containers table. The key is looked up in or written to the specified table.

The @@ notation only works for individual calls to get, add, and set functions, but not others such as
incr or delete. To designate a default table for subsequent memcached operations within a session,
perform a get request using the @@ notation with a table_id, but without the key portion. For example:

get @@table_id

Subsequent get, set, incr, delete, and other operations use the table designated by table_id in
the innodb_memcache.containers.name column.

For comparison with traditional memcached, see Section 16.2.2.3, “Using Namespaces”.

• Hashing and distribution: The default configuration, which uses the innodb_only caching policy, is
suitable for a traditional deployment configuration where all data is available on all servers, such as a set
of replica servers.

If you physically divide data, as in a sharded configuration, you can split data across several machines
running the daemon_memcached plugin, and use the traditional memcached hashing mechanism to
route requests to a particular machine. On the MySQL side, you would typically let all data be inserted
by add requests to memcached so that appropriate values are stored in the database on the appropriate
server.

For comparison with traditional memcached, see Section 16.2.2.5, “memcached Hashing/Distribution
Types”.

• Memory usage: By default (with the innodb_only caching policy), the memcached protocol passes
information back and forth with InnoDB tables, and the InnoDB buffer pool handles in-memory lookups
instead of memcached memory usage growing and shrinking. Relatively little memory is used on the
memcached side.

If you switch the caching policy to caching or cache_only, the normal rules of memcached memory
usage apply. Memory for memcached data values is allocated in terms of “slabs”. You can control slab
size and maximum memory used for memcached.

Either way, you can monitor and troubleshoot the daemon_memcached plugin using the familiar
statistics system, accessed through the standard protocol, over a telnet session, for example. Extra
utilities are not included with the daemon_memcached plugin. You can use the memcached-tool script
to install a full memcached distribution.

2264

Setting Up the InnoDB memcached Plugin

For comparison with traditional memcached, see Section 16.2.2.7, “Memory Allocation within
memcached”.

• Thread usage: MySQL threads and memcached threads co-exist on the same server. Limits imposed on
threads by the operating system apply to the total number of threads.

For comparison with traditional memcached, see Section 16.2.2.8, “memcached Thread Support”.

• Log usage: Because the memcached daemon is run alongside the MySQL server and writes to stderr,
the -v, -vv, and -vvv options for logging write output to the MySQL error log.

For comparison with traditional memcached, see Section 16.2.2.9, “memcached Logs”.

• memcached operations: Familiar memcached operations such as get, set, add, and delete are
available. Serialization (that is, the exact string format representing complex data structures) depends on
the language interface.

For comparison with traditional memcached, see Section 16.2.3.1, “Basic memcached Operations”.

• Using memcached as a MySQL front end: This is the primary purpose of the InnoDB memcached
plugin. An integrated memcached daemon improves application performance, and having InnoDB
handle data transfers between memory and disk simplifies application logic.

For comparison with traditional memcached, see Section 16.2.3.2, “Using memcached as a MySQL
Caching Layer”.

• Utilities: The MySQL server includes the libmemcached library but not additional command-line utilities.
To use commands such as memcp, memcat, and memcapable commands, install a full memcached
distribution. When memrm and memflush remove items from the cache, the items are also removed from
the underlying InnoDB table.

For comparison with traditional memcached, see libmemcached Command-Line Utilities.

• Programming interfaces: You can access the MySQL server through the daemon_memcached plugin
using all supported languages: C and C++, Java, Perl, Python, and PHP. Specify the server hostname
and port as with a traditional memcached server. By default, the daemon_memcached plugin listens
on port 11211. You can use both the text and binary protocols. You can customize the behavior of
memcached functions at runtime. Serialization (that is, the exact string format representing complex data
structures) depends on the language interface.

For comparison with traditional memcached, see Section 16.2.3, “Developing a memcached Application”.

• Frequently asked questions: MySQL has an extensive FAQ for traditional memcached. The FAQ is
mostly applicable, except that using InnoDB tables as a storage medium for memcached data means
that you can use memcached for more write-intensive applications than before, rather than as a read-
only cache.

See Section 16.2.5, “memcached FAQ”.

14.20.3 Setting Up the InnoDB memcached Plugin

This section describes how to set up the daemon_memcached plugin on a MySQL server. Because the
memcached daemon is tightly integrated with the MySQL server to avoid network traffic and minimize
latency, you perform this process on each MySQL instance that uses this feature.

2265

Setting Up the InnoDB memcached Plugin

Note

Before setting up the daemon_memcached plugin, consult Section 14.20.4,
“Security Considerations for the InnoDB memcached Plugin” to understand the
security procedures required to prevent unauthorized access.

Prerequisites

• The daemon_memcached plugin is only supported on Linux, Solaris, and macOS platforms. Other
operating systems are not supported.

• When building MySQL from source, you must build with -DWITH_INNODB_MEMCACHED=ON. This build
option generates two shared libraries in the MySQL plugin directory (plugin_dir) that are required to
run the daemon_memcached plugin:

• libmemcached.so: the memcached daemon plugin to MySQL.

• innodb_engine.so: an InnoDB API plugin to memcached.

• libevent must be installed.

• If you did not build MySQL from source, the libevent library is not included in your installation. Use
the installation method for your operating system to install libevent 1.4.12 or later. For example,
depending on the operating system, you might use apt-get, yum, or port install. For example,
on Ubuntu Linux, use:

sudo apt-get install libevent-dev

• If you installed MySQL from a source code release, libevent 1.4.12 is bundled with the package
and is located at the top level of the MySQL source code directory. If you use the bundled version of
libevent, no action is required. If you want to use a local system version of libevent, you must
build MySQL with the -DWITH_LIBEVENT build option set to system or yes.

Installing and Configuring the InnoDB memcached Plugin

1. Configure the daemon_memcached plugin so it can interact with InnoDB tables by running the
innodb_memcached_config.sql configuration script, which is located in MYSQL_HOME/share.
This script installs the innodb_memcache database with three required tables (cache_policies,
config_options, and containers). It also installs the demo_test sample table in the test
database.

mysql> source MYSQL_HOME/share/innodb_memcached_config.sql

Running the innodb_memcached_config.sql script is a one-time operation. The tables remain in
place if you later uninstall and re-install the daemon_memcached plugin.

mysql> USE innodb_memcache;
mysql> SHOW TABLES;
+---------------------------+
| Tables_in_innodb_memcache |
+---------------------------+
| cache_policies |
| config_options |
| containers |
+---------------------------+

mysql> USE test;
mysql> SHOW TABLES;
+----------------+

2266

Setting Up the InnoDB memcached Plugin

| Tables_in_test |
+----------------+
| demo_test |
+----------------+

Of these tables, the innodb_memcache.containers table is the most important. Entries in the
containers table provide a mapping to InnoDB table columns. Each InnoDB table used with the
daemon_memcached plugin requires an entry in the containers table.

The innodb_memcached_config.sql script inserts a single entry in the containers table that
provides a mapping for the demo_test table. It also inserts a single row of data into the demo_test
table. This data allows you to immediately verify the installation after the setup is completed.

mysql> SELECT * FROM innodb_memcache.containers\G
*************************** 1. row ***************************
 name: aaa
 db_schema: test
 db_table: demo_test
 key_columns: c1
 value_columns: c2
 flags: c3
 cas_column: c4
 expire_time_column: c5
unique_idx_name_on_key: PRIMARY

mysql> SELECT * FROM test.demo_test;
+----+------------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+----+------------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
+----+------------------+------+------+------+

For more information about innodb_memcache tables and the demo_test sample table, see
Section 14.20.7, “InnoDB memcached Plugin Internals”.

2. Activate the daemon_memcached plugin by running the INSTALL PLUGIN statement:

mysql> INSTALL PLUGIN daemon_memcached soname "libmemcached.so";

Once the plugin is installed, it is automatically activated each time the MySQL server is restarted.

Verifying the InnoDB and memcached Setup

To verify the daemon_memcached plugin setup, use a telnet session to issue memcached commands.
By default, the memcached daemon listens on port 11211.

1. Retrieve data from the test.demo_test table. The single row of data in the demo_test table has a
key value of AA.

telnet localhost 11211
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
get AA
VALUE AA 8 12
HELLO, HELLO
END

2. Insert data using a set command.

set BB 10 0 16
GOODBYE, GOODBYE
STORED

2267

Setting Up the InnoDB memcached Plugin

where:

• set is the command to store a value

• BB is the key

• 10 is a flag for the operation; ignored by memcached but may be used by the client to indicate any
type of information; specify 0 if unused

• 0 is the expiration time (TTL); specify 0 if unused

• 16 is the length of the supplied value block in bytes

• GOODBYE, GOODBYE is the value that is stored

3. Verify that the data inserted is stored in MySQL by connecting to the MySQL server and querying the
test.demo_test table.

mysql> SELECT * FROM test.demo_test;
+----+------------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+----+------------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
| BB | GOODBYE, GOODBYE | 10 | 1 | 0 |
+----+------------------+------+------+------+

4. Return to the telnet session and retrieve the data that you inserted earlier using key BB.

get BB
VALUE BB 10 16
GOODBYE, GOODBYE
END
quit

If you shut down the MySQL server, which also shuts off the integrated memcached server, further
attempts to access the memcached data fail with a connection error. Normally, the memcached data also
disappears at this point, and you would require application logic to load the data back into memory when
memcached is restarted. However, the InnoDB memcached plugin automates this process for you.

When you restart MySQL, get operations once again return the key-value pairs you stored in the earlier
memcached session. When a key is requested and the associated value is not already in the memory
cache, the value is automatically queried from the MySQL test.demo_test table.

Creating a New Table and Column Mapping

This example shows how to setup your own InnoDB table with the daemon_memcached plugin.

1. Create an InnoDB table. The table must have a key column with a unique index. The key column of
the city table is city_id, which is defined as the primary key. The table must also include columns for
flags, cas, and expiry values. There may be one or more value columns. The city table has three
value columns (name, state, country).

Note

There is no special requirement with respect to column names as along as a
valid mapping is added to the innodb_memcache.containers table.

mysql> CREATE TABLE city (
 city_id VARCHAR(32),
 name VARCHAR(1024),

2268

Setting Up the InnoDB memcached Plugin

 state VARCHAR(1024),
 country VARCHAR(1024),
 flags INT,
 cas BIGINT UNSIGNED,
 expiry INT,
 primary key(city_id)
) ENGINE=InnoDB;

2. Add an entry to the innodb_memcache.containers table so that the daemon_memcached plugin
knows how to access the InnoDB table. The entry must satisfy the innodb_memcache.containers
table definition. For a description of each field, see Section 14.20.7, “InnoDB memcached Plugin
Internals”.

mysql> DESCRIBE innodb_memcache.containers;
+------------------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------------------+--------------+------+-----+---------+-------+
name	varchar(50)	NO	PRI	NULL	
db_schema	varchar(250)	NO		NULL	
db_table	varchar(250)	NO		NULL	
key_columns	varchar(250)	NO		NULL	
value_columns	varchar(250)	YES		NULL	
flags	varchar(250)	NO		0	
cas_column	varchar(250)	YES		NULL	
expire_time_column	varchar(250)	YES		NULL	
unique_idx_name_on_key	varchar(250)	NO		NULL	
+------------------------+--------------+------+-----+---------+-------+

The innodb_memcache.containers table entry for the city table is defined as:

mysql> INSERT INTO `innodb_memcache`.`containers` (
 `name`, `db_schema`, `db_table`, `key_columns`, `value_columns`,
 `flags`, `cas_column`, `expire_time_column`, `unique_idx_name_on_key`)
 VALUES ('default', 'test', 'city', 'city_id', 'name|state|country',
 'flags','cas','expiry','PRIMARY');

• default is specified for the containers.name column to configure the city table as the default
InnoDB table to be used with the daemon_memcached plugin.

• Multiple InnoDB table columns (name, state, country) are mapped to
containers.value_columns using a “|” delimiter.

• The flags, cas_column, and expire_time_column fields of the
innodb_memcache.containers table are typically not significant in applications using the
daemon_memcached plugin. However, a designated InnoDB table column is required for each.
When inserting data, specify 0 for these columns if they are unused.

3. After updating the innodb_memcache.containers table, restart the daemon_memcache plugin to
apply the changes.

mysql> UNINSTALL PLUGIN daemon_memcached;

mysql> INSTALL PLUGIN daemon_memcached soname "libmemcached.so";

4. Using telnet, insert data into the city table using a memcached set command.

telnet localhost 11211
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
set B 0 0 22
BANGALORE|BANGALORE|IN
STORED

2269

Setting Up the InnoDB memcached Plugin

5. Using MySQL, query the test.city table to verify that the data you inserted was stored.

mysql> SELECT * FROM test.city;
+---------+-----------+-----------+---------+-------+------+--------+
| city_id | name | state | country | flags | cas | expiry |
+---------+-----------+-----------+---------+-------+------+--------+
| B | BANGALORE | BANGALORE | IN | 0 | 3 | 0 |
+---------+-----------+-----------+---------+-------+------+--------+

6. Using MySQL, insert additional data into the test.city table.

mysql> INSERT INTO city VALUES ('C','CHENNAI','TAMIL NADU','IN', 0, 0 ,0);
mysql> INSERT INTO city VALUES ('D','DELHI','DELHI','IN', 0, 0, 0);
mysql> INSERT INTO city VALUES ('H','HYDERABAD','TELANGANA','IN', 0, 0, 0);
mysql> INSERT INTO city VALUES ('M','MUMBAI','MAHARASHTRA','IN', 0, 0, 0);

Note

It is recommended that you specify a value of 0 for the flags, cas_column,
and expire_time_column fields if they are unused.

7. Using telnet, issue a memcached get command to retrieve data you inserted using MySQL.

get H
VALUE H 0 22
HYDERABAD|TELANGANA|IN
END

Configuring the InnoDB memcached Plugin

Traditional memcached configuration options may be specified in a MySQL configuration file or a mysqld
startup string, encoded in the argument of the daemon_memcached_option configuration parameter.
memcached configuration options take effect when the plugin is loaded, which occurs each time the
MySQL server is started.

For example, to make memcached listen on port 11222 instead of the default port 11211, specify -p11222
as an argument of the daemon_memcached_option configuration option:

mysqld --daemon_memcached_option="-p11222"

Other memcached options can be encoded in the daemon_memcached_option string. For example, you
can specify options to reduce the maximum number of simultaneous connections, change the maximum
memory size for a key-value pair, or enable debugging messages for the error log, and so on.

There are also configuration options specific to the daemon_memcached plugin. These include:

• daemon_memcached_engine_lib_name: Specifies the shared library that implements the InnoDB
memcached plugin. The default setting is innodb_engine.so.

• daemon_memcached_engine_lib_path: The path of the directory containing the shared library that
implements the InnoDB memcached plugin. The default is NULL, representing the plugin directory.

• daemon_memcached_r_batch_size: Defines the batch commit size for read operations
(get). It specifies the number of memcached read operations after which a commit occurs.
daemon_memcached_r_batch_size is set to 1 by default so that every get request accesses the
most recently committed data in the InnoDB table, whether the data was updated through memcached
or by SQL. When the value is greater than 1, the counter for read operations is incremented with each
get call. A flush_all call resets both read and write counters.

• daemon_memcached_w_batch_size: Defines the batch commit size for write operations (set,
replace, append, prepend, incr, decr, and so on). daemon_memcached_w_batch_size is set

2270

Security Considerations for the InnoDB memcached Plugin

to 1 by default so that no uncommitted data is lost in case of an outage, and so that SQL queries on the
underlying table access the most recent data. When the value is greater than 1, the counter for write
operations is incremented for each add, set, incr, decr, and delete call. A flush_all call resets
both read and write counters.

By default, you do not need to modify daemon_memcached_engine_lib_name or
daemon_memcached_engine_lib_path. You might configure these options if, for example, you want to
use a different storage engine for memcached (such as the NDB memcached engine).

daemon_memcached plugin configuration parameters may be specified in the MySQL configuration file or
in a mysqld startup string. They take effect when you load the daemon_memcached plugin.

When making changes to daemon_memcached plugin configuration, reload the plugin to apply the
changes. To do so, issue the following statements:

mysql> UNINSTALL PLUGIN daemon_memcached;

mysql> INSTALL PLUGIN daemon_memcached soname "libmemcached.so";

Configuration settings, required tables, and data are preserved when the plugin is restarted.

For additional information about enabling and disabling plugins, see Section 5.5.1, “Installing and
Uninstalling Plugins”.

14.20.4 Security Considerations for the InnoDB memcached Plugin

Caution

Consult this section before deploying the daemon_memcached plugin on a
production server, or even on a test server if the MySQL instance contains sensitive
data.

Because memcached does not use an authentication mechanism by default, and the optional SASL
authentication is not as strong as traditional DBMS security measures, only keep non-sensitive data in
the MySQL instance that uses the daemon_memcached plugin, and wall off any servers that use this
configuration from potential intruders. Do not allow memcached access to these servers from the Internet;
only allow access from within a firewalled intranet, ideally from a subnet whose membership you can
restrict.

Password-Protecting memcached Using SASL

SASL support provides the capability to protect your MySQL database from unauthenticated access
through memcached clients. This section explains how to enable SASL with the daemon_memcached
plugin. The steps are almost identical to those performed to enabled SASL for a traditional memcached
server.

SASL stands for “Simple Authentication and Security Layer”, a standard for adding authentication support
to connection-based protocols. memcached added SASL support in version 1.4.3.

SASL authentication is only supported with the binary protocol.

memcached clients are only able to access InnoDB tables that are registered in the
innodb_memcache.containers table. Even though a DBA can place access restrictions on such
tables, access through memcached applications cannot be controlled. For this reason, SASL support is
provided to control access to InnoDB tables associated with the daemon_memcached plugin.

The following section shows how to build, enable, and test an SASL-enabled daemon_memcached plugin.

2271

Security Considerations for the InnoDB memcached Plugin

Building and Enabling SASL with the InnoDB memcached Plugin

By default, an SASL-enabled daemon_memcached plugin is not included in MySQL release packages,
since an SASL-enabled daemon_memcached plugin requires building memcached with SASL libraries.
To enable SASL support, download the MySQL source and rebuild the daemon_memcached plugin after
downloading the SASL libraries:

1. Install the SASL development and utility libraries. For example, on Ubuntu, use apt-get to obtain the
libraries:

sudo apt-get -f install libsasl2-2 sasl2-bin libsasl2-2 libsasl2-dev libsasl2-modules

2. Build the daemon_memcached plugin shared libraries with SASL capability by adding
ENABLE_MEMCACHED_SASL=1 to your cmake options. memcached also provides simple cleartext
password support, which facilitates testing. To enable simple cleartext password support, specify the
ENABLE_MEMCACHED_SASL_PWDB=1 cmake option.

In summary, add following three cmake options:

cmake ... -DWITH_INNODB_MEMCACHED=1 -DENABLE_MEMCACHED_SASL=1 -DENABLE_MEMCACHED_SASL_PWDB=1

3. Install the daemon_memcached plugin, as described in Section 14.20.3, “Setting Up the InnoDB
memcached Plugin”.

4. Configure a user name and password file. (This example uses memcached simple cleartext password
support.)

a. In a file, create a user named testname and define the password as testpasswd:

echo "testname:testpasswd:::::::" >/home/jy/memcached-sasl-db

b. Configure the MEMCACHED_SASL_PWDB environment variable to inform memcached of the user
name and password file:

export MEMCACHED_SASL_PWDB=/home/jy/memcached-sasl-db

c. Inform memcached that a cleartext password is used:

echo "mech_list: plain" > /home/jy/work2/msasl/clients/memcached.conf
export SASL_CONF_PATH=/home/jy/work2/msasl/clients

5. Enable SASL by restarting the MySQL server with the memcached -S option encoded in the
daemon_memcached_option configuration parameter:

mysqld ... --daemon_memcached_option="-S"

6. To test the setup, use an SASL-enabled client such as SASL-enabled libmemcached.

memcp --servers=localhost:11211 --binary --username=testname
 --password=password myfile.txt

memcat --servers=localhost:11211 --binary --username=testname
 --password=password myfile.txt

If you specify an incorrect user name or password, the operation is rejected with a memcache error
AUTHENTICATION FAILURE message. In this case, examine the cleartext password set in the
memcached-sasl-db file to verify that the credentials you supplied are correct.

2272

https://code.launchpad.net/~trond-norbye/libmemcached/sasl

Writing Applications for the InnoDB memcached Plugin

There are other methods to test SASL authentication with memcached, but the method described above is
the most straightforward.

14.20.5 Writing Applications for the InnoDB memcached Plugin

Typically, writing an application for the InnoDB memcached plugin involves some degree of rewriting or
adapting existing code that uses MySQL or the memcached API.

• With the daemon_memcached plugin, instead of many traditional memcached servers running on low-
powered machines, you have the same number of memcached servers as MySQL servers, running on
relatively high-powered machines with substantial disk storage and memory. You might reuse some
existing code that works with the memcached API, but adaptation is likely required due to the different
server configuration.

• The data stored through the daemon_memcached plugin goes into VARCHAR, TEXT, or BLOB columns,
and must be converted to do numeric operations. You can perform the conversion on the application
side, or by using the CAST() function in queries.

• Coming from a database background, you might be used to general-purpose SQL tables with many
columns. The tables accessed by memcached code likely have only a few or even a single column
holding data values.

• You might adapt parts of your application that perform single-row queries, inserts, updates, or deletes,
to improve performance in critical sections of code. Both queries (read) and DML (write) operations can
be substantially faster when performed through the InnoDB memcached interface. The performance
improvement for writes is typically greater than the performance improvement for reads, so you might
focus on adapting code that performs logging or records interactive choices on a website.

The following sections explore these points in more detail.

14.20.5.1 Adapting an Existing MySQL Schema for the InnoDB memcached Plugin

Consider these aspects of memcached applications when adapting an existing MySQL schema or
application to use the daemon_memcached plugin:

• memcached keys cannot contain spaces or newlines, because these characters are used as separators
in the ASCII protocol. If you are using lookup values that contain spaces, transform or hash them into
values without spaces before using them as keys in calls to add(), set(), get(), and so on. Although
theoretically these characters are allowed in keys in programs that use the binary protocol, you should
restrict the characters used in keys to ensure compatibility with a broad range of clients.

• If there is a short numeric primary key column in an InnoDB table, use it as the unique lookup key for
memcached by converting the integer to a string value. If the memcached server is used for multiple
applications, or with more than one InnoDB table, consider modifying the name to ensure that it is
unique. For example, prepend the table name, or the database name and the table name, before the
numeric value.

Note

The daemon_memcached plugin supports inserts and reads on mapped InnoDB
tables that have an INTEGER defined as the primary key.

• You cannot use a partitioned table for data queried or stored using memcached.

• The memcached protocol passes numeric values around as strings. To store numeric values in the
underlying InnoDB table, to implement counters that can be used in SQL functions such as SUM() or
AVG(), for example:

2273

Writing Applications for the InnoDB memcached Plugin

• Use VARCHAR columns with enough characters to hold all the digits of the largest expected number
(and additional characters if appropriate for the negative sign, decimal point, or both).

• In any query that performs arithmetic using column values, use the CAST() function to convert the
values from string to integer, or to some other numeric type. For example:

Alphabetic entries are returned as zero.

SELECT CAST(c2 as unsigned integer) FROM demo_test;

Since there could be numeric values of 0, can't disqualify them.
Test the string values to find the ones that are integers, and average only those.

SELECT AVG(cast(c2 as unsigned integer)) FROM demo_test
 WHERE c2 BETWEEN '0' and '9999999999';

Views let you hide the complexity of queries. The results are already converted;
no need to repeat conversion functions and WHERE clauses each time.

CREATE VIEW numbers AS SELECT c1 KEY, CAST(c2 AS UNSIGNED INTEGER) val
 FROM demo_test WHERE c2 BETWEEN '0' and '9999999999';
SELECT SUM(val) FROM numbers;

Note

Any alphabetic values in the result set are converted into 0 by the call to
CAST(). When using functions such as AVG(), which depend on the number
of rows in the result set, include WHERE clauses to filter out non-numeric values.

• If the InnoDB column used as a key could have values longer than 250 bytes, hash the value to less
than 250 bytes.

• To use an existing table with the daemon_memcached plugin, define an entry for it in the
innodb_memcache.containers table. To make that table the default for all memcached requests,
specify a value of default in the name column, then restart the MySQL server to make the change
take effect. If you use multiple tables for different classes of memcached data, set up multiple entries in
the innodb_memcache.containers table with name values of your choice, then issue a memcached
request in the form of get @@name or set @@name within the application to specify the table to be used
for subsequent memcached requests.

For an example of using a table other than the predefined test.demo_test table, see Example 14.12,
“Using Your Own Table with an InnoDB memcached Application”. For the required table layout, see
Section 14.20.7, “InnoDB memcached Plugin Internals”.

• To use multiple InnoDB table column values with memcached key-value pairs, specify column names
separated by comma, semicolon, space, or pipe characters in the value_columns field of the
innodb_memcache.containers entry for the InnoDB table. For example, specify col1,col2,col3
or col1|col2|col3 in the value_columns field.

Concatenate the column values into a single string using the pipe character as a separator before
passing the string to memcached add or set calls. The string is unpacked automatically into the correct
column. Each get call returns a single string containing the column values that is also delimited by the
pipe character. You can unpack the values using the appropriate application language syntax.

Example 14.12 Using Your Own Table with an InnoDB memcached Application

This example shows how to use your own table with a sample Python application that uses memcached for
data manipulation.

2274

Writing Applications for the InnoDB memcached Plugin

The example assumes that the daemon_memcached plugin is installed as described in Section 14.20.3,
“Setting Up the InnoDB memcached Plugin”. It also assumes that your system is configured to run a
Python script that uses the python-memcache module.

1. Create the multicol table which stores country information including population, area, and driver side
data ('R' for right and 'L' for left).

mysql> USE test;

mysql> CREATE TABLE `multicol` (
 `country` varchar(128) NOT NULL DEFAULT '',
 `population` varchar(10) DEFAULT NULL,
 `area_sq_km` varchar(9) DEFAULT NULL,
 `drive_side` varchar(1) DEFAULT NULL,
 `c3` int(11) DEFAULT NULL,
 `c4` bigint(20) unsigned DEFAULT NULL,
 `c5` int(11) DEFAULT NULL,
 PRIMARY KEY (`country`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

2. Insert a record into the innodb_memcache.containers table so that the daemon_memcached
plugin can access the multicol table.

mysql> INSERT INTO innodb_memcache.containers
 (name,db_schema,db_table,key_columns,value_columns,flags,cas_column,
 expire_time_column,unique_idx_name_on_key)
 VALUES
 ('bbb','test','multicol','country','population,area_sq_km,drive_side',
 'c3','c4','c5','PRIMARY');

mysql> COMMIT;

• The innodb_memcache.containers record for the multicol table specifies a name value of
'bbb', which is the table identifier.

Note

If a single InnoDB table is used for all memcached applications, the name
value can be set to default to avoid using @@ notation to switch tables.

• The db_schema column is set to test, which is the name of the database where the multicol
table resides.

• The db_table column is set to multicol, which is the name of the InnoDB table.

• key_columns is set to the unique country column. The country column is defined as the primary
key in the multicol table definition.

• Rather than a single InnoDB table column to hold a composite data value, data is divided among
three table columns (population, area_sq_km, and drive_side). To accommodate multiple
value columns, a comma-separated list of columns is specified in the value_columns field. The
columns defined in the value_columns field are the columns used when storing or retrieving
values.

• Values for the flags, expire_time, and cas_column fields are based on values used in the
demo.test sample table. These fields are typically not significant in applications that use the
daemon_memcached plugin because MySQL keeps data synchronized, and there is no need to
worry about data expiring or becoming stale.

2275

Writing Applications for the InnoDB memcached Plugin

• The unique_idx_name_on_key field is set to PRIMARY, which refers to the primary index defined
on the unique country column in the multicol table.

3. Copy the sample Python application into a file. In this example, the sample script is copied to a file
named multicol.py.

The sample Python application inserts data into the multicol table and retrieves data for all keys,
demonstrating how to access an InnoDB table through the daemon_memcached plugin.

import sys, os
import memcache

def connect_to_memcached():
 memc = memcache.Client(['127.0.0.1:11211'], debug=0);
 print "Connected to memcached."
 return memc

def banner(message):
 print
 print "=" * len(message)
 print message
 print "=" * len(message)

country_data = [
("Canada","34820000","9984670","R"),
("USA","314242000","9826675","R"),
("Ireland","6399152","84421","L"),
("UK","62262000","243610","L"),
("Mexico","113910608","1972550","R"),
("Denmark","5543453","43094","R"),
("Norway","5002942","385252","R"),
("UAE","8264070","83600","R"),
("India","1210193422","3287263","L"),
("China","1347350000","9640821","R"),
]

def switch_table(memc,table):
 key = "@@" + table
 print "Switching default table to '" + table + "' by issuing GET for '" + key + "'."
 result = memc.get(key)

def insert_country_data(memc):
 banner("Inserting initial data via memcached interface")
 for item in country_data:
 country = item[0]
 population = item[1]
 area = item[2]
 drive_side = item[3]

 key = country
 value = "|".join([population,area,drive_side])
 print "Key = " + key
 print "Value = " + value

 if memc.add(key,value):
 print "Added new key, value pair."
 else:
 print "Updating value for existing key."
 memc.set(key,value)

def query_country_data(memc):
 banner("Retrieving data for all keys (country names)")
 for item in country_data:
 key = item[0]
 result = memc.get(key)

2276

Writing Applications for the InnoDB memcached Plugin

 print "Here is the result retrieved from the database for key " + key + ":"
 print result
 (m_population, m_area, m_drive_side) = result.split("|")
 print "Unpacked population value: " + m_population
 print "Unpacked area value : " + m_area
 print "Unpacked drive side value: " + m_drive_side

if __name__ == '__main__':

 memc = connect_to_memcached()
 switch_table(memc,"bbb")
 insert_country_data(memc)
 query_country_data(memc)

 sys.exit(0)

Sample Python application notes:

• No database authorization is required to run the application, since data manipulation is performed
through the memcached interface. The only required information is the port number on the local
system where the memcached daemon listens.

• To make sure the application uses the multicol table, the switch_table() function is called,
which performs a dummy get or set request using @@ notation. The name value in the request is
bbb, which is the multicol table identifier defined in the innodb_memcache.containers.name
field.

A more descriptive name value might be used in a real-world application. This example simply
illustrates that a table identifier is specified rather than the table name in get @@... requests.

• The utility functions used to insert and query data demonstrate how to turn a Python data structure
into pipe-separated values for sending data to MySQL with add or set requests, and how to unpack
the pipe-separated values returned by get requests. This extra processing is only required when
mapping a single memcached value to multiple MySQL table columns.

4. Run the sample Python application.

$> python multicol.py

If successful, the sample application returns this output:

Connected to memcached.
Switching default table to 'bbb' by issuing GET for '@@bbb'.

==
Inserting initial data via memcached interface
==
Key = Canada
Value = 34820000|9984670|R
Added new key, value pair.
Key = USA
Value = 314242000|9826675|R
Added new key, value pair.
Key = Ireland
Value = 6399152|84421|L
Added new key, value pair.
Key = UK
Value = 62262000|243610|L
Added new key, value pair.
Key = Mexico
Value = 113910608|1972550|R
Added new key, value pair.
Key = Denmark

2277

Writing Applications for the InnoDB memcached Plugin

Value = 5543453|43094|R
Added new key, value pair.
Key = Norway
Value = 5002942|385252|R
Added new key, value pair.
Key = UAE
Value = 8264070|83600|R
Added new key, value pair.
Key = India
Value = 1210193422|3287263|L
Added new key, value pair.
Key = China
Value = 1347350000|9640821|R
Added new key, value pair.

==
Retrieving data for all keys (country names)
==
Here is the result retrieved from the database for key Canada:
34820000|9984670|R
Unpacked population value: 34820000
Unpacked area value : 9984670
Unpacked drive side value: R
Here is the result retrieved from the database for key USA:
314242000|9826675|R
Unpacked population value: 314242000
Unpacked area value : 9826675
Unpacked drive side value: R
Here is the result retrieved from the database for key Ireland:
6399152|84421|L
Unpacked population value: 6399152
Unpacked area value : 84421
Unpacked drive side value: L
Here is the result retrieved from the database for key UK:
62262000|243610|L
Unpacked population value: 62262000
Unpacked area value : 243610
Unpacked drive side value: L
Here is the result retrieved from the database for key Mexico:
113910608|1972550|R
Unpacked population value: 113910608
Unpacked area value : 1972550
Unpacked drive side value: R
Here is the result retrieved from the database for key Denmark:
5543453|43094|R
Unpacked population value: 5543453
Unpacked area value : 43094
Unpacked drive side value: R
Here is the result retrieved from the database for key Norway:
5002942|385252|R
Unpacked population value: 5002942
Unpacked area value : 385252
Unpacked drive side value: R
Here is the result retrieved from the database for key UAE:
8264070|83600|R
Unpacked population value: 8264070
Unpacked area value : 83600
Unpacked drive side value: R
Here is the result retrieved from the database for key India:
1210193422|3287263|L
Unpacked population value: 1210193422
Unpacked area value : 3287263
Unpacked drive side value: L
Here is the result retrieved from the database for key China:
1347350000|9640821|R
Unpacked population value: 1347350000
Unpacked area value : 9640821

2278

Writing Applications for the InnoDB memcached Plugin

Unpacked drive side value: R

5. Query the innodb_memcache.containers table to view the record you inserted earlier for the
multicol table. The first record is the sample entry for the demo_test table that is created during
the initial daemon_memcached plugin setup. The second record is the entry you inserted for the
multicol table.

mysql> SELECT * FROM innodb_memcache.containers\G
*************************** 1. row ***************************
 name: aaa
 db_schema: test
 db_table: demo_test
 key_columns: c1
 value_columns: c2
 flags: c3
 cas_column: c4
 expire_time_column: c5
unique_idx_name_on_key: PRIMARY
*************************** 2. row ***************************
 name: bbb
 db_schema: test
 db_table: multicol
 key_columns: country
 value_columns: population,area_sq_km,drive_side
 flags: c3
 cas_column: c4
 expire_time_column: c5
unique_idx_name_on_key: PRIMARY

6. Query the multicol table to view data inserted by the sample Python application. The data is
available for MySQL queries, which demonstrates how the same data can be accessed using SQL or
through applications (using the appropriate MySQL Connector or API).

mysql> SELECT * FROM test.multicol;
+---------+------------+------------+------------+------+------+------+
| country | population | area_sq_km | drive_side | c3 | c4 | c5 |
+---------+------------+------------+------------+------+------+------+
Canada	34820000	9984670	R	0	11	0
China	1347350000	9640821	R	0	20	0
Denmark	5543453	43094	R	0	16	0
India	1210193422	3287263	L	0	19	0
Ireland	6399152	84421	L	0	13	0
Mexico	113910608	1972550	R	0	15	0
Norway	5002942	385252	R	0	17	0
UAE	8264070	83600	R	0	18	0
UK	62262000	243610	L	0	14	0
USA	314242000	9826675	R	0	12	0
+---------+------------+------------+------------+------+------+------+

Note

Always allow sufficient size to hold necessary digits, decimal points, sign
characters, leading zeros, and so on when defining the length for columns that
are treated as numbers. Too-long values in a string column such as a VARCHAR
are truncated by removing some characters, which could produce nonsensical
numeric values.

7. Optionally, run report-type queries on the InnoDB table that stores the memcached data.

You can produce reports through SQL queries, performing calculations and tests across any columns,
not just the country key column. (Because the following examples use data from only a few countries,
the numbers are for illustration purposes only.) The following queries return the average population of

2279

Writing Applications for the InnoDB memcached Plugin

countries where people drive on the right, and the average size of countries whose names start with
“U”:

mysql> SELECT AVG(population) FROM multicol WHERE drive_side = 'R';
+-------------------+
| avg(population) |
+-------------------+
| 261304724.7142857 |
+-------------------+

mysql> SELECT SUM(area_sq_km) FROM multicol WHERE country LIKE 'U%';
+-----------------+
| sum(area_sq_km) |
+-----------------+
| 10153885 |
+-----------------+

Because the population and area_sq_km columns store character data rather than strongly typed
numeric data, functions such as AVG() and SUM() work by converting each value to a number first.
This approach does not work for operators such as < or >, for example, when comparing character-
based values, 9 > 1000, which is not expected from a clause such as ORDER BY population
DESC. For the most accurate type treatment, perform queries against views that cast numeric columns
to the appropriate types. This technique lets you issue simple SELECT * queries from database
applications, while ensuring that casting, filtering, and ordering is correct. The following example shows
a view that can be queried to find the top three countries in descending order of population, with the
results reflecting the latest data in the multicol table, and with population and area figures treated as
numbers:

mysql> CREATE VIEW populous_countries AS
 SELECT
 country,
 cast(population as unsigned integer) population,
 cast(area_sq_km as unsigned integer) area_sq_km,
 drive_side FROM multicol
 ORDER BY CAST(population as unsigned integer) DESC
 LIMIT 3;

mysql> SELECT * FROM populous_countries;
+---------+------------+------------+------------+
| country | population | area_sq_km | drive_side |
+---------+------------+------------+------------+
China	1347350000	9640821	R
India	1210193422	3287263	L
USA	314242000	9826675	R
+---------+------------+------------+------------+

mysql> DESC populous_countries;
+------------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+---------------------+------+-----+---------+-------+
country	varchar(128)	NO			
population	bigint(10) unsigned	YES		NULL	
area_sq_km	int(9) unsigned	YES		NULL	
drive_side	varchar(1)	YES		NULL	
+------------+---------------------+------+-----+---------+-------+

14.20.5.2 Adapting a memcached Application for the InnoDB memcached Plugin

Consider these aspects of MySQL and InnoDB tables when adapting existing memcached applications to
use the daemon_memcached plugin:

• If there are key values longer than a few bytes, it may be more efficient to use a numeric auto-increment
column as the primary key of the InnoDB table, and to create a unique secondary index on the column

2280

Writing Applications for the InnoDB memcached Plugin

that contains the memcached key values. This is because InnoDB performs best for large-scale
insertions if primary key values are added in sorted order (as they are with auto-increment values).
Primary key values are included in secondary indexes, which takes up unnecessary space if the primary
key is a long string value.

• If you store several different classes of information using memcached, consider setting
up a separate InnoDB table for each type of data. Define additional table identifiers in the
innodb_memcache.containers table, and use the @@table_id.key notation to store and retrieve
items from different tables. Physically dividing different types of information allows you tune the
characteristics of each table for optimum space utilization, performance, and reliability. For example,
you might enable compression for a table that holds blog posts, but not for a table that holds thumbnail
images. You might back up one table more frequently than another because it holds critical data. You
might create additional secondary indexes on tables that are frequently used to generate reports using
SQL.

• Preferably, configure a stable set of table definitions for use with the daemon_memcached plugin, and
leave the tables in place permanently. Changes to the innodb_memcache.containers table take
effect the next time the innodb_memcache.containers table is queried. Entries in the containers
table are processed at startup, and are consulted whenever an unrecognized table identifier (as defined
by containers.name) is requested using @@ notation. Thus, new entries are visible as soon as you
use the associated table identifier, but changes to existing entries require a server restart before they
take effect.

• When you use the default innodb_only caching policy, calls to add(), set(), incr(), and so
on can succeed but still trigger debugging messages such as while expecting 'STORED',
got unexpected response 'NOT_STORED. Debug messages occur because new and updated
values are sent directly to the InnoDB table without being saved in the memory cache, due to the
innodb_only caching policy.

14.20.5.3 Tuning InnoDB memcached Plugin Performance

Because using InnoDB in combination with memcached involves writing all data to disk, whether
immediately or sometime later, raw performance is expected to be somewhat slower than using
memcached by itself. When using the InnoDB memcached plugin, focus tuning goals for memcached
operations on achieving better performance than equivalent SQL operations.

Benchmarks suggest that queries and DML operations (inserts, updates, and deletes) that use the
memcached interface are faster than traditional SQL. DML operations typically see a larger improvements.
Therefore, consider adapting write-intensive applications to use the memcached interface first. Also
consider prioritizing adaptation of write-intensive applications that use fast, lightweight mechanisms that
lack reliability.

Adapting SQL Queries

The types of queries that are most suited to simple GET requests are those with a single clause or a set of
AND conditions in the WHERE clause:

SQL:
SELECT col FROM tbl WHERE key = 'key_value';

memcached:
get key_value

SQL:
SELECT col FROM tbl WHERE col1 = val1 and col2 = val2 and col3 = val3;

memcached:
Since you must always know these 3 values to look up the key,

2281

Writing Applications for the InnoDB memcached Plugin

combine them into a unique string and use that as the key
for all ADD, SET, and GET operations.
key_value = val1 + ":" + val2 + ":" + val3
get key_value

SQL:
SELECT 'key exists!' FROM tbl
 WHERE EXISTS (SELECT col1 FROM tbl WHERE KEY = 'key_value') LIMIT 1;

memcached:
Test for existence of key by asking for its value and checking if the call succeeds,
ignoring the value itself. For existence checking, you typically only store a very
short value such as "1".
get key_value

Using System Memory

For best performance, deploy the daemon_memcached plugin on machines that are configured as typical
database servers, where the majority of system RAM is devoted to the InnoDB buffer pool, through the
innodb_buffer_pool_size configuration option. For systems with multi-gigabyte buffer pools, consider
raising the value of innodb_buffer_pool_instances for maximum throughput when most operations
involve data that is already cached in memory.

Reducing Redundant I/O

InnoDB has a number of settings that let you choose the balance between high reliability, in case of a
crash, and the amount of I/O overhead during high write workloads. For example, consider setting the
innodb_doublewrite to 0 and innodb_flush_log_at_trx_commit to 2. Measure performance with
different innodb_flush_method settings.

For other ways to reduce or tune I/O for table operations, see Section 8.5.8, “Optimizing InnoDB Disk I/O”.

Reducing Transactional Overhead

A default value of 1 for daemon_memcached_r_batch_size and daemon_memcached_w_batch_size
is intended for maximum reliability of results and safety of stored or updated data.

Depending on the type of application, you might increase one or both of these settings to
reduce the overhead of frequent commit operations. On a busy system, you might increase
daemon_memcached_r_batch_size, knowing that changes to data made through SQL may not become
visible to memcached immediately (that is, until N more get operations are processed). When processing
data where every write operation must be reliably stored, leave daemon_memcached_w_batch_size set
to 1. Increase the setting when processing large numbers of updates intended only for statistical analysis,
where losing the last N updates in an unexpected exit is an acceptable risk.

For example, imagine a system that monitors traffic crossing a busy bridge, recording data for
approximately 100,000 vehicles each day. If the application counts different types of vehicles to analyze
traffic patterns, changing daemon_memcached_w_batch_size from 1 to 100 reduces I/O overhead for
commit operations by 99%. In case of an outage, a maximum of 100 records are lost, which may be an
acceptable margin of error. If instead the application performed automated toll collection for each car, you
would set daemon_memcached_w_batch_size to 1 to ensure that each toll record is immediately saved
to disk.

Because of the way InnoDB organizes memcached key values on disk, if you have a large number of keys
to create, it may be faster to sort the data items by key value in the application and add them in sorted
order, rather than create keys in arbitrary order.

The memslap command, which is part of the regular memcached distribution but not included with the
daemon_memcached plugin, can be useful for benchmarking different configurations. It can also be used

2282

Writing Applications for the InnoDB memcached Plugin

to generate sample key-value pairs to use in your own benchmarks. See libmemcached Command-Line
Utilities for details.

14.20.5.4 Controlling Transactional Behavior of the InnoDB memcached Plugin

Unlike traditional memcached, the daemon_memcached plugin allows you to control durability of data
values produced through calls to add, set, incr, and so on. By default, data written through the
memcached interface is stored to disk, and calls to get return the most recent value from disk. Although
the default behavior does not offer the best possible raw performance, it is still fast compared to the SQL
interface for InnoDB tables.

As you gain experience using the daemon_memcached plugin, you can consider relaxing durability
settings for non-critical classes of data, at the risk of losing some updated values in the event of an outage,
or returning data that is slightly out-of-date.

Frequency of Commits

One tradeoff between durability and raw performance is how frequently new and changed data is
committed. If data is critical, is should be committed immediately so that it is safe in case of an unexpected
exit or outage. If data is less critical, such as counters that are reset after an unexpected exit or logging
data that you can afford to lose, you might prefer higher raw throughput that is available with less frequent
commits.

When a memcached operation inserts, updates, or deletes data in the underlying InnoDB table, the
change might be committed to the InnoDB table instantly (if daemon_memcached_w_batch_size=1) or
some time later (if the daemon_memcached_w_batch_size value is greater than 1). In either case, the
change cannot be rolled back. If you increase the value of daemon_memcached_w_batch_size to avoid
high I/O overhead during busy times, commits could become infrequent when the workload decreases. As
a safety measure, a background thread automatically commits changes made through the memcached API
at regular intervals. The interval is controlled by the innodb_api_bk_commit_interval configuration
option, which has a default setting of 5 seconds.

When a memcached operation inserts or updates data in the underlying InnoDB table, the changed data
is immediately visible to other memcached requests because the new value remains in the memory cache,
even if it is not yet committed on the MySQL side.

Transaction Isolation

When a memcached operation such as get or incr causes a query or DML operation on the
underlying InnoDB table, you can control whether the operation sees the very latest data written to
the table, only data that has been committed, or other variations of transaction isolation level. Use the
innodb_api_trx_level configuration option to control this feature. The numeric values specified
for this option correspond to isolation levels such as REPEATABLE READ. See the description of the
innodb_api_trx_level option for information about other settings.

A strict isolation level ensures that data you retrieve is not rolled back or changed suddenly causing
subsequent queries to return different values. However, strict isolation levels require greater locking
overhead, which can cause waits. For a NoSQL-style application that does not use long-running
transactions, you can typically use the default isolation level or switch to a less strict isolation level.

Disabling Row Locks for memcached DML Operations

The innodb_api_disable_rowlock option can be used to disable row locks when
memcached requests through the daemon_memcached plugin cause DML operations. By default,
innodb_api_disable_rowlock is set to OFF which means that memcached requests row locks for get
and set operations. When innodb_api_disable_rowlock is set to ON, memcached requests a table
lock instead of row locks.

2283

Writing Applications for the InnoDB memcached Plugin

The innodb_api_disable_rowlock option is not dynamic. It must be specified at startup on the
mysqld command line or entered in a MySQL configuration file.

Allowing or Disallowing DDL

By default, you can perform DDL operations such as ALTER TABLE on tables used by the
daemon_memcached plugin. To avoid potential slowdowns when these tables are used for high-throughput
applications, disable DDL operations on these tables by enabling innodb_api_enable_mdl at startup.
This option is less appropriate when accessing the same tables through both memcached and SQL,
because it blocks CREATE INDEX statements on the tables, which could be important for running reporting
queries.

Storing Data on Disk, in Memory, or Both

The innodb_memcache.cache_policies table specifies whether to store data written through the
memcached interface to disk (innodb_only, the default); in memory only, as with traditional memcached
(cache_only); or both (caching).

With the caching setting, if memcached cannot find a key in memory, it searches for the value in an
InnoDB table. Values returned from get calls under the caching setting could be out-of-date if the values
were updated on disk in the InnoDB table but are not yet expired from the memory cache.

The caching policy can be set independently for get, set (including incr and decr), delete, and
flush operations.

For example, you might allow get and set operations to query or update a table and the memcached
memory cache at the same time (using the caching setting), while making delete, flush, or both
operate only on the in-memory copy (using the cache_only setting). That way, deleting or flushing an
item only expires the item from the cache, and the latest value is returned from the InnoDB table the next
time the item is requested.

mysql> SELECT * FROM innodb_memcache.cache_policies;
+--------------+-------------+-------------+---------------+--------------+
| policy_name | get_policy | set_policy | delete_policy | flush_policy |
+--------------+-------------+-------------+---------------+--------------+
| cache_policy | innodb_only | innodb_only | innodb_only | innodb_only |
+--------------+-------------+-------------+---------------+--------------+

mysql> UPDATE innodb_memcache.cache_policies SET set_policy = 'caching'
 WHERE policy_name = 'cache_policy';

innodb_memcache.cache_policies values are only read at startup. After changing values in this
table, uninstall and reinstall the daemon_memcached plugin to ensure that changes take effect.

mysql> UNINSTALL PLUGIN daemon_memcached;

mysql> INSTALL PLUGIN daemon_memcached soname "libmemcached.so";

14.20.5.5 Adapting DML Statements to memcached Operations

Benchmarks suggest that the daemon_memcached plugin speeds up DML operations (inserts, updates,
and deletes) more than it speeds up queries. Therefore, consider focussing initial development efforts
on write-intensive applications that are I/O-bound, and look for opportunities to use MySQL with the
daemon_memcached plugin for new write-intensive applications.

Single-row DML statements are the easiest types of statements to turn into memcached operations.
INSERT becomes add, UPDATE becomes set, incr or decr, and DELETE becomes delete. These
operations are guaranteed to only affect one row when issued through the memcached interface, because
the key is unique within the table.

2284

The InnoDB memcached Plugin and Replication

In the following SQL examples, t1 refers to the table used for memcached operations, based on the
configuration in the innodb_memcache.containers table. key refers to the column listed under
key_columns, and val refers to the column listed under value_columns.

INSERT INTO t1 (key,val) VALUES (some_key,some_value);
SELECT val FROM t1 WHERE key = some_key;
UPDATE t1 SET val = new_value WHERE key = some_key;
UPDATE t1 SET val = val + x WHERE key = some_key;
DELETE FROM t1 WHERE key = some_key;

The following TRUNCATE TABLE and DELETE statements, which remove all rows from the table,
correspond to the flush_all operation, where t1 is configured as the table for memcached operations,
as in the previous example.

TRUNCATE TABLE t1;
DELETE FROM t1;

14.20.5.6 Performing DML and DDL Statements on the Underlying InnoDB Table

You can access the underlying InnoDB table (which is test.demo_test by default) through standard
SQL interfaces. However, there are some restrictions:

• When querying a table that is also accessed through the memcached interface, remember that
memcached operations can be configured to be committed periodically rather than after every write
operation. This behavior is controlled by the daemon_memcached_w_batch_size option. If this option
is set to a value greater than 1, use READ UNCOMMITTED queries to find rows that were just inserted.

mysql> SET SESSSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;

mysql> SELECT * FROM demo_test;
+------+------+------+------+-----------+------+------+------+------+------+------+
| cx | cy | c1 | cz | c2 | ca | CB | c3 | cu | c4 | C5 |
+------+------+------+------+-----------+------+------+------+------+------+------+
| NULL | NULL | a11 | NULL | 123456789 | NULL | NULL | 10 | NULL | 3 | NULL |
+------+------+------+------+-----------+------+------+------+------+------+------+

• When modifying a table using SQL that is also accessed through the memcached interface, you can
configure memcached operations to start a new transaction periodically rather than for every read
operation. This behavior is controlled by the daemon_memcached_r_batch_size option. If this option
is set to a value greater than 1, changes made to the table using SQL are not immediately visible to
memcached operations.

• The InnoDB table is either IS (intention shared) or IX (intention exclusive) locked for all
operations in a transaction. If you increase daemon_memcached_r_batch_size and
daemon_memcached_w_batch_size substantially from their default value of 1, the table is most likely
locked between each operation, preventing DDL statements on the table.

14.20.6 The InnoDB memcached Plugin and Replication

Because the daemon_memcached plugin supports the MySQL binary log, updates made on a source
server through the memcached interface can be replicated for backup, balancing intensive read workloads,
and high availability. All memcached commands are supported with binary logging.

You do not need to set up the daemon_memcached plugin on replica servers. The primary advantage of
this configuration is increased write throughput on the source. The speed of the replication mechanism is
not affected.

The following sections show how to use the binary log capability when using the daemon_memcached
plugin with MySQL replication. It is assumed that you have completed the setup described in
Section 14.20.3, “Setting Up the InnoDB memcached Plugin”.

2285

The InnoDB memcached Plugin and Replication

Enabling the InnoDB memcached Binary Log

1. To use the daemon_memcached plugin with the MySQL binary log, enable the
innodb_api_enable_binlog configuration option on the source server. This option can only be set
at server startup. You must also enable the MySQL binary log on the source server using the --log-
bin option. You can add these options to the MySQL configuration file, or on the mysqld command
line.

mysqld ... --log-bin -–innodb_api_enable_binlog=1

2. Configure the source and replica server, as described in Section 17.1.1, “How to Set Up Replication”.

3. Use mysqldump to create a source data snapshot, and sync the snapshot to the replica server.

source $> mysqldump --all-databases --lock-all-tables > dbdump.db
replica $> mysql < dbdump.db

4. On the source server, issue SHOW MASTER STATUS to obtain the source binary log coordinates.

mysql> SHOW MASTER STATUS;

5. On the replica server, use a CHANGE MASTER TO statement to set up a replica server using the source
binary log coordinates.

mysql> CHANGE MASTER TO
 MASTER_HOST='localhost',
 MASTER_USER='root',
 MASTER_PASSWORD='',
 MASTER_PORT = 13000,
 MASTER_LOG_FILE='0.000001,
 MASTER_LOG_POS=114;

6. Start the replica.

mysql> START SLAVE;

If the error log prints output similar to the following, the replica is ready for replication.

2013-09-24T13:04:38.639684Z 49 [Note] Slave I/O thread: connected to
master 'root@localhost:13000', replication started in log '0.000001'
at position 114

Testing the InnoDB memcached Replication Configuration

This example demonstrates how to test the InnoDB memcached replication configuration using the
memcached and telnet to insert, update, and delete data. A MySQL client is used to verify results on the
source and replica servers.

The example uses the demo_test table, which was created by the innodb_memcached_config.sql
configuration script during the initial setup of the daemon_memcached plugin. The demo_test table
contains a single example record.

1. Use the set command to insert a record with a key of test1, a flag value of 10, an expiration value of
0, a cas value of 1, and a value of t1.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
set test1 10 0 1
t1
STORED

2286

The InnoDB memcached Plugin and Replication

2. On the source server, check that the record was inserted into the demo_test table. Assuming the
demo_test table was not previously modified, there should be two records. The example record with
a key of AA, and the record you just inserted, with a key of test1. The c1 column maps to the key, the
c2 column to the value, the c3 column to the flag value, the c4 column to the cas value, and the c5
column to the expiration time. The expiration time was set to 0, since it is unused.

mysql> SELECT * FROM test.demo_test;
+-------+--------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+-------+--------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
| test1 | t1 | 10 | 1 | 0 |
+-------+--------------+------+------+------+

3. Check to verify that the same record was replicated to the replica server.

mysql> SELECT * FROM test.demo_test;
+-------+--------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+-------+--------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
| test1 | t1 | 10 | 1 | 0 |
+-------+--------------+------+------+------+

4. Use the set command to update the key to a value of new.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
set test1 10 0 2
new
STORED

The update is replicated to the replica server (notice that the cas value is also updated).

mysql> SELECT * FROM test.demo_test;
+-------+--------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+-------+--------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
| test1 | new | 10 | 2 | 0 |
+-------+--------------+------+------+------+

5. Delete the test1 record using a delete command.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
delete test1
DELETED

When the delete operation is replicated to the replica, the test1 record on the replica is also deleted.

mysql> SELECT * FROM test.demo_test;
+----+--------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+----+--------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
+----+--------------+------+------+------+

6. Remove all rows from the table using the flush_all command.

telnet 127.0.0.1 11211

2287

The InnoDB memcached Plugin and Replication

Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
flush_all
OK

mysql> SELECT * FROM test.demo_test;
Empty set (0.00 sec)

7. Telnet to the source server and enter two new records.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'
set test2 10 0 4
again
STORED
set test3 10 0 5
again1
STORED

8. Confirm that the two records were replicated to the replica server.

mysql> SELECT * FROM test.demo_test;
+-------+--------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+-------+--------------+------+------+------+
| test2 | again | 10 | 4 | 0 |
| test3 | again1 | 10 | 5 | 0 |
+-------+--------------+------+------+------+

9. Remove all rows from the table using the flush_all command.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
flush_all
OK

10. Check to ensure that the flush_all operation was replicated on the replica server.

mysql> SELECT * FROM test.demo_test;
Empty set (0.00 sec)

InnoDB memcached Binary Log Notes

Binary Log Format:

• Most memcached operations are mapped to DML statements (analogous to insert, delete, update).
Since there is no actual SQL statement being processed by the MySQL server, all memcached
commands (except for flush_all) use Row-Based Replication (RBR) logging, which is independent of
any server binlog_format setting.

• The memcached flush_all command is mapped to the TRUNCATE TABLE command. Since DDL
commands can only use statement-based logging, the flush_all command is replicated by sending a
TRUNCATE TABLE statement.

Transactions:

• The concept of transactions has not typically been part of memcached applications. For performance
considerations, daemon_memcached_r_batch_size and daemon_memcached_w_batch_size are

2288

InnoDB memcached Plugin Internals

used to control the batch size for read and write transactions. These settings do not affect replication.
Each SQL operation on the underlying InnoDB table is replicated after successful completion.

• The default value of daemon_memcached_w_batch_size is 1, which means that each
memcached write operation is committed immediately. This default setting incurs a certain amount
of performance overhead to avoid inconsistencies in the data that is visible on the source and replica
servers. The replicated records are always available immediately on the replica server. If you set
daemon_memcached_w_batch_size to a value greater than 1, records inserted or updated through
memcached are not immediately visible on the source server; to view the records on the source server
before they are committed, issue SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED.

14.20.7 InnoDB memcached Plugin Internals

InnoDB API for the InnoDB memcached Plugin

The InnoDB memcached engine accesses InnoDB through InnoDB APIs, most of which are directly
adopted from embedded InnoDB. InnoDB API functions are passed to the InnoDB memcached engine
as callback functions. InnoDB API functions access the InnoDB tables directly, and are mostly DML
operations with the exception of TRUNCATE TABLE.

memcached commands are implemented through the InnoDB memcached API. The following table
outlines how memcached commands are mapped to DML or DDL operations.

Table 14.16 memcached Commands and Associated DML or DDL Operations

memcached Command DML or DDL Operations

get a read/fetch command

set a search followed by an INSERT or UPDATE
(depending on whether or not a key exists)

add a search followed by an INSERT or UPDATE

replace a search followed by an UPDATE

append a search followed by an UPDATE (appends data to
the result before UPDATE)

prepend a search followed by an UPDATE (prepends data to
the result before UPDATE)

incr a search followed by an UPDATE

decr a search followed by an UPDATE

delete a search followed by a DELETE

flush_all TRUNCATE TABLE (DDL)

InnoDB memcached Plugin Configuration Tables

This section describes configuration tables used by the daemon_memcached plugin. The
cache_policies table, config_options table, and containers table are created by the
innodb_memcached_config.sql configuration script in the innodb_memcache database.

mysql> USE innodb_memcache;
Database changed
mysql> SHOW TABLES;
+---------------------------+
| Tables_in_innodb_memcache |
+---------------------------+
| cache_policies |
| config_options |

2289

InnoDB memcached Plugin Internals

| containers |
+---------------------------+

cache_policies Table

The cache_policies table defines a cache policy for the InnoDB memcached installation. You can
specify individual policies for get, set, delete, and flush operations, within a single cache policy. The
default setting for all operations is innodb_only.

• innodb_only: Use InnoDB as the data store.

• cache_only: Use the memcached engine as the data store.

• caching: Use both InnoDB and the memcached engine as data stores. In this case, if memcached
cannot find a key in memory, it searches for the value in an InnoDB table.

• disable: Disable caching.

Table 14.17 cache_policies Columns

Column Description

policy_name Name of the cache policy. The default cache policy
name is cache_policy.

get_policy The cache policy for get operations. Valid values
are innodb_only, cache_only, caching, or
disabled. The default setting is innodb_only.

set_policy The cache policy for set operations. Valid values
are innodb_only, cache_only, caching, or
disabled. The default setting is innodb_only.

delete_policy The cache policy for delete operations. Valid values
are innodb_only, cache_only, caching, or
disabled. The default setting is innodb_only.

flush_policy The cache policy for flush operations. Valid values
are innodb_only, cache_only, caching, or
disabled. The default setting is innodb_only.

config_options Table

The config_options table stores memcached-related settings that can be changed at runtime using
SQL. Supported configuration options are separator and table_map_delimiter.

Table 14.18 config_options Columns

Column Description

Name Name of the memcached-related configuration
option. The following configuration options are
supported by the config_options table:

• separator: Used to separate values of a
long string into separate values when there are
multiple value_columns defined. By default,
the separator is a | character. For example, if
you define col1, col2 as value columns, and
you define | as the separator, you can issue the
following memcached command to insert values
into col1 and col2, respectively:

2290

InnoDB memcached Plugin Internals

Column Description
set keyx 10 0 19
valuecolx|valuecoly

valuecol1x is stored in col1 and valuecoly
is stored in col2.

• table_map_delimiter: The character
separating the schema name and the table name
when you use the @@ notation in a key name to
access a key in a specific table. For example,
@@t1.some_key and @@t2.some_key have the
same key value, but are stored in different tables.

Value The value assigned to the memcached-related
configuration option.

containers Table

The containers table is the most important of the three configuration tables. Each InnoDB table that
is used to store memcached values must have an entry in the containers table. The entry provides a
mapping between InnoDB table columns and container table columns, which is required for memcached to
work with InnoDB tables.

The containers table contains a default entry for the test.demo_test table, which is created by the
innodb_memcached_config.sql configuration script. To use the daemon_memcached plugin with your
own InnoDB table, you must create an entry in the containers table.

Table 14.19 containers Columns

Column Description

name The name given to the container. If an InnoDB
table is not requested by name using @@ notation,
the daemon_memcached plugin uses the InnoDB
table with a containers.name value of default.
If there is no such entry, the first entry in the
containers table, ordered alphabetically by name
(ascending), determines the default InnoDB table.

db_schema The name of the database where the InnoDB table
resides. This is a required value.

db_table The name of the InnoDB table that stores
memcached values. This is a required value.

key_columns The column in the InnoDB table that contains
lookup key values for memcached operations. This
is a required value.

value_columns The InnoDB table columns (one or more) that
store memcached data. Multiple columns can be
specified using the separator character specified in
the innodb_memcached.config_options table.
By default, the separator is a pipe character (“|”). To
specify multiple columns, separate them with the
defined separator character. For example: col1|
col2|col3. This is a required value.

2291

InnoDB memcached Plugin Internals

Column Description

flags The InnoDB table columns that are used as flags
(a user-defined numeric value that is stored and
retrieved along with the main value) for memcached.
A flag value can be used as a column specifier for
some operations (such as incr, prepend) if a
memcached value is mapped to multiple columns,
so that an operation is performed on a specified
column. For example, if you have mapped a
value_columns to three InnoDB table columns,
and only want the increment operation performed on
one columns, use the flags column to specify the
column. If you do not use the flags column, set a
value of 0 to indicate that it is unused.

cas_column The InnoDB table column that stores compare-
and-swap (cas) values. The cas_column value
is related to the way memcached hashes requests
to different servers and caches data in memory.
Because the InnoDB memcached plugin is tightly
integrated with a single memcached daemon, and
the in-memory caching mechanism is handled by
MySQL and the InnoDB buffer pool, this column is
rarely needed. If you do not use this column, set a
value of 0 to indicate that it is unused.

expire_time_column The InnoDB table column that stores expiration
values. The expire_time_column value is related
to the way memcached hashes requests to different
servers and caches data in memory. Because the
InnoDB memcached plugin is tightly integrated with
a single memcached daemon, and the in-memory
caching mechanism is handled by MySQL and the
buffer pool, this columns is rarely needed. If you do
not use this column, set a value of 0 to indicate that
it is unused. As of MySQL 5.6.25, maximum expire
time is defined as INT_MAX32 or 2147483647
seconds (approximately 68 years).

unique_idx_name_on_key The name of the index on the key column. It must
be a unique index. It can be the primary key or
a secondary index. Preferably, use the primary
key of the InnoDB table. Using the primary key
avoids a lookup that is performed when using a
secondary index. You cannot make a covering index
for memcached lookups; InnoDB returns an error if
you try to define a composite secondary index over
both the key and value columns.

containers Table Column Constraints

• You must supply a value for db_schema, db_name, key_columns, value_columns and
unique_idx_name_on_key. Specify 0 for flags, cas_column, and expire_time_column if they
are unused. Failing to do so could cause your setup to fail.

2292

InnoDB memcached Plugin Internals

• key_columns: The maximum limit for a memcached key is 250 characters, which is enforced by
memcached. The mapped key must be a non-Null CHAR or VARCHAR type.

• value_columns: Must be mapped to a CHAR, VARCHAR, or BLOB column. There is no length restriction
and the value can be NULL.

• cas_column: The cas value is a 64 bit integer. It must be mapped to a BIGINT of at least 8 bytes. If
you do not use this column, set a value of 0 to indicate that it is unused.

• expiration_time_column: Must mapped to an INTEGER of at least 4 bytes. Expiration time is
defined as a 32-bit integer for Unix time (the number of seconds since January 1, 1970, as a 32-bit
value), or the number of seconds starting from the current time. For the latter, the number of seconds
may not exceed 60*60*24*30 (the number of seconds in 30 days). If the number sent by a client is
larger, the server considers it to be a real Unix time value rather than an offset from the current time. If
you do not use this column, set a value of 0 to indicate that it is unused.

• flags: Must be mapped to an INTEGER of at least 32-bits and can be NULL. If you do not use this
column, set a value of 0 to indicate that it is unused.

A pre-check is performed at plugin load time to enforce column constraints. If mismatches are found, the
plugin is not loaded.

Multiple Value Column Mapping

• During plugin initialization, when InnoDB memcached is configured with information defined in the
containers table, each mapped column defined in containers.value_columns is verified against
the mapped InnoDB table. If multiple InnoDB table columns are mapped, there is a check to ensure that
each column exists and is the right type.

• At run-time, for memcached insert operations, if there are more delimited values than the number of
mapped columns, only the number of mapped values are taken. For example, if there are six mapped
columns, and seven delimited values are provided, only the first six delimited values are taken. The
seventh delimited value is ignored.

• If there are fewer delimited values than mapped columns, unfilled columns are set to NULL. If an unfilled
column cannot be set to NULL, insert operations fail.

• If a table has more columns than mapped values, the extra columns do not affect results.

The demo_test Example Table

The innodb_memcached_config.sql configuration script creates a demo_test table in the test
database, which can be used to verify InnoDB memcached plugin installation immediately after setup.

The innodb_memcached_config.sql configuration script also creates an entry for the demo_test
table in the innodb_memcache.containers table.

mysql> SELECT * FROM innodb_memcache.containers\G
*************************** 1. row ***************************
 name: aaa
 db_schema: test
 db_table: demo_test
 key_columns: c1
 value_columns: c2
 flags: c3
 cas_column: c4
 expire_time_column: c5
unique_idx_name_on_key: PRIMARY

mysql> SELECT * FROM test.demo_test;

2293

Troubleshooting the InnoDB memcached Plugin

+----+------------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+----+------------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
+----+------------------+------+------+------+

14.20.8 Troubleshooting the InnoDB memcached Plugin

This section describes issues that you may encounter when using the InnoDB memcached plugin.

• If you encounter the following error in the MySQL error log, the server might fail to start:

failed to set rlimit for open files. Try running as root or requesting
smaller maxconns value.

The error message is from the memcached daemon. One solution is to raise the OS limit for the number
of open files. The commands for checking and increasing the open file limit varies by operating system.
This example shows commands for Linux and macOS:

Linux
$> ulimit -n
1024
$> ulimit -n 4096
$> ulimit -n
4096

macOS
$> ulimit -n
256
$> ulimit -n 4096
$> ulimit -n
4096

The other solution is to reduce the number of concurrent connections permitted for the memcached
daemon. To do so, encode the -c memcached option in the daemon_memcached_option
configuration parameter in the MySQL configuration file. The -c option has a default value of 1024.

[mysqld]
...
loose-daemon_memcached_option='-c 64'

• To troubleshoot problems where the memcached daemon is unable to store or retrieve InnoDB
table data, encode the -vvv memcached option in the daemon_memcached_option configuration
parameter in the MySQL configuration file. Examine the MySQL error log for debug output related to
memcached operations.

[mysqld]
...
loose-daemon_memcached_option='-vvv'

• If columns specified to hold memcached values are the wrong data type, such as a numeric type instead
of a string type, attempts to store key-value pairs fail with no specific error code or message.

• If the daemon_memcached plugin causes MySQL server startup issues, you can temporarily disable the
daemon_memcached plugin while troubleshooting by adding this line under the [mysqld] group in the
MySQL configuration file:

daemon_memcached=OFF

For example, if you run the INSTALL PLUGIN statement before running the
innodb_memcached_config.sql configuration script to set up the necessary database and tables,

2294

Troubleshooting the InnoDB memcached Plugin

the server might unexpectedly exit and fail to start. The server could also fail to start if you incorrectly
configure an entry in the innodb_memcache.containers table.

To uninstall the memcached plugin for a MySQL instance, issue the following statement:

mysql> UNINSTALL PLUGIN daemon_memcached;

• If you run more than one instance of MySQL on the same machine with the daemon_memcached plugin
enabled in each instance, use the daemon_memcached_option configuration parameter to specify a
unique memcached port for each daemon_memcached plugin.

• If an SQL statement cannot find the InnoDB table or finds no data in the table, but memcached
API calls retrieve the expected data, you may be missing an entry for the InnoDB table in the
innodb_memcache.containers table, or you may have not switched to the correct InnoDB table
by issuing a get or set request using @@table_id notation. This problem could also occur if you
change an existing entry in the innodb_memcache.containers table without restarting the MySQL
server afterward. The free-form storage mechanism is flexible enough that your requests to store or
retrieve a multi-column value such as col1|col2|col3 may still work, even if the daemon is using the
test.demo_test table which stores values in a single column.

• When defining your own InnoDB table for use with the daemon_memcached plugin, and columns
in the table are defined as NOT NULL, ensure that values are supplied for the NOT NULL columns
when inserting a record for the table into the innodb_memcache.containers table. If the INSERT
statement for the innodb_memcache.containers record contains fewer delimited values than
there are mapped columns, unfilled columns are set to NULL. Attempting to insert a NULL value into a
NOT NULL column causes the INSERT to fail, which may only become evident after you reinitialize the
daemon_memcached plugin to apply changes to the innodb_memcache.containers table.

• If cas_column and expire_time_column fields of the innodb_memcached.containers table are
set to NULL, the following error is returned when attempting to load the memcached plugin:

InnoDB_Memcached: column 6 in the entry for config table 'containers' in
database 'innodb_memcache' has an invalid NULL value.

The memcached plugin rejects usage of NULL in the cas_column and expire_time_column
columns. Set the value of these columns to 0 when the columns are unused.

• As the length of the memcached key and values increase, you might encounter size and length limits.

• When the key exceeds 250 bytes, memcached operations return an error. This is currently a fixed limit
within memcached.

• InnoDB table limits may be encountered if values exceed 768 bytes in size, 3072 bytes in size, or half
of the innodb_page_size value. These limits primarily apply if you intend to create an index on a
value column to run report-generating queries on that column using SQL. See Section 14.22, “InnoDB
Limits” for details.

• The maximum size for the key-value combination is 1 MB.

• If you share configuration files across MySQL servers of different versions, using the latest configuration
options for the daemon_memcached plugin could cause startup errors on older MySQL versions. To
avoid compatibility problems, use the loose prefix with option names. For example, use loose-
daemon_memcached_option='-c 64' instead of daemon_memcached_option='-c 64'.

• There is no restriction or check in place to validate character set settings. memcached stores and
retrieves keys and values in bytes and is therefore not character set-sensitive. However, you must
ensure that the memcached client and the MySQL table use the same character set.

2295

InnoDB Troubleshooting

14.21 InnoDB Troubleshooting

The following general guidelines apply to troubleshooting InnoDB problems:

• When an operation fails or you suspect a bug, look at the MySQL server error log (see Section 5.4.2,
“The Error Log”). Server Error Message Reference provides troubleshooting information for some of the
common InnoDB-specific errors that you may encounter.

• If the failure is related to a deadlock, run with the innodb_print_all_deadlocks option enabled
so that details about each deadlock are printed to the MySQL server error log. For information about
deadlocks, see Section 14.7.5, “Deadlocks in InnoDB”.

• Issues relating to the InnoDB data dictionary include failed CREATE TABLE statements (orphan table
files), inability to open InnoDB files, and system cannot find the path specified errors. For
information about these sorts of problems and errors, see Section 14.21.3, “Troubleshooting InnoDB
Data Dictionary Operations”.

• When troubleshooting, it is usually best to run the MySQL server from the command prompt, rather than
through mysqld_safe or as a Windows service. You can then see what mysqld prints to the console,
and so have a better grasp of what is going on. On Windows, start mysqld with the --console option
to direct the output to the console window.

• Enable the InnoDB Monitors to obtain information about a problem (see Section 14.17, “InnoDB
Monitors”). If the problem is performance-related, or your server appears to be hung, you should enable
the standard Monitor to print information about the internal state of InnoDB. If the problem is with locks,
enable the Lock Monitor. If the problem is in creation of tables or other data dictionary operations,
enable the Table Monitor to print the contents of the InnoDB internal data dictionary. To see tablespace
information enable the Tablespace Monitor.

InnoDB temporarily enables standard InnoDB Monitor output under the following conditions:

• A long semaphore wait

• InnoDB cannot find free blocks in the buffer pool

• Over 67% of the buffer pool is occupied by lock heaps or the adaptive hash index

• If you suspect that a table is corrupt, run CHECK TABLE on that table.

14.21.1 Troubleshooting InnoDB I/O Problems

The troubleshooting steps for InnoDB I/O problems depend on when the problem occurs: during startup of
the MySQL server, or during normal operations when a DML or DDL statement fails due to problems at the
file system level.

Initialization Problems

If something goes wrong when InnoDB attempts to initialize its tablespace or its log files, delete all files
created by InnoDB: all ibdata files and all ib_logfile files. If you already created some InnoDB
tables, also delete the corresponding .frm files for these tables, and any .ibd files if you are using
multiple tablespaces, from the MySQL database directories. Then try the InnoDB database creation again.
For easiest troubleshooting, start the MySQL server from a command prompt so that you see what is
happening.

2296

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html

Forcing InnoDB Recovery

Runtime Problems

If InnoDB prints an operating system error during a file operation, usually the problem has one of the
following solutions:

• Make sure the InnoDB data file directory and the InnoDB log directory exist.

• Make sure mysqld has access rights to create files in those directories.

• Make sure mysqld can read the proper my.cnf or my.ini option file, so that it starts with the options
that you specified.

• Make sure the disk is not full and you are not exceeding any disk quota.

• Make sure that the names you specify for subdirectories and data files do not clash.

• Doublecheck the syntax of the innodb_data_home_dir and innodb_data_file_path values. In
particular, any MAX value in the innodb_data_file_path option is a hard limit, and exceeding that
limit causes a fatal error.

14.21.2 Forcing InnoDB Recovery

To investigate database page corruption, you might dump your tables from the database with SELECT ...
INTO OUTFILE. Usually, most of the data obtained in this way is intact. Serious corruption might
cause SELECT * FROM tbl_name statements or InnoDB background operations to unexpectedly
exit or assert, or even cause InnoDB roll-forward recovery to crash. In such cases, you can use the
innodb_force_recovery option to force the InnoDB storage engine to start up while preventing
background operations from running, so that you can dump your tables. For example, you can add the
following line to the [mysqld] section of your option file before restarting the server:

[mysqld]
innodb_force_recovery = 1

For information about using option files, see Section 4.2.2.2, “Using Option Files”.

Warning

Only set innodb_force_recovery to a value greater than 0 in an emergency
situation, so that you can start InnoDB and dump your tables. Before doing
so, ensure that you have a backup copy of your database in case you need to
recreate it. Values of 4 or greater can permanently corrupt data files. Only use
an innodb_force_recovery setting of 4 or greater on a production server
instance after you have successfully tested the setting on a separate physical
copy of your database. When forcing InnoDB recovery, you should always start
with innodb_force_recovery=1 and only increase the value incrementally, as
necessary.

innodb_force_recovery is 0 by default (normal startup without forced recovery). The permissible
nonzero values for innodb_force_recovery are 1 to 6. A larger value includes the functionality of
lesser values. For example, a value of 3 includes all of the functionality of values 1 and 2.

If you are able to dump your tables with an innodb_force_recovery value of 3 or less, then you are
relatively safe that only some data on corrupt individual pages is lost. A value of 4 or greater is considered
dangerous because data files can be permanently corrupted. A value of 6 is considered drastic because
database pages are left in an obsolete state, which in turn may introduce more corruption into B-trees and
other database structures.

2297

Troubleshooting InnoDB Data Dictionary Operations

As a safety measure, InnoDB prevents INSERT, UPDATE, or DELETE operations when
innodb_force_recovery is greater than 0. As of MySQL 5.6.15, an innodb_force_recovery setting
of 4 or greater places InnoDB in read-only mode.

• 1 (SRV_FORCE_IGNORE_CORRUPT)

Lets the server run even if it detects a corrupt page. Tries to make SELECT * FROM tbl_name jump
over corrupt index records and pages, which helps in dumping tables.

• 2 (SRV_FORCE_NO_BACKGROUND)

Prevents the master thread and any purge threads from running. If an unexpected exit would occur
during the purge operation, this recovery value prevents it.

• 3 (SRV_FORCE_NO_TRX_UNDO)

Does not run transaction rollbacks after crash recovery.

• 4 (SRV_FORCE_NO_IBUF_MERGE)

Prevents insert buffer merge operations. If they would cause a crash, does not do them. Does not
calculate table statistics. This value can permanently corrupt data files. After using this value, be
prepared to drop and recreate all secondary indexes. As of MySQL 5.6.15, sets InnoDB to read-only.

• 5 (SRV_FORCE_NO_UNDO_LOG_SCAN)

Does not look at undo logs when starting the database: InnoDB treats even incomplete transactions as
committed. This value can permanently corrupt data files. As of MySQL 5.6.15, sets InnoDB to read-
only.

• 6 (SRV_FORCE_NO_LOG_REDO)

Does not do the redo log roll-forward in connection with recovery. This value can permanently corrupt
data files. Leaves database pages in an obsolete state, which in turn may introduce more corruption into
B-trees and other database structures. As of MySQL 5.6.15, sets InnoDB to read-only.

You can SELECT from tables to dump them. With an innodb_force_recovery value of 3 or
less you can DROP or CREATE tables. As of MySQL 5.6.27, DROP TABLE is also supported with an
innodb_force_recovery value greater than 3.

If you know that a given table is causing an unexpected exit on rollback, you can drop it. If you encounter a
runaway rollback caused by a failing mass import or ALTER TABLE, you can kill the mysqld process and
set innodb_force_recovery to 3 to bring the database up without the rollback, and then DROP the table
that is causing the runaway rollback.

If corruption within the table data prevents you from dumping the entire table contents, a query with an
ORDER BY primary_key DESC clause might be able to dump the portion of the table after the corrupted
part.

If a high innodb_force_recovery value is required to start InnoDB, there may be corrupted data
structures that could cause complex queries (queries containing WHERE, ORDER BY, or other clauses) to
fail. In this case, you may only be able to run basic SELECT * FROM t queries.

14.21.3 Troubleshooting InnoDB Data Dictionary Operations

Information about table definitions is stored both in the .frm files, and in the InnoDB data dictionary. If you
move .frm files around, or if the server crashes in the middle of a data dictionary operation, these sources
of information can become inconsistent.

2298

Troubleshooting InnoDB Data Dictionary Operations

If a data dictionary corruption or consistency issue prevents you from starting InnoDB, see
Section 14.21.2, “Forcing InnoDB Recovery” for information about manual recovery.

CREATE TABLE Failure Due to Orphan Table

A symptom of an out-of-sync data dictionary is that a CREATE TABLE statement fails. If this occurs, look in
the server's error log. If the log says that the table already exists inside the InnoDB internal data dictionary,
you have an orphan table inside the InnoDB tablespace files that has no corresponding .frm file. The
error message looks like this:

InnoDB: Error: table test/parent already exists in InnoDB internal
InnoDB: data dictionary. Have you deleted the .frm file
InnoDB: and not used DROP TABLE? Have you used DROP DATABASE
InnoDB: for InnoDB tables in MySQL version <= 3.23.43?
InnoDB: See the Restrictions section of the InnoDB manual.
InnoDB: You can drop the orphaned table inside InnoDB by
InnoDB: creating an InnoDB table with the same name in another
InnoDB: database and moving the .frm file to the current database.
InnoDB: Then MySQL thinks the table exists, and DROP TABLE will
InnoDB: succeed.

You can drop the orphan table by following the instructions given in the error message. If you are still
unable to use DROP TABLE successfully, the problem may be due to name completion in the mysql client.
To work around this problem, start the mysql client with the --skip-auto-rehash option and try DROP
TABLE again. (With name completion on, mysql tries to construct a list of table names, which fails when a
problem such as just described exists.)

Cannot Open File Error

Another symptom of an out-of-sync data dictionary is that MySQL prints an error that it cannot open an
InnoDB file:

ERROR 1016: Can't open file: 'child2.ibd'. (errno: 1)

In the error log you can find a message like this:

InnoDB: Cannot find table test/child2 from the internal data dictionary
InnoDB: of InnoDB though the .frm file for the table exists. Maybe you
InnoDB: have deleted and recreated InnoDB data files but have forgotten
InnoDB: to delete the corresponding .frm files of InnoDB tables?

This means that there is an orphan .frm file without a corresponding table inside InnoDB. You can drop
the orphan .frm file by deleting it manually.

Orphan Intermediate Tables

If MySQL exits in the middle of an in-place ALTER TABLE operation (ALGORITHM=INPLACE), you may be
left with an orphan intermediate table that takes up space on your system. This section describes how to
identify and remove orphan intermediate tables.

Intermediate table names begin with an #sql-ib prefix (e.g., #sql-ib87-856498050). The
accompanying .frm file has an #sql-* prefix and is named differently (e.g., #sql-36ab_2.frm).

To identify orphan intermediate tables on your system, you can view Table Monitor output or query
INFORMATION_SCHEMA.INNODB_SYS_TABLES. Look for table names that begin with #sql. If the original
table resides in a file-per-table tablespace, the tablespace file (the #sql-*.ibd file) for the orphan
intermediate table should be visible in the database directory.

SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME LIKE '%#sql%';

To remove an orphan intermediate table, perform the following steps:

2299

Troubleshooting InnoDB Data Dictionary Operations

1. In the database directory, rename the #sql-*.frm file to match the base name of the orphan
intermediate table:

$> mv #sql-36ab_2.frm #sql-ib87-856498050.frm

Note

If there is no .frm file, you can recreate it. The .frm file must have the same
table schema as the orphan intermediate table (it must have the same columns
and indexes) and must be placed in the database directory of the orphan
intermediate table.

2. Drop the orphan intermediate table by issuing a DROP TABLE statement, prefixing the name of the
table with #mysql50# and enclosing the table name in backticks. For example:

mysql> DROP TABLE `#mysql50##sql-ib87-856498050`;

The #mysql50# prefix tells MySQL to ignore file name safe encoding introduced in MySQL
5.1. Enclosing the table name in backticks is required to perform SQL statements on table names with
special characters such as “#”.

Note

If MySQL exits in the middle of an in-place ALTER TABLE operation on a
partitioned table, you may be left with multiple orphan intermediate tables, one
per partition. In this case, use the following procedure to remove the orphan
intermediate tables:

1. In a separate instance of the same MySQL version, create a non-partitioned
table with the same schema name and columns as the partitioned table.

2. Copy the .frm file of the non-partitioned table to the database directory with the
orphan intermediate tables.

3. Make a copy of the .frm file for each table, and rename the .frm files to match
names of the orphan intermediate tables (as described above).

4. Perform a DROP TABLE operation (as described above) for each table.

Orphan Temporary Tables

If MySQL exits in the middle of a table-copying ALTER TABLE operation (ALGORITHM=COPY), you may
be left with an orphan temporary table that takes up space on your system. This section describes how to
identify and remove orphan temporary tables.

Orphan temporary table names begin with an #sql- prefix (e.g., #sql-540_3). The accompanying .frm
file has the same base name as the orphan temporary table.

Note

If there is no .frm file, you can recreate it. The .frm file must have the same
table schema as the orphan temporary table (it must have the same columns and
indexes) and must be placed in the database directory of the orphan temporary
table.

To identify orphan temporary tables on your system, you can view Table Monitor output or query
INFORMATION_SCHEMA.INNODB_SYS_TABLES. Look for table names that begin with #sql. If the original

2300

Troubleshooting InnoDB Data Dictionary Operations

table resides in a file-per-table tablespace, the tablespace file (the #sql-*.ibd file) for the orphan
temporary table should be visible in the database directory.

SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME LIKE '%#sql%';

To remove an orphan temporary table, drop the table by issuing a DROP TABLE statement, prefixing the
name of the table with #mysql50# and enclosing the table name in backticks. For example:

mysql> DROP TABLE `#mysql50##sql-540_3`;

The #mysql50# prefix tells MySQL to ignore file name safe encoding introduced in MySQL 5.1.
Enclosing the table name in backticks is required to perform SQL statements on table names with special
characters such as “#”.

Note

If MySQL exits in the middle of an table-copying ALTER TABLE operation on a
partitioned table, you may be left with multiple orphan temporary tables, one per
partition. In this case, use the following procedure to remove the orphan temporary
tables:

1. In a separate instance of the same MySQL version, create a non-partitioned
table with the same schema name and columns as the partitioned table.

2. Copy the .frm file of the non-partitioned table to the database directory with the
orphan temporary tables.

3. Make a copy of the .frm file for each table, and rename the .frm files to match
the names of the orphan temporary tables (as described above).

4. Perform a DROP TABLE operation (as described above) for each table.

Tablespace Does Not Exist

With innodb_file_per_table enabled, the following message might occur if the .frm or .ibd files (or
both) are missing:

InnoDB: in InnoDB data dictionary has tablespace id N,
InnoDB: but tablespace with that id or name does not exist. Have
InnoDB: you deleted or moved .ibd files?
InnoDB: This may also be a table created with CREATE TEMPORARY TABLE
InnoDB: whose .ibd and .frm files MySQL automatically removed, but the
InnoDB: table still exists in the InnoDB internal data dictionary.

If this occurs, try the following procedure to resolve the problem:

1. Create a matching .frm file in some other database directory and copy it to the database directory
where the orphan table is located.

2. Issue DROP TABLE for the original table. That should successfully drop the table and InnoDB should
print a warning to the error log that the .ibd file was missing.

Restoring Orphaned File-Per-Table ibd Files

This procedure describes how to restore orphan file-per-table .ibd files to another MySQL instance. You
might use this procedure if the system tablespace is lost or unrecoverable and you want to restore .ibd
file backups on a new MySQL instance.

2301

InnoDB Error Handling

The procedure assumes that you only have .ibd file backups, you are recovering to the same version
of MySQL that initially created the orphan .ibd files, and that .ibd file backups are clean. See
Section 14.6.1.4, “Moving or Copying InnoDB Tables” for information about creating clean backups.

Table import limitations outlined in Section 14.6.1.3, “Importing InnoDB Tables” are applicable to this
procedure.

1. On the new MySQL instance, recreate the table in a database of the same name.

mysql> CREATE DATABASE sakila;

mysql> USE sakila;

mysql> CREATE TABLE actor (
 actor_id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 first_name VARCHAR(45) NOT NULL,
 last_name VARCHAR(45) NOT NULL,
 last_update TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (actor_id),
 KEY idx_actor_last_name (last_name)
)ENGINE=InnoDB DEFAULT CHARSET=utf8;

2. Discard the tablespace of the newly created table.

mysql> ALTER TABLE sakila.actor DISCARD TABLESPACE;

3. Copy the orphan .ibd file from your backup directory to the new database directory.

$> cp /backup_directory/actor.ibd path/to/mysql-5.6/data/sakila/

4. Ensure that the .ibd file has the necessary file permissions.

5. Import the orphan .ibd file. A warning is issued indicating that InnoDB attempts to import the file
without schema verification.

mysql> ALTER TABLE sakila.actor IMPORT TABLESPACE; SHOW WARNINGS;
Query OK, 0 rows affected, 1 warning (0.15 sec)

Warning | 1810 | InnoDB: IO Read error: (2, No such file or directory)
Error opening './sakila/actor.cfg', will attempt to import
without schema verification

6. Query the table to verify that the .ibd file was successfully restored.

mysql> SELECT COUNT(*) FROM sakila.actor;
+----------+
| count(*) |
+----------+
| 200 |
+----------+

14.21.4 InnoDB Error Handling

The following items describe how InnoDB performs error handling. InnoDB sometimes rolls back only the
statement that failed, other times it rolls back the entire transaction.

• If you run out of file space in a tablespace, a MySQL Table is full error occurs and InnoDB rolls
back the SQL statement.

• A transaction deadlock causes InnoDB to roll back the entire transaction. Retry the entire transaction
when this happens.

2302

InnoDB Limits

A lock wait timeout causes InnoDB to roll back the current statement (the statement that was waiting
for the lock and encountered the timeout). To have the entire transaction roll back, start the server with
--innodb-rollback-on-timeout enabled. Retry the statement if using the default behavior, or the
entire transaction if --innodb-rollback-on-timeout is enabled.

Both deadlocks and lock wait timeouts are normal on busy servers and it is necessary for applications to
be aware that they may happen and handle them by retrying. You can make them less likely by doing as
little work as possible between the first change to data during a transaction and the commit, so the locks
are held for the shortest possible time and for the smallest possible number of rows. Sometimes splitting
work between different transactions may be practical and helpful.

• A duplicate-key error rolls back the SQL statement, if you have not specified the IGNORE option in your
statement.

• A row too long error rolls back the SQL statement.

• Other errors are mostly detected by the MySQL layer of code (above the InnoDB storage engine level),
and they roll back the corresponding SQL statement. Locks are not released in a rollback of a single
SQL statement.

During implicit rollbacks, as well as during the execution of an explicit ROLLBACK SQL statement, SHOW
PROCESSLIST displays Rolling back in the State column for the relevant connection.

14.22 InnoDB Limits
This section describes limits for InnoDB tables, indexes, tablespaces, and other aspects of the InnoDB
storage engine.

• A table can contain a maximum of 1017 columns (raised in MySQL 5.6.9 from the earlier limit of 1000).

• A table can contain a maximum of 64 secondary indexes.

• By default, the index key prefix length limit is 767 bytes. See Section 13.1.13, “CREATE INDEX
Statement”. For example, you might hit this limit with a column prefix index of more than 255 characters
on a TEXT or VARCHAR column, assuming a utf8mb3 character set and the maximum of 3 bytes for
each character. When the innodb_large_prefix configuration option is enabled, the index key prefix
length limit is raised to 3072 bytes for InnoDB tables that use the DYNAMIC or COMPRESSED row format.

Attempting to use an index key prefix length that exceeds the limit returns an error. To avoid such errors
in replication configurations, avoid enabling innodb_large_prefix on the source if it cannot also be
enabled on replicas.

If you reduce the InnoDB page size to 8KB or 4KB by specifying the innodb_page_size option when
creating the MySQL instance, the maximum length of the index key is lowered proportionally, based on
the limit of 3072 bytes for a 16KB page size. That is, the maximum index key length is 1536 bytes when
the page size is 8KB, and 768 bytes when the page size is 4KB.

The limits that apply to index key prefixes also apply to full-column index keys.

• A maximum of 16 columns is permitted for multicolumn indexes. Exceeding the limit returns an error.

ERROR 1070 (42000): Too many key parts specified; max 16 parts allowed

• The maximum row size, excluding any variable-length columns that are stored off-page, is slightly less
than half of a page. That is, the maximum row size is about 8000 bytes for the default page size of
16KB. If you reduce the page size by specifying the innodb_page_size option when creating the

2303

InnoDB Restrictions and Limitations

MySQL instance, the maximum row size is 4000 bytes for 8KB pages, or 2000 bytes for 4KB pages.
LONGBLOB and LONGTEXT columns must be less than 4GB, and the total row size, including BLOB and
TEXT columns must be less than 4GB.

If a row is less than half a page long, all of it is stored locally within the page. If it exceeds half a page,
variable-length columns are chosen for external off-page storage until the row fits within half a page, as
described in Section 14.12.2, “File Space Management”.

• Although InnoDB supports row sizes larger than 65,535 bytes internally, MySQL itself imposes a row-
size limit of 65,535 for the combined size of all columns. See Section 8.4.7, “Limits on Table Column
Count and Row Size”.

• On some older operating systems, files must be less than 2GB. This is not an InnoDB limitation. If you
require a large system tablespace, configure it using several smaller data files rather than one large data
file, or distribute table data across file-per-table data files.

• The combined maximum size for InnoDB log files is 512GB.

• The minimum tablespace size is slightly larger than 10MB. The maximum tablespace size depends on
the InnoDB page size.

Table 14.20 InnoDB Maximum Tablespace Size

InnoDB Page Size Maximum Tablespace Size

4KB 16TB

8KB 32TB

16KB 64TB

The maximum tablespace size is also the maximum size for a table.

• Tablespace files cannot exceed 4GB on Windows 32-bit systems (Bug #80149).

• An InnoDB instance supports up to 2^32 (4294967296) tablespaces, with a small number of those
tablespaces reserved for undo and temporary tables.

• Shared tablespaces support up to 2^32 (4294967296) tables.

• The path of a tablespace file, including the file name, cannot exceed the MAX_PATH limit on Windows.
Prior to Windows 10, the MAX_PATH limit is 260 characters. As of Windows 10, version 1607, MAX_PATH
limitations are removed from common Win32 file and directory functions, but you must enable the new
behavior.

• For limits associated with concurrent read-write transactions, see Section 14.6.7, “Undo Logs”.

14.23 InnoDB Restrictions and Limitations
This section describes restrictions and limitations of the InnoDB storage engine.

• You cannot create a table with a column name that matches the name of an internal InnoDB column
(including DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR. This restriction applies to use of the names in
any lettercase.

mysql> CREATE TABLE t1 (c1 INT, db_row_id INT) ENGINE=INNODB;
ERROR 1166 (42000): Incorrect column name 'db_row_id'

• SHOW TABLE STATUS does not provide accurate statistics for InnoDB tables except for the physical
size reserved by the table. The row count is only a rough estimate used in SQL optimization.

2304

InnoDB Restrictions and Limitations

• InnoDB does not keep an internal count of rows in a table because concurrent transactions might “see”
different numbers of rows at the same time. Consequently, SELECT COUNT(*) statements only count
rows visible to the current transaction.

For information about how InnoDB processes SELECT COUNT(*) statements, refer to the COUNT()
description in Section 12.19.1, “Aggregate Function Descriptions”.

• There is no guarantee that InnoDB functions normally with a page size greater than 16KB. Problems
compiling or running InnoDB may occur. In particular, ROW_FORMAT=COMPRESSED in the Barracuda file
format assumes that the page size is at most 16KB and uses 14-bit pointers.

• A MySQL instance using a particular InnoDB page size (innodb_page_size) cannot use data files or
log files from an instance that uses a different page size.

• InnoDB does not support indexes on spatial data type columns.

• For limitations associated with importing tables using the Transportable Tablespaces feature, see Table
Import Limitations.

• For limitations associated with online DDL, see Section 14.13.6, “Online DDL Limitations”.

2305

2306

Chapter 15 Alternative Storage Engines

Table of Contents
15.1 Setting the Storage Engine .. 2311
15.2 The MyISAM Storage Engine .. 2311

15.2.1 MyISAM Startup Options .. 2314
15.2.2 Space Needed for Keys ... 2316
15.2.3 MyISAM Table Storage Formats ... 2316
15.2.4 MyISAM Table Problems .. 2319

15.3 The MEMORY Storage Engine .. 2320
15.4 The CSV Storage Engine .. 2325

15.4.1 Repairing and Checking CSV Tables .. 2326
15.4.2 CSV Limitations ... 2326

15.5 The ARCHIVE Storage Engine .. 2326
15.6 The BLACKHOLE Storage Engine ... 2328
15.7 The MERGE Storage Engine ... 2331

15.7.1 MERGE Table Advantages and Disadvantages ... 2333
15.7.2 MERGE Table Problems .. 2334

15.8 The FEDERATED Storage Engine ... 2336
15.8.1 FEDERATED Storage Engine Overview .. 2336
15.8.2 How to Create FEDERATED Tables ... 2337
15.8.3 FEDERATED Storage Engine Notes and Tips ... 2340
15.8.4 FEDERATED Storage Engine Resources .. 2341

15.9 The EXAMPLE Storage Engine ... 2341
15.10 Other Storage Engines .. 2342
15.11 Overview of MySQL Storage Engine Architecture ... 2342

15.11.1 Pluggable Storage Engine Architecture .. 2343
15.11.2 The Common Database Server Layer ... 2343

Storage engines are MySQL components that handle the SQL operations for different table types. InnoDB
is the default and most general-purpose storage engine, and Oracle recommends using it for tables except
for specialized use cases. (The CREATE TABLE statement in MySQL 5.6 creates InnoDB tables by
default.)

MySQL Server uses a pluggable storage engine architecture that enables storage engines to be loaded
into and unloaded from a running MySQL server.

To determine which storage engines your server supports, use the SHOW ENGINES statement. The
value in the Support column indicates whether an engine can be used. A value of YES, NO, or DEFAULT
indicates that an engine is available, not available, or available and currently set as the default storage
engine.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO

2307

MySQL 5.6 Supported Storage Engines

*************************** 2. row ***************************
 Engine: InnoDB
 Support: DEFAULT
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 3. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 4. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: MyISAM
 Support: YES
 Comment: MyISAM storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
...

This chapter covers use cases for special-purpose MySQL storage engines. It does not cover the default
InnoDB storage engine or the NDB storage engine which are covered in Chapter 14, The InnoDB Storage
Engine and Chapter 18, MySQL NDB Cluster 7.3 and NDB Cluster 7.4. For advanced users, this chapter
also contains a description of the pluggable storage engine architecture (see Section 15.11, “Overview of
MySQL Storage Engine Architecture”).

For information about features offered in commercial MySQL Server binaries, see MySQL Editions, on the
MySQL website. The storage engines available might depend on which edition of MySQL you are using.

For answers to commonly asked questions about MySQL storage engines, see Section A.2, “MySQL 5.6
FAQ: Storage Engines”.

MySQL 5.6 Supported Storage Engines

• InnoDB: The default storage engine in MySQL 5.6. InnoDB is a transaction-safe (ACID compliant)
storage engine for MySQL that has commit, rollback, and crash-recovery capabilities to protect user
data. InnoDB row-level locking (without escalation to coarser granularity locks) and Oracle-style
consistent nonlocking reads increase multi-user concurrency and performance. InnoDB stores user
data in clustered indexes to reduce I/O for common queries based on primary keys. To maintain data
integrity, InnoDB also supports FOREIGN KEY referential-integrity constraints. For more information
about InnoDB, see Chapter 14, The InnoDB Storage Engine.

• MyISAM: These tables have a small footprint. Table-level locking limits the performance in read/write
workloads, so it is often used in read-only or read-mostly workloads in Web and data warehousing
configurations.

• Memory: Stores all data in RAM, for fast access in environments that require quick lookups of non-critical
data. This engine was formerly known as the HEAP engine. Its use cases are decreasing; InnoDB with
its buffer pool memory area provides a general-purpose and durable way to keep most or all data in
memory, and NDBCLUSTER provides fast key-value lookups for huge distributed data sets.

2308

https://www.mysql.com/products/

MySQL 5.6 Supported Storage Engines

• CSV: Its tables are really text files with comma-separated values. CSV tables let you import or dump
data in CSV format, to exchange data with scripts and applications that read and write that same format.
Because CSV tables are not indexed, you typically keep the data in InnoDB tables during normal
operation, and only use CSV tables during the import or export stage.

• Archive: These compact, unindexed tables are intended for storing and retrieving large amounts of
seldom-referenced historical, archived, or security audit information.

• Blackhole: The Blackhole storage engine accepts but does not store data, similar to the Unix /dev/
null device. Queries always return an empty set. These tables can be used in replication configurations
where DML statements are sent to replicas, but the source server does not keep its own copy of the
data.

• NDB (also known as NDBCLUSTER)—This clustered database engine is particularly suited for applications
that require the highest possible degree of uptime and availability.

Note

The NDB storage engine is not supported in standard MySQL 5.6 releases.
Currently supported NDB Cluster releases include MySQL NDB Cluster 7.1,
which is based on MySQL 5.1; MySQL NDB Cluster 7.2, which is based on
MySQL 5.5; and MySQL NDB Cluster 7.3, which is based on MySQL 5.6. While
based on MySQL Server, these releases also contain support for NDB. MySQL
NDB Cluster 7.4, currently in development and also based on MySQL 5.6, is now
also available in a Developer Milestone release.

• Merge: Enables a MySQL DBA or developer to logically group a series of identical MyISAM tables and
reference them as one object. Good for VLDB environments such as data warehousing.

• Federated: Offers the ability to link separate MySQL servers to create one logical database from many
physical servers. Very good for distributed or data mart environments.

• Example: This engine serves as an example in the MySQL source code that illustrates how to begin
writing new storage engines. It is primarily of interest to developers. The storage engine is a “stub” that
does nothing. You can create tables with this engine, but no data can be stored in them or retrieved from
them.

You are not restricted to using the same storage engine for an entire server or schema. You can specify
the storage engine for any table. For example, an application might use mostly InnoDB tables, with one
CSV table for exporting data to a spreadsheet and a few MEMORY tables for temporary workspaces.

Choosing a Storage Engine

The various storage engines provided with MySQL are designed with different use cases in mind. The
following table provides an overview of some storage engines provided with MySQL, with clarifying notes
following the table.

Table 15.1 Storage Engines Feature Summary

Feature MyISAM Memory InnoDB Archive NDB

B-tree indexes Yes Yes Yes No No

Backup/point-
in-time recovery
(note 1)

Yes Yes Yes Yes Yes

2309

MySQL 5.6 Supported Storage Engines

Feature MyISAM Memory InnoDB Archive NDB

Cluster
database
support

No No No No Yes

Clustered
indexes

No No Yes No No

Compressed
data

Yes (note 2) No Yes Yes No

Data caches No N/A Yes No Yes

Encrypted data Yes (note 3) Yes (note 3) Yes (note 4) Yes (note 3) Yes (note 3)

Foreign key
support

No No Yes No Yes (note 5)

Full-text search
indexes

Yes No Yes (note 6) No No

Geospatial data
type support

Yes No Yes Yes Yes

Geospatial
indexing support

Yes No Yes (note 7) No No

Hash indexes No Yes No (note 8) No Yes

Index caches Yes N/A Yes No Yes

Locking
granularity

Table Table Row Row Row

MVCC No No Yes No No

Replication
support (note 1)

Yes Limited (note 9) Yes Yes Yes

Storage limits 256TB RAM 64TB None 384EB

T-tree indexes No No No No Yes

Transactions No No Yes No Yes

Update statistics
for data
dictionary

Yes Yes Yes Yes Yes

Notes:

1. Implemented in the server, rather than in the storage engine.

2. Compressed MyISAM tables are supported only when using the compressed row format. Tables using
the compressed row format with MyISAM are read only.

3. Implemented in the server via encryption functions.

4. Implemented in the server via encryption functions; In MySQL 5.7 and later, data-at-rest encryption is
supported.

5. Support for foreign keys is available in MySQL Cluster NDB 7.3 and later.

6. Support for FULLTEXT indexes is available in MySQL 5.6 and later.

7. Support for geospatial indexing is available in MySQL 5.7 and later.

2310

Setting the Storage Engine

8. InnoDB utilizes hash indexes internally for its Adaptive Hash Index feature.

9. See the discussion later in this section.

15.1 Setting the Storage Engine

When you create a new table, you can specify which storage engine to use by adding an ENGINE table
option to the CREATE TABLE statement:

-- ENGINE=INNODB not needed unless you have set a different
-- default storage engine.
CREATE TABLE t1 (i INT) ENGINE = INNODB;
-- Simple table definitions can be switched from one to another.
CREATE TABLE t2 (i INT) ENGINE = CSV;
CREATE TABLE t3 (i INT) ENGINE = MEMORY;

When you omit the ENGINE option, the default storage engine is used. The default engine is InnoDB
in MySQL 5.6. You can specify the default engine by using the --default-storage-engine server
startup option, or by setting the default-storage-engine option in the my.cnf configuration file.

You can set the default storage engine for the current session by setting the default_storage_engine
variable:

SET default_storage_engine=NDBCLUSTER;

As of MySQL 5.6.3, the storage engine for TEMPORARY tables created with CREATE
TEMPORARY TABLE can be set separately from the engine for permanent tables by setting
the default_tmp_storage_engine, either at startup or at runtime. Before MySQL 5.6.3,
default_storage_engine sets the engine for both permanent and TEMPORARY tables.

To convert a table from one storage engine to another, use an ALTER TABLE statement that indicates the
new engine:

ALTER TABLE t ENGINE = InnoDB;

See Section 13.1.17, “CREATE TABLE Statement”, and Section 13.1.7, “ALTER TABLE Statement”.

If you try to use a storage engine that is not compiled in or that is compiled in but deactivated, MySQL
instead creates a table using the default storage engine. For example, in a replication setup, perhaps your
source server uses InnoDB tables for maximum safety, but the replica servers use alternative storage
engines for speed at the expense of durability or concurrency.

By default, a warning is generated whenever CREATE TABLE or ALTER TABLE cannot use the default
storage engine. To prevent confusing, unintended behavior if the desired engine is unavailable, enable
the NO_ENGINE_SUBSTITUTION SQL mode. If the desired engine is unavailable, this setting produces
an error instead of a warning, and the table is not created or altered. See Section 5.1.10, “Server SQL
Modes”.

For new tables, MySQL always creates an .frm file to hold the table and column definitions. The table's
index and data may be stored in one or more other files, depending on the storage engine. The server
creates the .frm file above the storage engine level. Individual storage engines create any additional
files required for the tables that they manage. If a table name contains special characters, the names for
the table files contain encoded versions of those characters as described in Section 9.2.4, “Mapping of
Identifiers to File Names”.

15.2 The MyISAM Storage Engine

2311

The MyISAM Storage Engine

MyISAM is based on the older (and no longer available) ISAM storage engine but has many useful
extensions.

Table 15.2 MyISAM Storage Engine Features

Feature Support

B-tree indexes Yes

Backup/point-in-time recovery (Implemented in
the server, rather than in the storage engine.)

Yes

Cluster database support No

Clustered indexes No

Compressed data Yes (Compressed MyISAM tables are supported
only when using the compressed row format. Tables
using the compressed row format with MyISAM are
read only.)

Data caches No

Encrypted data Yes (Implemented in the server via encryption
functions.)

Foreign key support No

Full-text search indexes Yes

Geospatial data type support Yes

Geospatial indexing support Yes

Hash indexes No

Index caches Yes

Locking granularity Table

MVCC No

Replication support (Implemented in the server,
rather than in the storage engine.)

Yes

Storage limits 256TB

T-tree indexes No

Transactions No

Update statistics for data dictionary Yes

Each MyISAM table is stored on disk in three files. The files have names that begin with the table name and
have an extension to indicate the file type. An .frm file stores the table format. The data file has an .MYD
(MYData) extension. The index file has an .MYI (MYIndex) extension.

To specify explicitly that you want a MyISAM table, indicate that with an ENGINE table option:

CREATE TABLE t (i INT) ENGINE = MYISAM;

In MySQL 5.6, it is normally necessary to use ENGINE to specify the MyISAM storage engine because
InnoDB is the default engine.

You can check or repair MyISAM tables with the mysqlcheck client or myisamchk utility. You can also
compress MyISAM tables with myisampack to take up much less space. See Section 4.5.3, “mysqlcheck

2312

The MyISAM Storage Engine

— A Table Maintenance Program”, Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”, and
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”.

MyISAM tables have the following characteristics:

• All data values are stored with the low byte first. This makes the data machine and operating system
independent. The only requirements for binary portability are that the machine uses two's-complement
signed integers and IEEE floating-point format. These requirements are widely used among mainstream
machines. Binary compatibility might not be applicable to embedded systems, which sometimes have
peculiar processors.

There is no significant speed penalty for storing data low byte first; the bytes in a table row normally are
unaligned and it takes little more processing to read an unaligned byte in order than in reverse order.
Also, the code in the server that fetches column values is not time critical compared to other code.

• All numeric key values are stored with the high byte first to permit better index compression.

• Large files (up to 63-bit file length) are supported on file systems and operating systems that support
large files.

• There is a limit of (232)2 (1.844E+19) rows in a MyISAM table.

• The maximum number of indexes per MyISAM table is 64.

The maximum number of columns per index is 16.

• The maximum key length is 1000 bytes. This can also be changed by changing the source and
recompiling. For the case of a key longer than 250 bytes, a larger key block size than the default of 1024
bytes is used.

• When rows are inserted in sorted order (as when you are using an AUTO_INCREMENT column), the
index tree is split so that the high node only contains one key. This improves space utilization in the
index tree.

• Internal handling of one AUTO_INCREMENT column per table is supported. MyISAM automatically
updates this column for INSERT and UPDATE operations. This makes AUTO_INCREMENT columns
faster (at least 10%). Values at the top of the sequence are not reused after being deleted. (When an
AUTO_INCREMENT column is defined as the last column of a multiple-column index, reuse of values
deleted from the top of a sequence does occur.) The AUTO_INCREMENT value can be reset with ALTER
TABLE or myisamchk.

• Dynamic-sized rows are much less fragmented when mixing deletes with updates and inserts. This is
done by automatically combining adjacent deleted blocks and by extending blocks if the next block is
deleted.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you can
INSERT new rows into it at the same time that other threads are reading from the table. A free block
can occur as a result of deleting rows or an update of a dynamic length row with more data than its
current contents. When all free blocks are used up (filled in), future inserts become concurrent again.
See Section 8.11.3, “Concurrent Inserts”.

• You can put the data file and index file in different directories on different physical devices to get more
speed with the DATA DIRECTORY and INDEX DIRECTORY table options to CREATE TABLE. See
Section 13.1.17, “CREATE TABLE Statement”.

• BLOB and TEXT columns can be indexed.

• NULL values are permitted in indexed columns. This takes 0 to 1 bytes per key.

2313

Additional Resources

• Each character column can have a different character set. See Chapter 10, Character Sets, Collations,
Unicode.

• There is a flag in the MyISAM index file that indicates whether the table was closed correctly. If mysqld
is started with the myisam_recover_options system variable set, MyISAM tables are automatically
checked when opened, and are repaired if the table wasn't closed properly.

• myisamchk marks tables as checked if you run it with the --update-state option. myisamchk --
fast checks only those tables that don't have this mark.

• myisamchk --analyze stores statistics for portions of keys, as well as for entire keys.

• myisampack can pack BLOB and VARCHAR columns.

MyISAM also supports the following features:

• Support for a true VARCHAR type; a VARCHAR column starts with a length stored in one or two bytes.

• Tables with VARCHAR columns may have fixed or dynamic row length.

• The sum of the lengths of the VARCHAR and CHAR columns in a table may be up to 64KB.

• Arbitrary length UNIQUE constraints.

Additional Resources

• A forum dedicated to the MyISAM storage engine is available at https://forums.mysql.com/list.php?21.

15.2.1 MyISAM Startup Options

The following options to mysqld can be used to change the behavior of MyISAM tables. For additional
information, see Section 5.1.6, “Server Command Options”.

Table 15.3 MyISAM Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

bulk_insert_buffer_sizeYes Yes Yes Both Yes

concurrent_insertYes Yes Yes Global Yes

delay_key_writeYes Yes Yes Global Yes

have_rtree_keys Yes Global No

key_buffer_sizeYes Yes Yes Global Yes

log-isam Yes Yes

myisam-
block-size

Yes Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam_recover_optionsYes Yes Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

2314

https://forums.mysql.com/list.php?21

MyISAM Startup Options

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

myisam_use_mmapYes Yes Yes Global Yes

tmp_table_sizeYes Yes Yes Both Yes

The following system variables affect the behavior of MyISAM tables. For additional information, see
Section 5.1.7, “Server System Variables”.

• bulk_insert_buffer_size

The size of the tree cache used in bulk insert optimization.

Note

This is a limit per thread!

• delay_key_write=ALL

Don't flush key buffers between writes for any MyISAM table.

Note

If you do this, you should not access MyISAM tables from another program (such
as from another MySQL server or with myisamchk) when the tables are in
use. Doing so risks index corruption. Using --external-locking does not
eliminate this risk.

• myisam_max_sort_file_size

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA). If the file size would be larger than this
value, the index is created using the key cache instead, which is slower. The value is given in bytes.

• myisam_recover_options=mode

Set the mode for automatic recovery of crashed MyISAM tables.

• myisam_sort_buffer_size

Set the size of the buffer used when recovering tables.

Automatic recovery is activated if you start mysqld with the myisam_recover_options system variable
set. In this case, when the server opens a MyISAM table, it checks whether the table is marked as crashed
or whether the open count variable for the table is not 0 and you are running the server with external
locking disabled. If either of these conditions is true, the following happens:

• The server checks the table for errors.

• If the server finds an error, it tries to do a fast table repair (with sorting and without re-creating the data
file).

• If the repair fails because of an error in the data file (for example, a duplicate-key error), the server tries
again, this time re-creating the data file.

• If the repair still fails, the server tries once more with the old repair option method (write row by row
without sorting). This method should be able to repair any type of error and has low disk space
requirements.

2315

Space Needed for Keys

If the recovery wouldn't be able to recover all rows from previously completed statements and you didn't
specify FORCE in the value of the myisam_recover_options system variable, automatic repair aborts
with an error message in the error log:

Error: Couldn't repair table: test.g00pages

If you specify FORCE, a warning like this is written instead:

Warning: Found 344 of 354 rows when repairing ./test/g00pages

If the automatic recovery value includes BACKUP, the recovery process creates files with names of the form
tbl_name-datetime.BAK. You should have a cron script that automatically moves these files from the
database directories to backup media.

15.2.2 Space Needed for Keys

MyISAM tables use B-tree indexes. You can roughly calculate the size for the index file as (key_length
+4)/0.67, summed over all keys. This is for the worst case when all keys are inserted in sorted order and
the table doesn't have any compressed keys.

String indexes are space compressed. If the first index part is a string, it is also prefix compressed. Space
compression makes the index file smaller than the worst-case figure if a string column has a lot of trailing
space or is a VARCHAR column that is not always used to the full length. Prefix compression is used on
keys that start with a string. Prefix compression helps if there are many strings with an identical prefix.

In MyISAM tables, you can also prefix compress numbers by specifying the PACK_KEYS=1 table option
when you create the table. Numbers are stored with the high byte first, so this helps when you have many
integer keys that have an identical prefix.

15.2.3 MyISAM Table Storage Formats

MyISAM supports three different storage formats. Two of them, fixed and dynamic format, are chosen
automatically depending on the type of columns you are using. The third, compressed format, can be
created only with the myisampack utility (see Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”).

When you use CREATE TABLE or ALTER TABLE for a table that has no BLOB or TEXT columns, you can
force the table format to FIXED or DYNAMIC with the ROW_FORMAT table option.

See Section 13.1.17, “CREATE TABLE Statement”, for information about ROW_FORMAT.

You can decompress (unpack) compressed MyISAM tables using myisamchk --unpack; see
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”, for more information.

15.2.3.1 Static (Fixed-Length) Table Characteristics

Static format is the default for MyISAM tables. It is used when the table contains no variable-length columns
(VARCHAR, VARBINARY, BLOB, or TEXT). Each row is stored using a fixed number of bytes.

Of the three MyISAM storage formats, static format is the simplest and most secure (least subject to
corruption). It is also the fastest of the on-disk formats due to the ease with which rows in the data file can
be found on disk: To look up a row based on a row number in the index, multiply the row number by the
row length to calculate the row position. Also, when scanning a table, it is very easy to read a constant
number of rows with each disk read operation.

The security is evidenced if your computer crashes while the MySQL server is writing to a fixed-format
MyISAM file. In this case, myisamchk can easily determine where each row starts and ends, so it can

2316

MyISAM Table Storage Formats

usually reclaim all rows except the partially written one. MyISAM table indexes can always be reconstructed
based on the data rows.

Note

Fixed-length row format is only available for tables without BLOB or TEXT columns.
Creating a table with these columns with an explicit ROW_FORMAT clause does not
raise an error or warning; the format specification is ignored.

Static-format tables have these characteristics:

• CHAR and VARCHAR columns are space-padded to the specified column width, although the column type
is not altered. BINARY and VARBINARY columns are padded with 0x00 bytes to the column width.

• NULL columns require additional space in the row to record whether their values are NULL. Each NULL
column takes one bit extra, rounded up to the nearest byte.

• Very quick.

• Easy to cache.

• Easy to reconstruct after a crash, because rows are located in fixed positions.

• Reorganization is unnecessary unless you delete a huge number of rows and want to return free disk
space to the operating system. To do this, use OPTIMIZE TABLE or myisamchk -r.

• Usually require more disk space than dynamic-format tables.

• The expected row length in bytes for static-sized rows is calculated using the following expression:

row length = 1
 + (sum of column lengths)
 + (number of NULL columns + delete_flag + 7)/8
 + (number of variable-length columns)

delete_flag is 1 for tables with static row format. Static tables use a bit in the row record for a flag that
indicates whether the row has been deleted. delete_flag is 0 for dynamic tables because the flag is
stored in the dynamic row header.

15.2.3.2 Dynamic Table Characteristics

Dynamic storage format is used if a MyISAM table contains any variable-length columns (VARCHAR,
VARBINARY, BLOB, or TEXT), or if the table was created with the ROW_FORMAT=DYNAMIC table option.

Dynamic format is a little more complex than static format because each row has a header that indicates
how long it is. A row can become fragmented (stored in noncontiguous pieces) when it is made longer as a
result of an update.

You can use OPTIMIZE TABLE or myisamchk -r to defragment a table. If you have fixed-length
columns that you access or change frequently in a table that also contains some variable-length columns, it
might be a good idea to move the variable-length columns to other tables just to avoid fragmentation.

Dynamic-format tables have these characteristics:

• All string columns are dynamic except those with a length less than four.

• Each row is preceded by a bitmap that indicates which columns contain the empty string (for string
columns) or zero (for numeric columns). This does not include columns that contain NULL values. If a
string column has a length of zero after trailing space removal, or a numeric column has a value of zero,

2317

MyISAM Table Storage Formats

it is marked in the bitmap and not saved to disk. Nonempty strings are saved as a length byte plus the
string contents.

• NULL columns require additional space in the row to record whether their values are NULL. Each NULL
column takes one bit extra, rounded up to the nearest byte.

• Much less disk space usually is required than for fixed-length tables.

• Each row uses only as much space as is required. However, if a row becomes larger, it is split into as
many pieces as are required, resulting in row fragmentation. For example, if you update a row with
information that extends the row length, the row becomes fragmented. In this case, you may have to run
OPTIMIZE TABLE or myisamchk -r from time to time to improve performance. Use myisamchk -ei
to obtain table statistics.

• More difficult than static-format tables to reconstruct after a crash, because rows may be fragmented into
many pieces and links (fragments) may be missing.

• The expected row length for dynamic-sized rows is calculated using the following expression:

3
+ (number of columns + 7) / 8
+ (number of char columns)
+ (packed size of numeric columns)
+ (length of strings)
+ (number of NULL columns + 7) / 8

There is a penalty of 6 bytes for each link. A dynamic row is linked whenever an update causes an
enlargement of the row. Each new link is at least 20 bytes, so the next enlargement probably goes in the
same link. If not, another link is created. You can find the number of links using myisamchk -ed. All
links may be removed with OPTIMIZE TABLE or myisamchk -r.

15.2.3.3 Compressed Table Characteristics

Compressed storage format is a read-only format that is generated with the myisampack tool.
Compressed tables can be uncompressed with myisamchk.

Compressed tables have the following characteristics:

• Compressed tables take very little disk space. This minimizes disk usage, which is helpful when using
slow disks (such as CD-ROMs).

• Each row is compressed separately, so there is very little access overhead. The header for a row takes
up one to three bytes depending on the biggest row in the table. Each column is compressed differently.
There is usually a different Huffman tree for each column. Some of the compression types are:

• Suffix space compression.

• Prefix space compression.

• Numbers with a value of zero are stored using one bit.

• If values in an integer column have a small range, the column is stored using the smallest possible
type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT column (one byte) if
all its values are in the range from -128 to 127.

• If a column has only a small set of possible values, the data type is converted to ENUM.

• A column may use any combination of the preceding compression types.

2318

MyISAM Table Problems

• Can be used for fixed-length or dynamic-length rows.

Note

While a compressed table is read only, and you cannot therefore update or add
rows in the table, DDL (Data Definition Language) operations are still valid. For
example, you may still use DROP to drop the table, and TRUNCATE TABLE to empty
the table.

15.2.4 MyISAM Table Problems

The file format that MySQL uses to store data has been extensively tested, but there are always
circumstances that may cause database tables to become corrupted. The following discussion describes
how this can happen and how to handle it.

15.2.4.1 Corrupted MyISAM Tables

Even though the MyISAM table format is very reliable (all changes to a table made by an SQL statement
are written before the statement returns), you can still get corrupted tables if any of the following events
occur:

• The mysqld process is killed in the middle of a write.

• An unexpected computer shutdown occurs (for example, the computer is turned off).

• Hardware failures.

• You are using an external program (such as myisamchk) to modify a table that is being modified by the
server at the same time.

• A software bug in the MySQL or MyISAM code.

Typical symptoms of a corrupt table are:

• You get the following error while selecting data from the table:

Incorrect key file for table: '...'. Try to repair it

• Queries don't find rows in the table or return incomplete results.

You can check the health of a MyISAM table using the CHECK TABLE statement, and repair a corrupted
MyISAM table with REPAIR TABLE. When mysqld is not running, you can also check or repair a table with
the myisamchk command. See Section 13.7.2.2, “CHECK TABLE Statement”, Section 13.7.2.5, “REPAIR
TABLE Statement”, and Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.

If your tables become corrupted frequently, you should try to determine why this is happening. The most
important thing to know is whether the table became corrupted as a result of an unexpected server exit.
You can verify this easily by looking for a recent restarted mysqld message in the error log. If there is
such a message, it is likely that table corruption is a result of the server dying. Otherwise, corruption may
have occurred during normal operation. This is a bug. You should try to create a reproducible test case that
demonstrates the problem. See Section B.3.3.3, “What to Do If MySQL Keeps Crashing”, and Section 5.8,
“Debugging MySQL”.

15.2.4.2 Problems from Tables Not Being Closed Properly

Each MyISAM index file (.MYI file) has a counter in the header that can be used to check whether a table
has been closed properly. If you get the following warning from CHECK TABLE or myisamchk, it means
that this counter has gone out of sync:

2319

The MEMORY Storage Engine

clients are using or haven't closed the table properly

This warning doesn't necessarily mean that the table is corrupted, but you should at least check the table.

The counter works as follows:

• The first time a table is updated in MySQL, a counter in the header of the index files is incremented.

• The counter is not changed during further updates.

• When the last instance of a table is closed (because a FLUSH TABLES operation was performed or
because there is no room in the table cache), the counter is decremented if the table has been updated
at any point.

• When you repair the table or check the table and it is found to be okay, the counter is reset to zero.

• To avoid problems with interaction with other processes that might check the table, the counter is not
decremented on close if it was zero.

In other words, the counter can become incorrect only under these conditions:

• A MyISAM table is copied without first issuing LOCK TABLES and FLUSH TABLES.

• MySQL has crashed between an update and the final close. (The table may still be okay because
MySQL always issues writes for everything between each statement.)

• A table was modified by myisamchk --recover or myisamchk --update-state at the same time
that it was in use by mysqld.

• Multiple mysqld servers are using the table and one server performed a REPAIR TABLE or CHECK
TABLE on the table while it was in use by another server. In this setup, it is safe to use CHECK TABLE,
although you might get the warning from other servers. However, REPAIR TABLE should be avoided
because when one server replaces the data file with a new one, this is not known to the other servers.

In general, it is a bad idea to share a data directory among multiple servers. See Section 5.7, “Running
Multiple MySQL Instances on One Machine”, for additional discussion.

15.3 The MEMORY Storage Engine
The MEMORY storage engine (formerly known as HEAP) creates special-purpose tables with contents that
are stored in memory. Because the data is vulnerable to crashes, hardware issues, or power outages, only
use these tables as temporary work areas or read-only caches for data pulled from other tables.

Table 15.4 MEMORY Storage Engine Features

Feature Support

B-tree indexes Yes

Backup/point-in-time recovery (Implemented in
the server, rather than in the storage engine.)

Yes

Cluster database support No

Clustered indexes No

Compressed data No

Data caches N/A

Encrypted data Yes (Implemented in the server via encryption
functions.)

2320

When to Use MEMORY or NDB Cluster

Feature Support

Foreign key support No

Full-text search indexes No

Geospatial data type support No

Geospatial indexing support No

Hash indexes Yes

Index caches N/A

Locking granularity Table

MVCC No

Replication support (Implemented in the server,
rather than in the storage engine.)

Limited (See the discussion later in this section.)

Storage limits RAM

T-tree indexes No

Transactions No

Update statistics for data dictionary Yes

• When to Use MEMORY or NDB Cluster

• Performance Characteristics

• Characteristics of MEMORY Tables

• DDL Operations for MEMORY Tables

• Indexes

• User-Created and Temporary Tables

• Loading Data

• MEMORY Tables and Replication

• Managing Memory Use

• Additional Resources

When to Use MEMORY or NDB Cluster

Developers looking to deploy applications that use the MEMORY storage engine for important, highly
available, or frequently updated data should consider whether NDB Cluster is a better choice. A typical use
case for the MEMORY engine involves these characteristics:

• Operations involving transient, non-critical data such as session management or caching. When the
MySQL server halts or restarts, the data in MEMORY tables is lost.

• In-memory storage for fast access and low latency. Data volume can fit entirely in memory without
causing the operating system to swap out virtual memory pages.

• A read-only or read-mostly data access pattern (limited updates).

NDB Cluster offers the same features as the MEMORY engine with higher performance levels, and provides
additional features not available with MEMORY:

2321

Performance Characteristics

• Row-level locking and multiple-thread operation for low contention between clients.

• Scalability even with statement mixes that include writes.

• Optional disk-backed operation for data durability.

• Shared-nothing architecture and multiple-host operation with no single point of failure, enabling 99.999%
availability.

• Automatic data distribution across nodes; application developers need not craft custom sharding or
partitioning solutions.

• Support for variable-length data types (including BLOB and TEXT) not supported by MEMORY.

Performance Characteristics

MEMORY performance is constrained by contention resulting from single-thread execution and table lock
overhead when processing updates. This limits scalability when load increases, particularly for statement
mixes that include writes.

Despite the in-memory processing for MEMORY tables, they are not necessarily faster than InnoDB tables
on a busy server, for general-purpose queries, or under a read/write workload. In particular, the table
locking involved with performing updates can slow down concurrent usage of MEMORY tables from multiple
sessions.

Depending on the kinds of queries performed on a MEMORY table, you might create indexes as either the
default hash data structure (for looking up single values based on a unique key), or a general-purpose B-
tree data structure (for all kinds of queries involving equality, inequality, or range operators such as less
than or greater than). The following sections illustrate the syntax for creating both kinds of indexes. A
common performance issue is using the default hash indexes in workloads where B-tree indexes are more
efficient.

Characteristics of MEMORY Tables

The MEMORY storage engine associates each table with one disk file, which stores the table definition (not
the data). The file name begins with the table name and has an extension of .frm.

MEMORY tables have the following characteristics:

• Space for MEMORY tables is allocated in small blocks. Tables use 100% dynamic hashing for inserts. No
overflow area or extra key space is needed. No extra space is needed for free lists. Deleted rows are put
in a linked list and are reused when you insert new data into the table. MEMORY tables also have none of
the problems commonly associated with deletes plus inserts in hashed tables.

• MEMORY tables use a fixed-length row-storage format. Variable-length types such as VARCHAR are stored
using a fixed length.

• MEMORY tables cannot contain BLOB or TEXT columns.

• MEMORY includes support for AUTO_INCREMENT columns.

• Non-TEMPORARY MEMORY tables are shared among all clients, just like any other non-TEMPORARY table.

DDL Operations for MEMORY Tables

To create a MEMORY table, specify the clause ENGINE=MEMORY on the CREATE TABLE statement.

2322

Indexes

CREATE TABLE t (i INT) ENGINE = MEMORY;

As indicated by the engine name, MEMORY tables are stored in memory. They use hash indexes by default,
which makes them very fast for single-value lookups, and very useful for creating temporary tables.
However, when the server shuts down, all rows stored in MEMORY tables are lost. The tables themselves
continue to exist because their definitions are stored in .frm files on disk, but they are empty when the
server restarts.

This example shows how you might create, use, and remove a MEMORY table:

mysql> CREATE TABLE test ENGINE=MEMORY
 SELECT ip,SUM(downloads) AS down
 FROM log_table GROUP BY ip;
mysql> SELECT COUNT(ip),AVG(down) FROM test;
mysql> DROP TABLE test;

The maximum size of MEMORY tables is limited by the max_heap_table_size system variable, which
has a default value of 16MB. To enforce different size limits for MEMORY tables, change the value of this
variable. The value in effect for CREATE TABLE, or a subsequent ALTER TABLE or TRUNCATE TABLE,
is the value used for the life of the table. A server restart also sets the maximum size of existing MEMORY
tables to the global max_heap_table_size value. You can set the size for individual tables as described
later in this section.

Indexes

The MEMORY storage engine supports both HASH and BTREE indexes. You can specify one or the other for
a given index by adding a USING clause as shown here:

CREATE TABLE lookup
 (id INT, INDEX USING HASH (id))
 ENGINE = MEMORY;
CREATE TABLE lookup
 (id INT, INDEX USING BTREE (id))
 ENGINE = MEMORY;

For general characteristics of B-tree and hash indexes, see Section 8.3.1, “How MySQL Uses Indexes”.

MEMORY tables can have up to 64 indexes per table, 16 columns per index and a maximum key length of
3072 bytes.

If a MEMORY table hash index has a high degree of key duplication (many index entries containing the
same value), updates to the table that affect key values and all deletes are significantly slower. The
degree of this slowdown is proportional to the degree of duplication (or, inversely proportional to the index
cardinality). You can use a BTREE index to avoid this problem.

MEMORY tables can have nonunique keys. (This is an uncommon feature for implementations of hash
indexes.)

Columns that are indexed can contain NULL values.

User-Created and Temporary Tables

MEMORY table contents are stored in memory, which is a property that MEMORY tables share with internal
temporary tables that the server creates on the fly while processing queries. However, the two types of
tables differ in that MEMORY tables are not subject to storage conversion, whereas internal temporary tables
are:

2323

Loading Data

• If an internal temporary table becomes too large, the server automatically converts it to on-disk storage,
as described in Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• User-created MEMORY tables are never converted to disk tables.

Loading Data

To populate a MEMORY table when the MySQL server starts, you can use the init_file system variable.
For example, you can put statements such as INSERT INTO ... SELECT or LOAD DATA into a file to
load the table from a persistent data source, and use init_file to name the file. See Section 5.1.7,
“Server System Variables”, and Section 13.2.6, “LOAD DATA Statement”.

For loading data into MEMORY tables accessed by other sessions concurrently, MEMORY supports INSERT
DELAYED. See Section 13.2.5.3, “INSERT DELAYED Statement”.

MEMORY Tables and Replication

When a replication source server shuts down and restarts, its MEMORY tables become empty. To replicate
this effect to replicas, the first time that the source uses a given MEMORY table after startup, it logs an event
that notifies replicas that the table must be emptied by writing a DELETE statement for that table to the
binary log. When a replica server shuts down and restarts, its MEMORY tables also become empty, and it
writes a DELETE statement to its own binary log, which is passed on to any downstream replicas.

When you use MEMORY tables in a replication topology, in some situations, the table on the source and the
table on the replica may differ. For information on handling each of these situations to prevent stale reads
or errors, see Section 17.4.1.20, “Replication and MEMORY Tables”.

Managing Memory Use

The server needs sufficient memory to maintain all MEMORY tables that are in use at the same time.

Memory is not reclaimed if you delete individual rows from a MEMORY table. Memory is reclaimed only
when the entire table is deleted. Memory that was previously used for deleted rows is re-used for new
rows within the same table. To free all the memory used by a MEMORY table when you no longer require
its contents, execute DELETE or TRUNCATE TABLE to remove all rows, or remove the table altogether
using DROP TABLE. To free up the memory used by deleted rows, use ALTER TABLE ENGINE=MEMORY
to force a table rebuild.

The memory needed for one row in a MEMORY table is calculated using the following expression:

SUM_OVER_ALL_BTREE_KEYS(max_length_of_key + sizeof(char*) * 4)
+ SUM_OVER_ALL_HASH_KEYS(sizeof(char*) * 2)
+ ALIGN(length_of_row+1, sizeof(char*))

ALIGN() represents a round-up factor to cause the row length to be an exact multiple of the char pointer
size. sizeof(char*) is 4 on 32-bit machines and 8 on 64-bit machines.

As mentioned earlier, the max_heap_table_size system variable sets the limit on the maximum size
of MEMORY tables. To control the maximum size for individual tables, set the session value of this variable
before creating each table. (Do not change the global max_heap_table_size value unless you intend
the value to be used for MEMORY tables created by all clients.) The following example creates two MEMORY
tables, with a maximum size of 1MB and 2MB, respectively:

mysql> SET max_heap_table_size = 1024*1024;
Query OK, 0 rows affected (0.00 sec)

2324

Additional Resources

mysql> CREATE TABLE t1 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.01 sec)

mysql> SET max_heap_table_size = 1024*1024*2;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t2 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.00 sec)

Both tables revert to the server's global max_heap_table_size value if the server restarts.

You can also specify a MAX_ROWS table option in CREATE TABLE statements for MEMORY tables to provide
a hint about the number of rows you plan to store in them. This does not enable the table to grow beyond
the max_heap_table_size value, which still acts as a constraint on maximum table size. For maximum
flexibility in being able to use MAX_ROWS, set max_heap_table_size at least as high as the value to
which you want each MEMORY table to be able to grow.

Additional Resources

A forum dedicated to the MEMORY storage engine is available at https://forums.mysql.com/list.php?92.

15.4 The CSV Storage Engine

The CSV storage engine stores data in text files using comma-separated values format.

The CSV storage engine is always compiled into the MySQL server.

To examine the source for the CSV engine, look in the storage/csv directory of a MySQL source
distribution.

When you create a CSV table, the server creates a table format file in the database directory. The file
begins with the table name and has an .frm extension. The storage engine also creates plain text data file
having a name that begins with the table name and has a .CSV extension. When you store data into the
table, the storage engine saves it into the data file in comma-separated values format.

mysql> CREATE TABLE test (i INT NOT NULL, c CHAR(10) NOT NULL)
 ENGINE = CSV;
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.05 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
+---+------------+
| i | c |
+---+------------+
| 1 | record one |
| 2 | record two |
+---+------------+
2 rows in set (0.00 sec)

Creating a CSV table also creates a corresponding metafile that stores the state of the table and the
number of rows that exist in the table. The name of this file is the same as the name of the table with the
extension CSM.

If you examine the test.CSV file in the database directory created by executing the preceding statements,
its contents should look like this:

"1","record one"

2325

https://forums.mysql.com/list.php?92

Repairing and Checking CSV Tables

"2","record two"

This format can be read, and even written, by spreadsheet applications such as Microsoft Excel.

15.4.1 Repairing and Checking CSV Tables

The CSV storage engine supports the CHECK TABLE and REPAIR TABLE statements to verify and, if
possible, repair a damaged CSV table.

When running the CHECK TABLE statement, the CSV file is checked for validity by looking for the correct
field separators, escaped fields (matching or missing quotation marks), the correct number of fields
compared to the table definition and the existence of a corresponding CSV metafile. The first invalid row
discovered raises an error. Checking a valid table produces output like that shown below:

mysql> CHECK TABLE csvtest;
+--------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | status | OK |
+--------------+-------+----------+----------+

A check on a corrupted table returns a fault such as

mysql> CHECK TABLE csvtest;
+--------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | error | Corrupt |
+--------------+-------+----------+----------+

To repair a table, use REPAIR TABLE, which copies as many valid rows from the existing CSV data as
possible, and then replaces the existing CSV file with the recovered rows. Any rows beyond the corrupted
data are lost.

mysql> REPAIR TABLE csvtest;
+--------------+--------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+--------+----------+----------+
| test.csvtest | repair | status | OK |
+--------------+--------+----------+----------+

Warning

During repair, only the rows from the CSV file up to the first damaged row are copied
to the new table. All other rows from the first damaged row to the end of the table
are removed, even valid rows.

15.4.2 CSV Limitations

The CSV storage engine does not support indexing.

Partitioning is not supported for tables using the CSV storage engine.

All tables that you create using the CSV storage engine must have the NOT NULL attribute on all columns.

15.5 The ARCHIVE Storage Engine

The ARCHIVE storage engine produces special-purpose tables that store large amounts of unindexed data
in a very small footprint.

2326

The ARCHIVE Storage Engine

Table 15.5 ARCHIVE Storage Engine Features

Feature Support

B-tree indexes No

Backup/point-in-time recovery (Implemented in
the server, rather than in the storage engine.)

Yes

Cluster database support No

Clustered indexes No

Compressed data Yes

Data caches No

Encrypted data Yes (Implemented in the server via encryption
functions.)

Foreign key support No

Full-text search indexes No

Geospatial data type support Yes

Geospatial indexing support No

Hash indexes No

Index caches No

Locking granularity Row

MVCC No

Replication support (Implemented in the server,
rather than in the storage engine.)

Yes

Storage limits None

T-tree indexes No

Transactions No

Update statistics for data dictionary Yes

The ARCHIVE storage engine is included in MySQL binary distributions. To enable this storage engine if
you build MySQL from source, invoke CMake with the -DWITH_ARCHIVE_STORAGE_ENGINE option.

To examine the source for the ARCHIVE engine, look in the storage/archive directory of a MySQL
source distribution.

You can check whether the ARCHIVE storage engine is available with the SHOW ENGINES statement.

When you create an ARCHIVE table, the server creates a table format file in the database directory. The
file begins with the table name and has an .frm extension. The storage engine creates other files, all
having names beginning with the table name. The data file has an extension of .ARZ. An .ARN file may
appear during optimization operations.

The ARCHIVE engine supports INSERT, REPLACE, and SELECT, but not DELETE or UPDATE. It does
support ORDER BY operations, BLOB columns, and basically all data types including spatial data types
(see Section 11.4.1, “Spatial Data Types”). Geographic spatial reference systems are not supported. The
ARCHIVE engine uses row-level locking.

The ARCHIVE engine supports the AUTO_INCREMENT column attribute. The AUTO_INCREMENT column
can have either a unique or nonunique index. Attempting to create an index on any other column results

2327

Additional Resources

in an error. The ARCHIVE engine also supports the AUTO_INCREMENT table option in CREATE TABLE
statements to specify the initial sequence value for a new table or reset the sequence value for an existing
table, respectively.

ARCHIVE does not support inserting a value into an AUTO_INCREMENT column less than the current
maximum column value. Attempts to do so result in an ER_DUP_KEY error.

The ARCHIVE engine ignores BLOB columns if they are not requested and scans past them while reading.

Storage: Rows are compressed as they are inserted. The ARCHIVE engine uses zlib lossless data
compression (see http://www.zlib.net/). You can use OPTIMIZE TABLE to analyze the table and pack it
into a smaller format (for a reason to use OPTIMIZE TABLE, see later in this section). The engine also
supports CHECK TABLE. There are several types of insertions that are used:

• An INSERT statement just pushes rows into a compression buffer, and that buffer flushes as necessary.
The insertion into the buffer is protected by a lock. A SELECT forces a flush to occur, unless the only
insertions that have come in were INSERT DELAYED (those flush as necessary). See Section 13.2.5.3,
“INSERT DELAYED Statement”.

• A bulk insert is visible only after it completes, unless other inserts occur at the same time, in which case
it can be seen partially. A SELECT never causes a flush of a bulk insert unless a normal insert occurs
while it is loading.

Retrieval: On retrieval, rows are uncompressed on demand; there is no row cache. A SELECT operation
performs a complete table scan: When a SELECT occurs, it finds out how many rows are currently
available and reads that number of rows. SELECT is performed as a consistent read. Note that lots of
SELECT statements during insertion can deteriorate the compression, unless only bulk or delayed inserts
are used. To achieve better compression, you can use OPTIMIZE TABLE or REPAIR TABLE. The number
of rows in ARCHIVE tables reported by SHOW TABLE STATUS is always accurate. See Section 13.7.2.4,
“OPTIMIZE TABLE Statement”, Section 13.7.2.5, “REPAIR TABLE Statement”, and Section 13.7.5.37,
“SHOW TABLE STATUS Statement”.

Additional Resources

• A forum dedicated to the ARCHIVE storage engine is available at https://forums.mysql.com/list.php?112.

15.6 The BLACKHOLE Storage Engine

The BLACKHOLE storage engine acts as a “black hole” that accepts data but throws it away and does not
store it. Retrievals always return an empty result:

mysql> CREATE TABLE test(i INT, c CHAR(10)) ENGINE = BLACKHOLE;
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
Empty set (0.00 sec)

To enable the BLACKHOLE storage engine if you build MySQL from source, invoke CMake with the -
DWITH_BLACKHOLE_STORAGE_ENGINE option.

To examine the source for the BLACKHOLE engine, look in the sql directory of a MySQL source
distribution.

2328

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_dup_key
http://www.zlib.net/
https://forums.mysql.com/list.php?112

The BLACKHOLE Storage Engine

When you create a BLACKHOLE table, the server creates a table format file in the database directory. The
file begins with the table name and has an .frm extension. There are no other files associated with the
table.

The BLACKHOLE storage engine supports all kinds of indexes. That is, you can include index declarations
in the table definition.

The maximum key length is 1000 bytes.

You can check whether the BLACKHOLE storage engine is available with the SHOW ENGINES statement.

Inserts into a BLACKHOLE table do not store any data, but if statement based binary logging is enabled,
the SQL statements are logged and replicated to replica servers. This can be useful as a repeater or filter
mechanism.

Suppose that your application requires replica-side filtering rules, but transferring all binary log data to the
replica first results in too much traffic. In such a case, it is possible to set up on the source host a “dummy”
replica process whose default storage engine is BLACKHOLE, depicted as follows:

Figure 15.1 Replication using BLACKHOLE for Filtering

The source writes to its binary log. The “dummy” mysqld process acts as a replica, applying the desired
combination of replicate-do-* and replicate-ignore-* rules, and writes a new, filtered binary log
of its own. (See Section 17.1.4, “Replication and Binary Logging Options and Variables”.) This filtered log
is provided to the replica.

The dummy process does not actually store any data, so there is little processing overhead incurred by
running the additional mysqld process on the replication source host. This type of setup can be repeated
with additional replicas.

INSERT triggers for BLACKHOLE tables work as expected. However, because the BLACKHOLE table does
not actually store any data, UPDATE and DELETE triggers are not activated: The FOR EACH ROW clause in
the trigger definition does not apply because there are no rows.

2329

The BLACKHOLE Storage Engine

Other possible uses for the BLACKHOLE storage engine include:

• Verification of dump file syntax.

• Measurement of the overhead from binary logging, by comparing performance using BLACKHOLE with
and without binary logging enabled.

• BLACKHOLE is essentially a “no-op” storage engine, so it could be used for finding performance
bottlenecks not related to the storage engine itself.

The BLACKHOLE engine is transaction-aware, in the sense that committed transactions are written to the
binary log and rolled-back transactions are not.

Blackhole Engine and Auto Increment Columns

The BLACKHOLE engine is a no-op engine. Any operations performed on a table using BLACKHOLE have
no effect. This should be born in mind when considering the behavior of primary key columns that auto
increment. The engine does not automatically increment field values, and does not retain auto increment
column state. This has important implications in replication.

Consider the following replication scenario where all three of the following conditions apply:

1. On a source server there is a blackhole table with an auto increment field that is a primary key.

2. On a replica the same table exists but using the MyISAM engine.

3. Inserts are performed into the source's table without explicitly setting the auto increment value in the
INSERT statement itself or through using a SET INSERT_ID statement.

In this scenario replication fails with a duplicate entry error on the primary key column.

In statement based replication, the value of INSERT_ID in the context event is always the same.
Replication therefore fails due to trying insert a row with a duplicate value for a primary key column.

In row based replication, the value that the engine returns for the row always be the same for each insert.
This results in the replica attempting to replay two insert log entries using the same value for the primary
key column, and so replication fails.

Column Filtering

When using row-based replication, (binlog_format=ROW), a replica where the last columns are missing
from a table is supported, as described in the section Section 17.4.1.9, “Replication with Differing Table
Definitions on Source and Replica”.

This filtering works on the replica side, that is, the columns are copied to the replica before they are filtered
out. There are at least two cases where it is not desirable to copy the columns to the replica:

1. If the data is confidential, so the replica server should not have access to it.

2. If the source has many replicas, filtering before sending to the replicas may reduce network traffic.

Source column filtering can be achieved using the BLACKHOLE engine. This is carried out in a way similar
to how source table filtering is achieved - by using the BLACKHOLE engine and the --replicate-do-
table or --replicate-ignore-table option.

The setup for the source is:

CREATE TABLE t1 (public_col_1, ..., public_col_N,

2330

The MERGE Storage Engine

 secret_col_1, ..., secret_col_M) ENGINE=MyISAM;

The setup for the trusted replica is:

CREATE TABLE t1 (public_col_1, ..., public_col_N) ENGINE=BLACKHOLE;

The setup for the untrusted replica is:

CREATE TABLE t1 (public_col_1, ..., public_col_N) ENGINE=MyISAM;

15.7 The MERGE Storage Engine

The MERGE storage engine, also known as the MRG_MyISAM engine, is a collection of identical MyISAM
tables that can be used as one. “Identical” means that all tables have identical column data types and
index information. You cannot merge MyISAM tables in which the columns are listed in a different order,
do not have exactly the same data types in corresponding columns, or have the indexes in different order.
However, any or all of the MyISAM tables can be compressed with myisampack. See Section 4.6.5,
“myisampack — Generate Compressed, Read-Only MyISAM Tables”. Differences between tables such as
these do not matter:

• Names of corresponding columns and indexes can differ.

• Comments for tables, columns, and indexes can differ.

• Table options such as AVG_ROW_LENGTH, MAX_ROWS, or PACK_KEYS can differ.

An alternative to a MERGE table is a partitioned table, which stores partitions of a single table in separate
files. Partitioning enables some operations to be performed more efficiently and is not limited to the
MyISAM storage engine. For more information, see Chapter 19, Partitioning.

When you create a MERGE table, MySQL creates two files on disk. The files have names that begin with
the table name and have an extension to indicate the file type. An .frm file stores the table format, and an
.MRG file contains the names of the underlying MyISAM tables that should be used as one. The tables do
not have to be in the same database as the MERGE table.

You can use SELECT, DELETE, UPDATE, and INSERT on MERGE tables. You must have SELECT, DELETE,
and UPDATE privileges on the MyISAM tables that you map to a MERGE table.

Note

The use of MERGE tables entails the following security issue: If a user has access to
MyISAM table t, that user can create a MERGE table m that accesses t. However,
if the user's privileges on t are subsequently revoked, the user can continue to
access t by doing so through m.

Use of DROP TABLE with a MERGE table drops only the MERGE specification. The underlying tables are not
affected.

To create a MERGE table, you must specify a UNION=(list-of-tables) option that indicates which
MyISAM tables to use. You can optionally specify an INSERT_METHOD option to control how inserts into
the MERGE table take place. Use a value of FIRST or LAST to cause inserts to be made in the first or last
underlying table, respectively. If you specify no INSERT_METHOD option or if you specify it with a value of
NO, inserts into the MERGE table are not permitted and attempts to do so result in an error.

The following example shows how to create a MERGE table:

mysql> CREATE TABLE t1 (

2331

The MERGE Storage Engine

 -> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> message CHAR(20)) ENGINE=MyISAM;
mysql> CREATE TABLE t2 (
 -> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> message CHAR(20)) ENGINE=MyISAM;
mysql> INSERT INTO t1 (message) VALUES ('Testing'),('table'),('t1');
mysql> INSERT INTO t2 (message) VALUES ('Testing'),('table'),('t2');
mysql> CREATE TABLE total (
 -> a INT NOT NULL AUTO_INCREMENT,
 -> message CHAR(20), INDEX(a))
 -> ENGINE=MERGE UNION=(t1,t2) INSERT_METHOD=LAST;

Column a is indexed as a PRIMARY KEY in the underlying MyISAM tables, but not in the MERGE table.
There it is indexed but not as a PRIMARY KEY because a MERGE table cannot enforce uniqueness over
the set of underlying tables. (Similarly, a column with a UNIQUE index in the underlying tables should be
indexed in the MERGE table but not as a UNIQUE index.)

After creating the MERGE table, you can use it to issue queries that operate on the group of tables as a
whole:

mysql> SELECT * FROM total;
+---+---------+
| a | message |
+---+---------+
1	Testing
2	table
3	t1
1	Testing
2	table
3	t2
+---+---------+

To remap a MERGE table to a different collection of MyISAM tables, you can use one of the following
methods:

• DROP the MERGE table and re-create it.

• Use ALTER TABLE tbl_name UNION=(...) to change the list of underlying tables.

It is also possible to use ALTER TABLE ... UNION=() (that is, with an empty UNION clause) to
remove all of the underlying tables. However, in this case, the table is effectively empty and inserts fail
because there is no underlying table to take new rows. Such a table might be useful as a template for
creating new MERGE tables with CREATE TABLE ... LIKE.

The underlying table definitions and indexes must conform closely to the definition of the MERGE table.
Conformance is checked when a table that is part of a MERGE table is opened, not when the MERGE table
is created. If any table fails the conformance checks, the operation that triggered the opening of the table
fails. This means that changes to the definitions of tables within a MERGE may cause a failure when the
MERGE table is accessed. The conformance checks applied to each table are:

• The underlying table and the MERGE table must have the same number of columns.

• The column order in the underlying table and the MERGE table must match.

• Additionally, the specification for each corresponding column in the parent MERGE table and the
underlying tables are compared and must satisfy these checks:

• The column type in the underlying table and the MERGE table must be equal.

• The column length in the underlying table and the MERGE table must be equal.

2332

Additional Resources

• The column of the underlying table and the MERGE table can be NULL.

• The underlying table must have at least as many indexes as the MERGE table. The underlying table may
have more indexes than the MERGE table, but cannot have fewer.

Note

A known issue exists where indexes on the same columns must be in identical
order, in both the MERGE table and the underlying MyISAM table. See Bug
#33653.

Each index must satisfy these checks:

• The index type of the underlying table and the MERGE table must be the same.

• The number of index parts (that is, multiple columns within a compound index) in the index definition
for the underlying table and the MERGE table must be the same.

• For each index part:

• Index part lengths must be equal.

• Index part types must be equal.

• Index part languages must be equal.

• Check whether index parts can be NULL.

If a MERGE table cannot be opened or used because of a problem with an underlying table, CHECK TABLE
displays information about which table caused the problem.

Additional Resources

• A forum dedicated to the MERGE storage engine is available at https://forums.mysql.com/list.php?93.

15.7.1 MERGE Table Advantages and Disadvantages

MERGE tables can help you solve the following problems:

• Easily manage a set of log tables. For example, you can put data from different months into separate
tables, compress some of them with myisampack, and then create a MERGE table to use them as one.

• Obtain more speed. You can split a large read-only table based on some criteria, and then put individual
tables on different disks. A MERGE table structured this way could be much faster than using a single
large table.

• Perform more efficient searches. If you know exactly what you are looking for, you can search in just one
of the underlying tables for some queries and use a MERGE table for others. You can even have many
different MERGE tables that use overlapping sets of tables.

• Perform more efficient repairs. It is easier to repair individual smaller tables that are mapped to a MERGE
table than to repair a single large table.

• Instantly map many tables as one. A MERGE table need not maintain an index of its own because it uses
the indexes of the individual tables. As a result, MERGE table collections are very fast to create or remap.
(You must still specify the index definitions when you create a MERGE table, even though no indexes are
created.)

2333

https://forums.mysql.com/list.php?93

MERGE Table Problems

• If you have a set of tables from which you create a large table on demand, you can instead create a
MERGE table from them on demand. This is much faster and saves a lot of disk space.

• Exceed the file size limit for the operating system. Each MyISAM table is bound by this limit, but a
collection of MyISAM tables is not.

• You can create an alias or synonym for a MyISAM table by defining a MERGE table that maps to that
single table. There should be no really notable performance impact from doing this (only a couple of
indirect calls and memcpy() calls for each read).

The disadvantages of MERGE tables are:

• You can use only identical MyISAM tables for a MERGE table.

• Some MyISAM features are unavailable in MERGE tables. For example, you cannot create FULLTEXT
indexes on MERGE tables. (You can create FULLTEXT indexes on the underlying MyISAM tables, but you
cannot search the MERGE table with a full-text search.)

• If the MERGE table is nontemporary, all underlying MyISAM tables must be nontemporary. If the MERGE
table is temporary, the MyISAM tables can be any mix of temporary and nontemporary.

• MERGE tables use more file descriptors than MyISAM tables. If 10 clients are using a MERGE table that
maps to 10 tables, the server uses (10 × 10) + 10 file descriptors. (10 data file descriptors for each of the
10 clients, and 10 index file descriptors shared among the clients.)

• Index reads are slower. When you read an index, the MERGE storage engine needs to issue a read on all
underlying tables to check which one most closely matches a given index value. To read the next index
value, the MERGE storage engine needs to search the read buffers to find the next value. Only when one
index buffer is used up does the storage engine need to read the next index block. This makes MERGE
indexes much slower on eq_ref searches, but not much slower on ref searches. For more information
about eq_ref and ref, see Section 13.8.2, “EXPLAIN Statement”.

15.7.2 MERGE Table Problems

The following are known problems with MERGE tables:

• In versions of MySQL Server prior to 5.1.23, it was possible to create temporary merge tables with
nontemporary child MyISAM tables.

From versions 5.1.23, MERGE children were locked through the parent table. If the parent was
temporary, it was not locked and so the children were not locked either. Parallel use of the MyISAM
tables corrupted them.

• If you use ALTER TABLE to change a MERGE table to another storage engine, the mapping to the
underlying tables is lost. Instead, the rows from the underlying MyISAM tables are copied into the altered
table, which then uses the specified storage engine.

• The INSERT_METHOD table option for a MERGE table indicates which underlying MyISAM table to use for
inserts into the MERGE table. However, use of the AUTO_INCREMENT table option for that MyISAM table
has no effect for inserts into the MERGE table until at least one row has been inserted directly into the
MyISAM table.

• A MERGE table cannot maintain uniqueness constraints over the entire table. When you perform an
INSERT, the data goes into the first or last MyISAM table (as determined by the INSERT_METHOD
option). MySQL ensures that unique key values remain unique within that MyISAM table, but not over all
the underlying tables in the collection.

2334

MERGE Table Problems

• Because the MERGE engine cannot enforce uniqueness over the set of underlying tables, REPLACE does
not work as expected. The two key facts are:

• REPLACE can detect unique key violations only in the underlying table to which it is going to write
(which is determined by the INSERT_METHOD option). This differs from violations in the MERGE table
itself.

• If REPLACE detects a unique key violation, it changes only the corresponding row in the underlying
table it is writing to; that is, the first or last table, as determined by the INSERT_METHOD option.

Similar considerations apply for INSERT ... ON DUPLICATE KEY UPDATE.

• MERGE tables do not support partitioning. That is, you cannot partition a MERGE table, nor can any of a
MERGE table's underlying MyISAM tables be partitioned.

• You should not use ANALYZE TABLE, REPAIR TABLE, OPTIMIZE TABLE, ALTER TABLE, DROP
TABLE, DELETE without a WHERE clause, or TRUNCATE TABLE on any of the tables that are mapped
into an open MERGE table. If you do so, the MERGE table may still refer to the original table and yield
unexpected results. To work around this problem, ensure that no MERGE tables remain open by issuing a
FLUSH TABLES statement prior to performing any of the named operations.

The unexpected results include the possibility that the operation on the MERGE table may report table
corruption. If this occurs after one of the named operations on the underlying MyISAM tables, the
corruption message is spurious. To deal with this, issue a FLUSH TABLES statement after modifying the
MyISAM tables.

• DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the MERGE
storage engine's table mapping is hidden from the upper layer of MySQL. Windows does not permit open
files to be deleted, so you first must flush all MERGE tables (with FLUSH TABLES) or drop the MERGE
table before dropping the table.

• The definition of the MyISAM tables and the MERGE table are checked when the tables are accessed (for
example, as part of a SELECT or INSERT statement). The checks ensure that the definitions of the tables
and the parent MERGE table definition match by comparing column order, types, sizes and associated
indexes. If there is a difference between the tables, an error is returned and the statement fails. Because
these checks take place when the tables are opened, any changes to the definition of a single table,
including column changes, column ordering, and engine alterations, cause the statement to fail.

• The order of indexes in the MERGE table and its underlying tables should be the same. If you use ALTER
TABLE to add a UNIQUE index to a table used in a MERGE table, and then use ALTER TABLE to add a
nonunique index on the MERGE table, the index ordering is different for the tables if there was already a
nonunique index in the underlying table. (This happens because ALTER TABLE puts UNIQUE indexes
before nonunique indexes to facilitate rapid detection of duplicate keys.) Consequently, queries on tables
with such indexes may return unexpected results.

• If you encounter an error message similar to ERROR 1017 (HY000): Can't find file:
'tbl_name.MRG' (errno: 2), it generally indicates that some of the underlying tables do not use
the MyISAM storage engine. Confirm that all of these tables are MyISAM.

• The maximum number of rows in a MERGE table is 264 (~1.844E+19; the same as for a MyISAM table). It
is not possible to merge multiple MyISAM tables into a single MERGE table that would have more than this
number of rows.

• The MERGE storage engine does not support INSERT DELAYED statements.

• Use of underlying MyISAM tables of differing row formats with a parent MERGE table is currently known to
fail. See Bug #32364.

2335

The FEDERATED Storage Engine

• You cannot change the union list of a nontemporary MERGE table when LOCK TABLES is in effect. The
following does not work:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ...;
LOCK TABLES t1 WRITE, t2 WRITE, m1 WRITE;
ALTER TABLE m1 ... UNION=(t1,t2) ...;

However, you can do this with a temporary MERGE table.

• You cannot create a MERGE table with CREATE ... SELECT, neither as a temporary MERGE table, nor
as a nontemporary MERGE table. For example:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ... SELECT ...;

Attempts to do this result in an error: tbl_name is not BASE TABLE.

• In some cases, differing PACK_KEYS table option values among the MERGE and underlying tables cause
unexpected results if the underlying tables contain CHAR or BINARY columns. As a workaround, use
ALTER TABLE to ensure that all involved tables have the same PACK_KEYS value. (Bug #50646)

15.8 The FEDERATED Storage Engine

The FEDERATED storage engine lets you access data from a remote MySQL database without using
replication or cluster technology. Querying a local FEDERATED table automatically pulls the data from the
remote (federated) tables. No data is stored on the local tables.

To include the FEDERATED storage engine if you build MySQL from source, invoke CMake with the -
DWITH_FEDERATED_STORAGE_ENGINE option.

The FEDERATED storage engine is not enabled by default in the running server; to enable FEDERATED, you
must start the MySQL server binary using the --federated option.

To examine the source for the FEDERATED engine, look in the storage/federated directory of a
MySQL source distribution.

15.8.1 FEDERATED Storage Engine Overview

When you create a table using one of the standard storage engines (such as MyISAM, CSV or InnoDB),
the table consists of the table definition and the associated data. When you create a FEDERATED table, the
table definition is the same, but the physical storage of the data is handled on a remote server.

A FEDERATED table consists of two elements:

• A remote server with a database table, which in turn consists of the table definition (stored in the .frm
file) and the associated table. The table type of the remote table may be any type supported by the
remote mysqld server, including MyISAM or InnoDB.

• A local server with a database table, where the table definition matches that of the corresponding table
on the remote server. The table definition is stored within the .frm file. However, there is no data file on
the local server. Instead, the table definition includes a connection string that points to the remote table.

When executing queries and statements on a FEDERATED table on the local server, the operations that
would normally insert, update or delete information from a local data file are instead sent to the remote
server for execution, where they update the data file on the remote server or return matching rows from the
remote server.

The basic structure of a FEDERATED table setup is shown in Figure 15.2, “FEDERATED Table Structure”.

2336

How to Create FEDERATED Tables

Figure 15.2 FEDERATED Table Structure

When a client issues an SQL statement that refers to a FEDERATED table, the flow of information between
the local server (where the SQL statement is executed) and the remote server (where the data is physically
stored) is as follows:

1. The storage engine looks through each column that the FEDERATED table has and constructs an
appropriate SQL statement that refers to the remote table.

2. The statement is sent to the remote server using the MySQL client API.

3. The remote server processes the statement and the local server retrieves any result that the statement
produces (an affected-rows count or a result set).

4. If the statement produces a result set, each column is converted to internal storage engine format that
the FEDERATED engine expects and can use to display the result to the client that issued the original
statement.

The local server communicates with the remote server using MySQL client C API functions. It invokes
mysql_real_query() to send the statement. To read a result set, it uses mysql_store_result()
and fetches rows one at a time using mysql_fetch_row().

15.8.2 How to Create FEDERATED Tables

To create a FEDERATED table you should follow these steps:

1. Create the table on the remote server. Alternatively, make a note of the table definition of an existing
table, perhaps using the SHOW CREATE TABLE statement.

2. Create the table on the local server with an identical table definition, but adding the connection
information that links the local table to the remote table.

2337

https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-query.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-store-result.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-fetch-row.html

How to Create FEDERATED Tables

For example, you could create the following table on the remote server:

CREATE TABLE test_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=MyISAM
DEFAULT CHARSET=latin1;

To create the local table that is federated to the remote table, there are two options available. You can
either create the local table and specify the connection string (containing the server name, login, password)
to be used to connect to the remote table using the CONNECTION, or you can use an existing connection
that you have previously created using the CREATE SERVER statement.

Important

When you create the local table it must have an identical field definition to the
remote table.

Note

You can improve the performance of a FEDERATED table by adding indexes to the
table on the host. The optimization occurs because the query sent to the remote
server includes the contents of the WHERE clause and is sent to the remote server
and subsequently executed locally. This reduces the network traffic that would
otherwise request the entire table from the server for local processing.

15.8.2.1 Creating a FEDERATED Table Using CONNECTION

To use the first method, you must specify the CONNECTION string after the engine type in a CREATE
TABLE statement. For example:

CREATE TABLE federated_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

Note

CONNECTION replaces the COMMENT used in some previous versions of MySQL.

The CONNECTION string contains the information required to connect to the remote server containing the
table that is used to provide physical storage of the data. The connection string specifies the server name,
login credentials, port number and database/table information. In the example, the remote table is on the
server remote_host, using port 9306. The name and port number should match the host name (or IP
address) and port number of the remote MySQL server instance you want to use as your remote table.

The format of the connection string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

2338

How to Create FEDERATED Tables

Where:

• scheme: A recognized connection protocol. Only mysql is supported as the scheme value at this point.

• user_name: The user name for the connection. This user must have been created on the remote server,
and must have suitable privileges to perform the required actions (SELECT, INSERT, UPDATE, and so
forth) on the remote table.

• password: (Optional) The corresponding password for user_name.

• host_name: The host name or IP address of the remote server.

• port_num: (Optional) The port number for the remote server. The default is 3306.

• db_name: The name of the database holding the remote table.

• tbl_name: The name of the remote table. The name of the local and the remote table do not have to
match.

Sample connection strings:

CONNECTION='mysql://username:password@hostname:port/database/tablename'
CONNECTION='mysql://username@hostname/database/tablename'
CONNECTION='mysql://username:password@hostname/database/tablename'

15.8.2.2 Creating a FEDERATED Table Using CREATE SERVER

If you are creating a number of FEDERATED tables on the same server, or if you want to simplify the
process of creating FEDERATED tables, you can use the CREATE SERVER statement to define the server
connection parameters, just as you would with the CONNECTION string.

The format of the CREATE SERVER statement is:

CREATE SERVER
server_name
FOREIGN DATA WRAPPER wrapper_name
OPTIONS (option [, option] ...)

The server_name is used in the connection string when creating a new FEDERATED table.

For example, to create a server connection identical to the CONNECTION string:

CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

You would use the following statement:

CREATE SERVER fedlink
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'fed_user', HOST 'remote_host', PORT 9306, DATABASE 'federated');

To create a FEDERATED table that uses this connection, you still use the CONNECTION keyword, but
specify the name you used in the CREATE SERVER statement.

CREATE TABLE test_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1

2339

FEDERATED Storage Engine Notes and Tips

CONNECTION='fedlink/test_table';

The connection name in this example contains the name of the connection (fedlink) and the name of
the table (test_table) to link to, separated by a slash. If you specify only the connection name without a
table name, the table name of the local table is used instead.

For more information on CREATE SERVER, see Section 13.1.16, “CREATE SERVER Statement”.

The CREATE SERVER statement accepts the same arguments as the CONNECTION string. The CREATE
SERVER statement updates the rows in the mysql.servers table. See the following table for information
on the correspondence between parameters in a connection string, options in the CREATE SERVER
statement, and the columns in the mysql.servers table. For reference, the format of the CONNECTION
string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Description CONNECTION string CREATE SERVER option mysql.servers
column

Connection scheme scheme wrapper_name Wrapper

Remote user user_name USER Username

Remote password password PASSWORD Password

Remote host host_name HOST Host

Remote port port_num PORT Port

Remote database db_name DATABASE Db

15.8.3 FEDERATED Storage Engine Notes and Tips

You should be aware of the following points when using the FEDERATED storage engine:

• FEDERATED tables may be replicated to other replicas, but you must ensure that the replica servers are
able to use the user/password combination that is defined in the CONNECTION string (or the row in the
mysql.servers table) to connect to the remote server.

The following items indicate features that the FEDERATED storage engine does and does not support:

• The remote server must be a MySQL server.

• The remote table that a FEDERATED table points to must exist before you try to access the table through
the FEDERATED table.

• It is possible for one FEDERATED table to point to another, but you must be careful not to create a loop.

• A FEDERATED table does not support indexes in the usual sense; because access to the table data is
handled remotely, it is actually the remote table that makes use of indexes. This means that, for a query
that cannot use any indexes and so requires a full table scan, the server fetches all rows from the remote
table and filters them locally. This occurs regardless of any WHERE or LIMIT used with this SELECT
statement; these clauses are applied locally to the returned rows.

Queries that fail to use indexes can thus cause poor performance and network overload. In addition,
since returned rows must be stored in memory, such a query can also lead to the local server swapping,
or even hanging.

• Care should be taken when creating a FEDERATED table since the index definition from an equivalent
MyISAM or other table may not be supported. For example, creating a FEDERATED table with an index
prefix on VARCHAR, TEXT or BLOB columns fails. The following definition in MyISAM is valid:

2340

FEDERATED Storage Engine Resources

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=MYISAM;

The key prefix in this example is incompatible with the FEDERATED engine, and the equivalent statement
fails:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=FEDERATED
 CONNECTION='MYSQL://127.0.0.1:3306/TEST/T1';

If possible, you should try to separate the column and index definition when creating tables on both the
remote server and the local server to avoid these index issues.

• Internally, the implementation uses SELECT, INSERT, UPDATE, and DELETE, but not HANDLER.

• The FEDERATED storage engine supports SELECT, INSERT, UPDATE, DELETE, TRUNCATE TABLE, and
indexes. It does not support ALTER TABLE, or any Data Definition Language statements that directly
affect the structure of the table, other than DROP TABLE. The current implementation does not use
prepared statements.

• FEDERATED accepts INSERT ... ON DUPLICATE KEY UPDATE statements, but if a duplicate-key
violation occurs, the statement fails with an error.

• Transactions are not supported.

• FEDERATED performs bulk-insert handling such that multiple rows are sent to the remote table in a
batch, which improves performance. Also, if the remote table is transactional, it enables the remote
storage engine to perform statement rollback properly should an error occur. This capability has the
following limitations:

• The size of the insert cannot exceed the maximum packet size between servers. If the insert exceeds
this size, it is broken into multiple packets and the rollback problem can occur.

• Bulk-insert handling does not occur for INSERT ... ON DUPLICATE KEY UPDATE.

• There is no way for the FEDERATED engine to know if the remote table has changed. The reason for
this is that this table must work like a data file that would never be written to by anything other than the
database system. The integrity of the data in the local table could be breached if there was any change
to the remote database.

• When using a CONNECTION string, you cannot use an '@' character in the password. You can get round
this limitation by using the CREATE SERVER statement to create a server connection.

• The insert_id and timestamp options are not propagated to the data provider.

• Any DROP TABLE statement issued against a FEDERATED table drops only the local table, not the
remote table.

• FEDERATED tables do not work with the query cache.

• User-defined partitioning is not supported for FEDERATED tables.

15.8.4 FEDERATED Storage Engine Resources

The following additional resources are available for the FEDERATED storage engine:

• A forum dedicated to the FEDERATED storage engine is available at https://forums.mysql.com/list.php?
105.

15.9 The EXAMPLE Storage Engine

2341

https://forums.mysql.com/list.php?105
https://forums.mysql.com/list.php?105

Other Storage Engines

The EXAMPLE storage engine is a stub engine that does nothing. Its purpose is to serve as an example in
the MySQL source code that illustrates how to begin writing new storage engines. As such, it is primarily of
interest to developers.

To enable the EXAMPLE storage engine if you build MySQL from source, invoke CMake with the -
DWITH_EXAMPLE_STORAGE_ENGINE option.

To examine the source for the EXAMPLE engine, look in the storage/example directory of a MySQL
source distribution.

When you create an EXAMPLE table, the server creates a table format file in the database directory. The
file begins with the table name and has an .frm extension. No other files are created. No data can be
stored into the table. Retrievals return an empty result.

mysql> CREATE TABLE test (i INT) ENGINE = EXAMPLE;
Query OK, 0 rows affected (0.78 sec)

mysql> INSERT INTO test VALUES(1),(2),(3);
ERROR 1031 (HY000): Table storage engine for 'test' doesn't »
 have this option

mysql> SELECT * FROM test;
Empty set (0.31 sec)

The EXAMPLE storage engine does not support indexing.

15.10 Other Storage Engines

Other storage engines may be available from third parties and community members that have used the
Custom Storage Engine interface.

Third party engines are not supported by MySQL. For further information, documentation, installation
guides, bug reporting or for any help or assistance with these engines, please contact the developer of the
engine directly.

For more information on developing a customer storage engine that can be used with the Pluggable
Storage Engine Architecture, see MySQL Internals: Writing a Custom Storage Engine.

15.11 Overview of MySQL Storage Engine Architecture

The MySQL pluggable storage engine architecture enables a database professional to select a specialized
storage engine for a particular application need while being completely shielded from the need to manage
any specific application coding requirements. The MySQL server architecture isolates the application
programmer and DBA from all of the low-level implementation details at the storage level, providing a
consistent and easy application model and API. Thus, although there are different capabilities across
different storage engines, the application is shielded from these differences.

The pluggable storage engine architecture provides a standard set of management and support services
that are common among all underlying storage engines. The storage engines themselves are the
components of the database server that actually perform actions on the underlying data that is maintained
at the physical server level.

This efficient and modular architecture provides huge benefits for those wishing to specifically target
a particular application need—such as data warehousing, transaction processing, or high availability
situations—while enjoying the advantage of utilizing a set of interfaces and services that are independent
of any one storage engine.

2342

https://dev.mysql.com/doc/internals/en/custom-engine.html

Pluggable Storage Engine Architecture

The application programmer and DBA interact with the MySQL database through Connector APIs and
service layers that are above the storage engines. If application changes bring about requirements that
demand the underlying storage engine change, or that one or more storage engines be added to support
new needs, no significant coding or process changes are required to make things work. The MySQL server
architecture shields the application from the underlying complexity of the storage engine by presenting a
consistent and easy-to-use API that applies across storage engines.

15.11.1 Pluggable Storage Engine Architecture

MySQL Server uses a pluggable storage engine architecture that enables storage engines to be loaded
into and unloaded from a running MySQL server.

Plugging in a Storage Engine

Before a storage engine can be used, the storage engine plugin shared library must be loaded into MySQL
using the INSTALL PLUGIN statement. For example, if the EXAMPLE engine plugin is named example
and the shared library is named ha_example.so, you load it with the following statement:

INSTALL PLUGIN example SONAME 'ha_example.so';

To install a pluggable storage engine, the plugin file must be located in the MySQL plugin directory, and
the user issuing the INSTALL PLUGIN statement must have INSERT privilege for the mysql.plugin
table.

The shared library must be located in the MySQL server plugin directory, the location of which is given by
the plugin_dir system variable.

Unplugging a Storage Engine

To unplug a storage engine, use the UNINSTALL PLUGIN statement:

UNINSTALL PLUGIN example;

If you unplug a storage engine that is needed by existing tables, those tables become inaccessible, but are
still present on disk (where applicable). Ensure that there are no tables using a storage engine before you
unplug the storage engine.

15.11.2 The Common Database Server Layer

A MySQL pluggable storage engine is the component in the MySQL database server that is responsible for
performing the actual data I/O operations for a database as well as enabling and enforcing certain feature
sets that target a specific application need. A major benefit of using specific storage engines is that you
are only delivered the features needed for a particular application, and therefore you have less system
overhead in the database, with the end result being more efficient and higher database performance. This
is one of the reasons that MySQL has always been known to have such high performance, matching or
beating proprietary monolithic databases in industry standard benchmarks.

From a technical perspective, what are some of the unique supporting infrastructure components that are
in a storage engine? Some of the key feature differentiations include:

• Concurrency: Some applications have more granular lock requirements (such as row-level locks)
than others. Choosing the right locking strategy can reduce overhead and therefore improve overall
performance. This area also includes support for capabilities such as multi-version concurrency control
or “snapshot” read.

• Transaction Support: Not every application needs transactions, but for those that do, there are very well
defined requirements such as ACID compliance and more.

2343

The Common Database Server Layer

• Referential Integrity: The need to have the server enforce relational database referential integrity through
DDL defined foreign keys.

• Physical Storage: This involves everything from the overall page size for tables and indexes as well as
the format used for storing data to physical disk.

• Index Support: Different application scenarios tend to benefit from different index strategies. Each
storage engine generally has its own indexing methods, although some (such as B-tree indexes) are
common to nearly all engines.

• Memory Caches: Different applications respond better to some memory caching strategies than others,
so although some memory caches are common to all storage engines (such as those used for user
connections or MySQL's high-speed Query Cache), others are uniquely defined only when a particular
storage engine is put in play.

• Performance Aids: This includes multiple I/O threads for parallel operations, thread concurrency,
database checkpointing, bulk insert handling, and more.

• Miscellaneous Target Features: This may include support for geospatial operations, security restrictions
for certain data manipulation operations, and other similar features.

Each set of the pluggable storage engine infrastructure components are designed to offer a selective set
of benefits for a particular application. Conversely, avoiding a set of component features helps reduce
unnecessary overhead. It stands to reason that understanding a particular application's set of requirements
and selecting the proper MySQL storage engine can have a dramatic impact on overall system efficiency
and performance.

2344

Chapter 16 High Availability and Scalability

Table of Contents
16.1 Using ZFS Replication ... 2347

16.1.1 Using ZFS for File System Replication .. 2348
16.1.2 Configuring MySQL for ZFS Replication .. 2349
16.1.3 Handling MySQL Recovery with ZFS .. 2350

16.2 Using MySQL with memcached ... 2350
16.2.1 Installing memcached ... 2351
16.2.2 Using memcached .. 2353
16.2.3 Developing a memcached Application ... 2372
16.2.4 Getting memcached Statistics ... 2397
16.2.5 memcached FAQ ... 2407

Data is the currency of today's web, mobile, social, enterprise and cloud applications. Ensuring data is
always available is a top priority for any organization. Minutes of downtime can result in significant loss of
revenue and reputation.

There is no “one size fits all” approach to delivering High Availability (HA). Unique application attributes,
business requirements, operational capabilities and legacy infrastructure can all influence HA technology
selection. And technology is only one element in delivering HA: people and processes are just as critical as
the technology itself.

MySQL is deployed into many applications demanding availability and scalability. Availability refers to
the ability to cope with, and if necessary recover from, failures on the host, including failures of MySQL,
the operating system, or the hardware and maintenance activity that may otherwise cause downtime.
Scalability refers to the ability to spread both the database and the load of your application queries across
multiple MySQL servers.

Because each application has different operational and availability requirements, MySQL offers a range of
certified and supported solutions, delivering the appropriate levels of High Availability (HA) and scalability
to meet service level requirements. Such solutions extend from replication, through virtualization and
geographically redundant, multi-data center solutions delivering 99.999% uptime.

Selecting the right high availability solution for an application largely depends on:

• The level of availability required.

• The type of application being deployed.

• Accepted best practices within your own environment.

The primary solutions supported by MySQL include:

• MySQL Replication. Learn more: Chapter 17, Replication.

• MySQL Cluster. Learn more: Chapter 18, MySQL NDB Cluster 7.3 and NDB Cluster 7.4.

• Oracle MySQL Cloud Service. Learn more about MySQL Cloud Service.

• Oracle Clusterware Agent for MySQL. Learn more about Oracle Clusterware.

• MySQL with Solaris Cluster. Learn more about Solaris Cluster.

Further options are available using third-party solutions.

2345

http://docs.oracle.com/cloud/latest/mysql-cloud/index.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/overview/index.html
http://www.oracle.com/technetwork/server-storage/solaris-cluster/overview/index.html

Each architecture used to achieve highly available database services is differentiated by the levels of
uptime it offers. These architectures can be grouped into three main categories:

• Data Replication.

• Clustered & Virtualized Systems.

• Shared-Nothing, Geographically-Replicated Clusters.

As illustrated in the following figure, each of these architectures offers progressively higher levels of
uptime, which must be balanced against potentially greater levels of cost and complexity that each can
incur. Simply deploying a high availability architecture is not a guarantee of actually delivering HA. In fact,
a poorly implemented and maintained shared-nothing cluster could easily deliver lower levels of availability
than a simple data replication solution.

Figure 16.1 Tradeoffs: Cost and Complexity versus Availability

The following table compares the HA and Scalability capabilities of the various MySQL solutions:

Table 16.1 Feature Comparison of MySQL HA Solutions

Requirement MySQL Replication MySQL Cluster

Availability

Platform Support All Supported by MySQL
Server (https://www.mysql.com/
support/supportedplatforms/
database.html)

All Supported by MySQL Cluster
(https://www.mysql.com/support/
supportedplatforms/cluster.html)

Automated IP Failover No Depends on Connector and
Configuration

Automated Database Failover No Yes

Automatic Data Resynchronization No Yes

2346

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://www.mysql.com/support/supportedplatforms/cluster.html

Using ZFS Replication

Requirement MySQL Replication MySQL Cluster

Typical Failover Time User / Script Dependent 1 Second and Less

Synchronous Replication No, Asynchronous and
Semisynchronous

Yes

Shared Storage No, Distributed No, Distributed

Geographic redundancy support Yes Yes, via MySQL Replication

Update Schema On-Line No Yes

Scalability

Number of Nodes One Master, Multiple Slaves 255

Built-in Load Balancing Reads, via MySQL Replication Yes, Reads and Writes

Supports Read-Intensive
Workloads

Yes Yes

Supports Write-Intensive
Workloads

Yes, via Application-Level
Sharding

Yes, via Auto-Sharding

Scale On-Line (add nodes,
repartition, etc.)

No Yes

16.1 Using ZFS Replication
To support high availability environments, providing an instant copy of the information on both the currently
active machine and the hot backup is a critical part of the HA solution. There are many solutions to this
problem, such as Chapter 17, Replication.

The ZFS file system provides functionality to create a snapshot of the file system contents, transfer
the snapshot to another machine, and extract the snapshot to recreate the file system. You can create
a snapshot at any time, and you can create as many snapshots as you like. By continually creating,
transferring, and restoring snapshots, you can provide synchronization between one or more machines in a
fashion similar to DRBD.

The following example shows a simple Solaris system running with a single ZFS pool, mounted at /
scratchpool:

Filesystem size used avail capacity Mounted on
/dev/dsk/c0d0s0 4.6G 3.7G 886M 82% /
/devices 0K 0K 0K 0% /devices
ctfs 0K 0K 0K 0% /system/contract
proc 0K 0K 0K 0% /proc
mnttab 0K 0K 0K 0% /etc/mnttab
swap 1.4G 892K 1.4G 1% /etc/svc/volatile
objfs 0K 0K 0K 0% /system/object
/usr/lib/libc/libc_hwcap1.so.1
 4.6G 3.7G 886M 82% /lib/libc.so.1
fd 0K 0K 0K 0% /dev/fd
swap 1.4G 40K 1.4G 1% /tmp
swap 1.4G 28K 1.4G 1% /var/run
/dev/dsk/c0d0s7 26G 913M 25G 4% /export/home
scratchpool 16G 24K 16G 1% /scratchpool

The MySQL data is stored in a directory on /scratchpool. To help demonstrate some of the basic
replication functionality, there are also other items stored in /scratchpool as well:

total 17
drwxr-xr-x 31 root bin 50 Jul 21 07:32 DTT/
drwxr-xr-x 4 root bin 5 Jul 21 07:32 SUNWmlib/
drwxr-xr-x 14 root sys 16 Nov 5 09:56 SUNWspro/

2347

Using ZFS for File System Replication

drwxrwxrwx 19 1000 1000 40 Nov 6 19:16 emacs-22.1/

To create a snapshot of the file system, you use zfs snapshot, specifying the pool and the snapshot
name:

#> zfs snapshot scratchpool@snap1

To list the snapshots already taken:

#> zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
scratchpool@snap1 0 - 24.5K -
scratchpool@snap2 0 - 24.5K -

The snapshots themselves are stored within the file system metadata, and the space required to keep
them varies as time goes on because of the way the snapshots are created. The initial creation of a
snapshot is very quick, because instead of taking an entire copy of the data and metadata required to hold
the entire snapshot, ZFS records only the point in time and metadata of when the snapshot was created.

As more changes to the original file system are made, the size of the snapshot increases because more
space is required to keep the record of the old blocks. If you create lots of snapshots, say one per day, and
then delete the snapshots from earlier in the week, the size of the newer snapshots might also increase, as
the changes that make up the newer state have to be included in the more recent snapshots, rather than
being spread over the seven snapshots that make up the week.

You cannot directly back up the snapshots because they exist within the file system metadata rather than
as regular files. To get the snapshot into a format that you can copy to another file system, tape, and so on,
you use the zfs send command to create a stream version of the snapshot.

For example, to write the snapshot out to a file:

#> zfs send scratchpool@snap1 >/backup/scratchpool-snap1

Or tape:

#> zfs send scratchpool@snap1 >/dev/rmt/0

You can also write out the incremental changes between two snapshots using zfs send:

#> zfs send scratchpool@snap1 scratchpool@snap2 >/backup/scratchpool-changes

To recover a snapshot, you use zfs recv, which applies the snapshot information either to a new file
system, or to an existing one.

16.1.1 Using ZFS for File System Replication

Because zfs send and zfs recv use streams to exchange data, you can use them to replicate
information from one system to another by combining zfs send, ssh, and zfs recv.

For example, to copy a snapshot of the scratchpool file system to a new file system called slavepool
on a new server, you would use the following command. This sequence combines the snapshot of
scratchpool, the transmission to the replica machine (using ssh with login credentials), and the
recovery of the snapshot on the replica using zfs recv:

#> zfs send scratchpool@snap1 |ssh id@host pfexec zfs recv -F slavepool

The first part of the pipeline, zfs send scratchpool@snap1, streams the snapshot. The ssh
command, and the command that it executes on the other server, pfexec zfs recv -F slavepool,
receives the streamed snapshot data and writes it to slavepool. In this instance, I've specified the -F option
which forces the snapshot data to be applied, and is therefore destructive. This is fine, as I'm creating the
first version of my replicated file system.

2348

Configuring MySQL for ZFS Replication

On the replica machine, the replicated file system contains the exact same content:

#> ls -al /slavepool/
total 23
drwxr-xr-x 6 root root 7 Nov 8 09:13 ./
drwxr-xr-x 29 root root 34 Nov 9 07:06 ../
drwxr-xr-x 31 root bin 50 Jul 21 07:32 DTT/
drwxr-xr-x 4 root bin 5 Jul 21 07:32 SUNWmlib/
drwxr-xr-x 14 root sys 16 Nov 5 09:56 SUNWspro/
drwxrwxrwx 19 1000 1000 40 Nov 6 19:16 emacs-22.1/

Once a snapshot has been created, to synchronize the file system again, you create a new snapshot and
then use the incremental snapshot feature of zfs send to send the changes between the two snapshots
to the replica machine again:

#> zfs send -i scratchpool@snapshot1 scratchpool@snapshot2 |ssh id@host pfexec zfs recv slavepool

This operation only succeeds if the file system on the replica machine has not been modified at all. You
cannot apply the incremental changes to a destination file system that has changed. In the example above,
the ls command would cause problems by changing the metadata, such as the last access time for files or
directories.

To prevent changes on the replica file system, set the file system on the replica to be read-only:

#> zfs set readonly=on slavepool

Setting readonly means that you cannot change the file system on the replica by normal means,
including the file system metadata. Operations that would normally update metadata (like our ls) silently
perform their function without attempting to update the file system state.

In essence, the replica file system is nothing but a static copy of the original file system. However, even
when configured to be read-only, a file system can have snapshots applied to it. With the file system set to
read only, re-run the initial copy:

#> zfs send scratchpool@snap1 |ssh id@host pfexec zfs recv -F slavepool

Now you can make changes to the original file system and replicate them to the replica.

16.1.2 Configuring MySQL for ZFS Replication

Configuring MySQL on the source file system is a case of creating the data on the file system that you
intend to replicate. The configuration file in the example below has been updated to use /scratchpool/
mysql-data as the data directory, and now you can initialize the tables:

#> mysql_install_db --defaults-file=/etc/mysql/5.5/my.cnf --user=mysql

To synchronize the initial information, perform a new snapshot and then send an incremental snapshot to
the replica using zfs send:

#> zfs snapshot scratchpool@snap2
#> zfs send -i scratchpool@snap1 scratchpool@snap2|ssh id@host pfexec zfs recv slavepool

Doublecheck that the replica has the data by looking at the MySQL data directory on the slavepool:

#> ls -al /slavepool/mysql-data/

Now you can start up MySQL, create some data, and then replicate the changes using zfs send/ zfs
recv to the replica to synchronize the changes.

The rate at which you perform the synchronization depends on your application and environment. The
limitation is the speed required to perform the snapshot and then to send the changes over the network.

2349

Handling MySQL Recovery with ZFS

To automate the process, create a script that performs the snapshot, send, and receive operation, and use
cron to synchronize the changes at set times or intervals.

16.1.3 Handling MySQL Recovery with ZFS

When using ZFS replication to provide a constant copy of your data, ensure that you can recover your
tables, either manually or automatically, in the event of a failure of the original system.

In the event of a failure, follow this sequence:

1. Stop the script on the source, if it is still up and running.

2. Set the replica file system to be read/write:

#> zfs set readonly=off slavepool

3. Start up mysqld on the replica. If you are using InnoDB, you get auto-recovery, if it is needed, to make
sure the table data is correct, as shown here when I started up from our mid-INSERT snapshot:

InnoDB: The log sequence number in ibdata files does not match
InnoDB: the log sequence number in the ib_logfiles!
081109 15:59:59 InnoDB: Database was not shut down normally!
InnoDB: Starting crash recovery.
InnoDB: Reading tablespace information from the .ibd files...
InnoDB: Restoring possible half-written data pages from the doublewrite
InnoDB: buffer...
081109 16:00:03 InnoDB: Started; log sequence number 0 1142807951
081109 16:00:03 [Note] /slavepool/mysql-5.0.67-solaris10-i386/bin/mysqld: ready for connections.
Version: '5.0.67' socket: '/tmp/mysql.sock' port: 3306 MySQL Community Server (GPL)

Use InnoDB tables and a regular synchronization schedule to reduce the risk for significant data loss. On
MyISAM tables, you might need to run REPAIR TABLE, and you might even have lost some information.

16.2 Using MySQL with memcached
memcached is a simple, highly scalable key-based cache that stores data and objects wherever dedicated
or spare RAM is available for quick access by applications, without going through layers of parsing or disk
I/O. To use, you run the memcached command on one or more hosts and then use the shared cache to
store objects. For more usage instructions, see Section 16.2.2, “Using memcached”

Benefits of using memcached include:

• Because all information is stored in RAM, the access speed is faster than loading the information each
time from disk.

• Because the “value” portion of the key-value pair does not have any data type restrictions, you can
cache data such as complex structures, documents, images, or a mixture of such things.

• If you use the in-memory cache to hold transient information, or as a read-only cache for information
also stored in a database, the failure of any memcached server is not critical. For persistent data, you
can fall back to an alternative lookup method using database queries, and reload the data into RAM on a
different server.

The typical usage environment is to modify your application so that information is read from the cache
provided by memcached. If the information is not in memcached, then the data is loaded from the MySQL
database and written into the cache so that future requests for the same object benefit from the cached
data.

For a typical deployment layout, see Figure 16.2, “memcached Architecture Overview”.

2350

Installing memcached

Figure 16.2 memcached Architecture Overview

In the example structure, any of the clients can contact one of the memcached servers to request a given
key. Each client is configured to talk to all of the servers shown in the illustration. Within the client, when
the request is made to store the information, the key used to reference the data is hashed and this hash is
then used to select one of the memcached servers. The selection of the memcached server takes place on
the client before the server is contacted, keeping the process lightweight.

The same algorithm is used again when a client requests the same key. The same key generates the
same hash, and the same memcached server is selected as the source for the data. Using this method,
the cached data is spread among all of the memcached servers, and the cached information is accessible
from any client. The result is a distributed, memory-based, cache that can return information, particularly
complex data and structures, much faster than natively reading the information from the database.

The data held within a traditional memcached server is never stored on disk (only in RAM, which means
there is no persistence of data), and the RAM cache is always populated from the backing store (a MySQL
database). If a memcached server fails, the data can always be recovered from the MySQL database.

16.2.1 Installing memcached

You can build and install memcached from the source code directly, or you can use an existing operating
system package or installation.

Installing memcached from a Binary Distribution

To install memcached on a Red Hat, or Fedora host, use yum:

#> yum install memcached

Note

On CentOS, you may be able to obtain a suitable RPM from another source, or use
the source tarball.

To install memcached on a Debian or Ubuntu host, use apt-get:

#> apt-get install memcached

To install memcached on a Gentoo host, use emerge:

#> emerge install memcached

Building memcached from Source

2351

Installing memcached

On other Unix-based platforms, including Solaris, AIX, HP-UX and macOS, and Linux distributions not
mentioned already, you must install from source. For Linux, make sure you have a 2.6-based kernel, which
includes the improved epoll interface. For all platforms, ensure that you have libevent 1.1 or higher
installed. You can obtain libevent from libevent web page.

You can obtain the source for memcached from memcached website.

To build memcached, follow these steps:

1. Extract the memcached source package:

$> gunzip -c memcached-1.2.5.tar.gz | tar xf -

2. Change to the memcached-1.2.5 directory:

$> cd memcached-1.2.5

3. Run configure

$> ./configure

Some additional options you might specify to the configure:

• --prefix

To specify a different installation directory, use the --prefix option:

$> ./configure --prefix=/opt

The default is to use the /usr/local directory.

• --with-libevent

If you have installed libevent and configure cannot find the library, use the --with-libevent
option to specify the location of the installed library.

• --enable-64bit

To build a 64-bit version of memcached (which enables you to use a single instance with a large
RAM allocation), use --enable-64bit.

• --enable-threads

To enable multithreading support in memcached, which improves the response times on servers
with a heavy load, use --enable-threads. You must have support for the POSIX threads within
your operating system to enable thread support. For more information on the threading support, see
Section 16.2.2.8, “memcached Thread Support”.

• --enable-dtrace

memcached includes a range of DTrace threads that can be used to monitor and benchmark a
memcached instance. For more information, see Section 16.2.2.6, “Using memcached and DTrace”.

4. Run make to build memcached:

$> make

5. Run make install to install memcached:

$> make install

2352

http://www.monkey.org/~provos/libevent/
http://www.danga.com/memcached

Using memcached

16.2.2 Using memcached

To start using memcached, start the memcached service on one or more servers. Running memcached
sets up the server, allocates the memory and starts listening for connections from clients.

Note

You do not need to be a privileged user (root) to run memcached except to listen
on one of the privileged TCP/IP ports (below 1024). You must, however, use a user
that has not had their memory limits restricted using setrlimit or similar.

To start the server, run memcached as a nonprivileged (that is, non-root) user:

$> memcached

By default, memcached uses the following settings:

• Memory allocation of 64MB

• Listens for connections on all network interfaces, using port 11211

• Supports a maximum of 1024 simultaneous connections

Typically, you would specify the full combination of options that you want when starting memcached, and
normally provide a startup script to handle the initialization of memcached. For example, the following
line starts memcached with a maximum of 1024MB RAM for the cache, listening on port 11211 on the IP
address 198.51.100.110, running as a background daemon:

$> memcached -d -m 1024 -p 11211 -l 198.51.100.110

To ensure that memcached is started up on boot, check the init script and configuration parameters.

16.2.2.1 memcached Command-Line Options

memcached supports the following options:

• -u user

If you start memcached as root, use the -u option to specify the user for executing memcached:

$> memcached -u memcache

• -m memory

Set the amount of memory allocated to memcached for object storage. Default is 64MB.

To increase the amount of memory allocated for the cache, use the -m option to specify the amount
of RAM to be allocated (in megabytes). The more RAM you allocate, the more data you can store and
therefore the more effective your cache is.

Warning

Do not specify a memory allocation larger than your available RAM. If you specify
too large a value, then some RAM allocated for memcached uses swap space,
and not physical RAM. This may lead to delays when storing and retrieving
values, because data is swapped to disk, instead of storing the data directly in
RAM.

You can use the output of the vmstat command to get the free memory, as
shown in free column:

2353

Using memcached

$> vmstat
kthr memory page disk faults cpu
r b w swap free re mf pi po fr de sr s1 s2 -- -- in sy cs us sy id
0 0 0 5170504 3450392 2 7 2 0 0 0 4 0 0 0 0 296 54 199 0 0 100

For example, to allocate 3GB of RAM:

$> memcached -m 3072

On 32-bit x86 systems where you are using PAE to access memory above the 4GB limit, you cannot
allocate RAM beyond the maximum process size. You can get around this by running multiple instances
of memcached, each listening on a different port:

$> memcached -m 1024 -p11211
$> memcached -m 1024 -p11212
$> memcached -m 1024 -p11213

Note

On all systems, particularly 32-bit, ensure that you leave enough room for both
memcached application in addition to the memory setting. For example, if you
have a dedicated memcached host with 4GB of RAM, do not set the memory size
above 3500MB. Failure to do this may cause either an unexpected exit or severe
performance issues.

• -l interface

Specify a network interface/address to listen for connections. The default is to listen on all available
address (INADDR_ANY).

$> memcached -l 198.51.100.110

Support for IPv6 address support was added in memcached 1.2.5.

• -p port

Specify the TCP port to use for connections. Default is 18080.

$> memcached -p 18080

• -U port

Specify the UDP port to use for connections. Default is 11211, 0 switches UDP off.

$> memcached -U 18080

• -s socket

Specify a Unix socket to listen on.

If you are running memcached on the same server as the clients, you can disable the network interface
and use a local Unix socket using the -s option:

$> memcached -s /tmp/memcached

Using a Unix socket automatically disables network support, and saves network ports (allowing more
ports to be used by your web server or other process).

2354

Using memcached

• -a mask

Specify the access mask to be used for the Unix socket, in octal. Default is 0700.

• -c connections

Specify the maximum number of simultaneous connections to the memcached service. The default is
1024.

$> memcached -c 2048

Use this option, either to reduce the number of connections (to prevent overloading memcached service)
or to increase the number to make more effective use of the server running memcached server.

• -t threads

Specify the number of threads to use when processing incoming requests.

By default, memcached is configured to use 4 concurrent threads. The threading improves the
performance of storing and retrieving data in the cache, using a locking system to prevent different
threads overwriting or updating the same values. To increase or decrease the number of threads, use
the -t option:

$> memcached -t 8

• -d

Run memcached as a daemon (background) process:

$> memcached -d

• -r

Maximize the size of the core file limit. In the event of a failure, this attempts to dump the entire memory
space to disk as a core file, up to any limits imposed by setrlimit.

• -M

Return an error to the client when the memory has been exhausted. This replaces the normal behavior
of removing older items from the cache to make way for new items.

• -k

Lock down all paged memory. This reserves the memory before use, instead of allocating new slabs of
memory as new items are stored in the cache.

Note

There is a user-level limit on how much memory you can lock. Trying to allocate
more than the available memory fails. You can set the limit for the user you
started the daemon with (not for the -u user user) within the shell by using
ulimit -S -l NUM_KB

• -v

Verbose mode. Prints errors and warnings while executing the main event loop.

2355

Using memcached

• -vv

Very verbose mode. In addition to information printed by -v, also prints each client command and the
response.

• -vvv

Extremely verbose mode. In addition to information printed by -vv, also show the internal state
transitions.

• -h

Print the help message and exit.

• -i

Print the memcached and libevent license.

• -I mem

Specify the maximum size permitted for storing an object within the memcached instance. The size
supports a unit postfix (k for kilobytes, m for megabytes). For example, to increase the maximum
supported object size to 32MB:

$> memcached -I 32m

The maximum object size you can specify is 128MB, the default remains at 1MB.

This option was added in 1.4.2.

• -b

Set the backlog queue limit. The backlog queue configures how many network connections can be
waiting to be processed by memcached. Increasing this limit may reduce errors received by the client
that it is not able to connect to the memcached instance, but does not improve the performance of the
server. The default is 1024.

• -P pidfile

Save the process ID of the memcached instance into file.

• -f

Set the chunk size growth factor. When allocating new memory chunks, the allocated size of new chunks
is determined by multiplying the default slab size by this factor.

To see the effects of this option without extensive testing, use the -vv command-line option to show the
calculated slab sizes. For more information, see Section 16.2.2.9, “memcached Logs”.

• -n bytes

The minimum space allocated for the key+value+flags information. The default is 48 bytes.

• -L

On systems that support large memory pages, enables large memory page use. Using large memory
pages enables memcached to allocate the item cache in one large chunk, which can improve the
performance by reducing the number misses when accessing memory.

2356

Using memcached

• -C

Disable the use of compare and swap (CAS) operations.

This option was added in memcached 1.3.x.

• -D char

Set the default character to be used as a delimiter between the key prefixes and IDs. This is used for
the per-prefix statistics reporting (see Section 16.2.4, “Getting memcached Statistics”). The default is the
colon (:). If this option is used, statistics collection is turned on automatically. If not used, you can enable
stats collection by sending the stats detail on command to the server.

This option was added in memcached 1.3.x.

• -R num

Sets the maximum number of requests per event process. The default is 20.

• -B protocol

Set the binding protocol, that is, the default memcached protocol support for client connections. Options
are ascii, binary or auto. Automatic (auto) is the default.

This option was added in memcached 1.4.0.

16.2.2.2 memcached Deployment

When using memcached you can use a number of different potential deployment strategies and topologies.
The exact strategy to use depends on your application and environment. When developing a system for
deploying memcached within your system, keep in mind the following points:

• memcached is only a caching mechanism. It shouldn't be used to store information that you cannot
otherwise afford to lose and then load from a different location.

• There is no security built into the memcached protocol. At a minimum, make sure that the servers
running memcached are only accessible from inside your network, and that the network ports being used
are blocked (using a firewall or similar). If the information that is being stored on the memcached servers
is sensitive, encrypt it before storing it in memcached.

• memcached does not provide any sort of failover. Because there is no communication between different
memcached instances. If an instance fails, your application must capable of removing it from the list,
reloading the data and then writing data to another memcached instance.

• Latency between the clients and the memcached can be a problem if you are using different physical
machines for these tasks. If you find that the latency is a problem, move the memcached instances to be
on the clients.

• Key length is determined by the memcached server. The default maximum key size is 250 bytes.

• Try to use at least two memcached instances, especially for multiple clients, to avoid having a single
point of failure. Ideally, create as many memcached nodes as possible. When adding and removing
memcached instances from a pool, the hashing and distribution of key-value pairs may be affected. For
information on how to avoid problems, see Section 16.2.2.5, “memcached Hashing/Distribution Types”.

16.2.2.3 Using Namespaces

The memcached cache is a very simple massive key-value storage system, and as such there is no way of
compartmentalizing data automatically into different sections. For example, if you are storing information by

2357

Using memcached

the unique ID returned from a MySQL database, then storing the data from two different tables could run
into issues because the same ID might be valid in both tables.

Some interfaces provide an automated mechanism for creating namespaces when storing information into
the cache. In practice, these namespaces are merely a prefix before a given ID that is applied every time a
value is stored or retrieve from the cache.

You can implement the same basic principle by using keys that describe the object and the unique
identifier within the key that you supply when the object is stored. For example, when storing user data,
prefix the ID of the user with user: or user-.

Note

Using namespaces or prefixes only controls the keys stored/retrieved. There is no
security within memcached, and therefore no way to enforce that a particular client
only accesses keys with a particular namespace. Namespaces are only useful as a
method of identifying data and preventing corruption of key-value pairs.

16.2.2.4 Data Expiry

There are two types of data expiry within a memcached instance. The first type is applied at the point when
you store a new key-value pair into the memcached instance. If there is not enough space within a suitable
slab to store the value, then an existing least recently used (LRU) object is removed (evicted) from the
cache to make room for the new item.

The LRU algorithm ensures that the object that is removed is one that is either no longer in active use or
that was used so long ago that its data is potentially out of date or of little value. However, in a system
where the memory allocated to memcached is smaller than the number of regularly used objects required
in the cache, a lot of expired items could be removed from the cache even though they are in active use.
You use the statistics mechanism to get a better idea of the level of evictions (expired objects). For more
information, see Section 16.2.4, “Getting memcached Statistics”.

You can change this eviction behavior by setting the -M command-line option when starting memcached.
This option forces an error to be returned when the memory has been exhausted, instead of automatically
evicting older data.

The second type of expiry system is an explicit mechanism that you can set when a key-value pair is
inserted into the cache, or when deleting an item from the cache. Using an expiration time can be a
useful way of ensuring that the data in the cache is up to date and in line with your application needs and
requirements.

A typical scenario for explicitly setting the expiry time might include caching session data for a user when
accessing a website. memcached uses a lazy expiry mechanism where the explicit expiry time that has
been set is compared with the current time when the object is requested. Only objects that have not
expired are returned.

You can also set the expiry time when explicitly deleting an object from the cache. In this case, the expiry
time is really a timeout and indicates the period when any attempts to set the value for a given key are
rejected.

16.2.2.5 memcached Hashing/Distribution Types

The memcached client interface supports a number of different distribution algorithms that are used in
multi-server configurations to determine which host should be used when setting or getting data from a
given memcached instance. When you get or set a value, a hash is constructed from the supplied key and

2358

Using memcached

then used to select a host from the list of configured servers. Because the hashing mechanism uses the
supplied key as the basis for the hash, the same server is selected during both set and get operations.

You can think of this process as follows. Given an array of servers (a, b, and c), the client uses a hashing
algorithm that returns an integer based on the key being stored or retrieved. The resulting value is then
used to select a server from the list of servers configured in the client. Most standard client hashing within
memcache clients uses a simple modulus calculation on the value against the number of configured
memcached servers. You can summarize the process in pseudocode as:

@memcservers = ['a.memc','b.memc','c.memc'];
$value = hash($key);
$chosen = $value % length(@memcservers);

Replacing the above with values:

@memcservers = ['a.memc','b.memc','c.memc'];
$value = hash('myid');
$chosen = 7009 % 3;

In the above example, the client hashing algorithm chooses the server at index 1 (7009 % 3 = 1), and
stores or retrieves the key and value with that server.

Note

This selection and hashing process is handled automatically by the memcached
client you are using; you need only provide the list of memcached servers to use.

You can see a graphical representation of this below in Figure 16.3, “memcached Hash Selection”.

Figure 16.3 memcached Hash Selection

The same hashing and selection process takes place during any operation on the specified key within the
memcached client.

Using this method provides a number of advantages:

• The hashing and selection of the server to contact is handled entirely within the client. This eliminates
the need to perform network communication to determine the right machine to contact.

• Because the determination of the memcached server occurs entirely within the client, the server can be
selected automatically regardless of the operation being executed (set, get, increment, etc.).

• Because the determination is handled within the client, the hashing algorithm returns the same value for
a given key; values are not affected or reset by differences in the server environment.

• Selection is very fast. The hashing algorithm on the key value is quick and the resulting selection of the
server is from a simple array of available machines.

2359

Using memcached

• Using client-side hashing simplifies the distribution of data over each memcached server. Natural
distribution of the values returned by the hashing algorithm means that keys are automatically spread
over the available servers.

Providing that the list of servers configured within the client remains the same, the same stored key returns
the same value, and therefore selects the same server.

However, if you do not use the same hashing mechanism then the same data may be recorded on different
servers by different interfaces, both wasting space on your memcached and leading to potential differences
in the information.

Note

One way to use a multi-interface compatible hashing mechanism is to use the
libmemcached library and the associated interfaces. Because the interfaces for
the different languages (including C, Perl, and Python) use the same client library
interface, they always generate the same hash code from the ID.

The problem with client-side selection of the server is that the list of the servers (including their sequential
order) must remain consistent on each client using the memcached servers, and the servers must be
available. If you try to perform an operation on a key when:

• A new memcached instance has been added to the list of available instances

• A memcached instance has been removed from the list of available instances

• The order of the memcached instances has changed

When the hashing algorithm is used on the given key, but with a different list of servers, the hash
calculation may choose a different server from the list.

If a new memcached instance is added into the list of servers, as new.memc is in the example below, then
a GET operation using the same key, myid, can result in a cache-miss. This is because the same value is
computed from the key, which selects the same index from the array of servers, but index 2 now points to
the new server, not the server c.memc where the data was originally stored. This would result in a cache
miss, even though the key exists within the cache on another memcached instance.

Figure 16.4 memcached Hash Selection with New memcached instance

This means that servers c.memc and new.memc both contain the information for key myid, but the
information stored against the key in each server may be different in each instance. A more significant
problem is a much higher number of cache-misses when retrieving data, as the addition of a new server
changes the distribution of keys, and this in turn requires rebuilding the cached data on the memcached
instances, causing an increase in database reads.

2360

Using memcached

The same effect can occur if you actively manage the list of servers configured in your clients, adding
and removing the configured memcached instances as each instance is identified as being available. For
example, removing a memcached instance when the client notices that the instance can no longer be
contacted can cause the server selection to fail as described here.

To prevent this causing significant problems and invalidating your cache, you can select the hashing
algorithm used to select the server. There are two common types of hashing algorithm, consistent and
modula.

With consistent hashing algorithms, the same key when applied to a list of servers always uses the same
server to store or retrieve the keys, even if the list of configured servers changes. This means that you can
add and remove servers from the configure list and always use the same server for a given key. There
are two types of consistent hashing algorithms available, Ketama and Wheel. Both types are supported by
libmemcached, and implementations are available for PHP and Java.

Any consistent hashing algorithm has some limitations. When you add servers to an existing list of
configured servers, keys are distributed to the new servers as part of the normal distribution. When you
remove servers from the list, the keys are re-allocated to another server within the list, meaning that the
cache needs to be re-populated with the information. Also, a consistent hashing algorithm does not resolve
the issue where you want consistent selection of a server across multiple clients, but where each client
contains a different list of servers. The consistency is enforced only within a single client.

With a modula hashing algorithm, the client selects a server by first computing the hash and then choosing
a server from the list of configured servers. As the list of servers changes, so the server selected when
using a modula hashing algorithm also changes. The result is the behavior described above; changes to
the list of servers mean that different servers are selected when retrieving data, leading to cache misses
and increase in database load as the cache is re-seeded with information.

If you use only a single memcached instance for each client, or your list of memcached servers configured
for a client never changes, then the selection of a hashing algorithm is irrelevant, as it has no noticeable
effect.

If you change your servers regularly, or you use a common set of servers that are shared among a large
number of clients, then using a consistent hashing algorithm should help to ensure that your cache data is
not duplicated and the data is evenly distributed.

16.2.2.6 Using memcached and DTrace

memcached includes a number of different DTrace probes that can be used to monitor the operation of the
server. The probes included can monitor individual connections, slab allocations, and modifications to the
hash table when a key-value pair is added, updated, or removed.

For more information on DTrace and writing DTrace scripts, read the DTrace User Guide.

Support for DTrace probes was added to memcached 1.2.6 includes a number of DTrace probes that
can be used to help monitor your application. DTrace is supported on Solaris 10, OpenSolaris, OS X 10.5
and FreeBSD. To enable the DTrace probes in memcached, build from source and use the --enable-
dtrace option. For more information, see Section 16.2.1, “Installing memcached”.

The probes supported by memcached are:

• conn-allocate(connid)

Fired when a connection object is allocated from the connection pool.

• connid: The connection ID.

2361

http://docs.oracle.com/cd/E19253-01/819-5488/

Using memcached

• conn-release(connid)

Fired when a connection object is released back to the connection pool.

Arguments:

• connid: The connection ID.

• conn-create(ptr)

Fired when a new connection object is being created (that is, there are no free connection objects in the
connection pool).

Arguments:

• ptr: A pointer to the connection. object

• conn-destroy(ptr)

Fired when a connection object is being destroyed.

Arguments:

• ptr: A pointer to the connection object.

• conn-dispatch(connid, threadid)

Fired when a connection is dispatched from the main or connection-management thread to a worker
thread.

Arguments:

• connid: The connection ID.

• threadid: The thread ID.

• slabs-allocate(size, slabclass, slabsize, ptr)

Allocate memory from the slab allocator.

Arguments:

• size: The requested size.

• slabclass: The allocation is fulfilled in this class.

• slabsize: The size of each item in this class.

• ptr: A pointer to allocated memory.

• slabs-allocate-failed(size, slabclass)

Failed to allocate memory (out of memory).

Arguments:

• size: The requested size.

• slabclass: The class that failed to fulfill the request.

2362

Using memcached

• slabs-slabclass-allocate(slabclass)

Fired when a slab class needs more space.

Arguments:

• slabclass: The class that needs more memory.

• slabs-slabclass-allocate-failed(slabclass)

Failed to allocate memory (out of memory).

Arguments:

• slabclass: The class that failed to grab more memory.

• slabs-free(size, slabclass, ptr)

Release memory.

Arguments:

• size: The amount of memory to release, in bytes.

• slabclass: The class the memory belongs to.

• ptr: A pointer to the memory to release.

• assoc-find(key, depth)

Fired when we have searched the hash table for a named key. These two elements provide an insight
into how well the hash function operates. Traversals are a sign of a less optimal function, wasting CPU
capacity.

Arguments:

• key: The key searched for.

• depth: The depth in the list of hash table.

• assoc-insert(key, nokeys)

Fired when a new item has been inserted.

Arguments:

• key: The key just inserted.

• nokeys: The total number of keys currently being stored, including the key for which insert was called.

2363

Using memcached

• assoc-delete(key, nokeys)

Fired when a new item has been removed.

Arguments:

• key: The key just deleted.

• nokeys: The total number of keys currently being stored, excluding the key for which delete was
called.

• item-link(key, size)

Fired when an item is being linked in the cache.

Arguments:

• key: The items key.

• size: The size of the data.

• item-unlink(key, size)

Fired when an item is being deleted.

Arguments:

• key: The items key.

• size: The size of the data.

• item-remove(key, size)

Fired when the refcount for an item is reduced.

Arguments:

• key: The item's key.

• size: The size of the data.

• item-update(key, size)

Fired when the "last referenced" time is updated.

Arguments:

• key: The item's key.

• size: The size of the data.

2364

Using memcached

• item-replace(oldkey, oldsize, newkey, newsize)

Fired when an item is being replaced with another item.

Arguments:

• oldkey: The key of the item to replace.

• oldsize: The size of the old item.

• newkey: The key of the new item.

• newsize: The size of the new item.

• process-command-start(connid, request, size)

Fired when the processing of a command starts.

Arguments:

• connid: The connection ID.

• request: The incoming request.

• size: The size of the request.

• process-command-end(connid, response, size)

Fired when the processing of a command is done.

Arguments:

• connid: The connection ID.

• response: The response to send back to the client.

• size: The size of the response.

• command-get(connid, key, size)

Fired for a get command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The size of the key's data (or -1 if not found).

• command-gets(connid, key, size, casid)

Fired for a gets command.

Arguments:

• connid: The connection ID.

• key: The requested key.

2365

Using memcached

• size: The size of the key's data (or -1 if not found).

• casid: The casid for the item.

• command-add(connid, key, size)

Fired for a add command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-set(connid, key, size)

Fired for a set command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-replace(connid, key, size)

Fired for a replace command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-prepend(connid, key, size)

Fired for a prepend command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

2366

Using memcached

• command-append(connid, key, size)

Fired for a append command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-cas(connid, key, size, casid)

Fired for a cas command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The size of the key's data (or -1 if not found).

• casid: The cas ID requested.

• command-incr(connid, key, val)

Fired for incr command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• val: The new value.

• command-decr(connid, key, val)

Fired for decr command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• val: The new value.

• command-delete(connid, key, exptime)

Fired for a delete command.

Arguments:

• connid: The connection ID.

• key: The requested key.

2367

Using memcached

• exptime: The expiry time.

16.2.2.7 Memory Allocation within memcached

When you first start memcached, the memory that you have configured is not automatically allocated.
Instead, memcached only starts allocating and reserving physical memory once you start saving
information into the cache.

When you start to store data into the cache, memcached does not allocate the memory for the data on
an item by item basis. Instead, a slab allocation is used to optimize memory usage and prevent memory
fragmentation when information expires from the cache.

With slab allocation, memory is reserved in blocks of 1MB. The slab is divided up into a number of blocks
of equal size. When you try to store a value into the cache, memcached checks the size of the value that
you are adding to the cache and determines which slab contains the right size allocation for the item. If a
slab with the item size already exists, the item is written to the block within the slab.

If the new item is bigger than the size of any existing blocks, then a new slab is created, divided up into
blocks of a suitable size. If an existing slab with the right block size already exists, but there are no free
blocks, a new slab is created. If you update an existing item with data that is larger than the existing block
allocation for that key, then the key is re-allocated into a suitable slab.

For example, the default size for the smallest block is 88 bytes (40 bytes of value, and the default 48 bytes
for the key and flag data). If the size of the first item you store into the cache is less than 40 bytes, then a
slab with a block size of 88 bytes is created and the value stored.

If the size of the data that you intend to store is larger than this value, then the block size is increased
by the chunk size factor until a block size large enough to hold the value is determined. The block size is
always a function of the scale factor, rounded up to a block size which is exactly divisible into the chunk
size.

For a sample of the structure, see Figure 16.5, “Memory Allocation in memcached”.

Figure 16.5 Memory Allocation in memcached

The result is that you have multiple pages allocated within the range of memory allocated to memcached.
Each page is 1MB in size (by default), and is split into a different number of chunks, according to the
chunk size required to store the key-value pairs. Each instance has multiple pages allocated, and a page
is always created when a new item needs to be created requiring a chunk of a particular size. A slab may
consist of multiple pages, and each page within a slab contains an equal number of chunks.

2368

Using memcached

The chunk size of a new slab is determined by the base chunk size combined with the chunk size growth
factor. For example, if the initial chunks are 104 bytes in size, and the default chunk size growth factor is
used (1.25), then the next chunk size allocated would be the best power of 2 fit for 104*1.25, or 136 bytes.

Allocating the pages in this way ensures that memory does not get fragmented. However, depending on
the distribution of the objects that you store, it may lead to an inefficient distribution of the slabs and chunks
if you have significantly different sized items. For example, having a relatively small number of items within
each chunk size may waste a lot of memory with just few chunks in each allocated page.

You can tune the growth factor to reduce this effect by using the -f command line option, which adapts
the growth factor applied to make more effective use of the chunks and slabs allocated. For information on
how to determine the current slab allocation statistics, see Section 16.2.4.2, “memcached Slabs Statistics”.

If your operating system supports it, you can also start memcached with the -L command line option.
This option preallocates all the memory during startup using large memory pages. This can improve
performance by reducing the number of misses in the CPU memory cache.

16.2.2.8 memcached Thread Support

If you enable the thread implementation within when building memcached from source, then memcached
uses multiple threads in addition to the libevent system to handle requests.

When enabled, the threading implementation operates as follows:

• Threading is handled by wrapping functions within the code to provide basic protection from updating the
same global structures at the same time.

• Each thread uses its own instance of the libevent to help improve performance.

• TCP/IP connections are handled with a single thread listening on the TCP/IP socket. Each connection
is then distributed to one of the active threads on a simple round-robin basis. Each connection then
operates solely within this thread while the connection remains open.

• For UDP connections, all the threads listen to a single UDP socket for incoming requests. Threads
that are not currently dealing with another request ignore the incoming packet. One of the remaining,
nonbusy, threads reads the request and sends the response. This implementation can lead to increased
CPU load as threads wake from sleep to potentially process the request.

Using threads can increase the performance on servers that have multiple CPU cores available, as the
requests to update the hash table can be spread between the individual threads. To minimize overhead
from the locking mechanism employed, experiment with different thread values to achieve the best
performance based on the number and type of requests within your given workload.

16.2.2.9 memcached Logs

If you enable verbose mode, using the -v, -vv, or -vvv options, then the information output by
memcached includes details of the operations being performed.

Without the verbose options, memcached normally produces no output during normal operating.

• Output when using -v

The lowest verbosity level shows you:

• Errors and warnings

• Transient errors

• Protocol and socket errors, including exhausting available connections

2369

Using memcached

• Each registered client connection, including the socket descriptor number and the protocol used.

For example:

32: Client using the ascii protocol
33: Client using the ascii protocol

The socket descriptor is only valid while the client remains connected. Non-persistent connections
may not be effectively represented.

Examples of the error messages output at this level include:

<%d send buffer was %d, now %d
Can't listen for events on fd %d
Can't read from libevent pipe
Catastrophic: event fd doesn't match conn fd!
Couldn't build response
Couldn't realloc input buffer
Couldn't update event
Failed to build UDP headers
Failed to read, and not due to blocking
Too many open connections
Unexpected state %d

• Output when using -vv

When using the second level of verbosity, you get more detailed information about protocol operations,
keys updated, chunk and network operatings and details.

During the initial start-up of memcached with this level of verbosity, you are shown the sizes of the
individual slab classes, the chunk sizes, and the number of entries per slab. These do not show the
allocation of the slabs, just the slabs that would be created when data is added. You are also given
information about the listen queues and buffers used to send information. A sample of the output
generated for a TCP/IP based system with the default memory and growth factors is given below:

$> memcached -vv
slab class 1: chunk size 80 perslab 13107
slab class 2: chunk size 104 perslab 10082
slab class 3: chunk size 136 perslab 7710
slab class 4: chunk size 176 perslab 5957
slab class 5: chunk size 224 perslab 4681
slab class 6: chunk size 280 perslab 3744
slab class 7: chunk size 352 perslab 2978
slab class 8: chunk size 440 perslab 2383
slab class 9: chunk size 552 perslab 1899
slab class 10: chunk size 696 perslab 1506
slab class 11: chunk size 872 perslab 1202
slab class 12: chunk size 1096 perslab 956
slab class 13: chunk size 1376 perslab 762
slab class 14: chunk size 1720 perslab 609
slab class 15: chunk size 2152 perslab 487
slab class 16: chunk size 2696 perslab 388
slab class 17: chunk size 3376 perslab 310
slab class 18: chunk size 4224 perslab 248
slab class 19: chunk size 5280 perslab 198
slab class 20: chunk size 6600 perslab 158
slab class 21: chunk size 8256 perslab 127
slab class 22: chunk size 10320 perslab 101
slab class 23: chunk size 12904 perslab 81
slab class 24: chunk size 16136 perslab 64
slab class 25: chunk size 20176 perslab 51
slab class 26: chunk size 25224 perslab 41
slab class 27: chunk size 31536 perslab 33

2370

Using memcached

slab class 28: chunk size 39424 perslab 26
slab class 29: chunk size 49280 perslab 21
slab class 30: chunk size 61600 perslab 17
slab class 31: chunk size 77000 perslab 13
slab class 32: chunk size 96256 perslab 10
slab class 33: chunk size 120320 perslab 8
slab class 34: chunk size 150400 perslab 6
slab class 35: chunk size 188000 perslab 5
slab class 36: chunk size 235000 perslab 4
slab class 37: chunk size 293752 perslab 3
slab class 38: chunk size 367192 perslab 2
slab class 39: chunk size 458992 perslab 2
<26 server listening (auto-negotiate)
<29 server listening (auto-negotiate)
<30 send buffer was 57344, now 2097152
<31 send buffer was 57344, now 2097152
<30 server listening (udp)
<30 server listening (udp)
<31 server listening (udp)
<30 server listening (udp)
<30 server listening (udp)
<31 server listening (udp)
<31 server listening (udp)
<31 server listening (udp)

Using this verbosity level can be a useful way to check the effects of the growth factor used on slabs with
different memory allocations, which in turn can be used to better tune the growth factor to suit the data
you are storing in the cache. For example, if you set the growth factor to 4 (quadrupling the size of each
slab):

$> memcached -f 4 -m 1g -vv
slab class 1: chunk size 80 perslab 13107
slab class 2: chunk size 320 perslab 3276
slab class 3: chunk size 1280 perslab 819
slab class 4: chunk size 5120 perslab 204
slab class 5: chunk size 20480 perslab 51
slab class 6: chunk size 81920 perslab 12
slab class 7: chunk size 327680 perslab 3
...

During use of the cache, this verbosity level also prints out detailed information on the storage and
recovery of keys and other information. An example of the output during a typical set/get and increment/
decrement operation is shown below.

32: Client using the ascii protocol
<32 set my_key 0 0 10
>32 STORED
<32 set object_key 1 0 36
>32 STORED
<32 get my_key
>32 sending key my_key
>32 END
<32 get object_key
>32 sending key object_key
>32 END
<32 set key 0 0 6
>32 STORED
<32 incr key 1
>32 789544
<32 decr key 1
>32 789543
<32 incr key 2
>32 789545
<32 set my_key 0 0 10
>32 STORED

2371

Developing a memcached Application

<32 set object_key 1 0 36
>32 STORED
<32 get my_key
>32 sending key my_key
>32 END
<32 get object_key
>32 sending key object_key1 1 36

>32 END
<32 set key 0 0 6
>32 STORED
<32 incr key 1
>32 789544
<32 decr key 1
>32 789543
<32 incr key 2
>32 789545

During client communication, for each line, the initial character shows the direction of flow of the
information. The < for communication from the client to the memcached server and > for communication
back to the client. The number is the numeric socket descriptor for the connection.

• Output when using -vvv

This level of verbosity includes the transitions of connections between different states in the event library
while reading and writing content to/from the clients. It should be used to diagnose and identify issues in
client communication. For example, you can use this information to determine if memcached is taking a
long time to return information to the client, during the read of the client operation or before returning and
completing the operation. An example of the typical sequence for a set operation is provided below:

<32 new auto-negotiating client connection
32: going from conn_new_cmd to conn_waiting
32: going from conn_waiting to conn_read
32: going from conn_read to conn_parse_cmd
32: Client using the ascii protocol
<32 set my_key 0 0 10
32: going from conn_parse_cmd to conn_nread
> NOT FOUND my_key
>32 STORED
32: going from conn_nread to conn_write
32: going from conn_write to conn_new_cmd
32: going from conn_new_cmd to conn_waiting
32: going from conn_waiting to conn_read
32: going from conn_read to conn_closing
<32 connection closed.

All of the verbosity levels in memcached are designed to be used during debugging or examination of
issues. The quantity of information generated, particularly when using -vvv, is significant, particularly on
a busy server. Also be aware that writing the error information out, especially to disk, may negate some
of the performance gains you achieve by using memcached. Therefore, use in production or deployment
environments is not recommended.

16.2.3 Developing a memcached Application

A number of language interfaces let applications store and retrieve information with memcached servers.
You can write memcached applications in popular languages such as Perl, PHP, Python, C, and Java.

Data stored into a memcached server is referred to by a single string (the key), with storage into the cache
and retrieval from the cache using the key as the reference. The cache therefore operates like a large
associative array or hash table. It is not possible to structure or otherwise organize the information stored
in the cache. To emulate database notions such as multiple tables or composite key values, you must

2372

Developing a memcached Application

encode the extra information into the strings used as keys. For example, to store or look up the address
corresponding to a specific latitude and longitude, you might turn those two numeric values into a single
comma-separated string to use as a key.

16.2.3.1 Basic memcached Operations

The interface to memcached supports the following methods for storing and retrieving information in the
cache, and these are consistent across all the different APIs, although the language specific mechanics
might be different:

• get(key): Retrieves information from the cache. Returns the value associated with the key if the
specified key exists. Returns NULL, nil, undefined, or the closest equivalent in the corresponding
language, if the specified key does not exist.

• set(key, value [, expiry]): Sets the item associated with a key in the cache to the specified
value. This either updates an existing item if the key already exists, or adds a new key-value pair if the
key doesn't exist. If the expiry time is specified, then the item expires (and is deleted) when the expiry
time is reached. The time is specified in seconds, and is taken as a relative time if the value is less than
30 days (30*24*60*60), or an absolute time (epoch) if larger than this value.

• add(key, value [, expiry]): Adds the key and associated value to the cache, if the specified key
does not already exist.

• replace(key, value [, expiry]): Replaces the item associated with the specified key, only if
the key already exists. The new value is given by the value parameter.

• delete(key [, time]): Deletes the key and its associated item from the cache. If you supply a
time, then adding another item with the specified key is blocked for the specified period.

• incr(key , value): Increments the item associated with the key by the specified value.

• decr(key , value): Decrements the item associated with the key by the specified value.

• flush_all: Invalidates (or expires) all the current items in the cache. Technically they still exist (they
are not deleted), but they are silently destroyed the next time you try to access them.

In all implementations, most or all of these functions are duplicated through the corresponding native
language interface.

When practical, use memcached to store full items, rather than caching a single column value from the
database. For example, when displaying a record about an object (invoice, user history, or blog post), load
all the data for the associated entry from the database, and compile it into the internal structure that would
normally be required by the application. Save the complete object in the cache.

Complex data structures cannot be stored directly. Most interfaces serialize the data for you, that is, put
it in a textual form that can reconstruct the original pointers and nesting. Perl uses Storable, PHP uses
serialize, Python uses cPickle (or Pickle) and Java uses the Serializable interface. In most
cases, the serialization interface used is customizable. To share data stored in memcached instances
between different language interfaces, consider using a common serialization solution such as JSON
(Javascript Object Notation).

16.2.3.2 Using memcached as a MySQL Caching Layer

When using memcached to cache MySQL data, your application must retrieve data from the database and
load the appropriate key-value pairs into the cache. Then, subsequent lookups can be done directly from
the cache.

2373

Developing a memcached Application

Because MySQL has its own in-memory caching mechanisms for queried data, such as the InnoDB buffer
pool and the MySQL query cache, look for opportunities beyond loading individual column values or rows
into the cache. Prefer to cache composite values, such as those retrieved from multiple tables through a
join query, or result sets assembled from multiple rows.

Caution

Limit the information in the cache to non-sensitive data, because there is no
security required to access or update the information within a memcached instance.
Anybody with access to the machine has the ability to read, view and potentially
update the information. To keep the data secure, encrypt the information before
caching it. To restrict the users capable of connecting to the server, either disable
network access, or use IPTables or similar techniques to restrict access to the
memcached ports to a select set of hosts.

You can introduce memcached to an existing application, even if caching was not part of the original
design. In many languages and environments the changes to the application is just a few lines, first to
attempt to read from the cache when loading data, fall back to the old method if the information is not
cached, and to update the cache with information once the data has been read.

The general sequence for using memcached in any language as a caching solution for MySQL is as
follows:

1. Request the item from the cache.

2. If the item exists, use the item data.

3. If the item does not exist, load the data from MySQL, and store the value into the cache. This means
the value is available to the next client that requests it from the cache.

For a flow diagram of this sequence, see Figure 16.6, “Typical memcached Application Flowchart”.

Figure 16.6 Typical memcached Application Flowchart

2374

Developing a memcached Application

Adapting Database Best Practices to memcached Applications

The most direct way to cache MySQL data is to use a 2-column table, where the first column is a primary
key. Because of the uniqueness requirements for memcached keys, make sure your database schema
makes appropriate use of primary keys and unique constraints.

If you combine multiple column values into a single memcached item value, choose data types to make
it easy to parse the value back into its components, for example by using a separator character between
numeric values.

The queries that map most easily to memcached lookups are those with a single WHERE clause, using an =
or IN operator. For complicated WHERE clauses, or those using operators such as <, >, BETWEEN, or LIKE,
memcached does not provide a simple or efficient way to scan through or filter the keys or associated
values, so typically you perform those operations as SQL queries on the underlying database.

16.2.3.3 Using libmemcached with C and C++

The libmemcached library provides both C and C++ interfaces to memcached and is also the basis for
a number of different additional API implementations, including Perl and Python. Understanding the core
libmemcached functions can help when using these other interfaces.

The C library is the most comprehensive interface library for memcached and provides functions and
operational systems not always exposed in interfaces not based on the libmemcached library.

The different functions can be divided up according to their basic operation. In addition to functions that
interface to the core API, a number of utility functions provide extended functionality, such as appending
and prepending data.

To build and install libmemcached, download the libmemcached package, run configure, and then
build and install:

$> tar xjf libmemcached-0.21.tar.gz
$> cd libmemcached-0.21
$> ./configure
$> make
$> make install

On many Linux operating systems, you can install the corresponding libmemcached package through the
usual yum, apt-get, or similar commands.

To build an application that uses the library, first set the list of servers. Either directly manipulate the
servers configured within the main memcached_st structure, or separately populate a list of servers, and
then add this list to the memcached_st structure. The latter method is used in the following example. Once
the server list has been set, you can call the functions to store or retrieve data. A simple application for
setting a preset value to localhost is provided here:

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <libmemcached/memcached.h>

int main(int argc, char *argv[])
{
 memcached_server_st *servers = NULL;
 memcached_st *memc;
 memcached_return rc;
 char *key= "keystring";
 char *value= "keyvalue";

2375

Developing a memcached Application

 memcached_server_st *memcached_servers_parse (char *server_strings);
 memc= memcached_create(NULL);

 servers= memcached_server_list_append(servers, "localhost", 11211, &rc);
 rc= memcached_server_push(memc, servers);

 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Added server successfully\n");
 else
 fprintf(stderr,"Couldn't add server: %s\n",memcached_strerror(memc, rc));

 rc= memcached_set(memc, key, strlen(key), value, strlen(value), (time_t)0, (uint32_t)0);

 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Key stored successfully\n");
 else
 fprintf(stderr,"Couldn't store key: %s\n",memcached_strerror(memc, rc));

 return 0;
}

To test the success of an operation, use the return value, or populated result code, for a given function.
The value is always set to MEMCACHED_SUCCESS if the operation succeeded. In the event of a failure, use
the memcached_strerror() function to translate the result code into a printable string.

To build the application, specify the memcached library:

$> gcc -o memc_basic memc_basic.c -lmemcached

Running the above sample application, after starting a memcached server, should return a success
message:

$> memc_basic
Added server successfully
Key stored successfully

libmemcached Base Functions

The base libmemcached functions let you create, destroy and clone the main memcached_st structure
that is used to interface with the memcached servers. The main functions are defined below:

memcached_st *memcached_create (memcached_st *ptr);

Creates a new memcached_st structure for use with the other libmemcached API functions. You can
supply an existing, static, memcached_st structure, or NULL to have a new structured allocated. Returns a
pointer to the created structure, or NULL on failure.

void memcached_free (memcached_st *ptr);

Frees the structure and memory allocated to a previously created memcached_st structure.

memcached_st *memcached_clone(memcached_st *clone, memcached_st *source);

Clones an existing memcached structure from the specified source, copying the defaults and list of
servers defined in the structure.

libmemcached Server Functions

The libmemcached API uses a list of servers, stored within the memcached_server_st structure, to act
as the list of servers used by the rest of the functions. To use memcached, you first create the server list,
and then apply the list of servers to a valid libmemcached object.

2376

Developing a memcached Application

Because the list of servers, and the list of servers within an active libmemcached object can be
manipulated separately, you can update and manage server lists while an active libmemcached interface
is running.

The functions for manipulating the list of servers within a memcached_st structure are:

memcached_return
 memcached_server_add (memcached_st *ptr,
 char *hostname,
 unsigned int port);

Adds a server, using the given hostname and port into the memcached_st structure given in ptr.

memcached_return
 memcached_server_add_unix_socket (memcached_st *ptr,
 char *socket);

Adds a Unix socket to the list of servers configured in the memcached_st structure.

unsigned int memcached_server_count (memcached_st *ptr);

Returns a count of the number of configured servers within the memcached_st structure.

memcached_server_st *
 memcached_server_list (memcached_st *ptr);

Returns an array of all the defined hosts within a memcached_st structure.

memcached_return
 memcached_server_push (memcached_st *ptr,
 memcached_server_st *list);

Pushes an existing list of servers onto list of servers configured for a current memcached_st structure.
This adds servers to the end of the existing list, and duplicates are not checked.

The memcached_server_st structure can be used to create a list of memcached servers which can then
be applied individually to memcached_st structures.

memcached_server_st *
 memcached_server_list_append (memcached_server_st *ptr,
 char *hostname,
 unsigned int port,
 memcached_return *error);

Adds a server, with hostname and port, to the server list in ptr. The result code is handled by the
error argument, which should point to an existing memcached_return variable. The function returns a
pointer to the returned list.

unsigned int memcached_server_list_count (memcached_server_st *ptr);

Returns the number of the servers in the server list.

void memcached_server_list_free (memcached_server_st *ptr);

Frees the memory associated with a server list.

memcached_server_st *memcached_servers_parse (char *server_strings);

Parses a string containing a list of servers, where individual servers are separated by a comma, space,
or both, and where individual servers are of the form server[:port]. The return value is a server list
structure.

2377

Developing a memcached Application

libmemcached Set Functions

The set-related functions within libmemcached provide the same functionality as the core functions
supported by the memcached protocol. The full definition for the different functions is the same for
all the base functions (add, replace, prepend, append). For example, the function definition for
memcached_set() is:

memcached_return
 memcached_set (memcached_st *ptr,
 const char *key,
 size_t key_length,
 const char *value,
 size_t value_length,
 time_t expiration,
 uint32_t flags);

The ptr is the memcached_st structure. The key and key_length define the key name and length,
and value and value_length the corresponding value and length. You can also set the expiration and
optional flags. For more information, see Controlling libmemcached Behaviors.

The following table outlines the remainder of the set-related libmemcached functions and the equivalent
core functions supported by the memcached protocol.

libmemcached Function Equivalent Core Function

memcached_set(memc, key, key_length,
value, value_length, expiration,
flags)

Generic set() operation.

memcached_add(memc, key, key_length,
value, value_length, expiration,
flags)

Generic add() function.

memcached_replace(memc, key,
key_length, value, value_length,
expiration, flags)

Generic replace().

memcached_prepend(memc, key,
key_length, value, value_length,
expiration, flags)

Prepends the specified value before the current
value of the specified key.

memcached_append(memc, key,
key_length, value, value_length,
expiration, flags)

Appends the specified value after the current value
of the specified key.

memcached_cas(memc, key, key_length,
value, value_length, expiration,
flags, cas)

Overwrites the data for a given key as long as the
corresponding cas value is still the same within the
server.

memcached_set_by_key(memc, master_key,
master_key_length, key, key_length,
value, value_length, expiration,
flags)

Similar to the generic set(), but has the option of
an additional master key that can be used to identify
an individual server.

memcached_add_by_key(memc, master_key,
master_key_length, key, key_length,
value, value_length, expiration,
flags)

Similar to the generic add(), but has the option of
an additional master key that can be used to identify
an individual server.

memcached_replace_by_key(memc,
master_key, master_key_length, key,

Similar to the generic replace(), but has the
option of an additional master key that can be used
to identify an individual server.

2378

Developing a memcached Application

libmemcached Function Equivalent Core Function
key_length, value, value_length,
expiration, flags)

memcached_prepend_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the memcached_prepend(), but has the
option of an additional master key that can be used
to identify an individual server.

memcached_append_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the memcached_append(), but has the
option of an additional master key that can be used
to identify an individual server.

memcached_cas_by_key(memc, master_key,
master_key_length, key, key_length,
value, value_length, expiration,
flags)

Similar to the memcached_cas(), but has the
option of an additional master key that can be used
to identify an individual server.

The by_key methods add two further arguments that define the master key, to be used and applied during
the hashing stage for selecting the servers. You can see this in the following definition:

memcached_return
 memcached_set_by_key(memcached_st *ptr,
 const char *master_key,
 size_t master_key_length,
 const char *key,
 size_t key_length,
 const char *value,
 size_t value_length,
 time_t expiration,
 uint32_t flags);

All the functions return a value of type memcached_return, which you can compare against the
MEMCACHED_SUCCESS constant.

libmemcached Get Functions

The libmemcached functions provide both direct access to a single item, and a multiple-key request
mechanism that provides much faster responses when fetching a large number of keys simultaneously.

The main get-style function, which is equivalent to the generic get() is memcached_get(). This function
returns a string pointer, pointing to the value associated with the specified key.

char *memcached_get (memcached_st *ptr,
 const char *key, size_t key_length,
 size_t *value_length,
 uint32_t *flags,
 memcached_return *error);

A multi-key get, memcached_mget(), is also available. Using a multiple key get operation is much quicker
to do in one block than retrieving the key values with individual calls to memcached_get(). To start the
multi-key get, call memcached_mget():

memcached_return
 memcached_mget (memcached_st *ptr,
 char **keys, size_t *key_length,
 unsigned int number_of_keys);

The return value is the success of the operation. The keys parameter should be an array of strings
containing the keys, and key_length an array containing the length of each corresponding key.
number_of_keys is the number of keys supplied in the array.

2379

Developing a memcached Application

To fetch the individual values, use memcached_fetch() to get each corresponding value.

char *memcached_fetch (memcached_st *ptr,
 const char *key, size_t *key_length,
 size_t *value_length,
 uint32_t *flags,
 memcached_return *error);

The function returns the key value, with the key, key_length and value_length parameters being
populated with the corresponding key and length information. The function returns NULL when there are no
more values to be returned. A full example, including the populating of the key data and the return of the
information is provided here.

#include <stdio.h>
#include <sstring.h>
#include <unistd.h>
#include <libmemcached/memcached.h>

int main(int argc, char *argv[])
{
 memcached_server_st *servers = NULL;
 memcached_st *memc;
 memcached_return rc;
 char *keys[]= {"huey", "dewey", "louie"};
 size_t key_length[3];
 char *values[]= {"red", "blue", "green"};
 size_t value_length[3];
 unsigned int x;
 uint32_t flags;

 char return_key[MEMCACHED_MAX_KEY];
 size_t return_key_length;
 char *return_value;
 size_t return_value_length;

 memc= memcached_create(NULL);

 servers= memcached_server_list_append(servers, "localhost", 11211, &rc);
 rc= memcached_server_push(memc, servers);

 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Added server successfully\n");
 else
 fprintf(stderr,"Couldn't add server: %s\n",memcached_strerror(memc, rc));

 for(x= 0; x < 3; x++)
 {
 key_length[x] = strlen(keys[x]);
 value_length[x] = strlen(values[x]);

 rc= memcached_set(memc, keys[x], key_length[x], values[x],
 value_length[x], (time_t)0, (uint32_t)0);
 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Key %s stored successfully\n",keys[x]);
 else
 fprintf(stderr,"Couldn't store key: %s\n",memcached_strerror(memc, rc));
 }

 rc= memcached_mget(memc, keys, key_length, 3);

 if (rc == MEMCACHED_SUCCESS)
 {
 while ((return_value= memcached_fetch(memc, return_key, &return_key_length,
 &return_value_length, &flags, &rc)) != NULL)
 {
 if (rc == MEMCACHED_SUCCESS)

2380

Developing a memcached Application

 {
 fprintf(stderr,"Key %s returned %s\n",return_key, return_value);
 }
 }
 }

 return 0;
}

Running the above application produces the following output:

$> memc_multi_fetch
Added server successfully
Key huey stored successfully
Key dewey stored successfully
Key louie stored successfully
Key huey returned red
Key dewey returned blue
Key louie returned green

Controlling libmemcached Behaviors

The behavior of libmemcached can be modified by setting one or more behavior flags. These can either
be set globally, or they can be applied during the call to individual functions. Some behaviors also accept
an additional setting, such as the hashing mechanism used when selecting servers.

To set global behaviors:

memcached_return
 memcached_behavior_set (memcached_st *ptr,
 memcached_behavior flag,
 uint64_t data);

To get the current behavior setting:

uint64_t
 memcached_behavior_get (memcached_st *ptr,
 memcached_behavior flag);

The following table describes libmemcached behavior flags.

Behavior Description

MEMCACHED_BEHAVIOR_NO_BLOCK Caused libmemcached to use asynchronous I/O.

MEMCACHED_BEHAVIOR_TCP_NODELAY Turns on no-delay for network sockets.

MEMCACHED_BEHAVIOR_HASH Without a value, sets the default hashing
algorithm for keys to use MD5. Other valid
values include MEMCACHED_HASH_DEFAULT,
MEMCACHED_HASH_MD5, MEMCACHED_HASH_CRC,
MEMCACHED_HASH_FNV1_64,
MEMCACHED_HASH_FNV1A_64,
MEMCACHED_HASH_FNV1_32, and
MEMCACHED_HASH_FNV1A_32.

MEMCACHED_BEHAVIOR_DISTRIBUTION Changes the method of selecting the server
used to store a given value. The default method
is MEMCACHED_DISTRIBUTION_MODULA.
You can enable consistent hashing by setting
MEMCACHED_DISTRIBUTION_CONSISTENT.

2381

Developing a memcached Application

Behavior Description
MEMCACHED_DISTRIBUTION_CONSISTENT
is an alias for the value
MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA.

MEMCACHED_BEHAVIOR_CACHE_LOOKUPS Cache the lookups made to the DNS service. This
can improve the performance if you are using
names instead of IP addresses for individual hosts.

MEMCACHED_BEHAVIOR_SUPPORT_CAS Support CAS operations. By default, this is disabled
because it imposes a performance penalty.

MEMCACHED_BEHAVIOR_KETAMA Sets the default distribution to
MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA
and the hash to MEMCACHED_HASH_MD5.

MEMCACHED_BEHAVIOR_POLL_TIMEOUT Modify the timeout value used by poll(). Supply a
signed int pointer for the timeout value.

MEMCACHED_BEHAVIOR_BUFFER_REQUESTS Buffers IO requests instead of them being sent. A
get operation, or closing the connection causes the
data to be flushed.

MEMCACHED_BEHAVIOR_VERIFY_KEY Forces libmemcached to verify that a specified key
is valid.

MEMCACHED_BEHAVIOR_SORT_HOSTS If set, hosts added to the list of configured hosts for
a memcached_st structure are placed into the host
list in sorted order. This breaks consistent hashing if
that behavior has been enabled.

MEMCACHED_BEHAVIOR_CONNECT_TIMEOUT In nonblocking mode this changes the value of the
timeout during socket connection.

libmemcached Command-Line Utilities

In addition to the main C library interface, libmemcached also includes a number of command-line utilities
that can be useful when working with and debugging memcached applications.

All of the command-line tools accept a number of arguments, the most critical of which is servers, which
specifies the list of servers to connect to when returning information.

The main tools are:

• memcat: Display the value for each ID given on the command line:

$> memcat --servers=localhost hwkey
Hello world

• memcp: Copy the contents of a file into the cache, using the file name as the key:

$> echo "Hello World" > hwkey
$> memcp --servers=localhost hwkey
$> memcat --servers=localhost hwkey
Hello world

• memrm: Remove an item from the cache:

$> memcat --servers=localhost hwkey
Hello world
$> memrm --servers=localhost hwkey
$> memcat --servers=localhost hwkey

2382

Developing a memcached Application

• memslap: Test the load on one or more memcached servers, simulating get/set and multiple client
operations. For example, you can simulate the load of 100 clients performing get operations:

$> memslap --servers=localhost --concurrency=100 --flush --test=get
memslap --servers=localhost --concurrency=100 --flush --test=get Threads connecting to servers 100
 Took 13.571 seconds to read data

• memflush: Flush (empty) the contents of the memcached cache.

$> memflush --servers=localhost

16.2.3.4 Using MySQL and memcached with Perl

The Cache::Memcached module provides a native interface to the Memcache protocol, and provides
support for the core functions offered by memcached. Install the module using your operating system's
package management system, or using CPAN:

#> perl -MCPAN -e 'install Cache::Memcached'

To use memcached from Perl through the Cache::Memcached module, first create a new
Cache::Memcached object that defines the list of servers and other parameters for the connection. The
only argument is a hash containing the options for the cache interface. For example, to create a new
instance that uses three memcached servers:

use Cache::Memcached;

my $cache = new Cache::Memcached {
 'servers' => [
 '198.51.100.100:11211',
 '198.51.100.101:11211',
 '198.51.100.102:11211',
],
};

Note

When using the Cache::Memcached interface with multiple servers, the API
automatically performs certain operations across all the servers in the group. For
example, getting statistical information through Cache::Memcached returns a hash
that contains data on a host-by-host basis, as well as generalized statistics for all
the servers in the group.

You can set additional properties on the cache object instance when it is created by specifying the option
as part of the option hash. Alternatively, you can use a corresponding method on the instance:

• servers or method set_servers(): Specifies the list of the servers to be used. The servers list
should be a reference to an array of servers, with each element as the address and port number
combination (separated by a colon). You can also specify a local connection through a Unix socket (for
example /tmp/sock/memcached). To specify the server with a weight (indicating how much more
frequently the server should be used during hashing), specify an array reference with the memcached
server instance and a weight number. Higher numbers give higher priority.

• compress_threshold or method set_compress_threshold(): Specifies the threshold when
values are compressed. Values larger than the specified number are automatically compressed (using
zlib) during storage and retrieval.

• no_rehash or method set_norehash(): Disables finding a new server if the original choice is
unavailable.

• readonly or method set_readonly(): Disables writes to the memcached servers.

2383

Developing a memcached Application

Once the Cache::Memcached object instance has been configured, you can use the set() and get()
methods to store and retrieve information from the memcached servers. Objects stored in the cache are
automatically serialized and deserialized using the Storable module.

The Cache::Memcached interface supports the following methods for storing/retrieving data, and relate to
the generic methods as shown in the table.

Cache::Memcached Function Equivalent Generic Method

get() Generic get().

get_multi(keys) Gets multiple keys from memcache using just one
query. Returns a hash reference of key-value pairs.

set() Generic set().

add() Generic add().

replace() Generic replace().

delete() Generic delete().

incr() Generic incr().

decr() Generic decr().

Below is a complete example for using memcached with Perl and the Cache::Memcached module:

#!/usr/bin/perl

use Cache::Memcached;
use DBI;
use Data::Dumper;

Configure the memcached server

my $cache = new Cache::Memcached {
 'servers' => [
 'localhost:11211',
],
 };

Get the film name from the command line
memcached keys must not contain spaces, so create
a key name by replacing spaces with underscores

my $filmname = shift or die "Must specify the film name\n";
my $filmkey = $filmname;
$filmkey =~ s/ /_/;

Load the data from the cache

my $filmdata = $cache->get($filmkey);

If the data wasn't in the cache, then we load it from the database

if (!defined($filmdata))
{
 $filmdata = load_filmdata($filmname);

 if (defined($filmdata))
 {

Set the data into the cache, using the key

 if ($cache->set($filmkey,$filmdata))
 {

2384

Developing a memcached Application

 print STDERR "Film data loaded from database and cached\n";
 }
 else
 {
 print STDERR "Couldn't store to cache\n";
 }
 }
 else
 {
 die "Couldn't find $filmname\n";
 }
}
else
{
 print STDERR "Film data loaded from Memcached\n";
}

sub load_filmdata
{
 my ($filmname) = @_;

 my $dsn = "DBI:mysql:database=sakila;host=localhost;port=3306";

 $dbh = DBI->connect($dsn, 'sakila','password');

 my ($filmbase) = $dbh->selectrow_hashref(sprintf('select * from film where title = %s',
 $dbh->quote($filmname)));

 if (!defined($filmname))
 {
 return (undef);
 }

 $filmbase->{stars} =
 $dbh->selectall_arrayref(sprintf('select concat(first_name," ",last_name) ' .
 'from film_actor left join (actor) ' .
 'on (film_actor.actor_id = actor.actor_id) ' .
 ' where film_id=%s',
 $dbh->quote($filmbase->{film_id})));

 return($filmbase);
}

The example uses the Sakila database, obtaining film data from the database and writing a composite
record of the film and actors to memcached. When calling it for a film does not exist, you get this result:

$> memcached-sakila.pl "ROCK INSTINCT"
Film data loaded from database and cached

When accessing a film that has already been added to the cache:

$> memcached-sakila.pl "ROCK INSTINCT"
Film data loaded from Memcached

16.2.3.5 Using MySQL and memcached with Python

The Python memcache module interfaces to memcached servers, and is written in pure Python (that is,
without using one of the C APIs). You can download and install a copy from Python Memcached.

To install, download the package and then run the Python installer:

python setup.py install
running install
running bdist_egg
running egg_info

2385

http://www.tummy.com/Community/software/python-memcached/

Developing a memcached Application

creating python_memcached.egg-info
...
removing 'build/bdist.linux-x86_64/egg' (and everything under it)
Processing python_memcached-1.43-py2.4.egg
creating /usr/lib64/python2.4/site-packages/python_memcached-1.43-py2.4.egg
Extracting python_memcached-1.43-py2.4.egg to /usr/lib64/python2.4/site-packages
Adding python-memcached 1.43 to easy-install.pth file

Installed /usr/lib64/python2.4/site-packages/python_memcached-1.43-py2.4.egg
Processing dependencies for python-memcached==1.43
Finished processing dependencies for python-memcached==1.43

Once installed, the memcache module provides a class-based interface to your memcached servers. When
you store Python data structures as memcached items, they are automatically serialized (turned into string
values) using the Python cPickle or pickle modules.

To create a new memcache interface, import the memcache module and create a new instance of the
memcache.Client class. For example, if the memcached daemon is running on localhost using the
default port:

import memcache
memc = memcache.Client(['127.0.0.1:11211'])

The first argument is an array of strings containing the server and port number for each memcached
instance to use. To enable debugging, set the optional debug parameter to 1.

By default, the hashing mechanism used to divide the items among multiple servers is crc32. To change
the function used, set the value of memcache.serverHashFunction to the alternate function to use. For
example:

from zlib import adler32
memcache.serverHashFunction = adler32

Once you have defined the servers to use within the memcache instance, the core functions provide the
same functionality as in the generic interface specification. The following table provides a summary of the
supported functions.

Python memcache Function Equivalent Generic Function

get() Generic get().

get_multi(keys) Gets multiple values from the supplied array of
keys. Returns a hash reference of key-value pairs.

set() Generic set().

set_multi(dict [, expiry [,
key_prefix]])

Sets multiple key-value pairs from the supplied
dict.

add() Generic add().

replace() Generic replace().

prepend(key, value [, expiry]) Prepends the supplied value to the value of the
existing key.

append(key, value [, expiry[) Appends the supplied value to the value of the
existing key.

delete() Generic delete().

delete_multi(keys [, expiry [,
key_prefix]])

Deletes all the keys from the hash matching each
string in the array keys.

incr() Generic incr().

2386

Developing a memcached Application

Python memcache Function Equivalent Generic Function

decr() Generic decr().

Note

Within the Python memcache module, all the *_multi()functions support an
optional key_prefix parameter. If supplied, then the string is used as a prefix to
all key lookups. For example, if you call:

memc.get_multi(['a','b'], key_prefix='users:')

The function retrieves the keys users:a and users:b from the servers.

Here is an example showing the storage and retrieval of information to a memcache instance, loading the
raw data from MySQL:

import sys
import MySQLdb
import memcache

memc = memcache.Client(['127.0.0.1:11211'], debug=1);

try:
 conn = MySQLdb.connect (host = "localhost",
 user = "sakila",
 passwd = "password",
 db = "sakila")
except MySQLdb.Error, e:
 print "Error %d: %s" % (e.args[0], e.args[1])
 sys.exit (1)

popularfilms = memc.get('top5films')

if not popularfilms:
 cursor = conn.cursor()
 cursor.execute('select film_id,title from film order by rental_rate desc limit 5')
 rows = cursor.fetchall()
 memc.set('top5films',rows,60)
 print "Updated memcached with MySQL data"
else:
 print "Loaded data from memcached"
 for row in popularfilms:
 print "%s, %s" % (row[0], row[1])

When executed for the first time, the data is loaded from the MySQL database and stored to the
memcached server.

$> python memc_python.py
Updated memcached with MySQL data

Because the data is automatically serialized using cPickle/pickle, when you load the data back from
memcached, you can use the object directly. In the example above, the information stored to memcached
is in the form of rows from a Python DB cursor. When accessing the information (within the 60 second
expiry time), the data is loaded from memcached and dumped:

$> python memc_python.py
Loaded data from memcached
2, ACE GOLDFINGER
7, AIRPLANE SIERRA
8, AIRPORT POLLOCK
10, ALADDIN CALENDAR
13, ALI FOREVER

2387

Developing a memcached Application

The serialization and deserialization happens automatically. Because serialization of Python data may be
incompatible with other interfaces and languages, you can change the serialization module used during
initialization. For example, you might use JSON format when you store complex data structures using a
script written in one language, and access them in a script written in a different language.

16.2.3.6 Using MySQL and memcached with PHP

PHP provides support for the Memcache functions through a PECL extension. To enable the PHP
memcache extensions, build PHP using the --enable-memcache option to configure when building
from source.

If you are installing on a Red Hat-based server, you can install the php-pecl-memcache RPM:

#> yum --install php-pecl-memcache

On Debian-based distributions, use the php-memcache package.

To set global runtime configuration options, specify the configuration option values within your php.ini
file. The following table provides the name, default value, and a description for each global runtime
configuration option.

Configuration option Default Description

memcache.allow_failover 1 Specifies whether another server
in the list should be queried if the
first server selected fails.

memcache.max_failover_attempts20 Specifies the number of servers to
try before returning a failure.

memcache.chunk_size 8192 Defines the size of network
chunks used to exchange data
with the memcached server.

memcache.default_port 11211 Defines the default port to use
when communicating with the
memcached servers.

memcache.hash_strategy standard Specifies which hash strategy
to use. Set to consistent to
enable servers to be added or
removed from the pool without
causing the keys to be remapped
to other servers. When set to
standard, an older (modula)
strategy is used that potentially
uses different servers for storage.

memcache.hash_function crc32 Specifies which function to use
when mapping keys to servers.
crc32 uses the standard CRC32
hash. fnv uses the FNV-1a
hashing algorithm.

To create a connection to a memcached server, create a new Memcache object and then specify the
connection options. For example:

<?php

2388

Developing a memcached Application

$cache = new Memcache;
$cache->connect('localhost',11211);
?>

This opens an immediate connection to the specified server.

To use multiple memcached servers, you need to add servers to the memcache object using
addServer():

bool Memcache::addServer (string $host [, int $port [, bool $persistent
 [, int $weight [, int $timeout [, int $retry_interval
 [, bool $status [, callback $failure_callback
]]]]]]])

The server management mechanism within the php-memcache module is a critical part of the interface
as it controls the main interface to the memcached instances and how the different instances are selected
through the hashing mechanism.

To create a simple connection to two memcached instances:

<?php

$cache = new Memcache;
$cache->addServer('198.51.100.100',11211);
$cache->addServer('198.51.100.101',11211);
?>

In this scenario, the instance connection is not explicitly opened, but only opened when you try to store
or retrieve a value. To enable persistent connections to memcached instances, set the $persistent
argument to true. This is the default setting, and causes the connections to remain open.

To help control the distribution of keys to different instances, use the global memcache.hash_strategy
setting. This sets the hashing mechanism used to select. You can also add another weight to each server,
which effectively increases the number of times the instance entry appears in the instance list, therefore
increasing the likelihood of the instance being chosen over other instances. To set the weight, set the value
of the $weight argument to more than one.

The functions for setting and retrieving information are identical to the generic functional interface offered
by memcached, as shown in the following table.

PECL memcache Function Generic Function

get() Generic get().

set() Generic set().

add() Generic add().

replace() Generic replace().

delete() Generic delete().

increment() Generic incr().

decrement() Generic decr().

A full example of the PECL memcache interface is provided below. The code loads film data from the
Sakila database when the user provides a film name. The data stored into the memcached instance is
recorded as a mysqli result row, and the API automatically serializes the information for you.

2389

Developing a memcached Application

<?php

$memc = new Memcache;
$memc->addServer('localhost','11211');

if(empty($_POST['film'])) {
?>
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Simple Memcache Lookup</title>
 </head>
 <body>
 <form method="post">
 <p>Film: <input type="text" size="20" name="film"></p>
 <input type="submit">
 </form>
 <hr/>
<?php

} else {

 echo "Loading data...\n";

 $film = htmlspecialchars($_POST['film'], ENT_QUOTES, 'UTF-8');
 $mfilms = $memc->get($film);

 if ($mfilms) {

 printf("<p>Film data for %s loaded from memcache</p>", $mfilms['title']);

 foreach (array_keys($mfilms) as $key) {
 printf("<p>%s: %s</p>", $key, $mfilms[$key]);
 }

 } else {

 $mysqli = mysqli('localhost','sakila','<replaceable>password</replaceable>','sakila');

 if (mysqli_connect_error()) {
 sprintf("Database error: (%d) %s", mysqli_connect_errno(), mysqli_connect_error());
 exit;
 }

 $sql = sprintf('SELECT * FROM film WHERE title="%s"', $mysqli->real_escape_string($film));

 $result = $mysqli->query($sql);

 if (!$result) {
 sprintf("Database error: (%d) %s", $mysqli->errno, $mysqli->error);
 exit;
 }

 $row = $result->fetch_assoc();

 $memc->set($row['title'], $row);

 printf("<p>Loaded (%s) from MySQL</p>", htmlspecialchars($row['title'], ENT_QUOTES, 'UTF-8');
 }
}
?>
 </body>
</html>

With PHP, the connections to the memcached instances are kept open as long as the PHP and associated
Apache instance remain running. When adding or removing servers from the list in a running instance (for

2390

Developing a memcached Application

example, when starting another script that mentions additional servers), the connections are shared, but
the script only selects among the instances explicitly configured within the script.

To ensure that changes to the server list within a script do not cause problems, make sure to use the
consistent hashing mechanism.

16.2.3.7 Using MySQL and memcached with Java

The com.danga.MemCached class within Java provides a native interface to memcached instances.
You can obtain the client from https://github.com/gwhalin/Memcached-Java-Client/downloads. The
Java class uses hashes that are compatible with libmemcached, so you can mix and match Java and
libmemcached applications accessing the same memcached instances. The serialization between Java
and other interfaces are not compatible. If this is a problem, use JSON or a similar nonbinary serialization
format.

On most systems, you can download the package and use the jar directly.

To use the com.danga.MemCached interface, you create a MemCachedClient instance and then
configure the list of servers by configuring the SockIOPool. Through the pool specification you set up the
server list, weighting, and the connection parameters to optimized the connections between your client and
the memcached instances that you configure.

Generally, you can configure the memcached interface once within a single class, then use this interface
throughout the rest of your application.

For example, to create a basic interface, first configure the MemCachedClient and base SockIOPool
settings:

public class MyClass {

 protected static MemCachedClient mcc = new MemCachedClient();

 static {

 String[] servers =
 {
 "localhost:11211",
 };

 Integer[] weights = { 1 };

 SockIOPool pool = SockIOPool.getInstance();

 pool.setServers(servers);
 pool.setWeights(weights);

In the above sample, the list of servers is configured by creating an array of the memcached instances to
use. You can then configure individual weights for each server.

The remainder of the properties for the connection are optional, but you can set the connection numbers
(initial connections, minimum connections, maximum connections, and the idle timeout) by setting the pool
parameters:

pool.setInitConn(5);
pool.setMinConn(5);
pool.setMaxConn(250);
pool.setMaxIdle(1000 * 60 * 60 * 6

Once the parameters have been configured, initialize the connection pool:

2391

https://github.com/gwhalin/Memcached-Java-Client/downloads

Developing a memcached Application

pool.initialize();

The pool, and the connection to your memcached instances should now be ready to use.

To set the hashing algorithm used to select the server used when storing a given key, use
pool.setHashingAlg():

pool.setHashingAlg(SockIOPool.NEW_COMPAT_HASH);

Valid values are NEW_COMPAT_HASH, OLD_COMPAT_HASH and NATIVE_HASH are also basic modula
hashing algorithms. For a consistent hashing algorithm, use CONSISTENT_HASH. These constants are
equivalent to the corresponding hash settings within libmemcached.

The following table outlines the Java com.danga.MemCached methods and the equivalent generic
methods in the memcached interface specification.

Java com.danga.MemCached Method Equivalent Generic Method

get() Generic get().

getMulti(keys) Get the values of multiple keys, returning
the information as Hash map using
java.lang.String for the keys and
java.lang.Object for the corresponding values.

set() Generic set().

add() Generic add().

replace() Generic replace().

delete() Generic delete().

incr() Generic incr().

decr() Generic decr().

16.2.3.8 Using the memcached TCP Text Protocol

Communicating with a memcached server can be achieved through either the TCP or UDP protocols.
When using the TCP protocol, you can use a simple text based interface for the exchange of information.

When communicating with memcached, you can connect to the server using the port configured for the
server. You can open a connection with the server without requiring authorization or login. As soon as
you have connected, you can start to send commands to the server. When you have finished, you can
terminate the connection without sending any specific disconnection command. Clients are encouraged to
keep their connections open to decrease latency and improve performance.

Data is sent to the memcached server in two forms:

• Text lines, which are used to send commands to the server, and receive responses from the server.

• Unstructured data, which is used to receive or send the value information for a given key. Data is
returned to the client in exactly the format it was provided.

Both text lines (commands and responses) and unstructured data are always terminated with the string \r
\n. Because the data being stored may contain this sequence, the length of the data (returned by the client
before the unstructured data is transmitted should be used to determine the end of the data.

Commands to the server are structured according to their operation:

2392

Developing a memcached Application

• Storage commands: set, add, replace, append, prepend, cas

Storage commands to the server take the form:

command key [flags] [exptime] length [noreply]

Or when using compare and swap (cas):

cas key [flags] [exptime] length [casunique] [noreply]

Where:

• command: The command name.

• set: Store value against key

• add: Store this value against key if the key does not already exist

• replace: Store this value against key if the key already exists

• append: Append the supplied value to the end of the value for the specified key. The flags and
exptime arguments should not be used.

• prepend: Append value currently in the cache to the end of the supplied value for the specified key.
The flags and exptime arguments should not be used.

• cas: Set the specified key to the supplied value, only if the supplied casunique matches. This is
effectively the equivalent of change the information if nobody has updated it since I last fetched it.

• key: The key. All data is stored using a the specific key. The key cannot contain control characters or
whitespace, and can be up to 250 characters in size.

• flags: The flags for the operation (as an integer). Flags in memcached are transparent. The
memcached server ignores the contents of the flags. They can be used by the client to indicate any
type of information. In memcached 1.2.0 and lower the value is a 16-bit integer value. In memcached
1.2.1 and higher the value is a 32-bit integer.

• exptime: The expiry time, or zero for no expiry.

• length: The length of the supplied value block in bytes, excluding the terminating \r\n characters.

• casunique: A unique 64-bit value of an existing entry. This is used to compare against the existing
value. Use the value returned by the gets command when issuing cas updates.

• noreply: Tells the server not to reply to the command.

For example, to store the value abcdef into the key xyzkey, you would use:

set xyzkey 0 0 6\r\nabcdef\r\n

The return value from the server is one line, specifying the status or error information. For more
information, see Table 16.3, “memcached Protocol Responses”.

• Retrieval commands: get, gets

Retrieval commands take the form:

get key1 [key2 keyn]
gets key1 [key2 ... keyn]

2393

Developing a memcached Application

You can supply multiple keys to the commands, with each requested key separated by whitespace.

The server responds with an information line of the form:

VALUE key flags bytes [casunique]

Where:

• key: The key name.

• flags: The value of the flag integer supplied to the memcached server when the value was stored.

• bytes: The size (excluding the terminating \r\n character sequence) of the stored value.

• casunique: The unique 64-bit integer that identifies the item.

The information line is immediately followed by the value data block. For example:

get xyzkey\r\n
VALUE xyzkey 0 6\r\n
abcdef\r\n

If you have requested multiple keys, an information line and data block is returned for each key found. If
a requested key does not exist in the cache, no information is returned.

• Delete commands: delete

Deletion commands take the form:

delete key [time] [noreply]

Where:

• key: The key name.

• time: The time in seconds (or a specific Unix time) for which the client wishes the server to refuse
add or replace commands on this key. All add, replace, get, and gets commands fail during this
period. set operations succeed. After this period, the key is deleted permanently and all commands
are accepted.

If not supplied, the value is assumed to be zero (delete immediately).

• noreply: Tells the server not to reply to the command.

Responses to the command are either DELETED to indicate that the key was successfully removed, or
NOT_FOUND to indicate that the specified key could not be found.

• Increment/Decrement: incr, decr

The increment and decrement commands change the value of a key within the server without performing
a separate get/set sequence. The operations assume that the currently stored value is a 64-bit integer.
If the stored value is not a 64-bit integer, then the value is assumed to be zero before the increment or
decrement operation is applied.

Increment and decrement commands take the form:

incr key value [noreply]

2394

Developing a memcached Application

decr key value [noreply]

Where:

• key: The key name.

• value: An integer to be used as the increment or decrement value.

• noreply: Tells the server not to reply to the command.

The response is:

• NOT_FOUND: The specified key could not be located.

• value: The new value associated with the specified key.

Values are assumed to be unsigned. For decr operations, the value is never decremented below 0. For
incr operations, the value wraps around the 64-bit maximum.

• Statistics commands: stats

The stats command provides detailed statistical information about the current status of the memcached
instance and the data it is storing.

Statistics commands take the form:

STAT [name] [value]

Where:

• name: The optional name of the statistics to return. If not specified, the general statistics are returned.

• value: A specific value to be used when performing certain statistics operations.

The return value is a list of statistics data, formatted as follows:

STAT name value

The statistics are terminated with a single line, END.

For more information, see Section 16.2.4, “Getting memcached Statistics”.

For reference, a list of the different commands supported and their formats is provided below.

Table 16.2 memcached Command Reference

Command Command Formats

set set key flags exptime length, set key
flags exptime length noreply

add add key flags exptime length, add key
flags exptime length noreply

replace replace key flags exptime length,
replace key flags exptime length
noreply

append append key length, append key length
noreply

2395

Developing a memcached Application

Command Command Formats

prepend prepend key length, prepend key length
noreply

cas cas key flags exptime length casunique,
cas key flags exptime length casunique
noreply

get get key1 [key2 ... keyn]

gets

delete delete key, delete key noreply, delete
key expiry, delete key expiry noreply

incr incr key, incr key noreply, incr key
value, incr key value noreply

decr decr key, decr key noreply, decr key
value, decr key value noreply

stat stat, stat name, stat name value

When sending a command to the server, the response from the server is one of the settings in the
following table. All response values from the server are terminated by \r\n:

Table 16.3 memcached Protocol Responses

String Description

STORED Value has successfully been stored.

NOT_STORED The value was not stored, but not because of an
error. For commands where you are adding a
or updating a value if it exists (such as add and
replace), or where the item has already been set
to be deleted.

EXISTS When using a cas command, the item you are
trying to store already exists and has been modified
since you last checked it.

NOT_FOUND The item you are trying to store, update or delete
does not exist or has already been deleted.

ERROR You submitted a nonexistent command name.

CLIENT_ERROR errorstring There was an error in the input line, the detail is
contained in errorstring.

SERVER_ERROR errorstring There was an error in the server that prevents
it from returning the information. In extreme
conditions, the server may disconnect the client
after this error occurs.

VALUE keys flags length The requested key has been found, and the stored
key, flags and data block are returned, of the
specified length.

DELETED The requested key was deleted from the server.

STAT name value A line of statistics data.

END The end of the statistics data.

2396

Getting memcached Statistics

16.2.4 Getting memcached Statistics

The memcached system has a built-in statistics system that collects information about the data being
stored into the cache, cache hit ratios, and detailed information on the memory usage and distribution
of information through the slab allocation used to store individual items. Statistics are provided at both a
basic level that provide the core statistics, and more specific statistics for specific areas of the memcached
server.

This information can be useful to ensure that you are getting the correct level of cache and memory usage,
and that your slab allocation and configuration properties are set at an optimal level.

The stats interface is available through the standard memcached protocol, so the reports can be accessed
by using telnet to connect to the memcached. The supplied memcached-tool includes support for
obtaining the Section 16.2.4.2, “memcached Slabs Statistics” and Section 16.2.4.1, “memcached General
Statistics” information. For more information, see Section 16.2.4.6, “Using memcached-tool”.

Alternatively, most of the language API interfaces provide a function for obtaining the statistics from the
server.

For example, to get the basic stats using telnet:

$> telnet localhost 11211
Trying ::1...
Connected to localhost.
Escape character is '^]'.
stats
STAT pid 23599
STAT uptime 675
STAT time 1211439587
STAT version 1.2.5
STAT pointer_size 32
STAT rusage_user 1.404992
STAT rusage_system 4.694685
STAT curr_items 32
STAT total_items 56361
STAT bytes 2642
STAT curr_connections 53
STAT total_connections 438
STAT connection_structures 55
STAT cmd_get 113482
STAT cmd_set 80519
STAT get_hits 78926
STAT get_misses 34556
STAT evictions 0
STAT bytes_read 6379783
STAT bytes_written 4860179
STAT limit_maxbytes 67108864
STAT threads 1
END

When using Perl and the Cache::Memcached module, the stats() function returns information about all
the servers currently configured in the connection object, and total statistics for all the memcached servers
as a whole.

For example, the following Perl script obtains the stats and dumps the hash reference that is returned:

use Cache::Memcached;
use Data::Dumper;

my $memc = new Cache::Memcached;
$memc->set_servers(\@ARGV);

2397

Getting memcached Statistics

print Dumper($memc->stats());

When executed on the same memcached as used in the Telnet example above we get a hash reference
with the host by host and total statistics:

$VAR1 = {
 'hosts' => {
 'localhost:11211' => {
 'misc' => {
 'bytes' => '2421',
 'curr_connections' => '3',
 'connection_structures' => '56',
 'pointer_size' => '32',
 'time' => '1211440166',
 'total_items' => '410956',
 'cmd_set' => '588167',
 'bytes_written' => '35715151',
 'evictions' => '0',
 'curr_items' => '31',
 'pid' => '23599',
 'limit_maxbytes' => '67108864',
 'uptime' => '1254',
 'rusage_user' => '9.857805',
 'cmd_get' => '838451',
 'rusage_system' => '34.096988',
 'version' => '1.2.5',
 'get_hits' => '581511',
 'bytes_read' => '46665716',
 'threads' => '1',
 'total_connections' => '3104',
 'get_misses' => '256940'
 },
 'sizes' => {
 '128' => '16',
 '64' => '15'
 }
 }
 },
 'self' => {},
 'total' => {
 'cmd_get' => 838451,
 'bytes' => 2421,
 'get_hits' => 581511,
 'connection_structures' => 56,
 'bytes_read' => 46665716,
 'total_items' => 410956,
 'total_connections' => 3104,
 'cmd_set' => 588167,
 'bytes_written' => 35715151,
 'curr_items' => 31,
 'get_misses' => 256940
 }
 };

The statistics are divided up into a number of distinct sections, and then can be requested by adding the
type to the stats command. Each statistics output is covered in more detail in the following sections.

• General statistics, see Section 16.2.4.1, “memcached General Statistics”.

• Slab statistics (slabs), see Section 16.2.4.2, “memcached Slabs Statistics”.

• Item statistics (items), see Section 16.2.4.3, “memcached Item Statistics”.

• Size statistics (sizes), see Section 16.2.4.4, “memcached Size Statistics”.

• Detailed status (detail), see Section 16.2.4.5, “memcached Detail Statistics”.

2398

Getting memcached Statistics

16.2.4.1 memcached General Statistics

The output of the general statistics provides an overview of the performance and use of the memcached
instance. The statistics returned by the command and their meaning is shown in the following table.

The following terms are used to define the value type for each statistics value:

• 32u: 32-bit unsigned integer

• 64u: 64-bit unsigned integer

• 32u:32u: Two 32-bit unsigned integers separated by a colon

• String: Character string

Statistic Data type Description Version

pid 32u Process ID of the
memcached instance.

uptime 32u Uptime (in seconds)
for this memcached
instance.

time 32u Current time (as epoch).

version string Version string of this
instance.

pointer_size string Size of pointers for this
host specified in bits (32
or 64).

rusage_user 32u:32u Total user time
for this instance
(seconds:microseconds).

rusage_system 32u:32u Total system time
for this instance
(seconds:microseconds).

curr_items 32u Current number of items
stored by this instance.

total_items 32u Total number of items
stored during the life of
this instance.

bytes 64u Current number of bytes
used by this server to
store items.

curr_connections 32u Current number of open
connections.

total_connections 32u Total number of
connections opened
since the server started
running.

connection_structures32u Number of connection
structures allocated by
the server.

2399

Getting memcached Statistics

Statistic Data type Description Version

cmd_get 64u Total number of
retrieval requests (get
operations).

cmd_set 64u Total number of
storage requests (set
operations).

get_hits 64u Number of keys that
have been requested and
found present.

get_misses 64u Number of items that
have been requested and
not found.

delete_hits 64u Number of keys that have
been deleted and found
present.

1.3.x

delete_misses 64u Number of items that
have been delete and not
found.

1.3.x

incr_hits 64u Number of keys that have
been incremented and
found present.

1.3.x

incr_misses 64u Number of items that
have been incremented
and not found.

1.3.x

decr_hits 64u Number of keys that have
been decremented and
found present.

1.3.x

decr_misses 64u Number of items that
have been decremented
and not found.

1.3.x

cas_hits 64u Number of keys that
have been compared
and swapped and found
present.

1.3.x

cas_misses 64u Number of items that
have been compared and
swapped and not found.

1.3.x

cas_badvalue 64u Number of keys that
have been compared
and swapped, but the
comparison (original)
value did not match the
supplied value.

1.3.x

evictions 64u Number of valid items
removed from cache to
free memory for new
items.

2400

Getting memcached Statistics

Statistic Data type Description Version

bytes_read 64u Total number of bytes
read by this server from
network.

bytes_written 64u Total number of bytes
sent by this server to
network.

limit_maxbytes 32u Number of bytes this
server is permitted to use
for storage.

threads 32u Number of worker
threads requested.

conn_yields 64u Number of yields for
connections (related to
the -R option).

1.4.0

The most useful statistics from those given here are the number of cache hits, misses, and evictions.

A large number of get_misses may just be an indication that the cache is still being populated with
information. The number should, over time, decrease in comparison to the number of cache get_hits.
If, however, you have a large number of cache misses compared to cache hits after an extended period of
execution, it may be an indication that the size of the cache is too small and you either need to increase
the total memory size, or increase the number of the memcached instances to improve the hit ratio.

A large number of evictions from the cache, particularly in comparison to the number of items stored
is a sign that your cache is too small to hold the amount of information that you regularly want to keep
cached. Instead of items being retained in the cache, items are being evicted to make way for new items
keeping the turnover of items in the cache high, reducing the efficiency of the cache.

16.2.4.2 memcached Slabs Statistics

To get the slabs statistics, use the stats slabs command, or the API equivalent.

The slab statistics provide you with information about the slabs that have created and allocated for storing
information within the cache. You get information both on each individual slab-class and total statistics for
the whole slab.

STAT 1:chunk_size 104
STAT 1:chunks_per_page 10082
STAT 1:total_pages 1
STAT 1:total_chunks 10082
STAT 1:used_chunks 10081
STAT 1:free_chunks 1
STAT 1:free_chunks_end 10079
STAT 9:chunk_size 696
STAT 9:chunks_per_page 1506
STAT 9:total_pages 63
STAT 9:total_chunks 94878
STAT 9:used_chunks 94878
STAT 9:free_chunks 0
STAT 9:free_chunks_end 0
STAT active_slabs 2
STAT total_malloced 67083616
END

Individual stats for each slab class are prefixed with the slab ID. A unique ID is given to each allocated slab
from the smallest size up to the largest. The prefix number indicates the slab class number in relation to

2401

Getting memcached Statistics

the calculated chunk from the specified growth factor. Hence in the example, 1 is the first chunk size and 9
is the 9th chunk allocated size.

The parameters returned for each chunk size and a description of each parameter are provided in the
following table.

Statistic Description Version

chunk_size Space allocated to each chunk
within this slab class.

chunks_per_page Number of chunks within a single
page for this slab class.

total_pages Number of pages allocated to this
slab class.

total_chunks Number of chunks allocated to the
slab class.

used_chunks Number of chunks allocated to an
item..

free_chunks Number of chunks not yet
allocated to items.

free_chunks_end Number of free chunks at the end
of the last allocated page.

get_hits Number of get hits to this chunk 1.3.x

cmd_set Number of set commands on this
chunk

1.3.x

delete_hits Number of delete hits to this
chunk

1.3.x

incr_hits Number of increment hits to this
chunk

1.3.x

decr_hits Number of decrement hits to this
chunk

1.3.x

cas_hits Number of CAS hits to this chunk 1.3.x

cas_badval Number of CAS hits on this chunk
where the existing value did not
match

1.3.x

mem_requested The true amount of memory of
memory requested within this
chunk

1.4.1

The following additional statistics cover the information for the entire server, rather than on a chunk by
chunk basis:

Statistic Description Version

active_slabs Total number of slab classes
allocated.

total_malloced Total amount of memory allocated
to slab pages.

2402

Getting memcached Statistics

The key values in the slab statistics are the chunk_size, and the corresponding total_chunks and
used_chunks parameters. These given an indication of the size usage of the chunks within the system.
Remember that one key-value pair is placed into a chunk of a suitable size.

From these stats, you can get an idea of your size and chunk allocation and distribution. If you store many
items with a number of largely different sizes, consider adjusting the chunk size growth factor to increase
in larger steps to prevent chunk and memory wastage. A good indication of a bad growth factor is a high
number of different slab classes, but with relatively few chunks actually in use within each slab. Increasing
the growth factor creates fewer slab classes and therefore makes better use of the allocated pages.

16.2.4.3 memcached Item Statistics

To get the items statistics, use the stats items command, or the API equivalent.

The items statistics give information about the individual items allocated within a given slab class.

STAT items:2:number 1
STAT items:2:age 452
STAT items:2:evicted 0
STAT items:2:evicted_nonzero 0
STAT items:2:evicted_time 2
STAT items:2:outofmemory 0
STAT items:2:tailrepairs 0
...
STAT items:27:number 1
STAT items:27:age 452
STAT items:27:evicted 0
STAT items:27:evicted_nonzero 0
STAT items:27:evicted_time 2
STAT items:27:outofmemory 0
STAT items:27:tailrepairs 0

The prefix number against each statistics relates to the corresponding chunk size, as returned by the
stats slabs statistics. The result is a display of the number of items stored within each chunk within
each slab size, and specific statistics about their age, eviction counts, and out of memory counts. A
summary of the statistics is given in the following table.

Statistic Description Version

number The number of items currently
stored in this slab class.

age The age of the oldest item within
the slab class, in seconds.

evicted The number of items evicted to
make way for new entries.

evicted_time The time of the last evicted entry

evicted_nonzero The time of the last evicted non-
zero entry

1.4.0

outofmemory The number of items for this slab
class that have triggered an out
of memory error (only value when
the -M command line option is in
effect).

tailrepairs Number of times the entries for a
particular ID need repairing

2403

Getting memcached Statistics

Item level statistics can be used to determine how many items are stored within a given slab and their
freshness and recycle rate. You can use this to help identify whether there are certain slab classes that are
triggering a much larger number of evictions that others.

16.2.4.4 memcached Size Statistics

To get size statistics, use the stats sizes command, or the API equivalent.

The size statistics provide information about the sizes and number of items of each size within the cache.
The information is returned as two columns, the first column is the size of the item (rounded up to the
nearest 32 byte boundary), and the second column is the count of the number of items of that size within
the cache:

96 35
128 38
160 807
192 804
224 410
256 222
288 83
320 39
352 53
384 33
416 64
448 51
480 30
512 54
544 39
576 10065

Caution

Running this statistic locks up your cache as each item is read from the cache and
its size calculated. On a large cache, this may take some time and prevent any set
or get operations until the process completes.

The item size statistics are useful only to determine the sizes of the objects you are storing. Since the
actual memory allocation is relevant only in terms of the chunk size and page size, the information is only
useful during a careful debugging or diagnostic session.

16.2.4.5 memcached Detail Statistics

For memcached 1.3.x and higher, you can enable and obtain detailed statistics about the get, set, and del
operations on theindividual keys stored in the cache, and determine whether the attempts hit (found) a
particular key. These operations are only recorded while the detailed stats analysis is turned on.

To enable detailed statistics, you must send the stats detail on command to the memcached server:

$ telnet localhost 11211
Trying 127.0.0.1...
Connected to tiger.
Escape character is '^]'.
stats detail on
OK

Individual statistics are recorded for every get, set and del operation on a key, including keys that are
not currently stored in the server. For example, if an attempt is made to obtain the value of key abckey
and it does not exist, the get operating on the specified key are recorded while detailed statistics are in
effect, even if the key is not currently stored. The hits, that is, the number of get or del operations for a
key that exists in the server are also counted.

To turn detailed statistics off, send the stats detail off command to the memcached server:

2404

Getting memcached Statistics

$ telnet localhost 11211
Trying 127.0.0.1...
Connected to tiger.
Escape character is '^]'.
stats detail off
OK

To obtain the detailed statistics recorded during the process, send the stats detail dump command to
the memcached server:

stats detail dump
PREFIX hykkey get 0 hit 0 set 1 del 0
PREFIX xyzkey get 0 hit 0 set 1 del 0
PREFIX yukkey get 1 hit 0 set 0 del 0
PREFIX abckey get 3 hit 3 set 1 del 0
END

You can use the detailed statistics information to determine whether your memcached clients are using
a large number of keys that do not exist in the server by comparing the hit and get or del counts.
Because the information is recorded by key, you can also determine whether the failures or operations are
clustered around specific keys.

16.2.4.6 Using memcached-tool

The memcached-tool, located within the scripts directory within the memcached source directory. The
tool provides convenient access to some reports and statistics from any memcached instance.

The basic format of the command is:

$> ./memcached-tool hostname:port [command]

The default output produces a list of the slab allocations and usage. For example:

$> memcached-tool localhost:11211 display
 # Item_Size Max_age Pages Count Full? Evicted Evict_Time OOM
 1 80B 93s 1 20 no 0 0 0
 2 104B 93s 1 16 no 0 0 0
 3 136B 1335s 1 28 no 0 0 0
 4 176B 1335s 1 24 no 0 0 0
 5 224B 1335s 1 32 no 0 0 0
 6 280B 1335s 1 34 no 0 0 0
 7 352B 1335s 1 36 no 0 0 0
 8 440B 1335s 1 46 no 0 0 0
 9 552B 1335s 1 58 no 0 0 0
 10 696B 1335s 1 66 no 0 0 0
 11 872B 1335s 1 89 no 0 0 0
 12 1.1K 1335s 1 112 no 0 0 0
 13 1.3K 1335s 1 145 no 0 0 0
 14 1.7K 1335s 1 123 no 0 0 0
 15 2.1K 1335s 1 198 no 0 0 0
 16 2.6K 1335s 1 199 no 0 0 0
 17 3.3K 1335s 1 229 no 0 0 0
 18 4.1K 1335s 1 248 yes 36 2 0
 19 5.2K 1335s 2 328 no 0 0 0
 20 6.4K 1335s 2 316 yes 387 1 0
 21 8.1K 1335s 3 381 yes 492 1 0
 22 10.1K 1335s 3 303 yes 598 2 0
 23 12.6K 1335s 5 405 yes 605 1 0
 24 15.8K 1335s 6 384 yes 766 2 0
 25 19.7K 1335s 7 357 yes 908 170 0
 26 24.6K 1336s 7 287 yes 1012 1 0
 27 30.8K 1336s 7 231 yes 1193 169 0
 28 38.5K 1336s 4 104 yes 1323 169 0
 29 48.1K 1336s 1 21 yes 1287 1 0
 30 60.2K 1336s 1 17 yes 1093 169 0

2405

Getting memcached Statistics

 31 75.2K 1337s 1 13 yes 713 168 0
 32 94.0K 1337s 1 10 yes 278 168 0
 33 117.5K 1336s 1 3 no 0 0 0

This output is the same if you specify the command as display:

$> memcached-tool localhost:11211 display
 # Item_Size Max_age Pages Count Full? Evicted Evict_Time OOM
 1 80B 93s 1 20 no 0 0 0
 2 104B 93s 1 16 no 0 0 0
...

The output shows a summarized version of the output from the slabs statistics. The columns provided in
the output are shown below:

• #: The slab number

• Item_Size: The size of the slab

• Max_age: The age of the oldest item in the slab

• Pages: The number of pages allocated to the slab

• Count: The number of items in this slab

• Full?: Whether the slab is fully populated

• Evicted: The number of objects evicted from this slab

• Evict_Time: The time (in seconds) since the last eviction

• OOM: The number of items that have triggered an out of memory error

You can also obtain a dump of the general statistics for the server using the stats command:

$> memcached-tool localhost:11211 stats
#localhost:11211 Field Value
 accepting_conns 1
 bytes 162
 bytes_read 485
 bytes_written 6820
 cas_badval 0
 cas_hits 0
 cas_misses 0
 cmd_flush 0
 cmd_get 4
 cmd_set 2
 conn_yields 0
 connection_structures 11
 curr_connections 10
 curr_items 2
 decr_hits 0
 decr_misses 1
 delete_hits 0
 delete_misses 0
 evictions 0
 get_hits 4
 get_misses 0
 incr_hits 0
 incr_misses 2
 limit_maxbytes 67108864
 listen_disabled_num 0
 pid 12981
 pointer_size 32

2406

memcached FAQ

 rusage_system 0.013911
 rusage_user 0.011876
 threads 4
 time 1255518565
 total_connections 20
 total_items 2
 uptime 880
 version 1.4.2

16.2.5 memcached FAQ
16.2.5.1 Can memcached be run on a Windows environment? ... 2407
16.2.5.2 What is the maximum size of an object you can store in memcached? Is that configurable? .. 2407
16.2.5.3 Is it true that memcached is much more effective with db-read-intensive applications than

with db-write-intensive applications? .. 2407
16.2.5.4 Is there any overhead in not using persistent connections? If persistent is always

recommended, what are the downsides (for example, locking up)? .. 2408
16.2.5.5 How is an event such as a crash of one of the memcached servers handled by the

memcached client? ... 2408
16.2.5.6 What is a recommended hardware configuration for a memcached server? 2408
16.2.5.7 Is memcached more effective for video and audio as opposed to textual read/writes? 2408
16.2.5.8 Can memcached work with ASPX? .. 2408
16.2.5.9 How expensive is it to establish a memcache connection? Should those connections be

pooled? .. 2408
16.2.5.10 How is the data handled when the memcached server is down? 2409
16.2.5.11 How are auto-increment columns in the MySQL database coordinated across multiple

instances of memcached? ... 2409
16.2.5.12 Is compression available? .. 2409
16.2.5.13 Can we implement different types of memcached as different nodes in the same server, so

can there be deterministic and non-deterministic in the same server? 2409
16.2.5.14 What are best practices for testing an implementation, to ensure that it improves

performance, and to measure the impact of memcached configuration changes? And would
you recommend keeping the configuration very simple to start? .. 2409

16.2.5.1.Can memcached be run on a Windows environment?

No. Currently memcached is available only on the Unix/Linux platform. There is an unofficial port
available, see http://www.codeplex.com/memcachedproviders.

16.2.5.2.What is the maximum size of an object you can store in memcached? Is that configurable?

The default maximum object size is 1MB. In memcached 1.4.2 and later, you can change the
maximum size of an object using the -I command line option.

For versions before this, to increase this size, you have to re-compile memcached. You can modify
the value of the POWER_BLOCK within the slabs.c file within the source.

In memcached 1.4.2 and higher, you can configure the maximum supported object size by using the
-I command-line option. For example, to increase the maximum object size to 5MB:

$ memcached -I 5m

If an object is larger than the maximum object size, you must manually split it. memcached is very
simple: you give it a key and some data, it tries to cache it in RAM. If you try to store more than the
default maximum size, the value is just truncated for speed reasons.

16.2.5.3.Is it true that memcached is much more effective with db-read-intensive applications than with db-
write-intensive applications?

2407

http://www.codeplex.com/memcachedproviders

memcached FAQ

Yes. memcached plays no role in database writes; it is a method of caching data already read from
the database in RAM.

16.2.5.4.Is there any overhead in not using persistent connections? If persistent is always recommended,
what are the downsides (for example, locking up)?

If you do not use persistent connections when communicating with memcached, there is a small
increase in the latency of opening the connection each time. The effect is comparable to use
nonpersistent connections with MySQL.

In general, the chance of locking or other issues with persistent connections is minimal, because
there is very little locking within memcached. If there is a problem, eventually your request times out
and returns no result, meaning that your application must load from MySQL again.

16.2.5.5.How is an event such as a crash of one of the memcached servers handled by the memcached
client?

There is no automatic handling of this. If your client fails to get a response from a server, code a
fallback mechanism to load the data from the MySQL database.

The client APIs all provide the ability to add and remove memcached instances on the fly. If within
your application you notice that memcached server is no longer responding, you can remove the
server from the list of servers, and keys are automatically redistributed to another memcached
server in the list. If retaining the cache content on all your servers is important, make sure you use
an API that supports a consistent hashing algorithm. For more information, see Section 16.2.2.5,
“memcached Hashing/Distribution Types”.

16.2.5.6.What is a recommended hardware configuration for a memcached server?

memcached has a very low processing overhead. All that is required is spare physical RAM
capacity. A memcached server does not require a dedicated machine. If you have web, application,
or database servers that have spare RAM capacity, then use them with memcached.

To build and deploy a dedicated memcached server, use a relatively low-power CPU, lots of RAM,
and one or more Gigabit Ethernet interfaces.

16.2.5.7.Is memcached more effective for video and audio as opposed to textual read/writes?

memcached works equally well for all kinds of data. To memcached, any value you store is
just a stream of data. Remember, though, that the maximum size of an object you can store in
memcached is 1MB, but can be configured to be larger by using the -I option in memcached 1.4.2
and later, or by modifying the source in versions before 1.4.2. If you plan on using memcached
with audio and video content, you should to increase the maximum object size. Also remember that
memcached is a solution for caching information for reading. It shouldn't be used for writes, except
when updating the information in the cache.

16.2.5.8.Can memcached work with ASPX?

There are ports and interfaces for many languages and environments. ASPX relies on an underlying
language such as C# or VisualBasic, and if you are using ASP.NET then there is a C# memcached
library. For more information, see https://sourceforge.net/projects/memcacheddotnet/.

16.2.5.9.How expensive is it to establish a memcache connection? Should those connections be pooled?

Opening the connection is relatively inexpensive, because there is no security, authentication or
other handshake taking place before you can start sending requests and getting results. Most APIs
support a persistent connection to a memcached instance to reduce the latency. Connection pooling

2408

https://sourceforge.net/projects/memcacheddotnet/

memcached FAQ

would depend on the API you are using, but if you are communicating directly over TCP/IP, then
connection pooling would provide some small performance benefit.

16.2.5.10.How is the data handled when the memcached server is down?

The behavior is entirely application dependent. Most applications fall back to loading the data
from the database (just as if they were updating the memcached information). If you are using
multiple memcached servers, you might also remove a downed server from the list to prevent it
from affecting performance. Otherwise, the client continues to attempt to communicate with the
memcached server that corresponds to the key you are trying to load.

16.2.5.11.How are auto-increment columns in the MySQL database coordinated across multiple instances of
memcached?

They aren't. There is no relationship between MySQL and memcached unless your application (or, if
you are using the MySQL loadable functions for memcached, your database definition) creates one.

If you are storing information based on an auto-increment key into multiple instances of
memcached, the information is only stored on one of the memcached instances anyway. The client
uses the key value to determine which memcached instance to store the information. It doesn't store
the same information across all the instances, as that would be a waste of cache memory.

16.2.5.12.Is compression available?

Yes. Most of the client APIs support some sort of compression, and some even allow you to specify
the threshold at which a value is deemed appropriate for compression during storage.

16.2.5.13.Can we implement different types of memcached as different nodes in the same server, so can
there be deterministic and non-deterministic in the same server?

Yes. You can run multiple instances of memcached on a single server, and in your client
configuration you choose the list of servers you want to use.

16.2.5.14.What are best practices for testing an implementation, to ensure that it improves performance, and
to measure the impact of memcached configuration changes? And would you recommend keeping
the configuration very simple to start?

The best way to test the performance is to start up a memcached instance. First, modify your
application so that it stores the data just before the data is about to be used or displayed into
memcached. Since the APIs handle the serialization of the data, it should just be a one-line
modification to your code. Then, modify the start of the process that would normally load that
information from MySQL with the code that requests the data from memcached. If the data cannot
be loaded from memcached, default to the MySQL process.

All of the changes required should not require many lines of code. To get the most benefit, make
sure you cache entire objects (for example, all the components of a web page, blog post, discussion
thread, and so on), rather than using memcached as a simple cache of individual rows of MySQL
tables.

Keeping the configuration simple at the start, or even over the long term, is easy with memcached.
Once you have the basic structure up and running, often the only ongoing change is to add more
servers into the list of servers used by your applications. You don't need to manage the memcached
servers, and there is no complex configuration; just add more servers to the list and let the client API
and the memcached servers make the decisions.

2409

2410

Chapter 17 Replication

Table of Contents
17.1 Replication Configuration ... 2412

17.1.1 How to Set Up Replication .. 2413
17.1.2 Replication Formats .. 2423
17.1.3 Replication with Global Transaction Identifiers ... 2431
17.1.4 Replication and Binary Logging Options and Variables ... 2440
17.1.5 Common Replication Administration Tasks .. 2506

17.2 Replication Implementation .. 2508
17.2.1 Replication Threads .. 2509
17.2.2 Relay Log and Replication Metadata Repositories .. 2512
17.2.3 How Servers Evaluate Replication Filtering Rules .. 2518

17.3 Replication Solutions ... 2524
17.3.1 Using Replication for Backups .. 2524
17.3.2 Handling an Unexpected Halt of a Replica Server .. 2528
17.3.3 Using Replication with Different Source and Replica Storage Engines 2530
17.3.4 Using Replication for Scale-Out .. 2531
17.3.5 Replicating Different Databases to Different Replicas ... 2533
17.3.6 Improving Replication Performance ... 2534
17.3.7 Switching Sources During Failover .. 2536
17.3.8 Setting Up Replication to Use Encrypted Connections .. 2538
17.3.9 Semisynchronous Replication ... 2540
17.3.10 Delayed Replication .. 2544

17.4 Replication Notes and Tips .. 2545
17.4.1 Replication Features and Issues ... 2545
17.4.2 Replication Compatibility Between MySQL Versions ... 2569
17.4.3 Upgrading a Replication Setup .. 2570
17.4.4 Troubleshooting Replication .. 2572
17.4.5 How to Report Replication Bugs or Problems .. 2573

Replication enables data from one MySQL database server (the source) to be replicated to one or more
MySQL database servers (the replicas). Replication is asynchronous by default, therefore replicas do not
need to be connected permanently to receive updates from the source. This means that updates can occur
over long-distance connections and even over temporary or intermittent connections such as a dial-up
service. Depending on the configuration, you can replicate all databases, selected databases, or even
selected tables within a database.

For answers to some questions often asked by those who are new to MySQL Replication, see
Section A.14, “MySQL 5.6 FAQ: Replication”.

Advantages of replication in MySQL include:

• Scale-out solutions - spreading the load among multiple replicas to improve performance. In this
environment, all writes and updates must take place on the replication source server. Reads, however,
may take place on one or more replicas. This model can improve the performance of writes (since the
source is dedicated to updates), while dramatically increasing read speed across an increasing number
of replicas.

• Data security - because data is replicated to the replica, and the replica can pause the replication
process, it is possible to run backup services on the replica without corrupting the corresponding data on
the source.

2411

Replication Configuration

• Analytics - live data can be created on the source, while the analysis of the information can take place on
the replica without affecting the performance of the source.

• Long-distance data distribution - if a branch office would like to work with a copy of your main data, you
can use replication to create a local copy of the data for their use without requiring permanent access to
the source.

Replication in MySQL features support for one-way, asynchronous replication, in which one server acts
as the source, while one or more other servers act as replicas. This is in contrast to the synchronous
replication which is a characteristic of NDB Cluster (see Chapter 18, MySQL NDB Cluster 7.3 and NDB
Cluster 7.4). In MySQL 5.6, an interface to semisynchronous replication is supported in addition to
the built-in asynchronous replication. With semisynchronous replication, a commit performed on the
source blocks before returning to the session that performed the transaction until at least one replica
acknowledges that it has received and logged the events for the transaction. See Section 17.3.9,
“Semisynchronous Replication” MySQL 5.6 also supports delayed replication such that a replica server
deliberately lags behind the source by at least a specified amount of time. See Section 17.3.10, “Delayed
Replication”. For scenarios where synchronous replication is required, use NDB Cluster (see Chapter 18,
MySQL NDB Cluster 7.3 and NDB Cluster 7.4).

There are a number of solutions available for setting up replication between two servers, but the best
method to use depends on the presence of data and the engine types you are using. For more information
on the available options, see Section 17.1.1, “How to Set Up Replication”.

There are two core types of replication format, Statement Based Replication (SBR), which replicates entire
SQL statements, and Row Based Replication (RBR), which replicates only the changed rows. You may
also use a third variety, Mixed Based Replication (MBR). For more information on the different replication
formats, see Section 17.1.2, “Replication Formats”. In MySQL 5.6, statement-based format is the default.

MySQL 5.6.5 and later supports transactional replication based on global transaction identifiers (GTIDs).
When using this type of replication, it is not necessary to work directly with log files or positions within
these files, which greatly simplifies many common replication tasks. Because replication using GTIDs is
entirely transactional, consistency between source and replica is guaranteed as long as all transactions
committed on the source have also been applied on the replica. For more information about GTIDs and
GTID-based replication, see Section 17.1.3, “Replication with Global Transaction Identifiers”.

Replication is controlled through a number of different options and variables. These control the core
operation of the replication, timeouts, and the databases and filters that can be applied on databases and
tables. For more information on the available options, see Section 17.1.4, “Replication and Binary Logging
Options and Variables”.

You can use replication to solve a number of different problems, including problems with performance,
supporting the backup of different databases, and as part of a larger solution to alleviate system failures.
For information on how to address these issues, see Section 17.3, “Replication Solutions”.

For notes and tips on how different data types and statements are treated during replication, including
details of replication features, version compatibility, upgrades, and problems and their resolution, including
an FAQ, see Section 17.4, “Replication Notes and Tips”.

For detailed information on the implementation of replication, how replication works, the process and
contents of the binary log, background threads and the rules used to decide how statements are recorded
and replication, see Section 17.2, “Replication Implementation”.

17.1 Replication Configuration
Replication between servers in MySQL is based on the binary logging mechanism. The MySQL instance
operating as the replication source server (the source of the database changes) writes updates and
changes as “events” to the binary log. The information in the binary log is stored in different logging formats

2412

How to Set Up Replication

according to the database changes being recorded. Replicas are configured to read the binary log from the
source and to execute the events in the binary log on the replica's local database.

Important

You cannot configure the source to log only certain events.

The source is “dumb” in this scenario. Once binary logging has been enabled, all statements are recorded
in the binary log. Each replica receives a copy of the entire contents of the binary log. It is the responsibility
of the replica to decide which statements in the binary log should be executed; you cannot configure the
source to log only certain events. If you do not specify otherwise, all events in the source's binary log are
executed on the replica. If required, you can configure the replica to process only events that apply to
particular databases or tables.

Each replica keeps a record of the binary log coordinates: The file name and position within the file that it
has read and processed from the source. This means that multiple replicas can be connected to the source
and executing different parts of the same binary log. Because the replicas control this process, individual
replicas can be connected and disconnected from the server without affecting the source's operation. Also,
because each replica records the current position within the binary log, it is possible for replicas to be
disconnected, reconnect and then resume processing.

The source and each replica must be configured with a unique ID (using the server_id system variable).
In addition, each replica must be configured with information about the source's host name, log file name,
and position within that file. These details can be controlled from within a MySQL session using the
CHANGE MASTER TO statement on the replica. The details are stored within the replica's connection
metadata repository, which can be either a file or a table (see Section 17.2.2, “Relay Log and Replication
Metadata Repositories”).

This section describes the setup and configuration required for a replication environment, including step-
by-step instructions for creating a new replication environment. The major components of this section are:

• For a guide to setting up two or more servers for replication, Section 17.1.1, “How to Set Up Replication”,
deals with the configuration of the systems and provides methods for copying data between the source
and replicas.

• Events in the binary log are recorded using a number of formats. These are referred to as statement-
based replication (SBR) or row-based replication (RBR). A third type, mixed-format replication (MIXED),
uses SBR or RBR replication automatically to take advantage of the benefits of both SBR and RBR
formats when appropriate. The different formats are discussed in Section 17.1.2, “Replication Formats”.

• Detailed information on the different configuration options and variables that apply to replication is
provided in Section 17.1.4, “Replication and Binary Logging Options and Variables”.

• Once started, the replication process should require little administration or monitoring. However, for
advice on common tasks that you may want to execute, see Section 17.1.5, “Common Replication
Administration Tasks”.

17.1.1 How to Set Up Replication

This section describes how to set up complete replication of a MySQL server. There are a number of
different methods for setting up replication, and the exact method to use depends on how you are setting
up replication, and whether you already have data within your source database.

There are some generic tasks that are common to all replication setups:

• On the source, you must enable binary logging and configure a unique server ID. This might require a
server restart. See Section 17.1.1.1, “Setting the Replication Source Configuration”.

2413

How to Set Up Replication

• On each replica that you want to connect to the source, you must configure a unique server ID. This
might require a server restart. See Section 17.1.1.2, “Setting the Replica Configuration”.

• Optionally, create a separate user for your replicas to use during authentication with the source when
reading the binary log for replication. See Section 17.1.1.3, “Creating a User for Replication”.

• Before creating a data snapshot or starting the replication process, you should record the position of
the binary log on the source. You need this information when configuring the replica so that the replica
knows where within the binary log to start executing events. See Section 17.1.1.4, “Obtaining the
Replication Source Binary Log Coordinates”.

• If you already have data on your source and want to use it to synchronize your replica, you need to
create a data snapshot. There are different methods to create the database snapshot, depending
on the size of the database and the location of the files. Create a snapshot using mysqldump (see
Section 17.1.1.5, “Creating a Data Snapshot Using mysqldump”) or by copying the data files directly (see
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”).

• Configure the replica with settings for connecting to the source, such as the host name, login credentials,
and binary log file name and position. See Section 17.1.1.10, “Setting the Source Configuration on the
Replica”.

After configuring the basic options, select your scenario:

• To set up replication for a fresh installation of a source and replicas that contain no data, see
Section 17.1.1.7, “Setting Up Replication with New Source and Replicas”.

• To set up replication of a new source using the data from an existing MySQL server, see
Section 17.1.1.8, “Setting Up Replication with Existing Data”.

• To add replicas to an existing replication environment, see Section 17.1.1.9, “Introducing Additional
Replicas to an Existing Replication Environment”.

Before administering MySQL replication servers, read this entire chapter and try all statements mentioned
in Section 13.4.1, “SQL Statements for Controlling Replication Source Servers”, and Section 13.4.2, “SQL
Statements for Controlling Replica Servers”. Also familiarize yourself with the replication startup options
described in Section 17.1.4, “Replication and Binary Logging Options and Variables”.

Note

Certain steps within the setup process require the SUPER privilege. If you do not
have this privilege, it might not be possible to enable replication.

17.1.1.1 Setting the Replication Source Configuration

On a replication source server, you must enable binary logging and establish a unique server ID. If this has
not already been done, a server restart is required.

Binary logging must be enabled on the source because the binary log is the basis for replicating changes
from the source to its replicas. If binary logging is not enabled using the log-bin option, replication is not
possible.

Each server within a replication group must be configured with a unique server ID. This ID is used to
identify individual servers within the group, and must be a positive integer between 1 and (232)−1. How you
organize and select the numbers is your choice.

To configure the binary log and server ID options, shut down the MySQL server and edit the my.cnf or
my.ini file. Within the [mysqld] section of the configuration file, add the log-bin and server-id

2414

How to Set Up Replication

options. If these options already exist, but are commented out, uncomment the options and alter them
according to your needs. For example, to enable binary logging using a log file name prefix of mysql-bin,
and configure a server ID of 1, use these lines:

[mysqld]
log-bin=mysql-bin
server-id=1

After making the changes, restart the server.

Note

If you do not set server_id (or set it explicitly to its default value of 0), the source
refuses any connections from replicas.

Note

For the greatest possible durability and consistency in a
replication setup using InnoDB with transactions, you should use
innodb_flush_log_at_trx_commit=1 and sync_binlog=1 in the source
my.cnf file.

Note

Ensure that the skip_networking system variable is not enabled on your
replication source server. If networking has been disabled, the replica can not
communicate with the source and replication fails.

17.1.1.2 Setting the Replica Configuration

On a replica, you must establish a unique server ID. If this has not already been done, this part of replica
setup requires a server restart.

If the replica server ID is not already set, or the current value conflicts with the value that you have chosen
for the replication source server, shut down the replica server and edit the [mysqld] section of the
configuration file to specify a unique server ID. For example:

[mysqld]
server-id=2

After making the changes, restart the server.

If you are setting up multiple replicas, each one must have a unique server_id value that differs from
that of the source and from any of the other replicas.

Note

If you do not set server_id (or set it explicitly to its default value of 0), the replica
refuses to connect to a source.

You do not have to enable binary logging on the replica for replication to be set up. However, if you enable
binary logging on the replica, you can use the replica's binary log for data backups and crash recovery, and
also use the replica as part of a more complex replication topology. For example, where this replica then
acts as a source to other replicas.

17.1.1.3 Creating a User for Replication

Each replica connects to the source using a MySQL user name and password, so there must be a user
account on the source server that the replica can use to connect. Any account can be used for this

2415

How to Set Up Replication

operation, providing it has been granted the REPLICATION SLAVE privilege. You can choose to create a
different account for each replica, or connect to the source using the same account for each replica.

Although you do not have to create an account specifically for replication, you should be aware that the
replication user name and password are stored in plain text in the replica's connection metadata repository
file or table (see Section 17.2.2.2, “Replication Metadata Repositories”). Therefore, you may want to
create a separate account that has privileges only for the replication process, to minimize the possibility of
compromise to other accounts.

To create a new account, use CREATE USER. To grant this account the privileges required for replication,
use the GRANT statement. If you create an account solely for the purposes of replication, that account
needs only the REPLICATION SLAVE privilege. For example, to set up a new user, repl, that can
connect for replication from any host within the example.com domain, issue these statements on the
source:

mysql> CREATE USER 'repl'@'%.example.com' IDENTIFIED BY 'password';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'repl'@'%.example.com';

See Section 13.7.1, “Account Management Statements”, for more information on statements for
manipulation of user accounts.

17.1.1.4 Obtaining the Replication Source Binary Log Coordinates

To configure the replica to start the replication process at the correct point, you need to note the source's
current coordinates within its binary log.

Warning

This procedure uses FLUSH TABLES WITH READ LOCK, which blocks COMMIT
operations for InnoDB tables.

If you have existing data on your source server that you want to synchronize on your replicas before
starting the replication process, you must stop processing statements on the source, and then obtain
its current binary log coordinates and dump its data, before permitting the source to continue executing
statements. If you do not stop the execution of statements, the data dump and the source status
information that you use does not match and you may end up with inconsistent or corrupted databases on
the replicas.

If you are planning to shut down the source to create a data snapshot, you can optionally skip this
procedure and instead store a copy of the binary log index file along with the data snapshot. In that
situation, the source creates a new binary log file on restart. The source's binary log coordinates where the
replica must start the replication process are therefore the start of that new file, which is the next binary log
file on the source following after the files that are listed in the copied binary log index file.

To obtain the source's binary log coordinates, follow these steps:

1. Start a session on the source by connecting to it with the command-line client, and flush all tables and
block write statements by executing the FLUSH TABLES WITH READ LOCK statement:

mysql> FLUSH TABLES WITH READ LOCK;

Warning

Leave the client from which you issued the FLUSH TABLES statement running
so that the read lock remains in effect. If you exit the client, the lock is released.

2. In a different session on the source, use the SHOW MASTER STATUS statement to determine the
current binary log file name and position:

2416

How to Set Up Replication

mysql > SHOW MASTER STATUS;
+------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000003 | 73 | test | manual,mysql |
+------------------+----------+--------------+------------------+

The File column shows the name of the log file and Position shows the position within the file. In
this example, the binary log file is mysql-bin.000003 and the position is 73. Record these values.
You need them later when you are setting up the replica. They represent the replication coordinates at
which the replica should begin processing new updates from the source.

If the source has been running previously without binary logging enabled, the log file name and position
values displayed by SHOW MASTER STATUS or mysqldump --master-data is empty. In that case,
the values that you need to use later when specifying the binary log file and position are the empty
string ('') and 4.

You now have the information you need to enable the replica to start reading from the binary log in the
correct place to start replication.

If you have existing data that needs be to synchronized with the replica before you start replication, leave
the client running so that the lock remains in place and then proceed to Section 17.1.1.5, “Creating a Data
Snapshot Using mysqldump”, or Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”. The
idea here is to prevent any further changes so that the data copied to the replicas is in synchrony with the
source.

If you are setting up a brand new source and replica replication group, you can exit the first session to
release the read lock.

17.1.1.5 Creating a Data Snapshot Using mysqldump

One way to create a snapshot of the data in an existing source database is to use the mysqldump tool to
create a dump of all the databases you want to replicate. Once the data dump has been completed, you
then import this data into the replica before starting the replication process.

The example shown here dumps all databases to a file named dbdump.db, and includes the --master-
data option which automatically appends the CHANGE MASTER TO statement required on the replica to
start the replication process:

$> mysqldump --all-databases --master-data > dbdump.db

If you do not use --master-data, then it is necessary to lock all tables in a separate session manually
(using FLUSH TABLES WITH READ LOCK) prior to running mysqldump, then exiting or running UNLOCK
TABLES from the second session to release the locks. You must also obtain binary log position information
matching the snapshot, using SHOW MASTER STATUS, and use this to issue the appropriate CHANGE
MASTER TO statement when starting the replica.

When choosing databases to include in the dump, remember that you need to filter out databases on each
replica that you do not want to include in the replication process.

To import the data, either copy the dump file to the replica, or access the file from the source when
connecting remotely to the replica.

17.1.1.6 Creating a Data Snapshot Using Raw Data Files

If your database is large, copying the raw data files can be more efficient than using mysqldump and
importing the file on each replica. This technique skips the overhead of updating indexes as the INSERT
statements are replayed.

2417

How to Set Up Replication

Using this method with tables in storage engines with complex caching or logging algorithms requires
extra steps to produce a perfect “point in time” snapshot: the initial copy command might leave out cache
information and logging updates, even if you have acquired a global read lock. How the storage engine
responds to this depends on its crash recovery abilities.

This method also does not work reliably if the source and replica have different values for
ft_stopword_file, ft_min_word_len, or ft_max_word_len and you are copying tables having full-
text indexes.

If you use InnoDB tables, you can use the mysqlbackup command from the MySQL Enterprise
Backup component to produce a consistent snapshot. This command records the log name and offset
corresponding to the snapshot to be later used on the replica. MySQL Enterprise Backup is a commercial
product that is included as part of a MySQL Enterprise subscription. See Section 24.2, “MySQL Enterprise
Backup Overview” for detailed information.

Otherwise, use the cold backup technique to obtain a reliable binary snapshot of InnoDB tables: copy all
data files after doing a slow shutdown of the MySQL Server.

To create a raw data snapshot of MyISAM tables, you can use standard copy tools such as cp or copy, a
remote copy tool such as scp or rsync, an archiving tool such as zip or tar, or a file system snapshot
tool such as dump, providing that your MySQL data files exist on a single file system. If you are replicating
only certain databases, copy only those files that relate to those tables. (For InnoDB, all tables in all
databases are stored in the system tablespace files, unless you have the innodb_file_per_table
option enabled.)

You might want to specifically exclude the following files from your archive:

• Files relating to the mysql database.

• The replica's connection metadata repository file, if used (see Section 17.2.2, “Relay Log and Replication
Metadata Repositories”).

• The source's binary log files, with the exception of the binary log index file if you are going to use this to
locate the source's binary log coordinates for the replica.

• Any relay log files.

To get the most consistent results with a raw data snapshot, shut down the source server during the
process, as follows:

1. Acquire a read lock and get the source's status. See Section 17.1.1.4, “Obtaining the Replication
Source Binary Log Coordinates”.

2. In a separate session, shut down the source server:

$> mysqladmin shutdown

3. Make a copy of the MySQL data files. The following examples show common ways to do this. You need
to choose only one of them:

$> tar cf /tmp/db.tar ./data
$> zip -r /tmp/db.zip ./data
$> rsync --recursive ./data /tmp/dbdata

4. Restart the source server.

If you are not using InnoDB tables, you can get a snapshot of the system from a source without shutting
down the server as described in the following steps:

2418

How to Set Up Replication

1. Acquire a read lock and get the source's status. See Section 17.1.1.4, “Obtaining the Replication
Source Binary Log Coordinates”.

2. Make a copy of the MySQL data files. The following examples show common ways to do this. You need
to choose only one of them:

$> tar cf /tmp/db.tar ./data
$> zip -r /tmp/db.zip ./data
$> rsync --recursive ./data /tmp/dbdata

3. In the client where you acquired the read lock, release the lock:

mysql> UNLOCK TABLES;

Once you have created the archive or copy of the database, copy the files to each replica before starting
the replication process.

17.1.1.7 Setting Up Replication with New Source and Replicas

The easiest and most straightforward method for setting up replication is to use new source and replica
servers.

You can also use this method if you are setting up new servers but have an existing dump of the
databases from a different server that you want to load into your replication configuration. By loading the
data into a new source, the data is automatically replicated to the replicas.

To set up replication between a new source and replica:

1. Configure the MySQL source with the necessary configuration properties. See Section 17.1.1.1,
“Setting the Replication Source Configuration”.

2. Start up the MySQL source.

3. Set up a user. See Section 17.1.1.3, “Creating a User for Replication”.

4. Obtain the source's status information, or a copy of the source's binary log index file made during a
shutdown for the data snapshot. See Section 17.1.1.4, “Obtaining the Replication Source Binary Log
Coordinates”.

5. On the source, release the read lock:

mysql> UNLOCK TABLES;

6. On the replica, edit the MySQL configuration. See Section 17.1.1.2, “Setting the Replica Configuration”.

7. Start up the MySQL replica server.

8. Execute a CHANGE MASTER TO statement to set the replication source server configuration. See
Section 17.1.1.10, “Setting the Source Configuration on the Replica”.

Perform the replica setup steps on each replica.

Because there is no data to load or exchange on a new server configuration you do not need to copy or
import any information.

If you are setting up a new replication environment using the data from a different existing database server,
you must now run the dump file generated from that server on the new source. The database updates are
automatically propagated to the replicas:

$> mysql -h source < fulldb.dump

2419

How to Set Up Replication

17.1.1.8 Setting Up Replication with Existing Data

When setting up replication with existing data, you must decide how best to get the data from the source to
the replica before starting the replication service.

The basic process for setting up replication with existing data is as follows:

1. With the MySQL source running, create a user to be used by the replica when connecting to the source
during replication. See Section 17.1.1.3, “Creating a User for Replication”.

2. If you have not already configured the server_id system variable and enabled binary logging on the
source server, you must shut it down to configure these options. See Section 17.1.1.1, “Setting the
Replication Source Configuration”.

If you have to shut down your source server, this is a good opportunity to take a snapshot of its
databases. You should obtain the source status (see Section 17.1.1.4, “Obtaining the Replication
Source Binary Log Coordinates”) before taking down the source, updating the configuration and taking
a snapshot. For information on how to create a snapshot using raw data files, see Section 17.1.1.6,
“Creating a Data Snapshot Using Raw Data Files”.

3. If your source server is already correctly configured, obtain its status (see Section 17.1.1.4, “Obtaining
the Replication Source Binary Log Coordinates”) and then use mysqldump to take a snapshot (see
Section 17.1.1.5, “Creating a Data Snapshot Using mysqldump”) or take a raw snapshot of the live
server using the guide in Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”.

4. Update the configuration of the replica. See Section 17.1.1.2, “Setting the Replica Configuration”.

5. The next step depends on how you created the snapshot of data on the source.

If you used mysqldump:

a. Start the replica, using the --skip-slave-start option so that replication does not start.

b. Import the dump file:

$> mysql < fulldb.dump

If you created a snapshot using the raw data files:

a. Extract the data files into the replica's data directory. For example:

$> tar xvf dbdump.tar

You may need to set permissions and ownership on the files so that the replica server can access
and modify them.

b. Start the replica, using the --skip-slave-start option so that replication does not start.

6. Configure the replica with the replication coordinates from the source. This tells the replica the binary
log file and position within the file where replication needs to start. Also, configure the replica with the
login credentials and host name of the source. For more information on the CHANGE MASTER TO
statement required, see Section 17.1.1.10, “Setting the Source Configuration on the Replica”.

7. Start the replication threads:

mysql> START SLAVE;

After you have performed this procedure, the replica should connect to the source and catch up on any
updates that have occurred since the snapshot was taken.

2420

How to Set Up Replication

If you have forgotten to set the server_id system variable for the source, replicas cannot connect to it.

If you have forgotten to set the server_id system variable for the replica, you get the following error in
the replica's error log:

Warning: You should set server-id to a non-0 value if master_host
is set; we will force server id to 2, but this MySQL server will
not act as a slave.

You also find error messages in the replica's error log if it is not able to replicate for any other reason.

The replica uses information stored in its connection metadata repository to keep track of how much
of the source's binary log it has processed. The repository can be in the form of files or a table, as
determined by the value set for the master_info_repository system variable. When a replica runs
with master_info_repository=FILE, you can find in its data directory two files, named master.info
and relay-log.info. If master_info_repository=TABLE instead, this information is saved in the
table master_slave_info in the mysql system database. In either case, do not remove or edit the files
or table unless you know exactly what you are doing and fully understand the implications. Even in that
case, it is preferred that you use the CHANGE MASTER TO statement to change replication parameters.
The replica can use the values specified in the statement to update the status files automatically. See
Section 17.2.2, “Relay Log and Replication Metadata Repositories”, for more information.

Note

The contents of the connection metadata repository override some of the server
options specified on the command line or in my.cnf. See Section 17.1.4,
“Replication and Binary Logging Options and Variables”, for more details.

A single snapshot of the source suffices for multiple replicas. To set up additional replicas, use the same
source snapshot and follow the replica portion of the procedure just described.

17.1.1.9 Introducing Additional Replicas to an Existing Replication Environment

You can add another replica to an existing replication configuration without stopping the source. To do
this, you can set up the new replica by copying the data directory of an existing replica, and giving the new
replica a different server ID (which is user-specified) and server UUID (which is generated at startup).

To duplicate an existing replica:

1. Stop the existing replica and record the replica status information, particularly the source's binary log
file and relay log file positions. You can view the replica status by issuing SHOW SLAVE STATUS as
follows:

mysql> STOP SLAVE;
mysql> SHOW SLAVE STATUS\G

2. Shut down the existing replica:

$> mysqladmin shutdown

3. Copy the data directory from the existing replica to the new replica, including the log files and relay log
files. You can do this by creating an archive using tar or WinZip, or by performing a direct copy using
a tool such as cp or rsync.

Important

• Before copying, verify that all the files relating to the existing replica actually
are stored in the data directory. For example, the InnoDB system tablespace,
undo tablespace, and redo log might be stored in an alternative location.

2421

How to Set Up Replication

InnoDB tablespace files and file-per-table tablespaces might have been
created in other directories. The binary logs and relay logs for the replica
might be in their own directories outside the data directory. Check through
the system variables that are set for the existing replica and look for any
alternative paths that have been specified. If you find any, copy these
directories over as well.

• During copying, if files have been used for the replication metadata
repositories (see Section 17.2.2, “Relay Log and Replication Metadata
Repositories”), which is the default in MySQL 5.6, ensure that you also copy
these files from the existing replica to the new replica. If tables have been
used for the repositories, the tables are in the data directory.

• After copying, delete the auto.cnf file from the copy of the data directory on
the new replica, so that the new replica is started with a different generated
server UUID. The server UUID must be unique.

A common problem that is encountered when adding new replicas is that the new slave fails with a
series of warning and error messages like these:

071118 16:44:10 [Warning] Neither --relay-log nor --relay-log-index were used; so
replication may break when this MySQL server acts as a slave and has his hostname
changed!! Please use '--relay-log=new_replica_hostname-relay-bin' to avoid this problem.
071118 16:44:10 [ERROR] Failed to open the relay log './old_replica_hostname-relay-bin.003525'
(relay_log_pos 22940879)
071118 16:44:10 [ERROR] Could not find target log during relay log initialization
071118 16:44:10 [ERROR] Failed to initialize the master info structure

This situation can occur if the relay_log system variable is not specified, as the relay log files
contain the host name as part of their file names. This is also true of the relay log index file if the
relay_log_index system variable is not used. For more information about these variables, see
Section 17.1.4, “Replication and Binary Logging Options and Variables”.

To avoid this problem, use the same value for relay_log on the new replica that was
used on the existing replica. If this option was not set explicitly on the existing replica, use
existing_replica_hostname-relay-bin. If this is not possible, copy the existing replica's relay
log index file to the new replica and set the relay_log_index system variable on the new replica to
match what was used on the existing replica. If this option was not set explicitly on the existing replica,
use existing_replica_hostname-relay-bin.index. Alternatively, if you have already tried to
start the new replica after following the remaining steps in this section and have encountered errors like
those described previously, then perform the following steps:

a. If you have not already done so, issue STOP SLAVE on the new replica.

If you have already started the existing replica again, issue STOP SLAVE on the existing replica as
well.

b. Copy the contents of the existing replica's relay log index file into the new replica's relay log index
file, making sure to overwrite any content already in the file.

c. Proceed with the remaining steps in this section.

4. When copying is complete, restart the existing replica.

5. On the new replica, edit the configuration and give the new replica a unique server ID (using the
server_id system variable) that is not used by the source or any of the existing replicas.

2422

Replication Formats

6. Start the new replica server, specifying the --skip-slave-start option so that replication does not
start yet. Issue SHOW SLAVE STATUS to confirm that the new replica has the correct settings when
compared with the existing replica. Also display the server ID and server UUID and verify that these are
correct and unique for the new replica.

7. Start the replication threads by issuing a START SLAVE statement:

mysql> START SLAVE;

The new replica now uses the information in its connection metadata repository to start the replication
process.

17.1.1.10 Setting the Source Configuration on the Replica

To set up the replica to communicate with the source for replication, you must tell the replica the necessary
connection information. To do this, execute the following statement on the replica, replacing the option
values with the actual values relevant to your system:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='source_host_name',
 -> MASTER_USER='replication_user_name',
 -> MASTER_PASSWORD='replication_password',
 -> MASTER_LOG_FILE='recorded_log_file_name',
 -> MASTER_LOG_POS=recorded_log_position;

Note

Replication cannot use Unix socket files. You must be able to connect to the
replication source server using TCP/IP.

The CHANGE MASTER TO statement has other options as well. For example, it is possible to set up secure
replication using SSL. For a full list of options, and information about the maximum permissible length for
the string-valued options, see Section 13.4.2.1, “CHANGE MASTER TO Statement”.

17.1.2 Replication Formats

Replication works because events written to the binary log are read from the source and then processed
on the replica. The events are recorded within the binary log in different formats according to the type of
event. The different replication formats used correspond to the binary logging format used when the events
were recorded in the source's binary log. The correlation between binary logging formats and the terms
used during replication are:

• When using statement-based binary logging, the source writes SQL statements to the binary log.
Replication of the source to the replica works by executing the SQL statements on the replica. This
is called statement-based replication (often abbreviated as SBR), which corresponds to the standard
MySQL statement-based binary logging format. Replication capabilities in MySQL version 5.1.4 and
earlier used this format exclusively.

• When using row-based logging, the source writes events to the binary log that indicate how individual
table rows are changed. Replication of the source to the replica works by copying the events
representing the changes to the table rows to the replica. This is called row-based replication (often
abbreviated as RBR). In row-based replication, the source writes events to the binary log that indicate
how individual table rows are changed.

• You can also configure MySQL to use a mix of both statement-based and row-based logging, depending
on which is most appropriate for the change to be logged. This is called mixed-format logging. When
using mixed-format logging, a statement-based log is used by default. Depending on certain statements,

2423

Replication Formats

and also the storage engine being used, the log is automatically switched to row-based in particular
cases. Replication using the mixed format is often referred to as mixed-based replication or mixed-format
replication. For more information, see Section 5.4.4.3, “Mixed Binary Logging Format”.

In MySQL 5.6, statement-based format is the default.

NDB Cluster. The default binary logging format in all MySQL NDB Cluster 7.3 and MySQL NDB Cluster
7.4 releases is MIXED. You should note that NDB Cluster Replication always uses row-based replication,
and that the NDB storage engine is incompatible with statement-based replication. See Section 18.7.2,
“General Requirements for NDB Cluster Replication”, for more information.

When using MIXED format, the binary logging format is determined in part by the storage engine being
used and the statement being executed. For more information on mixed-format logging and the rules
governing the support of different logging formats, see Section 5.4.4.3, “Mixed Binary Logging Format”.

The logging format in a running MySQL server is controlled by setting the binlog_format server system
variable. This variable can be set with session or global scope. The rules governing when and how the
new setting takes effect are the same as for other MySQL server system variables. Setting the variable for
the current session lasts only until the end of that session, and the change is not visible to other sessions.
Setting the variable globally takes effect for clients that connect after the change, but not for any current
client sessions, including the session where the variable setting was changed. To make the global system
variable setting permanent so that it applies across server restarts, you must set it in an option file. For
more information, see Section 13.7.4.1, “SET Syntax for Variable Assignment”.

There are conditions under which you cannot change the binary logging format at runtime or doing so
causes replication to fail. See Section 5.4.4.2, “Setting The Binary Log Format”.

Changing the global binlog_format value requires privileges sufficient to set global system variables.
Changing the session binlog_format value requires privileges sufficient to set restricted session system
variables. See Section 5.1.8.1, “System Variable Privileges”.

The statement-based and row-based replication formats have different issues and limitations. For a
comparison of their relative advantages and disadvantages, see Section 17.1.2.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”.

With statement-based replication, you may encounter issues with replicating stored routines or
triggers. You can avoid these issues by using row-based replication instead. For more information, see
Section 20.7, “Stored Program Binary Logging”.

17.1.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication

Each binary logging format has advantages and disadvantages. For most users, the mixed replication
format should provide the best combination of data integrity and performance. If, however, you want to
take advantage of the features specific to the statement-based or row-based replication format when
performing certain tasks, you can use the information in this section, which provides a summary of their
relative advantages and disadvantages, to determine which is best for your needs.

• Advantages of statement-based replication

• Disadvantages of statement-based replication

• Advantages of row-based replication

• Disadvantages of row-based replication

Advantages of statement-based replication

2424

Replication Formats

• Proven technology.

• Less data written to log files. When updates or deletes affect many rows, this results in much less
storage space required for log files. This also means that taking and restoring from backups can be
accomplished more quickly.

• Log files contain all statements that made any changes, so they can be used to audit the database.

Disadvantages of statement-based replication

• Statements that are unsafe for SBR.
Not all statements which modify data (such as INSERT DELETE, UPDATE, and REPLACE statements)
can be replicated using statement-based replication. Any nondeterministic behavior is difficult to
replicate when using statement-based replication. Examples of such DML (Data Modification Language)
statements include the following:

• A statement that depends on a loadable function or stored program that is nondeterministic, since the
value returned by such a function or stored program or depends on factors other than the parameters
supplied to it. (Row-based replication, however, simply replicates the value returned by the function or
stored program, so its effect on table rows and data is the same on both the source and replica.) See
Section 17.4.1.16, “Replication of Invoked Features”, for more information.

• DELETE and UPDATE statements that use a LIMIT clause without an ORDER BY are nondeterministic.
See Section 17.4.1.17, “Replication and LIMIT”.

• Statements using any of the following functions cannot be replicated properly using statement-based
replication:

• LOAD_FILE()

• UUID(), UUID_SHORT()

• USER()

• FOUND_ROWS()

• SYSDATE() (unless both the source and the replica are started with the --sysdate-is-now
option)

• GET_LOCK()

• IS_FREE_LOCK()

• IS_USED_LOCK()

• MASTER_POS_WAIT()

• RAND()

• RELEASE_LOCK()

• SLEEP()

• VERSION()

However, all other functions are replicated correctly using statement-based replication, including
NOW() and so forth.

2425

Replication Formats

For more information, see Section 17.4.1.15, “Replication and System Functions”.

Statements that cannot be replicated correctly using statement-based replication are logged with a
warning like the one shown here:

[Warning] Statement is not safe to log in statement format.

A similar warning is also issued to the client in such cases. The client can display it using SHOW
WARNINGS.

• INSERT ... SELECT requires a greater number of row-level locks than with row-based replication.

• UPDATE statements that require a table scan (because no index is used in the WHERE clause) must lock
a greater number of rows than with row-based replication.

• For InnoDB: An INSERT statement that uses AUTO_INCREMENT blocks other nonconflicting INSERT
statements.

• For complex statements, the statement must be evaluated and executed on the replica before the rows
are updated or inserted. With row-based replication, the replica only has to modify the affected rows, not
execute the full statement.

• If there is an error in evaluation on the replica, particularly when executing complex statements,
statement-based replication may slowly increase the margin of error across the affected rows over time.
See Section 17.4.1.27, “Replica Errors During Replication”.

• Stored functions execute with the same NOW() value as the calling statement. However, this is not true
of stored procedures.

• Deterministic loadable functions must be applied on the replicas.

• Table definitions must be (nearly) identical on source and replica. See Section 17.4.1.9, “Replication with
Differing Table Definitions on Source and Replica”, for more information.

Advantages of row-based replication

• All changes can be replicated. This is the safest form of replication.

Note

Statements that update the information in the mysql database, such as GRANT,
REVOKE and the manipulation of triggers, stored routines (including stored
procedures), and views, are all replicated to replicas using statement-based
replication.

For statements such as CREATE TABLE ... SELECT, a CREATE statement is
generated from the table definition and replicated using statement-based format,
while the row insertions are replicated using row-based format.

• The technology is the same as in most other database management systems; knowledge about other
systems transfers to MySQL.

• Fewer row locks are required on the source, which thus achieves higher concurrency, for the following
types of statements:

• INSERT ... SELECT

• INSERT statements with AUTO_INCREMENT

2426

Replication Formats

• UPDATE or DELETE statements with WHERE clauses that do not use keys or do not change most of the
examined rows.

• Fewer row locks are required on the replica for any INSERT, UPDATE, or DELETE statement.

Disadvantages of row-based replication

• RBR can generate more data that must be logged. To replicate a DML statement (such as an UPDATE or
DELETE statement), statement-based replication writes only the statement to the binary log. By contrast,
row-based replication writes each changed row to the binary log. If the statement changes many rows,
row-based replication may write significantly more data to the binary log; this is true even for statements
that are rolled back. This also means that taking and restoring from backup can require more time.
In addition, the binary log is locked for a longer time to write the data, which may cause concurrency
problems. Use binlog_row_image=minimal to reduce the disadvantage considerably.

• Deterministic loadable functions that generate large BLOB values take longer to replicate with row-based
replication than with statement-based replication. This is because the BLOB column value is logged,
rather than the statement generating the data.

• You cannot see on the replica what statements were received from the source and executed.
However, you can see what data was changed using mysqlbinlog with the options --base64-
output=DECODE-ROWS and --verbose.

Alternatively, use the binlog_rows_query_log_events variable added in MySQL 5.6.2, which if
enabled adds a Rows_query event with the statement to mysqlbinlog output when the -vv option is
used.

• For tables using the MyISAM storage engine, a stronger lock is required on the replica for INSERT
statements when applying them as row-based events to the binary log than when applying them as
statements. This means that concurrent inserts on MyISAM tables are not supported when using row-
based replication.

17.1.2.2 Usage of Row-Based Logging and Replication

MySQL uses statement-based logging (SBL), row-based logging (RBL) or mixed-format logging. The type
of binary log used impacts the size and efficiency of logging. Therefore the choice between row-based
replication (RBR) or statement-based replication (SBR) depends on your application and environment. This
section describes known issues when using a row-based format log, and discusses some best practices
using it in replication.

For additional information, see Section 17.1.2, “Replication Formats”, and Section 17.1.2.1, “Advantages
and Disadvantages of Statement-Based and Row-Based Replication”.

For information about issues specific to NDB Cluster Replication (which depends on row-based
replication), see Section 18.7.3, “Known Issues in NDB Cluster Replication”.

• Row-based logging of temporary tables. As noted in Section 17.4.1.29, “Replication and
Temporary Tables”, temporary tables are not replicated when using row-based format. When using
mixed format logging, “safe” statements involving temporary tables are logged using statement-based
format. For more information, see Section 17.1.2.1, “Advantages and Disadvantages of Statement-
Based and Row-Based Replication”.

Temporary tables are not replicated when using row-based format because there is no need. In addition,
because temporary tables can be read only from the thread which created them, there is seldom if ever
any benefit obtained from replicating them, even when using statement-based format.

2427

Replication Formats

In MySQL 5.6, you can switch from statement-based to row-based binary logging mode even when
temporary tables have been created. However, while using the row-based format, the MySQL server
cannot determine the logging mode that was in effect when a given temporary table was created. For
this reason, the server in such cases logs a DROP TEMPORARY TABLE IF EXISTS statement for each
temporary table that still exists for a given client session when that session ends. While this means
that it is possible that an unnecessary DROP TEMPORARY TABLE statement might be logged in some
cases, the statement is harmless, and does not cause an error even if the table does not exist, due to
the presence of the IF EXISTS option.

Note

From MySQL 8.0, this behavior is changed because the MySQL server tracks
the logging mode that was in effect when each temporary table was created. The
DROP TEMPORARY TABLE IF EXISTS statement is therefore not necessarily
logged for each temporary table. From that release, when a given client session
ends, the server logs a DROP TEMPORARY TABLE IF EXISTS statement for
each temporary table that still exists and was created when statement-based
binary logging was in use. If row-based or mixed format binary logging was in
use when the table was created, the DROP TEMPORARY TABLE IF EXISTS
statement is not logged.

Nontransactional DML statements involving temporary tables are allowed when using
binlog_format=ROW, as long as any nontransactional tables affected by the statements are temporary
tables (Bug #14272672).

• RBL and synchronization of nontransactional tables. When many rows are affected, the set of
changes is split into several events; when the statement commits, all of these events are written to the
binary log. When executing on the replica, a table lock is taken on all tables involved, and then the rows
are applied in batch mode. (This may or may not be effective, depending on the engine used for the
replica's copy of the table.)

• Latency and binary log size. RBL writes changes for each row to the binary log and so its size can
increase quite rapidly. This can significantly increase the time required to make changes on the replica
that match those on the source. You should be aware of the potential for this delay in your applications.

• Reading the binary log. mysqlbinlog displays row-based events in the binary log using the
BINLOG statement (see Section 13.7.6.1, “BINLOG Statement”). This statement displays an event as
a base 64-encoded string, the meaning of which is not evident. When invoked with the --base64-
output=DECODE-ROWS and --verbose options, mysqlbinlog formats the contents of the binary log
to be human readable. When binary log events were written in row-based format and you want to read or
recover from a replication or database failure you can use this command to read contents of the binary
log. For more information, see Section 4.6.8.2, “mysqlbinlog Row Event Display”.

• Binary log execution errors and slave_exec_mode. If slave_exec_mode is IDEMPOTENT, a
failure to apply changes from RBL because the original row cannot be found does not trigger an error or
cause replication to fail. This means that it is possible that updates are not applied on the replica, so that
the source and replica are no longer synchronized. Latency issues and use of nontransactional tables
with RBR when slave_exec_mode is IDEMPOTENT can cause the source and replica to diverge even
further. For more information about slave_exec_mode, see Section 5.1.7, “Server System Variables”.

Note

slave_exec_mode=IDEMPOTENT is generally useful only for circular replication
or multi-source replication with NDB Cluster, for which IDEMPOTENT is the default
value.

2428

Replication Formats

For other scenarios, setting slave_exec_mode to STRICT is normally sufficient; this is the default
value.

Note

Formerly, the default value when using NDB Cluster was
slave_exec_mode=IDEMPOTENT, but this is no longer the case in MySQL NDB
Cluster 7.3 and later.

• Filtering based on server ID not supported. In MySQL 5.6, you can filter based on server ID by
using the IGNORE_SERVER_IDS option for the CHANGE MASTER TO statement. This option works with
statement-based and row-based logging formats. Another method to filter out changes on some replicas
is to use a WHERE clause that includes the relation @@server_id <> id_value clause with UPDATE
and DELETE statements. For example, WHERE @@server_id <> 1. However, this does not work
correctly with row-based logging. To use the server_id system variable for statement filtering, use
statement-based logging.

• Database-level replication options. The effects of the --replicate-do-db, --replicate-
ignore-db, and --replicate-rewrite-db options differ considerably depending on whether row-
based or statement-based logging is used. Therefore, it is recommended to avoid database-level options
and instead use table-level options such as --replicate-do-table and --replicate-ignore-
table. For more information about these options and the impact replication format has on how they
operate, see Section 17.1.4, “Replication and Binary Logging Options and Variables”.

• RBL, nontransactional tables, and stopped replicas. When using row-based logging, if the replica
server is stopped while a replication thread is updating a nontransactional table, the replica database
can reach an inconsistent state. For this reason, it is recommended that you use a transactional storage
engine such as InnoDB for all tables replicated using the row-based format. Use of STOP SLAVE or
STOP SLAVE SQL_THREAD prior to shutting down the replica MySQL server helps prevent issues from
occurring, and is always recommended regardless of the logging format or storage engine you use.

17.1.2.3 Determination of Safe and Unsafe Statements in Binary Logging

The “safeness” of a statement in MySQL Replication, refers to whether the statement and its effects can be
replicated correctly using statement-based format. If this is true of the statement, we refer to the statement
as safe; otherwise, we refer to it as unsafe.

In general, a statement is safe if it deterministic, and unsafe if it is not. However, certain nondeterministic
functions are not considered unsafe (see Nondeterministic functions not considered unsafe, later in this
section). In addition, statements using results from floating-point math functions—which are hardware-
dependent—are always considered unsafe (see Section 17.4.1.12, “Replication and Floating-Point
Values”).

Handling of safe and unsafe statements. A statement is treated differently depending on whether the
statement is considered safe, and with respect to the binary logging format (that is, the current value of
binlog_format).

• When using row-based logging, no distinction is made in the treatment of safe and unsafe statements.

• When using mixed-format logging, statements flagged as unsafe are logged using the row-based format;
statements regarded as safe are logged using the statement-based format.

• When using statement-based logging, statements flagged as being unsafe generate a warning to this
effect. Safe statements are logged normally.

2429

Replication Formats

Each statement flagged as unsafe generates a warning. Formerly, if a large number of such statements
were executed on the source, this could lead to excessively large error log files. To prevent this, MySQL
provides a warning suppression mechanism (introduced in MySQL 5.6.7), which behaves as follows:
Whenever the 50 most recent ER_BINLOG_UNSAFE_STATEMENT warnings have been generated more
than 50 times in any 50-second period, warning suppression is enabled. When activated, this causes such
warnings not to be written to the error log; instead, for each 50 warnings of this type, a note The last
warning was repeated N times in last S seconds is written to the error log. This continues as
long as the 50 most recent such warnings were issued in 50 seconds or less; once the rate has decreased
below this threshold, the warnings are once again logged normally. Warning suppression has no effect on
how the safety of statements for statement-based logging is determined, nor on how warnings are sent to
the client. MySQL clients still receive one warning for each such statement.

For more information, see Section 17.1.2, “Replication Formats”.

Statements considered unsafe.
Statements with the following characteristics are considered unsafe:

• Statements containing system functions that may return a different value on replica.
These functions include FOUND_ROWS(), GET_LOCK(), IS_FREE_LOCK(), IS_USED_LOCK(),
LOAD_FILE(), MASTER_POS_WAIT(), PASSWORD(), RAND(), RELEASE_LOCK(), ROW_COUNT(),
SESSION_USER(), SLEEP(), SYSDATE(), SYSTEM_USER(), USER(), UUID(), and UUID_SHORT().

Nondeterministic functions not considered unsafe. Although these functions are not deterministic,
they are treated as safe for purposes of logging and replication: CONNECTION_ID(), CURDATE(),
CURRENT_DATE(), CURRENT_TIME(), CURRENT_TIMESTAMP(), CURTIME(),, LAST_INSERT_ID(),
LOCALTIME(), LOCALTIMESTAMP(), NOW(), UNIX_TIMESTAMP(), UTC_DATE(), UTC_TIME(), and
UTC_TIMESTAMP().

For more information, see Section 17.4.1.15, “Replication and System Functions”.

• References to system variables. Most system variables are not replicated correctly using the
statement-based format. See Section 17.4.1.35, “Replication and Variables”. For exceptions, see
Section 5.4.4.3, “Mixed Binary Logging Format”.

• Loadable Functions. Since we have no control over what a loadable function does, we must assume
that it is executing unsafe statements.

• Trigger or stored program updates a table having an AUTO_INCREMENT column. This is unsafe
because the order in which the rows are updated may differ on the source and the replica.

In addition, an INSERT into a table that has a composite primary key containing an AUTO_INCREMENT
column that is not the first column of this composite key is unsafe.

For more information, see Section 17.4.1.1, “Replication and AUTO_INCREMENT”.

• INSERT DELAYED statement. This statement is considered unsafe because the insertion of the
rows may interleave with concurrently executing statements.

• INSERT ... ON DUPLICATE KEY UPDATE statements on tables with multiple primary or unique
keys. When executed against a table that contains more than one primary or unique key, this
statement is considered unsafe, being sensitive to the order in which the storage engine checks
the keys, which is not deterministic, and on which the choice of rows updated by the MySQL Server
depends.

An INSERT ... ON DUPLICATE KEY UPDATE statement against a table having more than one
unique or primary key is marked as unsafe for statement-based replication beginning with MySQL 5.6.6.
(Bug #11765650, Bug #58637)

2430

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_binlog_unsafe_statement

Replication with Global Transaction Identifiers

• Updates using LIMIT. The order in which rows are retrieved is not specified, and is therefore
considered unsafe. See Section 17.4.1.17, “Replication and LIMIT”.

• Accesses or references log tables. The contents of the system log table may differ between source
and replica.

• Nontransactional operations after transactional operations. Within a transaction, allowing any
nontransactional reads or writes to execute after any transactional reads or writes is considered unsafe.

For more information, see Section 17.4.1.32, “Replication and Transactions”.

• Accesses or references self-logging tables. All reads and writes to self-logging tables are
considered unsafe. Within a transaction, any statement following a read or write to self-logging tables is
also considered unsafe.

• LOAD DATA statements. LOAD DATA is treated as unsafe and when binlog_format=mixed the
statement is logged in row-based format. When binlog_format=statement LOAD DATA does not
generate a warning, unlike other unsafe statements.

For additional information, see Section 17.4.1, “Replication Features and Issues”.

17.1.3 Replication with Global Transaction Identifiers

This section explains transaction-based replication using global transaction identifiers (GTIDs), introduced
in MySQL 5.6.5. When using GTIDs, each transaction can be identified and tracked as it is committed on
the originating server and applied by any replicas; this means that it is not necessary when using GTIDs to
refer to log files or positions within those files when starting a new replica or failing over to a new source,
which greatly simplifies these tasks. Because GTID-based replication is completely transaction-based, it
is simple to determine whether sources and replicas are consistent; as long as all transactions committed
on a source are also committed on a replica, consistency between the two is guaranteed. You can use
either statement-based or row-based replication with GTIDs (see Section 17.1.2, “Replication Formats”);
however, for best results, we recommend that you use the row-based format.

This section discusses the following topics:

• How GTIDs are defined and created, and how they are represented in the MySQL Server (see
Section 17.1.3.1, “GTID Concepts”).

• A general procedure for setting up and starting GTID-based replication (see Section 17.1.3.2, “Setting
Up Replication Using GTIDs”).

• Suggested methods for provisioning new replication servers when using GTIDs (see Section 17.1.3.3,
“Using GTIDs for Failover and Scaleout”).

• Restrictions and limitations that you should be aware of when using GTID-based replication (see
Section 17.1.3.4, “Restrictions on Replication with GTIDs”).

• A procedure for disabling GTIDs, which you must do if you have enabled GTIDs and are downgrading to
a MySQL release that does not support GTIDs (see Section 17.1.3.5, “Disabling GTID Transactions”).

For information about MySQL Server options and variables relating to GTID-based replication, see
Section 17.1.4.5, “Global Transaction ID Options and Variables”. See also Section 12.18, “Functions Used
with Global Transaction IDs”, which describes SQL functions supported by MySQL 5.6 for use with GTIDs.

2431

Replication with Global Transaction Identifiers

Note

GTIDs are not compatible or supported with the NDB storage engine used by NDB
Cluster. Enabling GTIDs in NDB Cluster is very likely to cause problems with NDB,
and to cause NDB Cluster Replication to fail as well.

17.1.3.1 GTID Concepts

A global transaction identifier (GTID) is a unique identifier created and associated with each transaction
committed on the server of origin (source). This identifier is unique not only to the server on which it
originated, but is unique across all servers in a given replication setup. There is a 1-to-1 mapping between
all transactions and all GTIDs.

A GTID is represented as a pair of coordinates, separated by a colon character (:), as shown here:

GTID = source_id:transaction_id

The source_id identifies the originating server. Normally, the server's server_uuid is used for
this purpose. The transaction_id is a sequence number determined by the order in which the
transaction was committed on this server; for example, the first transaction to be committed has 1 as its
transaction_id, and the tenth transaction to be committed on the same originating server is assigned
a transaction_id of 10. It is not possible for a transaction to have 0 as a sequence number in a
GTID. For example, the twenty-third transaction to be committed originally on the server with the UUID
3E11FA47-71CA-11E1-9E33-C80AA9429562 has this GTID:

3E11FA47-71CA-11E1-9E33-C80AA9429562:23

This format is used to represent GTIDs in the output of statements such as SHOW SLAVE STATUS as
well as in the binary log. They can also be seen when viewing the log file with mysqlbinlog --base64-
output=DECODE-ROWS or in the output from SHOW BINLOG EVENTS.

As written in the output of statements such as SHOW MASTER STATUS or SHOW SLAVE STATUS, a
sequence of GTIDs originating from the same server may be collapsed into a single expression, as shown
here.

3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5

The example just shown represents the first through fifth transactions originating on the MySQL Server
whose server_uuid is 3E11FA47-71CA-11E1-9E33-C80AA9429562.

In MySQL 5.6.6 and later, this format is also used to supply the argument required by the START SLAVE
options SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS.

GTID Sets

A GTID set is a set of global transaction identifiers which is represented as shown here:

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

h:
 [0-9|A-F]

2432

Replication with Global Transaction Identifiers

interval:
 n[-n]

 (n >= 1)

GTID sets are used in the MySQL Server in several ways. For example, the values stored by the
gtid_executed and gtid_purged system variables are represented as GTID sets. In addition, the
functions GTID_SUBSET() and GTID_SUBTRACT() require GTID sets as input.

GTIDs are always preserved between source and replica. This means that you can always determine
the source for any transaction applied on any replica by examining its binary log. In addition, once a
transaction with a given GTID is committed on a given server, any subsequent transaction having the same
GTID is ignored by that server. Thus, a transaction committed on the source can be applied no more than
once on the replica, which helps to guarantee consistency.

When GTIDs are in use, the replica has no need for any nonlocal data, such as the name of a file on
the source and a position within that file. All necessary information for synchronizing with the source is
obtained directly from the replication data stream. From the perspective of the database administrator
or developer, GTIDs entirely take the place of the file-offset pairs previously required to determine
points for starting, stopping, or resuming the flow of data between source and replica. This means that,
when you are using GTIDs for replication, you do not need (or want) to include MASTER_LOG_FILE or
MASTER_LOG_POS options in the CHANGE MASTER TO statement used to direct a replica to replicate from
a given source; in place of these options, it is necessary only to enable the MASTER_AUTO_POSITION
option introduced in MySQL 5.6.5. For the exact steps needed to configure and start sources and replicas
using GTID-based replication, see Section 17.1.3.2, “Setting Up Replication Using GTIDs”.

The generation and lifecycle of a GTID consists of the following steps:

1. A transaction is executed and committed on the source.

This transaction is assigned a GTID using the source's UUID and the smallest nonzero transaction
sequence number not yet used on this server; the GTID is written to the source's binary log
(immediately preceding the transaction itself in the log).

2. After the binary log data is transmitted to the replica and stored in the replica's relay log (using
established mechanisms for this process—see Section 17.2, “Replication Implementation”, for details),
the replica reads the GTID and sets the value of its gtid_next system variable as this GTID. This tells
the replica that the next transaction must be logged using this GTID.

The replica sets gtid_next in a session context.

3. The replica checks to make sure that this GTID has not already been used to log a transaction in its
own binary log. If and only if this GTID has not been used, the replica then writes the GTID and applies
the transaction (and writes the transaction to its binary log). By reading and checking the transaction's
GTID first, before processing the transaction itself, the replica guarantees not only that no previous
transaction having this GTID has been applied on the replica, but also that no other session has
already read this GTID but has not yet committed the associated transaction. In other words, multiple
clients are not permitted to apply the same transaction concurrently.

4. Because gtid_next is not empty, the replica does not attempt to generate a GTID for this transaction
but instead writes the GTID stored in this variable, that is, the GTID obtained from the source,
immediately preceding the transaction in its binary log.

17.1.3.2 Setting Up Replication Using GTIDs

This section describes a process for configuring and starting GTID-based replication in MySQL 5.6. This is
a “cold start” procedure that assumes either that you are starting the replication source server for the first

2433

Replication with Global Transaction Identifiers

time, or that it is possible to stop it; for information about provisioning replicas using GTIDs from a running
source, see Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”.

The key steps in this startup process for the simplest possible GTID replication topology, consisting of one
source and one replica, are as follows:

1. If replication is already running, synchronize both servers by making them read-only.

2. Stop both servers.

3. Restart both servers with GTIDs, binary logging, and replica update logging enabled, and with
statements that are unsafe for GTID-based replication disabled. In addition, the servers should be
started in read-only mode, and the replication SQL and I/O threads should be prevented from starting
on the replica.

The mysqld options necessary to start the servers as described are discussed in the example that
follows later in this section.

4. Instruct the replica to use the source as the replication data source and to use auto-positioning. The
SQL statements needed to accomplish this step are described in the example that follows later in this
section.

5. Take a new backup. Binary logs containing transactions without GTIDs cannot be used on servers
where GTIDs are enabled, so backups taken before this point cannot be used with your new
configuration.

6. Start the replica, then disable read-only mode again on both servers, so that they can accept updates.

In the following example, two servers are already running as source and replica, using MySQL's “classic”
file-based replication protocol.

Most of the steps that follow require the use of the MySQL root account or another MySQL user
account that has the SUPER privilege. mysqladmin shutdown requires either the SUPER privilege or the
SHUTDOWN privilege.

Step 1: Synchronize the servers. Make the servers read-only. To do this, enable the read_only
system variable by executing the following statement on both servers:

mysql> SET @@GLOBAL.read_only = ON;

Wait for all ongoing transactions to commit or roll back. Then, allow the replica to catch up with the source.
It is extremely important that you make sure the replica has processed all updates before continuing.

If you use binary logs for anything other than replication, for example to do point in time backup and
restore, wait until you do not need the old binary logs containing transactions without GTIDs. Ideally, wait
for the server to purge all binary logs, and wait for any existing backup to expire.

Important

It is important to understand that logs containing transactions without GTIDs cannot
be used on servers where GTIDs are enabled. Before proceeding, you must be
sure that transactions without GTIDs do not exist anywhere in the topology.

Step 2: Stop both servers. Stop each server using mysqladmin as shown here, where username is
the user name for a MySQL user having sufficient privileges to shut down the server:

$> mysqladmin -uusername -p shutdown

Then supply this user's password at the prompt.

2434

Replication with Global Transaction Identifiers

Step 3: Restart both servers with GTIDs enabled. To enable binary logging with global transaction
identifiers, each server must be started with GTID mode, binary logging, replica update logging enabled,
and with statements that are unsafe for GTID-based replication disabled. In addition, you should prevent
unwanted or accidental updates from being performed on either server by starting both in read-only mode.
This means that both servers must be started with (at least) the options shown in the following invocation
of mysqld_safe:

$> mysqld_safe --gtid_mode=ON --log-bin --log-slave-updates --enforce-gtid-consistency &

In addition, you should start the replica with the --skip-slave-start option along with the other server
options specified in the example just shown.

Note

gtid_mode is not a boolean, but an enumeration. Use one of the values ON or OFF
only, when setting this option. Using a numeric value such as 0 or 1 can lead to
unexpected results.

For more information about the gtid_mode and enforce_gtid_consistency system variables, see
Section 17.1.4.5, “Global Transaction ID Options and Variables”.

Depending on your configuration, supply additional options to mysqld_safe or other mysqld startup
script.

Step 4: Direct the replica to use the source. Tell the replica to use the replication source server as
the data source, and to use GTID-based auto-positioning rather than file-based positioning. Execute a
CHANGE MASTER TO statement on the replica, using the MASTER_AUTO_POSITION option to tell the
replica that transactions are identified by GTIDs.

You may also need to supply appropriate values for the source's host name and port number as well as
the user name and password for a replication user account which can be used by the replica to connect
to the source; if these have already been set prior to Step 1 and no further changes need to be made, the
corresponding options can safely be omitted from the statement shown here.

mysql> CHANGE MASTER TO
 > MASTER_HOST = host,
 > MASTER_PORT = port,
 > MASTER_USER = user,
 > MASTER_PASSWORD = password,
 > MASTER_AUTO_POSITION = 1;

Neither the MASTER_LOG_FILE option nor the MASTER_LOG_POS option may be used with
MASTER_AUTO_POSITION set equal to 1. Attempting to do so causes the CHANGE MASTER TO statement
to fail with an error.

Step 5: Take a new backup. Existing backups that were made before you enabled GTIDs can no
longer be used on these servers now that you have enabled GTIDs. Take a new backup at this point, so
that you are not left without a usable backup.

For instance, you can execute FLUSH LOGS on the server where you are taking backups. Then either
explicitly take a backup or wait for the next iteration of any periodic backup routine you may have set up.

Step 6: Start the replica and disable read-only mode. Start the replica like this:

mysql> START SLAVE;

Allow the source to begin accepting updates once again by running the following statement:

mysql> SET @@GLOBAL.read_only = OFF;

2435

Replication with Global Transaction Identifiers

GTID-based replication should now be running, and you can begin (or resume) activity on the source as
before. Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”, discusses creation of new replicas when
using GTIDs.

17.1.3.3 Using GTIDs for Failover and Scaleout

There are a number of techniques when using MySQL Replication with Global Transaction Identifiers
(GTIDs) in MySQL 5.6.9 and later for provisioning a new replica which can then be used for scaleout, being
promoted to source as necessary for failover. In this section, we discuss the four techniques listed here:

• Simple replication

• Copying data and transactions to the replica

• Injecting empty transactions

• Excluding transactions with gtid_purged

Global transaction identifiers were added to MySQL Replication for the purpose of simplifying in general
management of the replication data flow and of failover activities in particular. Each identifier uniquely
identifies a set of binary log events that together make up a transaction. GTIDs play a key role in applying
changes to the database: the server automatically skips any transaction having an identifier which the
server recognizes as one that it has processed before. This behavior is critical for automatic replication
positioning and correct failover.

The mapping between identifiers and sets of events comprising a given transaction is captured in the
binary log. This poses some challenges when provisioning a new server with data from another existing
server. To reproduce the identifier set on the new server, it is necessary to copy the identifiers from the old
server to the new one, and to preserve the relationship between the identifiers and the actual events This
is neccessary for restoring a replica that is immediately available as a candidate to become a new source
on failover or switchover.

Simple replication. This is the easiest way to reproduce all identifiers and transactions on a new
server; you simply make the new server into the replica of a source that has the entire execution history,
and enable global transaction identifiers on both servers. See Section 17.1.3.2, “Setting Up Replication
Using GTIDs”, for more information.

Once replication is started, the new server copies the entire binary log from the source and thus obtains all
information about all GTIDs.

This method is simple and effective, but requires the replica to read the binary log from the source; it can
sometimes take a comparatively long time for the new replica to catch up with the source, so this method is
not suitable for fast failover or restoring from backup. This section explains how to avoid fetching all of the
execution history from the source by copying binary log files to the new server.

Copying data and transactions to the replica. Playing back the entire transaction history can be
time-consuming, and represents a major bottleneck when setting up a new replica. To eliminate this
requirement, a snapshot of the data set, the binary logs and the global transaction information the source
contains is imported to the replica. The binary log is played back, after which replication can be started,
allowing the replica to become current with any remaining transactions.

There are several variants of this method, the difference being in the manner in which data dumps and
transactions from binary logs are transferred to the replica, as outlined here:

Data Set 1. Use the mysql client to import a dump file created with mysqldump.
Use the --master-data option to include binary logging
information and --set-gtid-purged (available in MySQL 5.6.9

2436

Replication with Global Transaction Identifiers

and later) to AUTO (the default) or ON, to include information about
executed transactions. You should have gtid_mode=ON while
importing the dump on the replica. (Bug #14832472)

2. Stop the replica, copy the contents of the source's data directory to
the replica's data directory, then restart the replica.

Transaction History If gtid_mode is not ON, restart the server with GTID mode enabled.

1. Import the binary log using mysqlbinlog, with the --read-from-
remote-server and --read-from-remote-master options.

2. Copy the source's binary log files to the replica. You can make
copies from the replica using mysqlbinlog --read-from-
remote-server --raw. These can be read in to the replica in
either of the following ways:

• Update the replica's binlog.index file to point to the copied
log files. Then execute a CHANGE MASTER TO statement in the
mysql client to point to the first log file, and START SLAVE to
read them.

• Use mysqlbinlog > file (without the --raw option) to export
the binary log files to SQL files that can be processed by the
mysql client.

See also Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”.

This method has the advantage that a new server is available almost immediately; only those transactions
that were committed while the snapshot or dump file was being replayed still need to be obtained from the
existing source. This means that the replica's availability is not instantanteous, but only a relatively short
amount of time should be required for the replica to catch up with these few remaining transactions.

Copying over binary logs to the target server in advance is usually faster than reading the entire
transaction execution history from the source in real time. However, it may not always be feasible to move
these files to the target when required, due to size or other considerations. The two remaining methods
for provisioning a new replica discussed in this section use other means to transfer information about
transactions to the new replica.

Injecting empty transactions. The source's global gtid_executed variable contains the set of all
transactions executed on the source. Rather than copy the binary logs when taking a snapshot to provision
a new server, you can instead note the content of gtid_executed on the server from which the snapshot
was taken. Before adding the new server to the replication chain, simply commit an empty transaction on
the new server for each transaction identifier contained in the source's gtid_executed, like this:

SET GTID_NEXT='aaa-bbb-ccc-ddd:N';

BEGIN;
COMMIT;

SET GTID_NEXT='AUTOMATIC';

Once all transaction identifiers have been reinstated in this way using empty transactions, you must flush
and purge the replica's binary logs, as shown here, where N is the nonzero suffix of the current binary log
file name:

FLUSH LOGS;
PURGE BINARY LOGS TO 'source-bin.00000N';

2437

Replication with Global Transaction Identifiers

You should do this to prevent this server from flooding the replication stream with false transactions in the
event that it is later promoted to source. (The FLUSH LOGS statement forces the creation of a new binary
log file; PURGE BINARY LOGS purges the empty transactions, but retains their identifiers.)

This method creates a server that is essentially a snapshot, but in time is able to become a source as its
binary log history converges with that of the replication stream (that is, as it catches up with the source or
sources). This outcome is similar in effect to that obtained using the remaining provisioning method, which
we discuss in the next few paragraphs.

Excluding transactions with gtid_purged. The source's global gtid_purged variable contains the
set of all transactions that have been purged from the source's binary log. As with the method discussed
previously (see Injecting empty transactions), you can record the value of gtid_executed on the server
from which the snapshot was taken (in place of copying the binary logs to the new server). Unlike the
previous method, there is no need to commit empty transactions (or to issue PURGE BINARY LOGS);
instead, you can set gtid_purged on the replica directly, based on the value of gtid_executed on the
server from which the backup or snapshot was taken.

Note

Prior to MySQL 5.6.9, gtid_purged was not settable. (Bug #14797808)

As with the method using empty transactions, this method creates a server that is functionally a snapshot,
but in time is able to become a source as its binary log history converges with that of the replication source
server or group.

17.1.3.4 Restrictions on Replication with GTIDs

Because GTID-based replication is dependent on transactions, some features otherwise available in
MySQL are not supported when using it. This section provides information about restrictions on and
limitations of replication with GTIDs.

Updates involving nontransactional storage engines. When using GTIDs, updates to tables using
nontransactional storage engines such as MyISAM cannot be made in the same statement or transaction
as updates to tables using transactional storage engines such as InnoDB.

This restriction is due to the fact that updates to tables that use a nontransactional storage engine mixed
with updates to tables that use a transactional storage engine within the same transaction can result in
multiple GTIDs being assigned to the same transaction.

Such problems can also occur when the source and the replica use different storage engines for their
respective versions of the same table, where one storage engine is transactional and the other is not.

In any of the cases just mentioned, the one-to-one correspondence between transactions and GTIDs is
broken, with the result that GTID-based replication cannot function correctly.

CREATE TABLE ... SELECT statements. CREATE TABLE ... SELECT is not safe for statement-
based replication. When using row-based replication, this statement is actually logged as two separate
events—one for the creation of the table, and another for the insertion of rows from the source table into
the new table just created. When this statement is executed within a transaction, it is possible in some
cases for these two events to receive the same transaction identifier, which means that the transaction
containing the inserts is skipped by the replica. Therefore, CREATE TABLE ... SELECT is not supported
when using GTID-based replication.

Temporary tables. CREATE TEMPORARY TABLE and DROP TEMPORARY TABLE statements are
not supported inside transactions when using GTIDs (that is, when the server was started with the --
enforce-gtid-consistency option). It is possible to use these statements with GTIDs enabled, but
only outside of any transaction, and only with autocommit=1.

2438

Replication with Global Transaction Identifiers

Preventing execution of unsupported statements. In order to prevent execution of statements
that would cause GTID-based replication to fail, all servers must be started with the --enforce-gtid-
consistency option when enabling GTIDs. This causes statements of any of the types discussed
previously in this section to fail with an error.

For information about other required startup options when enabling GTIDs, see Section 17.1.3.2, “Setting
Up Replication Using GTIDs”.

sql_slave_skip_counter is not supported when using GTIDs. If you need to skip transactions, use
the value of the source's gtid_executed variable instead; see Injecting empty transactions, for more
information.

GTID mode and mysqldump. In MySQL 5.6.9 and later, it is possible to import a dump made using
mysqldump into a MySQL Server running with GTID mode enabled, provided that there are no GTIDs in
the target server's binary log.

Prior to MySQL 5.6.9, mysqldump did not record global transaction IDs, and it was necessary to use the
binary log and mysqlbinlog to restore GTIDs. (Bug #14797808, Bug #14832472)

GTID mode and mysql_upgrade. Prior to MySQL 5.6.7, mysql_upgrade could not connect to a
MySQL Server that was running with global transaction identifiers (GTIDs) enabled (gtid_mode=ON)
unless mysql_upgrade was run with --write-binlog=OFF. Otherwise, mysqld had to be restarted
with gtid_mode=OFF before running mysql_upgrade, then restarted with gtid_mode=ON afterwards.
In MySQL 5.6.7 and later, where mysql_upgrade runs with --write-binlog=OFF by default. (Bug
#13833710). Do not enable this option when the server is running with (gtid_mode=ON).

17.1.3.5 Disabling GTID Transactions

If you have enabled GTIDs in MySQL 5.6 and want to downgrade to a MySQL release that does not
support GTIDs, you must carry out this procedure to disable GTIDs before downgrading. In MySQL 5.6,
you must take the servers offline in order to disable GTIDs.

1. On each replica, disable auto-positioning by running the following statements:

STOP SLAVE;
CHANGE MASTER TO MASTER_AUTO_POSITION = 0, MASTER_LOG_FILE = file, \
MASTER_LOG_POS = position;
START SLAVE;

2. On each server, stop updates by running the following statement:

SET @@GLOBAL.READ_ONLY = ON;

3. Wait for all ongoing transactions to commit or roll back. Then, wait for a safe period of time, depending
on your deployment, for all transactions that currently exist in any binary log to replicate to all replicas. It
is extremely important that you make sure all replicas have processed all updates before continuing.

If you use binary logs for anything other than replication, for example to do point in time backup and
restore, wait until you do not need the old binary logs containing GTID transactions. Ideally, wait for the
server to purge all binary logs, and wait for any existing backup to expire.

Important

It is important to understand that logs containing GTID transactions cannot be
used on servers where GTIDs are disabled. Before proceeding, you must be
sure that GTID transactions do not exist anywhere in the topology.

2439

Replication and Binary Logging Options and Variables

4. Stop each server using mysqladmin as shown here, where username is the user name for a MySQL
user having sufficient privileges to shut down the server:

$> mysqladmin -uusername -p shutdown

Then supply this user's password at the prompt.

5. On each server, set gtid_mode=OFF and enforce_gtid_consistency=OFF in my.cnf.

6. Restart each server in read-only mode, using mysqld_safe or another mysqld startup script, and
specifying the option --read_only=ON on the command line. Starting the servers in read-only mode
prevents unwanted or accidental updates from being performed on any server.

7. Take a new backup at this point, so that you are not left without a usable backup. Existing backups
that were made before you disabled GTIDs can no longer be used on these servers now that you
have disabled GTIDs. For instance, you can execute FLUSH LOGS on the server where you are taking
backups. Then either explicitly take a backup or wait for the next iteration of any periodic backup
routine you may have set up.

8. On each server, re-enable updates by running the following statement:

SET @@GLOBAL.READ_ONLY = OFF;

If you want to downgrade to an earlier version of MySQL, you can do so now, using the normal downgrade
procedure.

17.1.4 Replication and Binary Logging Options and Variables

The following sections contain information about mysqld options and server variables that are used in
replication and for controlling the binary log. Options and variables for use on replication source servers
and replicas are covered separately, as are options and variables relating to binary logging. A set of quick-
reference tables providing basic information about these options and variables is also included.

Of particular importance is the server_id system variable.

Command-Line Format --server-id=#

System Variable server_id

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

This variable specifies the server ID.

On a replication source server and each replica, you must specify server_id to establish a unique
replication ID in the range from 1 to 232 − 1. “Unique”, means that each ID must be different from
every other ID in use by any other replication source server or replica. For additional information, see
Section 17.1.4.2, “Replication Source Options and Variables”, and Section 17.1.4.3, “Replica Server
Options and Variables”.

If you do not specify server_id, the default server ID is 0. If the server ID is set to 0, binary logging takes
place, but a source with a server ID of 0 refuses any connections from replicas, and a replica with a server
ID of 0 refuses to connect to a source. Note that although you can change the server ID dynamically to a

2440

Replication and Binary Logging Options and Variables

nonzero value, doing so does not enable replication to start immediately. You must change the server ID
and then restart the server to initialize the replica.

In MySQL 5.6, whether the server ID is set to 0 explicitly or the default is allowed to be used, the server
sets the server_id system variable to 1; this is a known issue that is fixed in MySQL 5.7.

For more information, see Section 17.1.1.2, “Setting the Replica Configuration”.

server_uuid

Beginning with MySQL 5.6, the server generates a true UUID in addition to the server_id value supplied
by the user. This is available as the global, read-only server_uuid system variable.

System Variable server_uuid

Scope Global

Dynamic No

Type String

When starting, the MySQL server automatically obtains a UUID as follows:

1. Attempt to read and use the UUID written in the file data_dir/auto.cnf (where data_dir is the
server's data directory).

2. If data_dir/auto.cnf is not found, generate a new UUID and save it to this file, creating the file if
necessary.

The auto.cnf file has a format similar to that used for my.cnf or my.ini files. In MySQL 5.6, auto.cnf
has only a single [auto] section containing a single server_uuid setting and value; the file's contents
appear similar to what is shown here:

[auto]
server_uuid=8a94f357-aab4-11df-86ab-c80aa9429562

Important

The auto.cnf file is automatically generated; do not attempt to write or modify this
file.

Also beginning with MySQL 5.6, when using MySQL replication, sources and replicas know one another's
UUIDs. The value of a replica's UUID can be seen in the output of SHOW SLAVE HOSTS. Once START
SLAVE has been executed (but not before), the value of the source's UUID is available on the replica in the
output of SHOW SLAVE STATUS.

Note

Issuing a STOP SLAVE or RESET SLAVE statement does not reset the source's
UUID as used on the replica.

A server's server_uuid is also used in GTIDs for transactions originating on that server. For more
information, see Section 17.1.3, “Replication with Global Transaction Identifiers”.

When starting, the replication I/O thread generates an error and aborts if its source's UUID is equal to its
own unless the --replicate-same-server-id option has been set. In addition, the replication I/O
thread generates a warning if either of the following is true:

• No source having the expected server_uuid exists.

• The source's server_uuid has changed, although no CHANGE MASTER TO statement has ever been
executed.

2441

Replication and Binary Logging Options and Variables

Note

The addition of the server_uuid system variable in MySQL 5.6 does not change
the requirement for setting a unique server_id value for each MySQL server
as part of preparing and running MySQL replication, as described earlier in this
section.

17.1.4.1 Replication and Binary Logging Option and Variable Reference

The following two sections provide basic information about the MySQL command-line options and system
variables applicable to replication and the binary log.

Replication Options and Variables

The command-line options and system variables in the following list relate to replication source servers and
replicas. Section 17.1.4.2, “Replication Source Options and Variables” provides more detailed information
about options and variables relating to replication source servers. For more information about options and
variables relating to replicas, see Section 17.1.4.3, “Replica Server Options and Variables”.

• abort-slave-event-count: Option used by mysql-test for debugging and testing of replication.

• auto_increment_increment: AUTO_INCREMENT columns are incremented by this value.

• auto_increment_offset: Offset added to AUTO_INCREMENT columns.

• Com_change_master: Count of CHANGE REPLICATION SOURCE TO and CHANGE MASTER TO
statements.

• Com_show_master_status: Count of SHOW MASTER STATUS statements.

• Com_show_slave_hosts: Count of SHOW REPLICAS and SHOW SLAVE HOSTS statements.

• Com_show_slave_status: Count of SHOW REPLICA STATUS and SHOW SLAVE STATUS
statements.

• Com_slave_start: Count of START REPLICA and START SLAVE statements.

• Com_slave_stop: Count of STOP REPLICA and STOP SLAVE statements.

• disconnect-slave-event-count: Option used by mysql-test for debugging and testing of
replication.

• enforce_gtid_consistency: Prevents execution of statements that cannot be logged in
transactionally safe manner.

• expire_logs_days: Purge binary logs after this many days.

• gtid_executed: Global: All GTIDs in binary log (global) or current transaction (session). Read-only.

• gtid_mode: Controls whether GTID based logging is enabled and what type of transactions logs can
contain.

• gtid_next: Specifies GTID for next statement to execute; see documentation for details.

• gtid_owned: Set of GTIDs owned by this client (session), or by all clients, together with thread ID of
owner (global). Read-only.

• gtid_purged: Set of all GTIDs that have been purged from binary log.

• init_slave: Statements that are executed when replica connects to source.

2442

Replication and Binary Logging Options and Variables

• log_bin_trust_function_creators: If equal to 0 (default), then when --log-bin is used, stored
function creation is allowed only to users having SUPER privilege and only if function created does not
break binary logging.

• master-info-file: Location and name of file that remembers source and where I/O replication thread
is in source's binary log.

• master-retry-count: Number of tries replica makes to connect to source before giving up.

• master_info_repository: Whether to write connection metadata repository, containing source
information and replication I/O thread location in source's binary log, to file or table.

• max_relay_log_size: If nonzero, relay log is rotated automatically when its size exceeds this value. If
zero, size at which rotation occurs is determined by value of max_binlog_size.

• relay_log: Location and base name to use for relay logs.

• relay_log_basename: Complete path to relay log, including file name.

• relay_log_index: Location and name to use for file that keeps list of last relay logs.

• relay_log_info_file: File name for applier metadata repository in which replica records information
about relay logs.

• relay_log_info_repository: Whether to write location of replication SQL thread in relay logs to file
or table.

• relay_log_purge: Determines whether relay logs are purged.

• relay_log_recovery: Whether automatic recovery of relay log files from source at startup is enabled;
must be enabled for crash-safe replica.

• relay_log_space_limit: Maximum space to use for all relay logs.

• replicate-do-db: Tells replication SQL thread to restrict replication to specified database.

• replicate-do-table: Tells replication SQL thread to restrict replication to specified table.

• replicate-ignore-db: Tells replication SQL thread not to replicate to specified database.

• replicate-ignore-table: Tells replication SQL thread not to replicate to specified table.

• replicate-rewrite-db: Updates to database with different name from original.

• replicate-same-server-id: In replication, if enabled, do not skip events having our server id.

• replicate-wild-do-table: Tells replication SQL thread to restrict replication to tables that match
specified wildcard pattern.

• replicate-wild-ignore-table: Tells replication SQL thread not to replicate to tables that match
given wildcard pattern.

• report_host: Host name or IP of replica to be reported to source during replica registration.

• report_password: Arbitrary password which replica server should report to source; not same as
password for replication user account.

• report_port: Port for connecting to replica reported to source during replica registration.

• report_user: Arbitrary user name which replica server should report to source; not same as name
used for replication user account.

2443

Replication and Binary Logging Options and Variables

• Rpl_semi_sync_master_clients: Number of semisynchronous replicas.

• rpl_semi_sync_master_enabled: Whether semisynchronous replication is enabled on source.

• Rpl_semi_sync_master_net_avg_wait_time: Average time source has waited for replies from
replica.

• Rpl_semi_sync_master_net_wait_time: Total time source has waited for replies from replica.

• Rpl_semi_sync_master_net_waits: Total number of times source waited for replies from replica.

• Rpl_semi_sync_master_no_times: Number of times source turned off semisynchronous replication.

• Rpl_semi_sync_master_no_tx: Number of commits not acknowledged successfully.

• Rpl_semi_sync_master_status: Whether semisynchronous replication is operational on source.

• Rpl_semi_sync_master_timefunc_failures: Number of times source failed when calling time
functions.

• rpl_semi_sync_master_timeout: Number of milliseconds to wait for replica acknowledgment.

• rpl_semi_sync_master_trace_level: Semisynchronous replication debug trace level on source.

• Rpl_semi_sync_master_tx_avg_wait_time: Average time source waited for each transaction.

• Rpl_semi_sync_master_tx_wait_time: Total time source waited for transactions.

• Rpl_semi_sync_master_tx_waits: Total number of times source waited for transactions.

• rpl_semi_sync_master_wait_no_slave: Whether source waits for timeout even with no replicas.

• Rpl_semi_sync_master_wait_pos_backtraverse: Total number of times source has waited for
event with binary coordinates lower than events waited for previously.

• Rpl_semi_sync_master_wait_sessions: Number of sessions currently waiting for replica replies.

• Rpl_semi_sync_master_yes_tx: Number of commits acknowledged successfully.

• rpl_semi_sync_slave_enabled: Whether semisynchronous replication is enabled on replica.

• Rpl_semi_sync_slave_status: Whether semisynchronous replication is operational on replica.

• rpl_semi_sync_slave_trace_level: Semisynchronous replication debug trace level on replica.

• rpl_stop_slave_timeout: Number of seconds that STOP REPLICA or STOP SLAVE waits before
timing out.

• server_uuid: Server's globally unique ID, automatically (re)generated at server start.

• show-slave-auth-info: Show user name and password in SHOW REPLICAS and SHOW SLAVE
HOSTS on this source.

• simplified_binlog_gtid_recovery: Renamed to binlog_gtid_simple_recovery.

• skip-slave-start: If set, replication is not autostarted when replica server starts.

• slave-skip-errors: Tells replication thread to continue replication when query returns error from
provided list.

• slave_checkpoint_group: Maximum number of transactions processed by multithreaded replica
before checkpoint operation is called to update progress status. Not supported by NDB Cluster.

2444

Replication and Binary Logging Options and Variables

• slave_checkpoint_period: Update progress status of multithreaded replica and flush relay log info
to disk after this number of milliseconds. Not supported by NDB Cluster.

• slave_compressed_protocol: Use compression of source/replica protocol.

• slave_exec_mode: Allows for switching replication thread between IDEMPOTENT mode (key and
some other errors suppressed) and STRICT mode; STRICT mode is default, except for NDB Cluster,
where IDEMPOTENT is always used.

• Slave_heartbeat_period: Replica's replication heartbeat interval, in seconds.

• Slave_last_heartbeat: Shows when latest heartbeat signal was received, in TIMESTAMP format.

• slave_load_tmpdir: Location where replica should put its temporary files when replicating LOAD
DATA statements.

• slave_max_allowed_packet: Maximum size, in bytes, of packet that can be sent from replication
source server to replica; overrides max_allowed_packet.

• slave_net_timeout: Number of seconds to wait for more data from source/replica connection before
aborting read.

• Slave_open_temp_tables: Number of temporary tables that replication SQL thread currently has
open.

• slave_parallel_workers: Number of applier threads for executing replication transactions in
parallel; 0 or 1 disables replica multithreading. NDB Cluster: see documentation.

• slave_pending_jobs_size_max: Maximum size of replica worker queues holding events not yet
applied.

• Slave_received_heartbeats: Number of heartbeats received by replica since previous reset.

• Slave_retried_transactions: Total number of times since startup that replication SQL thread has
retried transactions.

• Slave_rows_last_search_algorithm_used: Search algorithm most recently used by this replica
to locate rows for row-based replication (index, table, or hash scan).

• slave_rows_search_algorithms: Determines search algorithms used for replica update batching.
Any 2 or 3 from this list: INDEX_SEARCH, TABLE_SCAN, HASH_SCAN.

• Slave_running: State of this server as replica (replication I/O thread status).

• slave_transaction_retries: Number of times replication SQL thread retries transaction in case it
failed with deadlock or elapsed lock wait timeout, before giving up and stopping.

• slave_type_conversions: Controls type conversion mode on replica. Value is list of zero or
more elements from this list: ALL_LOSSY, ALL_NON_LOSSY. Set to empty string to disallow type
conversions between source and replica.

• sql_log_bin: Controls binary logging for current session.

• sql_slave_skip_counter: Number of events from source that replica should skip. Not compatible
with GTID replication.

• sync_master_info: Synchronize source information after every #th event.

• sync_relay_log: Synchronize relay log to disk after every #th event.

• sync_relay_log_info: Synchronize relay.info file to disk after every #th event.

2445

Replication and Binary Logging Options and Variables

For a listing of all command-line options, system variables, and status variables used with mysqld, see
Section 5.1.3, “Server Option, System Variable, and Status Variable Reference”.

Binary Logging Options and Variables

The command-line options and system variables in the following list relate to the binary log.
Section 17.1.4.4, “Binary Log Options and Variables”, provides more detailed information about options
and variables relating to binary logging. For additional general information about the binary log, see
Section 5.4.4, “The Binary Log”.

• binlog-checksum: Enable/disable binary log checksums.

• binlog-do-db: Limits binary logging to specific databases.

• binlog-ignore-db: Tells source that updates to given database should not be written to binary log.

• binlog-row-event-max-size: Binary log max event size.

• Binlog_cache_disk_use: Number of transactions which used temporary file instead of binary log
cache.

• binlog_cache_size: Size of cache to hold SQL statements for binary log during transaction.

• Binlog_cache_use: Number of transactions that used temporary binary log cache.

• binlog_checksum: Enable/disable binary log checksums.

• binlog_direct_non_transactional_updates: Causes updates using statement format to
nontransactional engines to be written directly to binary log. See documentation before using.

• binlog_error_action: Controls what happens when server cannot write to binary log.

• binlog_format: Specifies format of binary log.

• binlog_gtid_simple_recovery: Controls how binary logs are iterated during GTID recovery.

• binlog_max_flush_queue_time: How long to read transactions before flushing to binary log.

• binlog_order_commits: Whether to commit in same order as writes to binary log.

• binlog_row_image: Use full or minimal images when logging row changes.

• binlog_rows_query_log_events: When enabled, enables logging of rows query log events when
using row-based logging. Disabled by default. Do not enable when producing logs for pre-5.6 replicas/
readers.

• Binlog_stmt_cache_disk_use: Number of nontransactional statements that used temporary file
instead of binary log statement cache.

• binlog_stmt_cache_size: Size of cache to hold nontransactional statements for binary log during
transaction.

• Binlog_stmt_cache_use: Number of statements that used temporary binary log statement cache.

• binlogging_impossible_mode: Deprecated and later removed. Use binlog_error_action instead.

• Com_show_binlog_events: Count of SHOW BINLOG EVENTS statements.

• Com_show_binlogs: Count of SHOW BINLOGS statements.

• log-bin: Base name for binary log files.

2446

Replication and Binary Logging Options and Variables

• log-bin-index: Name of binary log index file.

• log_bin: Whether binary log is enabled.

• log_bin_basename: Path and base name for binary log files.

• log_bin_use_v1_row_events: Whether server is using version 1 binary log row events.

• log_slave_updates: Whether replica should log updates performed by its replication SQL thread to
its own binary log.

• master_verify_checksum: Cause source to examine checksums when reading from binary log.

• max-binlog-dump-events: Option used by mysql-test for debugging and testing of replication.

• max_binlog_cache_size: Can be used to restrict total size used to cache multi-statement
transaction.

• max_binlog_size: Binary log is rotated automatically when size exceeds this value.

• max_binlog_stmt_cache_size: Can be used to restrict total size used to cache all nontransactional
statements during transaction.

• slave-sql-verify-checksum: Cause replica to examine checksums when reading from relay log.

• slave_sql_verify_checksum: Cause replica to examine checksums when reading from relay log.

• sporadic-binlog-dump-fail: Option used by mysql-test for debugging and testing of replication.

• sync_binlog: Synchronously flush binary log to disk after every #th event.

For a listing of all command-line options, system and status variables used with mysqld, see
Section 5.1.3, “Server Option, System Variable, and Status Variable Reference”.

17.1.4.2 Replication Source Options and Variables

This section describes the server options and system variables that you can use on replication source
servers. You can specify the options either on the command line or in an option file. You can specify
system variable values using SET.

On the source and each replica, you must set the server_id system variable to establish a unique
replication ID. For each server, you should pick a unique positive integer in the range from 1 to 232 − 1,
and each ID must be different from every other ID in use by any other replication source server or replica.
Example: server-id=3.

For options used on the source for controlling binary logging, see Section 17.1.4.4, “Binary Log Options
and Variables”.

Startup Options for Replication Source Servers

The following list describes startup options for controlling replication source servers. Replication-related
system variables are discussed later in this section.

• --show-slave-auth-info

Command-Line Format --show-slave-auth-info[={OFF|ON}]

Type Boolean

Default Value OFF

2447

Replication and Binary Logging Options and Variables

Display replica user names and passwords in the output of SHOW SLAVE HOSTS on the replication
source server for replicas started with the --report-user and --report-password options.

System Variables Used on Replication Sources

The following system variables are used to control replication source servers:

• auto_increment_increment

Command-Line Format --auto-increment-increment=#

System Variable auto_increment_increment

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

auto_increment_increment and auto_increment_offset are intended for use with source-
to-source replication, and can be used to control the operation of AUTO_INCREMENT columns. Both
variables have global and session values, and each can assume an integer value between 1 and
65,535 inclusive. Setting the value of either of these two variables to 0 causes its value to be set
to 1 instead. Attempting to set the value of either of these two variables to an integer greater than
65,535 or less than 0 causes its value to be set to 65,535 instead. Attempting to set the value of
auto_increment_increment or auto_increment_offset to a noninteger value produces an
error, and the actual value of the variable remains unchanged.

Note

auto_increment_increment is also supported for use with NDB tables.

These two variables affect AUTO_INCREMENT column behavior as follows:

• auto_increment_increment controls the interval between successive column values. For
example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc1
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
 Query OK, 0 rows affected (0.04 sec)

mysql> SET @@auto_increment_increment=10;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |

2448

Replication and Binary Logging Options and Variables

+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.01 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

• auto_increment_offset determines the starting point for the AUTO_INCREMENT column value.
Consider the following, assuming that these statements are executed during the same session as the
example given in the description for auto_increment_increment:

mysql> SET @@auto_increment_offset=5;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc2
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO autoinc2 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc2;
+-----+
| col |
+-----+
| 5 |
| 15 |
| 25 |
| 35 |
+-----+
4 rows in set (0.02 sec)

When the value of auto_increment_offset is greater than that of
auto_increment_increment, the value of auto_increment_offset is ignored.

If either of these variables is changed, and then new rows inserted into a table containing
an AUTO_INCREMENT column, the results may seem counterintuitive because the series of
AUTO_INCREMENT values is calculated without regard to any values already present in the column, and

2449

Replication and Binary Logging Options and Variables

the next value inserted is the least value in the series that is greater than the maximum existing value in
the AUTO_INCREMENT column. The series is calculated like this:

auto_increment_offset + N × auto_increment_increment

where N is a positive integer value in the series [1, 2, 3, ...]. For example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
| 35 |
| 45 |
| 55 |
| 65 |
+-----+
8 rows in set (0.00 sec)

The values shown for auto_increment_increment and auto_increment_offset generate the
series 5 + N × 10, that is, [5, 15, 25, 35, 45, ...]. The highest value present in the col column prior to the
INSERT is 31, and the next available value in the AUTO_INCREMENT series is 35, so the inserted values
for col begin at that point and the results are as shown for the SELECT query.

It is not possible to restrict the effects of these two variables to a single table; these variables control the
behavior of all AUTO_INCREMENT columns in all tables on the MySQL server. If the global value of either
variable is set, its effects persist until the global value is changed or overridden by setting the session
value, or until mysqld is restarted. If the local value is set, the new value affects AUTO_INCREMENT
columns for all tables into which new rows are inserted by the current user for the duration of the
session, unless the values are changed during that session.

The default value of auto_increment_increment is 1. See Section 17.4.1.1, “Replication and
AUTO_INCREMENT”.

2450

Replication and Binary Logging Options and Variables

• auto_increment_offset

Command-Line Format --auto-increment-offset=#

System Variable auto_increment_offset

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

This variable has a default value of 1. For more information, see the description for
auto_increment_increment.

Note

auto_increment_offset is also supported for use with NDB tables.

• rpl_semi_sync_master_enabled

Command-Line Format --rpl-semi-sync-master-enabled[={OFF|
ON}]

System Variable rpl_semi_sync_master_enabled

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Controls whether semisynchronous replication is enabled on the source. To enable or disable the plugin,
set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_timeout

Command-Line Format --rpl-semi-sync-master-timeout=#

System Variable rpl_semi_sync_master_timeout

Scope Global

Dynamic Yes

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

2451

Replication and Binary Logging Options and Variables

Unit milliseconds

A value in milliseconds that controls how long the source waits on a commit for acknowledgment from
a replica before timing out and reverting to asynchronous replication. The default value is 10000 (10
seconds).

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_trace_level

Command-Line Format --rpl-semi-sync-master-trace-level=#

System Variable rpl_semi_sync_master_trace_level

Scope Global

Dynamic Yes

Type Integer

Default Value 32

Minimum Value 0

Maximum Value 4294967295

The semisynchronous replication debug trace level on the source. Four levels are defined:

• 1 = general level (for example, time function failures)

• 16 = detail level (more verbose information)

• 32 = net wait level (more information about network waits)

• 64 = function level (information about function entry and exit)

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_no_slave

Command-Line Format --rpl-semi-sync-master-wait-no-
slave[={OFF|ON}]

System Variable rpl_semi_sync_master_wait_no_slave

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

With semisynchronous replication, for each transaction, the source waits until timeout for
acknowledgment of receipt from some semisynchronous replica. If no response occurs during this
period, the source reverts to normal replication. This variable controls whether the source waits for the
timeout to expire before reverting to normal replication even if the replica count drops to zero during the
timeout period.

If the value is ON (the default), it is permissible for the replica count to drop to zero during the timeout
period (for example, if replicas disconnect). The source still waits for the timeout, so as long as some
replica reconnects and acknowledges the transaction within the timeout interval, semisynchronous
replication continues.

2452

Replication and Binary Logging Options and Variables

If the value is OFF, the source reverts to normal replication if the replica count drops to zero during the
timeout period.

This variable is available only if the source-side semisynchronous replication plugin is installed.

17.1.4.3 Replica Server Options and Variables

• Startup Options for Replica Servers

• Options for Logging Replica Status to Tables

• Obsolete Replica Options

• System Variables Used on Replica Servers

Specify the options either on the command line or in an option file. Many of the options can be set while the
server is running by using the CHANGE MASTER TO statement. Specify system variable values using SET.

Server ID. On the source and each slave, you must set the server_id system variable to establish
a unique replication ID in the range from 1 to 232 − 1. “Unique” means that each ID must be different from
every other ID in use by any other replication source server or replica. Example my.cnf file:

[mysqld]
server-id=3

Startup Options for Replica Servers

This section explains startup options for controlling replicas. Many of these options can be set while the
server is running by using the CHANGE MASTER TO statement. Others, such as the --replicate-*
options, can be set only when the replica server starts. Replication-related system variables are discussed
later in this section.

• --abort-slave-event-count

Command-Line Format --abort-slave-event-count=#

Type Integer

Default Value 0

Minimum Value 0

When this option is set to some positive integer value other than 0 (the default) it affects replication
behavior as follows: After the replication SQL thread has started, value log events are permitted to be
executed; after that, the replication SQL thread does not receive any more events, just as if the network
connection from the source were cut. The thread continues to run, and the output from SHOW SLAVE
STATUS displays Yes in both the Slave_IO_Running and the Slave_SQL_Running columns, but no
further events are read from the relay log.

This option is used internally by the MySQL test suite for replication testing and debugging. It is not
intended for use in a production setting.

• --disconnect-slave-event-count

Command-Line Format --disconnect-slave-event-count=#

Type Integer

Default Value 0

2453

Replication and Binary Logging Options and Variables

This option is used internally by the MySQL test suite for replication testing and debugging. It is not
intended for use in a production setting.

• --log-slow-slave-statements

Command-Line Format --log-slow-slave-statements[={OFF|
ON}] (5.6.10)

Removed 5.6.11

Type Boolean

Default Value OFF

This command-line option was removed in MySQL 5.6.11 and replaced by the
log_slow_slave_statements system variable. The system variable can be set on the command line
or in option files the same way as the option, so there is no need for any changes at server startup, but
the system variable also makes it possible to examine or set the value at runtime.

• --log-warnings[=level]

Command-Line Format --log-warnings[=#]

System Variable log_warnings

Scope Global

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Causes the server to record more messages to the error log about what it is doing. With respect
to replication, the server generates warnings that it succeeded in reconnecting after a network or
connection failure, and provides information about how each replication thread started. This option is
enabled (1) by default; to disable it, use --log-warnings=0. If the value is greater than 1, aborted
connections are written to the error log, and access-denied errors for new connection attempts are
written. See Section B.3.2.10, “Communication Errors and Aborted Connections”.

Note

The effects of this option are not limited to replication. It affects diagnostic
messages across a spectrum of server activities.

• --master-info-file=file_name

Command-Line Format --master-info-file=file_name

Type File name

Default Value master.info

The name to use for the file in which the replica records information about the replication source server.
The default name is master.info in the data directory. For information about the format of this file, see
Section 17.2.2.2, “Replication Metadata Repositories”.

2454

Replication and Binary Logging Options and Variables

• --master-retry-count=count

Command-Line Format --master-retry-count=#

Deprecated Yes

Type Integer

Default Value 86400

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

The number of times that the replica tries to connect to the replication source server before giving up.
Reconnects are attempted at intervals set by the MASTER_CONNECT_RETRY option of the CHANGE
MASTER TO statement (default 60). Reconnection attempts are triggered when the replica reaches its
connection timeout (specified by the slave_net_timeout system variable) without receiving data from
the source. The default value is 86400. A value of 0 means “infinite”; the replica attempts to connect
forever.

This option is deprecated; expect it be removed in a future MySQL release. Applications should be
updated to use the MASTER_RETRY_COUNT option of the CHANGE MASTER TO statement instead.

• --max-relay-log-size=size

Command-Line Format --max-relay-log-size=#

System Variable max_relay_log_size

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1073741824

Unit bytes

Block Size 4096

The size at which the server rotates relay log files automatically. If this value is nonzero, the relay log is
rotated automatically when its size exceeds this value. If this value is zero (the default), the size at which
relay log rotation occurs is determined by the value of max_binlog_size. For more information, see
Section 17.2.2.1, “The Relay Log”.

• --relay-log-purge={0|1}

Command-Line Format --relay-log-purge[={OFF|ON}]

System Variable relay_log_purge

Scope Global

Dynamic Yes

Type Boolean

2455

Replication and Binary Logging Options and Variables

Default Value ON

Disable or enable automatic purging of relay logs as soon as they are no longer needed. The default
value is 1 (enabled). This is a global variable that can be changed dynamically with SET GLOBAL
relay_log_purge = N. Disabling purging of relay logs when enabling the --relay-log-recovery
option puts data consistency at risk.

• --relay-log-space-limit=size

Command-Line Format --relay-log-space-limit=#

System Variable relay_log_space_limit

Scope Global

Dynamic No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

Unit bytes

This option places an upper limit on the total size in bytes of all relay logs on the replica. A value of 0
means “no limit”. This is useful for a replica server host that has limited disk space. When the limit is
reached, the replication I/O thread stops reading binary log events from the replication source server
until the SQL thread has caught up and deleted some unused relay logs. Note that this limit is not
absolute: There are cases where the SQL thread needs more events before it can delete relay logs. In
that case, the I/O thread exceeds the limit until it becomes possible for the SQL thread to delete some
relay logs because not doing so would cause a deadlock. You should not set --relay-log-space-
limit to less than twice the value of --max-relay-log-size (or --max-binlog-size if --max-
relay-log-size is 0). In that case, there is a chance that the I/O thread waits for free space because
--relay-log-space-limit is exceeded, but the SQL thread has no relay log to purge and is unable
to satisfy the I/O thread. This forces the I/O thread to ignore --relay-log-space-limit temporarily.

• --replicate-do-db=db_name

Command-Line Format --replicate-do-db=name

Type String

The effects of this option depend on whether statement-based or row-based replication is in use.

Statement-based replication. Tell the replication SQL thread to restrict replication to statements
where the default database (that is, the one selected by USE) is db_name. To specify more than one
database, use this option multiple times, once for each database; however, doing so does not replicate

2456

Replication and Binary Logging Options and Variables

cross-database statements such as UPDATE some_db.some_table SET foo='bar' while a
different database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, if you supply a comma
separated list, then the list is treated as the name of a single database.

An example of what does not work as you might expect when using statement-based replication: If the
replica is started with --replicate-do-db=sales and you issue the following statements on the
source, the UPDATE statement is not replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “check just the default database” behavior is that it is difficult from the statement
alone to know whether it should be replicated (for example, if you are using multiple-table DELETE
statements or multiple-table UPDATE statements that act across multiple databases). It is also faster to
check only the default database rather than all databases if there is no need.

Row-based replication. Tells the replication SQL thread to restrict replication to database db_name.
Only tables belonging to db_name are changed; the current database has no effect on this. Suppose
that the replica is started with --replicate-do-db=sales and row-based replication is in effect, and
then the following statements are run on the source:

USE prices;
UPDATE sales.february SET amount=amount+100;

The february table in the sales database on the replica is changed in accordance with the UPDATE
statement; this occurs whether or not the USE statement was issued. However, issuing the following
statements on the source has no effect on the replica when using row-based replication and --
replicate-do-db=sales:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the statement USE prices were changed to USE sales, the UPDATE statement's effects would
still not be replicated.

Another important difference in how --replicate-do-db is handled in statement-based replication
as opposed to row-based replication occurs with regard to statements that refer to multiple databases.
Suppose that the replica is started with --replicate-do-db=db1, and the following statements are
executed on the source:

USE db1;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

If you are using statement-based replication, then both tables are updated on the replica. However,
when using row-based replication, only table1 is affected on the replica; since table2 is in a different
database, table2 on the replica is not changed by the UPDATE. Now suppose that, instead of the USE
db1 statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

In this case, the UPDATE statement would have no effect on the replica when using statement-based
replication. However, if you are using row-based replication, the UPDATE would change table1 on the

2457

Replication and Binary Logging Options and Variables

replica, but not table2—in other words, only tables in the database named by --replicate-do-db
are changed, and the choice of default database has no effect on this behavior.

If you need cross-database updates to work, use --replicate-wild-do-table=db_name.%
instead. See Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-do-db affects
binary logging, and the effects of the replication format on how --replicate-
do-db affects replication behavior are the same as those of the logging format on
the behavior of --binlog-do-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

• --replicate-ignore-db=db_name

Command-Line Format --replicate-ignore-db=name

Type String

As with --replicate-do-db, the effects of this option depend on whether statement-based or row-
based replication is in use.

Statement-based replication. Tells the replication SQL thread not to replicate any statement where
the default database (that is, the one selected by USE) is db_name.

Row-based replication. Tells the replication SQL thread not to update any tables in the database
db_name. The default database has no effect.

When using statement-based replication, the following example does not work as you might expect.
Suppose that the replica is started with --replicate-ignore-db=sales and you issue the following
statements on the source:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is replicated in such a case because --replicate-ignore-db applies
only to the default database (determined by the USE statement). Because the sales database was
specified explicitly in the statement, the statement has not been filtered. However, when using row-
based replication, the UPDATE statement's effects are not propagated to the replica, and the replica's
copy of the sales.january table is unchanged; in this instance, --replicate-ignore-db=sales

2458

Replication and Binary Logging Options and Variables

causes all changes made to tables in the source's copy of the sales database to be ignored by the
replica.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, if you supply a comma separated list, then the list is
treated as the name of a single database.

You should not use this option if you are using cross-database updates and you do not want these
updates to be replicated. See Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”.

If you need cross-database updates to work, use --replicate-wild-ignore-table=db_name.%
instead. See Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-ignore-
db affects binary logging, and the effects of the replication format on how --
replicate-ignore-db affects replication behavior are the same as those of
the logging format on the behavior of --binlog-ignore-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

• --replicate-do-table=db_name.tbl_name

Command-Line Format --replicate-do-table=name

Type String

Creates a replication filter by telling the replication SQL thread to restrict replication to a given table.
To specify more than one table, use this option multiple times, once for each table. This works for both
cross-database updates and default database updates, in contrast to --replicate-do-db. See
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”.

This option affects only statements that apply to tables. It does not affect statements that apply only to
other database objects, such as stored routines. To filter statements operating on stored routines, use
one or more of the --replicate-*-db options.

• --replicate-ignore-table=db_name.tbl_name

Command-Line Format --replicate-ignore-table=name

Type String

Creates a replication filter by telling the replication SQL thread not to replicate any statement that
updates the specified table, even if any other tables might be updated by the same statement. To
specify more than one table to ignore, use this option multiple times, once for each table. This works for
cross-database updates, in contrast to --replicate-ignore-db. See Section 17.2.3, “How Servers
Evaluate Replication Filtering Rules”.

This option affects only statements that apply to tables. It does not affect statements that apply only to
other database objects, such as stored routines. To filter statements operating on stored routines, use
one or more of the --replicate-*-db options.

• --replicate-rewrite-db=from_name->to_name

Command-Line Format --replicate-rewrite-db=old_name-
>new_name

2459

Replication and Binary Logging Options and Variables

Type String

Tells the replica to create a replication filter that translates the specified database to to_name if it was
from_name on the source. Only statements involving tables are affected, not statements such as
CREATE DATABASE, DROP DATABASE, and ALTER DATABASE.

To specify multiple rewrites, use this option multiple times. The server uses the first one with a
from_name value that matches. The database name translation is done before the --replicate-
* rules are tested. You can also create such a filter by issuing a CHANGE REPLICATION FILTER
REPLICATE_REWRITE_DB statement.

If you use the --replicate-rewrite-db option on the command line and the > character is special
to your command interpreter, quote the option value. For example:

$> mysqld --replicate-rewrite-db="olddb->newdb"

The effect of the --replicate-rewrite-db option differs depending on whether statement-based or
row-based binary logging format is used for the query. With statement-based format, DML statements
are translated based on the current database, as specified by the USE statement. With row-based
format, DML statements are translated based on the database where the modified table exists. DDL
statements are always filtered based on the current database, as specified by the USE statement,
regardless of the binary logging format.

To ensure that rewriting produces the expected results, particularly in combination with other replication
filtering options, follow these recommendations when you use the --replicate-rewrite-db option:

• Create the from_name and to_name databases manually on the source and the replica with different
names.

• If you use statement-based or mixed binary logging format, do not use cross-database queries, and do
not specify database names in queries. For both DDL and DML statements, rely on the USE statement
to specify the current database, and use only the table name in queries.

• If you use row-based binary logging format exclusively, for DDL statements, rely on the USE statement
to specify the current database, and use only the table name in queries. For DML statements, you can
use a fully qualified table name (db.table) if you want.

If these recommendations are followed, it is safe to use the --replicate-rewrite-db option in
combination with table-level replication filtering options such as --replicate-do-table.

• --replicate-same-server-id

Command-Line Format --replicate-same-server-id[={OFF|ON}]

Type Boolean

Default Value OFF

To be used on replica servers. Usually you should use the default setting of 0, to prevent infinite loops
caused by circular replication. If set to 1, the replica does not skip events having its own server ID.
Normally, this is useful only in rare configurations. Cannot be set to 1 if log_slave_updates is
enabled. By default, the replication I/O thread does not write binary log events to the relay log if they
have the replica's server ID (this optimization helps save disk usage). If you want to use --replicate-
same-server-id, be sure to start the replica with this option before you make the replica read its own
events that you want the replication SQL thread to execute.

2460

https://dev.mysql.com/doc/refman/5.7/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/5.7/en/change-replication-filter.html

Replication and Binary Logging Options and Variables

• --replicate-wild-do-table=db_name.tbl_name

Command-Line Format --replicate-wild-do-table=name

Type String

Creates a replication filter by telling the replication SQL thread to restrict replication to statements where
any of the updated tables match the specified database and table name patterns. Patterns can contain
the % and _ wildcard characters, which have the same meaning as for the LIKE pattern-matching
operator. To specify more than one table, use this option multiple times, once for each table. This works
for cross-database updates. See Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”.

This option applies to tables, views, and triggers. It does not apply to stored procedures and functions, or
events. To filter statements operating on the latter objects, use one or more of the --replicate-*-db
options.

Example: --replicate-wild-do-table=foo%.bar% replicates only updates that use a table where
the database name starts with foo and the table name starts with bar.

If the table name pattern is %, it matches any table name and the option also applies to database-level
statements (CREATE DATABASE, DROP DATABASE, and ALTER DATABASE). For example, if you use
--replicate-wild-do-table=foo%.%, database-level statements are replicated if the database
name matches the pattern foo%.

To include literal wildcard characters in the database or table name patterns, escape them with a
backslash. For example, to replicate all tables of a database that is named my_own%db, but not replicate
tables from the my1ownAABCdb database, you should escape the _ and % characters like this: --
replicate-wild-do-table=my_own\%db. If you use the option on the command line, you might
need to double the backslashes or quote the option value, depending on your command interpreter. For
example, with the bash shell, you would need to type --replicate-wild-do-table=my_own\\
%db.

• --replicate-wild-ignore-table=db_name.tbl_name

Command-Line Format --replicate-wild-ignore-table=name

Type String

Creates a replication filter which keeps the replication SQL thread from replicating a statement in which
any table matches the given wildcard pattern. To specify more than one table to ignore, use this option
multiple times, once for each table. This works for cross-database updates. See Section 17.2.3, “How
Servers Evaluate Replication Filtering Rules”.

Example: --replicate-wild-ignore-table=foo%.bar% does not replicate updates that use a
table where the database name starts with foo and the table name starts with bar.

For information about how matching works, see the description of the --replicate-wild-do-table
option. The rules for including literal wildcard characters in the option value are the same as for --
replicate-wild-ignore-table as well.

• --skip-slave-start

Command-Line Format --skip-slave-start[={OFF|ON}]

System Variable skip_slave_start

Scope Global 2461

Replication and Binary Logging Options and Variables

Dynamic No

Type Boolean

Default Value OFF

Tells the replica server not to start the replication threads when the server starts. To start the threads
later, use a START SLAVE statement.

• --slave-skip-errors=[err_code1,err_code2,...|all|ddl_exist_errors]

Command-Line Format --slave-skip-errors=name

System Variable slave_skip_errors

Scope Global

Dynamic No

Type String

Default Value OFF

Valid Values OFF

[list of error codes]

all

ddl_exist_errors

Normally, replication stops when an error occurs on the replica. This gives you the opportunity to resolve
the inconsistency in the data manually. This option tells the replication SQL thread to continue replication
when a statement returns any of the errors listed in the option value.

Do not use this option unless you fully understand why you are getting errors. If there are no bugs in
your replication setup and client programs, and no bugs in MySQL itself, an error that stops replication
should never occur. Indiscriminate use of this option results in replicas becoming hopelessly out of
synchrony with the source, with you having no idea why this has occurred.

For error codes, you should use the numbers provided by the error message in the replica's error log
and in the output of SHOW SLAVE STATUS. Appendix B, Error Messages and Common Problems, lists
server error codes.

You can also (but should not) use the very nonrecommended value of all to cause the replica to ignore
all error messages and keeps going regardless of what happens. Needless to say, if you use all, there
are no guarantees regarding the integrity of your data. Please do not complain (or file bug reports) in this
case if the replica's data is not anywhere close to what it is on the source. You have been warned.

MySQL 5.6 as well as MySQL NDB Cluster 7.3 and later support an additional
shorthand value ddl_exist_errors, which is equivalent to the error code list
1007,1008,1050,1051,1054,1060,1061,1068,1094,1146.

This option does not work in the same way when replicating between NDB Clusters, due to the internal
NDB mechanism for checking epoch sequence numbers; as soon as NDB detects an epoch number that
is missing or otherwise out of sequence, it immediately stops the replica applier thread.

Examples:

--slave-skip-errors=1062,1053
--slave-skip-errors=all

2462

Replication and Binary Logging Options and Variables

--slave-skip-errors=ddl_exist_errors

• --slave-sql-verify-checksum={0|1}

Command-Line Format --slave-sql-verify-checksum[={OFF|
ON}]

Type Boolean

Default Value ON

When this option is enabled, the replica examines checksums read from the relay log. In the event of a
mismatch, replication stops with an error.

Options for Logging Replica Status to Tables

MySQL 5.6 and higher supports logging of replica status information to tables rather than files. Writing of
the replica's connection metadata repository and applier metadata repository can be configured separately
using these two system variables:

• master_info_repository

• relay_log_info_repository

For information about these variables, see Section 17.1.4.3, “Replica Server Options and Variables”.

The replication metadata repositories and their contents are considered local to a given MySQL Server.
They are not replicated, and changes to them are not written to the binary log.

For more information, see Section 17.2.2, “Relay Log and Replication Metadata Repositories”.

Obsolete Replica Options

The following options have been removed and replaced by the functions of the CHANGE MASTER TO ...
statement (see Section 13.4.2.1, “CHANGE MASTER TO Statement”). If you attempt to start mysqld with
any of these options in MySQL 5.6, the server aborts with an unknown variable error.

• --master-host

• --master-user

• --master-password

• --master-port

• --master-connect-retry

• --master-ssl

• --master-ssl-ca

• --master-ssl-capath

• --master-ssl-cert

• --master-ssl-cipher

• --master-ssl-key

2463

Replication and Binary Logging Options and Variables

System Variables Used on Replica Servers

The following list describes system variables for controlling replica servers. They can be set at server
startup and some of them can be changed at runtime using SET. Server options used with replicas are
listed earlier in this section.

• init_slave

Command-Line Format --init-slave=name

System Variable init_slave

Scope Global

Dynamic Yes

Type String

This variable is similar to init_connect, but is a string to be executed by a replica server each
time the replication SQL thread starts. The format of the string is the same as for the init_connect
variable.

Note

The replication SQL thread sends an acknowledgment to the client before it
executes init_slave. Therefore, it is not guaranteed that init_slave has
been executed when START SLAVE returns. See Section 13.4.2.5, “START
SLAVE Statement”, for more information.

• log_slow_slave_statements

Command-Line Format --log-slow-slave-statements[={OFF|
ON}]

Introduced 5.6.11

System Variable log_slow_slave_statements

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

When the slow query log is enabled, this variable enables logging for queries that have taken more
than long_query_time seconds to execute on the replica. Note that if row-based replication is in use
(binlog_format=ROW), log_slow_slave_statements has no effect. Queries are only added to
the replica's slow query log when they are logged in statement format in the binary log, that is, when
binlog_format=STATEMENT is set, or when binlog_format=MIXED is set and the statement is
logged in statement format. Slow queries that are logged in row format when binlog_format=MIXED
is set, or that are logged when binlog_format=ROW is set, are not added to the replica's slow query
log, even if log_slow_slave_statements is enabled.

Setting log_slow_slave_statements has no immediate effect. The state of the variable applies
on all subsequent START SLAVE statements. Also note that the global setting for long_query_time
applies for the lifetime of the SQL thread. If you change that setting, you must stop and restart the
replication SQL thread to implement the change there (for example, by issuing STOP SLAVE and START
SLAVE statements with the SQL_THREAD option).

2464

Replication and Binary Logging Options and Variables

• master_info_repository

Command-Line Format --master-info-repository={FILE|TABLE}

System Variable master_info_repository

Scope Global

Dynamic Yes

Type String

Default Value FILE

Valid Values FILE

TABLE

The setting of this variable determines whether the replica server logs source status and connection
information to a FILE (master.info), or to a TABLE (mysql.slave_master_info).

The setting of this variable also has a direct influence on the effect had by the setting of the
sync_master_info system variable; see that variable description for further information.

For FILE logging, you can change the name of the file using the --master-info-file server option.

• max_relay_log_size

Command-Line Format --max-relay-log-size=#

System Variable max_relay_log_size

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1073741824

Unit bytes

Block Size 4096

If a write by a replica to its relay log causes the current log file size to exceed the value of this
variable, the replica rotates the relay logs (closes the current file and opens the next one). If
max_relay_log_size is 0, the server uses max_binlog_size for both the binary log and the relay
log. If max_relay_log_size is greater than 0, it constrains the size of the relay log, which enables you
to have different sizes for the two logs. You must set max_relay_log_size to between 4096 bytes
and 1GB (inclusive), or to 0. The default value is 0. See Section 17.2.1, “Replication Threads”.

• relay_log

Command-Line Format --relay-log=file_name

System Variable relay_log

Scope Global

Dynamic No

2465

Replication and Binary Logging Options and Variables

Type File name

The base name for the relay log. The default base name is host_name-relay-bin.

The server writes the file in the data directory unless the base name is given with a leading absolute path
name to specify a different directory. The server creates relay log files in sequence by adding a numeric
suffix to the base name.

Due to the manner in which MySQL parses server options, if you specify this variable at server startup,
you must supply a value; the default base name is used only if the option is not actually specified. If
you specify the relay_log system variable at server startup without specifying a value, unexpected
behavior is likely to result; this behavior depends on the other options used, the order in which they are
specified, and whether they are specified on the command line or in an option file. For more information
about how MySQL handles server options, see Section 4.2.2, “Specifying Program Options”.

If you specify this variable, the value specified is also used as the base name for the relay log index
file. You can override this behavior by specifying a different relay log index file base name using the
relay_log_index system variable.

When the server reads an entry from the index file, it checks whether the entry contains a relative path. If
it does, the relative part of the path is replaced with the absolute path set using the relay_log system
variable. An absolute path remains unchanged; in such a case, the index must be edited manually to
enable the new path or paths to be used.

You may find the relay_log system variable useful in performing the following tasks:

• Creating relay logs whose names are independent of host names.

• If you need to put the relay logs in some area other than the data directory because your relay logs
tend to be very large and you do not want to decrease max_relay_log_size.

• To increase speed by using load-balancing between disks.

You can obtain the relay log file name (and path) from the relay_log_basename system variable.

• relay_log_basename

System Variable relay_log_basename

Scope Global

Dynamic No

Type File name

Default Value datadir + '/' + hostname + '-relay-
bin'

Holds the base name and complete path to the relay log file. The maximum variable length is 256. This
variable is set by the server and is read only.

• relay_log_index

Command-Line Format --relay-log-index=file_name

System Variable relay_log_index

Scope Global

Dynamic No

2466

Replication and Binary Logging Options and Variables

Type File name

Default Value *host_name*-relay-bin.index

The name for the relay log index file. The maximum variable length is 256. The default name is
host_name-relay-bin.index in the data directory, where host_name is the name of the replica
server.

Due to the manner in which MySQL parses server options, if you specify this variable at server startup,
you must supply a value; the default base name is used only if the option is not actually specified. If you
specify the relay_log_index system variable at server startup without specifying a value, unexpected
behavior is likely to result; this behavior depends on the other options used, the order in which they are
specified, and whether they are specified on the command line or in an option file. For more information
about how MySQL handles server options, see Section 4.2.2, “Specifying Program Options”.

• relay_log_info_file

Command-Line Format --relay-log-info-file=file_name

System Variable relay_log_info_file

Scope Global

Dynamic No

Type File name

Default Value relay-log.info

The name of the file in which the replica records information about the relay logs. The default
name is relay-log.info in the data directory. For information about the format of this file, see
Section 17.2.2.2, “Replication Metadata Repositories”.

• relay_log_info_repository

Command-Line Format --relay-log-info-repository=value

System Variable relay_log_info_repository

Scope Global

Dynamic Yes

Type String

Default Value FILE

Valid Values FILE

TABLE

This variable determines whether the replica's position in the relay logs is written to a FILE (relay-
log.info) or to a TABLE (mysql.slave_relay_log_info).

The setting of this variable also has a direct influence on the effect had by the setting of the
sync_relay_log_info system variable; see that variable descrption for further information.

This option can be used to make a replica resilient to unexpected halts. See Section 17.3.2, “Handling
an Unexpected Halt of a Replica Server”, for more information.

2467

Replication and Binary Logging Options and Variables

• relay_log_purge

Command-Line Format --relay-log-purge[={OFF|ON}]

System Variable relay_log_purge

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Disables or enables automatic purging of relay log files as soon as they are not needed any more. The
default value is 1 (ON).

• relay_log_recovery

Command-Line Format --relay-log-recovery[={OFF|ON}]

System Variable relay_log_recovery

Scope Global

Dynamic No

Type Boolean

Default Value OFF

If enabled, this variable enables automatic relay log recovery immediately following server startup.
The recovery process creates a new relay log file, initializes the SQL thread position to this new relay
log, and initializes the I/O thread to the SQL thread position. Reading of the relay log from the source
then continues. This global variable is read-only at runtime. Its value can set with the --relay-log-
recovery option at replica startup, which should be used following an unexpected halt of a replica
to ensure that no possibly corrupted relay logs are processed. This option can be enabled to make a
replica resilient to unexpected halts. See Section 17.3.2, “Handling an Unexpected Halt of a Replica
Server” for more information.

This variable also interacts with the relay_log_purge variable, which controls purging of logs when
they are no longer needed. Enabling relay_log_recovery when relay_log_purge is disabled
risks reading the relay log from files that were not purged, leading to data inconsistency.

When relay_log_recovery is enabled and the replica has stopped due to errors encountered while
running in multithreaded mode, you cannot execute CHANGE MASTER TO if there are any gaps in the
log. The solution in this situation is to issue START SLAVE UNTIL SQL_AFTER_MTS_GAPS to ensure
that all gaps are processed before switching back to single-threaded mode or executing a CHANGE
MASTER TO statement.

• relay_log_space_limit

Command-Line Format --relay-log-space-limit=#

System Variable relay_log_space_limit

Scope Global

Dynamic No

Type Integer

Default Value 0
2468

Replication and Binary Logging Options and Variables

Minimum Value 0

Maximum Value 18446744073709551615

Unit bytes

The maximum amount of space to use for all relay logs.

• report_host

Command-Line Format --report-host=host_name

System Variable report_host

Scope Global

Dynamic No

Type String

The host name or IP address of the replica to be reported to the replication source server during replica
registration. This value appears in the output of SHOW SLAVE HOSTS on the source server. Leave the
value unset if you do not want the replica to register itself with the source.

Note

It is not sufficient for the source to simply read the IP address of the replica from
the TCP/IP socket after the replica connects. Due to NAT and other routing
issues, that IP may not be valid for connecting to the replica from the source or
other hosts.

• report_password

Command-Line Format --report-password=name

System Variable report_password

Scope Global

Dynamic No

Type String

The account password to be reported to the source during replica registration. This value appears in the
output of SHOW SLAVE HOSTS on the source if the source was started with --show-slave-auth-
info.

Although the name of this variable might imply otherwise, report_password is not connected to the
MySQL user privilege system and so is not necessarily (or even likely to be) the same as the password
for the MySQL replication user account.

• report_port

Command-Line Format --report-port=port_num

System Variable report_port

Scope Global

Dynamic No

Type Integer

Default Value [slave_port]

2469

Replication and Binary Logging Options and Variables

Minimum Value 0

Maximum Value 65535

The TCP/IP port number for connecting to the replica, to be reported to the source during replica
registration. Set this only if the replica is listening on a nondefault port or if you have a special tunnel
from the source or other clients to the replica. If you are not sure, do not use this option.

The default value for this option is the port number actually used by the replica. This is also the default
value displayed by SHOW SLAVE HOSTS.

• report_user

Command-Line Format --report-user=name

System Variable report_user

Scope Global

Dynamic No

Type String

The account user name of the replica to be reported to the replication source server during replica
registration. This value appears in the output of SHOW SLAVE HOSTS on the source if the source was
started with --show-slave-auth-info.

Although the name of this variable might imply otherwise, report_user is not connected to the MySQL
user privilege system and so is not necessarily (or even likely to be) the same as the name of the
MySQL replication user account.

• rpl_semi_sync_slave_enabled

Command-Line Format --rpl-semi-sync-slave-enabled[={OFF|
ON}]

System Variable rpl_semi_sync_slave_enabled

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Controls whether semisynchronous replication is enabled on the replica. To enable or disable the plugin,
set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

• rpl_semi_sync_slave_trace_level

Command-Line Format --rpl-semi-sync-slave-trace-level=#

System Variable rpl_semi_sync_slave_trace_level

Scope Global

Dynamic Yes

Type Integer

Default Value 32

2470

Replication and Binary Logging Options and Variables

Minimum Value 0

Maximum Value 4294967295

The semisynchronous replication debug trace level on the replica. See
rpl_semi_sync_master_trace_level for the permissible values.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

• rpl_stop_slave_timeout

Command-Line Format --rpl-stop-slave-timeout=#

Introduced 5.6.13

System Variable rpl_stop_slave_timeout

Scope Global

Dynamic Yes

Type Integer

Default Value 31536000

Minimum Value 2

Maximum Value 31536000

Unit seconds

In MySQL 5.6.13 and higher, you can control the length of time (in seconds) that STOP SLAVE waits
before timing out by setting this variable. This can be used to avoid deadlocks between STOP SLAVE
and other SQL statements using different client connections to the replica.

The maximum and default value of rpl_stop_slave_timeout is 31536000 seconds (1 year). The
minimum is 2 seconds. Changes to this variable take effect for subsequent STOP SLAVE statements.

This variable affects only the client that issues a STOP SLAVE statement. When the timeout is reached,
the issuing client returns an error message stating that the command execution is incomplete. The client
then stops waiting for the replication threads to stop, but the replication threads continue to try to stop,
and the STOP SLAVE instruction remains in effect. Once the replication threads are no longer busy, the
STOP SLAVE statement is executed and the replica stops.

• slave_checkpoint_group

Command-Line Format --slave-checkpoint-group=#

System Variable slave_checkpoint_group

Scope Global

Dynamic Yes

Type Integer

Default Value 512

Minimum Value 32

Maximum Value 524280

2471

Replication and Binary Logging Options and Variables

Block Size 8

Sets the maximum number of transactions that can be processed by a multithreaded replica before
a checkpoint operation is called to update its status as shown by SHOW SLAVE STATUS. Setting this
variable has no effect on replicas for which multithreading is not enabled.

Note

Multithreaded replicas are not currently supported by NDB Cluster, which silently
ignores the setting for this variable. See Section 18.7.3, “Known Issues in NDB
Cluster Replication”, for more information.

This variable works in combination with the slave_checkpoint_period system variable in such a
way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both the
number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 32, unless the server was built using -DWITH_DEBUG, in
which case the minimum value is 1. The effective value is always a multiple of 8; you can set it to a value
that is not such a multiple, but the server rounds it down to the next lower multiple of 8 before storing the
value. (Exception: No such rounding is performed by the debug server.) Regardless of how the server
was built, the default value is 512, and the maximum allowed value is 524280.

• slave_checkpoint_period

Command-Line Format --slave-checkpoint-period=#

System Variable slave_checkpoint_period

Scope Global

Dynamic Yes

Type Integer

Default Value 300

Minimum Value 1

Maximum Value 4294967295

Unit milliseconds

Sets the maximum time (in milliseconds) that is allowed to pass before a checkpoint operation is called
to update the status of a multithreaded replica as shown by SHOW SLAVE STATUS. Setting this variable
has no effect on replicas for which multithreading is not enabled.

Note

Multithreaded replicas are not currently supported by NDB Cluster, which silently
ignores the setting for this variable. See Section 18.7.3, “Known Issues in NDB
Cluster Replication”, for more information.

This variable works in combination with the slave_checkpoint_group system variable in such a
way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both the
number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 1, unless the server was built using -DWITH_DEBUG,
in which case the minimum value is 0. Regardless of how the server was built, the default value is 300
milliseconds, and the maximum possible value is 4294967295 milliseconds (approximately 49.7 days).

2472

Replication and Binary Logging Options and Variables

• slave_compressed_protocol

Command-Line Format --slave-compressed-protocol[={OFF|
ON}]

System Variable slave_compressed_protocol

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether to use compression of the source/replica protocol if both source and replica support it. If this
variable is disabled (the default), connections are uncompressed. See also Section 4.2.6, “Connection
Compression Control”.

• slave_exec_mode

Command-Line Format --slave-exec-mode=mode

System Variable slave_exec_mode

Scope Global

Dynamic Yes

Type Enumeration

Default Value IDEMPOTENT (NDB)

STRICT (Other)

Valid Values STRICT

IDEMPOTENT

Controls how a replication thread resolves conflicts and errors during replication. IDEMPOTENT mode
causes suppression of duplicate-key and no-key-found errors; STRICT means no such suppression
takes place.

IDEMPOTENT mode is intended for use in multi-source replication, circular replication, and some
other special replication scenarios for NDB Cluster Replication. (See Section 18.7.10, “NDB
Cluster Replication: Bidirectional and Circular Replication”, and Section 18.7.11, “NDB Cluster
Replication Conflict Resolution”, for more information.) NDB Cluster ignores any value explicitly set for
slave_exec_mode, and always treats it as IDEMPOTENT.

In MySQL Server 5.6, STRICT mode is the default value.

For storage engines other than NDB, IDEMPOTENT mode should be used only when you are absolutely
sure that duplicate-key errors and key-not-found errors can safely be ignored. It is meant to be used in
fail-over scenarios for NDB Cluster where multi-source replication or circular replication is employed, and
is not recommended for use in other cases.

• slave_load_tmpdir

Command-Line Format --slave-load-tmpdir=dir_name

System Variable slave_load_tmpdir

Scope Global

2473

Replication and Binary Logging Options and Variables

Dynamic No

Type Directory name

Default Value Value of --tmpdir

The name of the directory where the replica creates temporary files. Setting this variable takes effect for
all replication channels immediately, including running channels. The variable value is by default equal
to the value of the tmpdir system variable, or the default that applies when that system variable is not
specified.

When the replication SQL thread replicates a LOAD DATA statement, it extracts the file to be loaded
from the relay log into temporary files, and then loads these into the table. If the file loaded on the
source is huge, the temporary files on the replica are huge, too. Therefore, it might be advisable to use
this option to tell the replica to put temporary files in a directory located in some file system that has a
lot of available space. In that case, the relay logs are huge as well, so you might also want to set the
relay_log system variable to place the relay logs in that file system.

The directory specified by this option should be located in a disk-based file system (not a memory-based
file system) so that the temporary files used to replicate LOAD DATA statements can survive machine
restarts. The directory also should not be one that is cleared by the operating system during the system
startup process. However, replication can now continue after a restart if the temporary files have been
removed.

• slave_max_allowed_packet

Command-Line Format --slave-max-allowed-packet=#

System Variable slave_max_allowed_packet

Scope Global

Dynamic Yes

Type Integer

Default Value 1073741824

Minimum Value 1024

Maximum Value 1073741824

Unit bytes

Block Size 1024

This variable sets the maximum packet size for the replication SQL and I/O threads, so that large
updates using row-based replication do not cause replication to fail because an update exceeded
max_allowed_packet.

This global variable always has a value that is a positive integer multiple of 1024; if you set it to some
value that is not, the value is rounded down to the next highest multiple of 1024 for it is stored or used;
setting slave_max_allowed_packet to 0 causes 1024 to be used. (A truncation warning is issued in
all such cases.) The default and maximum value is 1073741824 (1 GB); the minimum is 1024.

• slave_net_timeout

Command-Line Format --slave-net-timeout=#

System Variable slave_net_timeout

Scope Global

2474

Replication and Binary Logging Options and Variables

Dynamic Yes

Type Integer

Default Value 3600

Minimum Value 1

Maximum Value 31536000

Unit seconds

The number of seconds to wait for more data from the source before the replica considers the
connection broken, aborts the read, and tries to reconnect. The first retry occurs immediately after
the timeout. The interval between retries is controlled by the MASTER_CONNECT_RETRY option for the
CHANGE MASTER TO statement, and the number of reconnection attempts is limited by the --master-
retry-count option. The default is 3600 seconds (one hour).

• slave_parallel_workers

Command-Line Format --slave-parallel-workers=#

System Variable slave_parallel_workers

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1024

Sets the number of worker threads on the replica for executing replication events (transactions) in
parallel. Setting this variable to 0 (the default) disables parallel execution. The maximum is 1024.

Note

Multithreaded replicas are not currently supported by NDB Cluster, which silently
ignores the setting for this variable. See Section 18.7.3, “Known Issues in NDB
Cluster Replication”, for more information.

When parallel execution is enabled, the replication SQL thread acts as the coordinator for the worker
threads, among which transactions are distributed on a per-database basis. This means that a worker
thread on the replica can process successive transactions on a given database without waiting for
updates to other databases to complete. The current implementation of multithreading on the replica
assumes that the data is partitioned per database, and that updates within a given database occur in the
same relative order as they do on the source, in order to work correctly. However, transactions do not
need to be coordinated between any two databases.

Due to the fact that transactions on different databases can occur in a different order on the replica than
on the source, checking for the most recently executed transaction does not guarantee that all previous
transactions from the source have been executed on the replica. This has implications for logging and
recovery when using a multithreaded replica. For information about how to interpret binary logging
information when using multithreading on the replica, see Section 13.7.5.35, “SHOW SLAVE STATUS

2475

Replication and Binary Logging Options and Variables

Statement”. In addition, this means that START SLAVE UNTIL is not supported with a multithreaded
replica.

When multithreading is enabled, slave_transaction_retries is treated as equal to 0, and cannot
be changed. (Currently, retrying of transactions is not supported with multithreaded replicas.)

You should also note that enforcing foreign key relationships between tables in different databases
causes multithreaded replicas to use sequential rather than parallel mode, which can have a negative
impact on performance. (Bug #14092635)

Multithreaded replicas are not currently supported by NDB Cluster. See Section 18.7.3, “Known Issues in
NDB Cluster Replication”, for more information about how NDB handles settings for this variable.

• slave_pending_jobs_size_max

Command-Line Format --slave-pending-jobs-size-max=#

System Variable slave_pending_jobs_size_max

Scope Global

Dynamic Yes

Type Integer

Default Value 16M

Minimum Value 1024

Maximum Value 16EiB

Unit bytes

Block Size 1024

For multithreaded replicas, this variable sets the maximum amount of memory (in bytes) available
to worker queues on the replica holding events not yet applied. Setting this variable has no effect on
replicas for which multithreading is not enabled.

The minimum possible value for this variable is 1024; the default is 16MB. The maximum possible value
is 18446744073709551615 (16 exabytes). Values that are not exact multiples of 1024 are rounded down
to the next-highest multiple of 1024 prior to being stored.

The value of this variable is a soft limit and can be set to match the normal workload. If an unusually
large event exceeds this size, the transaction is held until all the worker threads on the replica have
empty queues, and then processed. All subsequent transactions are held until the large transaction has
been completed.

• slave_rows_search_algorithms

Command-Line Format --slave-rows-search-algorithms=value

System Variable slave_rows_search_algorithms

Scope Global

Dynamic Yes

Type Set

Default Value TABLE_SCAN,INDEX_SCAN

Valid Values TABLE_SCAN,INDEX_SCAN

2476

Replication and Binary Logging Options and Variables

INDEX_SCAN,HASH_SCAN

TABLE_SCAN,HASH_SCAN

TABLE_SCAN,INDEX_SCAN,HASH_SCAN
(equivalent to INDEX_SCAN,HASH_SCAN)

When preparing batches of rows for row-based logging and replication, this variable controls how the
rows are searched for matches—that is, whether or not hashing is used for searches using a primary
or unique key, some other key, or using no key at all. Setting this variable takes effect for all replication
channels immediately, including running channels. option.

Specify a comma-separated list of any 2 (or all 3) values from the list INDEX_SCAN, TABLE_SCAN,
HASH_SCAN. The value is expected as a string, so if set at runtime rather than at server startup, the
value must be quoted. In addition, the value must not contain any spaces. Possible combinations (lists)
and their effects are shown in the following table:

Index used / option
value

INDEX_SCAN,HASH_SCAN
or
INDEX_SCAN,TABLE_SCAN,HASH_SCAN

INDEX_SCAN,TABLE_SCANTABLE_SCAN,HASH_SCAN

Primary key or unique
key

Index scan Index scan Hash scan over index

(Other) Key Hash scan over index Index scan Hash scan over index

No index Hash scan Table scan Hash scan

The order in which the algorithms are specified in the list makes no difference to the order in which they
are displayed by a SELECT or SHOW VARIABLES statement (which is the same as that used in the table
just shown previously).

• The default value is TABLE_SCAN,INDEX_SCAN, which means that all searches that can use indexes
do use them, and searches without any indexes use table scans.

• To use hashing for any searches that do not use a primary or unique key, set this option to
INDEX_SCAN,HASH_SCAN. Specifying INDEX_SCAN,TABLE_SCAN,HASH_SCAN has the same effect
as specifying INDEX_SCAN,HASH_SCAN.

• To force hashing for all searches, set this option to TABLE_SCAN,HASH_SCAN.

It is possible to specify a single value, but this is not optimal, because setting a single value limits
searches to using only that algorithm. In particular, setting INDEX_SCAN alone is not recommended, as
in that case searches are unable to find rows at all if no index is present.

Note

There is a performance advantage for INDEX_SCAN and HASH_SCAN only if
the row events are big enough. The size of row events is configured using --
binlog-row-event-max-size. For example, suppose a DELETE statement
which deletes 25,000 rows generates large Delete_row_event events. In
this case if slave_rows_search_algorithms is set to INDEX_SCAN or
HASH_SCAN there is a performance improvement. However, if there are 25,000
DELETE statements and each is represented by a separate event then setting
slave_rows_search_algorithms to INDEX_SCAN or HASH_SCAN provides
no performance improvement while executing these separate events.

2477

Replication and Binary Logging Options and Variables

• slave_skip_errors

Command-Line Format --slave-skip-errors=name

System Variable slave_skip_errors

Scope Global

Dynamic No

Type String

Default Value OFF

Valid Values OFF

[list of error codes]

all

ddl_exist_errors

Normally, replication stops when an error occurs on the replica. This gives you the opportunity to
resolve the inconsistency in the data manually. This variable tells the replication SQL thread to continue
replication when a statement returns any of the errors listed in the variable value.

• slave_sql_verify_checksum

Command-Line Format --slave-sql-verify-checksum[={OFF|
ON}]

System Variable slave_sql_verify_checksum

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Cause the replication SQL thread to verify data using the checksums read from the relay log. In the
event of a mismatch, the replica stops with an error.

Note

The replication I/O thread always reads checksums if possible when accepting
events from over the network.

• slave_transaction_retries

Command-Line Format --slave-transaction-retries=#

System Variable slave_transaction_retries

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value (64-bit platforms) 184467440737095516152478

Replication and Binary Logging Options and Variables

Maximum Value (32-bit platforms) 4294967295

If a replication SQL thread fails to execute a transaction because of an InnoDB deadlock or because
the transaction's execution time exceeded InnoDB's innodb_lock_wait_timeout or NDB's
TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout, it automatically
retries slave_transaction_retries times before stopping with an error. The default value is 10.

Transactions cannot be retried when using a multithreaded replica. In other words, whenever
slave_parallel_workers is greater than 0, slave_transaction_retries is treated as equal to
0, and cannot be changed.

• slave_type_conversions

Command-Line Format --slave-type-conversions=set

System Variable slave_type_conversions

Scope Global

Dynamic Yes

Type Set

Default Value

Valid Values (≥ 5.6.13) ALL_LOSSY

ALL_NON_LOSSY

ALL_SIGNED

ALL_UNSIGNED

Valid Values (≤ 5.6.12) ALL_LOSSY

ALL_NON_LOSSY

Controls the type conversion mode in effect on the replica when using row-based replication. In
MySQL 5.6.13 and higher, its value is a comma-delimited set of zero or more elements from the list:
ALL_LOSSY, ALL_NON_LOSSY, ALL_SIGNED, ALL_UNSIGNED. Set this variable to an empty string to
disallow type conversions between the source and the replica. Changes require a restart of the replica to
take effect.

ALL_SIGNED and ALL_UNSIGNED were added in MySQL 5.6.13 (Bug#15831300). For additional
information on type conversion modes applicable to attribute promotion and demotion in row-based
replication, see Row-based replication: attribute promotion and demotion.

• sql_slave_skip_counter

System Variable sql_slave_skip_counter

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

2479

Replication and Binary Logging Options and Variables

Maximum Value 4294967295

The number of events from the source that a replica server should skip.

This option is incompatible with GTID-based replication, and must not be set to a nonzero value
when gtid_mode=ON. In MySQL 5.6.10 and higher, trying to do so is specifically disallowed. (Bug
#15833516) If you need to skip transactions when employing GTIDs, use gtid_executed from the
source instead. See Injecting empty transactions, for information about how to do this.

Important

If skipping the number of events specified by setting this variable would cause
the replica to begin in the middle of an event group, the replica continues to skip
until it finds the beginning of the next event group and begins from that point. For
more information, see Section 13.4.2.4, “SET GLOBAL sql_slave_skip_counter
Statement”.

• sync_master_info

Command-Line Format --sync-master-info=#

System Variable sync_master_info

Scope Global

Dynamic Yes

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

The effects of this variable on a replica depend on whether the replica's master_info_repository is
set to FILE or TABLE, as explained in the following paragraphs.

master_info_repository = FILE. If the value of sync_master_info is greater than 0, the replica
synchronizes its master.info file to disk (using fdatasync()) after every sync_master_info
events. If it is 0, the MySQL server performs no synchronization of the master.info file to disk;
instead, the server relies on the operating system to flush its contents periodically as with any other file.

master_info_repository = TABLE. If the value of sync_master_info is greater than 0, the replica
updates its connection metadata repository table after every sync_master_info events. If it is 0, the
table is never updated.

• sync_relay_log

Command-Line Format --sync-relay-log=#

System Variable sync_relay_log

Scope Global

Dynamic Yes

Type Integer

Default Value 10000

Minimum Value 0

2480

Replication and Binary Logging Options and Variables

Maximum Value 4294967295

If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk (using
fdatasync()) after every sync_relay_log events are written to the relay log.

Setting sync_relay_log to 0 causes no synchronization to be done to disk; in this case, the server
relies on the operating system to flush the relay log's contents from time to time as for any other file.

A value of 1 is the safest choice because in the event of an unexpected exit you lose at most one event
from the relay log. However, it is also the slowest choice (unless the disk has a battery-backed cache,
which makes synchronization very fast).

• sync_relay_log_info

Command-Line Format --sync-relay-log-info=#

System Variable sync_relay_log_info

Scope Global

Dynamic Yes

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

The default value for sync_relay_log_info is 10000.

The effects of this variable on the replica depend on the server's relay_log_info_repository
setting (FILE or TABLE). If the setting is TABLE, the effects of the variable also depend on whether the
storage engine used by the relay log info table is transactional (such as InnoDB) or not transactional
(MyISAM). The effects of these factors on the behavior of the server for sync_relay_log_info values
of zero and greater than zero are as follows:

sync_relay_log_info = 0 • If relay_log_info_repository is set to FILE, the MySQL
server performs no synchronization of the relay-log.info file to
disk; instead, the server relies on the operating system to flush its
contents periodically as with any other file.

• If relay_log_info_repository is set to TABLE, and the
storage engine for that table is transactional, the table is updated
after each transaction. (The sync_relay_log_info setting is
effectively ignored in this case.)

• If relay_log_info_repository is set to TABLE, and the
storage engine for that table is not transactional, the table is never
updated.

sync_relay_log_info = N
> 0

• If relay_log_info_repository is set to FILE, the
replica synchronizes its relay-log.info file to disk (using
fdatasync()) after every N transactions.

• If relay_log_info_repository is set to TABLE, and the
storage engine for that table is transactional, the table is updated

2481

Replication and Binary Logging Options and Variables

after each transaction. (The sync_relay_log_info setting is
effectively ignored in this case.)

• If relay_log_info_repository is set to TABLE, and the
storage engine for that table is not transactional, the table is
updated after every N events.

17.1.4.4 Binary Log Options and Variables

• Startup Options Used with Binary Logging

• System Variables Used with Binary Logging

You can use the mysqld options and system variables that are described in this section to affect the
operation of the binary log as well as to control which statements are written to the binary log. For
additional information about the binary log, see Section 5.4.4, “The Binary Log”. For additional information
about using MySQL server options and system variables, see Section 5.1.6, “Server Command Options”,
and Section 5.1.7, “Server System Variables”.

Startup Options Used with Binary Logging

The following list describes startup options for enabling and configuring the binary log. System variables
used with binary logging are discussed later in this section.

• --binlog-row-event-max-size=N

Command-Line Format --binlog-row-event-max-size=#

Type Integer

Default Value 8192

Minimum Value 256

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events
smaller than this size if possible. The value should be a multiple of 256. See Section 17.1.2, “Replication
Formats”.

• --log-bin[=base_name]

Command-Line Format --log-bin=file_name

Type File name

Enables binary logging. With binary logging enabled, the server logs all statements that change data
to the binary log, which is used for backup and replication. The binary log is a sequence of files with a
base name and numeric extension. For information on the format and management of the binary log, see
Section 5.4.4, “The Binary Log”.

The option value, if given, is the base name for the log sequence. The server creates binary log files in
sequence by adding a numeric suffix to the base name. It is recommended that you specify a base name
(see Section B.3.7, “Known Issues in MySQL”, for the reason). Otherwise, MySQL uses host_name-
bin as the base name.

2482

Replication and Binary Logging Options and Variables

If you supply a value for the --log-bin option, the value is used as the base name for the log
sequence. The server creates binary log files in sequence by adding a numeric suffix to the base name.
In MySQL 5.6, the default base name is the name of the process ID file, with the suffix -bin. That
name can be set with the --pid-file option, and it defaults to the name of the host machine. It is
recommended that you specify a base name using the --log-bin option, so that you can continue to
use the same binary log file names regardless of changes to the default name.

The default location for binary log files is the data directory. You can use the --log-bin option to
specify an alternative location, by adding a leading absolute path name to the base name to specify a
different directory. When the server reads an entry from the binary log index file, which tracks the binary
log files that have been used, it checks whether the entry contains a relative path. If it does, the relative
part of the path is replaced with the absolute path set using the --log-bin option. An absolute path
recorded in the binary log index file remains unchanged; in such a case, the index file must be edited
manually to enable a new path or paths to be used. (In older versions of MySQL, manual intervention
was required whenever relocating the binary log or relay log files.) (Bug #11745230, Bug #12133)

Setting this option causes the log_bin system variable to be set to ON (or 1), and not to the base name.
The binary log file base name and any specified path are available as the log_bin_basename system
variable.

If you want to disable binary logging for a server start but keep the --log-bin setting intact, you can
specify the --skip-log-bin or --disable-log-bin option at startup. Specify the option after the
--log-bin option, so that it takes precedence. When binary logging is disabled, the log_bin system
variable is set to OFF.

• --log-bin-index[=file_name]

Command-Line Format --log-bin-index=file_name

System Variable log_bin_index

Scope Global

Dynamic No

Type File name

The name for the binary log index file, which contains the names of the binary log files. By default, it has
the same location and base name as the value specified for the binary log files using the --log-bin
option, plus the extension .index. If you do not specify --log-bin, the default binary log index file
name is binlog.index. If you omit the file name and do not specify one with --log-bin, the default
binary log index file name is host_name-bin.index, using the name of the host machine.

For information on the format and management of the binary log, see Section 5.4.4, “The Binary Log”.

Statement selection options. The options in the following list affect which statements are written to
the binary log, and thus sent by a replication source server to its replicas. There are also options for replica
servers that control which statements received from the source should be executed or ignored. For details,
see Section 17.1.4.3, “Replica Server Options and Variables”.

• --binlog-do-db=db_name

Command-Line Format --binlog-do-db=name

Type String

2483

Replication and Binary Logging Options and Variables

This option affects binary logging in a manner similar to the way that --replicate-do-db affects
replication.

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of --replicate-do-db depend on whether statement-based or
row-based replication is in use. You should keep in mind that the format used to log a given statement
may not necessarily be the same as that indicated by the value of binlog_format. For example, DDL
statements such as CREATE TABLE and ALTER TABLE are always logged as statements, without
regard to the logging format in effect, so the following statement-based rules for --binlog-do-db
always apply in determining whether or not the statement is logged.

Statement-based logging. Only those statements are written to the binary log where the default
database (that is, the one selected by USE) is db_name. To specify more than one database, use this
option multiple times, once for each database; however, doing so does not cause cross-database
statements such as UPDATE some_db.some_table SET foo='bar' to be logged while a different
database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, the list is treated as the name of
a single database if you supply a comma-separated list.

An example of what does not work as you might expect when using statement-based logging: If the
server is started with --binlog-do-db=sales and you issue the following statements, the UPDATE
statement is not logged:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “just check the default database” behavior is that it is difficult from the statement
alone to know whether it should be replicated (for example, if you are using multiple-table DELETE
statements or multiple-table UPDATE statements that act across multiple databases). It is also faster to
check only the default database rather than all databases if there is no need.

Another case which may not be self-evident occurs when a given database is replicated even though it
was not specified when setting the option. If the server is started with --binlog-do-db=sales, the
following UPDATE statement is logged even though prices was not included when setting --binlog-
do-db:

USE sales;
UPDATE prices.discounts SET percentage = percentage + 10;

Because sales is the default database when the UPDATE statement is issued, the UPDATE is logged.

Row-based logging. Logging is restricted to database db_name. Only changes to tables belonging
to db_name are logged; the default database has no effect on this. Suppose that the server is started
with --binlog-do-db=sales and row-based logging is in effect, and then the following statements
are executed:

USE prices;
UPDATE sales.february SET amount=amount+100;

The changes to the february table in the sales database are logged in accordance with the UPDATE
statement; this occurs whether or not the USE statement was issued. However, when using the row-

2484

Replication and Binary Logging Options and Variables

based logging format and --binlog-do-db=sales, changes made by the following UPDATE are not
logged:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the USE prices statement were changed to USE sales, the UPDATE statement's effects would
still not be written to the binary log.

Another important difference in --binlog-do-db handling for statement-based logging as opposed to
the row-based logging occurs with regard to statements that refer to multiple databases. Suppose that
the server is started with --binlog-do-db=db1, and the following statements are executed:

USE db1;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

If you are using statement-based logging, the updates to both tables are written to the binary log.
However, when using the row-based format, only the changes to table1 are logged; table2 is in a
different database, so it is not changed by the UPDATE. Now suppose that, instead of the USE db1
statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

In this case, the UPDATE statement is not written to the binary log when using statement-based logging.
However, when using row-based logging, the change to table1 is logged, but not that to table2—in
other words, only changes to tables in the database named by --binlog-do-db are logged, and the
choice of default database has no effect on this behavior.

• --binlog-ignore-db=db_name

Command-Line Format --binlog-ignore-db=name

Type String

This option affects binary logging in a manner similar to the way that --replicate-ignore-db affects
replication.

The effects of this option depend on whether the statement-based or row-based logging format is in use,
in the same way that the effects of --replicate-ignore-db depend on whether statement-based or
row-based replication is in use. You should keep in mind that the format used to log a given statement
may not necessarily be the same as that indicated by the value of binlog_format. For example, DDL
statements such as CREATE TABLE and ALTER TABLE are always logged as statements, without
regard to the logging format in effect, so the following statement-based rules for --binlog-ignore-db
always apply in determining whether or not the statement is logged.

Statement-based logging. Tells the server to not log any statement where the default database (that
is, the one selected by USE) is db_name.

Prior to MySQL 5.6.12, this option caused any statements containing fully qualified table names not to be
logged if there was no default database specified (that is, when SELECT DATABASE() returned NULL).

2485

Replication and Binary Logging Options and Variables

In MySQL 5.6.12 and higher, when there is no default database, no --binlog-ignore-db options are
applied, and such statements are always logged. (Bug #11829838, Bug #60188)

Row-based format. Tells the server not to log updates to any tables in the database db_name. The
current database has no effect.

When using statement-based logging, the following example does not work as you might expect.
Suppose that the server is started with --binlog-ignore-db=sales and you issue the following
statements:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is logged in such a case because --binlog-ignore-db applies only to the
default database (determined by the USE statement). Because the sales database was specified
explicitly in the statement, the statement has not been filtered. However, when using row-based logging,
the UPDATE statement's effects are not written to the binary log, which means that no changes to the
sales.january table are logged; in this instance, --binlog-ignore-db=sales causes all changes
made to tables in the source's copy of the sales database to be ignored for purposes of binary logging.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, the list is treated as the name of a single database if
you supply a comma-separated list.

You should not use this option if you are using cross-database updates and you do not want these
updates to be logged.

Checksum options. MySQL supports reading and writing of binary log checksums. These are enabled
using the two options listed here:

• --binlog-checksum={NONE|CRC32}

Command-Line Format --binlog-checksum=type

Type String

Default Value CRC32

Valid Values NONE

CRC32

Enabling this option causes the source to write checksums for events written to the binary log. Set to
NONE to disable, or the name of the algorithm to be used for generating checksums; currently, only
CRC32 checksums are supported.

To control reading of checksums by the replica (from the relay log), use the --slave-sql-verify-
checksum option.

Testing and debugging options. The following binary log options are used in replication testing and
debugging. They are not intended for use in normal operations.

• --max-binlog-dump-events=N

Command-Line Format --max-binlog-dump-events=#

Type Integer

Default Value 0

2486

Replication and Binary Logging Options and Variables

This option is used internally by the MySQL test suite for replication testing and debugging.

• --sporadic-binlog-dump-fail

Command-Line Format --sporadic-binlog-dump-fail[={OFF|
ON}]

Type Boolean

Default Value OFF

This option is used internally by the MySQL test suite for replication testing and debugging.

System Variables Used with Binary Logging

The following list describes system variables for controlling binary logging. They can be set at server
startup and some of them can be changed at runtime using SET. Server options used to control binary
logging are listed earlier in this section.

• binlog_cache_size

Command-Line Format --binlog-cache-size=#

System Variable binlog_cache_size

Scope Global

Dynamic Yes

Type Integer

Default Value 32768

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294963200

Unit bytes

Block Size 4096

The size of the cache to hold changes to the binary log during a transaction. A binary log cache is
allocated for each client if the server supports any transactional storage engines and if the server has
the binary log enabled (--log-bin option). If you often use large transactions, you can increase this
cache size to get better performance. The Binlog_cache_use and Binlog_cache_disk_use status
variables can be useful for tuning the size of this variable. See Section 5.4.4, “The Binary Log”.

binlog_cache_size sets the size for the transaction cache only; the size of the statement cache is
governed by the binlog_stmt_cache_size system variable.

• binlog_checksum

Command-Line Format --binlog-checksum=name

System Variable binlog_checksum

Scope Global

Dynamic Yes

Type String

Default Value CRC32

2487

Replication and Binary Logging Options and Variables

Valid Values NONE

CRC32

When enabled, this variable causes the replication source server to write a checksum for each event
in the binary log. binlog_checksum supports the values NONE (disabled) and CRC32. The default is
CRC32.

When binlog_checksum is disabled (value NONE), the server verifies that it is writing only complete
events to the binary log by writing and checking the event length (rather than a checksum) for each
event.

Changing the value of this variable causes the binary log to be rotated; checksums are always written to
an entire binary log file, and never to only part of one.

Setting this variable on the source to a value unrecognized by the replica causes the replica to set
its own binlog_checksum value to NONE, and to stop replication with an error. (Bug #13553750,
Bug #61096) If backward compatibility with older replicas is a concern, you may want to set the value
explicitly to NONE.

• binlog_direct_non_transactional_updates

Command-Line Format --binlog-direct-non-transactional-
updates[={OFF|ON}]

System Variable binlog_direct_non_transactional_updates

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

Due to concurrency issues, a replica can become inconsistent when a transaction contains updates
to both transactional and nontransactional tables. MySQL tries to preserve causality among these
statements by writing nontransactional statements to the transaction cache, which is flushed upon
commit. However, problems arise when modifications done to nontransactional tables on behalf of a
transaction become immediately visible to other connections because these changes may not be written
immediately into the binary log.

The binlog_direct_non_transactional_updates variable offers one possible workaround to this
issue. By default, this variable is disabled. Enabling binlog_direct_non_transactional_updates
causes updates to nontransactional tables to be written directly to the binary log, rather than to the
transaction cache.

binlog_direct_non_transactional_updates works only for statements that are replicated using
the statement-based binary logging format; that is, it works only when the value of binlog_format
is STATEMENT, or when binlog_format is MIXED and a given statement is being replicated using
the statement-based format. This variable has no effect when the binary log format is ROW, or when
binlog_format is set to MIXED and a given statement is replicated using the row-based format.

Important

Before enabling this variable, you must make certain that there are no
dependencies between transactional and nontransactional tables; an example
of such a dependency would be the statement INSERT INTO myisam_table

2488

Replication and Binary Logging Options and Variables

SELECT * FROM innodb_table. Otherwise, such statements are likely to
cause the replica to diverge from the source.

In MySQL 5.6, this variable has no effect when the binary log format is ROW or MIXED. (Bug #51291)

• binlog_error_action

Command-Line Format --binlog-error-action[=value]

Introduced 5.6.22

System Variable binlog_error_action

Scope Global

Dynamic Yes

Type Enumeration

Default Value IGNORE_ERROR

Valid Values IGNORE_ERROR

ABORT_SERVER

Controls what happens when the server encounters an error such as not being able to write to, flush or
synchronize the binary log, which can cause the source's binary log to become inconsistent and replicas
to lose synchronization.

In MySQL 5.6, this variable defaults to IGNORE_ERROR. If the server encounters such an error, it
continues the ongoing transaction, logs the error then halts logging, and continues performing updates.
To resume binary logging log_bin must be enabled again, which requires a server restart. This setting
provides backward compatibility with older versions of MySQL.

Setting this variable to ABORT_SERVER makes the server halt logging and shut down whenever it
encounters such an error with the binary log. On restart, recovery proceeds as in the case of an
unexpected server halt (see Section 17.3.2, “Handling an Unexpected Halt of a Replica Server”). This is
the recommended setting, particularly in complex replication environments.

In previous releases this variable was named binlogging_impossible_mode.

• binlog_format

Command-Line Format --binlog-format=format

System Variable binlog_format

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value (≥ 5.6.10-ndb-7.3.1) MIXED

Default Value STATEMENT

Valid Values MIXED

STATEMENT

2489

Replication and Binary Logging Options and Variables

ROW

This variable sets the binary logging format, and can be any one of STATEMENT, ROW, or MIXED. See
Section 17.1.2, “Replication Formats”.

binlog_format can be set at startup or at runtime, except that under some conditions, changing this
variable at runtime is not possible or causes replication to fail, as described later.

In MySQL 5.6, the default format is STATEMENT. Exception: In MySQL NDB Cluster 7.3 and later, the
default is MIXED; statement-based replication is not supported for NDB Cluster.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

The rules governing when changes to this variable take effect and how long the effect lasts are the same
as for other MySQL server system variables. For more information, see Section 13.7.4.1, “SET Syntax
for Variable Assignment”.

When MIXED is specified, statement-based replication is used, except for cases where only row-based
replication is guaranteed to lead to proper results. For example, this happens when statements contain
loadable functions or the UUID() function.

For details of how stored programs (stored procedures and functions, triggers, and events) are handled
when each binary logging format is set, see Section 20.7, “Stored Program Binary Logging”.

There are exceptions when you cannot switch the replication format at runtime:

• From within a stored function or a trigger.

• If the session is currently in row-based replication mode and has open temporary tables.

• From within a transaction.

Trying to switch the format in those cases results in an error.

Changing the logging format on a replication source server does not cause a replica to change its
logging format to match. Switching the replication format while replication is ongoing can cause issues
if a replica has binary logging enabled, and the change results in the replica using STATEMENT format
logging while the source is using ROW or MIXED format logging. A replica is not able to convert binary
log entries received in ROW logging format to STATEMENT format for use in its own binary log, so this
situation can cause replication to fail. For more information, see Section 5.4.4.2, “Setting The Binary Log
Format”.

The binary log format affects the behavior of the following server options:

• --replicate-do-db

• --replicate-ignore-db

• --binlog-do-db

• --binlog-ignore-db

These effects are discussed in detail in the descriptions of the individual options.

2490

Replication and Binary Logging Options and Variables

• binlogging_impossible_mode

Command-Line Format --binlogging-impossible-mode[=value]

Introduced 5.6.20

Deprecated 5.6.22

System Variable binlogging_impossible_mode

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value IGNORE_ERROR

Valid Values IGNORE_ERROR

ABORT_SERVER

This option is deprecated; expect it to be removed in a future MySQL release. Use the
binlog_error_action variable to control what happens when the server cannot write to the binary
log.

• binlog_max_flush_queue_time

Command-Line Format --binlog-max-flush-queue-time=#

System Variable binlog_max_flush_queue_time

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 100000

Unit microseconds

How long in microseconds to keep reading transactions from the flush queue before proceeding with
the group commit (and syncing the log to disk, if sync_binlog is greater than 0). If the value is 0 (the
default), there is no timeout and the server keeps reading new transactions until the queue is empty.

Normally, binlog_max_flush_queue_time can remain set to 0. If the server processes a large
number of connections (for example, 100 or more) and many short transactions with low-latency
requirements, it may be useful to set the value larger than 0 to force more frequent flushes to disk.

• binlog_order_commits

Command-Line Format --binlog-order-commits[={OFF|ON}]

System Variable binlog_order_commits

Scope Global

Dynamic Yes

Type Boolean

2491

Replication and Binary Logging Options and Variables

Default Value ON

When this variable is enabled on a replication source server (which is the default), transaction commit
instructions issued to storage engines are serialized on a single thread, so that transactions are always
committed in the same order as they are written to the binary log. Disabling this variable permits
transaction commit instructions to be issued using multiple threads. Used in combination with binary log
group commit, this prevents the commit rate of a single transaction being a bottleneck to throughput, and
might therefore produce a performance improvement.

Transactions are written to the binary log at the point when all the storage engines involved have
confirmed that the transaction is prepared to commit. The binary log group commit logic then commits
a group of transactions after their binary log write has taken place. When binlog_order_commits is
disabled, because multiple threads are used for this process, transactions in a commit group might be
committed in a different order from their order in the binary log. (Transactions from a single client always
commit in chronological order.) In many cases this does not matter, as operations carried out in separate
transactions should produce consistent results, and if that is not the case, a single transaction ought to
be used instead.

• binlog_row_image

Command-Line Format --binlog-row-image=image_type

System Variable binlog_row_image

Scope Global, Session

Dynamic Yes

Type Enumeration

Default Value full

Valid Values full (Log all columns)

minimal (Log only changed columns, and
columns needed to identify rows)

noblob (Log all columns, except for unneeded
BLOB and TEXT columns)

For MySQL row-based replication, this variable determines how row images are written to the binary log.

In MySQL row-based replication, each row change event contains two images, a “before” image whose
columns are matched against when searching for the row to be updated, and an “after” image containing
the changes. Normally, MySQL logs full rows (that is, all columns) for both the before and after images.
However, it is not strictly necessary to include every column in both images, and we can often save disk,
memory, and network usage by logging only those columns which are actually required.

Note

When deleting a row, only the before image is logged, since there are no
changed values to propagate following the deletion. When inserting a row, only
the after image is logged, since there is no existing row to be matched. Only
when updating a row are both the before and after images required, and both
written to the binary log.

For the before image, it is necessary only that the minimum set of columns required to uniquely identify
rows is logged. If the table containing the row has a primary key, then only the primary key column or
columns are written to the binary log. Otherwise, if the table has a unique key all of whose columns are

2492

Replication and Binary Logging Options and Variables

NOT NULL, then only the columns in the unique key need be logged. (If the table has neither a primary
key nor a unique key without any NULL columns, then all columns must be used in the before image, and
logged.) In the after image, it is necessary to log only the columns which have actually changed.

You can cause the server to log full or minimal rows using the binlog_row_image system variable.
This variable actually takes one of three possible values, as shown in the following list:

• full: Log all columns in both the before image and the after image.

• minimal: Log only those columns in the before image that are required to identify the row to
be changed; log only those columns in the after image where a value was specified by the SQL
statement, or generated by auto-increment.

• noblob: Log all columns (same as full), except for BLOB and TEXT columns that are not required to
identify rows, or that have not changed.

Note

This variable is not supported by NDB Cluster; setting it has no effect on the
logging of NDB tables. (Bug #16316828)

The default value is full.

When using minimal or noblob, deletes and updates are guaranteed to work correctly for a given table
if and only if the following conditions are true for both the source and destination tables:

• All columns must be present and in the same order; each column must use the same data type as its
counterpart in the other table.

• The tables must have identical primary key definitions.

(In other words, the tables must be identical with the possible exception of indexes that are not part of
the tables' primary keys.)

If these conditions are not met, it is possible that the primary key column values in the destination table
may prove insufficient to provide a unique match for a delete or update. In this event, no warning or error
is issued; the source and replica silently diverge, thus breaking consistency.

Setting this variable has no effect when the binary logging format is STATEMENT. When
binlog_format is MIXED, the setting for binlog_row_image is applied to changes that are logged
using row-based format, but this setting has no effect on changes logged as statements.

Setting binlog_row_image on either the global or session level does not cause an implicit commit;
this means that this variable can be changed while a transaction is in progress without affecting the
transaction.

• binlog_rows_query_log_events

Command-Line Format --binlog-rows-query-log-events[={OFF|
ON}]

System Variable binlog_rows_query_log_events

Scope Global, Session

Dynamic Yes

Type Boolean

2493

Replication and Binary Logging Options and Variables

Default Value OFF

This system variable affects row-based logging only. When enabled, it causes the server to write
informational log events such as row query log events into its binary log. This information can be used
for debugging and related purposes, such as obtaining the original query issued on the source when it
cannot be reconstructed from the row updates.

These informational events are normally ignored by MySQL programs reading the binary log and so
cause no issues when replicating or restoring from backup. To view them, increase the verbosity level by
using mysqlbinlog's --verbose option twice, either as -vv or --verbose --verbose.

• binlog_stmt_cache_size

Command-Line Format --binlog-stmt-cache-size=#

System Variable binlog_stmt_cache_size

Scope Global

Dynamic Yes

Type Integer

Default Value 32768

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294963200

Unit bytes

Block Size 4096

This variable determines the size of the cache for the binary log to hold nontransactional statements
issued during a transaction. Separate binary log transaction and statement caches are allocated for
each client if the server supports any transactional storage engines and if the server has the binary log
enabled (--log-bin option). If you often use large nontransactional statements during transactions,
you can increase this cache size to get better performance. The Binlog_stmt_cache_use and
Binlog_stmt_cache_disk_use status variables can be useful for tuning the size of this variable. See
Section 5.4.4, “The Binary Log”.

The binlog_cache_size system variable sets the size for the transaction cache.

• expire_logs_days

Command-Line Format --expire-logs-days=#

System Variable expire_logs_days

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 99

2494

Replication and Binary Logging Options and Variables

Unit days

The number of days for automatic binary log file removal. The default is 0, which means “no automatic
removal.” Possible removals happen at startup and when the binary log is flushed. Log flushing occurs
as indicated in Section 5.4, “MySQL Server Logs”.

To remove binary log files manually, use the PURGE BINARY LOGS statement. See Section 13.4.1.1,
“PURGE BINARY LOGS Statement”.

• log_bin

System Variable log_bin

Scope Global

Dynamic No

Type Boolean

Whether the binary log is enabled. If the --log-bin option is used, then the value of this variable is
ON; otherwise it is OFF. This variable reports only on the status of binary logging (enabled or disabled); it
does not actually report the value to which --log-bin is set.

See Section 5.4.4, “The Binary Log”.

• log_bin_basename

System Variable log_bin_basename

Scope Global

Dynamic No

Type File name

Holds the base name and path for the binary log files, which can be set with the --log-bin server
option. The maximum variable length is 256. In MySQL 5.6, the default base name is the name of the
process ID file, with the suffix -bin. That name can be set with the --pid-file option, and it defaults
to the name of the host machine. The default location for the binary log files is the data directory.

• log_bin_index

Command-Line Format --log-bin-index=file_name

System Variable log_bin_index

Scope Global

Dynamic No

Type File name

Holds the base name and path for the binary log index file, which can be set with the --log-bin-
index server option. The maximum variable length is 256.

• log_bin_trust_function_creators

Command-Line Format --log-bin-trust-function-
creators[={OFF|ON}]

System Variable log_bin_trust_function_creators
2495

Replication and Binary Logging Options and Variables

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

This variable applies when binary logging is enabled. It controls whether stored function creators can
be trusted not to create stored functions that cause unsafe events to be written to the binary log. If set
to 0 (the default), users are not permitted to create or alter stored functions unless they have the SUPER
privilege in addition to the CREATE ROUTINE or ALTER ROUTINE privilege. A setting of 0 also enforces
the restriction that a function must be declared with the DETERMINISTIC characteristic, or with the
READS SQL DATA or NO SQL characteristic. If the variable is set to 1, MySQL does not enforce these
restrictions on stored function creation. This variable also applies to trigger creation. See Section 20.7,
“Stored Program Binary Logging”.

• log_bin_use_v1_row_events

Command-Line Format --log-bin-use-v1-row-events[={OFF|
ON}]

System Variable log_bin_use_v1_row_events

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether Version 2 binary logging is in use. If this variable is 0 (disabled, the default), Version 2 binary
log events are in use. If this variable is 1 (enabled), the server writes the binary log using Version 1
logging events (the only version of binary log events used in previous releases), and thus produces a
binary log that can be read by older replicas.

MySQL 5.6 uses Version 2 binary log row events by default. However, Version 2 events cannot be read
by MySQL Server releases prior to MySQL 5.6.6. Enabling log_bin_use_v1_row_events causes
mysqld to write the binary log using Version 1 logging events.

This variable is read-only at runtime. To switch between Version 1 and Version 2 binary event binary
logging, it is necessary to set log_bin_use_v1_row_events at server startup.

Other than when performing upgrades of NDB Cluster Replication, log_bin_use_v1_row_events
is chiefly of interest when setting up replication conflict detection and resolution using NDB
$EPOCH_TRANS() as the conflict detection function, which requires Version 2 binary log row events.
Thus, this variable and --ndb-log-transaction-id are not compatible.

Note

MySQL NDB Cluster 7.3 and higher use Version 2 binary log row events by
default. You should keep this mind when planning upgrades or downgrades, and
for setups using NDB Cluster Replication.

For more information, see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

• log_slave_updates

Command-Line Format --log-slave-updates[={OFF|ON}]

2496

Replication and Binary Logging Options and Variables

System Variable log_slave_updates

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Whether updates received by a replica from a replication source server should be logged to the replica's
own binary log.

Normally, a replica does not log to its own binary log any updates that are received from a source.
Enabling this variable causes the replica to write the updates performed by its replication SQL thread to
its own binary log. For this option to have any effect, the replica must also be started with the --log-
bin option to enable binary logging. See Section 17.1.4, “Replication and Binary Logging Options and
Variables”. A warning is issued if you enable log_slave_updates without also starting the server with
the --log-bin option.

log_slave_updates is enabled when you want to chain replication servers. For example, you might
want to set up replication servers using this arrangement:

A -> B -> C

Here, A serves as the source for the replica B, and B serves as the source for the replica C. For this to
work, B must be both a source and a replica. You must start both A and B with --log-bin to enable
binary logging, and B with log_slave_updates enabled so that updates received from A are logged by
B to its binary log.

• master_verify_checksum

Command-Line Format --master-verify-checksum[={OFF|ON}]

System Variable master_verify_checksum

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Enabling this variable causes the source to verify events read from the binary log by examining
checksums, and to stop with an error in the event of a mismatch. master_verify_checksum is
disabled by default; in this case, the source uses the event length from the binary log to verify events, so
that only complete events are read from the binary log.

• max_binlog_cache_size

Command-Line Format --max-binlog-cache-size=#

System Variable max_binlog_cache_size

Scope Global

Dynamic Yes

Type Integer

Default Value 18446744073709547520

Minimum Value 4096
2497

Replication and Binary Logging Options and Variables

Maximum Value 18446744073709547520

Unit bytes

Block Size 4096

If a transaction requires more than this many bytes of memory, the server generates a Multi-
statement transaction required more than 'max_binlog_cache_size' bytes of
storage error. The minimum value is 4096. The maximum possible value is 16EB (exabytes). The
maximum recommended value is 4GB; this is due to the fact that MySQL currently cannot work with
binary log positions greater than 4GB.

max_binlog_cache_size sets the size for the transaction cache only; the upper limit for the statement
cache is governed by the max_binlog_stmt_cache_size system variable.

In MySQL 5.6, the visibility to sessions of max_binlog_cache_size matches that of the
binlog_cache_size system variable; in other words, changing its value effects only new sessions that
are started after the value is changed.

• max_binlog_size

Command-Line Format --max-binlog-size=#

System Variable max_binlog_size

Scope Global

Dynamic Yes

Type Integer

Default Value 1073741824

Minimum Value 4096

Maximum Value 1073741824

Unit bytes

Block Size 4096

If a write to the binary log causes the current log file size to exceed the value of this variable, the server
rotates the binary logs (closes the current file and opens the next one). The minimum value is 4096
bytes. The maximum and default value is 1GB.

A transaction is written in one chunk to the binary log, so it is never split between several binary logs.
Therefore, if you have big transactions, you might see binary log files larger than max_binlog_size.

If max_relay_log_size is 0, the value of max_binlog_size applies to relay logs as well.

• max_binlog_stmt_cache_size

Command-Line Format --max-binlog-stmt-cache-size=#

System Variable max_binlog_stmt_cache_size

Scope Global

Dynamic Yes

Type Integer

Default Value 18446744073709547520

Minimum Value 4096
2498

Replication and Binary Logging Options and Variables

Maximum Value 18446744073709547520

Unit bytes

Block Size 4096

If nontransactional statements within a transaction require more than this many bytes of memory, the
server generates an error. The minimum value is 4096. The maximum and default values are 4GB on
32-bit platforms and 16EB (exabytes) on 64-bit platforms.

max_binlog_stmt_cache_size sets the size for the statement cache only; the upper limit for the
transaction cache is governed exclusively by the max_binlog_cache_size system variable.

• sql_log_bin

System Variable sql_log_bin

Scope Session

Dynamic Yes

Type Boolean

Default Value ON

This variable controls whether logging to the binary log is enabled for the current session (assuming
that the binary log itself is enabled). The default value is ON. To disable or enable binary logging for the
current session, set the session sql_log_bin variable to OFF or ON.

Set this variable to OFF for a session to temporarily disable binary logging while making changes to the
source you do not want replicated to the replica.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

It is not possible to set the session value of sql_log_bin within a transaction or subquery.

Setting this variable to OFF prevents GTIDs from being assigned to transactions in the binary log. If you
are using GTIDs for replication, this means that, even when binary logging is later enabled once again,
the GTIDs written into the log from this point do not account for any transactions that occurred in the
meantime—in effect, those transactions are lost.

As of MySQL 5.6.22, the global sql_log_bin variable is read only and cannot be modified. The global
scope is deprecated; expect it to be removed in a future MySQL release. Prior to 5.6.22, sql_log_bin
can be set as a global or session variable. Setting sql_log_bin globally is only detected when a
new session is started. Any sessions previously running are not impacted when setting sql_log_bin
globally.

Warning

Incorrect use of sql_log_bin with a global scope means any changes made in
an already running session are still being recorded to the binary log and therefore
replicated. Exercise extreme caution using sql_log_bin with a global scope as
the above situation could cause unexpected results including replication failure.

• sync_binlog

Command-Line Format --sync-binlog=#
2499

Replication and Binary Logging Options and Variables

System Variable sync_binlog

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Controls how often the MySQL server synchronizes the binary log to disk.

• sync_binlog=0: Disables synchronization of the binary log to disk by the MySQL server. Instead,
the MySQL server relies on the operating system to flush the binary log to disk from time to time as it
does for any other file. This setting provides the best performance, but in the event of a power failure
or operating system crash, it is possible that the server has committed transactions that have not been
synchronized to the binary log.

• sync_binlog=1: Enables synchronization of the binary log to disk before transactions are
committed. This is the safest setting but can have a negative impact on performance due to
the increased number of disk writes. In the event of a power failure or operating system crash,
transactions that are missing from the binary log are only in a prepared state. This permits the
automatic recovery routine to roll back the transactions, which guarantees that no transaction is lost
from the binary log.

• sync_binlog=N, where N is a value other than 0 or 1: The binary log is synchronized to disk after
N binary log commit groups have been collected. In the event of a power failure or operating system
crash, it is possible that the server has committed transactions that have not been flushed to the
binary log. This setting can have a negative impact on performance due to the increased number of
disk writes. A higher value improves performance, but with an increased risk of data loss.

For the greatest possible durability and consistency in a replication setup that uses InnoDB with
transactions, use these settings:

• sync_binlog=1.

• innodb_flush_log_at_trx_commit=1.

Caution

Many operating systems and some disk hardware fool the flush-to-disk operation.
They may tell mysqld that the flush has taken place, even though it has not.
In this case, the durability of transactions is not guaranteed even with the
recommended settings, and in the worst case, a power outage can corrupt
InnoDB data. Using a battery-backed disk cache in the SCSI disk controller or in
the disk itself speeds up file flushes, and makes the operation safer. You can also
try to disable the caching of disk writes in hardware caches.

17.1.4.5 Global Transaction ID Options and Variables

• System Variables Used with GTID Replication

The MySQL Server system variables described in this section are used to monitor and control Global
Transaction Identifiers (GTIDs). For additional information, see Section 17.1.3, “Replication with Global
Transaction Identifiers”.

2500

Replication and Binary Logging Options and Variables

System Variables Used with GTID Replication

The following system variables are used with GTID-based replication:

• binlog_gtid_simple_recovery

Command-Line Format --binlog-gtid-simple-recovery[={OFF|
ON}]

Introduced 5.6.23

System Variable binlog_gtid_simple_recovery

Scope Global

Dynamic No

Type Boolean

Default Value OFF

This variable controls how binary log files are iterated during the search for GTIDs when MySQL starts or
restarts. In MySQL version 5.6.21, this variable was added as simplified_binlog_gtid_recovery
and in MySQL version 5.6.23 it was renamed to binlog_gtid_simple_recovery.

When binlog_gtid_simple_recovery=FALSE, the iteration starts from the newest file to initialize
gtid_executed, and starts from the oldest file to initialize gtid_purged. This process could take a
long time if you had a large number of binary log files without GTID events, for example created when
gtid_mode=OFF.

When binlog_gtid_simple_recovery=TRUE, the server does not open more than two binary logs
when iterating to populate gtid_purged and gtid_executed, either during server restart or when
binary logs are being purged.

Note

If this option is enabled, gtid_executed and gtid_purged may be initialized
incorrectly in the following situations:

• Some binary logs were generated when gtid_mode was ON, but gtid_mode
was OFF for the newest binary log.

• A SET GTID_PURGED statement was issued after the oldest existing binary log
was generated.

If an incorrect GTID set is computed in either situation, it remains incorrect even if
the server is later restarted, regardless of the value of this option.

• enforce_gtid_consistency

Command-Line Format --enforce-gtid-consistency[=value]

System Variable enforce_gtid_consistency

Scope Global

Dynamic No

Type Boolean

Default Value OFF

2501

Replication and Binary Logging Options and Variables

When this variable is true, the server enforces GTID consistency by allowing execution of only those
statements that can be logged in a transactionally safe manner. You must enable GTID consistency
(by enabling enforce_gtid_consistency) before you can start the server with gtid_mode=ON;
otherwise, enabling GTID mode fails with an error. You can (and should) enable GTID consistency prior
to using gtid_mode, in order to test whether the system is ready to use GTIDs.

Since only transactionally safe statements can be logged when enforce_gtid_consistency is true,
it follows that the operations listed here cannot be used when this is the case:

• CREATE TABLE ... SELECT statements

• CREATE TEMPORARY TABLE statements inside transactions

• Transactions or statements that update both transactional and nontransactional tables.

This variable is read-only at runtime and must be set at server startup.

Nontransactional DML statements involving temporary tables are allowed when using
binlog_format=ROW, as long as any nontransactional tables affected by the statements are temporary
tables (Bug #14272672).

In MySQL 5.6, it is possible but not recommended to run mysql_upgrade on a server where
gtid_mode=ON, since the MySQL system tables use the MyISAM storage engine, which is
nontransactional.

This option allows single statements updating nontransactional tables, which is intended chiefly for use
with programs such as mysql_install_db and mysql_upgrade. (Bug #14722659)

• gtid_executed

System Variable gtid_executed

Scope Global, Session

Dynamic No

Type String

2502

Replication and Binary Logging Options and Variables

Unit set of GTIDs

When used with global scope, this variable contains a representation of the set of all transactions that
are logged in the binary log. This is the same as the value of the Executed_Gtid_Set column in the
output of SHOW MASTER STATUS and SHOW SLAVE STATUS.

When used with session scope, this variable contains a representation of the set of transactions that are
written to the cache in the current session.

The set of transactions that can be found in the binary logs at any given time is equal to
GTID_SUBTRACT(@@GLOBAL.gtid_executed, @@GLOBAL.gtid_purged); that is, to all
transactions in the binary log that have not yet been purged.

When the server starts, @@GLOBAL.gtid_executed is initialized to the union of the following two sets:

• The GTIDs listed in the Previous_gtids_log_event of the newest binary log

• The GTIDs found in every Gtid_log_event in the newest binary log.

Thereafter, GTIDs are added to the set as transactions are executed.

Issuing RESET MASTER causes the global value (but not the session value) of this variable to be reset to
an empty string. GTIDs are not otherwise removed from this set other than when the set is cleared due
to RESET MASTER. The set is also cleared if the server is shut down and all binary logs are removed.

• gtid_mode

Command-Line Format --gtid-mode=MODE

System Variable gtid_mode

Scope Global

Dynamic No

Type Enumeration

Default Value OFF

Valid Values OFF

UPGRADE_STEP_1

UPGRADE_STEP_2

ON

This variable specifies whether global transaction identifiers (GTIDs) are used to identify transactions.
This variable is read-only at runtime and must be set at server startup.

Starting the server with gtid_mode=ON requires that the server also be started with the --log-bin, --
log-slave-updates, and --enforce-gtid-consistency options.

Setting this option to OFF when there are GTIDs in the binary log or in the relay log, or to ON when there
remain anonymous transactions to be executed, causes an error.

Important

This option does not employ boolean values; its values are in fact enumerated.
You should not attempt to use numeric values when setting this option, as

2503

Replication and Binary Logging Options and Variables

these may lead to unexpected results. The values UPGRADE_STEP_1 and
UPGRADE_STEP_2 are reserved for future use, but currently are not supported
in production; if you set gtid_mode to either of these two values, the server
refuses to start.

The values of gtid_purged and gtid_executed are not persistent while gtid_mode=off.
Therefore, after changing gtid_mode to OFF, once all binary logs containing GTIDs are purged, the
values of these variables are lost.

• gtid_next

System Variable gtid_next

Scope Session

Dynamic Yes

Type Enumeration

Default Value AUTOMATIC

Valid Values AUTOMATIC

ANONYMOUS

UUID:NUMBER

This variable is used to specify whether and how the next GTID is obtained.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See Section 5.1.8.1, “System Variable Privileges”.

gtid_next can take any of the following values:

• AUTOMATIC: Use the next automatically-generated global transaction ID.

• ANONYMOUS: Transactions do not have global identifiers, and are identified by file and position only.

• A global transaction ID in UUID:NUMBER format.

Setting this variable has no effect if gtid_mode is OFF.

Prior to MySQL 5.6.20, when GTIDs were enabled but gtid_next was not AUTOMATIC, DROP TABLE
did not work correctly when used on a combination of nontemporary tables with temporary tables, or
of temporary tables using transactional storage engines with temporary tables using nontransactional
storage engines. In MySQL 5.6.20 and higher, DROP TABLE or DROP TEMPORARY TABLE fails with an
explicit error when used with either of these combinations of tables. (Bug #17620053)

In MySQL 5.6.11 only, you cannot execute any of the statements CHANGE MASTER TO, START SLAVE,
STOP SLAVE, REPAIR TABLE, OPTIMIZE TABLE, ANALYZE TABLE, CHECK TABLE, CREATE
SERVER, ALTER SERVER, DROP SERVER, CACHE INDEX, LOAD INDEX INTO CACHE, FLUSH, or
RESET when gtid_next is set to any value other than AUTOMATIC; in such cases, the statement fails
with an error. Such statements are not disallowed in MySQL 5.6.12 and later. (Bug #16062608, Bug
#16715809, Bug #69045)

• gtid_owned

System Variable gtid_owned

Scope Global, Session

2504

Replication and Binary Logging Options and Variables

Dynamic No

Type String

Unit set of GTIDs

This read-only variable holds a list whose contents depend on its scope. When used with session scope,
the list holds all GTIDs that are owned by this client; when used with global scope, it holds a list of all
GTIDs along with their owners.

• gtid_purged

System Variable gtid_purged

Scope Global

Dynamic Yes

Type String

Unit set of GTIDs

The set of all transactions that have been purged from the binary log. This is a subset of the set of
transactions in gtid_executed.

When the server starts, the global value of gtid_purged is initialized to the set of GTIDs contained by
the Previous_gtid_log_event of the oldest binary log. When a binary log is purged, gtid_purged
is re-read from the binary log that has now become the oldest one.

To update the value of this variable, gtid_mode must be ON, gtid_executed must be the empty
string, and therefore gtid_purged is also the empty string. This can occur either when replication has
not been started previously, or when replication was not previously using GTIDs.

After executing SET gtid_purged, you should note down the current binary log file name, which can
be checked using SHOW MASTER STATUS. If the server is restarted before this file has been purged,
then you should use binlog_gtid_simple_recovery=0 (the default in 5.6) to avoid gtid_purged
or gtid_executed being computed incorrectly.

Issuing RESET MASTER causes the value of this variable to be reset to an empty string.

• simplified_binlog_gtid_recovery

Command-Line Format --simplified-binlog-gtid-
recovery[={OFF|ON}]

Introduced 5.6.21

Deprecated 5.6.23

System Variable simplified_binlog_gtid_recovery

Scope Global

Dynamic No

Type Boolean

Default Value OFF

This option is deprecated; expect it to be removed in a future MySQL release. Use the
binlog_gtid_simple_recovery variable to control how MySQL iterates through binary log files after
a crash.

2505

Common Replication Administration Tasks

17.1.5 Common Replication Administration Tasks

Once replication has been started it should execute without requiring much regular administration.
Depending on your replication environment, you should check the replication status of each slave
periodically, daily, or even more frequently.

17.1.5.1 Checking Replication Status

The most common task when managing a replication process is to ensure that replication is taking place
and that there have been no errors between the slave and the source. The primary statement for this is
SHOW SLAVE STATUS, which you must execute on each slave:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: source1
 Master_User: root
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000004
 Read_Master_Log_Pos: 931
 Relay_Log_File: slave1-relay-bin.000056
 Relay_Log_Pos: 950
 Relay_Master_Log_File: mysql-bin.000004
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 931
 Relay_Log_Space: 1365
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids: 0

The key fields from the status report to examine are:

• Slave_IO_State: The current status of the slave. See Section 8.14.7, “Replication Replica I/O Thread
States”, and Section 8.14.8, “Replication Replica SQL Thread States”, for more information.

• Slave_IO_Running: Whether the I/O thread for reading the source's binary log is running. Normally,
you want this to be Yes unless you have not yet started replication or have explicitly stopped it with STOP
SLAVE.

2506

Common Replication Administration Tasks

• Slave_SQL_Running: Whether the SQL thread for executing events in the relay log is running. As with
the I/O thread, this should normally be Yes.

• Last_IO_Error, Last_SQL_Error: The last errors registered by the I/O and SQL threads when
processing the relay log. Ideally these should be blank, indicating no errors.

• Seconds_Behind_Master: The number of seconds that the slave SQL thread is behind processing the
source's binary log. A high number (or an increasing one) can indicate that the slave is unable to handle
events from the source in a timely fashion.

A value of 0 for Seconds_Behind_Master can usually be interpreted as meaning that the slave has
caught up with the source, but there are some cases where this is not strictly true. For example, this can
occur if the network connection between source and slave is broken but the slave I/O thread has not yet
noticed this—that is, slave_net_timeout has not yet elapsed.

It is also possible that transient values for Seconds_Behind_Master may not reflect the situation
accurately. When the slave SQL thread has caught up on I/O, Seconds_Behind_Master displays 0;
but when the slave I/O thread is still queuing up a new event, Seconds_Behind_Master may show
a large value until the SQL thread finishes executing the new event. This is especially likely when the
events have old timestamps; in such cases, if you execute SHOW SLAVE STATUS several times in
a relatively short period, you may see this value change back and forth repeatedly between 0 and a
relatively large value.

Several pairs of fields provide information about the progress of the slave in reading events from the
source's binary log and processing them in the relay log:

• (Master_Log_file, Read_Master_Log_Pos): Coordinates in the source's binary log indicating how
far the slave I/O thread has read events from that log.

• (Relay_Master_Log_File, Exec_Master_Log_Pos): Coordinates in the source's binary log
indicating how far the slave SQL thread has executed events received from that log.

• (Relay_Log_File, Relay_Log_Pos): Coordinates in the slave relay log indicating how far the
slave SQL thread has executed the relay log. These correspond to the preceding coordinates, but are
expressed in the replica's relay log coordinates rather than the source's binary log coordinates.

The SHOW STATUS statement also provides some information relating specifically to replication slaves. The
replication heartbeat information displayed by SHOW STATUS lets you check that the replication connection
is active even if the source has not sent events to the slave recently. The source sends a heartbeat signal
to a slave if there are no updates to, and no unsent events in, the binary log for a longer period than the
heartbeat interval. The MASTER_HEARTBEAT_PERIOD setting on the source (set by the CHANGE MASTER
TO statement) specifies the frequency of the heartbeat, which defaults to half of the connection timeout
interval for the slave (slave_net_timeout). The Slave_last_heartbeat variable for SHOW STATUS
shows when the replication slave last received a heartbeat signal.

On the source, you can check the status of connected slaves using SHOW PROCESSLIST to examine the
list of running processes. Slave connections have Binlog Dump in the Command field:

mysql> SHOW PROCESSLIST \G;
*************************** 4. row ***************************
 Id: 10
 User: root
 Host: slave1:58371
 db: NULL
Command: Binlog Dump
 Time: 777
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL

2507

Replication Implementation

Because it is the slave that drives the replication process, very little information is available in this report.

For slaves that were started with the --report-host option and are connected to the source, the SHOW
SLAVE HOSTS statement on the source shows basic information about the slaves. The output includes the
ID of the slave server, the value of the --report-host option, the connecting port, and source ID:

mysql> SHOW SLAVE HOSTS;
+-----------+--------+------+-------------------+-----------+
| Server_id | Host | Port | Rpl_recovery_rank | Master_id |
+-----------+--------+------+-------------------+-----------+
| 10 | slave1 | 3306 | 0 | 1 |
+-----------+--------+------+-------------------+-----------+
1 row in set (0.00 sec)

17.1.5.2 Pausing Replication on the Slave

You can stop and start the replication of statements on the slave using the STOP SLAVE and START
SLAVE statements.

To stop processing of the binary log from the source, use STOP SLAVE:

mysql> STOP SLAVE;

When replication is stopped, the slave I/O thread stops reading events from the source's binary log and
writing them to the relay log, and the SQL thread stops reading events from the relay log and executing
them. You can pause the I/O or SQL thread individually by specifying the thread type:

mysql> STOP SLAVE IO_THREAD;
mysql> STOP SLAVE SQL_THREAD;

To start execution again, use the START SLAVE statement:

mysql> START SLAVE;

To start a particular thread, specify the thread type:

mysql> START SLAVE IO_THREAD;
mysql> START SLAVE SQL_THREAD;

For a slave that performs updates only by processing events from the source, stopping only the SQL
thread can be useful if you want to perform a backup or other task. The I/O thread continues to read events
from the source but they are not executed. This makes it easier for the slave to catch up when you restart
the SQL thread.

Stopping only the I/O thread enables the events in the relay log to be executed by the SQL thread up to
the point where the relay log ends. This can be useful when you want to pause execution to catch up with
events already received from the source, when you want to perform administration on the slave but also
ensure that it has processed all updates to a specific point. This method can also be used to pause event
receipt on the slave while you conduct administration on the source. Stopping the I/O thread but permitting
the SQL thread to run helps ensure that there is not a massive backlog of events to be executed when
replication is started again.

17.2 Replication Implementation
Replication is based on the replication source server keeping track of all changes to its databases
(updates, deletes, and so on) in its binary log. The binary log serves as a written record of all events that
modify database structure or content (data) from the moment the server was started. Typically, SELECT
statements are not recorded because they modify neither database structure nor content.

Each replica that connects to the replication source server requests a copy of the binary log. That is, it pulls
the data from the source, rather than the source pushing the data to the replica. The replica also executes

2508

Replication Threads

the events from the binary log that it receives. This has the effect of repeating the original changes just as
they were made on the source. Tables are created or their structure modified, and data is inserted, deleted,
and updated according to the changes that were originally made on the source.

Because each replica is independent, the replaying of the changes from the source's binary log occurs
independently on each replica that is connected to the source. In addition, because each replica receives a
copy of the binary log only by requesting it from the source, the replica is able to read and update the copy
of the database at its own pace and can start and stop the replication process at will without affecting the
ability to update to the latest database status on either the source or replica side.

For more information on the specifics of the replication implementation, see Section 17.2.1, “Replication
Threads”.

Sources and replicas report their status in respect of the replication process regularly so that you can
monitor them. See Section 8.14, “Examining Server Thread (Process) Information”, for descriptions of all
replicated-related states.

The source's binary log is written to a local relay log on the replica before it is processed. The replica also
records information about the current position with the source's binary log and the local relay log. See
Section 17.2.2, “Relay Log and Replication Metadata Repositories”.

Database changes are filtered on the replica according to a set of rules that are applied according to the
various configuration options and variables that control event evaluation. For details on how these rules are
applied, see Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”.

17.2.1 Replication Threads

MySQL replication capabilities are implemented using three main threads, one on the source server and
two on the replica:

• Binary log dump thread. The source creates a thread to send the binary log contents to a replica
when the replica connects. This thread can be identified in the output of SHOW PROCESSLIST on the
source as the Binlog Dump thread.

The binary log dump thread acquires a lock on the source's binary log for reading each event that is to
be sent to the replica. As soon as the event has been read, the lock is released, even before the event is
sent to the replica.

• Replication I/O thread. When a START SLAVE statement is issued on a replica server, the replica
creates an I/O thread, which connects to the source and asks it to send the updates recorded in its
binary logs.

The replication I/O thread reads the updates that the source's Binlog Dump thread sends (see previous
item) and copies them to local files that comprise the replica's relay log.

The state of this thread is shown as Slave_IO_running in the output of SHOW SLAVE STATUS.

• Replication SQL thread. The replica creates an SQL thread to read the relay log that is written by
the replication I/O thread and execute the transactions contained in it.

There are three main threads for each source/replica connection. A source that has multiple replicas
creates one binary log dump thread for each currently connected replica, and each replica has its own
replication I/O and SQL threads.

A replica uses two threads to separate reading updates from the source and executing them into
independent tasks. Thus, the task of reading transactions is not slowed down if the process of applying
them is slow. For example, if the replica server has not been running for a while, its I/O thread can quickly
fetch all the binary log contents from the source when the replica starts, even if the SQL thread lags far

2509

Replication Threads

behind. If the replica stops before the SQL thread has executed all the fetched statements, the I/O thread
has at least fetched everything so that a safe copy of the transactions is stored locally in the replica's relay
logs, ready for execution the next time that the replica starts.

You can enable further parallelization for tasks on a replica by setting the slave_parallel_workers
system variable to a value greater than 0 (the default). When this system variable is set, the replica creates
the specified number of worker threads to apply transactions, plus a coordinator thread to manage them.
A replica with slave_parallel_workers set to a value greater than 0 is called a multithreaded replica.
With this setup, transactions that fail can be retried.

Note

Multithreaded replicas are not currently supported by NDB Cluster, which silently
ignores the setting for this variable. See Section 18.7.3, “Known Issues in NDB
Cluster Replication” for more information.

17.2.1.1 Monitoring Replication Main Threads

The SHOW PROCESSLIST statement provides information that tells you what is happening on the source
and on the replica regarding replication. For information on source states, see Section 8.14.6, “Replication
Source Thread States”. For replica states, see Section 8.14.7, “Replication Replica I/O Thread States”, and
Section 8.14.8, “Replication Replica SQL Thread States”.

The following example illustrates how the three main replication threads, the binary log dump thread,
replicatin I/O thread, and replication SQL thread, show up in the output from SHOW PROCESSLIST.

On the source server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 2
 User: root
 Host: localhost:32931
 db: NULL
Command: Binlog Dump
 Time: 94
 State: Has sent all binlog to slave; waiting for binlog to
 be updated
 Info: NULL

Here, thread 2 is a Binlog Dump thread that services a connected replica. The State information
indicates that all outstanding updates have been sent to the replica and that the source is waiting for more
updates to occur. If you see no Binlog Dump threads on a source server, this means that replication is
not running; that is, no replicas are currently connected.

On a replica server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 10
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Waiting for master to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 11
 User: system user
 Host:
 db: NULL

2510

Replication Threads

Command: Connect
 Time: 11
 State: Has read all relay log; waiting for the slave I/O
 thread to update it
 Info: NULL

The State information indicates that thread 10 is the replication I/O thread that is communicating with
the source server, and thread 11 is the replication SQL thread that is processing the updates stored in
the relay logs. At the time that SHOW PROCESSLIST was run, both threads were idle, waiting for further
updates.

The value in the Time column can show how late the replica is compared to the source. See Section A.14,
“MySQL 5.6 FAQ: Replication”. If sufficient time elapses on the source side without activity on the Binlog
Dump thread, the source determines that the replica is no longer connected. As for any other client
connection, the timeouts for this depend on the values of net_write_timeout and net_retry_count;
for more information about these, see Section 5.1.7, “Server System Variables”.

The SHOW SLAVE STATUS statement provides additional information about replication processing on a
replica server. See Section 17.1.5.1, “Checking Replication Status”.

17.2.1.2 Monitoring Replication Applier Worker Threads

A multithreaded replica's coordinator thread prints statistics to the replica's error log on a regular basis
if the verbosity setting is set to display informational messages. The statistics are printed depending on
the volume of events that the coordinator thread has assigned to applier worker threads, with a maximum
frequency of once every 120 seconds. The message lists the following statistics:

Seconds elapsed The difference in seconds between the current time and the last time
this information was printed to the error log.

Events assigned The total number of events that the coordinator thread has queued to all
applier worker threads since the coordinator thread was started.

Worker queues filled over
overrun level

The current number of events that are queued to any of the applier
worker threads in excess of the overrun level, which is set at 90% of the
maximum queue length of 16384 events. If this value is zero, no applier
worker threads are operating at the upper limit of their capacity.

Waited due to worker queue full The number of times that the coordinator thread had to wait to schedule
an event because an applier worker thread's queue was full. If this value
is zero, no applier worker threads exhausted their capacity.

Waited due to the total size The number of times that the coordinator thread had to wait to schedule
an event because the slave_pending_jobs_size_max limit had
been reached. This system variable sets the maximum amount of
memory (in bytes) available to applier worker thread queues holding
events not yet applied. If an unusually large event exceeds this size,
the transaction is held until all the applier worker threads have empty
queues, and then processed. All subsequent transactions are held until
the large transaction has been completed.

Waited at clock conflicts The number of nanoseconds that the coordinator thread had to wait
to schedule an event because a transaction that the event depended
on had not yet been committed. If slave_parallel_type is set to
DATABASE (rather than LOGICAL_CLOCK), this value is always zero.

Waited (count) when workers
occupied

The number of times that the coordinator thread slept for a short
period, which it might do in two situations. The first situation is where

2511

https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_parallel_type

Relay Log and Replication Metadata Repositories

the coordinator thread assigns an event and finds the applier worker
thread's queue is filled beyond the underrun level of 10% of the
maximum queue length, in which case it sleeps for a maximum of 1
millisecond. The second situation is where slave_parallel_type is
set to LOGICAL_CLOCK and the coordinator thread needs to assign the
first event of a transaction to an applier worker thread's queue, it only
does this to a worker with an empty queue, so if no queues are empty,
the coordinator thread sleeps until one becomes empty.

Waited when workers occupied The number of nanoseconds that the coordinator thread slept while
waiting for an empty applier worker thread queue (that is, in the second
situation described above, where slave_parallel_type is set
to LOGICAL_CLOCK and the first event of a transaction needs to be
assigned).

17.2.2 Relay Log and Replication Metadata Repositories

A replica server creates several repositories of information to use for the replication process:

• The replica's relay log, which is written by the replication I/O thread, contains the transactions read from
the replication source server's binary log. The transactions in the relay log are applied on the replica by
the replication SQL thread. For information about the relay log, see Section 17.2.2.1, “The Relay Log”.

• The replica's connection metadata repository contains information that the replication I/O thread
needs to connect to the replication source server and retrieve transactions from the source's
binary log. The connection metadata repository is written to the master.info file or to the
mysql.slave_master_info table.

• The replica's applier metadata repository contains information that the replication SQL thread needs to
read and apply transactions from the replica's relay log. The applier metadata repository is written to the
relay-log.info file or to the mysql.slave_relay_log_info table.

The connection metadata repository and applier metadata repository are collectively known as the
replication metadata repositories. For information about these, see Section 17.2.2.2, “Replication Metadata
Repositories”.

The mysql.slave_master_info and mysql.slave_relay_log_info tables are created using
the transactional storage engine InnoDB. Updates to the replica's applier metadata repository table are
committed together with the transactions, meaning that the replica's progress information recorded in
that repository is always consistent with what has been applied to the database, even in the event of
an unexpected server halt. The --relay-log-recovery option must be enabled on the replica to
guarantee resilience. For more details, see Section 17.3.2, “Handling an Unexpected Halt of a Replica
Server”.

17.2.2.1 The Relay Log

The relay log, like the binary log, consists of a set of numbered files containing events that describe
database changes, and an index file that contains the names of all used relay log files.

The term “relay log file” generally denotes an individual numbered file containing database events. The
term “relay log” collectively denotes the set of numbered relay log files plus the index file.

Relay log files have the same format as binary log files and can be read using mysqlbinlog (see
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”).

By default, relay log file names have the form host_name-relay-bin.nnnnnn in the data directory,
where host_name is the name of the replica server host and nnnnnn is a sequence number. Successive

2512

https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_parallel_type
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_parallel_type

Relay Log and Replication Metadata Repositories

relay log files are created using successive sequence numbers, beginning with 000001. The replica
uses an index file to track the relay log files currently in use. The default relay log index file name is
host_name-relay-bin.index in the data directory.

The default relay log file and relay log index file names can be overridden with, respectively, the
relay_log and relay_log_index system variables (see Section 17.1.4, “Replication and Binary
Logging Options and Variables”).

If a replica uses the default host-based relay log file names, changing the replica server's host name after
replication has been set up can cause replication to fail with the errors Failed to open the relay
log and Could not find target log during relay log initialization. This is a known
issue (see Bug #2122). If you anticipate that a replica's host name might change in the future (for example,
if networking is set up on the replica such that its host name can be modified using DHCP), you can avoid
this issue entirely by using the relay_log and relay_log_index system variables to specify relay log
file names explicitly when you initially set up the replica. This makes the names independent of server host
name changes.

If you encounter the issue after replication has already begun, one way to work around it is to stop the
replica server, prepend the contents of the old relay log index file to the new one, and then restart the
replica. On a Unix system, this can be done as shown here:

$> cat new_relay_log_name.index >> old_relay_log_name.index
$> mv old_relay_log_name.index new_relay_log_name.index

A replica server creates a new relay log file under the following conditions:

• Each time the I/O thread starts.

• When the logs are flushed (for example, with FLUSH LOGS or mysqladmin flush-logs).

• When the size of the current relay log file becomes “too large,” determined as follows:

• If the value of max_relay_log_size is greater than 0, that is the maximum relay log file size.

• If the value of max_relay_log_size is 0, max_binlog_size determines the maximum relay log
file size.

The SQL thread automatically deletes each relay log file after it has executed all events in the file and no
longer needs it. There is no explicit mechanism for deleting relay logs because the SQL thread takes care
of doing so. However, FLUSH LOGS rotates relay logs, which influences when the SQL thread deletes
them.

17.2.2.2 Replication Metadata Repositories

A replica server creates two replication metadata repositories, the connection metadata repository and the
applier metadata repository. The replication metadata repositories survive a replica server's shutdown. If
binary log file position based replication is in use, when the replica restarts, it reads the two repositories to
determine how far it previously proceeded in reading the binary log from the source and in processing its
own relay log.

• The replica's connection metadata repository contains information that the replication I/O thread needs
to connect to the replication source server and retrieve transactions from the source's binary log. The
metadata in this repository includes the connection configuration, the replication user account details,
the SSL settings for the connection, and the file name and position where the replication I/O thread is
currently reading from the source's binary log.

• The replica's applier metadata repository contains information that the replication SQL thread needs to
read and apply transactions from the replica's relay log. The metadata in this repository includes the file

2513

Relay Log and Replication Metadata Repositories

name and position up to which the replication SQL thread has executed the transactions in the relay
log, and the equivalent position in the source's binary log. It also includes metadata for the process of
applying transactions, such as the number of worker threads.

By default, the replication metadata repositories are created as files in the data directory named
master.info and relay-log.info, or with alternative names and locations specified by the
--master-info-file option and relay_log_info_file system variable. To create the
replication metadata repositories as tables, specify master_info_repository=TABLE and
relay_log_info_repository=TABLE at server startup. In that case, the replica's connection metadata
repository is written to the slave_master_info table in the mysql system schema, and the replica's
applier metadata repository is written to the slave_relay_log_info table in the mysql system schema.
A warning message is issued if mysqld is unable to initialize the tables for the replication metadata
repositories, but the replica is allowed to continue starting. This situation is most likely to occur when
upgrading from a version of MySQL that does not support the use of tables for the repositories to one in
which they are supported.

Important

1. Do not attempt to update or insert rows in the mysql.slave_master_info
or mysql.slave_relay_log_info tables manually. Doing so can cause
undefined behavior, and is not supported. Execution of any statement
requiring a write lock on either or both of the slave_master_info and
slave_relay_log_info tables is disallowed while replication is ongoing
(although statements that perform only reads are permitted at any time).

2. Access to the replica's connection metadata repository file or table should be
restricted to the database administrator, because it contains the replication
user account name and password for connecting to the source. Use a restricted
access mode to protect database backups that include this repository.

RESET SLAVE clears the data in the replication metadata repositories, with the exception of the replication
connection parameters (depending on the MySQL Server release and repository type). For details, see the
description for RESET SLAVE.

In MySQL 5.6.5 and earlier, the slave_master_info and slave_relay_log_info tables used
MyISAM by default, which meant that it was necessary before starting replication to change the storage
engine used by these tables by issuing ALTER TABLE ... ENGINE=InnoDB, as shown here:

ALTER TABLE mysql.slave_master_info ENGINE=InnoDB;
ALTER TABLE mysql.slave_relay_log_info ENGINE=InnoDB;

The ALTER TABLE statements must be executed by the MySQL root or other user account with the
appropriate privileges on the mysql system database. You should not attempt to do this while replication
is running; beginning with MySQL 5.6.3, trying to execute an ALTER TABLE on either these tables while
replication is ongoing is disallowed.

From MySQL 5.6.6, if you set master_info_repository and relay_log_info_repository to
TABLE, the mysql.slave_master_info and mysql.slave_relay_log_info tables are created
using the InnoDB transactional storage engine. As a table, updates to the replica's applier metadata
repository are committed together with the transactions, meaning that the replica's progress information
recorded in that log is always consistent with what has been applied to the database, even in the event
of an unexpected server halt. The --relay-log-recovery option must be enabled on the replica to
guarantee resilience. For more details, see Section 17.3.2, “Handling an Unexpected Halt of a Replica
Server”.

When you back up the replica's data or transfer a snapshot of its data to create a new replica, ensure that
you include the mysql.slave_master_info and mysql.slave_relay_log_info tables containing

2514

Relay Log and Replication Metadata Repositories

the replication metadata repositories, or the equivalent files (master.info and relay-log.info in the
data directory, unless you specified alternative names and locations). When binary log file position based
replication is in use, the replication metadata repositories are needed to resume replication after restarting
the restored or copied replica. If you do not have the relay log files, but still have the replica's applier
metadata repository, you can check it to determine how far the replication SQL thread has executed in the
source's binary log. Then you can use a CHANGE MASTER TO statement with the MASTER_LOG_FILE
and MASTER_LOG_POS options to tell the replica to re-read the binary logs from the source from that point
(provided that the required binary logs still exist on the source).

One additional repository, the applier worker metadata repository, is created primarily for internal use, and
holds status information about worker threads on a multithreaded replica. The applier worker metadata
repository includes the names and positions for the relay log file and the source's binary log file for each
worker thread. If the replica's applier metadata repository is created as a table, which is the default,
the applier worker metadata repository is written to the mysql.slave_worker_info table. If the
applier metadata repository is written to a file, the applier worker metadata repository is written to the
worker-relay-log.info file. For external use, status information for worker threads is presented in the
Performance Schema replication_applier_status_by_worker table.

The replication metadata repositories originally contained information similar to that shown in the output
of the SHOW SLAVE STATUS statement, which is discussed in Section 13.4.2, “SQL Statements for
Controlling Replica Servers”. Further information has since been added to the replication metadata
repositories which is not displayed by the SHOW SLAVE STATUS statement.

For the connection metadata repository, the following table shows the correspondence between the
columns in the mysql.slave_master_info table, the columns displayed by SHOW SLAVE STATUS,
and the lines in the master.info file.

master.info File Line slave_master_info
Table Column

SHOW SLAVE STATUS
Column

Description

1 Number_of_lines [None] Number of lines in the
file, or columns in the
table

2 Master_log_name Master_Log_File The name of the binary
log currently being read
from the source

3 Master_log_pos Read_Master_Log_Pos The current position
within the binary log that
has been read from the
source

4 Host Master_Host The host name of the
source server

5 User_name Master_User The replication user
name used to connect to
the source

6 User_password Password (not shown by
SHOW SLAVE STATUS)

The password used to
connect to the source

7 Port Master_Port The network port used to
connect to the source

8 Connect_retry Connect_Retry The period (in seconds)
that the replica waits
before trying to reconnect
to the source

2515

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-replication-applier-status-by-worker-table.html

Relay Log and Replication Metadata Repositories

master.info File Line slave_master_info
Table Column

SHOW SLAVE STATUS
Column

Description

9 Enabled_ssl Master_SSL_Allowed Indicates whether the
server supports SSL
connections

10 Ssl_ca Master_SSL_CA_File The file used for the
Certificate Authority (CA)
certificate

11 Ssl_capath Master_SSL_CA_Path The path to the
Certificate Authority (CA)
certificates

12 Ssl_cert Master_SSL_Cert The name of the SSL
certificate file

13 Ssl_cipher Master_SSL_Cipher The list of possible
ciphers used in the
handshake for the SSL
connection

14 Ssl_key Master_SSL_Key The name of the SSL key
file

15 Ssl_verify_server_certMaster_SSL_Verify_Server_CertWhether to verify the
server certificate

16 Heartbeat [None] Interval between
replication heartbeats, in
seconds

17 Bind Master_Bind Which of the replica's
network interfaces should
be used for connecting to
the source

18 Ignored_server_ids Replicate_Ignore_Server_IdsThe list of server IDs to
be ignored. Note that for
Ignored_server_ids
the list of server IDs is
preceded by the total
number of server IDs to
ignore.

19 Uuid Master_UUID The source's unique ID

20 Retry_count Master_Retry_Count Maximum number of
reconnection attempts
permitted

21 Ssl_crl [None] Path to an SSL certificate
revocation-list file

22 Ssl_crl_path [None] Path to a directory
containing SSL certificate
revocation-list files

23 Enabled_auto_positionAuto_position If autopositioning is in
use or not (added in
MySQL version 5.6.5)

2516

Relay Log and Replication Metadata Repositories

For the applier metadata repository, the following table shows the correspondence between the columns
in the mysql.slave_relay_log_info table, the columns displayed by SHOW SLAVE STATUS, and the
lines in the relay-log.info file.

Line in relay-
log.info

slave_relay_log_info
Table Column

SHOW SLAVE STATUS
Column

Description

1 Number_of_lines [None] Number of lines in the file
or columns in the table

2 Relay_log_name Relay_Log_File The name of the current
relay log file

3 Relay_log_pos Relay_Log_Pos The current position
within the relay log file;
events up to this position
have been executed on
the replica database

4 Master_log_name Relay_Master_Log_FileThe name of the source's
binary log file from which
the events in the relay log
file were read

5 Master_log_pos Exec_Master_Log_Pos The equivalent position
within the source's
binary log file of events
that have already been
executed

5 Sql_delay SQL_Delay The number of seconds
that the replica must lag
the source

6 Number_of_workers [None] The number of worker
threads on the replica
for executing replication
events (transactions) in
parallel

7 Id [None] ID used for internal
purposes; currently this is
always 1

Prior to MySQL 5.6, the relay-log.info file does not include a line count or a delay value (and the
slave_relay_log_info table is not available).

Line Status Column Description

1 Relay_Log_File The name of the current relay log
file

2 Relay_Log_Pos The current position within the
relay log file; events up to this
position have been executed on
the replica database

3 Relay_Master_Log_File The name of the source's binary
log file from which the events in
the relay log file were read

2517

How Servers Evaluate Replication Filtering Rules

Line Status Column Description

4 Exec_Master_Log_Pos The equivalent position within the
source's binary log file of events
that have already been executed

Note

If you downgrade a replica server to a version older than MySQL 5.6, the older
server does not read the relay-log.info file correctly. To address this, modify
the file in a text editor by deleting the initial line containing the number of lines.

The contents of the relay-log.info file and the states shown by the SHOW SLAVE STATUS statement
might not match if the relay-log.info file has not been flushed to disk. Ideally, you should only view
relay-log.info on a replica that is offline (that is, mysqld is not running). For a running system, you
can use SHOW SLAVE STATUS, or query the slave_master_info and slave_relay_log_info
tables if you are writing the replication metadata repositories to tables.

17.2.3 How Servers Evaluate Replication Filtering Rules

If a replication source server does not write a statement to its binary log, the statement is not replicated.
If the server does log the statement, the statement is sent to all replicas and each replica determines
whether to execute it or ignore it.

On the source, you can control which databases to log changes for by using the --binlog-do-db and
--binlog-ignore-db options to control binary logging. For a description of the rules that servers use
in evaluating these options, see Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary
Logging Options”. You should not use these options to control which databases and tables are replicated.
Instead, use filtering on the replica to control the events that are executed on the replica.

On the replica side, decisions about whether to execute or ignore statements received from the source are
made according to the --replicate-* options that the replica was started with. (See Section 17.1.4,
“Replication and Binary Logging Options and Variables”.)

In the simplest case, when there are no --replicate-* options, the replica executes all statements that
it receives from the source. Otherwise, the result depends on the particular options given.

Database-level options (--replicate-do-db, --replicate-ignore-db) are checked first; see
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”, for a description
of this process. If no database-level options are used, option checking proceeds to any table-level options
that may be in use (see Section 17.2.3.2, “Evaluation of Table-Level Replication Options”, for a discussion
of these). If one or more database-level options are used but none are matched, the statement is not
replicated.

For statements affecting databases only (that is, CREATE DATABASE, DROP DATABASE, and ALTER
DATABASE), database-level options always take precedence over any --replicate-wild-do-table
options. In other words, for such statements, --replicate-wild-do-table options are checked if
and only if there are no database-level options that apply. This is a change in behavior from previous
versions of MySQL, where the statement CREATE DATABASE dbx was not replicated if the replica had
been started with --replicate-do-db=dbx --replicate-wild-do-table=db%.t1. (Bug #46110)

To make it easier to determine what effect an option set has, it is recommended that you avoid mixing *-
do-* and *-ignore-* options, or wildcard options with options that do not employ wildcards.

If any --replicate-rewrite-db options were specified, they are applied before the --replicate-*
filtering rules are tested.

2518

How Servers Evaluate Replication Filtering Rules

Note

In MySQL 5.6, all replication filtering options follow the same rules for case
sensitivity that apply to names of databases and tables elsewhere in the MySQL
server, including the effects of the lower_case_table_names system variable.

This is a change from previous versions of MySQL. (Bug #51639)

17.2.3.1 Evaluation of Database-Level Replication and Binary Logging Options

When evaluating replication options, the replica begins by checking to see whether there are any --
replicate-do-db or --replicate-ignore-db options that apply. When using --binlog-do-db or
--binlog-ignore-db, the process is similar, but the options are checked on the source.

The database that is checked for a match depends on the binary log format of the statement that is being
handled. If the statement has been logged using the row format, the database where data is to be changed
is the database that is checked. If the statement has been logged using the statement format, the default
database (specified with a USE statement) is the database that is checked.

Note

Only DML statements can be logged using the row format. DDL statements
are always logged as statements, even when binlog_format=ROW. All DDL
statements are therefore always filtered according to the rules for statement-based
replication. This means that you must select the default database explicitly with a
USE statement in order for a DDL statement to be applied.

For replication, the steps involved are listed here:

1. Which logging format is used?

• STATEMENT. Test the default database.

• ROW. Test the database affected by the changes.

2. Are there any --replicate-do-db options?

• Yes. Does the database match any of them?

• Yes. Continue to Step 4.

• No. Ignore the update and exit.

• No. Continue to step 3.

3. Are there any --replicate-ignore-db options?

• Yes. Does the database match any of them?

• Yes. Ignore the update and exit.

• No. Continue to step 4.

• No. Continue to step 4.

4. Proceed to checking the table-level replication options, if there are any. For a description of how these
options are checked, see Section 17.2.3.2, “Evaluation of Table-Level Replication Options”.

2519

How Servers Evaluate Replication Filtering Rules

Important

A statement that is still permitted at this stage is not yet actually executed. The
statement is not executed until all table-level options (if any) have also been
checked, and the outcome of that process permits execution of the statement.

For binary logging, the steps involved are listed here:

1. Are there any --binlog-do-db or --binlog-ignore-db options?

• Yes. Continue to step 2.

• No. Log the statement and exit.

2. Is there a default database (has any database been selected by USE)?

• Yes. Continue to step 3.

• No. Ignore the statement and exit.

3. There is a default database. Are there any --binlog-do-db options?

• Yes. Do any of them match the database?

• Yes. Log the statement and exit.

• No. Ignore the statement and exit.

• No. Continue to step 4.

4. Do any of the --binlog-ignore-db options match the database?

• Yes. Ignore the statement and exit.

• No. Log the statement and exit.

Important

For statement-based logging, an exception is made in the rules just given for the
CREATE DATABASE, ALTER DATABASE, and DROP DATABASE statements. In
those cases, the database being created, altered, or dropped replaces the default
database when determining whether to log or ignore updates.

--binlog-do-db can sometimes mean “ignore other databases”. For example, when using statement-
based logging, a server running with only --binlog-do-db=sales does not write to the binary log
statements for which the default database differs from sales. When using row-based logging with the
same option, the server logs only those updates that change data in sales.

17.2.3.2 Evaluation of Table-Level Replication Options

The replica checks for and evaluates table options only if either of the following two conditions is true:

• No matching database options were found.

• One or more database options were found, and were evaluated to arrive at an “execute” condition
according to the rules described in the previous section (see Section 17.2.3.1, “Evaluation of Database-
Level Replication and Binary Logging Options”).

2520

How Servers Evaluate Replication Filtering Rules

First, as a preliminary condition, the replica checks whether statement-based replication is enabled. If so,
and the statement occurs within a stored function, the replica executes the statement and exits. If row-
based replication is enabled, the replica does not know whether a statement occurred within a stored
function on the source, so this condition does not apply.

Note

For statement-based replication, replication events represent statements (all
changes making up a given event are associated with a single SQL statement); for
row-based replication, each event represents a change in a single table row (thus
a single statement such as UPDATE mytable SET mycol = 1 may yield many
row-based events). When viewed in terms of events, the process of checking table
options is the same for both row-based and statement-based replication.

Having reached this point, if there are no table options, the replica simply executes all events. If there are
any --replicate-do-table or --replicate-wild-do-table options, the event must match one of
these if it is to be executed; otherwise, it is ignored. If there are any --replicate-ignore-table or --
replicate-wild-ignore-table options, all events are executed except those that match any of these
options.

The following steps describe this evaluation in more detail. The starting point is the end of the evaluation
of the database-level options, as described in Section 17.2.3.1, “Evaluation of Database-Level Replication
and Binary Logging Options”.

1. Are there any table replication options?

• Yes. Continue to step 2.

• No. Execute the update and exit.

2. Which logging format is used?

• STATEMENT. Carry out the remaining steps for each statement that performs an update.

• ROW. Carry out the remaining steps for each update of a table row.

3. Are there any --replicate-do-table options?

• Yes. Does the table match any of them?

• Yes. Execute the update and exit.

• No. Continue to step 4.

• No. Continue to step 4.

4. Are there any --replicate-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the update and exit.

• No. Continue to step 5.

• No. Continue to step 5.

5. Are there any --replicate-wild-do-table options?

2521

How Servers Evaluate Replication Filtering Rules

• Yes. Does the table match any of them?

• Yes. Execute the update and exit.

• No. Continue to step 6.

• No. Continue to step 6.

6. Are there any --replicate-wild-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the update and exit.

• No. Continue to step 7.

• No. Continue to step 7.

7. Is there another table to be tested?

• Yes. Go back to step 3.

• No. Continue to step 8.

8. Are there any --replicate-do-table or --replicate-wild-do-table options?

• Yes. Ignore the update and exit.

• No. Execute the update and exit.

Note

Statement-based replication stops if a single SQL statement operates on both a
table that is included by a --replicate-do-table or --replicate-wild-
do-table option, and another table that is ignored by a --replicate-ignore-
table or --replicate-wild-ignore-table option. The replica must either
execute or ignore the complete statement (which forms a replication event), and
it cannot logically do this. This also applies to row-based replication for DDL
statements, because DDL statements are always logged as statements, without
regard to the logging format in effect. The only type of statement that can update
both an included and an ignored table and still be replicated successfully is a DML
statement that has been logged with binlog_format=ROW.

17.2.3.3 Interactions Between Replication Filtering Options

If you use a combination of database-level and table-level replication filtering options, the replica first
accepts or ignores events using the database options, then it evaluates all events permitted by those
options according to the table options. This can sometimes lead to results that seem counterintuitive. It is
also important to note that the results vary depending on whether the operation is logged using statement-
based or row-based binary logging format. If you want to be sure that your replication filters always operate
in the same way independently of the binary logging format, which is particularly important if you are using
mixed binary logging format, follow the guidance in this topic.

The effect of the replication filtering options differs between binary logging formats because of the way
the database name is identified. With statement-based format, DML statements are handled based on the
current database, as specified by the USE statement. With row-based format, DML statements are handled

2522

How Servers Evaluate Replication Filtering Rules

based on the database where the modified table exists. DDL statements are always filtered based on the
current database, as specified by the USE statement, regardless of the binary logging format.

An operation that involves multiple tables can also be affected differently by replication filtering options
depending on the binary logging format. Operations to watch out for include transactions involving multi-
table UPDATE statements, triggers, cascading foreign keys, stored functions that update multiple tables,
and DML statements that invoke stored functions that update one or more tables. If these operations
update both filtered-in and filtered-out tables, the results can vary with the binary logging format.

If you need to guarantee that your replication filters operate consistently regardless of the binary logging
format, particularly if you are using mixed binary logging format (binlog_format=MIXED), use only table-
level replication filtering options, and do not use database-level replication filtering options. Also, do not
use multi-table DML statements that update both filtered-in and filtered-out tables.

If you need to use a combination of database-level and table-level replication filters, and want these to
operate as consistently as possible, choose one of the following strategies:

1. If you use row-based binary logging format (binlog_format=ROW), for DDL statements, rely on
the USE statement to set the database and do not specify the database name. You can consider
changing to row-based binary logging format for improved consistency with replication filtering. See
Section 5.4.4.2, “Setting The Binary Log Format” for the conditions that apply to changing the binary
logging format.

2. If you use statement-based or mixed binary logging format (binlog_format=STATEMENT or MIXED),
for both DML and DDL statements, rely on the USE statement and do not use the database name. Also,
do not use multi-table DML statements that update both filtered-in and filtered-out tables.

Example 17.1 A --replicate-ignore-db option and a --replicate-do-table option

On the replication source server, the following statements are issued:

USE db1;
CREATE TABLE t2 LIKE t1;
INSERT INTO db2.t3 VALUES (1);

The replica has the following replication filtering options set:

replicate-ignore-db = db1
replicate-do-table = db2.t3

The DDL statement CREATE TABLE creates the table in db1, as specified by the preceding USE
statement. The replica filters out this statement according to its --replicate-ignore-db = db1
option, because db1 is the current database. This result is the same whatever the binary logging format is
on the replication source server. However, the result of the DML INSERT statement is different depending
on the binary logging format:

• If row-based binary logging format is in use on the source (binlog_format=ROW), the replica evaluates
the INSERT operation using the database where the table exists, which is named as db2. The database-
level option --replicate-ignore-db = db1, which is evaluated first, therefore does not apply. The
table-level option --replicate-do-table = db2.t3 does apply, so the replica applies the change
to table t3.

• If statement-based binary logging format is in use on the source (binlog_format=STATEMENT), the
replica evaluates the INSERT operation using the default database, which was set by the USE statement
to db1 and has not been changed. According to its database-level --replicate-ignore-db = db1
option, it therefore ignores the operation and does not apply the change to table t3. The table-level
option --replicate-do-table = db2.t3 is not checked, because the statement already matched a
database-level option and was ignored.

2523

Replication Solutions

If the --replicate-ignore-db = db1 option on the replica is necessary, and the use of statement-
based (or mixed) binary logging format on the source is also necessary, the results can be made
consistent by omitting the database name from the INSERT statement and relying on a USE statement
instead, as follows:

USE db1;
CREATE TABLE t2 LIKE t1;
USE db2;
INSERT INTO t3 VALUES (1);

In this case, the replica always evaluates the INSERT statement based on the database db2. Whether the
operation is logged in statement-based or row-based binary format, the results remain the same.

17.3 Replication Solutions

Replication can be used in many different environments for a range of purposes. This section provides
general notes and advice on using replication for specific solution types.

For information on using replication in a backup environment, including notes on the setup, backup
procedure, and files to back up, see Section 17.3.1, “Using Replication for Backups”.

For advice and tips on using different storage engines on the source and replicas, see Section 17.3.3,
“Using Replication with Different Source and Replica Storage Engines”.

Using replication as a scale-out solution requires some changes in the logic and operation of applications
that use the solution. See Section 17.3.4, “Using Replication for Scale-Out”.

For performance or data distribution reasons, you may want to replicate different databases to different
replicas. See Section 17.3.5, “Replicating Different Databases to Different Replicas”

As the number of replicas increases, the load on the source can increase and lead to reduced performance
(because of the need to replicate the binary log to each replica). For tips on improving your replication
performance, including using a single secondary server as a replication source server, see Section 17.3.6,
“Improving Replication Performance”.

For guidance on switching sources, or converting replicas into sources as part of an emergency failover
solution, see Section 17.3.7, “Switching Sources During Failover”.

To secure your replication communication, you can encrypt the communication channel. For step-by-step
instructions, see Section 17.3.8, “Setting Up Replication to Use Encrypted Connections”.

17.3.1 Using Replication for Backups

To use replication as a backup solution, replicate data from the source to a replica, and then back up the
replica. The replica can be paused and shut down without affecting the running operation of the source,
so you can produce an effective snapshot of “live” data that would otherwise require the source to be shut
down.

How you back up a database depends on its size and whether you are backing up only the data, or the
data and the replica state so that you can rebuild the replica in the event of failure. There are therefore two
choices:

• If you are using replication as a solution to enable you to back up the data on the source, and the size of
your database is not too large, the mysqldump tool may be suitable. See Section 17.3.1.1, “Backing Up
a Replica Using mysqldump”.

2524

Using Replication for Backups

• For larger databases, where mysqldump would be impractical or inefficient, you can back up the raw
data files instead. Using the raw data files option also means that you can back up the binary and relay
logs that enable you to recreate the replica in the event of a replica failure. For more information, see
Section 17.3.1.2, “Backing Up Raw Data from a Replica”.

Another backup strategy, which can be used for either source or replica servers, is to put the server in a
read-only state. The backup is performed against the read-only server, which then is changed back to its
usual read/write operational status. See Section 17.3.1.3, “Backing Up a Source or Replica by Making It
Read Only”.

17.3.1.1 Backing Up a Replica Using mysqldump

Using mysqldump to create a copy of a database enables you to capture all of the data in the database
in a format that enables the information to be imported into another instance of MySQL Server (see
Section 4.5.4, “mysqldump — A Database Backup Program”). Because the format of the information is
SQL statements, the file can easily be distributed and applied to running servers in the event that you need
access to the data in an emergency. However, if the size of your data set is very large, mysqldump may
be impractical.

When using mysqldump, you should stop replication on the replica before starting the dump process to
ensure that the dump contains a consistent set of data:

1. Stop the replica from processing requests. You can stop replication completely on the replica using
mysqladmin:

$> mysqladmin stop-slave

Alternatively, you can stop only the replication SQL thread to pause event execution:

$> mysql -e 'STOP SLAVE SQL_THREAD;'

This enables the replica to continue to receive data change events from the source's binary log and
store them in the relay logs using the I/O thread, but prevents the replica from executing these events
and changing its data. Within busy replication environments, permitting the I/O thread to run during
backup may speed up the catch-up process when you restart the replication SQL thread.

2. Run mysqldump to dump your databases. You may either dump all databases or select databases to
be dumped. For example, to dump all databases:

$> mysqldump --all-databases > fulldb.dump

3. Once the dump has completed, start replication operations again:

$> mysqladmin start-slave

In the preceding example, you may want to add login credentials (user name, password) to the commands,
and bundle the process up into a script that you can run automatically each day.

If you use this approach, make sure you monitor the replication process to ensure that the time taken
to run the backup does not affect the replica's ability to keep up with events from the source. See
Section 17.1.5.1, “Checking Replication Status”. If the replica is unable to keep up, you may want to add
another replica and distribute the backup process. For an example of how to configure this scenario, see
Section 17.3.5, “Replicating Different Databases to Different Replicas”.

17.3.1.2 Backing Up Raw Data from a Replica

To guarantee the integrity of the files that are copied, backing up the raw data files on your replica should
take place while the replica server is shut down. If the MySQL server is still running, background tasks may

2525

Using Replication for Backups

still be updating the database files, particularly those involving storage engines with background processes
such as InnoDB. With InnoDB, these problems should be resolved during crash recovery, but since the
replica server can be shut down during the backup process without affecting the execution of the source it
makes sense to take advantage of this capability.

To shut down the server and back up the files:

1. Shut down the replica MySQL server:

$> mysqladmin shutdown

2. Copy the data files. You can use any suitable copying or archive utility, including cp, tar or WinZip.
For example, assuming that the data directory is located under the current directory, you can archive
the entire directory as follows:

$> tar cf /tmp/dbbackup.tar ./data

3. Start the MySQL server again. Under Unix:

$> mysqld_safe &

Under Windows:

C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld"

Normally you should back up the entire data directory for the replica MySQL server. If you want to be able
to restore the data and operate as a replica (for example, in the event of failure of the replica), then in
addition to the replica's data, you should also back up the replication metadata repositories, and the relay
log files. These files are needed to resume replication after you restore the replica's data.

If you lose the relay logs but still have the relay-log.info file, you can check it to determine how far
the SQL thread has executed in the source's binary logs. Then you can use CHANGE MASTER TO with the
MASTER_LOG_FILE and MASTER_LOG_POS options to tell the replica to re-read the binary logs from that
point. This requires that the binary logs still exist on the replication source server.

If your replica is replicating LOAD DATA statements, you should also back up any SQL_LOAD-* files
that exist in the directory that the replica uses for this purpose. The replica needs these files to resume
replication of any interrupted LOAD DATA operations. The location of this directory is the value of the
slave_load_tmpdir system variable. If the server was not started with that variable set, the directory
location is the value of the tmpdir system variable.

17.3.1.3 Backing Up a Source or Replica by Making It Read Only

It is possible to back up either source or replica servers in a replication setup by acquiring a global read
lock and manipulating the read_only system variable to change the read-only state of the server to be
backed up:

1. Make the server read-only, so that it processes only retrievals and blocks updates.

2. Perform the backup.

3. Change the server back to its normal read/write state.

Note

The instructions in this section place the server to be backed up in a state that is
safe for backup methods that get the data from the server, such as mysqldump
(see Section 4.5.4, “mysqldump — A Database Backup Program”). You should not

2526

Using Replication for Backups

attempt to use these instructions to make a binary backup by copying files directly
because the server may still have modified data cached in memory and not flushed
to disk.

The following instructions describe how to do this for a replication source server and for a replica. For both
scenarios discussed here, suppose that you have the following replication setup:

• A replication source server S1

• A replica server R1 that has S1 as its source

• A client C1 connected to S1

• A client C2 connected to R1

In either scenario, the statements to acquire the global read lock and manipulate the read_only variable
are performed on the server to be backed up and do not propagate to any replicas of that server.

Scenario 1: Backup with a Read-Only Source

Put the source S1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While S1 is in a read-only state, the following properties are true:

• Requests for updates sent by C1 to S1 block because the server is in read-only mode.

• Requests for query results sent by C1 to S1 succeed.

• Making a backup on S1 is safe.

• Making a backup on R1 is not safe. This server is still running, and might be processing the binary log or
update requests coming from client C2.

While S1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on S1 completes, restore S1 to its normal operational state by executing these
statements:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

Although performing the backup on S1 is safe (as far as the backup is concerned), it is not optimal for
performance because clients of S1 are blocked from executing updates.

This strategy applies to backing up a source server in a replication setup, but can also be used for a single
server in a nonreplication setting.

Scenario 2: Backup with a Read-Only Replica

Put the replica R1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While R1 is in a read-only state, the following properties are true:

2527

Handling an Unexpected Halt of a Replica Server

• The source S1 continues to operate, so making a backup on S1 is not safe.

• The replica R1 is stopped, so making a backup on R1 is safe.

These properties provide the basis for a popular backup scenario: Having one replica busy performing a
backup for a while is not a problem because it does not affect the entire network, and the system is still
running during the backup. In particular, clients can still perform updates on the replication source server,
which remains unaffected by backup activity on the replica.

While R1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on R1 completes, restore R1 to its normal operational state by executing these
statements:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

After the replica is restored to normal operation, it again synchronizes to the source by catching up with
any outstanding updates from the binary log of the source.

17.3.2 Handling an Unexpected Halt of a Replica Server

In order for replication to be resilient to unexpected halts of the server (sometimes described as crash-
safe) it must be possible for the replica to recover its state before halting. This section describes the impact
of an unexpected halt of a replica during replication and how to configure a replica for the best chance of
recovery to continue replication.

After an unexpected halt of a replica, upon restart the replica's SQL thread must recover which
transactions have been executed already. The information required for recovery is stored in the replica's
applier metadata repository. In older MySQL Server versions, this log could only be created as a file in
the data directory that was updated after the transaction had been applied. This held the risk of losing
synchrony with the source depending at which stage of processing a transaction the replica halted, or
even corruption of the file itself. In MySQL 5.6 you can instead use an InnoDB table to store the applier
metadata repository. By using this transactional storage engine the information is always recoverable upon
restart. As a table, updates to the applier metadata repository are committed together with the transactions,
meaning that the replica's progress information recorded in that repository is always consistent with what
has been applied to the database, even in the event of an unexpected server halt.

To configure MySQL 5.6 to store the applier metadata repository as an InnoDB table, set the system
variable relay_log_info_repository to TABLE. The server then stores information required for
the recovery of the replication SQL thread in the mysql.slave_relay_log_info table. For further
information on the replication metadata repositories, see Section 17.2.2, “Relay Log and Replication
Metadata Repositories”.

Exactly how a replica recovers from an unexpected halt is influenced by the chosen method of
replication, whether the replica is single-threaded or multithreaded, the setting of variables such as
relay_log_recovery, and whether features such as MASTER_AUTO_POSITION are being used.

The following table shows the impact of these different factors on how a single-threaded replica recovers
from an unexpected halt.

Table 17.1 Factors Influencing Single-threaded Replica Recovery

GTID MASTER_AUTO_POSITIONrelay_log_recoveryrelay_log_info_repositoryCrash type Recovery
guaranteed

Relay log
impact

OFF Not relevant 1 TABLE Server Yes Lost

2528

Handling an Unexpected Halt of a Replica Server

GTID MASTER_AUTO_POSITIONrelay_log_recoveryrelay_log_info_repositoryCrash type Recovery
guaranteed

Relay log
impact

OFF Not relevant 1 Any OS No Lost

OFF Not relevant 0 TABLE Server Yes Remains

OFF Not relevant 0 TABLE OS No Remains

ON ON 1 Not relevant Not relevant Yes Lost

ON OFF 0 TABLE Server Yes Remains

ON OFF 0 Any OS No Remains

As the table shows, when using a single-threaded replica the following configurations are most resilient to
unexpected halts:

• When using GTIDs and MASTER_AUTO_POSITION, set relay_log_recovery=1. With this
configuration the setting of relay_log_info_repository and other variables does not impact on
recovery. Note that to guarantee recovery, sync_binlog=1 must also be set on the replica, so that the
replica's binary log is synchronized to disk at each write. Otherwise, committed transactions might not be
present in the replica's binary log.

• When using file position based replication, set relay_log_recovery=1 and
relay_log_info_repository=TABLE.

Note

During recovery the relay log is lost.

The following table shows the impact of these different factors on how a multithreaded replica recovers
from an unexpected halt.

Table 17.2 Factors Influencing Multithreaded Replica Recovery

GTID sync_relay_logMASTER_AUTO_POSITIONrelay_log_recoveryrelay_log_info_repositoryCrash type Recovery
guaranteed

Relay log
impact

OFF 1 Not relevant 1 TABLE Any Yes Lost

OFF >1 Not relevant 1 TABLE Server Yes Lost

OFF >1 Not relevant 1 Any OS No Lost

OFF 1 Not relevant 0 TABLE Server Yes Remains

OFF 1 Not relevant 0 TABLE OS No Remains

ON Any ON 1 Any Any Yes Lost

ON 1 OFF 0 TABLE Server Yes Remains

ON 1 OFF 0 Any OS No Remains

As the table shows, when using a multithreaded replica the following configurations are most resilient to
unexpected halts:

• When using GTIDs and MASTER_AUTO_POSITION, set relay_log_recovery=1. With this
configuration the setting of relay_log_info_repository and other variables does not impact on
recovery.

• When using file position based replication, set relay_log_recovery=1, sync_relay_log=1, and
relay_log_info_repository=TABLE.

2529

Using Replication with Different Source and Replica Storage Engines

Note

During recovery the relay log is lost.

It is important to note the impact of sync_relay_log=1, which requires a write of to the relay log
per transaction. Although this setting is the most resilient to an unexpected halt, with at most one
unwritten transaction being lost, it also has the potential to greatly increase the load on storage. Without
sync_relay_log=1, the effect of an unexpected halt depends on how the relay log is handled by the
operating system. Also note that when relay_log_recovery=0, the next time the replica is started after
an unexpected halt the relay log is processed as part of recovery. After this process completes, the relay
log is deleted.

An unexpected halt of a multithreaded replica using the recommended file position based replication
configuration above may result in a relay log with transaction inconsistencies (gaps in the sequence of
transactions) caused by the unexpected halt. See Replication and Transaction Inconsistencies. In MySQL
5.7.13 and later, if the relay log recovery process encounters such transaction inconsistencies they are
filled and the recovery process continues automatically. In MySQL versions prior to MySQL 5.7.13, this
process is not automatic and requires starting the server with relay_log_recovery=0, starting the
replica with START SLAVE UNTIL SQL_AFTER_MTS_GAPS to fix any transaction inconsistencies and
then restarting the replica with relay_log_recovery=1.

When you are using multi-source replication and relay_log_recovery=1, after restarting due to an
unexpected halt all replication channels go through the relay log recovery process. Any inconsistencies
found in the relay log due to an unexpected halt of a multithreaded replica are filled.

17.3.3 Using Replication with Different Source and Replica Storage Engines

It does not matter for the replication process whether the source table on the replication source server and
the replicated table on the replica use different engine types. In fact, the default_storage_engine and
storage_engine system variables are not replicated.

This provides a number of benefits in the replication process in that you can take advantage of different
engine types for different replication scenarios. For example, in a typical scale-out scenario (see
Section 17.3.4, “Using Replication for Scale-Out”), you want to use InnoDB tables on the source to take
advantage of the transactional functionality, but use MyISAM on the replicas where transaction support is
not required because the data is only read. When using replication in a data-logging environment you may
want to use the Archive storage engine on the replica.

Configuring different engines on the source and replica depends on how you set up the initial replication
process:

• If you used mysqldump to create the database snapshot on your source, you could edit the dump file
text to change the engine type used on each table.

Another alternative for mysqldump is to disable engine types that you do not want to use on the
replica before using the dump to build the data on the replica. For example, you can add the --skip-
federated option on your replica to disable the FEDERATED engine. If a specific engine does not exist
for a table to be created, MySQL will use the default engine type, usually MyISAM. (This requires that the
NO_ENGINE_SUBSTITUTION SQL mode is not enabled.) If you want to disable additional engines in this
way, you may want to consider building a special binary to be used on the replica that only supports the
engines you want.

• If you are using raw data files (a binary backup) to set up the replica, you cannot change the initial table
format. Instead, use ALTER TABLE to change the table types after the replica has been started.

2530

https://dev.mysql.com/doc/refman/5.7/en/replication-features-transaction-inconsistencies.html

Using Replication for Scale-Out

• For new source/replica replication setups where there are currently no tables on the source, avoid
specifying the engine type when creating new tables.

If you are already running a replication solution and want to convert your existing tables to another engine
type, follow these steps:

1. Stop the replica from running replication updates:

mysql> STOP SLAVE;

This enables you to change engine types without interruptions.

2. Execute an ALTER TABLE ... ENGINE='engine_type' for each table to be changed.

3. Start the replication process again:

mysql> START SLAVE;

Although the default_storage_engine variable is not replicated, be aware that CREATE TABLE and
ALTER TABLE statements that include the engine specification are correctly replicated to the replica. For
example, if you have a CSV table and you execute:

mysql> ALTER TABLE csvtable Engine='MyISAM';

The previous statement is replicated to the replica and the engine type on the replica is converted to
MyISAM, even if you have previously changed the table type on the replica to an engine other than
CSV. If you want to retain engine differences on the source and replica, you should be careful to use the
default_storage_engine variable on the source when creating a new table. For example, instead of:

mysql> CREATE TABLE tablea (columna int) Engine=MyISAM;

Use this format:

mysql> SET default_storage_engine=MyISAM;
mysql> CREATE TABLE tablea (columna int);

When replicated, the default_storage_engine variable is ignored, and the CREATE TABLE statement
executes on the replica using the replica's default engine.

17.3.4 Using Replication for Scale-Out

You can use replication as a scale-out solution; that is, where you want to split up the load of database
queries across multiple database servers, within some reasonable limitations.

Because replication works from the distribution of one source to one or more replicas, using replication
for scale-out works best in an environment where you have a high number of reads and low number of
writes/updates. Most websites fit into this category, where users are browsing the website, reading articles,
posts, or viewing products. Updates only occur during session management, or when making a purchase
or adding a comment/message to a forum.

Replication in this situation enables you to distribute the reads over the replicas, while still enabling your
web servers to communicate with the replication source server when a write is required. You can see
a sample replication layout for this scenario in Figure 17.1, “Using Replication to Improve Performance
During Scale-Out”.

2531

Using Replication for Scale-Out

Figure 17.1 Using Replication to Improve Performance During Scale-Out

If the part of your code that is responsible for database access has been properly abstracted/modularized,
converting it to run with a replicated setup should be very smooth and easy. Change the implementation of
your database access to send all writes to the source, and to send reads to either the source or a replica. If
your code does not have this level of abstraction, setting up a replicated system gives you the opportunity
and motivation to clean it up. Start by creating a wrapper library or module that implements the following
functions:

2532

Replicating Different Databases to Different Replicas

• safe_writer_connect()

• safe_reader_connect()

• safe_reader_statement()

• safe_writer_statement()

safe_ in each function name means that the function takes care of handling all error conditions. You can
use different names for the functions. The important thing is to have a unified interface for connecting for
reads, connecting for writes, doing a read, and doing a write.

Then convert your client code to use the wrapper library. This may be a painful and scary process at
first, but it pays off in the long run. All applications that use the approach just described are able to take
advantage of a source/replica configuration, even one involving multiple replicas. The code is much easier
to maintain, and adding troubleshooting options is trivial. You need modify only one or two functions (for
example, to log how long each statement took, or which statement among those issued gave you an error).

If you have written a lot of code, you may want to automate the conversion task by using the replace
utility that comes with standard MySQL distributions, or write your own conversion script. Ideally, your code
uses consistent programming style conventions. If not, then you are probably better off rewriting it anyway,
or at least going through and manually regularizing it to use a consistent style.

17.3.5 Replicating Different Databases to Different Replicas

There may be situations where you have a single source and want to replicate different databases to
different replicas. For example, you may want to distribute different sales data to different departments to
help spread the load during data analysis. A sample of this layout is shown in Figure 17.2, “Replicating
Databases to Separate Replicas”.

Figure 17.2 Replicating Databases to Separate Replicas

You can achieve this separation by configuring the source and replicas as normal, and then limiting
the binary log statements that each replica processes by using the --replicate-wild-do-table
configuration option on each replica.

Important

You should not use --replicate-do-db for this purpose when using statement-
based replication, since statement-based replication causes this option's effects
to vary according to the database that is currently selected. This applies to mixed-

2533

Improving Replication Performance

format replication as well, since this enables some updates to be replicated using
the statement-based format.

However, it should be safe to use --replicate-do-db for this purpose if you are
using row-based replication only, since in this case the currently selected database
has no effect on the option's operation.

For example, to support the separation as shown in Figure 17.2, “Replicating Databases to Separate
Replicas”, you should configure each replica as follows, before executing START SLAVE:

• Replica 1 should use --replicate-wild-do-table=databaseA.%.

• Replica 2 should use --replicate-wild-do-table=databaseB.%.

• Replica 3 should use --replicate-wild-do-table=databaseC.%.

Each replica in this configuration receives the entire binary log from the source, but executes only those
events from the binary log that apply to the databases and tables included by the --replicate-wild-
do-table option in effect on that replica.

If you have data that must be synchronized to the replicas before replication starts, you have a number of
choices:

• Synchronize all the data to each replica, and delete the databases, tables, or both that you do not want
to keep.

• Use mysqldump to create a separate dump file for each database and load the appropriate dump file on
each replica.

• Use a raw data file dump and include only the specific files and databases that you need for each
replica.

Note

This does not work with InnoDB databases unless you use
innodb_file_per_table.

17.3.6 Improving Replication Performance

As the number of replicas connecting to a replication source server increases, the load, although minimal,
also increases, as each replica uses a client connection to the source. Also, as each replica must receive
a full copy of the source's binary log, the network load on the source may also increase and create a
bottleneck.

If you are using a large number of replicas connected to one source, and that source is also busy
processing requests (for example, as part of a scale-out solution), then you may want to improve the
performance of the replication process.

One way to improve the performance of the replication process is to create a deeper replication structure
that enables the source to replicate to only one replica, and for the remaining replicas to connect to
this primary replica for their individual replication requirements. A sample of this structure is shown in
Figure 17.3, “Using an Additional Replication Source to Improve Performance”.

2534

Improving Replication Performance

Figure 17.3 Using an Additional Replication Source to Improve Performance

For this to work, you must configure the MySQL instances as follows:

• Source 1 is the primary source where all changes and updates are written to the database. Binary
logging should be enabled on this machine.

• Source 2 is the replica to Source 1 that provides the replication functionality to the remainder of the
replicas in the replication structure. Source 2 is the only machine permitted to connect to Source 1.
Source 2 also has binary logging enabled, and the log_slave_updates system variable enabled so
that replication instructions from Source 1 are also written to Source 2's binary log so that they can then
be replicated to the true replicas.

• Replica 1, Replica 2, and Replica 3 act as replicas to Source 2, and replicate the information from
Source 2, which actually consists of the updates logged on Source 1.

The above solution reduces the client load and the network interface load on the primary source, which
should improve the overall performance of the primary source when used as a direct database solution.

If your replicas are having trouble keeping up with the replication process on the source, there are a
number of options available:

• If possible, put the relay logs and the data files on different physical drives. To do this, set the
relay_log system variable to specify the location of the relay log.

• If the replicas are significantly slower than the source, you may want to divide up the responsibility for
replicating different databases to different replicas. See Section 17.3.5, “Replicating Different Databases
to Different Replicas”.

• If your source makes use of transactions and you are not concerned about transaction support on your
replicas, use MyISAM or another nontransactional engine on the replicas. See Section 17.3.3, “Using
Replication with Different Source and Replica Storage Engines”.

• If your replicas are not acting as sources, and you have a potential solution in place to ensure that you
can bring up a source in the event of failure, then you can disable the log_slave_updates system
variable. This prevents “dumb” replicas from also logging events they have executed into their own
binary log.

2535

Switching Sources During Failover

17.3.7 Switching Sources During Failover

You can tell a replica to change to a new source using the CHANGE MASTER TO statement. The replica
does not check whether the databases on the source are compatible with those on the replica; it simply
begins reading and executing events from the specified coordinates in the new source's binary log. In a
failover situation, all the servers in the group are typically executing the same events from the same binary
log file, so changing the source of the events should not affect the structure or integrity of the database,
provided that you exercise care in making the change.

Replicas should be run with binary logging enabled (the --log-bin option), which is the default. If you are
not using GTIDs for replication, then the replicas should also be run with --log-slave-updates=OFF
(logging replica updates is the default). In this way, the replica is ready to become a source without
restarting the replica mysqld. Assume that you have the structure shown in Figure 17.4, “Redundancy
Using Replication, Initial Structure”.

Figure 17.4 Redundancy Using Replication, Initial Structure

In this diagram, the Source holds the source database, the Replica* hosts are replicas, and the Web
Client machines are issuing database reads and writes. Web clients that issue only reads (and would
normally be connected to the replicas) are not shown, as they do not need to switch to a new server
in the event of failure. For a more detailed example of a read/write scale-out replication structure, see
Section 17.3.4, “Using Replication for Scale-Out”.

Each MySQL replica (Replica 1, Replica 2, and Replica 3) is a replica running with binary logging
enabled, and with --log-slave-updates=OFF. Because updates received by a replica from the source

2536

Switching Sources During Failover

are not written to the binary log when --log-slave-updates=OFF is specified, the binary log on each
replica is initially empty. If for some reason Source becomes unavailable, you can pick one of the replicas
to become the new source. For example, if you pick Replica 1, all Web Clients should be redirected
to Replica 1, which writes the updates to its binary log. Replica 2 and Replica 3 should then
replicate from Replica 1.

The reason for running the replica with --log-slave-updates=OFF is to prevent replicas from receiving
updates twice in case you cause one of the replicas to become the new source. If Replica 1 has --
log-slave-updates enabled, which is the default, it writes any updates that it receives from Source in
its own binary log. This means that, when Replica 2 changes from Source to Replica 1 as its source,
it may receive updates from Replica 1 that it has already received from Source.

Make sure that all replicas have processed any statements in their relay log. On each replica, issue STOP
SLAVE IO_THREAD, then check the output of SHOW PROCESSLIST until you see Has read all relay
log. When this is true for all replicas, they can be reconfigured to the new setup. On the replica Replica
1 being promoted to become the source, issue STOP SLAVE and RESET MASTER.

On the other replicas Replica 2 and Replica 3, use STOP SLAVE and CHANGE MASTER TO
MASTER_HOST='Replica1' (where 'Replica1' represents the real host name of Replica 1). To
use CHANGE MASTER TO, add all information about how to connect to Replica 1 from Replica 2 or
Replica 3 (user, password, port). When issuing the statement in this scenario, there is no need to
specify the name of the Replica 1 binary log file or log position to read from, since the first binary log file
and position 4 are the defaults. Finally, execute START SLAVE on Replica 2 and Replica 3.

Once the new replication setup is in place, you need to tell each Web Client to direct its statements
to Replica 1. From that point on, all updates sent by Web Client to Replica 1 are written to the
binary log of Replica 1, which then contains every update sent to Replica 1 since Source became
unavailable.

The resulting server structure is shown in Figure 17.5, “Redundancy Using Replication, After Source
Failure”.

2537

Setting Up Replication to Use Encrypted Connections

Figure 17.5 Redundancy Using Replication, After Source Failure

When Source becomes available again, you should make it a replica of Replica 1. To do this, issue
on Source the same CHANGE MASTER TO statement as that issued on Replica 2 and Replica 3
previously. Source then becomes a replica of Replica 1 and picks up the Web Client writes that it
missed while it was offline.

To make Source a source again, use the preceding procedure as if Replica 1 were unavailable and
Source were to be the new source. During this procedure, do not forget to run RESET MASTER on
Source before making Replica 1, Replica 2, and Replica 3 replicas of Source. If you fail to do
this, the replicas may pick up stale writes from the Web Client applications dating from before the point
at which Source became unavailable.

You should be aware that there is no synchronization between replicas, even when they share the same
source, and thus some replicas might be considerably ahead of others. This means that in some cases the
procedure outlined in the previous example might not work as expected. In practice, however, relay logs on
all replicas should be relatively close together.

One way to keep applications informed about the location of the source is to have a dynamic DNS entry for
the source host. With BIND, you can use nsupdate to update the DNS dynamically.

17.3.8 Setting Up Replication to Use Encrypted Connections

To use an encrypted connection for the transfer of the binary log required during replication, both the
source and the replica servers must support encrypted network connections. If either server does not
support encrypted connections (because it has not been compiled or configured for them), replication
through an encrypted connection is not possible.

2538

Setting Up Replication to Use Encrypted Connections

Setting up encrypted connections for replication is similar to doing so for client/server connections.
You must obtain (or create) a suitable security certificate that you can use on the source, and a similar
certificate (from the same certificate authority) on each replica. You must also obtain suitable key files.

For more information on setting up a server and client for encrypted connections, see Section 6.3.1,
“Configuring MySQL to Use Encrypted Connections”.

To enable encrypted connections on the source, you must create or obtain suitable certificate and key files,
and then add the following configuration parameters to the source's configuration within the [mysqld]
section of the source's my.cnf file, changing the file names as necessary:

[mysqld]
ssl_ca=cacert.pem
ssl_cert=server-cert.pem
ssl_key=server-key.pem

The paths to the files may be relative or absolute; we recommend that you always use complete paths for
this purpose.

The configuration parameters are as follows:

• ssl_ca: The path name of the Certificate Authority (CA) certificate file. (--ssl-capath is similar but
specifies the path name of a directory of CA certificate files.)

• ssl_cert: The path name of the server public key certificate file. This certificate can be sent to the
client and authenticated against the CA certificate that it has.

• ssl_key: The path name of the server private key file.

To enable encrypted connections on the replica, use the CHANGE MASTER TO statement.

• To name the replica's certificate and SSL private key files using CHANGE MASTER TO, add the
appropriate MASTER_SSL_xxx options, like this:

 -> MASTER_SSL_CA = 'ca_file_name',
 -> MASTER_SSL_CAPATH = 'ca_directory_name',
 -> MASTER_SSL_CERT = 'cert_file_name',
 -> MASTER_SSL_KEY = 'key_file_name',

These options correspond to the --ssl-xxx options with the same names, as described in Command
Options for Encrypted Connections. For these options to take effect, MASTER_SSL=1 must also be set.
For a replication connection, specifying a value for either of MASTER_SSL_CA or MASTER_SSL_CAPATH
corresponds to setting --ssl-mode=VERIFY_CA. The connection attempt succeeds only if a valid
matching Certificate Authority (CA) certificate is found using the specified information.

• To activate host name identity verification, add the MASTER_SSL_VERIFY_SERVER_CERT option:

 -> MASTER_SSL_VERIFY_SERVER_CERT=1,

• After the source information has been updated, start the replication process on the replica, like this:

mysql> START SLAVE;

You can use the SHOW SLAVE STATUS statement to confirm that an encrypted connection was
established successfully.

• If you want to enforce the use of encrypted connections during replication, create a user with the
REPLICATION SLAVE privilege and use the REQUIRE SSL option for that user. For example:

mysql> CREATE USER 'repl'@'%.example.com' IDENTIFIED BY 'password';
mysql> GRANT REPLICATION SLAVE ON *.*

2539

Semisynchronous Replication

 -> TO 'repl'@'%.example.com' REQUIRE SSL;

If you have an existing replication user account on the source, you can add REQUIRE SSL to it with this
statement:

mysql> GRANT USAGE ON *.*
 -> TO 'repl'@'%.example.com' REQUIRE SSL;

17.3.9 Semisynchronous Replication

In addition to the built-in asynchronous replication, MySQL 5.6 supports an interface to semisynchronous
replication that is implemented by plugins. This section discusses what semisynchronous replication is and
how it works. The following sections cover the administrative interface to semisynchronous replication and
how to install, configure, and monitor it.

MySQL replication by default is asynchronous. The source writes events to its binary log and replicas
request them when they are ready. The source does not know whether or when a replica has retrieved
and processed the transactions, and there is no guarantee that any event ever reaches any replica. With
asynchronous replication, if the source crashes, transactions that it has committed might not have been
transmitted to any replica. Failover from source to replica in this case might result in failover to a server
that is missing transactions relative to the source.

With fully synchronous replication, when a source commits a transaction, all replicas must also have
committed the transaction before the source returns to the session that performed the transaction.
Fully synchronous replication means failover from the source to any replica is possible at any time. The
drawback of fully synchronous replication is that there might be a lot of delay to complete a transaction.

Semisynchronous replication falls between asynchronous and fully synchronous replication. The source
waits until at least one replica has received and logged the events, and then commits the transaction. The
source does not wait for all replicas to acknowledge receipt, and it requires only an acknowledgement
from the replicas, not that the events have been fully executed and committed on the replica side.
Semisynchronous replication therefore guarantees that if the source crashes, all the transactions that it has
committed have been transmitted to at least one replica.

Important

With semisynchronous replication, if the source crashes and a failover to a replica is
carried out, the failed source should not be reused as the replication source server,
and should be discarded. It could have transactions that were not acknowledged by
any replica, which were therefore not committed before the failover.

The performance impact of semisynchronous replication compared to asynchronous replication is the
tradeoff for increased data integrity. The amount of slowdown is at least the TCP/IP roundtrip time to
send the commit to the replica and wait for the acknowledgment of receipt by the replica. This means that
semisynchronous replication works best for close servers communicating over fast networks, and worst for
distant servers communicating over slow networks. Semisynchronous replication also places a rate limit
on busy sessions by constraining the speed at which binary log events can be sent from source to replica.
When one user is too busy, this slows it down, which can be useful in some deployment situations.

Semisynchronous replication between a source and its replicas operates as follows:

• A replica indicates whether it is semisynchronous-capable when it connects to the source.

• If semisynchronous replication is enabled on the source side and there is at least one semisynchronous
replica, a thread that performs a transaction commit on the source blocks after the commit is done and
waits until at least one semisynchronous replica acknowledges that it has received all events for the
transaction, or until a timeout occurs.

2540

Semisynchronous Replication

• The replica acknowledges receipt of a transaction's events only after the events have been written to its
relay log and flushed to disk.

• If a timeout occurs without any replica having acknowledged the transaction, the source reverts to
asynchronous replication. When at least one semisynchronous replica catches up, the source returns to
semisynchronous replication.

• Semisynchronous replication must be enabled on both the source and replica sides. If semisynchronous
replication is disabled on the source, or enabled on the source but on no replicas, the source uses
asynchronous replication.

While the source is blocking (waiting for acknowledgment from a replica after having performed a commit),
it does not return to the session that performed the transaction. When the block ends, the source returns
to the session, which then can proceed to execute other statements. At this point, the transaction has
committed on the source side, and receipt of its events has been acknowledged by at least one replica.

Blocking also occurs after rollbacks that are written to the binary log, which occurs when a transaction that
modifies nontransactional tables is rolled back. The rolled-back transaction is logged even though it has
no effect for transactional tables because the modifications to the nontransactional tables cannot be rolled
back and must be sent to replicas.

For statements that do not occur in transactional context (that is, when no transaction has been started
with START TRANSACTION or SET autocommit = 0), autocommit is enabled and each statement
commits implicitly. With semisynchronous replication, the source blocks after committing each such
statement, just as it does for explicit transaction commits.

17.3.9.1 Semisynchronous Replication Administrative Interface

The administrative interface to semisynchronous replication has several components:

• Two plugins implement semisynchronous capability. There is one plugin for the source side and one for
the replica side.

• System variables control plugin behavior. Some examples:

• rpl_semi_sync_master_enabled

Controls whether semisynchronous replication is enabled on the source. To enable or disable the
plugin, set this variable to 1 or 0, respectively. The default is 0 (off).

• rpl_semi_sync_master_timeout

A value in milliseconds that controls how long the source waits on a commit for acknowledgment from
a replica before timing out and reverting to asynchronous replication. The default value is 10000 (10
seconds).

• rpl_semi_sync_slave_enabled

Similar to rpl_semi_sync_master_enabled, but controls the replica plugin.

All rpl_semi_sync_xxx system variables are described at Section 17.1.4.2, “Replication Source
Options and Variables”.

• Status variables enable semisynchronous replication monitoring. Some examples:

• Rpl_semi_sync_master_clients

The number of semisynchronous replicas.

2541

Semisynchronous Replication

• Rpl_semi_sync_master_status

Whether semisynchronous replication currently is operational on the source. The value is 1 if the
plugin has been enabled and a commit acknowledgment has not occurred. It is 0 if the plugin is not
enabled or the source has fallen back to asynchronous replication due to commit acknowledgment
timeout.

• Rpl_semi_sync_master_no_tx

The number of commits that were not acknowledged successfully by a replica.

• Rpl_semi_sync_master_yes_tx

The number of commits that were acknowledged successfully by a replica.

• Rpl_semi_sync_slave_status

Whether semisynchronous replication currently is operational on the replica. This is 1 if the plugin has
been enabled and the replication I/O thread is running, 0 otherwise.

All Rpl_semi_sync_xxx status variables are described at Section 5.1.9, “Server Status Variables”.

The system and status variables are available only if the appropriate source or replica plugin has been
installed with INSTALL PLUGIN.

17.3.9.2 Semisynchronous Replication Installation and Configuration

Semisynchronous replication is implemented using plugins, so the plugins must be installed into the server
to make them available. After a plugin has been installed, you control it by means of the system variables
associated with it. These system variables are unavailable until the associated plugin has been installed.

This section describes how to install the semisynchronous replication plugins. For general information
about installing plugins, see Section 5.5.1, “Installing and Uninstalling Plugins”.

To use semisynchronous replication, the following requirements must be satisfied:

• The capability of installing plugins requires a MySQL server that supports dynamic loading. To verify
this, check that the value of the have_dynamic_loading system variable is YES. Binary distributions
should support dynamic loading.

• Replication must already be working, see Section 17.1, “Replication Configuration”.

To set up semisynchronous replication, use the following instructions. The INSTALL PLUGIN, SET
GLOBAL, STOP SLAVE, and START SLAVE statements mentioned here require the SUPER privilege.

MySQL distributions include semisynchronous replication plugin files for the source side and the replica
side.

To be usable by a source or replica server, the appropriate plugin library file must be located in the MySQL
plugin directory (the directory named by the plugin_dir system variable). If necessary, configure the
plugin directory location by setting the value of plugin_dir at server startup.

The plugin library file base names are semisync_master and semisync_slave. The file name suffix
differs per platform (for example, .so for Unix and Unix-like systems, .dll for Windows).

The source plugin library file must be present in the plugin directory of the source server. The replica plugin
library file must be present in the plugin directory of each replica server.

2542

Semisynchronous Replication

To load the plugins, use the INSTALL PLUGIN statement on the source and on each replica that is to be
semisynchronous, adjusting the .so suffix for your platform as necessary.

On the source:

INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';

On each replica:

INSTALL PLUGIN rpl_semi_sync_slave SONAME 'semisync_slave.so';

If an attempt to install a plugin results in an error on Linux similar to that shown here, you must install
libimf:

mysql> INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';
ERROR 1126 (HY000): Can't open shared library
'/usr/local/mysql/lib/plugin/semisync_master.so'
(errno: 22 libimf.so: cannot open shared object file:
No such file or directory)

You can obtain libimf from https://dev.mysql.com/downloads/os-linux.html.

To see which plugins are installed, use the SHOW PLUGINS statement, or query the Information Schema
PLUGINS table.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Section 5.5.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%semi%';
+----------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+----------------------+---------------+
| rpl_semi_sync_master | ACTIVE |
+----------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

After a semisynchronous replication plugin has been installed, it is disabled by default. The plugins must
be enabled both on the source side and the replica side to enable semisynchronous replication. If only one
side is enabled, replication is asynchronous.

To control whether an installed plugin is enabled, set the appropriate system variables. You can set these
variables at runtime using SET GLOBAL, or at server startup on the command line or in an option file.

At runtime, these source-side system variables are available:

SET GLOBAL rpl_semi_sync_master_enabled = {0|1};
SET GLOBAL rpl_semi_sync_master_timeout = N;

On the replica side, this system variable is available:

SET GLOBAL rpl_semi_sync_slave_enabled = {0|1};

For rpl_semi_sync_master_enabled or rpl_semi_sync_slave_enabled, the value should be 1 to
enable semisynchronous replication or 0 to disable it. By default, these variables are set to 0.

For rpl_semi_sync_master_timeout, the value N is given in milliseconds. The default value is 10000
(10 seconds).

2543

https://dev.mysql.com/downloads/os-linux.html

Delayed Replication

If you enable semisynchronous replication on a replica at runtime, you must also start the replication I/O
thread (stopping it first if it is already running) to cause the replica to connect to the source and register as
a semisynchronous replica:

STOP SLAVE IO_THREAD;
START SLAVE IO_THREAD;

If the I/O thread is already running and you do not restart it, the replica continues to use asynchronous
replication.

At server startup, the variables that control semisynchronous replication can be set as command-line
options or in an option file. A setting listed in an option file takes effect each time the server starts. For
example, you can set the variables in my.cnf files on the source and replica sides as follows.

On the source:

[mysqld]
rpl_semi_sync_master_enabled=1
rpl_semi_sync_master_timeout=1000 # 1 second

On each replica:

[mysqld]
rpl_semi_sync_slave_enabled=1

17.3.9.3 Semisynchronous Replication Monitoring

The plugins for the semisynchronous replication capability expose several system and status variables that
you can examine to determine its configuration and operational state.

The system variable reflect how semisynchronous replication is configured. To check their values, use
SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'rpl_semi_sync%';

The status variables enable you to monitor the operation of semisynchronous replication. To check their
values, use SHOW STATUS:

mysql> SHOW STATUS LIKE 'Rpl_semi_sync%';

When the source switches between asynchronous or semisynchronous replication due to commit-blocking
timeout or a replica catching up, it sets the value of the Rpl_semi_sync_master_status status variable
appropriately. Automatic fallback from semisynchronous to asynchronous replication on the source means
that it is possible for the rpl_semi_sync_master_enabled system variable to have a value of 1 on
the source side even when semisynchronous replication is in fact not operational at the moment. You can
monitor the Rpl_semi_sync_master_status status variable to determine whether the source currently
is using asynchronous or semisynchronous replication.

To see how many semisynchronous replicas are connected, check Rpl_semi_sync_master_clients.

The number of commits that have been acknowledged successfully or unsuccessfully by replicas are
indicated by the Rpl_semi_sync_master_yes_tx and Rpl_semi_sync_master_no_tx variables.

On the replica side, Rpl_semi_sync_slave_status indicates whether semisynchronous replication
currently is operational.

17.3.10 Delayed Replication

2544

Replication Notes and Tips

MySQL 5.6 supports delayed replication such that a replica server deliberately lags behind the source by
at least a specified amount of time. The default delay is 0 seconds. Use the MASTER_DELAY option for
CHANGE MASTER TO to set the delay to N seconds:

CHANGE MASTER TO MASTER_DELAY = N;

An event received from the source is not executed until at least N seconds later than its execution on the
source. The exceptions are that there is no delay for format description events or log file rotation events,
which affect only the internal state of the SQL thread.

Delayed replication can be used for several purposes:

• To protect against user mistakes on the source. A DBA can roll back a delayed replica to the time just
before the disaster.

• To test how the system behaves when there is a lag. For example, in an application, a lag might be
caused by a heavy load on the replica. However, it can be difficult to generate this load level. Delayed
replication can simulate the lag without having to simulate the load. It can also be used to debug
conditions related to a lagging replica.

• To inspect what the database looked like long ago, without having to reload a backup. For example, if
the delay is one week and the DBA needs to see what the database looked like before the last few days'
worth of development, the delayed replica can be inspected.

START SLAVE and STOP SLAVE take effect immediately and ignore any delay. RESET SLAVE resets the
delay to 0.

SHOW SLAVE STATUS has three fields that provide information about the delay:

• SQL_Delay: A nonnegative integer indicating the number of seconds that the replica must lag the
source.

• SQL_Remaining_Delay: When Slave_SQL_Running_State is Waiting until MASTER_DELAY
seconds after master executed event, this field contains an integer indicating the number of
seconds left of the delay. At other times, this field is NULL.

• Slave_SQL_Running_State: A string indicating the state of the SQL thread (analogous to
Slave_IO_State). The value is identical to the State value of the SQL thread as displayed by SHOW
PROCESSLIST.

When the replication SQL thread is waiting for the delay to elapse before executing an event, SHOW
PROCESSLIST displays its State value as Waiting until MASTER_DELAY seconds after
master executed event.

The relay-log.info file now contains the delay value, so the file format has changed. See
Section 17.2.2.2, “Replication Metadata Repositories”. In particular, the first line of the file now indicates
how many lines are in the file. If you downgrade a replica server to a version older than MySQL 5.6, the
older server does not read the file correctly. To address this, modify the file in a text editor to delete the
initial line containing the number of lines.

17.4 Replication Notes and Tips

17.4.1 Replication Features and Issues

The following sections provide information about what is supported and what is not in MySQL replication,
and about specific issues and situations that may occur when replicating certain statements.

2545

Replication Features and Issues

Statement-based replication depends on compatibility at the SQL level between the source and replica. In
other words, successful SBR requires that any SQL features used be supported by both the source and
the replica servers. For example, if you use a feature on the replication source server that exists in MySQL
5.6 but was removed in MySQL 5.7, errors occur if you replicate to a replica that uses MySQL 5.7. Such
incompatibilities also can occur within a release series when using pre-production releases of MySQL.

For this reason, use Generally Available (GA) releases of MySQL for statement-based replication in a
production setting, since we do not introduce new SQL statements or change their behavior within a given
release series once that series reaches GA release status.

If you are planning to use statement-based replication between MySQL 5.6 and a previous MySQL release
series, it is also a good idea to consult the edition of the MySQL Reference Manual corresponding to the
earlier release series for information regarding the replication characteristics of that series.

With MySQL's statement-based replication, there may be issues with replicating stored routines or triggers.
You can avoid these issues by using MySQL's row-based replication instead. For a detailed list of issues,
see Section 20.7, “Stored Program Binary Logging”. For more information about row-based logging and
row-based replication, see Section 5.4.4.1, “Binary Logging Formats”, and Section 17.1.2, “Replication
Formats”.

For additional information specific to replication and InnoDB, see Section 14.19, “InnoDB and MySQL
Replication”. For information relating to replication with NDB Cluster, see Section 18.7, “NDB Cluster
Replication”.

17.4.1.1 Replication and AUTO_INCREMENT

Statement-based replication of AUTO_INCREMENT, LAST_INSERT_ID(), and TIMESTAMP values is done
correctly, subject to the following exceptions:

• When using statement-based replication prior to MySQL 5.6.10, AUTO_INCREMENT columns in tables
on the replica must match the same columns on the source; that is, AUTO_INCREMENT columns must be
replicated to AUTO_INCREMENT columns. (Bug #12669186)

• A statement invoking a trigger or function that causes an update to an AUTO_INCREMENT column is not
replicated correctly using statement-based replication. In MySQL 5.6, such statements are marked as
unsafe. (Bug #45677)

• An INSERT into a table that has a composite primary key that includes an AUTO_INCREMENT column
that is not the first column of this composite key is not safe for statement-based logging or replication.
Beginning with MySQL 5.6.6, such statements are marked as unsafe. (Bug #11754117, Bug #45670)

This issue does not affect tables using the InnoDB storage engine, since an InnoDB table with an
AUTO_INCREMENT column requires at least one key where the auto-increment column is the only or
leftmost column.

• Adding an AUTO_INCREMENT column to a table with ALTER TABLE might not produce the same
ordering of the rows on the replica and the source. This occurs because the order in which the rows
are numbered depends on the specific storage engine used for the table and the order in which the
rows were inserted. If it is important to have the same order on the source and replica, the rows
must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an
AUTO_INCREMENT column to a table t1 that has columns col1 and col2, the following statements
produce a new table t2 identical to t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

2546

Replication Features and Issues

Important

To guarantee the same ordering on both source and replica, the ORDER BY
clause must name all columns of t1.

The instructions just given are subject to the limitations of CREATE TABLE ... LIKE: Foreign key
definitions are ignored, as are the DATA DIRECTORY and INDEX DIRECTORY table options. If a table
definition includes any of those characteristics, create t2 using a CREATE TABLE statement that is
identical to the one used to create t1, but with the addition of the AUTO_INCREMENT column.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column,
the final step is to drop the original table and then rename the copy:

DROP t1;
ALTER TABLE t2 RENAME t1;

See also Section B.3.6.1, “Problems with ALTER TABLE”.

17.4.1.2 Replication and BLACKHOLE Tables

The BLACKHOLE storage engine accepts data but discards it and does not store it. When performing binary
logging, all inserts to such tables are always logged, regardless of the logging format in use. Updates and
deletes are handled differently depending on whether statement based or row based logging is in use.
With the statement based logging format, all statements affecting BLACKHOLE tables are logged, but their
effects ignored. When using row-based logging, updates and deletes to such tables are simply skipped—
they are not written to the binary log. In MySQL 5.6.12 and later, a warning is logged whenever this occurs
(Bug #13004581)

For this reason we recommend when you replicate to tables using the BLACKHOLE storage engine that you
have the binlog_format server variable set to STATEMENT, and not to either ROW or MIXED.

17.4.1.3 Replication and Character Sets

The following applies to replication between MySQL servers that use different character sets:

• If the source has databases with a character set different from the global character_set_server
value, you should design your CREATE TABLE statements so that they do not implicitly rely on the
database default character set. A good workaround is to state the character set and collation explicitly in
CREATE TABLE statements.

17.4.1.4 Replication and CHECKSUM TABLE

CHECKSUM TABLE returns a checksum that is calculated row by row, using a method that depends on
the table row storage format. The storage format is not guaranteed to remain the same between MySQL
versions, so the checksum value might change following an upgrade.

17.4.1.5 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER

In MySQL 5.6, the statements CREATE SERVER, ALTER SERVER, and DROP SERVER are not written to
the binary log, regardless of the binary logging format that is in use.

17.4.1.6 Replication of CREATE ... IF NOT EXISTS Statements

MySQL applies these rules when various CREATE ... IF NOT EXISTS statements are replicated:

• Every CREATE DATABASE IF NOT EXISTS statement is replicated, whether or not the database
already exists on the source.

2547

Replication Features and Issues

• Similarly, every CREATE TABLE IF NOT EXISTS statement without a SELECT is replicated, whether or
not the table already exists on the source. This includes CREATE TABLE IF NOT EXISTS ... LIKE.
Replication of CREATE TABLE IF NOT EXISTS ... SELECT follows somewhat different rules; see
Section 17.4.1.7, “Replication of CREATE TABLE ... SELECT Statements”, for more information.

• CREATE EVENT IF NOT EXISTS is always replicated in MySQL 5.6, whether or not the event named
in the statement already exists on the source.

See also Bug #45574.

17.4.1.7 Replication of CREATE TABLE ... SELECT Statements

MySQL applies these rules when CREATE TABLE ... SELECT statements are replicated:

• CREATE TABLE ... SELECT always performs an implicit commit (Section 13.3.3, “Statements That
Cause an Implicit Commit”).

• If the destination table does not exist, logging occurs as follows. It does not matter whether IF NOT
EXISTS is present.

• STATEMENT or MIXED format: The statement is logged as written.

• ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-row
events.

• If the statement fails, nothing is logged. This includes the case that the destination table exists and IF
NOT EXISTS is not given.

• If the destination table exists and IF NOT EXISTS is given, MySQL ignores the statement completely;
nothing is inserted or logged.

MySQL 5.6 does not allow a CREATE TABLE ... SELECT statement to make any changes in tables
other than the table that is created by the statement. Some older versions of MySQL permitted these
statements to do so; this means that, when using replication between a MySQL 5.6 or later replica and
a source running a previous version of MySQL, a CREATE TABLE ... SELECT statement causing
changes in other tables on the source fails on the replica, causing replication to stop. To prevent this from
happening, you should use row-based replication, rewrite the offending statement before running it on the
source, or upgrade the source to MySQL 5.6. (If you choose to upgrade the source, keep in mind that such
a CREATE TABLE ... SELECT statement fails following the upgrade unless it is rewritten to remove any
side effects on other tables.)

17.4.1.8 Replication of CURRENT_USER()

The following statements support use of the CURRENT_USER() function to take the place of the name of,
and possibly the host for, an affected user or a definer:

• DROP USER

• RENAME USER

• GRANT

• REVOKE

• CREATE FUNCTION

• CREATE PROCEDURE

2548

Replication Features and Issues

• CREATE TRIGGER

• CREATE EVENT

• CREATE VIEW

• ALTER EVENT

• ALTER VIEW

• SET PASSWORD

When binary logging is enabled and CURRENT_USER() or CURRENT_USER is used as the definer in any
of these statements, MySQL Server ensures that the statement is applied to the same user on both the
source and the replica when the statement is replicated. In some cases, such as statements that change
passwords, the function reference is expanded before it is written to the binary log, so that the statement
includes the user name. For all other cases, the name of the current user on the source is replicated to
the replica as metadata, and the replica applies the statement to the current user named in the metadata,
rather than to the current user on the replica.

17.4.1.9 Replication with Differing Table Definitions on Source and Replica

Source and target tables for replication do not have to be identical. A table on the source can have more or
fewer columns than the replica's copy of the table. In addition, corresponding table columns on the source
and the replica can use different data types, subject to certain conditions.

Note

Replication between tables which are partitioned differently from one another is not
supported. See Section 17.4.1.23, “Replication and Partitioning”.

In all cases where the source and target tables do not have identical definitions, the database and table
names must be the same on both the source and the replica. Additional conditions are discussed, with
examples, in the following two sections.

Replication with More Columns on Source or Replica

You can replicate a table from the source to the replica such that the source and replica copies of the table
have differing numbers of columns, subject to the following conditions:

• Columns common to both versions of the table must be defined in the same order on the source and the
replica.

(This is true even if both tables have the same number of columns.)

• Columns common to both versions of the table must be defined before any additional columns.

This means that executing an ALTER TABLE statement on the replica where a new column is inserted
into the table within the range of columns common to both tables causes replication to fail, as shown in
the following example:

Suppose that a table t, existing on the source and the replica, is defined by the following CREATE
TABLE statement:

CREATE TABLE t (
 c1 INT,
 c2 INT,
 c3 INT
);

2549

Replication Features and Issues

Suppose that the ALTER TABLE statement shown here is executed on the replica:

ALTER TABLE t ADD COLUMN cnew1 INT AFTER c3;

The previous ALTER TABLE is permitted on the replica because the columns c1, c2, and c3 that are
common to both versions of table t remain grouped together in both versions of the table, before any
columns that differ.

However, the following ALTER TABLE statement cannot be executed on the replica without causing
replication to break:

ALTER TABLE t ADD COLUMN cnew2 INT AFTER c2;

Replication fails after execution on the replica of the ALTER TABLE statement just shown, because the
new column cnew2 comes between columns common to both versions of t.

• Each “extra” column in the version of the table having more columns must have a default value.

A column's default value is determined by a number of factors, including its type, whether it is defined
with a DEFAULT option, whether it is declared as NULL, and the server SQL mode in effect at the time of
its creation; for more information, see Section 11.5, “Data Type Default Values”).

In addition, when the replica's copy of the table has more columns than the source's copy, each column
common to the tables must use the same data type in both tables.

Examples. The following examples illustrate some valid and invalid table definitions:

More columns on the source. The following table definitions are valid and replicate correctly:

source> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
replica> CREATE TABLE t1 (c1 INT, c2 INT);

The following table definitions would raise an error because the definitions of the columns common to both
versions of the table are in a different order on the replica than they are on the source:

source> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
replica> CREATE TABLE t1 (c2 INT, c1 INT);

The following table definitions would also raise an error because the definition of the extra column on the
source appears before the definitions of the columns common to both versions of the table:

source> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);
replica> CREATE TABLE t1 (c1 INT, c2 INT);

More columns on the replica. The following table definitions are valid and replicate correctly:

source> CREATE TABLE t1 (c1 INT, c2 INT);
replica> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

The following definitions raise an error because the columns common to both versions of the table are not
defined in the same order on both the source and the replica:

source> CREATE TABLE t1 (c1 INT, c2 INT);
replica> CREATE TABLE t1 (c2 INT, c1 INT, c3 INT);

The following table definitions also raise an error because the definition for the extra column in the replica's
version of the table appears before the definitions for the columns which are common to both versions of
the table:

source> CREATE TABLE t1 (c1 INT, c2 INT);

2550

Replication Features and Issues

replica> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);

The following table definitions fail because the replica's version of the table has additional columns
compared to the source's version, and the two versions of the table use different data types for the
common column c2:

source> CREATE TABLE t1 (c1 INT, c2 BIGINT);
replica> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

Replication of Columns Having Different Data Types

Corresponding columns on the source's and the replica's copies of the same table ideally should have the
same data type. However, beginning with MySQL 5.1.21, this is not always strictly enforced, as long as
certain conditions are met.

All other things being equal, it is always possible to replicate from a column of a given data type to another
column of the same type and same size or width, where applicable, or larger. For example, you can
replicate from a CHAR(10) column to another CHAR(10), or from a CHAR(10) column to a CHAR(25)
column without any problems. In certain cases, it also possible to replicate from a column having one data
type (on the source) to a column having a different data type (on the replica); when the data type of the
source's version of the column is promoted to a type that is the same size or larger on the replica, this is
known as attribute promotion.

Attribute promotion can be used with both statement-based and row-based replication, and is not
dependent on the storage engine used by either the source or the replica. However, the choice of logging
format does have an effect on the type conversions that are permitted; the particulars are discussed later in
this section.

Important

Whether you use statement-based or row-based replication, the replica's copy of
the table cannot contain more columns than the source's copy if you wish to employ
attribute promotion.

Statement-based replication. When using statement-based replication, a simple rule of thumb to
follow is, “If the statement run on the source would also execute successfully on the replica, it should also
replicate successfully”. In other words, if the statement uses a value that is compatible with the type of a
given column on the replica, the statement can be replicated. For example, you can insert any value that
fits in a TINYINT column into a BIGINT column as well; it follows that, even if you change the type of a
TINYINT column in the replica's copy of a table to BIGINT, any insert into that column on the source that
succeeds should also succeed on the replica, since it is impossible to have a legal TINYINT value that is
large enough to exceed a BIGINT column.

Prior to MySQL 5.6.10, when using statement-based replication, AUTO_INCREMENT columns were
required to be the same on both the source and the replica; otherwise, updates could be applied to the
wrong table on the replica. (Bug #12669186)

Row-based replication: attribute promotion and demotion. Row-based replication in MySQL 5.6
supports attribute promotion and demotion between smaller data types and larger types. It is also possible
to specify whether or not to permit lossy (truncated) or non-lossy conversions of demoted column values,
as explained later in this section.

Lossy and non-lossy conversions. In the event that the target type cannot represent the value being
inserted, a decision must be made on how to handle the conversion. If we permit the conversion but
truncate (or otherwise modify) the source value to achieve a “fit” in the target column, we make what is
known as a lossy conversion. A conversion which does not require truncation or similar modifications to fit
the source column value in the target column is a non-lossy conversion.

2551

Replication Features and Issues

Type conversion modes (slave_type_conversions variable). The setting of the
slave_type_conversions global server variable controls the type conversion mode used on the
replica. This variable takes a set of values from the following table, which shows the effects of each mode
on the replica's type-conversion behavior:

Mode Effect

ALL_LOSSY In this mode, type conversions that would mean loss
of information are permitted.

This does not imply that non-lossy conversions
are permitted, merely that only cases requiring
either lossy conversions or no conversion at all are
permitted; for example, enabling only this mode
permits an INT column to be converted to TINYINT
(a lossy conversion), but not a TINYINT column to
an INT column (non-lossy). Attempting the latter
conversion in this case would cause replication to
stop with an error on the replica.

ALL_NON_LOSSY This mode permits conversions that do not require
truncation or other special handling of the source
value; that is, it permits conversions where the
target type has a wider range than the source type.

Setting this mode has no bearing on whether lossy
conversions are permitted; this is controlled with the
ALL_LOSSY mode. If only ALL_NON_LOSSY is set,
but not ALL_LOSSY, then attempting a conversion
that would result in the loss of data (such as INT to
TINYINT, or CHAR(25) to VARCHAR(20)) causes
the replica to stop with an error.

ALL_LOSSY,ALL_NON_LOSSY When this mode is set, all supported type
conversions are permitted, whether or not they are
lossy conversions.

ALL_SIGNED Treat promoted integer types as signed values (the
default behavior).

ALL_UNSIGNED Treat promoted integer types as unsigned values.

ALL_SIGNED,ALL_UNSIGNED Treat promoted integer types as signed if possible,
otherwise as unsigned.

[empty] When slave_type_conversions is not set, no
attribute promotion or demotion is permitted; this
means that all columns in the source and target
tables must be of the same types.

This mode is the default.

When an integer type is promoted, its signedness is not preserved. By default, the replica treats all such
values as signed. Beginning with MySQL 5.6.13, you can control this behavior using ALL_SIGNED,
ALL_UNSIGNED, or both. (Bug#15831300) ALL_SIGNED tells the replica to treat all promoted integer types
as signed; ALL_UNSIGNED instructs it to treat these as unsigned. Specifying both causes the replica to
treat the value as signed if possible, otherwise to treat it as unsigned; the order in which they are listed is
not significant. Neither ALL_SIGNED nor ALL_UNSIGNED has any effect if at least one of ALL_LOSSY or
ALL_NONLOSSY is not also used.

2552

Replication Features and Issues

Changing the type conversion mode requires restarting the replica with the new
slave_type_conversions setting.

Supported conversions. Supported conversions between different but similar data types are shown in
the following list:

• Between any of the integer types TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT.

This includes conversions between the signed and unsigned versions of these types.

Lossy conversions are made by truncating the source value to the maximum (or minimum) permitted
by the target column. For ensuring non-lossy conversions when going from unsigned to signed types,
the target column must be large enough to accommodate the range of values in the source column. For
example, you can demote TINYINT UNSIGNED non-lossily to SMALLINT, but not to TINYINT.

• Between any of the decimal types DECIMAL, FLOAT, DOUBLE, and NUMERIC.

FLOAT to DOUBLE is a non-lossy conversion; DOUBLE to FLOAT can only be handled lossily. A
conversion from DECIMAL(M,D) to DECIMAL(M',D') where D' >= D and (M'-D') >= (M-D) is
non-lossy; for any case where M' < M, D' < D, or both, only a lossy conversion can be made.

For any of the decimal types, if a value to be stored cannot be fit in the target type, the value is rounded
down according to the rounding rules defined for the server elsewhere in the documentation. See
Section 12.21.4, “Rounding Behavior”, for information about how this is done for decimal types.

• Between any of the string types CHAR, VARCHAR, and TEXT, including conversions between different
widths.

Conversion of a CHAR, VARCHAR, or TEXT to a CHAR, VARCHAR, or TEXT column the same size or larger
is never lossy. Lossy conversion is handled by inserting only the first N characters of the string on the
replica, where N is the width of the target column.

Important

Replication between columns using different character sets is not supported.

• Between any of the binary data types BINARY, VARBINARY, and BLOB, including conversions between
different widths.

Conversion of a BINARY, VARBINARY, or BLOB to a BINARY, VARBINARY, or BLOB column the same
size or larger is never lossy. Lossy conversion is handled by inserting only the first N bytes of the string
on the replica, where N is the width of the target column.

• Between any 2 BIT columns of any 2 sizes.

When inserting a value from a BIT(M) column into a BIT(M') column, where M' > M, the most
significant bits of the BIT(M') columns are cleared (set to zero) and the M bits of the BIT(M) value are
set as the least significant bits of the BIT(M') column.

When inserting a value from a source BIT(M) column into a target BIT(M') column, where M' < M,
the maximum possible value for the BIT(M') column is assigned; in other words, an “all-set” value is
assigned to the target column.

Conversions between types not in the previous list are not permitted.

17.4.1.10 Replication and DIRECTORY Table Options

2553

Replication Features and Issues

If a DATA DIRECTORY or INDEX DIRECTORY table option is used in a CREATE TABLE statement on the
source server, the table option is also used on the replica. This can cause problems if no corresponding
directory exists in the replica's host file system or if it exists but is not accessible to the replica server. This
can be overridden by using the NO_DIR_IN_CREATE server SQL mode on the replica, which causes the
replica to ignore the DATA DIRECTORY and INDEX DIRECTORY table options when replicating CREATE
TABLE statements. The result is that MyISAM data and index files are created in the table's database
directory.

For more information, see Section 5.1.10, “Server SQL Modes”.

17.4.1.11 Replication of DROP ... IF EXISTS Statements

The DROP DATABASE IF EXISTS, DROP TABLE IF EXISTS, and DROP VIEW IF EXISTS
statements are always replicated, even if the database, table, or view to be dropped does not exist on the
source. This is to ensure that the object to be dropped no longer exists on either the source or the replica,
once the replica has caught up with the source.

DROP ... IF EXISTS statements for stored programs (stored procedures and functions, triggers, and
events) are also replicated, even if the stored program to be dropped does not exist on the source.

17.4.1.12 Replication and Floating-Point Values

With statement-based replication, values are converted from decimal to binary. Because conversions
between decimal and binary representations of them may be approximate, comparisons involving floating-
point values are inexact. This is true for operations that use floating-point values explicitly, or that use
values that are converted to floating-point implicitly. Comparisons of floating-point values might yield
different results on source and replica servers due to differences in computer architecture, the compiler
used to build MySQL, and so forth. See Section 12.3, “Type Conversion in Expression Evaluation”, and
Section B.3.4.8, “Problems with Floating-Point Values”.

17.4.1.13 Replication and FLUSH

Some forms of the FLUSH statement are not logged because they could cause problems if replicated
to a replica: FLUSH LOGS and FLUSH TABLES WITH READ LOCK. For a syntax example, see
Section 13.7.6.3, “FLUSH Statement”. The FLUSH TABLES, ANALYZE TABLE, OPTIMIZE TABLE,
and REPAIR TABLE statements are written to the binary log and thus replicated to replicas. This is not
normally a problem because these statements do not modify table data.

However, this behavior can cause difficulties under certain circumstances. If you replicate the privilege
tables in the mysql database and update those tables directly without using GRANT, you must issue
a FLUSH PRIVILEGES on the replicas to put the new privileges into effect. In addition, if you use
FLUSH TABLES when renaming a MyISAM table that is part of a MERGE table, you must issue FLUSH
TABLES manually on the replicas. These statements are written to the binary log unless you specify
NO_WRITE_TO_BINLOG or its alias LOCAL.

17.4.1.14 Replication and Fractional Seconds Support

MySQL 5.6.4 and up permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision. See Section 11.2.7, “Fractional Seconds in Time Values”.

There may be problems replicating from a source server that understands fractional seconds to an older
replica that does not:

• For CREATE TABLE statements containing columns that have an fsp (fractional seconds precision)
value greater than 0, replication fails due to parser errors.

2554

Replication Features and Issues

• Statements that use temporal data types with an fsp value of 0 works with statement-based logging
but not row-based logging. In the latter case, the data types have binary formats and type codes on the
source that differ from those on the replica.

• Some expression results differ on source and replica. Examples: On the source, the timestamp
system variable returns a value that includes a microseconds fractional part; on the replica, it returns an
integer. On the source, functions that return a result that includes the current time (such as CURTIME(),
SYSDATE(), or UTC_TIMESTAMP()) interpret an argument as an fsp value and the return value
includes a fractional seconds part of that many digits. On the replica, these functions permit an argument
but ignore it.

17.4.1.15 Replication and System Functions

Certain functions do not replicate well under some conditions:

• The USER(), CURRENT_USER() (or CURRENT_USER), UUID(), VERSION(), and LOAD_FILE()
functions are replicated without change and thus do not work reliably on the replica unless row-based
replication is enabled. (See Section 17.1.2, “Replication Formats”.)

USER() and CURRENT_USER() are automatically replicated using row-based replication when using
MIXED mode, and generate a warning in STATEMENT mode. (See also Section 17.4.1.8, “Replication of
CURRENT_USER()”.) This is also true for VERSION() and RAND().

• For NOW(), the binary log includes the timestamp. This means that the value as returned by the call
to this function on the source is replicated to the replica. To avoid unexpected results when replicating
between MySQL servers in different time zones, set the time zone on both source and replica. For more
information, see Section 17.4.1.31, “Replication and Time Zones”.

To explain the potential problems when replicating between servers which are in different time zones,
suppose that the source is located in New York, the replica is located in Stockholm, and both servers are
using local time. Suppose further that, on the source, you create a table mytable, perform an INSERT
statement on this table, and then select from the table, as shown here:

mysql> CREATE TABLE mytable (mycol TEXT);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO mytable VALUES (NOW());
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Local time in Stockholm is 6 hours later than in New York; so, if you issue SELECT NOW() on the replica
at that exact same instant, the value 2009-09-01 18:00:00 is returned. For this reason, if you select
from the replica's copy of mytable after the CREATE TABLE and INSERT statements just shown have
been replicated, you might expect mycol to contain the value 2009-09-01 18:00:00. However, this
is not the case; when you select from the replica's copy of mytable, you obtain exactly the same result
as on the source:

mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |

2555

Replication Features and Issues

+---------------------+
1 row in set (0.00 sec)

Unlike NOW(), the SYSDATE() function is not replication-safe because it is not affected by SET
TIMESTAMP statements in the binary log and is nondeterministic if statement-based logging is used. This
is not a problem if row-based logging is used.

An alternative is to use the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW().
This must be done on the source and the replica to work correctly. In such cases, a warning is still
issued by this function, but can safely be ignored as long as --sysdate-is-now is used on both the
source and the replica.

SYSDATE() is automatically replicated using row-based replication when using MIXED mode, and
generates a warning in STATEMENT mode.

See also Section 17.4.1.31, “Replication and Time Zones”.

• The following restriction applies to statement-based replication only, not to row-based replication. The
GET_LOCK(), RELEASE_LOCK(), IS_FREE_LOCK(), and IS_USED_LOCK() functions that handle
user-level locks are replicated without the replica knowing the concurrency context on the source.
Therefore, these functions should not be used to insert into a source table because the content on
the replica would differ. For example, do not issue a statement such as INSERT INTO mytable
VALUES(GET_LOCK(...)). These functions are automatically replicated using row-based replication
when using MIXED mode, and generate a warning in STATEMENT mode.

As a workaround for the preceding limitations when statement-based replication is in effect, you can use
the strategy of saving the problematic function result in a user variable and referring to the variable in a
later statement. For example, the following single-row INSERT is problematic due to the reference to the
UUID() function:

INSERT INTO t VALUES(UUID());

To work around the problem, do this instead:

SET @my_uuid = UUID();
INSERT INTO t VALUES(@my_uuid);

That sequence of statements replicates because the value of @my_uuid is stored in the binary log as a
user-variable event prior to the INSERT statement and is available for use in the INSERT.

The same idea applies to multiple-row inserts, but is more cumbersome to use. For a two-row insert, you
can do this:

SET @my_uuid1 = UUID(); @my_uuid2 = UUID();
INSERT INTO t VALUES(@my_uuid1),(@my_uuid2);

However, if the number of rows is large or unknown, the workaround is difficult or impracticable. For
example, you cannot convert the following statement to one in which a given individual user variable is
associated with each row:

INSERT INTO t2 SELECT UUID(), * FROM t1;

Within a stored function, RAND() replicates correctly as long as it is invoked only once during the execution
of the function. (You can consider the function execution timestamp and random number seed as implicit
inputs that are identical on the source and replica.)

The FOUND_ROWS() and ROW_COUNT() functions are not replicated reliably using statement-based
replication. A workaround is to store the result of the function call in a user variable, and then use that in

2556

Replication Features and Issues

the INSERT statement. For example, if you wish to store the result in a table named mytable, you might
normally do so like this:

SELECT SQL_CALC_FOUND_ROWS FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(FOUND_ROWS());

However, if you are replicating mytable, you should use SELECT ... INTO, and then store the variable
in the table, like this:

SELECT SQL_CALC_FOUND_ROWS INTO @found_rows FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(@found_rows);

In this way, the user variable is replicated as part of the context, and applied on the replica correctly.

These functions are automatically replicated using row-based replication when using MIXED mode, and
generate a warning in STATEMENT mode. (Bug #12092, Bug #30244)

Prior to MySQL 5.6.15, the value of LAST_INSERT_ID() was not replicated correctly if any filtering
options such as --replicate-ignore-db and --replicate-do-table were enabled on the replica.
(Bug #17234370, BUG# 69861)

17.4.1.16 Replication of Invoked Features

Replication of invoked features such as loadable functions and stored programs (stored procedures and
functions, triggers, and events) provides the following characteristics:

• The effects of the feature are always replicated.

• The following statements are replicated using statement-based replication:

• CREATE EVENT

• ALTER EVENT

• DROP EVENT

• CREATE PROCEDURE

• DROP PROCEDURE

• CREATE FUNCTION

• DROP FUNCTION

• CREATE TRIGGER

• DROP TRIGGER

However, the effects of features created, modified, or dropped using these statements are replicated
using row-based replication.

Note

Attempting to replicate invoked features using statement-based replication
produces the warning Statement is not safe to log in statement
format. For example, trying to replicate a loadable function with statement-
based replication generates this warning because it currently cannot be
determined by the MySQL server whether the function is deterministic. If you are

2557

Replication Features and Issues

absolutely certain that the invoked feature's effects are deterministic, you can
safely disregard such warnings.

• In the case of CREATE EVENT and ALTER EVENT:

• The status of the event is set to SLAVESIDE_DISABLED on the replica regardless of the state
specified (this does not apply to DROP EVENT).

• The source on which the event was created is identified on the replica by its server ID. The
ORIGINATOR column in INFORMATION_SCHEMA.EVENTS and the originator column in
mysql.event store this information. See Section 21.3.8, “The INFORMATION_SCHEMA EVENTS
Table”, and Section 13.7.5.19, “SHOW EVENTS Statement”, for more information.

• The feature implementation resides on the replica in a renewable state so that if the source fails, the
replica can be used as the source without loss of event processing.

To determine whether there are any scheduled events on a MySQL server that were created on a different
server (that was acting as a replication source server), query the Information Schema EVENTS table in a
manner similar to what is shown here:

SELECT EVENT_SCHEMA, EVENT_NAME
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED';

Alternatively, you can use the SHOW EVENTS statement, like this:

SHOW EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED';

When promoting a replica that has such events to a replication source server, you must enable each event
using ALTER EVENT event_name ENABLE, where event_name is the name of the event.

If more than one source was involved in creating events on this replica, and you wish to identify events that
were created only on a given source having the server ID source_id, modify the previous query on the
EVENTS table to include the ORIGINATOR column, as shown here:

SELECT EVENT_SCHEMA, EVENT_NAME, ORIGINATOR
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED'
 AND ORIGINATOR = 'source_id'

You can employ ORIGINATOR with the SHOW EVENTS statement in a similar fashion:

SHOW EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED'
 AND ORIGINATOR = 'source_id'

Before enabling events that were replicated from the source, you should disable the MySQL Event
Scheduler on the replica (using a statement such as SET GLOBAL event_scheduler = OFF;), run any
necessary ALTER EVENT statements, restart the server, then re-enable the Event Scheduler on the replica
afterward (using a statement such as SET GLOBAL event_scheduler = ON;)-

If you later demote the new source back to being a replica, you must disable manually all events enabled
by the ALTER EVENT statements. You can do this by storing in a separate table the event names from
the SELECT statement shown previously, or using ALTER EVENT statements to rename the events with a
common prefix such as replicated_ to identify them.

If you rename the events, then when demoting this server back to being a replica, you can identify the
events by querying the EVENTS table, as shown here:

2558

Replication Features and Issues

SELECT CONCAT(EVENT_SCHEMA, '.', EVENT_NAME) AS 'Db.Event'
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE INSTR(EVENT_NAME, 'replicated_') = 1;

17.4.1.17 Replication and LIMIT

Statement-based replication of LIMIT clauses in DELETE, UPDATE, and INSERT ... SELECT
statements is unsafe since the order of the rows affected is not defined. (Such statements can be
replicated correctly with statement-based replication only if they also contain an ORDER BY clause.) When
such a statement is encountered:

• When using STATEMENT mode, a warning that the statement is not safe for statement-based replication
is now issued.

When using STATEMENT mode, warnings are issued for DML statements containing LIMIT even when
they also have an ORDER BY clause (and so are made deterministic). This is a known issue. (Bug
#42851)

• When using MIXED mode, the statement is now automatically replicated using row-based mode.

17.4.1.18 Replication and LOAD DATA

LOAD DATA is considered unsafe for statement-based logging (see Section 17.1.2.3, “Determination of
Safe and Unsafe Statements in Binary Logging”). When binlog_format=MIXED is set, the statement is
logged in row-based format. When binlog_format=STATEMENT is set, note that LOAD DATA does not
generate a warning, unlike other unsafe statements.

When mysqlbinlog reads log events for LOAD DATA statements logged in statement-based format,
a generated local file is created in a temporary directory. These temporary files are not automatically
removed by mysqlbinlog or any other MySQL program. If you do use LOAD DATA statements with
statement-based binary logging, you should delete the temporary files yourself after you no longer need
the statement log. For more information, see Section 4.6.8, “mysqlbinlog — Utility for Processing Binary
Log Files”.

17.4.1.19 Replication and max_allowed_packet

max_allowed_packet sets an upper limit on the size of any single message between the MySQL server
and clients, including replicas. If you are replicating large column values (such as might be found in TEXT
or BLOB columns) and max_allowed_packet is too small on the source, the source fails with an error,
and the replica shuts down the I/O thread. If max_allowed_packet is too small on the replica, this also
causes the replica to stop the I/O thread.

Row-based replication sends all columns and column values for updated rows from the source to the
replica, including values of columns that were not actually changed by the update. This means that,
when you are replicating large column values using row-based replication, you must take care to set
max_allowed_packet large enough to accommodate the largest row in any table to be replicated, even
if you are replicating updates only, or you are inserting only relatively small values.

On a multi-threaded replica (slave_parallel_workers > 0), ensure that the system
variable slave_pending_jobs_size_max is set to a value equal to or greater than the
setting for the max_allowed_packet system variable on the source. The default setting for
slave_pending_jobs_size_max, 128M, is twice the default setting for max_allowed_packet,
which is 64M. max_allowed_packet limits the packet size that the source can send, but the addition
of an event header can produce a binary log event exceeding this size. Also, in row-based replication,
a single event can be significantly larger than the max_allowed_packet size, because the value of
max_allowed_packet only limits each column of the table.

2559

Replication Features and Issues

The replica actually accepts packets up to the limit set by its slave_max_allowed_packet setting,
which default to the maximum setting of 1GB, to prevent a replication failure due to a large packet.
However, the value of slave_pending_jobs_size_max controls the memory that is made available on
the replica to hold incoming packets. The specified memory is shared among all the replica worker queues.

The value of slave_pending_jobs_size_max is a soft limit, and if an unusually large event (consisting
of one or multiple packets) exceeds this size, the transaction is held until all the replica workers have
empty queues, and then processed. All subsequent transactions are held until the large transaction
has been completed. So although unusual events larger than slave_pending_jobs_size_max
can be processed, the delay to clear the queues of all the replica workers and the wait to queue
subsequent transactions can cause lag on the replica and decreased concurrency of the replica workers.
slave_pending_jobs_size_max should therefore be set high enough to accommodate most expected
event sizes.

17.4.1.20 Replication and MEMORY Tables

When a replication source server shuts down and restarts, its MEMORY tables become empty. To replicate
this effect to replicas, the first time that the source uses a given MEMORY table after startup, it logs an event
that notifies replicas that the table must be emptied by writing a DELETE statement for that table to the
binary log. The statement is always logged in statement format, even if the binary logging format is set to
ROW, and it is written even if read_only or super_read_only mode is set on the server. Note that the
replica still has outdated data in a MEMORY table during the interval between the source's restart and its first
use of the table. To avoid this interval when a direct query to the replica could return stale data, you can
set the init_file system variable to name a file containing statements that populate the MEMORY table
on the source at startup.

When a replica server shuts down and restarts, its MEMORY tables become empty. This causes the replica
to be out of synchrony with the source and may lead to other failures or cause the replica to stop:

• Row-format updates and deletes received from the source may fail with Can't find record in
'memory_table'.

• Statements such as INSERT INTO ... SELECT FROM memory_table may insert a different set of
rows on the source and replica.

The replica also writes a DELETE statement to its own binary log, which is passed on to any downstream
replicas, causing them to empty their own MEMORY tables.

The safe way to restart a replica that is replicating MEMORY tables is to first drop or delete all rows from the
MEMORY tables on the source and wait until those changes have replicated to the replica. Then it is safe to
restart the replica.

An alternative restart method may apply in some cases. When binlog_format=ROW, you can prevent
the replica from stopping if you set slave_exec_mode=IDEMPOTENT before you start the replica again.
This allows the replica to continue to replicate, but its MEMORY tables still differ from those on the source.
This is acceptable if the application logic is such that the contents of MEMORY tables can be safely lost (for
example, if the MEMORY tables are used for caching). slave_exec_mode=IDEMPOTENT applies globally to
all tables, so it may hide other replication errors in non-MEMORY tables.

(The method just described is not applicable in NDB Cluster, where slave_exec_mode is always
IDEMPOTENT, and cannot be changed.)

The size of MEMORY tables is limited by the value of the max_heap_table_size system variable, which is
not replicated (see Section 17.4.1.35, “Replication and Variables”). A change in max_heap_table_size
takes effect for MEMORY tables that are created or updated using ALTER TABLE ... ENGINE = MEMORY

2560

Replication Features and Issues

or TRUNCATE TABLE following the change, or for all MEMORY tables following a server restart. If you
increase the value of this variable on the source without doing so on the replica, it becomes possible for
a table on the source to grow larger than its counterpart on the replica, leading to inserts that succeed on
the source but fail on the replica with Table is full errors. This is a known issue (Bug #48666). In
such cases, you must set the global value of max_heap_table_size on the replica as well as on the
source, then restart replication. It is also recommended that you restart both the source and replica MySQL
servers, to insure that the new value takes complete (global) effect on each of them.

See Section 15.3, “The MEMORY Storage Engine” for more information about MEMORY tables.

17.4.1.21 Replication of the mysql System Database

Data modification statements made to tables in the mysql database are replicated according to the value
of binlog_format; if this value is MIXED, these statements are replicated using row-based format.
However, statements that would normally update this information indirectly—such GRANT, REVOKE, and
statements manipulating triggers, stored routines, and views—are replicated to replicas using statement-
based replication.

17.4.1.22 Replication and the Query Optimizer

It is possible for the data on the source and replica to become different if a statement is written in such a
way that the data modification is nondeterministic; that is, left up the query optimizer. (In general, this is not
a good practice, even outside of replication.) Examples of nondeterministic statements include DELETE or
UPDATE statements that use LIMIT with no ORDER BY clause; see Section 17.4.1.17, “Replication and
LIMIT”, for a detailed discussion of these.

17.4.1.23 Replication and Partitioning

Replication is supported between partitioned tables as long as they use the same partitioning scheme and
otherwise have the same structure except where an exception is specifically allowed (see Section 17.4.1.9,
“Replication with Differing Table Definitions on Source and Replica”).

Replication between tables having different partitioning is generally not supported. This because
statements (such as ALTER TABLE ... DROP PARTITION) acting directly on partitions in such cases
may produce different results on source and replica. In the case where a table is partitioned on the source
but not on the replica, any statements operating on partitions on the source's copy of the replica fail on the
replica. When the replica's copy of the table is partitioned but the source's copy is not, statements acting
on partitions cannot be run on the source without causing errors there.

Due to these dangers of causing replication to fail entirely (on account of failed statements) and of
inconsistencies (when the result of a partition-level SQL statement produces different results on source
and replica), we recommend that insure that the partitioning of any tables to be replicated from the source
is matched by the replica's versions of these tables.

17.4.1.24 Replication and REPAIR TABLE

When used on a corrupted or otherwise damaged table, it is possible for the REPAIR TABLE statement
to delete rows that cannot be recovered. However, any such modifications of table data performed by this
statement are not replicated, which can cause source and replica to lose synchronization. For this reason,
in the event that a table on the source becomes damaged and you use REPAIR TABLE to repair it, you
should first stop replication (if it is still running) before using REPAIR TABLE, then afterward compare the
source's and replica's copies of the table and be prepared to correct any discrepancies manually, before
restarting replication.

17.4.1.25 Replication and Reserved Words

2561

Replication Features and Issues

You can encounter problems when you attempt to replicate from an older source to a newer replica and
you make use of identifiers on the source that are reserved words in the newer MySQL version running
on the replica. An example of this is using a table column named range on a 5.0 source that is replicating
to a 5.1 or higher replica because RANGE is a reserved word beginning in MySQL 5.1. Replication can fail
in such cases with Error 1064 You have an error in your SQL syntax..., even if a database
or table named using the reserved word or a table having a column named using the reserved word is
excluded from replication. This is due to the fact that each SQL event must be parsed by the replica prior
to execution, so that the replica knows which database object or objects would be affected; only after the
event is parsed can the replica apply any filtering rules defined by --replicate-do-db, --replicate-
do-table, --replicate-ignore-db, and --replicate-ignore-table.

To work around the problem of database, table, or column names on the source which would be regarded
as reserved words by the replica, do one of the following:

• Use one or more ALTER TABLE statements on the source to change the names of any database
objects where these names would be considered reserved words on the replica, and change any SQL
statements that use the old names to use the new names instead.

• In any SQL statements using these database object names, write the names as quoted identifiers using
backtick characters (`).

For listings of reserved words by MySQL version, see Keywords and Reserved Words in MySQL 5.6, in the
MySQL Server Version Reference. For identifier quoting rules, see Section 9.2, “Schema Object Names”.

17.4.1.26 Replication and Source or Replica Shutdowns

It is safe to shut down a replication source server and restart it later. When a replica loses its connection to
the source, the replica tries to reconnect immediately and retries periodically if that fails. The default is to
retry every 60 seconds. This may be changed with the CHANGE MASTER TO statement. A replica also is
able to deal with network connectivity outages. However, the replica notices the network outage only after
receiving no data from the source for slave_net_timeout seconds. If your outages are short, you may
want to decrease slave_net_timeout. See Section 5.1.7, “Server System Variables”.

An unclean shutdown (for example, a crash) on the source side can result in the source's binary
log having a final position less than the most recent position read by the replica, due to the source's
binary log file not being flushed. This can cause the replica not to be able to replicate when the
source comes back up. Setting sync_binlog=1 in the source my.cnf file helps to minimize this
problem because it causes the source to flush its binary log more frequently. For the greatest possible
durability and consistency in a replication setup using InnoDB with transactions, you should also set
innodb_flush_log_at_trx_commit=1. With this setting, the contents of the InnoDB redo log buffer
are written out to the log file at each transaction commit and the log file is flushed to disk. Note that
the durability of transactions is still not guaranteed with this setting, because operating systems or disk
hardware may tell mysqld that the flush-to-disk operation has taken place, even though it has not.

Shutting down a replica cleanly is safe because it keeps track of where it left off. However, be careful that
the replica does not have temporary tables open; see Section 17.4.1.29, “Replication and Temporary
Tables”. Unclean shutdowns might produce problems, especially if the disk cache was not flushed to disk
before the problem occurred:

• For transactions, the replica commits and then updates relay-log.info. If an unexpected exit
occurs between these two operations, relay log processing proceeds further than the information file
indicates and the replica re-executes the events from the last transaction in the relay log after it has been
restarted.

• A similar problem can occur if the replica updates relay-log.info but the server host
crashes before the write has been flushed to disk. To minimize the chance of this occurring, set

2562

https://dev.mysql.com/doc/mysqld-version-reference/en/keywords-5-6.html

Replication Features and Issues

sync_relay_log_info=1 in the replica my.cnf file. The default value of sync_relay_log_info is
0, which does not cause writes to be forced to disk; the server relies on the operating system to flush the
file from time to time.

The fault tolerance of your system for these types of problems is greatly increased if you have a good
uninterruptible power supply.

17.4.1.27 Replica Errors During Replication

If a statement produces the same error (identical error code) on both the source and the replica, the error
is logged, but replication continues.

If a statement produces different errors on the source and the replica, the replication SQL thread
terminates, and the replica writes a message to its error log and waits for the database administrator to
decide what to do about the error. This includes the case that a statement produces an error on the source
or the replica, but not both. To address the issue, connect to the replica manually and determine the cause
of the problem. SHOW SLAVE STATUS is useful for this. Then fix the problem and run START SLAVE. For
example, you might need to create a nonexistent table before you can start the replica again.

Note

If a temporary error is recorded in the replica's error log, you do not necessarily
have to take any action suggested in the quoted error message. Temporary errors
should be handled by the client retrying the transaction. For example, if the replica
SQL thread records a temporary error relating to a deadlock, you do not need to
restart the transaction manually on the replica, unless the replication SQL thread
subsequently terminates with a nontemporary error message.

If this error code validation behavior is not desirable, some or all errors can be masked out (ignored) with
the --slave-skip-errors option.

For nontransactional storage engines such as MyISAM, it is possible to have a statement that only partially
updates a table and returns an error code. This can happen, for example, on a multiple-row insert that has
one row violating a key constraint, or if a long update statement is killed after updating some of the rows.
If that happens on the source, the replica expects execution of the statement to result in the same error
code. If it does not, the replication SQL thread stops as described previously.

If you are replicating between tables that use different storage engines on the source and replica, keep in
mind that the same statement might produce a different error when run against one version of the table,
but not the other, or might cause an error for one version of the table, but not the other. For example, since
MyISAM ignores foreign key constraints, an INSERT or UPDATE statement accessing an InnoDB table on
the source might cause a foreign key violation but the same statement performed on a MyISAM version of
the same table on the replica would produce no such error, causing replication to stop.

17.4.1.28 Replication and Server SQL Mode

Using different server SQL mode settings on the source and the replica may cause the same INSERT
statements to be handled differently on the source and the replica, leading the source and replica to
diverge. For best results, you should always use the same server SQL mode on the source and on the
replica. This advice applies whether you are using statement-based or row-based replication.

If you are replicating partitioned tables, using different SQL modes on the source and the replica is likely to
cause issues. At a minimum, this is likely to cause the distribution of data among partitions to be different
in the source's and replica's copies of a given table. It may also cause inserts into partitioned tables that
succeed on the source to fail on the replica.

2563

Replication Features and Issues

For more information, see Section 5.1.10, “Server SQL Modes”.

17.4.1.29 Replication and Temporary Tables

The discussion in the following paragraphs does not apply when binlog_format=ROW because, in that
case, temporary tables are not replicated; this means that there are never any temporary tables on the
replica to be lost in the event of an unplanned shutdown by the replica. The remainder of this section
applies only when using statement-based or mixed-format replication. Loss of replicated temporary tables
on the replica can be an issue, whenever binlog_format is STATEMENT or MIXED, for statements
involving temporary tables that can be logged safely using statement-based format. For more information
about row-based replication and temporary tables, see Row-based logging of temporary tables.

Safe replica shutdown when using temporary tables. Temporary tables are replicated except in the
case where you stop the replica server (not just the replica threads) and you have replicated temporary
tables that are open for use in updates that have not yet been executed on the replica. If you stop the
replica server, the temporary tables needed by those updates are no longer available when the replica is
restarted. To avoid this problem, do not shut down the replica while it has temporary tables open. Instead,
use the following procedure:

1. Issue a STOP SLAVE SQL_THREAD statement.

2. Use SHOW STATUS to check the value of the Slave_open_temp_tables variable.

3. If the value is not 0, restart the replication SQL thread with START SLAVE SQL_THREAD and repeat
the procedure later.

4. When the value is 0, issue a mysqladmin shutdown command to stop the replica.

Temporary tables and replication options. By default, all temporary tables are replicated; this
happens whether or not there are any matching --replicate-do-db, --replicate-do-table, or
--replicate-wild-do-table options in effect. However, the --replicate-ignore-table and
--replicate-wild-ignore-table options are honored for temporary tables. The exception is that
to enable correct removal of temporary tables at the end of a session, a replica always replicates a DROP
TEMPORARY TABLE IF EXISTS statement, regardless of any exclusion rules that would normally apply
for the specified table.

A recommended practice when using statement-based or mixed-format replication is to designate a
prefix for exclusive use in naming temporary tables that you do not want replicated, then employ a --
replicate-wild-ignore-table option to match that prefix. For example, you might give all such
tables names beginning with norep (such as norepmytable, norepyourtable, and so on), then use
--replicate-wild-ignore-table=norep% to prevent them from being replicated.

17.4.1.30 Replication Retries and Timeouts

The global system variable slave_transaction_retries affects replication as follows:
If the replication SQL thread fails to execute a transaction because of an InnoDB deadlock
or because it exceeded the InnoDB innodb_lock_wait_timeout value, or the NDB
TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout value, the replica
automatically retries the transaction slave_transaction_retries times before stopping with an
error. The default value is 10. The total retry count can be seen in the output of SHOW STATUS; see
Section 5.1.9, “Server Status Variables”.

17.4.1.31 Replication and Time Zones

By default, source and replica servers assume that they are in the same time zone. If you are replicating
between servers in different time zones, the time zone must be set on both source and replica. Otherwise,

2564

Replication Features and Issues

statements depending on the local time on the source are not replicated properly, such as statements that
use the NOW() or FROM_UNIXTIME() functions.

Verify that your combination of settings for the system time zone (system_time_zone), server current
time zone (the global value of time_zone), and per-session time zones (the session value of time_zone)
on the source and replica is producing the correct results. In particular, if the time_zone system variable
is set to the value SYSTEM, indicating that the server time zone is the same as the system time zone, this
can cause the source and replica to apply different time zones. For example, a source could write the
following statement in the binary log:

SET @@session.time_zone='SYSTEM';

If this source and its replica have a different setting for their system time zones, this statement can produce
unexpected results on the replica, even if the replica's global time_zone value has been set to match
the source's. For an explanation of MySQL Server's time zone settings, and how to change them, see
Section 5.1.13, “MySQL Server Time Zone Support”.

See also Section 17.4.1.15, “Replication and System Functions”.

17.4.1.32 Replication and Transactions

Mixing transactional and nontransactional statements within the same transaction. In general,
you should avoid transactions that update both transactional and nontransactional tables in a replication
environment. You should also avoid using any statement that accesses both transactional (or temporary)
and nontransactional tables and writes to any of them.

The MySQL server uses these rules for binary logging:

• If the initial statements in a transaction are nontransactional, they are written to the binary log
immediately. The remaining statements in the transaction are cached and not written to the binary log
until the transaction is committed. (If the transaction is rolled back, the cached statements are written to
the binary log only if they make nontransactional changes that cannot be rolled back. Otherwise, they
are discarded.)

• For statement-based logging, logging of nontransactional statements is affected by the
binlog_direct_non_transactional_updates system variable. When this variable is OFF
(the default), logging is as just described. When this variable is ON, logging occurs immediately for
nontransactional statements occurring anywhere in the transaction (not just initial nontransactional
statements). Other statements are kept in the transaction cache and logged when the transaction
commits. binlog_direct_non_transactional_updates has no effect for row-format or mixed-
format binary logging.

Transactional, nontransactional, and mixed statements.
To apply those rules, the server considers a statement nontransactional if it changes only nontransactional
tables, and transactional if it changes only transactional tables. In MySQL 5.6, a statement that references
both nontransactional and transactional tables and updates any of the tables involved, is considered a
“mixed” statement. (In previous MySQL release series, a statement that changed both nontransactional
and transactional tables was considered mixed.) Mixed statements, like transactional statements, are
cached and logged when the transaction commits.

A mixed statement that updates a transactional table is considered unsafe if the statement also performs
either of the following actions:

• Updates or reads a temporary table

• Reads a nontransactional table and the transaction isolation level is less than REPEATABLE_READ

2565

Replication Features and Issues

A mixed statement following the update of a transactional table within a transaction is considered unsafe if
it performs either of the following actions:

• Updates any table and reads from any temporary table

• Updates a nontransactional table and binlog_direct_non_transactional_updates is OFF

For more information, see Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary
Logging”.

Note

A mixed statement is unrelated to mixed binary logging format.

In situations where transactions mix updates to transactional and nontransactional tables, the order of
statements in the binary log is correct, and all needed statements are written to the binary log even in
case of a ROLLBACK. However, when a second connection updates the nontransactional table before
the first connection transaction is complete, statements can be logged out of order because the second
connection update is written immediately after it is performed, regardless of the state of the transaction
being performed by the first connection.

Using different storage engines on source and replica. It is possible to replicate transactional tables
on the source using nontransactional tables on the replica. For example, you can replicate an InnoDB
source table as a MyISAM replica table. However, if you do this, there are problems if the replica is stopped
in the middle of a BEGIN ... COMMIT block because the replica restarts at the beginning of the BEGIN block.

In MySQL 5.6, it is also safe to replicate transactions from MyISAM tables on the source to transactional
tables, such as tables that use the InnoDB storage engine, on the replica. In such cases, an
AUTOCOMMIT=1 statement issued on the source is replicated, thus enforcing AUTOCOMMIT mode on the
replica.

When the storage engine type of the replica is nontransactional, transactions on the source that mix
updates of transactional and nontransactional tables should be avoided because they can cause
inconsistency of the data between the source transactional table and the replica nontransactional table.
That is, such transactions can lead to behavior specific to the source's storage engine with the possible
effect of replication going out of synchrony. MySQL does not issue a warning about this currently, so extra
care should be taken when replicating transactional tables from the source to nontransactional tables on
the replicas.

Changing the binary logging format within transactions. The binlog_format system variable is
read-only as long as a transaction is in progress. (Bug #47863)

Every transaction (including autocommit transactions) is recorded in the binary log as though it starts with
a BEGIN statement, and ends with either a COMMIT or a ROLLBACK statement. In MySQL 5.6, this true is
even for statements affecting tables that use a nontransactional storage engine (such as MyISAM).

17.4.1.33 Replication and Triggers

With statement-based replication, triggers executed on the source also execute on the replica. With row-
based replication, triggers executed on the source do not execute on the replica. Instead, the row changes
on the source resulting from trigger execution are replicated and applied on the replica.

This behavior is by design. If under row-based replication the replica applied the triggers as well as the row
changes caused by them, the changes would in effect be applied twice on the replica, leading to different
data on the source and the replica.

2566

Replication Features and Issues

If you want triggers to execute on both the source and the replica, perhaps because you have different
triggers on the source and replica, you must use statement-based replication. However, to enable replica-
side triggers, it is not necessary to use statement-based replication exclusively. It is sufficient to switch to
statement-based replication only for those statements where you want this effect, and to use row-based
replication the rest of the time.

A statement invoking a trigger (or function) that causes an update to an AUTO_INCREMENT column is not
replicated correctly using statement-based replication. MySQL 5.6 marks such statements as unsafe. (Bug
#45677)

17.4.1.34 Replication and TRUNCATE TABLE

TRUNCATE TABLE is normally regarded as a DML statement, and so would be expected to be logged
and replicated using row-based format when the binary logging mode is ROW or MIXED. However this
caused issues when logging or replicating, in STATEMENT or MIXED mode, tables that used transactional
storage engines such as InnoDB when the transaction isolation level was READ COMMITTED or READ
UNCOMMITTED, which precludes statement-based logging.

TRUNCATE TABLE is treated for purposes of logging and replication as DDL rather than DML so that it can
be logged and replicated as a statement. However, the effects of the statement as applicable to InnoDB
and other transactional tables on replicas still follow the rules described in Section 13.1.33, “TRUNCATE
TABLE Statement” governing such tables. (Bug #36763)

17.4.1.35 Replication and Variables

System variables are not replicated correctly when using STATEMENT mode, except for the following
variables when they are used with session scope:

• auto_increment_increment

• auto_increment_offset

• character_set_client

• character_set_connection

• character_set_database

• character_set_server

• collation_connection

• collation_database

• collation_server

• foreign_key_checks

• identity

• last_insert_id

• lc_time_names

• pseudo_thread_id

• sql_auto_is_null

• time_zone

2567

Replication Features and Issues

• timestamp

• unique_checks

When MIXED mode is used, the variables in the preceding list, when used with session scope, cause a
switch from statement-based to row-based logging. See Section 5.4.4.3, “Mixed Binary Logging Format”.

sql_mode is also replicated except for the NO_DIR_IN_CREATE mode; the replica always preserves
its own value for NO_DIR_IN_CREATE, regardless of changes to it on the source. This is true for all
replication formats.

However, when mysqlbinlog parses a SET @@sql_mode = mode statement, the full mode value,
including NO_DIR_IN_CREATE, is passed to the receiving server. For this reason, replication of such a
statement may not be safe when STATEMENT mode is in use.

The default_storage_engine and storage_engine system variables are not replicated, regardless
of the logging mode; this is intended to facilitate replication between different storage engines.

The read_only system variable is not replicated. In addition, the enabling this variable has different
effects with regard to temporary tables, table locking, and the SET PASSWORD statement in different
MySQL versions.

The max_heap_table_size system variable is not replicated. Increasing the value of this variable on
the source without doing so on the replica can lead eventually to Table is full errors on the replica
when trying to execute INSERT statements on a MEMORY table on the source that is thus permitted to grow
larger than its counterpart on the replica. For more information, see Section 17.4.1.20, “Replication and
MEMORY Tables”.

In statement-based replication, session variables are not replicated properly when used in statements
that update tables. For example, the following sequence of statements do not insert the same data on the
source and the replica:

SET max_join_size=1000;
INSERT INTO mytable VALUES(@@max_join_size);

This does not apply to the common sequence:

SET time_zone=...;
INSERT INTO mytable VALUES(CONVERT_TZ(..., ..., @@time_zone));

Replication of session variables is not a problem when row-based replication is being used, in which case,
session variables are always replicated safely. See Section 17.1.2, “Replication Formats”.

In MySQL 5.6, the following session variables are written to the binary log and honored by the replica when
parsing the binary log, regardless of the logging format:

• sql_mode

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

2568

Replication Compatibility Between MySQL Versions

• sql_auto_is_null

Important

Even though session variables relating to character sets and collations are written
to the binary log, replication between different character sets is not supported.

To help reduce possible confusion, we recommend that you always use the same setting for the
lower_case_table_names system variable on both source and replica, especially when you are running
MySQL on platforms with case-sensitive file systems.

Note

In previous versions of MySQL, when a case-sensitive file system was in use,
setting this variable to 1 on the replica and to a different value on the source could
lead to replication failure. This issue is fixed in MySQL 5.6.1. (Bug #37656)

17.4.1.36 Replication and Views

Views are always replicated to replicas. Views are filtered by their own name, not by the tables they refer
to. This means that a view can be replicated to the replica even if the view contains a table that would
normally be filtered out by replication-ignore-table rules. Care should therefore be taken to ensure
that views do not replicate table data that would normally be filtered for security reasons.

Replication from a table to a samed-named view is supported using statement-based logging, but not when
using row-based logging. In MySQL 5.6.11 and later, trying to do so when row-based logging is in effect
causes an error. (Bug #11752707, Bug #43975)

17.4.2 Replication Compatibility Between MySQL Versions

MySQL supports replication from one release series to the next higher release series. For example, you
can replicate from a source running MySQL 5.6 to a replica running MySQL 5.7, from a source running
MySQL 5.7 to a replica running MySQL 8.0, and so on. However, you may encounter difficulties when
replicating from an older source to a newer replica if the source uses statements or relies on behavior no
longer supported in the version of MySQL used on the replica. For example, foreign key names longer than
64 characters are no longer supported from MySQL 8.0.

The use of more than two MySQL Server versions is not supported in replication setups involving multiple
sources, regardless of the number of source or replica MySQL servers. This restriction applies not only
to release series, but to version numbers within the same release series as well. For example, if you are
using a chained or circular replication setup, you cannot use MySQL 5.6.39, MySQL 5.6.40, and MySQL
5.6.41 concurrently, although you could use any two of these releases together.

Important

It is strongly recommended to use the most recent release available within a given
MySQL release series because replication (and other) capabilities are continually
being improved. It is also recommended to upgrade sources and replicas that use
early releases of a release series of MySQL to GA (production) releases when the
latter become available for that release series.

Replication from newer sources to older replicas may be possible, but is generally not supported. This is
due to a number of factors:

• Binary log format changes. The binary log format can change between major releases. While we
attempt to maintain backward compatibility, this is not always possible. For example, the binary log

2569

Upgrading a Replication Setup

format implemented in MySQL 5.0 changed considerably from that used in previous versions, especially
with regard to handling of character sets, LOAD DATA, and time zones. This means that replication from
a MySQL 5.0 (or later) source to a MySQL 4.1 (or earlier) replica is generally not supported.

This also has significant implications for upgrading replication servers; see Section 17.4.3, “Upgrading a
Replication Setup”, for more information.

• Use of row-based replication. Row-based replication was implemented in MySQL 5.1.5, so you
cannot replicate using row-based replication from any MySQL 5.6 or later source to a replica older than
MySQL 5.1.5.

For more information about row-based replication, see Section 17.1.2, “Replication Formats”.

• SQL incompatibilities. You cannot replicate from a newer source to an older replica using
statement-based replication if the statements to be replicated use SQL features available on the source
but not on the replica.

However, if both the source and the replica support row-based replication, and there are no data
definition statements to be replicated that depend on SQL features found on the source but not on the
replica, you can use row-based replication to replicate the effects of data modification statements even if
the DDL run on the source is not supported on the replica.

• Important Variables in MySQL 5.6. Features have been added to MySQL 5.6 which need to
be disabled when replicating to earlier MySQL versions. To avoid incompatibilities, set the following
variables on the MySQL 5.6 source:

• binlog_checksum=NONE

• binlog_row_image=FULL

• binlog_rows_query_log_events=OFF

• log_bin_use_v1_row_events=1 (NDB Cluster only)

• gtid_mode=OFF

For more information on potential replication issues, see Section 17.4.1, “Replication Features and Issues”.

17.4.3 Upgrading a Replication Setup

When you upgrade servers that participate in a replication setup, the procedure for upgrading depends
on the current server versions and the version to which you are upgrading. This section provides
information about how upgrading affects replication. For general information about upgrading MySQL, see
Section 2.11, “Upgrading MySQL”

When you upgrade a source to 5.6 from an earlier MySQL release series, you should first ensure that all
the replicas of this source are using the same 5.6.x release. If this is not the case, you should first upgrade
the replicas. To upgrade each replica, shut it down, upgrade it to the appropriate 5.6.x version, restart it,
and restart replication. Relay logs created by the replica after the upgrade are in 5.6 format.

Changes affecting operations in strict SQL mode may result in replication failure on an updated replica.
For example, as of MySQL 5.6.13, the server restricts insertion of a DEFAULT value of 0 for temporal data
types in strict mode (STRICT_TRANS_TABLES or STRICT_ALL_TABLES). A resulting incompatibility
for replication if you use statement-based logging (binlog_format=STATEMENT) is that if a replica is
upgraded, a source which has not been upgraded executes statements without error that may fail on the
replica and replication stops. To deal with this, stop all new statements on the source and wait until the
replicas catch up. Then upgrade the replicas. Alternatively, if you cannot stop new statements, temporarily

2570

Upgrading a Replication Setup

change to row-based logging on the source (binlog_format=ROW) and wait until all replicas have
processed all binary logs produced up to the point of this change. Then upgrade the replicas.

After the replicas have been upgraded, shut down the source, upgrade it to the same 5.6.x release as the
replicas, and restart it. If you had temporarily changed the source to row-based logging, change it back to
statement-based logging. The 5.6 source is able to read the old binary logs written prior to the upgrade and
to send them to the 5.6 replicas. The replicas recognize the old format and handle it properly. Binary logs
created by the source subsequent to the upgrade are in 5.6 format. These too are recognized by the 5.6
replicas.

In other words, when upgrading to MySQL 5.6, the replicas must be MySQL 5.6 before you can upgrade
the source to 5.6. Note that downgrading from 5.6 to older versions does not work so simply: You must
ensure that any 5.6 binary log or relay log has been fully processed, so that you can remove it before
proceeding with the downgrade.

Some upgrades may require that you drop and re-create database objects when you move from one
MySQL series to the next. For example, collation changes might require that table indexes be rebuilt. Such
operations, if necessary, are detailed at Section 2.11.3, “Changes in MySQL 5.6”. It is safest to perform
these operations separately on the replicas and the source, and to disable replication of these operations
from the source to the replica. To achieve this, use the following procedure:

1. Stop all the replicas and upgrade them. Restart them with the --skip-slave-start option so that
they do not connect to the source. Perform any table repair or rebuilding operations needed to re-
create database objects, such as use of REPAIR TABLE or ALTER TABLE, or dumping and reloading
tables or triggers.

2. Disable the binary log on the source. To do this without restarting the source, execute a SET
sql_log_bin = OFF statement. Alternatively, stop the source and restart it without the --log-bin
option. If you restart the source, you might also want to disallow client connections. For example, if all
clients connect using TCP/IP, enable the skip_networking system variable when you restart the
source.

3. With the binary log disabled, perform any table repair or rebuilding operations needed to re-create
database objects. The binary log must be disabled during this step to prevent these operations from
being logged and sent to the replicas later.

4. Re-enable the binary log on the source. If you set sql_log_bin to OFF earlier, execute a SET
sql_log_bin = ON statement. If you restarted the source to disable the binary log, restart it with --
log-bin, and without enabling the skip_networking system variable so that clients and replicas
can connect.

5. Restart the replicas, this time without the --skip-slave-start option.

Replication with global transaction identifiers was introduced in MySQL 5.6.7. If you are upgrading an
existing replication setup from a version of MySQL that does not support GTIDs to a version that does, you
should not enable GTIDs on either the source or the replica before making sure that the setup meets all
the requirements for GTID-based replication. See Section 17.1.3.2, “Setting Up Replication Using GTIDs”,
which contains information about converting existing replication setups to use GTID-based replication.

When the server is running with global transaction identifiers (GTIDs) enabled (gtid_mode=ON), do not
enable binary logging by mysql_upgrade.

It is not recommended to load a dump file when GTIDs are enabled on the server (gtid_mode=ON), if your
dump file includes system tables. mysqldump issues DML instructions for the system tables which use the
non-transactional MyISAM storage engine, and this combination is not permitted when GTIDs are enabled.
Also be aware that loading a dump file from a server with GTIDs enabled, into another server with GTIDs
enabled, causes different transaction identifiers to be generated.

2571

Troubleshooting Replication

17.4.4 Troubleshooting Replication

If you have followed the instructions but your replication setup is not working, the first thing to do is check
the error log for messages. Many users have lost time by not doing this soon enough after encountering
problems.

If you cannot tell from the error log what the problem was, try the following techniques:

• Verify that the source has binary logging enabled by issuing a SHOW MASTER STATUS statement. If
logging is enabled, Position is nonzero. If binary logging is not enabled, verify that you are running the
source with the --log-bin option.

• Verify that the server_id system variable was set at startup on both the source and replica and that
the ID value is unique on each server.

• Verify that the replica is running. Use SHOW SLAVE STATUS to check whether the Slave_IO_Running
and Slave_SQL_Running values are both Yes. If not, verify the options that were used when starting
the replica server. For example, --skip-slave-start prevents the replication threads from starting
until you issue a START SLAVE statement.

• If the replica is running, check whether it established a connection to the source. Use SHOW
PROCESSLIST, find the replication I/O and SQL threads and check their State column to see what
they display. See Section 17.2.1, “Replication Threads”. If the I/O thread state says Connecting to
master, check the following:

• Verify the privileges for the user being used for replication on the source.

• Check that the host name of the source is correct and that you are using the correct port to connect
to the source. The port used for replication is the same as used for client network communication (the
default is 3306). For the host name, ensure that the name resolves to the correct IP address.

• Check the configuration file to see whether the skip_networking system variable has been enabled
on the source or replica to disable networking. If so, comment the setting or remove it.

• If the source has a firewall or IP filtering configuration, ensure that the network port being used for
MySQL is not being filtered.

• Check that you can reach the source by using ping or traceroute/tracert to reach the host.

• If the replica was running previously but has stopped, the reason usually is that some statement that
succeeded on the source failed on the replica. This should never happen if you have taken a proper
snapshot of the source, and never modified the data on the replica outside of the replica thread. If the
replica stops unexpectedly, it is a bug or you have encountered one of the known replication limitations
described in Section 17.4.1, “Replication Features and Issues”. If it is a bug, see Section 17.4.5, “How to
Report Replication Bugs or Problems”, for instructions on how to report it.

• If a statement that succeeded on the source refuses to run on the replica, try the following procedure if it
is not feasible to do a full database resynchronization by deleting the replica's databases and copying a
new snapshot from the source:

1. Determine whether the affected table on the replica is different from the source table. Try to
understand how this happened. Then make the replica's table identical to the source's and run
START SLAVE.

2. If the preceding step does not work or does not apply, try to understand whether it would be safe to
make the update manually (if needed) and then ignore the next statement from the source.

2572

How to Report Replication Bugs or Problems

3. If you decide that the replica can skip the next statement from the source, issue the following
statements:

mysql> SET GLOBAL sql_slave_skip_counter = N;
mysql> START SLAVE;

The value of N should be 1 if the next statement from the source does not use AUTO_INCREMENT
or LAST_INSERT_ID(). Otherwise, the value should be 2. The reason for using a value of 2 for
statements that use AUTO_INCREMENT or LAST_INSERT_ID() is that they take two events in the
binary log of the source.

See also Section 13.4.2.4, “SET GLOBAL sql_slave_skip_counter Statement”.

4. If you are sure that the replica started out perfectly synchronized with the source, and that no
one has updated the tables involved outside of the replication SQL thread, then presumably the
discrepancy is the result of a bug. If you are running the most recent version of MySQL, please report
the problem. If you are running an older version, try upgrading to the latest production release to
determine whether the problem persists.

17.4.5 How to Report Replication Bugs or Problems

When you have determined that there is no user error involved, and replication still either does not work
at all or is unstable, it is time to send us a bug report. We need to obtain as much information as possible
from you to be able to track down the bug. Please spend some time and effort in preparing a good bug
report.

If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database using
the instructions given in Section 1.5, “How to Report Bugs or Problems”. If you have a “phantom” problem
(one that you cannot duplicate at will), use the following procedure:

1. Verify that no user error is involved. For example, if you update the replica outside of the replication
SQL thread, the data goes out of synchrony, and you can have unique key violations on updates. In
this case, the replication SQL thread stops and waits for you to clean up the tables manually to bring
them into synchrony. This is not a replication problem. It is a problem of outside interference causing
replication to fail.

2. Run the replica with the --log-slave-updates and --log-bin options. These options cause the
replica to log the updates that it receives from the source into its own binary logs.

3. Save all evidence before resetting the replication state. If we have no information or only sketchy
information, it becomes difficult or impossible for us to track down the problem. The evidence you
should collect is:

• All binary log files from the source

• All relay log files from the replica

• The output of SHOW MASTER STATUS from the source at the time you discovered the problem

• The output of SHOW SLAVE STATUS from the replica at the time you discovered the problem

• Error logs from the source and the replica

4. Use mysqlbinlog to examine the binary logs. The following should be helpful to find the problem
statement. log_file and log_pos are the Master_Log_File and Read_Master_Log_Pos values
from SHOW SLAVE STATUS.

2573

How to Report Replication Bugs or Problems

$> mysqlbinlog --start-position=log_pos log_file | head

After you have collected the evidence for the problem, try to isolate it as a separate test case first. Then
enter the problem with as much information as possible into our bugs database using the instructions at
Section 1.5, “How to Report Bugs or Problems”.

2574

Chapter 18 MySQL NDB Cluster 7.3 and NDB Cluster 7.4

Table of Contents
18.1 General Information ... 2577
18.2 NDB Cluster Overview .. 2579

18.2.1 NDB Cluster Core Concepts ... 2580
18.2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions 2583
18.2.3 NDB Cluster Hardware, Software, and Networking Requirements 2586
18.2.4 What is New in MySQL NDB Cluster .. 2587
18.2.5 NDB: Added, Deprecated, and Removed Options, Variables, and Parameters 2592
18.2.6 MySQL Server Using InnoDB Compared with NDB Cluster ... 2597
18.2.7 Known Limitations of NDB Cluster .. 2600

18.3 NDB Cluster Installation .. 2612
18.3.1 Installation of NDB Cluster on Linux .. 2614
18.3.2 Installing NDB Cluster on Windows ... 2621
18.3.3 Initial Configuration of NDB Cluster ... 2629
18.3.4 Initial Startup of NDB Cluster .. 2631
18.3.5 NDB Cluster Example with Tables and Data .. 2632
18.3.6 Safe Shutdown and Restart of NDB Cluster .. 2636
18.3.7 Upgrading and Downgrading NDB Cluster ... 2637
18.3.8 The NDB Cluster Auto-Installer (NO LONGER SUPPORTED) 2640

18.4 Configuration of NDB Cluster .. 2640
18.4.1 Quick Test Setup of NDB Cluster .. 2640
18.4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables 2642
18.4.3 NDB Cluster Configuration Files .. 2661
18.4.4 Using High-Speed Interconnects with NDB Cluster ... 2810

18.5 NDB Cluster Programs .. 2811
18.5.1 ndbd — The NDB Cluster Data Node Daemon .. 2811
18.5.2 ndbinfo_select_all — Select From ndbinfo Tables .. 2821
18.5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded) 2827
18.5.4 ndb_mgmd — The NDB Cluster Management Server Daemon 2828
18.5.5 ndb_mgm — The NDB Cluster Management Client .. 2840
18.5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables 2845
18.5.7 ndb_config — Extract NDB Cluster Configuration Information 2852
18.5.8 ndb_cpcd — Automate Testing for NDB Development .. 2864
18.5.9 ndb_delete_all — Delete All Rows from an NDB Table ... 2864
18.5.10 ndb_desc — Describe NDB Tables ... 2869
18.5.11 ndb_drop_index — Drop Index from an NDB Table .. 2877
18.5.12 ndb_drop_table — Drop an NDB Table ... 2882
18.5.13 ndb_error_reporter — NDB Error-Reporting Utility .. 2887
18.5.14 ndb_index_stat — NDB Index Statistics Utility .. 2888
18.5.15 ndb_move_data — NDB Data Copy Utility ... 2897
18.5.16 ndb_print_backup_file — Print NDB Backup File Contents .. 2902
18.5.17 ndb_print_file — Print NDB Disk Data File Contents ... 2903
18.5.18 ndb_print_frag_file — Print NDB Fragment List File Contents 2903
18.5.19 ndb_print_schema_file — Print NDB Schema File Contents .. 2904
18.5.20 ndb_print_sys_file — Print NDB System File Contents ... 2905
18.5.21 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log 2905
18.5.22 ndb_restore — Restore an NDB Cluster Backup .. 2908
18.5.23 ndb_select_all — Print Rows from an NDB Table ... 2934

2575

18.5.24 ndb_select_count — Print Row Counts for NDB Tables .. 2941
18.5.25 ndb_show_tables — Display List of NDB Tables .. 2945
18.5.26 ndb_size.pl — NDBCLUSTER Size Requirement Estimator .. 2951
18.5.27 ndb_waiter — Wait for NDB Cluster to Reach a Given Status 2954

18.6 Management of NDB Cluster ... 2960
18.6.1 Commands in the NDB Cluster Management Client ... 2961
18.6.2 NDB Cluster Log Messages .. 2966
18.6.3 Event Reports Generated in NDB Cluster .. 2984
18.6.4 Summary of NDB Cluster Start Phases ... 2996
18.6.5 Performing a Rolling Restart of an NDB Cluster ... 2997
18.6.6 NDB Cluster Single User Mode ... 2999
18.6.7 Adding NDB Cluster Data Nodes Online .. 3000
18.6.8 Online Backup of NDB Cluster .. 3011
18.6.9 Importing Data Into MySQL Cluster ... 3016
18.6.10 MySQL Server Usage for NDB Cluster .. 3017
18.6.11 NDB Cluster Disk Data Tables .. 3019
18.6.12 Online Operations with ALTER TABLE in NDB Cluster ... 3026
18.6.13 Distributed Privileges Using Shared Grant Tables .. 3030
18.6.14 NDB API Statistics Counters and Variables ... 3033
18.6.15 ndbinfo: The NDB Cluster Information Database .. 3045
18.6.16 Quick Reference: NDB Cluster SQL Statements .. 3085
18.6.17 NDB Cluster Security Issues ... 3090

18.7 NDB Cluster Replication .. 3098
18.7.1 NDB Cluster Replication: Abbreviations and Symbols ... 3100
18.7.2 General Requirements for NDB Cluster Replication .. 3100
18.7.3 Known Issues in NDB Cluster Replication ... 3101
18.7.4 NDB Cluster Replication Schema and Tables .. 3108
18.7.5 Preparing the NDB Cluster for Replication ... 3115
18.7.6 Starting NDB Cluster Replication (Single Replication Channel) 3117
18.7.7 Using Two Replication Channels for NDB Cluster Replication 3119
18.7.8 Implementing Failover with NDB Cluster Replication .. 3120
18.7.9 NDB Cluster Backups With NDB Cluster Replication .. 3121
18.7.10 NDB Cluster Replication: Bidirectional and Circular Replication 3127
18.7.11 NDB Cluster Replication Conflict Resolution .. 3132

18.8 NDB Cluster Release Notes .. 3145

This chapter provides information about MySQL NDB Cluster, a high-availability, high-redundancy version
of MySQL adapted for the distributed computing environment. The most recent NDB Cluster release
series uses version 8 of the NDB storage engine (also known as NDBCLUSTER) to enable running several
computers with MySQL servers and other software in a cluster. NDB Cluster 8.0, now available as a
General Availability (GA) release beginning with version 8.0.19, incorporates version 8.0 of the NDB
storage engine. NDB Cluster 7.6 and NDB Cluster 7.5, still available as GA releases, use versions 7.6
and 7.5 of NDB, respectively. Previous GA releases NDB Cluster 7.4 and NDB Cluster 7.3 incorporated
NDB versions 7.4 and 7.3, respectively. NDB 7.4 and older release series are no longer supported or
maintained.

This chapter contains information about NDB Cluster 7.3 releases through 5.6.51-ndb-7.3.33 as well as
NDB Cluster 7.4 releases through 5.6.51-ndb-7.4.39. The latest available releases of these are 5.6.51-
ndb-7.3.33 and 5.6.51-ndb-7.4.39, respectively. NDB Cluster 8.0 is now available as a General Availability
release, and recommended for new deployments; for information about NDB Cluster 8.0, see What is New
in MySQL NDB Cluster. NDB Cluster 7.6 and 7.5 are previous GA releases still supported in production.
For information about NDB Cluster 7.6 and 7.5, see What is New in MySQL NDB Cluster.

2576

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new.html

General Information

18.1 General Information

MySQL NDB Cluster uses the MySQL server with the NDB storage engine. Support for the NDB storage
engine is not included in standard MySQL Server 5.6 binaries built by Oracle. Instead, users of NDB
Cluster binaries from Oracle should upgrade to the most recent binary release of NDB Cluster for
supported platforms—these include RPMs that should work with most Linux distributions. NDB Cluster
users who build from source should use the sources provided for NDB Cluster. (Locations where the
sources can be obtained are listed later in this section.)

Supported Platforms. NDB Cluster is currently available and supported on a number of platforms.
For exact levels of support available for on specific combinations of operating system versions,
operating system distributions, and hardware platforms, please refer to https://www.mysql.com/support/
supportedplatforms/cluster.html.

Availability. NDB Cluster binary and source packages are available for supported platforms from
https://dev.mysql.com/downloads/cluster/.

NDB Cluster release numbers. NDB Cluster follows a somewhat different release pattern from the
mainline MySQL Server 5.6 series of releases. In this Manual and other MySQL documentation, we identify
these and later NDB Cluster releases employing a version number that begins with “NDB”. This version
number is that of the NDBCLUSTER storage engine used in the release, and not of the MySQL server
version on which the NDB Cluster release is based.

Version strings used in NDB Cluster software. The version string displayed by NDB Cluster
programs uses this format:

mysql-mysql_server_version-ndb-ndb_engine_version

mysql_server_version represents the version of the MySQL Server on which the NDB Cluster
release is based. For all NDB Cluster 7.3 and current NDB Cluster 7.4 releases, this is “5.6”.
ndb_engine_version is the version of the NDB storage engine used by this release of the NDB Cluster
software. You can see this format used in the mysql client, as shown here:

$> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 5.6.51-ndb-7.4.39 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT VERSION()\G
*************************** 1. row ***************************
VERSION(): 5.6.51-ndb-7.4.39
1 row in set (0.00 sec)

This version string is also displayed in the output of the SHOW command in the ndb_mgm client:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @10.0.10.6 (5.6.51-ndb-7.4.39, Nodegroup: 0, *)
id=2 @10.0.10.8 (5.6.51-ndb-7.4.39, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=3 @10.0.10.2 (5.6.51-ndb-7.4.39)

[mysqld(API)] 2 node(s)
id=4 @10.0.10.10 (5.6.51-ndb-7.4.39)

2577

https://www.mysql.com/support/supportedplatforms/cluster.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://dev.mysql.com/downloads/cluster/

General Information

id=5 (not connected, accepting connect from any host)

The version string identifies the mainline MySQL version from which the NDB Cluster release was
branched and the version of the NDB storage engine used. For example, the full version string for NDB
7.4.4 (the first NDB Cluster 7.4 GA release) is mysql-5.6.23-ndb-7.4.4. From this we can determine
the following:

• Since the portion of the version string preceding -ndb- is the base MySQL Server version, this means
that NDB 7.4.4 derives from MySQL 5.6.23, and contains all feature enhancements and bug fixes from
MySQL 5.6 up to and including MySQL 5.6.23.

• Since the portion of the version string following -ndb- represents the version number of the NDB (or
NDBCLUSTER) storage engine, NDB 7.4.4 uses version 7.4.4 of the NDBCLUSTER storage engine.

New NDB Cluster releases are numbered according to updates in the NDB storage engine, and do not
necessarily correspond in a one-to-one fashion with mainline MySQL Server releases. For example, NDB
7.4.4 (as previously noted) is based on MySQL 5.6.23, while NDB 7.4.3 was based on MySQL 5.6.22
(version string: mysql-5.6.22-ndb-7.4.3).

Compatibility with standard MySQL 5.6 releases. While many standard MySQL schemas and
applications can work using NDB Cluster, it is also true that unmodified applications and database
schemas may be slightly incompatible or have suboptimal performance when run using NDB Cluster (see
Section 18.2.7, “Known Limitations of NDB Cluster”). Most of these issues can be overcome, but this also
means that you are very unlikely to be able to switch an existing application datastore—that currently
uses, for example, MyISAM or InnoDB—to use the NDB storage engine without allowing for the possibility
of changes in schemas, queries, and applications. In addition, the MySQL Server and NDB Cluster
codebases diverge considerably, so that the standard mysqld cannot function as a drop-in replacement for
the version of mysqld supplied with NDB Cluster.

NDB Cluster development source trees. NDB Cluster development trees can also be accessed from
https://github.com/mysql/mysql-server.

The NDB Cluster development sources maintained at https://github.com/mysql/mysql-server are licensed
under the GPL. For information about obtaining MySQL sources using Git and building them yourself, see
Section 2.9.5, “Installing MySQL Using a Development Source Tree”.

Note

As with MySQL Server 5.6, NDB Cluster 7.3 and NDB Cluster 7.4 releases are built
using CMake.

MySQL NDB Cluster 8.0 is available beginning with NDB 8.0.19 as a General Availability release, and
is recommended for new deployments; see What is New in MySQL NDB Cluster, for more information.
NDB Cluster 7.6 and 7.5 are previous GA releases still supported in production; for information about
NDB Cluster 7.6, see What is New in NDB Cluster 7.6. For similar information about NDB Cluster 7.5, see
What is New in NDB Cluster 7.5. NDB Cluster 7.4 and 7.3 are previous GA releases which are no longer
maintained. We recommend that new deployments for production use MySQL NDB Cluster 8.0.

This chapter represents a work in progress, and its contents are subject to revision as NDB Cluster
continues to evolve. Additional information regarding NDB Cluster can be found on the MySQL website at
http://www.mysql.com/products/cluster/.

Additional Resources. More information about NDB Cluster can be found in the following places:

• For answers to some commonly asked questions about NDB Cluster, see Section A.10, “MySQL 5.6
FAQ: NDB Cluster”.

2578

https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-5.html
http://www.mysql.com/products/cluster/

NDB Cluster Overview

• The NDB Cluster Forum: https://forums.mysql.com/list.php?25.

• Many NDB Cluster users and developers blog about their experiences with NDB Cluster, and make
feeds of these available through PlanetMySQL.

18.2 NDB Cluster Overview
NDB Cluster is a technology that enables clustering of in-memory databases in a shared-nothing system.
The shared-nothing architecture enables the system to work with very inexpensive hardware, and with a
minimum of specific requirements for hardware or software.

NDB Cluster is designed not to have any single point of failure. In a shared-nothing system, each
component is expected to have its own memory and disk, and the use of shared storage mechanisms such
as network shares, network file systems, and SANs is not recommended or supported.

NDB Cluster integrates the standard MySQL server with an in-memory clustered storage engine called NDB
(which stands for “Network DataBase”). In our documentation, the term NDB refers to the part of the setup
that is specific to the storage engine, whereas “MySQL NDB Cluster” refers to the combination of one or
more MySQL servers with the NDB storage engine.

An NDB Cluster consists of a set of computers, known as hosts, each running one or more processes.
These processes, known as nodes, may include MySQL servers (for access to NDB data), data nodes
(for storage of the data), one or more management servers, and possibly other specialized data access
programs. The relationship of these components in an NDB Cluster is shown here:

Figure 18.1 NDB Cluster Components

All these programs work together to form an NDB Cluster (see Section 18.5, “NDB Cluster Programs”.
When data is stored by the NDB storage engine, the tables (and table data) are stored in the data nodes.

2579

https://forums.mysql.com/list.php?25
http://www.planetmysql.org/

NDB Cluster Core Concepts

Such tables are directly accessible from all other MySQL servers (SQL nodes) in the cluster. Thus, in a
payroll application storing data in a cluster, if one application updates the salary of an employee, all other
MySQL servers that query this data can see this change immediately.

Although an NDB Cluster SQL node uses the mysqld server daemon, it differs in a number of critical
respects from the mysqld binary supplied with the MySQL 5.6 distributions, and the two versions of
mysqld are not interchangeable.

In addition, a MySQL server that is not connected to an NDB Cluster cannot use the NDB storage engine
and cannot access any NDB Cluster data.

The data stored in the data nodes for NDB Cluster can be mirrored; the cluster can handle failures of
individual data nodes with no other impact than that a small number of transactions are aborted due to
losing the transaction state. Because transactional applications are expected to handle transaction failure,
this should not be a source of problems.

Individual nodes can be stopped and restarted, and can then rejoin the system (cluster). Rolling restarts
(in which all nodes are restarted in turn) are used in making configuration changes and software upgrades
(see Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”). Rolling restarts are also used as
part of the process of adding new data nodes online (see Section 18.6.7, “Adding NDB Cluster Data Nodes
Online”). For more information about data nodes, how they are organized in an NDB Cluster, and how they
handle and store NDB Cluster data, see Section 18.2.2, “NDB Cluster Nodes, Node Groups, Fragment
Replicas, and Partitions”.

Backing up and restoring NDB Cluster databases can be done using the NDB-native functionality
found in the NDB Cluster management client and the ndb_restore program included in the NDB
Cluster distribution. For more information, see Section 18.6.8, “Online Backup of NDB Cluster”, and
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”. You can also use the standard
MySQL functionality provided for this purpose in mysqldump and the MySQL server. See Section 4.5.4,
“mysqldump — A Database Backup Program”, for more information.

NDB Cluster nodes can employ different transport mechanisms for inter-node communications; TCP/IP
over standard 100 Mbps or faster Ethernet hardware is used in most real-world deployments.

18.2.1 NDB Cluster Core Concepts

NDBCLUSTER (also known as NDB) is an in-memory storage engine offering high-availability and data-
persistence features.

The NDBCLUSTER storage engine can be configured with a range of failover and load-balancing options,
but it is easiest to start with the storage engine at the cluster level. NDB Cluster's NDB storage engine
contains a complete set of data, dependent only on other data within the cluster itself.

The “Cluster” portion of NDB Cluster is configured independently of the MySQL servers. In an NDB
Cluster, each part of the cluster is considered to be a node.

Note

In many contexts, the term “node” is used to indicate a computer, but when
discussing NDB Cluster it means a process. It is possible to run multiple nodes on a
single computer; for a computer on which one or more cluster nodes are being run
we use the term cluster host.

There are three types of cluster nodes, and in a minimal NDB Cluster configuration, there must be at least
three nodes, one of each of these types:

2580

NDB Cluster Core Concepts

• Management node: The role of this type of node is to manage the other nodes within the NDB Cluster,
performing such functions as providing configuration data, starting and stopping nodes, and running
backups. Because this node type manages the configuration of the other nodes, a node of this type
should be started first, before any other node. A management node is started with the command
ndb_mgmd.

• Data node: This type of node stores cluster data. There are as many data nodes as there are
fragment replicas, times the number of fragments (see Section 18.2.2, “NDB Cluster Nodes, Node
Groups, Fragment Replicas, and Partitions”). For example, with two fragment replicas, each having
two fragments, you need four data nodes. One fragment replica is sufficient for data storage, but
provides no redundancy; therefore, it is recommended to have two (or more) fragment replicas to
provide redundancy, and thus high availability. A data node is started with the command ndbd (see
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”) or ndbmtd (see Section 18.5.3,
“ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”).

NDB Cluster tables are normally stored completely in memory rather than on disk (this is why we refer to
NDB Cluster as an in-memory database). However, some NDB Cluster data can be stored on disk; see
Section 18.6.11, “NDB Cluster Disk Data Tables”, for more information.

• SQL node: This is a node that accesses the cluster data. In the case of NDB Cluster, an SQL node is a
traditional MySQL server that uses the NDBCLUSTER storage engine. An SQL node is a mysqld process
started with the --ndbcluster and --ndb-connectstring options, which are explained elsewhere
in this chapter, possibly with additional MySQL server options as well.

An SQL node is actually just a specialized type of API node, which designates any application which
accesses NDB Cluster data. Another example of an API node is the ndb_restore utility that is used
to restore a cluster backup. It is possible to write such applications using the NDB API. For basic
information about the NDB API, see Getting Started with the NDB API.

Important

It is not realistic to expect to employ a three-node setup in a production
environment. Such a configuration provides no redundancy; to benefit from NDB
Cluster's high-availability features, you must use multiple data and SQL nodes. The
use of multiple management nodes is also highly recommended.

For a brief introduction to the relationships between nodes, node groups, fragment replicas, and partitions
in NDB Cluster, see Section 18.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and
Partitions”.

Configuration of a cluster involves configuring each individual node in the cluster and setting up individual
communication links between nodes. NDB Cluster is currently designed with the intention that data nodes
are homogeneous in terms of processor power, memory space, and bandwidth. In addition, to provide a
single point of configuration, all configuration data for the cluster as a whole is located in one configuration
file.

The management server manages the cluster configuration file and the cluster log. Each node in the
cluster retrieves the configuration data from the management server, and so requires a way to determine
where the management server resides. When interesting events occur in the data nodes, the nodes
transfer information about these events to the management server, which then writes the information to the
cluster log.

In addition, there can be any number of cluster client processes or applications. These include standard
MySQL clients, NDB-specific API programs, and management clients. These are described in the next few
paragraphs.

2581

https://dev.mysql.com/doc/ndbapi/en/ndb-getting-started.html

NDB Cluster Core Concepts

Standard MySQL clients. NDB Cluster can be used with existing MySQL applications written in PHP,
Perl, C, C++, Java, Python, and so on. Such client applications send SQL statements to and receive
responses from MySQL servers acting as NDB Cluster SQL nodes in much the same way that they interact
with standalone MySQL servers.

MySQL clients using an NDB Cluster as a data source can be modified to take advantage of the ability
to connect with multiple MySQL servers to achieve load balancing and failover. For example, Java
clients using Connector/J 5.0.6 and later can use jdbc:mysql:loadbalance:// URLs (improved in
Connector/J 5.1.7) to achieve load balancing transparently; for more information about using Connector/J
with NDB Cluster, see Using Connector/J with NDB Cluster.

NDB client programs. Client programs can be written that access NDB Cluster data directly from the
NDBCLUSTER storage engine, bypassing any MySQL Servers that may be connected to the cluster, using
the NDB API, a high-level C++ API. Such applications may be useful for specialized purposes where an
SQL interface to the data is not needed. For more information, see The NDB API.

NDB-specific Java applications can also be written for NDB Cluster using the NDB Cluster Connector for
Java. This NDB Cluster Connector includes ClusterJ, a high-level database API similar to object-relational
mapping persistence frameworks such as Hibernate and JPA that connect directly to NDBCLUSTER, and so
does not require access to a MySQL Server. See Java and NDB Cluster, and The ClusterJ API and Data
Object Model, for more information.

Management clients. These clients connect to the management server and provide commands for
starting and stopping nodes gracefully, starting and stopping message tracing (debug versions only),
showing node versions and status, starting and stopping backups, and so on. An example of this type of
program is the ndb_mgm management client supplied with NDB Cluster (see Section 18.5.5, “ndb_mgm
— The NDB Cluster Management Client”). Such applications can be written using the MGM API, a C-
language API that communicates directly with one or more NDB Cluster management servers. For more
information, see The MGM API.

Oracle also makes available MySQL Cluster Manager, which provides an advanced command-line
interface simplifying many complex NDB Cluster management tasks, such restarting an NDB Cluster with
a large number of nodes. The MySQL Cluster Manager client also supports commands for getting and
setting the values of most node configuration parameters as well as mysqld server options and variables
relating to NDB Cluster. See MySQL Cluster Manager 1.4.8 User Manual, for more information.

Event logs. NDB Cluster logs events by category (startup, shutdown, errors, checkpoints, and so on),
priority, and severity. A complete listing of all reportable events may be found in Section 18.6.3, “Event
Reports Generated in NDB Cluster”. Event logs are of the two types listed here:

• Cluster log: Keeps a record of all desired reportable events for the cluster as a whole.

• Node log: A separate log which is also kept for each individual node.

Note

Under normal circumstances, it is necessary and sufficient to keep and examine
only the cluster log. The node logs need be consulted only for application
development and debugging purposes.

Checkpoint. Generally speaking, when data is saved to disk, it is said that a checkpoint has been
reached. More specific to NDB Cluster, a checkpoint is a point in time where all committed transactions
are stored on disk. With regard to the NDB storage engine, there are two types of checkpoints which work
together to ensure that a consistent view of the cluster's data is maintained. These are shown in the
following list:

2582

https://dev.mysql.com/doc/ndbapi/en/mccj-using-connectorj.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html
https://dev.mysql.com/doc/ndbapi/en/mgm-api.html
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

• Local Checkpoint (LCP): This is a checkpoint that is specific to a single node; however, LCPs take place
for all nodes in the cluster more or less concurrently. An LCP involves saving all of a node's data to disk,
and so usually occurs every few minutes. The precise interval varies, and depends upon the amount of
data stored by the node, the level of cluster activity, and other factors.

• Global Checkpoint (GCP): A GCP occurs every few seconds, when transactions for all nodes are
synchronized and the redo-log is flushed to disk.

For more information about the files and directories created by local checkpoints and global checkpoints,
see NDB Cluster Data Node File System Directory.

18.2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

This section discusses the manner in which NDB Cluster divides and duplicates data for storage.

A number of concepts central to an understanding of this topic are discussed in the next few paragraphs.

Data node. An ndbd or ndbmtd process, which stores one or more fragment replicas—that is, copies of
the partitions (discussed later in this section) assigned to the node group of which the node is a member.

Each data node should be located on a separate computer. While it is also possible to host multiple data
node processes on a single computer, such a configuration is not usually recommended.

It is common for the terms “node” and “data node” to be used interchangeably when referring to an ndbd or
ndbmtd process; where mentioned, management nodes (ndb_mgmd processes) and SQL nodes (mysqld
processes) are specified as such in this discussion.

Node group. A node group consists of one or more nodes, and stores partitions, or sets of fragment
replicas (see next item).

The number of node groups in an NDB Cluster is not directly configurable; it is a function of the number of
data nodes and of the number of fragment replicas (NoOfReplicas configuration parameter), as shown
here:

[# of node groups] = [# of data nodes] / NoOfReplicas

Thus, an NDB Cluster with 4 data nodes has 4 node groups if NoOfReplicas is set to 1 in the
config.ini file, 2 node groups if NoOfReplicas is set to 2, and 1 node group if NoOfReplicas is set
to 4. Fragment replicas are discussed later in this section; for more information about NoOfReplicas, see
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”.

Note

All node groups in an NDB Cluster must have the same number of data nodes.

You can add new node groups (and thus new data nodes) online, to a running NDB Cluster; see
Section 18.6.7, “Adding NDB Cluster Data Nodes Online”, for more information.

Partition. This is a portion of the data stored by the cluster. Each node is responsible for keeping at
least one copy of any partitions assigned to it (that is, at least one fragment replica) available to the cluster.

The number of partitions used by default by NDB Cluster depends on the number of data nodes and the
number of LDM threads in use by the data nodes, as shown here:

[# of partitions] = [# of data nodes] * [# of LDM threads]

2583

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

When using data nodes running ndbmtd, the number of LDM threads is controlled by the setting for
MaxNoOfExecutionThreads. When using ndbd there is a single LDM thread, which means that there
are as many cluster partitions as nodes participating in the cluster. This is also the case when using
ndbmtd with MaxNoOfExecutionThreads set to 3 or less. (You should be aware that the number of
LDM threads increases with the value of this parameter, but not in a strictly linear fashion, and that there
are additional constraints on setting it; see the description of MaxNoOfExecutionThreads for more
information.)

NDB and user-defined partitioning. NDB Cluster normally partitions NDBCLUSTER tables
automatically. However, it is also possible to employ user-defined partitioning with NDBCLUSTER tables.
This is subject to the following limitations:

1. Only the KEY and LINEAR KEY partitioning schemes are supported in production with NDB tables.

2. The maximum number of partitions that may be defined explicitly for any NDB table is 8 * [number
of LDM threads] * [number of node groups], the number of node groups in an NDB Cluster
being determined as discussed previously in this section. When running ndbd for data node processes,
setting the number of LDM threads has no effect (since ThreadConfig applies only to ndbmtd);
in such cases, this value can be treated as though it were equal to 1 for purposes of performing this
calculation.

See Section 18.5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”, for more
information.

For more information relating to NDB Cluster and user-defined partitioning, see Section 18.2.7, “Known
Limitations of NDB Cluster”, and Section 19.6.2, “Partitioning Limitations Relating to Storage Engines”.

Fragment replica. This is a copy of a cluster partition. Each node in a node group stores a fragment
replica. Also sometimes known as a partition replica. The number of fragment replicas is equal to the
number of nodes per node group.

A fragment replica belongs entirely to a single node; a node can (and usually does) store several fragment
replicas.

The following diagram illustrates an NDB Cluster with four data nodes running ndbd, arranged in two node
groups of two nodes each; nodes 1 and 2 belong to node group 0, and nodes 3 and 4 belong to node
group 1.

Note

Only data nodes are shown here; although a working NDB Cluster requires an
ndb_mgmd process for cluster management and at least one SQL node to access
the data stored by the cluster, these have been omitted from the figure for clarity.

2584

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

Figure 18.2 NDB Cluster with Two Node Groups

The data stored by the cluster is divided into four partitions, numbered 0, 1, 2, and 3. Each partition is
stored—in multiple copies—on the same node group. Partitions are stored on alternate node groups as
follows:

• Partition 0 is stored on node group 0; a primary fragment replica (primary copy) is stored on node 1, and
a backup fragment replica (backup copy of the partition) is stored on node 2.

• Partition 1 is stored on the other node group (node group 1); this partition's primary fragment replica is
on node 3, and its backup fragment replica is on node 4.

• Partition 2 is stored on node group 0. However, the placing of its two fragment replicas is reversed from
that of Partition 0; for Partition 2, the primary fragment replica is stored on node 2, and the backup on
node 1.

• Partition 3 is stored on node group 1, and the placement of its two fragment replicas are reversed from
those of partition 1. That is, its primary fragment replica is located on node 4, with the backup on node 3.

What this means regarding the continued operation of an NDB Cluster is this: so long as each node group
participating in the cluster has at least one node operating, the cluster has a complete copy of all data and
remains viable. This is illustrated in the next diagram.

2585

NDB Cluster Hardware, Software, and Networking Requirements

Figure 18.3 Nodes Required for a 2x2 NDB Cluster

In this example, the cluster consists of two node groups each consisting of two data nodes. Each data
node is running an instance of ndbd. Any combination of at least one node from node group 0 and at least
one node from node group 1 is sufficient to keep the cluster “alive”. However, if both nodes from a single
node group fail, the combination consisting of the remaining two nodes in the other node group is not
sufficient. In this situation, the cluster has lost an entire partition and so can no longer provide access to a
complete set of all NDB Cluster data.

18.2.3 NDB Cluster Hardware, Software, and Networking Requirements

One of the strengths of NDB Cluster is that it can be run on commodity hardware and has no unusual
requirements in this regard, other than for large amounts of RAM, due to the fact that all live data storage
is done in memory. (It is possible to reduce this requirement using Disk Data tables—see Section 18.6.11,
“NDB Cluster Disk Data Tables”, for more information about these.) Naturally, multiple and faster CPUs
can enhance performance. Memory requirements for other NDB Cluster processes are relatively small.

The software requirements for NDB Cluster are also modest. Host operating systems do not require any
unusual modules, services, applications, or configuration to support NDB Cluster. For supported operating
systems, a standard installation should be sufficient. The MySQL software requirements are simple: all that
is needed is a production release of NDB Cluster. It is not strictly necessary to compile MySQL yourself
merely to be able to use NDB Cluster. We assume that you are using the binaries appropriate to your
platform, available from the NDB Cluster software downloads page at https://dev.mysql.com/downloads/
cluster/.

For communication between nodes, NDB Cluster supports TCP/IP networking in any standard topology,
and the minimum expected for each host is a standard 100 Mbps Ethernet card, plus a switch, hub, or
router to provide network connectivity for the cluster as a whole. We strongly recommend that an NDB
Cluster be run on its own subnet which is not shared with machines not forming part of the cluster for the
following reasons:

2586

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/

What is New in MySQL NDB Cluster

• Security. Communications between NDB Cluster nodes are not encrypted or shielded in any way.
The only means of protecting transmissions within an NDB Cluster is to run your NDB Cluster on a
protected network. If you intend to use NDB Cluster for Web applications, the cluster should definitely
reside behind your firewall and not in your network's De-Militarized Zone (DMZ) or elsewhere.

See Section 18.6.17.1, “NDB Cluster Security and Networking Issues”, for more information.

• Efficiency. Setting up an NDB Cluster on a private or protected network enables the cluster to make
exclusive use of bandwidth between cluster hosts. Using a separate switch for your NDB Cluster not only
helps protect against unauthorized access to NDB Cluster data, it also ensures that NDB Cluster nodes
are shielded from interference caused by transmissions between other computers on the network. For
enhanced reliability, you can use dual switches and dual cards to remove the network as a single point
of failure; many device drivers support failover for such communication links.

Network communication and latency. NDB Cluster requires communication between data nodes
and API nodes (including SQL nodes), as well as between data nodes and other data nodes, to execute
queries and updates. Communication latency between these processes can directly affect the observed
performance and latency of user queries. In addition, to maintain consistency and service despite the
silent failure of nodes, NDB Cluster uses heartbeating and timeout mechanisms which treat an extended
loss of communication from a node as node failure. This can lead to reduced redundancy. Recall that, to
maintain data consistency, an NDB Cluster shuts down when the last node in a node group fails. Thus, to
avoid increasing the risk of a forced shutdown, breaks in communication between nodes should be avoided
wherever possible.

The failure of a data or API node results in the abort of all uncommitted transactions involving the failed
node. Data node recovery requires synchronization of the failed node's data from a surviving data node,
and re-establishment of disk-based redo and checkpoint logs, before the data node returns to service. This
recovery can take some time, during which the Cluster operates with reduced redundancy.

Heartbeating relies on timely generation of heartbeat signals by all nodes. This may not be possible if the
node is overloaded, has insufficient machine CPU due to sharing with other programs, or is experiencing
delays due to swapping. If heartbeat generation is sufficiently delayed, other nodes treat the node that is
slow to respond as failed.

This treatment of a slow node as a failed one may or may not be desirable in some circumstances,
depending on the impact of the node's slowed operation on the rest of the cluster. When setting timeout
values such as HeartbeatIntervalDbDb and HeartbeatIntervalDbApi for NDB Cluster, care
must be taken care to achieve quick detection, failover, and return to service, while avoiding potentially
expensive false positives.

Where communication latencies between data nodes are expected to be higher than would be expected
in a LAN environment (on the order of 100 µs), timeout parameters must be increased to ensure that any
allowed periods of latency periods are well within configured timeouts. Increasing timeouts in this way has
a corresponding effect on the worst-case time to detect failure and therefore time to service recovery.

LAN environments can typically be configured with stable low latency, and such that they can provide
redundancy with fast failover. Individual link failures can be recovered from with minimal and controlled
latency visible at the TCP level (where NDB Cluster normally operates). WAN environments may offer a
range of latencies, as well as redundancy with slower failover times. Individual link failures may require
route changes to propagate before end-to-end connectivity is restored. At the TCP level this can appear as
large latencies on individual channels. The worst-case observed TCP latency in these scenarios is related
to the worst-case time for the IP layer to reroute around the failures.

18.2.4 What is New in MySQL NDB Cluster

2587

http://compnetworking.about.com/cs/networksecurity/g/bldef_dmz.htm

What is New in MySQL NDB Cluster

This section lists changes in the implementation of NDB Cluster in MySQL NDB Cluster 7.3 and NDB
Cluster 7.4, as compared to earlier releases. Changes and features most likely to be of interest in NDB 7.3
are shown in the following list:

• NDB Cluster 7.3 is based on MySQL 5.6. For more information about new features in MySQL Server 5.6,
see Section 1.3, “What Is New in MySQL 5.6”.

• NDB Cluster 7.3 supports foreign key constraints on tables. See Section 1.6.3.2, “FOREIGN KEY
Constraints”, and Section 13.1.17.5, “FOREIGN KEY Constraints”, for more information.

• NDB Cluster 7.3 provides support for Node.js using the MySQL NoSQL Connector for JavaScript. See
MySQL NoSQL Connector for JavaScript, for more information.

Changes and features in NDB Cluster 7.4 that are most likely to be of interest are shown in the following
list:

• NDB Cluster 7.4 is based on MySQL 5.6 (For more information about new features in MySQL Server
5.6, see Section 1.3, “What Is New in MySQL 5.6”)

• NDB Cluster Replication conflict detection and resolution enhancements, including extensions to conflict
exceptions tables (see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”)

• Improvements in the management of circular (“active-active”) replication; primary/secondary assignment
with ndb_slave_conflict_role

• Per-fragment memory usage reporting in the memory_per_fragment table

• A number of performance improvements, including the following enhancements:

• Faster initial allocation of memory

• Increased parallelization of local checkpoints (LCPs now support 32 fragments rather than 2)

A group of configuration parameters (MaxDiskWriteSpeed,
MaxDiskWriteSpeedOtherNoderestart, MaxDiskWriteSpeedOwnRestart) introduced in this
version provides improved control over disk writes during LCPs

Information about recent disk writes is available in the disk_write_speed_base,
disk_write_speed_aggregate, and disk_write_speed_aggregate_node tables added to
the ndbinfo database in the this version

• Faster times for restoring an NDB Cluster from backup

• Optimization of the NDB receive thread

• Improved error and other reporting during node restarts

This section contains information about MySQL NDB Cluster 7.3 releases through 5.6.51-ndb-7.3.33 as
well as NDB Cluster 7.4 releases through 5.6.51-ndb-7.4.39 as compared to earlier release series. MySQL
NDB Cluster 8.0 is available as a General Availability (GA) release, beginning with NDB 8.0.19; see What
is New in MySQL NDB Cluster, for more information about new features and other changes in NDB 8.0.
NDB Cluster 7.6 and 7.5 are previous GA releases still supported in production; for more information, see
MySQL NDB Cluster 7.5 and NDB Cluster 7.6. NDB Cluster 7.4 and 7.3 are previous GA releases which
are no longer maintained. We recommend that new deployments for production use MySQL NDB Cluster
8.0.

18.2.4.1 What is New in NDB Cluster 7.3

The following improvements to NDB Cluster have been made in NDB Cluster 7.3:

2588

https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html

What is New in MySQL NDB Cluster

• Based on MySQL Server 5.6. NDB Cluster 7.3 is based on MySQL Server 5.6, so that NDB Cluster
users can benefit from MySQL 5.6's improvements in scalability and performance monitoring. As with
MySQL 5.6, NDB Cluster 7.3 uses CMake for configuring and building from source. For more information
about changes and improvements in MySQL 5.6, see Section 1.3, “What Is New in MySQL 5.6”.

• Foreign keys. Tables created using the NDB storage engine version 7.3.0 and later provide support
for foreign key constraints. (This includes all NDB Cluster 7.3 releases.) For general information about
how MySQL 5.6 and NDB Cluster 7.3 handle foreign keys, see Section 1.6.3.2, “FOREIGN KEY
Constraints”. For syntax and related information, see Section 13.1.17, “CREATE TABLE Statement”, and
Section 13.1.17.5, “FOREIGN KEY Constraints”.

• Node.js support. NDB Cluster 7.3 also supports applications written in JavaScript using Node.js.
The MySQL Connector for JavaScript includes adapters for direct access to the NDB storage engine and
as well as for the MySQL Server. Applications using this Connector are typically event-driven and use
a domain object model similar in many ways to that employed by ClusterJ. For more information, see
MySQL NoSQL Connector for JavaScript.

• End of ClusterJPA support. ClusterJPA is no longer supported beginning with NDB 7.3.18; its
source code and binary have been removed from the NDB Cluster distribution.

• ndb_restore—NDBT dependency removal. The dependency of ndb_restore on the NDBT library
has been removed as of NDB 7.3.25. This library is used internally for development, and is not required
for normal use; its inclusion in this program could lead to unwanted issues when testing.

The principal effect of this change for users is that ndb_restore no longer prints NDBT_ProgramExit
- status following completion of a run. Applications that depend upon such behavior should be
updated to reflect the change when upgrading.

• Auto-Installer deprecation and removal. The MySQL NDB Cluster Auto-Installer web-based
installation tool (ndb_setup.py) is deprecated in NDB 7.3.31, and is removed in NDB 7.3.32 and later.
It is no longer supported.

• ndbmemcache deprecation and removal. ndbmemcache is no longer supported. ndbmemcache
was deprecated in NDB 7.3.31, and removed in NDB 7.3.32.

• Node.js support removed. Beginning with the NDB Cluster 7.3.31 release, support for Node.js by
NDB 7.3 has been removed.

Support for Node.js by NDB Cluster is maintained in NDB 8.0 only.

NDB Cluster 7.3 is also supported by MySQL Cluster Manager, which provides an advanced command-
line interface that can simplify many complex NDB Cluster management tasks. See MySQL Cluster
Manager 1.4.8 User Manual, for more information.

18.2.4.2 What is New in NDB Cluster 7.4

The following improvements to NDB Cluster have been made in NDB Cluster 7.4:

• Conflict detection and resolution enhancements. A reserved column name namespace NDB$ is
now employed for exceptions table metacolumns, allowing an arbitrary subset of main table columns to
be recorded, even if they are not part of the original table's primary key.

Recording the complete original primary key is no longer required, due to the fact that matching against
exceptions table columns is now done by name and type only. It is now also possible for you to record
values of columns which not are part of the main table's primary key in the exceptions table.

Read conflict detection is now possible. All rows read by the conflicting transaction are flagged, and
logged in the exceptions table. Rows inserted in the same transaction are not included among the rows

2589

https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

What is New in MySQL NDB Cluster

read or logged. This read tracking depends on the fragment replica having an exclusive read lock which
requires setting ndb_log_exclusive_reads in advance. See Read conflict detection and resolution,
for more information and examples.

Existing exceptions tables remain supported. For more information, see Section 18.7.11, “NDB Cluster
Replication Conflict Resolution”.

• Circular (“active-active”) replication improvements. When using a circular or “active-active” NDB
Cluster Replication topology, you can assign one of the roles of primary of secondary to a given NDB
Cluster using the ndb_slave_conflict_role server system variable, which can be employed when
failing over from an NDB Cluster acting as primary, or when using conflict detection and resolution with
NDB$EPOCH2() and NDB$EPOCH2_TRANS() (NDB 7.4.2 and later), which support delete-delete conflict
handling.

See the description of the ndb_slave_conflict_role variable, as well as NDB$EPOCH2(), for more
information. See also Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

• Per-fragment memory usage reporting. You can now obtain data about memory usage by
individual NDB Cluster fragments from the memory_per_fragment view, added in NDB 7.4.1 to
the ndbinfo information database. For more information, see Section 18.6.15.17, “The ndbinfo
memory_per_fragment Table”.

• Node restart improvements. NDB Cluster 7.4 includes a number of improvements which decrease
the time needed for data nodes to be restarted. These are described in the following list:

• Memory allocated that is allocated on node startup cannot be used until it has been touched,
which causes the operating system to set aside the actual physical memory required. In previous
versions of NDB Cluster, the process of touching each page of memory that was allocated was
singlethreaded, which made it relatively time-consuming. This process has now been reimplimented
with multithreading. In tests with 16 threads, touch times on the order of 3 times shorter than with a
single thread were observed.

• Increased parallelization of local checkpoints; in NDB Cluster 7.4, LCPs now support 32 fragments
rather than 2 as before. This greatly increases utilization of CPU power that would otherwise go
unused, and can make LCPs faster by up to a factor of 10; this speedup in turn can greatly improve
node restart times.

The degree of parallelization used for the node copy phase during node and system restarts can
be controlled in NDB 7.4.3 and later by setting the MaxParallelCopyInstances data node
configuration parameter to a nonzero value.

• Reporting on disk writes is provided by new ndbinfo tables disk_write_speed_base,
disk_write_speed_aggregate, and disk_write_speed_aggregate_node, which provide
information about the speed of disk writes for each LDM thread that is in use.

This release also adds the data node configuration parameters MinDiskWriteSpeed,
MaxDiskWriteSpeed, MaxDiskWriteSpeedOtherNodeRestart, and
MaxDiskWriteSpeedOwnRestart to control write speeds for LCPs and backups when the present
node, another node, or no node is currently restarting.

These changes are intended to supersede configuration of disk writes using the
DiskCheckpointSpeed and DiskCheckpointSpeedInRestart configuration parameters. These
2 parameters have now been deprecated, and are subject to removal in a future NDB Cluster release.

• Faster times for restoring an NDB Cluster from backup have been obtained by replacing delayed
signals found at a point which was found to be critical to performance with normal (undelayed) signals.

2590

What is New in MySQL NDB Cluster

The elimination or replacement of these unnecessary delayed signals should noticeably reduce the
amount of time required to back up an NDB Cluster, or to restore an NDB Cluster from backup.

• Several internal methods relating to the NDB receive thread have been optimized, to increase the
efficiency of SQL processing by NDB. The receiver thread at time may have to process several million
received records per second, so it is critical that it not perform unnecessary work or waste resources
when retrieving records from NDB Cluster data nodes.

• Improved reporting of NDB Cluster restarts and start phases. The restart_info table
(included in the ndbinfo information database beginning with NDB 7.4.2) provides current status and
timing information about node and system restarts.

Reporting and logging of NDB Cluster start phases also provides more frequent and specific printouts
during startup than previously. See Section 18.6.4, “Summary of NDB Cluster Start Phases”, for more
information.

• NDB API: new Event API. NDB 7.4.3 introduces an epoch-driven Event API that supercedes the
earlier GCI-based model. The new version of the API also simplifies error detection and handling.
These changes are realized in the NDB API by implementing a number of new methods for Ndb and
NdbEventOperation, deprecating several other methods of both classes, and adding new type values
to Event::TableEvent.

The event handling methods added to Ndb in NDB 7.4.3 are pollEvents2(), nextEvent2(),
getHighestQueuedEpoch(), and getNextEventOpInEpoch2(). The Ndb methods
pollEvents(), nextEvent(), getLatestGCI(), getGCIEventOperations(),
isConsistent(), and isConsistentGCI() are deprecated beginning with the same release.

NDB 7.4.3 adds the NdbEventOperation event handling methods getEventType2(),
getEpoch(), isEmptyEpoch(), and isErrorEpoch; it obsoletes getEventType(), getGCI(),
getLatestGCI(), isOverrun(), hasError(), and clearError().

While some (but not all) of the new methods are direct replacements for deprecated methods, not all
of the deprecated methods map to new ones. The Event Class, provides information as to which old
methods correspond to new ones.

Error handling using the new API is no longer handled using dedicated hasError() and
clearError() methods, which are now deprecated (and thus subject to removal in a future release of
NDB Cluster). To support this change, the list of TableEvent types now includes the values TE_EMPTY
(empty epoch), TE_INCONSISTENT (inconsistent epoch), and TE_OUT_OF_MEMORY (inconsistent data).

Improvements in event buffer management have also been made by implementing new
get_eventbuffer_free_percent(), set_eventbuffer_free_percent(), and
get_event_buffer_memory_usage() methods. Memory buffer usage can now be represented in
application code using Ndb::EventBufferMemoryUsage. The ndb_eventbuffer_free_percent
system variable, also implemented in NDB Cluster 7.4, makes it possible for event buffer memory usage
to be checked from MySQL client applications.

For more information, see the detailed descriptions for the Ndb and NdbEventOperation methods
listed. See also Event::TableEvent, as well as Ndb::EventBufferMemoryUsage.

• Per-fragment operations information. In NDB 7.4.3 and later, counts of various types of operations
on a given fragment or fragment replica can obtained easily using the operations_per_fragment
table in the ndbinfo information database. This includes read, write, update, and delete
operations, as well as scan and index operations performed by these. Information about operations
refused, and about rows scanned and returned from a given fragment replica, is also shown in

2591

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-tableevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-gethighestqueuedepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getnexteventopinepoch2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getlatestgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getgcieventoperations
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-isconsistent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-isconsistentgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-geteventtype2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-isemptyepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-iserrorepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-geteventtype
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getlatestgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-isoverrun
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-haserror
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-clearerror
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-haserror
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-clearerror
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-tableevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-get-eventbuffer-free-percent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-set-eventbuffer-free-percent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-get-event-buffer-memory-usage
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-eventbuffermemoryusage
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-tableevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-eventbuffermemoryusage

NDB: Added, Deprecated, and Removed Options, Variables, and Parameters

operations_per_fragment. This table also provides information about interpreted programs used as
attribute values, and values returned by them.

• --ndb-log-fail-terminate option. Beginning with NDB 7.4.28, you can cause the SQL node to
terminate whenever it is unable to log all row events fully. This can be done by starting mysqld with the
--ndb-log-fail-terminate option.

• NDB programs—NDBT dependency removal. The dependency of a number of NDB utility programs
on the NDBT library has been removed. This library is used internally for development, and is not
required for normal use; its inclusion in these programs could lead to unwanted issues when testing.

Affected programs are listed here, along with the NDB versions in which the dependency was removed:

• ndb_restore, in NDB 7.4.24

• ndb_show_tables, in NDB 7.4.28

• ndb_waiter, in NDB 7.4.28

The principal effect of this change for users is that these programs no longer print NDBT_ProgramExit
- status following completion of a run. Applications that depend upon such behavior should be
updated to reflect the change when upgrading to the indicated versions.

• End of ClusterJPA support. ClusterJPA is no longer supported beginning with NDB 7.4.16; its
source code and binary have been removed from the NDB Cluster distribution.

• Auto-Installer deprecation and removal. The MySQL NDB Cluster Auto-Installer web-based
installation tool (ndb_setup.py) is deprecated in NDB 7.4.30, and is removed in NDB 7.4.31 and later.
It is no longer supported.

• ndbmemcache deprecation and removal. ndbmemcache is no longer supported. ndbmemcache
has been deprecated beginning with NDB 7.4.3, and is scheduled for removal in NDB 7.4.31.

• Node.js support removed. Beginning with the NDB Cluster 7.4.30 release, support for Node.js by
NDB 7.4 has been removed.

Support for Node.js by NDB Cluster is maintained in NDB 8.0 only.

NDB Cluster 7.4 is also supported by MySQL Cluster Manager, which provides an advanced command-
line interface that can simplify many complex NDB Cluster management tasks. See MySQL Cluster
Manager 1.4.8 User Manual, for more information.

18.2.5 NDB: Added, Deprecated, and Removed Options, Variables, and
Parameters

18.2.5.1 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.3

• Parameters Introduced in NDB 7.3

• Parameters Deprecated in NDB 7.3

• Parameters Removed in NDB 7.3

• Options and Variables Introduced in NDB 7.3

• Options and Variables Deprecated in NDB 7.3

2592

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

NDB: Added, Deprecated, and Removed Options, Variables, and Parameters

• Options and Variables Removed in NDB 7.3

The next few sections contain information about NDB node configuration parameters and NDB-specific
mysqld options and variables that have been added to, deprecated in, or removed from NDB 7.3.

Parameters Introduced in NDB 7.3

The following node configuration parameters have been added in NDB 7.3.

• ConnectBackoffMaxTime: Specifies longest time in milliseconds (~100ms resolution) to allow
between connection attempts to any given data node by this API node. Excludes time elapsed while
connection attempts are ongoing, which in worst case can take several seconds. Disable by setting to 0.
If no data nodes are currently connected to this API node, StartConnectBackoffMaxTime is used instead.
Added in NDB 7.3.7.

• DiskPageBufferEntries: Memory to allocate in DiskPageBufferMemory; very large disk transactions
may require increasing this value. Added in NDB 7.3.8.

• HeartbeatIntervalMgmdMgmd: Time between management-node-to-management-node heartbeats;
connection between management nodes is considered lost after 3 missed heartbeats. Added in NDB
7.3.3.

• LcpScanProgressTimeout: Maximum time that local checkpoint fragment scan can be stalled before
node is shut down to ensure systemwide LCP progress. Use 0 to disable. Added in NDB 7.3.3.

• RestartSubscriberConnectTimeout: Amount of time for data node to wait for subscribing API
nodes to connect. Set to 0 to disable timeout, which is always resolved to nearest full second. Added in
NDB 7.3.6.

• StartConnectBackoffMaxTime: Same as ConnectBackoffMaxTime except that this parameter is
used in its place if no data nodes are connected to this API node. Added in NDB 7.3.7.

• TimeBetweenGlobalCheckpointsTimeout: Minimum timeout for group commit of transactions to
disk. Added in NDB 7.3.9.

Parameters Deprecated in NDB 7.3

The following node configuration parameters have been deprecated in NDB 7.3.

• ReservedSendBufferMemory: This parameter is present in NDB code but is not enabled. Deprecated
in NDB 7.3.1.

Parameters Removed in NDB 7.3

No node configuration parameters have been removed in NDB 7.3.

Options and Variables Introduced in NDB 7.3

The following system variables, status variables, and server options have been added in NDB 7.3.

• Ndb_last_commit_epoch_server: Epoch most recently committed by NDB. Added in NDB 7.3.8.

• Ndb_last_commit_epoch_session: Epoch most recently committed by this NDB client. Added in
NDB 7.3.8.

• Ndb_slave_max_replicated_epoch: Most recently committed NDB epoch on this replica. When this
value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been detected.
Added in NDB 7.3.8.

2593

NDB: Added, Deprecated, and Removed Options, Variables, and Parameters

• create_old_temporals: Use pre-5.6.4 storage format for temporal types when creating tables.
Intended for use in replication and upgrades/downgrades between NDB 7.2 and NDB 7.3/7.4. Added in
NDB 7.3.10.

• ndb_eventbuffer_max_alloc: Maximum memory that can be allocated for buffering events by NDB
API. Defaults to 0 (no limit). Added in NDB 7.3.3.

• ndb_recv_thread_activation_threshold: Activation threshold when receive thread takes over
polling of cluster connection (measured in concurrently active threads). Added in NDB 7.3.1.

• ndb_recv_thread_cpu_mask: CPU mask for locking receiver threads to specific CPUs; specified as
hexadecimal. See documentation for details. Added in NDB 7.3.1.

• ndb_show_foreign_key_mock_tables: Show mock tables used to support foreign_key_checks=0.
Added in NDB 7.3.2.

Options and Variables Deprecated in NDB 7.3

The following system variables, status variables, and options have been deprecated in NDB 7.3.

• create_old_temporals: Use pre-5.6.4 storage format for temporal types when creating tables.
Intended for use in replication and upgrades/downgrades between NDB 7.2 and NDB 7.3/7.4.
Deprecated in NDB 7.3.10.

Options and Variables Removed in NDB 7.3

The following system variables, status variables, and options have been removed in NDB 7.3.

• ndb_index_stat_cache_entries: Granularity of statistics by determining number of starting and
ending keys. Removed in NDB 7.3.5.

• ndb_index_stat_update_freq: How often to query data nodes rather than statistics cache.
Removed in NDB 7.3.5.

18.2.5.2 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.4

• Parameters Introduced in NDB 7.4

• Parameters Deprecated in NDB 7.4

• Parameters Removed in NDB 7.4

• Options and Variables Introduced in NDB 7.4

• Options and Variables Deprecated in NDB 7.4

• Options and Variables Removed in NDB 7.4

The next few sections contain information about NDB node configuration parameters and NDB-specific
mysqld options and variables that have been added to, deprecated in, or removed from NDB 7.4.

Parameters Introduced in NDB 7.4

The following node configuration parameters have been added in NDB 7.4.

• ApiVerbose: Enable NDB API debugging; for NDB development. Added in NDB 7.4.12.

2594

NDB: Added, Deprecated, and Removed Options, Variables, and Parameters

• BackupDiskWriteSpeedPct: Sets percentage of data node's allocated maximum write speed
(MaxDiskWriteSpeed) to reserve for LCPs when starting backup. Added in NDB 7.4.8.

• ConnectBackoffMaxTime: Specifies longest time in milliseconds (~100ms resolution) to allow
between connection attempts to any given data node by this API node. Excludes time elapsed while
connection attempts are ongoing, which in worst case can take several seconds. Disable by setting to 0.
If no data nodes are currently connected to this API node, StartConnectBackoffMaxTime is used instead.
Added in NDB 7.4.2.

• DiskPageBufferEntries: Memory to allocate in DiskPageBufferMemory; very large disk transactions
may require increasing this value. Added in NDB 7.4.3.

• MaxDiskWriteSpeed: Maximum number of bytes per second that can be written by LCP and backup
when no restarts are ongoing. Added in NDB 7.4.1.

• MaxDiskWriteSpeedOtherNodeRestart: Maximum number of bytes per second that can be written
by LCP and backup when another node is restarting. Added in NDB 7.4.1.

• MaxDiskWriteSpeedOwnRestart: Maximum number of bytes per second that can be written by LCP
and backup when this node is restarting. Added in NDB 7.4.1.

• MaxParallelCopyInstances: Number of parallel copies during node restarts. Default is 0, which
uses number of LDMs on both nodes, to maximum of 16. Added in NDB 7.4.3.

• MinDiskWriteSpeed: Minimum number of bytes per second that can be written by LCP and backup.
Added in NDB 7.4.1.

• SchedulerResponsiveness: Set NDB scheduler response optimization 0-10; higher values provide
better response time but lower throughput. Added in NDB 7.4.9.

• StartConnectBackoffMaxTime: Same as ConnectBackoffMaxTime except that this parameter is
used in its place if no data nodes are connected to this API node. Added in NDB 7.4.2.

• TimeBetweenGlobalCheckpointsTimeout: Minimum timeout for group commit of transactions to
disk. Added in NDB 7.4.5.

Parameters Deprecated in NDB 7.4

The following node configuration parameters have been deprecated in NDB 7.4.

• BackupMemory: Total memory allocated for backups per node (in bytes). Deprecated in NDB 7.4.8.

• DiskCheckpointSpeed: Bytes allowed to be written by checkpoint, per second. Deprecated in NDB
7.4.1.

• DiskCheckpointSpeedInRestart: Bytes allowed to be written by checkpoint during restart, per
second. Deprecated in NDB 7.4.1.

Parameters Removed in NDB 7.4

No node configuration parameters have been removed in NDB 7.4.

Options and Variables Introduced in NDB 7.4

The following system variables, status variables, and server options have been added in NDB 7.4.

• Ndb_conflict_fn_epoch2: Number of rows that have been found in conflict by NDB replication NDB
$EPOCH2() conflict detection function. Added in NDB 7.4.2.

2595

NDB: Added, Deprecated, and Removed Options, Variables, and Parameters

• Ndb_conflict_fn_epoch2_trans: Number of rows that have been found in conflict by NDB
replication NDB$EPOCH2_TRANS() conflict detection function. Added in NDB 7.4.2.

• Ndb_conflict_fn_max_del_win: Number of times that NDB replication conflict resolution based on
outcome of NDB$MAX_DELETE_WIN() has been applied to update and delete operations. Added in
NDB 7.4.1.

• Ndb_conflict_last_conflict_epoch: Most recent NDB epoch on this replica in which some
conflict was detected. Added in NDB 7.4.2.

• Ndb_conflict_last_stable_epoch: Number of rows found to be in conflict by transactional conflict
function. Added in NDB 7.4.2.

• Ndb_conflict_reflected_op_discard_count: Number of reflected operations that were not
applied due error during execution. Added in NDB 7.4.2.

• Ndb_conflict_reflected_op_prepare_count: Number of reflected operations received that have
been prepared for execution. Added in NDB 7.4.2.

• Ndb_conflict_refresh_op_count: Number of refresh operations that have been prepared. Added
in NDB 7.4.2.

• Ndb_conflict_trans_row_conflict_count: Number of rows found in conflict by transactional
conflict function. Includes any rows included in or dependent on conflicting transactions. Added in NDB
7.4.2.

• Ndb_epoch_delete_delete_count: Number of delete-delete conflicts detected (delete operation is
applied, but row does not exist). Added in NDB 7.4.2.

• Ndb_last_commit_epoch_server: Epoch most recently committed by NDB. Added in NDB 7.4.1.

• Ndb_last_commit_epoch_session: Epoch most recently committed by this NDB client. Added in
NDB 7.4.1.

• Ndb_slave_max_replicated_epoch: Most recently committed NDB epoch on this replica. When this
value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been detected.
Added in NDB 7.4.1.

• create_old_temporals: Use pre-5.6.4 storage format for temporal types when creating tables.
Intended for use in replication and upgrades/downgrades between NDB 7.2 and NDB 7.3/7.4. Added in
NDB 7.4.7.

• ndb-log-exclusive-reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts. Added in NDB 7.4.1.

• ndb-log-fail-terminate: Terminate mysqld process if complete logging of all found row events is
not possible. Added in NDB 7.4.28.

• ndb-log-update-minimal: Log updates in minimal format. Added in NDB 7.4.16.

• ndb_clear_apply_status: Causes RESET SLAVE/RESET REPLICA to clear all rows from
ndb_apply_status table; ON by default. Added in NDB 7.4.9.

• ndb_eventbuffer_free_percent: Percentage of free memory that should be available in event
buffer before resumption of buffering, after reaching limit set by ndb_eventbuffer_max_alloc. Added in
NDB 7.4.3.

• ndb_log_exclusive_reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts. Added in NDB 7.4.1.

2596

MySQL Server Using InnoDB Compared with NDB Cluster

• ndb_slave_conflict_role: Role for replica to play in conflict detection and resolution. Value is one
of PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL
thread is stopped. See documentation for further information. Added in NDB 7.4.1.

Options and Variables Deprecated in NDB 7.4

The following system variables, status variables, and options have been deprecated in NDB 7.4.

• create_old_temporals: Use pre-5.6.4 storage format for temporal types when creating tables.
Intended for use in replication and upgrades/downgrades between NDB 7.2 and NDB 7.3/7.4.
Deprecated in NDB 7.4.7.

Options and Variables Removed in NDB 7.4

No system variables, status variables, or options have been removed in NDB 7.4.

18.2.6 MySQL Server Using InnoDB Compared with NDB Cluster

MySQL Server offers a number of choices in storage engines. Since both NDB and InnoDB can serve
as transactional MySQL storage engines, users of MySQL Server sometimes become interested in NDB
Cluster. They see NDB as a possible alternative or upgrade to the default InnoDB storage engine in
MySQL 5.6. While NDB and InnoDB share common characteristics, there are differences in architecture
and implementation, so that some existing MySQL Server applications and usage scenarios can be a good
fit for NDB Cluster, but not all of them.

In this section, we discuss and compare some characteristics of the NDB storage engine used by
NDB Cluster 7.3 and 7.4 with InnoDB used in MySQL 5.6. The next few sections provide a technical
comparison. In many instances, decisions about when and where to use NDB Cluster must be made on a
case-by-case basis, taking all factors into consideration. While it is beyond the scope of this documentation
to provide specifics for every conceivable usage scenario, we also attempt to offer some very general
guidance on the relative suitability of some common types of applications for NDB as opposed to InnoDB
back ends.

NDB Cluster 7.3 and 7.4 use a mysqld based on MySQL 5.6, including support for InnoDB 1.1. While it
is possible to use InnoDB tables with NDB Cluster, such tables are not clustered. It is also not possible
to use programs or libraries from an NDB Cluster 7.3 or 7.4 distribution with MySQL Server 5.6, or the
reverse.

While it is also true that some types of common business applications can be run either on NDB Cluster or
on MySQL Server (most likely using the InnoDB storage engine), there are some important architectural
and implementation differences. Section 18.2.6.1, “Differences Between the NDB and InnoDB Storage
Engines”, provides a summary of the these differences. Due to the differences, some usage scenarios
are clearly more suitable for one engine or the other; see Section 18.2.6.2, “NDB and InnoDB Workloads”.
This in turn has an impact on the types of applications that better suited for use with NDB or InnoDB. See
Section 18.2.6.3, “NDB and InnoDB Feature Usage Summary”, for a comparison of the relative suitability of
each for use in common types of database applications.

For information about the relative characteristics of the NDB and MEMORY storage engines, see When to
Use MEMORY or NDB Cluster.

See Chapter 15, Alternative Storage Engines, for additional information about MySQL storage engines.

18.2.6.1 Differences Between the NDB and InnoDB Storage Engines

The NDB storage engine is implemented using a distributed, shared-nothing architecture, which causes
it to behave differently from InnoDB in a number of ways. For those unaccustomed to working with NDB,

2597

MySQL Server Using InnoDB Compared with NDB Cluster

unexpected behaviors can arise due to its distributed nature with regard to transactions, foreign keys, table
limits, and other characteristics. These are shown in the following table:

Table 18.1 Feature differences between InnoDB and NDB storage engines.

Feature InnoDB 1.1 NDB 7.3, NDB 7.4

MySQL Server Version 5.6 5.6

InnoDB Version InnoDB 5.6.51 InnoDB 5.6.51

NDB Cluster Version N/A NDB 7.3.33, 7.4.39

Storage Limits 64TB 3TB (Practical upper limit based
on 48 data nodes with 64GB RAM
each; can be increased with disk-
based data and BLOBs)

Foreign Keys Yes Yes

Transactions All standard types READ COMMITTED

MVCC Yes No

Data Compression Yes No (NDB checkpoint and backup
files can be compressed)

Large Row Support (> 14K) Supported for VARBINARY,
VARCHAR, BLOB, and TEXT
columns

Supported for BLOB and TEXT
columns only (Using these types
to store very large amounts of
data can lower NDB performance)

Replication Support Asynchronous and
semisynchronous replication using
MySQL Replication

Automatic synchronous
replication within an NDB Cluster;
asynchronous replication between
NDB Clusters, using MySQL
Replication (Semisynchronous
replication is not supported)

Scaleout for Read Operations Yes (MySQL Replication) Yes (Automatic partitioning
in NDB Cluster; NDB Cluster
Replication)

Scaleout for Write Operations Requires application-level
partitioning (sharding)

Yes (Automatic partitioning in
NDB Cluster is transparent to
applications)

High Availability (HA) Requires additional software Yes (Designed for 99.999%
uptime)

Node Failure Recovery and
Failover

Requires additional software Automatic (Key element in NDB
architecture)

Time for Node Failure Recovery 30 seconds or longer Typically < 1 second

Real-Time Performance No Yes

In-Memory Tables No Yes (Some data can optionally be
stored on disk; both in-memory
and disk data storage are durable)

NoSQL Access to Storage Engine Yes Yes (Multiple APIs, including
Memcached, Node.js/JavaScript,
Java, JPA, C++, and HTTP/REST)

2598

MySQL Server Using InnoDB Compared with NDB Cluster

Feature InnoDB 1.1 NDB 7.3, NDB 7.4

Concurrent and Parallel Writes Not supported Up to 48 writers, optimized for
concurrent writes

Conflict Detection and Resolution
(Multiple Replication sources)

No Yes

Hash Indexes No Yes

Online Addition of Nodes Read-only replicas using MySQL
Replication

Yes (all node types)

Online Upgrades No Yes

Online Schema Modifications Yes, as part of MySQL 5.6 Yes

18.2.6.2 NDB and InnoDB Workloads

NDB Cluster has a range of unique attributes that make it ideal to serve applications requiring high
availability, fast failover, high throughput, and low latency. Due to its distributed architecture and multi-node
implementation, NDB Cluster also has specific constraints that may keep some workloads from performing
well. A number of major differences in behavior between the NDB and InnoDB storage engines with regard
to some common types of database-driven application workloads are shown in the following table::

Table 18.2 Differences between the InnoDB and NDB storage engines, common types of database-
driven application workloads

Workload InnoDB NDB Cluster (NDB)

High-Volume OLTP Applications Yes Yes

DSS Applications (data marts,
analytics)

Yes Limited (Join operations across
OLTP datasets not exceeding 3TB
in size)

Custom Applications Yes Yes

Packaged Applications Yes Limited (should be mostly primary
key access); NDB 7.3 and 7.4
support foreign keys

In-Network Telecoms Applications
(HLR, HSS, SDP)

No Yes

Session Management and
Caching

Yes Yes

E-Commerce Applications Yes Yes

User Profile Management, AAA
Protocol

Yes Yes

18.2.6.3 NDB and InnoDB Feature Usage Summary

When comparing application feature requirements to the capabilities of InnoDB with NDB, some are clearly
more compatible with one storage engine than the other.

The following table lists supported application features according to the storage engine to which each
feature is typically better suited.

2599

Known Limitations of NDB Cluster

Table 18.3 Supported application features according to the storage engine to which each feature is
typically better suited

Preferred application requirements for InnoDB Preferred application requirements for NDB

• Foreign keys

Note

NDB Cluster 7.4 and 7.4
support foreign keys

• Full table scans

• Very large databases, rows, or transactions

• Transactions other than READ COMMITTED

• Write scaling

• 99.999% uptime

• Online addition of nodes and online schema
operations

• Multiple SQL and NoSQL APIs (see NDB Cluster
APIs: Overview and Concepts)

• Real-time performance

• Limited use of BLOB columns

• Foreign keys are supported, although their use
may have an impact on performance at high
throughput

18.2.7 Known Limitations of NDB Cluster

In the sections that follow, we discuss known limitations in current releases of NDB Cluster as compared
with the features available when using the MyISAM and InnoDB storage engines. If you check the “Cluster”
category in the MySQL bugs database at http://bugs.mysql.com, you can find known bugs in the following
categories under “MySQL Server:” in the MySQL bugs database at http://bugs.mysql.com, which we intend
to correct in upcoming releases of NDB Cluster:

• NDB Cluster

• Cluster Direct API (NDBAPI)

• Cluster Disk Data

• Cluster Replication

• ClusterJ

This information is intended to be complete with respect to the conditions just set forth. You can report any
discrepancies that you encounter to the MySQL bugs database using the instructions given in Section 1.5,
“How to Report Bugs or Problems”. If we do not plan to fix the problem in NDB Cluster 7.3 or 7.4, we add it
to the list.

See Section 18.2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 7.3” for a list of issues in
earlier versions of NDB Cluster that have been resolved in NDB 7.3 or 7.4.

Note

Limitations and other issues specific to NDB Cluster Replication are described in
Section 18.7.3, “Known Issues in NDB Cluster Replication”.

18.2.7.1 Noncompliance with SQL Syntax in NDB Cluster

Some SQL statements relating to certain MySQL features produce errors when used with NDB tables, as
described in the following list:

2600

https://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
https://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
http://bugs.mysql.com
http://bugs.mysql.com

Known Limitations of NDB Cluster

• Temporary tables. Temporary tables are not supported. Trying either to create a temporary table that
uses the NDB storage engine or to alter an existing temporary table to use NDB fails with the error Table
storage engine 'ndbcluster' does not support the create option 'TEMPORARY'.

• Indexes and keys in NDB tables. Keys and indexes on NDB Cluster tables are subject to the
following limitations:

• Column width. Attempting to create an index on an NDB table column whose width is greater than
3072 bytes succeeds, but only the first 3072 bytes are actually used for the index. In such cases, a
warning Specified key was too long; max key length is 3072 bytes is issued, and a
SHOW CREATE TABLE statement shows the length of the index as 3072.

• TEXT and BLOB columns. You cannot create indexes on NDB table columns that use any of the
TEXT or BLOB data types.

• FULLTEXT indexes. The NDB storage engine does not support FULLTEXT indexes, which are
possible for MyISAM and (MySQL 5.6.4 and later) InnoDB tables only.

However, you can create indexes on VARCHAR columns of NDB tables.

• USING HASH keys and NULL. Using nullable columns in unique keys and primary keys means
that queries using these columns are handled as full table scans. To work around this issue, make the
column NOT NULL, or re-create the index without the USING HASH option.

• Prefixes. There are no prefix indexes; only entire columns can be indexed. (The size of an NDB
column index is always the same as the width of the column in bytes, up to and including 3072 bytes,
as described earlier in this section. Also see Section 18.2.7.6, “Unsupported or Missing Features in
NDB Cluster”, for additional information.)

• BIT columns. A BIT column cannot be a primary key, unique key, or index, nor can it be part of a
composite primary key, unique key, or index.

• AUTO_INCREMENT columns. Like other MySQL storage engines, the NDB storage engine can
handle a maximum of one AUTO_INCREMENT column per table, and this column must be indexed.
However, in the case of an NDB table with no explicit primary key, an AUTO_INCREMENT column is
automatically defined and used as a “hidden” primary key. For this reason, you cannot create an NDB
table having an AUTO_INCREMENT column and no explicit primary key.

The following CREATE TABLE statements do not work, as shown here:

No index on AUTO_INCREMENT column; table has no primary key
Raises ER_WRONG_AUTO_KEY
mysql> CREATE TABLE n (
 -> a INT,
 -> b INT AUTO_INCREMENT
 ->)
 -> ENGINE=NDB;
ERROR 1075 (42000): Incorrect table definition; there can be only one auto
column and it must be defined as a key

Index on AUTO_INCREMENT column; table has no primary key
Raises NDB error 4335
mysql> CREATE TABLE n (
 -> a INT,
 -> b INT AUTO_INCREMENT,
 -> KEY k (b)
 ->)
 -> ENGINE=NDB;
ERROR 1296 (HY000): Got error 4335 'Only one autoincrement column allowed per
table. Having a table without primary key uses an autoincr' from NDBCLUSTER

2601

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_wrong_auto_key
https://dev.mysql.com/doc/ndbapi/en/ndb-error-codes-application-error.html#ndberrno-4335

Known Limitations of NDB Cluster

The following statement creates a table with a primary key, an AUTO_INCREMENT column, and an
index on this column, and succeeds:

Index on AUTO_INCREMENT column; table has a primary key
mysql> CREATE TABLE n (
 -> a INT PRIMARY KEY,
 -> b INT AUTO_INCREMENT,
 -> KEY k (b)
 ->)
 -> ENGINE=NDB;
Query OK, 0 rows affected (0.38 sec)

• Restrictions on foreign keys. Support for foreign key constraints in NDB Cluster 7.3 and 7.4 is
comparable to that provided by InnoDB, subject to the following restrictions:

• Every column referenced as a foreign key requires an explicit unique key, if it is not the table's primary
key.

• ON UPDATE CASCADE is not supported when the reference is to the parent table's primary key.

This is because an update of a primary key is implemented as a delete of the old row (containing
the old primary key) plus an insert of the new row (with a new primary key). This is not visible to the
NDB kernel, which views these two rows as being the same, and thus has no way of knowing that this
update should be cascaded.

• As of NDB 7.3.25 and NDB 7.4.24: ON DELETE CASCADE is not supported where the child table
contains one or more columns of any of the TEXT or BLOB types. (Bug #89511, Bug #27484882)

• SET DEFAULT is not supported. (Also not supported by InnoDB.)

• The NO ACTION keywords are accepted but treated as RESTRICT. (Also the same as with InnoDB.)

• Prior to NDB 7.3.5, when creating a table with foreign key referencing an index in another table, it
sometimes appeared possible to create the foreign key even if the order of the columns in the indexes
did not match, due to the fact that an appropriate error was not always returned internally. A partial
fix for this issue in NDB 7.3.5 improves the error used internally to work in most cases; however, it
is still possible for this situation to occur in the event that the parent index is a unique index. (Bug
#18094360)

• In NDB 7.3, when adding or dropping a foreign key using ALTER TABLE, the parent table's metadata
is not updated, which makes it possible subsequently to execute ALTER TABLE statements on the
parent that should be invalid. This issue also affects NDB 7.4 releases prior to 7.4.15. To work around
this issue, execute SHOW CREATE TABLE on the parent table immediately after adding or dropping
the foreign key; this forces the parent's metadata to be reloaded.

This issue is fixed in NDB 7.4.15 and later. (Bug #82989, Bug #24666177)

For more information, see Section 13.1.17.5, “FOREIGN KEY Constraints”, and Section 1.6.3.2,
“FOREIGN KEY Constraints”.

• NDB Cluster and geometry data types.
Geometry data types (WKT and WKB) are supported for NDB tables. However, spatial indexes are not
supported.

• Character sets and binary log files. Currently, the ndb_apply_status and ndb_binlog_index
tables are created using the latin1 (ASCII) character set. Because names of binary logs are recorded

2602

Known Limitations of NDB Cluster

in this table, binary log files named using non-Latin characters are not referenced correctly in these
tables. This is a known issue, which we are working to fix. (Bug #50226)

To work around this problem, use only Latin-1 characters when naming binary log files or setting any the
--basedir, --log-bin, or --log-bin-index options.

• Creating NDB tables with user-defined partitioning. Support for user-defined partitioning in NDB
Cluster is restricted to [LINEAR] KEY partitioning. Using any other partitioning type with ENGINE=NDB or
ENGINE=NDBCLUSTER in a CREATE TABLE statement results in an error.

It is possible to override this restriction, but doing so is not supported for use in production settings. For
details, see User-defined partitioning and the NDB storage engine (NDB Cluster).

Default partitioning scheme. All NDB Cluster tables are by default partitioned by KEY using the
table's primary key as the partitioning key. If no primary key is explicitly set for the table, the “hidden”
primary key automatically created by the NDB storage engine is used instead. For additional discussion
of these and related issues, see Section 19.2.5, “KEY Partitioning”.

CREATE TABLE and ALTER TABLE statements that would cause a user-partitioned NDBCLUSTER table
not to meet either or both of the following two requirements are not permitted, and fail with an error:

1. The table must have an explicit primary key.

2. All columns listed in the table's partitioning expression must be part of the primary key.

Exception. If a user-partitioned NDBCLUSTER table is created using an empty column-list (that is,
using PARTITION BY [LINEAR] KEY()), then no explicit primary key is required.

Maximum number of partitions for NDBCLUSTER tables. The maximum number of partitions that
can defined for a NDBCLUSTER table when employing user-defined partitioning is 8 per node group.
(See Section 18.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”, for more
information about NDB Cluster node groups.

DROP PARTITION not supported. It is not possible to drop partitions from NDB tables using
ALTER TABLE ... DROP PARTITION. The other partitioning extensions to ALTER TABLE—ADD
PARTITION, REORGANIZE PARTITION, and COALESCE PARTITION—are supported for NDB tables,
but use copying and so are not optimized. See Section 19.3.1, “Management of RANGE and LIST
Partitions” and Section 13.1.7, “ALTER TABLE Statement”.

Partition selection. Partition selection is not supported for NDB tables. See Section 19.5, “Partition
Selection”, for more information.

18.2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limits

In this section, we list limits found in NDB Cluster that either differ from limits found in, or that are not found
in, standard MySQL.

Memory usage and recovery. Memory consumed when data is inserted into an NDB table is not
automatically recovered when deleted, as it is with other storage engines. Instead, the following rules hold
true:

• A DELETE statement on an NDB table makes the memory formerly used by the deleted rows available for
re-use by inserts on the same table only. However, this memory can be made available for general re-
use by performing OPTIMIZE TABLE.

A rolling restart of the cluster also frees any memory used by deleted rows. See Section 18.6.5,
“Performing a Rolling Restart of an NDB Cluster”.

2603

Known Limitations of NDB Cluster

• A DROP TABLE or TRUNCATE TABLE operation on an NDB table frees the memory that was used by this
table for re-use by any NDB table, either by the same table or by another NDB table.

Note

Recall that TRUNCATE TABLE drops and re-creates the table. See
Section 13.1.33, “TRUNCATE TABLE Statement”.

• Limits imposed by the cluster's configuration.
A number of hard limits exist which are configurable, but available main memory in the cluster sets limits.
See the complete list of configuration parameters in Section 18.4.3, “NDB Cluster Configuration Files”.
Most configuration parameters can be upgraded online. These hard limits include:

• Database memory size and index memory size (DataMemory and IndexMemory, respectively).

DataMemory is allocated as 32KB pages. As each DataMemory page is used, it is assigned to a
specific table; once allocated, this memory cannot be freed except by dropping the table.

See Section 18.4.3.6, “Defining NDB Cluster Data Nodes”, for more information.

• The maximum number of operations that can be performed per transaction is set using the
configuration parameters MaxNoOfConcurrentOperations and MaxNoOfLocalOperations.

Note

Bulk loading, TRUNCATE TABLE, and ALTER TABLE are handled as special
cases by running multiple transactions, and so are not subject to this limitation.

• Different limits related to tables and indexes. For example, the maximum number of ordered indexes
in the cluster is determined by MaxNoOfOrderedIndexes, and the maximum number of ordered
indexes per table is 16.

• Node and data object maximums. The following limits apply to numbers of cluster nodes and
metadata objects:

• The maximum number of data nodes is 48.

A data node must have a node ID in the range of 1 to 48, inclusive. (Management and API nodes may
use node IDs in the range 1 to 255, inclusive.)

• The total maximum number of nodes in an NDB Cluster is 255. This number includes all SQL nodes
(MySQL Servers), API nodes (applications accessing the cluster other than MySQL servers), data
nodes, and management servers.

• The maximum number of metadata objects in current versions of NDB Cluster is 20320. This limit is
hard-coded.

See Section 18.2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 7.3”, for more
information.

18.2.7.3 Limits Relating to Transaction Handling in NDB Cluster

A number of limitations exist in NDB Cluster with regard to the handling of transactions. These include the
following:

• Transaction isolation level. The NDBCLUSTER storage engine supports only the READ
COMMITTED transaction isolation level. (InnoDB, for example, supports READ COMMITTED, READ

2604

Known Limitations of NDB Cluster

UNCOMMITTED, REPEATABLE READ, and SERIALIZABLE.) You should keep in mind that NDB
implements READ COMMITTED on a per-row basis; when a read request arrives at the data node storing
the row, what is returned is the last committed version of the row at that time.

Uncommitted data is never returned, but when a transaction modifying a number of rows commits
concurrently with a transaction reading the same rows, the transaction performing the read can observe
“before” values, “after” values, or both, for different rows among these, due to the fact that a given row
read request can be processed either before or after the commit of the other transaction.

To ensure that a given transaction reads only before or after values, you can impose row locks using
SELECT ... LOCK IN SHARE MODE. In such cases, the lock is held until the owning transaction is
committed. Using row locks can also cause the following issues:

• Increased frequency of lock wait timeout errors, and reduced concurrency

• Increased transaction processing overhead due to reads requiring a commit phase

• Possibility of exhausting the available number of concurrent locks, which is limited by
MaxNoOfConcurrentOperations

NDB uses READ COMMITTED for all reads unless a modifier such as LOCK IN SHARE MODE or FOR
UPDATE is used. LOCK IN SHARE MODE causes shared row locks to be used; FOR UPDATE causes
exclusive row locks to be used. Unique key reads have their locks upgraded automatically by NDB to
ensure a self-consistent read; BLOB reads also employ extra locking for consistency.

See Section 18.6.8.4, “NDB Cluster Backup Troubleshooting”, for information on how NDB Cluster's
implementation of transaction isolation level can affect backup and restoration of NDB databases.

• Unique key lookups and transaction isolation. Unique indexes are implemented in NDB using a
hidden index table which is maintained internally. When a user-created NDB table is accessed using
a unique index, the hidden index table is first read to find the primary key that is then used to read the
user-created table. To avoid modification of the index during this double-read operation, the row found
in the hidden index table is locked. When a row referenced by a unique index in the user-created NDB
table is updated, the hidden index table is subject to an exclusive lock by the transaction in which the
update is performed. This means that any read operation on the same (user-created) NDB table must
wait for the update to complete. This is true even when the transaction level of the read operation is
READ COMMITTED.

One workaround which can be used to bypass potentially blocking reads is to force the SQL node to
ignore the unique index when performing the read. This can be done by using the IGNORE INDEX
index hint as part of the SELECT statement reading the table (see Section 8.9.3, “Index Hints”). Because
the MySQL server creates a shadowing ordered index for every unique index created in NDB, this lets
the ordered index be read instead, and avoids unique index access locking. The resulting read is as
consistent as a committed read by primary key, returning the last committed value at the time the row is
read.

Reading via an ordered index makes less efficient use of resources in the cluster, and may have higher
latency.

It is also possible to avoid using the unique index for access by querying for ranges rather than for
unique values.

• Transactions and BLOB or TEXT columns. NDBCLUSTER stores only part of a column value that
uses any of MySQL's BLOB or TEXT data types in the table visible to MySQL; the remainder of the BLOB
or TEXT is stored in a separate internal table that is not accessible to MySQL. This gives rise to two

2605

Known Limitations of NDB Cluster

related issues of which you should be aware whenever executing SELECT statements on tables that
contain columns of these types:

1. For any SELECT from an NDB Cluster table: If the SELECT includes a BLOB or TEXT column, the
READ COMMITTED transaction isolation level is converted to a read with read lock. This is done to
guarantee consistency.

2. For any SELECT which uses a unique key lookup to retrieve any columns that use any of the BLOB or
TEXT data types and that is executed within a transaction, a shared read lock is held on the table for
the duration of the transaction—that is, until the transaction is either committed or aborted.

This issue does not occur for queries that use index or table scans, even against NDB tables having
BLOB or TEXT columns.

For example, consider the table t defined by the following CREATE TABLE statement:

CREATE TABLE t (
 a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b INT NOT NULL,
 c INT NOT NULL,
 d TEXT,
 INDEX i(b),
 UNIQUE KEY u(c)
) ENGINE = NDB,

The following query on t causes a shared read lock, because it uses a unique key lookup:

SELECT * FROM t WHERE c = 1;

However, none of the four queries shown here causes a shared read lock:

SELECT * FROM t WHERE b = 1;

SELECT * FROM t WHERE d = '1';

SELECT * FROM t;

SELECT b,c WHERE a = 1;

This is because, of these four queries, the first uses an index scan, the second and third use table
scans, and the fourth, while using a primary key lookup, does not retrieve the value of any BLOB or
TEXT columns.

You can help minimize issues with shared read locks by avoiding queries that use unique key
lookups that retrieve BLOB or TEXT columns, or, in cases where such queries are not avoidable, by
committing transactions as soon as possible afterward.

• Rollbacks. There are no partial transactions, and no partial rollbacks of transactions. A duplicate key
or similar error causes the entire transaction to be rolled back.

This behavior differs from that of other transactional storage engines such as InnoDB that may roll back
individual statements.

• Transactions and memory usage.
As noted elsewhere in this chapter, NDB Cluster does not handle large transactions well; it is better
to perform a number of small transactions with a few operations each than to attempt a single large
transaction containing a great many operations. Among other considerations, large transactions require

2606

Known Limitations of NDB Cluster

very large amounts of memory. Because of this, the transactional behavior of a number of MySQL
statements is affected as described in the following list:

• TRUNCATE TABLE is not transactional when used on NDB tables. If a TRUNCATE TABLE fails to empty
the table, then it must be re-run until it is successful.

• DELETE FROM (even with no WHERE clause) is transactional. For tables containing a great many
rows, you may find that performance is improved by using several DELETE FROM ... LIMIT ...
statements to “chunk” the delete operation. If your objective is to empty the table, then you may wish
to use TRUNCATE TABLE instead.

• LOAD DATA statements. LOAD DATA is not transactional when used on NDB tables.

Important

When executing a LOAD DATA statement, the NDB engine performs commits at
irregular intervals that enable better utilization of the communication network. It
is not possible to know ahead of time when such commits take place.

• ALTER TABLE and transactions. When copying an NDB table as part of an ALTER TABLE, the
creation of the copy is nontransactional. (In any case, this operation is rolled back when the copy is
deleted.)

• Transactions and the COUNT() function. When using NDB Cluster Replication, it is not possible to
guarantee the transactional consistency of the COUNT() function on the replica. In other words, when
performing on the source a series of statements (INSERT, DELETE, or both) that changes the number of
rows in a table within a single transaction, executing SELECT COUNT(*) FROM table queries on the
replica may yield intermediate results. This is due to the fact that SELECT COUNT(...) may perform
dirty reads, and is not a bug in the NDB storage engine. (See Bug #31321 for more information.)

18.2.7.4 NDB Cluster Error Handling

Starting, stopping, or restarting a node may give rise to temporary errors causing some transactions to fail.
These include the following cases:

• Temporary errors. When first starting a node, it is possible that you may see Error 1204 Temporary
failure, distribution changed and similar temporary errors.

• Errors due to node failure. The stopping or failure of any data node can result in a number of
different node failure errors. (However, there should be no aborted transactions when performing a
planned shutdown of the cluster.)

In either of these cases, any errors that are generated must be handled within the application. This should
be done by retrying the transaction.

See also Section 18.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”.

18.2.7.5 Limits Associated with Database Objects in NDB Cluster

Some database objects such as tables and indexes have different limitations when using the NDBCLUSTER
storage engine:

• Database and table names. When using the NDB storage engine, the maximum allowed length both
for database names and for table names is 63 characters.

In NDB 7.3.8 and later, a statement using a database name or table name longer than this limit fails with
an appropriate error. (Bug #19550973)

2607

Known Limitations of NDB Cluster

• Number of database objects. The maximum number of all NDB database objects in a single NDB
Cluster—including databases, tables, and indexes—is limited to 20320.

• Attributes per table. The maximum number of attributes (that is, columns and indexes) that can
belong to a given table is 512.

• Attributes per key. The maximum number of attributes per key is 32.

• Row size. The maximum permitted size of any one row is 14000 bytes.

Each BLOB or TEXT column contributes 256 + 8 = 264 bytes to this total; see String Type Storage
Requirements, for more information relating to these types.

In addition, the maximum offset for a fixed-width column of an NDB table is 8188 bytes; attempting to
create a table that violates this limitation fails with NDB error 851 Maximum offset for fixed-
size columns exceeded. For memory-based columns, you can work around this limitation by using
a variable-width column type such as VARCHAR or defining the column as COLUMN_FORMAT=DYNAMIC;
this does not work with columns stored on disk. For disk-based columns, you may be able to do so
by reordering one or more of the table's disk-based columns such that the combined width of all but
the disk-based column defined last in the CREATE TABLE statement used to create the table does
not exceed 8188 bytes, less any possible rounding performed for some data types such as CHAR or
VARCHAR; otherwise it is necessary to use memory-based storage for one or more of the offending
column or columns instead.

• BIT column storage per table. The maximum combined width for all BIT columns used in a given
NDB table is 4096.

• FIXED column storage. NDB Cluster supports a maximum of 16 GB per fragment of data in FIXED
columns.

18.2.7.6 Unsupported or Missing Features in NDB Cluster

A number of features supported by other storage engines are not supported for NDB tables. Trying to use
any of these features in NDB Cluster does not cause errors in or of itself; however, errors may occur in
applications that expects the features to be supported or enforced. Statements referencing such features,
even if effectively ignored by NDB, must be syntactically and otherwise valid.

• Index prefixes. Prefixes on indexes are not supported for NDB tables. If a prefix is used as part of
an index specification in a statement such as CREATE TABLE, ALTER TABLE, or CREATE INDEX, the
prefix is not created by NDB.

A statement containing an index prefix, and creating or modifying an NDB table, must still be syntactically
valid. For example, the following statement always fails with Error 1089 Incorrect prefix key;
the used key part isn't a string, the used length is longer than the key
part, or the storage engine doesn't support unique prefix keys, regardless of
storage engine:

CREATE TABLE t1 (
 c1 INT NOT NULL,
 c2 VARCHAR(100),
 INDEX i1 (c2(500))
);

This happens on account of the SQL syntax rule that no index may have a prefix larger than itself.

• Savepoints and rollbacks. Savepoints and rollbacks to savepoints are ignored as in MyISAM.

2608

Known Limitations of NDB Cluster

• Durability of commits. There are no durable commits on disk. Commits are replicated, but there is
no guarantee that logs are flushed to disk on commit.

• Replication. Statement-based replication is not supported. Use --binlog-format=ROW (or
--binlog-format=MIXED) when setting up cluster replication. See Section 18.7, “NDB Cluster
Replication”, for more information.

Replication using global transaction identifiers (GTIDs) is not compatible with NDB Cluster, and is not
supported in NDB Cluster 7.3 or NDB Cluster 7.4. Do not enable GTIDs when using the NDB storage
engine, as this is very likely to cause problems up to and including failure of NDB Cluster Replication.

Semisynchronous replication is not supported in NDB Cluster.

When replicating between clusters, it is possible to use IPv6 addresses between SQL nodes in different
clusters, but all connections within a given cluster must use IPv4 addressing. For more information, see
NDB Cluster Replication and IPv6.

Note

See Section 18.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”, for
more information relating to limitations on transaction handling in NDB.

18.2.7.7 Limitations Relating to Performance in NDB Cluster

The following performance issues are specific to or especially pronounced in NDB Cluster:

• Range scans. There are query performance issues due to sequential access to the NDB storage
engine; it is also relatively more expensive to do many range scans than it is with either MyISAM or
InnoDB.

• Reliability of Records in range. The Records in range statistic is available but is not completely
tested or officially supported. This may result in nonoptimal query plans in some cases. If necessary, you
can employ USE INDEX or FORCE INDEX to alter the execution plan. See Section 8.9.3, “Index Hints”,
for more information on how to do this.

• Unique hash indexes. Unique hash indexes created with USING HASH cannot be used for
accessing a table if NULL is given as part of the key.

18.2.7.8 Issues Exclusive to NDB Cluster

The following are limitations specific to the NDB storage engine:

• Machine architecture. All machines used in the cluster must have the same architecture. That is, all
machines hosting nodes must be either big-endian or little-endian, and you cannot use a mixture of both.
For example, you cannot have a management node running on a PowerPC which directs a data node
that is running on an x86 machine. This restriction does not apply to machines simply running mysql or
other clients that may be accessing the cluster's SQL nodes.

• Binary logging.
NDB Cluster has the following limitations or restrictions with regard to binary logging:

• sql_log_bin has no effect on data operations; however, it is supported for schema operations.

• NDB Cluster cannot produce a binary log for tables having BLOB columns but no primary key.

• Only the following schema operations are logged in a cluster binary log which is not on the mysqld
executing the statement:

2609

Known Limitations of NDB Cluster

• CREATE TABLE

• ALTER TABLE

• DROP TABLE

• CREATE DATABASE / CREATE SCHEMA

• DROP DATABASE / DROP SCHEMA

• CREATE TABLESPACE

• ALTER TABLESPACE

• DROP TABLESPACE

• CREATE LOGFILE GROUP

• ALTER LOGFILE GROUP

• DROP LOGFILE GROUP

• Schema operations. Schema operations (DDL statements) are rejected while any data node
restarts. Schema operations are also not supported while performing an online upgrade or downgrade.

• Number of fragment replicas. The number of fragment replicas, as determined by the
NoOfReplicas data node configuration parameter, is the number of copies of all data stored by NDB
Cluster. Setting this parameter to 1 means there is only a single copy; in this case, no redundancy
is provided, and the loss of a data node entails loss of data. To guarantee redundancy, and thus
preservation of data even if a data node fails, set this parameter to 2, which is the default and
recommended value in production.

Setting NoOfReplicas to a value greater than 2 is possible (to a maximum of 4) but unnecessary to
guard against loss of data. In addition, values greater than 2 for this parameter are not supported in
production.

See also Section 18.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”.

18.2.7.9 Limitations Relating to NDB Cluster Disk Data Storage

Disk Data object maximums and minimums. Disk data objects are subject to the following maximums
and minimums:

• Maximum number of tablespaces: 232 (4294967296)

• Maximum number of data files per tablespace: 216 (65536)

• The minimum and maximum possible sizes of extents for tablespace data files are 32K and 2G,
respectively. See Section 13.1.18, “CREATE TABLESPACE Statement”, for more information.

In addition, when working with NDB Disk Data tables, you should be aware of the following issues
regarding data files and extents:

• Data files use DataMemory. Usage is the same as for in-memory data.

• Data files use file descriptors. It is important to keep in mind that data files are always open, which
means the file descriptors are always in use and cannot be re-used for other system tasks.

2610

Known Limitations of NDB Cluster

• Extents require sufficient DiskPageBufferMemory; you must reserve enough for this parameter to
account for all memory used by all extents (number of extents times size of extents).

Disk Data tables and diskless mode. Use of Disk Data tables is not supported when running the
cluster in diskless mode.

18.2.7.10 Limitations Relating to Multiple NDB Cluster Nodes

Multiple SQL nodes.
The following are issues relating to the use of multiple MySQL servers as NDB Cluster SQL nodes, and are
specific to the NDBCLUSTER storage engine:

• Stored programs not distributed. Stored procedures, stored functions, triggers, and scheduled
events are all supported by tables using the NDB storage engine, but these do not propagate
automatically between MySQL Servers acting as Cluster SQL nodes, and must be re-created separately
on each SQL node. See Stored Programs in NDB Cluster.

• No distributed table locks. A LOCK TABLES statement or GET_LOCK() call works only for the SQL
node on which the lock is issued; no other SQL node in the cluster “sees” this lock. This is true for a lock
issued by any statement that locks tables as part of its operations. (See next item for an example.)

Implementing table locks in NDBCLUSTER can be done in an API application, and ensuring that all
applications start by setting LockMode to LM_Read or LM_Exclusive. For more information about how
to do this, see the description of NdbOperation::getLockHandle() in the NDB Cluster API Guide.

• ALTER TABLE operations. ALTER TABLE is not fully locking when running multiple MySQL servers
(SQL nodes). (As discussed in the previous item, NDB Cluster does not support distributed table locks.)

Multiple management nodes.
When using multiple management servers:

• If any of the management servers are running on the same host, you must give nodes explicit IDs in
connection strings because automatic allocation of node IDs does not work across multiple management
servers on the same host. This is not required if every management server resides on a different host.

• When a management server starts, it first checks for any other management server in the same NDB
Cluster, and upon successful connection to the other management server uses its configuration data.
This means that the management server --reload and --initial startup options are ignored unless
the management server is the only one running. It also means that, when performing a rolling restart of
an NDB Cluster with multiple management nodes, the management server reads its own configuration
file if (and only if) it is the only management server running in this NDB Cluster. See Section 18.6.5,
“Performing a Rolling Restart of an NDB Cluster”, for more information.

Multiple network addresses. Multiple network addresses per data node are not supported. Use of
these is liable to cause problems: In the event of a data node failure, an SQL node waits for confirmation
that the data node went down but never receives it because another route to that data node remains open.
This can effectively make the cluster inoperable.

Note

It is possible to use multiple network hardware interfaces (such as Ethernet cards)
for a single data node, but these must be bound to the same address. This also
means that it not possible to use more than one [tcp] section per connection in
the config.ini file. See Section 18.4.3.9, “NDB Cluster TCP/IP Connections”, for
more information.

2611

https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-lockmode
https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-getlockhandle

NDB Cluster Installation

18.2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 7.3

A number of limitations and related issues that existed in earlier versions of NDB Cluster have been
resolved in NDB Cluster 7.3. These are described briefly in the following list:

• Support for foreign keys. Foreign key constraints are now supported for NDB tables, similar to how
these are supported by the InnoDB storage engine.

Note

Unlike the case with user-partitioned InnoDB tables, foreign keys are supported
for NDB tables that are partitioned by KEY or LINEAR KEY.

Section 1.6.3.2, “FOREIGN KEY Constraints”, provides more information about foreign key support
in MySQL. For more information about the syntax supported by MySQL for foreign keys, see
Section 13.1.17.5, “FOREIGN KEY Constraints”.

18.3 NDB Cluster Installation

This section describes the basics for planning, installing, configuring, and running an NDB Cluster.
Whereas the examples in Section 18.4, “Configuration of NDB Cluster” provide more in-depth information
on a variety of clustering options and configuration, the result of following the guidelines and procedures
outlined here should be a usable NDB Cluster which meets the minimum requirements for availability and
safeguarding of data.

For information about upgrading or downgrading an NDB Cluster between release versions, see
Section 18.3.7, “Upgrading and Downgrading NDB Cluster”.

This section covers hardware and software requirements; networking issues; installation of NDB Cluster;
basic configuration issues; starting, stopping, and restarting the cluster; loading of a sample database; and
performing queries.

Assumptions. The following sections make a number of assumptions regarding the cluster's physical
and network configuration. These assumptions are discussed in the next few paragraphs.

Cluster nodes and host computers. The cluster consists of four nodes, each on a separate host
computer, and each with a fixed network address on a typical Ethernet network as shown here:

Table 18.4 Network addresses of nodes in example cluster

Node IP Address

Management node (mgmd) 198.51.100.10

SQL node (mysqld) 198.51.100.20

Data node "A" (ndbd) 198.51.100.30

Data node "B" (ndbd) 198.51.100.40

This setup is also shown in the following diagram:

2612

NDB Cluster Installation

Figure 18.4 NDB Cluster Multi-Computer Setup

Network addressing. In the interest of simplicity (and reliability), this How-To uses only numeric
IP addresses. However, if DNS resolution is available on your network, it is possible to use host names
in lieu of IP addresses in configuring Cluster. Alternatively, you can use the hosts file (typically /etc/
hosts for Linux and other Unix-like operating systems, C:\WINDOWS\system32\drivers\etc\hosts
on Windows, or your operating system's equivalent) for providing a means to do host lookup if such is
available.

Potential hosts file issues. A common problem when trying to use host names for Cluster nodes
arises because of the way in which some operating systems (including some Linux distributions) set up
the system's own host name in the /etc/hosts during installation. Consider two machines with the host
names ndb1 and ndb2, both in the cluster network domain. Red Hat Linux (including some derivatives
such as CentOS and Fedora) places the following entries in these machines' /etc/hosts files:

ndb1 /etc/hosts:
127.0.0.1 ndb1.cluster ndb1 localhost.localdomain localhost

ndb2 /etc/hosts:
127.0.0.1 ndb2.cluster ndb2 localhost.localdomain localhost

SUSE Linux (including OpenSUSE) places these entries in the machines' /etc/hosts files:

ndb1 /etc/hosts:
127.0.0.1 localhost
127.0.0.2 ndb1.cluster ndb1

ndb2 /etc/hosts:
127.0.0.1 localhost
127.0.0.2 ndb2.cluster ndb2

2613

Installation of NDB Cluster on Linux

In both instances, ndb1 routes ndb1.cluster to a loopback IP address, but gets a public IP address
from DNS for ndb2.cluster, while ndb2 routes ndb2.cluster to a loopback address and obtains a
public address for ndb1.cluster. The result is that each data node connects to the management server,
but cannot tell when any other data nodes have connected, and so the data nodes appear to hang while
starting.

Caution

You cannot mix localhost and other host names or IP addresses in
config.ini. For these reasons, the solution in such cases (other than to use IP
addresses for all config.ini HostName entries) is to remove the fully qualified
host names from /etc/hosts and use these in config.ini for all cluster hosts.

Host computer type. Each host computer in our installation scenario is an Intel-based desktop
PC running a supported operating system installed to disk in a standard configuration, and running no
unnecessary services. The core operating system with standard TCP/IP networking capabilities should
be sufficient. Also for the sake of simplicity, we also assume that the file systems on all hosts are set up
identically. In the event that they are not, you should adapt these instructions accordingly.

Network hardware. Standard 100 Mbps or 1 gigabit Ethernet cards are installed on each machine,
along with the proper drivers for the cards, and that all four hosts are connected through a standard-issue
Ethernet networking appliance such as a switch. (All machines should use network cards with the same
throughput. That is, all four machines in the cluster should have 100 Mbps cards or all four machines
should have 1 Gbps cards.) NDB Cluster works in a 100 Mbps network; however, gigabit Ethernet provides
better performance.

Important

NDB Cluster is not intended for use in a network for which throughput is less than
100 Mbps or which experiences a high degree of latency. For this reason (among
others), attempting to run an NDB Cluster over a wide area network such as the
Internet is not likely to be successful, and is not supported in production.

Sample data. We use the world database which is available for download from the MySQL website
(see https://dev.mysql.com/doc/index-other.html). We assume that each machine has sufficient memory
for running the operating system, required NDB Cluster processes, and (on the data nodes) storing the
database.

For general information about installing MySQL, see Chapter 2, Installing and Upgrading MySQL.
For information about installation of NDB Cluster on Linux and other Unix-like operating systems, see
Section 18.3.1, “Installation of NDB Cluster on Linux”. For information about installation of NDB Cluster on
Windows operating systems, see Section 18.3.2, “Installing NDB Cluster on Windows”.

For general information about NDB Cluster hardware, software, and networking requirements, see
Section 18.2.3, “NDB Cluster Hardware, Software, and Networking Requirements”.

18.3.1 Installation of NDB Cluster on Linux

This section covers installation methods for NDB Cluster on Linux and other Unix-like operating systems.
While the next few sections refer to a Linux operating system, the instructions and procedures given
there should be easily adaptable to other supported Unix-like platforms. For manual installation and setup
instructions specific to Windows systems, see Section 18.3.2, “Installing NDB Cluster on Windows”.

Each NDB Cluster host computer must have the correct executable programs installed. A host running
an SQL node must have installed on it a MySQL Server binary (mysqld). Management nodes require the

2614

https://dev.mysql.com/doc/index-other.html

Installation of NDB Cluster on Linux

management server daemon (ndb_mgmd); data nodes require the data node daemon (ndbd or ndbmtd). It
is not necessary to install the MySQL Server binary on management node hosts and data node hosts. It is
recommended that you also install the management client (ndb_mgm) on the management server host.

Installation of NDB Cluster on Linux can be done using precompiled binaries from Oracle (downloaded as
a .tar.gz archive), with RPM packages (also available from Oracle), or from source code. All three of these
installation methods are described in the section that follow.

Regardless of the method used, it is still necessary following installation of the NDB Cluster binaries to
create configuration files for all cluster nodes, before you can start the cluster. See Section 18.3.3, “Initial
Configuration of NDB Cluster”.

18.3.1.1 Installing an NDB Cluster Binary Release on Linux

This section covers the steps necessary to install the correct executables for each type of Cluster node
from precompiled binaries supplied by Oracle.

For setting up a cluster using precompiled binaries, the first step in the installation process for each cluster
host is to download the binary archive from the NDB Cluster downloads page. (For the most recent 64-bit
NDB 7.4 release, this is mysql-cluster-gpl-7.4.39-linux-glibc2.12-x86_64.tar.gz.) We
assume that you have placed this file in each machine's /var/tmp directory.

If you require a custom binary, see Section 2.9.5, “Installing MySQL Using a Development Source Tree”.

Note

After completing the installation, do not yet start any of the binaries. We show you
how to do so following the configuration of the nodes (see Section 18.3.3, “Initial
Configuration of NDB Cluster”).

SQL nodes. On each of the machines designated to host SQL nodes, perform the following steps as
the system root user:

1. Check your /etc/passwd and /etc/group files (or use whatever tools are provided by your
operating system for managing users and groups) to see whether there is already a mysql group
and mysql user on the system. Some OS distributions create these as part of the operating system
installation process. If they are not already present, create a new mysql user group, and then add a
mysql user to this group:

$> groupadd mysql
$> useradd -g mysql -s /bin/false mysql

The syntax for useradd and groupadd may differ slightly on different versions of Unix, or they may
have different names such as adduser and addgroup.

2. Change location to the directory containing the downloaded file, unpack the archive, and create a
symbolic link named mysql to the mysql directory.

Note

The actual file and directory names vary according to the NDB Cluster version
number.

$> cd /var/tmp
$> tar -C /usr/local -xzvf mysql-cluster-gpl-7.4.39-linux-glibc2.12-x86_64.tar.gz
$> ln -s /usr/local/mysql-cluster-gpl-7.4.39-linux-glibc2.12-x86_64 /usr/local/mysql

2615

https://dev.mysql.com/downloads/cluster/

Installation of NDB Cluster on Linux

3. Change location to the mysql directory and run the supplied script for creating the system databases:

$> cd mysql
$> scripts/mysql_install_db --user=mysql

4. Set the necessary permissions for the MySQL server and data directories:

$> chown -R root .
$> chown -R mysql data
$> chgrp -R mysql .

5. Copy the MySQL startup script to the appropriate directory, make it executable, and set it to start when
the operating system is booted up:

$> cp support-files/mysql.server /etc/rc.d/init.d/
$> chmod +x /etc/rc.d/init.d/mysql.server
$> chkconfig --add mysql.server

(The startup scripts directory may vary depending on your operating system and version—for example,
in some Linux distributions, it is /etc/init.d.)

Here we use Red Hat's chkconfig for creating links to the startup scripts; use whatever means is
appropriate for this purpose on your platform, such as update-rc.d on Debian.

Remember that the preceding steps must be repeated on each machine where an SQL node is to reside.

Data nodes. Installation of the data nodes does not require the mysqld binary. Only the NDB Cluster
data node executable ndbd (single-threaded) or ndbmtd (multithreaded) is required. These binaries can
also be found in the .tar.gz archive. Again, we assume that you have placed this archive in /var/tmp.

As system root (that is, after using sudo, su root, or your system's equivalent for temporarily assuming
the system administrator account's privileges), perform the following steps to install the data node binaries
on the data node hosts:

1. Change location to the /var/tmp directory, and extract the ndbd and ndbmtd binaries from the
archive into a suitable directory such as /usr/local/bin:

$> cd /var/tmp
$> tar -zxvf mysql-cluster-gpl-7.4.39-linux-glibc2.12-x86_64.tar.gz
$> cd mysql-cluster-gpl-7.4.39-linux-glibc2.12-x86_64
$> cp bin/ndbd /usr/local/bin/ndbd
$> cp bin/ndbmtd /usr/local/bin/ndbmtd

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from /var/tmp once ndb_mgm and ndb_mgmd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

$> cd /usr/local/bin
$> chmod +x ndb*

The preceding steps should be repeated on each data node host.

Although only one of the data node executables is required to run an NDB Cluster data node, we have
shown you how to install both ndbd and ndbmtd in the preceding instructions. We recommend that you do
this when installing or upgrading NDB Cluster, even if you plan to use only one of them, since this saves
time and trouble in the event that you later decide to change from one to the other.

2616

Installation of NDB Cluster on Linux

Note

The data directory on each machine hosting a data node is /usr/local/mysql/
data. This piece of information is essential when configuring the management
node. (See Section 18.3.3, “Initial Configuration of NDB Cluster”.)

Management nodes. Installation of the management node does not require the mysqld binary.
Only the NDB Cluster management server (ndb_mgmd) is required; you most likely want to install the
management client (ndb_mgm) as well. Both of these binaries also be found in the .tar.gz archive.
Again, we assume that you have placed this archive in /var/tmp.

As system root, perform the following steps to install ndb_mgmd and ndb_mgm on the management node
host:

1. Change location to the /var/tmp directory, and extract the ndb_mgm and ndb_mgmd from the archive
into a suitable directory such as /usr/local/bin:

$> cd /var/tmp
$> tar -zxvf mysql-cluster-gpl-7.4.39-linux-glibc2.12-x86_64.tar.gz
$> cd mysql-cluster-gpl-7.4.39-linux-glibc2.12-x86_64
$> cp bin/ndb_mgm* /usr/local/bin

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from /var/tmp once ndb_mgm and ndb_mgmd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

$> cd /usr/local/bin
$> chmod +x ndb_mgm*

In Section 18.3.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes in
our example NDB Cluster.

18.3.1.2 Installing NDB Cluster from RPM

This section covers the steps necessary to install the correct executables for each type of NDB Cluster
node using RPM packages supplied by Oracle.

RPMs are available for both 32-bit and 64-bit Linux platforms. The filenames for these RPMs use the
following pattern:

MySQL-Cluster-component-producttype-ndbversion.distribution.architecture.rpm

component:= {server | client [| other]}

producttype:= {gpl | advanced}

ndbversion:= major.minor.release

distribution:= {sles10 | rhel5 | el6}

architecture:= {i386 | x86_64}

The component can be server or client. (Other values are possible, but since only the server and
client components are required for a working NDB Cluster installation, we do not discuss them here.)
The producttype for Community RPMs downloaded from https://dev.mysql.com/downloads/cluster/ is
always gpl; advanced is used to indicate commercial releases. ndbversion represents the three-part
NDB storage engine version number in 7.3.x or 7.4.x format. The distribution can be one of sles11
(SUSE Enterprise Linux 11), rhel5 (Oracle Linux 5, Red Hat Enterprise Linux 4 and 5), or el6 (Oracle

2617

https://dev.mysql.com/downloads/cluster/

Installation of NDB Cluster on Linux

Linux 6, Red Hat Enterprise Linux 6) The architecture is i386 for 32-bit RPMs and x86_64 for 64-bit
versions.

For an NDB Cluster, one and possibly two RPMs are required:

• The server RPM (for example, MySQL-Cluster-server-gpl-7.3.33-1.sles11.i386.rpm or
MySQL-Cluster-server-gpl-7.4.39-1.sles11.i386.rpm), which supplies the core files needed
to run a MySQL Server with NDBCLUSTER storage engine support (that is, as an NDB Cluster SQL node)
as well as all NDB Cluster executables, including the management node, data node, and ndb_mgm client
binaries. This RPM is always required for installing NDB Cluster.

• If you do not have your own client application capable of administering a MySQL server,
you should also obtain and install the client RPM (for example, MySQL-Cluster-
client-gpl-7.3.33-1.sles11.i386.rpm or MySQL-Cluster-client-
gpl-7.4.39-1.sles11.i386.rpm), which supplies the mysql client

The NDB Cluster version number in the RPM file names (shown here as 7.3.33 or 7.4.39, depending
on whether you are installing NDB Cluster 7.3 or NDB Cluster 7.4) can vary according to the version
which you are actually using. It is very important that all of the Cluster RPMs to be installed have the same
version number. The architecture designation should also be appropriate to the machine on which the
RPM is to be installed; in particular, you should keep in mind that 64-bit RPMs cannot be used with 32-bit
operating systems.

Data nodes. On a computer that is to host a cluster data node it is necessary to install only the server
RPM. To do so, copy this RPM to the data node host, and run the following command as the system root
user, replacing the name shown for the RPM as necessary to match that of the RPM downloaded from the
MySQL website:

$> rpm -Uhv MySQL-Cluster-server-gpl-7.3.33-1.sles11.i386.rpm

or

$> rpm -Uhv MySQL-Cluster-server-gpl-7.4.39-1.sles11.i386.rpm

Although this installs all NDB Cluster binaries, only the program ndbd or ndbmtd (both in /usr/sbin) is
actually needed to run an NDB Cluster data node.

SQL nodes. On each machine to be used for hosting a cluster SQL node, install the server RPM
by executing the following command as the system root user, replacing the name shown for the RPM as
necessary to match the name of the RPM downloaded from the MySQL website:

$> rpm -Uhv MySQL-Cluster-server-gpl-7.3.33-1.sles11.i386.rpm

or

$> rpm -Uhv MySQL-Cluster-server-gpl-7.4.39-1.sles11.i386.rpm

This installs the MySQL server binary (mysqld) with NDB storage engine support in the /usr/sbin
directory, as well as all needed MySQL Server support files. It also installs the mysql.server and
mysqld_safe startup scripts (in /usr/share/mysql and /usr/bin, respectively). The RPM installer
should take care of general configuration issues (such as creating the mysql user and group, if needed)
automatically.

To administer the SQL node (MySQL server), you should also install the client RPM, as shown here:

$> rpm -Uhv MySQL-Cluster-client-gpl-7.3.33-1.sles11.i386.rpm

or

$> rpm -Uhv MySQL-Cluster-client-gpl-7.4.39-1.sles11.i386.rpm

2618

Installation of NDB Cluster on Linux

This installs the mysql client program.

Management nodes. To install the NDB Cluster management server, it is necessary only to use the
server RPM. Copy this RPM to the computer intended to host the management node, and then install
it by running the following command as the system root user (replace the name shown for the RPM as
necessary to match that of the server RPM downloaded from the MySQL website):

$> rpm -Uhv MySQL-Cluster-server-gpl-7.3.33-1.sles11.i386.rpm

or

$> rpm -Uhv MySQL-Cluster-server-gpl-7.4.39-1.sles11.i386.rpm

Although this RPM installs many other files, only the management server binary ndb_mgmd (in the /
usr/sbin directory) is actually required for running a management node. The server RPM also installs
ndb_mgm, the NDB management client.

See Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”, for general information
about installing MySQL using RPMs supplied by Oracle.

After installing from RPM, you still need to configure the cluster as discussed in Section 18.3.3, “Initial
Configuration of NDB Cluster”.

18.3.1.3 Installing NDB Cluster Using .deb Files

The section provides information about installing NDB Cluster on Debian and related Linux distributions
such Ubuntu using the .deb files supplied by Oracle for this purpose.

Oracle provides .deb installer files for NDB Cluster 7.3 and NDB Cluster 7.4 for 32-bit and 64-bit
platforms. For a Debian-based system, only a single installer file is necessary. This file is named using the
pattern shown here, according to the applicable NDB Cluster version, Debian version, and architecture:

mysql-cluster-gpl-ndbver-debiandebianver-arch.deb

Here, ndbver is the 3-part NDB engine version number, debianver is the major version of Debian (6.0
or 7), and arch is one of i686 or x86_64. In the examples that follow, we assume you wish to install NDB
7.4.9 on a 64-bit Debian 7 system; in this case, the installer file is named mysql-cluster-gpl-7.4.9-
debian7-x86_64.deb.

Once you have downloaded the appropriate .deb file, you can install it from the command line using dpkg,
like this:

$> dpkg -i mysql-cluster-gpl-7.4.9-debian7-i686.deb

You can also remove it using dpkg as shown here:

$> dpkg -r mysql

The installer file should also be compatible with most graphical package managers that work with .deb
files, such as GDebi for the Gnome desktop.

The .deb file installs NDB Cluster under /opt/mysql/server-version/, where version is the 2-
part release series version for the included MySQL server. For both NDB Cluster 7.3 and NDB Cluster 7.4,
this is always 5.6. The directory layout is the same as that for the generic Linux binary distribution (see
Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary Package”), with the exception that
startup scripts and configuration files are found in support-files instead of share. All NDB Cluster
executables, such as ndb_mgm, ndbd, and ndb_mgmd, are placed in the bin directory.

18.3.1.4 Building NDB Cluster from Source on Linux

2619

Installation of NDB Cluster on Linux

This section provides information about compiling NDB Cluster on Linux and other Unix-like platforms.
Building NDB Cluster from source is similar to building the standard MySQL Server, although it differs
in a few key respects discussed here. For general information about building MySQL from source, see
Section 2.9, “Installing MySQL from Source”. For information about compiling NDB Cluster on Windows
platforms, see Section 18.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”.

Building NDB Cluster requires using the NDB Cluster sources. These are available from the NDB Cluster
downloads page at https://dev.mysql.com/downloads/cluster/. The archived source file should have
a name similar to mysql-cluster-gpl-7.3.33.tar.gz (NDB Cluster 7.3) or mysql-cluster-
gpl-7.4.39.tar.gz (NDB Cluster 7.4). You can also obtain NDB Cluster sources from GitHub at https://
github.com/mysql/mysql-server/tree/cluster-7.3 (NDB 7.3) and https://github.com/mysql/mysql-server/tree/
cluster-7.4 (NDB 7.4). Building NDB Cluster 7.3 or 7.4 from standard MySQL Server 5.6 sources is not
supported.

The WITH_NDBCLUSTER_STORAGE_ENGINE option for CMake causes the binaries for the management
nodes, data nodes, and other NDB Cluster programs to be built; it also causes mysqld to be compiled with
NDB storage engine support. This option (or its alias WITH_NDBCLUSTER) is required when building NDB
Cluster.

Important

In NDB Cluster 7.3 and later, the WITH_NDB_JAVA option is enabled by default.
This means that, by default, if CMake cannot find the location of Java on your
system, the configuration process fails; if you do not wish to enable Java and
ClusterJ support, you must indicate this explicitly by configuring the build using -
DWITH_NDB_JAVA=OFF. Use WITH_CLASSPATH to provide the Java classpath if
needed.

For more information about CMake options specific to building NDB Cluster, see CMake Options for
Compiling NDB Cluster.

After you have run make && make install (or your system's equivalent), the result is similar to what is
obtained by unpacking a precompiled binary to the same location.

Management nodes. When building from source and running the default make install, the
management server and management client binaries (ndb_mgmd and ndb_mgm) can be found in /usr/
local/mysql/bin. Only ndb_mgmd is required to be present on a management node host; however,
it is also a good idea to have ndb_mgm present on the same host machine. Neither of these executables
requires a specific location on the host machine's file system.

Data nodes. The only executable required on a data node host is the data node binary ndbd or
ndbmtd. (mysqld, for example, does not have to be present on the host machine.) By default, when
building from source, this file is placed in the directory /usr/local/mysql/bin. For installing on multiple
data node hosts, only ndbd or ndbmtd need be copied to the other host machine or machines. (This
assumes that all data node hosts use the same architecture and operating system; otherwise you may
need to compile separately for each different platform.) The data node binary need not be in any particular
location on the host's file system, as long as the location is known.

When compiling NDB Cluster from source, no special options are required for building multithreaded
data node binaries. Configuring the build with NDB storage engine support causes ndbmtd to be built
automatically; make install places the ndbmtd binary in the installation bin directory along with
mysqld, ndbd, and ndb_mgm.

SQL nodes. If you compile MySQL with clustering support, and perform the default installation (using
make install as the system root user), mysqld is placed in /usr/local/mysql/bin. Follow the
steps given in Section 2.9, “Installing MySQL from Source” to make mysqld ready for use. If you want to
run multiple SQL nodes, you can use a copy of the same mysqld executable and its associated support

2620

https://dev.mysql.com/downloads/cluster/
https://github.com/mysql/mysql-server/tree/cluster-7.3
https://github.com/mysql/mysql-server/tree/cluster-7.3
https://github.com/mysql/mysql-server/tree/cluster-7.4
https://github.com/mysql/mysql-server/tree/cluster-7.4

Installing NDB Cluster on Windows

files on several machines. The easiest way to do this is to copy the entire /usr/local/mysql directory
and all directories and files contained within it to the other SQL node host or hosts, then repeat the steps
from Section 2.9, “Installing MySQL from Source” on each machine. If you configure the build with a
nondefault PREFIX option, you must adjust the directory accordingly.

In Section 18.3.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes in
our example NDB Cluster.

18.3.2 Installing NDB Cluster on Windows

This section describes installation procedures for NDB Cluster on Windows hosts. NDB Cluster 7.3 and
NDB Cluster 7.4 binaries for Windows can be obtained from https://dev.mysql.com/downloads/cluster/.
For information about installing NDB Cluster on Windows from a binary release provided by Oracle, see
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”.

It is also possible to compile and install NDB Cluster from source on Windows using Microsoft Visual
Studio. For more information, see Section 18.3.2.2, “Compiling and Installing NDB Cluster from Source on
Windows”.

18.3.2.1 Installing NDB Cluster on Windows from a Binary Release

This section describes a basic installation of NDB Cluster on Windows using a binary “no-install” NDB
Cluster release provided by Oracle, using the same 4-node setup outlined in the beginning of this section
(see Section 18.3, “NDB Cluster Installation”), as shown in the following table:

Table 18.5 Network addresses of nodes in example cluster

Node IP Address

Management node (mgmd) 198.51.100.10

SQL node (mysqld) 198.51.100.20

Data node "A" (ndbd) 198.51.100.30

Data node "B" (ndbd) 198.51.100.40

As on other platforms, the NDB Cluster host computer running an SQL node must have installed on it a
MySQL Server binary (mysqld.exe). You should also have the MySQL client (mysql.exe) on this host.
For management nodes and data nodes, it is not necessary to install the MySQL Server binary; however,
each management node requires the management server daemon (ndb_mgmd.exe); each data node
requires the data node daemon (ndbd.exe or ndbmtd.exe). For this example, we refer to ndbd.exe
as the data node executable, but you can install ndbmtd.exe, the multithreaded version of this program,
instead, in exactly the same way. You should also install the management client (ndb_mgm.exe) on the
management server host. This section covers the steps necessary to install the correct Windows binaries
for each type of NDB Cluster node.

Note

As with other Windows programs, NDB Cluster executables are named with the
.exe file extension. However, it is not necessary to include the .exe extension
when invoking these programs from the command line. Therefore, we often simply
refer to these programs in this documentation as mysqld, mysql, ndb_mgmd, and
so on. You should understand that, whether we refer (for example) to mysqld or
mysqld.exe, either name means the same thing (the MySQL Server program).

For setting up an NDB Cluster using Oracles's no-install binaries, the first step in the installation
process is to download the latest NDB Cluster Windows ZIP binary archive from https://dev.mysql.com/
downloads/cluster/. This archive has a filename of the mysql-cluster-gpl-ver-winarch.zip,

2621

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/

Installing NDB Cluster on Windows

where ver is the NDB storage engine version (such as 7.4.39), and arch is the architecture (32 for 32-
bit binaries, and 64 for 64-bit binaries). For example, the NDB Cluster 7.4.39 archive for 64-bit Windows
systems is named mysql-cluster-gpl-7.4.39-win64.zip.

You can run 32-bit NDB Cluster binaries on both 32-bit and 64-bit versions of Windows; however, 64-bit
NDB Cluster binaries can be used only on 64-bit versions of Windows. If you are using a 32-bit version of
Windows on a computer that has a 64-bit CPU, then you must use the 32-bit NDB Cluster binaries.

To minimize the number of files that need to be downloaded from the Internet or copied between
machines, we start with the computer where you intend to run the SQL node.

SQL node. We assume that you have placed a copy of the archive in the directory C:\Documents
and Settings\username\My Documents\Downloads on the computer having the IP address
198.51.100.20, where username is the name of the current user. (You can obtain this name using ECHO
%USERNAME% on the command line.) To install and run NDB Cluster executables as Windows services, this
user should be a member of the Administrators group.

Extract all the files from the archive. The Extraction Wizard integrated with Windows Explorer is adequate
for this task. (If you use a different archive program, be sure that it extracts all files and directories from
the archive, and that it preserves the archive's directory structure.) When you are asked for a destination
directory, enter C:\, which causes the Extraction Wizard to extract the archive to the directory C:\mysql-
cluster-gpl-ver-winarch. Rename this directory to C:\mysql.

It is possible to install the NDB Cluster binaries to directories other than C:\mysql\bin; however, if you
do so, you must modify the paths shown in this procedure accordingly. In particular, if the MySQL Server
(SQL node) binary is installed to a location other than C:\mysql or C:\Program Files\MySQL\MySQL
Server 5.6, or if the SQL node's data directory is in a location other than C:\mysql\data or C:
\Program Files\MySQL\MySQL Server 5.6\data, extra configuration options must be used on the
command line or added to the my.ini or my.cnf file when starting the SQL node. For more information
about configuring a MySQL Server to run in a nonstandard location, see Section 2.3.4, “Installing MySQL
on Microsoft Windows Using a noinstall ZIP Archive”.

For a MySQL Server with NDB Cluster support to run as part of an NDB Cluster, it must be started with
the options --ndbcluster and --ndb-connectstring. While you can specify these options on the
command line, it is usually more convenient to place them in an option file. To do this, create a new text file
in Notepad or another text editor. Enter the following configuration information into this file:

[mysqld]
Options for mysqld process:
ndbcluster # run NDB storage engine
ndb-connectstring=198.51.100.10 # location of management server

You can add other options used by this MySQL Server if desired (see Section 2.3.4.2, “Creating an Option
File”), but the file must contain the options shown, at a minimum. Save this file as C:\mysql\my.ini.
This completes the installation and setup for the SQL node.

Data nodes. An NDB Cluster data node on a Windows host requires only a single executable, one of
either ndbd.exe or ndbmtd.exe. For this example, we assume that you are using ndbd.exe, but the
same instructions apply when using ndbmtd.exe. On each computer where you wish to run a data node
(the computers having the IP addresses 198.51.100.30 and 198.51.100.40), create the directories C:
\mysql, C:\mysql\bin, and C:\mysql\cluster-data; then, on the computer where you downloaded
and extracted the no-install archive, locate ndbd.exe in the C:\mysql\bin directory. Copy this file
to the C:\mysql\bin directory on each of the two data node hosts.

To function as part of an NDB Cluster, each data node must be given the address or hostname of
the management server. You can supply this information on the command line using the --ndb-
connectstring or -c option when starting each data node process. However, it is usually preferable to

2622

Installing NDB Cluster on Windows

put this information in an option file. To do this, create a new text file in Notepad or another text editor and
enter the following text:

[mysql_cluster]
Options for data node process:
ndb-connectstring=198.51.100.10 # location of management server

Save this file as C:\mysql\my.ini on the data node host. Create another text file containing the same
information and save it on as C:mysql\my.ini on the other data node host, or copy the my.ini file from
the first data node host to the second one, making sure to place the copy in the second data node's C:
\mysql directory. Both data node hosts are now ready to be used in the NDB Cluster, which leaves only
the management node to be installed and configured.

Management node. The only executable program required on a computer used for hosting an NDB
Cluster management node is the management server program ndb_mgmd.exe. However, in order to
administer the NDB Cluster once it has been started, you should also install the NDB Cluster management
client program ndb_mgm.exe on the same machine as the management server. Locate these two
programs on the machine where you downloaded and extracted the no-install archive; this should be
the directory C:\mysql\bin on the SQL node host. Create the directory C:\mysql\bin on the computer
having the IP address 198.51.100.10, then copy both programs to this directory.

You should now create two configuration files for use by ndb_mgmd.exe:

1. A local configuration file to supply configuration data specific to the management node itself. Typically,
this file needs only to supply the location of the NDB Cluster global configuration file (see item 2).

To create this file, start a new text file in Notepad or another text editor, and enter the following
information:

[mysql_cluster]
Options for management node process
config-file=C:/mysql/bin/config.ini

Save this file as the text file C:\mysql\bin\my.ini.

2. A global configuration file from which the management node can obtain configuration information
governing the NDB Cluster as a whole. At a minimum, this file must contain a section for each node
in the NDB Cluster, and the IP addresses or hostnames for the management node and all data nodes
(HostName configuration parameter). It is also advisable to include the following additional information:

• The IP address or hostname of any SQL nodes

• The data memory and index memory allocated to each data node (DataMemory and IndexMemory
configuration parameters)

• The number of replicas, using the NoOfReplicas configuration parameter (see Section 18.2.2,
“NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”)

• The directory where each data node stores it data and log file, and the directory where the
management node keeps its log files (in both cases, the DataDir configuration parameter)

Create a new text file using a text editor such as Notepad, and input the following information:

[ndbd default]
Options affecting ndbd processes on all data nodes:
NoOfReplicas=2 # Number of fragment replicas
DataDir=C:/mysql/cluster-data # Directory for each data node's data files
 # Forward slashes used in directory path,
 # rather than backslashes. This is correct;

2623

Installing NDB Cluster on Windows

 # see Important note in text
DataMemory=80M # Memory allocated to data storage
IndexMemory=18M # Memory allocated to index storage
 # For DataMemory and IndexMemory, we have used the
 # default values. Since the "world" database takes up
 # only about 500KB, this should be more than enough for
 # this example Cluster setup.

[ndb_mgmd]
Management process options:
HostName=198.51.100.10 # Hostname or IP address of management node
DataDir=C:/mysql/bin/cluster-logs # Directory for management node log files

[ndbd]
Options for data node "A":
 # (one [ndbd] section per data node)
HostName=198.51.100.30 # Hostname or IP address

[ndbd]
Options for data node "B":
HostName=198.51.100.40 # Hostname or IP address

[mysqld]
SQL node options:
HostName=198.51.100.20 # Hostname or IP address

Save this file as the text file C:\mysql\bin\config.ini.

Important

A single backslash character (\) cannot be used when specifying directory paths in
program options or configuration files used by NDB Cluster on Windows. Instead,
you must either escape each backslash character with a second backslash (\\), or
replace the backslash with a forward slash character (/). For example, the following
line from the [ndb_mgmd] section of an NDB Cluster config.ini file does not
work:

DataDir=C:\mysql\bin\cluster-logs

Instead, you may use either of the following:

DataDir=C:\\mysql\\bin\\cluster-logs # Escaped backslashes

DataDir=C:/mysql/bin/cluster-logs # Forward slashes

For reasons of brevity and legibility, we recommend that you use forward slashes
in directory paths used in NDB Cluster program options and configuration files on
Windows.

18.3.2.2 Compiling and Installing NDB Cluster from Source on Windows

Oracle provides precompiled NDB Cluster binaries for Windows which should be adequate for most users.
However, if you wish, it is also possible to compile NDB Cluster for Windows from source code. The
procedure for doing this is almost identical to the procedure used to compile the standard MySQL Server
binaries for Windows, and uses the same tools. However, there are two major differences:

• Building NDB Cluster requires using the NDB Cluster sources. These are available from the NDB Cluster
downloads page at https://dev.mysql.com/downloads/cluster/. The archived source file should have
a name similar to mysql-cluster-gpl-7.3.33.tar.gz (NDB Cluster 7.3) or mysql-cluster-
gpl-7.4.39.tar.gz (NDB Cluster 7.4). You can also obtain NDB Cluster sources from GitHub at
https://github.com/mysql/mysql-server/tree/cluster-7.3 (NDB 7.3) and https://github.com/mysql/mysql-

2624

https://dev.mysql.com/downloads/cluster/
https://github.com/mysql/mysql-server/tree/cluster-7.3
https://github.com/mysql/mysql-server/tree/cluster-7.4

Installing NDB Cluster on Windows

server/tree/cluster-7.4 (NDB 7.4). Building NDB Cluster 7.3 or 7.4 from standard MySQL Server 5.6
sources is not supported.

• You must configure the build using the WITH_NDBCLUSTER option in addition to any other build options
you wish to use with CMake. (WITH_NDBCLUSTER_STORAGE_ENGINE is supported as an alias.)

Important

In NDB Cluster 7.3 and later, the WITH_NDB_JAVA option is enabled by default.
This means that, by default, if CMake cannot find the location of Java on your
system, the configuration process fails; if you do not wish to enable Java and
ClusterJ support, you must indicate this explicitly by configuring the build using -
DWITH_NDB_JAVA=OFF. (Bug #12379735) Use WITH_CLASSPATH to provide the
Java classpath if needed.

For more information about CMake options specific to building NDB Cluster, see CMake Options for
Compiling NDB Cluster.

Once the build process is complete, you can create a Zip archive containing the compiled binaries;
Section 2.9.4, “Installing MySQL Using a Standard Source Distribution” provides the commands needed
to perform this task on Windows systems. The NDB Cluster binaries can be found in the bin directory
of the resulting archive, which is equivalent to the no-install archive, and which can be installed and
configured in the same manner. For more information, see Section 18.3.2.1, “Installing NDB Cluster on
Windows from a Binary Release”.

18.3.2.3 Initial Startup of NDB Cluster on Windows

Once the NDB Cluster executables and needed configuration files are in place, performing an initial
start of the cluster is simply a matter of starting the NDB Cluster executables for all nodes in the cluster.
Each cluster node process must be started separately, and on the host computer where it resides. The
management node should be started first, followed by the data nodes, and then finally by any SQL nodes.

1. On the management node host, issue the following command from the command line to start the
management node process. The output should appear similar to what is shown here:

C:\mysql\bin> ndb_mgmd
2010-06-23 07:53:34 [MgmtSrvr] INFO -- NDB Cluster Management Server. mysql-5.6.51-ndb-7.4.39
2010-06-23 07:53:34 [MgmtSrvr] INFO -- Reading cluster configuration from 'config.ini'

The management node process continues to print logging output to the console. This is normal,
because the management node is not running as a Windows service. (If you have used NDB Cluster on
a Unix-like platform such as Linux, you may notice that the management node's default behavior in this
regard on Windows is effectively the opposite of its behavior on Unix systems, where it runs by default
as a Unix daemon process. This behavior is also true of NDB Cluster data node processes running on
Windows.) For this reason, do not close the window in which ndb_mgmd.exe is running; doing so kills
the management node process. (See Section 18.3.2.4, “Installing NDB Cluster Processes as Windows
Services”, where we show how to install and run NDB Cluster processes as Windows services.)

The required -f option tells the management node where to find the global configuration file
(config.ini). The long form of this option is --config-file.

Important

An NDB Cluster management node caches the configuration data that it reads
from config.ini; once it has created a configuration cache, it ignores the
config.ini file on subsequent starts unless forced to do otherwise. This
means that, if the management node fails to start due to an error in this file,

2625

https://github.com/mysql/mysql-server/tree/cluster-7.4

Installing NDB Cluster on Windows

you must make the management node re-read config.ini after you have
corrected any errors in it. You can do this by starting ndb_mgmd.exe with the
--reload or --initial option on the command line. Either of these options
works to refresh the configuration cache.

It is not necessary or advisable to use either of these options in the
management node's my.ini file.

2. On each of the data node hosts, run the command shown here to start the data node processes:

C:\mysql\bin> ndbd
2010-06-23 07:53:46 [ndbd] INFO -- Configuration fetched from 'localhost:1186', generation: 1

In each case, the first line of output from the data node process should resemble what is shown in the
preceding example, and is followed by additional lines of logging output. As with the management node
process, this is normal, because the data node is not running as a Windows service. For this reason, do
not close the console window in which the data node process is running; doing so kills ndbd.exe. (For
more information, see Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”.)

3. Do not start the SQL node yet; it cannot connect to the cluster until the data nodes have finished
starting, which may take some time. Instead, in a new console window on the management node host,
start the NDB Cluster management client ndb_mgm.exe, which should be in C:\mysql\bin on the
management node host. (Do not try to re-use the console window where ndb_mgmd.exe is running by
typing CTRL+C, as this kills the management node.) The resulting output should look like this:

C:\mysql\bin> ndb_mgm
-- NDB Cluster -- Management Client --
ndb_mgm>

When the prompt ndb_mgm> appears, this indicates that the management client is ready to receive
NDB Cluster management commands. You can observe the status of the data nodes as they start by
entering ALL STATUS at the management client prompt. This command causes a running report of the
data nodes's startup sequence, which should look something like this:

ndb_mgm> ALL STATUS
Connected to Management Server at: localhost:1186
Node 2: starting (Last completed phase 3) (mysql-5.6.51-ndb-7.4.39)
Node 3: starting (Last completed phase 3) (mysql-5.6.51-ndb-7.4.39)

Node 2: starting (Last completed phase 4) (mysql-5.6.51-ndb-7.4.39)
Node 3: starting (Last completed phase 4) (mysql-5.6.51-ndb-7.4.39)

Node 2: Started (version 7.4.39)
Node 3: Started (version 7.4.39)

ndb_mgm>

Note

Commands issued in the management client are not case-sensitive; we use
uppercase as the canonical form of these commands, but you are not required
to observe this convention when inputting them into the ndb_mgm client.
For more information, see Section 18.6.1, “Commands in the NDB Cluster
Management Client”.

The output produced by ALL STATUS is likely to vary from what is shown here, according to the speed
at which the data nodes are able to start, the release version number of the NDB Cluster software

2626

Installing NDB Cluster on Windows

you are using, and other factors. What is significant is that, when you see that both data nodes have
started, you are ready to start the SQL node.

You can leave ndb_mgm.exe running; it has no negative impact on the performance of the NDB
Cluster, and we use it in the next step to verify that the SQL node is connected to the cluster after you
have started it.

4. On the computer designated as the SQL node host, open a console window and navigate to the
directory where you unpacked the NDB Cluster binaries (if you are following our example, this is C:
\mysql\bin).

Start the SQL node by invoking mysqld.exe from the command line, as shown here:

C:\mysql\bin> mysqld --console

The --console option causes logging information to be written to the console, which can be helpful in
the event of problems. (Once you are satisfied that the SQL node is running in a satisfactory manner,
you can stop it and restart it out without the --console option, so that logging is performed normally.)

In the console window where the management client (ndb_mgm.exe) is running on the management
node host, enter the SHOW command, which should produce output similar to what is shown here:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=2 @198.51.100.30 (Version: 5.6.51-ndb-7.4.39, Nodegroup: 0, *)
id=3 @198.51.100.40 (Version: 5.6.51-ndb-7.4.39, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @198.51.100.10 (Version: 5.6.51-ndb-7.4.39)

[mysqld(API)] 1 node(s)
id=4 @198.51.100.20 (Version: 5.6.51-ndb-7.4.39)

You can also verify that the SQL node is connected to the NDB Cluster in the mysql client
(mysql.exe) using the SHOW ENGINE NDB STATUS statement.

You should now be ready to work with database objects and data using NDB Cluster's NDBCLUSTER
storage engine. See Section 18.3.5, “NDB Cluster Example with Tables and Data”, for more information
and examples.

You can also install ndb_mgmd.exe, ndbd.exe, and ndbmtd.exe as Windows services. For information
on how to do this, see Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”).

18.3.2.4 Installing NDB Cluster Processes as Windows Services

Once you are satisfied that NDB Cluster is running as desired, you can install the management nodes and
data nodes as Windows services, so that these processes are started and stopped automatically whenever
Windows is started or stopped. This also makes it possible to control these processes from the command
line with the appropriate SC START and SC STOP commands, or using the Windows graphical Services
utility. NET START and NET STOP commands can also be used.

Installing programs as Windows services usually must be done using an account that has Administrator
rights on the system.

To install the management node as a service on Windows, invoke ndb_mgmd.exe from the command line
on the machine hosting the management node, using the --install option, as shown here:

2627

Installing NDB Cluster on Windows

C:\> C:\mysql\bin\ndb_mgmd.exe --install
Installing service 'NDB Cluster Management Server'
 as '"C:\mysql\bin\ndbd.exe" "--service=ndb_mgmd"'
Service successfully installed.

Important

When installing an NDB Cluster program as a Windows service, you should always
specify the complete path; otherwise the service installation may fail with the error
The system cannot find the file specified.

The --install option must be used first, ahead of any other options that might be specified for
ndb_mgmd.exe. However, it is preferable to specify such options in an options file instead. If your options
file is not in one of the default locations as shown in the output of ndb_mgmd.exe --help, you can
specify the location using the --config-file option.

Now you should be able to start and stop the management server like this:

C:\> SC START ndb_mgmd

C:\> SC STOP ndb_mgmd

Note

If using NET commands, you can also start or stop the management server as a
Windows service using the descriptive name, as shown here:

C:\> NET START 'NDB Cluster Management Server'
The NDB Cluster Management Server service is starting.
The NDB Cluster Management Server service was started successfully.

C:\> NET STOP 'NDB Cluster Management Server'
The NDB Cluster Management Server service is stopping..
The NDB Cluster Management Server service was stopped successfully.

It is usually simpler to specify a short service name or to permit the default service name to be used when
installing the service, and then reference that name when starting or stopping the service. To specify a
service name other than ndb_mgmd, append it to the --install option, as shown in this example:

C:\> C:\mysql\bin\ndb_mgmd.exe --install=mgmd1
Installing service 'NDB Cluster Management Server'
 as '"C:\mysql\bin\ndb_mgmd.exe" "--service=mgmd1"'
Service successfully installed.

Now you should be able to start or stop the service using the name you have specified, like this:

C:\> SC START mgmd1

C:\> SC STOP mgmd1

To remove the management node service, use SC DELETE service_name:

C:\> SC DELETE mgmd1

Alternatively, invoke ndb_mgmd.exe with the --remove option, as shown here:

C:\> C:\mysql\bin\ndb_mgmd.exe --remove
Removing service 'NDB Cluster Management Server'
Service successfully removed.

If you installed the service using a service name other than the default, pass the service name as the value
of the ndb_mgmd.exe --remove option, like this:

2628

Initial Configuration of NDB Cluster

C:\> C:\mysql\bin\ndb_mgmd.exe --remove=mgmd1
Removing service 'mgmd1'
Service successfully removed.

Installation of an NDB Cluster data node process as a Windows service can be done in a similar fashion,
using the --install option for ndbd.exe (or ndbmtd.exe), as shown here:

C:\> C:\mysql\bin\ndbd.exe --install
Installing service 'NDB Cluster Data Node Daemon' as '"C:\mysql\bin\ndbd.exe" "--service=ndbd"'
Service successfully installed.

Now you can start or stop the data node as shown in the following example:

C:\> SC START ndbd

C:\> SC STOP ndbd

To remove the data node service, use SC DELETE service_name:

C:\> SC DELETE ndbd

Alternatively, invoke ndbd.exe with the --remove option, as shown here:

C:\> C:\mysql\bin\ndbd.exe --remove
Removing service 'NDB Cluster Data Node Daemon'
Service successfully removed.

As with ndb_mgmd.exe (and mysqld.exe), when installing ndbd.exe as a Windows service, you can
also specify a name for the service as the value of --install, and then use it when starting or stopping
the service, like this:

C:\> C:\mysql\bin\ndbd.exe --install=dnode1
Installing service 'dnode1' as '"C:\mysql\bin\ndbd.exe" "--service=dnode1"'
Service successfully installed.

C:\> SC START dnode1

C:\> SC STOP dnode1

If you specified a service name when installing the data node service, you can use this name when
removing it as well, as shown here:

C:\> SC DELETE dnode1

Alternatively, you can pass the service name as the value of the ndbd.exe --remove option, as shown
here:

C:\> C:\mysql\bin\ndbd.exe --remove=dnode1
Removing service 'dnode1'
Service successfully removed.

Installation of the SQL node as a Windows service, starting the service, stopping the service, and removing
the service are done in a similar fashion, using mysqld --install, SC START, SC STOP, and SC
DELETE (or mysqld --remove). NET commands can also be used to start or stop a service. For additional
information, see Section 2.3.4.7, “Starting MySQL as a Windows Service”.

18.3.3 Initial Configuration of NDB Cluster

In this section, we discuss manual configuration of an installed NDB Cluster by creating and editing
configuration files.

2629

Initial Configuration of NDB Cluster

NDB Cluster (NDB versions 7.3 and later) also provides a GUI installer which can be used to perform
the configuration without the need to edit text files in a separate application. For more information, see
Section 18.3.8, “The NDB Cluster Auto-Installer (NO LONGER SUPPORTED)”.

For our four-node, four-host NDB Cluster (see Cluster nodes and host computers), it is necessary to write
four configuration files, one per node host.

• Each data node or SQL node requires a my.cnf file that provides two pieces of information: a
connection string that tells the node where to find the management node, and a line telling the MySQL
server on this host (the machine hosting the data node) to enable the NDBCLUSTER storage engine.

For more information on connection strings, see Section 18.4.3.3, “NDB Cluster Connection Strings”.

• The management node needs a config.ini file telling it how many fragment replicas to maintain, how
much memory to allocate for data and indexes on each data node, where to find the data nodes, where
to save data to disk on each data node, and where to find any SQL nodes.

Configuring the data nodes and SQL nodes. The my.cnf file needed for the data nodes is fairly
simple. The configuration file should be located in the /etc directory and can be edited using any text
editor. (Create the file if it does not exist.) For example:

$> vi /etc/my.cnf

Note

We show vi being used here to create the file, but any text editor should work just
as well.

For each data node and SQL node in our example setup, my.cnf should look like this:

[mysqld]
Options for mysqld process:
ndbcluster # run NDB storage engine

[mysql_cluster]
Options for NDB Cluster processes:
ndb-connectstring=198.51.100.10 # location of management server

After entering the preceding information, save this file and exit the text editor. Do this for the machines
hosting data node “A”, data node “B”, and the SQL node.

Important

Once you have started a mysqld process with the ndbcluster and ndb-
connectstring parameters in the [mysqld] and [mysql_cluster] sections
of the my.cnf file as shown previously, you cannot execute any CREATE TABLE
or ALTER TABLE statements without having actually started the cluster. Otherwise,
these statements fails with an error. This is by design.

Configuring the management node. The first step in configuring the management node is to create
the directory in which the configuration file can be found and then to create the file itself. For example
(running as root):

$> mkdir /var/lib/mysql-cluster
$> cd /var/lib/mysql-cluster
$> vi config.ini

For our representative setup, the config.ini file should read as follows:

[ndbd default]

2630

Initial Startup of NDB Cluster

Options affecting ndbd processes on all data nodes:
NoOfReplicas=2 # Number of fragment replicas
DataMemory=80M # How much memory to allocate for data storage
IndexMemory=18M # How much memory to allocate for index storage
 # For DataMemory and IndexMemory, we have used the
 # default values. Since the "world" database takes up
 # only about 500KB, this should be more than enough for
 # this example NDB Cluster setup.
ServerPort=2202 # This the default value; however, you can use any
 # port that is free for all the hosts in the cluster
 # Note1: It is recommended that you do not specify the port
 # number at all and simply allow the default value to be used
 # instead
 # Note2: The port was formerly specified using the PortNumber
 # TCP parameter; this parameter is no longer available in NDB
 # Cluster 7.5.

[ndb_mgmd]
Management process options:
HostName=198.51.100.10 # Hostname or IP address of management node
DataDir=/var/lib/mysql-cluster # Directory for management node log files

[ndbd]
Options for data node "A":
 # (one [ndbd] section per data node)
HostName=198.51.100.30 # Hostname or IP address
NodeId=2 # Node ID for this data node
DataDir=/usr/local/mysql/data # Directory for this data node's data files

[ndbd]
Options for data node "B":
HostName=198.51.100.40 # Hostname or IP address
NodeId=3 # Node ID for this data node
DataDir=/usr/local/mysql/data # Directory for this data node's data files

[mysqld]
SQL node options:
HostName=198.51.100.20 # Hostname or IP address
 # (additional mysqld connections can be
 # specified for this node for various
 # purposes such as running ndb_restore)

Note

The world database can be downloaded from https://dev.mysql.com/doc/index-
other.html.

After all the configuration files have been created and these minimal options have been specified, you are
ready to proceed with starting the cluster and verifying that all processes are running. We discuss how this
is done in Section 18.3.4, “Initial Startup of NDB Cluster”.

For more detailed information about the available NDB Cluster configuration parameters and their uses,
see Section 18.4.3, “NDB Cluster Configuration Files”, and Section 18.4, “Configuration of NDB Cluster”.
For configuration of NDB Cluster as relates to making backups, see Section 18.6.8.3, “Configuration for
NDB Cluster Backups”.

Note

The default port for Cluster management nodes is 1186; the default port for data
nodes is 2202. However, the cluster can automatically allocate ports for data nodes
from those that are already free.

18.3.4 Initial Startup of NDB Cluster

2631

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

NDB Cluster Example with Tables and Data

Starting the cluster is not very difficult after it has been configured. Each cluster node process must
be started separately, and on the host where it resides. The management node should be started first,
followed by the data nodes, and then finally by any SQL nodes:

1. On the management host, issue the following command from the system shell to start the management
node process:

$> ndb_mgmd --initial -f /var/lib/mysql-cluster/config.ini

The first time that it is started, ndb_mgmd must be told where to find its configuration file, using the -f
or --config-file option. This option requires that --initial or --reload also be specified; see
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”, for details.

2. On each of the data node hosts, run this command to start the ndbd process:

$> ndbd

3. If you used RPM files to install MySQL on the cluster host where the SQL node is to reside, you can
(and should) use the supplied startup script to start the MySQL server process on the SQL node.

If all has gone well, and the cluster has been set up correctly, the cluster should now be operational. You
can test this by invoking the ndb_mgm management node client. The output should look like that shown
here, although you might see some slight differences in the output depending upon the exact version of
MySQL that you are using:

$> ndb_mgm
-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=2 @198.51.100.30 (Version: 5.6.51-ndb-7.4.39, Nodegroup: 0, *)
id=3 @198.51.100.40 (Version: 5.6.51-ndb-7.4.39, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @198.51.100.10 (Version: 5.6.51-ndb-7.4.39)

[mysqld(API)] 1 node(s)
id=4 @198.51.100.20 (Version: 5.6.51-ndb-7.4.39)

The SQL node is referenced here as [mysqld(API)], which reflects the fact that the mysqld process is
acting as an NDB Cluster API node.

Note

The IP address shown for a given NDB Cluster SQL or other API node in the output
of SHOW is the address used by the SQL or API node to connect to the cluster data
nodes, and not to any management node.

You should now be ready to work with databases, tables, and data in NDB Cluster. See Section 18.3.5,
“NDB Cluster Example with Tables and Data”, for a brief discussion.

18.3.5 NDB Cluster Example with Tables and Data

Note

The information in this section applies to NDB Cluster running on both Unix and
Windows platforms.

2632

NDB Cluster Example with Tables and Data

Working with database tables and data in NDB Cluster is not much different from doing so in standard
MySQL. There are two key points to keep in mind:

• For a table to be replicated in the cluster, it must use the NDBCLUSTER storage engine. To specify this,
use the ENGINE=NDBCLUSTER or ENGINE=NDB option when creating the table:

CREATE TABLE tbl_name (col_name column_definitions) ENGINE=NDBCLUSTER;

Alternatively, for an existing table that uses a different storage engine, use ALTER TABLE to change the
table to use NDBCLUSTER:

ALTER TABLE tbl_name ENGINE=NDBCLUSTER;

• Every NDBCLUSTER table has a primary key. If no primary key is defined by the user when a table is
created, the NDBCLUSTER storage engine automatically generates a hidden one. Such a key takes up
space just as does any other table index. (It is not uncommon to encounter problems due to insufficient
memory for accommodating these automatically created indexes.)

If you are importing tables from an existing database using the output of mysqldump, you can open the
SQL script in a text editor and add the ENGINE option to any table creation statements, or replace any
existing ENGINE options. Suppose that you have the world sample database on another MySQL server
that does not support NDB Cluster, and you want to export the City table:

$> mysqldump --add-drop-table world City > city_table.sql

The resulting city_table.sql file contains this table creation statement (and the INSERT statements
necessary to import the table data):

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (
 `ID` int(11) NOT NULL auto_increment,
 `Name` char(35) NOT NULL default '',
 `CountryCode` char(3) NOT NULL default '',
 `District` char(20) NOT NULL default '',
 `Population` int(11) NOT NULL default '0',
 PRIMARY KEY (`ID`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

You need to make sure that MySQL uses the NDBCLUSTER storage engine for this table. There are two
ways that this can be accomplished. One of these is to modify the table definition before importing it into
the Cluster database. Using the City table as an example, modify the ENGINE option of the definition as
follows:

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (
 `ID` int(11) NOT NULL auto_increment,
 `Name` char(35) NOT NULL default '',
 `CountryCode` char(3) NOT NULL default '',
 `District` char(20) NOT NULL default '',
 `Population` int(11) NOT NULL default '0',
 PRIMARY KEY (`ID`)
) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

2633

NDB Cluster Example with Tables and Data

This must be done for the definition of each table that is to be part of the clustered database. The easiest
way to accomplish this is to do a search-and-replace on the file that contains the definitions and replace all
instances of TYPE=engine_name or ENGINE=engine_name with ENGINE=NDBCLUSTER. If you do not
want to modify the file, you can use the unmodified file to create the tables, and then use ALTER TABLE to
change their storage engine. The particulars are given later in this section.

Assuming that you have already created a database named world on the SQL node of the cluster, you
can then use the mysql command-line client to read city_table.sql, and create and populate the
corresponding table in the usual manner:

$> mysql world < city_table.sql

It is very important to keep in mind that the preceding command must be executed on the host where the
SQL node is running (in this case, on the machine with the IP address 198.51.100.20).

To create a copy of the entire world database on the SQL node, use mysqldump on the noncluster server
to export the database to a file named world.sql (for example, in the /tmp directory). Then modify the
table definitions as just described and import the file into the SQL node of the cluster like this:

$> mysql world < /tmp/world.sql

If you save the file to a different location, adjust the preceding instructions accordingly.

Running SELECT queries on the SQL node is no different from running them on any other instance of a
MySQL server. To run queries from the command line, you first need to log in to the MySQL Monitor in the
usual way (specify the root password at the Enter password: prompt):

$> mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.6.51-ndb-7.4.39

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

We simply use the MySQL server's root account and assume that you have followed the standard
security precautions for installing a MySQL server, including setting a strong root password. For more
information, see Section 2.10.4, “Securing the Initial MySQL Accounts”.

It is worth taking into account that Cluster nodes do not make use of the MySQL privilege system when
accessing one another. Setting or changing MySQL user accounts (including the root account) effects
only applications that access the SQL node, not interaction between nodes. See Section 18.6.17.2, “NDB
Cluster and MySQL Privileges”, for more information.

If you did not modify the ENGINE clauses in the table definitions prior to importing the SQL script, you
should run the following statements at this point:

mysql> USE world;
mysql> ALTER TABLE City ENGINE=NDBCLUSTER;
mysql> ALTER TABLE Country ENGINE=NDBCLUSTER;
mysql> ALTER TABLE CountryLanguage ENGINE=NDBCLUSTER;

Selecting a database and running a SELECT query against a table in that database is also accomplished in
the usual manner, as is exiting the MySQL Monitor:

mysql> USE world;
mysql> SELECT Name, Population FROM City ORDER BY Population DESC LIMIT 5;
+-----------+------------+
| Name | Population |

2634

NDB Cluster Example with Tables and Data

+-----------+------------+
Bombay	10500000
Seoul	9981619
São Paulo	9968485
Shanghai	9696300
Jakarta	9604900
+-----------+------------+
5 rows in set (0.34 sec)

mysql> \q
Bye

$>

Applications that use MySQL can employ standard APIs to access NDB tables. It is important to remember
that your application must access the SQL node, and not the management or data nodes. This brief
example shows how we might execute the SELECT statement just shown by using the PHP 5.X mysqli
extension running on a Web server elsewhere on the network:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1">
 <title>SIMPLE mysqli SELECT</title>
</head>
<body>
<?php
 # connect to SQL node:
 $link = new mysqli('198.51.100.20', 'root', 'root_password', 'world');
 # parameters for mysqli constructor are:
 # host, user, password, database

 if(mysqli_connect_errno())
 die("Connect failed: " . mysqli_connect_error());

 $query = "SELECT Name, Population
 FROM City
 ORDER BY Population DESC
 LIMIT 5";

 # if no errors...
 if($result = $link->query($query))
 {
?>
<table border="1" width="40%" cellpadding="4" cellspacing ="1">
 <tbody>
 <tr>
 <th width="10%">City</th>
 <th>Population</th>
 </tr>
<?
 # then display the results...
 while($row = $result->fetch_object())
 printf("<tr>\n <td align=\"center\">%s</td><td>%d</td>\n</tr>\n",
 $row->Name, $row->Population);
?>
 </tbody
</table>
<?
 # ...and verify the number of rows that were retrieved
 printf("<p>Affected rows: %d</p>\n", $link->affected_rows);
 }
 else
 # otherwise, tell us what went wrong

2635

Safe Shutdown and Restart of NDB Cluster

 echo mysqli_error();

 # free the result set and the mysqli connection object
 $result->close();
 $link->close();
?>
</body>
</html>

We assume that the process running on the Web server can reach the IP address of the SQL node.

In a similar fashion, you can use the MySQL C API, Perl-DBI, Python-mysql, or MySQL Connectors to
perform the tasks of data definition and manipulation just as you would normally with MySQL.

18.3.6 Safe Shutdown and Restart of NDB Cluster

To shut down the cluster, enter the following command in a shell on the machine hosting the management
node:

$> ndb_mgm -e shutdown

The -e option here is used to pass a command to the ndb_mgm client from the shell. The command
causes the ndb_mgm, ndb_mgmd, and any ndbd or ndbmtd processes to terminate gracefully.
Any SQL nodes can be terminated using mysqladmin shutdown and other means. On Windows
platforms, assuming that you have installed the SQL node as a Windows service, you can use SC STOP
service_name or NET STOP service_name.

To restart the cluster on Unix platforms, run these commands:

• On the management host (198.51.100.10 in our example setup):

$> ndb_mgmd -f /var/lib/mysql-cluster/config.ini

• On each of the data node hosts (198.51.100.30 and 198.51.100.40):

$> ndbd

• Use the ndb_mgm client to verify that both data nodes have started successfully.

• On the SQL host (198.51.100.20):

$> mysqld_safe &

On Windows platforms, assuming that you have installed all NDB Cluster processes as Windows services
using the default service names (see Section 18.3.2.4, “Installing NDB Cluster Processes as Windows
Services”), you can restart the cluster as follows:

• On the management host (198.51.100.10 in our example setup), execute the following command:

C:\> SC START ndb_mgmd

• On each of the data node hosts (198.51.100.30 and 198.51.100.40), execute the following
command:

C:\> SC START ndbd

• On the management node host, use the ndb_mgm client to verify that the management node and
both data nodes have started successfully (see Section 18.3.2.3, “Initial Startup of NDB Cluster on
Windows”).

2636

Upgrading and Downgrading NDB Cluster

• On the SQL node host (198.51.100.20), execute the following command:

C:\> SC START mysql

In a production setting, it is usually not desirable to shut down the cluster completely. In many cases, even
when making configuration changes, or performing upgrades to the cluster hardware or software (or both),
which require shutting down individual host machines, it is possible to do so without shutting down the
cluster as a whole by performing a rolling restart of the cluster. For more information about doing this, see
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”.

18.3.7 Upgrading and Downgrading NDB Cluster

This section provides information about NDB Cluster software and table file compatibility between different
NDB Cluster 7.3 releases with regard to performing upgrades and downgrades as well as compatibility
matrices and notes. You should already be familiar with installing and configuring NDB Cluster prior to
attempting an upgrade or downgrade. See Section 18.4, “Configuration of NDB Cluster”.

Schema operations, including SQL DDL statements, cannot be performed while any data nodes are
restarting, and thus during an online upgrade or downgrade of the cluster. For other information regarding
the rolling restart procedure used to perform an online upgrade, see Section 18.6.5, “Performing a Rolling
Restart of an NDB Cluster”.

Important

Compatibility between release versions is taken into account only with regard to
NDBCLUSTER in this section, and there are additional issues to be considered. See
Section 2.11, “Upgrading MySQL”.

As with any other MySQL software upgrade or downgrade, you are strongly
encouraged to review the relevant portions of the MySQL Manual for the MySQL
versions from which and to which you intend to migrate, before attempting an
upgrade or downgrade of the NDB Cluster software.

The tables shown here provide information on NDB Cluster upgrade and downgrade compatibility among
different releases of NDB Cluster 7.3 and of NDB Cluster 7.4, respectively. Additional notes about
upgrades and downgrades to, from, or within the NDB Cluster 7.3 and NDB Cluster 7.4 release series can
be found following the tables.

2637

Upgrading and Downgrading NDB Cluster

Upgrades and Downgrades, NDB Cluster 7.4

Figure 18.5 NDB Cluster Upgrade and Downgrade Compatibility, MySQL NDB Cluster 7.4

Version support. NDB Cluster 7.3 GA releases (7.3.2 and later) are supported for upgrades to NDB
Cluster 7.4 (7.4.4 and later):

NDB 7.4.10 Replacement Release. Shortly after the release of NDB 7.4.9, a regression was
discovered that adversely affected node and system restarts (Bug #22582233). This issue was known to
affect NDB 7.4.8 as well. NDB 7.4.10—incorporating a fix for this regression, but otherwise identical to
NDB 7.4.9—was released shortly thereafter as a replacement. Users of the NDB 7.4 series are advised to
bypass the 7.4.8 and 7.4.9 releases and to upgrade directly to NDB 7.4.10 (or later).

2638

Upgrading and Downgrading NDB Cluster

Upgrades and Downgrades, NDB Cluster 7.3

Figure 18.6 NDB Cluster Upgrade and Downgrade Compatibility, MySQL NDB Cluster 7.3

Known Issues When Upgrading or Downgrading NDB Cluster NDB 7.3

• Prior to NDB 7.3.8, mysql_upgrade failed to drop and recreate ndbinfo. (Bug #74863, Bug
#20031425) In addition, when running mysql_upgrade on an NDB Cluster SQL node, the expected

2639

The NDB Cluster Auto-Installer (NO LONGER SUPPORTED)

drop of the performance_schema database on this node was instead performed on all SQL nodes
connected to the cluster. (Bug #200328691)

• NDB API, ClusterJ, and other applications used with recent releases of NDB Cluster 6.3 and later should
continue to work with NDB 7.3.2 and later without rewriting or recompiling.

• It is not possible to downgrade online to NDB 7.3.2 or earlier from NDB 7.3.3 or later. Online upgrades
from NDB 7.3.2 to later NDB Cluster 7.3 releases are supported.

18.3.8 The NDB Cluster Auto-Installer (NO LONGER SUPPORTED)

Note

This feature has been removed from NDB Cluster, and is no longer supported. See
Section 18.2.4, “What is New in MySQL NDB Cluster”, for more information.

The web-based graphical configuration installer (Auto-Installer) was removed in NDB 7.3.32 and 7.4.30; it
is no longer included as part of the NDB Cluster distribution.

18.4 Configuration of NDB Cluster
A MySQL server that is part of an NDB Cluster differs in one chief respect from a normal (nonclustered)
MySQL server, in that it employs the NDB storage engine. This engine is also referred to sometimes as
NDBCLUSTER, although NDB is preferred.

To avoid unnecessary allocation of resources, the server is configured by default with the NDB storage
engine disabled. To enable NDB, you must modify the server's my.cnf configuration file, or start the server
with the --ndbcluster option.

This MySQL server is a part of the cluster, so it also must know how to access a management node
to obtain the cluster configuration data. The default behavior is to look for the management node on
localhost. However, should you need to specify that its location is elsewhere, this can be done in
my.cnf, or with the mysql client. Before the NDB storage engine can be used, at least one management
node must be operational, as well as any desired data nodes.

For more information about --ndbcluster and other mysqld options specific to NDB Cluster, see
MySQL Server Options for NDB Cluster.

For general information about installing NDB Cluster, see Section 18.3, “NDB Cluster Installation”.

18.4.1 Quick Test Setup of NDB Cluster

To familiarize you with the basics, we describe the simplest possible configuration for a functional NDB
Cluster. After this, you should be able to design your desired setup from the information provided in the
other relevant sections of this chapter.

First, you need to create a configuration directory such as /var/lib/mysql-cluster, by executing the
following command as the system root user:

$> mkdir /var/lib/mysql-cluster

In this directory, create a file named config.ini that contains the following information. Substitute
appropriate values for HostName and DataDir as necessary for your system.

file "config.ini" - showing minimal setup consisting of 1 data node,
1 management server, and 3 MySQL servers.
The empty default sections are not required, and are shown only for
the sake of completeness.

2640

https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/ndbapi/en/mccj.html

Quick Test Setup of NDB Cluster

Data nodes must provide a hostname but MySQL Servers are not required
to do so.
If you don't know the hostname for your machine, use localhost.
The DataDir parameter also has a default value, but it is recommended to
set it explicitly.
Note: [db], [api], and [mgm] are aliases for [ndbd], [mysqld], and [ndb_mgmd],
respectively. [db] is deprecated and should not be used in new installations.

[ndbd default]
NoOfReplicas= 1

[mysqld default]
[ndb_mgmd default]
[tcp default]

[ndb_mgmd]
HostName= myhost.example.com

[ndbd]
HostName= myhost.example.com
DataDir= /var/lib/mysql-cluster

[mysqld]
[mysqld]
[mysqld]

You can now start the ndb_mgmd management server. By default, it attempts to read the config.ini
file in its current working directory, so change location into the directory where the file is located and then
invoke ndb_mgmd:

$> cd /var/lib/mysql-cluster
$> ndb_mgmd

Then start a single data node by running ndbd:

$> ndbd

By default, ndbd looks for the management server at localhost on port 1186.

Note

If you have installed MySQL from a binary tarball, you must specify the path of
the ndb_mgmd and ndbd servers explicitly. (Normally, these are found in /usr/
local/mysql/bin.)

Finally, change location to the MySQL data directory (usually /var/lib/mysql or /usr/local/mysql/
data), and make sure that the my.cnf file contains the option necessary to enable the NDB storage
engine:

[mysqld]
ndbcluster

You can now start the MySQL server as usual:

$> mysqld_safe --user=mysql &

Wait a moment to make sure the MySQL server is running properly. If you see the notice mysql ended,
check the server's .err file to find out what went wrong.

If all has gone well so far, you now can start using the cluster. Connect to the server and verify that the
NDBCLUSTER storage engine is enabled:

$> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.

2641

Overview of NDB Cluster Configuration Parameters, Options, and Variables

Your MySQL connection id is 1 to server version: 5.6.51

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW ENGINES\G
...
*************************** 12. row ***************************
Engine: NDBCLUSTER
Support: YES
Comment: Clustered, fault-tolerant, memory-based tables
*************************** 13. row ***************************
Engine: NDB
Support: YES
Comment: Alias for NDBCLUSTER
...

The row numbers shown in the preceding example output may be different from those shown on your
system, depending upon how your server is configured.

Try to create an NDBCLUSTER table:

$> mysql
mysql> USE test;
Database changed

mysql> CREATE TABLE ctest (i INT) ENGINE=NDBCLUSTER;
Query OK, 0 rows affected (0.09 sec)

mysql> SHOW CREATE TABLE ctest \G
*************************** 1. row ***************************
 Table: ctest
Create Table: CREATE TABLE `ctest` (
 `i` int(11) default NULL
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

To check that your nodes were set up properly, start the management client:

$> ndb_mgm

Use the SHOW command from within the management client to obtain a report on the cluster's status:

ndb_mgm> SHOW
Cluster Configuration

[ndbd(NDB)] 1 node(s)
id=2 @127.0.0.1 (Version: 5.6.51-ndb-7.4.39, Nodegroup: 0, *)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @127.0.0.1 (Version: 5.6.51-ndb-7.4.39)

[mysqld(API)] 3 node(s)
id=3 @127.0.0.1 (Version: 5.6.51-ndb-7.4.39)
id=4 (not connected, accepting connect from any host)
id=5 (not connected, accepting connect from any host)

At this point, you have successfully set up a working NDB Cluster. You can now store data in the cluster by
using any table created with ENGINE=NDBCLUSTER or its alias ENGINE=NDB.

18.4.2 Overview of NDB Cluster Configuration Parameters, Options, and
Variables

The next several sections provide summary tables of NDB Cluster node configuration parameters used in
the config.ini file to govern various aspects of node behavior, as well as of options and variables read

2642

Overview of NDB Cluster Configuration Parameters, Options, and Variables

by mysqld from a my.cnf file or from the command line when run as an NDB Cluster process. Each of
the node parameter tables lists the parameters for a given type (ndbd, ndb_mgmd, mysqld, computer,
tcp, or shm). All tables include the data type for the parameter, option, or variable, as well as its default,
mimimum, and maximum values as applicable.

Considerations when restarting nodes. For node parameters, these tables also indicate what type
of restart is required (node restart or system restart)—and whether the restart must be done with --
initial—to change the value of a given configuration parameter. When performing a node restart or
an initial node restart, all of the cluster's data nodes must be restarted in turn (also referred to as a rolling
restart). It is possible to update cluster configuration parameters marked as node online—that is, without
shutting down the cluster—in this fashion. An initial node restart requires restarting each ndbd process
with the --initial option.

A system restart requires a complete shutdown and restart of the entire cluster. An initial system restart
requires taking a backup of the cluster, wiping the cluster file system after shutdown, and then restoring
from the backup following the restart.

In any cluster restart, all of the cluster's management servers must be restarted for them to read the
updated configuration parameter values.

Important

Values for numeric cluster parameters can generally be increased without any
problems, although it is advisable to do so progressively, making such adjustments
in relatively small increments. Many of these can be increased online, using a
rolling restart.

However, decreasing the values of such parameters—whether this is done using
a node restart, node initial restart, or even a complete system restart of the
cluster—is not to be undertaken lightly; it is recommended that you do so only
after careful planning and testing. This is especially true with regard to those
parameters that relate to memory usage and disk space, such as MaxNoOfTables,
MaxNoOfOrderedIndexes, and MaxNoOfUniqueHashIndexes. In addition, it
is the generally the case that configuration parameters relating to memory and disk
usage can be raised using a simple node restart, but they require an initial node
restart to be lowered.

Because some of these parameters can be used for configuring more than one type of cluster node, they
may appear in more than one of the tables.

Note

4294967039 often appears as a maximum value in these tables. This value
is defined in the NDBCLUSTER sources as MAX_INT_RNIL and is equal to
0xFFFFFEFF, or 232 − 28 − 1.

18.4.2.1 NDB Cluster Data Node Configuration Parameters

The listings in this section provide information about parameters used in the [ndbd] or [ndbd default]
sections of a config.ini file for configuring NDB Cluster data nodes. For detailed descriptions and other
additional information about each of these parameters, see Section 18.4.3.6, “Defining NDB Cluster Data
Nodes”.

These parameters also apply to ndbmtd, the multithreaded version of ndbd. A separate listing of
parameters specific to ndbmtd follows.

• Arbitration: How arbitration should be performed to avoid split-brain issues in event of node failure.

2643

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• ArbitrationTimeout: Maximum time (milliseconds) database partition waits for arbitration signal.

• BackupDataBufferSize: Default size of databuffer for backup (in bytes).

• BackupDataDir: Path to where to store backups. Note that string '/BACKUP' is always appended to
this setting, so that *effective* default is FileSystemPath/BACKUP.

• BackupDiskWriteSpeedPct: Sets percentage of data node's allocated maximum write speed
(MaxDiskWriteSpeed) to reserve for LCPs when starting backup.

• BackupLogBufferSize: Default size of log buffer for backup (in bytes).

• BackupMaxWriteSize: Maximum size of file system writes made by backup (in bytes).

• BackupMemory: Total memory allocated for backups per node (in bytes).

• BackupReportFrequency: Frequency of backup status reports during backup in seconds.

• BackupWriteSize: Default size of file system writes made by backup (in bytes).

• BatchSizePerLocalScan: Used to calculate number of lock records for scan with hold lock.

• BuildIndexThreads: Number of threads to use for building ordered indexes during system or node
restart. Also applies when running ndb_restore --rebuild-indexes. Setting this parameter to 0 disables
multithreaded building of ordered indexes.

• CompressedBackup: Use zlib to compress backups as they are written.

• CompressedLCP: Write compressed LCPs using zlib.

• ConnectCheckIntervalDelay: Time between data node connectivity check stages. Data node is
considered suspect after 1 interval and dead after 2 intervals with no response.

• CrashOnCorruptedTuple: When enabled, forces node to shut down whenever it detects corrupted
tuple.

• DataDir: Data directory for this node.

• DataMemory: Number of bytes on each data node allocated for storing data; subject to available system
RAM and size of IndexMemory.

• DefaultHashMapSize: Set size (in buckets) to use for table hash maps. Three values are supported:
0, 240, and 3840.

• DictTrace: Enable DBDICT debugging; for NDB development.

• DiskCheckpointSpeed: Bytes allowed to be written by checkpoint, per second.

• DiskCheckpointSpeedInRestart: Bytes allowed to be written by checkpoint during restart, per
second.

• DiskIOThreadPool: Number of unbound threads for file access, applies to disk data only.

• Diskless: Run without using disk.

• DiskPageBufferEntries: Memory to allocate in DiskPageBufferMemory; very large disk transactions
may require increasing this value.

• DiskPageBufferMemory: Number of bytes on each data node allocated for disk page buffer cache.

• DiskSyncSize: Amount of data written to file before synch is forced.

2644

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• EventLogBufferSize: Size of circular buffer for NDB log events within data nodes.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• FileSystemPath: Path to directory where data node stores its data (directory must exist).

• FileSystemPathDataFiles: Path to directory where data node stores its Disk Data files. Default
value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise, value of
DataDir is used.

• FileSystemPathDD: Path to directory where data node stores its Disk Data and undo files. Default
value is FileSystemPath, if set; otherwise, value of DataDir is used.

• FileSystemPathUndoFiles: Path to directory where data node stores its undo files for Disk Data.
Default value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise, value
of DataDir is used.

• FragmentLogFileSize: Size of each redo log file.

• HeartbeatIntervalDbApi: Time between API node-data node heartbeats. (API connection closed
after 3 missed heartbeats).

• HeartbeatIntervalDbDb: Time between data node-to-data node heartbeats; data node considered
dead after 3 missed heartbeats.

• HeartbeatOrder: Sets order in which data nodes check each others' heartbeats for determining
whether given node is still active and connected to cluster. Must be zero for all data nodes or distinct
nonzero values for all data nodes; see documentation for further guidance.

• HostName: Host name or IP address for this data node.

• Id: Number identifying data node. Now deprecated; use NodeId instead.

• IndexMemory: Number of bytes on each data node allocated for storing indexes; subject to available
system RAM and size of DataMemory.

• IndexStatAutoCreate: Enable/disable automatic statistics collection when indexes are created.

• IndexStatAutoUpdate: Monitor indexes for changes and trigger automatic statistics updates.

• IndexStatSaveScale: Scaling factor used in determining size of stored index statistics.

• IndexStatSaveSize: Maximum size in bytes for saved statistics per index.

• IndexStatTriggerPct: Threshold percent change in DML operations for index statistics updates.
Value is scaled down by IndexStatTriggerScale.

• IndexStatTriggerScale: Scale down IndexStatTriggerPct by this amount, multiplied by base 2
logarithm of index size, for large index. Set to 0 to disable scaling.

• IndexStatUpdateDelay: Minimum delay between automatic index statistics updates for given index.
0 means no delay.

• InitFragmentLogFiles: Initialize fragment log files, using sparse or full format.

• InitialLogFileGroup: Describes log file group that is created during initial start. See documentation
for format.

2645

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• InitialNoOfOpenFiles: Initial number of files open per data node. (One thread is created per file).

• InitialTablespace: Describes tablespace that is created during initial start. See documentation for
format.

• LateAlloc: Allocate memory after connection to management server has been established.

• LcpScanProgressTimeout: Maximum time that local checkpoint fragment scan can be stalled before
node is shut down to ensure systemwide LCP progress. Use 0 to disable.

• LockExecuteThreadToCPU: Comma-delimited list of CPU IDs.

• LockMaintThreadsToCPU: CPU ID indicating which CPU runs maintenance threads.

• LockPagesInMainMemory: 0=disable locking, 1=lock after memory allocation, 2=lock before memory
allocation.

• LogLevelCheckpoint: Log level of local and global checkpoint information printed to stdout.

• LogLevelCongestion: Level of congestion information printed to stdout.

• LogLevelConnection: Level of node connect/disconnect information printed to stdout.

• LogLevelError: Transporter, heartbeat errors printed to stdout.

• LogLevelInfo: Heartbeat and log information printed to stdout.

• LogLevelNodeRestart: Level of node restart and node failure information printed to stdout.

• LogLevelShutdown: Level of node shutdown information printed to stdout.

• LogLevelStartup: Level of node startup information printed to stdout.

• LogLevelStatistic: Level of transaction, operation, and transporter information printed to stdout.

• LongMessageBuffer: Number of bytes allocated on each data node for internal long messages.

• MaxAllocate: No longer used; has no effect.

• MaxBufferedEpochs: Allowed numbered of epochs that subscribing node can lag behind
(unprocessed epochs). Exceeding causes lagging subscribers to be disconnected.

• MaxBufferedEpochBytes: Total number of bytes allocated for buffering epochs.

• MaxDiskWriteSpeed: Maximum number of bytes per second that can be written by LCP and backup
when no restarts are ongoing.

• MaxDiskWriteSpeedOtherNodeRestart: Maximum number of bytes per second that can be written
by LCP and backup when another node is restarting.

• MaxDiskWriteSpeedOwnRestart: Maximum number of bytes per second that can be written by LCP
and backup when this node is restarting.

• MaxDMLOperationsPerTransaction: Limit size of transaction; aborts transaction if it requires more
than this many DML operations.

• MaxLCPStartDelay: Time in seconds that LCP polls for checkpoint mutex (to allow other data nodes to
complete metadata synchronization), before putting itself in lock queue for parallel recovery of table data.

• MaxNoOfAttributes: Suggests total number of attributes stored in database (sum over all tables).

2646

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• MaxNoOfConcurrentIndexOperations: Total number of index operations that can execute
simultaneously on one data node.

• MaxNoOfConcurrentOperations: Maximum number of operation records in transaction coordinator.

• MaxNoOfConcurrentScans: Maximum number of scans executing concurrently on data node.

• MaxNoOfConcurrentSubOperations: Maximum number of concurrent subscriber operations.

• MaxNoOfConcurrentTransactions: Maximum number of transactions executing concurrently on this
data node, total number of transactions that can be executed concurrently is this value times number of
data nodes in cluster.

• MaxNoOfFiredTriggers: Total number of triggers that can fire simultaneously on one data node.

• MaxNoOfLocalOperations: Maximum number of operation records defined on this data node.

• MaxNoOfLocalScans: Maximum number of fragment scans in parallel on this data node.

• MaxNoOfOpenFiles: Maximum number of files open per data node.(One thread is created per file).

• MaxNoOfOrderedIndexes: Total number of ordered indexes that can be defined in system.

• MaxNoOfSavedMessages: Maximum number of error messages to write in error log and maximum
number of trace files to retain.

• MaxNoOfSubscribers: Maximum number of subscribers.

• MaxNoOfSubscriptions: Maximum number of subscriptions (default 0 = MaxNoOfTables).

• MaxNoOfTables: Suggests total number of NDB tables stored in database.

• MaxNoOfTriggers: Total number of triggers that can be defined in system.

• MaxNoOfUniqueHashIndexes: Total number of unique hash indexes that can be defined in system.

• MaxParallelCopyInstances: Number of parallel copies during node restarts. Default is 0, which
uses number of LDMs on both nodes, to maximum of 16.

• MaxParallelScansPerFragment: Maximum number of parallel scans per fragment. Once this limit is
reached, scans are serialized.

• MaxStartFailRetries: Maximum retries when data node fails on startup, requires StopOnError = 0.
Setting to 0 causes start attempts to continue indefinitely.

• MemReportFrequency: Frequency of memory reports in seconds; 0 = report only when exceeding
percentage limits.

• MinDiskWriteSpeed: Minimum number of bytes per second that can be written by LCP and backup.

• MinFreePct: Percentage of memory resources to keep in reserve for restarts.

• NodeGroup: Node group to which data node belongs; used only during initial start of cluster.

• NodeId: Number uniquely identifying data node among all nodes in cluster.

• NoOfFragmentLogFiles: Number of 16 MB redo log files in each of 4 file sets belonging to data node.

• NoOfReplicas: Number of copies of all data in database.

• Numa: (Linux only; requires libnuma) Controls NUMA support. Setting to 0 permits system to determine
use of interleaving by data node process; 1 means that it is determined by data node.

2647

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• ODirect: Use O_DIRECT file reads and writes when possible.

• RealtimeScheduler: When true, data node threads are scheduled as real-time threads. Default is
false.

• RedoBuffer: Number of bytes on each data node allocated for writing redo logs.

• RedoOverCommitCounter: When RedoOverCommitLimit has been exceeded this
many times, transactions are aborted, and operations are handled as specified by
DefaultOperationRedoProblemAction.

• RedoOverCommitLimit: Each time that flushing current redo buffer takes longer than this many
seconds, number of times that this has happened is compared to RedoOverCommitCounter.

• ReservedSendBufferMemory: This parameter is present in NDB code but is not enabled.

• RestartOnErrorInsert: Control type of restart caused by inserting error (when StopOnError is
enabled).

• SchedulerExecutionTimer: Number of microseconds to execute in scheduler before sending.

• SchedulerResponsiveness: Set NDB scheduler response optimization 0-10; higher values provide
better response time but lower throughput.

• SchedulerSpinTimer: Number of microseconds to execute in scheduler before sleeping.

• ServerPort: Port used to set up transporter for incoming connections from API nodes.

• SharedGlobalMemory: Total number of bytes on each data node allocated for any use.

• StartFailRetryDelay: Delay in seconds after start failure prior to retry; requires StopOnError = 0.

• StartFailureTimeout: Milliseconds to wait before terminating. (0=Wait forever).

• StartNoNodeGroupTimeout: Time to wait for nodes without nodegroup before trying to start
(0=forever).

• StartPartialTimeout: Milliseconds to wait before trying to start without all nodes. (0=Wait forever).

• StartPartitionedTimeout: Milliseconds to wait before trying to start partitioned. (0=Wait forever).

• StartupStatusReportFrequency: Frequency of status reports during startup.

• StopOnError: When set to 0, data node automatically restarts and recovers following node failures.

• StringMemory: Default size of string memory (0 to 100 = % of maximum, 101+ = actual bytes).

• TcpBind_INADDR_ANY: Bind IP_ADDR_ANY so that connections can be made from anywhere (for
autogenerated connections).

• TimeBetweenEpochs: Time between epochs (synchronization used for replication).

• TimeBetweenEpochsTimeout: Timeout for time between epochs. Exceeding causes node shutdown.

• TimeBetweenGlobalCheckpoints: Time between group commits of transactions to disk.

• TimeBetweenGlobalCheckpointsTimeout: Minimum timeout for group commit of transactions to
disk.

• TimeBetweenInactiveTransactionAbortCheck: Time between checks for inactive transactions.

2648

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• TimeBetweenLocalCheckpoints: Time between taking snapshots of database (expressed in base-2
logarithm of bytes).

• TimeBetweenWatchDogCheck: Time between execution checks inside data node.

• TimeBetweenWatchDogCheckInitial: Time between execution checks inside data node (early start
phases when memory is allocated).

• TotalSendBufferMemory: Total memory to use for all transporter send buffers..

• TransactionBufferMemory: Dynamic buffer space (in bytes) for key and attribute data allocated for
each data node.

• TransactionDeadlockDetectionTimeout: Time transaction can spend executing within data node.
This is time that transaction coordinator waits for each data node participating in transaction to execute
request. If data node takes more than this amount of time, transaction is aborted.

• TransactionInactiveTimeout: Milliseconds that application waits before executing another part
of transaction. This is time transaction coordinator waits for application to execute or send another part
(query, statement) of transaction. If application takes too much time, then transaction is aborted. Timeout
= 0 means that application never times out.

• TwoPassInitialNodeRestartCopy: Copy data in 2 passes during initial node restart, which enables
multithreaded building of ordered indexes for such restarts.

• UndoDataBuffer: Unused; has no effect.

• UndoIndexBuffer: Unused; has no effect.

The following parameters are specific to ndbmtd:

• MaxNoOfExecutionThreads: For ndbmtd only, specify maximum number of execution threads.

• NoOfFragmentLogParts: Number of redo log file groups belonging to this data node.

• ThreadConfig: Used for configuration of multithreaded data nodes (ndbmtd). Default is empty string;
see documentation for syntax and other information.

18.4.2.2 NDB Cluster Management Node Configuration Parameters

The listing in this section provides information about parameters used in the [ndb_mgmd] or [mgm]
section of a config.ini file for configuring NDB Cluster management nodes. For detailed descriptions
and other additional information about each of these parameters, see Section 18.4.3.5, “Defining an NDB
Cluster Management Server”.

• ArbitrationDelay: When asked to arbitrate, arbitrator waits this long before voting (milliseconds).

• ArbitrationRank: If 0, then management node is not arbitrator. Kernel selects arbitrators in order 1,
2.

• DataDir: Data directory for this node.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• HeartbeatIntervalMgmdMgmd: Time between management-node-to-management-node heartbeats;
connection between management nodes is considered lost after 3 missed heartbeats.

2649

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• HeartbeatThreadPriority: Set heartbeat thread policy and priority for management nodes; see
manual for allowed values.

• HostName: Host name or IP address for this management node.

• Id: Number identifying management node. Now deprecated; use NodeId instead.

• LogDestination: Where to send log messages: console, system log, or specified log file.

• MaxNoOfSavedEvents: Not used.

• NodeId: Number uniquely identifying management node among all nodes in cluster.

• PortNumber: Port number to send commands to and fetch configuration from management server.

• PortNumberStats: Port number used to get statistical information from management server.

• TotalSendBufferMemory: Total memory to use for all transporter send buffers.

• wan: Use WAN TCP setting as default.

Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect.
See Section 18.4.3.5, “Defining an NDB Cluster Management Server”, for more
information.

To add new management servers to a running NDB Cluster, it is also necessary
perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using multiple
management nodes, see Section 18.2.7.10, “Limitations Relating to Multiple NDB
Cluster Nodes”.

18.4.2.3 NDB Cluster SQL Node and API Node Configuration Parameters

The listing in this section provides information about parameters used in the [mysqld] and [api]
sections of a config.ini file for configuring NDB Cluster SQL nodes and API nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 18.4.3.7,
“Defining SQL and Other API Nodes in an NDB Cluster”.

• ApiVerbose: Enable NDB API debugging; for NDB development.

• ArbitrationDelay: When asked to arbitrate, arbitrator waits this many milliseconds before voting.

• ArbitrationRank: If 0, then API node is not arbitrator. Kernel selects arbitrators in order 1, 2.

• AutoReconnect: Specifies whether an API node should reconnect fully when disconnected from
cluster.

• BatchByteSize: Default batch size in bytes.

• BatchSize: Default batch size in number of records.

• ConnectBackoffMaxTime: Specifies longest time in milliseconds (~100ms resolution) to allow
between connection attempts to any given data node by this API node. Excludes time elapsed while
connection attempts are ongoing, which in worst case can take several seconds. Disable by setting to 0.
If no data nodes are currently connected to this API node, StartConnectBackoffMaxTime is used instead.

• ConnectionMap: Specifies which data nodes to connect.

2650

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• DefaultHashMapSize: Set size (in buckets) to use for table hash maps. Three values are supported:
0, 240, and 3840.

• DefaultOperationRedoProblemAction: How operations are handled in event that
RedoOverCommitCounter is exceeded.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• HeartbeatThreadPriority: Set heartbeat thread policy and priority for API nodes; see manual for
allowed values.

• HostName: Host name or IP address for this SQL or API node.

• Id: Number identifying MySQL server or API node (Id). Now deprecated; use NodeId instead.

• MaxScanBatchSize: Maximum collective batch size for one scan.

• NodeId: Number uniquely identifying SQL node or API node among all nodes in cluster.

• StartConnectBackoffMaxTime: Same as ConnectBackoffMaxTime except that this parameter is
used in its place if no data nodes are connected to this API node.

• TotalSendBufferMemory: Total memory to use for all transporter send buffers.

• wan: Use WAN TCP setting as default.

For a discussion of MySQL server options for NDB Cluster, see MySQL Server Options for NDB Cluster.
For information about MySQL server system variables relating to NDB Cluster, see NDB Cluster System
Variables.

Note

To add new SQL or API nodes to the configuration of a running NDB Cluster,
it is necessary to perform a rolling restart of all cluster nodes after adding new
[mysqld] or [api] sections to the config.ini file (or files, if you are using
more than one management server). This must be done before the new SQL or API
nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes can
employ previously unused API slots in the cluster configuration to connect to the
cluster.

18.4.2.4 Other NDB Cluster Configuration Parameters

The listings in this section provide information about parameters used in the [computer], [tcp], and
[shm] sections of a config.ini file for configuring NDB Cluster. For detailed descriptions and additional
information about individual parameters, see Section 18.4.3.9, “NDB Cluster TCP/IP Connections”, or
Section 18.4.3.11, “NDB Cluster Shared-Memory Connections”, as appropriate.

The following parameters apply to the config.ini file's [computer] section:

• HostName: Host name or IP address of this computer.

• Id: Unique identifier for this computer.

The following parameters apply to the config.ini file's [tcp] section:

2651

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Checksum: If checksum is enabled, all signals between nodes are checked for errors.

• Group: Used for group proximity; smaller value is interpreted as being closer.

• HostName1: Name or IP address of first of two computers joined by TCP connection.

• HostName2: Name or IP address of second of two computers joined by TCP connection.

• NodeId1: ID of node (data node, API node, or management node) on one side of connection.

• NodeId2: ID of node (data node, API node, or management node) on one side of connection.

• NodeIdServer: Set server side of TCP connection.

• OverloadLimit: When more than this many unsent bytes are in send buffer, connection is considered
overloaded.

• PortNumber: Port used for TCP transporter.

• Proxy:

• ReceiveBufferMemory: Bytes of buffer for signals received by this node.

• SendBufferMemory: Bytes of TCP buffer for signals sent from this node.

• SendSignalId: Sends ID in each signal. Used in trace files. Defaults to true in debug builds.

• TCP_MAXSEG_SIZE: Value used for TCP_MAXSEG.

• TCP_RCV_BUF_SIZE: Value used for SO_RCVBUF.

• TCP_SND_BUF_SIZE: Value used for SO_SNDBUF.

• TcpBind_INADDR_ANY: Bind InAddrAny instead of host name for server part of connection.

The following parameters apply to the config.ini file's [shm] section:

• Checksum: If checksum is enabled, all signals between nodes are checked for errors.

• Group: Used for group proximity; smaller value is interpreted as being closer.

• HostName1: Name or IP address of first of two computers joined by SHM connection.

• HostName2: Name or IP address of second of two computers joined by SHM connection.

• NodeId1: ID of node (data node, API node, or management node) on one side of connection.

• NodeId2: ID of node (data node, API node, or management node) on one side of connection.

• NodeIdServer: Set server side of SHM connection.

• OverloadLimit: When more than this many unsent bytes are in send buffer, connection is considered
overloaded.

• PortNumber: Port used for SHM transporter.

• SendSignalId: Sends ID in each signal. Used in trace files.

• ShmKey: Shared memory key; when set to 1, this is calculated by NDB.

• ShmSize: Size of shared memory segment.

• Signum: Signal number to be used for signalling.

2652

Overview of NDB Cluster Configuration Parameters, Options, and Variables

18.4.2.5 NDB Cluster mysqld Option and Variable Reference

The following list includes command-line options, system variables, and status variables applicable within
mysqld when it is running as an SQL node in an NDB Cluster. For a reference to all command-line
options, system variables, and status variables used with or relating to mysqld, see Section 5.1.3, “Server
Option, System Variable, and Status Variable Reference”.

• Com_show_ndb_status: Count of SHOW NDB STATUS statements.

• create_old_temporals: Use pre-5.6.4 storage format for temporal types when creating tables.
Intended for use in replication and upgrades/downgrades between NDB 7.2 and NDB 7.3/7.4.

• Handler_discover: Number of times that tables have been discovered.

• ndb-batch-size: Size (in bytes) to use for NDB transaction batches.

• ndb-blob-read-batch-bytes: Specifies size in bytes that large BLOB reads should be batched into.
0 = no limit.

• ndb-blob-write-batch-bytes: Specifies size in bytes that large BLOB writes should be batched
into. 0 = no limit.

• ndb-cluster-connection-pool: Number of connections to cluster used by MySQL.

• ndb-connectstring: Address of NDB management server distributing configuration information for
this cluster.

• ndb-deferred-constraints: Specifies that constraint checks on unique indexes (where these are
supported) should be deferred until commit time. Not normally needed or used; for testing purposes only.

• ndb-distribution: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

• ndb-log-apply-status: Cause MySQL server acting as replica to log mysql.ndb_apply_status
updates received from its immediate source in its own binary log, using its own server ID. Effective only if
server is started with --ndbcluster option.

• ndb-log-empty-epochs: When enabled, causes epochs in which there were no changes to be written
to ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

• ndb-log-empty-update: When enabled, causes updates that produced no changes to be written to
ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

• ndb-log-exclusive-reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

• ndb-log-fail-terminate: Terminate mysqld process if complete logging of all found row events is
not possible.

• ndb-log-orig: Log originating server id and epoch in mysql.ndb_binlog_index table.

• ndb-log-transaction-id: Write NDB transaction IDs in binary log. Requires --log-bin-v1-
events=OFF.

• ndb-log-update-minimal: Log updates in minimal format.

• ndb-log-updated-only: Log complete rows (ON) or updates only (OFF).

• ndb-log-update-as-write: Toggles logging of updates on source between updates (OFF) and
writes (ON).

2653

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• ndb-mgmd-host: Set host (and port, if desired) for connecting to management server.

• ndb-nodeid: NDB Cluster node ID for this MySQL server.

• ndb-optimized-node-selection: Enable optimizations for selection of nodes for transactions.
Enabled by default; use --skip-ndb-optimized-node-selection to disable.

• ndb-transid-mysql-connection-map: Enable or disable ndb_transid_mysql_connection_map
plugin; that is, enable or disable INFORMATION_SCHEMA table having that name.

• ndb-wait-connected: Time (in seconds) for MySQL server to wait for connection to cluster
management and data nodes before accepting MySQL client connections.

• ndb-wait-setup: Time (in seconds) for MySQL server to wait for NDB engine setup to complete.

• Ndb_api_adaptive_send_deferred_count: Number of adaptive send calls not actually sent by this
MySQL Server (SQL node).

• Ndb_api_adaptive_send_deferred_count_session: Number of adaptive send calls not actually
sent in this client session.

• Ndb_api_adaptive_send_deferred_count_slave: Number of adaptive send calls not actually
sent by this replica.

• Ndb_api_adaptive_send_forced_count: Number of adaptive sends with forced-send set sent by
this MySQL Server (SQL node).

• Ndb_api_adaptive_send_forced_count_session: Number of adaptive sends with forced-send
set in this client session.

• Ndb_api_adaptive_send_forced_count_slave: Number of adaptive sends with forced-send set
sent by this replica.

• Ndb_api_adaptive_send_unforced_count: Number of adaptive sends without forced-send sent by
this MySQL Server (SQL node).

• Ndb_api_adaptive_send_unforced_count_session: Number of adaptive sends without forced-
send in this client session.

• Ndb_api_adaptive_send_unforced_count_slave: Number of adaptive sends without forced-
send sent by this replica.

• Ndb_api_bytes_received_count: Quantity of data (in bytes) received from data nodes by this
MySQL Server (SQL node).

• Ndb_api_bytes_received_count_session: Quantity of data (in bytes) received from data nodes in
this client session.

• Ndb_api_bytes_received_count_slave: Quantity of data (in bytes) received from data nodes by
this replica.

• Ndb_api_bytes_sent_count: Quantity of data (in bytes) sent to data nodes by this MySQL Server
(SQL node).

• Ndb_api_bytes_sent_count_session: Quantity of data (in bytes) sent to data nodes in this client
session.

• Ndb_api_bytes_sent_count_slave: Qunatity of data (in bytes) sent to data nodes by this replica.

• Ndb_api_event_bytes_count: Number of bytes of events received by this MySQL Server (SQL
node).

2654

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_api_event_bytes_count_injector: Number of bytes of event data received by NDB binary
log injector thread.

• Ndb_api_event_data_count: Number of row change events received by this MySQL Server (SQL
node).

• Ndb_api_event_data_count_injector: Number of row change events received by NDB binary log
injector thread.

• Ndb_api_event_nondata_count: Number of events received, other than row change events, by this
MySQL Server (SQL node).

• Ndb_api_event_nondata_count_injector: Number of events received, other than row change
events, by NDB binary log injector thread.

• Ndb_api_pk_op_count: Number of operations based on or using primary keys by this MySQL Server
(SQL node).

• Ndb_api_pk_op_count_session: Number of operations based on or using primary keys in this client
session.

• Ndb_api_pk_op_count_slave: Number of operations based on or using primary keys by this replica.

• Ndb_api_pruned_scan_count: Number of scans that have been pruned to one partition by this
MySQL Server (SQL node).

• Ndb_api_pruned_scan_count_session: Number of scans that have been pruned to one partition in
this client session.

• Ndb_api_pruned_scan_count_slave: Number of scans that have been pruned to one partition by
this replica.

• Ndb_api_range_scan_count: Number of range scans that have been started by this MySQL Server
(SQL node).

• Ndb_api_range_scan_count_session: Number of range scans that have been started in this client
session.

• Ndb_api_range_scan_count_slave: Number of range scans that have been started by this replica.

• Ndb_api_read_row_count: Total number of rows that have been read by this MySQL Server (SQL
node).

• Ndb_api_read_row_count_session: Total number of rows that have been read in this client
session.

• Ndb_api_read_row_count_slave: Total number of rows that have been read by this replica.

• Ndb_api_scan_batch_count: Number of batches of rows received by this MySQL Server (SQL
node).

• Ndb_api_scan_batch_count_session: Number of batches of rows received in this client session.

• Ndb_api_scan_batch_count_slave: Number of batches of rows received by this replica.

• Ndb_api_table_scan_count: Number of table scans that have been started, including scans of
internal tables, by this MySQL Server (SQL node).

• Ndb_api_table_scan_count_session: Number of table scans that have been started, including
scans of internal tables, in this client session.

2655

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_api_table_scan_count_slave: Number of table scans that have been started, including scans
of internal tables, by this replica.

• Ndb_api_trans_abort_count: Number of transactions aborted by this MySQL Server (SQL node).

• Ndb_api_trans_abort_count_session: Number of transactions aborted in this client session.

• Ndb_api_trans_abort_count_slave: Number of transactions aborted by this replica.

• Ndb_api_trans_close_count: Number of transactions aborted (may be greater than sum of
TransCommitCount and TransAbortCount) by this MySQL Server (SQL node).

• Ndb_api_trans_close_count_session: Number of transactions aborted (may be greater than sum
of TransCommitCount and TransAbortCount) in this client session.

• Ndb_api_trans_close_count_slave: Number of transactions aborted (may be greater than sum of
TransCommitCount and TransAbortCount) by this replica.

• Ndb_api_trans_commit_count: Number of transactions committed by this MySQL Server (SQL
node).

• Ndb_api_trans_commit_count_session: Number of transactions committed in this client session.

• Ndb_api_trans_commit_count_slave: Number of transactions committed by this replica.

• Ndb_api_trans_local_read_row_count: Total number of rows that have been read by this MySQL
Server (SQL node).

• Ndb_api_trans_local_read_row_count_session: Total number of rows that have been read in
this client session.

• Ndb_api_trans_local_read_row_count_slave: Total number of rows that have been read by this
replica.

• Ndb_api_trans_start_count: Number of transactions started by this MySQL Server (SQL node).

• Ndb_api_trans_start_count_session: Number of transactions started in this client session.

• Ndb_api_trans_start_count_slave: Number of transactions started by this replica.

• Ndb_api_uk_op_count: Number of operations based on or using unique keys by this MySQL Server
(SQL node).

• Ndb_api_uk_op_count_session: Number of operations based on or using unique keys in this client
session.

• Ndb_api_uk_op_count_slave: Number of operations based on or using unique keys by this replica.

• Ndb_api_wait_exec_complete_count: Number of times thread has been blocked while waiting for
operation execution to complete by this MySQL Server (SQL node).

• Ndb_api_wait_exec_complete_count_session: Number of times thread has been blocked while
waiting for operation execution to complete in this client session.

• Ndb_api_wait_exec_complete_count_slave: Number of times thread has been blocked while
waiting for operation execution to complete by this replica.

• Ndb_api_wait_meta_request_count: Number of times thread has been blocked waiting for
metadata-based signal by this MySQL Server (SQL node).

2656

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_api_wait_meta_request_count_session: Number of times thread has been blocked waiting
for metadata-based signal in this client session.

• Ndb_api_wait_meta_request_count_slave: Number of times thread has been blocked waiting for
metadata-based signal by this replica.

• Ndb_api_wait_nanos_count: Total time (in nanoseconds) spent waiting for some type of signal from
data nodes by this MySQL Server (SQL node).

• Ndb_api_wait_nanos_count_session: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes in this client session.

• Ndb_api_wait_nanos_count_slave: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica.

• Ndb_api_wait_scan_result_count: Number of times thread has been blocked while waiting for
scan-based signal by this MySQL Server (SQL node).

• Ndb_api_wait_scan_result_count_session: Number of times thread has been blocked while
waiting for scan-based signal in this client session.

• Ndb_api_wait_scan_result_count_slave: Number of times thread has been blocked while
waiting for scan-based signal by this replica.

• ndb_autoincrement_prefetch_sz: NDB auto-increment prefetch size.

• ndb_cache_check_time: Number of milliseconds between checks of cluster SQL nodes made by
MySQL query cache.

• ndb_clear_apply_status: Causes RESET SLAVE/RESET REPLICA to clear all rows from
ndb_apply_status table; ON by default.

• Ndb_cluster_node_id: Node ID of this server when acting as NDB Cluster SQL node.

• Ndb_config_from_host: NDB Cluster management server host name or IP address.

• Ndb_config_from_port: Port for connecting to NDB Cluster management server.

• Ndb_conflict_fn_epoch: Number of rows that have been found in conflict by NDB$EPOCH() NDB
replication conflict detection function.

• Ndb_conflict_fn_epoch2: Number of rows that have been found in conflict by NDB replication NDB
$EPOCH2() conflict detection function.

• Ndb_conflict_fn_epoch2_trans: Number of rows that have been found in conflict by NDB
replication NDB$EPOCH2_TRANS() conflict detection function.

• Ndb_conflict_fn_epoch_trans: Number of rows that have been found in conflict by NDB
$EPOCH_TRANS() conflict detection function.

• Ndb_conflict_fn_max: Number of times that NDB replication conflict resolution based on "greater
timestamp wins" has been applied to update and delete operations.

• Ndb_conflict_fn_max_del_win: Number of times that NDB replication conflict resolution based on
outcome of NDB$MAX_DELETE_WIN() has been applied to update and delete operations.

• Ndb_conflict_fn_old: Number of times in NDB replication "same timestamp wins" conflict resolution
has been applied.

• Ndb_conflict_last_conflict_epoch: Most recent NDB epoch on this replica in which some
conflict was detected.

2657

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_conflict_last_stable_epoch: Number of rows found to be in conflict by transactional conflict
function.

• Ndb_conflict_reflected_op_discard_count: Number of reflected operations that were not
applied due error during execution.

• Ndb_conflict_reflected_op_prepare_count: Number of reflected operations received that have
been prepared for execution.

• Ndb_conflict_refresh_op_count: Number of refresh operations that have been prepared.

• Ndb_conflict_trans_conflict_commit_count: Number of epoch transactions committed after
requiring transactional conflict handling.

• Ndb_conflict_trans_detect_iter_count: Number of internal iterations required to commit epoch
transaction. Should be (slightly) greater than or equal to Ndb_conflict_trans_conflict_commit_count.

• Ndb_conflict_trans_reject_count: Number of transactions rejected after being found in conflict
by transactional conflict function.

• Ndb_conflict_trans_row_conflict_count: Number of rows found in conflict by transactional
conflict function. Includes any rows included in or dependent on conflicting transactions.

• Ndb_conflict_trans_row_reject_count: Total number of rows realigned after being found in
conflict by transactional conflict function. Includes Ndb_conflict_trans_row_conflict_count and any rows
included in or dependent on conflicting transactions.

• ndb_deferred_constraints: Specifies that constraint checks should be deferred (where these are
supported). Not normally needed or used; for testing purposes only.

• ndb_distribution: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

• Ndb_epoch_delete_delete_count: Number of delete-delete conflicts detected (delete operation is
applied, but row does not exist).

• ndb_eventbuffer_free_percent: Percentage of free memory that should be available in event
buffer before resumption of buffering, after reaching limit set by ndb_eventbuffer_max_alloc.

• ndb_eventbuffer_max_alloc: Maximum memory that can be allocated for buffering events by NDB
API. Defaults to 0 (no limit).

• Ndb_execute_count: Number of round trips to NDB kernel made by operations.

• ndb_extra_logging: Controls logging of NDB Cluster schema, connection, and data distribution
events in MySQL error log.

• ndb_force_send: Forces sending of buffers to NDB immediately, without waiting for other threads.

• ndb_index_stat_cache_entries: Granularity of statistics by determining number of starting and
ending keys.

• ndb_index_stat_enable: Use NDB index statistics in query optimization.

• ndb_index_stat_option: Comma-separated list of tunable options for NDB index statistics; list
should contain no spaces.

• ndb_index_stat_update_freq: How often to query data nodes rather than statistics cache.

• ndb_join_pushdown: Enables pushing down of joins to data nodes.

2658

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_last_commit_epoch_server: Epoch most recently committed by NDB.

• Ndb_last_commit_epoch_session: Epoch most recently committed by this NDB client.

• ndb_log_apply_status: Whether or not MySQL server acting as replica logs
mysql.ndb_apply_status updates received from its immediate source in its own binary log, using its own
server ID.

• ndb_log_bin: Write updates to NDB tables in binary log. Effective only if binary logging is enabled with
--log-bin.

• ndb_log_binlog_index: Insert mapping between epochs and binary log positions into
ndb_binlog_index table. Defaults to ON. Effective only if binary logging is enabled.

• ndb_log_empty_epochs: When enabled, epochs in which there were no changes are written to
ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or log_slave_updates is
enabled.

• ndb_log_empty_update: When enabled, updates which produce no changes are written to
ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or log_slave_updates is
enabled.

• ndb_log_exclusive_reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

• ndb_log_orig: Whether id and epoch of originating server are recorded in mysql.ndb_binlog_index
table. Set using --ndb-log-orig option when starting mysqld.

• ndb_log_transaction_id: Whether NDB transaction IDs are written into binary log (Read-only).

• Ndb_number_of_data_nodes: Number of data nodes in this NDB cluster; set only if server
participates in cluster.

• ndb-optimization-delay: Number of milliseconds to wait between processing sets of rows by
OPTIMIZE TABLE on NDB tables.

• ndb_optimized_node_selection: Determines how SQL node chooses cluster data node to use as
transaction coordinator.

• Ndb_pruned_scan_count: Number of scans executed by NDB since cluster was last started where
partition pruning could be used.

• Ndb_pushed_queries_defined: Number of joins that API nodes have attempted to push down to
data nodes.

• Ndb_pushed_queries_dropped: Number of joins that API nodes have tried to push down, but failed.

• Ndb_pushed_queries_executed: Number of joins successfully pushed down and executed on data
nodes.

• Ndb_pushed_reads: Number of reads executed on data nodes by pushed-down joins.

• ndb_recv_thread_activation_threshold: Activation threshold when receive thread takes over
polling of cluster connection (measured in concurrently active threads).

• ndb_recv_thread_cpu_mask: CPU mask for locking receiver threads to specific CPUs; specified as
hexadecimal. See documentation for details.

• ndb_report_thresh_binlog_epoch_slip: NDB 7.5 and later: Threshold for number of epochs
completely buffered, but not yet consumed by binlog injector thread which when exceeded generates

2659

Overview of NDB Cluster Configuration Parameters, Options, and Variables

BUFFERED_EPOCHS_OVER_THRESHOLD event buffer status message; prior to NDB 7.5: Threshold
for number of epochs to lag behind before reporting binary log status.

• ndb_report_thresh_binlog_mem_usage: Threshold for percentage of free memory remaining
before reporting binary log status.

• Ndb_scan_count: Total number of scans executed by NDB since cluster was last started.

• ndb_show_foreign_key_mock_tables: Show mock tables used to support foreign_key_checks=0.

• ndb_slave_conflict_role: Role for replica to play in conflict detection and resolution. Value is one
of PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL
thread is stopped. See documentation for further information.

• Ndb_slave_max_replicated_epoch: Most recently committed NDB epoch on this replica. When this
value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been detected.

• ndb_table_no_logging: NDB tables created when this setting is enabled are not checkpointed to
disk (although table schema files are created). Setting in effect when table is created with or altered to
use NDBCLUSTER persists for table's lifetime.

• ndb_table_temporary: NDB tables are not persistent on disk: no schema files are created and tables
are not logged.

• ndb_use_copying_alter_table: Use copying ALTER TABLE operations in NDB Cluster.

• ndb_use_exact_count: Forces NDB to use a count of records during SELECT COUNT(*) query
planning to speed up this type of query.

• ndb_use_transactions: Set to OFF, to disable transaction support by NDB. Not recommended
except in certain special cases; see documentation for details.

• ndb_version: Shows build and NDB engine version as an integer.

• ndb_version_string: Shows build information including NDB engine version in ndb-x.y.z format.

• ndbcluster: Enable NDB Cluster (if this version of MySQL supports it). Disabled by --skip-
ndbcluster.

• ndbinfo_database: Name used for NDB information database; read only.

• ndbinfo_max_bytes: Used for debugging only.

• ndbinfo_max_rows: Used for debugging only.

• ndbinfo_offline: Put ndbinfo database into offline mode, in which no rows are returned from tables
or views.

• ndbinfo_show_hidden: Whether to show ndbinfo internal base tables in mysql client; default is OFF.

• ndbinfo_table_prefix: Prefix to use for naming ndbinfo internal base tables; read only.

• ndbinfo_version: ndbinfo engine version; read only.

• server_id_bits: Number of least significant bits in server_id actually used for identifying server,
permitting NDB API applications to store application data in most significant bits. server_id must be less
than 2 to power of this value.

• skip-ndbcluster: Disable NDB Cluster storage engine.

2660

NDB Cluster Configuration Files

• slave_allow_batching: Turns update batching on and off for replica.

• transaction_allow_batching: Allows batching of statements within one transaction. Disable
AUTOCOMMIT to use.

18.4.3 NDB Cluster Configuration Files

Configuring NDB Cluster requires working with two files:

• my.cnf: Specifies options for all NDB Cluster executables. This file, with which you should be familiar
with from previous work with MySQL, must be accessible by each executable running in the cluster.

• config.ini: This file, sometimes known as the global configuration file, is read only by the NDB
Cluster management server, which then distributes the information contained therein to all processes
participating in the cluster. config.ini contains a description of each node involved in the cluster. This
includes configuration parameters for data nodes and configuration parameters for connections between
all nodes in the cluster. For a quick reference to the sections that can appear in this file, and what sorts
of configuration parameters may be placed in each section, see Sections of the config.ini File.

Caching of configuration data. In NDB Cluster 7.3 and later, NDB uses stateful configuration. Rather
than reading the global configuration file every time the management server is restarted, the management
server caches the configuration the first time it is started, and thereafter, the global configuration file is read
only when one of the following conditions is true:

• The management server is started using the --initial option. When --initial is used, the global
configuration file is re-read, any existing cache files are deleted, and the management server creates a
new configuration cache.

• The management server is started using the --reload option. The --reload option causes
the management server to compare its cache with the global configuration file. If they differ, the
management server creates a new configuration cache; any existing configuration cache is preserved,
but not used. If the management server's cache and the global configuration file contain the same
configuration data, then the existing cache is used, and no new cache is created.

• The management server is started using --config-cache=FALSE. This disables --config-
cache (enabled by default), and can be used to force the management server to bypass configuration
caching altogether. In this case, the management server ignores any configuration files that may be
present, always reading its configuration data from the config.ini file instead.

• No configuration cache is found. In this case, the management server reads the global
configuration file and creates a cache containing the same configuration data as found in the file.

Configuration cache files. The management server by default creates configuration cache files in
a directory named mysql-cluster in the MySQL installation directory. (If you build NDB Cluster from
source on a Unix system, the default location is /usr/local/mysql-cluster.) This can be overridden
at runtime by starting the management server with the --configdir option. Configuration cache files are
binary files named according to the pattern ndb_node_id_config.bin.seq_id, where node_id is the
management server's node ID in the cluster, and seq_id is a cache idenitifer. Cache files are numbered
sequentially using seq_id, in the order in which they are created. The management server uses the latest
cache file as determined by the seq_id.

Note

It is possible to roll back to a previous configuration by deleting later configuration
cache files, or by renaming an earlier cache file so that it has a higher seq_id.
However, since configuration cache files are written in a binary format, you should
not attempt to edit their contents by hand.

2661

NDB Cluster Configuration Files

For more information about the --configdir, --config-cache, --initial, and --reload
options for the NDB Cluster management server, see Section 18.5.4, “ndb_mgmd — The NDB Cluster
Management Server Daemon”.

We are continuously making improvements in Cluster configuration and attempting to simplify this process.
Although we strive to maintain backward compatibility, there may be times when introduce an incompatible
change. In such cases we try to let Cluster users know in advance if a change is not backward compatible.
If you find such a change and we have not documented it, please report it in the MySQL bugs database
using the instructions given in Section 1.5, “How to Report Bugs or Problems”.

18.4.3.1 NDB Cluster Configuration: Basic Example

To support NDB Cluster, you must update my.cnf as shown in the following example. You may also
specify these parameters on the command line when invoking the executables.

Note

The options shown here should not be confused with those that are used in
config.ini global configuration files. Global configuration options are discussed
later in this section.

my.cnf
example additions to my.cnf for NDB Cluster
(valid in MySQL 5.6)

enable ndbcluster storage engine, and provide connection string for
management server host (default port is 1186)
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com

provide connection string for management server host (default port: 1186)
[ndbd]
connect-string=ndb_mgmd.mysql.com

provide connection string for management server host (default port: 1186)
[ndb_mgm]
connect-string=ndb_mgmd.mysql.com

provide location of cluster configuration file
IMPORTANT: When starting the management server with this option in the
configuration file, the use of --initial or --reload on the command line when
invoking ndb_mgmd is also required.
[ndb_mgmd]
config-file=/etc/config.ini

(For more information on connection strings, see Section 18.4.3.3, “NDB Cluster Connection Strings”.)

my.cnf
example additions to my.cnf for NDB Cluster
(works on all versions)

enable ndbcluster storage engine, and provide connection string for management
server host to the default port 1186
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com:1186

Important

Once you have started a mysqld process with the NDBCLUSTER and ndb-
connectstring parameters in the [mysqld] in the my.cnf file as shown

2662

NDB Cluster Configuration Files

previously, you cannot execute any CREATE TABLE or ALTER TABLE statements
without having actually started the cluster. Otherwise, these statements fail with an
error. This is by design.

You may also use a separate [mysql_cluster] section in the cluster my.cnf file for settings to be read
and used by all executables:

cluster-specific settings
[mysql_cluster]
ndb-connectstring=ndb_mgmd.mysql.com:1186

For additional NDB variables that can be set in the my.cnf file, see NDB Cluster System Variables.

The NDB Cluster global configuration file is by convention named config.ini (but this is not required).
If needed, it is read by ndb_mgmd at startup and can be placed in any location that can be read by it. The
location and name of the configuration are specified using --config-file=path_name with ndb_mgmd
on the command line. This option has no default value, and is ignored if ndb_mgmd uses the configuration
cache.

The global configuration file for NDB Cluster uses INI format, which consists of sections preceded by
section headings (surrounded by square brackets), followed by the appropriate parameter names and
values. One deviation from the standard INI format is that the parameter name and value can be separated
by a colon (:) as well as the equal sign (=); however, the equal sign is preferred. Another deviation is that
sections are not uniquely identified by section name. Instead, unique sections (such as two different nodes
of the same type) are identified by a unique ID specified as a parameter within the section.

Default values are defined for most parameters, and can also be specified in config.ini. To create a
default value section, simply add the word default to the section name. For example, an [ndbd] section
contains parameters that apply to a particular data node, whereas an [ndbd default] section contains
parameters that apply to all data nodes. Suppose that all data nodes should use the same data memory
size. To configure them all, create an [ndbd default] section that contains a DataMemory line to
specify the data memory size.

If used, the [ndbd default] section must precede any [ndbd] sections in the configuration file. This is
also true for default sections of any other type.

Note

In some older releases of NDB Cluster, there was no default value for
NoOfReplicas, which always had to be specified explicitly in the [ndbd
default] section. Although this parameter now has a default value of 2, which is
the recommended setting in most common usage scenarios, it is still recommended
practice to set this parameter explicitly.

The global configuration file must define the computers and nodes involved in the cluster and on which
computers these nodes are located. An example of a simple configuration file for a cluster consisting of
one management server, two data nodes and two MySQL servers is shown here:

file "config.ini" - 2 data nodes and 2 SQL nodes
This file is placed in the startup directory of ndb_mgmd (the
management server)
The first MySQL Server can be started from any host. The second
can be started only on the host mysqld_5.mysql.com

[ndbd default]
NoOfReplicas= 2
DataDir= /var/lib/mysql-cluster

[ndb_mgmd]
Hostname= ndb_mgmd.mysql.com

2663

NDB Cluster Configuration Files

DataDir= /var/lib/mysql-cluster

[ndbd]
HostName= ndbd_2.mysql.com

[ndbd]
HostName= ndbd_3.mysql.com

[mysqld]
[mysqld]
HostName= mysqld_5.mysql.com

Note

The preceding example is intended as a minimal starting configuration for purposes
of familiarization with NDB Cluster, and is almost certain not to be sufficient for
production settings. See Section 18.4.3.2, “Recommended Starting Configuration
for NDB Cluster”, which provides a more complete example starting configuration.

Each node has its own section in the config.ini file. For example, this cluster has two data nodes, so
the preceding configuration file contains two [ndbd] sections defining these nodes.

Note

Do not place comments on the same line as a section heading in the config.ini
file; this causes the management server not to start because it cannot parse the
configuration file in such cases.

Sections of the config.ini File

There are six different sections that you can use in the config.ini configuration file, as described in the
following list:

• [computer]: Defines cluster hosts. This is not required to configure a viable NDB Cluster, but be may
used as a convenience when setting up a large cluster. See Section 18.4.3.4, “Defining Computers in an
NDB Cluster”, for more information.

• [ndbd]: Defines a cluster data node (ndbd process). See Section 18.4.3.6, “Defining NDB Cluster Data
Nodes”, for details.

• [mysqld]: Defines the cluster's MySQL server nodes (also called SQL or API nodes). For a discussion
of SQL node configuration, see Section 18.4.3.7, “Defining SQL and Other API Nodes in an NDB
Cluster”.

• [mgm] or [ndb_mgmd]: Defines a cluster management server (MGM) node. For information concerning
the configuration of management nodes, see Section 18.4.3.5, “Defining an NDB Cluster Management
Server”.

• [tcp]: Defines a TCP/IP connection between cluster nodes, with TCP/IP being the default transport
protocol. Normally, [tcp] or [tcp default] sections are not required to set up an NDB Cluster,
as the cluster handles this automatically; however, it may be necessary in some situations to override
the defaults provided by the cluster. See Section 18.4.3.9, “NDB Cluster TCP/IP Connections”, for
information about available TCP/IP configuration parameters and how to use them. (You may also find
Section 18.4.3.10, “NDB Cluster TCP/IP Connections Using Direct Connections” to be of interest in
some cases.)

• [shm]: Defines shared-memory connections between nodes. In MySQL 5.6, it is enabled by default, but
should still be considered experimental. For a discussion of SHM interconnects, see Section 18.4.3.11,
“NDB Cluster Shared-Memory Connections”.

2664

NDB Cluster Configuration Files

• [sci]: Defines Scalable Coherent Interface connections between cluster data nodes. Not supported in
NDB 7.3 or 7.4.

You can define default values for each section. If used, a default section should come before any
other sections of that type. For example, an [ndbd default] section should appear in the configuration
file before any [ndbd] sections.

NDB Cluster parameter names are case-insensitive, unless specified in MySQL Server my.cnf or my.ini
files.

18.4.3.2 Recommended Starting Configuration for NDB Cluster

Achieving the best performance from an NDB Cluster depends on a number of factors including the
following:

• NDB Cluster software version

• Numbers of data nodes and SQL nodes

• Hardware

• Operating system

• Amount of data to be stored

• Size and type of load under which the cluster is to operate

Therefore, obtaining an optimum configuration is likely to be an iterative process, the outcome of which can
vary widely with the specifics of each NDB Cluster deployment. Changes in configuration are also likely to
be indicated when changes are made in the platform on which the cluster is run, or in applications that use
the NDB Cluster's data. For these reasons, it is not possible to offer a single configuration that is ideal for
all usage scenarios. However, in this section, we provide a recommended base configuration.

Starting config.ini file. The following config.ini file is a recommended starting point for configuring
a cluster running NDB Cluster 7.3 or later:

TCP PARAMETERS

[tcp default]
SendBufferMemory=2M
ReceiveBufferMemory=2M

Increasing the sizes of these two buffers beyond the default values
helps prevent bottlenecks due to slow disk I/O.

MANAGEMENT NODE PARAMETERS

[ndb_mgmd default]
DataDir=path/to/management/server/data/directory

It is possible to use a different data directory for each management
server, but for ease of administration it is preferable to be
consistent.

[ndb_mgmd]
HostName=management-server-A-hostname
NodeId=management-server-A-nodeid

[ndb_mgmd]
HostName=management-server-B-hostname
NodeId=management-server-B-nodeid

Using two2 management servers helps guarantee that there is always an

2665

NDB Cluster Configuration Files

arbitrator in the event of network partitioning, and so is recommended for
high availability. Each management server must be identified by a HostName.
You may for the sake of convenience specify a NodeId for any management
server, although one is allocated for it automatically; if you do so, it must
be in the range 1-255 inclusive and must be unique among all IDs specified for
cluster nodes.

DATA NODE PARAMETERS

[ndbd default]
NoOfReplicas=2

Using two fragment replicas is recommended to guarantee availability of data;
using only one fragment replica does not provide any redundancy, which means
that the failure of a single data node causes the entire cluster to shut down.
We do not recommend using more than two fragment replicas, since 2 is
sufficient to provide high availability, and we do not currently test with
greater values for this parameter.

LockPagesInMainMemory=1

On Linux and Solaris systems, setting this parameter locks data node processes
into memory. Doing so prevents them from swapping to disk, which can severely
degrade cluster performance.

DataMemory=3072M
IndexMemory=384M

The values provided for DataMemory and IndexMemory assume 4 GB RAM per data
node. However, for best results, you should first calculate the memory that
would be used based on the data you actually plan to store (you may find the
ndb_size.pl utility helpful in estimating this), then allow an extra 20%
over the calculated values. Naturally, you should ensure that each data node
host has at least as much physical memory as the sum of these two values.

ODirect=1

Enabling this parameter causes NDBCLUSTER to try using O_DIRECT writes for
local checkpoints and redo logs; this can reduce load on CPUs. We recommend
doing so when using NDB Cluster on systems running Linux kernel 2.6 or later.

NoOfFragmentLogFiles=300
DataDir=path/to/data/node/data/directory
MaxNoOfConcurrentOperations=100000

SchedulerSpinTimer=400
SchedulerExecutionTimer=100
RealTimeScheduler=1
Setting these parameters allows you to take advantage of real-time scheduling
of NDB threads to achieve increased throughput when using ndbd. They
are not needed when using ndbmtd; in particular, you should not set
RealTimeScheduler for ndbmtd data nodes.

TimeBetweenGlobalCheckpoints=1000
TimeBetweenEpochs=200
DiskCheckpointSpeed=10M
DiskCheckpointSpeedInRestart=100M
The two parameters just listed are deprecated in NDB 7.4, where setting either
or both of them has no effect; see
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”, for more information
RedoBuffer=32M

CompressedLCP=1
CompressedBackup=1
Enabling CompressedLCP and CompressedBackup causes, respectively, local
checkpoint files and backup files to be compressed, which can result in a
space savings of up to 50% over noncompressed LCPs and backups.

2666

NDB Cluster Configuration Files

MaxNoOfLocalScans=64
MaxNoOfTables=1024
MaxNoOfOrderedIndexes=256

[ndbd]
HostName=data-node-A-hostname
NodeId=data-node-A-nodeid

LockExecuteThreadToCPU=1
LockMaintThreadsToCPU=0
On systems with multiple CPUs, these parameters can be used to lock NDBCLUSTER
threads to specific CPUs

[ndbd]
HostName=data-node-B-hostname
NodeId=data-node-B-nodeid

LockExecuteThreadToCPU=1
LockMaintThreadsToCPU=0

You must have an [ndbd] section for every data node in the cluster; each of
these sections must include a HostName. Each section may optionally include a
NodeId for convenience, but in most cases, it is sufficient to allow the
cluster to allocate node IDs dynamically. If you do specify the node ID for a
data node, it must be in the range 1 to 48 inclusive and must be unique among
all IDs specified for cluster nodes.

SQL NODE / API NODE PARAMETERS

[mysqld]
HostName=sql-node-A-hostname
NodeId=sql-node-A-nodeid

[mysqld]

[mysqld]

Each API or SQL node that connects to the cluster requires a [mysqld] or [api]
section of its own. Each such section defines a connection slot; you should
have at least as many of these sections in the config.ini file as the total
number of API nodes and SQL nodes that you wish to have connected to the
cluster at any given time. There is no performance or other penalty for having
extra slots available in case you find later that you want or need more API or
SQL nodes to connect to the cluster at the same time. If no HostName is
specified for a given [mysqld] or [api] section, then *any* API or SQL node
may use that slot to connect to the cluster. You may wish to use an explicit
HostName for one connection slot to guarantee that an API or SQL node from
that host can always connect to the cluster. If you wish to prevent API or SQL
nodes from connecting from other than a desired host or hosts, then use a
HostName for every [mysqld] or [api] section in the config.ini file. You can
if you wish define a node ID (NodeId parameter) for any API or SQL node, but
this is not necessary; if you do so, it must be in the range 1 to 255
inclusive and must be unique among all IDs specified for cluster nodes.

Required my.cnf options for SQL nodes. MySQL servers acting as NDB Cluster SQL nodes must
always be started with the --ndbcluster and --ndb-connectstring options, either on the command
line or in my.cnf.

18.4.3.3 NDB Cluster Connection Strings

With the exception of the NDB Cluster management server (ndb_mgmd), each node that is part of an NDB
Cluster requires a connection string that points to the management server's location. This connection
string is used in establishing a connection to the management server as well as in performing other tasks
depending on the node's role in the cluster. The syntax for a connection string is as follows:

2667

NDB Cluster Configuration Files

[nodeid=node_id,]host-definition[, host-definition[, ...]]

host-definition:
 host_name[:port_number]

node_id is an integer greater than or equal to 1 which identifies a node in config.ini. host_name is
a string representing a valid Internet host name or IP address. port_number is an integer referring to a
TCP/IP port number.

example 1 (long): "nodeid=2,myhost1:1100,myhost2:1100,198.51.100.3:1200"
example 2 (short): "myhost1"

localhost:1186 is used as the default connection string value if none is provided. If port_num is
omitted from the connection string, the default port is 1186. This port should always be available on the
network because it has been assigned by IANA for this purpose (see http://www.iana.org/assignments/
port-numbers for details).

By listing multiple host definitions, it is possible to designate several redundant management servers. An
NDB Cluster data or API node attempts to contact successive management servers on each host in the
order specified, until a successful connection has been established.

It is also possible to specify in a connection string one or more bind addresses to be used by nodes having
multiple network interfaces for connecting to management servers. A bind address consists of a hostname
or network address and an optional port number. This enhanced syntax for connection strings is shown
here:

[nodeid=node_id,]
 [bind-address=host-definition,]
 host-definition[; bind-address=host-definition]
 host-definition[; bind-address=host-definition]
 [, ...]]

host-definition:
 host_name[:port_number]

If a single bind address is used in the connection string prior to specifying any management hosts,
then this address is used as the default for connecting to any of them (unless overridden for a given
management server; see later in this section for an example). For example, the following connection string
causes the node to use 198.51.100.242 regardless of the management server to which it connects:

bind-address=198.51.100.242, poseidon:1186, perch:1186

If a bind address is specified following a management host definition, then it is used only for connecting to
that management node. Consider the following connection string:

poseidon:1186;bind-address=localhost, perch:1186;bind-address=198.51.100.242

In this case, the node uses localhost to connect to the management server running on the host named
poseidon and 198.51.100.242 to connect to the management server running on the host named
perch.

You can specify a default bind address and then override this default for one or more specific management
hosts. In the following example, localhost is used for connecting to the management server running on
host poseidon; since 198.51.100.242 is specified first (before any management server definitions), it
is the default bind address and so is used for connecting to the management servers on hosts perch and
orca:

bind-address=198.51.100.242,poseidon:1186;bind-address=localhost,perch:1186,orca:2200

2668

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

NDB Cluster Configuration Files

There are a number of different ways to specify the connection string:

• Each executable has its own command-line option which enables specifying the management server at
startup. (See the documentation for the respective executable.)

• It is also possible to set the connection string for all nodes in the cluster at once by placing it in a
[mysql_cluster] section in the management server's my.cnf file.

• For backward compatibility, two other options are available, using the same syntax:

1. Set the NDB_CONNECTSTRING environment variable to contain the connection string.

2. Write the connection string for each executable into a text file named Ndb.cfg and place this file in
the executable's startup directory.

However, these are now deprecated and should not be used for new installations.

The recommended method for specifying the connection string is to set it on the command line or in the
my.cnf file for each executable.

18.4.3.4 Defining Computers in an NDB Cluster

The [computer] section has no real significance other than serving as a way to avoid the need of
defining host names for each node in the system. All parameters mentioned here are required.

• Id

Version (or later) NDB 7.3.1

Type or units string

Default [...]

Range ...

Restart Type IS (NDB 7.3.1)

This is a unique identifier, used to refer to the host computer elsewhere in the configuration file.

Important

The computer ID is not the same as the node ID used for a management, API, or
data node. Unlike the case with node IDs, you cannot use NodeId in place of Id
in the [computer] section of the config.ini file.

• HostName

Version (or later) NDB 7.3.1

Type or units name or IP address

Default [...]

Range ...

Restart Type N (NDB 7.3.1)

This is the computer's hostname or IP address.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

2669

NDB Cluster Configuration Files

Table 18.6 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 18.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

18.4.3.5 Defining an NDB Cluster Management Server

The [ndb_mgmd] section is used to configure the behavior of the management server. If multiple
management servers are employed, you can specify parameters common to all of them in an [ndb_mgmd
default] section. [mgm] and [mgm default] are older aliases for these, supported for backward
compatibility.

All parameters in the following list are optional and assume their default values if omitted.

Note

If neither the ExecuteOnComputer nor the HostName parameter is present, the
default value localhost is assumed for both.

• Id

Version (or later) NDB 7.3.1

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type IS (NDB 7.3.1)

Each node in the cluster has a unique identity. For a management node, this is represented by an
integer value in the range 1 to 255, inclusive. This ID is used by all internal cluster messages for
addressing the node, and so must be unique for each NDB Cluster node, regardless of the type of node.

Note

Data node IDs must be less than 49. If you plan to deploy a large number of data
nodes, it is a good idea to limit the node IDs for management nodes (and API
nodes) to values greater than 48.

The use of the Id parameter for identifying management nodes is deprecated in favor of NodeId.
Although Id continues to be supported for backward compatibility, it now generates a warning and is
subject to removal in a future version of NDB Cluster.

• NodeId

2670

NDB Cluster Configuration Files

Version (or later) NDB 7.3.1

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type IS (NDB 7.3.1)

Each node in the cluster has a unique identity. For a management node, this is represented by an
integer value in the range 1 to 255 inclusive. This ID is used by all internal cluster messages for
addressing the node, and so must be unique for each NDB Cluster node, regardless of the type of node.

Note

Data node IDs must be less than 49. If you plan to deploy a large number of data
nodes, it is a good idea to limit the node IDs for management nodes (and API
nodes) to values greater than 48.

NodeId is the preferred parameter name to use when identifying management nodes. Although the
older Id continues to be supported for backward compatibility, it is now deprecated and generates a
warning when used; it is also subject to removal in a future NDB Cluster release.

• ExecuteOnComputer

Version (or later) NDB 7.3.1

Type or units name

Default [...]

Range ...

Deprecated Yes (in NDB 7.5)

Restart Type S (NDB 7.3.1)

This refers to the Id set for one of the computers defined in a [computer] section of the config.ini
file.

• PortNumber

Version (or later) NDB 7.3.1

Type or units unsigned

Default 1186

Range 0 - 64K

Restart Type S (NDB 7.3.1)

This is the port number on which the management server listens for configuration requests and
management commands.

• HostName

Version (or later) NDB 7.3.1

Type or units name or IP address

Default [...]
2671

NDB Cluster Configuration Files

Range ...

Restart Type N (NDB 7.3.1)

Specifying this parameter defines the hostname of the computer on which the management node is to
reside. To specify a hostname other than localhost, either this parameter or ExecuteOnComputer is
required.

• LogDestination

Version (or later) NDB 7.3.1

Type or units {CONSOLE|SYSLOG|FILE}

Default FILE: filename=ndb_nodeid_cluster.log,
maxsize=1000000, maxfiles=6

Range ...

2672

NDB Cluster Configuration Files

Restart Type N (NDB 7.3.1)

This parameter specifies where to send cluster logging information. There are three options in this
regard—CONSOLE, SYSLOG, and FILE—with FILE being the default:

• CONSOLE outputs the log to stdout:

CONSOLE

• SYSLOG sends the log to a syslog facility, possible values being one of auth, authpriv, cron,
daemon, ftp, kern, lpr, mail, news, syslog, user, uucp, local0, local1, local2, local3,
local4, local5, local6, or local7.

Note

Not every facility is necessarily supported by every operating system.

SYSLOG:facility=syslog

• FILE pipes the cluster log output to a regular file on the same machine. The following values can be
specified:

• filename: The name of the log file.

In NDB Cluster 7.3 and later, the default log file name used in such cases is
ndb_nodeid_cluster.log (in some older versions, the log file's default name, used if FILE was
specified without also setting filename, was logger.log.).

• maxsize: The maximum size (in bytes) to which the file can grow before logging rolls over to a new
file. When this occurs, the old log file is renamed by appending .N to the file name, where N is the
next number not yet used with this name.

• maxfiles: The maximum number of log files.

FILE:filename=cluster.log,maxsize=1000000,maxfiles=6

The default value for the FILE parameter is
FILE:filename=ndb_node_id_cluster.log,maxsize=1000000,maxfiles=6, where
node_id is the ID of the node.

It is possible to specify multiple log destinations separated by semicolons as shown here:

CONSOLE;SYSLOG:facility=local0;FILE:filename=/var/log/mgmd

• ArbitrationRank

Version (or later) NDB 7.3.1

Type or units 0-2

Default 1

Range 0 - 2

2673

NDB Cluster Configuration Files

Restart Type N (NDB 7.3.1)

This parameter is used to define which nodes can act as arbitrators. Only management nodes and SQL
nodes can be arbitrators. ArbitrationRank can take one of the following values:

• 0: The node is never used as an arbitrator.

• 1: The node has high priority; that is, it is preferred as an arbitrator over low-priority nodes.

• 2: Indicates a low-priority node which is used as an arbitrator only if a node with a higher priority is not
available for that purpose.

Normally, the management server should be configured as an arbitrator by setting its
ArbitrationRank to 1 (the default for management nodes) and those for all SQL nodes to 0 (the
default for SQL nodes).

You can disable arbitration completely either by setting ArbitrationRank to 0 on all management
and SQL nodes, or by setting the Arbitration parameter in the [ndbd default] section
of the config.ini global configuration file. Setting Arbitration causes any settings for
ArbitrationRank to be disregarded.

• ArbitrationDelay

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

An integer value which causes the management server's responses to arbitration requests to be delayed
by that number of milliseconds. By default, this value is 0; it is normally not necessary to change it.

• DataDir

Version (or later) NDB 7.3.1

Type or units path

Default .

Range ...

Restart Type N (NDB 7.3.1)

This specifies the directory where output files from the management server are placed. These files
include cluster log files, process output files, and the daemon's process ID (PID) file. (For log files,
this location can be overridden by setting the FILE parameter for LogDestination as discussed
previously in this section.)

The default value for this parameter is the directory in which ndb_mgmd is located.

• PortNumberStats

Version (or later) NDB 7.3.1

Type or units unsigned2674

NDB Cluster Configuration Files

Default [...]

Range 0 - 64K

Restart Type N (NDB 7.3.1)

This parameter specifies the port number used to obtain statistical information from an NDB Cluster
management server. It has no default value.

• Wan

Version (or later) NDB 7.3.1

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 7.3.1)

Use WAN TCP setting as default.

• HeartbeatThreadPriority

Version (or later) NDB 7.3.1

Type or units string

Default [...]

Range ...

Restart Type N (NDB 7.3.1)

Set the scheduling policy and priority of heartbeat threads for management and API nodes.

The syntax for setting this parameter is shown here:

HeartbeatThreadPriority = policy[, priority]

policy:
 {FIFO | RR}

When setting this parameter, you must specify a policy. This is one of FIFO (first in, first out) or RR
(round robin). The policy value is followed optionally by the priority (an integer).

• ExtraSendBufferMemory

Version (or later) NDB 7.3.1

Type or units bytes

Default 0

Range 0 - 32G

Restart Type N (NDB 7.3.1)

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any that
has been set using TotalSendBufferMemory, SendBufferMemory, or both.

2675

NDB Cluster Configuration Files

• TotalSendBufferMemory

Version (or later) NDB 7.3.1

Type or units bytes

Default 0

Range 256K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter is used to determine the total amount of memory to allocate on this node for shared send
buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has not
been set. For more detailed information, see Section 18.4.3.12, “Configuring NDB Cluster Send Buffer
Parameters”.

• HeartbeatIntervalMgmdMgmd

Version (or later) NDB 7.3.3

Type or units milliseconds

Default 1500

Range 100 - 4294967039 (0xFFFFFEFF)

Added NDB 7.3.3

Restart Type N (NDB 7.3.1)

Specify the interval between heartbeat messages used to determine whether another management
node is on contact with this one. The management node waits after 3 of these intervals to declare the
connection dead; thus, the default setting of 1500 milliseconds causes the management node to wait for
approximately 1600 ms before timing out.

This parameter was added in NDB 7.3.3. (Bug #16426805)

• MaxNoOfSavedEvents

Version (or later) NDB 7.3.1

Type or units unsigned

Default 100

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

Not used.

Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect.

To add new management servers to a running NDB Cluster, it is also necessary
to perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using multiple2676

NDB Cluster Configuration Files

management nodes, see Section 18.2.7.10, “Limitations Relating to Multiple NDB
Cluster Nodes”.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 18.7 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 18.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

18.4.3.6 Defining NDB Cluster Data Nodes

The [ndbd] and [ndbd default] sections are used to configure the behavior of the cluster's data
nodes.

[ndbd] and [ndbd default] are always used as the section names whether you are using ndbd or
ndbmtd binaries for the data node processes.

There are many parameters which control buffer sizes, pool sizes, timeouts, and so forth. The only
mandatory parameter is either one of ExecuteOnComputer or HostName; this must be defined in the
local [ndbd] section.

The parameter NoOfReplicas should be defined in the [ndbd default] section, as it is common to
all Cluster data nodes. It is not strictly necessary to set NoOfReplicas, but it is good practice to set it
explicitly.

Most data node parameters are set in the [ndbd default] section. Only those parameters explicitly
stated as being able to set local values are permitted to be changed in the [ndbd] section. Where
present, HostName, NodeId and ExecuteOnComputer must be defined in the local [ndbd] section, and
not in any other section of config.ini. In other words, settings for these parameters are specific to one
data node.

For those parameters affecting memory usage or buffer sizes, it is possible to use K, M, or G as a suffix
to indicate units of 1024, 1024×1024, or 1024×1024×1024. (For example, 100K means 100 × 1024 =
102400.)

Parameter names and values are case-insensitive, unless used in a MySQL Server my.cnf or my.ini
file, in which case they are case-sensitive.

Information about configuration parameters specific to NDB Cluster Disk Data tables can be found later in
this section (see Disk Data Configuration Parameters).

All of these parameters also apply to ndbmtd (the multithreaded version of ndbd). Three additional
data node configuration parameters—MaxNoOfExecutionThreads, ThreadConfig, and
NoOfFragmentLogParts—apply to ndbmtd only; these have no effect when used with ndbd. For more

2677

NDB Cluster Configuration Files

information, see Multi-Threading Configuration Parameters (ndbmtd). See also Section 18.5.3, “ndbmtd —
The NDB Cluster Data Node Daemon (Multi-Threaded)”.

Identifying data nodes. The NodeId or Id value (that is, the data node identifier) can be allocated on
the command line when the node is started or in the configuration file.

• Id

Version (or later) NDB 7.3.1

Type or units unsigned

Default [...]

Range 1 - 48

Restart Type IS (NDB 7.3.1)

A unique node ID is used as the node's address for all cluster internal messages. For data nodes, this is
an integer in the range 1 to 48 inclusive. Each node in the cluster must have a unique identifier.

NodeId is the preferred parameter name to use when identifying data nodes. Although the older Id is
still supported for backward compatibility, it is now deprecated, and generates a warning when used. Id
is also subject to removal in a future NDB Cluster release.

• NodeId

Version (or later) NDB 7.3.1

Type or units unsigned

Default [...]

Range 1 - 48

Restart Type IS (NDB 7.3.1)

A unique node ID is used as the node's address for all cluster internal messages. For data nodes, this is
an integer in the range 1 to 48 inclusive. Each node in the cluster must have a unique identifier.

NodeId is the preferred parameter name to use when identifying data nodes. Although Id continues to
be supported for backward compatibility, it is now deprecated, generates a warning when used, and is
subject to removal in a future version of NDB Cluster.

• ExecuteOnComputer

Version (or later) NDB 7.3.1

Type or units name

Default [...]

Range ...

Deprecated Yes (in NDB 7.5)

Restart Type S (NDB 7.3.1)

This refers to the Id set for one of the computers defined in a [computer] section.

• HostName

Version (or later) NDB 7.3.1

2678

NDB Cluster Configuration Files

Type or units name or IP address

Default localhost

Range ...

Restart Type N (NDB 7.3.1)

Specifying this parameter defines the hostname of the computer on which the data node is to reside. To
specify a hostname other than localhost, either this parameter or ExecuteOnComputer is required.

• ServerPort

Version (or later) NDB 7.3.1

Type or units unsigned

Default [...]

Range 1 - 64K

Restart Type S (NDB 7.3.1)

Each node in the cluster uses a port to connect to other nodes. By default, this port is allocated
dynamically in such a way as to ensure that no two nodes on the same host computer receive the same
port number, so it should normally not be necessary to specify a value for this parameter.

However, if you need to be able to open specific ports in a firewall to permit communication between
data nodes and API nodes (including SQL nodes), you can set this parameter to the number of
the desired port in an [ndbd] section or (if you need to do this for multiple data nodes) the [ndbd
default] section of the config.ini file, and then open the port having that number for incoming
connections from SQL nodes, API nodes, or both.

Note

Connections from data nodes to management nodes is done using the
ndb_mgmd management port (the management server's PortNumber) so
outgoing connections to that port from any data nodes should always be
permitted.

• TcpBind_INADDR_ANY

Setting this parameter to TRUE or 1 binds IP_ADDR_ANY so that connections can be made from
anywhere (for autogenerated connections). The default is FALSE (0).

• NodeGroup

Version (or later) NDB 7.3.1

Type or units unsigned

Default [...]

Range 0 - 65536

Restart Type IS (NDB 7.3.1)

This parameter can be used to assign a data node to a specific node group. It is read only when the
cluster is started for the first time, and cannot be used to reassign a data node to a different node
group online. It is generally not desirable to use this parameter in the [ndbd default] section of the
config.ini file, and care must be taken not to assign nodes to node groups in such a way that an
invalid numbers of nodes are assigned to any node groups.

2679

NDB Cluster Configuration Files

The NodeGroup parameter is chiefly intended for use in adding a new node group to a running NDB
Cluster without having to perform a rolling restart. For this purpose, you should set it to 65536 (the
maximum value). You are not required to set a NodeGroup value for all cluster data nodes, only for
those nodes which are to be started and added to the cluster as a new node group at a later time. For
more information, see Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”.

• NoOfReplicas

Version (or later) NDB 7.3.1

Type or units integer

Default 2

Range 1 - 2

Restart Type IS (NDB 7.3.1)

This global parameter can be set only in the [ndbd default] section, and defines the number of
fragment replicas for each table stored in the cluster. This parameter also specifies the size of node
groups. A node group is a set of nodes all storing the same information.

Node groups are formed implicitly. The first node group is formed by the set of data nodes with the
lowest node IDs, the next node group by the set of the next lowest node identities, and so on. By way of
example, assume that we have 4 data nodes and that NoOfReplicas is set to 2. The four data nodes
have node IDs 2, 3, 4 and 5. Then the first node group is formed from nodes 2 and 3, and the second
node group by nodes 4 and 5. It is important to configure the cluster in such a manner that nodes in the
same node groups are not placed on the same computer because a single hardware failure would cause
the entire cluster to fail.

If no node IDs are provided, the order of the data nodes is the determining factor for the node group.
Whether or not explicit assignments are made, they can be viewed in the output of the management
client SHOW command.

The default and recommended maximum value for NoOfReplicas is 2. This is the recommended value
for most production environments.

Important

While it is theoretically possible for the value of this parameter to be 3 or 4, NDB
Cluster 7.3 and NDB Cluster 7.4 do not support setting NoOfReplicas to a
value greater than 2 in production.

Warning

Setting NoOfReplicas to 1 means that there is only a single copy of all Cluster
data; in this case, the loss of a single data node causes the cluster to fail because
there are no additional copies of the data stored by that node.

The number of data nodes in the cluster must be evenly divisible by the value of this parameter. For
example, if there are two data nodes, then NoOfReplicas must be equal to either 1 or 2, since 2/3 and
2/4 both yield fractional values; if there are four data nodes, then NoOfReplicas must be equal to 1, 2,
or 4.

• DataDir

Version (or later) NDB 7.3.1
2680

NDB Cluster Configuration Files

Type or units path

Default .

Range ...

Restart Type IN (NDB 7.3.1)

This parameter specifies the directory where trace files, log files, pid files and error logs are placed.

The default is the data node process working directory.

• FileSystemPath

Version (or later) NDB 7.3.1

Type or units path

Default DataDir

Range ...

Restart Type IN (NDB 7.3.1)

This parameter specifies the directory where all files created for metadata, REDO logs, UNDO logs (for
Disk Data tables), and data files are placed. The default is the directory specified by DataDir.

Note

This directory must exist before the ndbd process is initiated.

The recommended directory hierarchy for NDB Cluster includes /var/lib/mysql-cluster, under
which a directory for the node's file system is created. The name of this subdirectory contains the node
ID. For example, if the node ID is 2, this subdirectory is named ndb_2_fs.

• BackupDataDir

Version (or later) NDB 7.3.1

Type or units path

Default FileSystemPath

Range ...

Restart Type IN (NDB 7.3.1)

This parameter specifies the directory in which backups are placed.

Important

The string '/BACKUP' is always appended to this value. For example, if you set
the value of BackupDataDir to /var/lib/cluster-data, then all backups
are stored under /var/lib/cluster-data/BACKUP. This also means that
the effective default backup location is the directory named BACKUP under the
location specified by the FileSystemPath parameter.

Data Memory, Index Memory, and String Memory

DataMemory and IndexMemory are [ndbd] parameters specifying the size of memory segments used
to store the actual records and their indexes. In setting values for these, it is important to understand how2681

NDB Cluster Configuration Files

DataMemory and IndexMemory are used, as they usually need to be updated to reflect actual usage by
the cluster:

• DataMemory

Version (or later) NDB 7.3.1

Type or units bytes

Default 80M

Range 1M - 1T

Restart Type N (NDB 7.3.1)

This parameter defines the amount of space (in bytes) available for storing database records. The entire
amount specified by this value is allocated in memory, so it is extremely important that the machine has
sufficient physical memory to accommodate it.

The memory allocated by DataMemory is used to store both the actual records and indexes. There is a
16-byte overhead on each record; an additional amount for each record is incurred because it is stored
in a 32KB page with 128 byte page overhead (see below). There is also a small amount wasted per
page due to the fact that each record is stored in only one page.

For variable-size table attributes, the data is stored on separate data pages, allocated from
DataMemory. Variable-length records use a fixed-size part with an extra overhead of 4 bytes to
reference the variable-size part. The variable-size part has 2 bytes overhead plus 2 bytes per attribute.

The maximum record size is 14000 bytes.

The memory space defined by DataMemory is also used to store ordered indexes, which use about 10
bytes per record. Each table row is represented in the ordered index. A common error among users is to
assume that all indexes are stored in the memory allocated by IndexMemory, but this is not the case:
Only primary key and unique hash indexes use this memory; ordered indexes use the memory allocated
by DataMemory. However, creating a primary key or unique hash index also creates an ordered index
on the same keys, unless you specify USING HASH in the index creation statement. This can be verified
by running ndb_desc -d db_name table_name in the management client.

The memory space allocated by DataMemory consists of 32KB pages, which are allocated to table
fragments. Each table is normally partitioned into the same number of fragments as there are data
nodes in the cluster. Thus, for each node, there are the same number of fragments as are set in
NoOfReplicas.

Once a page has been allocated, it is currently not possible to return it to the pool of free pages, except
by deleting the table. (This also means that DataMemory pages, once allocated to a given table, cannot
be used by other tables.) Performing a data node recovery also compresses the partition because all
records are inserted into empty partitions from other live nodes.

The DataMemory memory space also contains UNDO information: For each update, a copy of the
unaltered record is allocated in the DataMemory. There is also a reference to each copy in the ordered
table indexes. Unique hash indexes are updated only when the unique index columns are updated, in
which case a new entry in the index table is inserted and the old entry is deleted upon commit. For this
reason, it is also necessary to allocate enough memory to handle the largest transactions performed by
applications using the cluster. In any case, performing a few large transactions holds no advantage over
using many smaller ones, for the following reasons:

• Large transactions are not any faster than smaller ones

2682

NDB Cluster Configuration Files

• Large transactions increase the number of operations that are lost and must be repeated in event of
transaction failure

• Large transactions use more memory

The default value for DataMemory is 80MB; the minimum is 1MB. There is no maximum size, but in
reality the maximum size has to be adapted so that the process does not start swapping when the limit
is reached. This limit is determined by the amount of physical RAM available on the machine and by
the amount of memory that the operating system may commit to any one process. 32-bit operating
systems are generally limited to 2−4GB per process; 64-bit operating systems can use more. For large
databases, it may be preferable to use a 64-bit operating system for this reason.

• IndexMemory

Version (or later) NDB 7.3.1

Type or units bytes

Default 18M

Range 1M - 1T

Deprecated Yes (in NDB 7.6)

Restart Type N (NDB 7.3.1)

This parameter controls the amount of storage used for hash indexes in NDB Cluster. Hash indexes are
always used for primary key indexes, unique indexes, and unique constraints. When defining a primary
key or a unique index, two indexes are created, one of which is a hash index used for all tuple accesses
as well as lock handling. This index is also used to enforce unique constraints.

You can estimate the size of a hash index using this formula:

 size = ((fragments * 32K) + (rows * 18))
 * fragment_replicas

fragments is the number of fragments, fragment_replicas is the number of fragment replicas
(normally 2), and rows is the number of rows. If a table has one million rows, eight fragments, and two
fragment replicas, the expected index memory usage is calculated as shown here:

 ((8 * 32K) + (1000000 * 18)) * 2 = ((8 * 32768) + (1000000 * 18)) * 2
 = (262144 + 18000000) * 2
 = 18262144 * 2 = 36524288 bytes = ~35MB

Index statistics (when enabled) for ordered indexes are stored in the
mysql.ndb_index_stat_sample table. Since this table has a hash index, this adds to index memory
usage. An upper bound to the number of rows for a given ordered index can be calculated as follows:

 sample_size= key_size + ((key_attributes + 1) * 4)

 sample_rows = IndexStatSaveSize
 * ((0.01 * IndexStatSaveScale * log2(rows * sample_size)) + 1)

2683

NDB Cluster Configuration Files

 / sample_size

In the preceding formula, key_size is the size of the ordered index key in bytes, key_attributes is
the number ot attributes in the ordered index key, and rows is the number of rows in the base table.

Assume that table t1 has 1 million rows and an ordered index named ix1 on two four-byte integers.
Assume in addition that IndexStatSaveSize and IndexStatSaveScale are set to their default
values (32K and 100, respectively). Using the previous 2 formulas, we can calculate as follows:

 sample_size = 8 + ((1 + 2) * 4) = 20 bytes

 sample_rows = 32K
 * ((0.01 * 100 * log2(1000000*20)) + 1)
 / 20
 = 32768 * ((1 * ~16.811) +1) / 20
 = 32768 * ~17.811 / 20
 = ~29182 rows

The expected index memory usage is thus 2 * 18 * 29182 = ~1050550 bytes.

The default value for IndexMemory is 18MB. The minimum is 1MB.

• StringMemory

Version (or later) NDB 7.3.1

Type or units % or bytes

Default 25

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type S (NDB 7.3.1)

This parameter determines how much memory is allocated for strings such as table names, and is
specified in an [ndbd] or [ndbd default] section of the config.ini file. A value between 0 and
100 inclusive is interpreted as a percent of the maximum default value, which is calculated based on
a number of factors including the number of tables, maximum table name size, maximum size of .FRM
files, MaxNoOfTriggers, maximum column name size, and maximum default column value.

A value greater than 100 is interpreted as a number of bytes.

The default value is 25—that is, 25 percent of the default maximum.

Under most circumstances, the default value should be sufficient, but when you have a great many
Cluster tables (1000 or more), it is possible to get Error 773 Out of string memory, please
modify StringMemory config parameter: Permanent error: Schema error, in which
case you should increase this value. 25 (25 percent) is not excessive, and should prevent this error from
recurring in all but the most extreme conditions.

The following example illustrates how memory is used for a table. Consider this table definition:

CREATE TABLE example (
 a INT NOT NULL,
 b INT NOT NULL,
 c INT NOT NULL,
 PRIMARY KEY(a),
 UNIQUE(b)
) ENGINE=NDBCLUSTER;

For each record, there are 12 bytes of data plus 12 bytes overhead. Having no nullable columns saves 4
bytes of overhead. In addition, we have two ordered indexes on columns a and b consuming roughly 10

2684

NDB Cluster Configuration Files

bytes each per record. There is a primary key hash index on the base table using roughly 29 bytes per
record. The unique constraint is implemented by a separate table with b as primary key and a as a column.
This other table consumes an additional 29 bytes of index memory per record in the example table as well
8 bytes of record data plus 12 bytes of overhead.

Thus, for one million records, we need 58MB for index memory to handle the hash indexes for the primary
key and the unique constraint. We also need 64MB for the records of the base table and the unique index
table, plus the two ordered index tables.

You can see that hash indexes takes up a fair amount of memory space; however, they provide very fast
access to the data in return. They are also used in NDB Cluster to handle uniqueness constraints.

The only partitioning algorithm is hashing and ordered indexes are local to each node. Thus, ordered
indexes cannot be used to handle uniqueness constraints in the general case.

An important point for both IndexMemory and DataMemory is that the total database size is the sum of
all data memory and all index memory for each node group. Each node group is used to store replicated
information, so if there are four nodes with two fragment replicas, there are two node groups. Thus, the
total data memory available is 2 × DataMemory for each data node.

It is highly recommended that DataMemory and IndexMemory be set to the same values for all nodes.
Data distribution is even over all nodes in the cluster, so the maximum amount of space available for any
node can be no greater than that of the smallest node in the cluster.

DataMemory and IndexMemory can be changed, but decreasing either of these can be risky; doing
so can easily lead to a node or even an entire NDB Cluster that is unable to restart due to there being
insufficient memory space. Increasing these values should be acceptable, but it is recommended that
such upgrades are performed in the same manner as a software upgrade, beginning with an update of the
configuration file, and then restarting the management server followed by restarting each data node in turn.

MinFreePct. A proportion (5% by default) of data node resources including DataMemory and
IndexMemory is kept in reserve to insure that the data node does not exhaust its memory when
performing a restart. This can be adjusted using the MinFreePct data node configuration parameter
(default 5).

Version (or later) NDB 7.3.1

Type or units unsigned

Default 5

Range 0 - 100

Restart Type N (NDB 7.3.1)

Updates do not increase the amount of index memory used. Inserts take effect immediately; however, rows
are not actually deleted until the transaction is committed.

Transaction parameters. The next few [ndbd] parameters that we discuss are important because
they affect the number of parallel transactions and the sizes of transactions that can be handled by the
system. MaxNoOfConcurrentTransactions sets the number of parallel transactions possible in a
node. MaxNoOfConcurrentOperations sets the number of records that can be in update phase or
locked simultaneously.

Both of these parameters (especially MaxNoOfConcurrentOperations) are likely targets for users
setting specific values and not using the default value. The default value is set for systems using small
transactions, to ensure that these do not use excessive memory.

2685

NDB Cluster Configuration Files

MaxDMLOperationsPerTransaction sets the maximum number of DML operations that can be
performed in a given transaction.

• MaxNoOfConcurrentTransactions

Version (or later) NDB 7.3.1

Type or units integer

Default 4096

Range 32 - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type N (NDB 7.3.1)

Each cluster data node requires a transaction record for each active transaction in the cluster. The task
of coordinating transactions is distributed among all of the data nodes. The total number of transaction
records in the cluster is the number of transactions in any given node times the number of nodes in the
cluster.

Transaction records are allocated to individual MySQL servers. Each connection to a MySQL server
requires at least one transaction record, plus an additional transaction object per table accessed by that
connection. This means that a reasonable minimum for the total number of transactions in the cluster
can be expressed as

TotalNoOfConcurrentTransactions =
 (maximum number of tables accessed in any single transaction + 1)
 * number of SQL nodes

Suppose that there are 10 SQL nodes using the cluster. A single join involving 10 tables requires 11
transaction records; if there are 10 such joins in a transaction, then 10 * 11 = 110 transaction records
are required for this transaction, per MySQL server, or 110 * 10 = 1100 transaction records total. Each
data node can be expected to handle TotalNoOfConcurrentTransactions / number of data nodes. For
an NDB Cluster having 4 data nodes, this would mean setting MaxNoOfConcurrentTransactions
on each data node to 1100 / 4 = 275. In addition, you should provide for failure recovery by ensuring
that a single node group can accommodate all concurrent transactions; in other words, that each
data node's MaxNoOfConcurrentTransactions is sufficient to cover a number of transactions equal to
TotalNoOfConcurrentTransactions / number of node groups. If this cluster has a single node group,
then MaxNoOfConcurrentTransactions should be set to 1100 (the same as the total number of
concurrent transactions for the entire cluster).

In addition, each transaction involves at least one operation; for this reason, the value set
for MaxNoOfConcurrentTransactions should always be no more than the value of
MaxNoOfConcurrentOperations.

This parameter must be set to the same value for all cluster data nodes. This is due to the fact that,
when a data node fails, the oldest surviving node re-creates the transaction state of all transactions that
were ongoing in the failed node.

It is possible to change this value using a rolling restart, but the amount of traffic on the cluster must be
such that no more transactions occur than the lower of the old and new levels while this is taking place.

The default value is 4096.

• MaxNoOfConcurrentOperations

Version (or later) NDB 7.3.1

2686

NDB Cluster Configuration Files

Type or units integer

Default 32K

Range 32 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

It is a good idea to adjust the value of this parameter according to the size and number of transactions.
When performing transactions which involve only a few operations and records, the default value for this
parameter is usually sufficient. Performing large transactions involving many records usually requires
that you increase its value.

Records are kept for each transaction updating cluster data, both in the transaction coordinator and in
the nodes where the actual updates are performed. These records contain state information needed to
find UNDO records for rollback, lock queues, and other purposes.

This parameter should be set at a minimum to the number of records to be updated simultaneously in
transactions, divided by the number of cluster data nodes. For example, in a cluster which has four data
nodes and which is expected to handle one million concurrent updates using transactions, you should
set this value to 1000000 / 4 = 250000. To help provide resiliency against failures, it is suggested that
you set this parameter to a value that is high enough to permit an individual data node to handle the load
for its node group. In other words, you should set the value equal to total number of concurrent
operations / number of node groups. (In the case where there is a single node group, this is
the same as the total number of concurrent operations for the entire cluster.)

Because each transaction always involves at least one operation, the value of
MaxNoOfConcurrentOperations should always be greater than or equal to the value of
MaxNoOfConcurrentTransactions.

Read queries which set locks also cause operation records to be created. Some extra space is allocated
within individual nodes to accommodate cases where the distribution is not perfect over the nodes.

When queries make use of the unique hash index, there are actually two operation records used per
record in the transaction. The first record represents the read in the index table and the second handles
the operation on the base table.

The default value is 32768.

This parameter actually handles two values that can be configured separately. The first of these
specifies how many operation records are to be placed with the transaction coordinator. The second part
specifies how many operation records are to be local to the database.

A very large transaction performed on an eight-node cluster requires as many operation records in the
transaction coordinator as there are reads, updates, and deletes involved in the transaction. However,
the operation records of the are spread over all eight nodes. Thus, if it is necessary to configure
the system for one very large transaction, it is a good idea to configure the two parts separately.
MaxNoOfConcurrentOperations is always used to calculate the number of operation records in the
transaction coordinator portion of the node.

It is also important to have an idea of the memory requirements for operation records. These consume
about 1KB per record.

• MaxNoOfLocalOperations

Version (or later) NDB 7.3.1

2687

NDB Cluster Configuration Files

Type or units integer

Default UNDEFINED

Range 32 - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type N (NDB 7.3.1)

By default, this parameter is calculated as 1.1 × MaxNoOfConcurrentOperations. This fits systems
with many simultaneous transactions, none of them being very large. If there is a need to handle one
very large transaction at a time and there are many nodes, it is a good idea to override the default value
by explicitly specifying this parameter.

• MaxDMLOperationsPerTransaction

Version (or later) NDB 7.3.1

Type or units operations (DML)

Default 4294967295

Range 32 - 4294967295

Restart Type N (NDB 7.3.1)

This parameter limits the size of a transaction. The transaction is aborted if it requires more than this
many DML operations.

Transaction temporary storage. The next set of [ndbd] parameters is used to determine temporary
storage when executing a statement that is part of a Cluster transaction. All records are released when the
statement is completed and the cluster is waiting for the commit or rollback.

The default values for these parameters are adequate for most situations. However, users with a need to
support transactions involving large numbers of rows or operations may need to increase these values
to enable better parallelism in the system, whereas users whose applications require relatively small
transactions can decrease the values to save memory.

• MaxNoOfConcurrentIndexOperations

Version (or later) NDB 7.3.1

Type or units integer

Default 8K

Range 0 - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type N (NDB 7.3.1)

For queries using a unique hash index, another temporary set of operation records is used during
a query's execution phase. This parameter sets the size of that pool of records. Thus, this record is
allocated only while executing a part of a query. As soon as this part has been executed, the record is
released. The state needed to handle aborts and commits is handled by the normal operation records,
where the pool size is set by the parameter MaxNoOfConcurrentOperations.

The default value of this parameter is 8192. Only in rare cases of extremely high parallelism using
unique hash indexes should it be necessary to increase this value. Using a smaller value is possible and
can save memory if the DBA is certain that a high degree of parallelism is not required for the cluster.

2688

NDB Cluster Configuration Files

• MaxNoOfFiredTriggers

Version (or later) NDB 7.3.1

Type or units integer

Default 4000

Range 0 - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type N (NDB 7.3.1)

The default value of MaxNoOfFiredTriggers is 4000, which is sufficient for most situations. In some
cases it can even be decreased if the DBA feels certain the need for parallelism in the cluster is not high.

A record is created when an operation is performed that affects a unique hash index. Inserting or
deleting a record in a table with unique hash indexes or updating a column that is part of a unique hash
index fires an insert or a delete in the index table. The resulting record is used to represent this index
table operation while waiting for the original operation that fired it to complete. This operation is short-
lived but can still require a large number of records in its pool for situations with many parallel write
operations on a base table containing a set of unique hash indexes.

• TransactionBufferMemory

Version (or later) NDB 7.3.1

Type or units bytes

Default 1M

Range 1K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

The memory affected by this parameter is used for tracking operations fired when updating index tables
and reading unique indexes. This memory is used to store the key and column information for these
operations. It is only very rarely that the value for this parameter needs to be altered from the default.

The default value for TransactionBufferMemory is 1MB.

Normal read and write operations use a similar buffer, whose usage is even more short-lived. The
compile-time parameter ZATTRBUF_FILESIZE (found in ndb/src/kernel/blocks/Dbtc/
Dbtc.hpp) set to 4000 × 128 bytes (500KB). A similar buffer for key information, ZDATABUF_FILESIZE
(also in Dbtc.hpp) contains 4000 × 16 = 62.5KB of buffer space. Dbtc is the module that handles
transaction coordination.

Scans and buffering. There are additional [ndbd] parameters in the Dblqh module (in
ndb/src/kernel/blocks/Dblqh/Dblqh.hpp) that affect reads and updates. These include
ZATTRINBUF_FILESIZE, set by default to 10000 × 128 bytes (1250KB) and ZDATABUF_FILE_SIZE,
set by default to 10000*16 bytes (roughly 156KB) of buffer space. To date, there have been neither any
reports from users nor any results from our own extensive tests suggesting that either of these compile-
time limits should be increased.

• MaxNoOfConcurrentScans

Version (or later) NDB 7.3.1

Type or units integer

Default 256

2689

NDB Cluster Configuration Files

Range 2 - 500

Restart Type N (NDB 7.3.1)

This parameter is used to control the number of parallel scans that can be performed in the cluster.
Each transaction coordinator can handle the number of parallel scans defined for this parameter. Each
scan query is performed by scanning all partitions in parallel. Each partition scan uses a scan record
in the node where the partition is located, the number of records being the value of this parameter
times the number of nodes. The cluster should be able to sustain MaxNoOfConcurrentScans scans
concurrently from all nodes in the cluster.

Scans are actually performed in two cases. The first of these cases occurs when no hash or ordered
indexes exists to handle the query, in which case the query is executed by performing a full table scan.
The second case is encountered when there is no hash index to support the query but there is an
ordered index. Using the ordered index means executing a parallel range scan. The order is kept on the
local partitions only, so it is necessary to perform the index scan on all partitions.

The default value of MaxNoOfConcurrentScans is 256. The maximum value is 500.

• MaxNoOfLocalScans

Version (or later) NDB 7.3.1

Type or units integer

Default 4 * MaxNoOfConcurrentScans * [# of data nodes] +
2

Range 32 - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type N (NDB 7.3.1)

Specifies the number of local scan records if many scans are not fully parallelized. When the number of
local scan records is not provided, it is calculated as shown here:

4 * MaxNoOfConcurrentScans * [# data nodes] + 2

The minimum value is 32.

• BatchSizePerLocalScan

Version (or later) NDB 7.3.1

Type or units integer

Default 256

Range 1 - 992

Deprecated Yes (in NDB 8.0)

Restart Type N (NDB 7.3.1)

This parameter is used to calculate the number of lock records used to handle concurrent scan
operations.

BatchSizePerLocalScan has a strong connection to the BatchSize defined in the SQL nodes.

2690

NDB Cluster Configuration Files

• LongMessageBuffer

Version (or later) NDB 7.3.1

Type or units bytes

Default 4M

Range 512K - 4294967039 (0xFFFFFEFF)

Version (or later) NDB 7.3.5

Type or units bytes

Default 64M

Range 512K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This is an internal buffer used for passing messages within individual nodes and between nodes. The
default is 64MB. (Prior to NDB 7.3.5, this was 4MB.)

This parameter seldom needs to be changed from the default.

• MaxParallelCopyInstances

Version (or later) NDB 7.4.3

Type or units integer

Default 0

Range 0 - 64

Added NDB 7.4.3

Restart Type N (NDB 7.3.1)

This parameter sets the parallelization used in the copy phase of a node restart or system restart, when
a node that is currently just starting is synchronised with a node that already has current data by copying
over any changed records from the node that is up to date. Because full parallelism in such cases can
lead to overload situations, MaxParallelCopyInstances was introduced to provide a means to
decrease it. The value 0 means that the effective parallelism is equal to the number of LDM instances in
the node just starting as well as the node updating it.

• MaxParallelScansPerFragment

Version (or later) NDB 7.3.1

Type or units bytes

Default 256

Range 1 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

It is possible to configure the maximum number of parallel scans (TUP scans and TUX scans) allowed
before they begin queuing for serial handling. You can increase this to take advantage of any unused
CPU when performing large number of scans in parallel and improve their performance.

Memory Allocation

MaxAllocate
2691

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtux.html

NDB Cluster Configuration Files

Version (or later) NDB 7.3.1

Type or units unsigned

Default 32M

Range 1M - 1G

Deprecated Yes (in NDB 8.0)

Restart Type N (NDB 7.3.1)

This parameter was used in older versions of NDB Cluster, but has no effect in NDB 7.3 or NDB 7.4.

Hash Map Size

DefaultHashMapSize

Version (or later) NDB 7.3.1

Type or units LDM threads

Default 240

Range 0 - 3840

Restart Type N (NDB 7.3.1)

The size of the table hash maps used by NDB is configurable using this parameter.
DefaultHashMapSize can take any of three possible values (0, 240, 3840).

This parameter was intended to facilitate upgrades from very old NDB Cluster versions to NDB 7.3 and
later, but should no longer need to be set.

Decreasing this parameter online after any tables have been created or modified with
DefaultHashMapSize equal to 3840 is not currently supported.

Logging and checkpointing. The following [ndbd] parameters control log and checkpoint behavior.

• NoOfFragmentLogFiles

Version (or later) NDB 7.3.1

Type or units integer

Default 16

Range 3 - 4294967039 (0xFFFFFEFF)

Restart Type IN (NDB 7.3.1)

This parameter sets the number of REDO log files for the node, and thus the amount of space allocated
to REDO logging. Because the REDO log files are organized in a ring, it is extremely important that the
first and last log files in the set (sometimes referred to as the “head” and “tail” log files, respectively)
do not meet. When these approach one another too closely, the node begins aborting all transactions
encompassing updates due to a lack of room for new log records.

A REDO log record is not removed until the required number of local checkpoints has been completed
since that log record was inserted. (In NDB Cluster 7.3 and later, only 2 local checkpoints are
necessary). Checkpointing frequency is determined by its own set of configuration parameters discussed
elsewhere in this chapter.

The default parameter value is 16, which by default means 16 sets of 4 16MB files for a total of 1024MB.
The size of the individual log files is configurable using the FragmentLogFileSize parameter. In

2692

NDB Cluster Configuration Files

scenarios requiring a great many updates, the value for NoOfFragmentLogFiles may need to be set
as high as 300 or even higher to provide sufficient space for REDO logs.

If the checkpointing is slow and there are so many writes to the database that the log files are full and
the log tail cannot be cut without jeopardizing recovery, all updating transactions are aborted with
internal error code 410 (Out of log file space temporarily). This condition prevails until a
checkpoint has completed and the log tail can be moved forward.

Important

This parameter cannot be changed “on the fly”; you must restart the node using
--initial. If you wish to change this value for all data nodes in a running
cluster, you can do so using a rolling node restart (using --initial when
starting each data node).

• FragmentLogFileSize

Version (or later) NDB 7.3.1

Type or units bytes

Default 16M

Range 4M - 1G

Restart Type IN (NDB 7.3.1)

Setting this parameter enables you to control directly the size of redo log files. This can be useful in
situations when NDB Cluster is operating under a high load and it is unable to close fragment log files
quickly enough before attempting to open new ones (only 2 fragment log files can be open at one time);
increasing the size of the fragment log files gives the cluster more time before having to open each new
fragment log file. The default value for this parameter is 16M.

For more information about fragment log files, see the description for NoOfFragmentLogFiles.

• InitFragmentLogFiles

Version (or later) NDB 7.3.1

Type or units [see values]

Default SPARSE

Range SPARSE, FULL

Restart Type IN (NDB 7.3.1)

By default, fragment log files are created sparsely when performing an initial start of a data node—that
is, depending on the operating system and file system in use, not all bytes are necessarily written to
disk. However, it is possible to override this behavior and force all bytes to be written, regardless of the
platform and file system type being used, by means of this parameter. InitFragmentLogFiles takes
either of two values:

• SPARSE. Fragment log files are created sparsely. This is the default value.

• FULL. Force all bytes of the fragment log file to be written to disk.

Depending on your operating system and file system, setting InitFragmentLogFiles=FULL may
help eliminate I/O errors on writes to the REDO log.

• MaxNoOfOpenFiles

2693

NDB Cluster Configuration Files

Version (or later) NDB 7.3.1

Type or units unsigned

Default 0

Range 20 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter sets a ceiling on how many internal threads to allocate for open files. Any situation
requiring a change in this parameter should be reported as a bug.

The default value is 0. However, the minimum value to which this parameter can be set is 20.

• InitialNoOfOpenFiles

Version (or later) NDB 7.3.1

Type or units files

Default 27

Range 20 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter sets the initial number of internal threads to allocate for open files.

The default value is 27.

• MaxNoOfSavedMessages

Version (or later) NDB 7.3.1

Type or units integer

Default 25

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter sets the maximum number of errors iwritten n the error log as well as the maximum
number of trace files that are kept before overwriting the existing ones. Trace files are generated when,
for whatever reason, the node crashes.

The default is 25, which sets these maximums to 25 error messages and 25 trace files.

• MaxLCPStartDelay

Version (or later) NDB 7.3.1

Type or units seconds

Default 0

Range 0 - 600

Restart Type N (NDB 7.3.1)

In parallel data node recovery, only table data is actually copied and synchronized in parallel;
synchronization of metadata such as dictionary and checkpoint information is done in a serial fashion.
In addition, recovery of dictionary and checkpoint information cannot be executed in parallel with

2694

NDB Cluster Configuration Files

performing of local checkpoints. This means that, when starting or restarting many data nodes
concurrently, data nodes may be forced to wait while a local checkpoint is performed, which can result in
longer node recovery times.

It is possible to force a delay in the local checkpoint to permit more (and possibly all) data nodes to
complete metadata synchronization; once each data node's metadata synchronization is complete, all
of the data nodes can recover table data in parallel, even while the local checkpoint is being executed.
To force such a delay, set MaxLCPStartDelay, which determines the number of seconds the cluster
can wait to begin a local checkpoint while data nodes continue to synchronize metadata. This parameter
should be set in the [ndbd default] section of the config.ini file, so that it is the same for all data
nodes. The maximum value is 600; the default is 0.

• LcpScanProgressTimeout

Version (or later) NDB 7.3.3

Type or units second

Default 60

Range 0 - 4294967039 (0xFFFFFEFF)

Added NDB 7.3.3

Restart Type N (NDB 7.3.1)

A local checkpoint fragment scan watchdog checks periodically for no progress in each fragment scan
performed as part of a local checkpoint, and shuts down the node if there is no progress after a given
amount of time has elapsed. Prior to NDB 7.3.3, this interval is always 60 seconds (Bug #16630410).
In NDB 7.3.3 and later, this interval can be set using the LcpScanProgressTimeout data node
configuration parameter, which sets the maximum time for which the local checkpoint can be stalled
before the LCP fragment scan watchdog shuts down the node.

The default value is 60 seconds (providing compatibility with previous releases). Setting this parameter
to 0 disables the LCP fragment scan watchdog altogether.

Metadata objects. The next set of [ndbd] parameters defines pool sizes for metadata objects, used
to define the maximum number of attributes, tables, indexes, and trigger objects used by indexes, events,
and replication between clusters.

Note

These act merely as “suggestions” to the cluster, and any that are not specified
revert to the default values shown.

• MaxNoOfAttributes

Version (or later) NDB 7.3.1

Type or units integer

Default 1000

Range 32 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter sets a suggested maximum number of attributes that can be defined in the cluster; like
MaxNoOfTables, it is not intended to function as a hard upper limit.

2695

NDB Cluster Configuration Files

(In older NDB Cluster releases, this parameter was sometimes treated as a hard limit for certain
operations. This caused problems with NDB Cluster Replication, when it was possible to create more
tables than could be replicated, and sometimes led to confusion when it was possible [or not possible,
depending on the circumstances] to create more than MaxNoOfAttributes attributes.)

The default value is 1000, with the minimum possible value being 32. The maximum is 4294967039.
Each attribute consumes around 200 bytes of storage per node due to the fact that all metadata is fully
replicated on the servers.

When setting MaxNoOfAttributes, it is important to prepare in advance for any ALTER
TABLE statements that you might want to perform in the future. This is due to the fact, during the
execution of ALTER TABLE on a Cluster table, 3 times the number of attributes as in the original
table are used, and a good practice is to permit double this amount. For example, if the NDB
Cluster table having the greatest number of attributes (greatest_number_of_attributes)
has 100 attributes, a good starting point for the value of MaxNoOfAttributes would be 6 *
greatest_number_of_attributes = 600.

You should also estimate the average number of attributes per table and multiply this by
MaxNoOfTables. If this value is larger than the value obtained in the previous paragraph, you should
use the larger value instead.

Assuming that you can create all desired tables without any problems, you should also verify that this
number is sufficient by trying an actual ALTER TABLE after configuring the parameter. If this is not
successful, increase MaxNoOfAttributes by another multiple of MaxNoOfTables and test it again.

• MaxNoOfTables

Version (or later) NDB 7.3.1

Type or units integer

Default 128

Range 8 - 20320

Restart Type N (NDB 7.3.1)

A table object is allocated for each table and for each unique hash index in the cluster. This
parameter sets a suggested maximum number of table objects for the cluster as a whole; like
MaxNoOfAttributes, it is not intended to function as a hard upper limit.

(In older NDB Cluster releases, this parameter was sometimes treated as a hard limit for certain
operations. This caused problems with NDB Cluster Replication, when it was possible to create more
tables than could be replicated, and sometimes led to confusion when it was possible [or not possible,
depending on the circumstances] to create more than MaxNoOfTables tables.)

For each attribute that has a BLOB data type an extra table is used to store most of the BLOB data.
These tables also must be taken into account when defining the total number of tables.

The default value of this parameter is 128. The minimum is 8 and the maximum is 20320. Each table
object consumes approximately 20KB per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

2696

NDB Cluster Configuration Files

• MaxNoOfOrderedIndexes

Version (or later) NDB 7.3.1

Type or units integer

Default 128

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

For each ordered index in the cluster, an object is allocated describing what is being indexed and its
storage segments. By default, each index so defined also defines an ordered index. Each unique index
and primary key has both an ordered index and a hash index. MaxNoOfOrderedIndexes sets the total
number of ordered indexes that can be in use in the system at any one time.

The default value of this parameter is 128. Each index object consumes approximately 10KB of data per
node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

• MaxNoOfUniqueHashIndexes

Version (or later) NDB 7.3.1

Type or units integer

Default 64

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

For each unique index that is not a primary key, a special table is allocated that maps the unique key to
the primary key of the indexed table. By default, an ordered index is also defined for each unique index.
To prevent this, you must specify the USING HASH option when defining the unique index.

The default value is 64. Each index consumes approximately 15KB per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

• MaxNoOfTriggers

Version (or later) NDB 7.3.1

Type or units integer

Default 768

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

Internal update, insert, and delete triggers are allocated for each unique hash index. (This means that
three triggers are created for each unique hash index.) However, an ordered index requires only a single
trigger object. Backups also use three trigger objects for each normal table in the cluster.

2697

NDB Cluster Configuration Files

Replication between clusters also makes use of internal triggers.

This parameter sets the maximum number of trigger objects in the cluster.

The default value is 768.

• MaxNoOfIndexes

This parameter is deprecated in NDB 7.4 and is no longer available in NDB Cluster 7.5. You should use
MaxNoOfOrderedIndexes and MaxNoOfUniqueHashIndexes instead.

This parameter is used only by unique hash indexes. There needs to be one record in this pool for each
unique hash index defined in the cluster.

The default value of this parameter is 128.

• MaxNoOfSubscriptions

Version (or later) NDB 7.3.1

Type or units unsigned

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

Each NDB table in an NDB Cluster requires a subscription in the NDB kernel. For some NDB API
applications, it may be necessary or desirable to change this parameter. However, for normal usage with
MySQL servers acting as SQL nodes, there is not any need to do so.

The default value for MaxNoOfSubscriptions is 0, which is treated as equal to MaxNoOfTables.
Each subscription consumes 108 bytes.

• MaxNoOfSubscribers

Version (or later) NDB 7.3.1

Type or units unsigned

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter is of interest only when using NDB Cluster Replication. The default value is 0, which is
treated as 2 * MaxNoOfTables; that is, there is one subscription per NDB table for each of two MySQL
servers (one acting as the replication source and the other as the replica). Each subscriber uses 16
bytes of memory.

When using circular replication, multi-source replication, and other replication setups involving more than
2 MySQL servers, you should increase this parameter to the number of mysqld processes included in
replication (this is often, but not always, the same as the number of clusters). For example, if you have a
circular replication setup using three NDB Clusters, with one mysqld attached to each cluster, and each
of these mysqld processes acts as a source and as a replica, you should set MaxNoOfSubscribers
equal to 3 * MaxNoOfTables.

For more information, see Section 18.7, “NDB Cluster Replication”.

2698

NDB Cluster Configuration Files

• MaxNoOfConcurrentSubOperations

Version (or later) NDB 7.3.1

Type or units unsigned

Default 256

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter sets a ceiling on the number of operations that can be performed by all API nodes in
the cluster at one time. The default value (256) is sufficient for normal operations, and might need to be
adjusted only in scenarios where there are a great many API nodes each performing a high volume of
operations concurrently.

Boolean parameters. The behavior of data nodes is also affected by a set of [ndbd] parameters
taking on boolean values. These parameters can each be specified as TRUE by setting them equal to 1 or
Y, and as FALSE by setting them equal to 0 or N.

• LateAlloc

Version (or later) NDB 7.3.1

Type or units numeric

Default 1

Range 0 - 1

Restart Type N (NDB 7.3.1)

Allocate memory for this data node after a connection to the management server has been established.
Enabled by default.

• LockPagesInMainMemory

Version (or later) NDB 7.3.1

Type or units numeric

Default 0

Range 0 - 2

Restart Type N (NDB 7.3.1)

For a number of operating systems, including Solaris and Linux, it is possible to lock a process into
memory and so avoid any swapping to disk. This can be used to help guarantee the cluster's real-time
characteristics.

This parameter takes one of the integer values 0, 1, or 2, which act as shown in the following list:

• 0: Disables locking. This is the default value.

• 1: Performs the lock after allocating memory for the process.

• 2: Performs the lock before memory for the process is allocated.

If the operating system is not configured to permit unprivileged users to lock pages, then the data node
process making use of this parameter may have to be run as system root. (LockPagesInMainMemory2699

NDB Cluster Configuration Files

uses the mlockall function. From Linux kernel 2.6.9, unprivileged users can lock memory as limited by
max locked memory. For more information, see ulimit -l and http://linux.die.net/man/2/mlock).

Note

In older NDB Cluster releases, this parameter was a Boolean. 0 or false
was the default setting, and disabled locking. 1 or true enabled locking of the
process after its memory was allocated. NDB Cluster 7.3 and later treats using
true or false for the value of this parameter as an error.

Important

Beginning with glibc 2.10, glibc uses per-thread arenas to reduce lock
contention on a shared pool, which consumes real memory. In general, a data
node process does not need per-thread arenas, since it does not perform any
memory allocation after startup. (This difference in allocators does not appear to
affect performance significantly.)

The glibc behavior is intended to be configurable via the MALLOC_ARENA_MAX
environment variable, but a bug in this mechanism prior to glibc 2.16 meant
that this variable could not be set to less than 8, so that the wasted memory
could not be reclaimed. (Bug #15907219; see also http://sourceware.org/bugzilla/
show_bug.cgi?id=13137 for more information concerning this issue.)

One possible workaround for this problem is to use the LD_PRELOAD
environment variable to preload a jemalloc memory allocation library to take
the place of that supplied with glibc.

• StopOnError

Version (or later) NDB 7.3.1

Type or units boolean

Default 1

Range 0, 1

Restart Type N (NDB 7.3.1)

This parameter specifies whether a data node process should exit or perform an automatic restart when
an error condition is encountered.

This parameter's default value is 1; this means that, by default, an error causes the data node process to
halt.

When an error is encountered and StopOnError is 0, the data node process is restarted.

Prior to NDB Cluster 7.4.14, if the data node process exits in an uncontrolled fashion (due, for example,
to performing kill -9 on the data node process while performing a query, or to a segmentation fault),
and StopOnError is set to 0, the angel process attempts to restart it in exactly the same way as it was
started previously—that is, using the same startup options that were employed the last time the node
was started. Thus, if the data node process was originally started using the --initial option, it is also
restarted with --initial. This means that, in such cases, if the failure occurs on a sufficient number of
data nodes in a very short interval, the effect is the same as if you had performed an initial restart of the

2700

http://linux.die.net/man/2/mlock
http://sourceware.org/bugzilla/show_bug.cgi?id=13137
http://sourceware.org/bugzilla/show_bug.cgi?id=13137

NDB Cluster Configuration Files

entire cluster, leading to loss of all data. This issue is resolved in NDB Cluster 7.4.14 and later NDB 7.4
releases (Bug #83510, Bug #24945638).

Users of MySQL Cluster Manager should note that, when StopOnError equals 1, this prevents the
MySQL Cluster Manager agent from restarting any data nodes after it has performed its own restart and
recovery. See Starting and Stopping the Agent on Linux, for more information.

• CrashOnCorruptedTuple

Version (or later) NDB 7.3.1

Type or units boolean

Default true

Range true, false

Restart Type N (NDB 7.3.1)

When this parameter is enabled, it forces a data node to shut down whenever it encounters a corrupted
tuple. In NDB Cluster 7.3 and later, it is enabled by default.

• Diskless

Version (or later) NDB 7.3.1

Type or units true|false (1|0)

Default false

Range true, false

Restart Type IS (NDB 7.3.1)

It is possible to specify NDB Cluster tables as diskless, meaning that tables are not checkpointed to disk
and that no logging occurs. Such tables exist only in main memory. A consequence of using diskless
tables is that neither the tables nor the records in those tables survive a crash. However, when operating
in diskless mode, it is possible to run ndbd on a diskless computer.

Important

This feature causes the entire cluster to operate in diskless mode.

When this feature is enabled, Cluster online backup is disabled. In addition, a partial start of the cluster is
not possible.

Diskless is disabled by default.

• ODirect

Version (or later) NDB 7.3.1

Type or units boolean

Default false

Range true, false

2701

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/mcm-using-start-stop-agent-linux.html

NDB Cluster Configuration Files

Restart Type N (NDB 7.3.1)

Enabling this parameter causes NDB to attempt using O_DIRECT writes for LCP, backups, and redo logs,
often lowering kswapd and CPU usage. When using NDB Cluster on Linux, enable ODirect if you are
using a 2.6 or later kernel.

ODirect is disabled by default.

• RestartOnErrorInsert

Version (or later) NDB 7.3.1

Type or units error code

Default 2

Range 0 - 4

Restart Type N (NDB 7.3.1)

This feature is accessible only when building the debug version where it is possible to insert errors in the
execution of individual blocks of code as part of testing.

This feature is disabled by default.

• CompressedLCP

Version (or later) NDB 7.3.1

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 7.3.1)

Setting this parameter to 1 causes local checkpoint files to be compressed. The compression used is
equivalent to gzip --fast, and can save 50% or more of the space required on the data node to store
uncompressed checkpoint files. Compressed LCPs can be enabled for individual data nodes, or for all
data nodes (by setting this parameter in the [ndbd default] section of the config.ini file).

Important

You cannot restore a compressed local checkpoint to a cluster running a MySQL
version that does not support this feature.

The default value is 0 (disabled).

On Windows platforms, this parameter has no effect in NDB 7.3 or NDB 7.4.

Controlling Timeouts, Intervals, and Disk Paging

There are a number of [ndbd] parameters specifying timeouts and intervals between various actions in
Cluster data nodes. Most of the timeout values are specified in milliseconds. Any exceptions to this are
mentioned where applicable.

• TimeBetweenWatchDogCheck

Version (or later) NDB 7.3.12702

NDB Cluster Configuration Files

Type or units milliseconds

Default 6000

Range 70 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

To prevent the main thread from getting stuck in an endless loop at some point, a “watchdog” thread
checks the main thread. This parameter specifies the number of milliseconds between checks. If the
process remains in the same state after three checks, the watchdog thread terminates it.

This parameter can easily be changed for purposes of experimentation or to adapt to local conditions. It
can be specified on a per-node basis although there seems to be little reason for doing so.

The default timeout is 6000 milliseconds (6 seconds).

• TimeBetweenWatchDogCheckInitial

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 6000

Range 70 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This is similar to the TimeBetweenWatchDogCheck parameter, except that
TimeBetweenWatchDogCheckInitial controls the amount of time that passes between execution
checks inside a storage node in the early start phases during which memory is allocated.

The default timeout is 6000 milliseconds (6 seconds).

• StartPartialTimeout

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 30000

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter specifies how long the Cluster waits for all data nodes to come up before the cluster
initialization routine is invoked. This timeout is used to avoid a partial Cluster startup whenever possible.

This parameter is overridden when performing an initial start or initial restart of the cluster.

The default value is 30000 milliseconds (30 seconds). 0 disables the timeout, in which case the cluster
may start only if all nodes are available.

• StartPartitionedTimeout

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 60000

Range 0 - 4294967039 (0xFFFFFEFF)

2703

NDB Cluster Configuration Files

Restart Type N (NDB 7.3.1)

If the cluster is ready to start after waiting for StartPartialTimeout milliseconds but
is still possibly in a partitioned state, the cluster waits until this timeout has also passed. If
StartPartitionedTimeout is set to 0, the cluster waits indefinitely.

This parameter is overridden when performing an initial start or initial restart of the cluster.

The default timeout is 60000 milliseconds (60 seconds).

• StartFailureTimeout

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

If a data node has not completed its startup sequence within the time specified by this parameter, the
node startup fails. Setting this parameter to 0 (the default value) means that no data node timeout is
applied.

For nonzero values, this parameter is measured in milliseconds. For data nodes containing extremely
large amounts of data, this parameter should be increased. For example, in the case of a data node
containing several gigabytes of data, a period as long as 10−15 minutes (that is, 600000 to 1000000
milliseconds) might be required to perform a node restart.

• StartNoNodeGroupTimeout

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 15000

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

When a data node is configured with Nodegroup = 65536, is regarded as not being assigned to any
node group. When that is done, the cluster waits StartNoNodegroupTimeout milliseconds, then
treats such nodes as though they had been added to the list passed to the --nowait-nodes option,
and starts. The default value is 15000 (that is, the management server waits 15 seconds). Setting this
parameter equal to 0 means that the cluster waits indefinitely.

StartNoNodegroupTimeout must be the same for all data nodes in the cluster; for this reason, you
should always set it in the [ndbd default] section of the config.ini file, rather than for individual
data nodes.

See Section 18.6.7, “Adding NDB Cluster Data Nodes Online”, for more information.

• HeartbeatIntervalDbDb

Version (or later) NDB 7.3.1

Type or units milliseconds2704

NDB Cluster Configuration Files

Default 5000

Range 10 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

One of the primary methods of discovering failed nodes is by the use of heartbeats. This parameter
states how often heartbeat signals are sent and how often to expect to receive them. Heartbeats cannot
be disabled.

After missing four heartbeat intervals in a row, the node is declared dead. Thus, the maximum time for
discovering a failure through the heartbeat mechanism is five times the heartbeat interval.

In NDB Cluster 7.3 and later, the default heartbeat interval is 5000 milliseconds (5 seconds). This
parameter must not be changed drastically and should not vary widely between nodes. If one node uses
5000 milliseconds and the node watching it uses 1000 milliseconds, obviously the node is declared
dead very quickly. This parameter can be changed during an online software upgrade, but only in small
increments.

See also Network communication and latency, as well as the description of the
ConnectCheckIntervalDelay configuration parameter.

• HeartbeatIntervalDbApi

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 1500

Range 100 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

Each data node sends heartbeat signals to each MySQL server (SQL node) to ensure that it remains
in contact. If a MySQL server fails to send a heartbeat in time it is declared “dead,” in which case all
ongoing transactions are completed and all resources released. The SQL node cannot reconnect until all
activities initiated by the previous MySQL instance have been completed. The three-heartbeat criteria for
this determination are the same as described for HeartbeatIntervalDbDb.

The default interval is 1500 milliseconds (1.5 seconds). This interval can vary between individual data
nodes because each data node watches the MySQL servers connected to it, independently of all other
data nodes.

For more information, see Network communication and latency.

• HeartbeatOrder

Version (or later) NDB 7.3.1

Type or units numeric

Default 0

Range 0 - 65535

Restart Type S (NDB 7.3.1)

Data nodes send heartbeats to one another in a circular fashion whereby each data node monitors the
previous one. If a heartbeat is not detected by a given data node, this node declares the previous data
node in the circle “dead” (that is, no longer accessible by the cluster). The determination that a data node2705

NDB Cluster Configuration Files

is dead is done globally; in other words; once a data node is declared dead, it is regarded as such by all
nodes in the cluster.

It is possible for heartbeats between data nodes residing on different hosts to be too slow compared to
heartbeats between other pairs of nodes (for example, due to a very low heartbeat interval or temporary
connection problem), such that a data node is declared dead, even though the node can still function as
part of the cluster. .

In this type of situation, it may be that the order in which heartbeats are transmitted between data nodes
makes a difference as to whether or not a particular data node is declared dead. If this declaration
occurs unnecessarily, this can in turn lead to the unnecessary loss of a node group and as thus to a
failure of the cluster.

Consider a setup where there are 4 data nodes A, B, C, and D running on 2 host computers host1 and
host2, and that these data nodes make up 2 node groups, as shown in the following table:

Table 18.8 Four data nodes A, B, C, D running on two host computers host1, host2; each data
node belongs to one of two node groups.

Node Group Nodes Running on host1 Nodes Running on host2

Node Group 0: Node A Node B

Node Group 1: Node C Node D

Suppose the heartbeats are transmitted in the order A->B->C->D->A. In this case, the loss of the
heartbeat between the hosts causes node B to declare node A dead and node C to declare node B
dead. This results in loss of Node Group 0, and so the cluster fails. On the other hand, if the order of
transmission is A->B->D->C->A (and all other conditions remain as previously stated), the loss of the
heartbeat causes nodes A and D to be declared dead; in this case, each node group has one surviving
node, and the cluster survives.

The HeartbeatOrder configuration parameter makes the order of heartbeat transmission user-
configurable. The default value for HeartbeatOrder is zero; allowing the default value to be used on
all data nodes causes the order of heartbeat transmission to be determined by NDB. If this parameter
is used, it must be set to a nonzero value (maximum 65535) for every data node in the cluster, and
this value must be unique for each data node; this causes the heartbeat transmission to proceed from
data node to data node in the order of their HeartbeatOrder values from lowest to highest (and
then directly from the data node having the highest HeartbeatOrder to the data node having the
lowest value, to complete the circle). The values need not be consecutive. For example, to force the
heartbeat transmission order A->B->D->C->A in the scenario outlined previously, you could set the
HeartbeatOrder values as shown here:

Table 18.9 HeartbeatOrder values to force a heartbeat transition order of A->B->D->C->A.

Node HeartbeatOrder Value

A 10

B 20

C 30

2706

NDB Cluster Configuration Files

Node HeartbeatOrder Value

D 25

To use this parameter to change the heartbeat transmission order in a running NDB Cluster, you must
first set HeartbeatOrder for each data node in the cluster in the global configuration (config.ini)
file (or files). To cause the change to take effect, you must perform either of the following:

• A complete shutdown and restart of the entire cluster.

• 2 rolling restarts of the cluster in succession. All nodes must be restarted in the same order in both
rolling restarts.

You can use DUMP 908 to observe the effect of this parameter in the data node logs.

• ConnectCheckIntervalDelay

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter enables connection checking between data nodes after one of them has failed heartbeat
checks for 5 intervals of up to HeartbeatIntervalDbDb milliseconds.

Such a data node that further fails to respond within an interval of ConnectCheckIntervalDelay
milliseconds is considered suspect, and is considered dead after two such intervals. This can be useful
in setups with known latency issues.

The default value for this parameter is 0 (disabled).

• TimeBetweenLocalCheckpoints

Version (or later) NDB 7.3.1

Type or units number of 4-byte words, as base-2 logarithm

Default 20

Range 0 - 31

Restart Type N (NDB 7.3.1)

This parameter is an exception in that it does not specify a time to wait before starting a new local
checkpoint; rather, it is used to ensure that local checkpoints are not performed in a cluster where
relatively few updates are taking place. In most clusters with high update rates, it is likely that a new local
checkpoint is started immediately after the previous one has been completed.

The size of all write operations executed since the start of the previous local checkpoints is added.
This parameter is also exceptional in that it is specified as the base-2 logarithm of the number of 4-byte
words, so that the default value 20 means 4MB (4 × 220) of write operations, 21 would mean 8MB, and
so on up to a maximum value of 31, which equates to 8GB of write operations.

All the write operations in the cluster are added together. Setting TimeBetweenLocalCheckpoints
to 6 or less means that local checkpoints are executed continuously without pause, independent of the
cluster's workload.

2707

https://dev.mysql.com/doc/ndb-internals/en/dump-command-908.html

NDB Cluster Configuration Files

• TimeBetweenGlobalCheckpoints

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 2000

Range 20 - 32000

Restart Type N (NDB 7.3.1)

When a transaction is committed, it is committed in main memory in all nodes on which the data is
mirrored. However, transaction log records are not flushed to disk as part of the commit. The reasoning
behind this behavior is that having the transaction safely committed on at least two autonomous host
machines should meet reasonable standards for durability.

It is also important to ensure that even the worst of cases—a complete crash of the cluster—is handled
properly. To guarantee that this happens, all transactions taking place within a given interval are put into
a global checkpoint, which can be thought of as a set of committed transactions that has been flushed to
disk. In other words, as part of the commit process, a transaction is placed in a global checkpoint group.
Later, this group's log records are flushed to disk, and then the entire group of transactions is safely
committed to disk on all computers in the cluster.

This parameter defines the interval between global checkpoints. The default is 2000 milliseconds.

• TimeBetweenGlobalCheckpointsTimeout

Version (or later) NDB 7.4.5

Type or units milliseconds

Default 120000

Range 10 - 4294967039 (0xFFFFFEFF)

Version (or later) NDB 7.3.9

Type or units milliseconds

Default 120000

Range 10 - 4294967039 (0xFFFFFEFF)

Added NDB 7.3.9

Added NDB 7.4.5

Restart Type N (NDB 7.3.1)

This parameter defines the minimum timeout between global checkpoints. The default is 120000
milliseconds.

This parameter was added in NDB 7.3.9 and NDB 7.4.5. (Bug #20069617)

• TimeBetweenEpochs

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 100

Range 0 - 32000

Restart Type N (NDB 7.3.1)

2708

NDB Cluster Configuration Files

This parameter defines the interval between synchronization epochs for NDB Cluster Replication. The
default value is 100 milliseconds.

TimeBetweenEpochs is part of the implementation of “micro-GCPs”, which can be used to improve the
performance of NDB Cluster Replication.

• TimeBetweenEpochsTimeout

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 0

Range 0 - 256000

Restart Type N (NDB 7.3.1)

This parameter defines a timeout for synchronization epochs for NDB Cluster Replication. If a node fails
to participate in a global checkpoint within the time determined by this parameter, the node is shut down.
In NDB Cluster 7.3 and later, the default value is 0; in other words, the timeout is disabled.

TimeBetweenEpochsTimeout is part of the implementation of “micro-GCPs”, which can be used to
improve the performance of NDB Cluster Replication.

The current value of this parameter and a warning are written to the cluster log whenever a GCP save
takes longer than 1 minute or a GCP commit takes longer than 10 seconds.

Setting this parameter to zero has the effect of disabling GCP stops caused by save timeouts, commit
timeouts, or both. The maximum possible value for this parameter is 256000 milliseconds.

• MaxBufferedEpochs

Version (or later) NDB 7.3.1

Type or units epochs

Default 100

Range 0 - 100000

Restart Type N (NDB 7.3.1)

The number of unprocessed epochs by which a subscribing node can lag behind. Exceeding this number
causes a lagging subscriber to be disconnected.

The default value of 100 is sufficient for most normal operations. If a subscribing node does lag enough
to cause disconnections, it is usually due to network or scheduling issues with regard to processes or
threads. (In rare circumstances, the problem may be due to a bug in the NDB client.) It may be desirable
to set the value lower than the default when epochs are longer.

Disconnection prevents client issues from affecting the data node service, running out of memory to
buffer data, and eventually shutting down. Instead, only the client is affected as a result of the disconnect
(by, for example gap events in the binary log), forcing the client to reconnect or restart the process.

• MaxBufferedEpochBytes

Version (or later) NDB 7.3.1

Type or units bytes

2709

NDB Cluster Configuration Files

Default 26214400

Range 26214400 (0x01900000) - 4294967039
(0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

The total number of bytes allocated for buffering epochs by this node.

• TimeBetweenInactiveTransactionAbortCheck

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 1000

Range 1000 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

Timeout handling is performed by checking a timer on each transaction once for every interval specified
by this parameter. Thus, if this parameter is set to 1000 milliseconds, every transaction is checked for
timing out once per second.

The default value is 1000 milliseconds (1 second).

• TransactionInactiveTimeout

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 4294967039 (0xFFFFFEFF)

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter states the maximum time that is permitted to lapse between operations in the same
transaction before the transaction is aborted.

The default for this parameter is 4G (also the maximum). For a real-time database that needs to ensure
that no transaction keeps locks for too long, this parameter should be set to a relatively small value.
Setting it to 0 means that the application never times out. The unit is milliseconds.

• TransactionDeadlockDetectionTimeout

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 1200

Range 50 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

When a node executes a query involving a transaction, the node waits for the other nodes in the cluster
to respond before continuing. This parameter sets the amount of time that the transaction can spend

2710

NDB Cluster Configuration Files

executing within a data node, that is, the time that the transaction coordinator waits for each data node
participating in the transaction to execute a request.

A failure to respond can occur for any of the following reasons:

• The node is “dead”

• The operation has entered a lock queue

• The node requested to perform the action could be heavily overloaded.

This timeout parameter states how long the transaction coordinator waits for query execution by another
node before aborting the transaction, and is important for both node failure handling and deadlock
detection.

The default timeout value is 1200 milliseconds (1.2 seconds).

The minimum for this parameter is 50 milliseconds.

• DiskSyncSize

Version (or later) NDB 7.3.1

Type or units bytes

Default 4M

Range 32K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This is the maximum number of bytes to store before flushing data to a local checkpoint file. This is done
to prevent write buffering, which can impede performance significantly. This parameter is not intended to
take the place of TimeBetweenLocalCheckpoints.

Note

When ODirect is enabled, it is not necessary to set DiskSyncSize; in fact, in
such cases its value is simply ignored.

The default value is 4M (4 megabytes).

• DiskCheckpointSpeed

Version (or later) NDB 7.3.1

Type or units bytes

Default 10M

Range 1M - 4294967039 (0xFFFFFEFF)

Deprecated NDB 7.4.1

Restart Type N (NDB 7.3.1)

The amount of data, in bytes per second, that is sent to disk during a local checkpoint. This allocation
is shared by DML operations and backups (but not backup logging), which means that backups started
during times of intensive DML may be impaired by flooding of the redo log buffer and may fail altogether
if the contention is sufficiently severe.

The default value is 10M (10 megabytes per second).

2711

NDB Cluster Configuration Files

This parameter is deprecated in NDB 7.4, where setting it has no effect, and removed in NDB
7.5. Instead, use the configuration parameters MinDiskWriteSpeed, MaxDiskWriteSpeed,
MaxDiskWriteSpeedOtherNodeRestart, and MaxDiskWriteSpeedOwnRestart to control write
speeds for LCPs and backups.

• DiskCheckpointSpeedInRestart

Version (or later) NDB 7.3.1

Type or units bytes

Default 100M

Range 1M - 4294967039 (0xFFFFFEFF)

Deprecated NDB 7.4.1

Restart Type N (NDB 7.3.1)

The amount of data, in bytes per second, that is sent to disk during a local checkpoint as part of a restart
operation.

The default value is 100M (100 megabytes per second).

This parameter is deprecated in NDB 7.4, where setting it has no effect, and removed in NDB
7.5. Instead, use the configuration parameters MinDiskWriteSpeed, MaxDiskWriteSpeed,
MaxDiskWriteSpeedOtherNodeRestart, and MaxDiskWriteSpeedOwnRestart to control write
speeds for LCPs and backups.

• NoOfDiskPagesToDiskAfterRestartTUP

This parameter is deprecated and subject to removal in a future version of NDB Cluster. Use
DiskCheckpointSpeedInRestart and DiskSyncSize instead. In NDB 7.4, you should
instead use the configuration parameters MinDiskWriteSpeed, MaxDiskWriteSpeed,
MaxDiskWriteSpeedOtherNodeRestart, and MaxDiskWriteSpeedOwnRestart introduced in
that release.

• MaxDiskWriteSpeed

Version (or later) NDB 7.4.1

Type or units numeric

Default 20M

Range 1M - 1024G

Added NDB 7.4.1

Restart Type S (NDB 7.3.1)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations when no restarts (by this data node or any other data node) are taking place in this NDB
Cluster.

For setting the maximum rate of disk writes allowed while this data node is restarting, use
MaxDiskWriteSpeedOwnRestart. For setting the maximum rate of disk writes allowed while other
data nodes are restarting, use MaxDiskWriteSpeedOtherNodeRestart. The minimum speed for
disk writes by all LCPs and backup operations can be adjusted by setting MinDiskWriteSpeed.

• MaxDiskWriteSpeedOtherNodeRestart

2712

NDB Cluster Configuration Files

Version (or later) NDB 7.4.1

Type or units numeric

Default 50M

Range 1M - 1024G

Added NDB 7.4.1

Restart Type S (NDB 7.3.1)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations when one or more data nodes in this NDB Cluster are restarting, other than this node.

For setting the maximum rate of disk writes allowed while this data node is restarting, use
MaxDiskWriteSpeedOwnRestart. For setting the maximum rate of disk writes allowed when no data
nodes are restarting anywhere in the cluster, use MaxDiskWriteSpeed. The minimum speed for disk
writes by all LCPs and backup operations can be adjusted by setting MinDiskWriteSpeed.

• MaxDiskWriteSpeedOwnRestart

Version (or later) NDB 7.4.1

Type or units numeric

Default 200M

Range 1M - 1024G

Added NDB 7.4.1

Restart Type S (NDB 7.3.1)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations while this data node is restarting.

For setting the maximum rate of disk writes allowed while other data nodes are restarting, use
MaxDiskWriteSpeedOtherNodeRestart. For setting the maximum rate of disk writes allowed when
no data nodes are restarting anywhere in the cluster, use MaxDiskWriteSpeed. The minimum speed
for disk writes by all LCPs and backup operations can be adjusted by setting MinDiskWriteSpeed.

• MinDiskWriteSpeed

Version (or later) NDB 7.4.1

Type or units numeric

Default 10M

Range 1M - 1024G

Added NDB 7.4.1

Restart Type S (NDB 7.3.1)

Set the minimum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations.

The maximum rates of disk writes allowed for LCPs and backups under various conditions are
adjustable using the parameters MaxDiskWriteSpeed, MaxDiskWriteSpeedOwnRestart, and

2713

NDB Cluster Configuration Files

MaxDiskWriteSpeedOtherNodeRestart. See the descriptions of these parameters for more
information.

MinDiskWriteSpeed was added in NDB 7.4.1.

• NoOfDiskPagesToDiskAfterRestartACC

This parameter is deprecated and subject to removal in a future version of NDB Cluster. In
NDB Cluster 7.3, use DiskCheckpointSpeedInRestart and DiskSyncSize instead.
In NDB 7.4, you should use the parameters MinDiskWriteSpeed, MaxDiskWriteSpeed,
MaxDiskWriteSpeedOtherNodeRestart, and MaxDiskWriteSpeedOwnRestart.

• NoOfDiskPagesToDiskDuringRestartTUP (DEPRECATED)

This parameter is deprecated and subject to removal in a future version of NDB Cluster. In
NDB Cluster 7.3, use DiskCheckpointSpeedInRestart and DiskSyncSize instead.
In NDB 7.4, you should use the parameters MinDiskWriteSpeed, MaxDiskWriteSpeed,
MaxDiskWriteSpeedOtherNodeRestart, and MaxDiskWriteSpeedOwnRestart.

• NoOfDiskPagesToDiskDuringRestartACC (DEPRECATED)

This parameter is deprecated and subject to removal in a future version of NDB Cluster. In
NDB Cluster 7.3, use DiskCheckpointSpeedInRestart and DiskSyncSize instead.
In NDB 7.4, you should use the parameters MinDiskWriteSpeed, MaxDiskWriteSpeed,
MaxDiskWriteSpeedOtherNodeRestart, and MaxDiskWriteSpeedOwnRestart.

• ArbitrationTimeout

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 7500

Range 10 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter specifies how long data nodes wait for a response from the arbitrator to an arbitration
message. If this is exceeded, the network is assumed to have split.

In NDB Cluster 7.3 and later, the default value is 7500 milliseconds (7.5 seconds).

• Arbitration

Version (or later) NDB 7.3.1

Type or units enumeration

Default Default

Range Default, Disabled, WaitExternal

Restart Type N (NDB 7.3.1)

The Arbitration parameter enables a choice of arbitration schemes, corresponding to one of 3
possible values for this parameter:

• Default. This enables arbitration to proceed normally, as determined by the ArbitrationRank
settings for the management and API nodes. This is the default value.

2714

NDB Cluster Configuration Files

• Disabled. Setting Arbitration = Disabled in the [ndbd default] section of the
config.ini file to accomplishes the same task as setting ArbitrationRank to 0 on all
management and API nodes. When Arbitration is set in this way, any ArbitrationRank
settings are ignored.

• WaitExternal. The Arbitration parameter also makes it possible to configure arbitration in such
a way that the cluster waits until after the time determined by ArbitrationTimeout has passed for
an external cluster manager application to perform arbitration instead of handling arbitration internally.
This can be done by setting Arbitration = WaitExternal in the [ndbd default] section
of the config.ini file. For best results with the WaitExternal setting, it is recommended that
ArbitrationTimeout be 2 times as long as the interval required by the external cluster manager to
perform arbitration.

Important

This parameter should be used only in the [ndbd default] section of the
cluster configuration file. The behavior of the cluster is unspecified when
Arbitration is set to different values for individual data nodes.

• RestartSubscriberConnectTimeout

Version (or later) NDB 7.3.6

Type or units ms

Default 12000

Range 0 - 4294967039 (0xFFFFFEFF)

Added NDB 7.3.6

Restart Type N (NDB 7.3.1)

This parameter determines the time that a data node waits for subscribing API nodes to connect. Once
this timeout expires, any “missing” API nodes are disconnected from the cluster. To disable this timeout,
set RestartSubscriberConnectTimeout to 0.

While this parameter is specified in milliseconds, the timeout itself is resolved to the next-greatest whole
second.

RestartSubscriberConnectTimeout was added in NDB 7.3.6.

The heartbeat interval between management nodes and data nodes is always 100 milliseconds, and is not
configurable.

Buffering and logging. Several [ndbd] configuration parameters enable the advanced user to have
more control over the resources used by node processes and to adjust various buffer sizes at need.

These buffers are used as front ends to the file system when writing log records to disk. If the node is
running in diskless mode, these parameters can be set to their minimum values without penalty due to the
fact that disk writes are “faked” by the NDB storage engine's file system abstraction layer.

• UndoIndexBuffer

Version (or later) NDB 7.3.1

Type or units unsigned

Default 2M

2715

NDB Cluster Configuration Files

Range 1M - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type N (NDB 7.3.1)

This parameter formerly set the size of the undo index buffer, but has no effect in current versions of
NDB Cluster.

• UndoDataBuffer

Version (or later) NDB 7.3.1

Type or units unsigned

Default 16M

Range 1M - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type N (NDB 7.3.1)

This parameter formerly set the size of the undo data buffer, but has no effect in current versions of NDB
Cluster.

• RedoBuffer

Version (or later) NDB 7.3.1

Type or units bytes

Default 32M

Range 1M - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

All update activities also need to be logged. The REDO log makes it possible to replay these updates
whenever the system is restarted. The NDB recovery algorithm uses a “fuzzy” checkpoint of the
data together with the UNDO log, and then applies the REDO log to play back all changes up to the
restoration point.

RedoBuffer sets the size of the buffer in which the REDO log is written. The default value is 32MB; the
minimum value is 1MB.

If this buffer is too small, the NDB storage engine issues error code 1221 (REDO log buffers
overloaded). For this reason, you should exercise care if you attempt to decrease the value of
RedoBuffer as part of an online change in the cluster's configuration.

ndbmtd allocates a separate buffer for each LDM thread (see ThreadConfig). For example, with 4
LDM threads, an ndbmtd data node actually has 4 buffers and allocates RedoBuffer bytes to each
one, for a total of 4 * RedoBuffer bytes.

• EventLogBufferSize

Version (or later) NDB 7.3.1

Type or units bytes

Default 8192

Range 0 - 64K2716

NDB Cluster Configuration Files

Restart Type S (NDB 7.3.1)

Controls the size of the circular buffer used for NDB log events within data nodes.

Controlling log messages. In managing the cluster, it is very important to be able to control the
number of log messages sent for various event types to stdout. For each event category, there are 16
possible event levels (numbered 0 through 15). Setting event reporting for a given event category to level
15 means all event reports in that category are sent to stdout; setting it to 0 means that no event reports
are made in that category.

By default, only the startup message is sent to stdout, with the remaining event reporting level defaults
being set to 0. The reason for this is that these messages are also sent to the management server's cluster
log.

An analogous set of levels can be set for the management client to determine which event levels to record
in the cluster log.

• LogLevelStartup

Version (or later) NDB 7.3.1

Type or units integer

Default 1

Range 0 - 15

Restart Type N (NDB 7.3.1)

The reporting level for events generated during startup of the process.

The default level is 1.

• LogLevelShutdown

Version (or later) NDB 7.3.1

Type or units integer

Default 0

Range 0 - 15

Restart Type N (NDB 7.3.1)

The reporting level for events generated as part of graceful shutdown of a node.

The default level is 0.

• LogLevelStatistic

Version (or later) NDB 7.3.1

Type or units integer

Default 0

Range 0 - 15

Restart Type N (NDB 7.3.1)

The reporting level for statistical events such as number of primary key reads, number of updates,
number of inserts, information relating to buffer usage, and so on.

2717

NDB Cluster Configuration Files

The default level is 0.

• LogLevelCheckpoint

Version (or later) NDB 7.3.1

Type or units log level

Default 0

Range 0 - 15

Restart Type N (NDB 7.3.1)

The reporting level for events generated by local and global checkpoints.

The default level is 0.

• LogLevelNodeRestart

Version (or later) NDB 7.3.1

Type or units integer

Default 0

Range 0 - 15

Restart Type N (NDB 7.3.1)

The reporting level for events generated during node restart.

The default level is 0.

• LogLevelConnection

Version (or later) NDB 7.3.1

Type or units integer

Default 0

Range 0 - 15

Restart Type N (NDB 7.3.1)

The reporting level for events generated by connections between cluster nodes.

The default level is 0.

• LogLevelError

Version (or later) NDB 7.3.1

Type or units integer

Default 0

Range 0 - 15

2718

NDB Cluster Configuration Files

Restart Type N (NDB 7.3.1)

The reporting level for events generated by errors and warnings by the cluster as a whole. These errors
do not cause any node failure but are still considered worth reporting.

The default level is 0.

• LogLevelCongestion

Version (or later) NDB 7.3.1

Type or units level

Default 0

Range 0 - 15

Restart Type N (NDB 7.3.1)

The reporting level for events generated by congestion. These errors do not cause node failure but are
still considered worth reporting.

The default level is 0.

• LogLevelInfo

Version (or later) NDB 7.3.1

Type or units integer

Default 0

Range 0 - 15

Restart Type N (NDB 7.3.1)

The reporting level for events generated for information about the general state of the cluster.

The default level is 0.

• MemReportFrequency

Version (or later) NDB 7.3.1

Type or units unsigned

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter controls how often data node memory usage reports are recorded in the cluster log; it is
an integer value representing the number of seconds between reports.

Each data node's data memory and index memory usage is logged as both a percentage and a number
of 32 KB pages of the DataMemory and IndexMemory, respectively, set in the config.ini file. For

2719

NDB Cluster Configuration Files

example, if DataMemory is equal to 100 MB, and a given data node is using 50 MB for data memory
storage, the corresponding line in the cluster log might look like this:

2006-12-24 01:18:16 [MgmSrvr] INFO -- Node 2: Data usage is 50%(1280 32K pages of total 2560)

MemReportFrequency is not a required parameter. If used, it can be set for all cluster data nodes in
the [ndbd default] section of config.ini, and can also be set or overridden for individual data
nodes in the corresponding [ndbd] sections of the configuration file. The minimum value—which is also
the default value—is 0, in which case memory reports are logged only when memory usage reaches
certain percentages (80%, 90%, and 100%), as mentioned in the discussion of statistics events in
Section 18.6.3.2, “NDB Cluster Log Events”.

• StartupStatusReportFrequency

Version (or later) NDB 7.3.1

Type or units seconds

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

When a data node is started with the --initial, it initializes the redo log file during Start Phase
4 (see Section 18.6.4, “Summary of NDB Cluster Start Phases”). When very large values are set
for NoOfFragmentLogFiles, FragmentLogFileSize, or both, this initialization can take a long
time.You can force reports on the progress of this process to be logged periodically, by means of the
StartupStatusReportFrequency configuration parameter. In this case, progress is reported in the
cluster log, in terms of both the number of files and the amount of space that have been initialized, as
shown here:

2009-06-20 16:39:23 [MgmSrvr] INFO -- Node 1: Local redo log file initialization status:
#Total files: 80, Completed: 60
#Total MBytes: 20480, Completed: 15557
2009-06-20 16:39:23 [MgmSrvr] INFO -- Node 2: Local redo log file initialization status:
#Total files: 80, Completed: 60
#Total MBytes: 20480, Completed: 15570

These reports are logged each StartupStatusReportFrequency seconds during Start Phase 4. If
StartupStatusReportFrequency is 0 (the default), then reports are written to the cluster log only
when at the beginning and at the completion of the redo log file initialization process.

Data Node Debugging Parameters. In NDB Cluster 7.3 and later, it is possible to cause logging of
traces for events generated by creating and dropping tables using DictTrace. This parameter is useful
only in debugging NDB kernel code. DictTrace takes an integer value. 0 (default - no logging) and 1
(logging enabled) are the only supported values prior to NDB 7.4.12. In NDB 7.4.12 and later, setting this
parameter to 2 enables logging of additional DBDICT debugging output (Bug #20368450).

Backup parameters. The [ndbd] parameters discussed in this section define memory buffers set
aside for execution of online backups.

• BackupDataBufferSize

Version (or later) NDB 7.3.1

Type or units bytes

Default 16M

Range 0 - 4294967039 (0xFFFFFEFF)

2720

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html

NDB Cluster Configuration Files

Version (or later) NDB 7.4.8

Type or units bytes

Default 16M

Range 2M - 4294967039 (0xFFFFFEFF)

Version (or later) NDB 7.4.11

Type or units bytes

Default 16M

Range 512K - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 7.6)

Restart Type N (NDB 7.3.1)

In creating a backup, there are two buffers used for sending data to the disk. The backup data buffer
is used to fill in data recorded by scanning a node's tables. Once this buffer has been filled to the level
specified as BackupWriteSize, the pages are sent to disk. While flushing data to disk, the backup
process can continue filling this buffer until it runs out of space. When this happens, the backup process
pauses the scan and waits until some disk writes have completed freeing up memory so that scanning
may continue.

The default value for this parameter is 16MB. The minimum was raised to 2M in NDB 7.4.8, then lowered
to 512K in NDB 7.4.11. (Bug #22749509)

• BackupDiskWriteSpeedPct

Version (or later) NDB 7.4.8

Type or units percent

Default 50

Range 0 - 90

Added NDB 7.4.8

Restart Type N (NDB 7.3.1)

During normal operation, data nodes attempt to maximize the disk write speed used for local
checkpoints and backups while remaining within the bounds set by MinDiskWriteSpeed and
MaxDiskWriteSpeed. In NDB Cluster 7.4, the implementation of disk write throttling has been changed
to give each LDM thread an equal share of the total budget. This allows parallel LCPs to take place
without exceeding the disk I/O budget. Because a backup is executed by only one LDM thread, this
effectively caused a budget cut, resulting in longer backup completion times, and—if the rate of change
is sufficiently high—in failure to complete the backup when the backup log buffer fill rate is higher than
the achievable write rate.

This problem is addressed in NDB 7.4.8 and later by the addition of the BackupDiskWriteSpeedPct
configuration parameter (Bug #20204854). This parameter takes a value in the range 0-90 (inclusive)
which is interpreted as the percentage of the node's maximum write rate budget that is reserved prior
to sharing out the remainder of the budget among LDM threads for LCPs. The LDM thread running
the backup receives the whole write rate budget for the backup, plus its (reduced) share of the write
rate budget for local checkpoints. This makes the disk write rate budget in NDB 7.4.8 and later behave
similarly to how it is handled in NDB Cluster 7.3 and previous NDB Cluster release series.

The default value for this parameter is 50 (interpreted as 50%).

2721

NDB Cluster Configuration Files

• BackupLogBufferSize

Version (or later) NDB 7.3.1

Type or units bytes

Default 16M

Range 0 - 4294967039 (0xFFFFFEFF)

Version (or later) NDB 7.4.8

Type or units bytes

Default 16M

Range 2M - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

The backup log buffer fulfills a role similar to that played by the backup data buffer, except that it is
used for generating a log of all table writes made during execution of the backup. The same principles
apply for writing these pages as with the backup data buffer, except that when there is no more space
in the backup log buffer, the backup fails. For that reason, the size of the backup log buffer must
be large enough to handle the load caused by write activities while the backup is being made. See
Section 18.6.8.3, “Configuration for NDB Cluster Backups”.

The default value for this parameter should be sufficient for most applications. In fact, it is more likely
for a backup failure to be caused by insufficient disk write speed than it is for the backup log buffer to
become full. If the disk subsystem is not configured for the write load caused by applications, the cluster
is unlikely to be able to perform the desired operations.

It is preferable to configure cluster nodes in such a manner that the processor becomes the bottleneck
rather than the disks or the network connections.

The default value for this parameter is 16MB.

• BackupMemory

Version (or later) NDB 7.3.1

Type or units bytes

Default 32M

Range 0 - 4294967039 (0xFFFFFEFF)

Deprecated NDB 7.4.8

Restart Type N (NDB 7.3.1)

This parameter is deprecated, and is subject to removal in a future version of NDB Cluster. In NDB
Cluster 7.5 and later, it is ignored.

• BackupReportFrequency

Version (or later) NDB 7.3.1

Type or units seconds

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

2722

NDB Cluster Configuration Files

Restart Type N (NDB 7.3.1)

This parameter controls how often backup status reports are issued in the management client during a
backup, as well as how often such reports are written to the cluster log (provided cluster event logging
is configured to permit it—see Logging and checkpointing). BackupReportFrequency represents the
time in seconds between backup status reports.

The default value is 0.

• BackupWriteSize

Version (or later) NDB 7.3.1

Type or units bytes

Default 256K

Range 2K - 4294967039 (0xFFFFFEFF)

Version (or later) NDB 7.4.8

Type or units bytes

Default 256K

Range 32K - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 7.6)

Restart Type N (NDB 7.3.1)

This parameter specifies the default size of messages written to disk by the backup log and backup data
buffers.

The default value for this parameter is 256KB.

• BackupMaxWriteSize

Version (or later) NDB 7.3.1

Type or units bytes

Default 1M

Range 2K - 4294967039 (0xFFFFFEFF)

Version (or later) NDB 7.4.8

Type or units bytes

Default 1M

Range 256K - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 7.6)

Restart Type N (NDB 7.3.1)

This parameter specifies the maximum size of messages written to disk by the backup log and backup
data buffers.

The default value for this parameter is 1MB.

• CompressedBackup

Version (or later) NDB 7.3.1

2723

NDB Cluster Configuration Files

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 7.3.1)

Enabling this parameter causes backup files to be compressed. The compression used is equivalent
to gzip --fast, and can save 50% or more of the space required on the data node to store
uncompressed backup files. Compressed backups can be enabled for individual data nodes, or for all
data nodes (by setting this parameter in the [ndbd default] section of the config.ini file).

Important

You cannot restore a compressed backup to a cluster running a MySQL version
that does not support this feature.

The default value is 0 (disabled).

Note

The location of the backup files is determined by the BackupDataDir data node
configuration parameter.

Additional requirements. When specifying these parameters, the following relationships must hold
true. Otherwise, the data node cannot start.

• BackupDataBufferSize >= BackupWriteSize + 188KB

• BackupLogBufferSize >= BackupWriteSize + 16KB

• BackupMaxWriteSize >= BackupWriteSize

NDB Cluster Realtime Performance Parameters

The [ndbd] parameters discussed in this section are used in scheduling and locking of threads to specific
CPUs on multiprocessor data node hosts.

Note

To make use of these parameters, the data node process must be run as system
root.

• BuildIndexThreads

Version (or later) NDB 7.3.1

Type or units numeric

Default 0

Range 0 - 128

Restart Type N (NDB 7.3.1)

This parameter determines the number of threads to create when rebuilding ordered indexes during a
system or node start, as well as when running ndb_restore --rebuild-indexes. It is supported
only when there is more than one fragment for the table per data node (for example, when the
MAX_ROWS option has been used with CREATE TABLE).

Setting this parameter to 0 (the default) disables multithreaded building of ordered indexes.

2724

NDB Cluster Configuration Files

This parameter is supported when using ndbd or ndbmtd.

You can enable multithreaded builds during data node initial restarts by setting the
TwoPassInitialNodeRestartCopy data node configuration parameter to TRUE.

• LockExecuteThreadToCPU

Version (or later) NDB 7.3.1

Type or units set of CPU IDs

Default 0

Range ...

Restart Type N (NDB 7.3.1)

When used with ndbd, this parameter (now a string) specifies the ID of the CPU assigned to handle
the NDBCLUSTER execution thread. When used with ndbmtd, the value of this parameter is a comma-
separated list of CPU IDs assigned to handle execution threads. Each CPU ID in the list should be an
integer in the range 0 to 65535 (inclusive).

The number of IDs specified should match the number of execution threads determined by
MaxNoOfExecutionThreads. However, there is no guarantee that threads are assigned to CPUs in
any given order when using this parameter. You can obtain more finely-grained control of this type using
ThreadConfig.

LockExecuteThreadToCPU has no default value.

• LockMaintThreadsToCPU

Version (or later) NDB 7.3.1

Type or units CPU ID

Default 0

Range 0 - 64K

Restart Type N (NDB 7.3.1)

This parameter specifies the ID of the CPU assigned to handle NDBCLUSTER maintenance threads.

The value of this parameter is an integer in the range 0 to 65535 (inclusive). In NDB Cluster 7.3 and
later, there is no default value.

• Numa

Version (or later) NDB 7.3.1

Type or units numeric

Default 1

Range ...

Restart Type N (NDB 7.3.1)

This parameter determines whether Non-Uniform Memory Access (NUMA) is controlled by the operating
system or by the data node process, whether the data node uses ndbd or ndbmtd. By default, NDB
attempts to use an interleaved NUMA memory allocation policy on any data node where the host
operating system provides NUMA support.

2725

NDB Cluster Configuration Files

Setting Numa = 0 means that the datanode process does not itself attempt to set a policy for memory
allocation, and permits this behavior to be determined by the operating system, which may be further
guided by the separate numactl tool. That is, Numa = 0 yields the system default behavior, which can
be customised by numactl. For many Linux systems, the system default behavior is to allocate socket-
local memory to any given process at allocation time. This can be problematic when using ndbmtd; this
is because nbdmtd allocates all memory at startup, leading to an imbalance, giving different access
speeds for different sockets, especially when locking pages in main memory.

Setting Numa = 1 means that the data node process uses libnuma to request interleaved memory
allocation. (This can also be accomplished manually, on the operating system level, using numactl.)
Using interleaved allocation in effect tells the data node process to ignore non-uniform memory access
but does not attempt to take any advantage of fast local memory; instead, the data node process tries to
avoid imbalances due to slow remote memory. If interleaved allocation is not desired, set Numa to 0 so
that the desired behavior can be determined on the operating system level.

The Numa configuration parameter is supported only on Linux systems where libnuma.so is available.

• RealtimeScheduler

Version (or later) NDB 7.3.1

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 7.3.1)

Setting this parameter to 1 enables real-time scheduling of data node threads.

Prior to NDB 7.3.3, this parameter did not work correctly with data nodes running ndbmtd. (Bug
#16961971)

The default is 0 (scheduling disabled).

• SchedulerExecutionTimer

Version (or later) NDB 7.3.1

Type or units µs

Default 50

Range 0 - 11000

Restart Type N (NDB 7.3.1)

This parameter specifies the time in microseconds for threads to be executed in the scheduler before
being sent. Setting it to 0 minimizes the response time; to achieve higher throughput, you can increase
the value at the expense of longer response times.

The default is 50 μsec, which our testing shows to increase throughput slightly in high-load cases without
materially delaying requests.

• SchedulerResponsiveness

Version (or later) NDB 7.4.9

Type or units integer

2726

NDB Cluster Configuration Files

Default 5

Range 0 - 10

Added NDB 7.4.9

Restart Type N (NDB 7.3.1)

Set the balance in the NDB scheduler between speed and throughput. This parameter takes an integer
whose value is in the range 0-10 inclusive, with 5 as the default. (This is the same as the previous hard-
coded value for this parameter.) Higher values provide better response times relative to throughput.
Lower values provide increased throughput at the expense of longer response times.

The SchedulerResponsiveness parameter was added in NDB 7.4.9, but did not become effective
until NDB 7.4.11 (Bug #80341, Bug #22712481).

• SchedulerSpinTimer

Version (or later) NDB 7.3.1

Type or units µs

Default 0

Range 0 - 500

Restart Type N (NDB 7.3.1)

This parameter specifies the time in microseconds for threads to be executed in the scheduler before
sleeping.

The default value is 0.

• TwoPassInitialNodeRestartCopy

Version (or later) NDB 7.3.1

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 7.3.1)

Multithreaded building of ordered indexes can be enabled for initial restarts of data nodes by setting this
configuration parameter to TRUE, which enables two-pass copying of data during initial node restarts.

You must also set BuildIndexThreads to a nonzero value.

Multi-Threading Configuration Parameters (ndbmtd). ndbmtd runs by default as a single-threaded
process and must be configured to use multiple threads, using either of two methods, both of which require
setting configuration parameters in the config.ini file. The first method is simply to set an appropriate
value for the MaxNoOfExecutionThreads configuration parameter. A second method makes it possible
to set up more complex rules for ndbmtd multithreading using ThreadConfig. The next few paragraphs
provide information about these parameters and their use with multithreaded data nodes.

• MaxNoOfExecutionThreads

Version (or later) NDB 7.3.1

Type or units integer 2727

NDB Cluster Configuration Files

Default 2

Range 2 - 8

Version (or later) NDB 7.3.2

Type or units integer

Default 2

Range 2 - 36

Version (or later) NDB 7.3.3

Type or units integer

Default 2

Range 2 - 72

Restart Type IS (NDB 7.3.1)

This parameter directly controls the number of execution threads used by ndbmtd, up to a maximum of
72 (previous to NDB 7.3.3, this was 36). Although this parameter is set in [ndbd] or [ndbd default]
sections of the config.ini file, it is exclusive to ndbmtd and does not apply to ndbd.

Setting MaxNoOfExecutionThreads sets the number of threads for each type as determined by a
matrix in the file storage/ndb/src/kernel/vm/mt_thr_config.cpp. This table shows these
numbers of threads for possible values of MaxNoOfExecutionThreads.

Table 18.10 MaxNoOfExecutionThreads values and the corresponding number of threads by
thread type (LQH, TC, Send, Receive)

MaxNoOfExecutionThreads
Value

LDM Threads TC Threads Send Threads Receive Threads

0 .. 3 1 0 0 1

4 .. 6 2 0 0 1

7 .. 8 4 0 0 1

9 4 2 0 1

10 4 2 1 1

11 4 3 1 1

12 6 2 1 1

13 6 3 1 1

14 6 3 1 2

15 6 3 2 2

16 8 3 1 2

17 8 4 1 2

18 8 4 2 2

19 8 5 2 2

20 10 4 2 2

21 10 5 2 2

22 10 5 2 3

23 10 6 2 3

2728

NDB Cluster Configuration Files

MaxNoOfExecutionThreads
Value

LDM Threads TC Threads Send Threads Receive Threads

24 12 5 2 3

25 12 6 2 3

26 12 6 3 3

27 12 7 3 3

28 12 7 3 4

29 12 8 3 4

30 12 8 4 4

31 12 9 4 4

32 16 8 3 3

33 16 8 3 4

34 16 8 4 4

35 16 9 4 4

36 16 10 4 4

37 16 10 4 5

38 16 11 4 5

39 16 11 5 5

40 20 10 4 4

41 20 10 4 5

42 20 11 4 5

43 20 11 5 5

44 20 12 5 5

45 20 12 5 6

46 20 13 5 6

47 20 13 6 6

48 24 12 5 5

49 24 12 5 6

50 24 13 5 6

51 24 13 6 6

52 24 14 6 6

53 24 14 6 7

54 24 15 6 7

55 24 15 7 7

56 24 16 7 7

57 24 16 7 8

58 24 17 7 8

59 24 17 8 8

60 24 18 8 8

2729

NDB Cluster Configuration Files

MaxNoOfExecutionThreads
Value

LDM Threads TC Threads Send Threads Receive Threads

61 24 18 8 9

62 24 19 8 9

63 24 19 9 9

64 32 16 7 7

65 32 16 7 8

66 32 17 7 8

67 32 17 8 8

68 32 18 8 8

69 32 18 8 9

70 32 19 8 9

71 32 20 8 9

72 32 20 8 10

There is always one SUMA (replication) thread.

NoOfFragmentLogParts should be set equal to the number of LDM threads used by ndbmtd as
determined by the setting for MaxNoOfExecutionThreads. This ratio should not be any greater than
4:1; beginning with NDB 7.4.16, a configuration in which this is the case is specifically disallowed. (Bug
#25333414)

The number of LDM threads also determines the number of partitions used by an NDB table that is not
explicitly partitioned; this is the number of LDM threads times the number of data nodes in the cluster.
(If ndbd is used on the data nodes rather than ndbmtd, then there is always a single LDM thread; in
this case, the number of partitions created automatically is simply equal to the number of data nodes.
See Section 18.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”, for more
information.

Adding large tablespaces for Disk Data tables when using more than the default number of LDM threads
may cause issues with resource and CPU usage if the disk page buffer is insufficiently large; see the
description of the DiskPageBufferMemory configuration parameter, for more information.

The thread types are described later in this section (see ThreadConfig).

Setting this parameter outside the permitted range of values causes the management server to abort
on startup with the error Error line number: Illegal value value for parameter
MaxNoOfExecutionThreads.

For MaxNoOfExecutionThreads, a value of 0 or 1 is rounded up internally by NDB to 2, so that 2 is
considered this parameter's default and minimum value.

MaxNoOfExecutionThreads is generally intended to be set equal to the number of CPU threads
available, and to allocate a number of threads of each type suitable to typical workloads. It does not
assign particular threads to specified CPUs. For cases where it is desirable to vary from the settings

2730

NDB Cluster Configuration Files

provided, or to bind threads to CPUs, you should use ThreadConfig instead, which allows you to
allocate each thread directly to a desired type, CPU, or both.

The multithreaded data node process always spawns, at a minimum, the threads listed here:

• 1 local query handler (LDM) thread

• 1 receive thread

• 1 subscription manager (SUMA or replication) thread

For a MaxNoOfExecutionThreads value of 8 or less, no TC threads are created, and TC handling is
instead performed by the main thread.

Changing the number of LDM threads always requires a system restart, whether it is changed using this
parameter or ThreadConfig. If the cluster's IndexMemory usage is greater than 50%, changing this
requires an initial restart of the cluster. (A maximum of 30-35% IndexMemory usage is recommended in
such cases.) Otherwise, resource usage and LDM thread allocation cannot be balanced between nodes,
which can result in underutilized and overutilized LDM threads, and ultimately data node failures.

• NoOfFragmentLogParts

Version (or later) NDB 7.3.1

Type or units numeric

Default 4

Range 4, 8, 12, 16

Version (or later) NDB 7.3.3

Type or units numeric

Default 4

Range 4, 6, 8, 10, 12, 16, 20, 24, 32

Restart Type IN (NDB 7.3.1)

Set the number of log file groups for redo logs belonging to this ndbmtd. The value of this parameter
should be set equal to the number of LDM threads used by ndbmtd as determined by the setting for
MaxNoOfExecutionThreads. Beginning with NDB 7.4.16, a configuration where this number is any
greater than 4 is disallowed. (Bug #25333414)

See the description of MaxNoOfExecutionThreads for more information.

• ThreadConfig

Version (or later) NDB 7.3.1

Type or units string

Default ''

Range ...

Restart Type IS (NDB 7.3.1)

This parameter is used with ndbmtd to assign threads of different types to different CPUs. Its value is a
string whose format has the following syntax:

ThreadConfig := entry[,entry[,...]]
2731

NDB Cluster Configuration Files

entry := type={param[,param[,...]]}

type := ldm | main | recv | send | rep | io | tc | watchdog

param := count=number
 | cpubind=cpu_list
 | cpuset=cpu_list
 | spintime=number
 | realtime={0|1}

The curly braces ({...}) surrounding the list of parameters are required, even if there is only one
parameter in the list.

A param (parameter) specifies any or all of the following information:

• The number of threads of the given type (count).

• The set of CPUs to which the threads of the given type are to be nonexclusively bound. This is
determined by either one of cpubind or cpuset). cpubind causes each thread to be bound
(nonexclusively) to a CPU in the set; cpuset means that each thread is bound (nonexclusively) to the
set of CPUs specified.

Only one of cpubind or cpuset can be provided in a single configuration.

• spintime determines the wait time in microseconds the thread spins before going to sleep.

The default value for spintime is the value of the SchedulerSpinTimer data node configuration
parameter.

spintime does not apply to I/O threads or watchdog threads and so cannot be set for these thread
types.

• realtime can be set to 0 or 1. If it is set to 1, the threads run with real-time priority. This also means
that thread_prio cannot be set.

The realtime parameter is set by default to the value of the RealtimeScheduler data node
configuration parameter.

The type attribute represents an NDB thread type. The thread types supported in NDB Cluster 7.3 and
later, and the range of permitted count values for each, are provided in the following list:

• ldm: Local query handler (DBLQH kernel block) that handles data. The more LDM threads that are
used, the more highly partitioned the data becomes. Each LDM thread maintains its own sets of data
and index partitions, as well as its own redo log. The value set for ldm must be one of the values 1, 2,
4, 6, 8, 12, 16, 24, or 32. (Prior to NDB 7.3.3, the maximum value was 16.)

Changing the number of LDM threads requires a system restart to be effective and safe for
cluster operations. (This is also true when this is done using MaxNoOfExecutionThreads.) If
IndexMemory usage is in excess of 50%, an initial restart of the cluster is required; a maximum
of 30-35% IndexMemory usage is recommended in such cases. Otherwise, IndexMemory and
DataMemory usage as well as the allocation of LDM threads cannot be balanced between nodes,
which can ultimately lead to data node failures.

Adding large tablespaces (hundreds of gigabytes or more) for Disk Data tables when using
more than the default number of LDMs may cause issues with resource and CPU usage if
DiskPageBufferMemory is not sufficiently large.

2732

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html

NDB Cluster Configuration Files

• tc: Transaction coordinator thread (DBTC kernel block) containing the state of an ongoing transaction.
In NDB Cluster 7.3 and later, the number of TC threads is configurable; a total of 32 is possible in NDB
7.3.3 and later; previously this was 16.

Optimally, every new transaction can be assigned to a new TC thread. In most cases 1 TC thread per
2 LDM threads is sufficient to guarantee that this can happen. In cases where the number of writes
is relatively small when compared to the number of reads, it is possible that only 1 TC thread per 4
LQH threads is required to maintain transaction states. Conversely, in applications that perform a
great many updates, it may be necessary for the ratio of TC threads to LDM threads to approach 1 (for
example, 3 TC threads to 4 LDM threads).

Setting tc to 0 causes TC handling to be done by the main thread. In most cases, this is effectively
the same as setting it to 1.

Range: (NDB 7.3.3 and later) 0 - 32; (NDB 7.3.2 and earlier) 0 - 16.

• main: Data dictionary and transaction coordinator (DBDIH and DBTC kernel blocks), providing schema
management. This is always handled by a single dedicated thread.

Range: 1 only.

• recv: Receive thread (CMVMI kernel block). Each receive thread handles one or more sockets for
communicating with other nodes in an NDB Cluster, with one socket per node. NDB Cluster 7.3 and
later support multiple receive threads. In NDB 7.3.2 and earlier, the maximum is 8 such threads; in
NDB 7.3.3 and later, the maximum is 16.

Range: (NDB 7.3.3 and later) 1 - 16; (NDB 7.3.2 and earlier) 1 - 8.

• send: Send thread (CMVMI kernel block). To increase throughput, it is possible to perform sends from
one or more separate, dedicated threads (maximum 8).

Previously, all threads handled their own sending directly; this can still be made to happen by setting
the number of send threads to 0 (this also happens when MaxNoOfExecutionThreads is set less
than 10). While doing so can have an adeverse impact on throughput, it can also in some cases
provide decreased latency.

Range: (NDB 7.3.3 and later) 0 - 16; (NDB 7.3.2 and earlier) 0 - 8.

• rep: Replication thread (SUMA kernel block). Asynchronous replication operations are always handled
by a single, dedicated thread.

Range: 1 only.

• io: File system and other miscellaneous operations. These are not demanding tasks, and are always
handled as a group by a single, dedicated I/O thread.

Range: 1 only.

• watchdog: Settings to this parameter are actually applied to several threads of this type having
specific uses. These threads include the SocketServer thread which receives connection setups
from other nodes, the SocketClient thread which attempts to set up connections to other nodes,
and the thread watchdog thread that checks that threads are progressing.

Range: 1 only.

Simple examples:

2733

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-cmvmi.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-cmvmi.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html

NDB Cluster Configuration Files

Example 1.

ThreadConfig=ldm={count=2,cpubind=1,2},main={cpubind=12},rep={cpubind=11}

Example 2.

Threadconfig=main={cpubind=0},ldm={count=4,cpubind=1,2,5,6},io={cpubind=3}

It is usually desirable when configuring thread usage for a data node host to reserve one or more
number of CPUs for operating system and other tasks. Thus, for a host machine with 24 CPUs, you
might want to use 20 CPU threads (leaving 4 for other uses), with 8 LDM threads, 4 TC threads
(half the number of LDM threads), 3 send threads, 3 receive threads, and 1 thread each for schema
management, asynchronous replication, and I/O operations. (This is almost the same distribution of
threads used when MaxNoOfExecutionThreads is set equal to 20.) The following ThreadConfig
setting performs these assignments, additionally binding all of these threads to specific CPUs:

ThreadConfig=ldm{count=8,cpubind=1,2,3,4,5,6,7,8},main={cpubind=9},io={cpubind=9}, \
rep={cpubind=10},tc{count=4,cpubind=11,12,13,14},recv={count=3,cpubind=15,16,17}, \
send{count=3,cpubind=18,19,20}

It should be possible in most cases to bind the main (schema management) thread and the I/O thread to
the same CPU, as we have done in the example just shown.

In order to take advantage of the enhanced stability that the use of ThreadConfig offers, it is
necessary to insure that CPUs are isolated, and that they not subject to interrupts, or to being
scheduled for other tasks by the operating system. On many Linux systems, you can do this by setting
IRQBALANCE_BANNED_CPUS in /etc/sysconfig/irqbalance to 0xFFFFF0, and by using the
isolcpus boot option in grub.conf. For specific information, see your operating system or platform
documentation.

Disk Data Configuration Parameters. Configuration parameters affecting Disk Data behavior include
the following:

• DiskPageBufferEntries

Version (or later) NDB 7.3.8

Type or units 32K pages

Default 10

Range 1 - 1000

Version (or later) NDB 7.4.3

Type or units 32K pages

Default 10

Range 1 - 1000

Added NDB 7.3.8

Added NDB 7.4.3

Restart Type N (NDB 7.3.1)

This is the number of page entries (page references) to allocate. It is specified as a number of 32K
pages in DiskPageBufferMemory. The default is sufficient for most cases but you may need to
increase the value of this parameter if you encounter problems with very large transactions on Disk Data
tables. Each page entry requires approximately 100 bytes.

• DiskPageBufferMemory

2734

NDB Cluster Configuration Files

Version (or later) NDB 7.3.1

Type or units bytes

Default 64M

Range 4M - 1T

Restart Type N (NDB 7.3.1)

This determines the amount of space used for caching pages on disk, and is set in the [ndbd] or
[ndbd default] section of the config.ini file. It is measured in bytes. Each page takes up 32
KB. This means that NDB Cluster Disk Data storage always uses N * 32 KB memory where N is some
nonnegative integer.

The default value for this parameter is 64M (2000 pages of 32 KB each).

If the value for DiskPageBufferMemory is set too low in conjunction with using more than the default
number of LDM threads in ThreadConfig (for example {ldm=6...}), problems can arise when
trying to add a large (for example 500G) data file to a disk-based NDB table, wherein the process takes
indefinitely long while occupying one of the CPU cores.

This is due to the fact that, as part of adding a data file to a tablespace, extent pages are locked into
memory in an extra PGMAN worker thread, for quick metadata access. When adding a large file,
this worker has insufficient memory for all of the data file metadata. In such cases, you should either
increase DiskPageBufferMemory, or add smaller tablespace files. You may also need to adjust
DiskPageBufferEntries.

You can query the ndbinfo.diskpagebuffer table to help determine whether the value for this
parameter should be increased to minimize unnecessary disk seeks. See Section 18.6.15.12, “The
ndbinfo diskpagebuffer Table”, for more information.

• SharedGlobalMemory

Version (or later) NDB 7.3.1

Type or units bytes

Default 128M

Range 0 - 64T

Restart Type N (NDB 7.3.1)

This parameter determines the amount of memory that is used for log buffers, disk operations (such
as page requests and wait queues), and metadata for tablespaces, log file groups, UNDO files, and
data files. The shared global memory pool also provides memory used for satisfying the memory
requirements of the UNDO_BUFFER_SIZE option used with CREATE LOGFILE GROUP and ALTER
LOGFILE GROUP statements, including any default value implied for this options by the setting of the
InitialLogFileGroup data node configuration parameter. SharedGlobalMemory can be set in the
[ndbd] or [ndbd default] section of the config.ini configuration file, and is measured in bytes.

The default value is 128M.

• DiskIOThreadPool

Version (or later) NDB 7.3.1

Type or units threads

2735

NDB Cluster Configuration Files

Default 2

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter determines the number of unbound threads used for Disk Data file access. Before
DiskIOThreadPool was introduced, exactly one thread was spawned for each Disk Data
file, which could lead to performance issues, particularly when using very large data files. With
DiskIOThreadPool, you can—for example—access a single large data file using several threads
working in parallel.

This parameter applies to Disk Data I/O threads only.

The optimum value for this parameter depends on your hardware and configuration, and includes these
factors:

• Physical distribution of Disk Data files. You can obtain better performance by placing data files,
undo log files, and the data node file system on separate physical disks. If you do this with some or
all of these sets of files, then you can set DiskIOThreadPool higher to enable separate threads to
handle the files on each disk.

• Disk performance and types. The number of threads that can be accommodated for Disk
Data file handling is also dependent on the speed and throughput of the disks. Faster disks and
higher throughput allow for more disk I/O threads. Our test results indicate that solid-state disk
drives can handle many more disk I/O threads than conventional disks, and thus higher values for
DiskIOThreadPool.

The default value for this parameter is 2.

• Disk Data file system parameters. The parameters in the following list make it possible to place
NDB Cluster Disk Data files in specific directories without the need for using symbolic links.

• FileSystemPathDD

Version (or later) NDB 7.3.1

Type or units filename

Default FileSystemPath

Range ...

Restart Type IN (NDB 7.3.1)

If this parameter is specified, then NDB Cluster Disk Data data files and undo log files are placed
in the indicated directory. This can be overridden for data files, undo log files, or both, by specifying
values for FileSystemPathDataFiles, FileSystemPathUndoFiles, or both, as explained for
these parameters. It can also be overridden for data files by specifying a path in the ADD DATAFILE
clause of a CREATE TABLESPACE or ALTER TABLESPACE statement, and for undo log files by
specifying a path in the ADD UNDOFILE clause of a CREATE LOGFILE GROUP or ALTER LOGFILE
GROUP statement. If FileSystemPathDD is not specified, then FileSystemPath is used.

If a FileSystemPathDD directory is specified for a given data node (including the case where the
parameter is specified in the [ndbd default] section of the config.ini file), then starting that
data node with --initial causes all files in the directory to be deleted.

2736

NDB Cluster Configuration Files

• FileSystemPathDataFiles

Version (or later) NDB 7.3.1

Type or units filename

Default FileSystemPathDD

Range ...

Restart Type IN (NDB 7.3.1)

If this parameter is specified, then NDB Cluster Disk Data data files are placed in the indicated
directory. This overrides any value set for FileSystemPathDD. This parameter can be overridden
for a given data file by specifying a path in the ADD DATAFILE clause of a CREATE TABLESPACE or
ALTER TABLESPACE statement used to create that data file. If FileSystemPathDataFiles is not
specified, then FileSystemPathDD is used (or FileSystemPath, if FileSystemPathDD has also
not been set).

If a FileSystemPathDataFiles directory is specified for a given data node (including the case
where the parameter is specified in the [ndbd default] section of the config.ini file), then
starting that data node with --initial causes all files in the directory to be deleted.

• FileSystemPathUndoFiles

Version (or later) NDB 7.3.1

Type or units filename

Default FileSystemPathDD

Range ...

Restart Type IN (NDB 7.3.1)

If this parameter is specified, then NDB Cluster Disk Data undo log files are placed in the indicated
directory. This overrides any value set for FileSystemPathDD. This parameter can be overridden
for a given data file by specifying a path in the ADD UNDO clause of a CREATE LOGFILE GROUP or
ALTER LOGFILE GROUP statement used to create that data file. If FileSystemPathUndoFiles is
not specified, then FileSystemPathDD is used (or FileSystemPath, if FileSystemPathDD has
also not been set).

If a FileSystemPathUndoFiles directory is specified for a given data node (including the case
where the parameter is specified in the [ndbd default] section of the config.ini file), then
starting that data node with --initial causes all files in the directory to be deleted.

For more information, see Section 18.6.11.1, “NDB Cluster Disk Data Objects”.

• Disk Data object creation parameters. The next two parameters enable you—when starting the
cluster for the first time—to cause a Disk Data log file group, tablespace, or both, to be created without
the use of SQL statements.

• InitialLogFileGroup

Version (or later) NDB 7.3.1

Type or units string

Default [see documentation]

2737

NDB Cluster Configuration Files

Range ...

Restart Type S (NDB 7.3.1)

This parameter can be used to specify a log file group that is created when performing an initial start of
the cluster. InitialLogFileGroup is specified as shown here:

InitialLogFileGroup = [name=name;] [undo_buffer_size=size;] file-specification-list

file-specification-list:
 file-specification[; file-specification[; ...]]

file-specification:
 filename:size

The name of the log file group is optional and defaults to DEFAULT-LG. The undo_buffer_size
is also optional; if omitted, it defaults to 64M. Each file-specification corresponds to an undo
log file, and at least one must be specified in the file-specification-list. Undo log files are
placed according to any values that have been set for FileSystemPath, FileSystemPathDD, and
FileSystemPathUndoFiles, just as if they had been created as the result of a CREATE LOGFILE
GROUP or ALTER LOGFILE GROUP statement.

Consider the following:

InitialLogFileGroup = name=LG1; undo_buffer_size=128M; undo1.log:250M; undo2.log:150M

This is equivalent to the following SQL statements:

CREATE LOGFILE GROUP LG1
 ADD UNDOFILE 'undo1.log'
 INITIAL_SIZE 250M
 UNDO_BUFFER_SIZE 128M
 ENGINE NDBCLUSTER;

ALTER LOGFILE GROUP LG1
 ADD UNDOFILE 'undo2.log'
 INITIAL_SIZE 150M
 ENGINE NDBCLUSTER;

This logfile group is created when the data nodes are started with --initial.

Prior to NDB 7.3.6, resources for the initial log file group are taken from the global memory pool whose
size is determined by the value of the SharedGlobalMemory data node configuration parameter;
in these versions, if this parameter is set too low and the values set in InitialLogFileGroup
for the logfile group's initial size or undo buffer size are too high, the cluster may fail to create the
default log file group when starting, or fail to start altogether. In NDB 7.3.6 and later, resources for the
initial log file group are added to the global memory pool along with those indicated by the value of
SharedGlobalMemory (Bug #11762867).

This parameter, if used, should always be set in the [ndbd default] section of the config.ini
file. The behavior of an NDB Cluster when different values are set on different data nodes is not
defined.

• InitialTablespace

Version (or later) NDB 7.3.1

Type or units string

Default [see documentation]

2738

NDB Cluster Configuration Files

Range ...

Restart Type S (NDB 7.3.1)

This parameter can be used to specify an NDB Cluster Disk Data tablespace that is created when
performing an initial start of the cluster. InitialTablespace is specified as shown here:

InitialTablespace = [name=name;] [extent_size=size;] file-specification-list

The name of the tablespace is optional and defaults to DEFAULT-TS. The extent_size is also
optional; it defaults to 1M. The file-specification-list uses the same syntax as shown with
the InitialLogfileGroup parameter, the only difference being that each file-specification
used with InitialTablespace corresponds to a data file. At least one must be specified in the
file-specification-list. Data files are placed according to any values that have been set for
FileSystemPath, FileSystemPathDD, and FileSystemPathDataFiles, just as if they had
been created as the result of a CREATE TABLESPACE or ALTER TABLESPACE statement.

For example, consider the following line specifying InitialTablespace in the [ndbd default]
section of the config.ini file (as with InitialLogfileGroup, this parameter should always be
set in the [ndbd default] section, as the behavior of an NDB Cluster when different values are set
on different data nodes is not defined):

InitialTablespace = name=TS1; extent_size=8M; data1.dat:2G; data2.dat:4G

This is equivalent to the following SQL statements:

CREATE TABLESPACE TS1
 ADD DATAFILE 'data1.dat'
 EXTENT_SIZE 8M
 INITIAL_SIZE 2G
 ENGINE NDBCLUSTER;

ALTER TABLESPACE TS1
 ADD DATAFILE 'data2.dat'
 INITIAL_SIZE 4G
 ENGINE NDBCLUSTER;

This tablespace is created when the data nodes are started with --initial, and can be used
whenever creating NDB Cluster Disk Data tables thereafter.

Disk Data and GCP Stop errors. Errors encountered when using Disk Data tables such as Node
nodeid killed this node because GCP stop was detected (error 2303) are often referred
to as “GCP stop errors”. Such errors occur when the redo log is not flushed to disk quickly enough; this is
usually due to slow disks and insufficient disk throughput.

You can help prevent these errors from occurring by using faster disks, and by placing Disk Data files on a
separate disk from the data node file system. Reducing the value of TimeBetweenGlobalCheckpoints
tends to decrease the amount of data to be written for each global checkpoint, and so may provide some
protection against redo log buffer overflows when trying to write a global checkpoint; however, reducing
this value also permits less time in which to write the GCP, so this must be done with caution.

In addition to the considerations given for DiskPageBufferMemory as explained previously, it is
also very important that the DiskIOThreadPool configuration parameter be set correctly; having
DiskIOThreadPool set too high is very likely to cause GCP stop errors (Bug #37227).

GCP stops can be caused by save or commit timeouts; the TimeBetweenEpochsTimeout data node
configuration parameter determines the timeout for commits. However, it is possible to disable both types
of timeouts by setting this parameter to 0.

2739

NDB Cluster Configuration Files

Parameters for configuring send buffer memory allocation. Send buffer memory is allocated
dynamically from a memory pool shared between all transporters, which means that the size of the send
buffer can be adjusted as necessary. (Previously, the NDB kernel used a fixed-size send buffer for every
node in the cluster, which was allocated when the node started and could not be changed while the
node was running.) The TotalSendBufferMemory and OverLoadLimit data node configuration
parameters permit the setting of limits on this memory allocation. For more information about the use of
these parameters (as well as SendBufferMemory), see Section 18.4.3.12, “Configuring NDB Cluster
Send Buffer Parameters”.

• ExtraSendBufferMemory

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any set
using TotalSendBufferMemory, SendBufferMemory, or both.

• TotalSendBufferMemory

This parameter is used to determine the total amount of memory to allocate on this node for shared send
buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has not
been set. For more detailed information, see Section 18.4.3.12, “Configuring NDB Cluster Send Buffer
Parameters”.

• ReservedSendBufferMemory

This parameter is present in NDBCLUSTER source code, but is not currently enabled; it is deprecated,
and subject to removal in a future release of NDB Cluster (Bug #11760629, Bug #53053).

For more detailed information about the behavior and use of TotalSendBufferMemory and
ReservedSendBufferMemory, and about configuring send buffer memory parameters in NDB Cluster,
see Section 18.4.3.12, “Configuring NDB Cluster Send Buffer Parameters”.

See also Section 18.6.7, “Adding NDB Cluster Data Nodes Online”.

Redo log over-commit handling. It is possible to control a data node's handling of operations when
too much time is taken flushing redo logs to disk. This occurs when a given redo log flush takes longer
than RedoOverCommitLimit seconds, more than RedoOverCommitCounter times, causing any
pending transactions to be aborted. When this happens, the API node that sent the transaction can handle
the operations that should have been committed either by queuing the operations and re-trying them,
or by aborting them, as determined by DefaultOperationRedoProblemAction. The data node
configuration parameters for setting the timeout and number of times it may be exceeded before the API
node takes this action are described in the following list:

• RedoOverCommitCounter

Version (or later) NDB 7.3.1

Type or units numeric

Default 3

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

When RedoOverCommitLimit is exceeded when trying to write a given redo log to disk this many
times or more, any transactions that were not committed as a result are aborted, and an API node where
any of these transactions originated handles the operations making up those transactions according to

2740

NDB Cluster Configuration Files

its value for DefaultOperationRedoProblemAction (by either queuing the operations to be re-tried,
or aborting them).

RedoOverCommitCounter defaults to 3. Set it to 0 to disable the limit.

• RedoOverCommitLimit

Version (or later) NDB 7.3.1

Type or units seconds

Default 20

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter sets an upper limit in seconds for trying to write a given redo log to disk before
timing out. The number of times the data node tries to flush this redo log, but takes longer than
RedoOverCommitLimit, is kept and compared with RedoOverCommitCounter, and when
flushing takes too long more times than the value of that parameter, any transactions that were not
committed as a result of the flush timeout are aborted. When this occurs, the API node where any of
these transactions originated handles the operations making up those transactions according to its
DefaultOperationRedoProblemAction setting (it either queues the operations to be re-tried, or
aborts them).

By default, RedoOverCommitLimit is 20 seconds. Set to 0 to disable checking for redo log flush
timeouts. This parameter was added in NDB 7.1.10.

Controlling restart attempts. It is possible to exercise finely-grained control over restart attempts by
data nodes when they fail to start using the MaxStartFailRetries and StartFailRetryDelay data
node configuration parameters.

MaxStartFailRetries limits the total number of retries made before giving up on starting the data
node, StartFailRetryDelay sets the number of seconds between retry attempts. These parameters
are listed here:

• StartFailRetryDelay

Version (or later) NDB 7.3.1

Type or units unsigned

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

Use this parameter to set the number of seconds between restart attempts by the data node in the event
on failure on startup. The default is 0 (no delay).

Both this parameter and MaxStartFailRetries are ignored unless StopOnError is equal to 0.

• MaxStartFailRetries

Version (or later) NDB 7.3.1

Type or units unsigned

Default 3 2741

NDB Cluster Configuration Files

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

Use this parameter to limit the number restart attempts made by the data node in the event that it fails on
startup. The default is 3 attempts.

Both this parameter and StartFailRetryDelay are ignored unless StopOnError is equal to 0.

NDB index statistics parameters. The parameters in the following list relate to NDB index statistics
generation.

• IndexStatAutoCreate

Version (or later) NDB 7.3.1

Type or units integer

Default 0

Range 0, 1

Restart Type N (NDB 7.3.1)

Enable (set equal to 1) or disable (set equal to 0) automatic statistics collection when indexes are
created.

• IndexStatAutoUpdate

Version (or later) NDB 7.3.1

Type or units integer

Default 0

Range 0, 1

Restart Type N (NDB 7.3.1)

Enable (set equal to 1) or disable (set equal to 0) monitoring of indexes for changes, and
trigger automatic statistics updates when these are detected. The degree of change needed
to trigger the updates are determined by the settings for the IndexStatTriggerPct and
IndexStatTriggerScale options.

• IndexStatSaveSize

Version (or later) NDB 7.3.1

Type or units bytes

Default 32768

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type IN (NDB 7.3.1)

Maximum space in bytes allowed for the saved statistics of any given index in the NDB system tables and
in the mysqld memory cache. This consumes IndexMemory.

At least one sample is always produced, regardless of any size limit. This size is scaled by
IndexStatSaveScale.

2742

NDB Cluster Configuration Files

The size specified by IndexStatSaveSize is scaled by the value of IndexStatTriggerPct for a
large index, times 0.01. This is further multiplied by the logarithm to the base 2 of the index size. Setting
IndexStatTriggerPct equal to 0 disables the scaling effect.

• IndexStatSaveScale

Version (or later) NDB 7.3.1

Type or units percentage

Default 100

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type IN (NDB 7.3.1)

The size specified by IndexStatSaveSize is scaled by the value of IndexStatTriggerPct for a
large index, times 0.01. This is further multiplied by the logarithm to the base 2 of the index size. Setting
IndexStatTriggerPct equal to 0 disables the scaling effect.

• IndexStatTriggerPct

Version (or later) NDB 7.3.1

Type or units percentage

Default 100

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type IN (NDB 7.3.1)

Percentage change in updates that triggers an index statistics update. The value is scaled by
IndexStatTriggerScale. You can disable this trigger altogether by setting IndexStatTriggerPct
to 0.

• IndexStatTriggerScale

Version (or later) NDB 7.3.1

Type or units percentage

Default 100

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type IN (NDB 7.3.1)

Scale IndexStatTriggerPct by this amount times 0.01 for a large index. A value of 0 disables
scaling.

• IndexStatUpdateDelay

Version (or later) NDB 7.3.1

Type or units seconds

Default 60

Range 0 - 4294967039 (0xFFFFFEFF)

2743

NDB Cluster Configuration Files

Restart Type IN (NDB 7.3.1)

Minimum delay in seconds between automatic index statistics updates for a given index. Setting this
variable to 0 disables any delay. The default is 60 seconds.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 18.11 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 18.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

18.4.3.7 Defining SQL and Other API Nodes in an NDB Cluster

The [mysqld] and [api] sections in the config.ini file define the behavior of the MySQL servers
(SQL nodes) and other applications (API nodes) used to access cluster data. None of the parameters
shown is required. If no computer or host name is provided, any host can use this SQL or API node.

Generally speaking, a [mysqld] section is used to indicate a MySQL server providing an SQL interface to
the cluster, and an [api] section is used for applications other than mysqld processes accessing cluster
data, but the two designations are actually synonymous; you can, for instance, list parameters for a MySQL
server acting as an SQL node in an [api] section.

Note

For a discussion of MySQL server options for NDB Cluster, see MySQL Server
Options for NDB Cluster. For information about MySQL server system variables
relating to NDB Cluster, see NDB Cluster System Variables.

• Id

Version (or later) NDB 7.3.1

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type IS (NDB 7.3.1)

The Id is an integer value used to identify the node in all cluster internal messages. The permitted range
of values is 1 to 255 inclusive. This value must be unique for each node in the cluster, regardless of the
type of node.

2744

NDB Cluster Configuration Files

Note

Data node IDs must be less than 49, regardless of the NDB Cluster version used.
If you plan to deploy a large number of data nodes, it is a good idea to limit the
node IDs for API nodes (and management nodes) to values greater than 48.

NodeId is the preferred parameter name to use when identifying API nodes. (Id continues to be
supported for backward compatibility, but is now deprecated and generates a warning when used. It is
also subject to future removal.)

• ConnectionMap

Version (or later) NDB 7.3.1

Type or units string

Default [...]

Range ...

Restart Type N (NDB 7.3.1)

Specifies which data nodes to connect.

• NodeId

Version (or later) NDB 7.3.1

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type IS (NDB 7.3.1)

The NodeId is an integer value used to identify the node in all cluster internal messages. The permitted
range of values is 1 to 255 inclusive. This value must be unique for each node in the cluster, regardless
of the type of node.

Note

Data node IDs must be less than 49, regardless of the NDB Cluster version used.
If you plan to deploy a large number of data nodes, it is a good idea to limit the
node IDs for API nodes (and management nodes) to values greater than 48.

NodeId is the preferred parameter name to use when identifying management nodes. An alias, Id, was
used for this purpose in very old versions of NDB Cluster, and continues to be supported for backward
compatibility; it is now deprecated and generates a warning when used, and is subject to removal in a
future release of NDB Cluster.

• ExecuteOnComputer

Version (or later) NDB 7.3.1

Type or units name

Default [...]

Range ...

Deprecated Yes (in NDB 7.5)

2745

NDB Cluster Configuration Files

Restart Type S (NDB 7.3.1)

This refers to the Id set for one of the computers (hosts) defined in a [computer] section of the
configuration file.

• HostName

Version (or later) NDB 7.3.1

Type or units name or IP address

Default [...]

Range ...

Restart Type N (NDB 7.3.1)

Specifying this parameter defines the hostname of the computer on which the SQL node (API node) is to
reside. To specify a hostname, either this parameter or ExecuteOnComputer is required.

If no HostName or ExecuteOnComputer is specified in a given [mysql] or [api] section of the
config.ini file, then an SQL or API node may connect using the corresponding “slot” from any host
which can establish a network connection to the management server host machine. This differs from
the default behavior for data nodes, where localhost is assumed for HostName unless otherwise
specified.

• ArbitrationRank

Version (or later) NDB 7.3.1

Type or units 0-2

Default 0

Range 0 - 2

Restart Type N (NDB 7.3.1)

This parameter defines which nodes can act as arbitrators. Both management nodes and SQL
nodes can be arbitrators. A value of 0 means that the given node is never used as an arbitrator, a
value of 1 gives the node high priority as an arbitrator, and a value of 2 gives it low priority. A normal
configuration uses the management server as arbitrator, setting its ArbitrationRank to 1 (the default
for management nodes) and those for all SQL nodes to 0 (the default for SQL nodes).

By setting ArbitrationRank to 0 on all management and SQL nodes, you can disable arbitration
completely. You can also control arbitration by overriding this parameter; to do so, set the Arbitration
parameter in the [ndbd default] section of the config.ini global configuration file.

• ArbitrationDelay

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

2746

NDB Cluster Configuration Files

Restart Type N (NDB 7.3.1)

Setting this parameter to any other value than 0 (the default) means that responses by the arbitrator
to arbitration requests are delayed by the stated number of milliseconds. It is usually not necessary to
change this value.

• BatchByteSize

Version (or later) NDB 7.3.1

Type or units bytes

Default 16K

Range 1K - 1M

Restart Type N (NDB 7.3.1)

For queries that are translated into full table scans or range scans on indexes, it is important for best
performance to fetch records in properly sized batches. It is possible to set the proper size both in terms
of number of records (BatchSize) and in terms of bytes (BatchByteSize). The actual batch size is
limited by both parameters.

The speed at which queries are performed can vary by more than 40% depending upon how this
parameter is set.

This parameter is measured in bytes. The default value in NDB Cluster 7.3 and later is 16K.

• BatchSize

Version (or later) NDB 7.3.1

Type or units records

Default 256

Range 1 - 992

Restart Type N (NDB 7.3.1)

This parameter is measured in number of records and is by default set to 256. The maximum size is 992.

• ExtraSendBufferMemory

Version (or later) NDB 7.3.1

Type or units bytes

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any that
has been set using TotalSendBufferMemory, SendBufferMemory, or both.

• HeartbeatThreadPriority

Version (or later) NDB 7.3.1

Type or units string
2747

NDB Cluster Configuration Files

Default [...]

Range ...

Restart Type N (NDB 7.3.1)

Use this parameter to set the scheduling policy and priority of heartbeat threads for management and
API nodes. The syntax for setting this parameter is shown here:

HeartbeatThreadPriority = policy[, priority]

policy:
 {FIFO | RR}

When setting this parameter, you must specify a policy. This is one of FIFO (first in, first in) or RR (round
robin). This followed optionally by the priority (an integer).

• MaxScanBatchSize

Version (or later) NDB 7.3.1

Type or units bytes

Default 256K

Range 32K - 16M

Restart Type N (NDB 7.3.1)

The batch size is the size of each batch sent from each data node. Most scans are performed in parallel
to protect the MySQL Server from receiving too much data from many nodes in parallel; this parameter
sets a limit to the total batch size over all nodes.

The default value of this parameter is set to 256KB. Its maximum size is 16MB.

• TotalSendBufferMemory

Version (or later) NDB 7.3.1

Type or units bytes

Default 0

Range 256K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

This parameter is used to determine the total amount of memory to allocate on this node for shared send
buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has not
been set. For more detailed information, see Section 18.4.3.12, “Configuring NDB Cluster Send Buffer
Parameters”.

• AutoReconnect

Version (or later) NDB 7.3.1

Type or units boolean

Default false

Range true, false2748

NDB Cluster Configuration Files

Restart Type N (NDB 7.3.1)

This parameter is false by default. This forces disconnected API nodes (including MySQL Servers
acting as SQL nodes) to use a new connection to the cluster rather than attempting to re-use an existing
one, as re-use of connections can cause problems when using dynamically-allocated node IDs. (Bug
#45921)

Note

This parameter can be overridden using the NDB API. For more
information, see Ndb_cluster_connection::set_auto_reconnect(), and
Ndb_cluster_connection::get_auto_reconnect().

• DefaultOperationRedoProblemAction

Version (or later) NDB 7.3.1

Type or units enumeration

Default QUEUE

Range ABORT, QUEUE

Restart Type N (NDB 7.3.1)

This parameter (along with RedoOverCommitLimit and RedoOverCommitCounter) controls
the data node's handling of operations when too much time is taken flushing redo logs to disk. This
occurs when a given redo log flush takes longer than RedoOverCommitLimit seconds, more than
RedoOverCommitCounter times, causing any pending transactions to be aborted.

When this happens, the node can respond in either of two ways, according to the value of
DefaultOperationRedoProblemAction, listed here:

• ABORT: Any pending operations from aborted transactions are also aborted.

• QUEUE: Pending operations from transactions that were aborted are queued up to be re-tried. This the
default. In NDB 7.3.10 and later as well as NDB 7.4.7 and later, pending operations are still aborted
when the redo log runs out of space—that is, when P_TAIL_PROBLEM errors occur. (Bug #20782580)

• DefaultHashMapSize

Version (or later) NDB 7.3.1

Type or units buckets

Default 3840

Range 0 - 3840

Restart Type N (NDB 7.3.1)

The size of the table hash maps used by NDB is configurable using this parameter.
DefaultHashMapSize can take any of three possible values (0, 240, 3840).

The original intended use for this parameter was to facilitate upgrades and especially downgrades to and
from very old releases with differing default hash map sizes. This is not an issue when upgrading from
NDB Cluster 7.3 (or later) to later versions.

Decreasing this parameter online after any tables have been created or modified with
DefaultHashMapSize equal to 3840 is not currently supported. 2749

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-auto-reconnect
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-get-auto-reconnect

NDB Cluster Configuration Files

• Wan

Version (or later) NDB 7.3.1

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 7.3.1)

Use WAN TCP setting as default.

• ConnectBackoffMaxTime

Version (or later) NDB 7.3.7

Type or units integer

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Version (or later) NDB 7.4.2

Type or units integer

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Added NDB 7.3.7

Added NDB 7.4.2

Restart Type N (NDB 7.3.1)

Starting with NDB 7.3.7, in an NDB Cluster with many unstarted data nodes, the value of this parameter
can be raised to circumvent connection attempts to data nodes which have not yet begun to function
in the cluster, as well as moderate high traffic to management nodes. As long as the API node is not
connected to any new data nodes, the value of the StartConnectBackoffMaxTime parameter is
applied; otherwise, ConnectBackoffMaxTime is used to determine the length of time in milliseconds to
wait between connection attempts.

Time elapsed during node connection attempts is not taken into account when calculating elapsed
time for this parameter. The timeout is applied with approximately 100 ms resolution, starting with
a 100 ms delay; for each subsequent attempt, the length of this period is doubled until it reaches
ConnectBackoffMaxTime milliseconds, up to a maximum of 100000 ms (100s).

Once the API node is connected to a data node and that node reports (in a heartbeat message) that it
has connected to other data nodes, connection attempts to those data nodes are no longer affected by
this parameter, and are made every 100 ms thereafter until connected. Once a data node has started, it
can take up HeartbeatIntervalDbApi for the API node to be notified that this has occurred.

• StartConnectBackoffMaxTime

Version (or later) NDB 7.3.7

Type or units integer

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)
2750

NDB Cluster Configuration Files

Version (or later) NDB 7.4.2

Type or units integer

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Added NDB 7.3.7

Added NDB 7.4.2

Restart Type N (NDB 7.3.1)

Starting with NDB 7.3.7, in an NDB Cluster with many unstarted data nodes, the value of this parameter
can be raised to circumvent connection attempts to data nodes which have not yet begun to function
in the cluster, as well as moderate high traffic to management nodes. As long as the API node is not
connected to any new data nodes, the value of the StartConnectBackoffMaxTime parameter is
applied; otherwise, ConnectBackoffMaxTime is used to determine the length of time in milliseconds to
wait between connection attempts.

Time elapsed during node connection attempts is not taken into account when calculating elapsed
time for this parameter. The timeout is applied with approximately 100 ms resolution, starting with
a 100 ms delay; for each subsequent attempt, the length of this period is doubled until it reaches
StartConnectBackoffMaxTime milliseconds, up to a maximum of 100000 ms (100s).

Once the API node is connected to a data node and that node reports (in a heartbeat message) that it
has connected to other data nodes, connection attempts to those data nodes are no longer affected by
this parameter, and are made every 100 ms thereafter until connected. Once a data node has started, it
can take up HeartbeatIntervalDbApi for the API node to be notified that this has occurred.

API Node Debugging Parameters. Beginning with NDB 7.4.12, you can use the ApiVerbose
configuration parameter to enable debugging output from a given API node. This parameter takes an
integer value. 0 is the default, and disables such debugging; 1 enables debugging output to the cluster log;
2 adds DBDICT debugging output as well. (Bug #20638450) See also DUMP 1229.

You can also obtain information from a MySQL server running as an NDB Cluster SQL node using SHOW
STATUS in the mysql client, as shown here:

mysql> SHOW STATUS LIKE 'ndb%';
+-----------------------------+----------------+
| Variable_name | Value |
+-----------------------------+----------------+
Ndb_cluster_node_id	5
Ndb_config_from_host	198.51.100.112
Ndb_config_from_port	1186
Ndb_number_of_storage_nodes	4
+-----------------------------+----------------+
4 rows in set (0.02 sec)

For information about the status variables appearing in the output from this statement, see NDB Cluster
Status Variables.

Note

To add new SQL or API nodes to the configuration of a running NDB Cluster,
it is necessary to perform a rolling restart of all cluster nodes after adding new
[mysqld] or [api] sections to the config.ini file (or files, if you are using
more than one management server). This must be done before the new SQL or API
nodes can connect to the cluster.

2751

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1229.html

NDB Cluster Configuration Files

It is not necessary to perform any restart of the cluster if new SQL or API nodes can
employ previously unused API slots in the cluster configuration to connect to the
cluster.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 18.12 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 18.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

18.4.3.8 MySQL Server Options and Variables for NDB Cluster

This section provides information about MySQL server options, server and status variables that are specific
to NDB Cluster. For general information on using these, and for other options and variables not specific to
NDB Cluster, see Section 5.1, “The MySQL Server”.

For NDB Cluster configuration parameters used in the cluster configuration file (usually named
config.ini), see Section 18.4, “Configuration of NDB Cluster”.

MySQL Server Options for NDB Cluster

This section provides descriptions of mysqld server options relating to NDB Cluster. For information about
mysqld options not specific to NDB Cluster, and for general information about the use of options with
mysqld, see Section 5.1.6, “Server Command Options”.

For information about command-line options used with other NDB Cluster processes, see Section 18.5,
“NDB Cluster Programs”.

• --ndbcluster

Command-Line Format --ndbcluster[=value]

Disabled by skip-ndbcluster

Type Boolean

Default Value OFF

The NDBCLUSTER storage engine is necessary for using NDB Cluster. If a mysqld binary includes
support for the NDBCLUSTER storage engine, the engine is disabled by default. Use the --ndbcluster
option to enable it. Use --skip-ndbcluster to explicitly disable the engine.

• --ndb-batch-size=#

Command-Line Format --ndb-batch-size

2752

NDB Cluster Configuration Files

System Variable ndb_batch_size

Scope Global

Dynamic No

Type Integer

Default Value 32768

Minimum Value 0

Maximum Value 31536000

Unit bytes

This sets the size in bytes that is used for NDB transaction batches.

• --ndb-cluster-connection-pool=#

Command-Line Format --ndb-cluster-connection-pool

System Variable ndb_cluster_connection_pool

System Variable ndb_cluster_connection_pool

Scope Global

Scope Global

Dynamic No

Dynamic No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 63

By setting this option to a value greater than 1 (the default), a mysqld process can use multiple
connections to the cluster, effectively mimicking several SQL nodes. Each connection requires its own
[api] or [mysqld] section in the cluster configuration (config.ini) file, and counts against the
maximum number of API connections supported by the cluster.

Suppose that you have 2 cluster host computers, each running an SQL node whose mysqld process
was started with --ndb-cluster-connection-pool=4; this means that the cluster must have 8 API
slots available for these connections (instead of 2). All of these connections are set up when the SQL
node connects to the cluster, and are allocated to threads in a round-robin fashion.

This option is useful only when running mysqld on host machines having multiple CPUs, multiple cores,
or both. For best results, the value should be smaller than the total number of cores available on the host
machine. Setting it to a value greater than this is likely to degrade performance severely.

Important

Because each SQL node using connection pooling occupies multiple API node
slots—each slot having its own node ID in the cluster—you must not use a node

2753

NDB Cluster Configuration Files

ID as part of the cluster connection string when starting any mysqld process that
employs connection pooling.

Setting a node ID in the connection string when using the --ndb-cluster-
connection-pool option causes node ID allocation errors when the SQL node
attempts to connect to the cluster.

• --ndb-blob-read-batch-bytes=bytes

Command-Line Format --ndb-blob-read-batch-bytes

System Variable ndb_blob_read_batch_bytes

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 65536

Minimum Value 0

Maximum Value 4294967295

This option can be used to set the size (in bytes) for batching of BLOB data reads in NDB Cluster
applications. When this batch size is exceeded by the amount of BLOB data to be read within the current
transaction, any pending BLOB read operations are immediately executed.

The maximum value for this option is 4294967295; the default is 65536. Setting it to 0 has the effect of
disabling BLOB read batching.

Note

In NDB API applications, you can control BLOB write batching with the
setMaxPendingBlobReadBytes() and getMaxPendingBlobReadBytes()
methods.

• --ndb-blob-write-batch-bytes=bytes

Command-Line Format --ndb-blob-write-batch-bytes

System Variable ndb_blob_write_batch_bytes

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 65536

Minimum Value 0

Maximum Value 4294967295

2754

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-setmaxpendingblobreadbytes
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-getmaxpendingblobreadbytes

NDB Cluster Configuration Files

Unit bytes

This option can be used to set the size (in bytes) for batching of BLOB data writes in NDB Cluster
applications. When this batch size is exceeded by the amount of BLOB data to be written within the
current transaction, any pending BLOB write operations are immediately executed.

The maximum value for this option is 4294967295; the default is 65536. Setting it to 0 has the effect of
disabling BLOB write batching.

Note

In NDB API applications, you can control BLOB write
batching with the setMaxPendingBlobWriteBytes() and
getMaxPendingBlobWriteBytes() methods.

• --ndb-connectstring=connection_string

Command-Line Format --ndb-connectstring

Type String

When using the NDBCLUSTER storage engine, this option specifies the management server that
distributes cluster configuration data. See Section 18.4.3.3, “NDB Cluster Connection Strings”, for
syntax.

• --ndb-deferred-constraints=[0|1]

Command-Line Format --ndb-deferred-constraints

System Variable ndb_deferred_constraints

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

Controls whether or not constraint checks on unique indexes are deferred until commit time, where such
checks are supported. 0 is the default.

This option is not normally needed for operation of NDB Cluster or NDB Cluster Replication, and is
intended primarily for use in testing.

• --ndb-distribution=[KEYHASH|LINHASH]

Command-Line Format --ndb-distribution={KEYHASH|LINHASH}

System Variable ndb_distribution

Scope Global

Dynamic Yes

Type Enumeration

Default Value KEYHASH

Valid Values LINHASH

2755

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-setmaxpendingblobwritebytes
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-getmaxpendingblobwritebytes

NDB Cluster Configuration Files

KEYHASH

Controls the default distribution method for NDB tables. Can be set to either of KEYHASH (key hashing) or
LINHASH (linear hashing). KEYHASH is the default.

• --ndb-log-apply-status

Command-Line Format --ndb-log-apply-status[={OFF|ON}]

System Variable ndb_log_apply_status

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Causes a replica mysqld to log any updates received from its immediate source to the
mysql.ndb_apply_status table in its own binary log using its own server ID rather than the server
ID of the source. In a circular or chain replication setting, this allows such updates to propagate to
the mysql.ndb_apply_status tables of any MySQL servers configured as replicas of the current
mysqld.

In a chain replication setup, using this option allows downstream (replica) clusters to be aware of their
positions relative to all of their upstream contributors (sources).

In a circular replication setup, this option causes changes to ndb_apply_status tables to complete
the entire circuit, eventually propagating back to the originating NDB Cluster. This also allows a cluster
acting as a source to see when its changes (epochs) have been applied to the other clusters in the
circle.

This option has no effect unless the MySQL server is started with the --ndbcluster option.

• --ndb-log-empty-epochs=[ON|OFF]

Command-Line Format --ndb-log-empty-epochs[={OFF|ON}]

System Variable ndb_log_empty_epochs

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Causes epochs during which there were no changes to be written to the ndb_apply_status and
ndb_binlog_index tables, even when log_slave_updates is enabled.

By default this option is disabled. Disabling --ndb-log-empty-epochs causes epoch transactions
with no changes not to be written to the binary log, although a row is still written even for an empty epoch
in ndb_binlog_index.

Because --ndb-log-empty-epochs=1 causes the size of the ndb_binlog_index table to increase
independently of the size of the binary log, users should be prepared to manage the growth of this table,
even if they expect the cluster to be idle a large part of the time.

• --ndb-log-empty-update=[ON|OFF]

2756

NDB Cluster Configuration Files

Command-Line Format --ndb-log-empty-update[={OFF|ON}]

System Variable ndb_log_empty_update

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Causes updates that produced no changes to be written to the ndb_apply_status and
ndb_binlog_index tables, when when log_slave_updates is enabled.

By default this option is disabled (OFF). Disabling --ndb-log-empty-update causes updates with no
changes not to be written to the binary log.

• --ndb-log-exclusive-reads=[0|1]

Command-Line Format --ndb-log-exclusive-reads[={OFF|ON}]

Introduced 5.6.20-ndb-7.4.1

System Variable ndb_log_exclusive_reads

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value 0

In NDB 7.4, starting the server with this option causes primary key reads to be logged with exclusive
locks, which allows for NDB Cluster Replication conflict detection and resolution based on read
conflicts. You can also enable and disable these locks at runtime by setting the value of the
ndb_log_exclusive_reads system variable to 1 or 0, respectively. 0 (disable locking) is the default.

For more information, see Read conflict detection and resolution.

• --ndb-log-fail-terminate

Command-Line Format --ndb-log-fail-terminate

Introduced 5.6.47-ndb-7.4.28

System Variable ndb_log_fail_terminate

Scope Global

Dynamic No

Type Boolean

Default Value FALSE

When this option is specified, and complete logging of all found row events is not possible, the mysqld
process is terminated.

• --ndb-log-orig

Command-Line Format --ndb-log-orig[={OFF|ON}]

System Variable ndb_log_orig

2757

NDB Cluster Configuration Files

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Log the originating server ID and epoch in the ndb_binlog_index table.

Note

This makes it possible for a given epoch to have multiple rows in
ndb_binlog_index, one for each originating epoch.

For more information, see Section 18.7.4, “NDB Cluster Replication Schema and Tables”.

• --ndb-log-transaction-id

Command-Line Format --ndb-log-transaction-id[={OFF|ON}]

System Variable ndb_log_transaction_id

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Causes a replica mysqld to write the NDB transaction ID in each row of the binary log.
Such logging requires the use of the Version 2 event format for the binary log; thus, the
log_bin_use_v1_row_events system variable must be disabled to use this option.

--ndb-log-transaction-id is required to enable NDB Cluster Replication conflict detection and
resolution using the NDB$EPOCH_TRANS() function (see NDB$EPOCH_TRANS()).

For more information, see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

• --ndb-log-update-as-write

Command-Line Format --ndb-log-update-as-write[={OFF|ON}]

System Variable ndb_log_update_as_write

Scope Global

Dynamic Yes

Type Boolean

2758

NDB Cluster Configuration Files

Default Value ON

Whether updates on the source are written to the binary log as updates (OFF) or writes (ON). When this
option is enabled, and both --ndb-log-updated-only and --ndb-log-update-minimal are
disabled, operations of different types are loǵged as described in the following list:

• INSERT: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

UPDATE: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

DELETE: Logged as a DELETE_ROW event with all columns logged in the before image; the after image
is not logged.

This option can be used for NDB Replication conflict resolution in combination with the other two NDB
logging options mentioned previously; see ndb_replication Table, for more information.

• --ndb-log-updated-only

Command-Line Format --ndb-log-updated-only[={OFF|ON}]

System Variable ndb_log_updated_only

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Whether mysqld writes complete rows (ON) or updates only (OFF) to the binary log. When this option is
enabled, and both --ndb-log-update-as-write and --ndb-log-update-minimal are disabled,
operations of different types are loǵged as described in the following list:

• INSERT: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

• UPDATE: Logged as an UPDATE_ROW event with primary key columns and updated columns present in
both the before and after images.

• DELETE: Logged as a DELETE_ROW event with primary key columns incuded in the before image; the
after image is not logged.

This option can be used for NDB Replication conflict resolution in combination with the other two NDB
logging options mentioned previously; see ndb_replication Table, for more information about how these
options interact with one another.

• --ndb-log-update-minimal

Command-Line Format --ndb-log-update-minimal[={OFF|ON}]

Introduced 5.6.36-ndb-7.4.16

System Variable ndb_log_update_minimal

Scope Global

Dynamic Yes

2759

NDB Cluster Configuration Files

Type Boolean

Default Value OFF

Log updates in a minimal fashion, by writing only the primary key values in the before image, and only
the changed columns in the after image. This may cause compatibility problems if replicating to storage
engines other than NDB. When this option is enabled, and both --ndb-log-updated-only and --
ndb-log-update-as-write are disabled, operations of different types are loǵged as described in the
following list:

• INSERT: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

• UPDATE: Logged as an UPDATE_ROW event with primary key columns in the before image; all columns
except primary key columns are logged in the after image.

• DELETE: Logged as a DELETE_ROW event with all columns in the before image; the after image is not
logged.

This option can be used for NDB Replication conflict resolution in combination with the other two NDB
logging options mentioned previously; see ndb_replication Table, for more information.

• --ndb-mgmd-host=host[:port]

Command-Line Format --ndb-mgmd-host=host_name[:port_num]

Type String

Default Value localhost:1186

Can be used to set the host and port number of a single management server for the program to connect
to. If the program requires node IDs or references to multiple management servers (or both) in its
connection information, use the --ndb-connectstring option instead.

• --ndb-nodeid=#

Command-Line Format --ndb-nodeid=#

Status Variable Ndb_cluster_node_id

Scope Global

Dynamic No

Type Integer

Default Value N/A

Minimum Value 1

Maximum Value 255

Maximum Value 63

Set this MySQL server's node ID in an NDB Cluster.

The --ndb-nodeid option overrides any node ID set with --ndb-connectstring, regardless of the
order in which the two options are used.

In addition, if --ndb-nodeid is used, then either a matching node ID must be found in a [mysqld] or
[api] section of config.ini, or there must be an “open” [mysqld] or [api] section in the file (that

2760

NDB Cluster Configuration Files

is, a section without a NodeId or Id parameter specified). This is also true if the node ID is specified as
part of the connection string.

Regardless of how the node ID is determined, its is shown as the value of the global status variable
Ndb_cluster_node_id in the output of SHOW STATUS, and as cluster_node_id in the
connection row of the output of SHOW ENGINE NDBCLUSTER STATUS.

For more information about node IDs for NDB Cluster SQL nodes, see Section 18.4.3.7, “Defining SQL
and Other API Nodes in an NDB Cluster”.

• --ndb-optimization-delay=milliseconds

Command-Line Format --ndb-optimization-delay=#

System Variable ndb_optimization_delay

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 100000

Unit milliseconds

Set the number of milliseconds to wait between sets of rows by OPTIMIZE TABLE statements on NDB
tables. The default is 10.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --ndb-transid-mysql-connection-map=state

Command-Line Format --ndb-transid-mysql-connection-
map[=state]

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

Enables or disables the plugin that handles the ndb_transid_mysql_connection_map table in
the INFORMATION_SCHEMA database. Takes one of the values ON, OFF, or FORCE. ON (the default)
enables the plugin. OFF disables the plugin, which makes ndb_transid_mysql_connection_map
inaccessible. FORCE keeps the MySQL Server from starting if the plugin fails to load and start.

You can see whether the ndb_transid_mysql_connection_map table plugin is running by checking
the output of SHOW PLUGINS. 2761

NDB Cluster Configuration Files

• --ndb-wait-connected=seconds

Command-Line Format --ndb-wait-connected=#

System Variable ndb_wait_connected

Scope Global

Dynamic No

Type Integer

Default Value 30

Minimum Value 0

Maximum Value 31536000

Unit seconds

This option sets the period of time that the MySQL server waits for connections to NDB Cluster
management and data nodes to be established before accepting MySQL client connections. The time is
specified in seconds. The default value is 30.

• --ndb-wait-setup=seconds

Command-Line Format --ndb-wait-setup=#

System Variable ndb_wait_setup

Scope Global

Dynamic No

Type Integer

Default Value 30

Default Value 30

Default Value 15

Default Value 15

Minimum Value 0

Maximum Value 31536000

Unit seconds

This variable shows the period of time that the MySQL server waits for the NDB storage engine to
complete setup before timing out and treating NDB as unavailable. The time is specified in seconds. The
default value is 30.

• --server-id-bits=#

Command-Line Format --server-id-bits=#

System Variable server_id_bits

Scope Global

Dynamic No

Type Integer

Default Value 32

Minimum Value 7
2762

NDB Cluster Configuration Files

Maximum Value 32

This option indicates the number of least significant bits within the 32-bit server_id which actually
identify the server. Indicating that the server is actually identified by fewer than 32 bits makes it possible
for some of the remaining bits to be used for other purposes, such as storing user data generated by
applications using the NDB API's Event API within the AnyValue of an OperationOptions structure
(NDB Cluster uses the AnyValue to store the server ID).

When extracting the effective server ID from server_id for purposes such as detection of replication
loops, the server ignores the remaining bits. The --server-id-bits option is used to mask out any
irrelevant bits of server_id in the I/O and SQL threads when deciding whether an event should be
ignored based on the server ID.

This data can be read from the binary log by mysqlbinlog, provided that it is run with its own --
server-id-bits option set to 32 (the default).

The value of server_id must be less than 2 ^ server_id_bits; otherwise, mysqld refuses to start.

This system variable is supported only by NDB Cluster. It is not supported in the standard MySQL 5.6
Server.

• --skip-ndbcluster

Command-Line Format --skip-ndbcluster

Disable the NDBCLUSTER storage engine. This is the default for binaries that were built with
NDBCLUSTER storage engine support; the server allocates memory and other resources for this storage
engine only if the --ndbcluster option is given explicitly. See Section 18.4.1, “Quick Test Setup of
NDB Cluster”, for an example.

NDB Cluster System Variables

This section provides detailed information about MySQL server system variables that are specific to NDB
Cluster and the NDB storage engine. For system variables not specific to NDB Cluster, see Section 5.1.7,
“Server System Variables”. For general information on using system variables, see Section 5.1.8, “Using
System Variables”.

• create_old_temporals

Command-Line Format --create-old-temporals[={OFF|ON}]

Introduced 5.6.25-ndb-7.4.7

Deprecated 5.6.25-ndb-7.4.7

System Variable create_old_temporals

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Causes mysqld to use the storage formats for temporal data types that were used in the MySQL server
prior to MySQL 5.6.4; that is, TIME, DATETIME, and TIMESTAMP columns are created without support
for fractional seconds. This affects all CREATE TABLE and ALTER TABLE statements.

2763

https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-operationoptions

NDB Cluster Configuration Files

The create_old_temporals system variable is read-only, with a default value of false; to enable it,
use the --create-old-temporals option on the command line or in the server configuration file.

Important

avoid_temporal_upgrade must also be enabled for this feature
to work properly. It is also strongly recommended that you enable
show_old_temporals as well. See the descriptions of these variables for more
information, as well as Date and Time Type Storage Requirements.

This variable was added in NDB 7.3.10 and NDB 7.4.7; it is specific to NDB Cluster and is not available
in standard MySQL Server releases. It was intended to facilitate upgrades from older versions of NDB
Cluster to NDB 7.3 and 7.4; it is now deprecated and scheduled for removal in a future version of NDB
Cluster.

• ndb_autoincrement_prefetch_sz

Command-Line Format --ndb-autoincrement-prefetch-sz=#

System Variable ndb_autoincrement_prefetch_sz

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65536

Determines the probability of gaps in an autoincremented column. Set it to 1 to minimize this. Setting
it to a high value for optimization makes inserts faster, but decreases the likelihood that consecutive
autoincrement numbers are used in a batch of inserts.

This variable affects only the number of AUTO_INCREMENT IDs that are fetched between statements;
within a given statement, at least 32 IDs are obtained at a time.

Important

This variable does not affect inserts performed using INSERT ... SELECT.

• ndb_cache_check_time

Command-Line Format --ndb-cache-check-time=#

System Variable ndb_cache_check_time

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 31536000

2764

NDB Cluster Configuration Files

Unit milliseconds

The number of milliseconds that elapse between checks of NDB Cluster SQL nodes by the MySQL
query cache. Setting this to 0 (the default and minimum value) means that the query cache checks for
validation on every query.

The recommended maximum value for this variable is 1000, which means that the check is performed
once per second. A larger value means that the check is performed and possibly invalidated due to
updates on different SQL nodes less often. It is generally not desirable to set this to a value greater than
2000.

• ndb_clear_apply_status

Command-Line Format --ndb-clear-apply-status[={OFF|ON}]

Introduced 5.6.28-ndb-7.4.9

System Variable ndb_clear_apply_status

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

By the default, executing RESET SLAVE causes an NDB Cluster replica to purge all rows
from its ndb_apply_status table. In NDB 7.4.9 and later you can disable this by setting
ndb_clear_apply_status=OFF.

• ndb_deferred_constraints

Command-Line Format --ndb-deferred-constraints=#

System Variable ndb_deferred_constraints

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

Controls whether or not constraint checks are deferred, where these are supported. 0 is the default.

This variable is not normally needed for operation of NDB Cluster or NDB Cluster Replication, and is
intended primarily for use in testing.

• ndb_distribution

Command-Line Format --ndb-distribution={KEYHASH|LINHASH}

System Variable ndb_distribution

Scope Global

Dynamic Yes

Type Enumeration

2765

NDB Cluster Configuration Files

Default Value KEYHASH

Valid Values LINHASH

KEYHASH

Controls the default distribution method for NDB tables. Can be set to either of KEYHASH (key hashing) or
LINHASH (linear hashing). KEYHASH is the default.

• ndb_eventbuffer_free_percent

Command-Line Format --ndb-eventbuffer-free-percent=#

Introduced 5.6.22-ndb-7.4.3

System Variable ndb_eventbuffer_free_percent

Scope Global

Dynamic Yes

Type Integer

Default Value 20

Minimum Value 1

Maximum Value 99

Sets the percentage of the maximum memory allocated to the event buffer (ndb_eventbuffer_max_alloc)
that should be available in event buffer after reaching the maximum, before starting to buffer again.

ndb_eventbuffer_free_percent was added in NDB 7.4.

• ndb_eventbuffer_max_alloc

Command-Line Format --ndb-eventbuffer-max-alloc=#

Introduced 5.6.14-ndb-7.3.3

System Variable ndb_eventbuffer_max_alloc

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Sets the maximum amount memory (in bytes) that can be allocated for buffering events by the NDB API.
0 means that no limit is imposed, and is the default.

This variable was added in NDB 7.3.3.

• ndb_extra_logging

Command-Line Format ndb_extra_logging=#

System Variable ndb_extra_logging

Scope Global2766

NDB Cluster Configuration Files

Dynamic Yes

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 1

This variable enables recording in the MySQL error log of information specific to the NDB storage engine.

When this variable is set to 0, the only information specific to NDB that is written to the MySQL error log
relates to transaction handling. If it set to a value greater than 0 but less than 10, NDB table schema and
connection events are also logged, as well as whether or not conflict resolution is in use, and other NDB
errors and information. If the value is set to 10 or more, information about NDB internals, such as the
progress of data distribution among cluster nodes, is also written to the MySQL error log. The default is
1.

• ndb_force_send

Command-Line Format --ndb-force-send[={OFF|ON}]

System Variable ndb_force_send

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

Forces sending of buffers to NDB immediately, without waiting for other threads. Defaults to ON.

• ndb_index_stat_cache_entries

Command-Line Format --ndb-index-stat-cache-entries=#

Deprecated Yes (removed in 5.6.16-ndb-7.3.5)

System Variable ndb_index_stat_cache_entries

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 32

Minimum Value 0

Maximum Value 4294967295

Sets the granularity of the statistics by determining the number of starting and ending keys to store in the
statistics memory cache. Zero means no caching takes place; in this case, the data nodes are always
queried directly. Default value: 32.

Note

If ndb_index_stat_enable is OFF, then setting this variable has no effect.

This variable was deprecated in MySQL 5.1, and is removed from NDB 7.3.5 and later.
2767

NDB Cluster Configuration Files

• ndb_index_stat_enable

Command-Line Format --ndb-index-stat-enable[={OFF|ON}]

System Variable ndb_index_stat_enable

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

Use NDB index statistics in query optimization. The default is ON.

• ndb_index_stat_option

Command-Line Format --ndb-index-stat-option=value

System Variable ndb_index_stat_option

Scope Global, Session

Dynamic Yes

Type String

Default Value loop_checkon=1000ms,loop_idle=1000ms,loop_busy=100ms,
update_batch=1,read_batch=4,idle_batch=32,check_batch=32,
check_delay=1m,delete_batch=8,clean_delay=0,error_batch=4,
error_delay=1m,evict_batch=8,evict_delay=1m,cache_limit=32M,
cache_lowpct=90

This variable is used for providing tuning options for NDB index statistics generation. The list consist
of comma-separated name-value pairs of option names and values, and this list must not contain any
space characters.

Options not used when setting ndb_index_stat_option are not changed from
their default values. For example, you can set ndb_index_stat_option =
'loop_idle=1000ms,cache_limit=32M'.

Time values can be optionally suffixed with h (hours), m (minutes), or s (seconds). Millisecond values
can optionally be specified using ms; millisecond values cannot be specified using h, m, or s.) Integer
values can be suffixed with K, M, or G.

The names of the options that can be set using this variable are shown in the table that follows. The
table also provides brief descriptions of the options, their default values, and (where applicable) their
minimum and maximum values.

Table 18.13 ndb_index_stat_option options and values

Name Description Default/Units Minimum/Maximum

loop_enable 1000 ms 0/4G

loop_idle Time to sleep when idle 1000 ms 0/4G

loop_busy Time to sleep when
more work is waiting

100 ms 0/4G

update_batch 1 0/4G

read_batch 4 1/4G2768

NDB Cluster Configuration Files

Name Description Default/Units Minimum/Maximum

idle_batch 32 1/4G

check_batch 8 1/4G

check_delay How often to check for
new statistics

10 m 1/4G

delete_batch 8 0/4G

clean_delay 1 m 0/4G

error_batch 4 1/4G

error_delay 1 m 1/4G

evict_batch 8 1/4G

evict_delay Clean LRU cache, from
read time

1 m 0/4G

cache_limit Maximum amount
of memory in bytes
used for cached
index statistics by this
mysqld; clean up the
cache when this is
exceeded.

32 M 0/4G

cache_lowpct 90 0/100

zero_total Setting this to 1 resets
all accumulating
counters in
ndb_index_stat_status
to 0. This option value is
also reset to 0 when this
is done.

0 0/1

• ndb_index_stat_update_freq

Command-Line Format --ndb-index-stat-update-freq=#

Deprecated Yes (removed in 5.6.16-ndb-7.3.5)

System Variable ndb_index_stat_update_freq

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 20

Minimum Value 0

2769

NDB Cluster Configuration Files

Maximum Value 4294967295

How often to query data nodes instead of the statistics cache. For example, a value of 20 (the default)
means to direct every 20th query to the data nodes.

Note

If ndb_index_stat_cache_entries is 0, then setting this variable has no
effect; in this case, every query is sent directly to the data nodes.

This variable was deprecated in MySQL 5.1, and is removed from NDB 7.3.5 and later.

• ndb_join_pushdown

System Variable ndb_join_pushdown

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

This variable controls whether joins on NDB tables are pushed down to the NDB kernel (data nodes).
Previously, a join was handled using multiple accesses of NDB by the SQL node; however, when
ndb_join_pushdown is enabled, a pushable join is sent in its entirety to the data nodes, where it
can be distributed among the data nodes and executed in parallel on multiple copies of the data, with

2770

NDB Cluster Configuration Files

a single, merged result being returned to mysqld. This can reduce greatly the number of round trips
between an SQL node and the data nodes required to handle such a join.

By default, ndb_join_pushdown is enabled.

Conditions for NDB pushdown joins. In order for a join to be pushable, it must meet the following
conditions:

1. Only columns can be compared, and all columns to be joined must use exactly the same data type.

This means that expressions such as t1.a = t2.a + constant cannot be pushed down, and
that (for example) a join on an INT column and a BIGINT column also cannot be pushed down.

2. Queries referencing BLOB or TEXT columns are not supported.

3. Explicit locking is not supported; however, the NDB storage engine's characteristic implicit row-based
locking is enforced.

This means that a join using FOR UPDATE cannot be pushed down.

4. In order for a join to be pushed down, child tables in the join must be accessed using one of the ref,
eq_ref, or const access methods, or some combination of these methods.

Outer joined child tables can only be pushed using eq_ref.

If the root of the pushed join is an eq_ref or const, only child tables joined by eq_ref can be
appended. (A table joined by ref is likely to become the root of another pushed join.)

If the query optimizer decides on Using join cache for a candidate child table, that table cannot
be pushed as a child. However, it may be the root of another set of pushed tables.

5. Joins referencing tables explicitly partitioned by [LINEAR] HASH, LIST, or RANGE currently cannot
be pushed down.

You can see whether a given join can be pushed down by checking it with EXPLAIN; when the join can
be pushed down, you can see references to the pushed join in the Extra column of the output, as
shown in this example:

mysql> EXPLAIN
 -> SELECT e.first_name, e.last_name, t.title, d.dept_name
 -> FROM employees e
 -> JOIN dept_emp de ON e.emp_no=de.emp_no
 -> JOIN departments d ON d.dept_no=de.dept_no
 -> JOIN titles t ON e.emp_no=t.emp_no\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: d
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 9
 Extra: Parent of 4 pushed join@1
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: de
 type: ref
possible_keys: PRIMARY,emp_no,dept_no

2771

NDB Cluster Configuration Files

 key: dept_no
 key_len: 4
 ref: employees.d.dept_no
 rows: 5305
 Extra: Child of 'd' in pushed join@1
*************************** 3. row ***************************
 id: 1
 select_type: SIMPLE
 table: e
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: employees.de.emp_no
 rows: 1
 Extra: Child of 'de' in pushed join@1
*************************** 4. row ***************************
 id: 1
 select_type: SIMPLE
 table: t
 type: ref
possible_keys: PRIMARY,emp_no
 key: emp_no
 key_len: 4
 ref: employees.de.emp_no
 rows: 19
 Extra: Child of 'e' in pushed join@1
4 rows in set (0.00 sec)

Note

If inner joined child tables are joined by ref, and the result is ordered or grouped
by a sorted index, this index cannot provide sorted rows, which forces writing to a
sorted tempfile.

Two additional sources of information about pushed join performance are available:

1. The status variables Ndb_pushed_queries_defined, Ndb_pushed_queries_dropped,
Ndb_pushed_queries_executed, and Ndb_pushed_reads.

2. The counters in the ndbinfo.counters table that belong to the DBSPJ kernel block.

• ndb_log_apply_status

Command-Line Format --ndb-log-apply-status[={OFF|ON}]

System Variable ndb_log_apply_status

Scope Global

Dynamic No

Type Boolean

Default Value OFF

A read-only variable which shows whether the server was started with the --ndb-log-apply-status
option.

• ndb_log_bin

Command-Line Format --ndb-log-bin[={OFF|ON}]

System Variable ndb_log_bin
2772

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

NDB Cluster Configuration Files

Scope Global, Session

Dynamic No

Type Boolean

Default Value ON

Causes updates to NDB tables to be written to the binary log. Setting this variable has no effect if
binary logging is not already enabled for the server using log_bin. ndb_log_bin defaults to 1 (ON);
normally, there is never any need to change this value in a production environment.

• ndb_log_binlog_index

Command-Line Format --ndb-log-binlog-index[={OFF|ON}]

System Variable ndb_log_binlog_index

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Causes a mapping of epochs to positions in the binary log to be inserted into the ndb_binlog_index
table. Setting this variable has no effect if binary logging is not already enabled for the server using
log_bin. (In addition, ndb_log_bin must not be disabled.) ndb_log_binlog_index defaults to 1
(ON); normally, there is never any need to change this value in a production environment.

• ndb_log_empty_epochs

Command-Line Format --ndb-log-empty-epochs[={OFF|ON}]

System Variable ndb_log_empty_epochs

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

When this variable is set to 0, epoch transactions with no changes are not written to the binary log,
although a row is still written even for an empty epoch in ndb_binlog_index.

• ndb_log_empty_update

Command-Line Format --ndb-log-empty-update[={OFF|ON}]

System Variable ndb_log_empty_update

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

When this variable is set to ON (1), update transactions with no changes are written to the binary log,
even when log_slave_updates is enabled.

• ndb_log_exclusive_reads

2773

NDB Cluster Configuration Files

Command-Line Format --ndb-log-exclusive-reads[={OFF|ON}]

Introduced 5.6.20-ndb-7.4.1

System Variable ndb_log_exclusive_reads

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value 0

In NDB 7.4, this variable determines whether primary key reads are logged with exclusive locks, which
allows for NDB Cluster Replication conflict detection and resolution based on read conflicts. To enable
these locks, set the value of ndb_log_exclusive_reads to 1. 0, which disables such locking, is the
default.

For more information, see Read conflict detection and resolution.

• ndb_log_orig

Command-Line Format --ndb-log-orig[={OFF|ON}]

System Variable ndb_log_orig

Scope Global

Dynamic No

Type Boolean

Default Value OFF

Shows whether the originating server ID and epoch are logged in the ndb_binlog_index table. Set
using the --ndb-log-orig server option.

• ndb_log_transaction_id

System Variable ndb_log_transaction_id

Scope Global

Dynamic No

Type Boolean

Default Value OFF

This read-only, Boolean system variable shows whether a replica mysqld writes NDB transaction IDs
in the binary log (required to use “active-active” NDB Cluster Replication with NDB$EPOCH_TRANS()
conflict detection). To change the setting, use the --ndb-log-transaction-id option.

ndb_log_transaction_id is not supported in mainline MySQL Server 5.6.

For more information, see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

• ndb_optimized_node_selection

Command-Line Format --ndb-optimized-node-selection=#

System Variable ndb_optimized_node_selection

2774

NDB Cluster Configuration Files

Scope Global

Dynamic No

Type Integer

Default Value 3

Minimum Value 0

Maximum Value 3

There are two forms of optimized node selection, described here:

1. The SQL node uses promixity to determine the transaction coordinator; that is, the “closest” data
node to the SQL node is chosen as the transaction coordinator. For this purpose, a data node having
a shared memory connection with the SQL node is considered to be “closest” to the SQL node; the
next closest (in order of decreasing proximity) are: TCP connection to localhost, followed by TCP
connection from a host other than localhost.

2. The SQL thread uses distribution awareness to select the data node. That is, the data node housing
the cluster partition accessed by the first statement of a given transaction is used as the transaction
coordinator for the entire transaction. (This is effective only if the first statement of the transaction
accesses no more than one cluster partition.)

This option takes one of the integer values 0, 1, 2, or 3. 3 is the default. These values affect node
selection as follows:

• 0: Node selection is not optimized. Each data node is employed as the transaction coordinator 8 times
before the SQL thread proceeds to the next data node.

• 1: Proximity to the SQL node is used to determine the transaction coordinator.

• 2: Distribution awareness is used to select the transaction coordinator. However, if the first statement
of the transaction accesses more than one cluster partition, the SQL node reverts to the round-robin
behavior seen when this option is set to 0.

• 3: If distribution awareness can be employed to determine the transaction coordinator, then it is used;
otherwise proximity is used to select the transaction coordinator. (This is the default behavior.)

Proximity is determined as follows:

1. Start with the value set for the Group parameter (default 55).

2. For an API node sharing the same host with other API nodes, decrement the value by 1. Assuming
the default value for Group, the effective value for data nodes on same host as the API node is 54,
and for remote data nodes 55.

• ndb_recv_thread_activation_threshold

Command-Line Format --ndb-recv-thread-activation-
threshold=#

Introduced 5.6.10-ndb-7.3.1

System Variable ndb_recv_thread_activation_threshold

Scope Global

Dynamic Yes

2775

NDB Cluster Configuration Files

Type Integer

Default Value 8

Minimum Value 0 (MIN_ACTIVATION_THRESHOLD)

Maximum Value 16 (MAX_ACTIVATION_THRESHOLD)

When this number of concurrently active threads is reached, the receive thread takes over polling of the
cluster connection.

This variable is global in scope. It can also be set at startup.

• ndb_recv_thread_cpu_mask

Command-Line Format --ndb-recv-thread-cpu-mask=mask

Introduced 5.6.10-ndb-7.3.1

System Variable ndb_recv_thread_cpu_mask

Scope Global

Dynamic Yes

Type Bitmap

Default Value [empty]

CPU mask for locking receiver threads to specific CPUs. This is specified as a hexadecimal bitmask. For
example, 0x33 means that one CPU is used per receiver thread. An empty string is the default; setting
ndb_recv_thread_cpu_mask to this value removes any receiver thread locks previously set.

This variable is global in scope. It can also be set at startup.

• ndb_report_thresh_binlog_epoch_slip

Command-Line Format --ndb-report-thresh-binlog-epoch-
slip=#

System Variable ndb_report_thresh_binlog_epoch_slip

Scope Global

Dynamic Yes

Type Integer

Default Value 3

Minimum Value 0

Maximum Value 256

This is a threshold on the number of epochs to be behind before reporting binary log status. For
example, a value of 3 (the default) means that if the difference between which epoch has been received
from the storage nodes and which epoch has been applied to the binary log is 3 or more, a status
message is sent to the cluster log.

• ndb_report_thresh_binlog_mem_usage

Command-Line Format --ndb-report-thresh-binlog-mem-
usage=#

System Variable ndb_report_thresh_binlog_mem_usage

2776

NDB Cluster Configuration Files

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 10

This is a threshold on the percentage of free memory remaining before reporting binary log status. For
example, a value of 10 (the default) means that if the amount of available memory for receiving binary
log data from the data nodes falls below 10%, a status message is sent to the cluster log.

• ndb_show_foreign_key_mock_tables

Command-Line Format --ndb-show-foreign-key-mock-
tables[={OFF|ON}]

Introduced 5.6.11-ndb-7.3.2

System Variable ndb_show_foreign_key_mock_tables

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Show the mock tables used by NDB to support foreign_key_checks=0. When this is enabled, extra
warnings are shown when creating and dropping the tables. The real (internal) name of the table can be
seen in the output of SHOW CREATE TABLE.

• ndb_slave_conflict_role

Command-Line Format --ndb-slave-conflict-role=value

Introduced 5.6.20-ndb-7.4.1

System Variable ndb_slave_conflict_role

Scope Global

Dynamic Yes

Type Enumeration

Default Value NONE

Valid Values NONE

PRIMARY

SECONDARY

PASS

Determine the role of this SQL node (and NDB Cluster) in a circular (“active-active”) replication
setup. ndb_slave_conflict_role can take any one of the values PRIMARY, SECONDARY,
PASS, or NULL (the default). The replica SQL thread must be stopped before you can change
ndb_slave_conflict_role. In addition, it is not possible to change directly between PASS and either

2777

NDB Cluster Configuration Files

of PRIMARY or SECONDARY directly; in such cases, you must ensure that the SQL thread is stopped,
then execute SET @@GLOBAL.ndb_slave_conflict_role = 'NONE' first.

This variable was added in NDB 7.4. For more information, see Section 18.7.11, “NDB Cluster
Replication Conflict Resolution”.

• ndb_table_no_logging

System Variable ndb_table_no_logging

Scope Session

Dynamic Yes

Type Boolean

Default Value OFF

When this variable is set to ON or 1, it causes NDB tables not to be checkpointed to disk. More
specifically, this setting applies to tables which are created or altered using ENGINE NDB when
ndb_table_no_logging is enabled, and continues to apply for the lifetime of the table, even if
ndb_table_no_logging is later changed. Suppose that A, B, C, and D are tables that we create (and
perhaps also alter), and that we also change the setting for ndb_table_no_logging as shown here:

SET @@ndb_table_no_logging = 1;

CREATE TABLE A ... ENGINE NDB;

CREATE TABLE B ... ENGINE MYISAM;
CREATE TABLE C ... ENGINE MYISAM;

ALTER TABLE B ENGINE NDB;

SET @@ndb_table_no_logging = 0;

CREATE TABLE D ... ENGINE NDB;
ALTER TABLE C ENGINE NDB;

SET @@ndb_table_no_logging = 1;

After the previous sequence of events, tables A and B are not checkpointed; A was created with ENGINE
NDB and B was altered to use NDB, both while ndb_table_no_logging was enabled. However,
tables C and D are logged; C was altered to use NDB and D was created using ENGINE NDB, both while
ndb_table_no_logging was disabled. Setting ndb_table_no_logging back to 1 or ON does not
cause table C or D to be checkpointed.

Note

ndb_table_no_logging has no effect on the creation of NDB table schema
files; to suppress these, use ndb_table_temporary instead.

• ndb_table_temporary

System Variable ndb_table_temporary

Scope Session

Dynamic Yes

Type Boolean

2778

NDB Cluster Configuration Files

Default Value OFF

When set to ON or 1, this variable causes NDB tables not to be written to disk: This means that no table
schema files are created, and that the tables are not logged.

Note

Setting this variable currently has no effect in NDB Cluster 7.0 and later. This is a
known issue; see Bug #34036.

• ndb_use_copying_alter_table

System Variable ndb_use_copying_alter_table

Scope Global, Session

Dynamic No

Forces NDB to use copying of tables in the event of problems with online ALTER TABLE operations. The
default value is OFF.

• ndb_use_exact_count

System Variable ndb_use_exact_count

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

Forces NDB to use a count of records during SELECT COUNT(*) query planning to speed up this type of
query. The default value is OFF, which allows for faster queries overall.

• ndb_use_transactions

Command-Line Format --ndb-use-transactions[={OFF|ON}]

System Variable ndb_use_transactions

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value ON

You can disable NDB transaction support by setting this variable's value to OFF. This is generally not
recommended, although it may be useful to disable transaction support within a given client session
when that session is used to import one or more dump files with large transactions; this allows a multi-
row insert to be executed in parts, rather than as a single transaction. In such cases, once the import has
been completed, you should either reset the variable value for this session to ON, or simply terminate the
session.

• ndb_version

System Variable ndb_version

Scope Global

2779

NDB Cluster Configuration Files

Dynamic No

Type String

Default Value

NDB engine version, as a composite integer.

• ndb_version_string

System Variable ndb_version_string

Scope Global

Dynamic No

Type String

Default Value

NDB engine version in ndb-x.y.z format.

• server_id_bits

Command-Line Format --server-id-bits=#

System Variable server_id_bits

Scope Global

Dynamic No

Type Integer

Default Value 32

Minimum Value 7

Maximum Value 32

The effective value of server_id if the server was started with the --server-id-bits option set to a
nondefault value.

If the value of server_id greater than or equal to 2 to the power of server_id_bits, mysqld
refuses to start.

This system variable is supported only by NDB Cluster. server_id_bits is not supported by the
standard MySQL Server.

• slave_allow_batching

Command-Line Format --slave-allow-batching[={OFF|ON}]

System Variable slave_allow_batching

Scope Global

Dynamic Yes

Type Boolean

2780

NDB Cluster Configuration Files

Default Value OFF

Whether or not batched updates are enabled on NDB Cluster replicas.

Allowing batched updates on the replica greatly improves performance, particularly when replicating
TEXT, BLOB, and JSON columns. For this reason, you should always enable slave_allow_batching
when using NDB replication.

Setting this variable has an effect only when using replication with the NDB storage engine; in MySQL
Server 5.6, it is present but does nothing. For more information, see Section 18.7.6, “Starting NDB
Cluster Replication (Single Replication Channel)”.

• transaction_allow_batching

System Variable transaction_allow_batching

Scope Session

Dynamic Yes

Type Boolean

Default Value OFF

When set to 1 or ON, this variable enables batching of statements within the same transaction. To
use this variable, autocommit must first be disabled by setting it to 0 or OFF; otherwise, setting
transaction_allow_batching has no effect.

It is safe to use this variable with transactions that performs writes only, as having it enabled can lead to
reads from the “before” image. You should ensure that any pending transactions are committed (using
an explicit COMMIT if desired) before issuing a SELECT.

Important

transaction_allow_batching should not be used whenever there is the
possibility that the effects of a given statement depend on the outcome of a
previous statement within the same transaction.

This variable is currently supported for NDB Cluster only.

The system variables in the following list all relate to the ndbinfo information database.

• ndbinfo_database

System Variable ndbinfo_database

Scope Global

Dynamic No

Type String

Default Value ndbinfo

Shows the name used for the NDB information database; the default is ndbinfo. This is a read-only
variable whose value is determined at compile time.

• ndbinfo_max_bytes

Command-Line Format --ndbinfo-max-bytes=#
2781

https://dev.mysql.com/doc/refman/5.7/en/json.html

NDB Cluster Configuration Files

System Variable ndbinfo_max_bytes

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 65535

Used in testing and debugging only.

• ndbinfo_max_rows

Command-Line Format --ndbinfo-max-rows=#

System Variable ndbinfo_max_rows

Scope Global, Session

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 1

Maximum Value 256

Used in testing and debugging only.

• ndbinfo_offline

System Variable ndbinfo_offline

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Place the ndbinfo database into offline mode, in which tables and views can be opened even when
they do not actually exist, or when they exist but have different definitions in NDB. No rows are returned
from such tables (or views).

• ndbinfo_show_hidden

Command-Line Format --ndbinfo-show-hidden[={OFF|ON}]

System Variable ndbinfo_show_hidden

Scope Global, Session

Dynamic Yes

Type Boolean

Default Value OFF

Valid Values ON

OFF

2782

NDB Cluster Configuration Files

Whether or not the ndbinfo database's underlying internal tables are shown in the mysql client. The
default is OFF.

Note

When ndbinfo_show_hidden is enabled, the internal tables are shown
in the ndbinfo database only; they are not visible in TABLES or other
INFORMATION_SCHEMA tables, regardless of the variable's setting.

• ndbinfo_table_prefix

System Variable ndbinfo_table_prefix

Scope Global

Dynamic No

Type String

Default Value ndb$

The prefix used in naming the ndbinfo database's base tables (normally hidden, unless exposed by
setting ndbinfo_show_hidden). This is a read-only variable whose default value is ndb$; the prefix
itself is determined at compile time.

• ndbinfo_version

System Variable ndbinfo_version

Scope Global

Dynamic No

Type String

Default Value

Shows the version of the ndbinfo engine in use; read-only.

NDB Cluster Status Variables

This section provides detailed information about MySQL server status variables that relate to NDB Cluster
and the NDB storage engine. For status variables not specific to NDB Cluster, and for general information
on using status variables, see Section 5.1.9, “Server Status Variables”.

• Handler_discover

The MySQL server can ask the NDBCLUSTER storage engine if it knows about a table with a given name.
This is called discovery. Handler_discover indicates the number of times that tables have been
discovered using this mechanism.

• Ndb_api_adaptive_send_deferred_count

Number of adaptive send calls that were not actually sent.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_deferred_count_session

Number of adaptive send calls that were not actually sent.

2783

NDB Cluster Configuration Files

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_deferred_count_slave

Number of adaptive send calls that were not actually sent by this replica.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_forced_count

Number of adaptive send calls using forced-send sent by this MySQL Server (SQL node).

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_forced_count_session

Number of adaptive send calls using forced-send sent in this client session.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_forced_count_slave

Number of adaptive send calls using forced-send sent by this replica.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_unforced_count

Number of adaptive send calls without forced-send sent by this MySQL server (SQL node).

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_unforced_count_session

Number of adaptive send calls without forced-send sent in this client session.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_unforced_count_slave

Number of adaptive send calls without forced-send sent by this replica.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_sent_count_session

Amount of data (in bytes) sent to the data nodes in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

2784

NDB Cluster Configuration Files

• Ndb_api_bytes_sent_count_slave

Amount of data (in bytes) sent to the data nodes by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_sent_count

Amount of data (in bytes) sent to the data nodes by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count_session

Amount of data (in bytes) received from the data nodes in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count_slave

Amount of data (in bytes) received from the data nodes by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count

Amount of data (in bytes) received from the data nodes by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_data_count_injector

The number of row change events received by the NDB binlog injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_data_count

The number of row change events received by this MySQL Server (SQL node).

2785

NDB Cluster Configuration Files

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_nondata_count_injector

The number of events received, other than row change events, by the NDB binary log injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_nondata_count

The number of events received, other than row change events, by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_bytes_count_injector

The number of bytes of events received by the NDB binlog injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_bytes_count

The number of bytes of events received by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count_session

The number of operations in this client session based on or using primary keys. This includes operations
on blob tables, implicit unlock operations, and auto-increment operations, as well as user-visible primary
key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count_slave

The number of operations by this replica based on or using primary keys. This includes operations on
blob tables, implicit unlock operations, and auto-increment operations, as well as user-visible primary
key operations.

2786

NDB Cluster Configuration Files

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count

The number of operations by this MySQL Server (SQL node) based on or using primary keys. This
includes operations on blob tables, implicit unlock operations, and auto-increment operations, as well as
user-visible primary key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count_session

The number of scans in this client session that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count_slave

The number of scans by this replica that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count

The number of scans by this MySQL Server (SQL node) that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count_session

The number of range scans that have been started in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count_slave

The number of range scans that have been started by this replica.

2787

NDB Cluster Configuration Files

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count

The number of range scans that have been started by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count_session

The total number of rows that have been read in this client session. This includes all rows read by any
primary key, unique key, or scan operation made in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count_slave

The total number of rows that have been read by this replica. This includes all rows read by any primary
key, unique key, or scan operation made by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count

The total number of rows that have been read by this MySQL Server (SQL node). This includes all rows
read by any primary key, unique key, or scan operation made by this MySQL Server (SQL node).

You should be aware that this value may not be completely accurate with regard to rows read by
SELECT COUNT(*) queries, due to the fact that, in this case, the MySQL server actually reads
pseudo-rows in the form [table fragment ID]:[number of rows in fragment] and
sums the rows per fragment for all fragments in the table to derive an estimated count for all rows.
Ndb_api_read_row_count uses this estimate and not the actual number of rows in the table.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

2788

NDB Cluster Configuration Files

• Ndb_api_scan_batch_count_session

The number of batches of rows received in this client session. 1 batch is defined as 1 set of scan results
from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_scan_batch_count_slave

The number of batches of rows received by this replica. 1 batch is defined as 1 set of scan results from a
single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_scan_batch_count

The number of batches of rows received by this MySQL Server (SQL node). 1 batch is defined as 1 set
of scan results from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count_session

The number of table scans that have been started in this client session, including scans of internal
tables,.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count_slave

The number of table scans that have been started by this replica, including scans of internal tables,.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count

The number of table scans that have been started by this MySQL Server (SQL node), including scans of
internal tables,.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

2789

NDB Cluster Configuration Files

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count_session

The number of transactions aborted in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count_slave

The number of transactions aborted by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count

The number of transactions aborted by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count_session

The number of transactions closed in this client session. This value may be greater than the sum of
Ndb_api_trans_commit_count_session and Ndb_api_trans_abort_count_session, since
some transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count_slave

The number of transactions closed by this replica. This value may be greater than the sum of
Ndb_api_trans_commit_count_slave and Ndb_api_trans_abort_count_slave, since some
transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

2790

NDB Cluster Configuration Files

• Ndb_api_trans_close_count

The number of transactions closed by this MySQL Server (SQL node). This value may be greater than
the sum of Ndb_api_trans_commit_count and Ndb_api_trans_abort_count, since some
transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count_session

The number of transactions committed in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count_slave

The number of transactions committed by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count

The number of transactions committed by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count_session

The total number of rows that have been read in this client session. This includes all rows read by any
primary key, unique key, or scan operation made in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

2791

NDB Cluster Configuration Files

• Ndb_api_trans_local_read_row_count_slave

The total number of rows that have been read by this replica. This includes all rows read by any primary
key, unique key, or scan operation made by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count

The total number of rows that have been read by this MySQL Server (SQL node). This includes all rows
read by any primary key, unique key, or scan operation made by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count_session

The number of transactions started in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count_slave

The number of transactions started by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count

The number of transactions started by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count_session

The number of operations in this client session based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count_slave

2792

NDB Cluster Configuration Files

The number of operations by this replica based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count

The number of operations by this MySQL Server (SQL node) based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count_session

The number of times a thread has been blocked in this client session while waiting for execution of an
operation to complete. This includes all execute() calls as well as implicit executes for blob and auto-
increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count_slave

The number of times a thread has been blocked by this replica while waiting for execution of an
operation to complete. This includes all execute() calls as well as implicit executes for blob and auto-
increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count

The number of times a thread has been blocked by this MySQL Server (SQL node) while waiting for
execution of an operation to complete. This includes all execute() calls as well as implicit executes for
blob and auto-increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

2793

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute

NDB Cluster Configuration Files

• Ndb_api_wait_meta_request_count_session

The number of times a thread has been blocked in this client session waiting for a metadata-based
signal, such as is expected for DDL requests, new epochs, and seizure of transaction records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count_slave

The number of times a thread has been blocked by this replica waiting for a metadata-based signal, such
as is expected for DDL requests, new epochs, and seizure of transaction records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count

The number of times a thread has been blocked by this MySQL Server (SQL node) waiting for a
metadata-based signal, such as is expected for DDL requests, new epochs, and seizure of transaction
records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count_session

Total time (in nanoseconds) spent in this client session waiting for any type of signal from the data
nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count_slave

Total time (in nanoseconds) spent by this replica waiting for any type of signal from the data nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

2794

NDB Cluster Configuration Files

• Ndb_api_wait_nanos_count

Total time (in nanoseconds) spent by this MySQL Server (SQL node) waiting for any type of signal from
the data nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count_session

The number of times a thread has been blocked in this client session while waiting for a scan-based
signal, such as when waiting for more results from a scan, or when waiting for a scan to close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count_slave

The number of times a thread has been blocked by this replica while waiting for a scan-based signal,
such as when waiting for more results from a scan, or when waiting for a scan to close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count

The number of times a thread has been blocked by this MySQL Server (SQL node) while waiting for a
scan-based signal, such as when waiting for more results from a scan, or when waiting for a scan to
close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 18.6.14, “NDB API Statistics Counters and Variables”.

• Ndb_cluster_node_id

If the server is acting as an NDB Cluster node, then the value of this variable its node ID in the cluster.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

• Ndb_config_from_host

If the server is part of an NDB Cluster, the value of this variable is the host name or IP address of the
Cluster management server from which it gets its configuration data.

If the server is not part of an NDB Cluster, then the value of this variable is an empty string.

2795

NDB Cluster Configuration Files

• Ndb_config_from_port

If the server is part of an NDB Cluster, the value of this variable is the number of the port through which it
is connected to the Cluster management server from which it gets its configuration data.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

• Ndb_conflict_fn_epoch

Used in NDB Cluster Replication conflict resolution, this variable shows the number of rows found to be
in conflict using NDB$EPOCH() conflict resolution on a given mysqld since the last time it was restarted.

For more information, see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_epoch_trans

Used in NDB Cluster Replication conflict resolution, this variable shows the number of rows found to be
in conflict using NDB$EPOCH_TRANS() conflict resolution on a given mysqld since the last time it was
restarted.

For more information, see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_epoch2

Shows the number of rows found to be in conflict in NDB Cluster Replication conflict resolution, when
using NDB$EPOCH2(), on the source designated as the primary since the last time it was restarted.

For more information, see NDB$EPOCH2().

• Ndb_conflict_fn_epoch2_trans

Used in NDB Cluster Replication conflict resolution, this variable shows the number of rows found to be
in conflict using NDB$EPOCH_TRANS2() conflict resolution on a given mysqld since the last time it was
restarted.

For more information, see NDB$EPOCH2_TRANS().

• Ndb_conflict_fn_max

Used in NDB Cluster Replication conflict resolution, this variable shows the number of times that a row
was not applied on the current SQL node due to “greatest timestamp wins” conflict resolution since the
last time that this mysqld was started.

For more information, see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_max_del_win

Shows the number of times that a row was rejected on the current SQL node due to NDB Cluster
Replication conflict resolution using NDB$MAX_DELETE_WIN(), since the last time that this mysqld was
started.

For more information, see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_old

Used in NDB Cluster Replication conflict resolution, this variable shows the number of times that a row
was not applied as the result of “same timestamp wins” conflict resolution on a given mysqld since the
last time it was restarted.

2796

NDB Cluster Configuration Files

For more information, see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_last_conflict_epoch

The most recent epoch in which a conflict was detected on this replica. You can compare this value with
Ndb_slave_max_replicated_epoch; if Ndb_slave_max_replicated_epoch is greater than
Ndb_conflict_last_conflict_epoch, no conflicts have yet been detected.

See Section 18.7.11, “NDB Cluster Replication Conflict Resolution”, for more information.

• Ndb_conflict_reflected_op_discard_count

When using NDB Cluster Replication conflict resolution, this is the number of reflected operations that
were not applied on the secondary, due to encountering an error during execution.

See Section 18.7.11, “NDB Cluster Replication Conflict Resolution”, for more information.

• Ndb_conflict_reflected_op_prepare_count

When using conflict resolution with NDB Cluster Replication, this status variable contains the number of
reflected operations that have been defined (that is, prepared for execution on the secondary).

See Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_refresh_op_count

When using conflict resolution with NDB Cluster Replication, this gives the number of refresh operations
that have been prepared for execution on the secondary.

See Section 18.7.11, “NDB Cluster Replication Conflict Resolution”, for more information.

• Ndb_conflict_last_stable_epoch

Number of rows found to be in conflict by a transactional conflict function

See Section 18.7.11, “NDB Cluster Replication Conflict Resolution”, for more information.

• Ndb_conflict_trans_row_conflict_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the number of rows found
to be directly in-conflict by a transactional conflict function on a given mysqld since the last time it was
restarted.

Currently, the only transactional conflict detection function supported by NDB
Cluster is NDB$EPOCH_TRANS(), so this status variable is effectively the same as
Ndb_conflict_fn_epoch_trans.

For more information, see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_row_reject_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the total number of rows
realigned due to being determined as conflicting by a transactional conflict detection function. This
includes not only Ndb_conflict_trans_row_conflict_count, but any rows in or dependent on
conflicting transactions.

For more information, see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

2797

NDB Cluster Configuration Files

• Ndb_conflict_trans_reject_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the number of
transactions found to be in conflict by a transactional conflict detection function.

For more information, see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_detect_iter_count

Used in NDB Cluster Replication conflict resolution, this shows the number of internal
iterations required to commit an epoch transaction. Should be (slightly) greater than or equal to
Ndb_conflict_trans_conflict_commit_count.

For more information, see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_conflict_commit_count

Used in NDB Cluster Replication conflict resolution, this shows the number of epoch transactions
committed after they required transactional conflict handling.

For more information, see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_epoch_delete_delete_count

When using delete-delete conflict detection, this is the number of delete-delete conflicts detected, where
a delete operation is applied, but the indicated row does not exist.

• Ndb_execute_count

Provides the number of round trips to the NDB kernel made by operations.

• Ndb_last_commit_epoch_server

The epoch most recently committed by NDB.

This variable was added in NDB 7.3.8.

• Ndb_last_commit_epoch_session

The epoch most recently committed by this NDB client.

This variable was added in NDB 7.3.8.

• Ndb_number_of_data_nodes

If the server is part of an NDB Cluster, the value of this variable is the number of data nodes in the
cluster.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

• Ndb_pushed_queries_defined

The total number of joins pushed down to the NDB kernel for distributed handling on the data nodes.

Note

Joins tested using EXPLAIN that can be pushed down contribute to this number.

• Ndb_pushed_queries_dropped

2798

NDB Cluster Configuration Files

The number of joins that were pushed down to the NDB kernel but that could not be handled there.

• Ndb_pushed_queries_executed

The number of joins successfully pushed down to NDB and executed there.

• Ndb_pushed_reads

The number of rows returned to mysqld from the NDB kernel by joins that were pushed down.

Note

Executing EXPLAIN on joins that can be pushed down to NDB does not add to
this number.

• Ndb_pruned_scan_count

This variable holds a count of the number of scans executed by NDBCLUSTER since the NDB Cluster
was last started where NDBCLUSTER was able to use partition pruning.

Using this variable together with Ndb_scan_count can be helpful in schema design to maximize the
ability of the server to prune scans to a single table partition, thereby involving only a single data node.

• Ndb_scan_count

This variable holds a count of the total number of scans executed by NDBCLUSTER since the NDB
Cluster was last started.

• Ndb_slave_max_replicated_epoch

The most recently committed epoch on this replica. In NDB 7.4, you can compare this value with
Ndb_conflict_last_conflict_epoch; if Ndb_slave_max_replicated_epoch is the greater of
the two, no conflicts have yet been detected.

This variable was added in NDB 7.3.8.

For more information, see Section 18.7.11, “NDB Cluster Replication Conflict Resolution”.

18.4.3.9 NDB Cluster TCP/IP Connections

TCP/IP is the default transport mechanism for all connections between nodes in an NDB Cluster. Normally
it is not necessary to define TCP/IP connections; NDB Cluster automatically sets up such connections for
all data nodes, management nodes, and SQL or API nodes.

Note

For an exception to this rule, see Section 18.4.3.10, “NDB Cluster TCP/IP
Connections Using Direct Connections”.

To override the default connection parameters, it is necessary to define a connection using one or more
[tcp] sections in the config.ini file. Each [tcp] section explicitly defines a TCP/IP connection
between two NDB Cluster nodes, and must contain at a minimum the parameters NodeId1 and NodeId2,
as well as any connection parameters to override.

It is also possible to change the default values for these parameters by setting them in the [tcp
default] section.

2799

NDB Cluster Configuration Files

Important

Any [tcp] sections in the config.ini file should be listed last, following all other
sections in the file. However, this is not required for a [tcp default] section.
This requirement is a known issue with the way in which the config.ini file is
read by the NDB Cluster management server.

Connection parameters which can be set in [tcp] and [tcp default] sections of the config.ini file
are listed here:

• Checksum

Version (or later) NDB 7.3.1

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 7.3.1)

This parameter is a boolean parameter (enabled by setting it to Y or 1, disabled by setting it to N or 0). It
is disabled by default. When it is enabled, checksums for all messages are calculated before they placed
in the send buffer. This feature ensures that messages are not corrupted while waiting in the send buffer,
or by the transport mechanism.

• Group

When ndb_optimized_node_selection is enabled, node proximity is used in some cases to select
which node to connect to. This parameter can be used to influence proximity by setting it to a lower
value, which is interpreted as “closer”. See the description of the system variable for more information.

• HostName1

Version (or later) NDB 7.3.1

Type or units name or IP address

Default [...]

Range ...

Restart Type N (NDB 7.3.1)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given TCP connection between two nodes. The values used for these parameters can be host
names or IP addresses.

• HostName2

Version (or later) NDB 7.3.1

Type or units name or IP address

Default [...]

Range ...

Restart Type N (NDB 7.3.1)

2800

NDB Cluster Configuration Files

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given TCP connection between two nodes. The values used for these parameters can be host
names or IP addresses.

• NodeId1

Version (or later) NDB 7.3.1

Type or units numeric

Default [none]

Range 1 - 255

Restart Type N (NDB 7.3.1)

To identify a connection between two nodes it is necessary to provide their node IDs in the [tcp]
section of the configuration file as the values of NodeId1 and NodeId2. These are the same unique Id
values for each of these nodes as described in Section 18.4.3.7, “Defining SQL and Other API Nodes in
an NDB Cluster”.

• NodeId2

Version (or later) NDB 7.3.1

Type or units numeric

Default [none]

Range 1 - 255

Restart Type N (NDB 7.3.1)

To identify a connection between two nodes it is necessary to provide their node IDs in the [tcp]
section of the configuration file as the values of NodeId1 and NodeId2. These are the same unique Id
values for each of these nodes as described in Section 18.4.3.7, “Defining SQL and Other API Nodes in
an NDB Cluster”.

• NodeIdServer

Version (or later) NDB 7.3.1

Type or units numeric

Default [none]

Range 1 - 63

Restart Type N (NDB 7.3.1)

Set the server side of a TCP connection.

• OverloadLimit

Version (or later) NDB 7.3.1

Type or units bytes

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

2801

NDB Cluster Configuration Files

Restart Type N (NDB 7.3.1)

When more than this many unsent bytes are in the send buffer, the connection is considered overloaded.

This parameter can be used to determine the amount of unsent data that must be present in the send
buffer before the connection is considered overloaded. See Section 18.4.3.12, “Configuring NDB
Cluster Send Buffer Parameters”, and Section 18.6.15.27, “The ndbinfo transporters Table”, for more
information.

• PortNumber (OBSOLETE / REMOVED)

This parameter formerly specified the port number to be used for listening for connections from other
nodes, and was removed in NDB 7.5.1; use the ServerPort data node configuration parameter for this
purpose instead (Bug #77405, Bug #21280456).

• Proxy

Version (or later) NDB 7.3.1

Type or units string

Default [...]

Range ...

Restart Type N (NDB 7.3.1)

Set a proxy for the TCP connection.

• ReceiveBufferMemory

Version (or later) NDB 7.3.1

Type or units bytes

Default 2M

Range 16K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

Specifies the size of the buffer used when receiving data from the TCP/IP socket.

The default value of this parameter is 2MB. The minimum possible value is 16KB; the theoretical
maximum is 4GB.

• SendBufferMemory

Version (or later) NDB 7.3.1

Type or units unsigned

Default 2M

Range 256K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

TCP transporters use a buffer to store all messages before performing the send call to the operating
system. When this buffer reaches 64KB its contents are sent; these are also sent when a round of

2802

NDB Cluster Configuration Files

messages have been executed. To handle temporary overload situations it is also possible to define a
bigger send buffer.

If this parameter is set explicitly, then the memory is not dedicated to each transporter; instead, the
value used denotes the hard limit for how much memory (out of the total available memory—that is,
TotalSendBufferMemory) that may be used by a single transporter. For more information about
configuring dynamic transporter send buffer memory allocation in NDB Cluster, see Section 18.4.3.12,
“Configuring NDB Cluster Send Buffer Parameters”.

The default size of the send buffer is 2MB, which is the size recommended in most situations. The
minimum size is 64 KB; the theoretical maximum is 4 GB.

• SendSignalId

Version (or later) NDB 7.3.1

Type or units boolean

Default false (debug builds: true)

Range true, false

Restart Type N (NDB 7.3.1)

To be able to retrace a distributed message datagram, it is necessary to identify each message. When
this parameter is set to Y, message IDs are transported over the network. This feature is disabled by
default in production builds, and enabled in -debug builds.

• TcpBind_INADDR_ANY

Setting this parameter to TRUE or 1 binds IP_ADDR_ANY so that connections can be made from
anywhere (for autogenerated connections). The default is FALSE (0).

• TCP_MAXSEG_SIZE

Version (or later) NDB 7.3.1

Type or units unsigned

Default 0

Range 0 - 2G

Restart Type N (NDB 7.3.1)

Determines the size of the memory set during TCP transporter initialization. The default is recommended
for most common usage cases.

• TCP_RCV_BUF_SIZE

Version (or later) NDB 7.3.1

Type or units unsigned

Default 0

Range 0 - 2G

Restart Type N (NDB 7.3.1)

Determines the size of the receive buffer set during TCP transporter initialization. The default and
minimum value is 0, which allows the operating system or platform to set this value. The default is
recommended for most common usage cases.

2803

NDB Cluster Configuration Files

• TCP_SND_BUF_SIZE

Version (or later) NDB 7.3.1

Type or units unsigned

Default 0

Range 0 - 2G

Version (or later) NDB 7.4.8

Type or units unsigned

Default 0

Range 0 - 2G

Restart Type N (NDB 7.3.1)

Determines the size of the send buffer set during TCP transporter initialization. The default and minimum
value is 0, which allows the operating system or platform to set this value. The default is recommended
for most common usage cases.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 18.14 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 18.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

18.4.3.10 NDB Cluster TCP/IP Connections Using Direct Connections

Setting up a cluster using direct connections between data nodes requires specifying explicitly the
crossover IP addresses of the data nodes so connected in the [tcp] section of the cluster config.ini
file.

In the following example, we envision a cluster with at least four hosts, one each for a management server,
an SQL node, and two data nodes. The cluster as a whole resides on the 172.23.72.* subnet of a LAN.
In addition to the usual network connections, the two data nodes are connected directly using a standard
crossover cable, and communicate with one another directly using IP addresses in the 1.1.0.* address
range as shown:

Management Server
[ndb_mgmd]
Id=1
HostName=172.23.72.20

2804

NDB Cluster Configuration Files

SQL Node
[mysqld]
Id=2
HostName=172.23.72.21

Data Nodes
[ndbd]
Id=3
HostName=172.23.72.22

[ndbd]
Id=4
HostName=172.23.72.23

TCP/IP Connections
[tcp]
NodeId1=3
NodeId2=4
HostName1=1.1.0.1
HostName2=1.1.0.2

The HostName1 and HostName2 parameters are used only when specifying direct connections.

The use of direct TCP connections between data nodes can improve the cluster's overall efficiency by
enabling the data nodes to bypass an Ethernet device such as a switch, hub, or router, thus cutting down
on the cluster's latency.

Note

To take the best advantage of direct connections in this fashion with more than two
data nodes, you must have a direct connection between each data node and every
other data node in the same node group.

18.4.3.11 NDB Cluster Shared-Memory Connections

NDB Cluster attempts to use the shared memory transporter and configure it automatically where possible.
[shm] sections in the config.ini file explicitly define shared-memory connections between nodes in
the cluster. When explicitly defining shared memory as the connection method, it is necessary to define at
least NodeId1, NodeId2, and ShmKey. All other parameters have default values that should work well in
most cases.

Important

SHM functionality is considered experimental only. It is not officially supported in
any current NDB Cluster release, and testing results indicate that SHM performance
is not appreciably greater than when using TCP/IP for the transporter.

For these reasons, you must determine for yourself or by using our free resources
(forums, mailing lists) whether SHM can be made to work correctly in your specific
case.

• Checksum

Version (or later) NDB 7.3.1

Type or units boolean

Default true

Range true, false

2805

NDB Cluster Configuration Files

Restart Type N (NDB 7.3.1)

This parameter is a boolean (Y/N) parameter which is disabled by default. When it is enabled,
checksums for all messages are calculated before being placed in the send buffer.

This feature prevents messages from being corrupted while waiting in the send buffer. It also serves as a
check against data being corrupted during transport.

• Group

Version (or later) NDB 7.3.1

Type or units unsigned

Default 35

Range 0 - 200

Restart Type N (NDB 7.3.1)

Determines the group proximity; a smaller value is interpreted as being closer. The default value is
sufficient for most conditions.

• HostName1

Version (or later) NDB 7.3.1

Type or units name or IP address

Default [...]

Range ...

Restart Type N (NDB 7.3.1)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given SHM connection between two nodes. The values used for these parameters can be
host names or IP addresses.

• HostName2

Version (or later) NDB 7.3.1

Type or units name or IP address

Default [...]

Range ...

Restart Type N (NDB 7.3.1)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given SHM connection between two nodes. The values used for these parameters can be
host names or IP addresses.

• NodeId1

Version (or later) NDB 7.3.1

Type or units numeric

Default [none]

Range 1 - 255

2806

NDB Cluster Configuration Files

Restart Type N (NDB 7.3.1)

To identify a connection between two nodes it is necessary to provide node identifiers for each of them,
as NodeId1 and NodeId2.

• NodeId2

Version (or later) NDB 7.3.1

Type or units numeric

Default [none]

Range 1 - 255

Restart Type N (NDB 7.3.1)

To identify a connection between two nodes it is necessary to provide node identifiers for each of them,
as NodeId1 and NodeId2.

• NodeIdServer

Version (or later) NDB 7.3.1

Type or units numeric

Default [none]

Range 1 - 63

Restart Type N (NDB 7.3.1)

Identify the server end of a shared memory connection.

• OverloadLimit

Version (or later) NDB 7.3.1

Type or units bytes

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

When more than this many unsent bytes are in the send buffer, the connection is considered overloaded.

This parameter can be used to determine the amount of unsent data that must be present in the send
buffer before the connection is considered overloaded. See Section 18.4.3.12, “Configuring NDB Cluster
Send Buffer Parameters”, for more information.

• PortNumber

Version (or later) NDB 7.3.1

Type or units unsigned

Default [...]

Range 0 - 64K

Restart Type S (NDB 7.3.1)

Set the port to be used by the SHM transporter.

2807

NDB Cluster Configuration Files

• SendSignalId

Version (or later) NDB 7.3.1

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 7.3.1)

To retrace the path of a distributed message, it is necessary to provide each message with a unique
identifier. Setting this parameter to Y causes these message IDs to be transported over the network as
well. This feature is disabled by default in production builds, and enabled in -debug builds.

• ShmKey

Version (or later) NDB 7.3.1

Type or units unsigned

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

When setting up shared memory segments, a node ID, expressed as an integer, is used to identify
uniquely the shared memory segment to use for the communication. There is no default value.

• ShmSize

Version (or later) NDB 7.3.1

Type or units bytes

Default 1M

Range 64K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 7.3.1)

Each SHM connection has a shared memory segment where messages between nodes are placed by
the sender and read by the reader. The size of this segment is defined by ShmSize. The default value is
1MB.

• SigNum

Version (or later) NDB 7.3.1

Type or units unsigned

Default [...]

Range 0 - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 7.6)

Restart Type N (NDB 7.3.1)

When using the shared memory transporter, a process sends an operating system signal to the other
process when there is new data available in the shared memory. Should that signal conflict with an
existing signal, this parameter can be used to change it. This is a possibility when using SHM due to the
fact that different operating systems use different signal numbers.

2808

NDB Cluster Configuration Files

The default value of SigNum is 0; therefore, it must be set to avoid errors in the cluster log when using
the shared memory transporter. Typically, this parameter is set to 10 in the [shm default] section of
the config.ini file.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 18.15 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 18.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

18.4.3.12 Configuring NDB Cluster Send Buffer Parameters

Formerly, the NDB kernel employed a send buffer whose size was fixed at 2MB for each node in the
cluster, this buffer being allocated when the node started. Because the size of this buffer could not
be changed after the cluster was started, it was necessary to make it large enough in advance to
accommodate the maximum possible load on any transporter socket. However, this was an inefficient
use of memory, since much of it often went unused, and could result in large amounts of resources being
wasted when scaling up to many API nodes.

This problem was eventually solved (in NDB Cluster 7.0) by employing a unified send buffer whose
memory is allocated dynamically from a pool shared by all transporters. This means that the size of the
send buffer can be adjusted as necessary. Configuration of the unified send buffer can accomplished by
setting the following parameters:

• TotalSendBufferMemory. This parameter can be set for all types of NDB Cluster nodes—that
is, it can be set in the [ndbd], [mgm], and [api] (or [mysql]) sections of the config.ini file. It
represents the total amount of memory (in bytes) to be allocated by each node for which it is set for use
among all configured transporters. If set, its minimum is 256KB; the maximum is 4294967039.

To be backward-compatible with existing configurations, this parameter takes as its default value the
sum of the maximum send buffer sizes of all configured transporters, plus an additional 32KB (one page)
per transporter. The maximum depends on the type of transporter, as shown in the following table:

Table 18.16 Transporter types with maximum send buffer sizes

Transporter Maximum Send Buffer Size (bytes)

TCP SendBufferMemory (default = 2M)

SHM 20K

This enables existing configurations to function in close to the same way as they did with NDB Cluster
6.3 and earlier, with the same amount of memory and send buffer space available to each transporter.
However, memory that is unused by one transporter is not available to other transporters.

2809

Using High-Speed Interconnects with NDB Cluster

• OverloadLimit. This parameter is used in the config.ini file [tcp] section, and denotes the
amount of unsent data (in bytes) that must be present in the send buffer before the connection is
considered overloaded. When such an overload condition occurs, transactions that affect the overloaded
connection fail with NDB API Error 1218 (Send Buffers overloaded in NDB kernel) until the
overload status passes. The default value is 0, in which case the effective overload limit is calculated as
SendBufferMemory * 0.8 for a given connection. The maximum value for this parameter is 4G.

• SendBufferMemory. This value denotes a hard limit for the amount of memory that may
be used by a single transporter out of the entire pool specified by TotalSendBufferMemory.
However, the sum of SendBufferMemory for all configured transporters may be greater than the
TotalSendBufferMemory that is set for a given node. This is a way to save memory when many
nodes are in use, as long as the maximum amount of memory is never required by all transporters at the
same time.

• ReservedSendBufferMemory. This optional data node parameter, if set, gives an amount of memory
(in bytes) that is reserved for connections between data nodes; this memory is not allocated to send
buffers used for communications with management servers or API nodes. This provides a way to protect
the cluster against misbehaving API nodes that use excess send memory and thus cause failures in
communications internally in the NDB kernel. If set, its the minimum permitted value for this parameters
is 256KB; the maximum is 4294967039.

You can use the ndbinfo.transporters table to monitor send buffer memory usage, and to detect
slowdown and overload conditions that can adversely affect performance.

18.4.4 Using High-Speed Interconnects with NDB Cluster

Even before design of NDBCLUSTER began in 1996, it was evident that one of the major problems to be
encountered in building parallel databases would be communication between the nodes in the network. For
this reason, NDBCLUSTER was designed from the very beginning to permit the use of a number of different
data transport mechanisms. In this Manual, we use the term transporter for these.

The NDB Cluster codebase provides for four different transporters:

• TCP/IP using 100 Mbps or gigabit Ethernet, as discussed in Section 18.4.3.9, “NDB Cluster TCP/IP
Connections”.

• Direct (machine-to-machine) TCP/IP; although this transporter uses the same TCP/IP protocol as
mentioned in the previous item, it requires setting up the hardware differently and is configured
differently as well. For this reason, it is considered a separate transport mechanism for NDB Cluster. See
Section 18.4.3.10, “NDB Cluster TCP/IP Connections Using Direct Connections”, for details.

• Shared memory (SHM). For more information about SHM, see Section 18.4.3.11, “NDB Cluster Shared-
Memory Connections”.

Note

SHM is considered experimental only, and is not officially supported.

• Scalable Coherent Interface (SCI).

Note

Using SCI transporters in NDB Cluster requires specialized hardware, software,
and MySQL binaries not available using an NDB 7.3 or 7.4 distributions.

Most users today employ TCP/IP over Ethernet because it is ubiquitous. TCP/IP is also by far the best-
tested transporter for use with NDB Cluster.

2810

NDB Cluster Programs

Regardless of the transporter used, NDB attempts to make sure that communication with data node
processes is done using chunks that are as large as possible since this benefits all types of data
transmission.

18.5 NDB Cluster Programs
Using and managing an NDB Cluster requires several specialized programs, which we describe in this
chapter. We discuss the purposes of these programs in an NDB Cluster, how to use the programs, and
what startup options are available for each of them.

These programs include the NDB Cluster data, management, and SQL node processes (ndbd, ndbmtd,
ndb_mgmd, and mysqld) and the management client (ndb_mgm).

For information about using mysqld as an NDB Cluster process, see Section 18.6.10, “MySQL Server
Usage for NDB Cluster”.

Other NDB utility, diagnostic, and example programs are included with the NDB Cluster distribution. These
include ndb_restore, ndb_show_tables, and ndb_config. These programs are also covered in this
section.

18.5.1 ndbd — The NDB Cluster Data Node Daemon

ndbd is the process that is used to handle all the data in tables using the NDB Cluster storage engine. This
is the process that empowers a data node to accomplish distributed transaction handling, node recovery,
checkpointing to disk, online backup, and related tasks.

In an NDB Cluster, a set of ndbd processes cooperate in handling data. These processes can execute
on the same computer (host) or on different computers. The correspondences between data nodes and
Cluster hosts is completely configurable.

Options that can be used with ndbd are shown in the following table. Additional descriptions follow the
table.

Table 18.17 Command-line options used with the program ndbd

Format Description Added, Deprecated, or
Removed

--bind-address=name Local bind address (Supported in all NDB releases
based on MySQL 5.6)

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--connect-delay=# Obsolete synonym for --connect-
retry-delay, which should be used
instead of this option

DEPRECATED: NDB 7.4.9

--connect-retries=# Set the number of times to retry
a connection before giving up;
0 means 1 attempt only (and
no retries); -1 means continue
retrying indefinitely

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retry-delay=# Time to wait between attempts
to contact a management server,
in seconds; 0 means do not wait
between attempts

ADDED: NDB 7.4.9

--connect-
string=connection_string,

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

2811

ndbd — The NDB Cluster Data Node Daemon

Format Description Added, Deprecated, or
Removed

-c connection_string

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--daemon,

-d

Start ndbd as daemon (default);
override with --nodaemon

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--foreground Run ndbd in foreground, provided
for debugging purposes (implies --
nodaemon)

(Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--initial Perform initial start of ndbd,
including file system cleanup;
consult documentation before
using this option

(Supported in all NDB releases
based on MySQL 5.6)

--initial-start Perform partial initial start
(requires --nowait-nodes)

(Supported in all NDB releases
based on MySQL 5.6)

--install[=name] Used to install data node process
as Windows service; does not
apply on other platforms

(Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--nodaemon Do not start ndbd as daemon;
provided for testing purposes

(Supported in all NDB releases
based on MySQL 5.6)

2812

ndbd — The NDB Cluster Data Node Daemon

Format Description Added, Deprecated, or
Removed

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--nostart,

-n

Do not start ndbd immediately;
ndbd waits for command to start
from ndb_mgm

(Supported in all NDB releases
based on MySQL 5.6)

--nowait-nodes=list Do not wait for these data nodes
to start (takes comma-separated
list of node IDs); requires --ndb-
nodeid

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--remove[=name] Used to remove data node
process that was previously
installed as Windows service;
does not apply on other platforms

(Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--verbose,

-v

Write extra debugging information
to node log

(Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

Note

All of these options also apply to the multithreaded version of this program
(ndbmtd) and you may substitute “ndbmtd” for “ndbd” wherever the latter occurs in
this section.

• --bind-address

Command-Line Format --bind-address=name

Type String

Default Value

Causes ndbd to bind to a specific network interface (host name or IP address). This option has no
default value.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

2813

ndbd — The NDB Cluster Data Node Daemon

Directory containing character sets.

• --connect-delay=#

Command-Line Format --connect-delay=#

Deprecated 5.6.28-ndb-7.4.9

Type Numeric

Default Value 5

Minimum Value 0

Maximum Value 3600

Determines the time to wait between attempts to contact a management server when starting (the
number of attempts is controlled by the --connect-retries option). The default is 5 seconds.

This option is deprecated in NDB 7.4.9, and is subject to removal in a future release of NDB Cluster. Use
--connect-retry-delay instead.

• --connect-retries=#

Command-Line Format --connect-retries=#

Type Numeric

Default Value 12

Minimum Value 0

Maximum Value 65535

Set the number of times to retry a connection before giving up; 0 means 1 attempt only (and no retries).
The default is 12 attempts. The time to wait between attempts is controlled by the --connect-retry-
delay option in MySQL NDB 7.4.9 and later (previously, this was --connect-delay).

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --connect-retry-delay=#

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Numeric

Default Value 5

Minimum Value 0

Maximum Value 4294967295

Determines the time to wait between attempts to contact a management server when starting (the time
between attempts is controlled by the --connect-retries option). The default is 5 seconds.

2814

ndbd — The NDB Cluster Data Node Daemon

This option was added in NDB 7.4.9, and is intended to take the place of the --connect-delay option,
which is now deprecated and subject to removal in a future release of NDB Cluster.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --daemon, -d

Command-Line Format --daemon

Instructs ndbd or ndbmtd to execute as a daemon process. This is the default behavior. --nodaemon
can be used to prevent the process from running as a daemon.

This option has no effect when running ndbd or ndbmtd on Windows platforms.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --foreground

Command-Line Format --foreground

Causes ndbd or ndbmtd to execute as a foreground process, primarily for debugging purposes. This
option implies the --nodaemon option.

This option has no effect when running ndbd or ndbmtd on Windows platforms.
2815

ndbd — The NDB Cluster Data Node Daemon

• --help

Command-Line Format --help

Display help text and exit.

• --initial

Command-Line Format --initial

Instructs ndbd to perform an initial start. An initial start erases any files created for recovery purposes by
earlier instances of ndbd. It also re-creates recovery log files. On some operating systems, this process
can take a substantial amount of time.

An --initial start is to be used only when starting the ndbd process under very special
circumstances; this is because this option causes all files to be removed from the NDB Cluster file
system and all redo log files to be re-created. These circumstances are listed here:

• When performing a software upgrade which has changed the contents of any files.

• When restarting the node with a new version of ndbd.

• As a measure of last resort when for some reason the node restart or system restart repeatedly fails.
In this case, be aware that this node can no longer be used to restore data due to the destruction of
the data files.

Warning

To avoid the possibility of eventual data loss, it is recommended that you not
use the --initial option together with StopOnError = 0. Instead, set
StopOnError to 0 in config.ini only after the cluster has been started, then
restart the data nodes normally—that is, without the --initial option. See
the description of the StopOnError parameter for a detailed explanation of this
issue. (Bug #24945638)

Use of this option prevents the StartPartialTimeout and StartPartitionedTimeout
configuration parameters from having any effect.

Important

This option does not affect either of the following types of files:

• Backup files that have already been created by the affected node

• NDB Cluster Disk Data files (see Section 18.6.11, “NDB Cluster Disk Data
Tables”).

This option also has no effect on recovery of data by a data node that is just
starting (or restarting) from data nodes that are already running. This recovery of
data occurs automatically, and requires no user intervention in an NDB Cluster
that is running normally.

It is permissible to use this option when starting the cluster for the very first time (that is, before any data
node files have been created); however, it is not necessary to do so.

2816

ndbd — The NDB Cluster Data Node Daemon

• --initial-start

Command-Line Format --initial-start

This option is used when performing a partial initial start of the cluster. Each node should be started with
this option, as well as --nowait-nodes.

Suppose that you have a 4-node cluster whose data nodes have the IDs 2, 3, 4, and 5, and you wish to
perform a partial initial start using only nodes 2, 4, and 5—that is, omitting node 3:

$> ndbd --ndb-nodeid=2 --nowait-nodes=3 --initial-start
$> ndbd --ndb-nodeid=4 --nowait-nodes=3 --initial-start
$> ndbd --ndb-nodeid=5 --nowait-nodes=3 --initial-start

When using this option, you must also specify the node ID for the data node being started with the --
ndb-nodeid option.

Important

Do not confuse this option with the --nowait-nodes option for ndb_mgmd,
which can be used to enable a cluster configured with multiple management
servers to be started without all management servers being online.

• --install[=name]

Command-Line Format --install[=name]

Platform Specific Windows

Type String

Default Value ndbd

Causes ndbd to be installed as a Windows service. Optionally, you can specify a name for the service;
if not set, the service name defaults to ndbd. Although it is preferable to specify other ndbd program
options in a my.ini or my.cnf configuration file, it is possible to use together with --install.
However, in such cases, the --install option must be specified first, before any other options are
given, for the Windows service installation to succeed.

It is generally not advisable to use this option together with the --initial option, since this causes
the data node file system to be wiped and rebuilt every time the service is stopped and started. Extreme
care should also be taken if you intend to use any of the other ndbd options that affect the starting of
data nodes—including --initial-start, --nostart, and --nowait-nodes—together with --
install, and you should make absolutely certain you fully understand and allow for any possible
consequences of doing so.

The --install option has no effect on non-Windows platforms.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.
2817

ndbd — The NDB Cluster Data Node Daemon

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --nodaemon

Command-Line Format --nodaemon

Prevents ndbd or ndbmtd from executing as a daemon process. This option overrides the --daemon
option. This is useful for redirecting output to the screen when debugging the binary.

The default behavior for ndbd and ndbmtd on Windows is to run in the foreground, making this option
unnecessary on Windows platforms, where it has no effect.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

2818

ndbd — The NDB Cluster Data Node Daemon

• --nostart, -n

Command-Line Format --nostart

Instructs ndbd not to start automatically. When this option is used, ndbd connects to the management
server, obtains configuration data from it, and initializes communication objects. However, it does not
actually start the execution engine until specifically requested to do so by the management server.
This can be accomplished by issuing the proper START command in the management client (see
Section 18.6.1, “Commands in the NDB Cluster Management Client”).

• --nowait-nodes=node_id_1[, node_id_2[, ...]]

Command-Line Format --nowait-nodes=list

Type String

Default Value

This option takes a list of data nodes which for which the cluster does not wait for before starting.

This can be used to start the cluster in a partitioned state. For example, to start the cluster with only half
of the data nodes (nodes 2, 3, 4, and 5) running in a 4-node cluster, you can start each ndbd process
with --nowait-nodes=3,5. In this case, the cluster starts as soon as nodes 2 and 4 connect, and
does not wait StartPartitionedTimeout milliseconds for nodes 3 and 5 to connect as it would
otherwise.

If you wanted to start up the same cluster as in the previous example without one ndbd (say, for
example, that the host machine for node 3 has suffered a hardware failure) then start nodes 2, 4, and 5
with --nowait-nodes=3. Then the cluster starts as soon as nodes 2, 4, and 5 connect and does not
wait for node 3 to start.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --remove[=name]

Command-Line Format --remove[=name]

Platform Specific Windows

Type String

Default Value ndbd

Causes an ndbd process that was previously installed as a Windows service to be removed. Optionally,
you can specify a name for the service to be uninstalled; if not set, the service name defaults to ndbd.

The --remove option has no effect on non-Windows platforms.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose, -v

2819

ndbd — The NDB Cluster Data Node Daemon

Causes extra debug output to be written to the node log.

• --version

Command-Line Format --version

Display version information and exit.

ndbd generates a set of log files which are placed in the directory specified by DataDir in the
config.ini configuration file.

These log files are listed below. node_id is and represents the node's unique identifier. For example,
ndb_2_error.log is the error log generated by the data node whose node ID is 2.

• ndb_node_id_error.log is a file containing records of all crashes which the referenced ndbd
process has encountered. Each record in this file contains a brief error string and a reference to a trace
file for this crash. A typical entry in this file might appear as shown here:

Date/Time: Saturday 30 July 2004 - 00:20:01
Type of error: error
Message: Internal program error (failed ndbrequire)
Fault ID: 2341
Problem data: DbtupFixAlloc.cpp
Object of reference: DBTUP (Line: 173)
ProgramName: NDB Kernel
ProcessID: 14909
TraceFile: ndb_2_trace.log.2
EOM

Listings of possible ndbd exit codes and messages generated when a data node process shuts down
prematurely can be found in Data Node Error Messages.

Important

The last entry in the error log file is not necessarily the newest one (nor is
it likely to be). Entries in the error log are not listed in chronological order;
rather, they correspond to the order of the trace files as determined in the
ndb_node_id_trace.log.next file (see below). Error log entries are thus
overwritten in a cyclical and not sequential fashion.

• ndb_node_id_trace.log.trace_id is a trace file describing exactly what happened just before
the error occurred. This information is useful for analysis by the NDB Cluster development team.

It is possible to configure the number of these trace files that are created before old files are overwritten.
trace_id is a number which is incremented for each successive trace file.

• ndb_node_id_trace.log.next is the file that keeps track of the next trace file number to be
assigned.

• ndb_node_id_out.log is a file containing any data output by the ndbd process. This file is created
only if ndbd is started as a daemon, which is the default behavior.

• ndb_node_id.pid is a file containing the process ID of the ndbd process when started as a daemon. It
also functions as a lock file to avoid the starting of nodes with the same identifier.

• ndb_node_id_signal.log is a file used only in debug versions of ndbd, where it is possible to trace
all incoming, outgoing, and internal messages with their data in the ndbd process.

2820

https://dev.mysql.com/doc/ndb-internals/en/ndb-node-error-messages.html

ndbinfo_select_all — Select From ndbinfo Tables

It is recommended not to use a directory mounted through NFS because in some environments this can
cause problems whereby the lock on the .pid file remains in effect even after the process has terminated.

To start ndbd, it may also be necessary to specify the host name of the management server and the port
on which it is listening. Optionally, one may also specify the node ID that the process is to use.

$> ndbd --connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

See Section 18.4.3.3, “NDB Cluster Connection Strings”, for additional information about this issue. For
more information about data node configuration parameters, see Section 18.4.3.6, “Defining NDB Cluster
Data Nodes”.

When ndbd starts, it actually initiates two processes. The first of these is called the “angel process”; its
only job is to discover when the execution process has been completed, and then to restart the ndbd
process if it is configured to do so. Thus, if you attempt to kill ndbd using the Unix kill command, it is
necessary to kill both processes, beginning with the angel process. The preferred method of terminating an
ndbd process is to use the management client and stop the process from there.

The execution process uses one thread for reading, writing, and scanning data, as well as all other
activities. This thread is implemented asynchronously so that it can easily handle thousands of concurrent
actions. In addition, a watch-dog thread supervises the execution thread to make sure that it does not
hang in an endless loop. A pool of threads handles file I/O, with each thread able to handle one open file.
Threads can also be used for transporter connections by the transporters in the ndbd process. In a multi-
processor system performing a large number of operations (including updates), the ndbd process can
consume up to 2 CPUs if permitted to do so.

For a machine with many CPUs it is possible to use several ndbd processes which belong to different
node groups; however, such a configuration is still considered experimental and is not supported for
MySQL 5.6 in a production setting. See Section 18.2.7, “Known Limitations of NDB Cluster”.

18.5.2 ndbinfo_select_all — Select From ndbinfo Tables

ndbinfo_select_all is a client program that selects all rows and columns from one or more tables in
the ndbinfo database.

Not all ndbinfo tables available in the mysql client can be read by this program (see later in this section).
In addition, ndbinfo_select_all can show information about some tables internal to ndbinfo which
cannot be accessed using SQL, including the tables and columns metadata tables.

To select from one or more ndbinfo tables using ndbinfo_select_all, it is necessary to supply the
names of the tables when invoking the program as shown here:

$> ndbinfo_select_all table_name1 [table_name2] [...]

For example:

$> ndbinfo_select_all logbuffers logspaces
== logbuffers ==
node_id log_type log_id log_part total used high
5 0 0 0 33554432 262144 0
6 0 0 0 33554432 262144 0
7 0 0 0 33554432 262144 0
8 0 0 0 33554432 262144 0
== logspaces ==
node_id log_type log_id log_part total used high
5 0 0 0 268435456 0 0
5 0 0 1 268435456 0 0
5 0 0 2 268435456 0 0
5 0 0 3 268435456 0 0

2821

ndbinfo_select_all — Select From ndbinfo Tables

6 0 0 0 268435456 0 0
6 0 0 1 268435456 0 0
6 0 0 2 268435456 0 0
6 0 0 3 268435456 0 0
7 0 0 0 268435456 0 0
7 0 0 1 268435456 0 0
7 0 0 2 268435456 0 0
7 0 0 3 268435456 0 0
8 0 0 0 268435456 0 0
8 0 0 1 268435456 0 0
8 0 0 2 268435456 0 0
8 0 0 3 268435456 0 0
$>

Options that can be used with ndbinfo_select_all are shown in the following table. Additional
descriptions follow the table.

Table 18.18 Command-line options used with the program ndbinfo_select_all

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection-string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--database=db_name,

-d

Name of database where table is
located

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--delay=# Set delay in seconds between
loops

(Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--loops=#,

-l

Set number of times to perform
select

(Supported in all NDB releases
based on MySQL 5.6)

2822

ndbinfo_select_all — Select From ndbinfo Tables

Format Description Added, Deprecated, or
Removed

--ndb-
connectstring=connection-
string,

-c

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection-string,

-c

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--parallelism=#,

-p

Set degree of parallelism (Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

2823

ndbinfo_select_all — Select From ndbinfo Tables

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection-string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

2824

ndbinfo_select_all — Select From ndbinfo Tables

Also read groups with concat(group, suffix).

• --delay=seconds

Command-Line Format --delay=#

Type Numeric

Default Value 5

Minimum Value 0

Maximum Value MAX_INT

This option sets the number of seconds to wait between executing loops. Has no effect if --loops is set
to 0 or 1.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --loops=number, -l number

Command-Line Format --loops=#

Type Numeric

Default Value 1

Minimum Value 0

Maximum Value MAX_INT

This option sets the number of times to execute the select. Use --delay to set the time between loops.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection-string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection-string

2825

ndbinfo_select_all — Select From ndbinfo Tables

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

ndbinfo_select_all is unable to read the following tables:

• arbitrator_validity_detail

• arbitrator_validity_summary

• cluster_locks

• cluster_operations

• cluster_transactions

2826

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbinfo-cluster-locks.html

ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)

• disk_write_speed_aggregate_node

• locks_per_fragment

• memory_per_fragment

• memoryusage

• operations_per_fragment

• server_locks

• server_operations

• server_transactions

• table_info

18.5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)

ndbmtd is a multithreaded version of ndbd, the process that is used to handle all the data in tables
using the NDBCLUSTER storage engine. ndbmtd is intended for use on host computers having multiple
CPU cores. Except where otherwise noted, ndbmtd functions in the same way as ndbd; therefore, in
this section, we concentrate on the ways in which ndbmtd differs from ndbd, and you should consult
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”, for additional information about running
NDB Cluster data nodes that apply to both the single-threaded and multithreaded versions of the data node
process.

Command-line options and configuration parameters used with ndbd also apply to ndbmtd. For more
information about these options and parameters, see Section 18.5.1, “ndbd — The NDB Cluster Data Node
Daemon”, and Section 18.4.3.6, “Defining NDB Cluster Data Nodes”, respectively.

ndbmtd is also file system-compatible with ndbd. In other words, a data node running ndbd can be
stopped, the binary replaced with ndbmtd, and then restarted without any loss of data. (However,
when doing this, you must make sure that MaxNoOfExecutionThreads is set to an apppriate value
before restarting the node if you wish for ndbmtd to run in multithreaded fashion.) Similarly, an ndbmtd
binary can be replaced with ndbd simply by stopping the node and then starting ndbd in place of the
multithreaded binary. It is not necessary when switching between the two to start the data node binary
using --initial.

Using ndbmtd differs from using ndbd in two key respects:

1. Because ndbmtd runs by default in single-threaded mode (that is, it behaves like ndbd), you
must configure it to use multiple threads. This can be done by setting an appropriate value in
the config.ini file for the MaxNoOfExecutionThreads configuration parameter or the
ThreadConfig configuration parameter. Using MaxNoOfExecutionThreads is simpler, but
ThreadConfig offers more flexibility. For more information about these configuration parameters and
their use, see Multi-Threading Configuration Parameters (ndbmtd).

2. Trace files are generated by critical errors in ndbmtd processes in a somewhat different fashion from
how these are generated by ndbd failures. These differences are discussed in more detail in the next
few paragraphs.

Like ndbd, ndbmtd generates a set of log files which are placed in the directory specified by DataDir in
the config.ini configuration file. Except for trace files, these are generated in the same way and have
the same names as those generated by ndbd.

2827

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbinfo-locks-per-fragment.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbinfo-server-locks.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-ndbinfo-table-info.html

ndb_mgmd — The NDB Cluster Management Server Daemon

In the event of a critical error, ndbmtd generates trace files describing what happened just prior to the
error' occurrence. These files, which can be found in the data node's DataDir, are useful for analysis
of problems by the NDB Cluster Development and Support teams. One trace file is generated for each
ndbmtd thread. The names of these files have the following pattern:

ndb_node_id_trace.log.trace_id_tthread_id,

In this pattern, node_id stands for the data node's unique node ID in the cluster, trace_id
is a trace sequence number, and thread_id is the thread ID. For example, in the event of the
failure of an ndbmtd process running as an NDB Cluster data node having the node ID 3 and with
MaxNoOfExecutionThreads equal to 4, four trace files are generated in the data node's data directory.
If the is the first time this node has failed, then these files are named ndb_3_trace.log.1_t1,
ndb_3_trace.log.1_t2, ndb_3_trace.log.1_t3, and ndb_3_trace.log.1_t4. Internally, these
trace files follow the same format as ndbd trace files.

The ndbd exit codes and messages that are generated when a data node process shuts down prematurely
are also used by ndbmtd. See Data Node Error Messages, for a listing of these.

Note

It is possible to use ndbd and ndbmtd concurrently on different data nodes in the
same NDB Cluster. However, such configurations have not been tested extensively;
thus, we cannot recommend doing so in a production setting at this time.

18.5.4 ndb_mgmd — The NDB Cluster Management Server Daemon

The management server is the process that reads the cluster configuration file and distributes this
information to all nodes in the cluster that request it. It also maintains a log of cluster activities.
Management clients can connect to the management server and check the cluster's status.

Options that can be used with ndb_mgmd are shown in the following table. Additional descriptions follow
the table.

Table 18.19 Command-line options used with the program ndb_mgmd

Format Description Added, Deprecated, or
Removed

--bind-address=host Local bind address (Supported in all NDB releases
based on MySQL 5.6)

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--config-cache[=TRUE|
FALSE]

Enable management server
configuration cache; true by
default

(Supported in all NDB releases
based on MySQL 5.6)

--config-file=file,

-f file

Specify cluster configuration file;
also specify --reload or --initial to
override configuration cache if
present

(Supported in all NDB releases
based on MySQL 5.6)

--configdir=directory,

--config-dir=directory

Specify cluster management
server configuration cache
directory

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

2828

https://dev.mysql.com/doc/ndb-internals/en/ndb-node-error-messages.html

ndb_mgmd — The NDB Cluster Management Server Daemon

Format Description Added, Deprecated, or
Removed

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--daemon,

-d

Run ndb_mgmd in daemon mode
(default)

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--initial Causes management server to
reload configuration data from
configuration file, bypassing
configuration cache

(Supported in all NDB releases
based on MySQL 5.6)

--install[=name] Used to install management
server process as Windows
service; does not apply on other
platforms

(Supported in all NDB releases
based on MySQL 5.6)

--interactive Run ndb_mgmd in interactive
mode (not officially supported in
production; for testing purposes
only)

(Supported in all NDB releases
based on MySQL 5.6)

--log-name=name Name to use when writing cluster
log messages applying to this
node

(Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--mycnf Read cluster configuration data
from my.cnf file

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

2829

ndb_mgmd — The NDB Cluster Management Server Daemon

Format Description Added, Deprecated, or
Removed

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--no-nodeid-checks Do not perform any node ID
checks

(Supported in all NDB releases
based on MySQL 5.6)

--nodaemon Do not run ndb_mgmd as a
daemon

(Supported in all NDB releases
based on MySQL 5.6)

--nowait-nodes=list Do not wait for management
nodes specified when starting this
management server; requires --
ndb-nodeid option

(Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--print-full-config,

-P

Print full configuration and exit (Supported in all NDB releases
based on MySQL 5.6)

--reload Causes management server to
compare configuration file with
configuration cache

(Supported in all NDB releases
based on MySQL 5.6)

--remove[=name] Used to remove management
server process that was previously
installed as Windows service,
optionally specifying name of
service to be removed; does not
apply on other platforms

(Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--skip-config-file Do not use configuration file (Supported in all NDB releases
based on MySQL 5.6)

--verbose,

-v

Write additional information to log (Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

2830

ndb_mgmd — The NDB Cluster Management Server Daemon

• --bind-address=host

Command-Line Format --bind-address=host

Type String

Default Value [none]

Causes the management server to bind to a specific network interface (host name or IP address). This
option has no default value.

• --config-cache

Command-Line Format --config-cache[=TRUE|FALSE]

Type Boolean

Default Value TRUE

This option, whose default value is 1 (or TRUE, or ON), can be used to disable the management server's
configuration cache, so that it reads its configuration from config.ini every time it starts (see
Section 18.4.3, “NDB Cluster Configuration Files”). You can do this by starting the ndb_mgmd process
with any one of the following options:

• --config-cache=0

• --config-cache=FALSE

• --config-cache=OFF

• --skip-config-cache

Using one of the options just listed is effective only if the management server has no stored configuration
at the time it is started. If the management server finds any configuration cache files, then the --
config-cache option or the --skip-config-cache option is ignored. Therefore, to disable
configuration caching, the option should be used the first time that the management server is started.
Otherwise—that is, if you wish to disable configuration caching for a management server that has
already created a configuration cache—you must stop the management server, delete any existing
configuration cache files manually, then restart the management server with --skip-config-cache
(or with --config-cache set equal to 0, OFF, or FALSE).

Configuration cache files are normally created in a directory named mysql-cluster under the
installation directory (unless this location has been overridden using the --configdir option). Each
time the management server updates its configuration data, it writes a new cache file. The files are
named sequentially in order of creation using the following format:

ndb_node-id_config.bin.seq-number

node-id is the management server's node ID; seq-number is a sequence number, beginning with
1. For example, if the management server's node ID is 5, then the first three configuration cache files

2831

ndb_mgmd — The NDB Cluster Management Server Daemon

would, when they are created, be named ndb_5_config.bin.1, ndb_5_config.bin.2, and
ndb_5_config.bin.3.

If your intent is to purge or reload the configuration cache without actually disabling caching, you should
start ndb_mgmd with one of the options --reload or --initial instead of --skip-config-cache.

To re-enable the configuration cache, simply restart the management server, but without the --config-
cache or --skip-config-cache option that was used previously to disable the configuration cache.

ndb_mgmd does not check for the configuration directory (--configdir) or attempts to create one
when --skip-config-cache is used. (Bug #13428853)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --config-file=filename, -f filename

Command-Line Format --config-file=file

Disabled by skip-config-file

Type File name

Default Value [none]

Instructs the management server as to which file it should use for its configuration file. By default,
the management server looks for a file named config.ini in the same directory as the ndb_mgmd
executable; otherwise the file name and location must be specified explicitly.

This option has no default value, and is ignored unless the management server is forced to read the
configuration file, either because ndb_mgmd was started with the --reload or --initial option, or
because the management server could not find any configuration cache.

The --config-file option is also read if ndb_mgmd was started with --config-cache=OFF. See
Section 18.4.3, “NDB Cluster Configuration Files”, for more information.

Formerly, using this option together with --initial caused removal of the configuration cache even if
the file was not found. This issue was resolved in NDB 7.3.2. (Bug #1299289)

• --configdir=dir_name

Command-Line Format --configdir=directory

--config-dir=directory

Type File name

Default Value $INSTALLDIR/mysql-cluster

Specifies the cluster management server's configuration cache directory. --config-dir is an alias for
this option.

• --connect-retries

Command-Line Format --connect-retries=#
2832

ndb_mgmd — The NDB Cluster Management Server Daemon

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --daemon, -d

Command-Line Format --daemon

Instructs ndb_mgmd to start as a daemon process. This is the default behavior.

This option has no effect when running ndb_mgmd on Windows platforms.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

2833

ndb_mgmd — The NDB Cluster Management Server Daemon

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit.

• --initial

Command-Line Format --initial

Configuration data is cached internally, rather than being read from the cluster global configuration file
each time the management server is started (see Section 18.4.3, “NDB Cluster Configuration Files”).
Using the --initial option overrides this behavior, by forcing the management server to delete any
existing cache files, and then to re-read the configuration data from the cluster configuration file and to
build a new cache.

This differs in two ways from the --reload option. First, --reload forces the server to check the
configuration file against the cache and reload its data only if the contents of the file are different from
the cache. Second, --reload does not delete any existing cache files.

If ndb_mgmd is invoked with --initial but cannot find a global configuration file, the management
server cannot start.

When a management server starts, it checks for another management server in the same NDB Cluster
and tries to use the other management server's configuration data. This behavior has implications when
performing a rolling restart of an NDB Cluster with multiple management nodes. See Section 18.6.5,
“Performing a Rolling Restart of an NDB Cluster”, for more information.

Formerly, using this option together with the --config-file option caused removal of the
configuration cache even if the file was not found. Starting with NDB 7.3.2, the cache is cleared in such
cases only if the configuration file is actually found. (Bug #1299289)

• --install[=name]

Command-Line Format --install[=name]

Platform Specific Windows

Type String

Default Value ndb_mgmd

2834

ndb_mgmd — The NDB Cluster Management Server Daemon

Causes ndb_mgmd to be installed as a Windows service. Optionally, you can specify a name for the
service; if not set, the service name defaults to ndb_mgmd. Although it is preferable to specify other
ndb_mgmd program options in a my.ini or my.cnf configuration file, it is possible to use them together
with --install. However, in such cases, the --install option must be specified first, before any
other options are given, for the Windows service installation to succeed.

It is generally not advisable to use this option together with the --initial option, since this causes
the configuration cache to be wiped and rebuilt every time the service is stopped and started. Care
should also be taken if you intend to use any other ndb_mgmd options that affect the starting of the
management server, and you should make absolutely certain you fully understand and allow for any
possible consequences of doing so.

The --install option has no effect on non-Windows platforms.

• --interactive

Command-Line Format --interactive

Starts ndb_mgmd in interactive mode; that is, an ndb_mgm client session is started as soon as the
management server is running. This option does not start any other NDB Cluster nodes.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --log-name=name

Command-Line Format --log-name=name

Type String

Default Value MgmtSrvr

Provides a name to be used for this node in the cluster log.

• --mycnf

Command-Line Format --mycnf

Read configuration data from the my.cnf file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connection string. Syntax: [nodeid=id;][host=]hostname[:port]. Overrides entries in
NDB_CONNECTSTRING and my.cnf; ignored if --config-file is specified.

• --ndb-mgmd-host

2835

ndb_mgmd — The NDB Cluster Management Server Daemon

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --no-nodeid-checks

Command-Line Format --no-nodeid-checks

Do not perform any checks of node IDs.

• --nodaemon

Command-Line Format --nodaemon

Instructs ndb_mgmd not to start as a daemon process.

The default behavior for ndb_mgmd on Windows is to run in the foreground, making this option
unnecessary on Windows platforms.

• --nowait-nodes

Command-Line Format --nowait-nodes=list

Type Numeric

Default Value [none]

Minimum Value 1
2836

ndb_mgmd — The NDB Cluster Management Server Daemon

Maximum Value 255

When starting an NDB Cluster is configured with two management nodes, each management server
normally checks to see whether the other ndb_mgmd is also operational and whether the other
management server's configuration is identical to its own. However, it is sometimes desirable to start
the cluster with only one management node (and perhaps to allow the other ndb_mgmd to be started
later). This option causes the management node to bypass any checks for any other management nodes
whose node IDs are passed to this option, permitting the cluster to start as though configured to use only
the management node that was started.

For purposes of illustration, consider the following portion of a config.ini file (where we have omitted
most of the configuration parameters that are not relevant to this example):

[ndbd]
NodeId = 1
HostName = 198.51.100.101

[ndbd]
NodeId = 2
HostName = 198.51.100.102

[ndbd]
NodeId = 3
HostName = 198.51.100.103

[ndbd]
NodeId = 4
HostName = 198.51.100.104

[ndb_mgmd]
NodeId = 10
HostName = 198.51.100.150

[ndb_mgmd]
NodeId = 11
HostName = 198.51.100.151

[api]
NodeId = 20
HostName = 198.51.100.200

[api]
NodeId = 21
HostName = 198.51.100.201

Assume that you wish to start this cluster using only the management server having node ID 10 and
running on the host having the IP address 198.51.100.150. (Suppose, for example, that the host
computer on which you intend to the other management server is temporarily unavailable due to
a hardware failure, and you are waiting for it to be repaired.) To start the cluster in this way, use a
command line on the machine at 198.51.100.150 to enter the following command:

$> ndb_mgmd --ndb-nodeid=10 --nowait-nodes=11

As shown in the preceding example, when using --nowait-nodes, you must also use the --ndb-
nodeid option to specify the node ID of this ndb_mgmd process.

You can then start each of the cluster's data nodes in the usual way. If you wish to start and use
the second management server in addition to the first management server at a later time without

2837

ndb_mgmd — The NDB Cluster Management Server Daemon

restarting the data nodes, you must start each data node with a connection string that references both
management servers, like this:

$> ndbd -c 198.51.100.150,198.51.100.151

The same is true with regard to the connection string used with any mysqld processes that you wish
to start as NDB Cluster SQL nodes connected to this cluster. See Section 18.4.3.3, “NDB Cluster
Connection Strings”, for more information.

When used with ndb_mgmd, this option affects the behavior of the management node with regard to
other management nodes only. Do not confuse it with the --nowait-nodes option used with ndbd or
ndbmtd to permit a cluster to start with fewer than its full complement of data nodes; when used with
data nodes, this option affects their behavior only with regard to other data nodes.

Multiple management node IDs may be passed to this option as a comma-separated list. Each node
ID must be no less than 1 and no greater than 255. In practice, it is quite rare to use more than two
management servers for the same NDB Cluster (or to have any need for doing so); in most cases you
need to pass to this option only the single node ID for the one management server that you do not wish
to use when starting the cluster.

Note

When you later start the “missing” management server, its configuration must
match that of the management server that is already in use by the cluster.
Otherwise, it fails the configuration check performed by the existing management
server, and does not start.

• --print-full-config, -P

Command-Line Format --print-full-config

Shows extended information regarding the configuration of the cluster. With this option on the command
line the ndb_mgmd process prints information about the cluster setup including an extensive list of the
cluster configuration sections as well as parameters and their values. Normally used together with the --
config-file (-f) option.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --reload

Command-Line Format --reload

NDB Cluster configuration data is stored internally rather than being read from the cluster global
configuration file each time the management server is started (see Section 18.4.3, “NDB Cluster
Configuration Files”). Using this option forces the management server to check its internal data store

2838

ndb_mgmd — The NDB Cluster Management Server Daemon

against the cluster configuration file and to reload the configuration if it finds that the configuration file
does not match the cache. Existing configuration cache files are preserved, but not used.

This differs in two ways from the --initial option. First, --initial causes all cache files to be
deleted. Second, --initial forces the management server to re-read the global configuration file and
construct a new cache.

If the management server cannot find a global configuration file, then the --reload option is ignored.

When --reload is used, the management server must be able to communicate with data nodes and
any other management servers in the cluster before it attempts to read the global configuration file;
otherwise, the management server fails to start. This can happen due to changes in the networking
environment, such as new IP addresses for nodes or an altered firewall configuration. In such cases, you
must use --initial instead to force the exsiting cached configuration to be discarded and reloaded
from the file. See Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”, for additional
information.

• --remove{=name]

Command-Line Format --remove[=name]

Platform Specific Windows

Type String

Default Value ndb_mgmd

Remove a management server process that has been installed as a Windows service, optionally
specifying the name of the service to be removed. Applies only to Windows platforms.

• --skip-config-file

Command-Line Format --skip-config-file

Do not read cluster configuration file; ignore --initial and --reload options if specified.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose, -v

Command-Line Format --verbose

Remove a management server process that has been installed as a Windows service, optionally
specifying the name of the service to be removed. Applies only to Windows platforms.

• --version

Command-Line Format --version

Display version information and exit.

It is not strictly necessary to specify a connection string when starting the management server. However, if
you are using more than one management server, a connection string should be provided and each node
in the cluster should specify its node ID explicitly.

2839

ndb_mgm — The NDB Cluster Management Client

See Section 18.4.3.3, “NDB Cluster Connection Strings”, for information about using connection strings.
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”, describes other options
for ndb_mgmd.

The following files are created or used by ndb_mgmd in its starting directory, and are placed in the
DataDir as specified in the config.ini configuration file. In the list that follows, node_id is the unique
node identifier.

• config.ini is the configuration file for the cluster as a whole. This file is created by the user and
read by the management server. Section 18.4, “Configuration of NDB Cluster”, discusses how to set up
this file.

• ndb_node_id_cluster.log is the cluster events log file. Examples of such events include checkpoint
startup and completion, node startup events, node failures, and levels of memory usage. A complete
listing of cluster events with descriptions may be found in Section 18.6, “Management of NDB Cluster”.

By default, when the size of the cluster log reaches one million bytes, the file is renamed to
ndb_node_id_cluster.log.seq_id, where seq_id is the sequence number of the cluster log file.
(For example: If files with the sequence numbers 1, 2, and 3 already exist, the next log file is named
using the number 4.) You can change the size and number of files, and other characteristics of the
cluster log, using the LogDestination configuration parameter.

• ndb_node_id_out.log is the file used for stdout and stderr when running the management server
as a daemon.

• ndb_node_id.pid is the process ID file used when running the management server as a daemon.

18.5.5 ndb_mgm — The NDB Cluster Management Client

The ndb_mgm management client process is actually not needed to run the cluster. Its value lies in
providing a set of commands for checking the cluster's status, starting backups, and performing other
administrative functions. The management client accesses the management server using a C API.
Advanced users can also employ this API for programming dedicated management processes to perform
tasks similar to those performed by ndb_mgm.

To start the management client, it is necessary to supply the host name and port number of the
management server:

$> ndb_mgm [host_name [port_num]]

For example:

$> ndb_mgm ndb_mgmd.mysql.com 1186

The default host name and port number are localhost and 1186, respectively.

Options that can be used with ndb_mgm are shown in the following table. Additional descriptions follow the
table.

Table 18.20 Command-line options used with the program ndb_mgm

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Set number of times to retry
connection before giving up; 0

ADDED: NDB 7.4.9

2840

ndb_mgm — The NDB Cluster Management Client

Format Description Added, Deprecated, or
Removed

means 1 attempt only (and no
retries)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--execute=command,

-e command

Execute command and exit (Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

2841

ndb_mgm — The NDB Cluster Management Client

Format Description Added, Deprecated, or
Removed

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--try-reconnect=#,

-t #

Set number of times to retry
connection before giving up;
synonym for --connect-retries

DEPRECATED: NDB 7.4.9

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries=#

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Numeric

Default Value 3

Minimum Value 0

Maximum Value 4294967295

This option specifies the number of times following the first attempt to retry a connection before giving up
(the client always tries the connection at least once). The length of time to wait per attempt is set using
--connect-retry-delay.

This option is synonymous with the --try-reconnect option, which is now deprecated.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string
2842

ndb_mgm — The NDB Cluster Management Client

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --execute=command, -e command

Command-Line Format --execute=command

This option can be used to send a command to the NDB Cluster management client from the system
shell. For example, either of the following is equivalent to executing SHOW in the management client:

$> ndb_mgm -e "SHOW"

$> ndb_mgm --execute="SHOW"

This is analogous to how the --execute or -e option works with the mysql command-line client. See
Section 4.2.2.1, “Using Options on the Command Line”.

Note

If the management client command to be passed using this option contains any
space characters, then the command must be enclosed in quotation marks.

2843

ndb_mgm — The NDB Cluster Management Client

Either single or double quotation marks may be used. If the management client
command contains no space characters, the quotation marks are optional.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: [nodeid=id;][host=]hostname[:port].
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

2844

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --try-reconnect=number

Command-Line Format --try-reconnect=#

Deprecated 5.6.28-ndb-7.4.9

Type Integer

Default Value 3

Minimum Value 0

Maximum Value 4294967295

If the connection to the management server is broken, the node tries to reconnect to it every 5 seconds
until it succeeds. By using this option, it is possible to limit the number of attempts to number before
giving up and reporting an error instead.

This option is deprecated and subject to removal in a future release. Use --connect-retries,
instead.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

Additional information about using ndb_mgm can be found in Section 18.6.1, “Commands in the NDB
Cluster Management Client”.

18.5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB
Cluster Tables

This tool can be used to check for and remove orphaned BLOB column parts from NDB tables, as well as
to generate a file listing any orphaned parts. It is sometimes useful in diagnosing and repairing corrupted or
damaged NDB tables containing BLOB or TEXT columns.

The basic syntax for ndb_blob_tool is shown here:

ndb_blob_tool [options] table [column, ...]

Unless you use the --help option, you must specify an action to be performed by including one or
more of the options --check-orphans, --delete-orphans, or --dump-file. These options cause

2845

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

ndb_blob_tool to check for orphaned BLOB parts, remove any orphaned BLOB parts, and generate a
dump file listing orphaned BLOB parts, respectively, and are described in more detail later in this section.

You must also specify the name of a table when invoking ndb_blob_tool. In addition, you can optionally
follow the table name with the (comma-separated) names of one or more BLOB or TEXT columns from that
table. If no columns are listed, the tool works on all of the table's BLOB and TEXT columns. If you need to
specify a database, use the --database (-d) option.

The --verbose option provides additional information in the output about the tool's progress.

Options that can be used with ndb_blob_tool are shown in the following table. Additional descriptions
follow the table.

Table 18.21 Command-line options used with the program ndb_blob_tool

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--check-orphans Check for blob parts having no
corresponding inline parts

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--database=name,

-d name

Database to find the table in (Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--delete-orphans Delete blob parts having no
corresponding inline parts

(Supported in all NDB releases
based on MySQL 5.6)

--dump-file=file Write orphan keys to specified file (Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

2846

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

Format Description Added, Deprecated, or
Removed

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--verbose,

-v

Verbose output (Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

• --add-missing

Command-Line Format --add-missing

For each inline part in NDB Cluster tables which has no corresponding BLOB part, write a dummy BLOB
part of the required length, consisting of spaces.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

2847

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

• --check-missing

Command-Line Format --check-missing

Check for inline parts in NDB Cluster tables which have no corresponding BLOB parts.

• --check-orphans

Command-Line Format --check-orphans

Check for BLOB parts in NDB Cluster tables which have no corresponding inline parts.

• --connect-retries

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=db_name, -d

Command-Line Format --database=name

2848

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

Type String

Default Value [none]

Specify the database to find the table in.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --delete-orphans

Command-Line Format --delete-orphans

Remove BLOB parts from NDB Cluster tables which have no corresponding inline parts.

• --dump-file=file

Command-Line Format --dump-file=file

Type File name

Default Value [none]

Writes a list of orphaned BLOB column parts to file. The information written to the file includes the
table key and BLOB part number for each orphaned BLOB part.

• --help

Command-Line Format --help

Display help text and exit.
2849

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

2850

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose

Command-Line Format --verbose

Provide extra information in the tool's output regarding its progress.

• --version

Command-Line Format --version

Display version information and exit.

Example

First we create an NDB table in the test database, using the CREATE TABLE statement shown here:

USE test;

CREATE TABLE btest (
 c0 BIGINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c1 TEXT,
 c2 BLOB
) ENGINE=NDB;

Then we insert a few rows into this table, using a series of statements similar to this one:

INSERT INTO btest VALUES (NULL, 'x', REPEAT('x', 1000));

When run with --check-orphans against this table, ndb_blob_tool generates the following output:

$> ndb_blob_tool --check-orphans --verbose -d test btest
connected
processing 2 blobs
processing blob #0 c1 NDB$BLOB_19_1
NDB$BLOB_19_1: nextResult: res=1
total parts: 0
orphan parts: 0
processing blob #1 c2 NDB$BLOB_19_2
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=1
total parts: 10
orphan parts: 0
disconnected

NDBT_ProgramExit: 0 - OK

The tool reports that there are no NDB BLOB column parts associated with column c1, even though c1
is a TEXT column. This is due to the fact that, in an NDB table, only the first 256 bytes of a BLOB or TEXT
column value are stored inline, and only the excess, if any, is stored separately; thus, if there are no values

2851

ndb_config — Extract NDB Cluster Configuration Information

using more than 256 bytes in a given column of one of these types, no BLOB column parts are created by
NDB for this column. See Section 11.6, “Data Type Storage Requirements”, for more information.

18.5.7 ndb_config — Extract NDB Cluster Configuration Information

This tool extracts current configuration information for data nodes, SQL nodes, and API nodes from one of
a number of sources: an NDB Cluster management node, or its config.ini or my.cnf file. By default,
the management node is the source for the configuration data; to override the default, execute ndb_config
with the --config-file or --mycnf option. It is also possible to use a data node as the source by
specifying its node ID with --config_from_node=node_id.

ndb_config can also provide an offline dump of all configuration parameters which can be used, along
with their default, maximum, and minimum values and other information. The dump can be produced in
either text or XML format; for more information, see the discussion of the --configinfo and --xml
options later in this section).

You can filter the results by section (DB, SYSTEM, or CONNECTIONS) using one of the options --nodes, --
system, or --connections.

Options that can be used with ndb_config are shown in the following table. Additional descriptions follow
the table.

Table 18.22 Command-line options used with the program ndb_config

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--config-file=file_name Set the path to config.ini file (Supported in all NDB releases
based on MySQL 5.6)

--config-from-node=# Obtain configuration data from the
node having this ID (must be a
data node)

(Supported in all NDB releases
based on MySQL 5.6)

--configinfo Dumps information about all NDB
configuration parameters in text
format with default, maximum, and
minimum values. Use with --xml to
obtain XML output

(Supported in all NDB releases
based on MySQL 5.6)

--connections Print information only about
connections specified in [tcp], [tcp
default], [sci], [sci default], [shm],
or [shm default] sections of cluster
configuration file. Cannot be used
with --system or --nodes

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

2852

ndb_config — Extract NDB Cluster Configuration Information

Format Description Added, Deprecated, or
Removed

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--diff-default Print only configuration
parameters that have non-default
values

ADDED: NDB 7.4.16

--fields=string,

-f

Field separator (Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--host=name Specify host (Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--mycnf Read configuration data from
my.cnf file

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--nodeid=#, Get configuration of node with this
ID

(Supported in all NDB releases
based on MySQL 5.6)

2853

ndb_config — Extract NDB Cluster Configuration Information

Format Description Added, Deprecated, or
Removed

--id # (<=7.5.0)

--nodes Print node information ([ndbd] or
[ndbd default] section of cluster
configuration file) only. Cannot
be used with --system or --
connections

(Supported in all NDB releases
based on MySQL 5.6)

--query=string,

-q string

One or more query options
(attributes)

(Supported in all NDB releases
based on MySQL 5.6)

--query-all,

-a

Dumps all parameters and values
to a single comma-delimited string

(Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--rows=string,

-r string

Row separator (Supported in all NDB releases
based on MySQL 5.6)

--system Print SYSTEM section information
only (see ndb_config --configinfo
output). Cannot be used with --
nodes or --connections

(Supported in all NDB releases
based on MySQL 5.6)

--type=name Specify node type (Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--configinfo --xml Use --xml with --configinfo
to obtain a dump of all NDB
configuration parameters in XML
format with default, maximum, and
minimum values

(Supported in all NDB releases
based on MySQL 5.6)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --configinfo

The --configinfo option causes ndb_config to dump a list of each NDB Cluster configuration
parameter supported by the NDB Cluster distribution of which ndb_config is a part, including the
following information:

• A brief description of each parameter's purpose, effects, and usage

• The section of the config.ini file where the parameter may be used

2854

ndb_config — Extract NDB Cluster Configuration Information

• The parameter's data type or unit of measurement

• Where applicable, the parameter's default, minimum, and maximum values

• NDB Cluster release version and build information

By default, this output is in text format. Part of this output is shown here:

$> ndb_config --configinfo

****** SYSTEM ******

Name (String)
Name of system (NDB Cluster)
MANDATORY

PrimaryMGMNode (Non-negative Integer)
Node id of Primary ndb_mgmd(MGM) node
Default: 0 (Min: 0, Max: 4294967039)

ConfigGenerationNumber (Non-negative Integer)
Configuration generation number
Default: 0 (Min: 0, Max: 4294967039)

****** DB ******

MaxNoOfSubscriptions (Non-negative Integer)
Max no of subscriptions (default 0 == MaxNoOfTables)
Default: 0 (Min: 0, Max: 4294967039)

MaxNoOfSubscribers (Non-negative Integer)
Max no of subscribers (default 0 == 2 * MaxNoOfTables)
Default: 0 (Min: 0, Max: 4294967039)

…

Use this option together with the --xml option to obtain output in XML format.

• --config-file=path-to-file

Command-Line Format --config-file=file_name

Type File name

Default Value

Gives the path to the management server's configuration file (config.ini). This may be a relative or
absolute path. If the management node resides on a different host from the one on which ndb_config
is invoked, then an absolute path must be used.

• --config_from_node=#

Command-Line Format --config-from-node=#

Type Numeric

Default Value none

Minimum Value 1

2855

ndb_config — Extract NDB Cluster Configuration Information

Maximum Value 48

Obtain the cluster's configuration data from the data node that has this ID.

If the node having this ID is not a data node, ndb_config fails with an error. (To obtain configuration
data from the management node instead, simply omit this option.)

• --connections

Command-Line Format --connections

Tells ndb_config to print CONNECTIONS information only—that is, information about parameters found
in the [tcp], [tcp default], [shm], or [shm default] sections of the cluster configuration file
(see Section 18.4.3.9, “NDB Cluster TCP/IP Connections”, and Section 18.4.3.11, “NDB Cluster Shared-
Memory Connections”, for more information).

This option is mutually exclusive with --nodes and --system; only one of these 3 options can be used.

• --connect-retries

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

2856

ndb_config — Extract NDB Cluster Configuration Information

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --diff-default

Command-Line Format --diff-default

Introduced 5.6.36-ndb-7.4.16

Print only configuration parameters that have non-default values.

• --fields=delimiter, -f delimiter

Command-Line Format --fields=string

Type String

Default Value

Specifies a delimiter string used to separate the fields in the result. The default is , (the comma
character).

Note

If the delimiter contains spaces or escapes (such as \n for the linefeed
character), then it must be quoted.

• --help

2857

ndb_config — Extract NDB Cluster Configuration Information

Command-Line Format --help

Display help text and exit.

• --host=hostname

Command-Line Format --host=name

Type String

Default Value

Specifies the host name of the node for which configuration information is to be obtained.

Note

While the hostname localhost usually resolves to the IP address 127.0.0.1,
this may not necessarily be true for all operating platforms and configurations.
This means that it is possible, when localhost is used in config.ini, for
ndb_config --host=localhost to fail if ndb_config is run on a different
host where localhost resolves to a different address (for example, on some
versions of SUSE Linux, this is 127.0.0.2). In general, for best results, you
should use numeric IP addresses for all NDB Cluster configuration values relating
to hosts, or verify that all NDB Cluster hosts handle localhost in the same
fashion.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --mycnf

Command-Line Format --mycnf

Read configuration data from the my.cnf file.

• --ndb-connectstring=connection_string, -c connection_string

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Specifies the connection string to use in connecting to the management server. The format for the
connection string is the same as described in Section 18.4.3.3, “NDB Cluster Connection Strings”, and
defaults to localhost:1186.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string
2858

ndb_config — Extract NDB Cluster Configuration Information

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --nodeid=node_id

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Specify the node ID of the node for which configuration information is to be obtained. Formerly, --id
could be used as a synonym for this option; in NDB 7.5 and later, the only form accepted is --nodeid.

• --nodes

Command-Line Format --nodes

Tells ndb_config to print information relating only to parameters defined in an [ndbd] or [ndbd
default] section of the cluster configuration file (see Section 18.4.3.6, “Defining NDB Cluster Data
Nodes”).

This option is mutually exclusive with --connections and --system; only one of these 3 options can
be used.

• --query=query-options, -q query-options

Command-Line Format --query=string

Type String
2859

ndb_config — Extract NDB Cluster Configuration Information

Default Value

This is a comma-delimited list of query options—that is, a list of one or more node attributes to be
returned. These include nodeid (node ID), type (node type—that is, ndbd, mysqld, or ndb_mgmd), and
any configuration parameters whose values are to be obtained.

For example, --query=nodeid,type,datamemory,datadir returns the node ID, node type,
DataMemory, and DataDir for each node.

Formerly, id was accepted as a synonym for nodeid, but has been removed in NDB 7.5 and later.

Note

If a given parameter is not applicable to a certain type of node, than an empty
string is returned for the corresponding value. See the examples later in this
section for more information.

• --query-all, -a

Command-Line Format --query-all

Returns a comma-delimited list of all query options (node attributes; note that this list is a single string.

This option was introduced in NDB 7.5.7 (Bug #60095, Bug #11766869).

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --rows=separator, -r separator

Command-Line Format --rows=string

Type String

Default Value

Specifies a separator string used to separate the rows in the result. The default is a space character.

Note

If the separator contains spaces or escapes (such as \n for the linefeed
character), then it must be quoted.

• --system

Command-Line Format --system

Tells ndb_config to print SYSTEM information only. This consists of system variables that cannot
be changed at run time; thus, there is no corresponding section of the cluster configuration file for
them. They can be seen (prefixed with ****** SYSTEM ******) in the output of ndb_config --
configinfo.

This option is mutually exclusive with --nodes and --connections; only one of these 3 options can
be used.

2860

ndb_config — Extract NDB Cluster Configuration Information

• --type=node_type

Command-Line Format --type=name

Type Enumeration

Default Value [none]

Valid Values ndbd

mysqld

ndb_mgmd

Filters results so that only configuration values applying to nodes of the specified node_type (ndbd,
mysqld, or ndb_mgmd) are returned.

• --usage, --help, or -?

Command-Line Format --help

Causes ndb_config to print a list of available options, and then exit. Synonym for --help.

• --version, -V

Command-Line Format --version

Causes ndb_config to print a version information string, and then exit.

• --configinfo --xml

Command-Line Format --configinfo --xml

Cause ndb_config --configinfo to provide output as XML by adding this option. A portion of such
output is shown in this example:

$> ndb_config --configinfo --xml

<configvariables protocolversion="1" ndbversionstring="5.7.41-ndb-7.5.30"
 ndbversion="460032" ndbversionmajor="7" ndbversionminor="5"
 ndbversionbuild="0">
 <section name="SYSTEM">
 <param name="Name" comment="Name of system (NDB Cluster)" type="string"
 mandatory="true"/>
 <param name="PrimaryMGMNode" comment="Node id of Primary ndb_mgmd(MGM) node"
 type="unsigned" default="0" min="0" max="4294967039"/>
 <param name="ConfigGenerationNumber" comment="Configuration generation number"
 type="unsigned" default="0" min="0" max="4294967039"/>
 </section>
 <section name="MYSQLD" primarykeys="NodeId">
 <param name="wan" comment="Use WAN TCP setting as default" type="bool"
 default="false"/>
 <param name="HostName" comment="Name of computer for this node"
 type="string" default=""/>
 <param name="Id" comment="NodeId" type="unsigned" mandatory="true"
 min="1" max="255" deprecated="true"/>
 <param name="NodeId" comment="Number identifying application node (mysqld(API))"
 type="unsigned" mandatory="true" min="1" max="255"/>
 <param name="ExecuteOnComputer" comment="HostName" type="string"
 deprecated="true"/>

 …

2861

ndb_config — Extract NDB Cluster Configuration Information

 </section>

 …

</configvariables>

Note

Normally, the XML output produced by ndb_config --configinfo --xml
is formatted using one line per element; we have added extra whitespace in
the previous example, as well as the next one, for reasons of legibility. This
should not make any difference to applications using this output, since most XML
processors either ignore nonessential whitespace as a matter of course, or can
be instructed to do so.

The XML output also indicates when changing a given parameter requires that data nodes be restarted
using the --initial option. This is shown by the presence of an initial="true" attribute in the
corresponding <param> element. In addition, the restart type (system or node) is also shown; if a
given parameter requires a system restart, this is indicated by the presence of a restart="system"
attribute in the corresponding <param> element. For example, changing the value set for the Diskless
parameter requires a system initial restart, as shown here (with the restart and initial attributes
highlighted for visibility):

<param name="Diskless" comment="Run wo/ disk" type="bool" default="false"
 restart="system" initial="true"/>

Currently, no initial attribute is included in the XML output for <param> elements corresponding to
parameters which do not require initial restarts; in other words, initial="false" is the default, and
the value false should be assumed if the attribute is not present. Similarly, the default restart type is
node (that is, an online or “rolling” restart of the cluster), but the restart attribute is included only if
the restart type is system (meaning that all cluster nodes must be shut down at the same time, then
restarted).

Deprecated parameters are indicated in the XML output by the deprecated attribute, as shown here:

<param name="NoOfDiskPagesToDiskAfterRestartACC" comment="DiskCheckpointSpeed"
 type="unsigned" default="20" min="1" max="4294967039" deprecated="true"/>

In such cases, the comment refers to one or more parameters that supersede the deprecated
parameter. Similarly to initial, the deprecated attribute is indicated only when the parameter
is deprecated, with deprecated="true", and does not appear at all for parameters which are not
deprecated. (Bug #21127135)

Beginning with NDB 7.5.0, parameters that are required are indicated with mandatory="true", as
shown here:

<param name="NodeId"
 comment="Number identifying application node (mysqld(API))"

2862

ndb_config — Extract NDB Cluster Configuration Information

 type="unsigned" mandatory="true" min="1" max="255"/>

In much the same way that the initial or deprecated attribute is displayed only for a parameter
that requires an intial restart or that is deprecated, the mandatory attribute is included only if the given
parameter is actually required.

Important

The --xml option can be used only with the --configinfo option. Using --
xml without --configinfo fails with an error.

Unlike the options used with this program to obtain current configuration data, --configinfo and --
xml use information obtained from the NDB Cluster sources when ndb_config was compiled. For this
reason, no connection to a running NDB Cluster or access to a config.ini or my.cnf file is required
for these two options.

Combining other ndb_config options (such as --query or --type) with --configinfo (with or
without the --xml option) is not supported. Currently, if you attempt to do so, the usual result is that
all other options besides --configinfo or --xml are simply ignored. However, this behavior is not
guaranteed and is subject to change at any time. In addition, since ndb_config, when used with the --
configinfo option, does not access the NDB Cluster or read any files, trying to specify additional options
such as --ndb-connectstring or --config-file with --configinfo serves no purpose.

Examples

1. To obtain the node ID and type of each node in the cluster:

$> ./ndb_config -q nodeid,type --fields=':' --rows='\n'
1:ndbd
2:ndbd
3:ndbd
4:ndbd
5:ndb_mgmd
6:mysqld
7:mysqld
8:mysqld
9:mysqld

In this example, we used the --fields options to separate the node ID and type of each node with
a colon character (:), and the --rows options to place the values for each node on a new line in the
output.

2. To produce a connection string that can be used by data, SQL, and API nodes to connect to the
management server:

$> ./ndb_config --config-file=usr/local/mysql/cluster-data/config.ini \
--query=hostname,portnumber --fields=: --rows=, --type=ndb_mgmd
198.51.100.179:1186

3. This invocation of ndb_config checks only data nodes (using the --type option), and shows
the values for each node's ID and host name, as well as the values set for its DataMemory,
IndexMemory, and DataDir parameters:

$> ./ndb_config --type=ndbd --query=nodeid,host,datamemory,indexmemory,datadir -f ' : ' -r '\n'
1 : 198.51.100.193 : 83886080 : 18874368 : /usr/local/mysql/cluster-data
2 : 198.51.100.112 : 83886080 : 18874368 : /usr/local/mysql/cluster-data
3 : 198.51.100.176 : 83886080 : 18874368 : /usr/local/mysql/cluster-data
4 : 198.51.100.119 : 83886080 : 18874368 : /usr/local/mysql/cluster-data

2863

ndb_cpcd — Automate Testing for NDB Development

In this example, we used the short options -f and -r for setting the field delimiter and row separator,
respectively, as well as the short option -q to pass a list of parameters to be obtained.

4. To exclude results from any host except one in particular, use the --host option:

$> ./ndb_config --host=198.51.100.176 -f : -r '\n' -q id,type
3:ndbd
5:ndb_mgmd

In this example, we also used the short form -q to determine the attributes to be queried.

Similarly, you can limit results to a node with a specific ID using the --nodeid option.

18.5.8 ndb_cpcd — Automate Testing for NDB Development

A utility having this name was formerly part of an internal automated test framework used in testing and
debugging NDB Cluster. It is no longer included in NDB Cluster distributions provided by Oracle.

18.5.9 ndb_delete_all — Delete All Rows from an NDB Table

ndb_delete_all deletes all rows from the given NDB table. In some cases, this can be much faster than
DELETE or even TRUNCATE TABLE.

Usage

ndb_delete_all -c connection_string tbl_name -d db_name

This deletes all rows from the table named tbl_name in the database named db_name. It is exactly
equivalent to executing TRUNCATE db_name.tbl_name in MySQL.

Options that can be used with ndb_delete_all are shown in the following table. Additional descriptions
follow the table.

Table 18.23 Command-line options used with the program ndb_delete_all

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--database=name,

-d name

Name of the database in which
the table is found

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

2864

ndb_delete_all — Delete All Rows from an NDB Table

Format Description Added, Deprecated, or
Removed

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--diskscan Perform disk scan (Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--transactional,

-t

Perform delete in one single
transaction; possible to run out of
operations when used

(Supported in all NDB releases
based on MySQL 5.6)

--tupscan Perform tuple scan (Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

2865

ndb_delete_all — Delete All Rows from an NDB Table

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database, -d

Command-Line Format --database=name

Type String

Default Value TEST_DB

Name of the database containing the table to delete from.

2866

ndb_delete_all — Delete All Rows from an NDB Table

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --diskscan

Command-Line Format --diskscan

Run a disk scan.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String 2867

ndb_delete_all — Delete All Rows from an NDB Table

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --transactional, -t

Use of this option causes the delete operation to be performed as a single transaction.

Warning

With very large tables, using this option may cause the number of operations
available to the cluster to be exceeded.

• --tupscan

Run a tuple scan.
2868

ndb_desc — Describe NDB Tables

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

18.5.10 ndb_desc — Describe NDB Tables

ndb_desc provides a detailed description of one or more NDB tables.

Usage

ndb_desc -c connection_string tbl_name -d db_name [options]

ndb_desc -c connection_string index_name -d db_name -t tbl_name

Additional options that can be used with ndb_desc are listed later in this section.

Sample Output

MySQL table creation and population statements:

USE test;

CREATE TABLE fish (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(20) NOT NULL,
 length_mm INT(11) NOT NULL,
 weight_gm INT(11) NOT NULL,

 PRIMARY KEY pk (id),
 UNIQUE KEY uk (name)
) ENGINE=NDB;

INSERT INTO fish VALUES
 ('','guppy', 35, 2), ('','tuna', 2500, 150000),
 ('','shark', 3000, 110000), ('','manta ray', 1500, 50000),
 ('','grouper', 900, 125000), ('','puffer', 250, 2500);

Output from ndb_desc:

$> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 2
Fragment type: 9
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 311
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1

2869

ndb_desc — Describe NDB Tables

FragmentCount: 2
TableStatus: Retrieved
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
length_mm Int NOT NULL AT=FIXED ST=MEMORY
weight_gm Int NOT NULL AT=FIXED ST=MEMORY

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex
uk$unique(name) - UniqueHashIndex
uk(name) - OrderedIndex

-- Per partition info --
Partition Row count Commit count Frag fixed memory ...
0 2 2 32768 ...
1 4 4 32768 ...

... Frag varsized memory Extent_space Free extent_space

... 32768 0 0

... 32768 0 0

NDBT_ProgramExit: 0 - OK

Information about multiple tables can be obtained in a single invocation of ndb_desc by using their names,
separated by spaces. All of the tables must be in the same database.

You can obtain additional information about a specific index using the --table (short form: -t) option and
supplying the name of the index as the first argument to ndb_desc, as shown here:

$> ./ndb_desc uk -d test -t fish
-- uk --
Version: 3
Base table: fish
Number of attributes: 1
Logging: 0
Index type: OrderedIndex
Index status: Retrieved
-- Attributes --
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
-- IndexTable 10/uk --
Version: 3
Fragment type: FragUndefined
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: yes
Number of attributes: 2
Number of primary keys: 1
Length of frm data: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 2
ForceVarPart: 0
FragmentCount: 4
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
-- Attributes --
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
NDB$TNODE Unsigned [64] PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
-- Indexes --
PRIMARY KEY(NDB$TNODE) - UniqueHashIndex

NDBT_ProgramExit: 0 - OK

2870

ndb_desc — Describe NDB Tables

When an index is specified in this way, the --extra-partition-info and --extra-node-info
options have no effect.

The Version column in the output contains the table's schema object version. For information about
interpreting this value, see NDB Schema Object Versions.

The Extent_space and Free extent_space columns are applicable only to NDB tables having
columns on disk; for tables having only in-memory columns, these columns always contain the value 0.

To illustrate their use, we modify the previous example. First, we must create the necessary Disk Data
objects, as shown here:

CREATE LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_1.log'
 INITIAL_SIZE 16M
 UNDO_BUFFER_SIZE 2M
 ENGINE NDB;

ALTER LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_2.log'
 INITIAL_SIZE 12M
 ENGINE NDB;

CREATE TABLESPACE ts_1
 ADD DATAFILE 'data_1.dat'
 USE LOGFILE GROUP lg_1
 INITIAL_SIZE 32M
 ENGINE NDB;

ALTER TABLESPACE ts_1
 ADD DATAFILE 'data_2.dat'
 INITIAL_SIZE 48M
 ENGINE NDB;

(For more information on the statements just shown and the objects created by them, see
Section 18.6.11.1, “NDB Cluster Disk Data Objects”, as well as Section 13.1.14, “CREATE LOGFILE
GROUP Statement”, and Section 13.1.18, “CREATE TABLESPACE Statement”.)

Now we can create and populate a version of the fish table that stores 2 of its columns on disk (deleting
the previous version of the table first, if it already exists):

CREATE TABLE fish (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(20) NOT NULL,
 length_mm INT(11) NOT NULL,
 weight_gm INT(11) NOT NULL,

 PRIMARY KEY pk (id),
 UNIQUE KEY uk (name)
) TABLESPACE ts_1 STORAGE DISK
ENGINE=NDB;

INSERT INTO fish VALUES
 ('','guppy', 35, 2), ('','tuna', 2500, 150000),
 ('','shark', 3000, 110000), ('','manta ray', 1500, 50000),
 ('','grouper', 900, 125000), ('','puffer', 250, 2500);

When run against this version of the table, ndb_desc displays the following output:

$> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 3
Fragment type: 9
K Value: 6
Min load factor: 78

2871

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html

ndb_desc — Describe NDB Tables

Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 321
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 2
TableStatus: Retrieved
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
length_mm Int NOT NULL AT=FIXED ST=DISK
weight_gm Int NOT NULL AT=FIXED ST=DISK

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex
uk$unique(name) - UniqueHashIndex
uk(name) - OrderedIndex
-- Per partition info --
Partition Row count Commit count Frag fixed memory ...
0 2 2 32768 ...
1 4 4 32768 ...

... Frag varsized memory Extent_space Free extent_space

... 32768 0 0

... 32768 0 0

NDBT_ProgramExit: 0 - OK

This means that 1048576 bytes are allocated from the tablespace for this table on each partition, of which
1044440 bytes remain free for additional storage. In other words, 1048576 - 1044440 = 4136 bytes per
partition is currently being used to store the data from this table's disk-based columns. The number of
bytes shown as Free extent_space is available for storing on-disk column data from the fish table
only; for this reason, it is not visible when selecting from the Information Schema FILES table.

Options that can be used with ndb_desc are shown in the following table. Additional descriptions follow
the table.

Table 18.24 Command-line options used with the program ndb_desc

Format Description Added, Deprecated, or
Removed

--blob-info,

-b

Include partition information for
BLOB tables in output. Requires
that the -p option also be used

(Supported in all NDB releases
based on MySQL 5.6)

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

2872

ndb_desc — Describe NDB Tables

Format Description Added, Deprecated, or
Removed

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--database=name,

-d name

Name of database containing
table

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--extra-node-info,

-n

Include partition-to-data-node
mappings in output; requires --
extra-partition-info

(Supported in all NDB releases
based on MySQL 5.6)

--extra-partition-info,

-p

Display information about
partitions

(Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--retries=#, Number of times to retry the
connection (once per second)

(Supported in all NDB releases
based on MySQL 5.6)

2873

ndb_desc — Describe NDB Tables

Format Description Added, Deprecated, or
Removed

-r #

--table=name,

-t name

Specify the table in which to find
an index. When this option is
used, -p and -n have no effect and
are ignored

(Supported in all NDB releases
based on MySQL 5.6)

--unqualified,

-u

Use unqualified table names (Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

• --auto-inc, -a

Show the next value for a table's AUTO_INCREMENT column, if it has one.

• --blob-info, -b

Include information about subordinate BLOB and TEXT columns.

Use of this option also requires the use of the --extra-partition-info (-p) option.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

2874

ndb_desc — Describe NDB Tables

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --context, -x

Show additional contextual information for the table such as schema, database name, table name, and
the table's internal ID.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=db_name, -d

Specify the database in which the table should be found.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix). 2875

ndb_desc — Describe NDB Tables

• --extra-node-info, -n

Include information about the mappings between table partitions and the data nodes upon which they
reside. This information can be useful for verifying distribution awareness mechanisms and supporting
more efficient application access to the data stored in NDB Cluster.

Use of this option also requires the use of the --extra-partition-info (-p) option.

• --extra-partition-info, -p

Print additional information about the table's partitions.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.2876

ndb_drop_index — Drop Index from an NDB Table

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --retries=#, -r

Try to connect this many times before giving up. One connect attempt is made per second.

• --table=tbl_name, -t

Specify the table in which to look for an index.

• --unqualified, -u

Use unqualified table names.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

In NDB 7.3 and NDB 7.4, ordering of table indexes listed in the output is not deterministic, and can vary
between platforms. This issue is addressed in NDB 7.5. (Bug #81763, Bug #23547742)

18.5.11 ndb_drop_index — Drop Index from an NDB Table

ndb_drop_index drops the specified index from an NDB table. It is recommended that you use this utility
only as an example for writing NDB API applications—see the Warning later in this section for details.

Usage

ndb_drop_index -c connection_string table_name index -d db_name

The statement shown above drops the index named index from the table in the database.

2877

ndb_drop_index — Drop Index from an NDB Table

Options that can be used with ndb_drop_index are shown in the following table. Additional descriptions
follow the table.

Table 18.25 Command-line options used with the program ndb_drop_index

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled

(Supported in all NDB releases
based on MySQL 5.6)

2878

ndb_drop_index — Drop Index from an NDB Table

Format Description Added, Deprecated, or
Removed

by default; use --skip-ndb-
optimized-node-selection to
disable

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String 2879

ndb_drop_index — Drop Index from an NDB Table

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database, -d

Command-Line Format --database=name

Type String

Default Value TEST_DB

Name of the database in which the table resides.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

2880

ndb_drop_index — Drop Index from an NDB Table

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

2881

ndb_drop_table — Drop an NDB Table

• --version

Command-Line Format --version

Display version information and exit.

Warning

Operations performed on Cluster table indexes using the NDB API are not visible to
MySQL and make the table unusable by a MySQL server. If you use this program
to drop an index, then try to access the table from an SQL node, an error results, as
shown here:

$> ./ndb_drop_index -c localhost dogs ix -d ctest1
Dropping index dogs/idx...OK

NDBT_ProgramExit: 0 - OK

$> ./mysql -u jon -p ctest1
Enter password: *******
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 5.6.51-ndb-7.3.33

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW TABLES;
+------------------+
| Tables_in_ctest1 |
+------------------+
| a |
| bt1 |
| bt2 |
| dogs |
| employees |
| fish |
+------------------+
6 rows in set (0.00 sec)

mysql> SELECT * FROM dogs;
ERROR 1296 (HY000): Got error 4243 'Index not found' from NDBCLUSTER

In such a case, your only option for making the table available to MySQL again is to drop the table and
re-create it. You can use either the SQL statementDROP TABLE or the ndb_drop_table utility (see
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”) to drop the table.

18.5.12 ndb_drop_table — Drop an NDB Table

ndb_drop_table drops the specified NDB table. (If you try to use this on a table created with a storage
engine other than NDB, the attempt fails with the error 723: No such table exists.) This operation
is extremely fast; in some cases, it can be an order of magnitude faster than using a MySQL DROP TABLE
statement on an NDB table.

Usage

ndb_drop_table -c connection_string tbl_name -d db_name

Options that can be used with ndb_drop_table are shown in the following table. Additional descriptions
follow the table.

2882

ndb_drop_table — Drop an NDB Table

Table 18.26 Command-line options used with the program ndb_drop_table

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-

(Supported in all NDB releases
based on MySQL 5.6)

2883

ndb_drop_table — Drop an NDB Table

Format Description Added, Deprecated, or
Removed

optimized-node-selection to
disable

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String
2884

ndb_drop_table — Drop an NDB Table

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database, -d

Command-Line Format --database=name

Type String

Default Value TEST_DB

Name of the database in which the table resides.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

2885

ndb_drop_table — Drop an NDB Table

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

2886

ndb_error_reporter — NDB Error-Reporting Utility

• --version

Command-Line Format --version

Display version information and exit.

18.5.13 ndb_error_reporter — NDB Error-Reporting Utility

ndb_error_reporter creates an archive from data node and management node log files that can be
used to help diagnose bugs or other problems with a cluster. It is highly recommended that you make use
of this utility when filing reports of bugs in NDB Cluster.

Options that can be used with ndb_error_reporter are shown in the following table. Additional
descriptions follow the table.

ndb_error_reporter did not support the --help option prior to NDB 7.3.3 (Bug #11756666, Bug
#48606). The --connection-timeout --dry-scp, and --skip-nodegroup options were also added
in this release (Bug #16602002).

Table 18.27 Command-line options used with the program ndb_error_reporter

Format Description Added, Deprecated, or
Removed

--connection-timeout=# Number of seconds to wait when
connecting to nodes before timing
out

ADDED: NDB 7.3.3

--dry-scp Disable scp with remote hosts;
used in testing only

ADDED: NDB 7.3.3

--fs Include file system data in error
report; can use a large amount of
disk space

(Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--skip-nodegroup=# Skip all nodes in the node group
having this ID

ADDED: NDB 7.3.3

Usage

ndb_error_reporter path/to/config-file [username] [options]

This utility is intended for use on a management node host, and requires the path to the management host
configuration file (usually named config.ini). Optionally, you can supply the name of a user that is able
to access the cluster's data nodes using SSH, to copy the data node log files. ndb_error_reporter
then includes all of these files in archive that is created in the same directory in which it is run. The archive
is named ndb_error_report_YYYYMMDDhhmmss.tar.bz2, where YYYYMMDDhhmmss is a datetime
string.

 ndb_error_reporter also accepts the options listed here:

• --connection-timeout=timeout

Command-Line Format --connection-timeout=#

2887

ndb_index_stat — NDB Index Statistics Utility

Introduced 5.6.14-ndb-7.3.3

Type Integer

Default Value 0

Wait this many seconds when trying to connect to nodes before timing out.

• --dry-scp

Command-Line Format --dry-scp

Introduced 5.6.14-ndb-7.3.3

Run ndb_error_reporter without using scp from remote hosts. Used for testing only.

• --fs

Command-Line Format --fs

Copy the data node file systems to the management host and include them in the archive.

Because data node file systems can be extremely large, even after being compressed, we ask that you
please do not send archives created using this option to Oracle unless you are specifically requested to
do so.

• --help

Command-Line Format --help

Display help text and exit.

• --skip-nodegroup=nodegroup_id

Command-Line Format --connection-timeout=#

Introduced 5.6.14-ndb-7.3.3

Type Integer

Default Value 0

Skip all nodes belong to the node group having the supplied node group ID.

18.5.14 ndb_index_stat — NDB Index Statistics Utility

ndb_index_stat provides per-fragment statistical information about indexes on NDB tables. This includes
cache version and age, number of index entries per partition, and memory consumption by indexes.

Usage

To obtain basic index statistics about a given NDB table, invoke ndb_index_stat as shown here, with
the name of the table as the first argument and the name of the database containing this table specified
immediately following it, using the --database (-d) option:

ndb_index_stat table -d database

In this example, we use ndb_index_stat to obtain such information about an NDB table named mytable
in the test database:

2888

ndb_index_stat — NDB Index Statistics Utility

$> ndb_index_stat -d test mytable
table:City index:PRIMARY fragCount:2
sampleVersion:3 loadTime:1399585986 sampleCount:1994 keyBytes:7976
query cache: valid:1 sampleCount:1994 totalBytes:27916
times in ms: save: 7.133 sort: 1.974 sort per sample: 0.000

NDBT_ProgramExit: 0 - OK

sampleVersion is the version number of the cache from which the statistics data is taken. Running
ndb_index_stat with the --update option causes sampleVersion to be incremented.

loadTime shows when the cache was last updated. This is expressed as seconds since the Unix Epoch.

sampleCount is the number of index entries found per partition. You can estimate the total number of
entries by multiplying this by the number of fragments (shown as fragCount).

sampleCount can be compared with the cardinality of SHOW INDEX or
INFORMATION_SCHEMA.STATISTICS, although the latter two provide a view of the table as a whole,
while ndb_index_stat provides a per-fragment average.

keyBytes is the number of bytes used by the index. In this example, the primary key is an integer, which
requires four bytes for each index, so keyBytes can be calculated in this case as shown here:

 keyBytes = sampleCount * (4 bytes per index) = 1994 * 4 = 7976

This information can also be obtained using the corresponding column definitions from the Information
Schema COLUMNS table (this requires a MySQL Server and a MySQL client application).

totalBytes is the total memory consumed by all indexes on the table, in bytes.

Timings shown in the preceding examples are specific to each invocation of ndb_index_stat.

The --verbose option provides some additional output, as shown here:

$> ndb_index_stat -d test mytable --verbose
random seed 1337010518
connected
loop 1 of 1
table:mytable index:PRIMARY fragCount:4
sampleVersion:2 loadTime:1336751773 sampleCount:0 keyBytes:0
read stats
query cache created
query cache: valid:1 sampleCount:0 totalBytes:0
times in ms: save: 20.766 sort: 0.001
disconnected

NDBT_ProgramExit: 0 - OK

$>

If the only output from the program is NDBT_ProgramExit: 0 - OK, this may indicate that no statistics
yet exist. To force them to be created (or updated if they already exist), invoke ndb_index_stat with the
--update option, or execute ANALYZE TABLE on the table in the mysql client.

Options

The following table includes options that are specific to the NDB Cluster ndb_index_stat utility.
Additional descriptions are listed following the table.

2889

ndb_index_stat — NDB Index Statistics Utility

Table 18.28 Command-line options used with the program ndb_index_stat

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--database=name,

-d name

Name of database containing
table

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--delete Delete index statistics for table,
stopping any auto-update
previously configured

(Supported in all NDB releases
based on MySQL 5.6)

--dump Print query cache (Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--loops=# Set the number of times to
perform given command; default is
0

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

2890

ndb_index_stat — NDB Index Statistics Utility

Format Description Added, Deprecated, or
Removed

-c connection_string

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--query=# Perform random range queries on
first key attr (must be int unsigned)

(Supported in all NDB releases
based on MySQL 5.6)

--sys-drop Drop any statistics tables and
events in NDB kernel (all statistics
are lost)

(Supported in all NDB releases
based on MySQL 5.6)

--sys-create Create all statistics tables and
events in NDB kernel, if none of
them already exist

(Supported in all NDB releases
based on MySQL 5.6)

--sys-create-if-not-exist Create any statistics tables and
events in NDB kernel that do not
already exist

(Supported in all NDB releases
based on MySQL 5.6)

--sys-create-if-not-valid Create any statistics tables or
events that do not already exist
in the NDB kernel, after dropping
any that are invalid

(Supported in all NDB releases
based on MySQL 5.6)

--sys-check Verify that NDB system index
statistics and event tables exist

(Supported in all NDB releases
based on MySQL 5.6)

--sys-skip-tables Do not apply sys-* options to
tables

(Supported in all NDB releases
based on MySQL 5.6)

--sys-skip-events Do not apply sys-* options to
events

(Supported in all NDB releases
based on MySQL 5.6)

--update Update index statistics for table,
restarting any auto-update
previously configured

(Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--verbose,

-v

Turn on verbose output (Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

2891

ndb_index_stat — NDB Index Statistics Utility

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=name, -d name

Command-Line Format --database=name

Type String

Default Value [none]

Minimum Value

Maximum Value

2892

ndb_index_stat — NDB Index Statistics Utility

The name of the database that contains the table being queried.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --delete

Command-Line Format --delete

Delete the index statistics for the given table, stopping any auto-update that was previously configured.

• --dump

Command-Line Format --dump

Dump the contents of the query cache.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

2893

ndb_index_stat — NDB Index Statistics Utility

• --loops=#

Command-Line Format --loops=#

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value MAX_INT

Repeat commands this number of times (for use in testing).

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

2894

ndb_index_stat — NDB Index Statistics Utility

Print program argument list and exit.

• --query=#

Command-Line Format --query=#

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value MAX_INT

Perform random range queries on first key attribute (must be int unsigned).

• --sys-drop

Command-Line Format --sys-drop

Drop all statistics tables and events in the NDB kernel. This causes all statistics to be lost.

• --sys-create

Command-Line Format --sys-create

Create all statistics tables and events in the NDB kernel. This works only if none of them exist previously.

• --sys-create-if-not-exist

Command-Line Format --sys-create-if-not-exist

Create any NDB system statistics tables or events (or both) that do not already exist when the program
is invoked.

• --sys-create-if-not-valid

Command-Line Format --sys-create-if-not-valid

Create any NDB system statistics tables or events that do not already exist, after dropping any that are
invalid.

• --sys-check

Command-Line Format --sys-check

Verify that all required system statistics tables and events exist in the NDB kernel.

• --sys-skip-tables

Command-Line Format --sys-skip-tables

Do not apply any --sys-* options to any statistics tables.

• --sys-skip-events

Command-Line Format --sys-skip-events

2895

ndb_index_stat — NDB Index Statistics Utility

Do not apply any --sys-* options to any events.

• --update

Command-Line Format --update

Update the index statistics for the given table, and restart any auto-update that was previously
configured.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose

Command-Line Format --verbose

Turn on verbose output.

• --version

Command-Line Format --version

Display version information and exit.

ndb_index_stat system options. The following options are used to generate and update the statistics
tables in the NDB kernel. None of these options can be mixed with statistics options (see ndb_index_stat
statistics options).

• --sys-drop

• --sys-create

• --sys-create-if-not-exist

• --sys-create-if-not-valid

• --sys-check

• --sys-skip-tables

• --sys-skip-events

ndb_index_stat statistics options. The options listed here are used to generate index statistics. They
work with a given table and database. They cannot be mixed with system options (see ndb_index_stat
system options).

• --database

• --delete

• --update

• --dump

2896

ndb_move_data — NDB Data Copy Utility

• --query

18.5.15 ndb_move_data — NDB Data Copy Utility

ndb_move_data copies data from one NDB table to another.

Usage

The program is invoked with the names of the source and target tables; either or both of these may be
qualified optionally with the database name. Both tables must use the NDB storage engine.

ndb_move_data options source target

Options that can be used with ndb_move_data are shown in the following table. Additional descriptions
follow the table.

Table 18.29 Command-line options used with the program ndb_move_data

Format Description Added, Deprecated, or
Removed

--abort-on-error Dump core on permanent error
(debug option)

(Supported in all NDB releases
based on MySQL 5.6)

--character-sets-dir=path Directory where character sets are (Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--drop-source Drop source table after all rows
have been moved

(Supported in all NDB releases
based on MySQL 5.6)

--error-insert Insert random temporary errors
(used in testing)

(Supported in all NDB releases
based on MySQL 5.6)

--exclude-missing-columns Ignore extra columns in source or
target table

(Supported in all NDB releases
based on MySQL 5.6)

2897

ndb_move_data — NDB Data Copy Utility

Format Description Added, Deprecated, or
Removed

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--lossy-conversions,

-l

Allow attribute data to be
truncated when converted to
smaller type

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--promote-attributes,

-A

Allow attribute data to be
converted to larger type

(Supported in all NDB releases
based on MySQL 5.6)

--staging-tries=x[,y[,z]] Specify tries on temporary errors;
format is x[,y[,z]] where x=max
tries (0=no limit), y=min delay
(ms), z=max delay (ms)

(Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--verbose Enable verbose messages (Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

• --abort-on-error

2898

ndb_move_data — NDB Data Copy Utility

Command-Line Format --abort-on-error

Dump core on permanent error (debug option).

• --character-sets-dir=name

Command-Line Format --character-sets-dir=path

Type String

Default Value [none]

Directory where character sets are.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-retries

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=dbname, -d

2899

ndb_move_data — NDB Data Copy Utility

Command-Line Format --database=name

Type String

Default Value TEST_DB

Name of the database in which the table is found.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --drop-source

Command-Line Format --drop-source

Drop source table after all rows have been moved.

• --error-insert

Command-Line Format --error-insert

Insert random temporary errors (testing option).

• --exclude-missing-columns

Command-Line Format --exclude-missing-columns

Ignore extra columns in source or target table.

• --help

Command-Line Format --help

2900

ndb_move_data — NDB Data Copy Utility

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --lossy-conversions, -l

Command-Line Format --lossy-conversions

Allow attribute data to be truncated when converted to a smaller type.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

2901

ndb_print_backup_file — Print NDB Backup File Contents

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --promote-attributes, -A

Command-Line Format --promote-attributes

Allow attribute data to be converted to a larger type.

• --staging-tries=x[,y[,z]]

Command-Line Format --staging-tries=x[,y[,z]]

Type String

Default Value 0,1000,60000

Specify tries on temporary errors. Format is x[,y[,z]] where x=max tries (0=no limit), y=min delay (ms),
z=max delay (ms).

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose

Command-Line Format --verbose

Enable verbose messages.

• --version

Command-Line Format --version

Display version information and exit.

18.5.16 ndb_print_backup_file — Print NDB Backup File Contents

ndb_print_backup_file obtains diagnostic information from a cluster backup file.

Usage

ndb_print_backup_file file_name

file_name is the name of a cluster backup file. This can be any of the files (.Data, .ctl, or .log file)
found in a cluster backup directory. These files are found in the data node's backup directory under the
subdirectory BACKUP-#, where # is the sequence number for the backup. For more information about
cluster backup files and their contents, see Section 18.6.8.1, “NDB Cluster Backup Concepts”.

2902

ndb_print_file — Print NDB Disk Data File Contents

Like ndb_print_schema_file and ndb_print_sys_file (and unlike most of the other NDB utilities
that are intended to be run on a management server host or to connect to a management server)
ndb_print_backup_file must be run on a cluster data node, since it accesses the data node file
system directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

Additional Options

None.

18.5.17 ndb_print_file — Print NDB Disk Data File Contents

ndb_print_file obtains information from an NDB Cluster Disk Data file.

Usage

ndb_print_file [-v] [-q] file_name+

file_name is the name of an NDB Cluster Disk Data file. Multiple filenames are accepted, separated by
spaces.

Like ndb_print_schema_file and ndb_print_sys_file (and unlike most of the other NDB utilities
that are intended to be run on a management server host or to connect to a management server)
ndb_print_file must be run on an NDB Cluster data node, since it accesses the data node file system
directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

Additional Options

ndb_print_file supports the following options:

• -v: Make output verbose.

• -q: Suppress output (quiet mode).

• --help, -h, -?: Print help message.

This option did not work correctly prior to NDB 7.3.7. (Bug #17069285)

For more information, see Section 18.6.11, “NDB Cluster Disk Data Tables”.

18.5.18 ndb_print_frag_file — Print NDB Fragment List File Contents

ndb_print_frag_file obtains information from a cluster fragment list file. It is intended for use in
helping to diagnose issues with data node restarts.

Usage

ndb_print_frag_file file_name

file_name is the name of a cluster fragment list file, which matches the pattern SX.FragList, where X
is a digit in the range 2-9 inclusive, and are found in the data node file system of the data node having the
node ID nodeid, in directories named ndb_nodeid_fs/DN/DBDIH/, where N is 1 or 2. Each fragment
file contains records of the fragments belonging to each NDB table. For more information about cluster
fragment files, see NDB Cluster Data Node File System Directory.

2903

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

ndb_print_schema_file — Print NDB Schema File Contents

Like ndb_print_backup_file, ndb_print_sys_file, and ndb_print_schema_file (and unlike
most of the other NDB utilities that are intended to be run on a management server host or to connect to a
management server), ndb_print_frag_file must be run on a cluster data node, since it accesses the
data node file system directly. Because it does not make use of the management server, this utility can be
used when the management server is not running, and even when the cluster has been completely shut
down.

Additional Options

None.

Sample Output

$> ndb_print_frag_file /usr/local/mysqld/data/ndb_3_fs/D1/DBDIH/S2.FragList
Filename: /usr/local/mysqld/data/ndb_3_fs/D1/DBDIH/S2.FragList with size 8192
noOfPages = 1 noOfWords = 182
Table Data

Num Frags: 2 NoOfReplicas: 2 hashpointer: 4294967040
kvalue: 6 mask: 0x00000000 method: HashMap
Storage is on Logged and checkpointed, survives SR
------ Fragment with FragId: 0 --------
Preferred Primary: 2 numStoredReplicas: 2 numOldStoredReplicas: 0 distKey: 0 LogPartId: 0
-------Stored Replica----------
Replica node is: 2 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid
-------Stored Replica----------
Replica node is: 3 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid
------ Fragment with FragId: 1 --------
Preferred Primary: 3 numStoredReplicas: 2 numOldStoredReplicas: 0 distKey: 0 LogPartId: 1
-------Stored Replica----------
Replica node is: 3 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid
-------Stored Replica----------
Replica node is: 2 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid

This program was added in MySQL NDB Cluster 7.4.3. (Bug #74594, Bug #19898269)

18.5.19 ndb_print_schema_file — Print NDB Schema File Contents

ndb_print_schema_file obtains diagnostic information from a cluster schema file.

Usage

ndb_print_schema_file file_name

file_name is the name of a cluster schema file. For more information about cluster schema files, see
NDB Cluster Data Node File System Directory.

Like ndb_print_backup_file and ndb_print_sys_file (and unlike most of the other NDB utilities
that are intended to be run on a management server host or to connect to a management server)
ndb_print_schema_file must be run on a cluster data node, since it accesses the data node file
system directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

2904

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

ndb_print_sys_file — Print NDB System File Contents

Additional Options

None.

18.5.20 ndb_print_sys_file — Print NDB System File Contents

ndb_print_sys_file obtains diagnostic information from an NDB Cluster system file.

Usage

ndb_print_sys_file file_name

file_name is the name of a cluster system file (sysfile). Cluster system files are located in a data node's
data directory (DataDir); the path under this directory to system files matches the pattern ndb_#_fs/D#/
DBDIH/P#.sysfile. In each case, the # represents a number (not necessarily the same number). For
more information, see NDB Cluster Data Node File System Directory.

Like ndb_print_backup_file and ndb_print_schema_file (and unlike most of the other NDB
utilities that are intended to be run on a management server host or to connect to a management server)
ndb_print_backup_file must be run on a cluster data node, since it accesses the data node file
system directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

Additional Options

None.

18.5.21 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log

Reads a redo log file, checking it for errors, printing its contents in a human-readable format, or both.
ndb_redo_log_reader is intended for use primarily by NDB Cluster developers and Support personnel
in debugging and diagnosing problems.

This utility remains under development, and its syntax and behavior are subject to change in future NDB
Cluster releases.

The C++ source files for ndb_redo_log_reader can be found in the directory /storage/ndb/src/
kernel/blocks/dblqh/redoLogReader.

Options that can be used with ndb_redo_log_reader are shown in the following table. Additional
descriptions follow the table.

Table 18.30 Command-line options used with the program ndb_redo_log_reader

Format Description Added, Deprecated, or
Removed

-dump Print dump info (Supported in all NDB releases
based on MySQL 5.6)

-filedescriptors Print file descriptors only (Supported in all NDB releases
based on MySQL 5.6)

--help Print usage information (has no
short form)

ADDED: NDB 7.3.4

-lap Provide lap info, with max GCI
started and completed

(Supported in all NDB releases
based on MySQL 5.6)

2905

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

ndb_redo_log_reader — Check and Print Content of Cluster Redo Log

Format Description Added, Deprecated, or
Removed

-mbyte # Starting megabyte (Supported in all NDB releases
based on MySQL 5.6)

-mbyteheaders Show only first page header of
each megabyte in file

(Supported in all NDB releases
based on MySQL 5.6)

-nocheck Do not check records for errors (Supported in all NDB releases
based on MySQL 5.6)

-noprint Do not print records (Supported in all NDB releases
based on MySQL 5.6)

-page # Start with this page (Supported in all NDB releases
based on MySQL 5.6)

-pageheaders Show page headers only (Supported in all NDB releases
based on MySQL 5.6)

-pageindex # Start with this page index (Supported in all NDB releases
based on MySQL 5.6)

-twiddle Bit-shifted dump (Supported in all NDB releases
based on MySQL 5.6)

Usage

ndb_redo_log_reader file_name [options]

file_name is the name of a cluster redo log file. redo log files are located in the numbered directories
under the data node's data directory (DataDir); the path under this directory to the redo log files matches
the pattern ndb_nodeid_fs/D#/DBLQH/S#.FragLog. nodeid is the data node's node ID. The two
instances of # each represent a number (not necessarily the same number); the number following D
is in the range 8-39 inclusive; the range of the number following S varies according to the value of the
NoOfFragmentLogFiles configuration parameter, whose default value is 16; thus, the default range
of the number in the file name is 0-15 inclusive. For more information, see NDB Cluster Data Node File
System Directory.

The name of the file to be read may be followed by one or more of the options listed here:

• -dump

Command-Line Format -dump

Print dump info.

• Command-Line Format -filedescriptors

-filedescriptors: Print file descriptors only.

• Command-Line Format --help

Introduced 5.6.15-ndb-7.3.4

--help: Print usage information.

Added in NDB 7.3.4. (Bug #11749591, Bug #36805)

• -lap

2906

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

ndb_redo_log_reader — Check and Print Content of Cluster Redo Log

Command-Line Format -lap

Provide lap info, with max GCI started and completed.

• Command-Line Format -mbyte #

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value 15

-mbyte #: Starting megabyte.

is an integer in the range 0 to 15, inclusive.

• Command-Line Format -mbyteheaders

-mbyteheaders: Show only the first page header of every megabyte in the file.

• Command-Line Format -noprint

-noprint: Do not print the contents of the log file.

• Command-Line Format -nocheck

-nocheck: Do not check the log file for errors.

• Command-Line Format -page #

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 31

-page #: Start at this page.

is an integer in the range 0 to 31, inclusive.

• Command-Line Format -pageheaders

-pageheaders: Show page headers only.

• Command-Line Format -pageindex #

Type Integer

Default Value 12

Minimum Value 12

Maximum Value 8191

-pageindex #: Start at this page index.

is an integer between 12 and 8191, inclusive.

2907

ndb_restore — Restore an NDB Cluster Backup

• -twiddle

Command-Line Format -twiddle

Bit-shifted dump.

Like ndb_print_backup_file and ndb_print_schema_file (and unlike most of the NDB utilities
that are intended to be run on a management server host or to connect to a management server)
ndb_redo_log_reader must be run on a cluster data node, since it accesses the data node file system
directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

18.5.22 ndb_restore — Restore an NDB Cluster Backup

The NDB Cluster restoration program is implemented as a separate command-line utility ndb_restore,
which can normally be found in the MySQL bin directory. This program reads the files created as a result
of the backup and inserts the stored information into the database.

Note

Beginning with NDB 7.3.25 and 7.4.24, this program no longer prints
NDBT_ProgramExit: ... when it finishes its run. Applications depending on this
behavior should be modified accordingly when upgrading from earlier releases.

ndb_restore must be executed once for each of the backup files that were created by the START
BACKUP command used to create the backup (see Section 18.6.8.2, “Using The NDB Cluster Management
Client to Create a Backup”). This is equal to the number of data nodes in the cluster at the time that the
backup was created.

Note

Before using ndb_restore, it is recommended that the cluster be running in
single user mode, unless you are restoring multiple data nodes in parallel. See
Section 18.6.6, “NDB Cluster Single User Mode”, for more information.

Options that can be used with ndb_restore are shown in the following table. Additional descriptions
follow the table.

Table 18.31 Command-line options used with the program ndb_restore

Format Description Added, Deprecated, or
Removed

--append Append data to tab-delimited file (Supported in all NDB releases
based on MySQL 5.6)

--backup-path=path Path to backup files directory (Supported in all NDB releases
based on MySQL 5.6)

--backupid=#,

-b #

Restore from backup having this
ID

(Supported in all NDB releases
based on MySQL 5.6)

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--
connect=connection_string,

-c connection_string

Alias for --connectstring (Supported in all NDB releases
based on MySQL 5.6)

2908

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--disable-indexes Causes indexes from backup to
be ignored; may decrease time
needed to restore data

(Supported in all NDB releases
based on MySQL 5.6)

--dont-ignore-systab-0,

-f

Do not ignore system table during
restore; experimental only; not for
production use

(Supported in all NDB releases
based on MySQL 5.6)

--exclude-databases=list List of one or more databases
to exclude (includes those not
named)

(Supported in all NDB releases
based on MySQL 5.6)

--exclude-intermediate-
sql-tables[=TRUE|FALSE]

Do not restore any intermediate
tables (having names prefixed
with '#sql-') that were left over
from copying ALTER TABLE
operations; specify FALSE to
restore such tables

ADDED: NDB 7.3.6

--exclude-missing-columns Causes columns from backup
version of table that are missing
from version of table in database
to be ignored

(Supported in all NDB releases
based on MySQL 5.6)

--exclude-missing-tables Causes tables from backup that
are missing from database to be
ignored

ADDED: NDB 7.3.7

--exclude-tables=list List of one or more tables to
exclude (includes those in same
database that are not named);
each table reference must include
database name

(Supported in all NDB releases
based on MySQL 5.6)

--fields-enclosed-by=char Fields are enclosed by this
character

(Supported in all NDB releases
based on MySQL 5.6)

2909

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

--fields-optionally-
enclosed-by

Fields are optionally enclosed by
this character

(Supported in all NDB releases
based on MySQL 5.6)

--fields-terminated-
by=char

Fields are terminated by this
character

(Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--hex Print binary types in hexadecimal
format

(Supported in all NDB releases
based on MySQL 5.6)

--include-databases=list List of one or more databases
to restore (excludes those not
named)

(Supported in all NDB releases
based on MySQL 5.6)

--include-tables=list List of one or more tables to
restore (excludes those in same
database that are not named);
each table reference must include
database name

(Supported in all NDB releases
based on MySQL 5.6)

--lines-terminated-
by=char

Lines are terminated by this
character

(Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--lossy-conversions,

-L

Allow lossy conversions of
column values (type demotions or
changes in sign) when restoring
data from backup

(Supported in all NDB releases
based on MySQL 5.6)

--no-binlog If mysqld is connected and using
binary logging, do not log restored
data

(Supported in all NDB releases
based on MySQL 5.6)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--no-restore-disk-objects,

-d

Do not restore objects relating to
Disk Data

(Supported in all NDB releases
based on MySQL 5.6)

--no-upgrade,

-u

Do not upgrade array type for
varsize attributes which do not
already resize VAR data, and do
not change column attributes

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

2910

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

-c connection_string

--ndb-nodegroup-map=map,

-z

Specify node group map; unused,
unsupported

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--nodeid=#,

-n #

ID of node where backup was
taken

(Supported in all NDB releases
based on MySQL 5.6)

--parallelism=#,

-p #

Number of parallel transactions to
use while restoring data

(Supported in all NDB releases
based on MySQL 5.6)

--preserve-trailing-
spaces,

-P

Allow preservation of trailing
spaces (including padding) when
promoting fixed-width string types
to variable-width types

(Supported in all NDB releases
based on MySQL 5.6)

--print Print metadata, data, and log to
stdout (equivalent to --print-meta
--print-data --print-log)

(Supported in all NDB releases
based on MySQL 5.6)

--print-data Print data to stdout (Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--print-log Print log to stdout (Supported in all NDB releases
based on MySQL 5.6)

--print-meta Print metadata to stdout (Supported in all NDB releases
based on MySQL 5.6)

--progress-frequency=# Print status of restore each given
number of seconds

(Supported in all NDB releases
based on MySQL 5.6)

--promote-attributes,

-A

Allow attributes to be promoted
when restoring data from backup

(Supported in all NDB releases
based on MySQL 5.6)

--rebuild-indexes Causes multithreaded rebuilding
of ordered indexes found in
backup; number of threads
used is determined by setting
BuildIndexThreads

(Supported in all NDB releases
based on MySQL 5.6)

--restore-data,

-r

Restore table data and logs into
NDB Cluster using NDB API

(Supported in all NDB releases
based on MySQL 5.6)

2911

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

--restore-epoch,

-e

Restore epoch info into
status table; useful on replica
cluster for starting replication;
updates or inserts row in
mysql.ndb_apply_status with ID 0

(Supported in all NDB releases
based on MySQL 5.6)

--restore-meta,

-m

Restore metadata to NDB Cluster
using NDB API

(Supported in all NDB releases
based on MySQL 5.6)

--restore-privilege-
tables

Restore MySQL privilege tables
that were previously moved to
NDB

(Supported in all NDB releases
based on MySQL 5.6)

--rewrite-database=string Restore to differently named
database; format is olddb,newdb

(Supported in all NDB releases
based on MySQL 5.6)

--skip-broken-objects Ignore missing blob tables in
backup file

(Supported in all NDB releases
based on MySQL 5.6)

--skip-table-check,

-s

Skip table structure check during
restore

(Supported in all NDB releases
based on MySQL 5.6)

--skip-unknown-objects Causes schema objects not
recognized by ndb_restore to be
ignored when restoring backup
made from newer NDB version to
older version

(Supported in all NDB releases
based on MySQL 5.6)

--tab=path,

-T path

Creates a tab-separated .txt file
for each table in path provided

(Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--verbose=# Level of verbosity in output (Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

• --append

Command-Line Format --append

When used with the --tab and --print-data options, this causes the data to be appended to any
existing files having the same names.

• --backup-path=dir_name

Command-Line Format --backup-path=path

Type Directory name

2912

ndb_restore — Restore an NDB Cluster Backup

Default Value ./

The path to the backup directory is required; this is supplied to ndb_restore using the --backup-
path option, and must include the subdirectory corresponding to the ID backup of the backup to be
restored. For example, if the data node's DataDir is /var/lib/mysql-cluster, then the backup
directory is /var/lib/mysql-cluster/BACKUP, and the backup files for the backup with the ID 3 can
be found in /var/lib/mysql-cluster/BACKUP/BACKUP-3. The path may be absolute or relative
to the directory in which the ndb_restore executable is located, and may be optionally prefixed with
backup-path=.

It is possible to restore a backup to a database with a different configuration than it was created from.
For example, suppose that a backup with backup ID 12, created in a cluster with two storage nodes
having the node IDs 2 and 3, is to be restored to a cluster with four nodes. Then ndb_restore
must be run twice—once for each storage node in the cluster where the backup was taken. However,
ndb_restore cannot always restore backups made from a cluster running one version of MySQL to
a cluster running a different MySQL version. See Section 18.3.7, “Upgrading and Downgrading NDB
Cluster”, for more information.

Important

It is not possible to restore a backup made from a newer version of NDB Cluster
using an older version of ndb_restore. You can restore a backup made from
a newer version of MySQL to an older cluster, but you must use a copy of
ndb_restore from the newer NDB Cluster version to do so.

For example, to restore a cluster backup taken from a cluster running NDB
Cluster 7.4.39 to a cluster running NDB Cluster 7.3.33, you must use the
ndb_restore that comes with the NDB Cluster 7.4.39 distribution.

For more rapid restoration, the data may be restored in parallel, provided that there is a sufficient
number of cluster connections available. That is, when restoring to multiple nodes in parallel, you must
have an [api] or [mysqld] section in the cluster config.ini file available for each concurrent
ndb_restore process. However, the data files must always be applied before the logs.

• --backupid=#, -b

Command-Line Format --backupid=#

Type Numeric

Default Value none

This option is used to specify the ID or sequence number of the backup, and is the same number
shown by the management client in the Backup backup_id completed message displayed upon
completion of a backup. (See Section 18.6.8.2, “Using The NDB Cluster Management Client to Create a
Backup”.)

Important

When restoring cluster backups, you must be sure to restore all data nodes from
backups having the same backup ID. Using files from different backups at best
results in restoring the cluster to an inconsistent state, and may fail altogether.

2913

ndb_restore — Restore an NDB Cluster Backup

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect, -c

Command-Line Format --connect=connection_string

Type String

Default Value localhost:1186

Alias for --ndb-connectstring.

• --connect-retries

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

2914

ndb_restore — Restore an NDB Cluster Backup

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --disable-indexes

Command-Line Format --disable-indexes

Disable restoration of indexes during restoration of the data from a native NDB backup. Afterwards, you
can restore indexes for all tables at once with multithreaded building of indexes using --rebuild-
indexes, which should be faster than rebuilding indexes concurrently for very large tables.

In NDB 7.4.34 and later, this option also drops any foreign keys specified in the backup.

• --dont-ignore-systab-0, -f

Command-Line Format --dont-ignore-systab-0

Normally, when restoring table data and metadata, ndb_restore ignores the copy of the NDB system
table that is present in the backup. --dont-ignore-systab-0 causes the system table to be
restored. This option is intended for experimental and development use only, and is not recommended in
a production environment.

• --exclude-databases=db-list

Command-Line Format --exclude-databases=list

Type String

2915

ndb_restore — Restore an NDB Cluster Backup

Default Value

Comma-delimited list of one or more databases which should not be restored.

This option is often used in combination with --exclude-tables; see that option's description for
further information and examples.

• --exclude-intermediate-sql-tables[=TRUE|FALSE]

Command-Line Format --exclude-intermediate-sql-
tables[=TRUE|FALSE]

Introduced 5.6.17-ndb-7.3.6

Type Boolean

Default Value TRUE

When performing copying ALTER TABLE operations, mysqld creates intermediate tables (whose
names are prefixed with #sql-). When TRUE, the --exclude-intermediate-sql-tables option
keeps ndb_restore from restoring such tables that may have been left over from these operations.
This option is TRUE by default.

This option was introduced in NDB 7.3.6. (Bug #17882305)

• --exclude-missing-columns

Command-Line Format --exclude-missing-columns

It is possible to restore only selected table columns using this option, which causes ndb_restore to
ignore any columns missing from tables being restored as compared to the versions of those tables
found in the backup. This option applies to all tables being restored. If you wish to apply this option only
to selected tables or databases, you can use it in combination with one or more of the --include-* or
--exclude-* options described elsewhere in this section to do so, then restore data to the remaining
tables using a complementary set of these options.

• --exclude-missing-tables

Command-Line Format --exclude-missing-tables

Introduced 5.6.21-ndb-7.3.7

It is possible to restore only selected tables using this option, which causes ndb_restore to ignore any
tables from the backup that are not found in the target database.

This option was introduced in NDB 7.3.7.

• --exclude-tables=table-list

Command-Line Format --exclude-tables=list

Type String

2916

ndb_restore — Restore an NDB Cluster Backup

Default Value

List of one or more tables to exclude; each table reference must include the database name. Often used
together with --exclude-databases.

When --exclude-databases or --exclude-tables is used, only those databases or tables named
by the option are excluded; all other databases and tables are restored by ndb_restore.

This table shows several invocations of ndb_restore usng --exclude-* options (other options
possibly required have been omitted for clarity), and the effects these options have on restoring from an
NDB Cluster backup:

Table 18.32 Several invocations of ndb_restore using --exclude-* options, and the effects these
options have on restoring from an NDB Cluster backup.

Option Result

--exclude-databases=db1 All tables in all databases except db1 are restored;
no tables in db1 are restored

--exclude-databases=db1,db2 (or --
exclude-databases=db1 --exclude-
databases=db2)

All tables in all databases except db1 and db2 are
restored; no tables in db1 or db2 are restored

--exclude-tables=db1.t1 All tables except t1 in database db1 are restored;
all other tables in db1 are restored; all tables in all
other databases are restored

--exclude-tables=db1.t2,db2.t1 (or
--exclude-tables=db1.t2 --exclude-
tables=db2.t1)

All tables in database db1 except for t2 and
all tables in database db2 except for table t1
are restored; no other tables in db1 or db2 are

2917

ndb_restore — Restore an NDB Cluster Backup

Option Result
restored; all tables in all other databases are
restored

You can use these two options together. For example, the following causes all tables in all databases
except for databases db1 and db2, and tables t1 and t2 in database db3, to be restored:

$> ndb_restore [...] --exclude-databases=db1,db2 --exclude-tables=db3.t1,db3.t2

(Again, we have omitted other possibly necessary options in the interest of clarity and brevity from the
example just shown.)

You can use --include-* and --exclude-* options together, subject to the following rules:

• The actions of all --include-* and --exclude-* options are cumulative.

• All --include-* and --exclude-* options are evaluated in the order passed to ndb_restore, from
right to left.

• In the event of conflicting options, the first (rightmost) option takes precedence. In other words, the first
option (going from right to left) that matches against a given database or table “wins”.

For example, the following set of options causes ndb_restore to restore all tables from database db1
except db1.t1, while restoring no other tables from any other databases:

--include-databases=db1 --exclude-tables=db1.t1

However, reversing the order of the options just given simply causes all tables from database db1 to
be restored (including db1.t1, but no tables from any other database), because the --include-
databases option, being farthest to the right, is the first match against database db1 and thus takes
precedence over any other option that matches db1 or any tables in db1:

--exclude-tables=db1.t1 --include-databases=db1

• --fields-enclosed-by=char

Command-Line Format --fields-enclosed-by=char

Type String

Default Value

Each column value is enclosed by the string passed to this option (regardless of data type; see the
description of --fields-optionally-enclosed-by).

• --fields-optionally-enclosed-by

Command-Line Format --fields-optionally-enclosed-by

Type String

Default Value

The string passed to this option is used to enclose column values containing character data (such as
CHAR, VARCHAR, BINARY, TEXT, or ENUM).

• --fields-terminated-by=char

Command-Line Format --fields-terminated-by=char

2918

ndb_restore — Restore an NDB Cluster Backup

Type String

Default Value \t (tab)

The string passed to this option is used to separate column values. The default value is a tab character
(\t).

• --help

Command-Line Format --help

Display help text and exit.

• --hex

Command-Line Format --hex

If this option is used, all binary values are output in hexadecimal format.

• --include-databases=db-list

Command-Line Format --include-databases=list

Type String

Default Value

Comma-delimited list of one or more databases to restore. Often used together with --include-
tables; see the description of that option for further information and examples.

• --include-tables=table-list

Command-Line Format --include-tables=list

Type String

Default Value

Comma-delimited list of tables to restore; each table reference must include the database name.

When --include-databases or --include-tables is used, only those databases or tables named
by the option are restored; all other databases and tables are excluded by ndb_restore, and are not
restored.

The following table shows several invocations of ndb_restore using --include-* options (other
options possibly required have been omitted for clarity), and the effects these have on restoring from an
NDB Cluster backup:

Table 18.33 Several invocations of ndb_restore using --include-* options, and their effects on
restoring from an NDB Cluster backup.

Option Result

--include-databases=db1 Only tables in database db1 are restored; all tables
in all other databases are ignored

--include-databases=db1,db2 (or --
include-databases=db1 --include-
databases=db2)

Only tables in databases db1 and db2 are
restored; all tables in all other databases are
ignored

2919

ndb_restore — Restore an NDB Cluster Backup

Option Result

--include-tables=db1.t1 Only table t1 in database db1 is restored; no other
tables in db1 or in any other database are restored

--include-tables=db1.t2,db2.t1 (or
--include-tables=db1.t2 --include-
tables=db2.t1)

Only the table t2 in database db1 and the table
t1 in database db2 are restored; no other tables in
db1, db2, or any other database are restored

You can also use these two options together. For example, the following causes all tables in databases
db1 and db2, together with the tables t1 and t2 in database db3, to be restored (and no other
databases or tables):

$> ndb_restore [...] --include-databases=db1,db2 --include-tables=db3.t1,db3.t2

(Again we have omitted other, possibly required, options in the example just shown.)

It also possible to restore only selected databases, or selected tables from a single database, without
any --include-* (or --exclude-*) options, using the syntax shown here:

ndb_restore other_options db_name,[db_name[,...] | tbl_name[,tbl_name][,...]]

In other words, you can specify either of the following to be restored:

• All tables from one or more databases

• One or more tables from a single database

• --lines-terminated-by=char

Command-Line Format --lines-terminated-by=char

Type String

Default Value \n (linebreak)

Specifies the string used to end each line of output. The default is a linefeed character (\n).

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --lossy-conversions, -L

Command-Line Format --lossy-conversions

This option is intended to complement the --promote-attributes option. Using --lossy-
conversions allows lossy conversions of column values (type demotions or changes in sign) when
restoring data from backup. With some exceptions, the rules governing demotion are the same as for
MySQL replication; see Replication of Columns Having Different Data Types, for information about
specific type conversions currently supported by attribute demotion.

ndb_restore reports any truncation of data that it performs during lossy conversions once per attribute
and column.

2920

ndb_restore — Restore an NDB Cluster Backup

• --no-binlog

Command-Line Format --no-binlog

This option prevents any connected SQL nodes from writing data restored by ndb_restore to their
binary logs.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --no-restore-disk-objects, -d

Command-Line Format --no-restore-disk-objects

This option stops ndb_restore from restoring any NDB Cluster Disk Data objects, such as tablespaces
and log file groups; see Section 18.6.11, “NDB Cluster Disk Data Tables”, for more information about
these.

• --no-upgrade, -u

Command-Line Format --no-upgrade

When using ndb_restore to restore a backup, VARCHAR columns created using the old fixed format
are resized and recreated using the variable-width format now employed. This behavior can be
overridden by specifying --no-upgrade.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodegroup-map=map, -z

Command-Line Format --ndb-nodegroup-map=map

Intended for restoring a backup taken from one node group to a different node group, but never
completely implemented; unsupported.

• --ndb-nodeid

2921

ndb_restore — Restore an NDB Cluster Backup

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --nodeid=#, -n

Command-Line Format --nodeid=#

Type Numeric

Default Value none

Specify the node ID of the data node on which the backup was taken.

When restoring to a cluster with different number of data nodes from that where the backup was
taken, this information helps identify the correct set or sets of files to be restored to a given node. (In
such cases, multiple files usually need to be restored to a single data node.) See Section 18.5.22.2,
“Restoring to a different number of data nodes”, for additional information and examples.

• --parallelism=#, -p

Command-Line Format --parallelism=#

Type Numeric

Default Value 128

Minimum Value 1

Maximum Value 1024

ndb_restore uses single-row transactions to apply many rows concurrently. This parameter
determines the number of parallel transactions (concurrent rows) that an instance of ndb_restore tries
to use. By default, this is 128; the minimum is 1, and the maximum is 1024.

The work of performing the inserts is parallelized across the threads in the data nodes involved. This
mechanism is employed for restoring bulk data from the .Data file—that is, the fuzzy snapshot of the
data; it is not used for building or rebuilding indexes. The change log is applied serially; index drops and
builds are DDL operations and handled separately. There is no thread-level parallelism on the client side
of the restore.

• --preserve-trailing-spaces, -P

Command-Line Format --preserve-trailing-spaces

Cause trailing spaces to be preserved when promoting a fixed-width character data type to its variable-
width equivalent—that is, when promoting a CHAR column value to VARCHAR, or a BINARY column value2922

ndb_restore — Restore an NDB Cluster Backup

to VARBINARY. Otherwise, any trailing spaces are dropped from such column values when they are
inserted into the new columns.

Note

Although you can promote CHAR columns to VARCHAR and BINARY columns to
VARBINARY, you cannot promote VARCHAR columns to CHAR or VARBINARY
columns to BINARY.

• --print

Command-Line Format --print

Causes ndb_restore to print all data, metadata, and logs to stdout. Equivalent to using the --
print-data, --print-meta, and --print-log options together.

Note

Use of --print or any of the --print_* options is in effect performing a dry
run. Including one or more of these options causes any output to be redirected
to stdout; in such cases, ndb_restore makes no attempt to restore data or
metadata to an NDB Cluster.

• --print-data

Command-Line Format --print-data

Cause ndb_restore to direct its output to stdout. Often used together with one or more of --tab, --
fields-enclosed-by, --fields-optionally-enclosed-by, --fields-terminated-by, --
hex, and --append.

TEXT and BLOB column values are always truncated. In NDB 7.3.7 and earlier, such values are
truncated to the first 240 bytes in the output; in NDB 7.3.8 and later, they are truncated to 256 bytes.
(Bug #14571512, Bug #65467) This cannot currently be overridden when using --print-data.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --print-log

Command-Line Format --print-log

Cause ndb_restore to output its log to stdout.

• --print-meta

Command-Line Format --print-meta

Print all metadata to stdout.

• --progress-frequency=N

Command-Line Format --progress-frequency=#

2923

ndb_restore — Restore an NDB Cluster Backup

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value 65535

Print a status report each N seconds while the restore is in progress. 0 (the default) causes no status
reports to be printed. The maximum is 65535.

• --promote-attributes, -A

Command-Line Format --promote-attributes

ndb_restore supports limited attribute promotion in much the same way that it is supported by MySQL
replication; that is, data backed up from a column of a given type can generally be restored to a column
using a “larger, similar” type. For example, data from a CHAR(20) column can be restored to a column
declared as VARCHAR(20), VARCHAR(30), or CHAR(30); data from a MEDIUMINT column can be
restored to a column of type INT or BIGINT. See Replication of Columns Having Different Data Types,
for a table of type conversions currently supported by attribute promotion.

Attribute promotion by ndb_restore must be enabled explicitly, as follows:

1. Prepare the table to which the backup is to be restored. ndb_restore cannot be used to re-create
the table with a different definition from the original; this means that you must either create the table
manually, or alter the columns which you wish to promote using ALTER TABLE after restoring the
table metadata but before restoring the data.

2. Invoke ndb_restore with the --promote-attributes option (short form -A) when restoring the
table data. Attribute promotion does not occur if this option is not used; instead, the restore operation
fails with an error.

Prior to NDB 7.3.3, conversions between character data types and TEXT or BLOB were not handled
correctly (Bug #17325051).

Prior to NDB 7.3.7, demotion of TEXT to TINYTEXT was not handled correctly (Bug #18875137).

When converting between character data types and TEXT or BLOB, only conversions between character
types (CHAR and VARCHAR) and binary types (BINARY and VARBINARY) can be performed at the same
time. For example, you cannot promote an INT column to BIGINT while promoting a VARCHAR column
to TEXT in the same invocation of ndb_restore.

Converting between TEXT columns using different character sets is not supported. Beginning with NDB
7.3.7, it is expressly disallowed (Bug #18875137).

When performing conversions of character or binary types to TEXT or BLOB with ndb_restore, you
may notice that it creates and uses one or more staging tables named table_name$STnode_id.
These tables are not needed afterwards, and are normally deleted by ndb_restore following a
successful restoration.

2924

ndb_restore — Restore an NDB Cluster Backup

• --rebuild-indexes

Command-Line Format --rebuild-indexes

Enable multithreaded rebuilding of the ordered indexes while restoring a native NDB backup. The number
of threads used for building ordered indexes by ndb_restore with this option is controlled by the
BuildIndexThreads data node configuration parameter and the number of LDMs.

It is necessary to use this option only for the first run of ndb_restore; this causes all ordered indexes
to be rebuilt without using --rebuild-indexes again when restoring subsequent nodes. You should
use this option prior to inserting new rows into the database; otherwise, it is possible for a row to be
inserted that later causes a unique constraint violation when trying to rebuild the indexes.

Building of ordered indices is parallelized with the number of LDMs by default. Offline index builds
performed during node and system restarts can be made faster using the BuildIndexThreads data
node configuration parameter; this parameter has no effect on dropping and rebuilding of indexes by
ndb_restore, which is performed online.

Rebuilding of unique indexes uses disk write bandwidth for redo logging and local checkpointing. An
insufficient amount of this bandwith can lead to redo buffer overload or log overload errors. In such
cases you can run ndb_restore --rebuild-indexes again; the process resumes at the point where
the error occurred. You can also do this when you have encountered temporary errors. You can repeat
execution of ndb_restore --rebuild-indexes indefinitely; you may be able to stop such errors by
reducing the value of --parallelism. If the problem is insufficient space, you can increase the size of
the redo log (FragmentLogFileSize node configuration parameter), or you can increase the speed at
which LCPs are performed (MaxDiskWriteSpeed and related parameters), in order to free space more
quickly.

• --restore-data, -r

Command-Line Format --restore-data

Output NDB table data and logs.

• --restore-epoch, -e

Command-Line Format --restore-epoch

Add (or restore) epoch information to the cluster replication status table. This is useful for
starting replication on an NDB Cluster replica. When this option is used, the row in the
mysql.ndb_apply_status having 0 in the id column is updated if it already exists; such a row
is inserted if it does not already exist. (See Section 18.7.9, “NDB Cluster Backups With NDB Cluster
Replication”.)

• --restore-meta, -m

Command-Line Format --restore-meta

This option causes ndb_restore to print NDB table metadata.

The first time you run the ndb_restore restoration program, you also need to restore the metadata.
In other words, you must re-create the database tables—this can be done by running it with the --

2925

ndb_restore — Restore an NDB Cluster Backup

restore-meta (-m) option. Restoring the metadata need be done only on a single data node; this is
sufficient to restore it to the entire cluster.

Note

The cluster should have an empty database when starting to restore a backup.
(In other words, you should start the data nodes with --initial prior to
performing the restore.)

• --restore-privilege-tables

Command-Line Format --restore-privilege-tables

ndb_restore does not by default restore distributed MySQL privilege tables. This option causes
ndb_restore to restore the privilege tables.

This works only if the privilege tables were converted to NDB before the backup was taken. For more
information, see Section 18.6.13, “Distributed Privileges Using Shared Grant Tables”.

• --rewrite-database=olddb,newdb

Command-Line Format --rewrite-database=string

Type String

Default Value none

This option makes it possible to restore to a database having a different name from that used in the
backup. For example, if a backup is made of a database named products, you can restore the data it
contains to a database named inventory, use this option as shown here (omitting any other options
that might be required):

$> ndb_restore --rewrite-database=product,inventory

The option can be employed multiple times in a single invocation of ndb_restore. Thus it is
possible to restore simultaneously from a database named db1 to a database named db2 and from
a database named db3 to one named db4 using --rewrite-database=db1,db2 --rewrite-
database=db3,db4. Other ndb_restore options may be used between multiple occurrences of --
rewrite-database.

In the event of conflicts between multiple --rewrite-database options, the last --rewrite-
database option used, reading from left to right, is the one that takes effect. For example, if --
rewrite-database=db1,db2 --rewrite-database=db1,db3 is used, only --rewrite-
database=db1,db3 is honored, and --rewrite-database=db1,db2 is ignored. It is also possible
to restore from multiple databases to a single database, so that --rewrite-database=db1,db3 --
rewrite-database=db2,db3 restores all tables and data from databases db1 and db2 into database
db3.

Important

When restoring from multiple backup databases into a single target database
using --rewrite-database, no check is made for collisions between table or
other object names, and the order in which rows are restored is not guaranteed.
This means that it is possible in such cases for rows to be overwritten and
updates to be lost.

2926

ndb_restore — Restore an NDB Cluster Backup

• --skip-broken-objects

Command-Line Format --skip-broken-objects

This option causes ndb_restore to ignore corrupt tables while reading a native NDB backup, and to
continue restoring any remaining tables (that are not also corrupted). Currently, the --skip-broken-
objects option works only in the case of missing blob parts tables.

• --skip-table-check, -s

Command-Line Format --skip-table-check

It is possible to restore data without restoring table metadata. By default when doing this, ndb_restore
fails with an error if a mismatch is found between the table data and the table schema; this option
overrides that behavior.

Some of the restrictions on mismatches in column definitions when restoring data using ndb_restore
are relaxed; when one of these types of mismatches is encountered, ndb_restore does not stop with
an error as it did previously, but rather accepts the data and inserts it into the target table while issuing a
warning to the user that this is being done. This behavior occurs whether or not either of the options --
skip-table-check or --promote-attributes is in use. These differences in column definitions
are of the following types:

• Different COLUMN_FORMAT settings (FIXED, DYNAMIC, DEFAULT)

• Different STORAGE settings (MEMORY, DISK)

• Different default values

• Different distribution key settings

• --skip-unknown-objects

Command-Line Format --skip-unknown-objects

This option causes ndb_restore to ignore any schema objects it does not recognize while reading a
native NDB backup. This can be used for restoring a backup made from a cluster running (for example)
NDB 7.4 to a cluster running NDB Cluster 7.3.

• --tab=dir_name, -T dir_name

Command-Line Format --tab=path

Type Directory name

Causes --print-data to create dump files, one per table, each named tbl_name.txt. It requires as
its argument the path to the directory where the files should be saved; use . for the current directory.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.
2927

ndb_restore — Restore an NDB Cluster Backup

• --verbose=#

Command-Line Format --verbose=#

Type Numeric

Default Value 1

Minimum Value 0

Maximum Value 255

Sets the level for the verbosity of the output. The minimum is 0; the maximum is 255. The default value
is 1.

• --version

Command-Line Format --version

Display version information and exit.

Typical options for this utility are shown here:

ndb_restore [-c connection_string] -n node_id -b backup_id \
 [-m] -r --backup-path=/path/to/backup/files

Normally, when restoring from an NDB Cluster backup, ndb_restore requires at a minimum the --
nodeid (short form: -n), --backupid (short form: -b), and --backup-path options. In addition, when
ndb_restore is used to restore any tables containing unique indexes, you must include --disable-
indexes or --rebuild-indexes. (Bug #57782, Bug #11764893)

The -c option is used to specify a connection string which tells ndb_restore where to locate the cluster
management server (see Section 18.4.3.3, “NDB Cluster Connection Strings”). If this option is not used,
then ndb_restore attempts to connect to a management server on localhost:1186. This utility acts
as a cluster API node, and so requires a free connection “slot” to connect to the cluster management
server. This means that there must be at least one [api] or [mysqld] section that can be used by it
in the cluster config.ini file. It is a good idea to keep at least one empty [api] or [mysqld] section
in config.ini that is not being used for a MySQL server or other application for this reason (see
Section 18.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”).

You can verify that ndb_restore is connected to the cluster by using the SHOW command in the ndb_mgm
management client. You can also accomplish this from a system shell, as shown here:

$> ndb_mgm -e "SHOW"

Note

In NDB 7.3.11 and NDB 7.4.8 only, when ndb_restore is used to restore any
tables containing unique indexes, you must include --disable-indexes or --
rebuild-indexes. (Bug #57782, Bug #11764893) This is not a requirement in
later versions. (Bug #22345748)

Error reporting.
ndb_restore reports both temporary and permanent errors. In the case of temporary errors, it may able
to recover from them, and reports Restore successful, but encountered temporary error,
please look at configuration in such cases.

2928

ndb_restore — Restore an NDB Cluster Backup

Important

After using ndb_restore to initialize an NDB Cluster for use in circular replication,
binary logs on the SQL node acting as the replica are not automatically created,
and you must cause them to be created manually. To cause the binary logs to be
created, issue a SHOW TABLES statement on that SQL node before running START
SLAVE. This is a known issue in NDB Cluster.

18.5.22.1 Restoring an NDB Backup to a Different Version of NDB Cluster

The following two sections provide information about restoring a native NDB backup to a different version
of NDB Cluster from the version in which the backup was taken.

In addition, you should consult Section 18.3.7, “Upgrading and Downgrading NDB Cluster”, for other issues
you may encounter when attempting to restore an NDB backup to a cluster running a different version of
the NDB software.

It is also advisable to review What is New in NDB Cluster 8.0, as well as Section 2.11.3, “Changes in
MySQL 5.6”, for other changes between NDB 8.0 and previous versions of NDB Cluster that may be
relevant to your particular circumstances.

Restoring an NDB backup to a previous version of NDB Cluster

You may encounter issues when restoring a backup taken from a later version of NDB Cluster to a
previous one, due to the use of features which do not exist in the earlier version. Some of these issues are
listed here:

• Tables created in NDB 8.0 by default use the utf8mb4_ai_ci character set, which is not available
in NDB 7.6 and earlier, and so cannot be read by an ndb_restore binary from one of these earlier
versions. In such cases, it is necessary to alter any tables using utf8mb4_ai_ci so that they use a
character set supported in the older version prior to performing the backup.

• Due to changes in how the MySQL Server and NDB handle table metadata, tables created or
altered using the included MySQL server binary from NDB 8.0.14 or later cannot be restored using
ndb_restore to an earlier version of NDB Cluster. Such tables use .sdi files which are not
understood by older versions of mysqld.

A backup taken in NDB 8.0.14 or later of tables which were created in NDB 8.0.13 or earlier, and which
have not been altered since upgrading to NDB 8.0.14 or later, should be restorable to older versions of
NDB Cluster.

Since it is possible to restore metadata and table data separately, you can in such cases restore the
table schemas from a dump made using mysqldump, or by executing the necessary CREATE TABLE
statements manually, then import only the table data using ndb_restore with the --restore-data
option.

• Encrypted backups created in NDB 8.0.22 and later cannot be restored using ndb_restore from NDB
8.0.21 or earlier.

• The NDB_STORED_USER privilege is not supported prior to NDB 8.0.18.

• NDB Cluster 8.0.18 and later supports up to 144 data nodes, while earlier versions support a maximum
of only 48 data nodes. See Restoring to Fewer Nodes Than the Original, for information with situations in
which this incompatibility causes an issue.

Restoring an NDB backup to a later version of NDB Cluster

2929

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html#mysql-cluster-what-is-new-8-0
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_ndb-stored-user

ndb_restore — Restore an NDB Cluster Backup

In general, it should be possible to restore a backup created using the ndb_mgm client START BACKUP
command in an older version of NDB to a newer version, provided that you use the ndb_restore binary
that comes with the newer version. (It may be possible to use the older version of ndb_restore, but this
is not recommended.) Additional potential issues are listed here:

• When restoring the metadata from a backup (--restore-meta option), ndb_restore normally
attempts to reproduce the captured table schema exactly as it was when the backup was taken.

Tables created in versions of NDB prior to 8.0.14 use .frm files for their metadata. These files can be
read by the mysqld in NDB 8.0.14 and later, which can use the information contained therein to create
the .sdi files used by the MySQL data dictionary in later versions.

• When restoring an older backup to a newer version of NDB, it may not be possible to take advantage
of newer features such as hashmap partitioning, greater number of hashmap buckets, read backup,
and different partitioning layouts. For this reason, it may be preferable to restore older schemas using
mysqldump and the mysql client, which allows NDB to make use of the new schema features.

• Tables using the old temporal types which did not support fractional seconds (used prior to MySQL
5.6.4 and NDB 7.3.31) cannot be restored to NDB 8.0 using ndb_restore. You can check such tables
using CHECK TABLE, and then upgrade them to the newer temporal column format, if necessary, using
REPAIR TABLE in the mysql client; this must be done prior to taking the backup. See Preparing Your
Installation for Upgrade, for more information.

You also also restore such tables using a dump created with mysqldump.

• Distributed grant tables created in NDB 7.6 and earlier are not supported in NDB 8.0. Such tables can be
restored to an NDB 8.0 cluster, but they have no effect on access control.

18.5.22.2 Restoring to a different number of data nodes

It is possible to restore from an NDB backup to a cluster having a different number of data nodes than
the original from which the backup was taken. The following two sections discuss, respectively, the cases
where the target cluster has a lesser or greater number of data nodes than the source of the backup.

Restoring to Fewer Nodes Than the Original

You can restore to a cluster having fewer data nodes than the original provided that the larger number of
nodes is an even multiple of the smaller number. In the following example, we use a backup taken on a
cluster having four data nodes to a cluster having two data nodes.

1. The management server for the original cluster is on host host10. The original cluster has four data
nodes, with the node IDs and host names shown in the following extract from the management server's
config.ini file:

[ndbd]
NodeId=2
HostName=host2

[ndbd]
NodeId=4
HostName=host4

[ndbd]
NodeId=6
HostName=host6

[ndbd]
NodeId=8
HostName=host8

2930

https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html
https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html

ndb_restore — Restore an NDB Cluster Backup

We assume that each data node was originally started with ndbmtd --ndb-
connectstring=host10 or the equivalent.

2. Perform a backup in the normal manner. See Section 18.6.8.2, “Using The NDB Cluster Management
Client to Create a Backup”, for information about how to do this.

3. The files created by the backup on each data node are listed here, where N is the node ID and B is the
backup ID.

• BACKUP-B-0.N.Data

• BACKUP-B.N.ctl

• BACKUP-B.N.log

These files are found under BackupDataDir/BACKUP/BACKUP-B, on each data node. For the rest of
this example, we assume that the backup ID is 1.

Have all of these files available for later copying to the new data nodes (where they can be accessed
on the data node's local file system by ndb_restore). It is simplest to copy them all to a single
location; we assume that this is what you have done.

4. The management server for the target cluster is on host host20, and the target has two data nodes,
with the node IDs and host names shown, from the management server config.ini file on host20:

[ndbd]
NodeId=3
hostname=host3

[ndbd]
NodeId=5
hostname=host5

Each of the data node processes on host3 and host5 should be started with ndbmtd -c host20 --
initial or the equivalent, so that the new (target) cluster starts with clean data node file systems.

2931

ndb_restore — Restore an NDB Cluster Backup

5. Copy two different sets of two backup files to each of the target data nodes. For this example, copy the
backup files from nodes 2 and 4 from the original cluster to node 3 in the target cluster. These files are
listed here:

• BACKUP-1-0.2.Data

• BACKUP-1.2.ctl

• BACKUP-1.2.log

• BACKUP-1-0.4.Data

• BACKUP-1.4.ctl

• BACKUP-1.4.log

Then copy the backup files from nodes 6 and 8 to node 5; these files are shown in the following list:

• BACKUP-1-0.6.Data

• BACKUP-1.6.ctl

• BACKUP-1.6.log

• BACKUP-1-0.8.Data

• BACKUP-1.8.ctl

• BACKUP-1.8.log

For the remainder of this example, we assume that the respective backup files have been saved to the
directory /BACKUP-1 on each of nodes 3 and 5.

6. On each of the two target data nodes, you must restore from both sets of backups. First, restore the
backups from nodes 2 and 4 to node 3 by invoking ndb_restore on host3 as shown here:

$> ndb_restore -c host20 --nodeid=2 --backupid=1 --restore-data --backup-path=/BACKUP-1

$> ndb_restore -c host20 --nodeid=4 --backupid=1 --restore-data --backup-path=/BACKUP-1

Then restore the backups from nodes 6 and 8 to node 5 by invoking ndb_restore on host5, like this:

$> ndb_restore -c host20 --nodeid=6 --backupid=1 --restore-data --backup-path=/BACKUP-1

$> ndb_restore -c host20 --nodeid=8 --backupid=1 --restore-data --backup-path=/BACKUP-1

Restoring to More Nodes Than the Original

The node ID specified for a given ndb_restore command is that of the node in the original backup and
not that of the data node to restore it to. When performing a backup using the method described in this
section, ndb_restore connects to the management server and obtains a list of data nodes in the cluster
the backup is being restored to. The restored data is distributed accordingly, so that the number of nodes
in the target cluster does not need to be to be known or calculated when performing the backup.

Note

When changing the total number of LCP threads or LQH threads per node group,
you should recreate the schema from backup created using mysqldump.

2932

ndb_restore — Restore an NDB Cluster Backup

1. Create the backup of the data. You can do this by invoking the ndb_mgm client START BACKUP
command from the system shell, like this:

$> ndb_mgm -e "START BACKUP 1"

This assumes that the desired backup ID is 1.

2. Create a backup of the schema (see also below):

$> mysqldump --no-data --routines --events --triggers --databases > myschema.sql

Important

You must not make any schema changes between the first and second steps.

3. Copy the backup directories from above to the new cluster. For example if the backup you want to
restore is has ID 1 and BackupDataDir = /backups/node_nodeid, then the path to the backup on
this node is /backups/node_1/BACKUP/BACKUP-1. Inside this directory there are three files, listed
here:

• BACKUP-1-0.1.Data

• BACKUP-1.1.ctl

• BACKUP-1.1.log

You should copy the entire directory to the new node.

There is no requirement for the backup to be restored from a specific node or nodes.

To restore from the backup just created, perform the following steps:

1. Restore the schema. Import the schema file using the mysql client, as shown here:

$> mysql < myschema.sql

2. Restore the data. The following commands can be run in parallel:

ndb_restore --nodeid=1 --backupid=1 --restore-data --backup-path=/backups/node_1/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=2 --backupid=1 --restore-data --backup-path=/backups/node_2/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=3 --backupid=1 --restore-data --backup-path=/backups/node_3/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=4 --backupid=1 --restore-data --backup-path=/backups/node_4/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=5 --backupid=1 --restore-data --backup-path=/backups/node_5/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=6 --backupid=1 --restore-data --backup-path=/backups/node_6/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=7 --backupid=1 --restore-data --backup-path=/backups/node_7/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=8 --backupid=1 --restore-data --backup-path=/backups/node_8/BACKUP/BACKUP-1 --disable-indexes

Add the --ndb-connectstring option as needed.

If you in 3. for example copied the backups from the “old” nodes having node IDs 1 and 2 to a “new”
node whose node ID is 1, you should perform the two invocations of ndb_restore with --nodeid=1
and --nodeid=2 on the new node that has 1 as its node ID.

3. Rebuild the indexes. These were disabled by the --disable-indexes option used in the commands
just shown. Recreating the indexes avoids errors due to the restore not being consistent at all points.
Rebuilding the indexes can also improve performance in some cases. To rebuild the indexes, execute
the following command once, on a single node:

$> ndb_restore --nodeid=1 --backupid=1 --backup-path=/backups/node_1/BACKUP/BACKUP-1 --rebuild-indexes

2933

ndb_select_all — Print Rows from an NDB Table

Important

You should be aware that the supported number of partitions in each table depends
on the number of data nodes, node groups, and LDM threads in the cluster. Other
conditions (such as the values of MaxNoOfExecutionThreads, ThreadConfig,
NoOfReplicas, and so on) being the same, a cluster with (for example) two data
nodes supports fewer partitions than a cluster with eight data nodes supports.
This means that using ndb_restore --restore-meta to restore the schema
does not always work since this restores a given table with the same number of
partitions as in the original; it is safer to restore the schema from a backup written
by mysqldump—as in the example shown previously—when restoring to a cluster
having fewer data nodes, LDM threads, or both, than were used in the original
cluster.

The support for fewer partitions when restoring to a smaller cluster also means the
maximum number of rows per table is lower.

18.5.23 ndb_select_all — Print Rows from an NDB Table

ndb_select_all prints all rows from an NDB table to stdout.

Usage

ndb_select_all -c connection_string tbl_name -d db_name [> file_name]

Options that can be used with ndb_select_all are shown in the following table. Additional descriptions
follow the table.

Table 18.34 Command-line options used with the program ndb_select_all

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

2934

ndb_select_all — Print Rows from an NDB Table

Format Description Added, Deprecated, or
Removed

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--delimiter=char,

-D char

Set column delimiter (Supported in all NDB releases
based on MySQL 5.6)

--descending,

-z

Sort resultset in descending order
(requires --order)

(Supported in all NDB releases
based on MySQL 5.6)

--disk Print disk references (useful
only for Disk Data tables having
unindexed columns)

(Supported in all NDB releases
based on MySQL 5.6)

--gci Include GCI in output (Supported in all NDB releases
based on MySQL 5.6)

--gci64 Include GCI and row epoch in
output

(Supported in all NDB releases
based on MySQL 5.6)

--header[=value],

-h

Print header (set to 0|FALSE to
disable headers in output)

(Supported in all NDB releases
based on MySQL 5.6)

--lock=#,

-l #

Lock type (Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

2935

ndb_select_all — Print Rows from an NDB Table

Format Description Added, Deprecated, or
Removed

--nodata Do not print table column data (Supported in all NDB releases
based on MySQL 5.6)

--order=index,

-o index

Sort resultset according to index
having this name

(Supported in all NDB releases
based on MySQL 5.6)

--parallelism=#,

-p #

Degree of parallelism (Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--rowid Print row ID (Supported in all NDB releases
based on MySQL 5.6)

--tupscan,

-t

Scan in tup order (Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--useHexFormat,

-x

Output numbers in hexadecimal
format

(Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer
2936

ndb_select_all — Print Rows from an NDB Table

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=dbname, -d dbname

Name of the database in which the table is found. The default value is TEST_DB.

• --descending, -z

Sorts the output in descending order. This option can be used only in conjunction with the -o (--order)
option.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

2937

ndb_select_all — Print Rows from an NDB Table

• --delimiter=character, -D character

Causes the character to be used as a column delimiter. Only table data columns are separated by this
delimiter.

The default delimiter is the tab character.

• --disk

Adds a disk reference column to the output. The column is nonempty only for Disk Data tables having
nonindexed columns.

• --gci

Adds a GCI column to the output showing the global checkpoint at which each row was last updated.
See Section 18.2, “NDB Cluster Overview”, and Section 18.6.3.2, “NDB Cluster Log Events”, for more
information about checkpoints.

• --gci64

Adds a ROW$GCI64 column to the output showing the global checkpoint at which each row was last
updated, as well as the number of the epoch in which this update occurred.

• --help

Command-Line Format --help

Display help text and exit.

• --lock=lock_type, -l lock_type

Employs a lock when reading the table. Possible values for lock_type are:

• 0: Read lock

• 1: Read lock with hold

• 2: Exclusive read lock

There is no default value for this option.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --header=FALSE

Excludes column headers from the output.

• --nodata

Causes any table data to be omitted.

• --ndb-connectstring

2938

ndb_select_all — Print Rows from an NDB Table

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --order=index_name, -o index_name

Orders the output according to the index named index_name.

Note

This is the name of an index, not of a column; the index must have been explicitly
named when created.

• parallelism=#, -p #

Specifies the degree of parallelism.

2939

ndb_select_all — Print Rows from an NDB Table

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --rowid

Adds a ROWID column providing information about the fragments in which rows are stored.

• --tupscan, -t

Scan the table in the order of the tuples.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --useHexFormat -x

Causes all numeric values to be displayed in hexadecimal format. This does not affect the output of
numerals contained in strings or datetime values.

• --version

Command-Line Format --version

Display version information and exit.

Sample Output

Output from a MySQL SELECT statement:

mysql> SELECT * FROM ctest1.fish;
+----+-----------+
| id | name |
+----+-----------+
3	shark
6	puffer
2	tuna
4	manta ray
5	grouper
1	guppy
+----+-----------+
6 rows in set (0.04 sec)

Output from the equivalent invocation of ndb_select_all:

$> ./ndb_select_all -c localhost fish -d ctest1
id name
3 [shark]
6 [puffer]
2 [tuna]
4 [manta ray]
5 [grouper]
1 [guppy]
6 rows returned

NDBT_ProgramExit: 0 - OK

2940

ndb_select_count — Print Row Counts for NDB Tables

All string values are enclosed by square brackets ([...]) in the output of ndb_select_all. Now consider
the table created and populated as shown here:

CREATE TABLE dogs (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(25) NOT NULL,
 breed VARCHAR(50) NOT NULL,
 PRIMARY KEY pk (id),
 KEY ix (name)
)
TABLESPACE ts STORAGE DISK
ENGINE=NDBCLUSTER;

INSERT INTO dogs VALUES
 ('', 'Lassie', 'collie'),
 ('', 'Scooby-Doo', 'Great Dane'),
 ('', 'Rin-Tin-Tin', 'Alsatian'),
 ('', 'Rosscoe', 'Mutt');

This demonstrates the use of several additional ndb_select_all options:

$> ./ndb_select_all -d ctest1 dogs -o ix -z --gci --disk
GCI id name breed DISK_REF
834461 2 [Scooby-Doo] [Great Dane] [m_file_no: 0 m_page: 98 m_page_idx: 0]
834878 4 [Rosscoe] [Mutt] [m_file_no: 0 m_page: 98 m_page_idx: 16]
834463 3 [Rin-Tin-Tin] [Alsatian] [m_file_no: 0 m_page: 34 m_page_idx: 0]
835657 1 [Lassie] [Collie] [m_file_no: 0 m_page: 66 m_page_idx: 0]
4 rows returned

NDBT_ProgramExit: 0 - OK

18.5.24 ndb_select_count — Print Row Counts for NDB Tables

ndb_select_count prints the number of rows in one or more NDB tables. With a single table, the result is
equivalent to that obtained by using the MySQL statement SELECT COUNT(*) FROM tbl_name.

Usage

ndb_select_count [-c connection_string] -ddb_name tbl_name[, tbl_name2[, ...]]

Options that can be used with ndb_select_count are shown in the following table. Additional
descriptions follow the table.

Table 18.35 Command-line options used with the program ndb_select_count

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

2941

ndb_select_count — Print Row Counts for NDB Tables

Format Description Added, Deprecated, or
Removed

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--lock=#,

-l #

Lock type (Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--parallelism=#,

-p #

Degree of parallelism (Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

2942

ndb_select_count — Print Row Counts for NDB Tables

Format Description Added, Deprecated, or
Removed

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.
2943

ndb_select_count — Print Row Counts for NDB Tables

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --help

Command-Line Format --help

Display help text and exit.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

2944

ndb_show_tables — Display List of NDB Tables

Default Value [none]

Same as --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

You can obtain row counts from multiple tables in the same database by listing the table names separated
by spaces when invoking this command, as shown under Sample Output.

Sample Output

$> ./ndb_select_count -c localhost -d ctest1 fish dogs
6 records in table fish
4 records in table dogs

NDBT_ProgramExit: 0 - OK

18.5.25 ndb_show_tables — Display List of NDB Tables

2945

ndb_show_tables — Display List of NDB Tables

ndb_show_tables displays a list of all NDB database objects in the cluster. By default, this includes not
only both user-created tables and NDB system tables, but NDB-specific indexes, internal triggers, and NDB
Cluster Disk Data objects as well.

Options that can be used with ndb_show_tables are shown in the following table. Additional descriptions
follow the table.

Table 18.36 Command-line options used with the program ndb_show_tables

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--database=name,

-d name

Specifies database in which table
is found; database name must be
followed by table name

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--loops=#,

-l #

Number of times to repeat output (Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

2946

ndb_show_tables — Display List of NDB Tables

Format Description Added, Deprecated, or
Removed

-c connection_string

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--parsable,

-p

Return output suitable for MySQL
LOAD DATA statement

(Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--show-temp-status Show table temporary flag (Supported in all NDB releases
based on MySQL 5.6)

--type=#,

-t #

Limit output to objects of this type (Supported in all NDB releases
based on MySQL 5.6)

--unqualified,

-u

Do not qualify table names (Supported in all NDB releases
based on MySQL 5.6)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

Usage

ndb_show_tables [-c connection_string]

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

2947

ndb_show_tables — Display List of NDB Tables

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database, -d

Specifies the name of the database in which the desired table is found. If this option is given, the name
of a table must follow the database name.

If this option has not been specified, and no tables are found in the TEST_DB database,
ndb_show_tables issues a warning.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String2948

ndb_show_tables — Display List of NDB Tables

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --loops, -l

Specifies the number of times the utility should execute. This is 1 when this option is not specified, but if
you do use the option, you must supply an integer argument for it.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

2949

ndb_show_tables — Display List of NDB Tables

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --parsable, -p

Using this option causes the output to be in a format suitable for use with LOAD DATA.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --show-temp-status

If specified, this causes temporary tables to be displayed.

• --type, -t

Can be used to restrict the output to one type of object, specified by an integer type code as shown here:

• 1: System table

• 2: User-created table

• 3: Unique hash index

Any other value causes all NDB database objects to be listed (the default).

• --unqualified, -u

If specified, this causes unqualified object names to be displayed.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

2950

ndb_size.pl — NDBCLUSTER Size Requirement Estimator

• --version

Command-Line Format --version

Display version information and exit.

Note

Only user-created NDB Cluster tables may be accessed from MySQL; system
tables such as SYSTAB_0 are not visible to mysqld. However, you can
examine the contents of system tables using NDB API applications such as
ndb_select_all (see Section 18.5.23, “ndb_select_all — Print Rows from an
NDB Table”).

Prior to NDB 7.4.28, this program printed NDBT_ProgramExit - status upon completion of its run, due
to an unnecessary dependency on the NDBT testing library. This dependency is has now been removed,
eliminating the extraneous output.

18.5.26 ndb_size.pl — NDBCLUSTER Size Requirement Estimator

This is a Perl script that can be used to estimate the amount of space that would be required by a MySQL
database if it were converted to use the NDBCLUSTER storage engine. Unlike the other utilities discussed
in this section, it does not require access to an NDB Cluster (in fact, there is no reason for it to do so).
However, it does need to access the MySQL server on which the database to be tested resides.

Requirements

• A running MySQL server. The server instance does not have to provide support for NDB Cluster.

• A working installation of Perl.

• The DBI module, which can be obtained from CPAN if it is not already part of your Perl installation.
(Many Linux and other operating system distributions provide their own packages for this library.)

• A MySQL user account having the necessary privileges. If you do not wish to use an existing account,
then creating one using GRANT USAGE ON db_name.*—where db_name is the name of the database
to be examined—is sufficient for this purpose.

ndb_size.pl can also be found in the MySQL sources in storage/ndb/tools.

Options that can be used with ndb_size.pl are shown in the following table. Additional descriptions
follow the table.

Table 18.37 Command-line options used with the program ndb_size.pl

Format Description Added, Deprecated, or
Removed

--database=string Database or databases to
examine; a comma-delimited list;
default is ALL (use all databases
found on server)

(Supported in all NDB releases
based on MySQL 5.6)

--hostname=string Specify host and optional port in
host[:port] format

(Supported in all NDB releases
based on MySQL 5.6)

2951

ndb_size.pl — NDBCLUSTER Size Requirement Estimator

Format Description Added, Deprecated, or
Removed

--socket=path Specify socket to connect to (Supported in all NDB releases
based on MySQL 5.6)

--user=string Specify MySQL user name (Supported in all NDB releases
based on MySQL 5.6)

--password=password Specify MySQL user password (Supported in all NDB releases
based on MySQL 5.6)

--format=string Set output format (text or HTML) (Supported in all NDB releases
based on MySQL 5.6)

--excludetables=list Skip any tables in comma-
separated list

(Supported in all NDB releases
based on MySQL 5.6)

--excludedbs=list Skip any databases in comma-
separated list

(Supported in all NDB releases
based on MySQL 5.6)

--savequeries=path Saves all queries on database into
file specified

(Supported in all NDB releases
based on MySQL 5.6)

--loadqueries=path Loads all queries from file
specified; does not connect to
database

(Supported in all NDB releases
based on MySQL 5.6)

--real_table_name=string Designates table to handle unique
index size calculations

(Supported in all NDB releases
based on MySQL 5.6)

Usage

perl ndb_size.pl [--database={db_name|ALL}] [--hostname=host[:port]] [--socket=socket] \
 [--user=user] [--password=password] \
 [--help|-h] [--format={html|text}] \
 [--loadqueries=file_name] [--savequeries=file_name]

By default, this utility attempts to analyze all databases on the server. You can specify a single database
using the --database option; the default behavior can be made explicit by using ALL for the name
of the database. You can also exclude one or more databases by using the --excludedbs option
with a comma-separated list of the names of the databases to be skipped. Similarly, you can cause
specific tables to be skipped by listing their names, separated by commas, following the optional --
excludetables option. A host name can be specified using --hostname; the default is localhost.
You can specify a port in addition to the host using host:port format for the value of --hostname.
The default port number is 3306. If necessary, you can also specify a socket; the default is /var/lib/
mysql.sock. A MySQL user name and password can be specified the corresponding options shown.
It also possible to control the format of the output using the --format option; this can take either of the
values html or text, with text being the default. An example of the text output is shown here:

$> ndb_size.pl --database=test --socket=/tmp/mysql.sock
ndb_size.pl report for database: 'test' (1 tables)
--
Connected to: DBI:mysql:host=localhost;mysql_socket=/tmp/mysql.sock

Including information for versions: 4.1, 5.0, 5.1

test.t1

DataMemory for Columns (* means varsized DataMemory):
 Column Name Type Varsized Key 4.1 5.0 5.1
 HIDDEN_NDB_PKEY bigint PRI 8 8 8
 c2 varchar(50) Y 52 52 4*

2952

ndb_size.pl — NDBCLUSTER Size Requirement Estimator

 c1 int(11) 4 4 4
 -- -- --
Fixed Size Columns DM/Row 64 64 12
 Varsize Columns DM/Row 0 0 4

DataMemory for Indexes:
 Index Name Type 4.1 5.0 5.1
 PRIMARY BTREE 16 16 16
 -- -- --
 Total Index DM/Row 16 16 16

IndexMemory for Indexes:
 Index Name 4.1 5.0 5.1
 PRIMARY 33 16 16
 -- -- --
 Indexes IM/Row 33 16 16

Summary (for THIS table):
 4.1 5.0 5.1
 Fixed Overhead DM/Row 12 12 16
 NULL Bytes/Row 4 4 4
 DataMemory/Row 96 96 48
 (Includes overhead, bitmap and indexes)

 Varsize Overhead DM/Row 0 0 8
 Varsize NULL Bytes/Row 0 0 4
 Avg Varside DM/Row 0 0 16

 No. Rows 0 0 0

 Rows/32kb DM Page 340 340 680
Fixedsize DataMemory (KB) 0 0 0

Rows/32kb Varsize DM Page 0 0 2040
 Varsize DataMemory (KB) 0 0 0

 Rows/8kb IM Page 248 512 512
 IndexMemory (KB) 0 0 0

Parameter Minimum Requirements

* indicates greater than default

 Parameter Default 4.1 5.0 5.1
 DataMemory (KB) 81920 0 0 0
 NoOfOrderedIndexes 128 1 1 1
 NoOfTables 128 1 1 1
 IndexMemory (KB) 18432 0 0 0
 NoOfUniqueHashIndexes 64 0 0 0
 NoOfAttributes 1000 3 3 3
 NoOfTriggers 768 5 5 5

For debugging purposes, the Perl arrays containing the queries run by this script can be read from the
file specified using can be saved to a file using --savequeries; a file containing such arrays to be read
during script execution can be specified using --loadqueries. Neither of these options has a default
value.

To produce output in HTML format, use the --format option and redirect the output to a file, as shown
here:

$> ndb_size.pl --database=test --socket=/tmp/mysql.sock --format=html > ndb_size.html

(Without the redirection, the output is sent to stdout.)

The output from this script includes the following information:

2953

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

• Minimum values for the DataMemory, IndexMemory, MaxNoOfTables, MaxNoOfAttributes,
MaxNoOfOrderedIndexes, MaxNoOfUniqueHashIndexes, and MaxNoOfTriggers configuration
parameters required to accommodate the tables analyzed.

• Memory requirements for all of the tables, attributes, ordered indexes, and unique hash indexes defined
in the database.

• The IndexMemory and DataMemory required per table and table row.

18.5.27 ndb_waiter — Wait for NDB Cluster to Reach a Given Status

ndb_waiter repeatedly (each 100 milliseconds) prints out the status of all cluster data nodes until either
the cluster reaches a given status or the --timeout limit is exceeded, then exits. By default, it waits for
the cluster to achieve STARTED status, in which all nodes have started and connected to the cluster. This
can be overridden using the --no-contact and --not-started options.

The node states reported by this utility are as follows:

• NO_CONTACT: The node cannot be contacted.

• UNKNOWN: The node can be contacted, but its status is not yet known. Usually, this means that the node
has received a START or RESTART command from the management server, but has not yet acted on it.

• NOT_STARTED: The node has stopped, but remains in contact with the cluster. This is seen when
restarting the node using the management client's RESTART command.

• STARTING: The node's ndbd process has started, but the node has not yet joined the cluster.

• STARTED: The node is operational, and has joined the cluster.

• SHUTTING_DOWN: The node is shutting down.

• SINGLE USER MODE: This is shown for all cluster data nodes when the cluster is in single user mode.

Options that can be used with ndb_waiter are shown in the following table. Additional descriptions follow
the table.

Table 18.38 Command-line options used with the program ndb_waiter

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 5.6)

--connect-retries=# Number of times to retry
connection before giving up

ADDED: NDB 7.4.9

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

ADDED: NDB 7.4.9

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 5.6)

2954

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

Format Description Added, Deprecated, or
Removed

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 5.6)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 5.6)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 5.6)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 5.6)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 5.6)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 5.6)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 5.6)

--no-contact,

-n

Wait for cluster to reach NO
CONTACT state

(Supported in all NDB releases
based on MySQL 5.6)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 5.6)

--not-started Wait for cluster to reach NOT
STARTED state

(Supported in all NDB releases
based on MySQL 5.6)

--nowait-nodes=list List of nodes not to be waited for (Supported in all NDB releases
based on MySQL 5.6)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--single-user Wait for cluster to enter single
user mode

(Supported in all NDB releases
based on MySQL 5.6)

--timeout=#,

-t #

Wait this many seconds, then
exit whether or not cluster has
reached desired state

(Supported in all NDB releases
based on MySQL 5.6)

--usage, Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 5.6)

2955

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

Format Description Added, Deprecated, or
Removed

-?

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 5.6)

--wait-nodes=list,

-w list

List of nodes to be waited for (Supported in all NDB releases
based on MySQL 5.6)

Usage

ndb_waiter [-c connection_string]

Additional Options

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Introduced 5.6.28-ndb-7.4.9

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

2956

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --help

Command-Line Format --help

Display help text and exit.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

2957

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-contact, -n

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches
NO_CONTACT status before exiting.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --not-started

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches
NOT_STARTED status before exiting.

• --nowait-nodes=list

When this option is used, ndb_waiter does not wait for the nodes whose IDs are listed. The list is
comma-delimited; ranges can be indicated by dashes, as shown here:

$> ndb_waiter --nowait-nodes=1,3,7-9

Important

Do not use this option together with the --wait-nodes option.

• --print-defaults

2958

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

Command-Line Format --print-defaults

Print program argument list and exit.

• --timeout=seconds, -t seconds

Time to wait. The program exits if the desired state is not achieved within this number of seconds. The
default is 120 seconds (1200 reporting cycles).

• --single-user

The program waits for the cluster to enter single user mode.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

• --wait-nodes=list, -w list

When this option is used, ndb_waiter waits only for the nodes whose IDs are listed. The list is comma-
delimited; ranges can be indicated by dashes, as shown here:

$> ndb_waiter --wait-nodes=2,4-6,10

Important

Do not use this option together with the --nowait-nodes option.

Sample Output. Shown here is the output from ndb_waiter when run against a 4-node cluster in
which two nodes have been shut down and then started again manually. Duplicate reports (indicated by
...) are omitted.

$> ./ndb_waiter -c localhost

Connecting to mgmsrv at (localhost)
State node 1 STARTED
State node 2 NO_CONTACT
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 UNKNOWN
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

2959

Management of NDB Cluster

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 UNKNOWN
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTED
Waiting for cluster enter state STARTED

NDBT_ProgramExit: 0 - OK

Note

If no connection string is specified, then ndb_waiter tries to connect to a
management on localhost, and reports Connecting to mgmsrv at (null).

Prior to NDB 7.4.28, this program printed NDBT_ProgramExit - status upon completion of its run, due
to an unnecessary dependency on the NDBT testing library. This dependency is has now been removed,
eliminating the extraneous output.

18.6 Management of NDB Cluster
Managing an NDB Cluster involves a number of tasks, the first of which is to configure and start NDB
Cluster. This is covered in Section 18.4, “Configuration of NDB Cluster”, and Section 18.5, “NDB Cluster
Programs”.

The next few sections cover the management of a running NDB Cluster.

For information about security issues relating to management and deployment of an NDB Cluster, see
Section 18.6.17, “NDB Cluster Security Issues”.

There are essentially two methods of actively managing a running NDB Cluster. The first of these is
through the use of commands entered into the management client whereby cluster status can be checked,
log levels changed, backups started and stopped, and nodes stopped and started. The second method

2960

Commands in the NDB Cluster Management Client

involves studying the contents of the cluster log ndb_node_id_cluster.log; this is usually found in the
management server's DataDir directory, but this location can be overridden using the LogDestination
option. (Recall that node_id represents the unique identifier of the node whose activity is being logged.)
The cluster log contains event reports generated by ndbd. It is also possible to send cluster log entries to a
Unix system log.

Some aspects of the cluster's operation can be also be monitored from an SQL node using the SHOW
ENGINE NDB STATUS statement.

More detailed information about NDB Cluster operations is available in real time through an SQL interface
using the ndbinfo database. For more information, see Section 18.6.15, “ndbinfo: The NDB Cluster
Information Database”.

NDB statistics counters provide improved monitoring using the mysql client. These counters, implemented
in the NDB kernel, relate to operations performed by or affecting Ndb objects, such as starting, closing,
and aborting transactions; primary key and unique key operations; table, range, and pruned scans; blocked
threads waiting for various operations to complete; and data and events sent and received by NDB Cluster.
The counters are incremented by the NDB kernel whenever NDB API calls are made or data is sent to or
received by the data nodes.

mysqld exposes the NDB API statistics counters as system status variables, which can be identified from
the prefix common to all of their names (Ndb_api_). The values of these variables can be read in the
mysql client from the output of a SHOW STATUS statement, or by querying either the SESSION_STATUS
table or the GLOBAL_STATUS table (in the INFORMATION_SCHEMA database). By comparing the values of
the status variables before and after the execution of an SQL statement that acts on NDB tables, you can
observe the actions taken on the NDB API level that correspond to this statement, which can be beneficial
for monitoring and performance tuning of NDB Cluster.

MySQL Cluster Manager provides an advanced command-line interface that simplifies many otherwise
complex NDB Cluster management tasks, such as starting, stopping, or restarting an NDB Cluster with
a large number of nodes. The MySQL Cluster Manager client also supports commands for getting and
setting the values of most node configuration parameters as well as mysqld server options and variables
relating to NDB Cluster. See MySQL Cluster Manager 1.4.8 User Manual, for more information.

18.6.1 Commands in the NDB Cluster Management Client

In addition to the central configuration file, a cluster may also be controlled through a command-line
interface available through the management client ndb_mgm. This is the primary administrative interface to
a running cluster.

Commands for the event logs are given in Section 18.6.3, “Event Reports Generated in NDB Cluster”;
commands for creating backups and restoring from them are provided in Section 18.6.8, “Online Backup of
NDB Cluster”.

Using ndb_mgm with MySQL Cluster Manager. MySQL Cluster Manager handles starting and
stopping processes and tracks their states internally, so it is not necessary to use ndb_mgm for these
tasks for an NDB Cluster that is under MySQL Cluster Manager control. it is recommended not to use the
ndb_mgm command-line client that comes with the NDB Cluster distribution to perform operations that
involve starting or stopping nodes. These include but are not limited to the START, STOP, RESTART, and
SHUTDOWN commands. For more information, see MySQL Cluster Manager Process Commands.

The management client has the following basic commands. In the listing that follows, node_id denotes
either a data node ID or the keyword ALL, which indicates that the command should be applied to all of the
cluster's data nodes.

• CONNECT connection-string

2961

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/mcm-process-commands.html

Commands in the NDB Cluster Management Client

Connects to the management server indicated by the connection string. If the client is already connected
to this server, the client reconnects.

• CREATE NODEGROUP nodeid[, nodeid, ...]

Creates a new NDB Cluster node group and causes data nodes to join it.

This command is used after adding new data nodes online to an NDB Cluster, and causes them to
join a new node group and thus to begin participating fully in the cluster. The command takes as its
sole parameter a comma-separated list of node IDs—these are the IDs of the nodes just added and
started, and that are to join the new node group. The list must contain no duplicate IDs. The number of
nodes in the list must be the same as the number of nodes in each node group that is already part of the
cluster (each NDB Cluster node group must have the same number of nodes). In other words, if the NDB
Cluster consists of 2 node groups having 2 data nodes each, then the new node group must also have 2
data nodes.

The node group ID of the new node group created by this command is determined automatically, and
always the next highest unused node group ID in the cluster; it is not possible to set it manually.

For more information, see Section 18.6.7, “Adding NDB Cluster Data Nodes Online”.

• DROP NODEGROUP nodegroup_id

Drops the NDB Cluster node group with the given nodegroup_id.

This command can be used to drop a node group from an NDB Cluster. DROP NODEGROUP takes as its
sole argument the node group ID of the node group to be dropped.

DROP NODEGROUP acts only to remove the data nodes in the effected node group from that node
group. It does not stop data nodes, assign them to a different node group, or remove them from the
cluster's configuration. A data node that does not belong to a node group is indicated in the output of
the management client SHOW command with no nodegroup in place of the node group ID, like this
(indicated using bold text):

id=3 @10.100.2.67 (5.6.51-ndb-7.4.39, no nodegroup)

Prior to NDB 7.0.4, the SHOW output was not updated correctly following DROP NODEGROUP. (Bug
#43413)

DROP NODEGROUP works only when all data nodes in the node group to be dropped are completely
empty of any table data and table definitions. Since there is currently no way using ndb_mgm or the
mysql client to remove all data from a specific data node or node group, this means that the command
succeeds only in the two following cases:

1. After issuing CREATE NODEGROUP in the ndb_mgm client, but before issuing any ALTER ONLINE
TABLE ... REORGANIZE PARTITION statements in the mysql client.

2. After dropping all NDBCLUSTER tables using DROP TABLE.

TRUNCATE TABLE does not work for this purpose because this removes only the table data; the data
nodes continue to store an NDBCLUSTER table's definition until a DROP TABLE statement is issued
that causes the table metadata to be dropped.

For more information about DROP NODEGROUP, see Section 18.6.7, “Adding NDB Cluster Data Nodes
Online”.

2962

Commands in the NDB Cluster Management Client

• ENTER SINGLE USER MODE node_id

Enters single user mode, whereby only the MySQL server identified by the node ID node_id is
permitted to access the database.

• EXIT SINGLE USER MODE

Exits single user mode, enabling all SQL nodes (that is, all running mysqld processes) to access the
database.

Note

It is possible to use EXIT SINGLE USER MODE even when not in single user
mode, although the command has no effect in this case.

• HELP

Displays information on all available commands.

• QUIT, EXIT

Terminates the management client.

This command does not affect any nodes connected to the cluster.

• node_id REPORT report-type

Displays a report of type report-type for the data node identified by node_id, or for all data nodes
using ALL.

Currently, there are three accepted values for report-type:

• BackupStatus provides a status report on a cluster backup in progress

• MemoryUsage displays how much data memory and index memory is being used by each data node
as shown in this example:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(177 32K pages of total 3200)
Node 1: Index usage is 0%(108 8K pages of total 12832)
Node 2: Data usage is 5%(177 32K pages of total 3200)
Node 2: Index usage is 0%(108 8K pages of total 12832)

This information is also available from the ndbinfo.memoryusage table.

• EventLog reports events from the event log buffers of one or more data nodes.

report-type is case-insensitive and “fuzzy”; for MemoryUsage, you can use MEMORY (as shown in the
prior example), memory, or even simply MEM (or mem). You can abbreviate BackupStatus in a similar
fashion.

• node_id RESTART [-n] [-i] [-a] [-f]

Restarts the data node identified by node_id (or all data nodes).

Using the -i option with RESTART causes the data node to perform an initial restart; that is, the node's
file system is deleted and recreated. The effect is the same as that obtained from stopping the data node
process and then starting it again using ndbd --initial from the system shell.

2963

Commands in the NDB Cluster Management Client

Note

Backup files and Disk Data files are not removed when this option is used.

Using the -n option causes the data node process to be restarted, but the data node is not actually
brought online until the appropriate START command is issued. The effect of this option is the same as
that obtained from stopping the data node and then starting it again using ndbd --nostart or ndbd -n
from the system shell.

Using the -a causes all current transactions relying on this node to be aborted. No GCP check is done
when the node rejoins the cluster.

Normally, RESTART fails if taking the node offline would result in an incomplete cluster. The -f option
forces the node to restart without checking for this. If this option is used and the result is an incomplete
cluster, the entire cluster is restarted.

• SHOW

Displays basic information about the cluster and cluster nodes. For all nodes, the output includes the
node's ID, type, and NDB software version. If the node is connected, its IP address is also shown;
otherwise the output shows not connected, accepting connect from ip_address, with any
host used for nodes that are permitted to connect from any address.

In addition, for data nodes, the output includes starting if the node has not yet started, and shows
the node group of which the node is a member. If the data node is acting as the master node, this is
indicated with an asterisk (*).

Consider a cluster whose configuration file includes the information shown here (possible additional
settings are omitted for clarity):

[ndbd default]
DataMemory= 128G
NoOfReplicas= 2

[ndb_mgmd]
NodeId=50
HostName=198.51.100.150

[ndbd]
NodeId=5
HostName=198.51.100.10
DataDir=/var/lib/mysql-cluster

[ndbd]
NodeId=6
HostName=198.51.100.20
DataDir=/var/lib/mysql-cluster

[ndbd]
NodeId=7
HostName=198.51.100.30
DataDir=/var/lib/mysql-cluster

[ndbd]
NodeId=8
HostName=198.51.100.40
DataDir=/var/lib/mysql-cluster

[mysqld]
NodeId=100

2964

Commands in the NDB Cluster Management Client

HostName=198.51.100.100

[api]
NodeId=101

After this cluster (including one SQL node) has been started, SHOW displays the following output:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 4 node(s)
id=5 @198.51.100.10 (5.6.51-ndb-7.4.39, Nodegroup: 0, *)
id=6 @198.51.100.20 (5.6.51-ndb-7.4.39, Nodegroup: 0)
id=7 @198.51.100.30 (5.6.51-ndb-7.4.39, Nodegroup: 1)
id=8 @198.51.100.40 (5.6.51-ndb-7.4.39, Nodegroup: 1)

[ndb_mgmd(MGM)] 1 node(s)
id=50 @198.51.100.150 (5.6.51-ndb-7.4.39)

[mysqld(API)] 2 node(s)
id=100 @198.51.100.100 (5.6.51-ndb-7.4.39)
id=101 (not connected, accepting connect from any host)

The output from this command also indicates when the cluster is in single user mode (see the
description of the ENTER SINGLE USER MODE command, as well as Section 18.6.6, “NDB Cluster
Single User Mode”).

• SHUTDOWN

Shuts down all cluster data nodes and management nodes. To exit the management client after this has
been done, use EXIT or QUIT.

This command does not shut down any SQL nodes or API nodes that are connected to the cluster.

• node_id START

Brings online the data node identified by node_id (or all data nodes).

ALL START works on all data nodes only, and does not affect management nodes.

Important

To use this command to bring a data node online, the data node must have been
started using --nostart or -n.

• node_id STATUS

Displays status information for the data node identified by node_id (or for all data nodes).

Possible node status values include UNKNOWN, NO_CONTACT, NOT_STARTED, STARTING, STARTED,
SHUTTING_DOWN, and RESTARTING.

The output from this command also indicates when the cluster is in single user mode (status SINGLE
USER MODE).

2965

NDB Cluster Log Messages

• node_id STOP [-a] [-f]

Stops the data or management node identified by node_id.

Note

ALL STOP works to stop all data nodes only, and does not affect management
nodes.

A node affected by this command disconnects from the cluster, and its associated ndbd or ndb_mgmd
process terminates.

The -a option causes the node to be stopped immediately, without waiting for the completion of any
pending transactions.

Normally, STOP fails if the result would cause an incomplete cluster. The -f option forces the node to
shut down without checking for this. If this option is used and the result is an incomplete cluster, the
cluster immediately shuts down.

Warning

Use of the -a option also disables the safety check otherwise performed when
STOP is invoked to insure that stopping the node does not cause an incomplete
cluster. In other words, you should exercise extreme care when using the -a
option with the STOP command, due to the fact that this option makes it possible
for the cluster to undergo a forced shutdown because it no longer has a complete
copy of all data stored in NDB.

Additional commands. A number of other commands available in the ndb_mgm client are described
elsewhere, as shown in the following list:

• START BACKUP is used to perform an online backup in the ndb_mgm client; the ABORT BACKUP
command is used to cancel a backup already in progress. For more information, see Section 18.6.8,
“Online Backup of NDB Cluster”.

• The CLUSTERLOG command is used to perform various logging functions. See Section 18.6.3, “Event
Reports Generated in NDB Cluster”, for more information and examples.

• For testing and diagnostics work, the client also supports a DUMP command which can be used to
execute internal commands on the cluster. It should never be used in a production setting unless
directed to do so by MySQL Support. For more information, see NDB Cluster Management Client DUMP
Commands.

18.6.2 NDB Cluster Log Messages

This section contains information about the messages written to the cluster log in response to different
cluster log events. It provides additional, more specific information on NDB transporter errors.

18.6.2.1 NDB Cluster: Messages in the Cluster Log

The following table lists the most common NDB cluster log messages. For information about the cluster
log, log events, and event types, see Section 18.6.3, “Event Reports Generated in NDB Cluster”. These
log messages also correspond to log event types in the MGM API; see The Ndb_logevent_type Type, for
related information of interest to Cluster API developers.

2966

https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndbapi/en/mgm-types.html#mgm-ndb-logevent-type

NDB Cluster Log Messages

Table 18.39 Common NDB cluster log messages

Log Message Description Event Name Event Type Priority Severity

Node
mgm_node_id:
Node
data_node_id
Connected

The data node
having node ID
node_id has
connected to the
management
server (node
mgm_node_id).

Connected Connection 8 INFO

Node
mgm_node_id:
Node
data_node_id
Disconnected

The data node
having node ID
data_node_id
has
disconnected
from the
management
server (node
mgm_node_id).

Disconnected Connection 8 ALERT

Node
data_node_id:
Communication
to Node
api_node_id
closed

The API node
or SQL node
having node ID
api_node_id
is no longer
communicating
with data node
data_node_id.

CommunicationClosedConnection 8 INFO

Node
data_node_id:
Communication
to Node
api_node_id
opened

The API node
or SQL node
having node ID
api_node_id
is now
communicating
with data node
data_node_id.

CommunicationOpenedConnection 8 INFO

Node
mgm_node_id:
Node
api_node_id:
API version

The API node
having node ID
api_node_id
has connected
to management
node
mgm_node_id
using NDB
API version
version
(generally the
same as the
MySQL version
number).

ConnectedApiVersionConnection 8 INFO

Node
node_id:
Global

A global
checkpoint with
the ID gci has

GlobalCheckpointStartedCheckpoint 9 INFO

2967

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
checkpoint
gci started

been started;
node node_id
is the master
responsible
for this global
checkpoint.

Node
node_id:
Global
checkpoint
gci
completed

The global
checkpoint
having the ID
gci has been
completed;
node node_id
was the master
responsible
for this global
checkpoint.

GlobalCheckpointCompletedCheckpoint 10 INFO

Node
node_id:
Local
checkpoint
lcp started.
Keep GCI =
current_gci
oldest
restorable
GCI =
old_gci

The local
checkpoint
having
sequence ID
lcp has been
started on node
node_id. The
most recent GCI
that can be used
has the index
current_gci,
and the oldest
GCI from which
the cluster can
be restored
has the index
old_gci.

LocalCheckpointStartedCheckpoint 7 INFO

Node
node_id:
Local
checkpoint
lcp
completed

The local
checkpoint
having
sequence ID
lcp on node
node_id has
been completed.

LocalCheckpointCompletedCheckpoint 8 INFO

Node
node_id:
Local
Checkpoint
stopped in
CALCULATED_KEEP_GCI

The node
was unable to
determine the
most recent
usable GCI.

LCPStoppedInCalcKeepGciCheckpoint 0 ALERT

Node
node_id:
Table ID =
table_id,

A table fragment
has been
checkpointed
to disk on node

LCPFragmentCompletedCheckpoint 11 INFO

2968

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
fragment
ID =
fragment_id
has
completed
LCP on Node
node_id
maxGciStarted:
started_gci
maxGciCompleted:
completed_gci

node_id. The
GCI in progress
has the index
started_gci,
and the most
recent GCI
to have been
completed
has the index
completed_gci.

Node
node_id:
ACC Blocked
num_1 and
TUP Blocked
num_2 times
last second

Undo logging
is blocked
because the log
buffer is close to
overflowing.

UndoLogBlockedCheckpoint 7 INFO

Node
node_id:
Start
initiated
version

Data node
node_id,
running
NDB version
version, is
beginning its
startup process.

NDBStartStartedStartUp 1 INFO

Node
node_id:
Started
version

Data node
node_id,
running
NDB version
version,
has started
successfully.

NDBStartCompletedStartUp 1 INFO

Node
node_id:
STTORRY
received
after
restart
finished

The node has
received a
signal indicating
that a cluster
restart has
completed.

STTORRYRecievedStartUp 15 INFO

Node
node_id:
Start
phase phase
completed
(type)

The node has
completed
start phase
phase of a
type start. For
a listing of start
phases, see
Section 18.6.4,
“Summary of
NDB Cluster
Start Phases”.

StartPhaseCompletedStartUp 4 INFO

2969

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
(type is one
of initial,
system, node,
initial
node, or
<Unknown>.)

Node
node_id:
CM_REGCONF
president =
president_id,
own Node =
own_id, our
dynamic id =
dynamic_id

Node
president_id
has been
selected as
“president”.
own_id and
dynamic_id
should always
be the same
as the ID
(node_id) of
the reporting
node.

CM_REGCONF StartUp 3 INFO

Node
node_id:
CM_REGREF
from Node
president_id
to our Node
node_id.
Cause =
cause

The reporting
node (ID
node_id)
was unable to
accept node
president_id
as president.
The cause of
the problem
is given as
one of Busy,
Election
with wait
= false, Not
president,
Election
without
selecting
new
candidate,
or No such
cause.

CM_REGREF StartUp 8 INFO

Node
node_id:
We are Node
own_id with
dynamic ID
dynamic_id,
our left
neighbor is
Node id_1,

The node has
discovered its
neighboring
nodes in the
cluster (node
id_1 and
node id_2).
node_id,
own_id, and
dynamic_id

FIND_NEIGHBOURSStartUp 8 INFO

2970

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
our right is
Node id_2

should always
be the same;
if they are not,
this indicates
a serious
misconfiguration
of the cluster
nodes.

Node
node_id:
type
shutdown
initiated

The node has
received a
shutdown signal.
The type of
shutdown is
either Cluster
or Node.

NDBStopStartedStartUp 1 INFO

Node
node_id:
Node
shutdown
completed
[, action]
[Initiated
by signal
signal.]

The node has
been shut down.
This report
may include an
action, which
if present is one
of restarting,
no start,
or initial.
The report may
also include a
reference to an
NDB Protocol
signal;
for possible
signals, refer to
Operations and
Signals.

NDBStopCompletedStartUp 1 INFO

Node
node_id:
Forced node
shutdown
completed
[, action].
[Occurred
during
startphase
start_phase.]
[Initiated
by signal.]
[Caused
by error
error_code:
'error_message(error_classification).
error_status'.

The node has
been forcibly
shut down. The
action (one of
restarting,
no start,
or initial)
subsequently
being taken,
if any, is also
reported. If
the shutdown
occurred while
the node
was starting,
the report
includes the
start_phase

NDBStopForcedStartUp 1 ALERT

2971

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
[(extra info
extra_code)]]

during which the
node failed. If
this was a result
of a signal
sent to the node,
this information
is also provided
(see Operations
and Signals,
for more
information).
If the error
causing the
failure is known,
this is also
included;
for more
information
about NDB error
messages and
classifications,
see NDB Cluster
API Errors.

Node
node_id:
Node
shutdown
aborted

The node
shutdown
process was
aborted by the
user.

NDBStopAbortedStartUp 1 INFO

Node
node_id:
StartLog:
[GCI Keep:
keep_pos
LastCompleted:
last_pos
NewestRestorable:
restore_pos]

This reports
global
checkpoints
referenced
during a node
start. The redo
log prior to
keep_pos
is dropped.
last_pos is
the last global
checkpoint in
which data node
the participated;
restore_pos
is the global
checkpoint
which is actually
used to restore
all data nodes.

StartREDOLog StartUp 4 INFO

startup_message
[Listed

There are a
number of
possible startup

StartReport StartUp 4 INFO

2972

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
separately; see
below.]

messages that
can be logged
under different
circumstances.
These are listed
separately; see
Section 18.6.2.2,
“NDB Cluster
Log Startup
Messages”.

Node
node_id:
Node restart
completed
copy of
dictionary
information

Copying of
data dictionary
information to
the restarted
node has been
completed.

NR_CopyDict NodeRestart 8 INFO

Node
node_id:
Node restart
completed
copy of
distribution
information

Copying of data
distribution
information to
the restarted
node has been
completed.

NR_CopyDistr NodeRestart 8 INFO

Node
node_id:
Node restart
starting
to copy the
fragments to
Node node_id

Copy of
fragments to
starting data
node node_id
has begun

NR_CopyFragsStartedNodeRestart 8 INFO

Node
node_id:
Table ID =
table_id,
fragment
ID =
fragment_id
have been
copied to
Node node_id

Fragment
fragment_id
from table
table_id has
been copied
to data node
node_id

NR_CopyFragDoneNodeRestart 10 INFO

Node
node_id:
Node restart
completed
copying the
fragments to
Node node_id

Copying of all
table fragments
to restarting
data node
node_id has
been completed

NR_CopyFragsCompletedNodeRestart 8 INFO

Node
node_id:

Data node
node1_id has

NodeFailCompletedNodeRestart 8 ALERT

2973

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
Node
node1_id
completed
failure
of Node
node2_id

detected the
failure of data
node node2_id

All nodes
completed
failure of
Node node_id

All (remaining)
data nodes have
detected the
failure of data
node node_id

NodeFailCompletedNodeRestart 8 ALERT

Node
failure of
node_idblock
completed

The failure
of data node
node_id has
been detected in
the blockNDB
kernel block,
where block
is 1 of DBTC,
DBDICT,
DBDIH, or
DBLQH; for more
information, see
NDB Kernel
Blocks

NodeFailCompletedNodeRestart 8 ALERT

Node
mgm_node_id:
Node
data_node_id
has failed.
The Node
state at
failure was
state_code

A data node
has failed. Its
state at the
time of failure
is described by
an arbitration
state code
state_code:
possible state
code values can
be found in the
file include/
kernel/
signaldata/
ArbitSignalData.hpp.

NODE_FAILREP NodeRestart 8 ALERT

President
restarts
arbitration
thread
[state=state_code]
or Prepare
arbitrator
node node_id
[ticket=ticket_id]
or Receive
arbitrator

This is a report
on the current
state and
progress of
arbitration in
the cluster.
node_id is the
node ID of the
management
node or SQL
node selected

ArbitState NodeRestart 6 INFO

2974

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
node node_id
[ticket=ticket_id]
or Started
arbitrator
node node_id
[ticket=ticket_id]
or Lost
arbitrator
node node_id
- process
failure
[state=state_code]
or Lost
arbitrator
node
node_id -
process exit
[state=state_code]
or Lost
arbitrator
node
node_id -
error_message
[state=state_code]

as the arbitrator.
state_code
is an arbitration
state code,
as found in
include/
kernel/
signaldata/
ArbitSignalData.hpp.
When an error
has occurred, an
error_message,
also defined in
ArbitSignalData.hpp,
is provided.
ticket_id
is a unique
identifier handed
out by the
arbitrator when
it is selected to
all the nodes
that participated
in its selection;
this is used to
ensure that each
node requesting
arbitration was
one of the nodes
that took part
in the selection
process.

Arbitration
check lost
- less than
1/2 nodes
left or
Arbitration
check won
- all node
groups and
more than
1/2 nodes
left or
Arbitration
check won -
node group
majority or
Arbitration
check lost
- missing
node group

This message
reports on
the result of
arbitration.
In the event
of arbitration
failure, an
error_message
and an
arbitration
state_code
are provided;
definitions for
both of these
are found in
include/
kernel/
signaldata/
ArbitSignalData.hpp.

ArbitResult NodeRestart 2 ALERT

2975

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
or Network
partitioning
-
arbitration
required or
Arbitration
won -
positive
reply
from node
node_id or
Arbitration
lost -
negative
reply from
node node_id
or Network
partitioning
- no
arbitrator
available
or Network
partitioning
- no
arbitrator
configured or
Arbitration
failure -
error_message
[state=state_code]

Node
node_id: GCP
Take over
started

This node is
attempting
to assume
responsibility for
the next global
checkpoint (that
is, it is becoming
the master
node)

GCP_TakeoverStartedNodeRestart 7 INFO

Node
node_id: GCP
Take over
completed

This node has
become the
master, and
has assumed
responsibility for
the next global
checkpoint

GCP_TakeoverCompletedNodeRestart 7 INFO

Node
node_id: LCP
Take over
started

This node is
attempting
to assume
responsibility
for the next

LCP_TakeoverStartedNodeRestart 7 INFO

2976

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
set of local
checkpoints
(that is, it is
becoming the
master node)

Node
node_id: LCP
Take over
completed

This node has
become the
master, and
has assumed
responsibility
for the next
set of local
checkpoints

LCP_TakeoverCompletedNodeRestart 7 INFO

Node
node_id:
Trans.
Count =
transactions,
Commit Count
= commits,
Read Count
= reads,
Simple Read
Count =
simple_reads,
Write Count
= writes,
AttrInfo
Count =
AttrInfo_objects,
Concurrent
Operations =
concurrent_operations,
Abort Count
= aborts,
Scans =
scans, Range
scans =
range_scans

This report of
transaction
activity is given
approximately
once every 10
seconds

TransReportCountersStatistic 8 INFO

Node
node_id:
Operations=operations

Number of
operations
performed
by this node,
provided
approximately
once every 10
seconds

OperationReportCountersStatistic 8 INFO

Node
node_id:
Table
with ID =

A table having
the table ID
shown has been
created

TableCreated Statistic 7 INFO

2977

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
table_id
created

Node
node_id:
Mean loop
Counter in
doJob last
8192 times =
count

JobStatistic Statistic 9 INFO

Mean send
size to Node
= node_id
last 4096
sends =
bytes bytes

This node is
sending an
average of
bytes bytes per
send to node
node_id

SendBytesStatisticStatistic 9 INFO

Mean receive
size to Node
= node_id
last 4096
sends =
bytes bytes

This node is
receiving an
average of
bytes of data
each time it
receives data
from node
node_id

ReceiveBytesStatisticStatistic 9 INFO

Node
node_id:
Data
usage is
data_memory_percentage%
(data_pages_used
32K pages
of total
data_pages_total)
/ Node
node_id:
Index
usage is
index_memory_percentage%
(index_pages_used
8K pages
of total
index_pages_total)

This report
is generated
when a DUMP
1000 command
is issued in
the cluster
management
client; for more
information, see
DUMP 1000,
in MySQL NDB
Cluster Internals
Manual

MemoryUsage Statistic 5 INFO

Node
node1_id:
Transporter
to node
node2_id
reported
error
error_code:
error_message

A transporter
error occurred
while
communicating
with node
node2_id;
for a listing
of transporter
error codes

TransporterErrorError 2 ERROR

2978

https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
and messages,
see NDB
Transporter
Errors, in
MySQL NDB
Cluster Internals
Manual

Node
node1_id:
Transporter
to node
node2_id
reported
error
error_code:
error_message

A warning of
a potential
transporter
problem while
communicating
with node
node2_id;
for a listing
of transporter
error codes
and messages,
see NDB
Transporter
Errors, for more
information

TransporterWarningError 8 WARNING

Node
node1_id:
Node
node2_id
missed
heartbeat
heartbeat_id

This node
missed a
heartbeat from
node node2_id

MissedHeartbeatError 8 WARNING

Node
node1_id:
Node
node2_id
declared
dead due
to missed
heartbeat

This node has
missed at least
3 heartbeats
from node
node2_id, and
so has declared
that node “dead”

DeadDueToHeartbeatError 8 ALERT

Node
node1_id:
Node Sent
Heartbeat
to node =
node2_id

This node
has sent a
heartbeat to
node node2_id

SentHeartbeatInfo 12 INFO

(NDB 7.5.0 and
earlier:) Node
node_id:
Event buffer
status:
used=bytes_used
(percent_used%)

This report is
seen during
heavy event
buffer usage,
for example,
when many
updates are

EventBufferStatusInfo 7 INFO

2979

https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
alloc=bytes_allocated
(percent_available%)
max=bytes_available
apply_epoch=latest_restorable_epoch
latest_epoch=latest_epoch

being applied in
a relatively short
period of time;
the report shows
the number of
bytes and the
percentage of
event buffer
memory used,
the bytes
allocated and
percentage still
available, and
the latest and
latest restorable
epochs

Node
node_id:
Entering
single user
mode, Node
node_id:
Entered
single user
mode Node
API_node_id
has
exclusive
access, Node
node_id:
Entering
single user
mode

These reports
are written to the
cluster log when
entering and
exiting single
user mode;
API_node_id
is the node ID of
the API or SQL
having exclusive
access to the
cluster (for more
information, see
Section 18.6.6,
“NDB Cluster
Single User
Mode”); the
message
Unknown
single
user report
API_node_id
indicates an
error has taken
place and
should never be
seen in normal
operation

SingleUser Info 7 INFO

Node
node_id:
Backup
backup_id
started
from node
mgm_node_id

A backup has
been started
using the
management
node having
mgm_node_id;
this message is

BackupStartedBackup 7 INFO

2980

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
also displayed
in the cluster
management
client when the
START BACKUP
command is
issued; for more
information, see
Section 18.6.8.2,
“Using The
NDB Cluster
Management
Client to Create
a Backup”

Node
node_id:
Backup
backup_id
started
from node
mgm_node_id
completed.
StartGCP:
start_gcp
StopGCP:
stop_gcp
#Records:
records
#LogRecords:
log_records
Data:
data_bytes
bytes Log:
log_bytes
bytes

The backup
having the ID
backup_id has
been completed;
for more
information, see
Section 18.6.8.2,
“Using The
NDB Cluster
Management
Client to Create
a Backup”

BackupCompletedBackup 7 INFO

Node
node_id:
Backup
request from
mgm_node_id
failed
to start.
Error:
error_code

The backup
failed to start; for
error codes, see
MGM API Errors

BackupFailedToStartBackup 7 ALERT

Node
node_id:
Backup
backup_id
started from
mgm_node_id
has been

The backup
was terminated
after starting,
possibly due to
user intervention

BackupAbortedBackup 7 ALERT

2981

https://dev.mysql.com/doc/ndbapi/en/mgm-errors.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
aborted.
Error:
error_code

18.6.2.2 NDB Cluster Log Startup Messages

Possible startup messages with descriptions are provided in the following list:

• Initial start, waiting for %s to connect, nodes [all: %s connected: %s no-
wait: %s]

• Waiting until nodes: %s connects, nodes [all: %s connected: %s no-wait: %s]

• Waiting %u sec for nodes %s to connect, nodes [all: %s connected: %s no-
wait: %s]

• Waiting for non partitioned start, nodes [all: %s connected: %s missing: %s
no-wait: %s]

• Waiting %u sec for non partitioned start, nodes [all: %s connected: %s
missing: %s no-wait: %s]

• Initial start with nodes %s [missing: %s no-wait: %s]

• Start with all nodes %s

• Start with nodes %s [missing: %s no-wait: %s]

• Start potentially partitioned with nodes %s [missing: %s no-wait: %s]

• Unknown startreport: 0x%x [%s %s %s %s]

18.6.2.3 NDB Cluster: NDB Transporter Errors

This section lists error codes, names, and messages that are written to the cluster log in the event of
transporter errors.

0x00 TE_NO_ERROR

No error

0x01 TE_ERROR_CLOSING_SOCKET

Error found during closing of socket

0x02 TE_ERROR_IN_SELECT_BEFORE_ACCEPT

Error found before accept. The transporter will retry

0x03 TE_INVALID_MESSAGE_LENGTH

Error found in message (invalid message length)

0x04 TE_INVALID_CHECKSUM

Error found in message (checksum)

0x05 TE_COULD_NOT_CREATE_SOCKET

2982

NDB Cluster Log Messages

Error found while creating socket(can't create
socket)

0x06 TE_COULD_NOT_BIND_SOCKET

Error found while binding server socket

0x07 TE_LISTEN_FAILED

Error found while listening to server socket

0x08 TE_ACCEPT_RETURN_ERROR

Error found during accept(accept return error)

0x0b TE_SHM_DISCONNECT

The remote node has disconnected

0x0c TE_SHM_IPC_STAT

Unable to check shm segment

0x0d TE_SHM_UNABLE_TO_CREATE_SEGMENT

Unable to create shm segment

0x0e TE_SHM_UNABLE_TO_ATTACH_SEGMENT

Unable to attach shm segment

0x0f TE_SHM_UNABLE_TO_REMOVE_SEGMENT

Unable to remove shm segment

0x10 TE_TOO_SMALL_SIGID

Sig ID too small

0x11 TE_TOO_LARGE_SIGID

Sig ID too large

0x12 TE_WAIT_STACK_FULL

Wait stack was full

0x13 TE_RECEIVE_BUFFER_FULL

Receive buffer was full

0x14 TE_SIGNAL_LOST_SEND_BUFFER_FULL

Send buffer was full,and trying to force send fails

0x15 TE_SIGNAL_LOST

Send failed for unknown reason(signal lost)

0x16 TE_SEND_BUFFER_FULL

2983

Event Reports Generated in NDB Cluster

The send buffer was full, but sleeping for a while
solved

0x21 TE_SHM_IPC_PERMANENT

Shm ipc Permanent error

Note

Transporter error codes 0x17 through 0x20 and 0x22 are reserved for SCI
connections, which are not supported in this version of NDB Cluster, and so are not
included here.

18.6.3 Event Reports Generated in NDB Cluster

In this section, we discuss the types of event logs provided by NDB Cluster, and the types of events that
are logged.

NDB Cluster provides two types of event log:

• The cluster log, which includes events generated by all cluster nodes. The cluster log is the log
recommended for most uses because it provides logging information for an entire cluster in a single
location.

By default, the cluster log is saved to a file named ndb_node_id_cluster.log, (where node_id is
the node ID of the management server) in the management server's DataDir.

Cluster logging information can also be sent to stdout or a syslog facility in addition to or instead
of being saved to a file, as determined by the values set for the DataDir and LogDestination
configuration parameters. See Section 18.4.3.5, “Defining an NDB Cluster Management Server”, for
more information about these parameters.

• Node logs are local to each node.

Output generated by node event logging is written to the file ndb_node_id_out.log (where node_id
is the node's node ID) in the node's DataDir. Node event logs are generated for both management
nodes and data nodes.

Node logs are intended to be used only during application development, or for debugging application
code.

Both types of event logs can be set to log different subsets of events.

Each reportable event can be distinguished according to three different criteria:

• Category: This can be any one of the following values: STARTUP, SHUTDOWN, STATISTICS,
CHECKPOINT, NODERESTART, CONNECTION, ERROR, or INFO.

• Priority: This is represented by one of the numbers from 0 to 15 inclusive, where 0 indicates “most
important” and 15 “least important.”

• Severity Level: This can be any one of the following values: ALERT, CRITICAL, ERROR, WARNING,
INFO, or DEBUG.

Both the cluster log and the node log can be filtered on these properties.

The format used in the cluster log is as shown here:

2984

Event Reports Generated in NDB Cluster

2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 1: Data usage is 2%(60 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 1: Index usage is 1%(24 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 1: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 2: Data usage is 2%(76 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 2: Index usage is 1%(24 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 2: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 3: Data usage is 2%(58 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 3: Index usage is 1%(25 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 3: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 4: Data usage is 2%(74 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 4: Index usage is 1%(25 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 4: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 4: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 1: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 1: Node 9: API 5.6.51-ndb-7.4.39
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 2: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 2: Node 9: API 5.6.51-ndb-7.4.39
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 3: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 3: Node 9: API 5.6.51-ndb-7.4.39
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 4: Node 9: API 5.6.51-ndb-7.4.39
2007-01-26 19:59:22 [MgmSrvr] ALERT -- Node 2: Node 7 Disconnected
2007-01-26 19:59:22 [MgmSrvr] ALERT -- Node 2: Node 7 Disconnected

Each line in the cluster log contains the following information:

• A timestamp in YYYY-MM-DD HH:MM:SS format.

• The type of node which is performing the logging. In the cluster log, this is always [MgmSrvr].

• The severity of the event.

• The ID of the node reporting the event.

• A description of the event. The most common types of events to appear in the log are connections and
disconnections between different nodes in the cluster, and when checkpoints occur. In some cases, the
description may contain status information.

18.6.3.1 NDB Cluster Logging Management Commands

ndb_mgm supports a number of management commands related to the cluster log. In the listing that
follows, node_id denotes either a data node ID or the keyword ALL, which indicates that the command
should be applied to all of the cluster's data nodes.

• CLUSTERLOG ON

Turns the cluster log on.

• CLUSTERLOG OFF

Turns the cluster log off.

• CLUSTERLOG INFO

Provides information about cluster log settings.

• node_id CLUSTERLOG category=threshold

Logs category events with priority less than or equal to threshold in the cluster log.

• CLUSTERLOG FILTER severity_level

Toggles cluster logging of events of the specified severity_level.

2985

Event Reports Generated in NDB Cluster

The following table describes the default setting (for all data nodes) of the cluster log category threshold. If
an event has a priority with a value lower than or equal to the priority threshold, it is reported in the cluster
log.

Note

Events are reported per data node, and that the threshold can be set to different
values on different nodes.

Table 18.40 Cluster log categories, with default threshold setting

Category Default threshold (All data nodes)

STARTUP 7

SHUTDOWN 7

STATISTICS 7

CHECKPOINT 7

NODERESTART 7

CONNECTION 7

ERROR 15

INFO 7

The STATISTICS category can provide a great deal of useful data. See Section 18.6.3.3, “Using
CLUSTERLOG STATISTICS in the NDB Cluster Management Client”, for more information.

Thresholds are used to filter events within each category. For example, a STARTUP event with a priority of
3 is not logged unless the threshold for STARTUP is set to 3 or higher. Only events with priority 3 or lower
are sent if the threshold is 3.

The following table shows the event severity levels.

Note

These correspond to Unix syslog levels, except for LOG_EMERG and
LOG_NOTICE, which are not used or mapped.

Table 18.41 Event severity levels

Severity Level Value Severity Description

1 ALERT A condition that should be
corrected immediately, such as a
corrupted system database

2 CRITICAL Critical conditions, such as device
errors or insufficient resources

3 ERROR Conditions that should be
corrected, such as configuration
errors

4 WARNING Conditions that are not errors, but
that might require special handling

5 INFO Informational messages

6 DEBUG Debugging messages used for
NDBCLUSTER development

2986

Event Reports Generated in NDB Cluster

Event severity levels can be turned on or off (using CLUSTERLOG FILTER—see above). If a severity level
is turned on, then all events with a priority less than or equal to the category thresholds are logged. If the
severity level is turned off then no events belonging to that severity level are logged.

Important

Cluster log levels are set on a per ndb_mgmd, per subscriber basis. This means
that, in an NDB Cluster with multiple management servers, using a CLUSTERLOG
command in an instance of ndb_mgm connected to one management server affects
only logs generated by that management server but not by any of the others. This
also means that, should one of the management servers be restarted, only logs
generated by that management server are affected by the resetting of log levels
caused by the restart.

18.6.3.2 NDB Cluster Log Events

An event report reported in the event logs has the following format:

datetime [string] severity -- message

For example:

09:19:30 2005-07-24 [NDB] INFO -- Node 4 Start phase 4 completed

This section discusses all reportable events, ordered by category and severity level within each category.

In the event descriptions, GCP and LCP mean “Global Checkpoint” and “Local Checkpoint”, respectively.

CONNECTION Events

These events are associated with connections between Cluster nodes.

Table 18.42 Events associated with connections between cluster nodes

Event Priority Severity Level Description

Connected 8 INFO Data nodes connected

Disconnected 8 ALERT Data nodes disconnected

CommunicationClosed 8 INFO SQL node or data node
connection closed

CommunicationOpened 8 INFO SQL node or data node
connection open

ConnectedApiVersion 8 INFO Connection using API
version

CHECKPOINT Events

The logging messages shown here are associated with checkpoints.

Table 18.43 Events associated with checkpoints

Event Priority Severity Level Description

GlobalCheckpointStarted9 INFO Start of GCP: REDO log
is written to disk

GlobalCheckpointCompleted10 INFO GCP finished

LocalCheckpointStarted7 INFO Start of LCP: data written
to disk

2987

Event Reports Generated in NDB Cluster

Event Priority Severity Level Description

LocalCheckpointCompleted7 INFO LCP completed normally

LCPStoppedInCalcKeepGci0 ALERT LCP stopped

LCPFragmentCompleted11 INFO LCP on a fragment has
been completed

UndoLogBlocked 7 INFO UNDO logging blocked;
buffer near overflow

RedoStatus 7 INFO Redo status

STARTUP Events

The following events are generated in response to the startup of a node or of the cluster and of its
success or failure. They also provide information relating to the progress of the startup process, including
information concerning logging activities.

Table 18.44 Events relating to the startup of a node or cluster

Event Priority Severity Level Description

NDBStartStarted 1 INFO Data node start phases
initiated (all nodes
starting)

NDBStartCompleted 1 INFO Start phases completed,
all data nodes

STTORRYRecieved 15 INFO Blocks received after
completion of restart

StartPhaseCompleted 4 INFO Data node start phase X
completed

CM_REGCONF 3 INFO Node has been
successfully included into
the cluster; shows the
node, managing node,
and dynamic ID

CM_REGREF 8 INFO Node has been refused
for inclusion in the
cluster; cannot be
included in cluster due
to misconfiguration,
inability to establish
communication, or other
problem

FIND_NEIGHBOURS 8 INFO Shows neighboring data
nodes

NDBStopStarted 1 INFO Data node shutdown
initiated

NDBStopCompleted 1 INFO Data node shutdown
complete

NDBStopForced 1 ALERT Forced shutdown of data
node

2988

Event Reports Generated in NDB Cluster

Event Priority Severity Level Description

NDBStopAborted 1 INFO Unable to shut down data
node normally

StartREDOLog 4 INFO New redo log started;
GCI keep X, newest
restorable GCI Y

StartLog 10 INFO New log started; log part
X, start MB Y, stop MB Z

UNDORecordsExecuted 15 INFO Undo records executed

StartReport 4 INFO Report started

LogFileInitStatus 7 INFO Log file initialization
status

LogFileInitCompStatus7 INFO Log file completion status

StartReadLCP 10 INFO Start read for local
checkpoint

ReadLCPComplete 10 INFO Read for local checkpoint
completed

RunRedo 8 INFO Running the redo log

RebuildIndex 10 INFO Rebuilding indexes

NODERESTART Events

The following events are generated when restarting a node and relate to the success or failure of the node
restart process.

Table 18.45 Events relating to restarting a node

Event Priority Severity Level Description

NR_CopyDict 7 INFO Completed copying of
dictionary information

NR_CopyDistr 7 INFO Completed copying
distribution information

NR_CopyFragsStarted 7 INFO Starting to copy
fragments

NR_CopyFragDone 10 INFO Completed copying a
fragment

NR_CopyFragsCompleted7 INFO Completed copying all
fragments

NodeFailCompleted 8 ALERT Node failure phase
completed

NODE_FAILREP 8 ALERT Reports that a node has
failed

ArbitState 6 INFO Report whether an
arbitrator is found or not;
there are seven different
possible outcomes when
seeking an arbitrator,
listed here:

2989

Event Reports Generated in NDB Cluster

Event Priority Severity Level Description
• Management server

restarts arbitration
thread [state=X]

• Prepare arbitrator node
X [ticket=Y]

• Receive arbitrator node
X [ticket=Y]

• Started arbitrator node
X [ticket=Y]

• Lost arbitrator node
X - process failure
[state=Y]

• Lost arbitrator node X -
process exit [state=Y]

• Lost arbitrator node X
<error msg> [state=Y]

ArbitResult 2 ALERT Report arbitrator results;
there are eight different
possible results for
arbitration attempts,
listed here:

• Arbitration check failed:
less than 1/2 nodes left

• Arbitration check
succeeded: node
group majority

• Arbitration check failed:
missing node group

• Network partitioning:
arbitration required

• Arbitration succeeded:
affirmative response
from node X

• Arbitration failed:
negative response
from node X

• Network partitioning:
no arbitrator available

• Network partitioning:
no arbitrator configured

2990

Event Reports Generated in NDB Cluster

Event Priority Severity Level Description

GCP_TakeoverStarted 7 INFO GCP takeover started

GCP_TakeoverCompleted7 INFO GCP takeover complete

LCP_TakeoverStarted 7 INFO LCP takeover started

LCP_TakeoverCompleted7 INFO LCP takeover complete
(state = X)

ConnectCheckStarted 6 INFO Connection check started

ConnectCheckCompleted6 INFO Connection check
completed

NodeFailRejected 6 ALERT Node failure phase failed

STATISTICS Events

The following events are of a statistical nature. They provide information such as numbers of transactions
and other operations, amount of data sent or received by individual nodes, and memory usage.

Table 18.46 Events of a statistical nature

Event Priority Severity Level Description

TransReportCounters 8 INFO Report transaction
statistics, including
numbers of transactions,
commits, reads, simple
reads, writes, concurrent
operations, attribute
information, and aborts

OperationReportCounters8 INFO Number of operations

TableCreated 7 INFO Report number of tables
created

JobStatistic 9 INFO Mean internal job
scheduling statistics

ThreadConfigLoop 9 INFO Number of thread
configuration loops

SendBytesStatistic 9 INFO Mean number of bytes
sent to node X

ReceiveBytesStatistic9 INFO Mean number of bytes
received from node X

MemoryUsage 5 INFO Data and index memory
usage (80%, 90%, and
100%)

MTSignalStatistics 9 INFO Multithreaded signals

SCHEMA Events

These events relate to NDB Cluster schema operations.

Table 18.47 Events relating to NDB Cluster schema operations

Event Priority Severity Level Description

CreateSchemaObject 8 INFO Schema objected created

2991

Event Reports Generated in NDB Cluster

Event Priority Severity Level Description

AlterSchemaObject 8 INFO Schema object updated

DropSchemaObject 8 INFO Schema object dropped

ERROR Events

These events relate to Cluster errors and warnings. The presence of one or more of these generally
indicates that a major malfunction or failure has occurred.

Table 18.48 Events relating to cluster errors and warnings

Event Priority Severity Level Description

TransporterError 2 ERROR Transporter error

TransporterWarning 8 WARNING Transporter warning

MissedHeartbeat 8 WARNING Node X missed heartbeat
number Y

DeadDueToHeartbeat 8 ALERT Node X declared “dead”
due to missed heartbeat

WarningEvent 2 WARNING General warning event

SubscriptionStatus 4 WARNING Change in subscription
status

INFO Events

These events provide general information about the state of the cluster and activities associated with
Cluster maintenance, such as logging and heartbeat transmission.

Table 18.49 Information events

Event Priority Severity Level Description

SentHeartbeat 12 INFO Sent heartbeat

CreateLogBytes 11 INFO Create log: Log part, log
file, size in MB

InfoEvent 2 INFO General informational
event

EventBufferStatus 7 INFO Event buffer status

Note

SentHeartbeat events are available only if NDB Cluster was compiled with
VM_TRACE enabled.

SINGLEUSER Events

These events are associated with entering and exiting single user mode.

Table 18.50 Events relating to single user mode

Event Priority Severity Level Description

SingleUser 7 INFO Entering or exiting single
user mode

BACKUP Events

2992

Event Reports Generated in NDB Cluster

These events provide information about backups being created or restored.

Table 18.51 Backup events

Event Priority Severity Level Description

BackupStarted 7 INFO Backup started

BackupStatus 7 INFO Backup status

BackupCompleted 7 INFO Backup completed

BackupFailedToStart 7 ALERT Backup failed to start

BackupAborted 7 ALERT Backup aborted by user

RestoreStarted 7 INFO Started restoring from
backup

RestoreMetaData 7 INFO Restoring metadata

RestoreData 7 INFO Restoring data

RestoreLog 7 INFO Restoring log files

RestoreCompleted 7 INFO Completed restoring from
backup

SavedEvent 7 INFO Event saved

18.6.3.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client

The NDB management client's CLUSTERLOG STATISTICS command can provide a number of useful
statistics in its output. Counters providing information about the state of the cluster are updated at 5-
second reporting intervals by the transaction coordinator (TC) and the local query handler (LQH), and
written to the cluster log.

Transaction coordinator statistics. Each transaction has one transaction coordinator, which is chosen
by one of the following methods:

• In a round-robin fashion

• By communication proximity

• By supplying a data placement hint when the transaction is started

Note

You can determine which TC selection method is used for transactions started from
a given SQL node using the ndb_optimized_node_selection system variable.

All operations within the same transaction use the same transaction coordinator, which reports the
following statistics:

• Trans count. This is the number transactions started in the last interval using this TC as the
transaction coordinator. Any of these transactions may have committed, have been aborted, or remain
uncommitted at the end of the reporting interval.

Note

Transactions do not migrate between TCs.

• Commit count. This is the number of transactions using this TC as the transaction coordinator that
were committed in the last reporting interval. Because some transactions committed in this reporting

2993

Event Reports Generated in NDB Cluster

interval may have started in a previous reporting interval, it is possible for Commit count to be greater
than Trans count.

• Read count. This is the number of primary key read operations using this TC as the transaction
coordinator that were started in the last reporting interval, including simple reads. This count also
includes reads performed as part of unique index operations. A unique index read operation generates 2
primary key read operations—1 for the hidden unique index table, and 1 for the table on which the read
takes place.

• Simple read count. This is the number of simple read operations using this TC as the transaction
coordinator that were started in the last reporting interval.

• Write count. This is the number of primary key write operations using this TC as the transaction
coordinator that were started in the last reporting interval. This includes all inserts, updates, writes and
deletes, as well as writes performed as part of unique index operations.

Note

A unique index update operation can generate multiple PK read and write
operations on the index table and on the base table.

• AttrInfoCount. This is the number of 32-bit data words received in the last reporting interval for
primary key operations using this TC as the transaction coordinator. For reads, this is proportional to the
number of columns requested. For inserts and updates, this is proportional to the number of columns
written, and the size of their data. For delete operations, this is usually zero.

Unique index operations generate multiple PK operations and so increase this count. However, data
words sent to describe the PK operation itself, and the key information sent, are not counted here.
Attribute information sent to describe columns to read for scans, or to describe ScanFilters, is also not
counted in AttrInfoCount.

• Concurrent Operations. This is the number of primary key or scan operations using this TC as the
transaction coordinator that were started during the last reporting interval but that were not completed.
Operations increment this counter when they are started and decrement it when they are completed; this
occurs after the transaction commits. Dirty reads and writes—as well as failed operations—decrement
this counter.

The maximum value that Concurrent Operations can have is the maximum number of operations
that a TC block can support; currently, this is (2 * MaxNoOfConcurrentOperations) + 16 +
MaxNoOfConcurrentTransactions. (For more information about these configuration parameters,
see the Transaction Parameters section of Section 18.4.3.6, “Defining NDB Cluster Data Nodes”.)

• Abort count. This is the number of transactions using this TC as the transaction coordinator that
were aborted during the last reporting interval. Because some transactions that were aborted in the last
reporting interval may have started in a previous reporting interval, Abort count can sometimes be
greater than Trans count.

• Scans. This is the number of table scans using this TC as the transaction coordinator that were
started during the last reporting interval. This does not include range scans (that is, ordered index
scans).

• Range scans. This is the number of ordered index scans using this TC as the transaction coordinator
that were started in the last reporting interval.

• Local reads. This is the number of primary-key read operations performed using a transaction
coordinator on a node that also holds the primary replica of the record. This count can also be obtained
from the LOCAL_READS counter in the ndbinfo.counters table.

2994

Event Reports Generated in NDB Cluster

• Local writes. This contains the number of primary-key read operations that were performed using a
transaction coordinator on a node that also holds the primary fragment replica of the record. This count
can also be obtained from the LOCAL_WRITES counter in the ndbinfo.counters table.

Local query handler statistics (Operations). There is 1 cluster event per local query handler block
(that is, 1 per data node process). Operations are recorded in the LQH where the data they are operating
on resides.

Note

A single transaction may operate on data stored in multiple LQH blocks.

The Operations statistic provides the number of local operations performed by this LQH block in the
last reporting interval, and includes all types of read and write operations (insert, update, write, and delete
operations). This also includes operations used to replicate writes. For example, in a cluster with two
fragment replicas, the write to the primary fragment replica is recorded in the primary LQH, and the write to
the backup is recorded in the backup LQH. Unique key operations may result in multiple local operations;
however, this does not include local operations generated as a result of a table scan or ordered index
scan, which are not counted.

Process scheduler statistics. In addition to the statistics reported by the transaction coordinator and
local query handler, each ndbd process has a scheduler which also provides useful metrics relating to the
performance of an NDB Cluster. This scheduler runs in an infinite loop; during each loop the scheduler
performs the following tasks:

1. Read any incoming messages from sockets into a job buffer.

2. Check whether there are any timed messages to be executed; if so, put these into the job buffer as
well.

3. Execute (in a loop) any messages in the job buffer.

4. Send any distributed messages that were generated by executing the messages in the job buffer.

5. Wait for any new incoming messages.

Process scheduler statistics include the following:

• Mean Loop Counter. This is the number of loops executed in the third step from the preceding
list. This statistic increases in size as the utilization of the TCP/IP buffer improves. You can use this to
monitor changes in performance as you add new data node processes.

• Mean send size and Mean receive size. These statistics enable you to gauge the efficiency of,
respectively writes and reads between nodes. The values are given in bytes. Higher values mean a
lower cost per byte sent or received; the maximum value is 64K.

To cause all cluster log statistics to be logged, you can use the following command in the NDB
management client:

ndb_mgm> ALL CLUSTERLOG STATISTICS=15

Note

Setting the threshold for STATISTICS to 15 causes the cluster log to become very
verbose, and to grow quite rapidly in size, in direct proportion to the number of
cluster nodes and the amount of activity in the NDB Cluster.

For more information about NDB Cluster management client commands relating to logging and reporting,
see Section 18.6.3.1, “NDB Cluster Logging Management Commands”.

2995

Summary of NDB Cluster Start Phases

18.6.4 Summary of NDB Cluster Start Phases

This section provides a simplified outline of the steps involved when NDB Cluster data nodes are started.
More complete information can be found in NDB Cluster Start Phases, in the NDB Internals Guide.

These phases are the same as those reported in the output from the node_id STATUS command in the
management client (see Section 18.6.1, “Commands in the NDB Cluster Management Client”). These start
phases are also reported in the start_phase column of the ndbinfo.nodes table.

Start types. There are several different startup types and modes, as shown in the following list:

• Initial start. The cluster starts with a clean file system on all data nodes. This occurs either when the
cluster started for the very first time, or when all data nodes are restarted using the --initial option.

Note

Disk Data files are not removed when restarting a node using --initial.

• System restart. The cluster starts and reads data stored in the data nodes. This occurs when
the cluster has been shut down after having been in use, when it is desired for the cluster to resume
operations from the point where it left off.

• Node restart. This is the online restart of a cluster node while the cluster itself is running.

• Initial node restart. This is the same as a node restart, except that the node is reinitialized and
started with a clean file system.

Setup and initialization (phase -1). Prior to startup, each data node (ndbd process) must be initialized.
Initialization consists of the following steps:

1. Obtain a node ID

2. Fetch configuration data

3. Allocate ports to be used for inter-node communications

4. Allocate memory according to settings obtained from the configuration file

When a data node or SQL node first connects to the management node, it reserves a cluster node ID. To
make sure that no other node allocates the same node ID, this ID is retained until the node has managed
to connect to the cluster and at least one ndbd reports that this node is connected. This retention of the
node ID is guarded by the connection between the node in question and ndb_mgmd.

After each data node has been initialized, the cluster startup process can proceed. The stages which the
cluster goes through during this process are listed here:

• Phase 0. The NDBFS and NDBCNTR blocks start. Data node file systems are cleared on those data
nodes that were started with --initial option.

• Phase 1. In this stage, all remaining NDB kernel blocks are started. NDB Cluster connections are
set up, inter-block communications are established, and heartbeats are started. In the case of a node
restart, API node connections are also checked.

Note

When one or more nodes hang in Phase 1 while the remaining node or nodes
hang in Phase 2, this often indicates network problems. One possible cause
of such issues is one or more cluster hosts having multiple network interfaces.

2996

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbfs.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbcntr.html

Performing a Rolling Restart of an NDB Cluster

Another common source of problems causing this condition is the blocking of
TCP/IP ports needed for communications between cluster nodes. In the latter
case, this is often due to a misconfigured firewall.

• Phase 2. The NDBCNTR kernel block checks the states of all existing nodes. The master node is
chosen, and the cluster schema file is initialized.

• Phase 3. The DBLQH and DBTC kernel blocks set up communications between them. The startup type
is determined; if this is a restart, the DBDIH block obtains permission to perform the restart.

• Phase 4. For an initial start or initial node restart, the redo log files are created. The number of these
files is equal to NoOfFragmentLogFiles.

For a system restart:

• Read schema or schemas.

• Read data from the local checkpoint.

• Apply all redo information until the latest restorable global checkpoint has been reached.

For a node restart, find the tail of the redo log.

• Phase 5. Most of the database-related portion of a data node start is performed during this phase. For
an initial start or system restart, a local checkpoint is executed, followed by a global checkpoint. Periodic
checks of memory usage begin during this phase, and any required node takeovers are performed.

• Phase 6. In this phase, node groups are defined and set up.

• Phase 7. The arbitrator node is selected and begins to function. The next backup ID is set, as is the
backup disk write speed. Nodes reaching this start phase are marked as Started. It is now possible for
API nodes (including SQL nodes) to connect to the cluster.

• Phase 8. If this is a system restart, all indexes are rebuilt (by DBDIH).

• Phase 9. The node internal startup variables are reset.

• Phase 100 (OBSOLETE). Formerly, it was at this point during a node restart or initial node restart
that API nodes could connect to the node and begin to receive events. Currently, this phase is empty.

• Phase 101. At this point in a node restart or initial node restart, event delivery is handed over to the
node joining the cluster. The newly-joined node takes over responsibility for delivering its primary data to
subscribers. This phase is also referred to as SUMA handover phase.

After this process is completed for an initial start or system restart, transaction handling is enabled. For a
node restart or initial node restart, completion of the startup process means that the node may now act as
a transaction coordinator.

18.6.5 Performing a Rolling Restart of an NDB Cluster

This section discusses how to perform a rolling restart of an NDB Cluster installation, so called because
it involves stopping and starting (or restarting) each node in turn, so that the cluster itself remains
operational. This is often done as part of a rolling upgrade or rolling downgrade, where high availability
of the cluster is mandatory and no downtime of the cluster as a whole is permissible. Where we refer to
upgrades, the information provided here also generally applies to downgrades as well.

There are a number of reasons why a rolling restart might be desirable. These are described in the next
few paragraphs.

2997

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html

Performing a Rolling Restart of an NDB Cluster

Configuration change.
To make a change in the cluster's configuration, such as adding an SQL node to the cluster, or setting a
configuration parameter to a new value.

NDB Cluster software upgrade or downgrade. To upgrade the cluster to a newer version of the NDB
Cluster software (or to downgrade it to an older version). This is usually referred to as a “rolling upgrade”
(or “rolling downgrade”, when reverting to an older version of NDB Cluster).

Change on node host. To make changes in the hardware or operating system on which one or more
NDB Cluster node processes are running.

System reset (cluster reset).
To reset the cluster because it has reached an undesirable state. In such cases it is often desirable to
reload the data and metadata of one or more data nodes. This can be done in any of three ways:

• Start each data node process (ndbd or possibly ndbmtd) with the --initial option, which forces the
data node to clear its file system and to reload all NDB Cluster data and metadata from the other data
nodes.

• Create a backup using the ndb_mgm client START BACKUP command prior to performing the restart.
Following the upgrade, restore the node or nodes using ndb_restore.

See Section 18.6.8, “Online Backup of NDB Cluster”, and Section 18.5.22, “ndb_restore — Restore an
NDB Cluster Backup”, for more information.

• Use mysqldump to create a backup prior to the upgrade; afterward, restore the dump using LOAD
DATA.

Resource Recovery.
To free memory previously allocated to a table by successive INSERT and DELETE operations, for re-use
by other NDB Cluster tables.

The process for performing a rolling restart may be generalized as follows:

1. Stop all cluster management nodes (ndb_mgmd processes), reconfigure them, then restart them. (See
Rolling restarts with multiple management servers.)

2. Stop, reconfigure, then restart each cluster data node (ndbd process) in turn.

Some node configuration parameters can be updated by issuing RESTART for each of the data nodes
in the ndb_mgm client following the previous step. Other parameters require that the data node be
stopped completely using the management client STOP command, then started again from a system
shell by invoking the ndbd or ndbmtd executable as appropriate. (A shell command such as kill can
also be used on most Unix systems to stop a data node process, but the STOP command is preferred
and usually simpler.)

Note

On Windows, you can also use SC STOP and SC START commands, NET
STOP and NET START commands, or the Windows Service Manager to
stop and start nodes which have been installed as Windows services (see
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”).

The type of restart required is indicated in the documentation for each node configuration parameter.
See Section 18.4.3, “NDB Cluster Configuration Files”.

3. Stop, reconfigure, then restart each cluster SQL node (mysqld process) in turn.

2998

NDB Cluster Single User Mode

NDB Cluster supports a somewhat flexible order for upgrading nodes. When upgrading an NDB Cluster,
you may upgrade API nodes (including SQL nodes) before upgrading the management nodes, data nodes,
or both. In other words, you are permitted to upgrade the API and SQL nodes in any order. This is subject
to the following provisions:

• This functionality is intended for use as part of an online upgrade only. A mix of node binaries from
different NDB Cluster releases is neither intended nor supported for continuous, long-term use in a
production setting.

• You must upgrade all nodes of the same type (management, data, or API node) before upgrading any
nodes of a different type. This remains true regardless of the order in which the nodes are upgraded.

• You must upgrade all management nodes before upgrading any data nodes. This remains true
regardless of the order in which you upgrade the cluster's API and SQL nodes.

• Features specific to the “new” version must not be used until all management nodes and data nodes
have been upgraded.

This also applies to any MySQL Server version change that may apply, in addition to the NDB engine
version change, so do not forget to take this into account when planning the upgrade. (This is true for
online upgrades of NDB Cluster in general.)

It is not possible for any API node to perform schema operations (such as data definition statements)
during a node restart. Due in part to this limitation, schema operations are also not supported during an
online upgrade or downgrade. In addition, it is not possible to perform native backups while an upgrade or
downgrade is ongoing.

Rolling restarts with multiple management servers. When performing a rolling restart of an NDB
Cluster with multiple management nodes, you should keep in mind that ndb_mgmd checks to see if any
other management node is running, and, if so, tries to use that node's configuration data. To keep this from
occurring, and to force ndb_mgmd to re-read its configuration file, perform the following steps:

1. Stop all NDB Cluster ndb_mgmd processes.

2. Update all config.ini files.

3. Start a single ndb_mgmd with --reload, --initial, or both options as desired.

4. If you started the first ndb_mgmd with the --initial option, you must also start any remaining
ndb_mgmd processes using --initial.

Regardless of any other options used when starting the first ndb_mgmd, you should not start any
remaining ndb_mgmd processes after the first one using --reload.

5. Complete the rolling restarts of the data nodes and API nodes as normal.

When performing a rolling restart to update the cluster's configuration, you can use the
config_generation column of the ndbinfo.nodes table to keep track of which data nodes have been
successfully restarted with the new configuration. See Section 18.6.15.18, “The ndbinfo nodes Table”.

18.6.6 NDB Cluster Single User Mode

Single user mode enables the database administrator to restrict access to the database system to a single
API node, such as a MySQL server (SQL node) or an instance of ndb_restore. When entering single
user mode, connections to all other API nodes are closed gracefully and all running transactions are
aborted. No new transactions are permitted to start.

2999

Adding NDB Cluster Data Nodes Online

Once the cluster has entered single user mode, only the designated API node is granted access to the
database.

You can use the ALL STATUS command in the ndb_mgm client to see when the cluster has entered
single user mode. You can also check the status column of the ndbinfo.nodes table (see
Section 18.6.15.18, “The ndbinfo nodes Table”, for more information).

Example:

ndb_mgm> ENTER SINGLE USER MODE 5

After this command has executed and the cluster has entered single user mode, the API node whose node
ID is 5 becomes the cluster's only permitted user.

The node specified in the preceding command must be an API node; attempting to specify any other type
of node is rejected.

Note

When the preceding command is invoked, all transactions running on the
designated node are aborted, the connection is closed, and the server must be
restarted.

The command EXIT SINGLE USER MODE changes the state of the cluster's data nodes from single user
mode to normal mode. API nodes—such as MySQL Servers—waiting for a connection (that is, waiting for
the cluster to become ready and available), are again permitted to connect. The API node denoted as the
single-user node continues to run (if still connected) during and after the state change.

Example:

ndb_mgm> EXIT SINGLE USER MODE

There are two recommended ways to handle a node failure when running in single user mode:

• Method 1:

1. Finish all single user mode transactions

2. Issue the EXIT SINGLE USER MODE command

3. Restart the cluster's data nodes

• Method 2:

Restart data nodes prior to entering single user mode.

18.6.7 Adding NDB Cluster Data Nodes Online

This section describes how to add NDB Cluster data nodes “online”—that is, without needing to shut down
the cluster completely and restart it as part of the process.

Important

Currently, you must add new data nodes to an NDB Cluster as part of a new node
group. In addition, it is not possible to change the number of fragment replicas (or
the number of nodes per node group) online.

3000

Adding NDB Cluster Data Nodes Online

18.6.7.1 Adding NDB Cluster Data Nodes Online: General Issues

This section provides general information about the behavior of and current limitations in adding NDB
Cluster nodes online.

Redistribution of Data. The ability to add new nodes online includes a means to reorganize
NDBCLUSTER table data and indexes so that they are distributed across all data nodes, including the
new ones, by means of the ALTER ONLINE TABLE ... REORGANIZE PARTITION statement. Table
reorganization of both in-memory and Disk Data tables is supported. This redistribution does not currently
include unique indexes (only ordered indexes are redistributed). Prior to NDB 7.3.3, BLOB table data is also
not redistributed using this method (Bug #13714148).

The redistribution for NDBCLUSTER tables already existing before the new data nodes were added is not
automatic, but can be accomplished using simple SQL statements in mysql or another MySQL client
application. However, all data and indexes added to tables created after a new node group has been
added are distributed automatically among all cluster data nodes, including those added as part of the new
node group.

Partial starts. It is possible to add a new node group without all of the new data nodes being started.
It is also possible to add a new node group to a degraded cluster—that is, a cluster that is only partially
started, or where one or more data nodes are not running. In the latter case, the cluster must have enough
nodes running to be viable before the new node group can be added.

Effects on ongoing operations. Normal DML operations using NDB Cluster data are not prevented
by the creation or addition of a new node group, or by table reorganization. However, it is not possible
to perform DDL concurrently with table reorganization—that is, no other DDL statements can be issued
while an ALTER TABLE ... REORGANIZE PARTITION statement is executing. In addition, during
the execution of ALTER TABLE ... REORGANIZE PARTITION (or the execution of any other DDL
statement), it is not possible to restart cluster data nodes.

Failure handling. Failures of data nodes during node group creation and table reorganization are
handled as shown in the following table:

Table 18.52 Data node failure handling during node group creation and table reorganization

Failure during Failure in “Old” data
node

Failure in “New” data
node

System Failure

Node group creation • If a node other than
the master fails:
The creation of the
node group is always
rolled forward.

• If the master fails:

• If the internal
commit point has
been reached:
The creation of the
node group is rolled
forward.

• If the internal
commit point
has not yet been
reached. The

• If a node other than
the master fails:
The creation of the
node group is always
rolled forward.

• If the master fails:

• If the internal
commit point has
been reached:
The creation of the
node group is rolled
forward.

• If the internal
commit point
has not yet been
reached. The

• If the execution
of CREATE
NODEGROUP has
reached the internal
commit point:
When restarted, the
cluster includes the
new node group.
Otherwise it without.

• If the execution
of CREATE
NODEGROUP has
not yet reached the
internal commit
point: When
restarted, the cluster

3001

Adding NDB Cluster Data Nodes Online

Failure during Failure in “Old” data
node

Failure in “New” data
node

System Failure

creation of the node
group is rolled back

creation of the node
group is rolled back

does not include the
new node group.

Table reorganization • If a node other
than the master
fails: The table
reorganization is
always rolled forward.

• If the master fails:

• If the internal
commit point
has been
reached: The
table reorganization
is rolled forward.

• If the internal
commit point
has not yet been
reached. The
table reorganization
is rolled back.

• If a node other
than the master
fails: The table
reorganization is
always rolled forward.

• If the master fails:

• If the internal
commit point
has been
reached: The
table reorganization
is rolled forward.

• If the internal
commit point
has not yet been
reached. The
table reorganization
is rolled back.

• If the execution of
an ALTER TABLE ...
REORGANIZE
PARTITION statement
has reached the
internal commit
point: When the
cluster is restarted,
the data and indexes
belonging to table
are distributed using
the “new” data nodes.

• If the execution of
an ALTER TABLE ...
REORGANIZE
PARTITION statement
has not yet reached
the internal commit
point: When the
cluster is restarted,
the data and indexes
belonging to table
are distributed using
only the “old” data
nodes.

Dropping node groups. The ndb_mgm client supports a DROP NODEGROUP command, but it is possible
to drop a node group only when no data nodes in the node group contain any data. Since there is currently
no way to “empty” a specific data node or node group, this command works only the following two cases:

1. After issuing CREATE NODEGROUP in the ndb_mgm client, but before issuing any ALTER ONLINE
TABLE ... REORGANIZE PARTITION statements in the mysql client.

2. After dropping all NDBCLUSTER tables using DROP TABLE.

TRUNCATE TABLE does not work for this purpose because the data nodes continue to store the table
definitions.

18.6.7.2 Adding NDB Cluster Data Nodes Online: Basic procedure

In this section, we list the basic steps required to add new data nodes to an NDB Cluster. This procedure
applies whether you are using ndbd or ndbmtd binaries for the data node processes. For a more detailed
example, see Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”.

Assuming that you already have a running NDB Cluster, adding data nodes online requires the following
steps:

1. Edit the cluster configuration config.ini file, adding new [ndbd] sections corresponding to the
nodes to be added. In the case where the cluster uses multiple management servers, these changes
need to be made to all config.ini files used by the management servers.

3002

Adding NDB Cluster Data Nodes Online

You must be careful that node IDs for any new data nodes added in the config.ini file do not
overlap node IDs used by existing nodes. In the event that you have API nodes using dynamically
allocated node IDs and these IDs match node IDs that you want to use for new data nodes, it is
possible to force any such API nodes to “migrate”, as described later in this procedure.

2. Perform a rolling restart of all NDB Cluster management servers.

Important

All management servers must be restarted with the --reload or --initial
option to force the reading of the new configuration.

3. Perform a rolling restart of all existing NDB Cluster data nodes. It is not necessary (or usually even
desirable) to use --initial when restarting the existing data nodes.

If you are using API nodes with dynamically allocated IDs matching any node IDs that you wish to
assign to new data nodes, you must restart all API nodes (including SQL nodes) before restarting any
of the data nodes processes in this step. This causes any API nodes with node IDs that were previously
not explicitly assigned to relinquish those node IDs and acquire new ones.

4. Perform a rolling restart of any SQL or API nodes connected to the NDB Cluster.

5. Start the new data nodes.

The new data nodes may be started in any order. They can also be started concurrently, as long as
they are started after the rolling restarts of all existing data nodes have been completed, and before
proceeding to the next step.

6. Execute one or more CREATE NODEGROUP commands in the NDB Cluster management client to create
the new node group or node groups to which the new data nodes belong.

7. Redistribute the cluster's data among all data nodes, including the new ones. Normally this is done by
issuing an ALTER ONLINE TABLE ... REORGANIZE PARTITION statement in the mysql client for
each NDBCLUSTER table.

Exception: For tables created using the MAX_ROWS option, this statement does not work; instead, use
ALTER ONLINE TABLE ... MAX_ROWS=... to reorganize such tables.

Note

This needs to be done only for tables already existing at the time the new node
group is added. Data in tables created after the new node group is added is
distributed automatically; however, data added to any given table tbl that
existed before the new nodes were added is not distributed using the new nodes
until that table has been reorganized.

8. ALTER ONLINE TABLE ... REORGANIZE PARTITION reorganizes partitions but does not reclaim
the space freed on the “old” nodes. You can do this by issuing, for each NDBCLUSTER table, an
OPTIMIZE TABLE statement in the mysql client.

This works for space used by variable-width columns of in-memory NDB tables. OPTIMIZE TABLE is
not supported for fixed-width columns of in-memory tables; it is also not supported for Disk Data tables.

You can add all the nodes desired, then issue several CREATE NODEGROUP commands in succession to
add the new node groups to the cluster.

3003

Adding NDB Cluster Data Nodes Online

18.6.7.3 Adding NDB Cluster Data Nodes Online: Detailed Example

In this section we provide a detailed example illustrating how to add new NDB Cluster data nodes online,
starting with an NDB Cluster having 2 data nodes in a single node group and concluding with a cluster
having 4 data nodes in 2 node groups.

Starting configuration. For purposes of illustration, we assume a minimal configuration, and that the
cluster uses a config.ini file containing only the following information:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M
NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1
HostName = 198.51.100.1

[ndbd]
Id = 2
HostName = 198.51.100.2

[mgm]
HostName = 198.51.100.10
Id = 10

[api]
Id=20
HostName = 198.51.100.20

[api]
Id=21
HostName = 198.51.100.21

Note

We have left a gap in the sequence between data node IDs and other nodes. This
make it easier later to assign node IDs that are not already in use to data nodes
which are newly added.

We also assume that you have already started the cluster using the appropriate command line or my.cnf
options, and that running SHOW in the management client produces output similar to what is shown here:

-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (5.6.51-ndb-7.4.39, Nodegroup: 0, *)
id=2 @198.51.100.2 (5.6.51-ndb-7.4.39, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (5.6.51-ndb-7.4.39)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (5.6.51-ndb-7.4.39)
id=21 @198.51.100.21 (5.6.51-ndb-7.4.39)

Finally, we assume that the cluster contains a single NDBCLUSTER table created as shown here:

USE n;

CREATE TABLE ips (

3004

Adding NDB Cluster Data Nodes Online

 id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 country_code CHAR(2) NOT NULL,
 type CHAR(4) NOT NULL,
 ip_address VARCHAR(15) NOT NULL,
 addresses BIGINT UNSIGNED DEFAULT NULL,
 date BIGINT UNSIGNED DEFAULT NULL
) ENGINE NDBCLUSTER;

The memory usage and related information shown later in this section was generated after inserting
approximately 50000 rows into this table.

Note

In this example, we show the single-threaded ndbd being used for the data node
processes. However—beginning with NDB 7.0.4—you can also apply this example,
if you are using the multithreaded ndbmtd by substituting ndbmtd for ndbd
wherever it appears in the steps that follow. (Bug #43108)

Step 1: Update configuration file. Open the cluster global configuration file in a text editor and
add [ndbd] sections corresponding to the 2 new data nodes. (We give these data nodes IDs 3 and 4,
and assume that they are to be run on host machines at addresses 198.51.100.3 and 198.51.100.4,
respectively.) After you have added the new sections, the contents of the config.ini file should look like
what is shown here, where the additions to the file are shown in bold type:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M
NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1
HostName = 198.51.100.1

[ndbd]
Id = 2
HostName = 198.51.100.2

[ndbd]
Id = 3
HostName = 198.51.100.3

[ndbd]
Id = 4
HostName = 198.51.100.4

[mgm]
HostName = 198.51.100.10
Id = 10

[api]
Id=20
HostName = 198.51.100.20

[api]
Id=21
HostName = 198.51.100.21

Once you have made the necessary changes, save the file.

Step 2: Restart the management server. Restarting the cluster management server requires that you
issue separate commands to stop the management server and then to start it again, as follows:

1. Stop the management server using the management client STOP command, as shown here:

3005

Adding NDB Cluster Data Nodes Online

ndb_mgm> 10 STOP
Node 10 has shut down.
Disconnecting to allow Management Server to shutdown

$>

2. Because shutting down the management server causes the management client to terminate, you must
start the management server from the system shell. For simplicity, we assume that config.ini is
in the same directory as the management server binary, but in practice, you must supply the correct
path to the configuration file. You must also supply the --reload or --initial option so that the
management server reads the new configuration from the file rather than its configuration cache. If
your shell's current directory is also the same as the directory where the management server binary is
located, then you can invoke the management server as shown here:

$> ndb_mgmd -f config.ini --reload
2008-12-08 17:29:23 [MgmSrvr] INFO -- NDB Cluster Management Server. 5.6.51-ndb-7.4.39
2008-12-08 17:29:23 [MgmSrvr] INFO -- Reading cluster configuration from 'config.ini'

If you check the output of SHOW in the management client after restarting the ndb_mgm process, you should
now see something like this:

-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (5.6.51-ndb-7.4.39, Nodegroup: 0, *)
id=2 @198.51.100.2 (5.6.51-ndb-7.4.39, Nodegroup: 0)
id=3 (not connected, accepting connect from 198.51.100.3)
id=4 (not connected, accepting connect from 198.51.100.4)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (5.6.51-ndb-7.4.39)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (5.6.51-ndb-7.4.39)
id=21 @198.51.100.21 (5.6.51-ndb-7.4.39)

Step 3: Perform a rolling restart of the existing data nodes. This step can be accomplished entirely
within the cluster management client using the RESTART command, as shown here:

ndb_mgm> 1 RESTART
Node 1: Node shutdown initiated
Node 1: Node shutdown completed, restarting, no start.
Node 1 is being restarted

ndb_mgm> Node 1: Start initiated (version 7.4.39)
Node 1: Started (version 7.4.39)

ndb_mgm> 2 RESTART
Node 2: Node shutdown initiated
Node 2: Node shutdown completed, restarting, no start.
Node 2 is being restarted

ndb_mgm> Node 2: Start initiated (version 7.4.39)

ndb_mgm> Node 2: Started (version 7.4.39)

Important

After issuing each X RESTART command, wait until the management client reports
Node X: Started (version ...) before proceeding any further.

3006

Adding NDB Cluster Data Nodes Online

You can verify that all existing data nodes were restarted using the updated configuration by checking the
ndbinfo.nodes table in the mysql client.

Step 4: Perform a rolling restart of all cluster API nodes. Shut down and restart each MySQL server
acting as an SQL node in the cluster using mysqladmin shutdown followed by mysqld_safe (or
another startup script). This should be similar to what is shown here, where password is the MySQL root
password for a given MySQL server instance:

$> mysqladmin -uroot -ppassword shutdown
081208 20:19:56 mysqld_safe mysqld from pid file
/usr/local/mysql/var/tonfisk.pid ended
$> mysqld_safe --ndbcluster --ndb-connectstring=198.51.100.10 &
081208 20:20:06 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
081208 20:20:06 mysqld_safe Starting mysqld daemon with databases
from /usr/local/mysql/var

Of course, the exact input and output depend on how and where MySQL is installed on the system, as well
as which options you choose to start it (and whether or not some or all of these options are specified in a
my.cnf file).

Step 5: Perform an initial start of the new data nodes. From a system shell on each of the hosts for
the new data nodes, start the data nodes as shown here, using the --initial option:

$> ndbd -c 198.51.100.10 --initial

Note

Unlike the case with restarting the existing data nodes, you can start the new data
nodes concurrently; you do not need to wait for one to finish starting before starting
the other.

Wait until both of the new data nodes have started before proceeding with the next step. Once the new
data nodes have started, you can see in the output of the management client SHOW command that they do
not yet belong to any node group (as indicated with bold type here):

ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (5.6.51-ndb-7.4.39, Nodegroup: 0, *)
id=2 @198.51.100.2 (5.6.51-ndb-7.4.39, Nodegroup: 0)
id=3 @198.51.100.3 (5.6.51-ndb-7.4.39, no nodegroup)
id=4 @198.51.100.4 (5.6.51-ndb-7.4.39, no nodegroup)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (5.6.51-ndb-7.4.39)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (5.6.51-ndb-7.4.39)
id=21 @198.51.100.21 (5.6.51-ndb-7.4.39)

Step 6: Create a new node group. You can do this by issuing a CREATE NODEGROUP command in the
cluster management client. This command takes as its argument a comma-separated list of the node IDs
of the data nodes to be included in the new node group, as shown here:

ndb_mgm> CREATE NODEGROUP 3,4
Nodegroup 1 created

By issuing SHOW again, you can verify that data nodes 3 and 4 have joined the new node group (again
indicated in bold type):

3007

Adding NDB Cluster Data Nodes Online

ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (5.6.51-ndb-7.4.39, Nodegroup: 0, *)
id=2 @198.51.100.2 (5.6.51-ndb-7.4.39, Nodegroup: 0)
id=3 @198.51.100.3 (5.6.51-ndb-7.4.39, Nodegroup: 1)
id=4 @198.51.100.4 (5.6.51-ndb-7.4.39, Nodegroup: 1)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (5.6.51-ndb-7.4.39)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (5.6.51-ndb-7.4.39)
id=21 @198.51.100.21 (5.6.51-ndb-7.4.39)

Step 7: Redistribute cluster data. When a node group is created, existing data and indexes are not
automatically distributed to the new node group's data nodes, as you can see by issuing the appropriate
REPORT command in the management client:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(177 32K pages of total 3200)
Node 1: Index usage is 0%(108 8K pages of total 12832)
Node 2: Data usage is 5%(177 32K pages of total 3200)
Node 2: Index usage is 0%(108 8K pages of total 12832)
Node 3: Data usage is 0%(0 32K pages of total 3200)
Node 3: Index usage is 0%(0 8K pages of total 12832)
Node 4: Data usage is 0%(0 32K pages of total 3200)
Node 4: Index usage is 0%(0 8K pages of total 12832)

By using ndb_desc with the -p option, which causes the output to include partitioning information, you
can see that the table still uses only 2 partitions (in the Per partition info section of the output,
shown here in bold text):

$> ndb_desc -c 198.51.100.10 -d n ips -p
-- ips --
Version: 1
Fragment type: 9
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 6
Number of primary keys: 1
Length of frm data: 340
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 2
TableStatus: Retrieved
-- Attributes --
id Bigint PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
country_code Char(2;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
type Char(4;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
ip_address Varchar(15;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
addresses Bigunsigned NULL AT=FIXED ST=MEMORY
date Bigunsigned NULL AT=FIXED ST=MEMORY

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex

-- Per partition info --

3008

Adding NDB Cluster Data Nodes Online

Partition Row count Commit count Frag fixed memory Frag varsized memory
0 26086 26086 1572864 557056
1 26329 26329 1605632 557056

NDBT_ProgramExit: 0 - OK

You can cause the data to be redistributed among all of the data nodes by performing, for each NDB table,
an ALTER ONLINE TABLE ... REORGANIZE PARTITION statement in the mysql client.

Important

ALTER ONLINE TABLE ... REORGANIZE PARTITION does not work on
tables that were created with the MAX_ROWS option. Instead, use ALTER ONLINE
TABLE ... MAX_ROWS=... to reorganize such tables.

After issuing the statement ALTER ONLINE TABLE ips REORGANIZE PARTITION, you can see using
ndb_desc that the data for this table is now stored using 4 partitions, as shown here (with the relevant
portions of the output in bold type):

$> ndb_desc -c 198.51.100.10 -d n ips -p
-- ips --
Version: 16777217
Fragment type: 9
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 6
Number of primary keys: 1
Length of frm data: 341
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 4
TableStatus: Retrieved
-- Attributes --
id Bigint PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
country_code Char(2;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
type Char(4;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
ip_address Varchar(15;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
addresses Bigunsigned NULL AT=FIXED ST=MEMORY
date Bigunsigned NULL AT=FIXED ST=MEMORY

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex

-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory
0 12981 52296 1572864 557056
1 13236 52515 1605632 557056
2 13105 13105 819200 294912
3 13093 13093 819200 294912

NDBT_ProgramExit: 0 - OK

Note

Normally, ALTER [ONLINE] TABLE table_name REORGANIZE PARTITION
is used with a list of partition identifiers and a set of partition definitions to create a
new partitioning scheme for a table that has already been explicitly partitioned. Its
use here to redistribute data onto a new NDB Cluster node group is an exception

3009

Adding NDB Cluster Data Nodes Online

in this regard; when used in this way, only the name of the table is used following
the TABLE keyword, and no other keywords or identifiers follow REORGANIZE
PARTITION.

For more information, see Section 13.1.7, “ALTER TABLE Statement”.

In addition, for each table, the ALTER ONLINE TABLE statement should be followed by an OPTIMIZE
TABLE to reclaim wasted space. You can obtain a list of all NDBCLUSTER tables using the following query
against the Information Schema TABLES table:

SELECT TABLE_SCHEMA, TABLE_NAME
 FROM INFORMATION_SCHEMA.TABLES
 WHERE ENGINE = 'NDBCLUSTER';

Note

The INFORMATION_SCHEMA.TABLES.ENGINE value for an NDB Cluster table is
always NDBCLUSTER, regardless of whether the CREATE TABLE statement used to
create the table (or ALTER TABLE statement used to convert an existing table from
a different storage engine) used NDB or NDBCLUSTER in its ENGINE option.

You can see after performing these statements in the output of ALL REPORT MEMORY that the data and
indexes are now redistributed between all cluster data nodes, as shown here:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(176 32K pages of total 3200)
Node 1: Index usage is 0%(76 8K pages of total 12832)
Node 2: Data usage is 5%(176 32K pages of total 3200)
Node 2: Index usage is 0%(76 8K pages of total 12832)
Node 3: Data usage is 2%(80 32K pages of total 3200)
Node 3: Index usage is 0%(51 8K pages of total 12832)
Node 4: Data usage is 2%(80 32K pages of total 3200)
Node 4: Index usage is 0%(50 8K pages of total 12832)

Note

Since only one DDL operation on NDBCLUSTER tables can be executed at a time,
you must wait for each ALTER ONLINE TABLE ... REORGANIZE PARTITION
statement to finish before issuing the next one.

It is not necessary to issue ALTER ONLINE TABLE ... REORGANIZE PARTITION statements for
NDBCLUSTER tables created after the new data nodes have been added; data added to such tables is
distributed among all data nodes automatically. However, in NDBCLUSTER tables that existed prior to the
addition of the new nodes, neither existing nor new data is distributed using the new nodes until these
tables have been reorganized using ALTER ONLINE TABLE ... REORGANIZE PARTITION.

Alternative procedure, without rolling restart. It is possible to avoid the need for a rolling restart
by configuring the extra data nodes, but not starting them, when first starting the cluster. We assume, as
before, that you wish to start with two data nodes—nodes 1 and 2—in one node group and later to expand
the cluster to four data nodes, by adding a second node group consisting of nodes 3 and 4:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M
NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1

3010

Online Backup of NDB Cluster

HostName = 198.51.100.1

[ndbd]
Id = 2
HostName = 198.51.100.2

[ndbd]
Id = 3
HostName = 198.51.100.3
Nodegroup = 65536

[ndbd]
Id = 4
HostName = 198.51.100.4
Nodegroup = 65536

[mgm]
HostName = 198.51.100.10
Id = 10

[api]
Id=20
HostName = 198.51.100.20

[api]
Id=21
HostName = 198.51.100.21

The data nodes to be brought online at a later time (nodes 3 and 4) can be configured with NodeGroup =
65536, in which case nodes 1 and 2 can each be started as shown here:

$> ndbd -c 198.51.100.10 --initial

The data nodes configured with NodeGroup = 65536 are treated by the management server as though
you had started nodes 1 and 2 using --nowait-nodes=3,4 after waiting for a period of time determined
by the setting for the StartNoNodeGroupTimeout data node configuration parameter. By default, this is
15 seconds (15000 milliseconds).

Note

StartNoNodegroupTimeout must be the same for all data nodes in the cluster;
for this reason, you should always set it in the [ndbd default] section of the
config.ini file, rather than for individual data nodes.

When you are ready to add the second node group, you need only perform the following additional steps:

1. Start data nodes 3 and 4, invoking the data node process once for each new node:

$> ndbd -c 198.51.100.10 --initial

2. Issue the appropriate CREATE NODEGROUP command in the management client:

ndb_mgm> CREATE NODEGROUP 3,4

3. In the mysql client, issue ALTER ONLINE TABLE ... REORGANIZE PARTITION and OPTIMIZE
TABLE statements for each existing NDBCLUSTER table. (As noted elsewhere in this section, existing
NDB Cluster tables cannot use the new nodes for data distribution until this has been done.)

18.6.8 Online Backup of NDB Cluster

The next few sections describe how to prepare for and then to create an NDB Cluster backup using the
functionality for this purpose found in the ndb_mgm management client. To distinguish this type of backup

3011

Online Backup of NDB Cluster

from a backup made using mysqldump, we sometimes refer to it as a “native” NDB Cluster backup. (For
information about the creation of backups with mysqldump, see Section 4.5.4, “mysqldump — A Database
Backup Program”.) Restoration of NDB Cluster backups is done using the ndb_restore utility provided
with the NDB Cluster distribution; for information about ndb_restore and its use in restoring NDB Cluster
backups, see Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”.

18.6.8.1 NDB Cluster Backup Concepts

A backup is a snapshot of the database at a given time. The backup consists of three main parts:

• Metadata. The names and definitions of all database tables

• Table records. The data actually stored in the database tables at the time that the backup was made

• Transaction log. A sequential record telling how and when data was stored in the database

Each of these parts is saved on all nodes participating in the backup. During backup, each node saves
these three parts into three files on disk:

• BACKUP-backup_id.node_id.ctl

A control file containing control information and metadata. Each node saves the same table definitions
(for all tables in the cluster) to its own version of this file.

• BACKUP-backup_id-0.node_id.data

A data file containing the table records, which are saved on a per-fragment basis. That is, different
nodes save different fragments during the backup. The file saved by each node starts with a header that
states the tables to which the records belong. Following the list of records there is a footer containing a
checksum for all records.

• BACKUP-backup_id.node_id.log

A log file containing records of committed transactions. Only transactions on tables stored in the backup
are stored in the log. Nodes involved in the backup save different records because different nodes host
different database fragments.

In the listing just shown, backup_id stands for the backup identifier and node_id is the unique identifier
for the node creating the file.

The location of the backup files is determined by the BackupDataDir parameter.

18.6.8.2 Using The NDB Cluster Management Client to Create a Backup

Before starting a backup, make sure that the cluster is properly configured for performing one. (See
Section 18.6.8.3, “Configuration for NDB Cluster Backups”.)

The START BACKUP command is used to create a backup:

START BACKUP [backup_id] [wait_option] [snapshot_option]

wait_option:
WAIT {STARTED | COMPLETED} | NOWAIT

snapshot_option:
SNAPSHOTSTART | SNAPSHOTEND

Successive backups are automatically identified sequentially, so the backup_id, an integer greater
than or equal to 1, is optional; if it is omitted, the next available value is used. If an existing backup_id

3012

Online Backup of NDB Cluster

value is used, the backup fails with the error Backup failed: file already exists. If used, the
backup_id must follow START BACKUP immediately, before any other options are used.

The wait_option can be used to determine when control is returned to the management client after a
START BACKUP command is issued, as shown in the following list:

• If NOWAIT is specified, the management client displays a prompt immediately, as seen here:

ndb_mgm> START BACKUP NOWAIT
ndb_mgm>

In this case, the management client can be used even while it prints progress information from the
backup process.

• With WAIT STARTED the management client waits until the backup has started before returning control
to the user, as shown here:

ndb_mgm> START BACKUP WAIT STARTED
Waiting for started, this may take several minutes
Node 2: Backup 3 started from node 1
ndb_mgm>

• WAIT COMPLETED causes the management client to wait until the backup process is complete before
returning control to the user.

WAIT COMPLETED is the default.

 A snapshot_option can be used to determine whether the backup matches the state of the cluster
when START BACKUP was issued, or when it was completed. SNAPSHOTSTART causes the backup to
match the state of the cluster when the backup began; SNAPSHOTEND causes the backup to reflect the
state of the cluster when the backup was finished. SNAPSHOTEND is the default, and matches the behavior
found in previous NDB Cluster releases.

Note

If you use the SNAPSHOTSTART option with START BACKUP, and the
CompressedBackup parameter is enabled, only the data and control files are
compressed—the log file is not compressed.

If both a wait_option and a snapshot_option are used, they may be specified in either order. For
example, all of the following commands are valid, assuming that there is no existing backup having 4 as its
ID:

START BACKUP WAIT STARTED SNAPSHOTSTART
START BACKUP SNAPSHOTSTART WAIT STARTED
START BACKUP 4 WAIT COMPLETED SNAPSHOTSTART
START BACKUP SNAPSHOTEND WAIT COMPLETED
START BACKUP 4 NOWAIT SNAPSHOTSTART

The procedure for creating a backup consists of the following steps:

1. Start the management client (ndb_mgm), if it not running already.

2. Execute the START BACKUP command. This produces several lines of output indicating the progress of
the backup, as shown here:

ndb_mgm> START BACKUP
Waiting for completed, this may take several minutes
Node 2: Backup 1 started from node 1

3013

Online Backup of NDB Cluster

Node 2: Backup 1 started from node 1 completed
 StartGCP: 177 StopGCP: 180
 #Records: 7362 #LogRecords: 0
 Data: 453648 bytes Log: 0 bytes
ndb_mgm>

3. When the backup has started the management client displays this message:

Backup backup_id started from node node_id

backup_id is the unique identifier for this particular backup. This identifier is saved in the cluster
log, if it has not been configured otherwise. node_id is the identifier of the management server
that is coordinating the backup with the data nodes. At this point in the backup process the cluster
has received and processed the backup request. It does not mean that the backup has finished. An
example of this statement is shown here:

Node 2: Backup 1 started from node 1

4. The management client indicates with a message like this one that the backup has started:

Backup backup_id started from node node_id completed

As is the case for the notification that the backup has started, backup_id is the unique identifier for
this particular backup, and node_id is the node ID of the management server that is coordinating the
backup with the data nodes. This output is accompanied by additional information including relevant
global checkpoints, the number of records backed up, and the size of the data, as shown here:

Node 2: Backup 1 started from node 1 completed
 StartGCP: 177 StopGCP: 180
 #Records: 7362 #LogRecords: 0
 Data: 453648 bytes Log: 0 bytes

It is also possible to perform a backup from the system shell by invoking ndb_mgm with the -e or --
execute option, as shown in this example:

$> ndb_mgm -e "START BACKUP 6 WAIT COMPLETED SNAPSHOTSTART"

When using START BACKUP in this way, you must specify the backup ID.

Cluster backups are created by default in the BACKUP subdirectory of the DataDir on each data node.
This can be overridden for one or more data nodes individually, or for all cluster data nodes in the
config.ini file using the BackupDataDir configuration parameter. The backup files created for a
backup with a given backup_id are stored in a subdirectory named BACKUP-backup_id in the backup
directory.

Cancelling backups. To cancel or abort a backup that is already in progress, perform the following
steps:

1. Start the management client.

2. Execute this command:

ndb_mgm> ABORT BACKUP backup_id

The number backup_id is the identifier of the backup that was included in the response of the
management client when the backup was started (in the message Backup backup_id started
from node management_node_id).

3. The management client acknowledges the abort request with Abort of backup backup_id
ordered.

3014

Online Backup of NDB Cluster

Note

At this point, the management client has not yet received a response from the
cluster data nodes to this request, and the backup has not yet actually been
aborted.

4. After the backup has been aborted, the management client reports this fact in a manner similar to what
is shown here:

Node 1: Backup 3 started from 5 has been aborted.
 Error: 1321 - Backup aborted by user request: Permanent error: User defined error
Node 3: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error
Node 2: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error
Node 4: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error

In this example, we have shown sample output for a cluster with 4 data nodes, where the sequence
number of the backup to be aborted is 3, and the management node to which the cluster management
client is connected has the node ID 5. The first node to complete its part in aborting the backup reports
that the reason for the abort was due to a request by the user. (The remaining nodes report that the
backup was aborted due to an unspecified internal error.)

Note

There is no guarantee that the cluster nodes respond to an ABORT BACKUP
command in any particular order.

The Backup backup_id started from node management_node_id has been aborted
messages mean that the backup has been terminated and that all files relating to this backup have
been removed from the cluster file system.

It is also possible to abort a backup in progress from a system shell using this command:

$> ndb_mgm -e "ABORT BACKUP backup_id"

Note

If there is no backup having the ID backup_id running when an ABORT BACKUP is
issued, the management client makes no response, nor is it indicated in the cluster
log that an invalid abort command was sent.

18.6.8.3 Configuration for NDB Cluster Backups

Five configuration parameters are essential for backup:

• BackupDataBufferSize

The amount of memory used to buffer data before it is written to disk.

• BackupLogBufferSize

The amount of memory used to buffer log records before these are written to disk.

• BackupMemory

The total memory allocated in a data node for backups. This should be the sum of the memory allocated
for the backup data buffer and the backup log buffer.

3015

Importing Data Into MySQL Cluster

• BackupWriteSize

The default size of blocks written to disk. This applies for both the backup data buffer and the backup log
buffer.

• BackupMaxWriteSize

The maximum size of blocks written to disk. This applies for both the backup data buffer and the backup
log buffer.

In addition, CompressedBackup causes NDB to use compression when creating and writing to backup
files.

More detailed information about these parameters can be found in Backup Parameters.

You can also set a location for the backup files using the BackupDataDir configuration parameter. The
default is FileSystemPath/BACKUP/BACKUP-backup_id.

18.6.8.4 NDB Cluster Backup Troubleshooting

If an error code is returned when issuing a backup request, the most likely cause is insufficient memory or
disk space. You should check that there is enough memory allocated for the backup.

Important

If you have set BackupDataBufferSize and BackupLogBufferSize and their
sum is greater than 4MB, then you must also set BackupMemory as well.

You should also make sure that there is sufficient space on the hard drive partition of the backup target.

NDB does not support repeatable reads, which can cause problems with the restoration process. Although
the backup process is “hot”, restoring an NDB Cluster from backup is not a 100% “hot” process. This is due
to the fact that, for the duration of the restore process, running transactions get nonrepeatable reads from
the restored data. This means that the state of the data is inconsistent while the restore is in progress.

18.6.9 Importing Data Into MySQL Cluster

It is common when setting up a new instance of NDB Cluster to need to import data from an existing
NDB Cluster, instance of MySQL, or other source. This data is most often available in one or more of the
following formats:

• An SQL dump file such as produced by mysqldump or mysqlpump. This can be imported using the
mysql client, as shown later in this section.

• A CSV file produced by mysqldump or other export program. Such files can be imported into NDB using
LOAD DATA INFILE in the mysql client, or with the ndb_import utility provided with the NDB Cluster
distribution. For more information about the latter, see ndb_import — Import CSV Data Into NDB.

• A native NDB backup produced using START BACKUP in the NDB management client. To import a
native backup, you must use the ndb_restore program that comes as part of NDB Cluster. See
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”, for more about using this program.

When importing data from an SQL file, it is often not necessary to enforce transactions or foreign keys,
and temporarily disabling these features can speed up the import process greatly. This can be done using
the mysql client, either from a client session, or by invoking it on the command line. Within a mysql client
session, you can perform the import using the following SQL statements:

3016

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-programs-ndb-import.html

MySQL Server Usage for NDB Cluster

SET ndb_use_transactions=0;
SET foreign_key_checks=0;

source path/to/dumpfile;

SET ndb_use_transactions=1;
SET foreign_key_checks=1;

When performing the import in this fashion, you must enable ndb_use_transaction and
foreign_key_checks again following execution of the mysql client's source command. Otherwise, it
is possible for later statements in same session may also be executed without enforcing transactions or
foreign key constraints, and which could lead to data inconcsistency.

From the system shell, you can import the SQL file while disabling enforcement of transaction and foreign
keys by using the mysql client with the --init-command option, like this:

$> mysql --init-command='SET ndb_use_transactions=0; SET foreign_key_checks=0' < path/to/dumpfile

It is also possible to load the data into an InnoDB table, and convert it to use the NDB storage engine
afterwards using ALTER TABLE ... ENGINE NDB). You should take into account, especially for many
tables, that this may require a number of such operations; in addition, if foreign keys are used, you must
mind the order of the ALTER TABLE statements carefully, due to the fact that foreign keys do not work
between tables using different MySQL storage engines.

You should be aware that the methods described previously in this section are not optimized for
very large data sets or large transactions. Should an application really need big transactions or
many concurrent transactions as part of normal operation, you may wish to increase the value of the
MaxNoOfConcurrentOperations data node configuration parameter, which reserves more memory to
allow a data node to take over a transaction if its transaction coordinator stops unexpectedly.

You may also wish to do this when performing bulk DELETE or UPDATE operations on NDB Cluster tables.
If possible, try to have applications perform these operations in chunks, for example, by adding LIMIT to
such statements.

If a data import operation does not complete successfully, for whatever reason, you should be prepared
to perform any necessary cleanup including possibly one or more DROP TABLE statements, DROP
DATABASE statements, or both. Failing to do so may leave the database in an inconsistent state.

18.6.10 MySQL Server Usage for NDB Cluster

mysqld is the traditional MySQL server process. To be used with NDB Cluster, mysqld needs to
be built with support for the NDB storage engine, as it is in the precompiled binaries available from
https://dev.mysql.com/downloads/. If you build MySQL from source, you must invoke CMake with the -
DWITH_NDBCLUSTER=1 option to include support for NDB.

For more information about compiling NDB Cluster from source, see Section 18.3.1.4, “Building NDB
Cluster from Source on Linux”, and Section 18.3.2.2, “Compiling and Installing NDB Cluster from Source
on Windows”.

(For information about mysqld options and variables, in addition to those discussed in this section,
which are relevant to NDB Cluster, see Section 18.4.3.8, “MySQL Server Options and Variables for NDB
Cluster”.)

If the mysqld binary has been built with Cluster support, the NDBCLUSTER storage engine is still disabled
by default. You can use either of two possible options to enable this engine:

• Use --ndbcluster as a startup option on the command line when starting mysqld.

3017

https://dev.mysql.com/downloads/

MySQL Server Usage for NDB Cluster

• Insert a line containing ndbcluster in the [mysqld] section of your my.cnf file.

An easy way to verify that your server is running with the NDBCLUSTER storage engine enabled is to issue
the SHOW ENGINES statement in the MySQL Monitor (mysql). You should see the value YES as the
Support value in the row for NDBCLUSTER. If you see NO in this row or if there is no such row displayed in
the output, you are not running an NDB-enabled version of MySQL. If you see DISABLED in this row, you
need to enable it in either one of the two ways just described.

To read cluster configuration data, the MySQL server requires at a minimum three pieces of information:

• The MySQL server's own cluster node ID

• The host name or IP address for the management server

• The number of the TCP/IP port on which it can connect to the management server

Node IDs can be allocated dynamically, so it is not strictly necessary to specify them explicitly.

The mysqld parameter ndb-connectstring is used to specify the connection string either on the
command line when starting mysqld or in my.cnf. The connection string contains the host name or IP
address where the management server can be found, as well as the TCP/IP port it uses.

In the following example, ndb_mgmd.mysql.com is the host where the management server resides, and
the management server listens for cluster messages on port 1186:

$> mysqld --ndbcluster --ndb-connectstring=ndb_mgmd.mysql.com:1186

See Section 18.4.3.3, “NDB Cluster Connection Strings”, for more information on connection strings.

Given this information, the MySQL server can become a full participant in the cluster. (We often refer to a
mysqld process running in this manner as an SQL node.) It is fully aware of all cluster data nodes as well
as their status, and establishes connections to all data nodes. In this case, it is able to use any data node
as a transaction coordinator and to read and update node data.

You can see in the mysql client whether a MySQL server is connected to the cluster using SHOW
PROCESSLIST. If the MySQL server is connected to the cluster, and you have the PROCESS privilege, then
the first row of the output is as shown here:

mysql> SHOW PROCESSLIST \G
*************************** 1. row ***************************
 Id: 1
 User: system user
 Host:
 db:
Command: Daemon
 Time: 1
 State: Waiting for event from ndbcluster
 Info: NULL

Important

To participate in an NDB Cluster, the mysqld process must be started with both
the options --ndbcluster and --ndb-connectstring (or their equivalents in
my.cnf). If mysqld is started with only the --ndbcluster option, or if it is unable
to contact the cluster, it is not possible to work with NDB tables, nor is it possible to
create any new tables regardless of storage engine. The latter restriction is a safety
measure intended to prevent the creation of tables having the same names as NDB
tables while the SQL node is not connected to the cluster. If you wish to create

3018

NDB Cluster Disk Data Tables

tables using a different storage engine while the mysqld process is not participating
in an NDB Cluster, you must restart the server without the --ndbcluster option.

18.6.11 NDB Cluster Disk Data Tables

It is possible to store the nonindexed columns of NDB tables on disk, rather than in RAM.

As part of implementing NDB Cluster Disk Data work, a number of improvements were made in NDB
Cluster for the efficient handling of very large amounts (terabytes) of data during node recovery and restart.
These include a “no-steal” algorithm for synchronizing a starting node with very large data sets. For more
information, see the paper Recovery Principles of NDB Cluster 5.1, by NDB Cluster developers Mikael
Ronström and Jonas Oreland.

NDB Cluster Disk Data performance can be influenced by a number of configuration parameters. For
information about these parameters and their effects, see NDB Cluster Disk Data configuration parameters
and NDB Cluster Disk Data storage and GCP Stop errors

The performance of an NDB Cluster that uses Disk Data storage can also be greatly improved by
separating data node file systems from undo log files and tablespace data files, which can be done
using symbolic links. For more information, see Section 18.6.11.2, “Using Symbolic Links with Disk Data
Objects”.

18.6.11.1 NDB Cluster Disk Data Objects

NDB Cluster Disk Data storage is implemented using a number of Disk Data objects. These include the
following:

• Tablespaces act as containers for other Disk Data objects.

• Undo log files undo information required for rolling back transactions.

• One or more undo log files are assigned to a log file group, which is then assigned to a tablespace.

• Data files store Disk Data table data. A data file is assigned directly to a tablespace.

Undo log files and data files are actual files in the file system of each data node; by default they are placed
in ndb_node_id_fs in the DataDir specified in the NDB Cluster config.ini file, and where node_id
is the data node's node ID. It is possible to place these elsewhere by specifying either an absolute or
relative path as part of the filename when creating the undo log or data file. Statements that create these
files are shown later in this section.

NDB Cluster tablespaces and log file groups are not implemented as files.

Important

Although not all Disk Data objects are implemented as files, they all share the same
namespace. This means that each Disk Data object must be uniquely named (and
not merely each Disk Data object of a given type). For example, you cannot have a
tablespace and a log file group both named dd1.

Assuming that you have already set up an NDB Cluster with all nodes (including management and SQL
nodes), the basic steps for creating an NDB Cluster table on disk are as follows:

1. Create a log file group, and assign one or more undo log files to it (an undo log file is also sometimes
referred to as an undofile).

3019

http://www.vldb2005.org/program/paper/wed/p1108-ronstrom.pdf

NDB Cluster Disk Data Tables

Note

Undo log files are necessary only for Disk Data tables; they are not used for
NDBCLUSTER tables that are stored only in memory.

2. Create a tablespace; assign the log file group, as well as one or more data files, to the tablespace.

3. Create a Disk Data table that uses this tablespace for data storage.

Each of these tasks can be accomplished using SQL statements in the mysql client or other MySQL client
application, as shown in the example that follows.

1. We create a log file group named lg_1 using CREATE LOGFILE GROUP. This log file group is to be
made up of two undo log files, which we name undo_1.log and undo_2.log, whose initial sizes are
16 MB and 12 MB, respectively. (The default initial size for an undo log file is 128 MB.) Optionally, you
can also specify a size for the log file group's undo buffer, or permit it to assume the default value of 8
MB. In this example, we set the UNDO buffer's size at 2 MB. A log file group must be created with an
undo log file; so we add undo_1.log to lg_1 in this CREATE LOGFILE GROUP statement:

CREATE LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_1.log'
 INITIAL_SIZE 16M
 UNDO_BUFFER_SIZE 2M
 ENGINE NDBCLUSTER;

To add undo_2.log to the log file group, use the following ALTER LOGFILE GROUP statement:

ALTER LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_2.log'
 INITIAL_SIZE 12M
 ENGINE NDBCLUSTER;

Some items of note:

• The .log file extension used here is not required. We use it merely to make the log files easily
recognisable.

• Every CREATE LOGFILE GROUP and ALTER LOGFILE GROUP statement must include an ENGINE
option. The only permitted values for this option are NDBCLUSTER and NDB.

Important

There can exist at most one log file group in the same NDB Cluster at any
given time.

• When you add an undo log file to a log file group using ADD UNDOFILE 'filename', a file with
the name filename is created in the ndb_node_id_fs directory within the DataDir of each data
node in the cluster, where node_id is the node ID of the data node. Each undo log file is of the size
specified in the SQL statement. For example, if an NDB Cluster has 4 data nodes, then the ALTER
LOGFILE GROUP statement just shown creates 4 undo log files, 1 each on in the data directory of
each of the 4 data nodes; each of these files is named undo_2.log and each file is 12 MB in size.

• UNDO_BUFFER_SIZE is limited by the amount of system memory available.

• For more information about the CREATE LOGFILE GROUP statement, see Section 13.1.14,
“CREATE LOGFILE GROUP Statement”. For more information about ALTER LOGFILE GROUP, see
Section 13.1.4, “ALTER LOGFILE GROUP Statement”.

3020

NDB Cluster Disk Data Tables

2. Now we can create a tablespace, which contains files to be used by NDB Cluster Disk Data tables
for storing their data. A tablespace is also associated with a particular log file group. When creating a
new tablespace, you must specify the log file group which it is to use for undo logging; you must also
specify a data file. You can add more data files to the tablespace after the tablespace is created; it is
also possible to drop data files from a tablespace (an example of dropping data files is provided later in
this section).

Assume that we wish to create a tablespace named ts_1 which uses lg_1 as its log file group. This
tablespace is to contain two data files named data_1.dat and data_2.dat, whose initial sizes are
32 MB and 48 MB, respectively. (The default value for INITIAL_SIZE is 128 MB.) We can do this
using two SQL statements, as shown here:

CREATE TABLESPACE ts_1
 ADD DATAFILE 'data_1.dat'
 USE LOGFILE GROUP lg_1
 INITIAL_SIZE 32M
 ENGINE NDBCLUSTER;

ALTER TABLESPACE ts_1
 ADD DATAFILE 'data_2.dat'
 INITIAL_SIZE 48M
 ENGINE NDBCLUSTER;

The CREATE TABLESPACE statement creates a tablespace ts_1 with the data file data_1.dat,
and associates ts_1 with log file group lg_1. The ALTER TABLESPACE adds the second data file
(data_2.dat).

Some items of note:

• As is the case with the .log file extension used in this example for undo log files, there is no special
significance for the .dat file extension; it is used merely for easy recognition of data files.

• When you add a data file to a tablespace using ADD DATAFILE 'filename', a file with the name
filename is created in the ndb_node_id_fs directory within the DataDir of each data node in
the cluster, where node_id is the node ID of the data node. Each data file is of the size specified in
the SQL statement. For example, if an NDB Cluster has 4 data nodes, then the ALTER TABLESPACE
statement just shown creates 4 data files, 1 each in the data directory of each of the 4 data nodes;
each of these files is named data_2.dat and each file is 48 MB in size.

• All CREATE TABLESPACE and ALTER TABLESPACE statements must contain an ENGINE clause;
only tables using the same storage engine as the tablespace can be created in the tablespace. For
NDB Cluster tablespaces, the only permitted values for this option are NDBCLUSTER and NDB.

• For more information about the CREATE TABLESPACE and ALTER TABLESPACE statements, see
Section 13.1.18, “CREATE TABLESPACE Statement”, and Section 13.1.8, “ALTER TABLESPACE
Statement”.

3. Now it is possible to create a table whose nonindexed columns are stored on disk in the tablespace
ts_1:

CREATE TABLE dt_1 (
 member_id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 last_name VARCHAR(50) NOT NULL,
 first_name VARCHAR(50) NOT NULL,
 dob DATE NOT NULL,
 joined DATE NOT NULL,
 INDEX(last_name, first_name)
)
 TABLESPACE ts_1 STORAGE DISK

3021

NDB Cluster Disk Data Tables

 ENGINE NDBCLUSTER;

The TABLESPACE ... STORAGE DISK option tells the NDBCLUSTER storage engine to use
tablespace ts_1 for disk data storage.

Once table ts_1 has been created as shown, you can perform INSERT, SELECT, UPDATE, and
DELETE statements on it just as you would with any other MySQL table.

It is also possible to specify whether an individual column is stored on disk or in memory by using a
STORAGE clause as part of the column's definition in a CREATE TABLE or ALTER TABLE statement.
STORAGE DISK causes the column to be stored on disk, and STORAGE MEMORY causes in-memory
storage to be used. See Section 13.1.17, “CREATE TABLE Statement”, for more information.

Indexing of columns implicitly stored on disk. For table dt_1 as defined in the example just shown,
only the dob and joined columns are stored on disk. This is because there are indexes on the id,
last_name, and first_name columns, and so data belonging to these columns is stored in RAM. Only
nonindexed columns can be held on disk; indexes and indexed column data continue to be stored in
memory. This tradeoff between the use of indexes and conservation of RAM is something you must keep
in mind as you design Disk Data tables.

You cannot add an index to a column that has been explicitly declared STORAGE DISK, without first
changing its storage type to MEMORY; any attempt to do so fails with an error. A column which implicitly
uses disk storage can be indexed; when this is done, the column's storage type is changed to MEMORY
automatically. By “implicitly”, we mean a column whose storage type is not declared, but which is which
inherited from the parent table. In the following CREATE TABLE statement (using the tablespace ts_1
defined previously), columns c2 and c3 use disk storage implicitly:

mysql> CREATE TABLE ti (
 -> c1 INT PRIMARY KEY,
 -> c2 INT,
 -> c3 INT,
 -> c4 INT
 ->)
 -> STORAGE DISK
 -> TABLESPACE ts_1
 -> ENGINE NDBCLUSTER;
Query OK, 0 rows affected (1.31 sec)

Because c2, c3, and c4 are themselves not declared with STORAGE DISK, it is possible to index them.
Here, we add indexes to c2 and c3, using, respectively, CREATE INDEX and ALTER TABLE:

mysql> CREATE INDEX i1 ON ti(c2);
Query OK, 0 rows affected (2.72 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE ti ADD INDEX i2(c3);
Query OK, 0 rows affected (0.92 sec)
Records: 0 Duplicates: 0 Warnings: 0

SHOW CREATE TABLE confirms that the indexes were added.

mysql> SHOW CREATE TABLE ti\G
*************************** 1. row ***************************
 Table: ti
Create Table: CREATE TABLE `ti` (
 `c1` int(11) NOT NULL,
 `c2` int(11) DEFAULT NULL,
 `c3` int(11) DEFAULT NULL,
 `c4` int(11) DEFAULT NULL,
 PRIMARY KEY (`c1`),
 KEY `i1` (`c2`),
 KEY `i2` (`c3`)

3022

NDB Cluster Disk Data Tables

) /*!50100 TABLESPACE `ts_1` STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

You can see using ndb_desc that the indexed columns (emphasized text) now use in-memory rather than
on-disk storage:

$> ./ndb_desc -d test t1
-- t1 --
Version: 33554433
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 317
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 4
FragmentCount: 4
PartitionBalance: FOR_RP_BY_LDM
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options:
HashMap: DEFAULT-HASHMAP-3840-4
-- Attributes --
c1 Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
c2 Int NULL AT=FIXED ST=MEMORY
c3 Int NULL AT=FIXED ST=MEMORY
c4 Int NULL AT=FIXED ST=DISK
-- Indexes --
PRIMARY KEY(c1) - UniqueHashIndex
i2(c3) - OrderedIndex
PRIMARY(c1) - OrderedIndex
i1(c2) - OrderedIndex

NDBT_ProgramExit: 0 - OK

Performance note. The performance of a cluster using Disk Data storage is greatly improved if Disk
Data files are kept on a separate physical disk from the data node file system. This must be done for each
data node in the cluster to derive any noticeable benefit.

You may use absolute and relative file system paths with ADD UNDOFILE and ADD DATAFILE. Relative
paths are calculated relative to the data node's data directory. You may also use symbolic links; see
Section 18.6.11.2, “Using Symbolic Links with Disk Data Objects”, for more information and examples.

A log file group, a tablespace, and any Disk Data tables using these must be created in a particular order.
The same is true for dropping any of these objects:

• A log file group cannot be dropped as long as any tablespaces are using it.

• A tablespace cannot be dropped as long as it contains any data files.

• You cannot drop any data files from a tablespace as long as there remain any tables which are using the
tablespace.

• It is not possible to drop files created in association with a different tablespace than the one with which
the files were created. (Bug #20053)

3023

NDB Cluster Disk Data Tables

For example, to drop all the objects created so far in this section, you would use the following statements:

mysql> DROP TABLE dt_1;

mysql> ALTER TABLESPACE ts_1
 -> DROP DATAFILE 'data_2.dat'
 -> ENGINE NDBCLUSTER;

mysql> ALTER TABLESPACE ts_1
 -> DROP DATAFILE 'data_1.dat'
 -> ENGINE NDBCLUSTER;

mysql> DROP TABLESPACE ts_1
 -> ENGINE NDBCLUSTER;

mysql> DROP LOGFILE GROUP lg_1
 -> ENGINE NDBCLUSTER;

These statements must be performed in the order shown, except that the two ALTER TABLESPACE ...
DROP DATAFILE statements may be executed in either order.

You can obtain information about data files used by Disk Data tables by querying the FILES table in the
INFORMATION_SCHEMA database. An extra “NULL row” provides additional information about undo log
files. For more information and examples, see Section 21.5.1, “The INFORMATION_SCHEMA FILES
Table”.

18.6.11.2 Using Symbolic Links with Disk Data Objects

The performance of an NDB Cluster that uses Disk Data storage can be greatly improved by separating
data node file systems from undo log files and tablespace data files and placing these on different disks.
In early versions of NDB Cluster, there was no direct support for this in NDB Cluster, and it was necessary
to achieve this separation using symbolic links as described later in this section. NDB Cluster 7.3 and later
supports the data node configuration parameters FileSystemPathDD, FileSystemPathDataFiles,
and FileSystemPathUndoFiles, which make the use of symbolic links for this purpose unnecessary.
For more information about these parameters, see Disk Data file system parameters.

The procedure described in the remainder of this section is of historical interest only.

Each data node in the cluster creates a file system in the directory named ndb_node_id_fs under the
data node's DataDir as defined in the config.ini file. In this example, we assume that each data node
host has 3 disks, aliased as /data0, /data1, and /data2, and that the cluster's config.ini includes
the following:

[ndbd default]
DataDir= /data0

Our objective is to place all Disk Data log files in /data1, and all Disk Data data files in /data2, on each
data node host.

Note

In this example, we assume that the cluster's data node hosts are all using Linux
operating systems. For other platforms, you may need to substitute you operating
system's commands for those shown here.

To accomplish this, perform the following steps:

• Under the data node file system create symbolic links pointing to the other drives:

$> cd /data0/ndb_2_fs

3024

NDB Cluster Disk Data Tables

$> ls
D1 D10 D11 D2 D8 D9 LCP
$> ln -s /data0 dnlogs
$> ln -s /data1 dndata

You should now have two symbolic links:

$> ls -l --hide=D*
lrwxrwxrwx 1 user group 30 2007-03-19 13:58 dndata -> /data1
lrwxrwxrwx 1 user group 30 2007-03-19 13:59 dnlogs -> /data2

We show this only for the data node with node ID 2; however, you must do this for each data node.

• Now, in the mysql client, create a log file group and tablespace using the symbolic links, as shown here:

mysql> CREATE LOGFILE GROUP lg1
 -> ADD UNDOFILE 'dnlogs/undo1.log'
 -> INITIAL_SIZE 150M
 -> UNDO_BUFFER_SIZE = 1M
 -> ENGINE=NDBCLUSTER;

mysql> CREATE TABLESPACE ts1
 -> ADD DATAFILE 'dndata/data1.log'
 -> USE LOGFILE GROUP lg1
 -> INITIAL_SIZE 1G
 -> ENGINE=NDBCLUSTER;

Verify that the files were created and placed correctly as shown here:

$> cd /data1
$> ls -l
total 2099304
-rw-rw-r-- 1 user group 157286400 2007-03-19 14:02 undo1.dat

$> cd /data2
$> ls -l
total 2099304
-rw-rw-r-- 1 user group 1073741824 2007-03-19 14:02 data1.dat

• If you are running multiple data nodes on one host, you must take care to avoid having them try to use
the same space for Disk Data files. You can make this easier by creating a symbolic link in each data
node file system. Suppose you are using /data0 for both data node file systems, but you wish to have
the Disk Data files for both nodes on /data1. In this case, you can do something similar to what is
shown here:

$> cd /data0
$> ln -s /data1/dn2 ndb_2_fs/dd
$> ln -s /data1/dn3 ndb_3_fs/dd
$> ls -l --hide=D* ndb_2_fs
lrwxrwxrwx 1 user group 30 2007-03-19 14:22 dd -> /data1/dn2
$> ls -l --hide=D* ndb_3_fs
lrwxrwxrwx 1 user group 30 2007-03-19 14:22 dd -> /data1/dn3

• Now you can create a logfile group and tablespace using the symbolic link, like this:

mysql> CREATE LOGFILE GROUP lg1
 -> ADD UNDOFILE 'dd/undo1.log'
 -> INITIAL_SIZE 150M
 -> UNDO_BUFFER_SIZE = 1M
 -> ENGINE=NDBCLUSTER;

mysql> CREATE TABLESPACE ts1
 -> ADD DATAFILE 'dd/data1.log'
 -> USE LOGFILE GROUP lg1
 -> INITIAL_SIZE 1G

3025

Online Operations with ALTER TABLE in NDB Cluster

 -> ENGINE=NDBCLUSTER;

Verify that the files were created and placed correctly as shown here:

$> cd /data1
$> ls
dn2 dn3
$> ls dn2
undo1.log data1.log
$> ls dn3
undo1.log data1.log

18.6.11.3 NDB Cluster Disk Data Storage Requirements

 The following items apply to Disk Data storage requirements:

• Variable-length columns of Disk Data tables take up a fixed amount of space. For each row, this is equal
to the space required to store the largest possible value for that column.

For general information about calculating these values, see Section 11.6, “Data Type Storage
Requirements”.

You can obtain an estimate the amount of space available in data files and undo log files by querying
the Information Schema FILES table. For more information and examples, see Section 21.5.1, “The
INFORMATION_SCHEMA FILES Table”.

Note

The OPTIMIZE TABLE statement does not have any effect on Disk Data tables.

• In a Disk Data table, the first 256 bytes of a TEXT or BLOB column are stored in memory; only the
remainder is stored on disk.

• Each row in a Disk Data table uses 8 bytes in memory to point to the data stored on disk. This means
that, in some cases, converting an in-memory column to the disk-based format can actually result in
greater memory usage. For example, converting a CHAR(4) column from memory-based to disk-based
format increases the amount of DataMemory used per row from 4 to 8 bytes.

Important

Starting the cluster with the --initial option does not remove Disk Data files.
You must remove these manually prior to performing an initial restart of the cluster.

Performance of Disk Data tables can be improved by minimizing the number of disk seeks by making sure
that DiskPageBufferMemory is of sufficient size. You can query the diskpagebuffer table to help
determine whether the value for this parameter needs to be increased.

18.6.12 Online Operations with ALTER TABLE in NDB Cluster

MySQL NDB Cluster 7.3 and 7.4 support online table schema changes using ALTER TABLE ...
ALGORITHM=DEFAULT|INPLACE|COPY. NDB Cluster handles COPY and INPLACE as described in the
next few paragraphs.

For ALGORITHM=COPY, the mysqld NDB Cluster handler performs the following actions:

• Tells the data nodes to create an empty copy of the table, and to make the required schema changes to
this copy.

• Reads rows from the original table, and writes them to the copy.

3026

Online Operations with ALTER TABLE in NDB Cluster

• Tells the data nodes to drop the original table and then to rename the copy.

We sometimes refer to this as a “copying” or “offline” ALTER TABLE.

DML operations are not permitted concurrently with a copying ALTER TABLE.

The mysqld on which the copying ALTER TABLE statement is issued takes a metadata lock, but this is
in effect only on that mysqld. Other NDB clients can modify row data during a copying ALTER TABLE,
resulting in inconsistency.

For ALGORITHM=INPLACE, the NDB Cluster handler tells the data nodes to make the required changes,
and does not perform any copying of data.

We also refer to this as a “non-copying” or “online” ALTER TABLE.

A non-copying ALTER TABLE allows concurrent DML operations.

Regardless of the algorithm used, the mysqld takes a Global Schema Lock (GSL) while executing ALTER
TABLE; this prevents execution of any (other) DDL or backups concurrently on this or any other SQL node
in the cluster. This is normally not problematic, unless the ALTER TABLE takes a very long time.

Note

Older releases of NDB Cluster used a syntax specific to NDB that is deprecated in
NDB 7.3 and 7.4, and no longer supported in NDB 7.5 or later. (This syntax is not
supported by any other MySQL storage engine, including InnoDB.) MySQL NDB
Cluster 7.3 and later support the ALTER TABLE syntax employed by the MySQL
Server (ALGORITHM=DEFAULT|INPLACE|COPY), and described elsewhere in this
section. For these reasons, you are strongly encouraged to convert any applications
using the old ONLINE and OFFLINE syntax as soon as possible.

Operations that add and drop indexes on variable-width columns of NDB tables occur online. Online
operations are noncopying; that is, they do not require that indexes be re-created. They do not lock the
table being altered from access by other API nodes in an NDB Cluster (but see Limitations of NDB online
operations, later in this section). Such operations do not require single user mode for NDB table alterations
made in an NDB cluster with multiple API nodes; transactions can continue uninterrupted during online
DDL operations.

ALGORITHM=INPLACE can be used to perform online ADD COLUMN, ADD INDEX (including CREATE
INDEX statements), and DROP INDEX operations on NDB tables. Online renaming of NDB tables is also
supported.

Currently you cannot add disk-based columns to NDB tables online. This means that, if you wish to add an
in-memory column to an NDB table that uses a table-level STORAGE DISK option, you must declare the
new column as using memory-based storage explicitly. For example—assuming that you have already
created tablespace ts1—suppose that you create table t1 as follows:

mysql> CREATE TABLE t1 (
 > c1 INT NOT NULL PRIMARY KEY,
 > c2 VARCHAR(30)
 >)
 > TABLESPACE ts1 STORAGE DISK
 > ENGINE NDB;
Query OK, 0 rows affected (1.73 sec)
Records: 0 Duplicates: 0 Warnings: 0

You can add a new in-memory column to this table online as shown here:

mysql> ALTER TABLE t1
 > ADD COLUMN c3 INT COLUMN_FORMAT DYNAMIC STORAGE MEMORY,

3027

Online Operations with ALTER TABLE in NDB Cluster

 > ALGORITHM=INPLACE;
Query OK, 0 rows affected (1.25 sec)
Records: 0 Duplicates: 0 Warnings: 0

This statement fails if the STORAGE MEMORY option is omitted:

mysql> ALTER TABLE t1
 > ADD COLUMN c4 INT COLUMN_FORMAT DYNAMIC,
 > ALGORITHM=INPLACE;
ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason:
Adding column(s) or add/reorganize partition not supported online. Try
ALGORITHM=COPY.

If you omit the COLUMN_FORMAT DYNAMIC option, the dynamic column format is employed automatically,
but a warning is issued, as shown here:

mysql> ALTER ONLINE TABLE t1 ADD COLUMN c4 INT STORAGE MEMORY;
Query OK, 0 rows affected, 1 warning (1.17 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1478
Message: DYNAMIC column c4 with STORAGE DISK is not supported, column will
become FIXED

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `c1` int(11) NOT NULL,
 `c2` varchar(30) DEFAULT NULL,
 `c3` int(11) /*!50606 STORAGE MEMORY */ /*!50606 COLUMN_FORMAT DYNAMIC */ DEFAULT NULL,
 `c4` int(11) /*!50606 STORAGE MEMORY */ DEFAULT NULL,
 PRIMARY KEY (`c1`)
) /*!50606 TABLESPACE ts_1 STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.03 sec)

Note

The STORAGE and COLUMN_FORMAT keywords are supported only in NDB Cluster;
in any other version of MySQL, attempting to use either of these keywords in a
CREATE TABLE or ALTER TABLE statement results in an error.

It is also possible to use the statement ALTER TABLE ... REORGANIZE PARTITION,
ALGORITHM=INPLACE with no partition_names INTO (partition_definitions) option on NDB
tables. This can be used to redistribute NDB Cluster data among new data nodes that have been added
to the cluster online. This does not perform any defragmentation, which requires an OPTIMIZE TABLE or
null ALTER TABLE statement. For more information, see Section 18.6.7, “Adding NDB Cluster Data Nodes
Online”.

Limitations of NDB online operations

Online DROP COLUMN operations are not supported.

Online ALTER TABLE, CREATE INDEX, or DROP INDEX statements that add columns or add or drop
indexes are subject to the following limitations:

• A given online ALTER TABLE can use only one of ADD COLUMN, ADD INDEX, or DROP INDEX. One
or more columns can be added online in a single statement; only one index may be created or dropped
online in a single statement.

3028

Online Operations with ALTER TABLE in NDB Cluster

• The table being altered is not locked with respect to API nodes other than the one on which an online
ALTER TABLE ADD COLUMN, ADD INDEX, or DROP INDEX operation (or CREATE INDEX or DROP
INDEX statement) is run. However, the table is locked against any other operations originating on the
same API node while the online operation is being executed.

• The table to be altered must have an explicit primary key; the hidden primary key created by the NDB
storage engine is not sufficient for this purpose.

• The storage engine used by the table cannot be changed online.

• The tablespace used by the table cannot be changed online. (Bug #99269, Bug #31180526)

• When used with NDB Cluster Disk Data tables, it is not possible to change the storage type (DISK or
MEMORY) of a column online. This means, that when you add or drop an index in such a way that the
operation would be performed online, and you want the storage type of the column or columns to be
changed, you must use ALGORITHM=COPY in the statement that adds or drops the index.

Columns to be added online cannot use the BLOB or TEXT type, and must meet the following criteria:

• The columns must be dynamic; that is, it must be possible to create them using COLUMN_FORMAT
DYNAMIC. If you omit the COLUMN_FORMAT DYNAMIC option, the dynamic column format is employed
automatically.

• The columns must permit NULL values and not have any explicit default value other than NULL. Columns
added online are automatically created as DEFAULT NULL, as can be seen here:

mysql> CREATE TABLE t2 (
 > c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY
 >) ENGINE=NDB;
Query OK, 0 rows affected (1.44 sec)

mysql> ALTER TABLE t2
 > ADD COLUMN c2 INT,
 > ADD COLUMN c3 INT,
 > ALGORITHM=INPLACE;
Query OK, 0 rows affected, 2 warnings (0.93 sec)

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t2` (
 `c1` int(11) NOT NULL AUTO_INCREMENT,
 `c2` int(11) DEFAULT NULL,
 `c3` int(11) DEFAULT NULL,
 PRIMARY KEY (`c1`)
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

• The columns must be added following any existing columns. If you attempt to add a column online
before any existing columns or using the FIRST keyword, the statement fails with an error.

• Existing table columns cannot be reordered online.

For online ALTER TABLE operations on NDB tables, fixed-format columns are converted to dynamic when
they are added online, or when indexes are created or dropped online, as shown here (repeating the
CREATE TABLE and ALTER TABLE statements just shown for the sake of clarity):

mysql> CREATE TABLE t2 (
 > c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY
 >) ENGINE=NDB;
Query OK, 0 rows affected (1.44 sec)

mysql> ALTER TABLE t2

3029

Distributed Privileges Using Shared Grant Tables

 > ADD COLUMN c2 INT,
 > ADD COLUMN c3 INT,
 > ALGORITHM=INPLACE;
Query OK, 0 rows affected, 2 warnings (0.93 sec)

mysql> SHOW WARNINGS;
*************************** 1. row ***************************
 Level: Warning
 Code: 1478
Message: Converted FIXED field 'c2' to DYNAMIC to enable online ADD COLUMN
*************************** 2. row ***************************
 Level: Warning
 Code: 1478
Message: Converted FIXED field 'c3' to DYNAMIC to enable online ADD COLUMN
2 rows in set (0.00 sec)

Only the column or columns to be added online must be dynamic. Existing columns need not be; this
includes the table's primary key, which may also be FIXED, as shown here:

mysql> CREATE TABLE t3 (
 > c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY COLUMN_FORMAT FIXED
 >) ENGINE=NDB;
Query OK, 0 rows affected (2.10 sec)

mysql> ALTER TABLE t3 ADD COLUMN c2 INT, ALGORITHM=INPLACE;
Query OK, 0 rows affected, 1 warning (0.78 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW WARNINGS;
*************************** 1. row ***************************
 Level: Warning
 Code: 1478
Message: Converted FIXED field 'c2' to DYNAMIC to enable online ADD COLUMN
1 row in set (0.00 sec)

Columns are not converted from FIXED to DYNAMIC column format by renaming operations. For more
information about COLUMN_FORMAT, see Section 13.1.17, “CREATE TABLE Statement”.

The KEY, CONSTRAINT, and IGNORE keywords are supported in ALTER TABLE statements using
ALGORITHM=INPLACE.

Beginning with NDB Cluster 7.3.18 and 7.4.16, setting MAX_ROWS to 0 using an online ALTER TABLE
statement is disallowed. You must use a copying ALTER TABLE to perform this operation. (Bug
#21960004)

18.6.13 Distributed Privileges Using Shared Grant Tables

NDB Cluster supports distribution of MySQL users and privileges across all SQL nodes in an NDB Cluster.
This support is not enabled by default; you should follow the procedure outlined in this section in order to
do so.

Normally, each MySQL server's user privilege tables in the mysql database must use the MyISAM storage
engine, which means that a user account and its associated privileges created on one SQL node are
not available on the cluster's other SQL nodes. An SQL file ndb_dist_priv.sql is provided with NDB
Cluster 7.3 and later distributions. This file can be found in the share directory in the MySQL installation
directory.

The first step in enabling distributed privileges is to load this script into a MySQL Server that functions
as an SQL node (which we refer to after this as the target SQL node or MySQL Server). You can do this
by executing the following command from the system shell on the target SQL node after changing to its
MySQL installation directory (where options stands for any additional options needed to connect to this
SQL node):

3030

Distributed Privileges Using Shared Grant Tables

$> mysql options -uroot < share/ndb_dist_priv.sql

Importing ndb_dist_priv.sql creates a number of stored routines (six stored procedures and one
stored function) in the mysql database on the target SQL node. After connecting to the SQL node in the
mysql client (as the MySQL root user), you can verify that these were created as shown here:

mysql> SELECT ROUTINE_NAME, ROUTINE_SCHEMA, ROUTINE_TYPE
 -> FROM INFORMATION_SCHEMA.ROUTINES
 -> WHERE ROUTINE_NAME LIKE 'mysql_cluster%'
 -> ORDER BY ROUTINE_TYPE;
+---+----------------+--------------+
| ROUTINE_NAME | ROUTINE_SCHEMA | ROUTINE_TYPE |
+---+----------------+--------------+
mysql_cluster_privileges_are_distributed	mysql	FUNCTION
mysql_cluster_backup_privileges	mysql	PROCEDURE
mysql_cluster_move_grant_tables	mysql	PROCEDURE
mysql_cluster_move_privileges	mysql	PROCEDURE
mysql_cluster_restore_local_privileges	mysql	PROCEDURE
mysql_cluster_restore_privileges	mysql	PROCEDURE
mysql_cluster_restore_privileges_from_local	mysql	PROCEDURE
+---+----------------+--------------+
7 rows in set (0.01 sec)

The stored procedure named mysql_cluster_move_privileges creates backup copies of the existing
privilege tables, then converts them to NDB.

mysql_cluster_move_privileges performs the backup and conversion in two steps. The first step is
to call mysql_cluster_backup_privileges, which creates two sets of copies in the mysql database:

• A set of local copies that use the MyISAM storage engine. Their names are generated by adding the
suffix _backup to the original privilege table names.

• A set of distributed copies that use the NDBCLUSTER storage engine. These tables are named by
prefixing ndb_ and appending _backup to the names of the original tables.

After the copies are created, mysql_cluster_move_privileges invokes
mysql_cluster_move_grant_tables, which contains the ALTER TABLE ... ENGINE = NDB
statements that convert the mysql system tables to NDB.

Normally, you should not invoke either mysql_cluster_backup_privileges or
mysql_cluster_move_grant_tables manually; these stored procedures are intended only for use by
mysql_cluster_move_privileges.

Although the original privilege tables are backed up automatically, it is always a good idea to create
backups manually of the existing privilege tables on all affected SQL nodes before proceeding. You can do
this using mysqldump in a manner similar to what is shown here:

$> mysqldump options -uroot \
 mysql user db tables_priv columns_priv procs_priv proxies_priv > backup_file

To perform the conversion, you must be connected to the target SQL node using the mysql client (again,
as the MySQL root user). Invoke the stored procedure like this:

mysql> CALL mysql.mysql_cluster_move_privileges();
Query OK, 0 rows affected (22.32 sec)

Depending on the number of rows in the privilege tables, this procedure may take some time to execute.
If some of the privilege tables are empty, you may see one or more No data - zero rows fetched,

3031

Distributed Privileges Using Shared Grant Tables

selected, or processed warnings when mysql_cluster_move_privileges returns. In such
cases, the warnings may be safely ignored. To verify that the conversion was successful, you can use the
stored function mysql_cluster_privileges_are_distributed as shown here:

mysql> SELECT CONCAT(
 -> 'Conversion ',
 -> IF(mysql.mysql_cluster_privileges_are_distributed(), 'succeeded', 'failed'),
 -> '.')
 -> AS Result;
+-----------------------+
| Result |
+-----------------------+
| Conversion succeeded. |
+-----------------------+
1 row in set (0.00 sec)

mysql_cluster_privileges_are_distributed checks for the existence of the distributed privilege
tables and returns 1 if all of the privilege tables are distributed; otherwise, it returns 0.

You can verify that the backups have been created using a query such as this one:

mysql> SELECT TABLE_NAME, ENGINE FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA = 'mysql' AND TABLE_NAME LIKE '%backup'
 -> ORDER BY ENGINE;
+-------------------------+------------+
| TABLE_NAME | ENGINE |
+-------------------------+------------+
db_backup	MyISAM
user_backup	MyISAM
columns_priv_backup	MyISAM
tables_priv_backup	MyISAM
proxies_priv_backup	MyISAM
procs_priv_backup	MyISAM
ndb_user_backup	ndbcluster
ndb_tables_priv_backup	ndbcluster
ndb_proxies_priv_backup	ndbcluster
ndb_procs_priv_backup	ndbcluster
ndb_db_backup	ndbcluster
ndb_columns_priv_backup	ndbcluster
+-------------------------+------------+
12 rows in set (0.00 sec)

Once the conversion to distributed privileges has been made, any time a MySQL user account is created,
dropped, or has its privileges updated on any SQL node, the changes take effect immediately on all other
MySQL servers attached to the cluster. Once privileges are distributed, any new MySQL Servers that
connect to the cluster automatically participate in the distribution.

Note

For clients connected to SQL nodes at the time that
mysql_cluster_move_privileges is executed, you may need to execute
FLUSH PRIVILEGES on those SQL nodes, or to disconnect and then reconnect the
clients, in order for those clients to be able to see the changes in privileges.

All MySQL user privileges are distributed across all connected MySQL Servers. This includes any
privileges associated with views and stored routines, even though distribution of views and stored routines
themselves is not currently supported.

In the event that an SQL node becomes disconnected from the cluster while
mysql_cluster_move_privileges is running, you must drop its privilege tables after reconnecting
to the cluster, using a statement such as DROP TABLE IF EXISTS mysql.user mysql.db
mysql.tables_priv mysql.columns_priv mysql.procs_priv. This causes the SQL node to use

3032

NDB API Statistics Counters and Variables

the shared privilege tables rather than its own local versions of them. This is not needed when connecting
a new SQL node to the cluster for the first time.

In the event of an initial restart of the entire cluster (all data nodes shut down, then started again with
--initial), the shared privilege tables are lost. If this happens, you can restore them using the
original target SQL node either from the backups made by mysql_cluster_move_privileges
or from a dump file created with mysqldump. If you need to use a new MySQL Server to perform
the restoration, you should start it with --skip-grant-tables when connecting to the cluster for
the first time; after this, you can restore the privilege tables locally, then distribute them again using
mysql_cluster_move_privileges. After restoring and distributing the tables, you should restart this
MySQL Server without the --skip-grant-tables option.

You can also restore the distributed tables using ndb_restore --restore-privilege-tables
from a backup made using START BACKUP in the ndb_mgm client. (The MyISAM tables created
by mysql_cluster_move_privileges are not backed up by the START BACKUP command.)
ndb_restore does not restore the privilege tables by default; the --restore-privilege-tables
option causes it to do so.

You can restore the SQL node's local privileges using either of two procedures.
mysql_cluster_restore_privileges works as follows:

1. If copies of the mysql.ndb_*_backup tables are available, attempt to restore the system tables from
these.

2. Otherwise, attempt to restore the system tables from the local backups named *_backup (without the
ndb_ prefix).

The other procedure, named mysql_cluster_restore_local_privileges, restores the system
tables from the local backups only, without checking the ndb_* backups.

The system tables re-created by mysql_cluster_restore_privileges or
mysql_cluster_restore_local_privileges use the MySQL server default storage engine; they are
not shared or distributed in any way, and do not use NDB Cluster's NDB storage engine.

The additional stored procedure mysql_cluster_restore_privileges_from_local
is intended for the use of mysql_cluster_restore_privileges and
mysql_cluster_restore_local_privileges. It should not be invoked directly.

Important

Applications that access NDB Cluster data directly, including NDB API and ClusterJ
applications, are not subject to the MySQL privilege system. This means that,
once you have distributed the grant tables, they can be freely accessed by such
applications, just as they can any other NDB tables. In particular, you should keep in
mind that NDB API and ClusterJ applications can read and write user names, host
names, password hashes, and any other contents of the distributed grant tables
without any restrictions.

18.6.14 NDB API Statistics Counters and Variables

A number of types of statistical counters relating to actions performed by or affecting Ndb objects are
available. Such actions include starting and closing (or aborting) transactions; primary key and unique key
operations; table, range, and pruned scans; threads blocked while waiting for the completion of various
operations; and data and events sent and received by NDBCLUSTER. The counters are incremented
inside the NDB kernel whenever NDB API calls are made or data is sent to or received by the data nodes.

3033

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

NDB API Statistics Counters and Variables

mysqld exposes these counters as system status variables; their values can be read in the output of
SHOW STATUS, or by querying the Information Schema SESSION_STATUS or GLOBAL_STATUS table.
By comparing the values before and after statements operating on NDB tables, you can observe the
corresponding actions taken on the API level, and thus the cost of performing the statement.

You can list all of these status variables using the following SHOW STATUS statement:

mysql> SHOW STATUS LIKE 'ndb_api%';
+--+-------------+
| Variable_name | Value |
+--+-------------+
Ndb_api_wait_exec_complete_count	2
Ndb_api_wait_scan_result_count	3
Ndb_api_wait_meta_request_count	93
Ndb_api_wait_nanos_count	17257142866
Ndb_api_bytes_sent_count	13112
Ndb_api_bytes_received_count	112504
Ndb_api_trans_start_count	2
Ndb_api_trans_commit_count	1
Ndb_api_trans_abort_count	0
Ndb_api_trans_close_count	2
Ndb_api_pk_op_count	1
Ndb_api_uk_op_count	0
Ndb_api_table_scan_count	1
Ndb_api_range_scan_count	0
Ndb_api_pruned_scan_count	0
Ndb_api_scan_batch_count	0
Ndb_api_read_row_count	1
Ndb_api_trans_local_read_row_count	1
Ndb_api_adaptive_send_forced_count	0
Ndb_api_adaptive_send_unforced_count	3
Ndb_api_adaptive_send_deferred_count	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	64640
Ndb_api_wait_exec_complete_count_session	0
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	0
Ndb_api_wait_nanos_count_session	0
Ndb_api_bytes_sent_count_session	0
Ndb_api_bytes_received_count_session	0
Ndb_api_trans_start_count_session	0
Ndb_api_trans_commit_count_session	0
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	0
Ndb_api_pk_op_count_session	0
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	0
Ndb_api_trans_local_read_row_count_session	0
Ndb_api_adaptive_send_forced_count_session	0
Ndb_api_adaptive_send_unforced_count_session	0
Ndb_api_adaptive_send_deferred_count_session	0
Ndb_api_wait_exec_complete_count_slave	0
Ndb_api_wait_scan_result_count_slave	0
Ndb_api_wait_meta_request_count_slave	0
Ndb_api_wait_nanos_count_slave	0
Ndb_api_bytes_sent_count_slave	0
Ndb_api_bytes_received_count_slave	0
Ndb_api_trans_start_count_slave	0
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_abort_count_slave	0
Ndb_api_trans_close_count_slave	0

3034

NDB API Statistics Counters and Variables

Ndb_api_pk_op_count_slave	0
Ndb_api_uk_op_count_slave	0
Ndb_api_table_scan_count_slave	0
Ndb_api_range_scan_count_slave	0
Ndb_api_pruned_scan_count_slave	0
Ndb_api_scan_batch_count_slave	0
Ndb_api_read_row_count_slave	0
Ndb_api_trans_local_read_row_count_slave	0
Ndb_api_adaptive_send_forced_count_slave	0
Ndb_api_adaptive_send_unforced_count_slave	0
Ndb_api_adaptive_send_deferred_count_slave	0
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	43136
+--+-------------+
69 rows in set (0.00 sec)

These status variables are also available from the SESSION_STATUS and GLOBAL_STATUS tables of the
INFORMATION_SCHEMA database, as shown here:

mysql> SELECT * FROM INFORMATION_SCHEMA.SESSION_STATUS
 -> WHERE VARIABLE_NAME LIKE 'ndb_api%';
+--+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+--+----------------+
NDB_API_WAIT_EXEC_COMPLETE_COUNT	2
NDB_API_WAIT_SCAN_RESULT_COUNT	3
NDB_API_WAIT_META_REQUEST_COUNT	94
NDB_API_WAIT_NANOS_COUNT	139068474397
NDB_API_BYTES_SENT_COUNT	13172
NDB_API_BYTES_RECEIVED_COUNT	112532
NDB_API_TRANS_START_COUNT	2
NDB_API_TRANS_COMMIT_COUNT	1
NDB_API_TRANS_ABORT_COUNT	0
NDB_API_TRANS_CLOSE_COUNT	2
NDB_API_PK_OP_COUNT	1
NDB_API_UK_OP_COUNT	0
NDB_API_TABLE_SCAN_COUNT	1
NDB_API_RANGE_SCAN_COUNT	0
NDB_API_PRUNED_SCAN_COUNT	0
NDB_API_SCAN_BATCH_COUNT	0
NDB_API_READ_ROW_COUNT	1
NDB_API_TRANS_LOCAL_READ_ROW_COUNT	1
NDB_API_ADAPTIVE_SEND_FORCED_COUNT	0
NDB_API_ADAPTIVE_SEND_UNFORCED_COUNT	3
NDB_API_ADAPTIVE_SEND_DEFERRED_COUNT	0
NDB_API_EVENT_DATA_COUNT	0
NDB_API_EVENT_NONDATA_COUNT	0
NDB_API_EVENT_BYTES_COUNT	524288
NDB_API_WAIT_EXEC_COMPLETE_COUNT_SESSION	0
NDB_API_WAIT_SCAN_RESULT_COUNT_SESSION	0
NDB_API_WAIT_META_REQUEST_COUNT_SESSION	1
NDB_API_WAIT_NANOS_COUNT_SESSION	209656
NDB_API_BYTES_SENT_COUNT_SESSION	60
NDB_API_BYTES_RECEIVED_COUNT_SESSION	28
NDB_API_TRANS_START_COUNT_SESSION	0
NDB_API_TRANS_COMMIT_COUNT_SESSION	0
NDB_API_TRANS_ABORT_COUNT_SESSION	0
NDB_API_TRANS_CLOSE_COUNT_SESSION	0
NDB_API_PK_OP_COUNT_SESSION	0
NDB_API_UK_OP_COUNT_SESSION	0
NDB_API_TABLE_SCAN_COUNT_SESSION	0
NDB_API_RANGE_SCAN_COUNT_SESSION	0
NDB_API_PRUNED_SCAN_COUNT_SESSION	0
NDB_API_SCAN_BATCH_COUNT_SESSION	0
NDB_API_READ_ROW_COUNT_SESSION	0
NDB_API_TRANS_LOCAL_READ_ROW_COUNT_SESSION	0

3035

NDB API Statistics Counters and Variables

NDB_API_ADAPTIVE_SEND_FORCED_COUNT_SESSION	0
NDB_API_ADAPTIVE_SEND_UNFORCED_COUNT_SESSION	0
NDB_API_ADAPTIVE_SEND_DEFERRED_COUNT_SESSION	0
NDB_API_WAIT_EXEC_COMPLETE_COUNT_SLAVE	0
NDB_API_WAIT_SCAN_RESULT_COUNT_SLAVE	0
NDB_API_WAIT_META_REQUEST_COUNT_SLAVE	0
NDB_API_WAIT_NANOS_COUNT_SLAVE	0
NDB_API_BYTES_SENT_COUNT_SLAVE	0
NDB_API_BYTES_RECEIVED_COUNT_SLAVE	0
NDB_API_TRANS_START_COUNT_SLAVE	0
NDB_API_TRANS_COMMIT_COUNT_SLAVE	0
NDB_API_TRANS_ABORT_COUNT_SLAVE	0
NDB_API_TRANS_CLOSE_COUNT_SLAVE	0
NDB_API_PK_OP_COUNT_SLAVE	0
NDB_API_UK_OP_COUNT_SLAVE	0
NDB_API_TABLE_SCAN_COUNT_SLAVE	0
NDB_API_RANGE_SCAN_COUNT_SLAVE	0
NDB_API_PRUNED_SCAN_COUNT_SLAVE	0
NDB_API_SCAN_BATCH_COUNT_SLAVE	0
NDB_API_READ_ROW_COUNT_SLAVE	0
NDB_API_TRANS_LOCAL_READ_ROW_COUNT_SLAVE	0
NDB_API_ADAPTIVE_SEND_FORCED_COUNT_SLAVE	0
NDB_API_ADAPTIVE_SEND_UNFORCED_COUNT_SLAVE	0
NDB_API_ADAPTIVE_SEND_DEFERRED_COUNT_SLAVE	0
NDB_API_EVENT_DATA_COUNT_INJECTOR	0
NDB_API_EVENT_NONDATA_COUNT_INJECTOR	0
NDB_API_EVENT_BYTES_COUNT_INJECTOR	349568
+--+----------------+
69 rows in set (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.GLOBAL_STATUS
 -> WHERE VARIABLE_NAME LIKE 'ndb_api%';
+--+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+--+----------------+
NDB_API_WAIT_EXEC_COMPLETE_COUNT	2
NDB_API_WAIT_SCAN_RESULT_COUNT	3
NDB_API_WAIT_META_REQUEST_COUNT	94
NDB_API_WAIT_NANOS_COUNT	174615984573
NDB_API_BYTES_SENT_COUNT	13172
NDB_API_BYTES_RECEIVED_COUNT	112532
NDB_API_TRANS_START_COUNT	2
NDB_API_TRANS_COMMIT_COUNT	1
NDB_API_TRANS_ABORT_COUNT	0
NDB_API_TRANS_CLOSE_COUNT	2
NDB_API_PK_OP_COUNT	1
NDB_API_UK_OP_COUNT	0
NDB_API_TABLE_SCAN_COUNT	1
NDB_API_RANGE_SCAN_COUNT	0
NDB_API_PRUNED_SCAN_COUNT	0
NDB_API_SCAN_BATCH_COUNT	0
NDB_API_READ_ROW_COUNT	1
NDB_API_TRANS_LOCAL_READ_ROW_COUNT	1
NDB_API_ADAPTIVE_SEND_FORCED_COUNT	0
NDB_API_ADAPTIVE_SEND_UNFORCED_COUNT	3
NDB_API_ADAPTIVE_SEND_DEFERRED_COUNT	0
NDB_API_EVENT_DATA_COUNT	0
NDB_API_EVENT_NONDATA_COUNT	0
NDB_API_EVENT_BYTES_COUNT	657920
NDB_API_WAIT_EXEC_COMPLETE_COUNT_SESSION	0
NDB_API_WAIT_SCAN_RESULT_COUNT_SESSION	0
NDB_API_WAIT_META_REQUEST_COUNT_SESSION	1
NDB_API_WAIT_NANOS_COUNT_SESSION	209656
NDB_API_BYTES_SENT_COUNT_SESSION	60
NDB_API_BYTES_RECEIVED_COUNT_SESSION	28
NDB_API_TRANS_START_COUNT_SESSION	0
NDB_API_TRANS_COMMIT_COUNT_SESSION	0

3036

NDB API Statistics Counters and Variables

NDB_API_TRANS_ABORT_COUNT_SESSION	0
NDB_API_TRANS_CLOSE_COUNT_SESSION	0
NDB_API_PK_OP_COUNT_SESSION	0
NDB_API_UK_OP_COUNT_SESSION	0
NDB_API_TABLE_SCAN_COUNT_SESSION	0
NDB_API_RANGE_SCAN_COUNT_SESSION	0
NDB_API_PRUNED_SCAN_COUNT_SESSION	0
NDB_API_SCAN_BATCH_COUNT_SESSION	0
NDB_API_READ_ROW_COUNT_SESSION	0
NDB_API_TRANS_LOCAL_READ_ROW_COUNT_SESSION	0
NDB_API_ADAPTIVE_SEND_FORCED_COUNT_SESSION	0
NDB_API_ADAPTIVE_SEND_UNFORCED_COUNT_SESSION	0
NDB_API_ADAPTIVE_SEND_DEFERRED_COUNT_SESSION	0
NDB_API_WAIT_EXEC_COMPLETE_COUNT_SLAVE	0
NDB_API_WAIT_SCAN_RESULT_COUNT_SLAVE	0
NDB_API_WAIT_META_REQUEST_COUNT_SLAVE	0
NDB_API_WAIT_NANOS_COUNT_SLAVE	0
NDB_API_BYTES_SENT_COUNT_SLAVE	0
NDB_API_BYTES_RECEIVED_COUNT_SLAVE	0
NDB_API_TRANS_START_COUNT_SLAVE	0
NDB_API_TRANS_COMMIT_COUNT_SLAVE	0
NDB_API_TRANS_ABORT_COUNT_SLAVE	0
NDB_API_TRANS_CLOSE_COUNT_SLAVE	0
NDB_API_PK_OP_COUNT_SLAVE	0
NDB_API_UK_OP_COUNT_SLAVE	0
NDB_API_TABLE_SCAN_COUNT_SLAVE	0
NDB_API_RANGE_SCAN_COUNT_SLAVE	0
NDB_API_PRUNED_SCAN_COUNT_SLAVE	0
NDB_API_SCAN_BATCH_COUNT_SLAVE	0
NDB_API_READ_ROW_COUNT_SLAVE	0
NDB_API_TRANS_LOCAL_READ_ROW_COUNT_SLAVE	0
NDB_API_ADAPTIVE_SEND_FORCED_COUNT_SLAVE	0
NDB_API_ADAPTIVE_SEND_UNFORCED_COUNT_SLAVE	0
NDB_API_ADAPTIVE_SEND_DEFERRED_COUNT_SLAVE	0
NDB_API_EVENT_DATA_COUNT_INJECTOR	0
NDB_API_EVENT_NONDATA_COUNT_INJECTOR	0
NDB_API_EVENT_BYTES_COUNT_INJECTOR	439168
+--+----------------+
69 rows in set (0.00 sec)

Each Ndb object has its own counters. NDB API applications can read the values of the counters
for use in optimization or monitoring. For multithreaded clients which use more than one Ndb object
concurrently, it is also possible to obtain a summed view of counters from all Ndb objects belonging to a
given Ndb_cluster_connection.

Four sets of these counters are exposed. One set applies to the current session only; the other 3 are
global. This is in spite of the fact that their values can be obtained as either session or global status
variables in the mysql client. This means that specifying the SESSION or GLOBAL keyword with SHOW
STATUS has no effect on the values reported for NDB API statistics status variables, and the value for
each of these variables is the same whether the value is obtained from the equivalent column of the
SESSION_STATUS or the GLOBAL_STATUS table.

• Session counters (session specific)

Session counters relate to the Ndb objects in use by (only) the current session. Use of such objects by
other MySQL clients does not influence these counts.

In order to minimize confusion with standard MySQL session variables, we refer to the variables that
correspond to these NDB API session counters as “_session variables”, with a leading underscore.

• Replica counters (global)

3037

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

NDB API Statistics Counters and Variables

This set of counters relates to the Ndb objects used by the replica SQL thread, if any. If this mysqld
does not act as a replica, or does not use NDB tables, then all of these counts are 0.

We refer to the related status variables as “_slave variables” (with a leading underscore).

• Injector counters (global)

Injector counters relate to the Ndb object used to listen to cluster events by the binary log injector thread.
Even when not writing a binary log, mysqld processes attached to an NDB Cluster continue to listen for
some events, such as schema changes.

We refer to the status variables that correspond to NDB API injector counters as “_injector variables”
(with a leading underscore).

• Server (Global) counters (global)

This set of counters relates to all Ndb objects currently used by this mysqld. This includes all MySQL
client applications, the replica SQL thread (if any), the binlog injector, and the NDB utility thread.

We refer to the status variables that correspond to these counters as “global variables” or “mysqld-level
variables”.

You can obtain values for a particular set of variables by additionally filtering for the substring session,
slave, or injector in the variable name (along with the common prefix Ndb_api). For _session
variables, this can be done as shown here:

mysql> SHOW STATUS LIKE 'ndb_api%session';
+--+---------+
| Variable_name | Value |
+--+---------+
Ndb_api_wait_exec_complete_count_session	2
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	1
Ndb_api_wait_nanos_count_session	8144375
Ndb_api_bytes_sent_count_session	68
Ndb_api_bytes_received_count_session	84
Ndb_api_trans_start_count_session	1
Ndb_api_trans_commit_count_session	1
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	1
Ndb_api_pk_op_count_session	1
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	1
Ndb_api_trans_local_read_row_count_session	1
+--+---------+
18 rows in set (0.50 sec)

To obtain a listing of the NDB API mysqld-level status variables, filter for variable names beginning with
ndb_api and ending in _count, like this:

mysql> SELECT * FROM INFORMATION_SCHEMA.SESSION_STATUS
 -> WHERE VARIABLE_NAME LIKE 'ndb_api%count';
+------------------------------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+------------------------------------+----------------+
| NDB_API_WAIT_EXEC_COMPLETE_COUNT | 4 |
| NDB_API_WAIT_SCAN_RESULT_COUNT | 3 |

3038

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

NDB API Statistics Counters and Variables

NDB_API_WAIT_META_REQUEST_COUNT	28
NDB_API_WAIT_NANOS_COUNT	53756398
NDB_API_BYTES_SENT_COUNT	1060
NDB_API_BYTES_RECEIVED_COUNT	9724
NDB_API_TRANS_START_COUNT	3
NDB_API_TRANS_COMMIT_COUNT	2
NDB_API_TRANS_ABORT_COUNT	0
NDB_API_TRANS_CLOSE_COUNT	3
NDB_API_PK_OP_COUNT	2
NDB_API_UK_OP_COUNT	0
NDB_API_TABLE_SCAN_COUNT	1
NDB_API_RANGE_SCAN_COUNT	0
NDB_API_PRUNED_SCAN_COUNT	0
NDB_API_SCAN_BATCH_COUNT	0
NDB_API_READ_ROW_COUNT	2
NDB_API_TRANS_LOCAL_READ_ROW_COUNT	2
NDB_API_EVENT_DATA_COUNT	0
NDB_API_EVENT_NONDATA_COUNT	0
NDB_API_EVENT_BYTES_COUNT	0
+------------------------------------+----------------+
21 rows in set (0.09 sec)

Not all counters are reflected in all 4 sets of status variables. For the event counters
DataEventsRecvdCount, NondataEventsRecvdCount, and EventBytesRecvdCount, only
_injector and mysqld-level NDB API status variables are available:

mysql> SHOW STATUS LIKE 'ndb_api%event%';
+--------------------------------------+-------+
| Variable_name | Value |
+--------------------------------------+-------+
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
+--------------------------------------+-------+
6 rows in set (0.00 sec)

_injector status variables are not implemented for any other NDB API counters, as shown here:

mysql> SHOW STATUS LIKE 'ndb_api%injector%';
+--------------------------------------+-------+
| Variable_name | Value |
+--------------------------------------+-------+
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
+--------------------------------------+-------+
3 rows in set (0.00 sec)

The names of the status variables can easily be associated with the names of the corresponding counters.
Each NDB API statistics counter is listed in the following table with a description as well as the names of
any MySQL server status variables corresponding to this counter.

3039

NDB API Statistics Counters and Variables

Table 18.53 NDB API statistics counters

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server

WaitExecCompleteCount Number of times thread has
been blocked while waiting for
execution of an operation to
complete. Includes all execute()
calls as well as implicit executes
for blob operations and auto-
increment not visible to clients.

• Ndb_api_wait_exec_complete_count_session

• Ndb_api_wait_exec_complete_count_slave

• [none]

• Ndb_api_wait_exec_complete_count

WaitScanResultCount Number of times thread has been
blocked while waiting for a scan-
based signal, such waiting for
additional results, or for a scan to
close.

• Ndb_api_wait_scan_result_count_session

• Ndb_api_wait_scan_result_count_slave

• [none]

• Ndb_api_wait_scan_result_count

WaitMetaRequestCount Number of times thread has been
blocked waiting for a metadata-
based signal; this can occur when
waiting for a DDL operation or for
an epoch to be started (or ended).

• Ndb_api_wait_meta_request_count_session

• Ndb_api_wait_meta_request_count_slave

• [none]

• Ndb_api_wait_meta_request_count

WaitNanosCount Total time (in nanoseconds) spent
waiting for some type of signal
from the data nodes.

• Ndb_api_wait_nanos_count_session

• Ndb_api_wait_nanos_count_slave

• [none]

• Ndb_api_wait_nanos_count

BytesSentCount Amount of data (in bytes) sent to
the data nodes

• Ndb_api_bytes_sent_count_session

• Ndb_api_bytes_sent_count_slave

• [none]

• Ndb_api_bytes_sent_count

BytesRecvdCount Amount of data (in bytes) received
from the data nodes

• Ndb_api_bytes_received_count_session

• Ndb_api_bytes_received_count_slave

• [none]

• Ndb_api_bytes_received_count

TransStartCount Number of transactions started. • Ndb_api_trans_start_count_session

3040

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute

NDB API Statistics Counters and Variables

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server
• Ndb_api_trans_start_count_slave

• [none]

• Ndb_api_trans_start_count

TransCommitCount Number of transactions
committed.

• Ndb_api_trans_commit_count_session

• Ndb_api_trans_commit_count_slave

• [none]

• Ndb_api_trans_commit_count

TransAbortCount Number of transactions aborted. • Ndb_api_trans_abort_count_session

• Ndb_api_trans_abort_count_slave

• [none]

• Ndb_api_trans_abort_count

TransCloseCount Number of transactions aborted.
(This value may be greater than
the sum of TransCommitCount
and TransAbortCount.)

• Ndb_api_trans_close_count_session

• Ndb_api_trans_close_count_slave

• [none]

• Ndb_api_trans_close_count

PkOpCount Number of operations based
on or using primary keys. This
count includes blob-part table
operations, implicit unlocking
operations, and auto-increment
operations, as well as primary
key operations normally visible to
MySQL clients.

• Ndb_api_pk_op_count_session

• Ndb_api_pk_op_count_slave

• [none]

• Ndb_api_pk_op_count

UkOpCount Number of operations based on or
using unique keys.

• Ndb_api_uk_op_count_session

• Ndb_api_uk_op_count_slave

• [none]

• Ndb_api_uk_op_count

TableScanCount Number of table scans that have
been started. This includes scans
of internal tables.

• Ndb_api_table_scan_count_session

• Ndb_api_table_scan_count_slave

3041

NDB API Statistics Counters and Variables

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server
• [none]

• Ndb_api_table_scan_count

RangeScanCount Number of range scans that have
been started.

• Ndb_api_range_scan_count_session

• Ndb_api_range_scan_count_slave

• [none]

• Ndb_api_range_scan_count

PrunedScanCount Number of scans that have been
pruned to a single partition.

• Ndb_api_pruned_scan_count_session

• Ndb_api_pruned_scan_count_slave

• [none]

• Ndb_api_pruned_scan_count

ScanBatchCount Number of batches of rows
received. (A batch in this context
is a set of scan results from a
single fragment.)

• Ndb_api_scan_batch_count_session

• Ndb_api_scan_batch_count_slave

• [none]

• Ndb_api_scan_batch_count

ReadRowCount Total number of rows that have
been read. Includes rows read
using primary key, unique key,
and scan operations.

• Ndb_api_read_row_count_session

• Ndb_api_read_row_count_slave

• [none]

• Ndb_api_read_row_count

TransLocalReadRowCount Number of rows read from the
data same node on which the
transaction was being run.

• Ndb_api_trans_local_read_row_count_session

• Ndb_api_trans_local_read_row_count_slave

• [none]

• Ndb_api_trans_local_read_row_count

DataEventsRecvdCount Number of row change events
received.

• [none]

• [none]

• Ndb_api_event_data_count_injector

• Ndb_api_event_data_count

3042

NDB API Statistics Counters and Variables

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server

NondataEventsRecvdCount Number of events received, other
than row change events.

• [none]

• [none]

• Ndb_api_event_nondata_count_injector

• Ndb_api_event_nondata_count

EventBytesRecvdCount Number of bytes of events
received.

• [none]

• [none]

• Ndb_api_event_bytes_count_injector

• Ndb_api_event_bytes_count

To see all counts of committed transactions—that is, all TransCommitCount counter status variables—
you can filter the results of SHOW STATUS for the substring trans_commit_count, like this:

mysql> SHOW STATUS LIKE '%trans_commit_count%';
+------------------------------------+-------+
| Variable_name | Value |
+------------------------------------+-------+
Ndb_api_trans_commit_count_session	1
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_commit_count	2
+------------------------------------+-------+
3 rows in set (0.00 sec)

From this you can determine that 1 transaction has been committed in the current mysql client session,
and 2 transactions have been committed on this mysqld since it was last restarted.

You can see how various NDB API counters are incremented by a given SQL statement by comparing
the values of the corresponding _session status variables immediately before and after performing the
statement. In this example, after getting the initial values from SHOW STATUS, we create in the test
database an NDB table, named t, that has a single column:

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--+--------+
| Variable_name | Value |
+--+--------+
Ndb_api_wait_exec_complete_count_session	2
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	3
Ndb_api_wait_nanos_count_session	820705
Ndb_api_bytes_sent_count_session	132
Ndb_api_bytes_received_count_session	372
Ndb_api_trans_start_count_session	1
Ndb_api_trans_commit_count_session	1
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	1

3043

NDB API Statistics Counters and Variables

Ndb_api_pk_op_count_session	1
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	1
Ndb_api_trans_local_read_row_count_session	1
+--+--------+
18 rows in set (0.00 sec)

mysql> USE test;
Database changed
mysql> CREATE TABLE t (c INT) ENGINE NDBCLUSTER;
Query OK, 0 rows affected (0.85 sec)

Now you can execute a new SHOW STATUS statement and observe the changes, as shown here (with the
changed rows highlighted in the output):

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--+-----------+
| Variable_name | Value |
+--+-----------+
Ndb_api_wait_exec_complete_count_session	8
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	17
Ndb_api_wait_nanos_count_session	706871709
Ndb_api_bytes_sent_count_session	2376
Ndb_api_bytes_received_count_session	3844
Ndb_api_trans_start_count_session	4
Ndb_api_trans_commit_count_session	4
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	4
Ndb_api_pk_op_count_session	6
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	2
Ndb_api_trans_local_read_row_count_session	1
+--+-----------+
18 rows in set (0.00 sec)

Similarly, you can see the changes in the NDB API statistics counters caused by inserting a row into t:
Insert the row, then run the same SHOW STATUS statement used in the previous example, as shown here:

mysql> INSERT INTO t VALUES (100);
Query OK, 1 row affected (0.00 sec)

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--+-----------+
| Variable_name | Value |
+--+-----------+
Ndb_api_wait_exec_complete_count_session	11
Ndb_api_wait_scan_result_count_session	6
Ndb_api_wait_meta_request_count_session	20
Ndb_api_wait_nanos_count_session	707370418
Ndb_api_bytes_sent_count_session	2724
Ndb_api_bytes_received_count_session	4116
Ndb_api_trans_start_count_session	7
Ndb_api_trans_commit_count_session	6
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	7
Ndb_api_pk_op_count_session	8
Ndb_api_uk_op_count_session	0

3044

ndbinfo: The NDB Cluster Information Database

Ndb_api_table_scan_count_session	1
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	3
Ndb_api_trans_local_read_row_count_session	2
+--+-----------+
18 rows in set (0.00 sec)

We can make a number of observations from these results:

• Although we created t with no explicit primary key, 5 primary key operations were performed in doing so
(the difference in the “before” and “after” values of Ndb_api_pk_op_count_session, or 6 minus 1).
This reflects the creation of the hidden primary key that is a feature of all tables using the NDB storage
engine.

• By comparing successive values for Ndb_api_wait_nanos_count_session, we can see that the
NDB API operations implementing the CREATE TABLE statement waited much longer (706871709 -
820705 = 706051004 nanoseconds, or approximately 0.7 second) for responses from the data nodes
than those executed by the INSERT (707370418 - 706871709 = 498709 ns or roughly .0005 second).
The execution times reported for these statements in the mysql client correlate roughly with these
figures.

On platforms without sufficient (nanosecond) time resolution, small changes in the value of
the WaitNanosCount NDB API counter due to SQL statements that execute very quickly
may not always be visible in the values of Ndb_api_wait_nanos_count_session,
Ndb_api_wait_nanos_count_slave, or Ndb_api_wait_nanos_count.

• The INSERT statement incremented both the ReadRowCount and TransLocalReadRowCount NDB
API statistics counters, as reflected by the increased values of Ndb_api_read_row_count_session
and Ndb_api_trans_local_read_row_count_session.

18.6.15 ndbinfo: The NDB Cluster Information Database

ndbinfo is a database containing information specific to NDB Cluster.

This database contains a number of tables, each providing a different sort of data about NDB Cluster node
status, resource usage, and operations. You can find more detailed information about each of these tables
in the next several sections.

ndbinfo is included with NDB Cluster support in the MySQL Server; no special compilation or
configuration steps are required; the tables are created by the MySQL Server when it connects to the
cluster. You can verify that ndbinfo support is active in a given MySQL Server instance using SHOW
PLUGINS; if ndbinfo support is enabled, you should see a row containing ndbinfo in the Name column
and ACTIVE in the Status column, as shown here (emphasized text):

mysql> SHOW PLUGINS;
+----------------------------------+--------+--------------------+---------+---------+
| Name | Status | Type | Library | License |
+----------------------------------+--------+--------------------+---------+---------+
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
mysql_native_password	ACTIVE	AUTHENTICATION	NULL	GPL
mysql_old_password	ACTIVE	AUTHENTICATION	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
PERFORMANCE_SCHEMA	ACTIVE	STORAGE ENGINE	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbcluster	ACTIVE	STORAGE ENGINE	NULL	GPL

3045

ndbinfo: The NDB Cluster Information Database

ndbinfo	ACTIVE	STORAGE ENGINE	NULL	GPL
ndb_transid_mysql_connection_map	ACTIVE	INFORMATION SCHEMA	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
INNODB_TRX	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_LOCKS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_LOCK_WAITS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMPMEM	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMPMEM_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL
partition	ACTIVE	STORAGE ENGINE	NULL	GPL
+----------------------------------+--------+--------------------+---------+---------+
22 rows in set (0.00 sec)

You can also do this by checking the output of SHOW ENGINES for a line including ndbinfo in the Engine
column and YES in the Support column, as shown here (emphasized text):

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: ndbcluster
 Support: YES
 Comment: Clustered, fault-tolerant tables
Transactions: YES
 XA: NO
 Savepoints: NO
*************************** 2. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 3. row ***************************
 Engine: ndbinfo
 Support: YES
 Comment: NDB Cluster system information storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 4. row ***************************
 Engine: CSV
 Support: YES
 Comment: CSV storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: MEMORY
 Support: YES
 Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 6. row ***************************
 Engine: FEDERATED
 Support: NO
 Comment: Federated MySQL storage engine
Transactions: NULL
 XA: NULL
 Savepoints: NULL
*************************** 7. row ***************************
 Engine: ARCHIVE
 Support: YES
 Comment: Archive storage engine
Transactions: NO
 XA: NO
 Savepoints: NO

3046

ndbinfo: The NDB Cluster Information Database

*************************** 8. row ***************************
 Engine: InnoDB
 Support: YES
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 9. row ***************************
 Engine: MyISAM
 Support: DEFAULT
 Comment: Default engine as of MySQL 3.23 with great performance
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 10. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
10 rows in set (0.00 sec)

If ndbinfo support is enabled, then you can access ndbinfo using SQL statements in mysql or another
MySQL client. For example, you can see ndbinfo listed in the output of SHOW DATABASES, as shown
here (emphasized text):

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| ndbinfo |
| test |
+--------------------+
4 rows in set (0.00 sec)

If the mysqld process was not started with the --ndbcluster option, ndbinfo is not available and
is not displayed by SHOW DATABASES. If mysqld was formerly connected to an NDB Cluster but the
cluster becomes unavailable (due to events such as cluster shutdown, loss of network connectivity, and so
forth), ndbinfo and its tables remain visible, but an attempt to access any tables (other than blocks or
config_params) fails with Got error 157 'Connection to NDB failed' from NDBINFO.

With the exception of the blocks and config_params tables, what we refer to as ndbinfo “tables”
are actually views generated from internal NDB tables not normally visible to the MySQL Server. You can
make these tables visible by setting the ndbinfo_show_hidden system variable to ON (or 1), but this is
normally not necessary.

All ndbinfo tables are read-only, and are generated on demand when queried. Because many of them
are generated in parallel by the data nodes while other are specific to a given SQL node, they are not
guaranteed to provide a consistent snapshot.

In addition, pushing down of joins is not supported on ndbinfo tables; so joining large ndbinfo tables
can require transfer of a large amount of data to the requesting API node, even when the query makes use
of a WHERE clause.

ndbinfo tables are not included in the query cache. (Bug #59831)

You can select the ndbinfo database with a USE statement, and then issue a SHOW TABLES statement to
obtain a list of tables, just as for any other database, like this:

mysql> USE ndbinfo;

3047

ndbinfo: The NDB Cluster Information Database

Database changed

mysql> SHOW TABLES;
+---------------------------------+
| Tables_in_ndbinfo |
+---------------------------------+
| arbitrator_validity_detail |
| arbitrator_validity_summary |
| blocks |
| cluster_operations |
| cluster_transactions |
| config_params |
| counters |
| dict_obj_types |
| disk_write_speed_aggregate |
| disk_write_speed_aggregate_node |
| disk_write_speed_base |
| diskpagebuffer |
| logbuffers |
| logspaces |
| membership |
| memory_per_fragment |
| memoryusage |
| nodes |
| operations_per_fragment |
| resources |
| restart_info |
| server_operations |
| server_transactions |
| threadblocks |
| threadstat |
| transporters |
+---------------------------------+
26 rows in set (0.00 sec)

The dict_obj_types, disk_write_speed_aggregate, disk_write_speed_aggregate_node,
disk_write_speed_base, restart_info, and operations_per_fragment tables was added in
NDB 7.4.

You can execute SELECT statements against these tables, just as you would normally expect:

mysql> SELECT * FROM memoryusage;
+---------+---------------------+--------+------------+------------+-------------+
| node_id | memory_type | used | used_pages | total | total_pages |
+---------+---------------------+--------+------------+------------+-------------+
5	Data memory	753664	23	1073741824	32768
5	Index memory	163840	20	1074003968	131104
5	Long message buffer	2304	9	67108864	262144
6	Data memory	753664	23	1073741824	32768
6	Index memory	163840	20	1074003968	131104
6	Long message buffer	2304	9	67108864	262144
+---------+---------------------+--------+------------+------------+-------------+
6 rows in set (0.02 sec)

More complex queries, such as the two following SELECT statements using the memoryusage table, are
possible:

mysql> SELECT SUM(used) as 'Data Memory Used, All Nodes'
 > FROM memoryusage
 > WHERE memory_type = 'Data memory';
+-----------------------------+
| Data Memory Used, All Nodes |
+-----------------------------+
| 6460 |
+-----------------------------+
1 row in set (0.37 sec)

3048

ndbinfo: The NDB Cluster Information Database

mysql> SELECT SUM(max) as 'Total IndexMemory Available'
 > FROM memoryusage
 > WHERE memory_type = 'Index memory';
+-----------------------------+
| Total IndexMemory Available |
+-----------------------------+
| 25664 |
+-----------------------------+
1 row in set (0.33 sec)

ndbinfo table and column names are case-sensitive (as is the name of the ndbinfo database itself).
These identifiers are in lowercase. Trying to use the wrong lettercase results in an error, as shown in this
example:

mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+
| node_id | uptime | status | start_phase |
+---------+--------+---------+-------------+
| 1 | 13602 | STARTED | 0 |
| 2 | 16 | STARTED | 0 |
+---------+--------+---------+-------------+
2 rows in set (0.04 sec)

mysql> SELECT * FROM Nodes;
ERROR 1146 (42S02): Table 'ndbinfo.Nodes' doesn't exist

mysqldump ignores the ndbinfo database entirely, and excludes it from any output. This is true even
when using the --databases or --all-databases option.

NDB Cluster also maintains tables in the INFORMATION_SCHEMA information database, including the
FILES table which contains information about files used for NDB Cluster Disk Data storage, and the
ndb_transid_mysql_connection_map table, which shows the relationships between transactions,
transaction coordinators, and NDB Cluster API nodes. For more information, see the descriptions of the
tables or Section 21.5, “INFORMATION_SCHEMA NDB Cluster Tables”.

18.6.15.1 The ndbinfo arbitrator_validity_detail Table

The arbitrator_validity_detail table shows the view that each data node in the cluster has of the
arbitrator. It is a subset of the membership table.

The arbitrator_validity_detail table contains the following columns:

• node_id

This node's node ID

• arbitrator

Node ID of arbitrator

• arb_ticket

Internal identifier used to track arbitration

• arb_connected

Whether this node is connected to the arbitrator

• arb_state

Arbitration state

3049

ndbinfo: The NDB Cluster Information Database

Notes

The node ID is the same as that reported by ndb_mgm -e "SHOW".

All nodes should show the same arbitrator and arb_ticket values as well as the same arb_state
value. Possible arb_state values are ARBIT_NULL, ARBIT_INIT, ARBIT_FIND, ARBIT_PREP1,
ARBIT_PREP2, ARBIT_START, ARBIT_RUN, ARBIT_CHOOSE, ARBIT_CRASH, and UNKNOWN.

arb_connected shows whether the current node is connected to the arbitrator.

18.6.15.2 The ndbinfo arbitrator_validity_summary Table

The arbitrator_validity_summary table provides a composite view of the arbitrator with regard to
the cluster's data nodes.

The arbitrator_validity_summary table contains the following columns:

• arbitrator

Node ID of arbitrator

• arb_ticket

Internal identifier used to track arbitration

• arb_connected

Whether this arbitrator is connected to the cluster

• consensus_count

Number of data nodes that see this node as arbitrator

Notes

In normal operations, this table should have only 1 row for any appreciable length of time. If it has more
than 1 row for longer than a few moments, then either not all nodes are connected to the arbitrator, or all
nodes are connected, but do not agree on the same arbitrator.

The arbitrator column shows the arbitrator's node ID.

arb_ticket is the internal identifier used by this arbitrator.

arb_connected shows whether this node is connected to the cluster as an arbitrator.

18.6.15.3 The ndbinfo blocks Table

The blocks table is a static table which simply contains the names and internal IDs of all NDB kernel
blocks (see NDB Kernel Blocks). It is for use by the other ndbinfo tables (most of which are actually
views) in mapping block numbers to block names for producing human-readable output.

The blocks table contains the following columns:

• block_number

Block number

• block_name

Block name

3050

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html

ndbinfo: The NDB Cluster Information Database

Notes

To obtain a list of all block names, simply execute SELECT block_name FROM ndbinfo.blocks.
Although this is a static table, its content can vary between different NDB Cluster releases.

18.6.15.4 The ndbinfo cluster_operations Table

The cluster_operations table provides a per-operation (stateful primary key op) view of all activity
in the NDB Cluster from the point of view of the local data management (LQH) blocks (see The DBLQH
Block).

The cluster_operations table contains the following columns:

• node_id

Node ID of reporting LQH block

• block_instance

LQH block instance

• transid

Transaction ID

• operation_type

Operation type (see text for possible values)

• state

Operation state (see text for possible values)

• tableid

Table ID

• fragmentid

Fragment ID

• client_node_id

Client node ID

• client_block_ref

Client block reference

• tc_node_id

Transaction coordinator node ID

• tc_block_no

Transaction coordinator block number

• tc_block_instance

Transaction coordinator block instance

3051

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html

ndbinfo: The NDB Cluster Information Database

Notes

The transaction ID is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API transaction
ID of an ongoing transaction.)

The operation_type column can take any one of the values READ, READ-SH, READ-EX, INSERT,
UPDATE, DELETE, WRITE, UNLOCK, REFRESH, SCAN, SCAN-SH, SCAN-EX, or <unknown>.

The state column can have any one of the values ABORT_QUEUED, ABORT_STOPPED,
COMMITTED, COMMIT_QUEUED, COMMIT_STOPPED, COPY_CLOSE_STOPPED,
COPY_FIRST_STOPPED, COPY_STOPPED, COPY_TUPKEY, IDLE, LOG_ABORT_QUEUED,
LOG_COMMIT_QUEUED, LOG_COMMIT_QUEUED_WAIT_SIGNAL, LOG_COMMIT_WRITTEN,
LOG_COMMIT_WRITTEN_WAIT_SIGNAL, LOG_QUEUED, PREPARED, PREPARED_RECEIVED_COMMIT,
SCAN_CHECK_STOPPED, SCAN_CLOSE_STOPPED, SCAN_FIRST_STOPPED, SCAN_RELEASE_STOPPED,
SCAN_STATE_USED, SCAN_STOPPED, SCAN_TUPKEY, STOPPED, TC_NOT_CONNECTED, WAIT_ACC,
WAIT_ACC_ABORT, WAIT_AI_AFTER_ABORT, WAIT_ATTR, WAIT_SCAN_AI, WAIT_TUP,
WAIT_TUPKEYINFO, WAIT_TUP_COMMIT, or WAIT_TUP_TO_ABORT. (If the MySQL Server is running
with ndbinfo_show_hidden enabled, you can view this list of states by selecting from the ndb
$dblqh_tcconnect_state table, which is normally hidden.)

You can obtain the name of an NDB table from its table ID by checking the output of ndb_show_tables.

The fragid is the same as the partition number seen in the output of ndb_desc --extra-partition-
info (short form -p).

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node (that
is, an NDB API client or a MySQL Server attached to the cluster).

The block_instance and tc_block_instance column provide, respectively, the DBLQH and DBTC
block instance numbers. You can use these along with the block names to obtain information about
specific threads from the threadblocks table.

18.6.15.5 The ndbinfo cluster_transactions Table

The cluster_transactions table shows information about all ongoing transactions in an NDB Cluster.

The cluster_transactions table contains the following columns:

• node_id

Node ID of transaction coordinator

• block_instance

TC block instance

• transid

Transaction ID

• state

Operation state (see text for possible values)

• count_operations

3052

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

Number of stateful primary key operations in transaction (includes reads with locks, as well as DML
operations)

• outstanding_operations

Operations still being executed in local data management blocks

• inactive_seconds

Time spent waiting for API

• client_node_id

Client node ID

• client_block_ref

Client block reference

Notes

The transaction ID is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API transaction
ID of an ongoing transaction.)

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table.

The state column can have any one of the values CS_ABORTING, CS_COMMITTING, CS_COMMIT_SENT,
CS_COMPLETE_SENT, CS_COMPLETING, CS_CONNECTED, CS_DISCONNECTED, CS_FAIL_ABORTED,
CS_FAIL_ABORTING, CS_FAIL_COMMITTED, CS_FAIL_COMMITTING, CS_FAIL_COMPLETED,
CS_FAIL_PREPARED, CS_PREPARE_TO_COMMIT, CS_RECEIVING, CS_REC_COMMITTING,
CS_RESTART, CS_SEND_FIRE_TRIG_REQ, CS_STARTED, CS_START_COMMITTING,
CS_START_SCAN, CS_WAIT_ABORT_CONF, CS_WAIT_COMMIT_CONF, CS_WAIT_COMPLETE_CONF,
CS_WAIT_FIRE_TRIG_REQ. (If the MySQL Server is running with ndbinfo_show_hidden enabled, you
can view this list of states by selecting from the ndb$dbtc_apiconnect_state table, which is normally
hidden.)

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node (that
is, an NDB API client or a MySQL Server attached to the cluster).

The tc_block_instance column provides the DBTC block instance number. You can use this along with
the block name to obtain information about specific threads from the threadblocks table.

18.6.15.6 The ndbinfo config_params Table

The config_params table is a static table which provides the names and internal ID numbers of and
other information about NDB Cluster configuration parameters.

The config_params table contains the following columns:

• param_number

The parameter's internal ID number

• param_name

The name of the parameter

3053

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

Notes

Although this is a static table, its content can vary between NDB Cluster installations, since supported
parameters can vary due to differences between software releases, cluster hardware configurations, and
other factors.

18.6.15.7 The ndbinfo counters Table

The counters table provides running totals of events such as reads and writes for specific kernel blocks
and data nodes. Counts are kept from the most recent node start or restart; a node start or restart resets all
counters on that node. Not all kernel blocks have all types of counters.

The counters table contains the following columns:

• node_id

The data node ID

• block_name

Name of the associated NDB kernel block (see NDB Kernel Blocks).

• block_instance

Block instance

• counter_id

The counter's internal ID number; normally an integer between 1 and 10, inclusive.

• counter_name

The name of the counter. See text for names of individual counters and the NDB kernel block with which
each counter is associated.

• val

The counter's value

Notes

Each counter is associated with a particular NDB kernel block.

The OPERATIONS counter is associated with the DBLQH (local query handler) kernel block (see The
DBLQH Block). A primary-key read counts as one operation, as does a primary-key update. For reads,
there is one operation in DBLQH per operation in DBTC. For writes, there is one operation counted per
fragment replica.

The ATTRINFO, TRANSACTIONS, COMMITS, READS, LOCAL_READS, SIMPLE_READS, WRITES,
LOCAL_WRITES, ABORTS, TABLE_SCANS, and RANGE_SCANS counters are associated with the DBTC
(transaction co-ordinator) kernel block (see The DBTC Block).

LOCAL_WRITES and LOCAL_READS are primary-key operations using a transaction coordinator in a node
that also holds the primary fragment replica of the record.

The READS counter includes all reads. LOCAL_READS includes only those reads of the primary fragment
replica on the same node as this transaction coordinator. SIMPLE_READS includes only those reads in
which the read operation is the beginning and ending operation for a given transaction. Simple reads
do not hold locks but are part of a transaction, in that they observe uncommitted changes made by the

3054

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

transaction containing them but not of any other uncommitted transactions. Such reads are “simple” from
the point of view of the TC block; since they hold no locks they are not durable, and once DBTC has routed
them to the relevant LQH block, it holds no state for them.

ATTRINFO keeps a count of the number of times an interpreted program is sent to the data node. See NDB
Protocol Messages, for more information about ATTRINFO messages in the NDB kernel.

The LOCAL_TABLE_SCANS_SENT, READS_RECEIVED, PRUNED_RANGE_SCANS_RECEIVED,
RANGE_SCANS_RECEIVED, LOCAL_READS_SENT, CONST_PRUNED_RANGE_SCANS_RECEIVED,
LOCAL_RANGE_SCANS_SENT, REMOTE_READS_SENT, REMOTE_RANGE_SCANS_SENT,
READS_NOT_FOUND, SCAN_BATCHES_RETURNED, TABLE_SCANS_RECEIVED, and
SCAN_ROWS_RETURNED counters are associated with the DBSPJ (select push-down join) kernel block (see
The DBSPJ Block).

The block_name and block_instance columns provide, respectively, the applicable NDB kernel block
name and instance number. You can use these to obtain information about specific threads from the
threadblocks table.

A number of counters provide information about transporter overload and send buffer sizing when
troubleshooting such issues. For each LQH instance, there is one instance of each counter in the following
list:

• LQHKEY_OVERLOAD: Number of primary key requests rejected at the LQH block instance due to
transporter overload

• LQHKEY_OVERLOAD_TC: Count of instances of LQHKEY_OVERLOAD where the TC node transporter was
overloaded

• LQHKEY_OVERLOAD_READER: Count of instances of LQHKEY_OVERLOAD where the API reader (reads
only) node was overloaded.

• LQHKEY_OVERLOAD_NODE_PEER: Count of instances of LQHKEY_OVERLOAD where the next backup
data node (writes only) was overloaded

• LQHKEY_OVERLOAD_SUBSCRIBER: Count of instances of LQHKEY_OVERLOAD where a event subscriber
(writes only) was overloaded.

• LQHSCAN_SLOWDOWNS: Count of instances where a fragment scan batch size was reduced due to
scanning API transporter overload.

18.6.15.8 The ndbinfo dict_obj_types Table

The dict_obj_types table is a static table listing possible dictionary object types used in the NDB
kernel. These are the same types defined by Object::Type in the NDB API.

The dict_obj_types table contains the following columns:

• type_id

The type ID for this type

• type_name

The name of this type

Notes

18.6.15.9 The ndbinfo disk_write_speed_base Table

3055

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-messages.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-messages.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-type

ndbinfo: The NDB Cluster Information Database

The disk_write_speed_base table provides base information about the speed of disk writes during
LCP, backup, and restore operations.

The disk_write_speed_base table contains the following columns:

• node_id

Node ID of this node

• thr_no

Thread ID of this LDM thread

• millis_ago

Milliseconds since this reporting period ended

• millis_passed

Milliseconds elapsed in this reporting period

• backup_lcp_bytes_written

Number of bytes written to disk by local checkpoints and backup processes during this period

• redo_bytes_written

Number of bytes written to REDO log during this period

• target_disk_write_speed

Actual speed of disk writes per LDM thread (base data)

Notes

18.6.15.10 The ndbinfo disk_write_speed_aggregate Table

The disk_write_speed_aggregate table provides aggregated information about the speed of disk
writes during LCP, backup, and restore operations.

The disk_write_speed_aggregate table contains the following columns:

• node_id

Node ID of this node

• thr_no

Thread ID of this LDM thread

• backup_lcp_speed_last_sec

Number of bytes written to disk by backup and LCP processes in the last second

• redo_speed_last_sec

Number of bytes written to REDO log in the last second

• backup_lcp_speed_last_10sec

3056

ndbinfo: The NDB Cluster Information Database

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 10
seconds

• redo_speed_last_10sec

Number of bytes written to REDO log per second, averaged over the last 10 seconds

• std_dev_backup_lcp_speed_last_10sec

Standard deviation in number of bytes written to disk by backup and LCP processes per second,
averaged over the last 10 seconds

• std_dev_redo_speed_last_10sec

Standard deviation in number of bytes written to REDO log per second, averaged over the last 10
seconds

• backup_lcp_speed_last_60sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 60
seconds

• redo_speed_last_60sec

Number of bytes written to REDO log per second, averaged over the last 10 seconds

• std_dev_backup_lcp_speed_last_60sec

Standard deviation in number of bytes written to disk by backup and LCP processes per second,
averaged over the last 60 seconds

• std_dev_redo_speed_last_60sec

Standard deviation in number of bytes written to REDO log per second, averaged over the last 60
seconds

• slowdowns_due_to_io_lag

Number of seconds since last node start that disk writes were slowed due to REDO log I/O lag

• slowdowns_due_to_high_cpu

Number of seconds since last node start that disk writes were slowed due to high CPU usage

• disk_write_speed_set_to_min

Number of seconds since last node start that disk write speed was set to minimum

• current_target_disk_write_speed

Actual speed of disk writes per LDM thread (aggregated)

18.6.15.11 The ndbinfo disk_write_speed_aggregate_node Table

The disk_write_speed_aggregate_node table provides aggregated information per node about the
speed of disk writes during LCP, backup, and restore operations.

The disk_write_speed_aggregate_node contains the following columns:

3057

ndbinfo: The NDB Cluster Information Database

• node_id

Node ID of this node

• backup_lcp_speed_last_sec

Number of bytes written to disk by backup and LCP processes in the last second

• redo_speed_last_sec

Number of bytes written to the redo log in the last second

• backup_lcp_speed_last_10sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 10
seconds

• redo_speed_last_10sec

Number of bytes written to the redo log each second, averaged over the last 10 seconds

• backup_lcp_speed_last_60sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 60
seconds

• redo_speed_last_60sec

Number of bytes written to the redo log each second, averaged over the last 60 seconds

18.6.15.12 The ndbinfo diskpagebuffer Table

The diskpagebuffer table provides statistics about disk page buffer usage by NDB Cluster Disk Data
tables.

The diskpagebuffer table contains the following columns:

• node_id

The data node ID

• block_instance

Block instance

• pages_written

Number of pages written to disk.

• pages_written_lcp

Number of pages written by local checkpoints.

• pages_read

Number of pages read from disk

• log_waits

Number of page writes waiting for log to be written to disk

3058

ndbinfo: The NDB Cluster Information Database

• page_requests_direct_return

Number of requests for pages that were available in buffer

• page_requests_wait_queue

Number of requests that had to wait for pages to become available in buffer

• page_requests_wait_io

Number of requests that had to be read from pages on disk (pages were unavailable in buffer)

Notes

You can use this table with NDB Cluster Disk Data tables to determine whether DiskPageBufferMemory
is sufficiently large to allow data to be read from the buffer rather from disk; minimizing disk seeks can help
improve performance of such tables.

You can determine the proportion of reads from DiskPageBufferMemory to the total number of reads
using a query such as this one, which obtains this ratio as a percentage:

SELECT
 node_id,
 100 * page_requests_direct_return /
 (page_requests_direct_return + page_requests_wait_io)
 AS hit_ratio
FROM ndbinfo.diskpagebuffer;

The result from this query should be similar to what is shown here, with one row for each data node in the
cluster (in this example, the cluster has 4 data nodes):

+---------+-----------+
| node_id | hit_ratio |
+---------+-----------+
5	97.6744
6	97.6879
7	98.1776
8	98.1343
+---------+-----------+
4 rows in set (0.00 sec)

hit_ratio values approaching 100% indicate that only a very small number of reads are being made
from disk rather than from the buffer, which means that Disk Data read performance is approaching
an optimum level. If any of these values are less than 95%, this is a strong indicator that the setting for
DiskPageBufferMemory needs to be increased in the config.ini file.

Note

A change in DiskPageBufferMemory requires a rolling restart of all of the
cluster's data nodes before it takes effect.

The block_instance column provides the NDB kernel block instance number. You can use this to obtain
information about specific threads from the threadblocks table.

18.6.15.13 The ndbinfo logbuffers Table

The logbuffer table provides information on NDB Cluster log buffer usage.

The logbuffers table contains the following columns:

• node_id

3059

ndbinfo: The NDB Cluster Information Database

The ID of this data node.

• log_type

Type of log, one of: REDO or DD-UNDO.

• log_id

The log ID.

• log_part

The log part number.

• total

Total space available for this log.

• used

Space used by this log.

Notes

Beginning with NDB 7.6.5, logbuffers table rows reflecting two additional log types are available
when performing an NDB backup. One of these rows has the log type BACKUP-DATA, which shows the
amount of data buffer used during backup to copy fragments to backup files. The other row has the log
type BACKUP-LOG, which displays the amount of log buffer used during the backup to record changes
made after the backup has started. One each of these log_type rows is shown in the logbuffers table
for each data node in the cluster. These rows are not present unless an NDB backup is currently being
performed. (Bug #25822988)

18.6.15.14 The ndbinfo logspaces Table

This table provides information about NDB Cluster log space usage.

The logspaces table contains the following columns:

• node_id

The ID of this data node.

• log_type

Type of log; one of: REDO or DD-UNDO.

• log_id

The log ID.

• log_part

The log part number.

• total

Total space available for this log.

• used

3060

ndbinfo: The NDB Cluster Information Database

Space used by this log.

18.6.15.15 The ndbinfo membership Table

The membership table describes the view that each data node has of all the others in the cluster,
including node group membership, president node, arbitrator, arbitrator successor, arbitrator connection
states, and other information.

The membership table contains the following columns:

• node_id

This node's node ID

• group_id

Node group to which this node belongs

• left node

Node ID of the previous node

• right_node

Node ID of the next node

• president

President's node ID

• successor

Node ID of successor to president

• succession_order

Order in which this node succeeds to presidency

• Conf_HB_order

-

• arbitrator

Node ID of arbitrator

• arb_ticket

Internal identifier used to track arbitration

• arb_state

Arbitration state

• arb_connected

Whether this node is connected to the arbitrator

• connected_rank1_arbs

3061

ndbinfo: The NDB Cluster Information Database

Connected arbitrators of rank 1

• connected_rank2_arbs

Connected arbitrators of rank 1

Notes

The node ID and node group ID are the same as reported by ndb_mgm -e "SHOW".

left_node and right_node are defined in terms of a model that connects all data nodes in a circle, in
order of their node IDs, similar to the ordering of the numbers on a clock dial, as shown here:

Figure 18.7 Circular Arrangement of NDB Cluster Nodes

In this example, we have 8 data nodes, numbered 5, 6, 7, 8, 12, 13, 14, and 15, ordered clockwise in
a circle. We determine “left” and “right” from the interior of the circle. The node to the left of node 5 is
node 15, and the node to the right of node 5 is node 6. You can see all these relationships by running the
following query and observing the output:

mysql> SELECT node_id,left_node,right_node
 -> FROM ndbinfo.membership;
+---------+-----------+------------+
| node_id | left_node | right_node |
+---------+-----------+------------+
5	15	6
6	5	7
7	6	8
8	7	12
12	8	13
13	12	14
14	13	15
15	14	5
+---------+-----------+------------+
8 rows in set (0.00 sec)

The designations “left” and “right” are used in the event log in the same way.

The president node is the node viewed by the current node as responsible for setting an arbitrator
(see NDB Cluster Start Phases). If the president fails or becomes disconnected, the current node
expects the node whose ID is shown in the successor column to become the new president. The
succession_order column shows the place in the succession queue that the current node views itself
as having.

In a normal NDB Cluster, all data nodes should see the same node as president, and the same node
(other than the president) as its successor. In addition, the current president should see itself as 1 in the
order of succession, the successor node should see itself as 2, and so on.

3062

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases.html

ndbinfo: The NDB Cluster Information Database

All nodes should show the same arb_ticket values as well as the same arb_state values. Possible
arb_state values are ARBIT_NULL, ARBIT_INIT, ARBIT_FIND, ARBIT_PREP1, ARBIT_PREP2,
ARBIT_START, ARBIT_RUN, ARBIT_CHOOSE, ARBIT_CRASH, and UNKNOWN.

arb_connected shows whether this node is connected to the node shown as this node's arbitrator.

The connected_rank1_arbs and connected_rank2_arbs columns each display a list of 0 or more
arbitrators having an ArbitrationRank equal to 1, or to 2, respectively.

Note

Both management nodes and API nodes are eligible to become arbitrators.

18.6.15.16 The ndbinfo memoryusage Table

Querying this table provides information similar to that provided by the ALL REPORT MemoryUsage
command in the ndb_mgm client, or logged by ALL DUMP 1000.

The memoryusage table contains the following columns:

• node_id

The node ID of this data node.

• memory_type

One of Data memory, Index memory, or Long message buffer.

• used

Number of bytes currently used for data memory or index memory by this data node.

• used_pages

Number of pages currently used for data memory or index memory by this data node; see text.

• total

Total number of bytes of data memory or index memory available for this data node; see text.

• total_pages

Total number of memory pages available for data memory or index memory on this data node; see text.

Notes

The total column represents the total amount of memory in bytes available for the given resource (data
memory or index memory) on a particular data node. This number should be approximately equal to the
setting of the corresponding configuration parameter in the config.ini file.

Suppose that the cluster has 2 data nodes having node IDs 5 and 6, and the config.ini file contains the
following:

[ndbd default]
DataMemory = 1G
IndexMemory = 1G

Suppose also that the value of the LongMessageBuffer configuration parameter is allowed to assume its
default (64 MB in NDB 7.3.5 and later).

3063

https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html

ndbinfo: The NDB Cluster Information Database

The following query shows approximately the same values:

mysql> SELECT node_id, memory_type, total
 > FROM ndbinfo.memoryusage;
+---------+---------------------+------------+
| node_id | memory_type | total |
+---------+---------------------+------------+
5	Data memory	1073741824
5	Index memory	1074003968
5	Long message buffer	67108864
6	Data memory	1073741824
6	Index memory	1074003968
6	Long message buffer	67108864
+---------+---------------------+------------+
6 rows in set (0.00 sec)

In this case, the total column values for index memory are slightly higher than the value set of
IndexMemory due to internal rounding.

For the used_pages and total_pages columns, resources are measured in pages, which are 32K in
size for DataMemory and 8K for IndexMemory. For long message buffer memory, the page size is 256
bytes.

Long message buffer information can be found in this table beginning with NDB 7.3.5; in earlier versions of
NDB Cluster, only data memory and index memory were included.

18.6.15.17 The ndbinfo memory_per_fragment Table

The memory_per_fragment table provides information about the usage of memory by individual
fragments.

The memory_per_fragment table contains the following columns:

• fq_name

Name of this fragment

• parent_fq_name

Name of this fragment's parent

• type

Type of object; see text for possible values

• table_id

Table ID for this table

• node_id

Node ID for this node

• block_instance

Kernel block instance ID

• fragment_num

Fragment ID (number)

3064

ndbinfo: The NDB Cluster Information Database

• fixed_elem_alloc_bytes

Number of bytes allocated for fixed-sized elements

• fixed_elem_free_bytes

Free bytes remaining in pages allocated to fixed-size elements

• fixed_elem_size_bytes

Length of each fixed-size element in bytes

• fixed_elem_count

Number of fixed-size elements

• fixed_elem_free_count

Number of free rows for fixed-size elements

• var_elem_alloc_bytes

Number of bytes allocated for variable-size elements

• var_elem_free_bytes

Free bytes remaining in pages allocated to variable-size elements

• var_elem_count

Number of variable-size elements

• hash_index_alloc_bytes

Number of bytes allocated to hash indexes

Notes

The type column from this table shows the dictionary object type used for this fragment (Object::Type,
in the NDB API), and can take any one of the values shown in the following list:

• System table

• User table

• Unique hash index

• Hash index

• Unique ordered index

• Ordered index

• Hash index trigger

• Subscription trigger

• Read only constraint

• Index trigger

3065

https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-type

ndbinfo: The NDB Cluster Information Database

• Reorganize trigger

• Tablespace

• Log file group

• Data file

• Undo file

• Hash map

• Foreign key definition

• Foreign key parent trigger

• Foreign key child trigger

• Schema transaction

You can also obtain this list by executing SELECT * FROM ndbinfo.dict_obj_types in the mysql
client.

The block_instance column provides the NDB kernel block instance number. You can use this to obtain
information about specific threads from the threadblocks table.

18.6.15.18 The ndbinfo nodes Table

This table contains information on the status of data nodes. For each data node that is running in the
cluster, a corresponding row in this table provides the node's node ID, status, and uptime. For nodes that
are starting, it also shows the current start phase.

The nodes table contains the following columns:

• node_id

The data node's unique node ID in the cluster.

• uptime

Time since the node was last started, in seconds.

• status

Current status of the data node; see text for possible values.

• start_phase

If the data node is starting, the current start phase.

• config_generation

The version of the cluster configuration file in use on this data node.

Notes

The uptime column shows the time in seconds that this node has been running since it was last started or
restarted. This is a BIGINT value. This figure includes the time actually needed to start the node; in other
words, this counter starts running the moment that ndbd or ndbmtd is first invoked; thus, even for a node
that has not yet finished starting, uptime may show a nonzero value.

3066

ndbinfo: The NDB Cluster Information Database

The status column shows the node's current status. This is one of: NOTHING, CMVMI, STARTING,
STARTED, SINGLEUSER, STOPPING_1, STOPPING_2, STOPPING_3, or STOPPING_4. When the status
is STARTING, you can see the current start phase in the start_phase column (see later in this section).
SINGLEUSER is displayed in the status column for all data nodes when the cluster is in single user mode
(see Section 18.6.6, “NDB Cluster Single User Mode”). Seeing one of the STOPPING states does not
necessarily mean that the node is shutting down but can mean rather that it is entering a new state. For
example, if you put the cluster in single user mode, you can sometimes see data nodes report their state
briefly as STOPPING_2 before the status changes to SINGLEUSER.

The start_phase column uses the same range of values as those used in the output of the ndb_mgm
client node_id STATUS command (see Section 18.6.1, “Commands in the NDB Cluster Management
Client”). If the node is not currently starting, then this column shows 0. For a listing of NDB Cluster start
phases with descriptions, see Section 18.6.4, “Summary of NDB Cluster Start Phases”.

The config_generation column shows which version of the cluster configuration is in effect on each
data node. This can be useful when performing a rolling restart of the cluster in order to make changes in
configuration parameters. For example, from the output of the following SELECT statement, you can see
that node 3 is not yet using the latest version of the cluster configuration (6) although nodes 1, 2, and 4 are
doing so:

mysql> USE ndbinfo;
Database changed
mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
1	10462	STARTED	0	6
2	10460	STARTED	0	6
3	10457	STARTED	0	5
4	10455	STARTED	0	6
+---------+--------+---------+-------------+-------------------+
2 rows in set (0.04 sec)

Therefore, for the case just shown, you should restart node 3 to complete the rolling restart of the cluster.

Nodes that are stopped are not accounted for in this table. Suppose that you have an NDB Cluster with 4
data nodes (node IDs 1, 2, 3 and 4), and all nodes are running normally, then this table contains 4 rows, 1
for each data node:

mysql> USE ndbinfo;
Database changed
mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
1	11776	STARTED	0	6
2	11774	STARTED	0	6
3	11771	STARTED	0	6
4	11769	STARTED	0	6
+---------+--------+---------+-------------+-------------------+
4 rows in set (0.04 sec)

If you shut down one of the nodes, only the nodes that are still running are represented in the output of this
SELECT statement, as shown here:

ndb_mgm> 2 STOP
Node 2: Node shutdown initiated
Node 2: Node shutdown completed.
Node 2 has shutdown.

mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+

3067

ndbinfo: The NDB Cluster Information Database

| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
1	11807	STARTED	0	6
3	11802	STARTED	0	6
4	11800	STARTED	0	6
+---------+--------+---------+-------------+-------------------+
3 rows in set (0.02 sec)

18.6.15.19 The ndbinfo operations_per_fragment Table

The operations_per_fragment table provides information about the operations performed on
individual fragments and fragment replicas, as well as about some of the results from these operations.

The operations_per_fragment table contains the following columns:

• fq_name

Name of this fragment

• parent_fq_name

Name of this fragment's parent

• type

Type of object; see text for possible values

• table_id

Table ID for this table

• node_id

Node ID for this node

• block_instance

Kernel block instance ID

• fragment_num

Fragment ID (number)

• tot_key_reads

Total number of key reads for this fragment replica

• tot_key_inserts

Total number of key inserts for this fragment replica

• tot_key_updates

total number of key updates for this fragment replica

• tot_key_writes

Total number of key writes for this fragment replica

• tot_key_deletes

3068

ndbinfo: The NDB Cluster Information Database

Total number of key deletes for this fragment replica

• tot_key_refs

Number of key operations refused

• tot_key_attrinfo_bytes

Total size of all attrinfo attributes

• tot_key_keyinfo_bytes

Total size of all keyinfo attributes

• tot_key_prog_bytes

Total size of all interpreted programs carried by attrinfo attributes

• tot_key_inst_exec

Total number of instructions executed by interpreted programs for key operations

• tot_key_bytes_returned

Total size of all data and metadata returned from key read operations

• tot_frag_scans

Total number of scans performed on this fragment replica

• tot_scan_rows_examined

Total number of rows examined by scans

• tot_scan_rows_returned

Total number of rows returned to client

• tot_scan_bytes_returned

Total size of data and metadata returned to the client

• tot_scan_prog_bytes

Total size of interpreted programs for scan operations

• tot_scan_bound_bytes

Total size of all bounds used in ordered index scans

• tot_scan_inst_exec

Total number of instructions executed for scans

• tot_qd_frag_scans

Number of times that scans of this fragment replica have been queued

• conc_frag_scans

3069

ndbinfo: The NDB Cluster Information Database

Number of scans currently active on this fragment replica (excluding queued scans)

• conc_qd_frag_scans

Number of scans currently queued for this fragment replica

• tot_commits

Total number of row changes committed to this fragment replica

Notes

The fq_name contains the fully qualified name of the schema object to which this fragment replica
belongs. This currently has the following formats:

• Base table: DbName/def/TblName

• BLOB table: DbName/def/NDB$BLOB_BaseTblId_ColNo

• Ordered index: sys/def/BaseTblId/IndexName

• Unique index: sys/def/BaseTblId/IndexName$unique

The $unique suffix shown for unique indexes is added by mysqld; for an index created by a different
NDB API client application, this may differ, or not be present.

The syntax just shown for fully qualified object names is an internal interface which is subject to change in
future releases.

Consider a table t1 created and modified by the following SQL statements:

CREATE DATABASE mydb;

USE mydb;

CREATE TABLE t1 (
 a INT NOT NULL,
 b INT NOT NULL,
 t TEXT NOT NULL,
 PRIMARY KEY (b)
) ENGINE=ndbcluster;

CREATE UNIQUE INDEX ix1 ON t1(b) USING HASH;

If t1 is assigned table ID 11, this yields the fq_name values shown here:

• Base table: mydb/def/t1

• BLOB table: mydb/def/NDB$BLOB_11_2

• Ordered index (primary key): sys/def/11/PRIMARY

• Unique index: sys/def/11/ix1$unique

For indexes or BLOB tables, the parent_fq_name column contains the fq_name of the corresponding
base table. For base tables, this column is always NULL.

The type column shows the schema object type used for this fragment, which can take any one of the
values System table, User table, Unique hash index, or Ordered index. BLOB tables are
shown as User table.

3070

ndbinfo: The NDB Cluster Information Database

The table_id column value is unique at any given time, but can be reused if the corresponding object
has been deleted. The same ID can be seen using the ndb_show_tables utility.

The block_instance column shows which LDM instance this fragment replica belongs to. You can use
this to obtain information about specific threads from the threadblocks table. The first such instance is
always numbered 0.

Since there are typically two fragment replicas, and assuming that this is so, each fragment_num value
should appear twice in the table, on two different data nodes from the same node group.

Since NDB does not use single-key access for ordered indexes, the counts for tot_key_reads,
tot_key_inserts, tot_key_updates, tot_key_writes, and tot_key_deletes are not
incremented by ordered index operations.

Note

When using tot_key_writes, you should keep in mind that a write operation
in this context updates the row if the key exists, and inserts a new row otherwise.
(One use of this is in the NDB implementation of the REPLACE SQL statement.)

The tot_key_refs column shows the number of key operations refused by the LDM. Generally, such
a refusal is due to duplicate keys (inserts), Key not found errors (updates, deletes, and reads), or the
operation was rejected by an interpreted program used as a predicate on the row matching the key.

The attrinfo and keyinfo attributes counted by the tot_key_attrinfo_bytes and
tot_key_keyinfo_bytes columns are attributes of an LQHKEYREQ signal (see The NDB
Communication Protocol) used to initiate a key operation by the LDM. An attrinfo typically contains
tuple field values (inserts and updates) or projection specifications (for reads); keyinfo contains the
primary or unique key needed to locate a given tuple in this schema object.

The value shown by tot_frag_scans includes both full scans (that examine every row) and scans of
subsets. Unique indexes and BLOB tables are never scanned, so this value, like other scan-related counts,
is 0 for fragment replicas of these.

tot_scan_rows_examined may display less than the total number of rows in a given fragment replica,
since ordered index scans can limited by bounds. In addition, a client may choose to end a scan before
all potentially matching rows have been examined; this occurs when using an SQL statement containing
a LIMIT or EXISTS clause, for example. tot_scan_rows_returned is always less than or equal to
tot_scan_rows_examined.

tot_scan_bytes_returned includes, in the case of pushed joins, projections returned to the DBSPJ
block in the NDB kernel.

tot_qd_frag_scans can be effected by the setting for the MaxParallelScansPerFragment data
node configuration parameter, which limits the number of scans that may execute concurrently on a single
fragment replica.

18.6.15.20 The ndbinfo resources Table

This table provides information about data node resource availability and usage.

These resources are sometimes known as super-pools.

The resources table contains the following columns:

• node_id

The unique node ID of this data node.

3071

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

ndbinfo: The NDB Cluster Information Database

• resource_name

Name of the resource; see text.

• reserved

The amount reserved for this resource, as a number of 32KB pages.

• used

The amount actually used by this resource, as a number of 32KB pages.

• max

The maximum amount (number of 32KB pages) of this resource used, since the node was last started.

Notes

The resource_name can be any one of the names shown in the following table:

• RESERVED: Reserved by the system; cannot be overridden.

• TRANSACTION_MEMORY: Memory allocated for transactions on this data node.

• DISK_OPERATIONS: If a log file group is allocated, the size of the undo log buffer is used to set the size
of this resource. This resource is used only to allocate the undo log buffer for an undo log file group;
there can only be one such group. Overallocation occurs as needed by CREATE LOGFILE GROUP.

• DISK_RECORDS: Records allocated for Disk Data operations.

• DATA_MEMORY: Used for main memory tuples, indexes, and hash indexes. Sum of DataMemory and
IndexMemory, plus 8 pages of 32 KB each if IndexMemory has been set. Cannot be overallocated.

• JOBBUFFER: Used for allocating job buffers by the NDB scheduler; cannot be overallocated. This
is approximately 2 MB per thread plus a 1 MB buffer in both directions for all threads that can
communicate. For large configurations this consume several GB.

• FILE_BUFFERS: Used by the redo log handler in the DBLQH kernel block; cannot be overallocated. Size
is NoOfFragmentLogParts * RedoBuffer, plus 1 MB per log file part.

• TRANSPORTER_BUFFERS: Used for send buffers by ndbmtd; the sum of TotalSendBufferMemory
and ExtraSendBufferMemory. This resource that can be overallocated by up to 25 percent.
TotalSendBufferMemory is calculated by summing the send buffer memory per node, the default
value of which is 2 MB. Thus, in a system having four data nodes and eight API nodes, the data nodes
have 12 * 2 MB send buffer memory. ExtraSendBufferMemory is used by ndbmtd and amounts to
2 MB extra memory per thread. Thus, with 4 LDM threads, 2 TC threads, 1 main thread, 1 replication
thread, and 2 receive threads, ExtraSendBufferMemory is 10 * 2 MB. Overallocation of this resource
can be performed by setting the SharedGlobalMemory data node configuration parameter.

• DISK_PAGE_BUFFER: Used for the disk page buffer; determined by the DiskPageBufferMemory
configuration parameter. Cannot be overallocated.

• QUERY_MEMORY: Used by the DBSPJ kernel block.

• SCHEMA_TRANS_MEMORY: Minimum is 2 MB; can be overallocated to use any remaining available
memory.

18.6.15.21 The ndbinfo restart_info Table

3072

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

ndbinfo: The NDB Cluster Information Database

The restart_info table contains information about node restart operations. Each entry in the table
corresponds to a node restart status report in real time from a data node with the given node ID. Only the
most recent report for any given node is shown.

The restart_info table contains the following columns:

• node_id

Node ID in the cluster

• node_restart_status

Node status; see text for values. Each of these corresponds to a possible value of
node_restart_status_int.

• node_restart_status_int

Node status code; see text for values.

• secs_to_complete_node_failure

Time in seconds to complete node failure handling

• secs_to_allocate_node_id

Time in seconds from node failure completion to allocation of node ID

• secs_to_include_in_heartbeat_protocol

Time in seconds from allocation of node ID to inclusion in heartbeat protocol

• secs_until_wait_for_ndbcntr_master

Time in seconds from being included in heartbeat protocol until waiting for NDBCNTR master began

• secs_wait_for_ndbcntr_master

Time in seconds spent waiting to be accepted by NDBCNTR master for starting

• secs_to_get_start_permitted

Time in seconds elapsed from receiving of permission for start from master until all nodes have accepted
start of this node

• secs_to_wait_for_lcp_for_copy_meta_data

Time in seconds spent waiting for LCP completion before copying metadata

• secs_to_copy_meta_data

Time in seconds required to copy metadata from master to newly starting node

• secs_to_include_node

Time in seconds waited for GCP and inclusion of all nodes into protocols

• secs_starting_node_to_request_local_recovery

Time in seconds that the node just starting spent waiting to request local recovery

3073

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbcntr.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbcntr.html

ndbinfo: The NDB Cluster Information Database

• secs_for_local_recovery

Time in seconds required for local recovery by node just starting

• secs_restore_fragments

Time in seconds required to restore fragments from LCP files

• secs_undo_disk_data

Time in seconds required to execute undo log on disk data part of records

• secs_exec_redo_log

Time in seconds required to execute redo log on all restored fragments

• secs_index_rebuild

Time in seconds required to rebuild indexes on restored fragments

• secs_to_synchronize_starting_node

Time in seconds required to synchronize starting node from live nodes

• secs_wait_lcp_for_restart

Time in seconds required for LCP start and completion before restart was completed

• secs_wait_subscription_handover

Time in seconds spent waiting for handover of replication subscriptions

• total_restart_secs

Total number of seconds from node failure until node is started again

Notes

The following list contains values defined for the node_restart_status_int column with their internal
status names (in parentheses), and the corresponding messages shown in the node_restart_status
column:

• 0 (ALLOCATED_NODE_ID)

Allocated node id

• 1 (INCLUDED_IN_HB_PROTOCOL)

Included in heartbeat protocol

• 2 (NDBCNTR_START_WAIT)

Wait for NDBCNTR master to permit us to start

• 3 (NDBCNTR_STARTED)

NDBCNTR master permitted us to start

• 4 (START_PERMITTED)

All nodes permitted us to start

3074

ndbinfo: The NDB Cluster Information Database

• 5 (WAIT_LCP_TO_COPY_DICT)

Wait for LCP completion to start copying metadata

• 6 (COPY_DICT_TO_STARTING_NODE)

Copying metadata to starting node

• 7 (INCLUDE_NODE_IN_LCP_AND_GCP)

Include node in LCP and GCP protocols

• 8 (LOCAL_RECOVERY_STARTED)

Restore fragments ongoing

• 9 (COPY_FRAGMENTS_STARTED)

Synchronizing starting node with live nodes

• 10 (WAIT_LCP_FOR_RESTART)

Wait for LCP to ensure durability

• 11 (WAIT_SUMA_HANDOVER)

Wait for handover of subscriptions

• 12 (RESTART_COMPLETED)

Restart completed

• 13 (NODE_FAILED)

Node failed, failure handling in progress

• 14 (NODE_FAILURE_COMPLETED)

Node failure handling completed

• 15 (NODE_GETTING_PERMIT)

All nodes permitted us to start

• 16 (NODE_GETTING_INCLUDED)

Include node in LCP and GCP protocols

• 17 (NODE_GETTING_SYNCHED)

Synchronizing starting node with live nodes

• 18 (NODE_GETTING_LCP_WAITED)

[none]

• 19 (NODE_ACTIVE)

Restart completed

• 20 (NOT_DEFINED_IN_CLUSTER)

3075

ndbinfo: The NDB Cluster Information Database

[none]

• 21 (NODE_NOT_RESTARTED_YET)

Initial state

Status numbers 0 through 12 apply on master nodes only; the remainder of those shown in the table apply
to all restarting data nodes. Status numbers 13 and 14 define node failure states; 20 and 21 occur when no
information about the restart of a given node is available.

See also Section 18.6.4, “Summary of NDB Cluster Start Phases”.

18.6.15.22 The ndbinfo server_operations Table

The server_operations table contains entries for all ongoing NDB operations that the current SQL node
(MySQL Server) is currently involved in. It effectively is a subset of the cluster_operations table, in
which operations for other SQL and API nodes are not shown.

The server_operations table contains the following columns:

• mysql_connection_id

MySQL Server connection ID

• node_id

Node ID

• block_instance

Block instance

• transid

Transaction ID

• operation_type

Operation type (see text for possible values)

• state

Operation state (see text for possible values)

• tableid

Table ID

• fragmentid

Fragment ID

• client_node_id

Client node ID

• client_block_ref

Client block reference

3076

ndbinfo: The NDB Cluster Information Database

• tc_node_id

Transaction coordinator node ID

• tc_block_no

Transaction coordinator block number

• tc_block_instance

Transaction coordinator block instance

Notes

The mysql_connection_id is the same as the connection or session ID shown in the
output of SHOW PROCESSLIST. It is obtained from the INFORMATION_SCHEMA table
NDB_TRANSID_MYSQL_CONNECTION_MAP.

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table.

The transaction ID (transid) is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API transaction
ID of an ongoing transaction.)

The operation_type column can take any one of the values READ, READ-SH, READ-EX, INSERT,
UPDATE, DELETE, WRITE, UNLOCK, REFRESH, SCAN, SCAN-SH, SCAN-EX, or <unknown>.

The state column can have any one of the values ABORT_QUEUED, ABORT_STOPPED,
COMMITTED, COMMIT_QUEUED, COMMIT_STOPPED, COPY_CLOSE_STOPPED,
COPY_FIRST_STOPPED, COPY_STOPPED, COPY_TUPKEY, IDLE, LOG_ABORT_QUEUED,
LOG_COMMIT_QUEUED, LOG_COMMIT_QUEUED_WAIT_SIGNAL, LOG_COMMIT_WRITTEN,
LOG_COMMIT_WRITTEN_WAIT_SIGNAL, LOG_QUEUED, PREPARED, PREPARED_RECEIVED_COMMIT,
SCAN_CHECK_STOPPED, SCAN_CLOSE_STOPPED, SCAN_FIRST_STOPPED, SCAN_RELEASE_STOPPED,
SCAN_STATE_USED, SCAN_STOPPED, SCAN_TUPKEY, STOPPED, TC_NOT_CONNECTED, WAIT_ACC,
WAIT_ACC_ABORT, WAIT_AI_AFTER_ABORT, WAIT_ATTR, WAIT_SCAN_AI, WAIT_TUP,
WAIT_TUPKEYINFO, WAIT_TUP_COMMIT, or WAIT_TUP_TO_ABORT. (If the MySQL Server is running
with ndbinfo_show_hidden enabled, you can view this list of states by selecting from the ndb
$dblqh_tcconnect_state table, which is normally hidden.)

You can obtain the name of an NDB table from its table ID by checking the output of ndb_show_tables.

The fragid is the same as the partition number seen in the output of ndb_desc --extra-partition-
info (short form -p).

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node (that
is, an NDB API client or a MySQL Server attached to the cluster).

The block_instance and tc_block_instance column provide NDB kernel block instance numbers.
You can use these to obtain information about specific threads from the threadblocks table.

18.6.15.23 The ndbinfo server_transactions Table

The server_transactions table is subset of the cluster_transactions table, but includes only
those transactions in which the current SQL node (MySQL Server) is a participant, while including the
relevant connection IDs.

The server_transactions table contains the following columns:

3077

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid

ndbinfo: The NDB Cluster Information Database

• mysql_connection_id

MySQL Server connection ID

• node_id

Transaction coordinator node ID

• block_instance

Transaction coordinator block instance

• transid

Transaction ID

• state

Operation state (see text for possible values)

• count_operations

Number of stateful operations in the transaction

• outstanding_operations

Operations still being executed by local data management layer (LQH blocks)

• inactive_seconds

Time spent waiting for API

• client_node_id

Client node ID

• client_block_ref

Client block reference

Notes

The mysql_connection_id is the same as the connection or session ID shown in the
output of SHOW PROCESSLIST. It is obtained from the INFORMATION_SCHEMA table
NDB_TRANSID_MYSQL_CONNECTION_MAP.

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table.

The transaction ID (transid) is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API transaction
ID of an ongoing transaction.)

The state column can have any one of the values CS_ABORTING, CS_COMMITTING, CS_COMMIT_SENT,
CS_COMPLETE_SENT, CS_COMPLETING, CS_CONNECTED, CS_DISCONNECTED, CS_FAIL_ABORTED,
CS_FAIL_ABORTING, CS_FAIL_COMMITTED, CS_FAIL_COMMITTING, CS_FAIL_COMPLETED,
CS_FAIL_PREPARED, CS_PREPARE_TO_COMMIT, CS_RECEIVING, CS_REC_COMMITTING,
CS_RESTART, CS_SEND_FIRE_TRIG_REQ, CS_STARTED, CS_START_COMMITTING,
CS_START_SCAN, CS_WAIT_ABORT_CONF, CS_WAIT_COMMIT_CONF, CS_WAIT_COMPLETE_CONF,

3078

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid

ndbinfo: The NDB Cluster Information Database

CS_WAIT_FIRE_TRIG_REQ. (If the MySQL Server is running with ndbinfo_show_hidden enabled, you
can view this list of states by selecting from the ndb$dbtc_apiconnect_state table, which is normally
hidden.)

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node (that
is, an NDB API client or a MySQL Server attached to the cluster).

The block_instance column provides the DBTC kernel block instance number. You can use this to
obtain information about specific threads from the threadblocks table.

18.6.15.24 The ndbinfo tc_time_track_stats Table

The tc_time_track_stats table provides time-tracking information obtained from the DBTC block (TC)
instances in the data nodes, through API nodes access NDB. Each TC instance tracks latencies for a set
of activities it undertakes on behalf of API nodes or other data nodes; these activities include transactions,
transaction errors, key reads, key writes, unique index operations, failed key operations of any type, scans,
failed scans, fragment scans, and failed fragment scans.

A set of counters is maintained for each activity, each counter covering a range of latencies less than or
equal to an upper bound. At the conclusion of each activity, its latency is determined and the appropriate
counter incremented. tc_time_track_stats presents this information as rows, with a row for each
instance of the following:

• Data node, using its ID

• TC block instance

• Other communicating data node or API node, using its ID

• Upper bound value

Notes

Each row contains a value for each activity type. This is the number of times that this activity occurred
with a latency within the range specified by the row (that is, where the latency does not exceed the upper
bound).

The tc_time_track_stats table contains the following columns:

• node_id

Requesting node ID

• block_number

TC block number

• block_instance

TC block instance number

• comm_node_id

Node ID of communicating API or data node

• upper_bound

Upper bound of interval (in microseconds)

3079

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

• scans

Based on duration of successful scans from opening to closing, tracked against the API or data nodes
requesting them.

• scan_errors

Based on duration of failed scans from opening to closing, tracked against the API or data nodes
requesting them.

• scan_fragments

Based on duration of successful fragment scans from opening to closing, tracked against the data nodes
executing them

• scan_fragment_errors

Based on duration of failed fragment scans from opening to closing, tracked against the data nodes
executing them

• transactions

Based on duration of successful transactions from beginning until sending of commit ACK, tracked
against the API or data nodes requesting them. Stateless transactions are not included.

• transaction_errors

Based on duration of failing transactions from start to point of failure, tracked against the API or data
nodes requesting them.

• read_key_ops

Based on duration of successful primary key reads with locks. Tracked against both the API or data node
requesting them and the data node executing them.

• write_key_ops

Based on duration of successful primary key writes, tracked against both the API or data node
requesting them and the data node executing them.

• index_key_ops

Based on duration of successful unique index key operations, tracked against both the API or data node
requesting them and the data node executing reads of base tables.

• key_op_errors

Based on duration of all unsuccessful key read or write operations, tracked against both the API or data
node requesting them and the data node executing them.

The block_instance column provides the DBTC kernel block instance number. You can use this
together with the block name to obtain information about specific threads from the threadblocks table.

The tc_time_track_stats table was added in NDB 7.4.9 (Bug #78533, Bug #21889652).

18.6.15.25 The ndbinfo threadblocks Table

The threadblocks table associates data nodes, threads, and instances of NDB kernel blocks.

3080

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

The threadblocks table contains the following columns:

• node_id

Node ID

• thr_no

Thread ID

• block_name

Block name

• block_instance

Block instance number

Notes

The value of the block_name in this table is one of the values found in the block_name column when
selecting from the ndbinfo.blocks table. Although the list of possible values is static for a given NDB
Cluster release, the list may vary between releases.

The block_instance column provides the kernel block instance number.

18.6.15.26 The ndbinfo threadstat Table

The threadstat table provides a rough snapshot of statistics for threads running in the NDB kernel.

The threadstat table contains the following columns:

• node_id

Node ID

• thr_no

Thread ID

• thr_nm

Thread name

• c_loop

Number of loops in main loop

• c_exec

Number of signals executed

• c_wait

Number of times waiting for additional input

• c_l_sent_prioa

Number of priority A signals sent to own node

3081

ndbinfo: The NDB Cluster Information Database

• c_l_sent_priob

Number of priority B signals sent to own node

• c_r_sent_prioa

Number of priority A signals sent to remote node

• c_r_sent_priob

Number of priority B signals sent to remote node

• os_tid

OS thread ID

• os_now

OS time (ms)

• os_ru_utime

OS user CPU time (µs)

• os_ru_stime

OS system CPU time (µs)

• os_ru_minflt

OS page reclaims (soft page faults)

• os_ru_majflt

OS page faults (hard page faults)

• os_ru_nvcsw

OS voluntary context switches

• os_ru_nivcsw

OS involuntary context switches

Notes

os_time uses the system gettimeofday() call.

The values of the os_ru_utime, os_ru_stime, os_ru_minflt, os_ru_majflt, os_ru_nvcsw, and
os_ru_nivcsw columns are obtained using the system getrusage() call, or the equivalent.

Since this table contains counts taken at a given point in time, for best results it is necessary to query
this table periodically and store the results in an intermediate table or tables. The MySQL Server's Event
Scheduler can be employed to automate such monitoring. For more information, see Section 20.4, “Using
the Event Scheduler”.

18.6.15.27 The ndbinfo transporters Table

This table contains information about NDB transporters.

3082

ndbinfo: The NDB Cluster Information Database

The transporters table contains the following columns:

• node_id

This data node's unique node ID in the cluster

• remote_node_id

The remote data node's node ID

• status

Status of the connection

• remote_address

Name or IP address of the remote host

• bytes_sent

Number of bytes sent using this connection

• bytes_received

Number of bytes received using this connection

• connect_count

Number of times connection established on this transporter

• overloaded

1 if this transporter is currently overloaded, otherwise 0

• overload_count

Number of times this transporter has entered overload state since connecting

• slowdown

1 if this transporter is in slowdown state, otherwise 0

• slowdown_count

Number of times this transporter has entered slowdown state since connecting

Notes

For each running data node in the cluster, the transporters table displays a row showing the status
of each of that node's connections with all nodes in the cluster, including itself. This information is shown
in the table's status column, which can have any one of the following values: CONNECTING, CONNECTED,
DISCONNECTING, or DISCONNECTED.

Connections to API and management nodes which are configured but not currently connected to the
cluster are shown with status DISCONNECTED. Rows where the node_id is that of a data node which is
not currently connected are not shown in this table. (This is similar omission of disconnected nodes in the
ndbinfo.nodes table.

The remote_address is the host name or address for the node whose ID is shown in the
remote_node_id column. The bytes_sent from this node and bytes_received by this node are

3083

ndbinfo: The NDB Cluster Information Database

the numbers, respectively, of bytes sent and received by the node using this connection since it was
established. For nodes whose status is CONNECTING or DISCONNECTED, these columns always display 0.

Assume you have a 5-node cluster consisting of 2 data nodes, 2 SQL nodes, and 1 management node, as
shown in the output of the SHOW command in the ndb_mgm client:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @10.100.10.1 (5.6.51-ndb-7.4.39, Nodegroup: 0, *)
id=2 @10.100.10.2 (5.6.51-ndb-7.4.39, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @10.100.10.10 (5.6.51-ndb-7.4.39)

[mysqld(API)] 2 node(s)
id=20 @10.100.10.20 (5.6.51-ndb-7.4.39)
id=21 @10.100.10.21 (5.6.51-ndb-7.4.39)

There are 10 rows in the transporters table—5 for the first data node, and 5 for the second—assuming
that all data nodes are running, as shown here:

mysql> SELECT node_id, remote_node_id, status
 -> FROM ndbinfo.transporters;
+---------+----------------+---------------+
| node_id | remote_node_id | status |
+---------+----------------+---------------+
1	1	DISCONNECTED
1	2	CONNECTED
1	10	CONNECTED
1	20	CONNECTED
1	21	CONNECTED
2	1	CONNECTED
2	2	DISCONNECTED
2	10	CONNECTED
2	20	CONNECTED
2	21	CONNECTED
+---------+----------------+---------------+
10 rows in set (0.04 sec)

If you shut down one of the data nodes in this cluster using the command 2 STOP in the ndb_mgm client,
then repeat the previous query (again using the mysql client), this table now shows only 5 rows—1 row for
each connection from the remaining management node to another node, including both itself and the data
node that is currently offline—and displays CONNECTING for the status of each remaining connection to the
data node that is currently offline, as shown here:

mysql> SELECT node_id, remote_node_id, status
 -> FROM ndbinfo.transporters;
+---------+----------------+---------------+
| node_id | remote_node_id | status |
+---------+----------------+---------------+
1	1	DISCONNECTED
1	2	CONNECTING
1	10	CONNECTED
1	20	CONNECTED
1	21	CONNECTED
+---------+----------------+---------------+
5 rows in set (0.02 sec)

The connect_count, overloaded, overload_count ,slowdown, and slowdown_count counters
are reset on connection, and retain their values after the remote node disconnects. The bytes_sent

3084

Quick Reference: NDB Cluster SQL Statements

and bytes_received counters are also reset on connection, and so retain their values following
disconnection (until the next connection resets them).

The overload state referred to by the overloaded and overload_count columns occurs
when this transporter's send buffer contains more than OVerloadLimit bytes (default is 80% of
SendBufferMemory, that is, 0.8 * 2097152 = 1677721 bytes). When a given transporter is in a state
of overload, any new transaction that tries to use this transporter fails with Error 1218 (Send Buffers
overloaded in NDB kernel). This affects both scans and primary key operations.

The slowdown state referenced by the slowdown and slowdown_count columns of this table occurs
when the transporter's send buffer contains more than 60% of the overload limit (equal to 0.6 * 2097152 =
1258291 bytes by default). In this state, any new scan using this transporter has its batch size reduced to
minimize the load on the transporter.

Common causes of send buffer slowdown or overloading include the following:

• Data size, in particular the quantity of data stored in TEXT columns or BLOB columns (or both types of
columns)

• Having a data node (ndbd or ndbmtd) on the same host as an SQL node that is engaged in binary
logging

• Large number of rows per transaction or transaction batch

• Configuration issues such as insufficient SendBufferMemory

• Hardware issues such as insufficient RAM or poor network connectivity

See also Section 18.4.3.12, “Configuring NDB Cluster Send Buffer Parameters”.

18.6.16 Quick Reference: NDB Cluster SQL Statements

This section discusses several SQL statements that can prove useful in managing and monitoring a
MySQL server that is connected to an NDB Cluster, and in some cases provide information about the
cluster itself.

• SHOW ENGINE NDB STATUS, SHOW ENGINE NDBCLUSTER STATUS

The output of this statement contains information about the server's connection to the cluster, creation
and usage of NDB Cluster objects, and binary logging for NDB Cluster replication.

See Section 13.7.5.16, “SHOW ENGINE Statement”, for a usage example and more detailed
information.

• SHOW ENGINES

This statement can be used to determine whether or not clustering support is enabled in the MySQL
server, and if so, whether it is active.

See Section 13.7.5.17, “SHOW ENGINES Statement”, for more detailed information.

Note

This statement does not support a LIKE clause. However, you can use LIKE to
filter queries against the Information Schema ENGINES table, as discussed in the
next item.

3085

Quick Reference: NDB Cluster SQL Statements

• SELECT * FROM INFORMATION_SCHEMA.ENGINES [WHERE ENGINE LIKE 'NDB%']

This is the equivalent of SHOW ENGINES, but uses the ENGINES table of the INFORMATION_SCHEMA
database. Unlike the case with the SHOW ENGINES statement, it is possible to filter the results using
a LIKE clause, and to select specific columns to obtain information that may be of use in scripts. For
example, the following query shows whether the server was built with NDB support and, if so, whether it
is enabled:

mysql> SELECT SUPPORT FROM INFORMATION_SCHEMA.ENGINES
 -> WHERE ENGINE LIKE 'NDB%';
+---------+
| support |
+---------+
| ENABLED |
+---------+

See Section 21.3.7, “The INFORMATION_SCHEMA ENGINES Table”, for more information.

• SHOW VARIABLES LIKE 'NDB%'

This statement provides a list of most server system variables relating to the NDB storage engine, and
their values, as shown here:

mysql> SHOW VARIABLES LIKE 'NDB%';
+--------------------------------------+---------------------------------------+
| Variable_name | Value |
+--------------------------------------+---------------------------------------+
ndb_autoincrement_prefetch_sz	1
ndb_batch_size	32768
ndb_blob_read_batch_bytes	65536
ndb_blob_write_batch_bytes	65536
ndb_cache_check_time	0
ndb_clear_apply_status	ON
ndb_cluster_connection_pool	1
ndb_connectstring	127.0.0.1
ndb_deferred_constraints	0
ndb_distribution	KEYHASH
ndb_eventbuffer_free_percent	20
ndb_eventbuffer_max_alloc	0
ndb_extra_logging	1
ndb_force_send	ON
ndb_index_stat_enable	ON
ndb_index_stat_option	loop_enable=1000ms,loop_idle=1000ms,
loop_busy=100ms,update_batch=1,read_batch=4,idle_batch=32,check_batch=8,	
check_delay=10m,delete_batch=8,clean_delay=1m,error_batch=4,error_delay=1m,	
evict_batch=8,evict_delay=1m,cache_limit=32M,cache_lowpct=90,zero_total=0	
ndb_join_pushdown	ON
ndb_log_apply_status	OFF
ndb_log_bin	ON
ndb_log_binlog_index	ON
ndb_log_empty_epochs	OFF
ndb_log_empty_update	OFF
ndb_log_exclusive_reads	OFF
ndb_log_fail_terminate	OFF
ndb_log_orig	OFF
ndb_log_transaction_id	OFF
ndb_log_update_as_write	ON
ndb_log_update_minimal	OFF
ndb_log_updated_only	ON
ndb_mgmd_host	127.0.0.1
ndb_nodeid	0
ndb_optimization_delay	10
ndb_optimized_node_selection	3
ndb_recv_thread_activation_threshold	8
ndb_recv_thread_cpu_mask	

3086

Quick Reference: NDB Cluster SQL Statements

ndb_report_thresh_binlog_epoch_slip	3
ndb_report_thresh_binlog_mem_usage	10
ndb_show_foreign_key_mock_tables	OFF
ndb_slave_conflict_role	NONE
ndb_table_no_logging	OFF
ndb_table_temporary	OFF
ndb_use_copying_alter_table	OFF
ndb_use_exact_count	OFF
ndb_use_transactions	ON
ndb_version	459808
ndb_version_string	ndb-7.4.39
ndb_wait_connected	30
ndb_wait_setup	30
ndbinfo_database	ndbinfo
ndbinfo_max_bytes	0
ndbinfo_max_rows	10
ndbinfo_offline	OFF
ndbinfo_show_hidden	OFF
ndbinfo_table_prefix	ndb$
ndbinfo_version	459808
+--------------------------------------+---------------------------------------+

See Section 5.1.7, “Server System Variables”, for more information.

• SELECT * FROM INFORMATION_SCHEMA.GLOBAL_VARIABLES WHERE VARIABLE_NAME LIKE
'NDB%';

This statement is the equivalent of the SHOW VARIABLES statement described in the previous item, and
provides almost identical output, as shown here:

mysql> SELECT * FROM INFORMATION_SCHEMA.GLOBAL_VARIABLES
 -> WHERE VARIABLE_NAME LIKE 'NDB%';
+--------------------------------------+---------------------------------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+--------------------------------------+---------------------------------------+
NDB_CACHE_CHECK_TIME	0
NDB_TABLE_TEMPORARY	OFF
NDB_AUTOINCREMENT_PREFETCH_SZ	1
NDB_LOG_BINLOG_INDEX	ON
NDB_FORCE_SEND	ON
NDB_WAIT_SETUP	30
NDB_CLUSTER_CONNECTION_POOL	1
NDB_WAIT_CONNECTED	30
NDB_USE_EXACT_COUNT	OFF
NDB_LOG_EMPTY_UPDATE	OFF
NDB_RECV_THREAD_ACTIVATION_THRESHOLD	8
NDB_EVENTBUFFER_MAX_ALLOC	0
NDB_OPTIMIZED_NODE_SELECTION	3
NDBINFO_DATABASE	ndbinfo
NDB_LOG_APPLY_STATUS	OFF
NDB_JOIN_PUSHDOWN	ON
NDB_RECV_THREAD_CPU_MASK	
NDBINFO_VERSION	459808
NDB_CONNECTSTRING	127.0.0.1
NDB_TABLE_NO_LOGGING	OFF
NDB_LOG_UPDATED_ONLY	ON
NDB_VERSION	459808
NDB_LOG_UPDATE_MINIMAL	OFF
NDB_OPTIMIZATION_DELAY	10
NDB_LOG_UPDATE_AS_WRITE	ON
NDB_SHOW_FOREIGN_KEY_MOCK_TABLES	OFF
NDB_VERSION_STRING	ndb-7.4.39
NDBINFO_OFFLINE	OFF
NDB_INDEX_STAT_OPTION	loop_enable=1000ms,loop_idle=1000ms,
loop_busy=100ms,update_batch=1,read_batch=4,idle_batch=32,check_batch=8,
check_delay=10m,delete_batch=8,clean_delay=1m,error_batch=4,error_delay=1m,

3087

Quick Reference: NDB Cluster SQL Statements

evict_batch=8,evict_delay=1m,cache_limit=32M,cache_lowpct=90,zero_total=0 |
NDBINFO_MAX_ROWS	10
NDB_BATCH_SIZE	32768
NDB_USE_TRANSACTIONS	ON
NDB_NODEID	0
NDB_SLAVE_CONFLICT_ROLE	NONE
NDB_REPORT_THRESH_BINLOG_MEM_USAGE	10
NDB_MGMD_HOST	127.0.0.1
NDB_REPORT_THRESH_BINLOG_EPOCH_SLIP	3
NDBINFO_MAX_BYTES	0
NDB_LOG_BIN	ON
NDBINFO_TABLE_PREFIX	ndb$
NDB_LOG_EMPTY_EPOCHS	OFF
NDB_LOG_ORIG	OFF
NDB_LOG_EXCLUSIVE_READS	OFF
NDB_LOG_TRANSACTION_ID	OFF
NDB_LOG_FAIL_TERMINATE	OFF
NDB_EVENTBUFFER_FREE_PERCENT	20
NDB_CLEAR_APPLY_STATUS	ON
NDBINFO_SHOW_HIDDEN	OFF
NDB_INDEX_STAT_ENABLE	ON
NDB_DISTRIBUTION	KEYHASH
NDB_EXTRA_LOGGING	1
NDB_BLOB_WRITE_BATCH_BYTES	65536
NDB_USE_COPYING_ALTER_TABLE	OFF
NDB_DEFERRED_CONSTRAINTS	0
NDB_BLOB_READ_BATCH_BYTES	65536
+--------------------------------------+---------------------------------------+

Unlike the case with the SHOW VARIABLES statement, it is possible to select individual columns. For
example:

mysql> SELECT VARIABLE_VALUE
 -> FROM INFORMATION_SCHEMA.GLOBAL_VARIABLES
 -> WHERE VARIABLE_NAME = 'ndb_force_send';
+----------------+
| VARIABLE_VALUE |
+----------------+
| ON |
+----------------+

See Section 21.3.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and
SESSION_VARIABLES Tables”, and Section 5.1.7, “Server System Variables”, for more information.

• SHOW STATUS LIKE 'NDB%'

This statement shows at a glance whether or not the MySQL server is acting as a cluster SQL node, and
if so, it provides the MySQL server's cluster node ID, the host name and port for the cluster management
server to which it is connected, and the number of data nodes in the cluster, as shown here:

mysql> SHOW STATUS LIKE 'NDB%';
+--+-------------------------------+
| Variable_name | Value |
+--+-------------------------------+
Ndb_api_wait_exec_complete_count	2
Ndb_api_wait_scan_result_count	3
Ndb_api_wait_meta_request_count	109
Ndb_api_wait_nanos_count	830671169345
Ndb_api_bytes_sent_count	13284
Ndb_api_bytes_received_count	112672
Ndb_api_trans_start_count	2
Ndb_api_trans_commit_count	1
Ndb_api_trans_abort_count	0
Ndb_api_trans_close_count	2
Ndb_api_pk_op_count	1

3088

Quick Reference: NDB Cluster SQL Statements

Ndb_api_uk_op_count	0
Ndb_api_table_scan_count	1
Ndb_api_range_scan_count	0
Ndb_api_pruned_scan_count	0
Ndb_api_scan_batch_count	0
Ndb_api_read_row_count	1
Ndb_api_trans_local_read_row_count	1
Ndb_api_adaptive_send_forced_count	0
Ndb_api_adaptive_send_unforced_count	3
Ndb_api_adaptive_send_deferred_count	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	3122560
Ndb_cluster_node_id	100
Ndb_config_from_host	127.0.0.1
Ndb_config_from_port	1186
Ndb_number_of_data_nodes	2
Ndb_number_of_ready_data_nodes	2
Ndb_connect_count	0
Ndb_execute_count	0
Ndb_scan_count	0
Ndb_pruned_scan_count	0
Ndb_schema_locks_count	0
Ndb_api_wait_exec_complete_count_session	0
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	0
Ndb_api_wait_nanos_count_session	0
Ndb_api_bytes_sent_count_session	0
Ndb_api_bytes_received_count_session	0
Ndb_api_trans_start_count_session	0
Ndb_api_trans_commit_count_session	0
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	0
Ndb_api_pk_op_count_session	0
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	0
Ndb_api_trans_local_read_row_count_session	0
Ndb_api_adaptive_send_forced_count_session	0
Ndb_api_adaptive_send_unforced_count_session	0
Ndb_api_adaptive_send_deferred_count_session	0
Ndb_sorted_scan_count	0
Ndb_pushed_queries_defined	0
Ndb_pushed_queries_dropped	0
Ndb_pushed_queries_executed	0
Ndb_pushed_reads	0
Ndb_last_commit_epoch_server	73014444043
Ndb_last_commit_epoch_session	0
Ndb_api_wait_exec_complete_count_slave	0
Ndb_api_wait_scan_result_count_slave	0
Ndb_api_wait_meta_request_count_slave	0
Ndb_api_wait_nanos_count_slave	0
Ndb_api_bytes_sent_count_slave	0
Ndb_api_bytes_received_count_slave	0
Ndb_api_trans_start_count_slave	0
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_abort_count_slave	0
Ndb_api_trans_close_count_slave	0
Ndb_api_pk_op_count_slave	0
Ndb_api_uk_op_count_slave	0
Ndb_api_table_scan_count_slave	0
Ndb_api_range_scan_count_slave	0
Ndb_api_pruned_scan_count_slave	0
Ndb_api_scan_batch_count_slave	0

3089

NDB Cluster Security Issues

Ndb_api_read_row_count_slave	0
Ndb_api_trans_local_read_row_count_slave	0
Ndb_api_adaptive_send_forced_count_slave	0
Ndb_api_adaptive_send_unforced_count_slave	0
Ndb_api_adaptive_send_deferred_count_slave	0
Ndb_slave_max_replicated_epoch	0
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	2080768
Ndb_conflict_fn_max	0
Ndb_conflict_fn_old	0
Ndb_conflict_fn_max_del_win	0
Ndb_conflict_fn_epoch	0
Ndb_conflict_fn_epoch_trans	0
Ndb_conflict_fn_epoch2	0
Ndb_conflict_fn_epoch2_trans	0
Ndb_conflict_trans_row_conflict_count	0
Ndb_conflict_trans_row_reject_count	0
Ndb_conflict_trans_reject_count	0
Ndb_conflict_trans_detect_iter_count	0
Ndb_conflict_trans_conflict_commit_count	0
Ndb_conflict_epoch_delete_delete_count	0
Ndb_conflict_reflected_op_prepare_count	0
Ndb_conflict_reflected_op_discard_count	0
Ndb_conflict_refresh_op_count	0
Ndb_conflict_last_conflict_epoch	0
Ndb_conflict_last_stable_epoch	0
Ndb_index_stat_status	allow:1,enable:1,busy:0,
loop:1000,list:(new:0,update:0,read:0,idle:0,check:0,delete:0,error:0,total:0),	
analyze:(queue:0,wait:0),stats:(nostats:0,wait:0),	
total:(analyze:(all:0,error:0),query:(all:0,nostats:0,error:0),	
event:(act:0,skip:0,miss:0),cache:(refresh:0,clean:0,pinned:0,drop:0,evict:0)),	
cache:(query:0,clean:0,drop:0,evict:0,usedpct:0.00,highpct:0.00)	
Ndb_index_stat_cache_query	0
Ndb_index_stat_cache_clean	0
+--+-------------------------------+

If the MySQL server was built with clustering support, but it is not connected to a cluster, all rows in the
output of this statement contain a zero or an empty string.

See also Section 13.7.5.36, “SHOW STATUS Statement”.

• SELECT * FROM INFORMATION_SCHEMA.GLOBAL_STATUS WHERE VARIABLE_NAME LIKE 'NDB
%';

This statement provides similar output to the SHOW STATUS statement discussed in the previous item.
However, unlike the case with SHOW STATUS, it is possible using the SELECT to extract values in SQL
for use in scripts for monitoring and automation purposes.

See Section 21.3.9, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS
Tables”, for more information.

You can also query the tables in the ndbinfo information database for real-time data about many NDB
Cluster operations. See Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”.

18.6.17 NDB Cluster Security Issues

This section discusses security considerations to take into account when setting up and running NDB
Cluster.

Topics covered in this section include the following:

3090

NDB Cluster Security Issues

• NDB Cluster and network security issues

• Configuration issues relating to running NDB Cluster securely

• NDB Cluster and the MySQL privilege system

• MySQL standard security procedures as applicable to NDB Cluster

18.6.17.1 NDB Cluster Security and Networking Issues

In this section, we discuss basic network security issues as they relate to NDB Cluster. It is extremely
important to remember that NDB Cluster “out of the box” is not secure; you or your network administrator
must take the proper steps to ensure that your cluster cannot be compromised over the network.

Cluster communication protocols are inherently insecure, and no encryption or similar security measures
are used in communications between nodes in the cluster. Because network speed and latency have
a direct impact on the cluster's efficiency, it is also not advisable to employ SSL or other encryption to
network connections between nodes, as such schemes effectively slow communications.

It is also true that no authentication is used for controlling API node access to an NDB Cluster. As with
encryption, the overhead of imposing authentication requirements would have an adverse impact on
Cluster performance.

In addition, there is no checking of the source IP address for either of the following when accessing the
cluster:

• SQL or API nodes using “free slots” created by empty [mysqld] or [api] sections in the config.ini
file

This means that, if there are any empty [mysqld] or [api] sections in the config.ini file, then any
API nodes (including SQL nodes) that know the management server's host name (or IP address) and
port can connect to the cluster and access its data without restriction. (See Section 18.6.17.2, “NDB
Cluster and MySQL Privileges”, for more information about this and related issues.)

Note

 You can exercise some control over SQL and API node access to the cluster by
specifying a HostName parameter for all [mysqld] and [api] sections in the
config.ini file. However, this also means that, should you wish to connect an
API node to the cluster from a previously unused host, you need to add an [api]
section containing its host name to the config.ini file.

More information is available elsewhere in this chapter about the HostName
parameter. Also see Section 18.4.1, “Quick Test Setup of NDB Cluster”, for
configuration examples using HostName with API nodes.

• Any ndb_mgm client

This means that any cluster management client that is given the management server's host name (or
IP address) and port (if not the standard port) can connect to the cluster and execute any management
client command. This includes commands such as ALL STOP and SHUTDOWN.

 For these reasons, it is necessary to protect the cluster on the network level. The safest network
configuration for Cluster is one which isolates connections between Cluster nodes from any other network
communications. This can be accomplished by any of the following methods:

1. Keeping Cluster nodes on a network that is physically separate from any public networks. This option is
the most dependable; however, it is the most expensive to implement.

3091

NDB Cluster Security Issues

We show an example of an NDB Cluster setup using such a physically segregated network here:

Figure 18.8 NDB Cluster with Hardware Firewall

This setup has two networks, one private (solid box) for the Cluster management servers and data
nodes, and one public (dotted box) where the SQL nodes reside. (We show the management and data
nodes connected using a gigabit switch since this provides the best performance.) Both networks are
protected from the outside by a hardware firewall, sometimes also known as a network-based firewall.

This network setup is safest because no packets can reach the cluster's management or data nodes
from outside the network—and none of the cluster's internal communications can reach the outside
—without going through the SQL nodes, as long as the SQL nodes do not permit any packets to be
forwarded. This means, of course, that all SQL nodes must be secured against hacking attempts.

Important

With regard to potential security vulnerabilities, an SQL node is no different from
any other MySQL server. See Section 6.1.3, “Making MySQL Secure Against
Attackers”, for a description of techniques you can use to secure MySQL
servers.

2. Using one or more software firewalls (also known as host-based firewalls) to control which packets
pass through to the cluster from portions of the network that do not require access to it. In this type

3092

NDB Cluster Security Issues

of setup, a software firewall must be installed on every host in the cluster which might otherwise be
accessible from outside the local network.

The host-based option is the least expensive to implement, but relies purely on software to provide
protection and so is the most difficult to keep secure.

This type of network setup for NDB Cluster is illustrated here:

Figure 18.9 NDB Cluster with Software Firewalls

Using this type of network setup means that there are two zones of NDB Cluster hosts. Each cluster
host must be able to communicate with all of the other machines in the cluster, but only those hosting
SQL nodes (dotted box) can be permitted to have any contact with the outside, while those in the zone
containing the data nodes and management nodes (solid box) must be isolated from any machines that
are not part of the cluster. Applications using the cluster and user of those applications must not be
permitted to have direct access to the management and data node hosts.

To accomplish this, you must set up software firewalls that limit the traffic to the type or types shown in
the following table, according to the type of node that is running on each cluster host computer:

Table 18.54 Node types in a host-based firewall cluster configuration

Node Type Permitted Traffic

SQL or API node • It originates from the IP address of a
management or data node (using any TCP or
UDP port).

• It originates from within the network in which
the cluster resides and is on the port that your
application is using.

Data node or Management node • It originates from the IP address of a
management or data node (using any TCP or
UDP port).

3093

NDB Cluster Security Issues

Node Type Permitted Traffic
• It originates from the IP address of an SQL or

API node.

Any traffic other than that shown in the table for a given node type should be denied.

The specifics of configuring a firewall vary from firewall application to firewall application, and are
beyond the scope of this Manual. iptables is a very common and reliable firewall application, which
is often used with APF as a front end to make configuration easier. You can (and should) consult the
documentation for the software firewall that you employ, should you choose to implement an NDB
Cluster network setup of this type, or of a “mixed” type as discussed under the next item.

3. It is also possible to employ a combination of the first two methods, using both hardware and software
to secure the cluster—that is, using both network-based and host-based firewalls. This is between the
first two schemes in terms of both security level and cost. This type of network setup keeps the cluster
behind the hardware firewall, but permits incoming packets to travel beyond the router connecting all
cluster hosts to reach the SQL nodes.

One possible network deployment of an NDB Cluster using hardware and software firewalls in
combination is shown here:

Figure 18.10 NDB Cluster with a Combination of Hardware and Software Firewalls

In this case, you can set the rules in the hardware firewall to deny any external traffic except to SQL
nodes and API nodes, and then permit traffic to them only on the ports required by your application.

Whatever network configuration you use, remember that your objective from the viewpoint of keeping
the cluster secure remains the same—to prevent any unessential traffic from reaching the cluster while
ensuring the most efficient communication between the nodes in the cluster.

 Because NDB Cluster requires large numbers of ports to be open for communications between nodes,
the recommended option is to use a segregated network. This represents the simplest way to prevent
unwanted traffic from reaching the cluster.

3094

NDB Cluster Security Issues

Note

 If you wish to administer an NDB Cluster remotely (that is, from outside the
local network), the recommended way to do this is to use ssh or another secure
login shell to access an SQL node host. From this host, you can then run the
management client to access the management server safely, from within the
cluster's own local network.

Even though it is possible to do so in theory, it is not recommended to use ndb_mgm
to manage a Cluster directly from outside the local network on which the Cluster
is running. Since neither authentication nor encryption takes place between the
management client and the management server, this represents an extremely
insecure means of managing the cluster, and is almost certain to be compromised
sooner or later.

18.6.17.2 NDB Cluster and MySQL Privileges

In this section, we discuss how the MySQL privilege system works in relation to NDB Cluster and the
implications of this for keeping an NDB Cluster secure.

 Standard MySQL privileges apply to NDB Cluster tables. This includes all MySQL privilege types (SELECT
privilege, UPDATE privilege, DELETE privilege, and so on) granted on the database, table, and column
level. As with any other MySQL Server, user and privilege information is stored in the mysql system
database. The SQL statements used to grant and revoke privileges on NDB tables, databases containing
such tables, and columns within such tables are identical in all respects with the GRANT and REVOKE
statements used in connection with database objects involving any (other) MySQL storage engine. The
same thing is true with respect to the CREATE USER and DROP USER statements.

 It is important to keep in mind that, by default, the MySQL grant tables use the MyISAM storage engine.
Because of this, those tables are not normally duplicated or shared among MySQL servers acting as
SQL nodes in an NDB Cluster. In other words, changes in users and their privileges do not automatically
propagate between SQL nodes by default. If you wish, you can enable automatic distribution of MySQL
users and privileges across NDB Cluster SQL nodes; see Section 18.6.13, “Distributed Privileges Using
Shared Grant Tables”, for details.

 Conversely, because there is no way in MySQL to deny privileges (privileges can either be revoked or
not granted in the first place, but not denied as such), there is no special protection for NDB tables on one
SQL node from users that have privileges on another SQL node; (This is true even if you are not using
automatic distribution of user privileges. The definitive example of this is the MySQL root account, which
can perform any action on any database object. In combination with empty [mysqld] or [api] sections
of the config.ini file, this account can be especially dangerous. To understand why, consider the
following scenario:

• The config.ini file contains at least one empty [mysqld] or [api] section. This means that the
NDB Cluster management server performs no checking of the host from which a MySQL Server (or other
API node) accesses the NDB Cluster.

• There is no firewall, or the firewall fails to protect against access to the NDB Cluster from hosts external
to the network.

• The host name or IP address of the NDB Cluster management server is known or can be determined
from outside the network.

If these conditions are true, then anyone, anywhere can start a MySQL Server with --ndbcluster
--ndb-connectstring=management_host and access this NDB Cluster. Using the MySQL root
account, this person can then perform the following actions:

3095

NDB Cluster Security Issues

• Execute metadata statements such as SHOW DATABASES statement (to obtain a list of all NDB
databases on the server) or SHOW TABLES FROM some_ndb_database statement to obtain a list of
all NDB tables in a given database

• Run any legal MySQL statements on any of the discovered tables, such as:

• SELECT * FROM some_table to read all the data from any table

• DELETE FROM some_table to delete all the data from a table

• DESCRIBE some_table or SHOW CREATE TABLE some_table to determine the table schema

• UPDATE some_table SET column1 = some_value to fill a table column with “garbage” data; this
could actually cause much greater damage than simply deleting all the data

More insidious variations might include statements like these:

UPDATE some_table SET an_int_column = an_int_column + 1

or

UPDATE some_table SET a_varchar_column = REVERSE(a_varchar_column)

Such malicious statements are limited only by the imagination of the attacker.

The only tables that would be safe from this sort of mayhem would be those tables that were created
using storage engines other than NDB, and so not visible to a “rogue” SQL node.

 A user who can log in as root can also access the INFORMATION_SCHEMA database and its tables,
and so obtain information about databases, tables, stored routines, scheduled events, and any other
database objects for which metadata is stored in INFORMATION_SCHEMA.

It is also a very good idea to use different passwords for the root accounts on different NDB Cluster
SQL nodes unless you are using distributed privileges.

In sum, you cannot have a safe NDB Cluster if it is directly accessible from outside your local network.

Important

Never leave the MySQL root account password empty. This is just as true when
running MySQL as an NDB Cluster SQL node as it is when running it as a
standalone (non-Cluster) MySQL Server, and should be done as part of the MySQL
installation process before configuring the MySQL Server as an SQL node in an
NDB Cluster.

If you wish to employ NDB Cluster's distributed privilege capabilities, you should not simply convert the
system tables in the mysql database to use the NDB storage engine manually. Use the stored procedure
provided for this purpose instead; see Section 18.6.13, “Distributed Privileges Using Shared Grant Tables”.

Otherwise, if you need to synchronize mysql system tables between SQL nodes, you can use standard
MySQL replication to do so, or employ a script to copy table entries between the MySQL servers.

Summary. The most important points to remember regarding the MySQL privilege system with regard
to NDB Cluster are listed here:

1. Users and privileges established on one SQL node do not automatically exist or take effect on other
SQL nodes in the cluster. Conversely, removing a user or privilege on one SQL node in the cluster
does not remove the user or privilege from any other SQL nodes.

3096

NDB Cluster Security Issues

2. You can distribute MySQL users and privileges among SQL nodes using the SQL script, and the stored
procedures it contains, that are supplied for this purpose in the NDB Cluster distribution.

3. Once a MySQL user is granted privileges on an NDB table from one SQL node in an NDB Cluster, that
user can “see” any data in that table regardless of the SQL node from which the data originated, even if
you are not using privilege distribution.

18.6.17.3 NDB Cluster and MySQL Security Procedures

In this section, we discuss MySQL standard security procedures as they apply to running NDB Cluster.

In general, any standard procedure for running MySQL securely also applies to running a MySQL Server
as part of an NDB Cluster. First and foremost, you should always run a MySQL Server as the mysql
operating system user; this is no different from running MySQL in a standard (non-Cluster) environment.
The mysql system account should be uniquely and clearly defined. Fortunately, this is the default behavior
for a new MySQL installation. You can verify that the mysqld process is running as the mysql operating
system user by using the system command such as the one shown here:

$> ps aux | grep mysql
root 10467 0.0 0.1 3616 1380 pts/3 S 11:53 0:00 \
 /bin/sh ./mysqld_safe --ndbcluster --ndb-connectstring=localhost:1186
mysql 10512 0.2 2.5 58528 26636 pts/3 Sl 11:53 0:00 \
 /usr/local/mysql/libexec/mysqld --basedir=/usr/local/mysql \
 --datadir=/usr/local/mysql/var --user=mysql --ndbcluster \
 --ndb-connectstring=localhost:1186 --pid-file=/usr/local/mysql/var/mothra.pid \
 --log-error=/usr/local/mysql/var/mothra.err
jon 10579 0.0 0.0 2736 688 pts/0 S+ 11:54 0:00 grep mysql

If the mysqld process is running as any other user than mysql, you should immediately shut it down and
restart it as the mysql user. If this user does not exist on the system, the mysql user account should be
created, and this user should be part of the mysql user group; in this case, you should also make sure
that the MySQL data directory on this system (as set using the --datadir option for mysqld) is owned
by the mysql user, and that the SQL node's my.cnf file includes user=mysql in the [mysqld] section.
Alternatively, you can start the MySQL server process with --user=mysql on the command line, but it is
preferable to use the my.cnf option, since you might forget to use the command-line option and so have
mysqld running as another user unintentionally. The mysqld_safe startup script forces MySQL to run as
the mysql user.

Important

Never run mysqld as the system root user. Doing so means that potentially any file
on the system can be read by MySQL, and thus—should MySQL be compromised
—by an attacker.

 As mentioned in the previous section (see Section 18.6.17.2, “NDB Cluster and MySQL Privileges”), you
should always set a root password for the MySQL Server as soon as you have it running. You should also
delete the anonymous user account that is installed by default. You can accomplish these tasks using the
following statements:

$> mysql -u root

mysql> UPDATE mysql.user
 -> SET Password=PASSWORD('secure_password')
 -> WHERE User='root';

mysql> DELETE FROM mysql.user
 -> WHERE User='';

mysql> FLUSH PRIVILEGES;

3097

NDB Cluster Replication

Be very careful when executing the DELETE statement not to omit the WHERE clause, or you risk deleting
all MySQL users. Be sure to run the FLUSH PRIVILEGES statement as soon as you have modified the
mysql.user table, so that the changes take immediate effect. Without FLUSH PRIVILEGES, the changes
do not take effect until the next time that the server is restarted.

Note

 Many of the NDB Cluster utilities such as ndb_show_tables, ndb_desc, and
ndb_select_all also work without authentication and can reveal table names,
schemas, and data. By default these are installed on Unix-style systems with the
permissions wxr-xr-x (755), which means they can be executed by any user that
can access the mysql/bin directory.

See Section 18.5, “NDB Cluster Programs”, for more information about these
utilities.

18.7 NDB Cluster Replication

NDB Cluster supports asynchronous replication, more usually referred to simply as “replication”. This
section explains how to set up and manage a configuration in which one group of computers operating
as an NDB Cluster replicates to a second computer or group of computers. We assume some familiarity
on the part of the reader with standard MySQL replication as discussed elsewhere in this Manual. (See
Chapter 17, Replication).

Note

NDB Cluster does not support replication using GTIDs; semisynchronous replication
is also not supported by the NDB storage engine.

Normal (non-clustered) replication involves a source server (formerly called a “master”) and a replica
server (formerly referred to as a “slave”), the source being so named because operations and data to
be replicated originate with it, and the replica being the recipient of these. In NDB Cluster, replication is
conceptually very similar but can be more complex in practice, as it may be extended to cover a number
of different configurations including replicating between two complete clusters. Although an NDB Cluster
itself depends on the NDB storage engine for clustering functionality, it is not necessary to use NDB as the
storage engine for the replica's copies of the replicated tables (see Replication from NDB to other storage
engines). However, for maximum availability, it is possible (and preferable) to replicate from one NDB
Cluster to another, and it is this scenario that we discuss, as shown in the following figure:

3098

NDB Cluster Replication

Figure 18.11 NDB Cluster-to-Cluster Replication Layout

In this scenario, the replication process is one in which successive states of a source cluster are logged
and saved to a replica cluster. This process is accomplished by a special thread known as the NDB binary
log injector thread, which runs on each MySQL server and produces a binary log (binlog). This thread
ensures that all changes in the cluster producing the binary log—and not just those changes that are
effected through the MySQL Server—are inserted into the binary log with the correct serialization order.
We refer to the MySQL source and replica servers as replication servers or replication nodes, and the data
flow or line of communication between them as a replication channel.

For information about performing point-in-time recovery with NDB Cluster and NDB Cluster Replication,
see Section 18.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”.

NDB API replica status variables. NDB API counters can provide enhanced monitoring capabilities
on replica clusters. These counters are implemented as NDB statistics _slave status variables, as
seen in the output of SHOW STATUS, or in the results of queries against the SESSION_STATUS or
GLOBAL_STATUS table in a mysql client session connected to a MySQL Server that is acting as a
replica in NDB Cluster Replication. By comparing the values of these status variables before and after the
execution of statements affecting replicated NDB tables, you can observe the corresponding actions taken
on the NDB API level by the replica, which can be useful when monitoring or troubleshooting NDB Cluster
Replication. Section 18.6.14, “NDB API Statistics Counters and Variables”, provides additional information.

Replication from NDB to non-NDB tables. It is possible to replicate NDB tables from an NDB Cluster
acting as the replication source to tables using other MySQL storage engines such as InnoDB or MyISAM

3099

NDB Cluster Replication: Abbreviations and Symbols

on a replica mysqld. This is subject to a number of conditions; see Replication from NDB to other storage
engines, and Replication from NDB to a nontransactional storage engine, for more information.

18.7.1 NDB Cluster Replication: Abbreviations and Symbols

Throughout this section, we use the following abbreviations or symbols for referring to the source and
replica clusters, and to processes and commands run on the clusters or cluster nodes:

Table 18.55 Abbreviations used throughout this section referring to source and replica clusters,
and to processes and commands run on cluster nodes

Symbol or Abbreviation Description (Refers to...)

S The cluster serving as the (primary) replication
source

R The cluster acting as the (primary) replica

shellS> Shell command to be issued on the source cluster

mysqlS> MySQL client command issued on a single MySQL
server running as an SQL node on the source
cluster

mysqlS*> MySQL client command to be issued on all SQL
nodes participating in the replication source cluster

shellR> Shell command to be issued on the replica cluster

mysqlR> MySQL client command issued on a single MySQL
server running as an SQL node on the replica
cluster

mysqlR*> MySQL client command to be issued on all SQL
nodes participating in the replica cluster

C Primary replication channel

C' Secondary replication channel

S' Secondary replication source

R' Secondary replica

18.7.2 General Requirements for NDB Cluster Replication

A replication channel requires two MySQL servers acting as replication servers (one each for the source
and replica). For example, this means that in the case of a replication setup with two replication channels
(to provide an extra channel for redundancy), there should be a total of four replication nodes, two per
cluster.

Replication of an NDB Cluster as described in this section and those following is dependent on row-
based replication. This means that the replication source MySQL server must be running with --binlog-
format=ROW or --binlog-format=MIXED, as described in Section 18.7.6, “Starting NDB Cluster
Replication (Single Replication Channel)”. For general information about row-based replication, see
Section 17.1.2, “Replication Formats”.

Important

If you attempt to use NDB Cluster Replication with --binlog-
format=STATEMENT, replication fails to work properly because the

3100

Known Issues in NDB Cluster Replication

ndb_binlog_index table on the source cluster and the epoch column of
the ndb_apply_status table on the replica cluster are not updated (see
Section 18.7.4, “NDB Cluster Replication Schema and Tables”). Instead, only
updates on the MySQL server acting as the replication source propagate to the
replica, and no updates from any other SQL nodes in the source cluster are
replicated.

The default value for the --binlog-format option is MIXED.

Each MySQL server used for replication in either cluster must be uniquely identified among all the MySQL
replication servers participating in either cluster (you cannot have replication servers on both the source
and replica clusters sharing the same ID). This can be done by starting each SQL node using the --
server-id=id option, where id is a unique integer. Although it is not strictly necessary, we assume for
purposes of this discussion that all NDB Cluster binaries are of the same release version.

It is generally true in MySQL Replication that both MySQL servers (mysqld processes) involved must
be compatible with one another with respect to both the version of the replication protocol used and the
SQL feature sets which they support (see Section 17.4.2, “Replication Compatibility Between MySQL
Versions”). It is due to such differences between the binaries in the NDB Cluster and MySQL Server 5.6
distributions that NDB Cluster Replication has the additional requirement that both mysqld binaries come
from an NDB Cluster distribution. The simplest and easiest way to assure that the mysqld servers are
compatible is to use the same NDB Cluster distribution for all source and replica mysqld binaries.

We assume that the replica server or cluster is dedicated to replication of the source cluster, and that no
other data is being stored on it.

All NDB tables being replicated must be created using a MySQL server and client. Tables and other
database objects created using the NDB API (with, for example, Dictionary::createTable()) are not
visible to a MySQL server and so are not replicated. Updates by NDB API applications to existing tables
that were created using a MySQL server can be replicated.

Note

It is possible to replicate an NDB Cluster using statement-based replication.
However, in this case, the following restrictions apply:

• All updates to data rows on the cluster acting as the source must be directed to a
single MySQL server.

• It is not possible to replicate a cluster using multiple simultaneous MySQL
replication processes.

• Only changes made at the SQL level are replicated.

These are in addition to the other limitations of statement-based replication
as opposed to row-based replication; see Section 17.1.2.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”, for more specific
information concerning the differences between the two replication formats.

18.7.3 Known Issues in NDB Cluster Replication

This section discusses known problems or issues when using replication with NDB Cluster.

Loss of connection between source and replica. A loss of connection can occur either between
the source cluster SQL node and the replica cluster SQL node, or between the source SQL node and the

3101

https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-createtable

Known Issues in NDB Cluster Replication

data nodes of the source cluster. In the latter case, this can occur not only as a result of loss of physical
connection (for example, a broken network cable), but due to the overflow of data node event buffers; if
the SQL node is too slow to respond, it may be dropped by the cluster (this is controllable to some degree
by adjusting the MaxBufferedEpochs and TimeBetweenEpochs configuration parameters). If this
occurs, it is entirely possible for new data to be inserted into the source cluster without being recorded in
the source SQL node's binary log. For this reason, to guarantee high availability, it is extremely important
to maintain a backup replication channel, to monitor the primary channel, and to fail over to the secondary
replication channel when necessary to keep the replica cluster synchronized with the source. NDB Cluster
is not designed to perform such monitoring on its own; for this, an external application is required.

 The source SQL node issues a “gap” event when connecting or reconnecting to the source cluster. (A
gap event is a type of “incident event,” which indicates an incident that occurs that affects the contents
of the database but that cannot easily be represented as a set of changes. Examples of incidents are
server failures, database resynchronization, some software updates, and some hardware changes.)
When the replica encounters a gap in the replication log, it stops with an error message. This message is
available in the output of SHOW SLAVE STATUS, and indicates that the SQL thread has stopped due to an
incident registered in the replication stream, and that manual intervention is required. See Section 18.7.8,
“Implementing Failover with NDB Cluster Replication”, for more information about what to do in such
circumstances.

Important

Because NDB Cluster is not designed on its own to monitor replication status
or provide failover, if high availability is a requirement for the replica server or
cluster, then you must set up multiple replication lines, monitor the source mysqld
on the primary replication line, and be prepared fail over to a secondary line if
and as necessary. This must be done manually, or possibly by means of a third-
party application. For information about implementing this type of setup, see
Section 18.7.7, “Using Two Replication Channels for NDB Cluster Replication”, and
Section 18.7.8, “Implementing Failover with NDB Cluster Replication”.

If you are replicating from a standalone MySQL server to an NDB Cluster, one
channel is usually sufficient.

Circular replication. NDB Cluster Replication supports circular replication, as shown in the next
example. The replication setup involves three NDB Clusters numbered 1, 2, and 3, in which Cluster 1
acts as the replication source for Cluster 2, Cluster 2 acts as the source for Cluster 3, and Cluster 3 acts
as the source for Cluster 1, thus completing the circle. Each NDB Cluster has two SQL nodes, with SQL
nodes A and B belonging to Cluster 1, SQL nodes C and D belonging to Cluster 2, and SQL nodes E and F
belonging to Cluster 3.

Circular replication using these clusters is supported as long as the following conditions are met:

• The SQL nodes on all source and replica clusters are the same.

• All SQL nodes acting as sources and replicas are started with the log_slave_updates system
variable enabled.

This type of circular replication setup is shown in the following diagram:

3102

Known Issues in NDB Cluster Replication

Figure 18.12 NDB Cluster Circular Replication With All Sources As Replicas

In this scenario, SQL node A in Cluster 1 replicates to SQL node C in Cluster 2; SQL node C replicates
to SQL node E in Cluster 3; SQL node E replicates to SQL node A. In other words, the replication line
(indicated by the curved arrows in the diagram) directly connects all SQL nodes used as sources and
replicas.

It should also be possible to set up circular replication in which not all source SQL nodes are also replicas,
as shown here:

3103

Known Issues in NDB Cluster Replication

Figure 18.13 NDB Cluster Circular Replication Where Not All Sources Are Replicas

In this case, different SQL nodes in each cluster are used as sources and replicas. However, you must not
start any of the SQL nodes with the log_slave_updates system variable enabled. This type of circular
replication scheme for NDB Cluster, in which the line of replication (again indicated by the curved arrows in
the diagram) is discontinuous, should be possible, but it should be noted that it has not yet been thoroughly
tested and must therefore still be considered experimental.

Note

The NDB storage engine uses idempotent execution mode, which suppresses
duplicate-key and other errors that otherwise break circular replication of NDB
Cluster. This is equivalent to setting the global slave_exec_mode system variable

3104

Known Issues in NDB Cluster Replication

to IDEMPOTENT, although this is not necessary in NDB Cluster replication, since
NDB Cluster sets this variable automatically and ignores any attempts to set it
explicitly.

NDB Cluster replication and primary keys. In the event of a node failure, errors in replication of NDB
tables without primary keys can still occur, due to the possibility of duplicate rows being inserted in such
cases. For this reason, it is highly recommended that all NDB tables being replicated have explicit primary
keys.

NDB Cluster Replication and Unique Keys. In older versions of NDB Cluster, operations that
updated values of unique key columns of NDB tables could result in duplicate-key errors when replicated.
This issue is solved for replication between NDB tables by deferring unique key checks until after all table
row updates have been performed.

Deferring constraints in this way is currently supported only by NDB. Thus, updates of unique keys when
replicating from NDB to a different storage engine such as InnoDB or MyISAM are still not supported.

The problem encountered when replicating without deferred checking of unique key updates can be
illustrated using NDB table such as t, is created and populated on the source (and transmitted to a replica
that does not support deferred unique key updates) as shown here:

CREATE TABLE t (
 p INT PRIMARY KEY,
 c INT,
 UNIQUE KEY u (c)
) ENGINE NDB;

INSERT INTO t
 VALUES (1,1), (2,2), (3,3), (4,4), (5,5);

The following UPDATE statement on t succeeds on the source, since the rows affected are processed in
the order determined by the ORDER BY option, performed over the entire table:

UPDATE t SET c = c - 1 ORDER BY p;

The same statement fails with a duplicate key error or other constraint violation on the replica, because the
ordering of the row updates is performed for one partition at a time, rather than for the table as a whole.

Note

Every NDB table is implicitly partitioned by key when it is created. See
Section 19.2.5, “KEY Partitioning”, for more information.

GTIDs not supported. Replication using global transaction IDs is not compatible with the NDB storage
engine, and is not supported. Enabling GTIDs is likely to cause NDB Cluster Replication to fail.

Multithreaded replicas not supported. NDB Cluster does not support multithreaded replicas. This
is because the replica may not be able to separate transactions occurring in one database from those
in another if they are written within the same epoch. In addition, every transaction handled by the NDB
storage engine involves at least two databases—the target database and the mysql system database—
due to the requirement for updating the mysql.ndb_apply_status table (see Section 18.7.4, “NDB
Cluster Replication Schema and Tables”). This in turn breaks the requirement for multithreading that the
transaction is specific to a given database.

Prior to NDB 7.3.18 and NDB 7.4.17, setting any system variables relating to multithreaded slaves such
as slave_parallel_workers and slave_checkpoint_group (or the equivalent mysqld startup
options) was completely ignored, and had no effect.

Beginning with NDB 7.3.18 and NDB 7.4.17, slave_parallel_workers must be set to 0. If set to any
other value on startup, NDB changes it to 0, and writes a message to the mysqld server log file.

3105

Known Issues in NDB Cluster Replication

Restarting with --initial. Restarting the cluster with the --initial option causes the sequence of
GCI and epoch numbers to start over from 0. (This is generally true of NDB Cluster and not limited to
replication scenarios involving Cluster.) The MySQL servers involved in replication should in this case be
restarted. After this, you should use the RESET MASTER and RESET SLAVE statements to clear the invalid
ndb_binlog_index and ndb_apply_status tables, respectively.

Replication from NDB to other storage engines. It is possible to replicate an NDB table on the source
to a table using a different storage engine on the replica, taking into account the restrictions listed here:

• Multi-source and circular replication are not supported (tables on both the source and the replica must
use the NDB storage engine for this to work).

• Using a storage engine which does not perform binary logging for tables on the replica requires special
handling.

• Use of a nontransactional storage engine for tables on the replica also requires special handling.

• The source mysqld must be started with --ndb-log-update-as-write=0 or --ndb-log-update-
as-write=OFF.

The next few paragraphs provide additional information about each of the issues just described.

Multiple sources not supported when replicating NDB to other storage engines. For replication
from NDB to a different storage engine, the relationship between the two databases must be one-to-one.
This means that bidirectional or circular replication is not supported between NDB Cluster and other
storage engines.

In addition, it is not possible to configure more than one replication channel when replicating between NDB
and a different storage engine. (An NDB Cluster database can simultaneously replicate to multiple NDB
Cluster databases.) If the source uses NDB tables, it is still possible to have more than one MySQL Server
maintain a binary log of all changes, but for the replica to change sources (fail over), the new source-
replica relationship must be explicitly defined on the replica.

Replicating NDB tables to a storage engine that does not perform binary logging. If you attempt
to replicate from an NDB Cluster to a replica that uses a storage engine that does not handle its own
binary logging, the replication process aborts with the error Binary logging not possible ...
Statement cannot be written atomically since more than one engine involved and
at least one engine is self-logging (Error 1595). It is possible to work around this issue in one
of the following ways:

• Turn off binary logging on the replica. This can be accomplished by setting sql_log_bin = 0.

• Change the storage engine used for the mysql.ndb_apply_status table. Causing this table to use
an engine that does not handle its own binary logging can also eliminate the conflict. This can be done
by issuing a statement such as ALTER TABLE mysql.ndb_apply_status ENGINE=MyISAM on the
replica. It is safe to do this when using a storage engine other than NDB on the replica, since you do not
need to worry about keeping multiple replicas synchronized.

• Filter out changes to the mysql.ndb_apply_status table on the replica. This can be done by
starting the replica with --replicate-ignore-table=mysql.ndb_apply_status. If you need for
other tables to be ignored by replication, you might wish to use an appropriate --replicate-wild-
ignore-table option instead.

Important

You should not disable replication or binary logging of
mysql.ndb_apply_status or change the storage engine used for this table

3106

Known Issues in NDB Cluster Replication

when replicating from one NDB Cluster to another. See Replication and binary log
filtering rules with replication between NDB Clusters, for details.

Replication from NDB to a nontransactional storage engine. When replicating from NDB to a
nontransactional storage engine such as MyISAM, you may encounter unnecessary duplicate key errors
when replicating INSERT ... ON DUPLICATE KEY UPDATE statements. You can suppress these by
using --ndb-log-update-as-write=0, which forces updates to be logged as writes, rather than as
updates.

Replication and binary log filtering rules with replication between NDB Clusters. If you are using
any of the options --replicate-do-*, --replicate-ignore-*, --binlog-do-db, or --binlog-
ignore-db to filter databases or tables being replicated, you must take care not to block replication or
binary logging of the mysql.ndb_apply_status, which is required for replication between NDB Clusters
to operate properly. In particular, you must keep in mind the following:

1. Using --replicate-do-db=db_name (and no other --replicate-do-* or --replicate-
ignore-* options) means that only tables in database db_name are replicated. In this case, you
should also use --replicate-do-db=mysql, --binlog-do-db=mysql, or --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is populated on
replicas.

Using --binlog-do-db=db_name (and no other --binlog-do-db options) means that
changes only to tables in database db_name are written to the binary log. In this case, you should
also use --replicate-do-db=mysql, --binlog-do-db=mysql, or --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is populated on
replicas.

2. Using --replicate-ignore-db=mysql means that no tables in the mysql database are replicated.
In this case, you should also use --replicate-do-table=mysql.ndb_apply_status to ensure
that mysql.ndb_apply_status is replicated.

Using --binlog-ignore-db=mysql means that no changes to tables in the mysql
database are written to the binary log. In this case, you should also use --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is replicated.

You should also remember that each replication rule requires the following:

1. Its own --replicate-do-* or --replicate-ignore-* option, and that multiple rules cannot be
expressed in a single replication filtering option. For information about these rules, see Section 17.1.4,
“Replication and Binary Logging Options and Variables”.

2. Its own --binlog-do-db or --binlog-ignore-db option, and that multiple rules cannot be
expressed in a single binary log filtering option. For information about these rules, see Section 5.4.4,
“The Binary Log”.

If you are replicating an NDB Cluster to a replica that uses a storage engine other than NDB, the
considerations just given previously may not apply, as discussed elsewhere in this section.

NDB Cluster Replication and IPv6. While the NDB API and MGM API (and thus data nodes and
management nodes) do not support IPv6 in NDB 7.3 and 7.4, MySQL Servers—including those acting as
SQL nodes in an NDB Cluster—can use IPv6 to contact other MySQL Servers. This means that you can
replicate between NDB Clusters using IPv6 to connect the source and replica SQL nodes as shown by the
dotted arrow in the following diagram:

3107

NDB Cluster Replication Schema and Tables

Figure 18.14 Replication Between SQL Nodes Connected Using IPv6

All connections originating within the NDB Cluster —represented in the preceding diagram by solid arrows
—must use IPv4. In other words, all NDB Cluster data nodes, management servers, and management
clients must be accessible from one another using IPv4. In addition, SQL nodes must use IPv4 to
communicate with the cluster.

Since there is currently no support in the NDB and MGM APIs for IPv6, any applications written using
these APIs must also make all connections using IPv4.

Attribute promotion and demotion. NDB Cluster Replication includes support for attribute promotion
and demotion. The implementation of the latter distinguishes between lossy and non-lossy type
conversions, and their use on the replica can be controlled by setting the slave_type_conversions
global server system variable.

For more information about attribute promotion and demotion in NDB Cluster, see Row-based replication:
attribute promotion and demotion.

18.7.4 NDB Cluster Replication Schema and Tables

• ndb_apply_status Table

• ndb_binlog_index Table

• ndb_replication Table

Replication in NDB Cluster makes use of a number of dedicated tables in the mysql database on each
MySQL Server instance acting as an SQL node in both the cluster being replicated and in the replica. This
is true regardless of whether the replica is a single server or a cluster.

The ndb_binlog_index and ndb_apply_status tables are created in the mysql database. They
should not be explicitly replicated by the user. User intervention is normally not required to create or

3108

NDB Cluster Replication Schema and Tables

maintain either of these tables, since both are maintained by the NDB binary log (binlog) injector thread.
This keeps the source mysqld process updated to changes performed by the NDB storage engine. The
NDB binlog injector thread receives events directly from the NDB storage engine. The NDB injector is
responsible for capturing all the data events within the cluster, and ensures that all events which change,
insert, or delete data are recorded in the ndb_binlog_index table. The replica I/O thread transfers the
events from the source's binary log to the replica's relay log.

The ndb_replication table must be created manually. This table can be updated by the user to perform
filtering by database or table. See ndb_replication Table, for more information. ndb_replication is
also used in NDB Replication conflict detection and resolution for conflict resolution control; see Conflict
Resolution Control.

Even though ndb_binlog_index and ndb_apply_status are created and maintained automatically,
it is advisable to check for the existence and integrity of these tables as an initial step in preparing an
NDB Cluster for replication. It is possible to view event data recorded in the binary log by querying the
mysql.ndb_binlog_index table directly on the source. This can be also be accomplished using the
SHOW BINLOG EVENTS statement on either the source or replica SQL node. (See Section 13.7.5.3,
“SHOW BINLOG EVENTS Statement”.)

You can also obtain useful information from the output of SHOW ENGINE NDB STATUS.

Note

When performing schema changes on NDB tables, applications should wait until the
ALTER TABLE statement has returned in the MySQL client connection that issued
the statement before attempting to use the updated definition of the table.

ndb_apply_status Table

ndb_apply_status is used to keep a record of the operations that have been replicated from the source
to the replica. If the ndb_apply_status table does not exist on the replica, ndb_restore re-creates it.

Unlike the case with ndb_binlog_index, the data in this table is not specific to any one SQL node in the
(replica) cluster, and so ndb_apply_status can use the NDBCLUSTER storage engine, as shown here:

CREATE TABLE `ndb_apply_status` (
 `server_id` INT(10) UNSIGNED NOT NULL,
 `epoch` BIGINT(20) UNSIGNED NOT NULL,
 `log_name` VARCHAR(255) CHARACTER SET latin1 COLLATE latin1_bin NOT NULL,
 `start_pos` BIGINT(20) UNSIGNED NOT NULL,
 `end_pos` BIGINT(20) UNSIGNED NOT NULL,
 PRIMARY KEY (`server_id`) USING HASH
) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1;

The ndb_apply_status table is populated only on replicas, which means that, on the source, this table
never contains any rows; thus, there is no need to allot any DataMemory to ndb_apply_status there.

Because this table is populated from data originating on the source, it should be allowed to replicate;
any replication filtering or binary log filtering rules that inadvertently prevent the replica from updating
ndb_apply_status, or that prevent the source from writing into the binary log may prevent replication
between clusters from operating properly. For more information about potential problems arising from such
filtering rules, see Replication and binary log filtering rules with replication between NDB Clusters.

0 in the epoch column of this table indicates a transaction originating from a storage engine other than
NDB.

ndb_binlog_index Table

3109

NDB Cluster Replication Schema and Tables

NDB Cluster Replication uses the ndb_binlog_index table for storing the binary log's indexing data.
Since this table is local to each MySQL server and does not participate in clustering, it uses the InnoDB
storage engine. This means that it must be created separately on each mysqld participating in the source
cluster. (The binary log itself contains updates from all MySQL servers in the cluster.) This table is defined
as follows:

CREATE TABLE `ndb_binlog_index` (
 `Position` BIGINT(20) UNSIGNED NOT NULL,
 `File` VARCHAR(255) NOT NULL,
 `epoch` BIGINT(20) UNSIGNED NOT NULL,
 `inserts` INT(10) UNSIGNED NOT NULL,
 `updates` INT(10) UNSIGNED NOT NULL,
 `deletes` INT(10) UNSIGNED NOT NULL,
 `schemaops` INT(10) UNSIGNED NOT NULL,
 `orig_server_id` INT(10) UNSIGNED NOT NULL,
 `orig_epoch` BIGINT(20) UNSIGNED NOT NULL,
 `gci` INT(10) UNSIGNED NOT NULL,
 `next_position` bigint(20) unsigned NOT NULL,
 `next_file` varchar(255) NOT NULL,
 PRIMARY KEY (`epoch`,`orig_server_id`,`orig_epoch`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Note

Prior to NDB 7.5.2, this table always used the MyISAM storage engine. If you are
upgrading from an earlier release, you can use mysql_upgrade with the --force
and --upgrade-system-tables options after starting the server.) The system
table upgrade causes an ALTER TABLE ... ENGINE=INNODB statement to be
executed for this table. Use of the MyISAM storage engine for this table continues to
be supported for backward compatibility.

ndb_binlog_index may require additional disk space after being converted to
InnoDB. If this becomes an issue, you may be able to conserve space by using
an InnoDB tablespace for this table, changing its ROW_FORMAT to COMPRESSED,
or both. For more information, see Section 13.1.18, “CREATE TABLESPACE
Statement”, and Section 13.1.17, “CREATE TABLE Statement”, as well as
Section 14.6.3, “Tablespaces”.

The size of the ndb_binlog_index table is dependent on the number of epochs per binary log file and
the number of binary log files. The number of epochs per binary log file normally depends on the amount
of binary log generated per epoch and the size of the binary log file, with smaller epochs resulting in more
epochs per file. You should be aware that empty epochs produce inserts to the ndb_binlog_index table,
even when the --ndb-log-empty-epochs option is OFF, meaning that the number of entries per file
depends on the length of time that the file is in use; this relationship can be represented by the formula
shown here:

[number of epochs per file] = [time spent per file] / TimeBetweenEpochs

A busy NDB Cluster writes to the binary log regularly and presumably rotates binary log files more quickly
than a quiet one. This means that a “quiet” NDB Cluster with --ndb-log-empty-epochs=ON can
actually have a much higher number of ndb_binlog_index rows per file than one with a great deal of
activity.

When mysqld is started with the --ndb-log-orig option, the orig_server_id and orig_epoch
columns store, respectively, the ID of the server on which the event originated and the epoch in which the
event took place on the originating server, which is useful in NDB Cluster replication setups employing
multiple sources. The SELECT statement used to find the closest binary log position to the highest
applied epoch on the replica in a multi-source setup (see Section 18.7.10, “NDB Cluster Replication:
Bidirectional and Circular Replication”) employs these two columns, which are not indexed. This can lead

3110

NDB Cluster Replication Schema and Tables

to performance issues when trying to fail over, since the query must perform a table scan, especially when
the source has been running with --ndb-log-empty-epochs=ON. You can improve multi-source failover
times by adding an index to these columns, as shown here:

ALTER TABLE mysql.ndb_binlog_index
 ADD INDEX orig_lookup USING BTREE (orig_server_id, orig_epoch);

Adding this index provides no benefit when replicating from a single source to a single replica, since
the query used to get the binary log position in such cases makes no use of orig_server_id or
orig_epoch.

See Section 18.7.8, “Implementing Failover with NDB Cluster Replication”, for more information about
using the next_position and next_file columns.

The following figure shows the relationship of the NDB Cluster replication source server, its binary log
injector thread, and the mysql.ndb_binlog_index table.

Figure 18.15 The Replication Source Cluster

ndb_replication Table

The ndb_replication table is used to control binary logging and conflict resolution, and acts on a per-
table basis. Each row in this table corresponds to a table being replicated, determines how to log changes
to the table and, if a conflict resolution function is specified, and determines how to resolve conflicts for that
table.

Unlike the ndb_apply_status and ndb_replication tables, the ndb_replication table must be
created manually, using the SQL statement shown here:

CREATE TABLE mysql.ndb_replication (
 db VARBINARY(63),
 table_name VARBINARY(63),
 server_id INT UNSIGNED,
 binlog_type INT UNSIGNED,
 conflict_fn VARBINARY(128),
 PRIMARY KEY USING HASH (db, table_name, server_id)
) ENGINE=NDB
PARTITION BY KEY(db,table_name);

The columns of this table are listed here, with descriptions:

3111

NDB Cluster Replication Schema and Tables

• db column

The name of the database containing the table to be replicated.

You may employ either or both of the wildcards _ and % as part of the database name. (See Matching
with wildcards, later in this section.)

• table_name column

The name of the table to be replicated.

The table name may include either or both of the wildcards _ and %. See Matching with wildcards, later in
this section.

• server_id column

The unique server ID of the MySQL instance (SQL node) where the table resides.

0 in this column acts like a wildcard equivalent to %, and matches any server ID. (See Matching with
wildcards, later in this section.)

• binlog_type column

The type of binary logging to be employed. See text for values and descriptions.

• conflict_fn column

The conflict resolution function to be applied; one of NDB$OLD(), NDB$MAX(), NDB
$MAX_DELETE_WIN(), NDB$EPOCH(), NDB$EPOCH_TRANS(), NDB$EPOCH2(), NDB
$EPOCH2_TRANS(); NULL indicates that conflict resolution is not used for this table.

See Conflict Resolution Functions, for more information about these functions and their uses in NDB
Replication conflict resolution.

Some conflict resolution functions (NDB$OLD(), NDB$EPOCH(), NDB$EPOCH_TRANS()) require the use
of one or more user-created exceptions tables. See Conflict Resolution Exceptions Table.

To enable conflict resolution with NDB Replication, it is necessary to create and populate this table with
control information on the SQL node or nodes on which the conflict should be resolved. Depending on the
conflict resolution type and method to be employed, this may be the source, the replica, or both servers.
In a simple source-replica setup where data can also be changed locally on the replica this is typically
the replica. In a more complex replication scheme, such as bidirectional replication, this is usually all
of the sources involved. See Section 18.7.11, “NDB Cluster Replication Conflict Resolution”, for more
information.

The ndb_replication table allows table-level control over binary logging outside the scope of conflict
resolution, in which case conflict_fn is specified as NULL, while the remaining column values are used
to control binary logging for a given table or set of tables matching a wildcard expression. By setting the
proper value for the binlog_type column, you can make logging for a given table or tables use a desired
binary log format, or disabling binary logging altogether. Possible values for this column, with values and
descriptions, are shown in the following table:

Table 18.56 binlog_type values, with values and descriptions

Value Description

0 Use server default

3112

NDB Cluster Replication Schema and Tables

Value Description

1 Do not log this table in the binary log (same effect as
sql_log_bin = 0, but applies to one or more specified
tables only)

2 Log updated attributes only; log these as WRITE_ROW
events

3 Log full row, even if not updated (MySQL server default
behavior)

6 Use updated attributes, even if values are unchanged

7 Log full row, even if no values are changed; log updates
as UPDATE_ROW events

8 Log update as UPDATE_ROW; log only primary key
columns in before image, and only updated columns
in after image (same effect as --ndb-log-update-
minimal, but applies to one or more specified tables
only)

9 Log update as UPDATE_ROW; log only primary key
columns in before image, and all columns other than
primary key columns in after image

Note

binlog_type values 4 and 5 are not used, and so are omitted from the table just
shown, as well as from the next table.

Several binlog_type values are equivalent to various combinations of the mysqld logging options --
ndb-log-updated-only, --ndb-log-update-as-write, and --ndb-log-update-minimal, as
shown in the following table:

Table 18.57 binlog_type values with equivalent combinations of NDB logging options

Value --ndb-log-updated-only
Value

--ndb-log-update-as-
write Value

--ndb-log-update-
minimal Value

0 -- -- --

1 -- -- --

2 ON ON OFF

3 OFF ON OFF

6 ON OFF OFF

7 OFF OFF OFF

8 ON OFF ON

9 OFF OFF ON

Binary logging can be set to different formats for different tables by inserting rows into the
ndb_replication table using the appropriate db, table_name, and binlog_type column values. The
internal integer value shown in the preceding table should be used when setting the binary logging format.
The following two statements set binary logging to logging of full rows (value 3) for table test.a, and to
logging of updates only (value 2) for table test.b:

Table test.a: Log full rows
INSERT INTO mysql.ndb_replication VALUES("test", "a", 0, 3, NULL);

3113

NDB Cluster Replication Schema and Tables

Table test.b: log updates only
INSERT INTO mysql.ndb_replication VALUES("test", "b", 0, 2, NULL);

To disable logging for one or more tables, use 1 for binlog_type, as shown here:

Disable binary logging for table test.t1
INSERT INTO mysql.ndb_replication VALUES("test", "t1", 0, 1, NULL);

Disable binary logging for any table in 'test' whose name begins with 't'
INSERT INTO mysql.ndb_replication VALUES("test", "t%", 0, 1, NULL);

Disabling logging for a given table is the equivalent of setting sql_log_bin = 0, except that it applies to
one or more tables individually. If an SQL node is not performing binary logging for a given table, it is not
sent the row change events for those tables. This means that it is not receiving all changes and discarding
some, but rather it is not subscribing to these changes.

Disabling logging can be useful for a number of reasons, including those listed here:

• Not sending changes across the network generally saves bandwidth, buffering, and CPU resources.

• Not logging changes to tables with very frequent updates but whose value is not great is a good fit for
transient data (such as session data) that may be relatively unimportant in the event of a complete failure
of the cluster.

• Using a session variable (or sql_log_bin) and application code, it is also possible to log (or not to log)
certain SQL statements or types of SQL statements; for example, it may be desirable in some cases not
to record DDL statements on one or more tables.

• Splitting replication streams into two (or more) binary logs can be done for reasons of performance, a
need to replicate different databases to different places, use of different binary logging types for different
databases, and so on.

Matching with wildcards. In order not to make it necessary to insert a row in the ndb_replication
table for each and every combination of database, table, and SQL node in your replication setup, NDB
supports wildcard matching on the this table's db, table_name, and server_id columns. Database
and table names used in, respectively, db and table_name may contain either or both of the following
wildcards:

• _ (underscore character): matches zero or more characters

• % (percent sign): matches a single character

(These are the same wildcards as supported by the MySQL LIKE operator.)

The server_id column supports 0 as a wildcard equivalent to _ (matches anything). This is used in the
examples shown previously.

A given row in the ndb_replication table can use wildcards to match any of the database name, table
name, and server ID in any combination. Where there are multiple potential matches in the table, the best
match is chosen, according to the table shown here, where W represents a wildcard match, E an exact
match, and the greater the value in the Quality column, the better the match:

Table 18.58 Weights of different combinations of wildcard and exact matches on columns in the
mysql.ndb_replication table

db table_name server_id Quality

W W W 1

3114

Preparing the NDB Cluster for Replication

db table_name server_id Quality

W W E 2

W E W 3

W E E 4

E W W 5

E W E 6

E E W 7

E E E 8

Thus, an exact match on database name, table name, and server ID is considered best (strongest), while
the weakest (worst) match is a wildcard match on all three columns. Only the strength of the match is
considered when choosing which rule to apply; the order in which the rows occur in the table has no effect
on this determination.

Logging Full or Partial Rows. There are two basic methods of logging rows, as determined by the
setting of the --ndb-log-updated-only option for mysqld:

• Log complete rows (option set to ON)

• Log only column data that has been updated—that is, column data whose value has been set,
regardless of whether or not this value was actually changed. This is the default behavior (option set to
OFF).

It is usually sufficient—and more efficient—to log updated columns only; however, if you need to log full
rows, you can do so by setting --ndb-log-updated-only to 0 or OFF.

Logging Changed Data as Updates. The setting of the MySQL Server's --ndb-log-update-as-
write option determines whether logging is performed with or without the “before” image.

Because conflict resolution for updates and delete operations is done in the MySQL Server's update
handler, it is necessary to control the logging performed by the replication source such that updates are
updates and not writes; that is, such that updates are treated as changes in existing rows rather than the
writing of new rows, even though these replace existing rows.

This option is turned on by default; in other words, updates are treated as writes. That is, updates are by
default written as write_row events in the binary log, rather than as update_row events.

To disable the option, start the source mysqld with --ndb-log-update-as-write=0 or --ndb-
log-update-as-write=OFF. You must do this when replicating from NDB tables to tables using a
different storage engine; see Replication from NDB to other storage engines, and Replication from NDB to
a nontransactional storage engine, for more information.

18.7.5 Preparing the NDB Cluster for Replication

Preparing the NDB Cluster for replication consists of the following steps:

1. Check all MySQL servers for version compatibility (see Section 18.7.2, “General Requirements for NDB
Cluster Replication”).

2. Create a replication account on the source Cluster with the appropriate privileges, using the following
SQL statement:

mysqlM> GRANT REPLICATION SLAVE
 -> ON *.* TO 'replica_user'@'replica_host'

3115

Preparing the NDB Cluster for Replication

 -> IDENTIFIED BY 'replica_password';

In the previous statement, replica_user is the replication account user name, replica_host is
the host name or IP address of the replica, and replica_password is the password to assign to this
account.

For example, to create a replica user account with the name myreplica, logging in from the host
named replica-host, and using the password 53cr37, use the following GRANT statement:

mysqlM> GRANT REPLICATION SLAVE
 -> ON *.* TO 'myreplica'@'replica-host'
 -> IDENTIFIED BY '53cr37';

For security reasons, it is preferable to use a unique user account—not employed for any other purpose
—for the replication account.

3. Set up the replica to use the source. Using the mysql client, this can be accomplished with the
following CHANGE MASTER TO statement:

mysqlR> CHANGE MASTER TO
 -> MASTER_HOST='source_host',
 -> MASTER_PORT=source_port,
 -> MASTER_USER='replica_user',
 -> MASTER_PASSWORD='replica_password';

In the previous statement, source_host is the host name or IP address of the replication source,
source_port is the port for the replica to use when connecting to the source, replica_user is the
user name set up for the replica on the source, and replica_password is the password set for that
user account in the previous step.

For example, to tell the replica to use the MySQL server whose host name is rep-source with the
replication account created in the previous step, use the following statement:

mysqlR> CHANGE MASTER TO
 -> MASTER_HOST='rep-source',
 -> MASTER_PORT=3306,
 -> MASTER_USER='myreplica',
 -> MASTER_PASSWORD='53cr37';

For a complete list of options that can be used with this statement, see Section 13.4.2.1, “CHANGE
MASTER TO Statement”.

To provide replication backup capability, you also need to add an --ndb-connectstring option to
the replica's my.cnf file prior to starting the replication process. See Section 18.7.9, “NDB Cluster
Backups With NDB Cluster Replication”, for details.

For additional options that can be set in my.cnf for replicas, see Section 17.1.4, “Replication and
Binary Logging Options and Variables”.

4. If the source cluster is already in use, you can create a backup of the source and load this onto the
replica to cut down on the amount of time required for the replica to synchronize itself with the source.
If the replica is also running NDB Cluster, this can be accomplished using the backup and restore
procedure described in Section 18.7.9, “NDB Cluster Backups With NDB Cluster Replication”.

ndb-connectstring=management_host[:port]

In the event that you are not using NDB Cluster on the replica, you can create a backup with this
command on the source:

shellS> mysqldump --master-data=1

3116

Starting NDB Cluster Replication (Single Replication Channel)

Then import the resulting data dump onto the replica by copying the dump file over to it. After this, you
can use the mysql client to import the data from the dumpfile into the replica database as shown here,
where dump_file is the name of the file that was generated using mysqldump on the source, and
db_name is the name of the database to be replicated:

shellR> mysql -u root -p db_name < dump_file

For a complete list of options to use with mysqldump, see Section 4.5.4, “mysqldump — A Database
Backup Program”.

Note

If you copy the data to the replica in this fashion, you should make sure that
the replica is started with the --skip-slave-start option on the command
line, or else include skip-slave-start in the replica's my.cnf file to keep it
from trying to connect to the source to begin replicating before all the data has
been loaded. Once the data loading has completed, follow the additional steps
outlined in the next two sections.

5. Ensure that each MySQL server acting as a replication source is assigned a unique server ID, and has
binary logging enabled, using the row-based format. (See Section 17.1.2, “Replication Formats”.) In
addition, we recommend enabling the slave_allow_batching system variable. You should also
consider increasing the values used with the --ndb-batch-size and --ndb-blob-write-batch-
bytes options as well. All of these options can be set either in the source server's my.cnf file, or
on the command line when starting the source mysqld process. See Section 18.7.6, “Starting NDB
Cluster Replication (Single Replication Channel)”, for more information.

18.7.6 Starting NDB Cluster Replication (Single Replication Channel)

This section outlines the procedure for starting NDB Cluster replication using a single replication channel.

1. Start the MySQL replication source server by issuing this command, where id is this server's unique ID
(see Section 18.7.2, “General Requirements for NDB Cluster Replication”):

shellS> mysqld --ndbcluster --server-id=id \
 --log-bin --ndb-log-bin &

This starts the server's mysqld process with binary logging enabled using the proper logging format.

Note

You can also start the source with --binlog-format=MIXED, in which case
row-based replication is used automatically when replicating between clusters.
Statement-based binary logging is not supported for NDB Cluster Replication
(see Section 18.7.2, “General Requirements for NDB Cluster Replication”).

2. Start the MySQL replica server as shown here:

shellR> mysqld --ndbcluster --server-id=id &

In the command just shown, id is the replica server's unique ID. It is not necessary to enable logging
on the replica.

Note

You should use the --skip-slave-start option with this command or else
you should include skip-slave-start in the replica server's my.cnf file,

3117

Starting NDB Cluster Replication (Single Replication Channel)

unless you want replication to begin immediately. With the use of this option, the
start of replication is delayed until the appropriate START SLAVE statement has
been issued, as explained in Step 4 below.

3. It is necessary to synchronize the replica server with the source server's replication binary log. If binary
logging has not previously been running on the source, run the following statement on the replica:

mysqlR> CHANGE MASTER TO
 -> MASTER_LOG_FILE='',
 -> MASTER_LOG_POS=4;

This instructs the replica to begin reading the source server's binary log from the log's starting point.
Otherwise—that is, if you are loading data from the source using a backup—see Section 18.7.8,
“Implementing Failover with NDB Cluster Replication”, for information on how to obtain the correct
values to use for MASTER_LOG_FILE and MASTER_LOG_POS in such cases.

4. Finally, instruct the replica to begin applying replication by issuing this command from the mysql client
on the replica:

mysqlR> START SLAVE;

This also initiates the transmission of data and changes from the source to the replica.

It is also possible to use two replication channels, in a manner similar to the procedure described in
the next section; the differences between this and using a single replication channel are covered in
Section 18.7.7, “Using Two Replication Channels for NDB Cluster Replication”.

It is also possible to improve cluster replication performance by enabling batched updates. This can
be accomplished by setting the slave_allow_batching system variable on the replicas' mysqld
processes. Normally, updates are applied as soon as they are received. However, the use of batching
causes updates to be applied in batches of 32 KB each; this can result in higher throughput and less CPU
usage, particularly where individual updates are relatively small.

Note

Batching works on a per-epoch basis; updates belonging to more than one
transaction can be sent as part of the same batch.

All outstanding updates are applied when the end of an epoch is reached, even if
the updates total less than 32 KB.

Batching can be turned on and off at runtime. To activate it at runtime, you can use either of these two
statements:

SET GLOBAL slave_allow_batching = 1;
SET GLOBAL slave_allow_batching = ON;

If a particular batch causes problems (such as a statement whose effects do not appear to be replicated
correctly), batching can be deactivated using either of the following statements:

SET GLOBAL slave_allow_batching = 0;
SET GLOBAL slave_allow_batching = OFF;

You can check whether batching is currently being used by means of an appropriate SHOW VARIABLES
statement, like this one:

mysql> SHOW VARIABLES LIKE 'slave%';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+

3118

Using Two Replication Channels for NDB Cluster Replication

slave_allow_batching	ON
slave_compressed_protocol	OFF
slave_load_tmpdir	/tmp
slave_net_timeout	3600
slave_skip_errors	OFF
slave_transaction_retries	10
+---------------------------+-------+
6 rows in set (0.00 sec)

18.7.7 Using Two Replication Channels for NDB Cluster Replication

In a more complete example scenario, we envision two replication channels to provide redundancy and
thereby guard against possible failure of a single replication channel. This requires a total of four replication
servers, two source servers on the source cluster and two replica servers on the replica cluster. For
purposes of the discussion that follows, we assume that unique identifiers are assigned as shown here:

Table 18.59 NDB Cluster replication servers described in the text

Server ID Description

1 Source - primary replication channel (S)

2 Source - secondary replication channel (S')

3 Replica - primary replication channel (R)

4 replica - secondary replication channel (R')

Setting up replication with two channels is not radically different from setting up a single replication
channel. First, the mysqld processes for the primary and secondary replication source servers must
be started, followed by those for the primary and secondary replicas. The replication processes can be
initiated by issuing the START SLAVE statement on each of the replicas. The commands and the order in
which they need to be issued are shown here:

1. Start the primary replication source:

shellS> mysqld --ndbcluster --server-id=1 \
 --log-bin &

2. Start the secondary replication source:

shellS'> mysqld --ndbcluster --server-id=2 \
 --log-bin &

3. Start the primary replica server:

shellR> mysqld --ndbcluster --server-id=3 \
 --skip-slave-start &

4. Start the secondary replica server:

shellR'> mysqld --ndbcluster --server-id=4 \
 --skip-slave-start &

5. Finally, initiate replication on the primary channel by executing the START SLAVE statement on the
primary replica as shown here:

mysqlR> START SLAVE;

Warning

Only the primary channel must be started at this point. The secondary
replication channel needs to be started only in the event that the primary

3119

Implementing Failover with NDB Cluster Replication

replication channel fails, as described in Section 18.7.8, “Implementing
Failover with NDB Cluster Replication”. Running multiple replication channels
simultaneously can result in unwanted duplicate records being created on the
replicas.

As mentioned previously, it is not necessary to enable binary logging on the replicas.

18.7.8 Implementing Failover with NDB Cluster Replication

In the event that the primary Cluster replication process fails, it is possible to switch over to the secondary
replication channel. The following procedure describes the steps required to accomplish this.

1. Obtain the time of the most recent global checkpoint (GCP). That is, you need to determine the most
recent epoch from the ndb_apply_status table on the replica cluster, which can be found using the
following query:

mysqlR'> SELECT @latest:=MAX(epoch)
 -> FROM mysql.ndb_apply_status;

In a circular replication topology, with a source and a replica running on each host, when you are using
ndb_log_apply_status=1, NDB Cluster epochs are written in the replicas' binary logs. This means
that the ndb_apply_status table contains information for the replica on this host as well as for any
other host which acts as a replica of the replication source server running on this host.

In this case, you need to determine the latest epoch on this replica to the exclusion of any epochs
from any other replicas in this replica's binary log that were not listed in the IGNORE_SERVER_IDS
options of the CHANGE MASTER TO statement used to set up this replica. The reason for excluding
such epochs is that rows in the mysql.ndb_apply_status table whose server IDs have a match in
the IGNORE_SERVER_IDS list from the CHANGE MASTER TO statement used to prepare this replicas's
source are also considered to be from local servers, in addition to those having the replica's own server
ID. You can retrieve this list as Replicate_Ignore_Server_Ids from the output of SHOW SLAVE
STATUS. We assume that you have obtained this list and are substituting it for ignore_server_ids
in the query shown here, which like the previous version of the query, selects the greatest epoch into a
variable named @latest:

mysqlR'> SELECT @latest:=MAX(epoch)
 -> FROM mysql.ndb_apply_status
 -> WHERE server_id NOT IN (ignore_server_ids);

In some cases, it may be simpler or more efficient (or both) to use a list of the server IDs to be included
and server_id IN server_id_list in the WHERE condition of the preceding query.

2. Using the information obtained from the query shown in Step 1, obtain the corresponding records from
the ndb_binlog_index table on the source cluster.

You can use the following query to obtain the needed records from the ndb_binlog_index table on
the source:

mysqlS'> SELECT
 -> @file:=SUBSTRING_INDEX(next_file, '/', -1),
 -> @pos:=next_position
 -> FROM mysql.ndb_binlog_index
 -> WHERE epoch = @latest;

These are the records saved on the source since the failure of the primary replication channel. We
have employed a user variable @latest here to represent the value obtained in Step 1. Of course, it is
not possible for one mysqld instance to access user variables set on another server instance directly.
These values must be “plugged in” to the second query manually or by an application.

3120

NDB Cluster Backups With NDB Cluster Replication

Important

You must ensure that the replica mysqld is started with --slave-skip-
errors=ddl_exist_errors before executing START SLAVE. Otherwise,
replication may stop with duplicate DDL errors.

3. Now it is possible to synchronize the secondary channel by running the following query on the
secondary replica server:

mysqlR'> CHANGE MASTER TO
 -> MASTER_LOG_FILE='@file',
 -> MASTER_LOG_POS=@pos;

Again we have employed user variables (in this case @file and @pos) to represent the values
obtained in Step 2 and applied in Step 3; in practice these values must be inserted manually or using
an application that can access both of the servers involved.

Note

@file is a string value such as '/var/log/mysql/replication-source-
bin.00001', and so must be quoted when used in SQL or application code.
However, the value represented by @pos must not be quoted. Although MySQL
normally attempts to convert strings to numbers, this case is an exception.

4. You can now initiate replication on the secondary channel by issuing the appropriate statement on the
secondary replica mysqld:

mysqlR'> START SLAVE;

Once the secondary replication channel is active, you can investigate the failure of the primary and effect
repairs. The precise actions required to do this depend upon the reasons for which the primary channel
failed.

Warning

The secondary replication channel is to be started only if and when the primary
replication channel has failed. Running multiple replication channels simultaneously
can result in unwanted duplicate records being created on the replicas.

If the failure is limited to a single server, it should in theory be possible to replicate from S to R', or from S'
to R.

18.7.9 NDB Cluster Backups With NDB Cluster Replication

This section discusses making backups and restoring from them using NDB Cluster replication.
We assume that the replication servers have already been configured as covered previously (see
Section 18.7.5, “Preparing the NDB Cluster for Replication”, and the sections immediately following). This
having been done, the procedure for making a backup and then restoring from it is as follows:

1. There are two different methods by which the backup may be started.

• Method A. This method requires that the cluster backup process was previously enabled on the
source server, prior to starting the replication process. This can be done by including the following
line in a [mysql_cluster] section in the my.cnf file, where management_host is the
IP address or host name of the NDB management server for the source cluster, and port is the
management server's port number:

3121

NDB Cluster Backups With NDB Cluster Replication

ndb-connectstring=management_host[:port]

Note

The port number needs to be specified only if the default port (1186) is not
being used. See Section 18.3.3, “Initial Configuration of NDB Cluster”, for
more information about ports and port allocation in NDB Cluster.

 In this case, the backup can be started by executing this statement on the replication source:

shellS> ndb_mgm -e "START BACKUP"

• Method B. If the my.cnf file does not specify where to find the management host, you can start
the backup process by passing this information to the NDB management client as part of the START
BACKUP command. This can be done as shown here, where management_host and port are the
host name and port number of the management server:

shellS> ndb_mgm management_host:port -e "START BACKUP"

In our scenario as outlined earlier (see Section 18.7.5, “Preparing the NDB Cluster for Replication”),
this would be executed as follows:

shellS> ndb_mgm rep-source:1186 -e "START BACKUP"

2. Copy the cluster backup files to the replica that is being brought on line. Each system running an ndbd
process for the source cluster has cluster backup files located on it, and all of these files must be
copied to the replica to ensure a successful restore. The backup files can be copied into any directory
on the computer where the replica's management host resides, as long as the MySQL and NDB
binaries have read permissions in that directory. In this case, we assume that these files have been
copied into the directory /var/BACKUPS/BACKUP-1.

While it is not necessary that the replica cluster have the same number of ndbd processes (data
nodes) as the source, it is highly recommended this number be the same. It is necessary that the
replica be started with the --skip-slave-start option, to prevent premature startup of the
replication process.

3. Create any databases on the replica cluster that are present on the source cluster and that are to be
replicated.

Important

A CREATE DATABASE (or CREATE SCHEMA) statement corresponding to each
database to be replicated must be executed on each SQL node in the replica
cluster.

4. Reset the replica cluster using this statement in the mysql client:

mysqlR> RESET SLAVE;

5. You can now start the cluster restoration process on the replica using the ndb_restore command
for each backup file in turn. For the first of these, it is necessary to include the -m option to restore the
cluster metadata, as shown here:

shellR> ndb_restore -c replica_host:port -n node-id \

3122

NDB Cluster Backups With NDB Cluster Replication

 -b backup-id -m -r dir

dir is the path to the directory where the backup files have been placed on the replica. For the
ndb_restore commands corresponding to the remaining backup files, the -m option should not be
used.

For restoring from a source cluster with four data nodes (as shown in the figure in Section 18.7, “NDB
Cluster Replication”) where the backup files have been copied to the directory /var/BACKUPS/
BACKUP-1, the proper sequence of commands to be executed on the replica might look like this:

shellR> ndb_restore -c replica-host:1186 -n 2 -b 1 -m \
 -r ./var/BACKUPS/BACKUP-1
shellR> ndb_restore -c replica-host:1186 -n 3 -b 1 \
 -r ./var/BACKUPS/BACKUP-1
shellR> ndb_restore -c replica-host:1186 -n 4 -b 1 \
 -r ./var/BACKUPS/BACKUP-1
shellR> ndb_restore -c replica-host:1186 -n 5 -b 1 -e \
 -r ./var/BACKUPS/BACKUP-1

Important

The -e (or --restore-epoch) option in the final invocation of ndb_restore
in this example is required to make sure that the epoch is written to the replica's
mysql.ndb_apply_status table. Without this information, the replica cannot
synchronize properly with the source. (See Section 18.5.22, “ndb_restore —
Restore an NDB Cluster Backup”.)

6. Now you need to obtain the most recent epoch from the ndb_apply_status table on the replica (as
discussed in Section 18.7.8, “Implementing Failover with NDB Cluster Replication”):

mysqlR> SELECT @latest:=MAX(epoch)
 FROM mysql.ndb_apply_status;

7. Using @latest as the epoch value obtained in the previous step, you can obtain the correct starting
position @pos in the correct binary log file @file from the mysql.ndb_binlog_index table on the
source. The query shown here gets these from the next_position and next_file columns from
the last epoch applied before the logical restore position:

mysqlS> SELECT
 -> @file:=SUBSTRING_INDEX(next_file, '/', -1),
 -> @pos:=next_position
 -> FROM mysql.ndb_binlog_index
 -> WHERE epoch > @latest
 -> ORDER BY epoch ASC LIMIT 1;

In the event that there is currently no replication traffic, you can get similar information by running SHOW
MASTER STATUS on the source and using the value shown in the Position column of the output for
the file whose name has the suffix with the greatest value for all files shown in the File column. In this
case, you must determine which file this is and supply the name in the next step manually or by parsing
the output with a script.

8. Using the values obtained in the previous step, you can now issue the appropriate CHANGE MASTER
TO statement in the replica's mysql client:

mysqlR> CHANGE MASTER TO
 -> MASTER_LOG_FILE='@file',
 -> MASTER_LOG_POS=@pos;

3123

NDB Cluster Backups With NDB Cluster Replication

9. Now that the replica knows from what point in which binary log file to start reading data from the source,
you can cause the replica to begin replicating with this statement:

mysqlR> START SLAVE;

To perform a backup and restore on a second replication channel, it is necessary only to repeat these
steps, substituting the host names and IDs of the secondary source and replica for those of the primary
source and replica servers where appropriate, and running the preceding statements on them.

For additional information on performing Cluster backups and restoring Cluster from backups, see
Section 18.6.8, “Online Backup of NDB Cluster”.

18.7.9.1 NDB Cluster Replication: Automating Synchronization of the Replica to the Source
Binary Log

It is possible to automate much of the process described in the previous section (see Section 18.7.9, “NDB
Cluster Backups With NDB Cluster Replication”). The following Perl script reset-replica.pl serves as
an example of how you can do this.

#!/user/bin/perl -w

file: reset-replica.pl

Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA
#
Version 1.1

######################## Includes ###############################

use DBI;

######################## Globals ################################

my $m_host='';
my $m_port='';
my $m_user='';
my $m_pass='';
my $s_host='';
my $s_port='';
my $s_user='';
my $s_pass='';
my $dbhM='';
my $dbhS='';

####################### Sub Prototypes ##########################

sub CollectCommandPromptInfo;

3124

NDB Cluster Backups With NDB Cluster Replication

sub ConnectToDatabases;
sub DisconnectFromDatabases;
sub GetReplicaEpoch;
sub GetSourceInfo;
sub UpdateReplica;

######################## Program Main ###########################

CollectCommandPromptInfo;
ConnectToDatabases;
GetReplicaEpoch;
GetSourceInfo;
UpdateReplica;
DisconnectFromDatabases;

################## Collect Command Prompt Info ##################

sub CollectCommandPromptInfo
{
 ### Check that user has supplied correct number of command line args
 die "Usage:\n
 reset-replica >source MySQL host< >source MySQL port< \n
 >source user< >source pass< >replica MySQL host< \n
 >replica MySQL port< >replica user< >replica pass< \n
 All 8 arguments must be passed. Use BLANK for NULL passwords\n"
 unless @ARGV == 8;

 $m_host = $ARGV[0];
 $m_port = $ARGV[1];
 $m_user = $ARGV[2];
 $m_pass = $ARGV[3];
 $s_host = $ARGV[4];
 $s_port = $ARGV[5];
 $s_user = $ARGV[6];
 $s_pass = $ARGV[7];

 if ($m_pass eq "BLANK") { $m_pass = '';}
 if ($s_pass eq "BLANK") { $s_pass = '';}
}

############### Make connections to both databases #############

sub ConnectToDatabases
{
 ### Connect to both source and replica cluster databases

 ### Connect to source
 $dbhM
 = DBI->connect(
 "dbi:mysql:database=mysql;host=$m_host;port=$m_port",
 "$m_user", "$m_pass")
 or die "Can't connect to source cluster MySQL process!
 Error: $DBI::errstr\n";

 ### Connect to replica
 $dbhS
 = DBI->connect(
 "dbi:mysql:database=mysql;host=$s_host",
 "$s_user", "$s_pass")
 or die "Can't connect to replica cluster MySQL process!
 Error: $DBI::errstr\n";
}

################ Disconnect from both databases ################

sub DisconnectFromDatabases
{

3125

NDB Cluster Backups With NDB Cluster Replication

 ### Disconnect from source

 $dbhM->disconnect
 or warn " Disconnection failed: $DBI::errstr\n";

 ### Disconnect from replica

 $dbhS->disconnect
 or warn " Disconnection failed: $DBI::errstr\n";
}

###################### Find the last good GCI ##################

sub GetReplicaEpoch
{
 $sth = $dbhS->prepare("SELECT MAX(epoch)
 FROM mysql.ndb_apply_status;")
 or die "Error while preparing to select epoch from replica: ",
 $dbhS->errstr;

 $sth->execute
 or die "Selecting epoch from replica error: ", $sth->errstr;

 $sth->bind_col (1, \$epoch);
 $sth->fetch;
 print "\tReplica epoch = $epoch\n";
 $sth->finish;
}

####### Find the position of the last GCI in the binary log ########

sub GetSourceInfo
{
 $sth = $dbhM->prepare("SELECT
 SUBSTRING_INDEX(File, '/', -1), Position
 FROM mysql.ndb_binlog_index
 WHERE epoch > $epoch
 ORDER BY epoch ASC LIMIT 1;")
 or die "Prepare to select from source error: ", $dbhM->errstr;

 $sth->execute
 or die "Selecting from source error: ", $sth->errstr;

 $sth->bind_col (1, \$binlog);
 $sth->bind_col (2, \$binpos);
 $sth->fetch;
 print "\tSource binary log file = $binlog\n";
 print "\tSource binary log position = $binpos\n";
 $sth->finish;
}

########## Set the replica to process from that location #########

sub UpdateReplica
{
 $sth = $dbhS->prepare("CHANGE MASTER TO
 MASTER_LOG_FILE='$binlog',
 MASTER_LOG_POS=$binpos;")
 or die "Prepare to CHANGE MASTER error: ", $dbhS->errstr;

 $sth->execute
 or die "CHANGE MASTER on replica error: ", $sth->errstr;
 $sth->finish;
 print "\tReplica has been updated. You may now start the replica.\n";
}

end reset-replica.pl

3126

NDB Cluster Replication: Bidirectional and Circular Replication

18.7.9.2 Point-In-Time Recovery Using NDB Cluster Replication

Point-in-time recovery—that is, recovery of data changes made since a given point in time—is performed
after restoring a full backup that returns the server to its state when the backup was made. Performing
point-in-time recovery of NDB Cluster tables with NDB Cluster and NDB Cluster Replication can be
accomplished using a native NDB data backup (taken by issuing CREATE BACKUP in the ndb_mgm client)
and restoring the ndb_binlog_index table (from a dump made using mysqldump).

To perform point-in-time recovery of NDB Cluster, it is necessary to follow the steps shown here:

1. Back up all NDB databases in the cluster, using the START BACKUP command in the ndb_mgm client
(see Section 18.6.8, “Online Backup of NDB Cluster”).

2. At some later point, prior to restoring the cluster, make a backup of the mysql.ndb_binlog_index
table. It is probably simplest to use mysqldump for this task. Also back up the binary log files at this
time.

This backup should be updated regularly—perhaps even hourly—depending on your needs.

3. (Catastrophic failure or error occurs.)

4. Locate the last known good backup.

5. Clear the data node file systems (using ndbd --initial or ndbmtd --initial).

Note

NDB Cluster Disk Data tablespace and log files are not removed by --
initial. You must delete these manually.

6. Use DROP TABLE or TRUNCATE TABLE with the mysql.ndb_binlog_index table.

7. Execute ndb_restore, restoring all data. You must include the --restore-epoch option when you
run ndb_restore, so that the ndb_apply_status table is populated correctly. (See Section 18.5.22,
“ndb_restore — Restore an NDB Cluster Backup”, for more information.)

8. Restore the ndb_binlog_index table from the output of mysqldump and restore the binary log files
from backup, if necessary.

9. Find the epoch applied most recently—that is, the maximum epoch column value in the
ndb_apply_status table—as the user variable @LATEST_EPOCH (emphasized):

SELECT @LATEST_EPOCH:=MAX(epoch)
 FROM mysql.ndb_apply_status;

10. Find the latest binary log file (@FIRST_FILE) and position (Position column value) within this file that
correspond to @LATEST_EPOCH in the ndb_binlog_index table:

SELECT Position, @FIRST_FILE:=File
 FROM mysql.ndb_binlog_index
 WHERE epoch > @LATEST_EPOCH ORDER BY epoch ASC LIMIT 1;

11. Using mysqlbinlog, replay the binary log events from the given file and position up to the point of the
failure. (See Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”.)

See also Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”, for more information
about the binary log, replication, and incremental recovery.

18.7.10 NDB Cluster Replication: Bidirectional and Circular Replication

3127

NDB Cluster Replication: Bidirectional and Circular Replication

It is possible to use NDB Cluster for bidirectional replication between two clusters, as well as for circular
replication between any number of clusters.

Circular replication example. In the next few paragraphs we consider the example of a replication
setup involving three NDB Clusters numbered 1, 2, and 3, in which Cluster 1 acts as the replication source
for Cluster 2, Cluster 2 acts as the source for Cluster 3, and Cluster 3 acts as the source for Cluster 1.
Each cluster has two SQL nodes, with SQL nodes A and B belonging to Cluster 1, SQL nodes C and D
belonging to Cluster 2, and SQL nodes E and F belonging to Cluster 3.

Circular replication using these clusters is supported as long as the following conditions are met:

• The SQL nodes on all sources and replicas are the same.

• All SQL nodes acting as sources and replicas are started with the log_slave_updates system
variable enabled.

This type of circular replication setup is shown in the following diagram:

3128

NDB Cluster Replication: Bidirectional and Circular Replication

Figure 18.16 NDB Cluster Circular Replication with All Sources As Replicas

In this scenario, SQL node A in Cluster 1 replicates to SQL node C in Cluster 2; SQL node C replicates
to SQL node E in Cluster 3; SQL node E replicates to SQL node A. In other words, the replication line
(indicated by the curved arrows in the diagram) directly connects all SQL nodes used as replication
sources and replicas.

It is also possible to set up circular replication in such a way that not all source SQL nodes are also
replicas, as shown here:

3129

NDB Cluster Replication: Bidirectional and Circular Replication

Figure 18.17 NDB Cluster Circular Replication Where Not All Sources Are Replicas

In this case, different SQL nodes in each cluster are used as replication sources and replicas. You must
not start any of the SQL nodes with the log_slave_updates system variable enabled. This type of
circular replication scheme for NDB Cluster, in which the line of replication (again indicated by the curved
arrows in the diagram) is discontinuous, should be possible, but it should be noted that it has not yet been
thoroughly tested and must therefore still be considered experimental.

Using NDB-native backup and restore to initialize a replica cluster. When setting up circular
replication, it is possible to initialize the replica cluster by using the management client START BACKUP
command on one NDB Cluster to create a backup and then applying this backup on another NDB Cluster
using ndb_restore. This does not automatically create binary logs on the second NDB Cluster's SQL

3130

NDB Cluster Replication: Bidirectional and Circular Replication

node acting as the replica; in order to cause the binary logs to be created, you must issue a SHOW TABLES
statement on that SQL node; this should be done prior to running START SLAVE. This is a known issue.

Multi-source failover example. In this section, we discuss failover in a multi-source NDB Cluster
replication setup with three NDB Clusters having server IDs 1, 2, and 3. In this scenario, Cluster 1
replicates to Clusters 2 and 3; Cluster 2 also replicates to Cluster 3. This relationship is shown here:

Figure 18.18 NDB Cluster Multi-Master Replication With 3 Sources

In other words, data replicates from Cluster 1 to Cluster 3 through 2 different routes: directly, and by way of
Cluster 2.

Not all MySQL servers taking part in multi-source replication must act as both source and replica, and a
given NDB Cluster might use different SQL nodes for different replication channels. Such a case is shown
here:

Figure 18.19 NDB Cluster Multi-Source Replication, With MySQL Servers

MySQL servers acting as replicas must be run with the log_slave_updates system variable enabled.
Which mysqld processes require this option is also shown in the preceding diagram.

3131

NDB Cluster Replication Conflict Resolution

Note

Using the log_slave_updates system variable has no effect on servers not
being run as replicas.

The need for failover arises when one of the replicating clusters goes down. In this example, we consider
the case where Cluster 1 is lost to service, and so Cluster 3 loses 2 sources of updates from Cluster 1.
Because replication between NDB Clusters is asynchronous, there is no guarantee that Cluster 3's updates
originating directly from Cluster 1 are more recent than those received through Cluster 2. You can handle
this by ensuring that Cluster 3 catches up to Cluster 2 with regard to updates from Cluster 1. In terms of
MySQL servers, this means that you need to replicate any outstanding updates from MySQL server C to
server F.

On server C, perform the following queries:

mysqlC> SELECT @latest:=MAX(epoch)
 -> FROM mysql.ndb_apply_status
 -> WHERE server_id=1;

mysqlC> SELECT
 -> @file:=SUBSTRING_INDEX(File, '/', -1),
 -> @pos:=Position
 -> FROM mysql.ndb_binlog_index
 -> WHERE orig_epoch >= @latest
 -> AND orig_server_id = 1
 -> ORDER BY epoch ASC LIMIT 1;

Note

You can improve the performance of this query, and thus likely speed up failover
times significantly, by adding the appropriate index to the ndb_binlog_index
table. See Section 18.7.4, “NDB Cluster Replication Schema and Tables”, for more
information.

Copy over the values for @file and @pos manually from server C to server F (or have your application
perform the equivalent). Then, on server F, execute the following CHANGE MASTER TO statement:

mysqlF> CHANGE MASTER TO
 -> MASTER_HOST = 'serverC'
 -> MASTER_LOG_FILE='@file',
 -> MASTER_LOG_POS=@pos;

Once this has been done, you can issue a START SLAVE statement on MySQL server F; this causes any
missing updates originating from server B to be replicated to server F.

The CHANGE MASTER TO statement also supports an IGNORE_SERVER_IDS option which takes a
comma-separated list of server IDs and causes events originating from the corresponding servers
to be ignored. For more information, see Section 13.4.2.1, “CHANGE MASTER TO Statement”, and
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”. For information about how this option intereacts
with the ndb_log_apply_status variable, see Section 18.7.8, “Implementing Failover with NDB Cluster
Replication”.

18.7.11 NDB Cluster Replication Conflict Resolution

• Requirements

• Source Column Control

• Conflict Resolution Control

3132

NDB Cluster Replication Conflict Resolution

• Conflict Resolution Functions

• Conflict Resolution Exceptions Table

• Conflict Detection Status Variables

• Examples

When using a replication setup involving multiple sources (including circular replication), it is possible that
different sources may try to update the same row on the replica with different data. Conflict resolution
in NDB Cluster Replication provides a means of resolving such conflicts by permitting a user-defined
resolution column to be used to determine whether or not an update on a given source should be applied
on the replica.

Some types of conflict resolution supported by NDB Cluster (NDB$OLD(), NDB$MAX(), NDB
$MAX_DELETE_WIN()) implement this user-defined column as a “timestamp” column (although its type
cannot be TIMESTAMP, as explained later in this section). These types of conflict resolution are always
applied a row-by-row basis rather than a transactional basis. The epoch-based conflict resolution functions
NDB$EPOCH() and NDB$EPOCH_TRANS() compare the order in which epochs are replicated (and thus
these functions are transactional). Different methods can be used to compare resolution column values on
the replica when conflicts occur, as explained later in this section; the method used can be set to act on a
single table, database, or server, or on a set of one or more tables using pattern matching. See Matching
with wildcards, for information about using pattern matches in the db, table_name, and server_id
columns of the mysql.ndb_replication table.

You should also keep in mind that it is the application's responsibility to ensure that the resolution column
is correctly populated with relevant values, so that the resolution function can make the appropriate choice
when determining whether to apply an update.

Requirements

Preparations for conflict resolution must be made on both the source and the replica. These tasks are
described in the following list:

• On the source writing the binary logs, you must determine which columns are sent (all columns or only
those that have been updated). This is done for the MySQL Server as a whole by applying the mysqld
startup option --ndb-log-updated-only (described later in this section), or on one or more specific
tables by placing the proper entries in the mysql.ndb_replication table (see ndb_replication Table).

Note

If you are replicating tables with very large columns (such as TEXT or BLOB
columns), --ndb-log-updated-only can also be useful for reducing the size
of the binary logs and avoiding possible replication failures due to exceeding
max_allowed_packet.

See Section 17.4.1.19, “Replication and max_allowed_packet”, for more
information about this issue.

• On the replica, you must determine which type of conflict resolution to apply (“latest timestamp wins”,
“same timestamp wins”, “primary wins”, “primary wins, complete transaction”, or none). This is done
using the mysql.ndb_replication system table, and applies to one or more specific tables (see
ndb_replication Table).

• NDB 7.4.1 and later also supports read conflict detection, that is, detecting conflicts between reads
of a given row in one cluster and updates or deletes of the same row in another cluster. This requires

3133

NDB Cluster Replication Conflict Resolution

exclusive read locks obtained by setting ndb_log_exclusive_reads equal to 1 on the replica. All
rows read by a conflicting read are logged in the exceptions table. For more information, see Read
conflict detection and resolution.

• NDB applies WRITE_ROW events strictly as inserts, requiring that there is not already any such row; that
is, an incoming write is always rejected if the row already exists.

When using the functions NDB$OLD(), NDB$MAX(), and NDB$MAX_DELETE_WIN() for timestamp-
based conflict resolution, we often refer to the column used for determining updates as a “timestamp”
column. However, the data type of this column is never TIMESTAMP; instead, its data type should be INT
(INTEGER) or BIGINT. The “timestamp” column should also be UNSIGNED and NOT NULL.

The NDB$EPOCH() and NDB$EPOCH_TRANS() functions discussed later in this section work by comparing
the relative order of replication epochs applied on a primary and secondary NDB Cluster, and do not make
use of timestamps.

Source Column Control

 We can see update operations in terms of “before” and “after” images—that is, the states of the table
before and after the update is applied. Normally, when updating a table with a primary key, the “before”
image is not of great interest; however, when we need to determine on a per-update basis whether or not
to use the updated values on a replica, we need to make sure that both images are written to the source's
binary log. This is done with the --ndb-log-update-as-write option for mysqld, as described later in
this section.

Important

Whether logging of complete rows or of updated columns only is done is decided
when the MySQL server is started, and cannot be changed online; you must either
restart mysqld, or start a new mysqld instance with different logging options.

Conflict Resolution Control

 Conflict resolution is usually enabled on the server where conflicts can occur. Like logging method
selection, it is enabled by entries in the mysql.ndb_replication table.

NBT_UPDATED_ONLY_MINIMAL and NBT_UPDATED_FULL_MINIMAL can be used with NDB$EPOCH(),
NDB$EPOCH2(), and NDB$EPOCH_TRANS(), because these do not require “before” values of columns
which are not primary keys. Conflict resolution algorithms requiring the old values, such as NDB$MAX()
and NDB$OLD(), do not work correctly with these binlog_type values.

Conflict Resolution Functions

This section provides detailed information about the functions which can be used for conflict detection and
resolution with NDB Replication. These functions are listed here in alphabetical order:

• NDB$OLD()

• NDB$MAX()

• NDB$MAX_DELETE_WIN()

• NDB$EPOCH()

• NDB$EPOCH_TRANS()

• NDB$EPOCH2()

3134

NDB Cluster Replication Conflict Resolution

• NDB$EPOCH2_TRANS()

NDB$OLD()

 If the value of column_name is the same on both the source and the replica, then the update is applied;
otherwise, the update is not applied on the replica and an exception is written to the log. This is illustrated
by the following pseudocode:

if (source_old_column_value == replica_current_column_value)
 apply_update();
else
 log_exception();

 This function can be used for “same value wins” conflict resolution. This type of conflict resolution ensures
that updates are not applied on the replica from the wrong source.

Important

The column value from the source's “before” image is used by this function.

NDB$MAX()

 If the “timestamp” column value for a given row coming from the source is higher than that on the replica, it
is applied; otherwise it is not applied on the replica. This is illustrated by the following pseudocode:

if (source_new_column_value > replica_current_column_value)
 apply_update();

 This function can be used for “greatest timestamp wins” conflict resolution. This type of conflict resolution
ensures that, in the event of a conflict, the version of the row that was most recently updated is the version
that persists.

Important

The column value from the sources's “after” image is used by this function.

NDB$MAX_DELETE_WIN()

 This is a variation on NDB$MAX(). Due to the fact that no timestamp is available for a delete operation, a
delete using NDB$MAX() is in fact processed as NDB$OLD, but for some use cases, this is not optimal. For
NDB$MAX_DELETE_WIN(), if the “timestamp” column value for a given row adding or updating an existing
row coming from the source is higher than that on the replica, it is applied. However, delete operations are
treated as always having the higher value. This is illustrated by the following pseudocode:

if ((source_new_column_value > replica_current_column_value)
 ||
 operation.type == "delete")
 apply_update();

 This function can be used for “greatest timestamp, delete wins” conflict resolution. This type of conflict
resolution ensures that, in the event of a conflict, the version of the row that was deleted or (otherwise)
most recently updated is the version that persists.

Note

As with NDB$MAX(), the column value from the source's “after” image is the value
used by this function.

3135

NDB Cluster Replication Conflict Resolution

NDB$EPOCH()

 The NDB$EPOCH() function tracks the order in which replicated epochs are applied on a replica cluster
relative to changes originating on the replica. This relative ordering is used to determine whether changes
originating on the replica are concurrent with any changes that originate locally, and are therefore
potentially in conflict.

Most of what follows in the description of NDB$EPOCH() also applies to NDB$EPOCH_TRANS(). Any
exceptions are noted in the text.

NDB$EPOCH() is asymmetric, operating on one NDB Cluster in a bidirectional replication configuration
(sometimes referred to as “active-active” replication). We refer here to cluster on which it operates as
the primary, and the other as the secondary. The replica on the primary is responsible for detecting and
handling conflicts, while the replica on the secondary is not involved in any conflict detection or handling.

When the replica on the primary detects conflicts, it injects events into its own binary log to compensate for
these; this ensures that the secondary NDB Cluster eventually realigns itself with the primary and so keeps
the primary and secondary from diverging. This compensation and realignment mechanism requires that
the primary NDB Cluster always wins any conflicts with the secondary—that is, that the primary's changes
are always used rather than those from the secondary in event of a conflict. This “primary always wins” rule
has the following implications:

• Operations that change data, once committed on the primary, are fully persistent and are not undone or
rolled back by conflict detection and resolution.

• Data read from the primary is fully consistent. Any changes committed on the Primary (locally or from the
replica) are not reverted later.

• Operations that change data on the secondary may later be reverted if the primary determines that they
are in conflict.

• Individual rows read on the secondary are self-consistent at all times, each row always reflecting either a
state committed by the secondary, or one committed by the primary.

• Sets of rows read on the secondary may not necessarily be consistent at a given single point in time. For
NDB$EPOCH_TRANS(), this is a transient state; for NDB$EPOCH(), it can be a persistent state.

• Assuming a period of sufficient length without any conflicts, all data on the secondary NDB Cluster
(eventually) becomes consistent with the primary's data.

NDB$EPOCH() and NDB$EPOCH_TRANS() do not require any user schema modifications, or application
changes to provide conflict detection. However, careful thought must be given to the schema used, and the
access patterns used, to verify that the complete system behaves within specified limits.

Each of the NDB$EPOCH() and NDB$EPOCH_TRANS() functions can take an optional parameter; this is
the number of bits to use to represent the lower 32 bits of the epoch, and should be set to no less than the
value calculated as shown here:

CEIL(LOG2(TimeBetweenGlobalCheckpoints / TimeBetweenEpochs), 1)

For the default values of these configuration parameters (2000 and 100 milliseconds, respectively), this
gives a value of 5 bits, so the default value (6) should be sufficient, unless other values are used for
TimeBetweenGlobalCheckpoints, TimeBetweenEpochs, or both. A value that is too small can result
in false positives, while one that is too large could lead to excessive wasted space in the database.

Both NDB$EPOCH() and NDB$EPOCH_TRANS() insert entries for conflicting rows into the relevant
exceptions tables, provided that these tables have been defined according to the same exceptions table

3136

NDB Cluster Replication Conflict Resolution

schema rules as described elsewhere in this section (see NDB$OLD()). You must create any exceptions
table before creating the data table with which it is to be used.

As with the other conflict detection functions discussed in this section, NDB$EPOCH() and NDB
$EPOCH_TRANS() are activated by including relevant entries in the mysql.ndb_replication table
(see ndb_replication Table). The roles of the primary and secondary NDB Clusters in this scenario are fully
determined by mysql.ndb_replication table entries.

Because the conflict detection algorithms employed by NDB$EPOCH() and NDB$EPOCH_TRANS() are
asymmetric, you must use different values for the server_id entries of the primary and secondary
replicas.

A conflict between DELETE operations alone is not sufficient to trigger a conflict using NDB$EPOCH() or
NDB$EPOCH_TRANS(), and the relative placement within epochs does not matter.

Limitations on NDB$EPOCH()

 The following limitations currently apply when using NDB$EPOCH() to perform conflict detection:

• Conflicts are detected using NDB Cluster epoch boundaries, with granularity proportional to
TimeBetweenEpochs (default: 100 milliseconds). The minimum conflict window is the minimum
time during which concurrent updates to the same data on both clusters always report a conflict. This
is always a nonzero length of time, and is roughly proportional to 2 * (latency + queueing +
TimeBetweenEpochs). This implies that—assuming the default for TimeBetweenEpochs and
ignoring any latency between clusters (as well as any queuing delays)—the minimum conflict window
size is approximately 200 milliseconds. This minimum window should be considered when looking at
expected application “race” patterns.

• Additional storage is required for tables using the NDB$EPOCH() and NDB$EPOCH_TRANS() functions;
from 1 to 32 bits extra space per row is required, depending on the value passed to the function.

• Conflicts between delete operations may result in divergence between the primary and secondary. When
a row is deleted on both clusters concurrently, the conflict can be detected, but is not recorded, since the
row is deleted. This means that further conflicts during the propagation of any subsequent realignment
operations are not detected, which can lead to divergence.

Deletes should be externally serialized, or routed to one cluster only. Alternatively, a separate row
should be updated transactionally with such deletes and any inserts that follow them, so that conflicts
can be tracked across row deletes. This may require changes in applications.

• Only two NDB Clusters in a birectional “active-active” configuration are currently supported when using
NDB$EPOCH() or NDB$EPOCH_TRANS() for conflict detection.

• Tables having BLOB or TEXT columns are not currently supported with NDB$EPOCH() or NDB
$EPOCH_TRANS().

NDB$EPOCH_TRANS()

 NDB$EPOCH_TRANS() extends the NDB$EPOCH() function. Conflicts are detected and handled in the
same way using the “primary wins all” rule (see NDB$EPOCH()) but with the extra condition that any
other rows updated in the same transaction in which the conflict occurred are also regarded as being in
conflict. In other words, where NDB$EPOCH() realigns individual conflicting rows on the secondary, NDB
$EPOCH_TRANS() realigns conflicting transactions.

In addition, any transactions which are detectably dependent on a conflicting transaction are also regarded
as being in conflict, these dependencies being determined by the contents of the secondary cluster's binary

3137

NDB Cluster Replication Conflict Resolution

log. Since the binary log contains only data modification operations (inserts, updates, and deletes), only
overlapping data modifications are used to determine dependencies between transactions.

NDB$EPOCH_TRANS() is subject to the same conditions and limitations as NDB$EPOCH(), and in addition
requires that Version 2 binary log row events are used (log_bin_use_v1_row_events equal to 0),
which adds a storage overhead of 2 bytes per event in the binary log. In addition, all transaction IDs must
be recorded in the secondary's binary log, using --ndb-log-transaction-id set to ON. This adds a
variable amount of overhead (up to 13 bytes per row).

See NDB$EPOCH().

NDB$EPOCH2()

 The NDB$EPOCH2() function, added in NDB 7.4, is similar to NDB$EPOCH(), except that NDB$EPOCH2()
provides for delete-delete handling with a bidirectional replication topology. In this scenario, primary and
secondary roles are assigned to the two sources by setting the ndb_slave_conflict_role system
variable to the appropriate value on each source (usually one each of PRIMARY, SECONDARY). When this is
done, modifications made by the secondary are reflected by the primary back to the secondary which then
conditionally applies them.

NDB$EPOCH2_TRANS()

 Added in NDB 7.4, NDB$EPOCH2_TRANS() extends the NDB$EPOCH2() function. Conflicts are detected
and handled in the same way, and assigning primary and secondary roles to the replicating clusters, but
with the extra condition that any other rows updated in the same transaction in which the conflict occurred
are also regarded as being in conflict. That is, NDB$EPOCH2() realigns individual conflicting rows on the
secondary, while NDB$EPOCH_TRANS() realigns conflicting transactions.

Where NDB$EPOCH() and NDB$EPOCH_TRANS() use metadata that is specified per row, per last modified
epoch, to determine on the primary whether an incoming replicated row change from the secondary
is concurrent with a locally committed change; concurrent changes are regarded as conflicting, with
subesequent exceptions table updates and realignment of the secondary. A problem arises when a row is
deleted on the primary so there is no longer any last-modified epoch available to determine whether any
replicated operations conflict, which means that conflicting delete operationss are not detected. This can
result in divergence, an example being a delete on one cluster which is concurrent with a delete and insert
on the other; this why delete operations can be routed to only one cluster when using NDB$EPOCH() and
NDB$EPOCH_TRANS().

NDB$EPOCH2() bypasses the issue just described—storing information about deleted rows on the
PRIMARY—by ignoring any delete-delete conflict, and by avoiding any potential resultant divergence as
well. This is accomplished by reflecting any operation successfully applied on and replicated from the
secondary back to the secondary. On its return to the secondary, it can be used to reapply an operation on
the secondary which was deleted by an operation originating from the primary.

When using NDB$EPOCH2(), you should keep in mind that the secondary applies the delete from the
primary, removing the new row until it is restored by a reflected operation. In theory, the subsequent insert
or update on the secondary conflicts with the delete from the primary, but in this case, we choose to ignore
this and allow the secondary to “win”, in the interest of preventing divergence between the clusters. In other
words, after a delete, the primary does not detect conflicts, and instead adopts the secondary's following
changes immediately. Because of this, the secondary's state can revisit multiple previous committed states
as it progresses to a final (stable) state, and some of these may be visible.

You should also be aware that reflecting all operations from the secondary back to the primary increases
the size of the primary's logbinary log, as well as demands on bandwidth, CPU usage, and disk I/O.

Application of reflected operations on the secondary depends on the state of the target
row on the secondary. Whether or not reflected changes are applied on the secondary

3138

NDB Cluster Replication Conflict Resolution

can be tracked by checking the Ndb_conflict_reflected_op_prepare_count and
Ndb_conflict_reflected_op_discard_count status variables, both added in NDB
7.4.2. The number of changes applied is simply the difference between these two values (note
that Ndb_conflict_reflected_op_prepare_count is always greater than or equal to
Ndb_conflict_reflected_op_discard_count).

Events are applied if and only if both of the following conditions are true:

• The existence of the row—that is, whether or not it exists—is in accordance with the type of event. For
delete and update operations, the row must already exist. For insert operations, the row must not exist.

• The row was last modified by the primary. It is possible that the modification was accomplished through
the execution of a reflected operation.

If both of these conditions are not met, the reflected operation is discarded by the secondary.

Conflict Resolution Exceptions Table

 To use the NDB$OLD() conflict resolution function, it is also necessary to create an exceptions table
corresponding to each NDB table for which this type of conflict resolution is to be employed. This is also
true when using NDB$EPOCH() or NDB$EPOCH_TRANS(). The name of this table is that of the table for
which conflict resolution is to be applied, with the string $EX appended. (For example, if the name of the
original table is mytable, the name of the corresponding exceptions table name should be mytable$EX.)
Prior to NDB 7.4.1, the syntax for creating the exceptions table is as shown here:

CREATE TABLE original_table$EX (
 server_id INT UNSIGNED,
 source_server_id INT UNSIGNED,
 source_epoch BIGINT UNSIGNED,
 count INT UNSIGNED,

 original_table_pk_columns,

 [additional_columns,]

 PRIMARY KEY(server_id, source_server_id, source_epoch, count)
) ENGINE=NDB;

NDB 7.4.1 and later supports an extended exceptions table definition that includes optional columns
providing information about an exception's type, cause, and originating transaction. In these versions, the
syntax for creating the exceptions table is as shown here:

CREATE TABLE original_table$EX (
 [NDB$]server_id INT UNSIGNED,
 [NDB$]source_server_id INT UNSIGNED,
 [NDB$]source_epoch BIGINT UNSIGNED,
 [NDB$]count INT UNSIGNED,

 [NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,]
 [NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,]
 [NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL,]

 original_table_pk_columns,

 [orig_table_column|orig_table_column$OLD|orig_table_column$NEW,]

 [additional_columns,]

 PRIMARY KEY([NDB$]server_id, [NDB$]source_server_id, [NDB$]source_epoch, [NDB$]count)
) ENGINE=NDB;

3139

NDB Cluster Replication Conflict Resolution

The first four columns are required. The names of the first four columns and the columns matching
the original table's primary key columns are not critical; however, we suggest for reasons of clarity
and consistency, that you use the names shown here for the server_id, source_server_id,
source_epoch, and count columns, and that you use the same names as in the original table for the
columns matching those in the original table's primary key.

Starting with NDB 7.4.1, if the exceptions table uses one or more of the optional columns NDB$OP_TYPE,
NDB$CFT_CAUSE, or NDB$ORIG_TRANSID discussed later in this section, then each of the required
columns must also be named using the prefix NDB$. If desired, you can use the NDB$ prefix to name the
required columns even if you do not define any optional columns, but in this case, all four of the required
columns must be named using the prefix.

Following these columns, the columns making up the original table's primary key should be copied in the
order in which they are used to define the primary key of the original table. The data types for the columns
duplicating the primary key columns of the original table should be the same as (or larger than) those of the
original columns. In NDB Cluster 7.3 and earlier, the exceptions table's primary key must be reproduced
column for column. Beginning with NDB 7.4.1, a subset of the primary key columns may be used instead.

Regardless of the NDB Cluster version employed, the exceptions table must use the NDB storage engine.
(An example that uses NDB$OLD() with an exceptions table is shown later in this section.)

Additional columns may optionally be defined following the copied primary key columns, but not
before any of them; any such extra columns cannot be NOT NULL. In NDB 7.4.1 and later, support is
provided for three additional, predefined optional columns NDBOP_TYPE, NDBCFT_CAUSE, and NDB
$ORIG_TRANSID, which are described in the next few paragraphs.

 NDB$OP_TYPE: This column can be used to obtain the type of operation causing the conflict. If you use
this column, define it as shown here:

NDB$OP_TYPE ENUM('WRITE_ROW', 'UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL

The WRITE_ROW, UPDATE_ROW, and DELETE_ROW operation types represent user-initiated operations.
REFRESH_ROW operations are operations generated by conflict resolution in compensating transactions
sent back to the originating cluster from the cluster that detected the conflict. READ_ROW operations are
user-initiated read tracking operations defined with exclusive row locks.

 NDB$CFT_CAUSE: You can define an optional column NDB$CFT_CAUSE which provides the cause of the
registered conflict. This column, if used, is defined as shown here:

NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL

ROW_DOES_NOT_EXIST can be reported as the cause for UPDATE_ROW and WRITE_ROW operations;
ROW_ALREADY_EXISTS can be reported for WRITE_ROW events. DATA_IN_CONFLICT is reported when
a row-based conflict function detects a conflict; TRANS_IN_CONFLICT is reported when a transactional
conflict function rejects all of the operations belonging to a complete transaction.

 NDB$ORIG_TRANSID: The NDB$ORIG_TRANSID column, if used, contains the ID of the originating
transaction. This column should be defined as follows:

NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL

NDB$ORIG_TRANSID is a 64-bit value generated by NDB. This value can be used to correlate multiple
exceptions table entries belonging to the same conflicting transaction from the same or different exceptions
tables.

In NDB 7.4.1 and later, additional reference columns which are not part of the original table's primary
key can be named colname$OLD or colname$NEW. colname$OLD references old values in update

3140

NDB Cluster Replication Conflict Resolution

and delete operations—that is, operations containing DELETE_ROW events. colname$NEW can be used
to reference new values in insert and update operations—in other words, operations using WRITE_ROW
events, UPDATE_ROW events, or both types of events. Where a conflicting operation does not supply a
value for a given reference column that is not a primary key, the exceptions table row contains either NULL,
or a defined default value for that column.

Important

The mysql.ndb_replication table is read when a data table is set up for
replication, so the row corresponding to a table to be replicated must be inserted
into mysql.ndb_replication before the table to be replicated is created.

Conflict Detection Status Variables

 Several status variables can be used to monitor conflict detection. You can see how many rows have
been found in conflict by NDB$EPOCH() since this replica was last restarted from the current value of the
Ndb_conflict_fn_epoch system status variable.

Ndb_conflict_fn_epoch_trans provides the number of rows that have been found directly in conflict
by NDB$EPOCH_TRANS(). Ndb_conflict_fn_epoch2 and Ndb_conflict_fn_epoch2_trans,
both added in NDB 7.4.2, show the number of rows found in conflict by NDB$EPOCH2() and NDB
$EPOCH2_TRANS(), respectively. The number of rows actually realigned, including those affected due
to their membership in or dependency on the same transactions as other conflicting rows, is given by
Ndb_conflict_trans_row_reject_count.

Another server status variable Ndb_conflict_fn_max provides a count of the number of times that a
row was not applied on the current SQL node due to “greatest timestamp wins” conflict resolution since the
last time that mysqld was started. Ndb_conflict_fn_max_del_win provides a count of the number of
times that conflict resolution based on the outcome of NDB$MAX_DELETE_WIN() has been applied.

The number of times that a row was not applied as the result of “same timestamp wins” conflict
resolution on a given mysqld since the last time it was restarted is given by the global status variable
Ndb_conflict_fn_old. In addition to incrementing Ndb_conflict_fn_old, the primary key of the
row that was not used is inserted into an exceptions table, as explained elsewhere in this section.

See also NDB Cluster Status Variables.

Examples

The following examples assume that you have already a working NDB Cluster replication setup, as
described in Section 18.7.5, “Preparing the NDB Cluster for Replication”, and Section 18.7.6, “Starting
NDB Cluster Replication (Single Replication Channel)”.

NDB$MAX() example. Suppose you wish to enable “greatest timestamp wins” conflict resolution on
table test.t1, using column mycol as the “timestamp”. This can be done using the following steps:

1. Make sure that you have started the source mysqld with --ndb-log-update-as-write=OFF.

2. On the source, perform this INSERT statement:

INSERT INTO mysql.ndb_replication
 VALUES ('test', 't1', 0, NULL, 'NDB$MAX(mycol)');

Note

If the ndb_replication table does not already exist, you must create it. See
ndb_replication Table.

3141

NDB Cluster Replication Conflict Resolution

Inserting a 0 into the server_id column indicates that all SQL nodes accessing this table should use
conflict resolution. If you want to use conflict resolution on a specific mysqld only, use the actual server
ID.

Inserting NULL into the binlog_type column has the same effect as inserting 0 (NBT_DEFAULT); the
server default is used.

3. Create the test.t1 table:

CREATE TABLE test.t1 (
 columns
 mycol INT UNSIGNED,
 columns
) ENGINE=NDB;

Now, when updates are performed on this table, conflict resolution is applied, and the version of the
row having the greatest value for mycol is written to the replica.

Note

Other binlog_type options such as NBT_UPDATED_ONLY_USE_UPDATE (6)
should be used to control logging on the source using the ndb_replication table
rather than by using command-line options.

NDB$OLD() example. Suppose an NDB table such as the one defined here is being replicated, and you
wish to enable “same timestamp wins” conflict resolution for updates to this table:

CREATE TABLE test.t2 (
 a INT UNSIGNED NOT NULL,
 b CHAR(25) NOT NULL,
 columns,
 mycol INT UNSIGNED NOT NULL,
 columns,
 PRIMARY KEY pk (a, b)
) ENGINE=NDB;

The following steps are required, in the order shown:

1. First—and prior to creating test.t2—you must insert a row into the mysql.ndb_replication
table, as shown here:

INSERT INTO mysql.ndb_replication
 VALUES ('test', 't2', 0, 0, 'NDB$OLD(mycol)');

Possible values for the binlog_type column are shown earlier in this section; in this case, we use 0
to specify that the server default logging behavior be used. The value 'NDB$OLD(mycol)' should be
inserted into the conflict_fn column.

2. Create an appropriate exceptions table for test.t2. The table creation statement shown here includes
all required columns; any additional columns must be declared following these columns, and before the
definition of the table's primary key.

CREATE TABLE test.t2$EX (
 server_id INT UNSIGNED,
 source_server_id INT UNSIGNED,
 source_epoch BIGINT UNSIGNED,
 count INT UNSIGNED,
 a INT UNSIGNED NOT NULL,
 b CHAR(25) NOT NULL,

3142

NDB Cluster Replication Conflict Resolution

 [additional_columns,]

 PRIMARY KEY(server_id, source_server_id, source_epoch, count)
) ENGINE=NDB;

In NDB 7.4.1 and later, we can include additional columns for information about the type, cause, and
originating transaction ID for a given conflict. We are also not required to supply matching columns for
all primary key columns in the original table. In these versions, you can create the exceptions table like
this:

CREATE TABLE test.t2$EX (
 NDB$server_id INT UNSIGNED,
 NDB$source_server_id INT UNSIGNED,
 NDB$source_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,
 a INT UNSIGNED NOT NULL,

 NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,
 NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,
 NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL,

 [additional_columns,]

 PRIMARY KEY(NDB$server_id, NDB$source_server_id, NDB$source_epoch, NDB$count)
) ENGINE=NDB;

Note

The NDB$ prefix is required for the four required columns since we included
at least one of the columns NDBOP_TYPE, NDBCFT_CAUSE, or NDB
$ORIG_TRANSID in the table definition.

3. Create the table test.t2 as shown previously.

These steps must be followed for every table for which you wish to perform conflict resolution using NDB
$OLD(). For each such table, there must be a corresponding row in mysql.ndb_replication, and
there must be an exceptions table in the same database as the table being replicated.

Read conflict detection and resolution. NDB 7.4.1 and later supports tracking of read operations,
which makes it possible in circular replication setups to manage conflicts between reads of a given row
in one cluster and updates or deletes of the same row in another. This example uses employee and
department tables to model a scenario in which an employee is moved from one department to another
on the source cluster (which we refer to hereafter as cluster A) while the replica cluster (hereafter B)
updates the employee count of the employee's former department in an interleaved transaction.

The data tables have been created using the following SQL statements:

Employee table
CREATE TABLE employee (
 id INT PRIMARY KEY,
 name VARCHAR(2000),
 dept INT NOT NULL
) ENGINE=NDB;

Department table
CREATE TABLE department (
 id INT PRIMARY KEY,
 name VARCHAR(2000),
 members INT
) ENGINE=NDB;

3143

NDB Cluster Replication Conflict Resolution

The contents of the two tables include the rows shown in the (partial) output of the following SELECT
statements:

mysql> SELECT id, name, dept FROM employee;
+---------------+------+
| id | name | dept |
+------+--------+------+
...
998	Mike	3
999	Joe	3
1000	Mary	3
...
+------+--------+------+

mysql> SELECT id, name, members FROM department;
+-----+-------------+---------+
| id | name | members |
+-----+-------------+---------+
...
| 3 | Old project | 24 |
...
+-----+-------------+---------+

We assume that we are already using an exceptions table that includes the four required columns (and
these are used for this table's primary key), the optional columns for operation type and cause, and the
original table's primary key column, created using the SQL statement shown here:

CREATE TABLE employee$EX (
 NDB$server_id INT UNSIGNED,
 NDB$source_server_id INT UNSIGNED,
 NDB$source_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,

 NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW','READ_ROW') NOT NULL,
 NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST',
 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT',
 'TRANS_IN_CONFLICT') NOT NULL,

 id INT NOT NULL,

 PRIMARY KEY(NDB$server_id, NDB$source_server_id, NDB$source_epoch, NDB$count)
) ENGINE=NDB;

Suppose there occur the two simultaneous transactions on the two clusters. On cluster A, we create a new
department, then move employee number 999 into that department, using the following SQL statements:

BEGIN;
 INSERT INTO department VALUES (4, "New project", 1);
 UPDATE employee SET dept = 4 WHERE id = 999;
COMMIT;

At the same time, on cluster B, another transaction reads from employee, as shown here:

BEGIN;
 SELECT name FROM employee WHERE id = 999;
 UPDATE department SET members = members - 1 WHERE id = 3;
commit;

The conflicting transactions are not normally detected by the conflict resolution mechanism, since
the conflict is between a read (SELECT) and an update operation. Beginning with NDB 7.4.1, you can
circumvent this issue by executing SET ndb_log_exclusive_reads = 1 on the replica cluster.
Acquiring exclusive read locks in this way causes any rows read on the source to be flagged as needing

3144

NDB Cluster Release Notes

conflict resolution on the replica cluster. If we enable exclusive reads in this way prior to the logging of
these transactions, the read on cluster B is tracked and sent to cluster A for resolution; the conflict on the
employee row is subsequently detected and the transaction on cluster B is aborted.

The conflict is registered in the exceptions table (on cluster A) as a READ_ROW operation (see Conflict
Resolution Exceptions Table, for a description of operation types), as shown here:

mysql> SELECT id, NDBOP_TYPE, NDBCFT_CAUSE FROM employee$EX;
+-------+-------------+-------------------+
| id | NDB$OP_TYPE | NDB$CFT_CAUSE |
+-------+-------------+-------------------+
...
| 999 | READ_ROW | TRANS_IN_CONFLICT |
+-------+-------------+-------------------+

Any existing rows found in the read operation are flagged. This means that multiple rows resulting from the
same conflict may be logged in the exception table, as shown by examining the effects a conflict between
an update on cluster A and a read of multiple rows on cluster B from the same table in simultaneous
transactions. The transaction executed on cluster A is shown here:

BEGIN;
 INSERT INTO department VALUES (4, "New project", 0);
 UPDATE employee SET dept = 4 WHERE dept = 3;
 SELECT COUNT(*) INTO @count FROM employee WHERE dept = 4;
 UPDATE department SET members = @count WHERE id = 4;
COMMIT;

Concurrently a transaction containing the statements shown here runs on cluster B:

SET ndb_log_exclusive_reads = 1; # Must be set if not already enabled
...
BEGIN;
 SELECT COUNT(*) INTO @count FROM employee WHERE dept = 3 FOR UPDATE;
 UPDATE department SET members = @count WHERE id = 3;
COMMIT;

In this case, all three rows matching the WHERE condition in the second transaction's SELECT are read, and
are thus flagged in the exceptions table, as shown here:

mysql> SELECT id, NDBOP_TYPE, NDBCFT_CAUSE FROM employee$EX;
+-------+-------------+-------------------+
| id | NDB$OP_TYPE | NDB$CFT_CAUSE |
+-------+-------------+-------------------+
...
998	READ_ROW	TRANS_IN_CONFLICT
999	READ_ROW	TRANS_IN_CONFLICT
1000	READ_ROW	TRANS_IN_CONFLICT
...
+-------+-------------+-------------------+

Read tracking is performed on the basis of existing rows only. A read based on a given condition track
conflicts only of any rows that are found and not of any rows that are inserted in an interleaved transaction.
This is similar to how exclusive row locking is performed in a single instance of NDB Cluster.

18.8 NDB Cluster Release Notes

Changes in NDB Cluster releases are documented separately from this reference manual; you can find
release notes for the changes in each NDB Cluster 7.4 release at NDB Cluster 7.4 Release Notes, and for
NDB Cluster 7.3 releases at NDB Cluster 7.3 Release Notes.

You can obtain release notes for older versions of NDB Cluster from NDB Cluster Release Notes.

3145

https://dev.mysql.com/doc/relnotes/mysql-cluster/7.4/en/
https://dev.mysql.com/doc/relnotes/mysql-cluster/7.3/en/
https://dev.mysql.com/doc/index-cluster.html#cluster-relnotes

3146

Chapter 19 Partitioning

Table of Contents
19.1 Overview of Partitioning in MySQL ... 3149
19.2 Partitioning Types ... 3152

19.2.1 RANGE Partitioning .. 3154
19.2.2 LIST Partitioning ... 3158
19.2.3 COLUMNS Partitioning ... 3160
19.2.4 HASH Partitioning .. 3168
19.2.5 KEY Partitioning ... 3171
19.2.6 Subpartitioning ... 3173
19.2.7 How MySQL Partitioning Handles NULL .. 3176

19.3 Partition Management ... 3180
19.3.1 Management of RANGE and LIST Partitions ... 3181
19.3.2 Management of HASH and KEY Partitions .. 3187
19.3.3 Exchanging Partitions and Subpartitions with Tables .. 3188
19.3.4 Maintenance of Partitions ... 3194
19.3.5 Obtaining Information About Partitions ... 3195

19.4 Partition Pruning ... 3197
19.5 Partition Selection ... 3200
19.6 Restrictions and Limitations on Partitioning .. 3206

19.6.1 Partitioning Keys, Primary Keys, and Unique Keys ... 3214
19.6.2 Partitioning Limitations Relating to Storage Engines ... 3217
19.6.3 Partitioning Limitations Relating to Functions ... 3218
19.6.4 Partitioning and Locking ... 3220

This chapter discusses MySQL's implementation of user-defined partitioning. You can determine whether
your MySQL Server supports partitioning by checking the output of the SHOW PLUGINS statement, like
this:

Note

Previous versions of MySQL had the have_partitioning variable, which was
deprecated and removed in MySQL 5.6.1.

mysql> SHOW PLUGINS;
+------------+----------+----------------+---------+---------+
| Name | Status | Type | Library | License |
+------------+----------+----------------+---------+---------+
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
partition	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
FEDERATED	DISABLED	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbcluster	DISABLED	STORAGE ENGINE	NULL	GPL
+------------+----------+----------------+---------+---------+
11 rows in set (0.00 sec)

You can also check the Information Schema PLUGINS table with a query similar to this one:

3147

mysql> SELECT
 -> PLUGIN_NAME as Name,
 -> PLUGIN_VERSION as Version,
 -> PLUGIN_STATUS as Status
 -> FROM INFORMATION_SCHEMA.PLUGINS
 -> WHERE PLUGIN_TYPE='STORAGE ENGINE';
+--------------------+---------+--------+
| Name | Version | Status |
+--------------------+---------+--------+
binlog	1.0	ACTIVE
CSV	1.0	ACTIVE
MEMORY	1.0	ACTIVE
MRG_MYISAM	1.0	ACTIVE
MyISAM	1.0	ACTIVE
PERFORMANCE_SCHEMA	0.1	ACTIVE
BLACKHOLE	1.0	ACTIVE
ARCHIVE	3.0	ACTIVE
InnoDB	5.6	ACTIVE
partition	1.0	ACTIVE
+--------------------+---------+--------+
10 rows in set (0.00 sec)

In either case, if you do not see the partition plugin listed with the value ACTIVE for the Status
column in the output (shown in bold text in each of the examples just given), then your version of MySQL
was not built with partitioning support.

MySQL 5.6 Community binaries provided by Oracle include partitioning support. For information about
partitioning support offered in MySQL Enterprise Edition binaries, see Chapter 24, MySQL Enterprise
Edition.

To enable partitioning if you are compiling MySQL 5.6 from source, the build must be configured with the -
DWITH_PARTITION_STORAGE_ENGINE option. For more information, see Section 2.9, “Installing MySQL
from Source”.

If your MySQL binary is built with partitioning support, nothing further needs to be done to enable it (for
example, no special entries are required in your my.cnf file).

If you want to disable partitioning support, you can start the MySQL Server with the --skip-partition
option. When partitioning support is disabled, you can see any existing partitioned tables and drop them
(although doing this is not advised), but you cannot otherwise manipulate them or access their data.

See Section 19.1, “Overview of Partitioning in MySQL”, for an introduction to partitioning and partitioning
concepts.

MySQL supports several types of partitioning as well as subpartitioning; see Section 19.2, “Partitioning
Types”, and Section 19.2.6, “Subpartitioning”.

Section 19.3, “Partition Management”, covers methods of adding, removing, and altering partitions in
existing partitioned tables.

Section 19.3.4, “Maintenance of Partitions”, discusses table maintenance commands for use with
partitioned tables.

The PARTITIONS table in the INFORMATION_SCHEMA database provides information about partitions and
partitioned tables. See Section 21.3.14, “The INFORMATION_SCHEMA PARTITIONS Table”, for more
information; for some examples of queries against this table, see Section 19.2.7, “How MySQL Partitioning
Handles NULL”.

For known issues with partitioning in MySQL 5.6, see Section 19.6, “Restrictions and Limitations on
Partitioning”.

3148

Overview of Partitioning in MySQL

You may also find the following resources to be useful when working with partitioned tables.

Additional Resources. Other sources of information about user-defined partitioning in MySQL include
the following:

• MySQL Partitioning Forum

This is the official discussion forum for those interested in or experimenting with MySQL Partitioning
technology. It features announcements and updates from MySQL developers and others. It is monitored
by members of the Partitioning Development and Documentation Teams.

• Mikael Ronström's Blog

MySQL Partitioning Architect and Lead Developer Mikael Ronström frequently posts articles here
concerning his work with MySQL Partitioning and NDB Cluster.

• PlanetMySQL

A MySQL news site featuring MySQL-related blogs, which should be of interest to anyone using
my MySQL. We encourage you to check here for links to blogs kept by those working with MySQL
Partitioning, or to have your own blog added to those covered.

MySQL 5.6 binaries are available from https://dev.mysql.com/downloads/mysql/5.6.html. However, for the
latest partitioning bugfixes and feature additions, you can obtain the source from our GitHub repository. To
enable partitioning, the build must be configured with the -DWITH_PARTITION_STORAGE_ENGINE option.
For more information about building MySQL, see Section 2.9, “Installing MySQL from Source”. If you have
problems compiling a partitioning-enabled MySQL 5.6 build, check the MySQL Partitioning Forum and ask
for assistance there if you do not find a solution to your problem already posted.

19.1 Overview of Partitioning in MySQL
This section provides a conceptual overview of partitioning in MySQL 5.6.

For information on partitioning restrictions and feature limitations, see Section 19.6, “Restrictions and
Limitations on Partitioning”.

The SQL standard does not provide much in the way of guidance regarding the physical aspects of data
storage. The SQL language itself is intended to work independently of any data structures or media
underlying the schemas, tables, rows, or columns with which it works. Nonetheless, most advanced
database management systems have evolved some means of determining the physical location to be
used for storing specific pieces of data in terms of the file system, hardware or even both. In MySQL, the
InnoDB storage engine has long supported the notion of a tablespace, and the MySQL Server, even prior
to the introduction of partitioning, could be configured to employ different physical directories for storing
different databases (see Section 8.12.3, “Using Symbolic Links”, for an explanation of how this is done).

Partitioning takes this notion a step further, by enabling you to distribute portions of individual tables across
a file system according to rules which you can set largely as needed. In effect, different portions of a table
are stored as separate tables in different locations. The user-selected rule by which the division of data is
accomplished is known as a partitioning function, which in MySQL can be the modulus, simple matching
against a set of ranges or value lists, an internal hashing function, or a linear hashing function. The function
is selected according to the partitioning type specified by the user, and takes as its parameter the value
of a user-supplied expression. This expression can be a column value, a function acting on one or more
column values, or a set of one or more column values, depending on the type of partitioning that is used.

In the case of RANGE, LIST, and [LINEAR] HASH partitioning, the value of the partitioning column is passed
to the partitioning function, which returns an integer value representing the number of the partition in which

3149

https://forums.mysql.com/list.php?106
http://mikaelronstrom.blogspot.com/
http://www.planetmysql.org/
https://dev.mysql.com/downloads/mysql/5.6.html
https://forums.mysql.com/list.php?106

Overview of Partitioning in MySQL

that particular record should be stored. This function must be nonconstant and nonrandom. It may not
contain any queries, but may use an SQL expression that is valid in MySQL, as long as that expression
returns either NULL or an integer intval such that

-MAXVALUE <= intval <= MAXVALUE

(MAXVALUE is used to represent the least upper bound for the type of integer in question. -MAXVALUE
represents the greatest lower bound.)

For [LINEAR] KEY, RANGE COLUMNS, and LIST COLUMNS partitioning, the partitioning expression consists
of a list of one or more columns.

For [LINEAR] KEY partitioning, the partitioning function is supplied by MySQL.

For more information about permitted partitioning column types and partitioning functions, see
Section 19.2, “Partitioning Types”, as well as Section 13.1.17, “CREATE TABLE Statement”, which
provides partitioning syntax descriptions and additional examples. For information about restrictions on
partitioning functions, see Section 19.6.3, “Partitioning Limitations Relating to Functions”.

This is known as horizontal partitioning—that is, different rows of a table may be assigned to different
physical partitions. MySQL 5.6 does not support vertical partitioning, in which different columns of a table
are assigned to different physical partitions. There are no plans at this time to introduce vertical partitioning
into MySQL.

For information about determining whether your MySQL Server binary supports user-defined partitioning,
see Chapter 19, Partitioning.

For creating partitioned tables, you can use most storage engines that are supported by your MySQL
server; the MySQL partitioning engine runs in a separate layer and can interact with any of these. In
MySQL 5.6, all partitions of the same partitioned table must use the same storage engine; for example, you
cannot use MyISAM for one partition and InnoDB for another. However, there is nothing preventing you
from using different storage engines for different partitioned tables on the same MySQL server or even in
the same database.

MySQL partitioning cannot be used with the MERGE, CSV, or FEDERATED storage engines.

Partitioning by KEY or LINEAR KEY is possible with NDB, but other types of user-defined partitioning are
not supported for tables using this storage engine. In addition, an NDB table that employs user-defined
partitioning must have an explicit primary key, and any columns referenced in the table's partitioning
expression must be part of the primary key. However, if no columns are listed in the PARTITION BY KEY
or PARTITION BY LINEAR KEY clause of the CREATE TABLE or ALTER TABLE statement used to
create or modify a user-partitioned NDB table, then the table is not required to have an explicit primary key.
For more information, see Section 18.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”.

To employ a particular storage engine for a partitioned table, it is necessary only to use the [STORAGE]
ENGINE option just as you would for a nonpartitioned table. However, you should keep in mind that
[STORAGE] ENGINE (and other table options) need to be listed before any partitioning options are used in
a CREATE TABLE statement. This example shows how to create a table that is partitioned by hash into 6
partitions and which uses the InnoDB storage engine:

CREATE TABLE ti (id INT, amount DECIMAL(7,2), tr_date DATE)
 ENGINE=INNODB
 PARTITION BY HASH(MONTH(tr_date))
 PARTITIONS 6;

Each PARTITION clause can include a [STORAGE] ENGINE option, but in MySQL 5.6 this has no effect.

3150

Overview of Partitioning in MySQL

Important

Partitioning applies to all data and indexes of a table; you cannot partition only the
data and not the indexes, or vice versa, nor can you partition only a portion of the
table.

Data and indexes for each partition can be assigned to a specific directory using the DATA DIRECTORY
and INDEX DIRECTORY options for the PARTITION clause of the CREATE TABLE statement used to
create the partitioned table.

DATA DIRECTORY and INDEX DIRECTORY are not supported for individual partitions or subpartitions of
MyISAM tables on Windows.

Only the DATA DIRECTORY option is supported for individual partitions and subpartitions of InnoDB
tables.

All columns used in the table's partitioning expression must be part of every unique key that the table may
have, including any primary key. This means that a table such as this one, created by the following SQL
statement, cannot be partitioned:

CREATE TABLE tnp (
 id INT NOT NULL AUTO_INCREMENT,
 ref BIGINT NOT NULL,
 name VARCHAR(255),
 PRIMARY KEY pk (id),
 UNIQUE KEY uk (name)
);

Because the keys pk and uk have no columns in common, there are no columns available for use in a
partitioning expression. Possible workarounds in this situation include adding the name column to the
table's primary key, adding the id column to uk, or simply removing the unique key altogether. See
Section 19.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”, for more information.

In addition, MAX_ROWS and MIN_ROWS can be used to determine the maximum and minimum numbers of
rows, respectively, that can be stored in each partition. The MAX_ROWS option can be useful for causing
NDB Cluster tables to be created with extra partitions, thus allowing for greater storage of hash indexes.
See the documentation for the DataMemory data node configuration parameter, as well as Section 18.2.2,
“NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”, for more information.

Some advantages of partitioning are listed here:

• Partitioning makes it possible to store more data in one table than can be held on a single disk or file
system partition.

• Data that loses its usefulness can often be easily removed from a partitioned table by dropping the
partition (or partitions) containing only that data. Conversely, the process of adding new data can in
some cases be greatly facilitated by adding one or more new partitions for storing specifically that data.

• Some queries can be greatly optimized in virtue of the fact that data satisfying a given WHERE clause can
be stored only on one or more partitions, which automatically excludes any remaining partitions from the
search. Because partitions can be altered after a partitioned table has been created, you can reorganize
your data to enhance frequent queries that may not have been often used when the partitioning scheme
was first set up. This ability to exclude non-matching partitions (and thus any rows they contain) is often
referred to as partition pruning. For more information, see Section 19.4, “Partition Pruning”.

In addition, MySQL 5.6 supports explicit partition selection for queries. For example, SELECT * FROM
t PARTITION (p0,p1) WHERE c < 5 selects only those rows in partitions p0 and p1 that match
the WHERE condition. In this case, MySQL does not check any other partitions of table t; this can

3151

Partitioning Types

greatly speed up queries when you already know which partition or partitions you wish to examine.
Partition selection is also supported for the data modification statements DELETE, INSERT, REPLACE,
UPDATE, and LOAD DATA, LOAD XML. See the descriptions of these statements for more information
and examples.

19.2 Partitioning Types
This section discusses the types of partitioning which are available in MySQL 5.6. These include the types
listed here:

• RANGE partitioning. This type of partitioning assigns rows to partitions based on column values
falling within a given range. See Section 19.2.1, “RANGE Partitioning”. For information about an
extension to this type, RANGE COLUMNS, see Section 19.2.3.1, “RANGE COLUMNS partitioning”.

• LIST partitioning. Similar to partitioning by RANGE, except that the partition is selected based
on columns matching one of a set of discrete values. See Section 19.2.2, “LIST Partitioning”. For
information about an extension to this type, LIST COLUMNS, see Section 19.2.3.2, “LIST COLUMNS
partitioning”.

• HASH partitioning. With this type of partitioning, a partition is selected based on the value returned
by a user-defined expression that operates on column values in rows to be inserted into the table. The
function may consist of any expression valid in MySQL that yields an integer value. See Section 19.2.4,
“HASH Partitioning”.

An extension to this type, LINEAR HASH, is also available, see Section 19.2.4.1, “LINEAR HASH
Partitioning”.

• KEY partitioning. This type of partitioning is similar to partitioning by HASH, except that only one or
more columns to be evaluated are supplied, and the MySQL server provides its own hashing function.
These columns can contain other than integer values, since the hashing function supplied by MySQL
guarantees an integer result regardless of the column data type. An extension to this type, LINEAR KEY,
is also available. See Section 19.2.5, “KEY Partitioning”.

A very common use of database partitioning is to segregate data by date. Some database systems support
explicit date partitioning, which MySQL does not implement in 5.6. However, it is not difficult in MySQL
to create partitioning schemes based on DATE, TIME, or DATETIME columns, or based on expressions
making use of such columns.

When partitioning by KEY or LINEAR KEY, you can use a DATE, TIME, or DATETIME column as the
partitioning column without performing any modification of the column value. For example, this table
creation statement is perfectly valid in MySQL:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY KEY(joined)
PARTITIONS 6;

In MySQL 5.6, it is also possible to use a DATE or DATETIME column as the partitioning column using
RANGE COLUMNS and LIST COLUMNS partitioning.

MySQL's other partitioning types, however, require a partitioning expression that yields an integer value
or NULL. If you wish to use date-based partitioning by RANGE, LIST, HASH, or LINEAR HASH, you can

3152

Partitioning Types

simply employ a function that operates on a DATE, TIME, or DATETIME column and returns such a value,
as shown here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY RANGE(YEAR(joined)) (
 PARTITION p0 VALUES LESS THAN (1960),
 PARTITION p1 VALUES LESS THAN (1970),
 PARTITION p2 VALUES LESS THAN (1980),
 PARTITION p3 VALUES LESS THAN (1990),
 PARTITION p4 VALUES LESS THAN MAXVALUE
);

Additional examples of partitioning using dates may be found in the following sections of this chapter:

• Section 19.2.1, “RANGE Partitioning”

• Section 19.2.4, “HASH Partitioning”

• Section 19.2.4.1, “LINEAR HASH Partitioning”

For more complex examples of date-based partitioning, see the following sections:

• Section 19.4, “Partition Pruning”

• Section 19.2.6, “Subpartitioning”

MySQL partitioning is optimized for use with the TO_DAYS(), YEAR(), and TO_SECONDS() functions.
However, you can use other date and time functions that return an integer or NULL, such as WEEKDAY(),
DAYOFYEAR(), or MONTH(). See Section 12.7, “Date and Time Functions”, for more information about
such functions.

It is important to remember—regardless of the type of partitioning that you use—that partitions are always
numbered automatically and in sequence when created, starting with 0. When a new row is inserted into a
partitioned table, it is these partition numbers that are used in identifying the correct partition. For example,
if your table uses 4 partitions, these partitions are numbered 0, 1, 2, and 3. For the RANGE and LIST
partitioning types, it is necessary to ensure that there is a partition defined for each partition number. For
HASH partitioning, the user-supplied expression must evaluate to an integer value. For KEY partitioning, this
issue is taken care of automatically by the hashing function which the MySQL server employs internally.

Names of partitions generally follow the rules governing other MySQL identifiers, such as those for tables
and databases. However, partition names are not case-sensitive. For example, the following CREATE
TABLE statement fails as shown:

mysql> CREATE TABLE t2 (val INT)
 -> PARTITION BY LIST(val)(
 -> PARTITION mypart VALUES IN (1,3,5),
 -> PARTITION MyPart VALUES IN (2,4,6)
 ->);
ERROR 1488 (HY000): Duplicate partition name mypart

Failure occurs because MySQL sees no difference between the partition names mypart and MyPart.

When you specify the number of partitions for the table, this must be expressed as a positive, nonzero
integer literal with no leading zeros, and may not be an expression such as 0.8E+01 or 6-2, even if it
evaluates to an integer value. Decimal fractions are not permitted.

3153

RANGE Partitioning

In the sections that follow, we do not necessarily provide all possible forms for the syntax that can be
used for creating each partition type; this information may be found in Section 13.1.17, “CREATE TABLE
Statement”.

19.2.1 RANGE Partitioning

A table that is partitioned by range is partitioned in such a way that each partition contains rows for
which the partitioning expression value lies within a given range. Ranges should be contiguous but
not overlapping, and are defined using the VALUES LESS THAN operator. For the next few examples,
suppose that you are creating a table such as the following to hold personnel records for a chain of 20
video stores, numbered 1 through 20:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
);

Note

The employees table used here has no primary or unique keys. While the
examples work as shown for purposes of the present discussion, you should keep
in mind that tables are extremely likely in practice to have primary keys, unique
keys, or both, and that allowable choices for partitioning columns depend on the
columns used for these keys, if any are present. For a discussion of these issues,
see Section 19.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”.

This table can be partitioned by range in a number of ways, depending on your needs. One way would
be to use the store_id column. For instance, you might decide to partition the table 4 ways by adding a
PARTITION BY RANGE clause as shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
 PARTITION p0 VALUES LESS THAN (6),
 PARTITION p1 VALUES LESS THAN (11),
 PARTITION p2 VALUES LESS THAN (16),
 PARTITION p3 VALUES LESS THAN (21)
);

In this partitioning scheme, all rows corresponding to employees working at stores 1 through 5 are stored
in partition p0, to those employed at stores 6 through 10 are stored in partition p1, and so on. Each
partition is defined in order, from lowest to highest. This is a requirement of the PARTITION BY RANGE
syntax; you can think of it as being analogous to a series of if ... elseif ... statements in C or
Java in this regard.

It is easy to determine that a new row containing the data (72, 'Mitchell', 'Wilson',
'1998-06-25', DEFAULT, 7, 13) is inserted into partition p2, but what happens when your chain

3154

RANGE Partitioning

adds a 21st store? Under this scheme, there is no rule that covers a row whose store_id is greater
than 20, so an error results because the server does not know where to place it. You can keep this from
occurring by using a “catchall” VALUES LESS THAN clause in the CREATE TABLE statement that provides
for all values greater than the highest value explicitly named:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
 PARTITION p0 VALUES LESS THAN (6),
 PARTITION p1 VALUES LESS THAN (11),
 PARTITION p2 VALUES LESS THAN (16),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

Another way to avoid an error when no matching value is found is to use the IGNORE keyword as part of
the INSERT statement. For an example, see Section 19.2.2, “LIST Partitioning”.

MAXVALUE represents an integer value that is always greater than the largest possible integer value (in
mathematical language, it serves as a least upper bound). Now, any rows whose store_id column
value is greater than or equal to 16 (the highest value defined) are stored in partition p3. At some point
in the future—when the number of stores has increased to 25, 30, or more—you can use an ALTER
TABLE statement to add new partitions for stores 21-25, 26-30, and so on (see Section 19.3, “Partition
Management”, for details of how to do this).

In much the same fashion, you could partition the table based on employee job codes—that is, based on
ranges of job_code column values. For example—assuming that two-digit job codes are used for regular
(in-store) workers, three-digit codes are used for office and support personnel, and four-digit codes are
used for management positions—you could create the partitioned table using the following statement:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (job_code) (
 PARTITION p0 VALUES LESS THAN (100),
 PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (10000)
);

In this instance, all rows relating to in-store workers would be stored in partition p0, those relating to office
and support staff in p1, and those relating to managers in partition p2.

It is also possible to use an expression in VALUES LESS THAN clauses. However, MySQL must be able to
evaluate the expression's return value as part of a LESS THAN (<) comparison.

Rather than splitting up the table data according to store number, you can use an expression based on one
of the two DATE columns instead. For example, let us suppose that you wish to partition based on the year
that each employee left the company; that is, the value of YEAR(separated). An example of a CREATE
TABLE statement that implements such a partitioning scheme is shown here:

3155

RANGE Partitioning

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY RANGE (YEAR(separated)) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1996),
 PARTITION p2 VALUES LESS THAN (2001),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

In this scheme, for all employees who left before 1991, the rows are stored in partition p0; for those who
left in the years 1991 through 1995, in p1; for those who left in the years 1996 through 2000, in p2; and for
any workers who left after the year 2000, in p3.

It is also possible to partition a table by RANGE, based on the value of a TIMESTAMP column, using the
UNIX_TIMESTAMP() function, as shown in this example:

CREATE TABLE quarterly_report_status (
 report_id INT NOT NULL,
 report_status VARCHAR(20) NOT NULL,
 report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
PARTITION BY RANGE (UNIX_TIMESTAMP(report_updated)) (
 PARTITION p0 VALUES LESS THAN (UNIX_TIMESTAMP('2008-01-01 00:00:00')),
 PARTITION p1 VALUES LESS THAN (UNIX_TIMESTAMP('2008-04-01 00:00:00')),
 PARTITION p2 VALUES LESS THAN (UNIX_TIMESTAMP('2008-07-01 00:00:00')),
 PARTITION p3 VALUES LESS THAN (UNIX_TIMESTAMP('2008-10-01 00:00:00')),
 PARTITION p4 VALUES LESS THAN (UNIX_TIMESTAMP('2009-01-01 00:00:00')),
 PARTITION p5 VALUES LESS THAN (UNIX_TIMESTAMP('2009-04-01 00:00:00')),
 PARTITION p6 VALUES LESS THAN (UNIX_TIMESTAMP('2009-07-01 00:00:00')),
 PARTITION p7 VALUES LESS THAN (UNIX_TIMESTAMP('2009-10-01 00:00:00')),
 PARTITION p8 VALUES LESS THAN (UNIX_TIMESTAMP('2010-01-01 00:00:00')),
 PARTITION p9 VALUES LESS THAN (MAXVALUE)
);

Any other expressions involving TIMESTAMP values are not permitted. (See Bug #42849.)

Range partitioning is particularly useful when one or more of the following conditions is true:

• You want or need to delete “old” data. If you are using the partitioning scheme shown previously for the
employees table, you can simply use ALTER TABLE employees DROP PARTITION p0; to delete
all rows relating to employees who stopped working for the firm prior to 1991. (See Section 13.1.7,
“ALTER TABLE Statement”, and Section 19.3, “Partition Management”, for more information.) For a
table with a great many rows, this can be much more efficient than running a DELETE query such as
DELETE FROM employees WHERE YEAR(separated) <= 1990;.

• You want to use a column containing date or time values, or containing values arising from some other
series.

• You frequently run queries that depend directly on the column used for partitioning the table. For
example, when executing a query such as EXPLAIN PARTITIONS SELECT COUNT(*) FROM
employees WHERE separated BETWEEN '2000-01-01' AND '2000-12-31' GROUP BY
store_id;, MySQL can quickly determine that only partition p2 needs to be scanned because the
remaining partitions cannot contain any records satisfying the WHERE clause. See Section 19.4, “Partition
Pruning”, for more information about how this is accomplished.

3156

RANGE Partitioning

A variant on this type of partitioning is RANGE COLUMNS partitioning. Partitioning by RANGE COLUMNS
makes it possible to employ multiple columns for defining partitioning ranges that apply both to placement
of rows in partitions and for determining the inclusion or exclusion of specific partitions when performing
partition pruning. See Section 19.2.3.1, “RANGE COLUMNS partitioning”, for more information.

Partitioning schemes based on time intervals. If you wish to implement a partitioning scheme based
on ranges or intervals of time in MySQL 5.6, you have two options:

1. Partition the table by RANGE, and for the partitioning expression, employ a function operating on a
DATE, TIME, or DATETIME column and returning an integer value, as shown here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY RANGE(YEAR(joined)) (
 PARTITION p0 VALUES LESS THAN (1960),
 PARTITION p1 VALUES LESS THAN (1970),
 PARTITION p2 VALUES LESS THAN (1980),
 PARTITION p3 VALUES LESS THAN (1990),
 PARTITION p4 VALUES LESS THAN MAXVALUE
);

In MySQL 5.6, it is also possible to partition a table by RANGE based on the value of a TIMESTAMP
column, using the UNIX_TIMESTAMP() function, as shown in this example:

CREATE TABLE quarterly_report_status (
 report_id INT NOT NULL,
 report_status VARCHAR(20) NOT NULL,
 report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
PARTITION BY RANGE (UNIX_TIMESTAMP(report_updated)) (
 PARTITION p0 VALUES LESS THAN (UNIX_TIMESTAMP('2008-01-01 00:00:00')),
 PARTITION p1 VALUES LESS THAN (UNIX_TIMESTAMP('2008-04-01 00:00:00')),
 PARTITION p2 VALUES LESS THAN (UNIX_TIMESTAMP('2008-07-01 00:00:00')),
 PARTITION p3 VALUES LESS THAN (UNIX_TIMESTAMP('2008-10-01 00:00:00')),
 PARTITION p4 VALUES LESS THAN (UNIX_TIMESTAMP('2009-01-01 00:00:00')),
 PARTITION p5 VALUES LESS THAN (UNIX_TIMESTAMP('2009-04-01 00:00:00')),
 PARTITION p6 VALUES LESS THAN (UNIX_TIMESTAMP('2009-07-01 00:00:00')),
 PARTITION p7 VALUES LESS THAN (UNIX_TIMESTAMP('2009-10-01 00:00:00')),
 PARTITION p8 VALUES LESS THAN (UNIX_TIMESTAMP('2010-01-01 00:00:00')),
 PARTITION p9 VALUES LESS THAN (MAXVALUE)
);

In MySQL 5.6, any other expressions involving TIMESTAMP values are not permitted. (See Bug
#42849.)

Note

It is also possible in MySQL 5.6 to use
UNIX_TIMESTAMP(timestamp_column) as a partitioning expression for
tables that are partitioned by LIST. However, it is usually not practical to do so.

2. Partition the table by RANGE COLUMNS, using a DATE or DATETIME column as the partitioning column.
For example, the members table could be defined using the joined column directly, as shown here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,

3157

LIST Partitioning

 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY RANGE COLUMNS(joined) (
 PARTITION p0 VALUES LESS THAN ('1960-01-01'),
 PARTITION p1 VALUES LESS THAN ('1970-01-01'),
 PARTITION p2 VALUES LESS THAN ('1980-01-01'),
 PARTITION p3 VALUES LESS THAN ('1990-01-01'),
 PARTITION p4 VALUES LESS THAN MAXVALUE
);

Note

The use of partitioning columns employing date or time types other than DATE or
DATETIME is not supported with RANGE COLUMNS.

19.2.2 LIST Partitioning

List partitioning in MySQL is similar to range partitioning in many ways. As in partitioning by RANGE, each
partition must be explicitly defined. The chief difference between the two types of partitioning is that,
in list partitioning, each partition is defined and selected based on the membership of a column value
in one of a set of value lists, rather than in one of a set of contiguous ranges of values. This is done
by using PARTITION BY LIST(expr) where expr is a column value or an expression based on a
column value and returning an integer value, and then defining each partition by means of a VALUES IN
(value_list), where value_list is a comma-separated list of integers.

Note

In MySQL 5.6, it is possible to match against only a list of integers (and possibly
NULL—see Section 19.2.7, “How MySQL Partitioning Handles NULL”) when
partitioning by LIST.

However, other column types may be used in value lists when employing LIST
COLUMN partitioning, which is described later in this section.

Unlike the case with partitions defined by range, list partitions do not need to be declared in any particular
order. For more detailed syntactical information, see Section 13.1.17, “CREATE TABLE Statement”.

For the examples that follow, we assume that the basic definition of the table to be partitioned is provided
by the CREATE TABLE statement shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
);

(This is the same table used as a basis for the examples in Section 19.2.1, “RANGE Partitioning”.)

Suppose that there are 20 video stores distributed among 4 franchises as shown in the following table.

Region Store ID Numbers

North 3, 5, 6, 9, 17

East 1, 2, 10, 11, 19, 20

West 4, 12, 13, 14, 18

3158

LIST Partitioning

Region Store ID Numbers

Central 7, 8, 15, 16

To partition this table in such a way that rows for stores belonging to the same region are stored in the
same partition, you could use the CREATE TABLE statement shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY LIST(store_id) (
 PARTITION pNorth VALUES IN (3,5,6,9,17),
 PARTITION pEast VALUES IN (1,2,10,11,19,20),
 PARTITION pWest VALUES IN (4,12,13,14,18),
 PARTITION pCentral VALUES IN (7,8,15,16)
);

This makes it easy to add or drop employee records relating to specific regions to or from the table. For
instance, suppose that all stores in the West region are sold to another company. In MySQL 5.6, all
rows relating to employees working at stores in that region can be deleted with the query ALTER TABLE
employees TRUNCATE PARTITION pWest, which can be executed much more efficiently than the
equivalent DELETE statement DELETE FROM employees WHERE store_id IN (4,12,13,14,18);.
(Using ALTER TABLE employees DROP PARTITION pWest would also delete all of these rows, but
would also remove the partition pWest from the definition of the table; you would need to use an ALTER
TABLE ... ADD PARTITION statement to restore the table's original partitioning scheme.)

As with RANGE partitioning, it is possible to combine LIST partitioning with partitioning by hash or key to
produce a composite partitioning (subpartitioning). See Section 19.2.6, “Subpartitioning”.

Unlike the case with RANGE partitioning, there is no “catch-all” such as MAXVALUE; all expected values
for the partitioning expression should be covered in PARTITION ... VALUES IN (...) clauses. An
INSERT statement containing an unmatched partitioning column value fails with an error, as shown in this
example:

mysql> CREATE TABLE h2 (
 -> c1 INT,
 -> c2 INT
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (1, 4, 7),
 -> PARTITION p1 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.11 sec)

mysql> INSERT INTO h2 VALUES (3, 5);
ERROR 1525 (HY000): Table has no partition for value 3

When inserting multiple rows using a single INSERT statement the behavior depends on whether the
table uses a transactional storage engine. For an InnoDB table, the statement is considered a single
transaction, so the presence of any unmatched values causes the statement to fail completely, and no
rows are inserted. For a table using a nontransactional storage engine such as MyISAM, any rows coming
before the row containing the unmatched value are inserted, but any coming after it are not.

You can cause this type of error to be ignored by using the IGNORE keyword. If you do so, rows containing
unmatched partitioning column values are not inserted, but any rows with matching values are inserted,
and no errors are reported:

3159

COLUMNS Partitioning

mysql> TRUNCATE h2;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM h2;
Empty set (0.00 sec)

mysql> INSERT IGNORE INTO h2 VALUES (2, 5), (6, 10), (7, 5), (3, 1), (1, 9);
Query OK, 3 rows affected (0.00 sec)
Records: 5 Duplicates: 2 Warnings: 0

mysql> SELECT * FROM h2;
+------+------+
| c1 | c2 |
+------+------+
7	5
1	9
2	5
+------+------+
3 rows in set (0.00 sec)

MySQL 5.6 provides support for LIST COLUMNS partitioning. This is a variant of LIST partitioning that
enables you to use columns of types other than integer types for partitioning columns, as well as to use
multiple columns as partitioning keys. For more information, see Section 19.2.3.2, “LIST COLUMNS
partitioning”.

19.2.3 COLUMNS Partitioning

The next two sections discuss COLUMNS partitioning, which are variants on RANGE and LIST partitioning.
COLUMNS partitioning enables the use of multiple columns in partitioning keys. All of these columns are
taken into account both for the purpose of placing rows in partitions and for the determination of which
partitions are to be checked for matching rows in partition pruning.

In addition, both RANGE COLUMNS partitioning and LIST COLUMNS partitioning support the use of non-
integer columns for defining value ranges or list members. The permitted data types are shown in the
following list:

• All integer types: TINYINT, SMALLINT, MEDIUMINT, INT (INTEGER), and BIGINT. (This is the same as
with partitioning by RANGE and LIST.)

Other numeric data types (such as DECIMAL or FLOAT) are not supported as partitioning columns.

• DATE and DATETIME.

Columns using other data types relating to dates or times are not supported as partitioning columns.

• The following string types: CHAR, VARCHAR, BINARY, and VARBINARY.

TEXT and BLOB columns are not supported as partitioning columns.

The discussions of RANGE COLUMNS and LIST COLUMNS partitioning in the next two sections assume that
you are already familiar with partitioning based on ranges and lists as supported in MySQL 5.1 and later;
for more information about these, see Section 19.2.1, “RANGE Partitioning”, and Section 19.2.2, “LIST
Partitioning”, respectively.

19.2.3.1 RANGE COLUMNS partitioning

Range columns partitioning is similar to range partitioning, but enables you to define partitions using
ranges based on multiple column values. In addition, you can define the ranges using columns of types
other than integer types.

3160

COLUMNS Partitioning

RANGE COLUMNS partitioning differs significantly from RANGE partitioning in the following ways:

• RANGE COLUMNS does not accept expressions, only names of columns.

• RANGE COLUMNS accepts a list of one or more columns.

RANGE COLUMNS partitions are based on comparisons between tuples (lists of column values) rather
than comparisons between scalar values. Placement of rows in RANGE COLUMNS partitions is also
based on comparisons between tuples; this is discussed further later in this section.

• RANGE COLUMNS partitioning columns are not restricted to integer columns; string, DATE and DATETIME
columns can also be used as partitioning columns. (See Section 19.2.3, “COLUMNS Partitioning”, for
details.)

The basic syntax for creating a table partitioned by RANGE COLUMNS is shown here:

CREATE TABLE table_name
PARTITION BY RANGE COLUMNS(column_list) (
 PARTITION partition_name VALUES LESS THAN (value_list)[,
 PARTITION partition_name VALUES LESS THAN (value_list)][,
 ...]
)

column_list:
 column_name[, column_name][, ...]

value_list:
 value[, value][, ...]

Note

Not all CREATE TABLE options that can be used when creating partitioned tables
are shown here. For complete information, see Section 13.1.17, “CREATE TABLE
Statement”.

In the syntax just shown, column_list is a list of one or more columns (sometimes called a partitioning
column list), and value_list is a list of values (that is, it is a partition definition value list). A
value_list must be supplied for each partition definition, and each value_list must have the same
number of values as the column_list has columns. Generally speaking, if you use N columns in the
COLUMNS clause, then each VALUES LESS THAN clause must also be supplied with a list of N values.

The elements in the partitioning column list and in the value list defining each partition must occur in the
same order. In addition, each element in the value list must be of the same data type as the corresponding
element in the column list. However, the order of the column names in the partitioning column list and the
value lists does not have to be the same as the order of the table column definitions in the main part of
the CREATE TABLE statement. As with table partitioned by RANGE, you can use MAXVALUE to represent
a value such that any legal value inserted into a given column is always less than this value. Here is an
example of a CREATE TABLE statement that helps to illustrate all of these points:

mysql> CREATE TABLE rcx (
 -> a INT,
 -> b INT,
 -> c CHAR(3),
 -> d INT
 ->)
 -> PARTITION BY RANGE COLUMNS(a,d,c) (
 -> PARTITION p0 VALUES LESS THAN (5,10,'ggg'),
 -> PARTITION p1 VALUES LESS THAN (10,20,'mmm'),
 -> PARTITION p2 VALUES LESS THAN (15,30,'sss'),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
 ->);
Query OK, 0 rows affected (0.15 sec)

3161

COLUMNS Partitioning

Table rcx contains the columns a, b, c, d. The partitioning column list supplied to the COLUMNS clause
uses 3 of these columns, in the order a, d, c. Each value list used to define a partition contains 3 values in
the same order; that is, each value list tuple has the form (INT, INT, CHAR(3)), which corresponds to the
data types used by columns a, d, and c (in that order).

Placement of rows into partitions is determined by comparing the tuple from a row to be inserted that
matches the column list in the COLUMNS clause with the tuples used in the VALUES LESS THAN clauses
to define partitions of the table. Because we are comparing tuples (that is, lists or sets of values) rather
than scalar values, the semantics of VALUES LESS THAN as used with RANGE COLUMNS partitions
differs somewhat from the case with simple RANGE partitions. In RANGE partitioning, a row generating
an expression value that is equal to a limiting value in a VALUES LESS THAN is never placed in the
corresponding partition; however, when using RANGE COLUMNS partitioning, it is sometimes possible for
a row whose partitioning column list's first element is equal in value to the that of the first element in a
VALUES LESS THAN value list to be placed in the corresponding partition.

Consider the RANGE partitioned table created by this statement:

CREATE TABLE r1 (
 a INT,
 b INT
)
PARTITION BY RANGE (a) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (MAXVALUE)
);

If we insert 3 rows into this table such that the column value for a is 5 for each row, all 3 rows are stored in
partition p1 because the a column value is in each case not less than 5, as we can see by executing the
proper query against the Information Schema PARTITIONS table:

mysql> INSERT INTO r1 VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'r1';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 3 |
+----------------+------------+
2 rows in set (0.00 sec)

Now consider a similar table rc1 that uses RANGE COLUMNS partitioning with both columns a and b
referenced in the COLUMNS clause, created as shown here:

CREATE TABLE rc1 (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS(a, b) (
 PARTITION p0 VALUES LESS THAN (5, 12),
 PARTITION p3 VALUES LESS THAN (MAXVALUE, MAXVALUE)
);

If we insert exactly the same rows into rc1 as we just inserted into r1, the distribution of the rows is quite
different:

mysql> INSERT INTO rc1 VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

3162

COLUMNS Partitioning

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'rc1';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 2 |
| p3 | 1 |
+----------------+------------+
2 rows in set (0.00 sec)

This is because we are comparing rows rather than scalar values. We can compare the row values
inserted with the limiting row value from the VALUES THAN LESS THAN clause used to define partition p0
in table rc1, like this:

mysql> SELECT (5,10) < (5,12), (5,11) < (5,12), (5,12) < (5,12);
+-----------------+-----------------+-----------------+
| (5,10) < (5,12) | (5,11) < (5,12) | (5,12) < (5,12) |
+-----------------+-----------------+-----------------+
| 1 | 1 | 0 |
+-----------------+-----------------+-----------------+
1 row in set (0.00 sec)

The 2 tuples (5,10) and (5,11) evaluate as less than (5,12), so they are stored in partition p0. Since
5 is not less than 5 and 12 is not less than 12, (5,12) is considered not less than (5,12), and is stored
in partition p1.

The SELECT statement in the preceding example could also have been written using explicit row
constructors, like this:

SELECT ROW(5,10) < ROW(5,12), ROW(5,11) < ROW(5,12), ROW(5,12) < ROW(5,12);

For more information about the use of row constructors in MySQL, see Section 13.2.10.5, “Row
Subqueries”.

For a table partitioned by RANGE COLUMNS using only a single partitioning column, the storing of rows in
partitions is the same as that of an equivalent table that is partitioned by RANGE. The following CREATE
TABLE statement creates a table partitioned by RANGE COLUMNS using 1 partitioning column:

CREATE TABLE rx (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS (a) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (MAXVALUE)
);

If we insert the rows (5,10), (5,11), and (5,12) into this table, we can see that their placement is the
same as it is for the table r we created and populated earlier:

mysql> INSERT INTO rx VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT PARTITION_NAME,TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'rx';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 3 |

3163

COLUMNS Partitioning

+----------------+------------+
2 rows in set (0.00 sec)

It is also possible to create tables partitioned by RANGE COLUMNS where limiting values for one or more
columns are repeated in successive partition definitions. You can do this as long as the tuples of column
values used to define the partitions are strictly increasing. For example, each of the following CREATE
TABLE statements is valid:

CREATE TABLE rc2 (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS(a,b) (
 PARTITION p0 VALUES LESS THAN (0,10),
 PARTITION p1 VALUES LESS THAN (10,20),
 PARTITION p2 VALUES LESS THAN (10,30),
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

CREATE TABLE rc3 (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS(a,b) (
 PARTITION p0 VALUES LESS THAN (0,10),
 PARTITION p1 VALUES LESS THAN (10,20),
 PARTITION p2 VALUES LESS THAN (10,30),
 PARTITION p3 VALUES LESS THAN (10,35),
 PARTITION p4 VALUES LESS THAN (20,40),
 PARTITION p5 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

The following statement also succeeds, even though it might appear at first glance that it would not, since
the limiting value of column b is 25 for partition p0 and 20 for partition p1, and the limiting value of column
c is 100 for partition p1 and 50 for partition p2:

CREATE TABLE rc4 (
 a INT,
 b INT,
 c INT
)
PARTITION BY RANGE COLUMNS(a,b,c) (
 PARTITION p0 VALUES LESS THAN (0,25,50),
 PARTITION p1 VALUES LESS THAN (10,20,100),
 PARTITION p2 VALUES LESS THAN (10,30,50),
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
);

When designing tables partitioned by RANGE COLUMNS, you can always test successive partition
definitions by comparing the desired tuples using the mysql client, like this:

mysql> SELECT (0,25,50) < (10,20,100), (10,20,100) < (10,30,50);
+-------------------------+--------------------------+
| (0,25,50) < (10,20,100) | (10,20,100) < (10,30,50) |
+-------------------------+--------------------------+
| 1 | 1 |
+-------------------------+--------------------------+
1 row in set (0.00 sec)

If a CREATE TABLE statement contains partition definitions that are not in strictly increasing order, it fails
with an error, as shown in this example:

mysql> CREATE TABLE rcf (
 -> a INT,
 -> b INT,

3164

COLUMNS Partitioning

 -> c INT
 ->)
 -> PARTITION BY RANGE COLUMNS(a,b,c) (
 -> PARTITION p0 VALUES LESS THAN (0,25,50),
 -> PARTITION p1 VALUES LESS THAN (20,20,100),
 -> PARTITION p2 VALUES LESS THAN (10,30,50),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
 ->);
ERROR 1493 (HY000): VALUES LESS THAN value must be strictly increasing for each partition

When you get such an error, you can deduce which partition definitions are invalid by making “less than”
comparisons between their column lists. In this case, the problem is with the definition of partition p2
because the tuple used to define it is not less than the tuple used to define partition p3, as shown here:

mysql> SELECT (0,25,50) < (20,20,100), (20,20,100) < (10,30,50);
+-------------------------+--------------------------+
| (0,25,50) < (20,20,100) | (20,20,100) < (10,30,50) |
+-------------------------+--------------------------+
| 1 | 0 |
+-------------------------+--------------------------+
1 row in set (0.00 sec)

It is also possible for MAXVALUE to appear for the same column in more than one VALUES LESS THAN
clause when using RANGE COLUMNS. However, the limiting values for individual columns in successive
partition definitions should otherwise be increasing, there should be no more than one partition defined
where MAXVALUE is used as the upper limit for all column values, and this partition definition should appear
last in the list of PARTITION ... VALUES LESS THAN clauses. In addition, you cannot use MAXVALUE
as the limiting value for the first column in more than one partition definition.

As stated previously, it is also possible with RANGE COLUMNS partitioning to use non-integer columns
as partitioning columns. (See Section 19.2.3, “COLUMNS Partitioning”, for a complete listing of these.)
Consider a table named employees (which is not partitioned), created using the following statement:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
);

Using RANGE COLUMNS partitioning, you can create a version of this table that stores each row in one of
four partitions based on the employee's last name, like this:

CREATE TABLE employees_by_lname (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE COLUMNS (lname) (
 PARTITION p0 VALUES LESS THAN ('g'),
 PARTITION p1 VALUES LESS THAN ('m'),
 PARTITION p2 VALUES LESS THAN ('t'),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

Alternatively, you could cause the employees table as created previously to be partitioned using this
scheme by executing the following ALTER TABLE statement:

3165

COLUMNS Partitioning

ALTER TABLE employees PARTITION BY RANGE COLUMNS (lname) (
 PARTITION p0 VALUES LESS THAN ('g'),
 PARTITION p1 VALUES LESS THAN ('m'),
 PARTITION p2 VALUES LESS THAN ('t'),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

Note

Because different character sets and collations have different sort orders, the
character sets and collations in use may effect which partition of a table partitioned
by RANGE COLUMNS a given row is stored in when using string columns as
partitioning columns. In addition, changing the character set or collation for a given
database, table, or column after such a table is created may cause changes in how
rows are distributed. For example, when using a case-sensitive collation, 'and'
sorts before 'Andersen', but when using a collation that is case-insensitive, the
reverse is true.

For information about how MySQL handles character sets and collations, see
Chapter 10, Character Sets, Collations, Unicode.

Similarly, you can cause the employees table to be partitioned in such a way that each row is stored in
one of several partitions based on the decade in which the corresponding employee was hired using the
ALTER TABLE statement shown here:

ALTER TABLE employees PARTITION BY RANGE COLUMNS (hired) (
 PARTITION p0 VALUES LESS THAN ('1970-01-01'),
 PARTITION p1 VALUES LESS THAN ('1980-01-01'),
 PARTITION p2 VALUES LESS THAN ('1990-01-01'),
 PARTITION p3 VALUES LESS THAN ('2000-01-01'),
 PARTITION p4 VALUES LESS THAN ('2010-01-01'),
 PARTITION p5 VALUES LESS THAN (MAXVALUE)
);

See Section 13.1.17, “CREATE TABLE Statement”, for additional information about PARTITION BY
RANGE COLUMNS syntax.

19.2.3.2 LIST COLUMNS partitioning

MySQL 5.6 provides support for LIST COLUMNS partitioning. This is a variant of LIST partitioning that
enables the use of multiple columns as partition keys, and for columns of data types other than integer
types to be used as partitioning columns; you can use string types, DATE, and DATETIME columns. (For
more information about permitted data types for COLUMNS partitioning columns, see Section 19.2.3,
“COLUMNS Partitioning”.)

Suppose that you have a business that has customers in 12 cities which, for sales and marketing
purposes, you organize into 4 regions of 3 cities each as shown in the following table:

Region Cities

1 Oskarshamn, Högsby, Mönsterås

2 Vimmerby, Hultsfred, Västervik

3 Nässjö, Eksjö, Vetlanda

4 Uppvidinge, Alvesta, Växjo

With LIST COLUMNS partitioning, you can create a table for customer data that assigns a row to any of
4 partitions corresponding to these regions based on the name of the city where a customer resides, as
shown here:

3166

COLUMNS Partitioning

CREATE TABLE customers_1 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY LIST COLUMNS(city) (
 PARTITION pRegion_1 VALUES IN('Oskarshamn', 'Högsby', 'Mönsterås'),
 PARTITION pRegion_2 VALUES IN('Vimmerby', 'Hultsfred', 'Västervik'),
 PARTITION pRegion_3 VALUES IN('Nässjö', 'Eksjö', 'Vetlanda'),
 PARTITION pRegion_4 VALUES IN('Uppvidinge', 'Alvesta', 'Växjo')
);

As with partitioning by RANGE COLUMNS, you do not need to use expressions in the COLUMNS() clause
to convert column values into integers. (In fact, the use of expressions other than column names is not
permitted with COLUMNS().)

It is also possible to use DATE and DATETIME columns, as shown in the following example that uses the
same name and columns as the customers_1 table shown previously, but employs LIST COLUMNS
partitioning based on the renewal column to store rows in one of 4 partitions depending on the week in
February 2010 the customer's account is scheduled to renew:

CREATE TABLE customers_2 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY LIST COLUMNS(renewal) (
 PARTITION pWeek_1 VALUES IN('2010-02-01', '2010-02-02', '2010-02-03',
 '2010-02-04', '2010-02-05', '2010-02-06', '2010-02-07'),
 PARTITION pWeek_2 VALUES IN('2010-02-08', '2010-02-09', '2010-02-10',
 '2010-02-11', '2010-02-12', '2010-02-13', '2010-02-14'),
 PARTITION pWeek_3 VALUES IN('2010-02-15', '2010-02-16', '2010-02-17',
 '2010-02-18', '2010-02-19', '2010-02-20', '2010-02-21'),
 PARTITION pWeek_4 VALUES IN('2010-02-22', '2010-02-23', '2010-02-24',
 '2010-02-25', '2010-02-26', '2010-02-27', '2010-02-28')
);

This works, but becomes cumbersome to define and maintain if the number of dates involved grows very
large; in such cases, it is usually more practical to employ RANGE or RANGE COLUMNS partitioning instead.
In this case, since the column we wish to use as the partitioning key is a DATE column, we use RANGE
COLUMNS partitioning, as shown here:

CREATE TABLE customers_3 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY RANGE COLUMNS(renewal) (
 PARTITION pWeek_1 VALUES LESS THAN('2010-02-09'),
 PARTITION pWeek_2 VALUES LESS THAN('2010-02-15'),
 PARTITION pWeek_3 VALUES LESS THAN('2010-02-22'),
 PARTITION pWeek_4 VALUES LESS THAN('2010-03-01')
);

See Section 19.2.3.1, “RANGE COLUMNS partitioning”, for more information.

3167

HASH Partitioning

In addition (as with RANGE COLUMNS partitioning), you can use multiple columns in the COLUMNS()
clause.

See Section 13.1.17, “CREATE TABLE Statement”, for additional information about PARTITION BY LIST
COLUMNS() syntax.

19.2.4 HASH Partitioning

Partitioning by HASH is used primarily to ensure an even distribution of data among a predetermined
number of partitions. With range or list partitioning, you must specify explicitly into which partition a given
column value or set of column values is to be stored; with hash partitioning, MySQL takes care of this for
you, and you need only specify a column value or expression based on a column value to be hashed and
the number of partitions into which the partitioned table is to be divided.

To partition a table using HASH partitioning, it is necessary to append to the CREATE TABLE statement a
PARTITION BY HASH (expr) clause, where expr is an expression that returns an integer. This can
simply be the name of a column whose type is one of MySQL's integer types. In addition, you most likely
want to follow this with PARTITIONS num, where num is a positive integer representing the number of
partitions into which the table is to be divided.

Note

For simplicity, the tables in the examples that follow do not use any keys. You
should be aware that, if a table has any unique keys, every column used in the
partitioning expression for this table must be part of every unique key, including
the primary key. See Section 19.6.1, “Partitioning Keys, Primary Keys, and Unique
Keys”, for more information.

The following statement creates a table that uses hashing on the store_id column and is divided into 4
partitions:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY HASH(store_id)
PARTITIONS 4;

If you do not include a PARTITIONS clause, the number of partitions defaults to 1.

Using the PARTITIONS keyword without a number following it results in a syntax error.

You can also use an SQL expression that returns an integer for expr. For instance, you might want to
partition based on the year in which an employee was hired. This can be done as shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY HASH(YEAR(hired))
PARTITIONS 4;

3168

HASH Partitioning

expr must return a nonconstant, nonrandom integer value (in other words, it should be varying but
deterministic), and must not contain any prohibited constructs as described in Section 19.6, “Restrictions
and Limitations on Partitioning”. You should also keep in mind that this expression is evaluated each time
a row is inserted or updated (or possibly deleted); this means that very complex expressions may give rise
to performance issues, particularly when performing operations (such as batch inserts) that affect a great
many rows at one time.

The most efficient hashing function is one which operates upon a single table column and whose value
increases or decreases consistently with the column value, as this allows for “pruning” on ranges of
partitions. That is, the more closely that the expression varies with the value of the column on which it is
based, the more efficiently MySQL can use the expression for hash partitioning.

For example, where date_col is a column of type DATE, then the expression TO_DAYS(date_col)
is said to vary directly with the value of date_col, because for every change in the value of
date_col, the value of the expression changes in a consistent manner. The variance of the expression
YEAR(date_col) with respect to date_col is not quite as direct as that of TO_DAYS(date_col),
because not every possible change in date_col produces an equivalent change in YEAR(date_col).
Even so, YEAR(date_col) is a good candidate for a hashing function, because it varies directly with
a portion of date_col and there is no possible change in date_col that produces a disproportionate
change in YEAR(date_col).

By way of contrast, suppose that you have a column named int_col whose type is INT. Now consider
the expression POW(5-int_col,3) + 6. This would be a poor choice for a hashing function because
a change in the value of int_col is not guaranteed to produce a proportional change in the value of the
expression. Changing the value of int_col by a given amount can produce widely differing changes in
the value of the expression. For example, changing int_col from 5 to 6 produces a change of -1 in the
value of the expression, but changing the value of int_col from 6 to 7 produces a change of -7 in the
expression value.

In other words, the more closely the graph of the column value versus the value of the expression follows a
straight line as traced by the equation y=cx where c is some nonzero constant, the better the expression
is suited to hashing. This has to do with the fact that the more nonlinear an expression is, the more uneven
the distribution of data among the partitions it tends to produce.

In theory, pruning is also possible for expressions involving more than one column value, but determining
which of such expressions are suitable can be quite difficult and time-consuming. For this reason, the use
of hashing expressions involving multiple columns is not particularly recommended.

When PARTITION BY HASH is used, MySQL determines which partition of num partitions to use based
on the modulus of the result of the expression. In other words, for a given expression expr, the partition in
which the record is stored is partition number N, where N = MOD(expr, num). Suppose that table t1 is
defined as follows, so that it has 4 partitions:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY HASH(YEAR(col3))
 PARTITIONS 4;

If you insert a record into t1 whose col3 value is '2005-09-15', then the partition in which it is stored is
determined as follows:

MOD(YEAR('2005-09-01'),4)
= MOD(2005,4)
= 1

MySQL 5.6 also supports a variant of HASH partitioning known as linear hashing which employs a more
complex algorithm for determining the placement of new rows inserted into the partitioned table. See
Section 19.2.4.1, “LINEAR HASH Partitioning”, for a description of this algorithm.

3169

HASH Partitioning

The user-supplied expression is evaluated each time a record is inserted or updated. It may also—
depending on the circumstances—be evaluated when records are deleted.

19.2.4.1 LINEAR HASH Partitioning

MySQL also supports linear hashing, which differs from regular hashing in that linear hashing utilizes a
linear powers-of-two algorithm whereas regular hashing employs the modulus of the hashing function's
value.

Syntactically, the only difference between linear-hash partitioning and regular hashing is the addition of the
LINEAR keyword in the PARTITION BY clause, as shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY LINEAR HASH(YEAR(hired))
PARTITIONS 4;

Given an expression expr, the partition in which the record is stored when linear hashing is used is
partition number N from among num partitions, where N is derived according to the following algorithm:

1. Find the next power of 2 greater than num. We call this value V; it can be calculated as:

V = POWER(2, CEILING(LOG(2, num)))

(Suppose that num is 13. Then LOG(2,13) is 3.7004397181411. CEILING(3.7004397181411) is 4,
and V = POWER(2,4), which is 16.)

2. Set N = F(column_list) & (V - 1).

3. While N >= num:

• Set V = V / 2

• Set N = N & (V - 1)

Suppose that the table t1, using linear hash partitioning and having 6 partitions, is created using this
statement:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY LINEAR HASH(YEAR(col3))
 PARTITIONS 6;

Now assume that you want to insert two records into t1 having the col3 column values '2003-04-14'
and '1998-10-19'. The partition number for the first of these is determined as follows:

V = POWER(2, CEILING(LOG(2,6))) = 8
N = YEAR('2003-04-14') & (8 - 1)
 = 2003 & 7
 = 3

(3 >= 6 is FALSE: record stored in partition #3)

The number of the partition where the second record is stored is calculated as shown here:

V = 8

3170

KEY Partitioning

N = YEAR('1998-10-19') & (8 - 1)
 = 1998 & 7
 = 6

(6 >= 6 is TRUE: additional step required)

N = 6 & ((8 / 2) - 1)
 = 6 & 3
 = 2

(2 >= 6 is FALSE: record stored in partition #2)

The advantage in partitioning by linear hash is that the adding, dropping, merging, and splitting of partitions
is made much faster, which can be beneficial when dealing with tables containing extremely large amounts
(terabytes) of data. The disadvantage is that data is less likely to be evenly distributed between partitions
as compared with the distribution obtained using regular hash partitioning.

19.2.5 KEY Partitioning

Partitioning by key is similar to partitioning by hash, except that where hash partitioning employs a user-
defined expression, the hashing function for key partitioning is supplied by the MySQL server. NDB Cluster
uses MD5() for this purpose; for tables using other storage engines, the server employs its own internal
hashing function which is based on the same algorithm as PASSWORD().

The syntax rules for CREATE TABLE ... PARTITION BY KEY are similar to those for creating a table
that is partitioned by hash. The major differences are listed here:

• KEY is used rather than HASH.

• KEY takes only a list of zero or more column names. Any columns used as the partitioning key must
comprise part or all of the table's primary key, if the table has one. Where no column name is specified
as the partitioning key, the table's primary key is used, if there is one. For example, the following CREATE
TABLE statement is valid in MySQL 5.6:

CREATE TABLE k1 (
 id INT NOT NULL PRIMARY KEY,
 name VARCHAR(20)
)
PARTITION BY KEY()
PARTITIONS 2;

If there is no primary key but there is a unique key, then the unique key is used for the partitioning key:

CREATE TABLE k1 (
 id INT NOT NULL,
 name VARCHAR(20),
 UNIQUE KEY (id)
)
PARTITION BY KEY()
PARTITIONS 2;

However, if the unique key column were not defined as NOT NULL, then the previous statement would
fail.

In both of these cases, the partitioning key is the id column, even though it is not shown in the output
of SHOW CREATE TABLE or in the PARTITION_EXPRESSION column of the Information Schema
PARTITIONS table.

Unlike the case with other partitioning types, columns used for partitioning by KEY are not restricted to
integer or NULL values. For example, the following CREATE TABLE statement is valid:

3171

KEY Partitioning

CREATE TABLE tm1 (
 s1 CHAR(32) PRIMARY KEY
)
PARTITION BY KEY(s1)
PARTITIONS 10;

The preceding statement would not be valid, were a different partitioning type to be specified. (In
this case, simply using PARTITION BY KEY() would also be valid and have the same effect as
PARTITION BY KEY(s1), since s1 is the table's primary key.)

For additional information about this issue, see Section 19.6, “Restrictions and Limitations on
Partitioning”.

Columns with index prefixes are not supported in partitioning keys. This means that CHAR, VARCHAR,
BINARY, and VARBINARY columns can be used in a partitioning key, as long as they do not employ
prefixes; because a prefix must be specified for BLOB and TEXT columns in index definitions, it is not
possible to use columns of these two types in partitioning keys. In MySQL 5.6, columns using prefixes
are permitted when creating, altering, or upgrading partitioned tables, even though they are not included
in the table's partitioning key. This is a known issue in MySQL 5.6 which is addressed in MySQL 8.0,
where this permissive behavior is deprecated, and the server displays appropriate warnings or errors
when attempting to use such columns in these cases. See Column index prefixes not supported for key
partitioning, for more information and examples.

Note

Tables using the NDB storage engine are implicitly partitioned by KEY, using
the table's primary key as the partitioning key (as with other MySQL storage
engines). In the event that the NDB Cluster table has no explicit primary key, the
“hidden” primary key generated by the NDB storage engine for each NDB Cluster
table is used as the partitioning key.

If you define an explicit partitioning scheme for an NDB table, the table must have
an explicit primary key, and any columns used in the partitioning expression must
be part of this key. However, if the table uses an “empty” partitioning expression
—that is, PARTITION BY KEY() with no column references—then no explicit
primary key is required.

You can observe this partitioning using the ndb_desc utility (with the -p option).

Important

For a key-partitioned table, you cannot execute an ALTER TABLE DROP
PRIMARY KEY, as doing so generates the error ERROR 1466 (HY000):
Field in list of fields for partition function not found in
table. This is not an issue for NDB Cluster tables which are partitioned by KEY;
in such cases, the table is reorganized using the “hidden” primary key as the
table's new partitioning key. See Chapter 18, MySQL NDB Cluster 7.3 and NDB
Cluster 7.4.

It is also possible to partition a table by linear key. Here is a simple example:

CREATE TABLE tk (
 col1 INT NOT NULL,
 col2 CHAR(5),
 col3 DATE
)

3172

Subpartitioning

PARTITION BY LINEAR KEY (col1)
PARTITIONS 3;

Using LINEAR has the same effect on KEY partitioning as it does on HASH partitioning, with the
partition number being derived using a powers-of-two algorithm rather than modulo arithmetic. See
Section 19.2.4.1, “LINEAR HASH Partitioning”, for a description of this algorithm and its implications.

19.2.6 Subpartitioning

Subpartitioning—also known as composite partitioning—is the further division of each partition in a
partitioned table. Consider the following CREATE TABLE statement:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased))
 SUBPARTITIONS 2 (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE
);

Table ts has 3 RANGE partitions. Each of these partitions—p0, p1, and p2—is further divided into 2
subpartitions. In effect, the entire table is divided into 3 * 2 = 6 partitions. However, due to the action
of the PARTITION BY RANGE clause, the first 2 of these store only those records with a value less than
1990 in the purchased column.

In MySQL 5.6, it is possible to subpartition tables that are partitioned by RANGE or LIST. Subpartitions may
use either HASH or KEY partitioning. This is also known as composite partitioning.

Note

SUBPARTITION BY HASH and SUBPARTITION BY KEY generally follow
the same syntax rules as PARTITION BY HASH and PARTITION BY KEY,
respectively. An exception to this is that SUBPARTITION BY KEY (unlike
PARTITION BY KEY) does not currently support a default column, so the column
used for this purpose must be specified, even if the table has an explicit primary
key. This is a known issue which we are working to address; see Issues with
subpartitions, for more information and an example.

It is also possible to define subpartitions explicitly using SUBPARTITION clauses to specify options for
individual subpartitions. For example, a more verbose fashion of creating the same table ts as shown in
the previous example would be:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s2,
 SUBPARTITION s3
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s4,
 SUBPARTITION s5
)
);

3173

Subpartitioning

Some syntactical items of note are listed here:

• Each partition must have the same number of subpartitions.

• If you explicitly define any subpartitions using SUBPARTITION on any partition of a partitioned table, you
must define them all. In other words, the following statement fails:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s2,
 SUBPARTITION s3
)
);

This statement would still fail even if it included a SUBPARTITIONS 2 clause.

• Each SUBPARTITION clause must include (at a minimum) a name for the subpartition. Otherwise, you
may set any desired option for the subpartition or allow it to assume its default setting for that option.

• Subpartition names must be unique across the entire table. For example, the following CREATE TABLE
statement is valid in MySQL 5.6:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s2,
 SUBPARTITION s3
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s4,
 SUBPARTITION s5
)
);

Subpartitions can be used with especially large MyISAM tables to distribute data and indexes across many
disks. Suppose that you have 6 disks mounted as /disk0, /disk1, /disk2, and so on. Now consider the
following example:

CREATE TABLE ts (id INT, purchased DATE)
 ENGINE = MYISAM
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0
 DATA DIRECTORY = '/disk0/data'
 INDEX DIRECTORY = '/disk0/idx',
 SUBPARTITION s1
 DATA DIRECTORY = '/disk1/data'
 INDEX DIRECTORY = '/disk1/idx'
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s2
 DATA DIRECTORY = '/disk2/data'

3174

Subpartitioning

 INDEX DIRECTORY = '/disk2/idx',
 SUBPARTITION s3
 DATA DIRECTORY = '/disk3/data'
 INDEX DIRECTORY = '/disk3/idx'
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s4
 DATA DIRECTORY = '/disk4/data'
 INDEX DIRECTORY = '/disk4/idx',
 SUBPARTITION s5
 DATA DIRECTORY = '/disk5/data'
 INDEX DIRECTORY = '/disk5/idx'
)
);

In this case, a separate disk is used for the data and for the indexes of each RANGE. Many other variations
are possible; another example might be:

CREATE TABLE ts (id INT, purchased DATE)
 ENGINE = MYISAM
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0a
 DATA DIRECTORY = '/disk0'
 INDEX DIRECTORY = '/disk1',
 SUBPARTITION s0b
 DATA DIRECTORY = '/disk2'
 INDEX DIRECTORY = '/disk3'
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s1a
 DATA DIRECTORY = '/disk4/data'
 INDEX DIRECTORY = '/disk4/idx',
 SUBPARTITION s1b
 DATA DIRECTORY = '/disk5/data'
 INDEX DIRECTORY = '/disk5/idx'
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s2a,
 SUBPARTITION s2b
)
);

Here, the storage is as follows:

• Rows with purchased dates from before 1990 take up a vast amount of space, so are split up 4 ways,
with a separate disk dedicated to the data and to the indexes for each of the two subpartitions (s0a and
s0b) making up partition p0. In other words:

• The data for subpartition s0a is stored on /disk0.

• The indexes for subpartition s0a are stored on /disk1.

• The data for subpartition s0b is stored on /disk2.

• The indexes for subpartition s0b are stored on /disk3.

• Rows containing dates ranging from 1990 to 1999 (partition p1) do not require as much room as those
from before 1990. These are split between 2 disks (/disk4 and /disk5) rather than 4 disks as with the
legacy records stored in p0:

• Data and indexes belonging to p1's first subpartition (s1a) are stored on /disk4—the data in /
disk4/data, and the indexes in /disk4/idx.

3175

How MySQL Partitioning Handles NULL

• Data and indexes belonging to p1's second subpartition (s1b) are stored on /disk5—the data in /
disk5/data, and the indexes in /disk5/idx.

• Rows reflecting dates from the year 2000 to the present (partition p2) do not take up as much space as
required by either of the two previous ranges. Currently, it is sufficient to store all of these in the default
location.

In future, when the number of purchases for the decade beginning with the year 2000 grows to a point
where the default location no longer provides sufficient space, the corresponding rows can be moved
using an ALTER TABLE ... REORGANIZE PARTITION statement. See Section 19.3, “Partition
Management”, for an explanation of how this can be done.

The DATA DIRECTORY and INDEX DIRECTORY options are not permitted in partition definitions when the
NO_DIR_IN_CREATE server SQL mode is in effect. In MySQL 5.6, these options are also not permitted
when defining subpartitions (Bug #42954).

19.2.7 How MySQL Partitioning Handles NULL

Partitioning in MySQL does nothing to disallow NULL as the value of a partitioning expression, whether it is
a column value or the value of a user-supplied expression. Even though it is permitted to use NULL as the
value of an expression that must otherwise yield an integer, it is important to keep in mind that NULL is not
a number. MySQL's partitioning implementation treats NULL as being less than any non-NULL value, just
as ORDER BY does.

This means that treatment of NULL varies between partitioning of different types, and may produce
behavior which you do not expect if you are not prepared for it. This being the case, we discuss in this
section how each MySQL partitioning type handles NULL values when determining the partition in which a
row should be stored, and provide examples for each.

Handling of NULL with RANGE partitioning. If you insert a row into a table partitioned by RANGE such
that the column value used to determine the partition is NULL, the row is inserted into the lowest partition.
Consider these two tables in a database named p, created as follows:

mysql> CREATE TABLE t1 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (0),
 -> PARTITION p1 VALUES LESS THAN (10),
 -> PARTITION p2 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (0.09 sec)

mysql> CREATE TABLE t2 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (10),
 -> PARTITION p3 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (0.09 sec)

You can see the partitions created by these two CREATE TABLE statements using the following query
against the PARTITIONS table in the INFORMATION_SCHEMA database:

3176

How MySQL Partitioning Handles NULL

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
t1	p0	0	0	0
t1	p1	0	0	0
t1	p2	0	0	0
t2	p0	0	0	0
t2	p1	0	0	0
t2	p2	0	0	0
t2	p3	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.00 sec)

(For more information about this table, see Section 21.3.14, “The INFORMATION_SCHEMA PARTITIONS
Table”.) Now let us populate each of these tables with a single row containing a NULL in the column used
as the partitioning key, and verify that the rows were inserted using a pair of SELECT statements:

mysql> INSERT INTO t1 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t1;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

You can see which partitions are used to store the inserted rows by rerunning the previous query against
INFORMATION_SCHEMA.PARTITIONS and inspecting the output:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
t1	p0	1	20	20
t1	p1	0	0	0
t1	p2	0	0	0
t2	p0	1	20	20
t2	p1	0	0	0
t2	p2	0	0	0
t2	p3	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.01 sec)

You can also demonstrate that these rows were stored in the lowest partition of each table by dropping
these partitions, and then re-running the SELECT statements:

mysql> ALTER TABLE t1 DROP PARTITION p0;

3177

How MySQL Partitioning Handles NULL

Query OK, 0 rows affected (0.16 sec)

mysql> ALTER TABLE t2 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

mysql> SELECT * FROM t1;
Empty set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

(For more information on ALTER TABLE ... DROP PARTITION, see Section 13.1.7, “ALTER TABLE
Statement”.)

NULL is also treated in this way for partitioning expressions that use SQL functions. Suppose that we
define a table using a CREATE TABLE statement such as this one:

CREATE TABLE tndate (
 id INT,
 dt DATE
)
PARTITION BY RANGE(YEAR(dt)) (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE
);

As with other MySQL functions, YEAR(NULL) returns NULL. A row with a dt column value of NULL is
treated as though the partitioning expression evaluated to a value less than any other value, and so is
inserted into partition p0.

Handling of NULL with LIST partitioning. A table that is partitioned by LIST admits NULL values if
and only if one of its partitions is defined using that value-list that contains NULL. The converse of this is
that a table partitioned by LIST which does not explicitly use NULL in a value list rejects rows resulting in a
NULL value for the partitioning expression, as shown in this example:

mysql> CREATE TABLE ts1 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (0, 3, 6),
 -> PARTITION p1 VALUES IN (1, 4, 7),
 -> PARTITION p2 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO ts1 VALUES (9, 'mothra');
ERROR 1504 (HY000): Table has no partition for value 9

mysql> INSERT INTO ts1 VALUES (NULL, 'mothra');
ERROR 1504 (HY000): Table has no partition for value NULL

Only rows having a c1 value between 0 and 8 inclusive can be inserted into ts1. NULL falls outside this
range, just like the number 9. We can create tables ts2 and ts3 having value lists containing NULL, as
shown here:

mysql> CREATE TABLE ts2 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (0, 3, 6),

3178

How MySQL Partitioning Handles NULL

 -> PARTITION p1 VALUES IN (1, 4, 7),
 -> PARTITION p2 VALUES IN (2, 5, 8),
 -> PARTITION p3 VALUES IN (NULL)
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE ts3 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (0, 3, 6),
 -> PARTITION p1 VALUES IN (1, 4, 7, NULL),
 -> PARTITION p2 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.01 sec)

When defining value lists for partitioning, you can (and should) treat NULL just as you would any other
value. For example, both VALUES IN (NULL) and VALUES IN (1, 4, 7, NULL) are valid, as are
VALUES IN (1, NULL, 4, 7), VALUES IN (NULL, 1, 4, 7), and so on. You can insert a row
having NULL for column c1 into each of the tables ts2 and ts3:

mysql> INSERT INTO ts2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO ts3 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

By issuing the appropriate query against INFORMATION_SCHEMA.PARTITIONS, you can determine which
partitions were used to store the rows just inserted (we assume, as in the previous examples, that the
partitioned tables were created in the p database):

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 'ts_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
ts2	p0	0	0	0
ts2	p1	0	0	0
ts2	p2	0	0	0
ts2	p3	1	20	20
ts3	p0	0	0	0
ts3	p1	1	20	20
ts3	p2	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.01 sec)

As shown earlier in this section, you can also verify which partitions were used for storing the rows by
deleting these partitions and then performing a SELECT.

Handling of NULL with HASH and KEY partitioning. NULL is handled somewhat differently for tables
partitioned by HASH or KEY. In these cases, any partition expression that yields a NULL value is treated as
though its return value were zero. We can verify this behavior by examining the effects on the file system of
creating a table partitioned by HASH and populating it with a record containing appropriate values. Suppose
that you have a table th (also in the p database) created using the following statement:

mysql> CREATE TABLE th (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY HASH(c1)
 -> PARTITIONS 2;
Query OK, 0 rows affected (0.00 sec)

3179

Partition Management

The partitions belonging to this table can be viewed using the query shown here:

mysql> SELECT TABLE_NAME,PARTITION_NAME,TABLE_ROWS,AVG_ROW_LENGTH,DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th | p0 | 0 | 0 | 0 |
| th | p1 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

Notice that TABLE_ROWS for each partition is 0. Now insert two rows into th whose c1 column values are
NULL and 0, and verify that these rows were inserted, as shown here:

mysql> INSERT INTO th VALUES (NULL, 'mothra'), (0, 'gigan');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM th;
+------+---------+
| c1 | c2 |
+------+---------+
| NULL | mothra |
+------+---------+
| 0 | gigan |
+------+---------+
2 rows in set (0.01 sec)

Recall that for any integer N, the value of NULL MOD N is always NULL. For tables that are partitioned
by HASH or KEY, this result is treated for determining the correct partition as 0. Checking the Information
Schema PARTITIONS table once again, we can see that both rows were inserted into partition p0:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th | p0 | 2 | 20 | 20 |
| th | p1 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

If you repeat this example using PARTITION BY KEY in place of PARTITION BY HASH in the definition
of the table, you can verify easily that NULL is also treated like 0 for this type of partitioning.

19.3 Partition Management
MySQL 5.6 provides a number of ways to modify partitioned tables. It is possible to add, drop, redefine,
merge, or split existing partitions. All of these actions can be carried out using the partitioning extensions
to the ALTER TABLE statement. There are also ways to obtain information about partitioned tables and
partitions. We discuss these topics in the sections that follow.

• For information about partition management in tables partitioned by RANGE or LIST, see Section 19.3.1,
“Management of RANGE and LIST Partitions”.

• For a discussion of managing HASH and KEY partitions, see Section 19.3.2, “Management of HASH and
KEY Partitions”.

• See Section 19.3.5, “Obtaining Information About Partitions”, for a discussion of mechanisms provided in
MySQL 5.6 for obtaining information about partitioned tables and partitions.

3180

Management of RANGE and LIST Partitions

• For a discussion of performing maintenance operations on partitions, see Section 19.3.4, “Maintenance
of Partitions”.

Note

In MySQL 5.6, all partitions of a partitioned table must have the same number of
subpartitions, and it is not possible to change the subpartitioning once the table has
been created.

To change a table's partitioning scheme, it is necessary only to use the ALTER TABLE statement with a
partition_options clause. This clause has the same syntax as that as used with CREATE TABLE for
creating a partitioned table, and always begins with the keywords PARTITION BY. Suppose that you have
a table partitioned by range using the following CREATE TABLE statement:

CREATE TABLE trb3 (id INT, name VARCHAR(50), purchased DATE)
 PARTITION BY RANGE(YEAR(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (2000),
 PARTITION p3 VALUES LESS THAN (2005)
);

To repartition this table so that it is partitioned by key into two partitions using the id column value as the
basis for the key, you can use this statement:

ALTER TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;

This has the same effect on the structure of the table as dropping the table and re-creating it using CREATE
TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;.

ALTER TABLE ... ENGINE = ... changes only the storage engine used by the table, and leaves the
table's partitioning scheme intact. Use ALTER TABLE ... REMOVE PARTITIONING to remove a table's
partitioning. See Section 13.1.7, “ALTER TABLE Statement”.

Important

Only a single PARTITION BY, ADD PARTITION, DROP PARTITION, REORGANIZE
PARTITION, or COALESCE PARTITION clause can be used in a given ALTER
TABLE statement. If you (for example) wish to drop a partition and reorganize
a table's remaining partitions, you must do so in two separate ALTER TABLE
statements (one using DROP PARTITION and then a second one using
REORGANIZE PARTITION).

In MySQL 5.6, it is possible to delete all rows from one or more selected partitions using ALTER
TABLE ... TRUNCATE PARTITION.

19.3.1 Management of RANGE and LIST Partitions

Adding and dropping of range and list partitions are handled in a similar fashion, so we discuss the
management of both sorts of partitioning in this section. For information about working with tables that are
partitioned by hash or key, see Section 19.3.2, “Management of HASH and KEY Partitions”.

Dropping a partition from a table that is partitioned by either RANGE or by LIST can be accomplished using
the ALTER TABLE statement with the DROP PARTITION option. Suppose that you have created a table
that is partitioned by range and then populated with 10 records using the following CREATE TABLE and
INSERT statements:

mysql> CREATE TABLE tr (id INT, name VARCHAR(50), purchased DATE)

3181

Management of RANGE and LIST Partitions

 -> PARTITION BY RANGE(YEAR(purchased)) (
 -> PARTITION p0 VALUES LESS THAN (1990),
 -> PARTITION p1 VALUES LESS THAN (1995),
 -> PARTITION p2 VALUES LESS THAN (2000),
 -> PARTITION p3 VALUES LESS THAN (2005),
 -> PARTITION p4 VALUES LESS THAN (2010),
 -> PARTITION p5 VALUES LESS THAN (2015)
 ->);
Query OK, 0 rows affected (0.28 sec)

mysql> INSERT INTO tr VALUES
 -> (1, 'desk organiser', '2003-10-15'),
 -> (2, 'alarm clock', '1997-11-05'),
 -> (3, 'chair', '2009-03-10'),
 -> (4, 'bookcase', '1989-01-10'),
 -> (5, 'exercise bike', '2014-05-09'),
 -> (6, 'sofa', '1987-06-05'),
 -> (7, 'espresso maker', '2011-11-22'),
 -> (8, 'aquarium', '1992-08-04'),
 -> (9, 'study desk', '2006-09-16'),
 -> (10, 'lava lamp', '1998-12-25');
Query OK, 10 rows affected (0.05 sec)
Records: 10 Duplicates: 0 Warnings: 0

You can see which items should have been inserted into partition p2 as shown here:

mysql> SELECT * FROM tr
 -> WHERE purchased BETWEEN '1995-01-01' AND '1999-12-31';
+------+-------------+------------+
| id | name | purchased |
+------+-------------+------------+
| 2 | alarm clock | 1997-11-05 |
| 10 | lava lamp | 1998-12-25 |
+------+-------------+------------+
2 rows in set (0.00 sec)

You can also get this information using partition selection, as shown here:

mysql> SELECT * FROM tr PARTITION (p2);
+------+-------------+------------+
| id | name | purchased |
+------+-------------+------------+
| 2 | alarm clock | 1997-11-05 |
| 10 | lava lamp | 1998-12-25 |
+------+-------------+------------+
2 rows in set (0.00 sec)

See Section 19.5, “Partition Selection”, for more information.

To drop the partition named p2, execute the following command:

mysql> ALTER TABLE tr DROP PARTITION p2;
Query OK, 0 rows affected (0.03 sec)

Note

The NDBCLUSTER storage engine does not support ALTER TABLE ... DROP
PARTITION. It does, however, support the other partitioning-related extensions to
ALTER TABLE that are described in this chapter.

It is very important to remember that, when you drop a partition, you also delete all the data that was stored
in that partition. You can see that this is the case by re-running the previous SELECT query:

mysql> SELECT * FROM tr WHERE purchased

3182

Management of RANGE and LIST Partitions

 -> BETWEEN '1995-01-01' AND '1999-12-31';
Empty set (0.00 sec)

Because of this, you must have the DROP privilege for a table before you can execute ALTER TABLE ...
DROP PARTITION on that table.

If you wish to drop all data from all partitions while preserving the table definition and its partitioning
scheme, use the TRUNCATE TABLE statement. (See Section 13.1.33, “TRUNCATE TABLE Statement”.)

If you intend to change the partitioning of a table without losing data, use ALTER TABLE ...
REORGANIZE PARTITION instead. See below or in Section 13.1.7, “ALTER TABLE Statement”, for
information about REORGANIZE PARTITION.

If you now execute a SHOW CREATE TABLE statement, you can see how the partitioning makeup of the
table has been changed:

mysql> SHOW CREATE TABLE tr\G
*************************** 1. row ***************************
 Table: tr
Create Table: CREATE TABLE `tr` (
 `id` int(11) DEFAULT NULL,
 `name` varchar(50) DEFAULT NULL,
 `purchased` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (YEAR(purchased))
(PARTITION p0 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1995) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2005) ENGINE = InnoDB,
 PARTITION p4 VALUES LESS THAN (2010) ENGINE = InnoDB,
 PARTITION p5 VALUES LESS THAN (2015) ENGINE = InnoDB) */
1 row in set (0.00 sec)

When you insert new rows into the changed table with purchased column values between
'1995-01-01' and '2004-12-31' inclusive, those rows are stored in partition p3. You can verify this as
follows:

mysql> INSERT INTO tr VALUES (11, 'pencil holder', '1995-07-12');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM tr WHERE purchased
 -> BETWEEN '1995-01-01' AND '2004-12-31';
+------+----------------+------------+
| id | name | purchased |
+------+----------------+------------+
| 1 | desk organiser | 2003-10-15 |
| 11 | pencil holder | 1995-07-12 |
+------+----------------+------------+
2 rows in set (0.00 sec)

mysql> ALTER TABLE tr DROP PARTITION p3;
Query OK, 0 rows affected (0.03 sec)

mysql> SELECT * FROM tr WHERE purchased
 -> BETWEEN '1995-01-01' AND '2004-12-31';
Empty set (0.00 sec)

The number of rows dropped from the table as a result of ALTER TABLE ... DROP PARTITION is not
reported by the server as it would be by the equivalent DELETE query.

Dropping LIST partitions uses exactly the same ALTER TABLE ... DROP PARTITION syntax as used
for dropping RANGE partitions. However, there is one important difference in the effect this has on your
use of the table afterward: You can no longer insert into the table any rows having any of the values that

3183

Management of RANGE and LIST Partitions

were included in the value list defining the deleted partition. (See Section 19.2.2, “LIST Partitioning”, for an
example.)

To add a new range or list partition to a previously partitioned table, use the ALTER TABLE ... ADD
PARTITION statement. For tables which are partitioned by RANGE, this can be used to add a new range to
the end of the list of existing partitions. Suppose that you have a partitioned table containing membership
data for your organization, which is defined as follows:

CREATE TABLE members (
 id INT,
 fname VARCHAR(25),
 lname VARCHAR(25),
 dob DATE
)
PARTITION BY RANGE(YEAR(dob)) (
 PARTITION p0 VALUES LESS THAN (1980),
 PARTITION p1 VALUES LESS THAN (1990),
 PARTITION p2 VALUES LESS THAN (2000)
);

Suppose further that the minimum age for members is 16. As the calendar approaches the end of 2015,
you realize that you are soon likely to be admitting members who were born in 2000 (and later). You can
modify the members table to accommodate new members born in the years 2000 to 2010 as shown here:

ALTER TABLE members ADD PARTITION (PARTITION p3 VALUES LESS THAN (2010));

With tables that are partitioned by range, you can use ADD PARTITION to add new partitions to the high
end of the partitions list only. Trying to add a new partition in this manner between or before existing
partitions results in an error as shown here:

mysql> ALTER TABLE members
 > ADD PARTITION (
 > PARTITION n VALUES LESS THAN (1970));
ERROR 1463 (HY000): VALUES LESS THAN value must be strictly »
 increasing for each partition

You can work around this problem by reorganizing the first partition into two new ones that split the range
between them, like this:

ALTER TABLE members
 REORGANIZE PARTITION p0 INTO (
 PARTITION n0 VALUES LESS THAN (1970),
 PARTITION n1 VALUES LESS THAN (1980)
);

Using SHOW CREATE TABLE you can see that the ALTER TABLE statement has had the desired effect:

mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************
 Table: members
Create Table: CREATE TABLE `members` (
 `id` int(11) DEFAULT NULL,
 `fname` varchar(25) DEFAULT NULL,
 `lname` varchar(25) DEFAULT NULL,
 `dob` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (YEAR(dob))
(PARTITION n0 VALUES LESS THAN (1970) ENGINE = InnoDB,
 PARTITION n1 VALUES LESS THAN (1980) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (2000) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2010) ENGINE = InnoDB) */
1 row in set (0.00 sec)

3184

Management of RANGE and LIST Partitions

See also Section 13.1.7.1, “ALTER TABLE Partition Operations”.

You can also use ALTER TABLE ... ADD PARTITION to add new partitions to a table that is partitioned
by LIST. Suppose a table tt is defined using the following CREATE TABLE statement:

CREATE TABLE tt (
 id INT,
 data INT
)
PARTITION BY LIST(data) (
 PARTITION p0 VALUES IN (5, 10, 15),
 PARTITION p1 VALUES IN (6, 12, 18)
);

You can add a new partition in which to store rows having the data column values 7, 14, and 21 as
shown:

ALTER TABLE tt ADD PARTITION (PARTITION p2 VALUES IN (7, 14, 21));

Keep in mind that you cannot add a new LIST partition encompassing any values that are already included
in the value list of an existing partition. If you attempt to do so, an error results:

mysql> ALTER TABLE tt ADD PARTITION
 > (PARTITION np VALUES IN (4, 8, 12));
ERROR 1465 (HY000): Multiple definition of same constant »
 in list partitioning

Because any rows with the data column value 12 have already been assigned to partition p1, you cannot
create a new partition on table tt that includes 12 in its value list. To accomplish this, you could drop
p1, and add np and then a new p1 with a modified definition. However, as discussed earlier, this would
result in the loss of all data stored in p1—and it is often the case that this is not what you really want to do.
Another solution might appear to be to make a copy of the table with the new partitioning and to copy the
data into it using CREATE TABLE ... SELECT ..., then drop the old table and rename the new one,
but this could be very time-consuming when dealing with a large amounts of data. This also might not be
feasible in situations where high availability is a requirement.

You can add multiple partitions in a single ALTER TABLE ... ADD PARTITION statement as shown
here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 hired DATE NOT NULL
)
PARTITION BY RANGE(YEAR(hired)) (
 PARTITION p1 VALUES LESS THAN (1991),
 PARTITION p2 VALUES LESS THAN (1996),
 PARTITION p3 VALUES LESS THAN (2001),
 PARTITION p4 VALUES LESS THAN (2005)
);

ALTER TABLE employees ADD PARTITION (
 PARTITION p5 VALUES LESS THAN (2010),
 PARTITION p6 VALUES LESS THAN MAXVALUE
);

Fortunately, MySQL's partitioning implementation provides ways to redefine partitions without losing data.
Let us look first at a couple of simple examples involving RANGE partitioning. Recall the members table
which is now defined as shown here:

mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************

3185

Management of RANGE and LIST Partitions

 Table: members
Create Table: CREATE TABLE `members` (
 `id` int(11) DEFAULT NULL,
 `fname` varchar(25) DEFAULT NULL,
 `lname` varchar(25) DEFAULT NULL,
 `dob` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (YEAR(dob))
(PARTITION n0 VALUES LESS THAN (1970) ENGINE = InnoDB,
 PARTITION n1 VALUES LESS THAN (1980) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (2000) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2010) ENGINE = InnoDB) */
1 row in set (0.00 sec)

Suppose that you would like to move all rows representing members born before 1960 into a separate
partition. As we have already seen, this cannot be done using ALTER TABLE ... ADD PARTITION.
However, you can use another partition-related extension to ALTER TABLE to accomplish this:

ALTER TABLE members REORGANIZE PARTITION n0 INTO (
 PARTITION s0 VALUES LESS THAN (1960),
 PARTITION s1 VALUES LESS THAN (1970)
);

In effect, this command splits partition p0 into two new partitions s0 and s1. It also moves the data that
was stored in p0 into the new partitions according to the rules embodied in the two PARTITION ...
VALUES ... clauses, so that s0 contains only those records for which YEAR(dob) is less than 1960 and
s1 contains those rows in which YEAR(dob) is greater than or equal to 1960 but less than 1970.

A REORGANIZE PARTITION clause may also be used for merging adjacent partitions. You can reverse
the effect of the previous statement on the members table as shown here:

ALTER TABLE members REORGANIZE PARTITION s0,s1 INTO (
 PARTITION p0 VALUES LESS THAN (1970)
);

No data is lost in splitting or merging partitions using REORGANIZE PARTITION. In executing the above
statement, MySQL moves all of the records that were stored in partitions s0 and s1 into partition p0.

The general syntax for REORGANIZE PARTITION is shown here:

ALTER TABLE tbl_name
 REORGANIZE PARTITION partition_list
 INTO (partition_definitions);

Here, tbl_name is the name of the partitioned table, and partition_list is a comma-separated
list of names of one or more existing partitions to be changed. partition_definitions
is a comma-separated list of new partition definitions, which follow the same rules as for the
partition_definitions list used in CREATE TABLE. You are not limited to merging several partitions
into one, or to splitting one partition into many, when using REORGANIZE PARTITION. For example, you
can reorganize all four partitions of the members table into two, like this:

ALTER TABLE members REORGANIZE PARTITION p0,p1,p2,p3 INTO (
 PARTITION m0 VALUES LESS THAN (1980),
 PARTITION m1 VALUES LESS THAN (2000)
);

You can also use REORGANIZE PARTITION with tables that are partitioned by LIST. Let us return to the
problem of adding a new partition to the list-partitioned tt table and failing because the new partition had
a value that was already present in the value-list of one of the existing partitions. We can handle this by
adding a partition that contains only nonconflicting values, and then reorganizing the new partition and the
existing one so that the value which was stored in the existing one is now moved to the new one:

3186

Management of HASH and KEY Partitions

ALTER TABLE tt ADD PARTITION (PARTITION np VALUES IN (4, 8));
ALTER TABLE tt REORGANIZE PARTITION p1,np INTO (
 PARTITION p1 VALUES IN (6, 18),
 PARTITION np VALUES in (4, 8, 12)
);

Here are some key points to keep in mind when using ALTER TABLE ... REORGANIZE PARTITION to
repartition tables that are partitioned by RANGE or LIST:

• The PARTITION options used to determine the new partitioning scheme are subject to the same rules as
those used with a CREATE TABLE statement.

A new RANGE partitioning scheme cannot have any overlapping ranges; a new LIST partitioning scheme
cannot have any overlapping sets of values.

• The combination of partitions in the partition_definitions list should account for the same range
or set of values overall as the combined partitions named in the partition_list.

For example, partitions p1 and p2 together cover the years 1980 through 1999 in the members table
used as an example in this section. Any reorganization of these two partitions should cover the same
range of years overall.

• For tables partitioned by RANGE, you can reorganize only adjacent partitions; you cannot skip range
partitions.

For instance, you could not reorganize the example members table using a statement beginning with
ALTER TABLE members REORGANIZE PARTITION p0,p2 INTO ... because p0 covers the years
prior to 1970 and p2 the years from 1990 through 1999 inclusive, so these are not adjacent partitions.
(You cannot skip partition p1 in this case.)

• You cannot use REORGANIZE PARTITION to change the type of partitioning used by the table (for
example, you cannot change RANGE partitions to HASH partitions or the reverse). You also cannot use
this statement to change the partitioning expression or column. To accomplish either of these tasks
without dropping and re-creating the table, you can use ALTER TABLE ... PARTITION BY ..., as
shown here:

ALTER TABLE members
 PARTITION BY HASH(YEAR(dob))
 PARTITIONS 8;

19.3.2 Management of HASH and KEY Partitions

Tables which are partitioned by hash or by key are very similar to one another with regard to making
changes in a partitioning setup, and both differ in a number of ways from tables which have been
partitioned by range or list. For that reason, this section addresses the modification of tables partitioned by
hash or by key only. For a discussion of adding and dropping of partitions of tables that are partitioned by
range or list, see Section 19.3.1, “Management of RANGE and LIST Partitions”.

You cannot drop partitions from tables that are partitioned by HASH or KEY in the same way that you can
from tables that are partitioned by RANGE or LIST. However, you can merge HASH or KEY partitions using
the ALTER TABLE ... COALESCE PARTITION statement. Suppose that you have a table containing
data about clients, which is divided into twelve partitions. The clients table is defined as shown here:

CREATE TABLE clients (
 id INT,
 fname VARCHAR(30),
 lname VARCHAR(30),
 signed DATE

3187

Exchanging Partitions and Subpartitions with Tables

)
PARTITION BY HASH(MONTH(signed))
PARTITIONS 12;

To reduce the number of partitions from twelve to eight, execute the following ALTER TABLE command:

mysql> ALTER TABLE clients COALESCE PARTITION 4;
Query OK, 0 rows affected (0.02 sec)

COALESCE works equally well with tables that are partitioned by HASH, KEY, LINEAR HASH, or LINEAR
KEY. Here is an example similar to the previous one, differing only in that the table is partitioned by
LINEAR KEY:

mysql> CREATE TABLE clients_lk (
 -> id INT,
 -> fname VARCHAR(30),
 -> lname VARCHAR(30),
 -> signed DATE
 ->)
 -> PARTITION BY LINEAR KEY(signed)
 -> PARTITIONS 12;
Query OK, 0 rows affected (0.03 sec)

mysql> ALTER TABLE clients_lk COALESCE PARTITION 4;
Query OK, 0 rows affected (0.06 sec)
Records: 0 Duplicates: 0 Warnings: 0

The number following COALESCE PARTITION is the number of partitions to merge into the remainder—in
other words, it is the number of partitions to remove from the table.

If you attempt to remove more partitions than the table has, the result is an error like the one shown:

mysql> ALTER TABLE clients COALESCE PARTITION 18;
ERROR 1478 (HY000): Cannot remove all partitions, use DROP TABLE instead

To increase the number of partitions for the clients table from 12 to 18. use ALTER TABLE ... ADD
PARTITION as shown here:

ALTER TABLE clients ADD PARTITION PARTITIONS 6;

19.3.3 Exchanging Partitions and Subpartitions with Tables

In MySQL 5.6, it is possible to exchange a table partition or subpartition with a table using ALTER TABLE
pt EXCHANGE PARTITION p WITH TABLE nt, where pt is the partitioned table and p is the partition
or subpartition of pt to be exchanged with unpartitioned table nt, provided that the following statements
are true:

1. Table nt is not itself partitioned.

2. Table nt is not a temporary table.

3. The structures of tables pt and nt are otherwise identical.

4. Table nt contains no foreign key references, and no other table has any foreign keys that refer to nt.

5. There are no rows in nt that lie outside the boundaries of the partition definition for p.

6. Both tables must use the same character set and collation.

7. For InnoDB tables, both tables must use the same row format. To determine the row format of an
InnoDB table, query INFORMATION_SCHEMA.INNODB_SYS_TABLES.

3188

Exchanging Partitions and Subpartitions with Tables

8. Any partition-level MAX_ROWS setting for p must be the same as the table-level MAX_ROWS value set
for nt. The setting for any partition-level MIN_ROWS setting for p must also be the same any table-level
MIN_ROWS value set for nt.

This is true in either case whether not pt has an exlpicit table-level MAX_ROWS or MIN_ROWS option in
effect.

9. The AVG_ROW_LENGTH cannot differ between the two tables pt and nt.

10. pt does not have any partitions that use the DATA DIRECTORY option.

11. INDEX DIRECTORY cannot differ between the table and the partition to be exchanged with it.

12. No table or partition TABLESPACE options can be used in either of the tables.

In addition to the ALTER, INSERT, and CREATE privileges usually required for ALTER TABLE statements,
you must have the DROP privilege to perform ALTER TABLE ... EXCHANGE PARTITION.

You should also be aware of the following effects of ALTER TABLE ... EXCHANGE PARTITION:

• Executing ALTER TABLE ... EXCHANGE PARTITION does not invoke any triggers on either the
partitioned table or the table to be exchanged.

• Any AUTO_INCREMENT columns in the exchanged table are reset.

• The IGNORE keyword has no effect when used with ALTER TABLE ... EXCHANGE PARTITION.

The complete syntax of the ALTER TABLE ... EXCHANGE PARTITION statement is shown here, where
pt is the partitioned table, p is the partition or subpartition to be exchanged, and nt is the nonpartitioned
table to be exchanged with p:

ALTER TABLE pt
 EXCHANGE PARTITION p
 WITH TABLE nt;

One and only one partition or subpartition may be exchanged with one and only one nonpartitioned
table in a single ALTER TABLE EXCHANGE PARTITION statement. To exchange multiple partitions or
subpartitions, use multiple ALTER TABLE EXCHANGE PARTITION statements. EXCHANGE PARTITION
may not be combined with other ALTER TABLE options. The partitioning and (if applicable) subpartitioning
used by the partitioned table may be of any type or types supported in MySQL 5.6.

Exchanging a Partition with a Nonpartitioned Table

Suppose that a partitioned table e has been created and populated using the following SQL statements:

CREATE TABLE e (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30)
)
 PARTITION BY RANGE (id) (
 PARTITION p0 VALUES LESS THAN (50),
 PARTITION p1 VALUES LESS THAN (100),
 PARTITION p2 VALUES LESS THAN (150),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

INSERT INTO e VALUES
 (1669, "Jim", "Smith"),
 (337, "Mary", "Jones"),
 (16, "Frank", "White"),
 (2005, "Linda", "Black");

3189

Exchanging Partitions and Subpartitions with Tables

Now we create a nonpartitioned copy of e named e2. This can be done using the mysql client as shown
here:

mysql> CREATE TABLE e2 LIKE e;
Query OK, 0 rows affected (1.34 sec)

mysql> ALTER TABLE e2 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.90 sec)
Records: 0 Duplicates: 0 Warnings: 0

You can see which partitions in table e contain rows by querying the Information Schema PARTITIONS
table, like this:

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	1
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

Note

For partitioned InnoDB tables, the row count given in the TABLE_ROWS column of
the Information Schema PARTITIONS table is only an estimated value used in SQL
optimization, and is not always exact.

To exchange partition p0 in table e with table e2, you can use the ALTER TABLE statement shown here:

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
Query OK, 0 rows affected (0.28 sec)

More precisely, the statement just issued causes any rows found in the partition to be swapped with
those found in the table. You can observe how this has happened by querying the Information Schema
PARTITIONS table, as before. The table row that was previously found in partition p0 is no longer present:

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	0
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

If you query table e2, you can see that the “missing” row can now be found there:

mysql> SELECT * FROM e2;
+----+-------+-------+
| id | fname | lname |
+----+-------+-------+
| 16 | Frank | White |
+----+-------+-------+
1 row in set (0.00 sec)

3190

Exchanging Partitions and Subpartitions with Tables

The table to be exchanged with the partition does not necessarily have to be empty. To demonstrate this,
we first insert a new row into table e, making sure that this row is stored in partition p0 by choosing an id
column value that is less than 50, and verifying this afterward by querying the PARTITIONS table:

mysql> INSERT INTO e VALUES (41, "Michael", "Green");
Query OK, 1 row affected (0.05 sec)

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	1
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

Now we once again exchange partition p0 with table e2 using the same ALTER TABLE statement as
previously:

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
Query OK, 0 rows affected (0.28 sec)

The output of the following queries shows that the table row that was stored in partition p0 and the table
row that was stored in table e2, prior to issuing the ALTER TABLE statement, have now switched places:

mysql> SELECT * FROM e;
+------+-------+-------+
| id | fname | lname |
+------+-------+-------+
16	Frank	White
1669	Jim	Smith
337	Mary	Jones
2005	Linda	Black
+------+-------+-------+
4 rows in set (0.00 sec)

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	1
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

mysql> SELECT * FROM e2;
+----+---------+-------+
| id | fname | lname |
+----+---------+-------+
| 41 | Michael | Green |
+----+---------+-------+
1 row in set (0.00 sec)

Non-Matching Rows

You should keep in mind that any rows found in the nonpartitioned table prior to issuing the ALTER
TABLE ... EXCHANGE PARTITION statement must meet the conditions required for them to be stored

3191

Exchanging Partitions and Subpartitions with Tables

in the target partition; otherwise, the statement fails. To see how this occurs, first insert a row into e2 that
is outside the boundaries of the partition definition for partition p0 of table e. For example, insert a row with
an id column value that is too large; then, try to exchange the table with the partition again:

mysql> INSERT INTO e2 VALUES (51, "Ellen", "McDonald");
Query OK, 1 row affected (0.08 sec)

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
ERROR 1707 (HY000): Found row that does not match the partition

The IGNORE keyword is accepted, but has no effect when used with EXCHANGE PARTITION, as shown
here:

mysql> ALTER IGNORE TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
ERROR 1707 (HY000): Found row that does not match the partition

Exchanging a Subpartition with a Nonpartitioned Table

You can also exchange a subpartition of a subpartitioned table (see Section 19.2.6, “Subpartitioning”) with
a nonpartitioned table using an ALTER TABLE ... EXCHANGE PARTITION statement. In the following
example, we first create a table es that is partitioned by RANGE and subpartitioned by KEY, populate this
table as we did table e, and then create an empty, nonpartitioned copy es2 of the table, as shown here:

mysql> CREATE TABLE es (
 -> id INT NOT NULL,
 -> fname VARCHAR(30),
 -> lname VARCHAR(30)
 ->)
 -> PARTITION BY RANGE (id)
 -> SUBPARTITION BY KEY (lname)
 -> SUBPARTITIONS 2 (
 -> PARTITION p0 VALUES LESS THAN (50),
 -> PARTITION p1 VALUES LESS THAN (100),
 -> PARTITION p2 VALUES LESS THAN (150),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE)
 ->);
Query OK, 0 rows affected (2.76 sec)

mysql> INSERT INTO es VALUES
 -> (1669, "Jim", "Smith"),
 -> (337, "Mary", "Jones"),
 -> (16, "Frank", "White"),
 -> (2005, "Linda", "Black");
Query OK, 4 rows affected (0.04 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> CREATE TABLE es2 LIKE es;
Query OK, 0 rows affected (1.27 sec)

mysql> ALTER TABLE es2 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.70 sec)
Records: 0 Duplicates: 0 Warnings: 0

Although we did not explicitly name any of the subpartitions when creating table es, we can obtain
generated names for these by including the SUBPARTITION_NAME of the PARTITIONS table from
INFORMATION_SCHEMA when selecting from that table, as shown here:

mysql> SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'es';
+----------------+-------------------+------------+
| PARTITION_NAME | SUBPARTITION_NAME | TABLE_ROWS |
+----------------+-------------------+------------+
| p0 | p0sp0 | 1 |

3192

Exchanging Partitions and Subpartitions with Tables

p0	p0sp1	0
p1	p1sp0	0
p1	p1sp1	0
p2	p2sp0	0
p2	p2sp1	0
p3	p3sp0	3
p3	p3sp1	0
+----------------+-------------------+------------+
8 rows in set (0.00 sec)

The following ALTER TABLE statement exchanges subpartition p3sp0 table es with the nonpartitioned
table es2:

mysql> ALTER TABLE es EXCHANGE PARTITION p3sp0 WITH TABLE es2;
Query OK, 0 rows affected (0.29 sec)

You can verify that the rows were exchanged by issuing the following queries:

mysql> SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'es';
+----------------+-------------------+------------+
| PARTITION_NAME | SUBPARTITION_NAME | TABLE_ROWS |
+----------------+-------------------+------------+
p0	p0sp0	1
p0	p0sp1	0
p1	p1sp0	0
p1	p1sp1	0
p2	p2sp0	0
p2	p2sp1	0
p3	p3sp0	0
p3	p3sp1	0
+----------------+-------------------+------------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM es2;
+------+-------+-------+
| id | fname | lname |
+------+-------+-------+
1669	Jim	Smith
337	Mary	Jones
2005	Linda	Black
+------+-------+-------+
3 rows in set (0.00 sec)

If a table is subpartitioned, you can exchange only a subpartition of the table—not an entire partition—with
an unpartitioned table, as shown here:

mysql> ALTER TABLE es EXCHANGE PARTITION p3 WITH TABLE es2;
ERROR 1704 (HY000): Subpartitioned table, use subpartition instead of partition

The comparison of table structures used by MySQL is very strict. The number, order, names, and types of
columns and indexes of the partitioned table and the nonpartitioned table must match exactly. In addition,
both tables must use the same storage engine:

mysql> CREATE TABLE es3 LIKE e;
Query OK, 0 rows affected (1.31 sec)

mysql> ALTER TABLE es3 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.53 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE es3\G
*************************** 1. row ***************************
 Table: es3
Create Table: CREATE TABLE `es3` (

3193

Maintenance of Partitions

 `id` int(11) NOT NULL,
 `fname` varchar(30) DEFAULT NULL,
 `lname` varchar(30) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

mysql> ALTER TABLE es3 ENGINE = MyISAM;
Query OK, 0 rows affected (0.15 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE es EXCHANGE PARTITION p3sp0 WITH TABLE es3;
ERROR 1497 (HY000): The mix of handlers in the partitions is not allowed in this version of MySQL

19.3.4 Maintenance of Partitions

A number of table and partition maintenance tasks can be carried out using SQL statements intended for
such purposes on partitioned tables in MySQL 5.6.

Table maintenance of partitioned tables can be accomplished using the statements CHECK TABLE,
OPTIMIZE TABLE, ANALYZE TABLE, and REPAIR TABLE, which are supported for partitioned tables.

You can use a number of extensions to ALTER TABLE for performing operations of this type on one or
more partitions directly, as described in the following list:

• Rebuilding partitions. Rebuilds the partition; this has the same effect as dropping all records stored
in the partition, then reinserting them. This can be useful for purposes of defragmentation.

Example:

ALTER TABLE t1 REBUILD PARTITION p0, p1;

• Optimizing partitions. If you have deleted a large number of rows from a partition or if you have
made many changes to a partitioned table with variable-length rows (that is, having VARCHAR, BLOB, or
TEXT columns), you can use ALTER TABLE ... OPTIMIZE PARTITION to reclaim any unused space
and to defragment the partition data file.

Example:

ALTER TABLE t1 OPTIMIZE PARTITION p0, p1;

Using OPTIMIZE PARTITION on a given partition is equivalent to running CHECK PARTITION,
ANALYZE PARTITION, and REPAIR PARTITION on that partition.

Some MySQL storage engines, including InnoDB, do not support per-partition optimization; in these
cases, ALTER TABLE ... OPTIMIZE PARTITION rebuilds the entire table. In MySQL 5.6.9 and
later, running this statement on such a table causes the entire table to rebuilt and analyzed, and an
appropriate warning to be issued. (Bug #11751825, Bug #42822) Use ALTER TABLE ... REBUILD
PARTITION and ALTER TABLE ... ANALYZE PARTITION instead, to avoid this issue.

• Analyzing partitions. This reads and stores the key distributions for partitions.

Example:

ALTER TABLE t1 ANALYZE PARTITION p3;

• Repairing partitions. This repairs corrupted partitions.

Example:

ALTER TABLE t1 REPAIR PARTITION p0,p1;

3194

Obtaining Information About Partitions

• Checking partitions. You can check partitions for errors in much the same way that you can use
CHECK TABLE with nonpartitioned tables.

Example:

ALTER TABLE trb3 CHECK PARTITION p1;

This command tells you if the data or indexes in partition p1 of table t1 are corrupted. If this is the case,
use ALTER TABLE ... REPAIR PARTITION to repair the partition.

Each of the statements in the list just shown also supports the keyword ALL in place of the list of partition
names. Using ALL causes the statement to act on all partitions in the table.

The use of mysqlcheck and myisamchk is not supported with partitioned tables.

In MySQL 5.6, you can also truncate partitions using ALTER TABLE ... TRUNCATE PARTITION.
This statement can be used to delete all rows from one or more partitions in much the same way that
TRUNCATE TABLE deletes all rows from a table.

ALTER TABLE ... TRUNCATE PARTITION ALL truncates all partitions in the table.

ANALYZE, CHECK, OPTIMIZE, REBUILD, REPAIR, and TRUNCATE operations are not supported for
subpartitions.

19.3.5 Obtaining Information About Partitions

This section discusses obtaining information about existing partitions, which can be done in a number of
ways. Methods of obtaining such information include the following:

• Using the SHOW CREATE TABLE statement to view the partitioning clauses used in creating a partitioned
table.

• Using the SHOW TABLE STATUS statement to determine whether a table is partitioned.

• Querying the Information Schema PARTITIONS table.

• Using the statement EXPLAIN PARTITIONS SELECT to see which partitions are used by a given
SELECT.

As discussed elsewhere in this chapter, SHOW CREATE TABLE includes in its output the PARTITION BY
clause used to create a partitioned table. For example:

mysql> SHOW CREATE TABLE trb3\G
*************************** 1. row ***************************
 Table: trb3
Create Table: CREATE TABLE `trb3` (
 `id` int(11) default NULL,
 `name` varchar(50) default NULL,
 `purchased` date default NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) ENGINE = MyISAM,
 PARTITION p1 VALUES LESS THAN (1995) ENGINE = MyISAM,
 PARTITION p2 VALUES LESS THAN (2000) ENGINE = MyISAM,
 PARTITION p3 VALUES LESS THAN (2005) ENGINE = MyISAM
)
1 row in set (0.00 sec)

The output from SHOW TABLE STATUS for partitioned tables is the same as that for nonpartitioned tables,
except that the Create_options column contains the string partitioned. The Engine column

3195

Obtaining Information About Partitions

contains the name of the storage engine used by all partitions of the table. (See Section 13.7.5.37, “SHOW
TABLE STATUS Statement”, for more information about this statement.)

You can also obtain information about partitions from INFORMATION_SCHEMA, which contains a
PARTITIONS table. See Section 21.3.14, “The INFORMATION_SCHEMA PARTITIONS Table”.

It is possible to determine which partitions of a partitioned table are involved in a given SELECT query
using EXPLAIN PARTITIONS. The PARTITIONS keyword adds a partitions column to the output of
EXPLAIN listing the partitions from which records would be matched by the query.

Suppose that you have a table trb1 created and populated as follows:

CREATE TABLE trb1 (id INT, name VARCHAR(50), purchased DATE)
 PARTITION BY RANGE(id)
 (
 PARTITION p0 VALUES LESS THAN (3),
 PARTITION p1 VALUES LESS THAN (7),
 PARTITION p2 VALUES LESS THAN (9),
 PARTITION p3 VALUES LESS THAN (11)
);

INSERT INTO trb1 VALUES
 (1, 'desk organiser', '2003-10-15'),
 (2, 'CD player', '1993-11-05'),
 (3, 'TV set', '1996-03-10'),
 (4, 'bookcase', '1982-01-10'),
 (5, 'exercise bike', '2004-05-09'),
 (6, 'sofa', '1987-06-05'),
 (7, 'popcorn maker', '2001-11-22'),
 (8, 'aquarium', '1992-08-04'),
 (9, 'study desk', '1984-09-16'),
 (10, 'lava lamp', '1998-12-25');

You can see which partitions are used in a query such as SELECT * FROM trb1;, as shown here:

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1,p2,p3
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using filesort

In this case, all four partitions are searched. However, when a limiting condition making use of the
partitioning key is added to the query, you can see that only those partitions containing matching values
are scanned, as shown here:

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10

3196

Partition Pruning

 Extra: Using where

EXPLAIN PARTITIONS provides information about keys used and possible keys, just as with the standard
EXPLAIN SELECT statement:

mysql> ALTER TABLE trb1 ADD PRIMARY KEY (id);
Query OK, 10 rows affected (0.03 sec)
Records: 10 Duplicates: 0 Warnings: 0

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 7
 Extra: Using where

You should take note of the following restrictions and limitations on EXPLAIN PARTITIONS:

• You cannot use the PARTITIONS and EXTENDED keywords together in the same EXPLAIN ...
SELECT statement. Attempting to do so produces a syntax error.

• If EXPLAIN PARTITIONS is used to examine a query against a nonpartitioned table, no error is
produced, but the value of the partitions column is always NULL.

The rows column of EXPLAIN PARTITIONS output displays the total number of rows in the table.

See also Section 13.8.2, “EXPLAIN Statement”.

19.4 Partition Pruning
This section discusses an optimization known as partition pruning. The core concept behind partition
pruning is relatively simple, and can be described as “Do not scan partitions where there can be no
matching values”. Suppose that you have a partitioned table t1 defined by this statement:

CREATE TABLE t1 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY RANGE(region_code) (
 PARTITION p0 VALUES LESS THAN (64),
 PARTITION p1 VALUES LESS THAN (128),
 PARTITION p2 VALUES LESS THAN (192),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

Consider the case where you wish to obtain results from a SELECT statement such as this one:

SELECT fname, lname, region_code, dob
 FROM t1
 WHERE region_code > 125 AND region_code < 130;

It is easy to see that none of the rows which ought to be returned are in either of the partitions p0 or p3;
that is, we need to search only in partitions p1 and p2 to find matching rows. By doing so, it is possible to
expend much less time and effort in finding matching rows than would be required to scan all partitions in

3197

Partition Pruning

the table. This “cutting away” of unneeded partitions is known as pruning. When the optimizer can make
use of partition pruning in performing this query, execution of the query can be an order of magnitude
faster than the same query against a nonpartitioned table containing the same column definitions and data.

Note

When pruning is performed on a partitioned MyISAM table, all partitions are opened,
whether or not they are examined, due to the design of the MyISAM storage engine.
This means that you must have a sufficient number of file descriptors available to
cover all partitions of the table. See MyISAM and partition file descriptor usage.

This limitation does not apply to partitioned tables using other MySQL storage
engines such as InnoDB.

The optimizer can perform pruning whenever a WHERE condition can be reduced to either one of the
following two cases:

• partition_column = constant

• partition_column IN (constant1, constant2, ..., constantN)

In the first case, the optimizer simply evaluates the partitioning expression for the value given, determines
which partition contains that value, and scans only this partition. In many cases, the equal sign can be
replaced with another arithmetic comparison, including <, >, <=, >=, and <>. Some queries using BETWEEN
in the WHERE clause can also take advantage of partition pruning. See the examples later in this section.

In the second case, the optimizer evaluates the partitioning expression for each value in the list, creates a
list of matching partitions, and then scans only the partitions in this partition list.

MySQL can apply partition pruning to SELECT, DELETE, and UPDATE statements. An INSERT statement
also accesses only one partition per inserted row; this is true even for a table that is partitioned by HASH or
KEY although this is not currently shown in the output of EXPLAIN.

Pruning can also be applied to short ranges, which the optimizer can convert into equivalent lists of values.
For instance, in the previous example, the WHERE clause can be converted to WHERE region_code IN
(126, 127, 128, 129). Then the optimizer can determine that the first two values in the list are found
in partition p1, the remaining two values in partition p2, and that the other partitions contain no relevant
values and so do not need to be searched for matching rows.

In MySQL 5.6, the optimizer can also perform pruning for WHERE conditions that involve comparisons of the
preceding types on multiple columns for tables that use RANGE COLUMNS or LIST COLUMNS partitioning.

This type of optimization can be applied whenever the partitioning expression consists of an equality
or a range which can be reduced to a set of equalities, or when the partitioning expression represents
an increasing or decreasing relationship. Pruning can also be applied for tables partitioned on a DATE
or DATETIME column when the partitioning expression uses the YEAR() or TO_DAYS() function. In
addition, in MySQL 5.6, pruning can be applied for such tables when the partitioning expression uses the
TO_SECONDS() function.

Suppose that table t2, defined as shown here, is partitioned on a DATE column:

CREATE TABLE t2 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY RANGE(YEAR(dob)) (
 PARTITION d0 VALUES LESS THAN (1970),

3198

Partition Pruning

 PARTITION d1 VALUES LESS THAN (1975),
 PARTITION d2 VALUES LESS THAN (1980),
 PARTITION d3 VALUES LESS THAN (1985),
 PARTITION d4 VALUES LESS THAN (1990),
 PARTITION d5 VALUES LESS THAN (2000),
 PARTITION d6 VALUES LESS THAN (2005),
 PARTITION d7 VALUES LESS THAN MAXVALUE
);

The following statements using t2 can make of use partition pruning:

SELECT * FROM t2 WHERE dob = '1982-06-23';

UPDATE t2 SET region_code = 8 WHERE dob BETWEEN '1991-02-15' AND '1997-04-25';

DELETE FROM t2 WHERE dob >= '1984-06-21' AND dob <= '1999-06-21'

In the case of the last statement, the optimizer can also act as follows:

1. Find the partition containing the low end of the range.

YEAR('1984-06-21') yields the value 1984, which is found in partition d3.

2. Find the partition containing the high end of the range.

YEAR('1999-06-21') evaluates to 1999, which is found in partition d5.

3. Scan only these two partitions and any partitions that may lie between them.

In this case, this means that only partitions d3, d4, and d5 are scanned. The remaining partitions may
be safely ignored (and are ignored).

Important

Invalid DATE and DATETIME values referenced in the WHERE condition of a
statement against a partitioned table are treated as NULL. This means that a query
such as SELECT * FROM partitioned_table WHERE date_column <
'2008-12-00' does not return any values (see Bug #40972).

So far, we have looked only at examples using RANGE partitioning, but pruning can be applied with other
partitioning types as well.

Consider a table that is partitioned by LIST, where the partitioning expression is increasing or
decreasing, such as the table t3 shown here. (In this example, we assume for the sake of brevity that the
region_code column is limited to values between 1 and 10 inclusive.)

CREATE TABLE t3 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY LIST(region_code) (
 PARTITION r0 VALUES IN (1, 3),
 PARTITION r1 VALUES IN (2, 5, 8),
 PARTITION r2 VALUES IN (4, 9),
 PARTITION r3 VALUES IN (6, 7, 10)
);

For a statement such as SELECT * FROM t3 WHERE region_code BETWEEN 1 AND 3, the optimizer
determines in which partitions the values 1, 2, and 3 are found (r0 and r1) and skips the remaining ones
(r2 and r3).

3199

Partition Selection

For tables that are partitioned by HASH or [LINEAR] KEY, partition pruning is also possible in cases in
which the WHERE clause uses a simple = relation against a column used in the partitioning expression.
Consider a table created like this:

CREATE TABLE t4 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY KEY(region_code)
PARTITIONS 8;

A statement that compares a column value with a constant can be pruned:

UPDATE t4 WHERE region_code = 7;

Pruning can also be employed for short ranges, because the optimizer can turn such conditions into IN
relations. For example, using the same table t4 as defined previously, queries such as these can be
pruned:

SELECT * FROM t4 WHERE region_code > 2 AND region_code < 6;

SELECT * FROM t4 WHERE region_code BETWEEN 3 AND 5;

In both these cases, the WHERE clause is transformed by the optimizer into WHERE region_code IN
(3, 4, 5).

Important

This optimization is used only if the range size is smaller than the number of
partitions. Consider this statement:

DELETE FROM t4 WHERE region_code BETWEEN 4 AND 12;

The range in the WHERE clause covers 9 values (4, 5, 6, 7, 8, 9, 10, 11, 12), but t4
has only 8 partitions. This means that the DELETE cannot be pruned.

When a table is partitioned by HASH or [LINEAR] KEY, pruning can be used only on integer columns. For
example, this statement cannot use pruning because dob is a DATE column:

SELECT * FROM t4 WHERE dob >= '2001-04-14' AND dob <= '2005-10-15';

However, if the table stores year values in an INT column, then a query having WHERE year_col >=
2001 AND year_col <= 2005 can be pruned.

In MySQL 5.6.8 and later, partition pruning is disabled for all tables using a storage engine that provides
automatic partitioning, such as the NDB storage engine used by NDB Cluster. (Bug #14672885) Beginning
with MySQL 5.6.10, such tables can be pruned if they are explicitly partitioned. (Bug #14827952)

19.5 Partition Selection

MySQL 5.6 supports explicit selection of partitions and subpartitions that, when executing a statement,
should be checked for rows matching a given WHERE condition. Partition selection is similar to partition
pruning, in that only specific partitions are checked for matches, but differs in two key respects:

1. The partitions to be checked are specified by the issuer of the statement, unlike partition pruning, which
is automatic.

3200

Partition Selection

2. Whereas partition pruning applies only to queries, explicit selection of partitions is supported for both
queries and a number of DML statements.

SQL statements supporting explicit partition selection are listed here:

• SELECT

• DELETE

• INSERT

• REPLACE

• UPDATE

• LOAD DATA.

• LOAD XML.

The remainder of this section discusses explicit partition selection as it applies generally to the statements
just listed, and provides some examples.

Explicit partition selection is implemented using a PARTITION option. For all supported statements, this
option uses the syntax shown here:

 PARTITION (partition_names)

 partition_names:
 partition_name, ...

This option always follows the name of the table to which the partition or partitions belong.
partition_names is a comma-separated list of partitions or subpartitions to be used. Each name in this
list must be the name of an existing partition or subpartition of the specified table; if any of the partitions or
subpartitions are not found, the statement fails with an error (partition 'partition_name' doesn't
exist). Partitions and subpartitions named in partition_names may be listed in any order, and may
overlap.

When the PARTITION option is used, only the partitions and subpartitions listed are checked for matching
rows. This option can be used in a SELECT statement to determine which rows belong to a given partition.
Consider a partitioned table named employees, created and populated using the statements shown here:

SET @@SQL_MODE = '';

CREATE TABLE employees (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 fname VARCHAR(25) NOT NULL,
 lname VARCHAR(25) NOT NULL,
 store_id INT NOT NULL,
 department_id INT NOT NULL
)
 PARTITION BY RANGE(id) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (10),
 PARTITION p2 VALUES LESS THAN (15),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

INSERT INTO employees VALUES
 ('', 'Bob', 'Taylor', 3, 2), ('', 'Frank', 'Williams', 1, 2),
 ('', 'Ellen', 'Johnson', 3, 4), ('', 'Jim', 'Smith', 2, 4),
 ('', 'Mary', 'Jones', 1, 1), ('', 'Linda', 'Black', 2, 3),

3201

Partition Selection

 ('', 'Ed', 'Jones', 2, 1), ('', 'June', 'Wilson', 3, 1),
 ('', 'Andy', 'Smith', 1, 3), ('', 'Lou', 'Waters', 2, 4),
 ('', 'Jill', 'Stone', 1, 4), ('', 'Roger', 'White', 3, 2),
 ('', 'Howard', 'Andrews', 1, 2), ('', 'Fred', 'Goldberg', 3, 3),
 ('', 'Barbara', 'Brown', 2, 3), ('', 'Alice', 'Rogers', 2, 2),
 ('', 'Mark', 'Morgan', 3, 3), ('', 'Karen', 'Cole', 3, 2);

You can see which rows are stored in partition p1 like this:

mysql> SELECT * FROM employees PARTITION (p1);
+----+-------+--------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+--------+----------+---------------+
5	Mary	Jones	1	1
6	Linda	Black	2	3
7	Ed	Jones	2	1
8	June	Wilson	3	1
9	Andy	Smith	1	3
+----+-------+--------+----------+---------------+
5 rows in set (0.00 sec)

The result is the same as obtained by the query SELECT * FROM employees WHERE id BETWEEN 5
AND 9.

To obtain rows from multiple partitions, supply their names as a comma-delimited list. For example,
SELECT * FROM employees PARTITION (p1, p2) returns all rows from partitions p1 and p2 while
excluding rows from the remaining partitions.

Any valid query against a partitioned table can be rewritten with a PARTITION option to restrict the result
to one or more desired partitions. You can use WHERE conditions, ORDER BY and LIMIT options, and
so on. You can also use aggregate functions with HAVING and GROUP BY options. Each of the following
queries produces a valid result when run on the employees table as previously defined:

mysql> SELECT * FROM employees PARTITION (p0, p2)
 -> WHERE lname LIKE 'S%';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 4 | Jim | Smith | 2 | 4 |
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
2 rows in set (0.00 sec)

mysql> SELECT id, CONCAT(fname, ' ', lname) AS name
 -> FROM employees PARTITION (p0) ORDER BY lname;
+----+----------------+
| id | name |
+----+----------------+
3	Ellen Johnson
4	Jim Smith
1	Bob Taylor
2	Frank Williams
+----+----------------+
4 rows in set (0.06 sec)

mysql> SELECT store_id, COUNT(department_id) AS c
 -> FROM employees PARTITION (p1,p2,p3)
 -> GROUP BY store_id HAVING c > 4;
+---+----------+
| c | store_id |
+---+----------+
| 5 | 2 |
| 5 | 3 |
+---+----------+

3202

Partition Selection

2 rows in set (0.00 sec)

Statements using partition selection can be employed with tables using any of the partitioning types
supported in MySQL 5.6. When a table is created using [LINEAR] HASH or [LINEAR] KEY partitioning
and the names of the partitions are not specified, MySQL automatically names the partitions p0, p1,
p2, ..., pN-1, where N is the number of partitions. For subpartitions not explicitly named, MySQL assigns
automatically to the subpartitions in each partition pX the names pXsp0, pXsp1, pXsp2, ..., pXspM-1,
where M is the number of subpartitions. When executing against this table a SELECT (or other SQL
statement for which explicit partition selection is allowed), you can use these generated names in a
PARTITION option, as shown here:

mysql> CREATE TABLE employees_sub (
 -> id INT NOT NULL AUTO_INCREMENT,
 -> fname VARCHAR(25) NOT NULL,
 -> lname VARCHAR(25) NOT NULL,
 -> store_id INT NOT NULL,
 -> department_id INT NOT NULL,
 -> PRIMARY KEY pk (id, lname)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY (lname)
 -> SUBPARTITIONS 2 (
 -> PARTITION p0 VALUES LESS THAN (5),
 -> PARTITION p1 VALUES LESS THAN (10),
 -> PARTITION p2 VALUES LESS THAN (15),
 -> PARTITION p3 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (1.14 sec)

mysql> INSERT INTO employees_sub # re-use data in employees table
 -> SELECT * FROM employees;
Query OK, 18 rows affected (0.09 sec)
Records: 18 Duplicates: 0 Warnings: 0

mysql> SELECT id, CONCAT(fname, ' ', lname) AS name
 -> FROM employees_sub PARTITION (p2sp1);
+----+---------------+
| id | name |
+----+---------------+
| 10 | Lou Waters |
| 14 | Fred Goldberg |
+----+---------------+
2 rows in set (0.00 sec)

You may also use a PARTITION option in the SELECT portion of an INSERT ... SELECT statement, as
shown here:

mysql> CREATE TABLE employees_copy LIKE employees;
Query OK, 0 rows affected (0.28 sec)

mysql> INSERT INTO employees_copy
 -> SELECT * FROM employees PARTITION (p2);
Query OK, 5 rows affected (0.04 sec)
Records: 5 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM employees_copy;
+----+--------+----------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+--------+----------+----------+---------------+
10	Lou	Waters	2	4
11	Jill	Stone	1	4
12	Roger	White	3	2
13	Howard	Andrews	1	2
14	Fred	Goldberg	3	3
+----+--------+----------+----------+---------------+

3203

Partition Selection

5 rows in set (0.00 sec)

Partition selection can also be used with joins. Suppose we create and populate two tables using the
statements shown here:

CREATE TABLE stores (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 city VARCHAR(30) NOT NULL
)
 PARTITION BY HASH(id)
 PARTITIONS 2;

INSERT INTO stores VALUES
 ('', 'Nambucca'), ('', 'Uranga'),
 ('', 'Bellingen'), ('', 'Grafton');

CREATE TABLE departments (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30) NOT NULL
)
 PARTITION BY KEY(id)
 PARTITIONS 2;

INSERT INTO departments VALUES
 ('', 'Sales'), ('', 'Customer Service'),
 ('', 'Delivery'), ('', 'Accounting');

You can explicitly select partitions (or subpartitions, or both) from any or all of the tables in a join. (The
PARTITION option used to select partitions from a given table immediately follows the name of the
table, before all other options, including any table alias.) For example, the following query gets the name,
employee ID, department, and city of all employees who work in the Sales or Delivery department (partition
p1 of the departments table) at the stores in either of the cities of Nambucca and Bellingen (partition p0
of the stores table):

mysql> SELECT
 -> e.id AS 'Employee ID', CONCAT(e.fname, ' ', e.lname) AS Name,
 -> s.city AS City, d.name AS department
 -> FROM employees AS e
 -> JOIN stores PARTITION (p1) AS s ON e.store_id=s.id
 -> JOIN departments PARTITION (p0) AS d ON e.department_id=d.id
 -> ORDER BY e.lname;
+-------------+---------------+-----------+------------+
| Employee ID | Name | City | department |
+-------------+---------------+-----------+------------+
14	Fred Goldberg	Bellingen	Delivery
5	Mary Jones	Nambucca	Sales
17	Mark Morgan	Bellingen	Delivery
9	Andy Smith	Nambucca	Delivery
8	June Wilson	Bellingen	Sales
+-------------+---------------+-----------+------------+
5 rows in set (0.00 sec)

For general information about joins in MySQL, see Section 13.2.9.2, “JOIN Clause”.

When the PARTITION option is used with DELETE statements, only those partitions (and subpartitions, if
any) listed with the option are checked for rows to be deleted. Any other partitions are ignored, as shown
here:

mysql> SELECT * FROM employees WHERE fname LIKE 'j%';
+----+-------+--------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+--------+----------+---------------+
4	Jim	Smith	2	4
8	June	Wilson	3	1
11	Jill	Stone	1	4

3204

Partition Selection

+----+-------+--------+----------+---------------+
3 rows in set (0.00 sec)

mysql> DELETE FROM employees PARTITION (p0, p1)
 -> WHERE fname LIKE 'j%';
Query OK, 2 rows affected (0.09 sec)

mysql> SELECT * FROM employees WHERE fname LIKE 'j%';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

Only the two rows in partitions p0 and p1 matching the WHERE condition were deleted. As you can see
from the result when the SELECT is run a second time, there remains a row in the table matching the
WHERE condition, but residing in a different partition (p2).

UPDATE statements using explicit partition selection behave in the same way; only rows in the partitions
referenced by the PARTITION option are considered when determining the rows to be updated, as can be
seen by executing the following statements:

mysql> UPDATE employees PARTITION (p0)
 -> SET store_id = 2 WHERE fname = 'Jill';
Query OK, 0 rows affected (0.00 sec)
Rows matched: 0 Changed: 0 Warnings: 0

mysql> SELECT * FROM employees WHERE fname = 'Jill';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

mysql> UPDATE employees PARTITION (p2)
 -> SET store_id = 2 WHERE fname = 'Jill';
Query OK, 1 row affected (0.09 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM employees WHERE fname = 'Jill';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 2 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

In the same way, when PARTITION is used with DELETE, only rows in the partition or partitions named in
the partition list are checked for deletion.

For statements that insert rows, the behavior differs in that failure to find a suitable partition causes the
statement to fail. This is true for both INSERT and REPLACE statements, as shown here:

mysql> INSERT INTO employees PARTITION (p2) VALUES (20, 'Jan', 'Jones', 1, 3);
ERROR 1729 (HY000): Found a row not matching the given partition set
mysql> INSERT INTO employees PARTITION (p3) VALUES (20, 'Jan', 'Jones', 1, 3);
Query OK, 1 row affected (0.07 sec)

mysql> REPLACE INTO employees PARTITION (p0) VALUES (20, 'Jan', 'Jones', 3, 2);
ERROR 1729 (HY000): Found a row not matching the given partition set

mysql> REPLACE INTO employees PARTITION (p3) VALUES (20, 'Jan', 'Jones', 3, 2);
Query OK, 2 rows affected (0.09 sec)

3205

Restrictions and Limitations on Partitioning

For statements that write multiple rows to a partitioned table that uses the InnoDB storage engine:
If any row in the list following VALUES cannot be written to one of the partitions specified in the
partition_names list, the entire statement fails and no rows are written. This is shown for INSERT
statements in the following example, reusing the employees table created previously:

mysql> ALTER TABLE employees
 -> REORGANIZE PARTITION p3 INTO (
 -> PARTITION p3 VALUES LESS THAN (20),
 -> PARTITION p4 VALUES LESS THAN (25),
 -> PARTITION p5 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 6 rows affected (2.09 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE employees\G
*************************** 1. row ***************************
 Table: employees
Create Table: CREATE TABLE `employees` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `fname` varchar(25) NOT NULL,
 `lname` varchar(25) NOT NULL,
 `store_id` int(11) NOT NULL,
 `department_id` int(11) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=27 DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (id)
(PARTITION p0 VALUES LESS THAN (5) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (10) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (15) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (20) ENGINE = InnoDB,
 PARTITION p4 VALUES LESS THAN (25) ENGINE = InnoDB,
 PARTITION p5 VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */
1 row in set (0.00 sec)

mysql> INSERT INTO employees PARTITION (p3, p4) VALUES
 -> (24, 'Tim', 'Greene', 3, 1), (26, 'Linda', 'Mills', 2, 1);
ERROR 1729 (HY000): Found a row not matching the given partition set

mysql> INSERT INTO employees PARTITION (p3, p4, p5) VALUES
 -> (24, 'Tim', 'Greene', 3, 1), (26, 'Linda', 'Mills', 2, 1);
Query OK, 2 rows affected (0.06 sec)
Records: 2 Duplicates: 0 Warnings: 0

The preceding is true for both INSERT statements and REPLACE statements that write multiple rows.

In MySQL 5.6.10 and later, partition selection is disabled for tables employing a storage engine that
supplies automatic partitioning, such as NDB. (Bug #14827952)

19.6 Restrictions and Limitations on Partitioning
This section discusses current restrictions and limitations on MySQL partitioning support.

Prohibited constructs. The following constructs are not permitted in partitioning expressions:

• Stored procedures, stored functions, loadable functions, or plugins.

• Declared variables or user variables.

For a list of SQL functions which are permitted in partitioning expressions, see Section 19.6.3, “Partitioning
Limitations Relating to Functions”.

Arithmetic and logical operators. Use of the arithmetic operators +, -, and * is permitted in
partitioning expressions. However, the result must be an integer value or NULL (except in the case of

3206

Restrictions and Limitations on Partitioning

[LINEAR] KEY partitioning, as discussed elsewhere in this chapter; see Section 19.2, “Partitioning
Types”, for more information).

The DIV operator is also supported, and the / operator is not permitted. (Bug #30188, Bug #33182)

The bit operators |, &, ^, <<, >>, and ~ are not permitted in partitioning expressions.

HANDLER statements. In MySQL 5.6, the HANDLER statement is not supported with partitioned tables.

Server SQL mode. Tables employing user-defined partitioning do not preserve the SQL mode in
effect at the time that they were created. As discussed in Section 5.1.10, “Server SQL Modes”, the results
of many MySQL functions and operators may change according to the server SQL mode. Therefore, a
change in the SQL mode at any time after the creation of partitioned tables may lead to major changes
in the behavior of such tables, and could easily lead to corruption or loss of data. For these reasons, it is
strongly recommended that you never change the server SQL mode after creating partitioned tables.

Examples. The following examples illustrate some changes in behavior of partitioned tables due to a
change in the server SQL mode:

1. Error handling. Suppose that you create a partitioned table whose partitioning expression is one
such as column DIV 0 or column MOD 0, as shown here:

mysql> CREATE TABLE tn (c1 INT)
 -> PARTITION BY LIST(1 DIV c1) (
 -> PARTITION p0 VALUES IN (NULL),
 -> PARTITION p1 VALUES IN (1)
 ->);
Query OK, 0 rows affected (0.05 sec)

The default behavior for MySQL is to return NULL for the result of a division by zero, without producing
any errors:

mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
| |
+------------+
1 row in set (0.00 sec)

mysql> INSERT INTO tn VALUES (NULL), (0), (1);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

However, changing the server SQL mode to treat division by zero as an error and to enforce strict error
handling causes the same INSERT statement to fail, as shown here:

mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO tn VALUES (NULL), (0), (1);
ERROR 1365 (22012): Division by 0

2. Table accessibility. Sometimes a change in the server SQL mode can make partitioned tables
unusable. The following CREATE TABLE statement can be executed successfully only if the
NO_UNSIGNED_SUBTRACTION mode is in effect:

mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |

3207

Restrictions and Limitations on Partitioning

+------------+
| |
+------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE tu (c1 BIGINT UNSIGNED)
 -> PARTITION BY RANGE(c1 - 10) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (5),
 -> PARTITION p3 VALUES LESS THAN (10),
 -> PARTITION p4 VALUES LESS THAN (MAXVALUE)
 ->);
ERROR 1563 (HY000): Partition constant is out of partition function domain

mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@sql_mode;
+-------------------------+
| @@sql_mode |
+-------------------------+
| NO_UNSIGNED_SUBTRACTION |
+-------------------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE tu (c1 BIGINT UNSIGNED)
 -> PARTITION BY RANGE(c1 - 10) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (5),
 -> PARTITION p3 VALUES LESS THAN (10),
 -> PARTITION p4 VALUES LESS THAN (MAXVALUE)
 ->);
Query OK, 0 rows affected (0.05 sec)

If you remove the NO_UNSIGNED_SUBTRACTION server SQL mode after creating tu, you may no
longer be able to access this table:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM tu;
ERROR 1563 (HY000): Partition constant is out of partition function domain
mysql> INSERT INTO tu VALUES (20);
ERROR 1563 (HY000): Partition constant is out of partition function domain

Server SQL modes also impact replication of partitioned tables. Differing SQL modes on source and replica
can lead to partitioning expressions being evaluated differently; this can cause the distribution of data
among partitions to be different in the source's and replica's copies of a given table, and may even cause
inserts into partitioned tables that succeed on the source to fail on the replica. For best results, you should
always use the same server SQL mode on the source and on the replica.

Performance considerations. Some effects of partitioning operations on performance are given in the
following list:

• File system operations. Partitioning and repartitioning operations (such as ALTER TABLE
with PARTITION BY ..., REORGANIZE PARTITION, or REMOVE PARTITIONING) depend on
file system operations for their implementation. This means that the speed of these operations
is affected by such factors as file system type and characteristics, disk speed, swap space, file
handling efficiency of the operating system, and MySQL server options and variables that relate to
file handling. In particular, you should make sure that large_files_support is enabled and that
open_files_limit is set properly. For partitioned tables using the MyISAM storage engine, increasing

3208

Restrictions and Limitations on Partitioning

myisam_max_sort_file_size may improve performance; partitioning and repartitioning operations
involving InnoDB tables may be made more efficient by enabling innodb_file_per_table.

See also Maximum number of partitions.

• MyISAM and partition file descriptor usage.
For a partitioned MyISAM table, MySQL uses 2 file descriptors for each partition, for each such table that
is open. This means that you need many more file descriptors to perform operations on a partitioned
MyISAM table than on a table which is identical to it except that the latter table is not partitioned,
particularly when performing ALTER TABLE operations.

Assume a MyISAM table t with 100 partitions, such as the table created by this SQL statement:

CREATE TABLE t (c1 VARCHAR(50))
PARTITION BY KEY (c1) PARTITIONS 100
ENGINE=MYISAM;

Note

For brevity, we use KEY partitioning for the table shown in this example, but file
descriptor usage as described here applies to all partitioned MyISAM tables,
regardless of the type of partitioning that is employed. Partitioned tables using
other storage engines such as InnoDB are not affected by this issue.

Now assume that you wish to repartition t so that it has 101 partitions, using the statement shown here:

ALTER TABLE t PARTITION BY KEY (c1) PARTITIONS 101;

To process this ALTER TABLE statement, MySQL uses 402 file descriptors—that is, two for each of the
100 original partitions, plus two for each of the 101 new partitions. This is because all partitions (old and
new) must be opened concurrently during the reorganization of the table data. It is recommended that,
if you expect to perform such operations, you should make sure that the open_files_limit system
variable is not set too low to accommodate them.

• ALGORITHM and ALTER TABLE. Partitioned tables do not support ALTER TABLE statements with
ALGORITHM=DEFAULT, ALGORITHM=INPLACE, or ALGORITHM=COPY. See Section 13.1.7.1, “ALTER
TABLE Partition Operations”.

• Table locks. Generally, the process executing a partitioning operation on a table takes a write lock on
the table. Reads from such tables are relatively unaffected; pending INSERT and UPDATE operations are
performed as soon as the partitioning operation has completed. For InnoDB-specific information related
to this limitation, see Partitioning Operations.

LOCK is not supported for ALTER TABLE statements on partitioned tables.

• Storage engine. Partitioning operations, queries, and update operations generally tend to be faster
with MyISAM tables than with InnoDB or NDB tables.

• Indexes; partition pruning. As with nonpartitioned tables, proper use of indexes can speed up
queries on partitioned tables significantly. In addition, designing partitioned tables and queries on these
tables to take advantage of partition pruning can improve performance dramatically. See Section 19.4,
“Partition Pruning”, for more information.

Index condition pushdown is not supported for partitioned tables. See Section 8.2.1.5, “Index Condition
Pushdown Optimization”.

• Performance with LOAD DATA. In MySQL 5.6, LOAD DATA uses buffering to improve performance.
You should be aware that the buffer uses 130 KB memory per partition to achieve this.

3209

Restrictions and Limitations on Partitioning

Maximum number of partitions.
Prior to MySQL 5.6.7, the maximum possible number of partitions for a given table not using the NDB
storage engine was 1024. Beginning with MySQL 5.6.7, this limit is increased to 8192 partitions.
Regardless of the MySQL Server version, this maximum includes subpartitions.

The maximum possible number of user-defined partitions for a table using the NDB storage engine is
determined according to the version of the NDB Cluster software being used, the number of data nodes,
and other factors. See NDB and user-defined partitioning, for more information.

If, when creating tables with a large number of partitions (but less than the maximum), you encounter
an error message such as Got error ... from storage engine: Out of resources
when opening file, you may be able to address the issue by increasing the value of the
open_files_limit system variable. However, this is dependent on the operating system, and may not
be possible or advisable on all platforms; see Section B.3.2.17, “File Not Found and Similar Errors”, for
more information. In some cases, using large numbers (hundreds) of partitions may also not be advisable
due to other concerns, so using more partitions does not automatically lead to better results.

See also File system operations.

Query cache not supported.
The query cache is not supported for partitioned tables. Beginning with MySQL 5.6.5, the query cache is
automatically disabled for queries involving partitioned tables, and cannot be enabled for such queries.
(Bug #53775)

Per-partition key caches.
In MySQL 5.6, key caches are supported for partitioned MyISAM tables, using the CACHE INDEX and
LOAD INDEX INTO CACHE statements. Key caches may be defined for one, several, or all partitions, and
indexes for one, several, or all partitions may be preloaded into key caches.

Foreign keys not supported for partitioned InnoDB tables.
Partitioned tables using the InnoDB storage engine do not support foreign keys. More specifically, this
means that the following two statements are true:

1. No definition of an InnoDB table employing user-defined partitioning may contain foreign key
references; no InnoDB table whose definition contains foreign key references may be partitioned.

2. No InnoDB table definition may contain a foreign key reference to a user-partitioned table; no InnoDB
table with user-defined partitioning may contain columns referenced by foreign keys.

The scope of the restrictions just listed includes all tables that use the InnoDB storage engine. CREATE
TABLE and ALTER TABLE statements that would result in tables violating these restrictions are not
allowed.

ALTER TABLE ... ORDER BY. An ALTER TABLE ... ORDER BY column statement run against a
partitioned table causes ordering of rows only within each partition.

Effects on REPLACE statements by modification of primary keys. It can be desirable in some
cases (see Section 19.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”) to modify a table's primary
key. Be aware that, if your application uses REPLACE statements and you do this, the results of these
statements can be drastically altered. See Section 13.2.8, “REPLACE Statement”, for more information
and an example.

FULLTEXT indexes.
Partitioned tables do not support FULLTEXT indexes or searches, even for partitioned tables employing the
InnoDB or MyISAM storage engine.

Spatial columns. Columns with spatial data types such as POINT or GEOMETRY cannot be used in
partitioned tables.

3210

Restrictions and Limitations on Partitioning

Temporary tables.
Temporary tables cannot be partitioned. (Bug #17497)

Log tables. It is not possible to partition the log tables; an ALTER TABLE ... PARTITION BY ...
statement on such a table fails with an error.

Data type of partitioning key.
A partitioning key must be either an integer column or an expression that resolves to an integer.
Expressions employing ENUM columns cannot be used. The column or expression value may also be
NULL. (See Section 19.2.7, “How MySQL Partitioning Handles NULL”.)

There are two exceptions to this restriction:

1. When partitioning by [LINEAR] KEY, it is possible to use columns of any valid MySQL data type other
than TEXT or BLOB as partitioning keys, because MySQL's internal key-hashing functions produce the
correct data type from these types. For example, the following two CREATE TABLE statements are
valid:

CREATE TABLE tkc (c1 CHAR)
PARTITION BY KEY(c1)
PARTITIONS 4;

CREATE TABLE tke
 (c1 ENUM('red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet'))
PARTITION BY LINEAR KEY(c1)
PARTITIONS 6;

2. When partitioning by RANGE COLUMNS or LIST COLUMNS, it is possible to use string, DATE, and
DATETIME columns. For example, each of the following CREATE TABLE statements is valid:

CREATE TABLE rc (c1 INT, c2 DATE)
PARTITION BY RANGE COLUMNS(c2) (
 PARTITION p0 VALUES LESS THAN('1990-01-01'),
 PARTITION p1 VALUES LESS THAN('1995-01-01'),
 PARTITION p2 VALUES LESS THAN('2000-01-01'),
 PARTITION p3 VALUES LESS THAN('2005-01-01'),
 PARTITION p4 VALUES LESS THAN(MAXVALUE)
);

CREATE TABLE lc (c1 INT, c2 CHAR(1))
PARTITION BY LIST COLUMNS(c2) (
 PARTITION p0 VALUES IN('a', 'd', 'g', 'j', 'm', 'p', 's', 'v', 'y'),
 PARTITION p1 VALUES IN('b', 'e', 'h', 'k', 'n', 'q', 't', 'w', 'z'),
 PARTITION p2 VALUES IN('c', 'f', 'i', 'l', 'o', 'r', 'u', 'x', NULL)
);

Neither of the preceding exceptions applies to BLOB or TEXT column types.

Subqueries.
A partitioning key may not be a subquery, even if that subquery resolves to an integer value or NULL.

Column index prefixes not supported for key partitioning. When creating a table that is partitioned
by key, any columns in the partitioning key which use column prefixes are ignored by the table's
partitioning function. Consider the following CREATE TABLE statement, which has three VARCHAR
columns, and whose primary key uses all three columns and specifies prefixes for two of them:

CREATE TABLE t1 (
 a VARCHAR(10000),
 b VARCHAR(25),
 c VARCHAR(10),
 PRIMARY KEY (a(10), b, c(2))
) PARTITION BY KEY() PARTITIONS 2;

3211

Restrictions and Limitations on Partitioning

This statement is accepted, but the resulting table is actually created as if you had issued the following
statement, using only the primary key column which does not include a prefix (column b) for the partitioning
key:

CREATE TABLE t1 (
 a VARCHAR(10000),
 b VARCHAR(25),
 c VARCHAR(10),
 PRIMARY KEY (a(10), b, c(2))
) PARTITION BY KEY(b) PARTITIONS 2;

No warning is issued or any other indication provided that this has occurred, except in the event that all
columns specified for the partitioning key use prefixes, in which case the statement fails with the error
message shown here:

mysql> CREATE TABLE t2 (
 -> a VARCHAR(10000),
 -> b VARCHAR(25),
 -> c VARCHAR(10),
 -> PRIMARY KEY (a(10), b(5), c(2))
 ->) PARTITION BY KEY() PARTITIONS 2;
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the
table's partitioning function

This also occurs when altering or upgrading such tables, and includes cases in which the columns used
in the partitioning function are defined implicitly as those in the table's primary key by employing an empty
PARTITION BY KEY() clause.

This is a known issue which is addressed in MySQL 8.0 by deprecating the permissive behavior; in
MYSQL 8.0, if any columns using prefixes are included in a table's partitioning function, the server logs an
appropriate warning for each such column, or raises a descriptive error if necessary. (Allowing the use of
columns with prefixes in partitioning keys is subject to removal altogether in a future version of MySQL.)

For general information about partitioning tables by key, see Section 19.2.5, “KEY Partitioning”.

Issues with subpartitions.
Subpartitions must use HASH or KEY partitioning. Only RANGE and LIST partitions may be subpartitioned;
HASH and KEY partitions cannot be subpartitioned.

 SUBPARTITION BY KEY requires that the subpartitioning column or columns be specified explicitly,
unlike the case with PARTITION BY KEY, where it can be omitted (in which case the table's primary key
column is used by default). Consider the table created by this statement:

CREATE TABLE ts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30)
);

You can create a table having the same columns, partitioned by KEY, using a statement such as this one:

CREATE TABLE ts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30)
)
PARTITION BY KEY()
PARTITIONS 4;

The previous statement is treated as though it had been written like this, with the table's primary key
column used as the partitioning column:

CREATE TABLE ts (

3212

Restrictions and Limitations on Partitioning

 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30)
)
PARTITION BY KEY(id)
PARTITIONS 4;

However, the following statement that attempts to create a subpartitioned table using the default column as
the subpartitioning column fails, and the column must be specified for the statement to succeed, as shown
here:

mysql> CREATE TABLE ts (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> name VARCHAR(30)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY()
 -> SUBPARTITIONS 4
 -> (
 -> PARTITION p0 VALUES LESS THAN (100),
 -> PARTITION p1 VALUES LESS THAN (MAXVALUE)
 ->);
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near ')

mysql> CREATE TABLE ts (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> name VARCHAR(30)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY(id)
 -> SUBPARTITIONS 4
 -> (
 -> PARTITION p0 VALUES LESS THAN (100),
 -> PARTITION p1 VALUES LESS THAN (MAXVALUE)
 ->);
Query OK, 0 rows affected (0.07 sec)

This is a known issue (see Bug #51470).

DELAYED option not supported. Use of INSERT DELAYED to insert rows into a partitioned table is
not supported. Attempting to do so fails with an error.

DATA DIRECTORY and INDEX DIRECTORY options. DATA DIRECTORY and INDEX DIRECTORY
are subject to the following restrictions when used with partitioned tables:

• Table-level DATA DIRECTORY and INDEX DIRECTORY options are ignored (see Bug #32091).

• On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for individual
partitions or subpartitions of MyISAM tables (Bug #30459). However, you can use DATA DIRECTORY for
individual partitions or subpartitions of InnoDB tables.

Repairing and rebuilding partitioned tables. The statements CHECK TABLE, OPTIMIZE TABLE,
ANALYZE TABLE, and REPAIR TABLE are supported for partitioned tables.

In addition, you can use ALTER TABLE ... REBUILD PARTITION to rebuild one or more partitions of a
partitioned table; ALTER TABLE ... REORGANIZE PARTITION also causes partitions to be rebuilt. See
Section 13.1.7, “ALTER TABLE Statement”, for more information about these two statements.

mysqlcheck, myisamchk, and myisampack are not supported with partitioned tables.

FOR EXPORT option (FLUSH TABLES). The FLUSH TABLES statement's FOR EXPORT option is not
supported for partitioned InnoDB tables in MySQL 5.6.16 and earlier. (Bug #16943907)

3213

Partitioning Keys, Primary Keys, and Unique Keys

19.6.1 Partitioning Keys, Primary Keys, and Unique Keys

This section discusses the relationship of partitioning keys with primary keys and unique keys. The rule
governing this relationship can be expressed as follows: All columns used in the partitioning expression for
a partitioned table must be part of every unique key that the table may have.

In other words, every unique key on the table must use every column in the table's partitioning expression.
(This also includes the table's primary key, since it is by definition a unique key. This particular case is
discussed later in this section.) For example, each of the following table creation statements is invalid:

CREATE TABLE t1 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col2)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1),
 UNIQUE KEY (col3)
)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

In each case, the proposed table would have at least one unique key that does not include all columns
used in the partitioning expression.

Each of the following statements is valid, and represents one way in which the corresponding invalid table
creation statement could be made to work:

CREATE TABLE t1 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col2, col3)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col3)
)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

This example shows the error produced in such cases:

mysql> CREATE TABLE t3 (
 -> col1 INT NOT NULL,
 -> col2 DATE NOT NULL,
 -> col3 INT NOT NULL,
 -> col4 INT NOT NULL,

3214

Partitioning Keys, Primary Keys, and Unique Keys

 -> UNIQUE KEY (col1, col2),
 -> UNIQUE KEY (col3)
 ->)
 -> PARTITION BY HASH(col1 + col3)
 -> PARTITIONS 4;
ERROR 1491 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

The CREATE TABLE statement fails because both col1 and col3 are included in the proposed
partitioning key, but neither of these columns is part of both of unique keys on the table. This shows one
possible fix for the invalid table definition:

mysql> CREATE TABLE t3 (
 -> col1 INT NOT NULL,
 -> col2 DATE NOT NULL,
 -> col3 INT NOT NULL,
 -> col4 INT NOT NULL,
 -> UNIQUE KEY (col1, col2, col3),
 -> UNIQUE KEY (col3)
 ->)
 -> PARTITION BY HASH(col3)
 -> PARTITIONS 4;
Query OK, 0 rows affected (0.05 sec)

In this case, the proposed partitioning key col3 is part of both unique keys, and the table creation
statement succeeds.

The following table cannot be partitioned at all, because there is no way to include in a partitioning key any
columns that belong to both unique keys:

CREATE TABLE t4 (
 col1 INT NOT NULL,
 col2 INT NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col3),
 UNIQUE KEY (col2, col4)
);

Since every primary key is by definition a unique key, this restriction also includes the table's primary key, if
it has one. For example, the next two statements are invalid:

CREATE TABLE t5 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t6 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col3),
 UNIQUE KEY(col2)
)
PARTITION BY HASH(YEAR(col2))
PARTITIONS 4;

In both cases, the primary key does not include all columns referenced in the partitioning expression.
However, both of the next two statements are valid:

3215

Partitioning Keys, Primary Keys, and Unique Keys

CREATE TABLE t7 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2)
)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

CREATE TABLE t8 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2, col4),
 UNIQUE KEY(col2, col1)
)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

If a table has no unique keys—this includes having no primary key—then this restriction does not apply,
and you may use any column or columns in the partitioning expression as long as the column type is
compatible with the partitioning type.

For the same reason, you cannot later add a unique key to a partitioned table unless the key includes all
columns used by the table's partitioning expression. Consider the partitioned table created as shown here:

mysql> CREATE TABLE t_no_pk (c1 INT, c2 INT)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (10),
 -> PARTITION p1 VALUES LESS THAN (20),
 -> PARTITION p2 VALUES LESS THAN (30),
 -> PARTITION p3 VALUES LESS THAN (40)
 ->);
Query OK, 0 rows affected (0.12 sec)

It is possible to add a primary key to t_no_pk using either of these ALTER TABLE statements:

possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1);
Query OK, 0 rows affected (0.13 sec)
Records: 0 Duplicates: 0 Warnings: 0

drop this PK
mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.10 sec)
Records: 0 Duplicates: 0 Warnings: 0

use another possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1, c2);
Query OK, 0 rows affected (0.12 sec)
Records: 0 Duplicates: 0 Warnings: 0

drop this PK
mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0

However, the next statement fails, because c1 is part of the partitioning key, but is not part of the proposed
primary key:

fails with error 1503
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c2);
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

3216

Partitioning Limitations Relating to Storage Engines

Since t_no_pk has only c1 in its partitioning expression, attempting to adding a unique key on c2 alone
fails. However, you can add a unique key that uses both c1 and c2.

These rules also apply to existing nonpartitioned tables that you wish to partition using ALTER TABLE ...
PARTITION BY. Consider a table np_pk created as shown here:

mysql> CREATE TABLE np_pk (
 -> id INT NOT NULL AUTO_INCREMENT,
 -> name VARCHAR(50),
 -> added DATE,
 -> PRIMARY KEY (id)
 ->);
Query OK, 0 rows affected (0.08 sec)

The following ALTER TABLE statement fails with an error, because the added column is not part of any
unique key in the table:

mysql> ALTER TABLE np_pk
 -> PARTITION BY HASH(TO_DAYS(added))
 -> PARTITIONS 4;
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

However, this statement using the id column for the partitioning column is valid, as shown here:

mysql> ALTER TABLE np_pk
 -> PARTITION BY HASH(id)
 -> PARTITIONS 4;
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

In the case of np_pk, the only column that may be used as part of a partitioning expression is id; if you
wish to partition this table using any other column or columns in the partitioning expression, you must first
modify the table, either by adding the desired column or columns to the primary key, or by dropping the
primary key altogether.

19.6.2 Partitioning Limitations Relating to Storage Engines

The following limitations apply to the use of storage engines with user-defined partitioning of tables.

MERGE storage engine. User-defined partitioning and the MERGE storage engine are not compatible.
Tables using the MERGE storage engine cannot be partitioned. Partitioned tables cannot be merged.

FEDERATED storage engine. Partitioning of FEDERATED tables is not supported; it is not possible to
create partitioned FEDERATED tables.

CSV storage engine. Partitioned tables using the CSV storage engine are not supported; it is not
possible to create partitioned CSV tables.

InnoDB storage engine. InnoDB foreign keys and MySQL partitioning are not compatible. Partitioned
InnoDB tables cannot have foreign key references, nor can they have columns referenced by foreign keys.
InnoDB tables which have or which are referenced by foreign keys cannot be partitioned.

InnoDB does not support the use of multiple disks for subpartitions. (This is currently supported only by
MyISAM.)

In addition, ALTER TABLE ... OPTIMIZE PARTITION does not work correctly with partitioned tables
that use the InnoDB storage engine. Use ALTER TABLE ... REBUILD PARTITION and ALTER
TABLE ... ANALYZE PARTITION, instead, for such tables. For more information, see Section 13.1.7.1,
“ALTER TABLE Partition Operations”.

3217

Partitioning Limitations Relating to Functions

User-defined partitioning and the NDB storage engine (NDB Cluster). Partitioning by KEY (including
LINEAR KEY) is the only type of partitioning supported for the NDB storage engine. It is not possible under
normal circumstances in MySQL NDB Cluster 7.4 to create an NDB Cluster table using any partitioning
type other than [LINEAR] KEY, and attempting to do so fails with an error.

Exception (not for production): It is possible to override this restriction by setting the new system variable
on NDB Cluster SQL nodes to ON. If you choose to do this, you should be aware that tables using
partitioning types other than [LINEAR] KEY are not supported in production. In such cases, you can
create and use tables with partitioning types other than KEY or LINEAR KEY, but you do this entirely at
your own risk.

The maximum number of partitions that can be defined for an NDB table depends on the number of data
nodes and node groups in the cluster, the version of the NDB Cluster software in use, and other factors.
See NDB and user-defined partitioning, for more information.

The maximum amount of fixed-size data that can be stored per partition in an NDB table is 16 GB.

CREATE TABLE and ALTER TABLE statements that would cause a user-partitioned NDB table not to meet
either or both of the following two requirements are not permitted, and fail with an error:

1. The table must have an explicit primary key.

2. All columns listed in the table's partitioning expression must be part of the primary key.

Exception. If a user-partitioned NDB table is created using an empty column-list (that is, using
PARTITION BY KEY() or PARTITION BY LINEAR KEY()), then no explicit primary key is required.

Partition selection. Partition selection is not supported for NDB tables. See Section 19.5, “Partition
Selection”, for more information.

Upgrading partitioned tables. When performing an upgrade, tables which are partitioned by KEY and
which use any storage engine other than NDB must be dumped and reloaded.

Same storage engine for all partitions. All partitions of a partitioned table must use the same storage
engine and it must be the same storage engine used by the table as a whole. In addition, if one does not
specify an engine on the table level, then one must do either of the following when creating or altering a
partitioned table:

• Do not specify any engine for any partition or subpartition

• Specify the engine for all partitions or subpartitions

19.6.3 Partitioning Limitations Relating to Functions

This section discusses limitations in MySQL Partitioning relating specifically to functions used in
partitioning expressions.

Only the MySQL functions shown in the following list are allowed in partitioning expressions:

• ABS()

• CEILING() (see CEILING() and FLOOR())

• DATEDIFF()

• DAY()

3218

Partitioning Limitations Relating to Functions

• DAYOFMONTH()

• DAYOFWEEK()

• DAYOFYEAR()

• EXTRACT() (see EXTRACT() function with WEEK specifier)

• FLOOR() (see CEILING() and FLOOR())

• HOUR()

• MICROSECOND()

• MINUTE()

• MOD()

• MONTH()

• QUARTER()

• SECOND()

• TIME_TO_SEC()

• TO_DAYS()

• TO_SECONDS()

• UNIX_TIMESTAMP() (with TIMESTAMP columns)

• WEEKDAY()

• YEAR()

• YEARWEEK()

In MySQL 5.6, range optimization can be used for the TO_DAYS(), TO_SECONDS(), and YEAR()
functions. In addition, beginning with MySQL 5.6.3, UNIX_TIMESTAMP() is treated as monotonic in
partitioning expressions. See Section 19.4, “Partition Pruning”, for more information.

CEILING() and FLOOR(). Each of these functions returns an integer only if it is passed an argument
of an exact numeric type, such as one of the INT types or DECIMAL. This means, for example, that the
following CREATE TABLE statement fails with an error, as shown here:

mysql> CREATE TABLE t (c FLOAT) PARTITION BY LIST(FLOOR(c))(
 -> PARTITION p0 VALUES IN (1,3,5),
 -> PARTITION p1 VALUES IN (2,4,6)
 ->);
ERROR 1490 (HY000): The PARTITION function returns the wrong type

EXTRACT() function with WEEK specifier. The value returned by the EXTRACT() function, when
used as EXTRACT(WEEK FROM col), depends on the value of the default_week_format system
variable. For this reason, beginning with MySQL 5.6.2, EXTRACT() is no longer permitted as a partitioning
function when it specifies the unit as WEEK. (Bug #54483)

See Section 12.6.2, “Mathematical Functions”, for more information about the return types of these
functions, as well as Section 11.1, “Numeric Data Types”.

3219

Partitioning and Locking

19.6.4 Partitioning and Locking

In MySQL 5.6.5 and earlier, for storage engines such as MyISAM that actually execute table-level locks
when executing DML or DDL statements, such a statement affecting a partitioned table imposed a lock
on the table as a whole; that is, all partitions were locked until the statement was finished. MySQL 5.6.6
implements partition lock pruning, which eliminates unneeded locks in many cases. In MySQL 5.6.6
and later, most statements reading from or updating a partitioned MyISAM table cause only the effected
partitions to be locked. For example, prior to MySQL 5.6.6, a SELECT from a partitioned MyISAM table
caused a lock on the entire table; in MySQL 5.6.6 and later, only those partitions actually containing rows
that satisfy the SELECT statement's WHERE condition are locked. This has the effect of increasing the
speed and efficiency of concurrent operations on partitioned MyISAM tables. This improvement becomes
particularly noticeable when working with MyISAM tables that have many (32 or more) partitions.

This change in behavior does not have any impact on statements affecting partitioned tables using storage
engines such as InnoDB, that employ row-level locking and do not actually perform (or need to perform)
the locks prior to partition pruning.

The next few paragraphs discuss the effects of partition lock pruning for various MySQL statements on
tables using storage engines that employ table-level locks.

Effects on DML statements

SELECT statements (including those containing unions or joins) now lock only those partitions that actually
need to be read. This also applies to SELECT ... PARTITION.

An UPDATE prunes locks only for tables on which no partitioning columns are updated.

REPLACE and INSERT now lock only those partitions having rows to be inserted or replaced. However, if
an AUTO_INCREMENT value is generated for any partitioning column then all partitions are locked.

INSERT ... ON DUPLICATE KEY UPDATE is pruned as long as no partitioning column is updated.

INSERT ... SELECT now locks only those partitions in the source table that need to be read, although all
partitions in the target table are locked.

Note

INSERT DELAYED is not supported for partitioned tables.

Locks imposed by LOAD DATA statements on partitioned tables cannot be pruned.

The presence of BEFORE INSERT or BEFORE UPDATE triggers using any partitioning column of a
partitioned table means that locks on INSERT and UPDATE statements updating this table cannot be
pruned, since the trigger can alter its values: A BEFORE INSERT trigger on any of the table's partitioning
columns means that locks set by INSERT or REPLACE cannot be pruned, since the BEFORE INSERT
trigger may change a row's partitioning columns before the row is inserted, forcing the row into a different
partition than it would be otherwise. A BEFORE UPDATE trigger on a partitioning column means that locks
imposed by UPDATE or INSERT ... ON DUPLICATE KEY UPDATE cannot be pruned.

Affected DDL statements

CREATE VIEW no longer causes any locks.

ALTER TABLE ... EXCHANGE PARTITION now prunes locks; only the exchanged table and the
exchanged partition are locked.

3220

Partitioning and Locking

ALTER TABLE ... TRUNCATE PARTITION now prunes locks; only the partitions to be emptied are
locked.

ALTER TABLE statements still take metadata locks on the table level.

Other statements

LOCK TABLES cannot prune partition locks.

CALL stored_procedure(expr) supports lock pruning, but evaluating expr does not.

DO and SET statements do not support partitioning lock pruning.

3221

3222

Chapter 20 Stored Objects

Table of Contents
20.1 Defining Stored Programs ... 3224
20.2 Using Stored Routines .. 3225

20.2.1 Stored Routine Syntax .. 3226
20.2.2 Stored Routines and MySQL Privileges ... 3227
20.2.3 Stored Routine Metadata .. 3227
20.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() 3227

20.3 Using Triggers .. 3227
20.3.1 Trigger Syntax and Examples ... 3228
20.3.2 Trigger Metadata .. 3232

20.4 Using the Event Scheduler .. 3232
20.4.1 Event Scheduler Overview .. 3233
20.4.2 Event Scheduler Configuration .. 3234
20.4.3 Event Syntax .. 3236
20.4.4 Event Metadata .. 3236
20.4.5 Event Scheduler Status .. 3237
20.4.6 The Event Scheduler and MySQL Privileges .. 3237

20.5 Using Views .. 3240
20.5.1 View Syntax ... 3240
20.5.2 View Processing Algorithms .. 3241
20.5.3 Updatable and Insertable Views .. 3242
20.5.4 The View WITH CHECK OPTION Clause .. 3244
20.5.5 View Metadata ... 3244

20.6 Stored Object Access Control .. 3245
20.7 Stored Program Binary Logging ... 3248
20.8 Restrictions on Stored Programs ... 3254
20.9 Restrictions on Views .. 3258

This chapter discusses stored database objects that are defined in terms of SQL code that is stored on the
server for later execution.

Stored objects include these object types:

• Stored procedure: An object created with CREATE PROCEDURE and invoked using the CALL statement.
A procedure does not have a return value but can modify its parameters for later inspection by the caller.
It can also generate result sets to be returned to the client program.

• Stored function: An object created with CREATE FUNCTION and used much like a built-in function. You
invoke it in an expression and it returns a value during expression evaluation.

• Trigger: An object created with CREATE TRIGGER that is associated with a table. A trigger is activated
when a particular event occurs for the table, such as an insert or update.

• Event: An object created with CREATE EVENT and invoked by the server according to schedule.

• View: An object created with CREATE VIEW that when referenced produces a result set. A view acts as
a virtual table.

Terminology used in this document reflects the stored object hierarchy:

• Stored routines include stored procedures and functions.

3223

Defining Stored Programs

• Stored programs include stored routines, triggers, and events.

• Stored objects include stored programs and views.

This chapter describes how to use stored objects. The following sections provide additional information
about SQL syntax for statements related to these objects, and about object processing:

• For each object type, there are CREATE, ALTER, and DROP statements that control which objects exist
and how they are defined. See Section 13.1, “Data Definition Statements”.

• The CALL statement is used to invoke stored procedures. See Section 13.2.1, “CALL Statement”.

• Stored program definitions include a body that may use compound statements, loops, conditionals, and
declared variables. See Section 13.6, “Compound Statements”.

• Metadata changes to objects referred to by stored programs are detected and cause automatic reparsing
of the affected statements when the program is next executed. For more information, see Section 8.10.4,
“Caching of Prepared Statements and Stored Programs”.

20.1 Defining Stored Programs

Each stored program contains a body that consists of an SQL statement. This statement may be a
compound statement made up of several statements separated by semicolon (;) characters. For example,
the following stored procedure has a body made up of a BEGIN ... END block that contains a SET
statement and a REPEAT loop that itself contains another SET statement:

CREATE PROCEDURE dorepeat(p1 INT)
BEGIN
 SET @x = 0;
 REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
END;

If you use the mysql client program to define a stored program containing semicolon characters, a
problem arises. By default, mysql itself recognizes the semicolon as a statement delimiter, so you must
redefine the delimiter temporarily to cause mysql to pass the entire stored program definition to the server.

To redefine the mysql delimiter, use the delimiter command. The following example shows how to
do this for the dorepeat() procedure just shown. The delimiter is changed to // to enable the entire
definition to be passed to the server as a single statement, and then restored to ; before invoking the
procedure. This enables the ; delimiter used in the procedure body to be passed through to the server
rather than being interpreted by mysql itself.

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 -> BEGIN
 -> SET @x = 0;
 -> REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
 -> END
 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL dorepeat(1000);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x;
+------+
| @x |

3224

Using Stored Routines

+------+
| 1001 |
+------+
1 row in set (0.00 sec)

You can redefine the delimiter to a string other than //, and the delimiter can consist of a single character
or multiple characters. You should avoid the use of the backslash (\) character because that is the escape
character for MySQL.

The following is an example of a function that takes a parameter, performs an operation using an SQL
function, and returns the result. In this case, it is unnecessary to use delimiter because the function
definition contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
 -> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)

20.2 Using Stored Routines
MySQL supports stored routines (procedures and functions). A stored routine is a set of SQL statements
that can be stored in the server. Once this has been done, clients don't need to keep reissuing the
individual statements but can refer to the stored routine instead.

Stored routines require the proc table in the mysql database. This table is created during the MySQL
installation procedure. If you are upgrading to MySQL 5.6 from an earlier version, be sure to update your
grant tables to make sure that the proc table exists. See Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”.

Stored routines can be particularly useful in certain situations:

• When multiple client applications are written in different languages or work on different platforms, but
need to perform the same database operations.

• When security is paramount. Banks, for example, use stored procedures and functions for all common
operations. This provides a consistent and secure environment, and routines can ensure that each
operation is properly logged. In such a setup, applications and users would have no access to the
database tables directly, but can only execute specific stored routines.

Stored routines can provide improved performance because less information needs to be sent between
the server and the client. The tradeoff is that this does increase the load on the database server because
more of the work is done on the server side and less is done on the client (application) side. Consider this if
many client machines (such as Web servers) are serviced by only one or a few database servers.

Stored routines also enable you to have libraries of functions in the database server. This is a feature
shared by modern application languages that enable such design internally (for example, by using
classes). Using these client application language features is beneficial for the programmer even outside
the scope of database use.

MySQL follows the SQL:2003 syntax for stored routines, which is also used by IBM's DB2. All syntax
described here is supported and any limitations and extensions are documented where appropriate.

3225

Additional Resources

Additional Resources

• You may find the Stored Procedures User Forum of use when working with stored procedures and
functions.

• For answers to some commonly asked questions regarding stored routines in MySQL, see Section A.4,
“MySQL 5.6 FAQ: Stored Procedures and Functions”.

• There are some restrictions on the use of stored routines. See Section 20.8, “Restrictions on Stored
Programs”.

• Binary logging for stored routines takes place as described in Section 20.7, “Stored Program Binary
Logging”.

20.2.1 Stored Routine Syntax

A stored routine is either a procedure or a function. Stored routines are created with the CREATE
PROCEDURE and CREATE FUNCTION statements (see Section 13.1.15, “CREATE PROCEDURE and
CREATE FUNCTION Statements”). A procedure is invoked using a CALL statement (see Section 13.2.1,
“CALL Statement”), and can only pass back values using output variables. A function can be called from
inside a statement just like any other function (that is, by invoking the function's name), and can return a
scalar value. The body of a stored routine can use compound statements (see Section 13.6, “Compound
Statements”).

Stored routines can be dropped with the DROP PROCEDURE and DROP FUNCTION statements (see
Section 13.1.26, “DROP PROCEDURE and DROP FUNCTION Statements”), and altered with the ALTER
PROCEDURE and ALTER FUNCTION statements (see Section 13.1.5, “ALTER PROCEDURE Statement”).

A stored procedure or function is associated with a particular database. This has several implications:

• When the routine is invoked, an implicit USE db_name is performed (and undone when the routine
terminates). USE statements within stored routines are not permitted.

• You can qualify routine names with the database name. This can be used to refer to a routine that is not
in the current database. For example, to invoke a stored procedure p or function f that is associated with
the test database, you can say CALL test.p() or test.f().

• When a database is dropped, all stored routines associated with it are dropped as well.

Stored functions cannot be recursive.

Recursion in stored procedures is permitted but disabled by default. To enable recursion, set
the max_sp_recursion_depth server system variable to a value greater than zero. Stored
procedure recursion increases the demand on thread stack space. If you increase the value of
max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the value of
thread_stack at server startup. See Section 5.1.7, “Server System Variables”, for more information.

MySQL supports a very useful extension that enables the use of regular SELECT statements (that
is, without using cursors or local variables) inside a stored procedure. The result set of such a query
is simply sent directly to the client. Multiple SELECT statements generate multiple result sets, so the
client must use a MySQL client library that supports multiple result sets. This means the client must
use a client library from a version of MySQL at least as recent as 4.1. The client should also specify
the CLIENT_MULTI_RESULTS option when it connects. For C programs, this can be done with the
mysql_real_connect() C API function. See mysql_real_connect(), and Multiple Statement Execution
Support.

3226

https://forums.mysql.com/list.php?98
https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/5.6/en/c-api-multiple-queries.html
https://dev.mysql.com/doc/c-api/5.6/en/c-api-multiple-queries.html

Stored Routines and MySQL Privileges

20.2.2 Stored Routines and MySQL Privileges

The MySQL grant system takes stored routines into account as follows:

• The CREATE ROUTINE privilege is needed to create stored routines.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines. This privilege is granted
automatically to the creator of a routine if necessary, and dropped from the creator when the routine is
dropped.

• The EXECUTE privilege is required to execute stored routines. However, this privilege is granted
automatically to the creator of a routine if necessary (and dropped from the creator when the routine is
dropped). Also, the default SQL SECURITY characteristic for a routine is DEFINER, which enables users
who have access to the database with which the routine is associated to execute the routine.

• If the automatic_sp_privileges system variable is 0, the EXECUTE and ALTER ROUTINE privileges
are not automatically granted to and dropped from the routine creator.

• The creator of a routine is the account used to execute the CREATE statement for it. This might not be
the same as the account named as the DEFINER in the routine definition.

The server manipulates the mysql.proc table in response to statements that create, alter, or drop stored
routines. It is not supported that the server notices manual manipulation of this table.

20.2.3 Stored Routine Metadata

To obtain metadata about stored routines:

• Query the ROUTINES table of the INFORMATION_SCHEMA database. See Section 21.3.19, “The
INFORMATION_SCHEMA ROUTINES Table”.

• Use the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements to see routine
definitions. See Section 13.7.5.11, “SHOW CREATE PROCEDURE Statement”.

• Use the SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS statements to see routine
characteristics. See Section 13.7.5.29, “SHOW PROCEDURE STATUS Statement”.

• Use the SHOW PROCEDURE CODE and SHOW FUNCTION CODE statements to see a representation
of the internal implementation of the routine. See Section 13.7.5.28, “SHOW PROCEDURE CODE
Statement”.

20.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

Within the body of a stored routine (procedure or function) or a trigger, the value of LAST_INSERT_ID()
changes the same way as for statements executed outside the body of these kinds of objects (see
Section 12.16, “Information Functions”). The effect of a stored routine or trigger upon the value of
LAST_INSERT_ID() that is seen by following statements depends on the kind of routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the changed
value is seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or trigger
ends, so following statements do not see a changed value.

20.3 Using Triggers

3227

Additional Resources

A trigger is a named database object that is associated with a table, and that activates when a particular
event occurs for the table. Some uses for triggers are to perform checks of values to be inserted into a
table or to perform calculations on values involved in an update.

A trigger is defined to activate when a statement inserts, updates, or deletes rows in the associated table.
These row operations are trigger events. For example, rows can be inserted by INSERT or LOAD DATA
statements, and an insert trigger activates for each inserted row. A trigger can be set to activate either
before or after the trigger event. For example, you can have a trigger activate before each row that is
inserted into a table or after each row that is updated.

Important

MySQL triggers activate only for changes made to tables by SQL statements. This
includes changes to base tables that underlie updatable views. Triggers do not
activate for changes to tables made by APIs that do not transmit SQL statements
to the MySQL Server. This means that triggers are not activated by updates made
using the NDB API.

Triggers are not activated by changes in INFORMATION_SCHEMA or
performance_schema tables. Those tables are actually views and triggers are not
permitted on views.

The following sections describe the syntax for creating and dropping triggers, show some examples of how
to use them, and indicate how to obtain trigger metadata.

Additional Resources

• You may find the MySQL User Forums helpful when working with triggers.

• For answers to commonly asked questions regarding triggers in MySQL, see Section A.5, “MySQL 5.6
FAQ: Triggers”.

• There are some restrictions on the use of triggers; see Section 20.8, “Restrictions on Stored Programs”.

• Binary logging for triggers takes place as described in Section 20.7, “Stored Program Binary Logging”.

20.3.1 Trigger Syntax and Examples

To create a trigger or drop a trigger, use the CREATE TRIGGER or DROP TRIGGER statement, described in
Section 13.1.19, “CREATE TRIGGER Statement”, and Section 13.1.30, “DROP TRIGGER Statement”.

Here is a simple example that associates a trigger with a table, to activate for INSERT operations. The
trigger acts as an accumulator, summing the values inserted into one of the columns of the table.

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
 FOR EACH ROW SET @sum = @sum + NEW.amount;
Query OK, 0 rows affected (0.01 sec)

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the account
table. It also includes clauses that specify the trigger action time, the triggering event, and what to do when
the trigger activates:

• The keyword BEFORE indicates the trigger action time. In this case, the trigger activates before each row
inserted into the table. The other permitted keyword here is AFTER.

3228

https://forums.mysql.com/list.php?20

Trigger Syntax and Examples

• The keyword INSERT indicates the trigger event; that is, the type of operation that activates the trigger.
In the example, INSERT operations cause trigger activation. You can also create triggers for DELETE
and UPDATE operations.

• The statement following FOR EACH ROW defines the trigger body; that is, the statement to execute
each time the trigger activates, which occurs once for each row affected by the triggering event. In the
example, the trigger body is a simple SET that accumulates into a user variable the values inserted into
the amount column. The statement refers to the column as NEW.amount which means “the value of the
amount column to be inserted into the new row.”

To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see what
value the variable has afterward:

mysql> SET @sum = 0;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted';
+-----------------------+
| Total amount inserted |
+-----------------------+
| 1852.48 |
+-----------------------+

In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 - 100,
or 1852.48.

To destroy the trigger, use a DROP TRIGGER statement. You must specify the schema name if the trigger
is not in the default schema:

mysql> DROP TRIGGER test.ins_sum;

If you drop a table, any triggers for the table are also dropped.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names within a
schema. Triggers in different schemas can have the same name.

In addition to the requirement that trigger names be unique for a schema, there are other limitations on
the types of triggers you can create. In particular, there cannot be multiple triggers for a given table that
have the same trigger event and action time. For example, you cannot have two BEFORE UPDATE triggers
for a table. To work around this, you can define a trigger that executes multiple statements by using the
BEGIN ... END compound statement construct after FOR EACH ROW. (An example appears later in this
section.)

Within the trigger body, the OLD and NEW keywords enable you to access columns in the rows affected by a
trigger. OLD and NEW are MySQL extensions to triggers; they are not case-sensitive.

In an INSERT trigger, only NEW.col_name can be used; there is no old row. In a DELETE trigger, only
OLD.col_name can be used; there is no new row. In an UPDATE trigger, you can use OLD.col_name to
refer to the columns of a row before it is updated and NEW.col_name to refer to the columns of the row
after it is updated.

A column named with OLD is read only. You can refer to it (if you have the SELECT privilege), but not
modify it. You can refer to a column named with NEW if you have the SELECT privilege for it. In a BEFORE
trigger, you can also change its value with SET NEW.col_name = value if you have the UPDATE
privilege for it. This means you can use a trigger to modify the values to be inserted into a new row or used
to update a row. (Such a SET statement has no effect in an AFTER trigger because the row change will
have already occurred.)

In a BEFORE trigger, the NEW value for an AUTO_INCREMENT column is 0, not the sequence number that is
generated automatically when the new row actually is inserted.

3229

Trigger Syntax and Examples

By using the BEGIN ... END construct, you can define a trigger that executes multiple statements.
Within the BEGIN block, you also can use other syntax that is permitted within stored routines such as
conditionals and loops. However, just as for stored routines, if you use the mysql program to define a
trigger that executes multiple statements, it is necessary to redefine the mysql statement delimiter so
that you can use the ; statement delimiter within the trigger definition. The following example illustrates
these points. It defines an UPDATE trigger that checks the new value to be used for updating each row, and
modifies the value to be within the range from 0 to 100. This must be a BEFORE trigger because the value
must be checked before it is used to update the row:

mysql> delimiter //
mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account
 -> FOR EACH ROW
 -> BEGIN
 -> IF NEW.amount < 0 THEN
 -> SET NEW.amount = 0;
 -> ELSEIF NEW.amount > 100 THEN
 -> SET NEW.amount = 100;
 -> END IF;
 -> END;//
mysql> delimiter ;

It can be easier to define a stored procedure separately and then invoke it from the trigger using a simple
CALL statement. This is also advantageous if you want to execute the same code from within several
triggers.

There are limitations on what can appear in statements that a trigger executes when activated:

• The trigger cannot use the CALL statement to invoke stored procedures that return data to the client or
that use dynamic SQL. (Stored procedures are permitted to return data to the trigger through OUT or
INOUT parameters.)

• The trigger cannot use statements that explicitly or implicitly begin or end a transaction, such as START
TRANSACTION, COMMIT, or ROLLBACK. (ROLLBACK to SAVEPOINT is permitted because it does not
end a transaction.).

See also Section 20.8, “Restrictions on Stored Programs”.

MySQL handles errors during trigger execution as follows:

• If a BEFORE trigger fails, the operation on the corresponding row is not performed.

• A BEFORE trigger is activated by the attempt to insert or modify the row, regardless of whether the
attempt subsequently succeeds.

• An AFTER trigger is executed only if any BEFORE triggers and the row operation execute successfully.

• An error during either a BEFORE or AFTER trigger results in failure of the entire statement that caused
trigger invocation.

• For transactional tables, failure of a statement should cause rollback of all changes performed by the
statement. Failure of a trigger causes the statement to fail, so trigger failure also causes rollback. For
nontransactional tables, such rollback cannot be done, so although the statement fails, any changes
performed prior to the point of the error remain in effect.

Triggers can contain direct references to tables by name, such as the trigger named testref shown in
this example:

CREATE TABLE test1(a1 INT);
CREATE TABLE test2(a2 INT);

3230

Trigger Syntax and Examples

CREATE TABLE test3(a3 INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
CREATE TABLE test4(
 a4 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b4 INT DEFAULT 0
);

delimiter |

CREATE TRIGGER testref BEFORE INSERT ON test1
 FOR EACH ROW
 BEGIN
 INSERT INTO test2 SET a2 = NEW.a1;
 DELETE FROM test3 WHERE a3 = NEW.a1;
 UPDATE test4 SET b4 = b4 + 1 WHERE a4 = NEW.a1;
 END;
|

delimiter ;

INSERT INTO test3 (a3) VALUES
 (NULL), (NULL), (NULL), (NULL), (NULL),
 (NULL), (NULL), (NULL), (NULL), (NULL);

INSERT INTO test4 (a4) VALUES
 (0), (0), (0), (0), (0), (0), (0), (0), (0), (0);

Suppose that you insert the following values into table test1 as shown here:

mysql> INSERT INTO test1 VALUES
 (1), (3), (1), (7), (1), (8), (4), (4);
Query OK, 8 rows affected (0.01 sec)
Records: 8 Duplicates: 0 Warnings: 0

As a result, the four tables contain the following data:

mysql> SELECT * FROM test1;
+------+
| a1 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test2;
+------+
| a2 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test3;
+----+

3231

Trigger Metadata

| a3 |
+----+
| 2 |
| 5 |
| 6 |
| 9 |
| 10 |
+----+
5 rows in set (0.00 sec)

mysql> SELECT * FROM test4;
+----+------+
| a4 | b4 |
+----+------+
1	3
2	0
3	1
4	2
5	0
6	0
7	1
8	1
9	0
10	0
+----+------+
10 rows in set (0.00 sec)

20.3.2 Trigger Metadata

To obtain metadata about triggers:

• Query the TRIGGERS table of the INFORMATION_SCHEMA database. See Section 21.3.27, “The
INFORMATION_SCHEMA TRIGGERS Table”.

• Use the SHOW CREATE TRIGGER statement. See Section 13.7.5.13, “SHOW CREATE TRIGGER
Statement”.

• Use the SHOW TRIGGERS statement. See Section 13.7.5.39, “SHOW TRIGGERS Statement”.

20.4 Using the Event Scheduler

The MySQL Event Scheduler manages the scheduling and execution of events, that is, tasks that run
according to a schedule. The following discussion covers the Event Scheduler and is divided into the
following sections:

• Section 20.4.1, “Event Scheduler Overview”, provides an introduction to and conceptual overview of
MySQL Events.

• Section 20.4.3, “Event Syntax”, discusses the SQL statements for creating, altering, and dropping
MySQL Events.

• Section 20.4.4, “Event Metadata”, shows how to obtain information about events and how this
information is stored by the MySQL Server.

• Section 20.4.6, “The Event Scheduler and MySQL Privileges”, discusses the privileges required to work
with events and the ramifications that events have with regard to privileges when executing.

Stored routines require the event table in the mysql database. This table is created during the MySQL
5.6 installation procedure. If you are upgrading to MySQL 5.6 from an earlier version, be sure to update
your grant tables to make sure that the event table exists. See Section 2.11, “Upgrading MySQL”.

3232

Additional Resources

Additional Resources

• There are some restrictions on the use of events; see Section 20.8, “Restrictions on Stored Programs”.

• Binary logging for events takes place as described in Section 20.7, “Stored Program Binary Logging”.

• You may also find the MySQL User Forums to be helpful.

20.4.1 Event Scheduler Overview

MySQL Events are tasks that run according to a schedule. Therefore, we sometimes refer to them as
scheduled events. When you create an event, you are creating a named database object containing one or
more SQL statements to be executed at one or more regular intervals, beginning and ending at a specific
date and time. Conceptually, this is similar to the idea of the Unix crontab (also known as a “cron job”) or
the Windows Task Scheduler.

Scheduled tasks of this type are also sometimes known as “temporal triggers”, implying that these are
objects that are triggered by the passage of time. While this is essentially correct, we prefer to use the
term events to avoid confusion with triggers of the type discussed in Section 20.3, “Using Triggers”. Events
should more specifically not be confused with “temporary triggers”. Whereas a trigger is a database object
whose statements are executed in response to a specific type of event that occurs on a given table, a
(scheduled) event is an object whose statements are executed in response to the passage of a specified
time interval.

While there is no provision in the SQL Standard for event scheduling, there are precedents in other
database systems, and you may notice some similarities between these implementations and that found in
the MySQL Server.

MySQL Events have the following major features and properties:

• In MySQL, an event is uniquely identified by its name and the schema to which it is assigned.

• An event performs a specific action according to a schedule. This action consists of an SQL statement,
which can be a compound statement in a BEGIN ... END block if desired (see Section 13.6,
“Compound Statements”). An event's timing can be either one-time or recurrent. A one-time event
executes one time only. A recurrent event repeats its action at a regular interval, and the schedule for
a recurring event can be assigned a specific start day and time, end day and time, both, or neither. (By
default, a recurring event's schedule begins as soon as it is created, and continues indefinitely, until it is
disabled or dropped.)

If a repeating event does not terminate within its scheduling interval, the result may be multiple instances
of the event executing simultaneously. If this is undesirable, you should institute a mechanism to prevent
simultaneous instances. For example, you could use the GET_LOCK() function, or row or table locking.

• Users can create, modify, and drop scheduled events using SQL statements intended for these
purposes. Syntactically invalid event creation and modification statements fail with an appropriate error
message. A user may include statements in an event's action which require privileges that the user does
not actually have. The event creation or modification statement succeeds but the event's action fails. See
Section 20.4.6, “The Event Scheduler and MySQL Privileges” for details.

• Many of the properties of an event can be set or modified using SQL statements. These properties
include the event's name, timing, persistence (that is, whether it is preserved following the expiration
of its schedule), status (enabled or disabled), action to be performed, and the schema to which it is
assigned. See Section 13.1.2, “ALTER EVENT Statement”.

The default definer of an event is the user who created the event, unless the event has been altered, in
which case the definer is the user who issued the last ALTER EVENT statement affecting that event. An

3233

https://forums.mysql.com/list.php?20

Event Scheduler Configuration

event can be modified by any user having the EVENT privilege on the database for which the event is
defined. See Section 20.4.6, “The Event Scheduler and MySQL Privileges”.

• An event's action statement may include most SQL statements permitted within stored routines. For
restrictions, see Section 20.8, “Restrictions on Stored Programs”.

20.4.2 Event Scheduler Configuration

Events are executed by a special event scheduler thread; when we refer to the Event Scheduler, we
actually refer to this thread. When running, the event scheduler thread and its current state can be seen by
users having the PROCESS privilege in the output of SHOW PROCESSLIST, as shown in the discussion that
follows.

The global event_scheduler system variable determines whether the Event Scheduler is enabled and
running on the server. It has one of the following values, which affect event scheduling as described:

• OFF: The Event Scheduler is stopped. The event scheduler thread does not run, is not shown
in the output of SHOW PROCESSLIST, and no scheduled events execute. OFF is the default
event_scheduler value.

When the Event Scheduler is stopped (event_scheduler is OFF), it can be started by setting the value
of event_scheduler to ON. (See next item.)

• ON: The Event Scheduler is started; the event scheduler thread runs and executes all scheduled events.

When the Event Scheduler is ON, the event scheduler thread is listed in the output of SHOW
PROCESSLIST as a daemon process, and its state is represented as shown here:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 1
 User: root
 Host: localhost
 db: NULL
Command: Query
 Time: 0
 State: NULL
 Info: show processlist
*************************** 2. row ***************************
 Id: 2
 User: event_scheduler
 Host: localhost
 db: NULL
Command: Daemon
 Time: 3
 State: Waiting for next activation
 Info: NULL
2 rows in set (0.00 sec)

Event scheduling can be stopped by setting the value of event_scheduler to OFF.

• DISABLED: This value renders the Event Scheduler nonoperational. When the Event Scheduler is
DISABLED, the event scheduler thread does not run (and so does not appear in the output of SHOW
PROCESSLIST). In addition, the Event Scheduler state cannot be changed at runtime.

If the Event Scheduler status has not been set to DISABLED, event_scheduler can be toggled between
ON and OFF (using SET). It is also possible to use 0 for OFF, and 1 for ON when setting this variable. Thus,
any of the following 4 statements can be used in the mysql client to turn on the Event Scheduler:

SET GLOBAL event_scheduler = ON;

3234

Event Scheduler Configuration

SET @@GLOBAL.event_scheduler = ON;
SET GLOBAL event_scheduler = 1;
SET @@GLOBAL.event_scheduler = 1;

Similarly, any of these 4 statements can be used to turn off the Event Scheduler:

SET GLOBAL event_scheduler = OFF;
SET @@GLOBAL.event_scheduler = OFF;
SET GLOBAL event_scheduler = 0;
SET @@GLOBAL.event_scheduler = 0;

Although ON and OFF have numeric equivalents, the value displayed for event_scheduler by SELECT or
SHOW VARIABLES is always one of OFF, ON, or DISABLED. DISABLED has no numeric equivalent. For this
reason, ON and OFF are usually preferred over 1 and 0 when setting this variable.

Attempting to set event_scheduler without specifying it as a global variable causes an error:

mysql< SET @@event_scheduler = OFF;
ERROR 1229 (HY000): Variable 'event_scheduler' is a GLOBAL
variable and should be set with SET GLOBAL

Important

It is possible to set the Event Scheduler to DISABLED only at server startup. If
event_scheduler is ON or OFF, you cannot set it to DISABLED at runtime. Also, if
the Event Scheduler is set to DISABLED at startup, you cannot change the value of
event_scheduler at runtime.

To disable the event scheduler, use one of the following two methods:

• As a command-line option when starting the server:

--event-scheduler=DISABLED

• In the server configuration file (my.cnf, or my.ini on Windows systems), include the line where it is
read by the server (for example, in a [mysqld] section):

event_scheduler=DISABLED

To enable the Event Scheduler, restart the server without the --event-scheduler=DISABLED
command-line option, or after removing or commenting out the line containing event-
scheduler=DISABLED in the server configuration file, as appropriate. Alternatively, you can use ON (or 1)
or OFF (or 0) in place of the DISABLED value when starting the server.

Note

You can issue event-manipulation statements when event_scheduler is set
to DISABLED. No warnings or errors are generated in such cases (provided that
the statements are themselves valid). However, scheduled events cannot execute
until this variable is set to ON (or 1). Once this has been done, the event scheduler
thread executes all events whose scheduling conditions are satisfied.

Starting the MySQL server with the --skip-grant-tables option causes event_scheduler to be set
to DISABLED, overriding any other value set either on the command line or in the my.cnf or my.ini file
(Bug #26807).

For SQL statements used to create, alter, and drop events, see Section 20.4.3, “Event Syntax”.

MySQL provides an EVENTS table in the INFORMATION_SCHEMA database. This table can be queried to
obtain information about scheduled events which have been defined on the server. See Section 20.4.4,

3235

Event Syntax

“Event Metadata”, and Section 21.3.8, “The INFORMATION_SCHEMA EVENTS Table”, for more
information.

For information regarding event scheduling and the MySQL privilege system, see Section 20.4.6, “The
Event Scheduler and MySQL Privileges”.

20.4.3 Event Syntax

MySQL provides several SQL statements for working with scheduled events:

• New events are defined using the CREATE EVENT statement. See Section 13.1.11, “CREATE EVENT
Statement”.

• The definition of an existing event can be changed by means of the ALTER EVENT statement. See
Section 13.1.2, “ALTER EVENT Statement”.

• When a scheduled event is no longer wanted or needed, it can be deleted from the server by its definer
using the DROP EVENT statement. See Section 13.1.22, “DROP EVENT Statement”. Whether an event
persists past the end of its schedule also depends on its ON COMPLETION clause, if it has one. See
Section 13.1.11, “CREATE EVENT Statement”.

An event can be dropped by any user having the EVENT privilege for the database on which the event is
defined. See Section 20.4.6, “The Event Scheduler and MySQL Privileges”.

20.4.4 Event Metadata

To obtain metadata about events:

• Query the event table of the mysql database.

• Query the EVENTS table of the INFORMATION_SCHEMA database. See Section 21.3.8, “The
INFORMATION_SCHEMA EVENTS Table”.

• Use the SHOW CREATE EVENT statement. See Section 13.7.5.9, “SHOW CREATE EVENT Statement”.

• Use the SHOW EVENTS statement. See Section 13.7.5.19, “SHOW EVENTS Statement”.

Event Scheduler Time Representation

Each session in MySQL has a session time zone (STZ). This is the session time_zone value that is
initialized from the server's global time_zone value when the session begins but may be changed during
the session.

The session time zone that is current when a CREATE EVENT or ALTER EVENT statement executes is
used to interpret times specified in the event definition. This becomes the event time zone (ETZ); that is,
the time zone that is used for event scheduling and is in effect within the event as it executes.

For representation of event information in the mysql.event table, the execute_at, starts, and ends
times are converted to UTC and stored along with the event time zone. This enables event execution to
proceed as defined regardless of any subsequent changes to the server time zone or daylight saving time
effects. The last_executed time is also stored in UTC.

If you select information from mysql.event, the times just mentioned are retrieved as UTC values.
These times can also be obtained by selecting from the Information Schema EVENTS table or from SHOW
EVENTS, but they are reported as ETZ values. Other times available from these sources indicate when

3236

Event Scheduler Status

an event was created or last altered; these are displayed as STZ values. The following table summarizes
representation of event times.

Value mysql.event EVENTS Table SHOW EVENTS

Execute at UTC ETZ ETZ

Starts UTC ETZ ETZ

Ends UTC ETZ ETZ

Last executed UTC ETZ n/a

Created STZ STZ n/a

Last altered STZ STZ n/a

20.4.5 Event Scheduler Status

The Event Scheduler writes information about event execution that terminates with an error or warning to
the MySQL Server's error log. See Section 20.4.6, “The Event Scheduler and MySQL Privileges” for an
example.

To obtain information about the state of the Event Scheduler for debugging and troubleshooting purposes,
run mysqladmin debug (see Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”);
after running this command, the server's error log contains output relating to the Event Scheduler, similar to
what is shown here:

Events status:
LLA = Last Locked At LUA = Last Unlocked At
WOC = Waiting On Condition DL = Data Locked

Event scheduler status:
State : INITIALIZED
Thread id : 0
LLA : n/a:0
LUA : n/a:0
WOC : NO
Workers : 0
Executed : 0
Data locked: NO

Event queue status:
Element count : 0
Data locked : NO
Attempting lock : NO
LLA : init_queue:95
LUA : init_queue:103
WOC : NO
Next activation : never

In statements that occur as part of events executed by the Event Scheduler, diagnostics messages (not
only errors, but also warnings) are written to the error log, and, on Windows, to the application event log.
For frequently executed events, it is possible for this to result in many logged messages. For example,
for SELECT ... INTO var_list statements, if the query returns no rows, a warning with error code
1329 occurs (No data), and the variable values remain unchanged. If the query returns multiple rows,
error 1172 occurs (Result consisted of more than one row). For either condition, you can avoid
having the warnings be logged by declaring a condition handler; see Section 13.6.7.2, “DECLARE ...
HANDLER Statement”. For statements that may retrieve multiple rows, another strategy is to use LIMIT 1
to limit the result set to a single row.

20.4.6 The Event Scheduler and MySQL Privileges

3237

The Event Scheduler and MySQL Privileges

To enable or disable the execution of scheduled events, it is necessary to set the value of the global
event_scheduler system variable. This requires privileges sufficient to set global system variables. See
Section 5.1.8.1, “System Variable Privileges”.

The EVENT privilege governs the creation, modification, and deletion of events. This privilege can be
bestowed using GRANT. For example, this GRANT statement confers the EVENT privilege for the schema
named myschema on the user jon@ghidora:

GRANT EVENT ON myschema.* TO jon@ghidora;

(We assume that this user account already exists, and that we wish for it to remain unchanged otherwise.)

To grant this same user the EVENT privilege on all schemas, use the following statement:

GRANT EVENT ON *.* TO jon@ghidora;

The EVENT privilege has global or schema-level scope. Therefore, trying to grant it on a single table results
in an error as shown:

mysql> GRANT EVENT ON myschema.mytable TO jon@ghidora;
ERROR 1144 (42000): Illegal GRANT/REVOKE command; please
consult the manual to see which privileges can be used

It is important to understand that an event is executed with the privileges of its definer, and that it cannot
perform any actions for which its definer does not have the requisite privileges. For example, suppose
that jon@ghidora has the EVENT privilege for myschema. Suppose also that this user has the SELECT
privilege for myschema, but no other privileges for this schema. It is possible for jon@ghidora to create a
new event such as this one:

CREATE EVENT e_store_ts
 ON SCHEDULE
 EVERY 10 SECOND
 DO
 INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());

The user waits for a minute or so, and then performs a SELECT * FROM mytable; query, expecting to
see several new rows in the table. Instead, the table is empty. Since the user does not have the INSERT
privilege for the table in question, the event has no effect.

If you inspect the MySQL error log (hostname.err), you can see that the event is executing, but the
action it is attempting to perform fails, as indicated by RetCode=0:

060209 22:39:44 [Note] EVEX EXECUTING event newdb.e [EXPR:10]
060209 22:39:44 [Note] EVEX EXECUTED event newdb.e [EXPR:10]. RetCode=0
060209 22:39:54 [Note] EVEX EXECUTING event newdb.e [EXPR:10]
060209 22:39:54 [Note] EVEX EXECUTED event newdb.e [EXPR:10]. RetCode=0
060209 22:40:04 [Note] EVEX EXECUTING event newdb.e [EXPR:10]
060209 22:40:04 [Note] EVEX EXECUTED event newdb.e [EXPR:10]. RetCode=0

Since this user very likely does not have access to the error log, it is possible to verify whether the event's
action statement is valid by executing it directly:

mysql> INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());
ERROR 1142 (42000): INSERT command denied to user
'jon'@'ghidora' for table 'mytable'

Inspection of the Information Schema EVENTS table shows that e_store_ts exists and is enabled, but its
LAST_EXECUTED column is NULL:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
 > WHERE EVENT_NAME='e_store_ts'

3238

The Event Scheduler and MySQL Privileges

 > AND EVENT_SCHEMA='myschema'\G
*************************** 1. row ***************************
 EVENT_CATALOG: NULL
 EVENT_SCHEMA: myschema
 EVENT_NAME: e_store_ts
 DEFINER: jon@ghidora
 EVENT_BODY: SQL
EVENT_DEFINITION: INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP())
 EVENT_TYPE: RECURRING
 EXECUTE_AT: NULL
 INTERVAL_VALUE: 5
 INTERVAL_FIELD: SECOND
 SQL_MODE: NULL
 STARTS: 0000-00-00 00:00:00
 ENDS: 0000-00-00 00:00:00
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
 CREATED: 2006-02-09 22:36:06
 LAST_ALTERED: 2006-02-09 22:36:06
 LAST_EXECUTED: NULL
 EVENT_COMMENT:
1 row in set (0.00 sec)

To rescind the EVENT privilege, use the REVOKE statement. In this example, the EVENT privilege on the
schema myschema is removed from the jon@ghidora user account:

REVOKE EVENT ON myschema.* FROM jon@ghidora;

Important

Revoking the EVENT privilege from a user does not delete or disable any events
that may have been created by that user.

An event is not migrated or dropped as a result of renaming or dropping the user
who created it.

Suppose that the user jon@ghidora has been granted the EVENT and INSERT privileges on the
myschema schema. This user then creates the following event:

CREATE EVENT e_insert
 ON SCHEDULE
 EVERY 7 SECOND
 DO
 INSERT INTO myschema.mytable;

After this event has been created, root revokes the EVENT privilege for jon@ghidora. However,
e_insert continues to execute, inserting a new row into mytable each seven seconds. The same would
be true if root had issued either of these statements:

• DROP USER jon@ghidora;

• RENAME USER jon@ghidora TO someotherguy@ghidora;

You can verify that this is true by examining the mysql.event table (discussed later in this section) or the
Information Schema EVENTS table before and after issuing a DROP USER or RENAME USER statement.

Event definitions are stored in the mysql.event table. To drop an event created by another user account,
the MySQL root user (or another user with the necessary privileges) can delete rows from this table. For
example, to remove the event e_insert shown previously, root can use the following statement:

DELETE FROM mysql.event
 WHERE db = 'myschema'

3239

Using Views

 AND name = 'e_insert';

It is very important to match the event name and database schema name when deleting rows from the
mysql.event table. This is because different events of the same name can exist in different schemas.

Users' EVENT privileges are stored in the Event_priv columns of the mysql.user and
mysql.db tables. In both cases, this column holds one of the values 'Y' or 'N'. 'N' is the default.
mysql.user.Event_priv is set to 'Y' for a given user only if that user has the global EVENT privilege
(that is, if the privilege was bestowed using GRANT EVENT ON *.*). For a schema-level EVENT privilege,
GRANT creates a row in mysql.db and sets that row's Db column to the name of the schema, the User
column to the name of the user, and the Event_priv column to 'Y'. There should never be any need to
manipulate these tables directly, since the GRANT EVENT and REVOKE EVENT statements perform the
required operations on them.

Five status variables provide counts of event-related operations (but not of statements executed by events;
see Section 20.8, “Restrictions on Stored Programs”). These are:

• Com_create_event: The number of CREATE EVENT statements executed since the last server restart.

• Com_alter_event: The number of ALTER EVENT statements executed since the last server restart.

• Com_drop_event: The number of DROP EVENT statements executed since the last server restart.

• Com_show_create_event: The number of SHOW CREATE EVENT statements executed since the last
server restart.

• Com_show_events: The number of SHOW EVENTS statements executed since the last server restart.

You can view current values for all of these at one time by running the statement SHOW STATUS LIKE
'%event%';.

20.5 Using Views
MySQL supports views, including updatable views. Views are stored queries that when invoked produce a
result set. A view acts as a virtual table.

To use views if you have upgraded to MySQL 5.6 from an older release that did not support views, you
should upgrade your grant tables so that they contain the view-related privileges. See Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”.

The following discussion describes the syntax for creating and dropping views, and shows some examples
of how to use them.

Additional Resources

• You may find the MySQL User Forums helpful when working with views.

• For answers to some commonly asked questions regarding views in MySQL, see Section A.6, “MySQL
5.6 FAQ: Views”.

• There are some restrictions on the use of views; see Section 20.9, “Restrictions on Views”.

20.5.1 View Syntax

The CREATE VIEW statement creates a new view (see Section 13.1.20, “CREATE VIEW Statement”).
To alter the definition of a view or drop a view, use ALTER VIEW (see Section 13.1.9, “ALTER VIEW
Statement”), or DROP VIEW (see Section 13.1.31, “DROP VIEW Statement”).

3240

https://forums.mysql.com/list.php?20

View Processing Algorithms

A view can be created from many kinds of SELECT statements. It can refer to base tables or other views.
It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables. The following
example defines a view that selects two columns from another table, as well as an expression calculated
from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50), (5, 60);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
| 5 | 60 | 300 |
+------+-------+-------+
mysql> SELECT * FROM v WHERE qty = 5;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 5 | 60 | 300 |
+------+-------+-------+

20.5.2 View Processing Algorithms

The optional ALGORITHM clause for CREATE VIEW or ALTER VIEW is a MySQL extension to standard
SQL. It affects how MySQL processes the view. ALGORITHM takes three values: MERGE, TEMPTABLE, or
UNDEFINED.

• For MERGE, the text of a statement that refers to the view and the view definition are merged such that
parts of the view definition replace corresponding parts of the statement.

• For TEMPTABLE, the results from the view are retrieved into a temporary table, which then is used to
execute the statement.

• For UNDEFINED, MySQL chooses which algorithm to use. It prefers MERGE over TEMPTABLE if possible,
because MERGE is usually more efficient and because a view cannot be updatable if a temporary table is
used.

• If no ALGORITHM clause is present, UNDEFINED is the default algorithm.

A reason to specify TEMPTABLE explicitly is that locks can be released on underlying tables after the
temporary table has been created and before it is used to finish processing the statement. This might result
in quicker lock release than the MERGE algorithm so that other clients that use the view are not blocked as
long.

A view algorithm can be UNDEFINED for three reasons:

• No ALGORITHM clause is present in the CREATE VIEW statement.

• The CREATE VIEW statement has an explicit ALGORITHM = UNDEFINED clause.

• ALGORITHM = MERGE is specified for a view that can be processed only with a temporary table. In this
case, MySQL generates a warning and sets the algorithm to UNDEFINED.

As mentioned earlier, MERGE is handled by merging corresponding parts of a view definition into the
statement that refers to the view. The following examples briefly illustrate how the MERGE algorithm works.
The examples assume that there is a view v_merge that has this definition:

CREATE ALGORITHM = MERGE VIEW v_merge (vc1, vc2) AS

3241

Updatable and Insertable Views

SELECT c1, c2 FROM t WHERE c3 > 100;

Example 1: Suppose that we issue this statement:

SELECT * FROM v_merge;

MySQL handles the statement as follows:

• v_merge becomes t

• * becomes vc1, vc2, which corresponds to c1, c2

• The view WHERE clause is added

The resulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE c3 > 100;

Example 2: Suppose that we issue this statement:

SELECT * FROM v_merge WHERE vc1 < 100;

This statement is handled similarly to the previous one, except that vc1 < 100 becomes c1 < 100 and
the view WHERE clause is added to the statement WHERE clause using an AND connective (and parentheses
are added to make sure the parts of the clause are executed with correct precedence). The resulting
statement to be executed becomes:

SELECT c1, c2 FROM t WHERE (c3 > 100) AND (c1 < 100);

Effectively, the statement to be executed has a WHERE clause of this form:

WHERE (select WHERE) AND (view WHERE)

If the MERGE algorithm cannot be used, a temporary table must be used instead. MERGE cannot be used if
the view contains any of the following constructs:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

• GROUP BY

• HAVING

• LIMIT

• UNION or UNION ALL

• Subquery in the select list

• Assignment to user variables

• Refers only to literal values (in this case, there is no underlying table)

20.5.3 Updatable and Insertable Views

Some views are updatable and references to them can be used to specify tables to be updated in data
change statements. That is, you can use them in statements such as UPDATE, DELETE, or INSERT to
update the contents of the underlying table.

3242

Updatable and Insertable Views

For a view to be updatable, there must be a one-to-one relationship between the rows in the view and the
rows in the underlying table. There are also certain other constructs that make a view nonupdatable. To be
more specific, a view is not updatable if it contains any of the following:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

• GROUP BY

• HAVING

• UNION or UNION ALL

• Subquery in the select list

• Certain joins (see additional join discussion later in this section)

• Reference to nonupdatable view in the FROM clause

• Subquery in the WHERE clause that refers to a table in the FROM clause

• Refers only to literal values (in this case, there is no underlying table to update)

• ALGORITHM = TEMPTABLE (use of a temporary table always makes a view nonupdatable)

• Multiple references to any column of a base table

It is sometimes possible for a multiple-table view to be updatable, assuming that it can be processed with
the MERGE algorithm. For this to work, the view must use an inner join (not an outer join or a UNION). Also,
only a single table in the view definition can be updated, so the SET clause must name only columns from
one of the tables in the view. Views that use UNION ALL are not permitted even though they might be
theoretically updatable.

With respect to insertability (being updatable with INSERT statements), an updatable view is insertable if it
also satisfies these additional requirements for the view columns:

• There must be no duplicate view column names.

• The view must contain all columns in the base table that do not have a default value.

• The view columns must be simple column references. They must not be expressions, such as these:

3.14159
col1 + 3
UPPER(col2)
col3 / col4
(subquery)

MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true) if
UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is set to NO (false).
The IS_UPDATABLE column in the Information Schema VIEWS table displays the status of this flag. It
means that the server always knows whether a view is updatable.

If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and are rejected.
(Even if a view is updatable, it might not be possible to insert into it, as described elsewhere in this
section.)

The updatability of views may be affected by the value of the updatable_views_with_limit system
variable. See Section 5.1.7, “Server System Variables”.

3243

The View WITH CHECK OPTION Clause

Earlier discussion in this section pointed out that a view is not insertable if not all columns are simple
column references (for example, if it contains columns that are expressions or composite expressions).
Although such a view is not insertable, it can be updatable if you update only columns that are not
expressions. Consider this view:

CREATE VIEW v AS SELECT col1, 1 AS col2 FROM t;

This view is not insertable because col2 is an expression. But it is updatable if the update does not try to
update col2. This update is permissible:

UPDATE v SET col1 = 0;

This update is not permissible because it attempts to update an expression column:

UPDATE v SET col2 = 0;

For a multiple-table updatable view, INSERT can work if it inserts into a single table. DELETE is not
supported.

INSERT DELAYED is not supported for views.

If a table contains an AUTO_INCREMENT column, inserting into an insertable view on the table that does
not include the AUTO_INCREMENT column does not change the value of LAST_INSERT_ID(), because
the side effects of inserting default values into columns not part of the view should not be visible.

20.5.4 The View WITH CHECK OPTION Clause

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts to rows for which
the WHERE clause in the select_statement is not true. It also prevents updates to rows for which the
WHERE clause is true but the update would cause it to be not true (in other words, it prevents visible rows
from being updated to nonvisible rows).

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords determine
the scope of check testing when the view is defined in terms of another view. When neither keyword is
given, the default is CASCADED. The LOCAL keyword restricts the CHECK OPTION only to the view being
defined. CASCADED causes the checks for underlying views to be evaluated as well.

Consider the definitions for the following table and set of views:

CREATE TABLE t1 (a INT);
CREATE VIEW v1 AS SELECT * FROM t1 WHERE a < 2
WITH CHECK OPTION;
CREATE VIEW v2 AS SELECT * FROM v1 WHERE a > 0
WITH LOCAL CHECK OPTION;
CREATE VIEW v3 AS SELECT * FROM v1 WHERE a > 0
WITH CASCADED CHECK OPTION;

Here the v2 and v3 views are defined in terms of another view, v1. v2 has a LOCAL check option, so
inserts are tested only against the v2 check. v3 has a CASCADED check option, so inserts are tested not
only against its own check, but against those of underlying views. The following statements illustrate these
differences:

mysql> INSERT INTO v2 VALUES (2);
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO v3 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v3'

20.5.5 View Metadata

3244

Stored Object Access Control

To obtain metadata about views:

• Query the VIEWS table of the INFORMATION_SCHEMA database. See Section 21.3.29, “The
INFORMATION_SCHEMA VIEWS Table”.

• Use the SHOW CREATE VIEW statement. See Section 13.7.5.14, “SHOW CREATE VIEW Statement”.

20.6 Stored Object Access Control

Stored programs (procedures, functions, triggers, and events) and views are defined prior to use and,
when referenced, execute within a security context that determines their privileges. The privileges
applicable to execution of a stored object are controlled by its DEFINER attribute and SQL SECURITY
characteristic.

• The DEFINER Attribute

• The SQL SECURITY Characteristic

• Examples

• Orphan Stored Objects

• Risk-Minimization Guidelines

The DEFINER Attribute

A stored object definition can include a DEFINER attribute that names a MySQL account. If a definition
omits the DEFINER attribute, the default object definer is the user who creates it.

The following rules determine which accounts you can specify as the DEFINER attribute for a stored object:

• If you have the SUPER privilege, you can specify any account as the DEFINER attribute. If the account
does not exist, a warning is generated.

• Otherwise, the only permitted account is your own, specified either literally or as CURRENT_USER or
CURRENT_USER(). You cannot set the definer to any other account.

Creating a stored object with a nonexistent DEFINER account creates an orphan object, which may have
negative consequences; see Orphan Stored Objects.

The SQL SECURITY Characteristic

For stored routines (procedures and functions) and views, the object definition can include an SQL
SECURITY characteristic with a value of DEFINER or INVOKER to specify whether the object executes in
definer or invoker context. If the definition omits the SQL SECURITY characteristic, the default is definer
context.

Triggers and events have no SQL SECURITY characteristic and always execute in definer context. The
server invokes these objects automatically as necessary, so there is no invoking user.

Definer and invoker security contexts differ as follows:

• A stored object that executes in definer security context executes with the privileges of the account
named by its DEFINER attribute. These privileges may be entirely different from those of the invoking

3245

Examples

user. The invoker must have appropriate privileges to reference the object (for example, EXECUTE to call
a stored procedure or SELECT to select from a view), but during object execution, the invoker's privileges
are ignored and only the DEFINER account privileges matter. If the DEFINER account has few privileges,
the object is correspondingly limited in the operations it can perform. If the DEFINER account is highly
privileged (such as an administrative account), the object can perform powerful operations no matter
who invokes it.

• A stored routine or view that executes in invoker security context can perform only operations for which
the invoker has privileges. The DEFINER attribute has no effect on object execution.

Examples

Consider the following stored procedure, which is declared with SQL SECURITY DEFINER to execute in
definer security context:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE p1()
SQL SECURITY DEFINER
BEGIN
 UPDATE t1 SET counter = counter + 1;
END;

Any user who has the EXECUTE privilege for p1 can invoke it with a CALL statement. However,
when p1 executes, it does so in definer security context and thus executes with the privileges of
'admin'@'localhost', the account named as its DEFINER attribute. This account must have the
EXECUTE privilege for p1 as well as the UPDATE privilege for the table t1 referenced within the object
body. Otherwise, the procedure fails.

Now consider this stored procedure, which is identical to p1 except that its SQL SECURITY characteristic
is INVOKER:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE p2()
SQL SECURITY INVOKER
BEGIN
 UPDATE t1 SET counter = counter + 1;
END;

Unlike p1, p2 executes in invoker security context and thus with the privileges of the invoking user
regardless of the DEFINER attribute value. p2 fails if the invoker lacks the EXECUTE privilege for p2 or the
UPDATE privilege for the table t1.

Orphan Stored Objects

An orphan stored object is one for which its DEFINER attribute names a nonexistent account:

• An orphan stored object can be created by specifying a nonexistent DEFINER account at object-creation
time.

• An existing stored object can become orphaned through execution of a DROP USER statement that drops
the object DEFINER account, or a RENAME USER statement that renames the object DEFINER account.

An orphan stored object may be problematic in these ways:

• Because the DEFINER account does not exist, the object may not work as expected if it executes in
definer security context:

• For a stored routine, an error occurs at routine execution time if the SQL SECURITY value is DEFINER
but the definer account does not exist.

3246

Orphan Stored Objects

• For a trigger, it is not a good idea for trigger activation to occur until the account actually does exist.
Otherwise, the behavior with respect to privilege checking is undefined.

• For an event, an error occurs at event execution time if the account does not exist.

• For a view, an error occurs when the view is referenced if the SQL SECURITY value is DEFINER but
the definer account does not exist.

• The object may present a security risk if the nonexistent DEFINER account is subsequently re-created for
a purpose unrelated to the object. In this case, the account “adopts” the object and, with the appropriate
privileges, is able to execute it even if that is not intended.

To obtain information about the accounts used as stored object definers in a MySQL installation, query the
INFORMATION_SCHEMA.

This query identifies which INFORMATION_SCHEMA tables describe objects that have a DEFINER attribute:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME FROM INFORMATION_SCHEMA.COLUMNS
 WHERE COLUMN_NAME = 'DEFINER';
+--------------------+------------+
| TABLE_SCHEMA | TABLE_NAME |
+--------------------+------------+
information_schema	EVENTS
information_schema	ROUTINES
information_schema	TRIGGERS
information_schema	VIEWS
+--------------------+------------+

The result tells you which tables to query to discover which stored object DEFINER values exist and which
objects have a particular DEFINER value:

• To identify which DEFINER values exist in each table, use these queries:

SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.EVENTS;
SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.ROUTINES;
SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.TRIGGERS;
SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.VIEWS;

The query results are significant for any account displayed as follows:

• If the account exists, dropping or renaming it causes stored objects to become orphaned. If you plan to
drop or rename the account, consider first dropping its associated stored objects or redefining them to
have a different definer.

• If the account does not exist, creating it causes it to adopt currently orphaned stored objects. If you
plan to create the account, consider whether the orphaned objects should be associated with it. If not,
redefine them to have a different definer.

To redefine an object with a different definer, you can use ALTER EVENT or ALTER VIEW to directly
modify the DEFINER account of events and views. For stored procedures and functions and for triggers,
you must drop the object and re-create it with a different DEFINER account

• To identify which objects have a given DEFINER account, use these queries, substituting the account of
interest for user_name@host_name:

SELECT EVENT_SCHEMA, EVENT_NAME FROM INFORMATION_SCHEMA.EVENTS
WHERE DEFINER = 'user_name@host_name';
SELECT ROUTINE_SCHEMA, ROUTINE_NAME, ROUTINE_TYPE
FROM INFORMATION_SCHEMA.ROUTINES
WHERE DEFINER = 'user_name@host_name';

3247

Risk-Minimization Guidelines

SELECT TRIGGER_SCHEMA, TRIGGER_NAME FROM INFORMATION_SCHEMA.TRIGGERS
WHERE DEFINER = 'user_name@host_name';
SELECT TABLE_SCHEMA, TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
WHERE DEFINER = 'user_name@host_name';

For the ROUTINES table, the query includes the ROUTINE_TYPE column so that output rows distinguish
whether the DEFINER is for a stored procedure or stored function.

If the account you are searching for does not exist, any objects displayed by those queries are orphan
objects.

Risk-Minimization Guidelines

To minimize the risk potential for stored object creation and use, follow these guidelines:

• Do not create orphan stored objects; that is, objects for which the DEFINER attribute names a
nonexistent account. Do not cause stored objects to become orphaned by dropping or renaming an
account named by the DEFINER attribute of any existing object.

• For a stored routine or view, use SQL SECURITY INVOKER in the object definition when possible so
that it can be used only by users with permissions appropriate for the operations performed by the
object.

• If you create definer-context stored objects while using an account that has the SUPER privilege, specify
an explicit DEFINER attribute that names an account possessing only the privileges required for the
operations performed by the object. Specify a highly privileged DEFINER account only when absolutely
necessary.

• Administrators can prevent users from creating stored objects that specify highly privileged DEFINER
accounts by not granting them the SUPER privilege.

• Definer-context objects should be written keeping in mind that they may be able to access data for which
the invoking user has no privileges. In some cases, you can prevent references to these objects by not
granting unauthorized users particular privileges:

• A stored routine cannot be referenced by a user who does not have the EXECUTE privilege for it.

• A view cannot be referenced by a user who does not have the appropriate privilege for it (SELECT to
select from it, INSERT to insert into it, and so forth).

However, no such control exists for triggers and events because they always execute in definer context.
The server invokes these objects automatically as necessary, and users do not reference them directly:

• A trigger is activated by access to the table with which it is associated, even ordinary table accesses
by users with no special privileges.

• An event is executed by the server on a scheduled basis.

In both cases, if the DEFINER account is highly privileged, the object may be able to perform sensitive or
dangerous operations. This remains true if the privileges needed to create the object are revoked from
the account of the user who created it. Administrators should be especially careful about granting users
object-creation privileges.

20.7 Stored Program Binary Logging
The binary log contains information about SQL statements that modify database contents. This information
is stored in the form of “events” that describe the modifications. (Binary log events differ from scheduled
event stored objects.) The binary log has two important purposes:

3248

Stored Program Binary Logging

• For replication, the binary log is used on source replication servers as a record of the statements to be
sent to replica servers. The source sends the events contained in its binary log to its replicas, which
execute those events to make the same data changes that were made on the source. See Section 17.2,
“Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup file has been restored,
the events in the binary log that were recorded after the backup was made are re-executed. These
events bring databases up to date from the point of the backup. See Section 7.3.2, “Using Backups for
Recovery”.

However, if logging occurs at the statement level, there are certain binary logging issues with respect to
stored programs (stored procedures and functions, triggers, and events):

• In some cases, a statement might affect different sets of rows on source and replica.

• Replicated statements executed on a replica are processed by the replica SQL thread, which has full
privileges. It is possible for a procedure to follow different execution paths on source and replica servers,
so a user can write a routine containing a dangerous statement that executes only on the replica where it
is processed by a thread that has full privileges.

• If a stored program that modifies data is nondeterministic, it is not repeatable. This can result in different
data on source and replica, or cause restored data to differ from the original data.

This section describes how MySQL handles binary logging for stored programs. It states the current
conditions that the implementation places on the use of stored programs, and what you can do to avoid
logging problems. It also provides additional information about the reasons for these conditions.

In general, the issues described here result when binary logging occurs at the SQL statement level
(statement-based binary logging). If you use row-based binary logging, the log contains changes made to
individual rows as a result of executing SQL statements. When routines or triggers execute, row changes
are logged, not the statements that make the changes. For stored procedures, this means that the CALL
statement is not logged. For stored functions, row changes made within the function are logged, not the
function invocation. For triggers, row changes made by the trigger are logged. On the replica side, only the
row changes are seen, not the stored program invocation.

Mixed format binary logging (binlog_format=MIXED) uses statement-based binary logging, except for
cases where only row-based binary logging is guaranteed to lead to proper results. With mixed format,
when a stored function, stored procedure, trigger, event, or prepared statement contains anything that is
not safe for statement-based binary logging, the entire statement is marked as unsafe and logged in row
format. The statements used to create and drop procedures, functions, triggers, and events are always
safe, and are logged in statement format. For more information about row-based, mixed, and statement-
based logging, and how safe and unsafe statements are determined, see Section 17.1.2, “Replication
Formats”.

Unless noted otherwise, the remarks here assume that binary logging is enabled on the server (see
Section 5.4.4, “The Binary Log”.) If the binary log is not enabled, replication is not possible, nor is the
binary log available for data recovery.

The conditions on the use of stored functions in MySQL can be summarized as follows. These conditions
do not apply to stored procedures or Event Scheduler events and they do not apply unless binary logging
is enabled.

• To create or alter a stored function, you must have the SUPER privilege, in addition to the CREATE
ROUTINE or ALTER ROUTINE privilege that is normally required. (Depending on the DEFINER value in
the function definition, SUPER might be required regardless of whether binary logging is enabled. See
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”.)

3249

Stored Program Binary Logging

• When you create a stored function, you must declare either that it is deterministic or that it does not
modify data. Otherwise, it may be unsafe for data recovery or replication.

By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO
SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

This function is deterministic (and does not modify data), so it is safe:

CREATE FUNCTION f1(i INT)
RETURNS INT
DETERMINISTIC
READS SQL DATA
BEGIN
 RETURN i;
END;

This function uses UUID(), which is not deterministic, so the function also is not deterministic and is not
safe:

CREATE FUNCTION f2()
RETURNS CHAR(36) CHARACTER SET utf8
BEGIN
 RETURN UUID();
END;

This function modifies data, so it may not be safe:

CREATE FUNCTION f3(p_id INT)
RETURNS INT
BEGIN
 UPDATE t SET modtime = NOW() WHERE id = p_id;
 RETURN ROW_COUNT();
END;

Assessment of the nature of a function is based on the “honesty” of the creator. MySQL does not check
that a function declared DETERMINISTIC is free of statements that produce nondeterministic results.

• When you attempt to execute a stored function, if binlog_format=STATEMENT is set, the
DETERMINISTIC keyword must be specified in the function definition. If this is not the case, an error
is generated and the function does not run, unless log_bin_trust_function_creators=1 is
specified to override this check (see below). For recursive function calls, the DETERMINISTIC keyword
is required on the outermost call only. If row-based or mixed binary logging is in use, the statement is
accepted and replicated even if the function was defined without the DETERMINISTIC keyword.

• Because MySQL does not check if a function really is deterministic at creation time, the invocation
of a stored function with the DETERMINISTIC keyword might carry out an action that is unsafe for
statement-based logging, or invoke a function or procedure containing unsafe statements. If this occurs
when binlog_format=STATEMENT is set, a warning message is issued. If row-based or mixed binary
logging is in use, no warning is issued, and the statement is replicated in row-based format.

• To relax the preceding conditions on function creation (that you must have the SUPER privilege
and that a function must be declared deterministic or to not modify data), set the global
log_bin_trust_function_creators system variable to 1. By default, this variable has a value of 0,
but you can change it like this:

mysql> SET GLOBAL log_bin_trust_function_creators = 1;

3250

Stored Program Binary Logging

You can also set this variable at server startup.

If binary logging is not enabled, log_bin_trust_function_creators does not apply. SUPER is
not required for function creation unless, as described previously, the DEFINER value in the function
definition requires it.

• For information about built-in functions that may be unsafe for replication (and thus cause stored
functions that use them to be unsafe as well), see Section 17.4.1, “Replication Features and Issues”.

Triggers are similar to stored functions, so the preceding remarks regarding functions also apply to triggers
with the following exception: CREATE TRIGGER does not have an optional DETERMINISTIC characteristic,
so triggers are assumed to be always deterministic. However, this assumption might be invalid in some
cases. For example, the UUID() function is nondeterministic (and does not replicate). Be careful about
using such functions in triggers.

Triggers can update tables, so error messages similar to those for stored functions occur with CREATE
TRIGGER if you do not have the required privileges. On the replica side, the replica uses the trigger
DEFINER attribute to determine which user is considered to be the creator of the trigger.

The rest of this section provides additional detail about the logging implementation and its implications.
You need not read it unless you are interested in the background on the rationale for the current logging-
related conditions on stored routine use. This discussion applies only for statement-based logging, and
not for row-based logging, with the exception of the first item: CREATE and DROP statements are logged as
statements regardless of the logging mode.

• The server writes CREATE EVENT, CREATE PROCEDURE, CREATE FUNCTION, ALTER EVENT, ALTER
PROCEDURE, ALTER FUNCTION, DROP EVENT, DROP PROCEDURE, and DROP FUNCTION statements
to the binary log.

• A stored function invocation is logged as a SELECT statement if the function changes data and occurs
within a statement that would not otherwise be logged. This prevents nonreplication of data changes that
result from use of stored functions in nonlogged statements. For example, SELECT statements are not
written to the binary log, but a SELECT might invoke a stored function that makes changes. To handle
this, a SELECT func_name() statement is written to the binary log when the given function makes a
change. Suppose that the following statements are executed on the source server:

CREATE FUNCTION f1(a INT) RETURNS INT
BEGIN
 IF (a < 3) THEN
 INSERT INTO t2 VALUES (a);
 END IF;
 RETURN 0;
END;

CREATE TABLE t1 (a INT);
INSERT INTO t1 VALUES (1),(2),(3);

SELECT f1(a) FROM t1;

When the SELECT statement executes, the function f1() is invoked three times. Two of those
invocations insert a row, and MySQL logs a SELECT statement for each of them. That is, MySQL writes
the following statements to the binary log:

SELECT f1(1);
SELECT f1(2);

The server also logs a SELECT statement for a stored function invocation when the function invokes a
stored procedure that causes an error. In this case, the server writes the SELECT statement to the log

3251

Stored Program Binary Logging

along with the expected error code. On the replica, if the same error occurs, that is the expected result
and replication continues. Otherwise, replication stops.

• Logging stored function invocations rather than the statements executed by a function has a security
implication for replication, which arises from two factors:

• It is possible for a function to follow different execution paths on source and replica servers.

• Statements executed on a replica are processed by the replica SQL thread which has full privileges.

The implication is that although a user must have the CREATE ROUTINE privilege to create a function,
the user can write a function containing a dangerous statement that executes only on the replica where
it is processed by a thread that has full privileges. For example, if the source and replica servers have
server ID values of 1 and 2, respectively, a user on the source server could create and invoke an unsafe
function unsafe_func() as follows:

mysql> delimiter //
mysql> CREATE FUNCTION unsafe_func () RETURNS INT
 -> BEGIN
 -> IF @@server_id=2 THEN dangerous_statement; END IF;
 -> RETURN 1;
 -> END;
 -> //
mysql> delimiter ;
mysql> INSERT INTO t VALUES(unsafe_func());

The CREATE FUNCTION and INSERT statements are written to the binary log, so the replica executes
them. Because the replica SQL thread has full privileges, it executes the dangerous statement. Thus, the
function invocation has different effects on the source and replica and is not replication-safe.

To guard against this danger for servers that have binary logging enabled, stored function creators must
have the SUPER privilege, in addition to the usual CREATE ROUTINE privilege that is required. Similarly,
to use ALTER FUNCTION, you must have the SUPER privilege in addition to the ALTER ROUTINE
privilege. Without the SUPER privilege, an error occurs:

ERROR 1419 (HY000): You do not have the SUPER privilege and
binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)

If you do not want to require function creators to have the SUPER privilege (for example, if all users with
the CREATE ROUTINE privilege on your system are experienced application developers), set the global
log_bin_trust_function_creators system variable to 1. You can also set this variable at server
startup. If binary logging is not enabled, log_bin_trust_function_creators does not apply.
SUPER is not required for function creation unless, as described previously, the DEFINER value in the
function definition requires it.

• If a function that performs updates is nondeterministic, it is not repeatable. This can have two
undesirable effects:

• It makes a replica different from the source.

• Restored data is different from the original data.

To deal with these problems, MySQL enforces the following requirement: On a source server, creation
and alteration of a function is refused unless you declare the function to be deterministic or to not modify
data. Two sets of function characteristics apply here:

• The DETERMINISTIC and NOT DETERMINISTIC characteristics indicate whether a function
always produces the same result for given inputs. The default is NOT DETERMINISTIC if neither

3252

Stored Program Binary Logging

characteristic is given. To declare that a function is deterministic, you must specify DETERMINISTIC
explicitly.

• The CONTAINS SQL, NO SQL, READS SQL DATA, and MODIFIES SQL DATA characteristics provide
information about whether the function reads or writes data. Either NO SQL or READS SQL DATA
indicates that a function does not change data, but you must specify one of these explicitly because
the default is CONTAINS SQL if no characteristic is given.

By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO
SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

If you set log_bin_trust_function_creators to 1, the requirement that functions be deterministic
or not modify data is dropped.

• Stored procedure calls are logged at the statement level rather than at the CALL level. That is, the server
does not log the CALL statement, it logs those statements within the procedure that actually execute.
As a result, the same changes that occur on the source server are observed on replicas. This prevents
problems that could result from a procedure having different execution paths on different machines.

In general, statements executed within a stored procedure are written to the binary log using the same
rules that would apply were the statements to be executed in standalone fashion. Some special care is
taken when logging procedure statements because statement execution within procedures is not quite
the same as in nonprocedure context:

• A statement to be logged might contain references to local procedure variables. These variables do
not exist outside of stored procedure context, so a statement that refers to such a variable cannot be
logged literally. Instead, each reference to a local variable is replaced by this construct for logging
purposes:

NAME_CONST(var_name, var_value)

var_name is the local variable name, and var_value is a constant indicating the value that the
variable has at the time the statement is logged. NAME_CONST() has a value of var_value, and a
“name” of var_name. Thus, if you invoke this function directly, you get a result like this:

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

NAME_CONST() enables a logged standalone statement to be executed on a replica with the same
effect as the original statement that was executed on the source within a stored procedure.

The use of NAME_CONST() can result in a problem for CREATE TABLE ... SELECT statements
when the source column expressions refer to local variables. Converting these references to
NAME_CONST() expressions can result in column names that are different on the source and replica

3253

Restrictions on Stored Programs

servers, or names that are too long to be legal column identifiers. A workaround is to supply aliases for
columns that refer to local variables. Consider this statement when myvar has a value of 1:

CREATE TABLE t1 SELECT myvar;

That is rewritten as follows:

CREATE TABLE t1 SELECT NAME_CONST(myvar, 1);

To ensure that the source and replica tables have the same column names, write the statement like
this:

CREATE TABLE t1 SELECT myvar AS myvar;

The rewritten statement becomes:

CREATE TABLE t1 SELECT NAME_CONST(myvar, 1) AS myvar;

• A statement to be logged might contain references to user-defined variables. To handle this, MySQL
writes a SET statement to the binary log to make sure that the variable exists on the replica with the
same value as on the source. For example, if a statement refers to a variable @my_var, that statement
is preceded in the binary log by the following statement, where value is the value of @my_var on the
source:

SET @my_var = value;

• Procedure calls can occur within a committed or rolled-back transaction. Transactional context is
accounted for so that the transactional aspects of procedure execution are replicated correctly. That is,
the server logs those statements within the procedure that actually execute and modify data, and also
logs BEGIN, COMMIT, and ROLLBACK statements as necessary. For example, if a procedure updates
only transactional tables and is executed within a transaction that is rolled back, those updates are not
logged. If the procedure occurs within a committed transaction, BEGIN and COMMIT statements are
logged with the updates. For a procedure that executes within a rolled-back transaction, its statements
are logged using the same rules that would apply if the statements were executed in standalone
fashion:

• Updates to transactional tables are not logged.

• Updates to nontransactional tables are logged because rollback does not cancel them.

• Updates to a mix of transactional and nontransactional tables are logged surrounded by BEGIN and
ROLLBACK so that replicas make the same changes and rollbacks as on the source.

• A stored procedure call is not written to the binary log at the statement level if the procedure is invoked
from within a stored function. In that case, the only thing logged is the statement that invokes the
function (if it occurs within a statement that is logged) or a DO statement (if it occurs within a statement
that is not logged). For this reason, care should be exercised in the use of stored functions that invoke a
procedure, even if the procedure is otherwise safe in itself.

20.8 Restrictions on Stored Programs
• SQL Statements Not Permitted in Stored Routines

• Restrictions for Stored Functions

• Restrictions for Triggers

• Name Conflicts within Stored Routines

3254

SQL Statements Not Permitted in Stored Routines

• Replication Considerations

• Debugging Considerations

• Unsupported Syntax from the SQL:2003 Standard

• Stored Routine Concurrency Considerations

• Event Scheduler Restrictions

• Stored Programs in NDB Cluster

These restrictions apply to the features described in Chapter 20, Stored Objects.

Some of the restrictions noted here apply to all stored routines; that is, both to stored procedures and
stored functions. There are also some restrictions specific to stored functions but not to stored procedures.

The restrictions for stored functions also apply to triggers. There are also some restrictions specific to
triggers.

The restrictions for stored procedures also apply to the DO clause of Event Scheduler event definitions.
There are also some restrictions specific to events.

SQL Statements Not Permitted in Stored Routines

Stored routines cannot contain arbitrary SQL statements. The following statements are not permitted:

• The locking statements LOCK TABLES and UNLOCK TABLES.

• ALTER VIEW.

• LOAD DATA and LOAD XML.

• SQL prepared statements (PREPARE, EXECUTE, DEALLOCATE PREPARE) can be used in stored
procedures, but not stored functions or triggers. Thus, stored functions and triggers cannot use dynamic
SQL (where you construct statements as strings and then execute them).

• Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. For a list of statements supported as prepared statements, see Section 13.5, “Prepared
Statements”. Exceptions are SIGNAL, RESIGNAL, and GET DIAGNOSTICS, which are not permissible
as prepared statements but are permitted in stored programs.

• Because local variables are in scope only during stored program execution, references to them are not
permitted in prepared statements created within a stored program. Prepared statement scope is the
current session, not the stored program, so the statement could be executed after the program ends, at
which point the variables would no longer be in scope. For example, SELECT ... INTO local_var
cannot be used as a prepared statement. This restriction also applies to stored procedure and function
parameters. See Section 13.5.1, “PREPARE Statement”.

• Inserts cannot be delayed. INSERT DELAYED syntax is accepted, but the statement is handled as a
normal INSERT.

• Within all stored programs (stored procedures and functions, triggers, and events), the parser treats
BEGIN [WORK] as the beginning of a BEGIN ... END block. To begin a transaction in this context,
use START TRANSACTION instead.

Restrictions for Stored Functions

The following additional statements or operations are not permitted within stored functions. They are
permitted within stored procedures, except stored procedures that are invoked from within a stored function

3255

Restrictions for Triggers

or trigger. For example, if you use FLUSH in a stored procedure, that stored procedure cannot be called
from a stored function or trigger.

• Statements that perform explicit or implicit commit or rollback. Support for these statements is not
required by the SQL standard, which states that each DBMS vendor may decide whether to permit them.

• Statements that return a result set. This includes SELECT statements that do not have an INTO
var_list clause and other statements such as SHOW, EXPLAIN, and CHECK TABLE. A function
can process a result set either with SELECT ... INTO var_list or by using a cursor and FETCH
statements. See Section 13.2.9.1, “SELECT ... INTO Statement”, and Section 13.6.6, “Cursors”.

• FLUSH statements.

• Stored functions cannot be used recursively.

• A stored function or trigger cannot modify a table that is already being used (for reading or writing) by the
statement that invoked the function or trigger.

• If you refer to a temporary table multiple times in a stored function under different aliases, a Can't
reopen table: 'tbl_name' error occurs, even if the references occur in different statements within
the function.

• HANDLER ... READ statements that invoke stored functions can cause replication errors and are
disallowed.

Restrictions for Triggers

For triggers, the following additional restrictions apply:

• Triggers are not activated by foreign key actions.

• When using row-based replication, triggers on the replica are not activated by statements originating on
the source. The triggers on the replica are activated when using statement-based replication. For more
information, see Section 17.4.1.33, “Replication and Triggers”.

• The RETURN statement is not permitted in triggers, which cannot return a value. To exit a trigger
immediately, use the LEAVE statement.

• Triggers are not permitted on tables in the mysql database. Nor are they permitted on
INFORMATION_SCHEMA or performance_schema tables. Those tables are actually views and triggers
are not permitted on views.

• The trigger cache does not detect when metadata of the underlying objects has changed. If a trigger
uses a table and the table has changed since the trigger was loaded into the cache, the trigger operates
using the outdated metadata.

Name Conflicts within Stored Routines

The same identifier might be used for a routine parameter, a local variable, and a table column. Also, the
same local variable name can be used in nested blocks. For example:

CREATE PROCEDURE p (i INT)
BEGIN
 DECLARE i INT DEFAULT 0;
 SELECT i FROM t;
 BEGIN
 DECLARE i INT DEFAULT 1;
 SELECT i FROM t;

3256

Replication Considerations

 END;
END;

In such cases, the identifier is ambiguous and the following precedence rules apply:

• A local variable takes precedence over a routine parameter or table column.

• A routine parameter takes precedence over a table column.

• A local variable in an inner block takes precedence over a local variable in an outer block.

The behavior that variables take precedence over table columns is nonstandard.

Replication Considerations

Use of stored routines can cause replication problems. This issue is discussed further in Section 20.7,
“Stored Program Binary Logging”.

The --replicate-wild-do-table=db_name.tbl_name option applies to tables, views, and triggers.
It does not apply to stored procedures and functions, or events. To filter statements operating on the latter
objects, use one or more of the --replicate-*-db options.

Debugging Considerations

There are no stored routine debugging facilities.

Unsupported Syntax from the SQL:2003 Standard

The MySQL stored routine syntax is based on the SQL:2003 standard. The following items from that
standard are not currently supported:

• UNDO handlers

• FOR loops

Stored Routine Concurrency Considerations

To prevent problems of interaction between sessions, when a client issues a statement, the server uses a
snapshot of routines and triggers available for execution of the statement. That is, the server calculates a
list of procedures, functions, and triggers that may be used during execution of the statement, loads them,
and then proceeds to execute the statement. While the statement executes, it does not see changes to
routines performed by other sessions.

For maximum concurrency, stored functions should minimize their side-effects; in particular, updating a
table within a stored function can reduce concurrent operations on that table. A stored function acquires
table locks before executing, to avoid inconsistency in the binary log due to mismatch of the order in
which statements execute and when they appear in the log. When statement-based binary logging is
used, statements that invoke a function are recorded rather than the statements executed within the
function. Consequently, stored functions that update the same underlying tables do not execute in parallel.
In contrast, stored procedures do not acquire table-level locks. All statements executed within stored
procedures are written to the binary log, even for statement-based binary logging. See Section 20.7,
“Stored Program Binary Logging”.

Event Scheduler Restrictions

The following limitations are specific to the Event Scheduler:

3257

Stored Programs in NDB Cluster

• Event names are handled in case-insensitive fashion. For example, you cannot have two events in the
same database with the names anEvent and AnEvent.

• An event may not be created, altered, or dropped from within a stored program, if the event name is
specified by means of a variable. An event also may not create, alter, or drop stored routines or triggers.

• DDL statements on events are prohibited while a LOCK TABLES statement is in effect.

• Event timings using the intervals YEAR, QUARTER, MONTH, and YEAR_MONTH are resolved in months;
those using any other interval are resolved in seconds. There is no way to cause events scheduled
to occur at the same second to execute in a given order. In addition—due to rounding, the nature of
threaded applications, and the fact that a nonzero length of time is required to create events and to
signal their execution—events may be delayed by as much as 1 or 2 seconds. However, the time shown
in the Information Schema EVENTS table's LAST_EXECUTED column or the mysql.event table's
last_executed column is always accurate to within one second of the actual event execution time.
(See also Bug #16522.)

• Each execution of the statements contained in the body of an event takes place in a new connection;
thus, these statements have no effect in a given user session on the server's statement counts such
as Com_select and Com_insert that are displayed by SHOW STATUS. However, such counts are
updated in the global scope. (Bug #16422)

• Events do not support times later than the end of the Unix Epoch; this is approximately the beginning of
the year 2038. Such dates are specifically not permitted by the Event Scheduler. (Bug #16396)

• References to stored functions, loadable functions, and tables in the ON SCHEDULE clauses of CREATE
EVENT and ALTER EVENT statements are not supported. These sorts of references are not permitted.
(See Bug #22830 for more information.)

Stored Programs in NDB Cluster

While stored procedures, stored functions, triggers, and scheduled events are all supported by tables using
the NDB storage engine, you must keep in mind that these do not propagate automatically between MySQL
Servers acting as Cluster SQL nodes. This is because of the following:

• Stored routine definitions are kept in tables in the mysql system database using the MyISAM storage
engine, and so do not participate in clustering.

• The .TRN and .TRG files containing trigger definitions are not read by the NDB storage engine, and are
not copied between Cluster nodes.

Any stored routine or trigger that interacts with NDB Cluster tables must be re-created by running the
appropriate CREATE PROCEDURE, CREATE FUNCTION, or CREATE TRIGGER statements on each MySQL
Server that participates in the cluster where you wish to use the stored routine or trigger. Similarly, any
changes to existing stored routines or triggers must be carried out explicitly on all Cluster SQL nodes,
using the appropriate ALTER or DROP statements on each MySQL Server accessing the cluster.

Warning

Do not attempt to work around the issue described in the first item mentioned
previously by converting any mysql database tables to use the NDB storage engine.
Altering the system tables in the mysql database is not supported and is very likely
to produce undesirable results.

20.9 Restrictions on Views

3258

Restrictions on Views

The maximum number of tables that can be referenced in the definition of a view is 61.

View processing is not optimized:

• It is not possible to create an index on a view.

• Indexes can be used for views processed using the merge algorithm. However, a view that is processed
with the temptable algorithm is unable to take advantage of indexes on its underlying tables (although
indexes can be used during generation of the temporary tables).

Subqueries cannot be used in the FROM clause of a view.

There is a general principle that you cannot modify a table and select from the same table in a subquery.
See Section 13.2.10.12, “Restrictions on Subqueries”.

The same principle also applies if you select from a view that selects from the table, if the view selects from
the table in a subquery and the view is evaluated using the merge algorithm. Example:

CREATE VIEW v1 AS
SELECT * FROM t2 WHERE EXISTS (SELECT 1 FROM t1 WHERE t1.a = t2.a);

UPDATE t1, v2 SET t1.a = 1 WHERE t1.b = v2.b;

If the view is evaluated using a temporary table, you can select from the table in the view subquery and still
modify that table in the outer query. In this case the view is stored in a temporary table and thus you are
not really selecting from the table in a subquery and modifying it “at the same time.” (This is another reason
you might wish to force MySQL to use the temptable algorithm by specifying ALGORITHM = TEMPTABLE
in the view definition.)

You can use DROP TABLE or ALTER TABLE to drop or alter a table that is used in a view definition. No
warning results from the DROP or ALTER operation, even though this invalidates the view. Instead, an
error occurs later, when the view is used. CHECK TABLE can be used to check for views that have been
invalidated by DROP or ALTER operations.

Before MySQL 5.6.5, a view definition is “frozen” by certain statements. If a statement prepared by
PREPARE refers to a view, the view definition seen each time the statement is executed later is the
definition of the view at the time it was prepared. This is true even if the view definition is changed after
the statement is prepared and before it is executed. In the following example, the result returned by the
EXECUTE statement is a random number, not the current date and time:

CREATE VIEW v AS SELECT RAND();
PREPARE s FROM 'SELECT * FROM v';
ALTER VIEW v AS SELECT NOW();
EXECUTE s;

With regard to view updatability, the overall goal for views is that if any view is theoretically updatable, it
should be updatable in practice. MySQL as quickly as possible. Many theoretically updatable views can be
updated now, but limitations still exist. For details, see Section 20.5.3, “Updatable and Insertable Views”.

There exists a shortcoming with the current implementation of views. If a user is granted the basic
privileges necessary to create a view (the CREATE VIEW and SELECT privileges), that user cannot call
SHOW CREATE VIEW on that object unless the user is also granted the SHOW VIEW privilege.

That shortcoming can lead to problems backing up a database with mysqldump, which may fail due to
insufficient privileges. This problem is described in Bug #22062.

The workaround to the problem is for the administrator to manually grant the SHOW VIEW privilege to users
who are granted CREATE VIEW, since MySQL doesn't grant it implicitly when views are created.

3259

Restrictions on Views

Views do not have indexes, so index hints do not apply. Use of index hints when selecting from a view is
not permitted.

SHOW CREATE VIEW displays view definitions using an AS alias_name clause for each column. If a
column is created from an expression, the default alias is the expression text, which can be quite long.
Aliases for column names in CREATE VIEW statements are checked against the maximum column length
of 64 characters (not the maximum alias length of 256 characters). As a result, views created from the
output of SHOW CREATE VIEW fail if any column alias exceeds 64 characters. This can cause problems in
the following circumstances for views with too-long aliases:

• View definitions fail to replicate to newer replicas that enforce the column-length restriction.

• Dump files created with mysqldump cannot be loaded into servers that enforce the column-length
restriction.

A workaround for either problem is to modify each problematic view definition to use aliases that provide
shorter column names. Then the view replicates properly, and can be dumped and reloaded without
causing an error. To modify the definition, drop and create the view again with DROP VIEW and CREATE
VIEW, or replace the definition with CREATE OR REPLACE VIEW.

For problems that occur when reloading view definitions in dump files, another workaround is to edit
the dump file to modify its CREATE VIEW statements. However, this does not change the original view
definitions, which may cause problems for subsequent dump operations.

3260

Chapter 21 INFORMATION_SCHEMA Tables

Table of Contents
21.1 Introduction ... 3262
21.2 INFORMATION_SCHEMA Table Reference ... 3265
21.3 INFORMATION_SCHEMA General Tables ... 3268

21.3.1 INFORMATION_SCHEMA General Table Reference ... 3268
21.3.2 The INFORMATION_SCHEMA CHARACTER_SETS Table .. 3269
21.3.3 The INFORMATION_SCHEMA COLLATIONS Table .. 3270
21.3.4 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY
Table .. 3270
21.3.5 The INFORMATION_SCHEMA COLUMNS Table .. 3271
21.3.6 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table 3273
21.3.7 The INFORMATION_SCHEMA ENGINES Table .. 3274
21.3.8 The INFORMATION_SCHEMA EVENTS Table ... 3275
21.3.9 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables 3279
21.3.10 The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables .. 3279
21.3.11 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table 3279
21.3.12 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table .. 3281
21.3.13 The INFORMATION_SCHEMA PARAMETERS Table .. 3281
21.3.14 The INFORMATION_SCHEMA PARTITIONS Table ... 3283
21.3.15 The INFORMATION_SCHEMA PLUGINS Table .. 3286
21.3.16 The INFORMATION_SCHEMA PROCESSLIST Table .. 3287
21.3.17 The INFORMATION_SCHEMA PROFILING Table ... 3289
21.3.18 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table 3290
21.3.19 The INFORMATION_SCHEMA ROUTINES Table .. 3291
21.3.20 The INFORMATION_SCHEMA SCHEMATA Table ... 3294
21.3.21 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table 3294
21.3.22 The INFORMATION_SCHEMA STATISTICS Table .. 3295
21.3.23 The INFORMATION_SCHEMA TABLES Table .. 3297
21.3.24 The INFORMATION_SCHEMA TABLESPACES Table ... 3300
21.3.25 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table 3300
21.3.26 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table 3301
21.3.27 The INFORMATION_SCHEMA TRIGGERS Table .. 3302
21.3.28 The INFORMATION_SCHEMA USER_PRIVILEGES Table .. 3304
21.3.29 The INFORMATION_SCHEMA VIEWS Table .. 3304

21.4 INFORMATION_SCHEMA InnoDB Tables .. 3306
21.4.1 INFORMATION_SCHEMA InnoDB Table Reference .. 3306
21.4.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table 3307
21.4.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table 3310
21.4.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table 3313
21.4.5 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables 3317
21.4.6 The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables .. 3318
21.4.7 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables ... 3319
21.4.8 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table 3321
21.4.9 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table 3322
21.4.10 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table 3323
21.4.11 The INFORMATION_SCHEMA INNODB_FT_DELETED Table 3324

3261

Introduction

21.4.12 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table 3325
21.4.13 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table 3326
21.4.14 The INFORMATION_SCHEMA INNODB_LOCKS Table ... 3328
21.4.15 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table 3329
21.4.16 The INFORMATION_SCHEMA INNODB_METRICS Table ... 3330
21.4.17 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table 3332
21.4.18 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table 3333
21.4.19 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table 3334
21.4.20 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table 3335
21.4.21 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table 3336
21.4.22 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table 3336
21.4.23 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table 3338
21.4.24 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table 3339
21.4.25 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View 3340
21.4.26 The INFORMATION_SCHEMA INNODB_TRX Table .. 3341

21.5 INFORMATION_SCHEMA NDB Cluster Tables .. 3344
21.5.1 The INFORMATION_SCHEMA FILES Table ... 3344
21.5.2 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table 3350

21.6 INFORMATION_SCHEMA Thread Pool Tables .. 3351
21.6.1 INFORMATION_SCHEMA Thread Pool Table Reference ... 3352
21.6.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table 3352
21.6.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table 3354
21.6.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table ... 3356

21.7 INFORMATION_SCHEMA Connection-Control Tables .. 3356
21.7.1 INFORMATION_SCHEMA Connection-Control Table Reference 3356
21.7.2 The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table ... 3357

21.8 INFORMATION_SCHEMA MySQL Enterprise Firewall Tables ... 3357
21.8.1 INFORMATION_SCHEMA Firewall Table Reference .. 3357
21.8.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table 3358
21.8.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table 3358

21.9 Extensions to SHOW Statements .. 3358

INFORMATION_SCHEMA provides access to database metadata, information about the MySQL server such
as the name of a database or table, the data type of a column, or access privileges. Other terms that are
sometimes used for this information are data dictionary and system catalog.

21.1 Introduction

INFORMATION_SCHEMA provides access to database metadata, information about the MySQL server such
as the name of a database or table, the data type of a column, or access privileges. Other terms that are
sometimes used for this information are data dictionary and system catalog.

• INFORMATION_SCHEMA Usage Notes

• Character Set Considerations

• INFORMATION_SCHEMA as Alternative to SHOW Statements

• INFORMATION_SCHEMA and Privileges

• Performance Considerations

• Standards Considerations

3262

INFORMATION_SCHEMA Usage Notes

• Conventions in the INFORMATION_SCHEMA Reference Sections

• Related Information

INFORMATION_SCHEMA Usage Notes

INFORMATION_SCHEMA is a database within each MySQL instance, the place that stores information
about all the other databases that the MySQL server maintains. The INFORMATION_SCHEMA database
contains several read-only tables. They are actually views, not base tables, so there are no files associated
with them, and you cannot set triggers on them. Also, there is no database directory with that name.

Although you can select INFORMATION_SCHEMA as the default database with a USE statement, you can
only read the contents of tables, not perform INSERT, UPDATE, or DELETE operations on them.

Here is an example of a statement that retrieves information from INFORMATION_SCHEMA:

mysql> SELECT table_name, table_type, engine
 FROM information_schema.tables
 WHERE table_schema = 'db5'
 ORDER BY table_name;
+------------+------------+--------+
| table_name | table_type | engine |
+------------+------------+--------+
fk	BASE TABLE	InnoDB
fk2	BASE TABLE	InnoDB
goto	BASE TABLE	MyISAM
into	BASE TABLE	MyISAM
k	BASE TABLE	MyISAM
kurs	BASE TABLE	MyISAM
loop	BASE TABLE	MyISAM
pk	BASE TABLE	InnoDB
t	BASE TABLE	MyISAM
t2	BASE TABLE	MyISAM
t3	BASE TABLE	MyISAM
t7	BASE TABLE	MyISAM
tables	BASE TABLE	MyISAM
v	VIEW	NULL
v2	VIEW	NULL
v3	VIEW	NULL
v56	VIEW	NULL
+------------+------------+--------+
17 rows in set (0.01 sec)

Explanation: The statement requests a list of all the tables in database db5, showing just three pieces of
information: the name of the table, its type, and its storage engine.

Character Set Considerations

The definition for character columns (for example, TABLES.TABLE_NAME) is generally VARCHAR(N)
CHARACTER SET utf8 where N is at least 64. MySQL uses the default collation for this character set
(utf8_general_ci) for all searches, sorts, comparisons, and other string operations on such columns.

Because some MySQL objects are represented as files, searches in INFORMATION_SCHEMA string
columns can be affected by file system case sensitivity. For more information, see Section 10.8.7, “Using
Collation in INFORMATION_SCHEMA Searches”.

INFORMATION_SCHEMA as Alternative to SHOW Statements

The SELECT ... FROM INFORMATION_SCHEMA statement is intended as a more consistent way to
provide access to the information provided by the various SHOW statements that MySQL supports (SHOW
DATABASES, SHOW TABLES, and so forth). Using SELECT has these advantages, compared to SHOW:

3263

INFORMATION_SCHEMA and Privileges

• It conforms to Codd's rules, because all access is done on tables.

• You can use the familiar syntax of the SELECT statement, and only need to learn some table and column
names.

• The implementor need not worry about adding keywords.

• You can filter, sort, concatenate, and transform the results from INFORMATION_SCHEMA queries into
whatever format your application needs, such as a data structure or a text representation to parse.

• This technique is more interoperable with other database systems. For example, Oracle Database users
are familiar with querying tables in the Oracle data dictionary.

Because SHOW is familiar and widely used, the SHOW statements remain as an alternative. In fact, along
with the implementation of INFORMATION_SCHEMA, there are enhancements to SHOW as described in
Section 21.9, “Extensions to SHOW Statements”.

INFORMATION_SCHEMA and Privileges

For most INFORMATION_SCHEMA tables, each MySQL user has the right to access them, but can see only
the rows in the tables that correspond to objects for which the user has the proper access privileges. In
some cases (for example, the ROUTINE_DEFINITION column in the INFORMATION_SCHEMA ROUTINES
table), users who have insufficient privileges see NULL. Some tables have different privilege requirements;
for these, the requirements are mentioned in the applicable table descriptions. For example, InnoDB tables
(tables with names that begin with INNODB_) require the PROCESS privilege.

The same privileges apply to selecting information from INFORMATION_SCHEMA and viewing the same
information through SHOW statements. In either case, you must have some privilege on an object to see
information about it.

Performance Considerations

INFORMATION_SCHEMA queries that search for information from more than one database might take
a long time and impact performance. To check the efficiency of a query, you can use EXPLAIN. For
information about using EXPLAIN output to tune INFORMATION_SCHEMA queries, see Section 8.2.3,
“Optimizing INFORMATION_SCHEMA Queries”.

Standards Considerations

The implementation for the INFORMATION_SCHEMA table structures in MySQL follows the ANSI/ISO
SQL:2003 standard Part 11 Schemata. Our intent is approximate compliance with SQL:2003 core feature
F021 Basic information schema.

Users of SQL Server 2000 (which also follows the standard) may notice a strong similarity. However,
MySQL has omitted many columns that are not relevant for our implementation, and added columns
that are MySQL-specific. One such added column is the ENGINE column in the INFORMATION_SCHEMA
TABLES table.

Although other DBMSs use a variety of names, like syscat or system, the standard name is
INFORMATION_SCHEMA.

To avoid using any name that is reserved in the standard or in DB2, SQL Server, or Oracle, we changed
the names of some columns marked “MySQL extension”. (For example, we changed COLLATION to
TABLE_COLLATION in the TABLES table.) See the list of reserved words near the end of this article:
https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-disarticles/gulutzan5.

3264

https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-disarticles/gulutzan5

Conventions in the INFORMATION_SCHEMA Reference Sections

Conventions in the INFORMATION_SCHEMA Reference Sections

The following sections describe each of the tables and columns in INFORMATION_SCHEMA. For each
column, there are three pieces of information:

• “INFORMATION_SCHEMA Name” indicates the name for the column in the INFORMATION_SCHEMA table.
This corresponds to the standard SQL name unless the “Remarks” field says “MySQL extension.”

• “SHOW Name” indicates the equivalent field name in the closest SHOW statement, if there is one.

• “Remarks” provides additional information where applicable. If this field is NULL, it means that the value
of the column is always NULL. If this field says “MySQL extension,” the column is a MySQL extension to
standard SQL.

Many sections indicate what SHOW statement is equivalent to a SELECT that retrieves information from
INFORMATION_SCHEMA. For SHOW statements that display information for the default database if you omit
a FROM db_name clause, you can often select information for the default database by adding an AND
TABLE_SCHEMA = SCHEMA() condition to the WHERE clause of a query that retrieves information from an
INFORMATION_SCHEMA table.

Related Information

These sections discuss additional INFORMATION_SCHEMA-related topics:

• information about INFORMATION_SCHEMA tables specific to the InnoDB storage engine: Section 21.4,
“INFORMATION_SCHEMA InnoDB Tables”

• information about INFORMATION_SCHEMA tables specific to the NDB storage engine (NDB Cluster):
Section 21.5, “INFORMATION_SCHEMA NDB Cluster Tables”

• information about INFORMATION_SCHEMA tables specific to the thread pool plugin: Section 21.6,
“INFORMATION_SCHEMA Thread Pool Tables”

• information about INFORMATION_SCHEMA tables specific to the CONNECTION_CONTROL plugin:
Section 21.7, “INFORMATION_SCHEMA Connection-Control Tables”

• Answers to questions that are often asked concerning the INFORMATION_SCHEMA database:
Section A.7, “MySQL 5.6 FAQ: INFORMATION_SCHEMA”

• INFORMATION_SCHEMA queries and the optimizer: Section 8.2.3, “Optimizing
INFORMATION_SCHEMA Queries”

• The effect of collation on INFORMATION_SCHEMA comparisons: Section 10.8.7, “Using Collation in
INFORMATION_SCHEMA Searches”

• As of MySQL 5.6.49, you must have the PROCESS privilege to query this table.

21.2 INFORMATION_SCHEMA Table Reference
The following table summarizes all available INFORMATION_SCHEMA tables. For greater detail, see the
individual table descriptions.

Table 21.1 INFORMATION_SCHEMA Tables

Table Name Description Introduced

CHARACTER_SETS Available character sets

COLLATION_CHARACTER_SET_APPLICABILITYCharacter set applicable to each
collation

3265

INFORMATION_SCHEMA Table Reference

Table Name Description Introduced

COLLATIONS Collations for each character set

COLUMN_PRIVILEGES Privileges defined on columns

COLUMNS Columns in each table

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTSCurrent number of consecutive
failed connection attempts per
account

5.6.35

ENGINES Storage engine properties

EVENTS Event Manager events

FILES Files that store tablespace data

GLOBAL_STATUS Global status variables

GLOBAL_VARIABLES Global system variables

INNODB_BUFFER_PAGE Pages in InnoDB buffer pool

INNODB_BUFFER_PAGE_LRU LRU ordering of pages in InnoDB
buffer pool

INNODB_BUFFER_POOL_STATS InnoDB buffer pool statistics

INNODB_CMP Status for operations related to
compressed InnoDB tables

INNODB_CMP_PER_INDEX Status for operations related to
compressed InnoDB tables and
indexes

INNODB_CMP_PER_INDEX_RESETStatus for operations related to
compressed InnoDB tables and
indexes

INNODB_CMP_RESET Status for operations related to
compressed InnoDB tables

INNODB_CMPMEM Status for compressed pages
within InnoDB buffer pool

INNODB_CMPMEM_RESET Status for compressed pages
within InnoDB buffer pool

INNODB_FT_BEING_DELETED Snapshot of
INNODB_FT_DELETED table

INNODB_FT_CONFIG Metadata for InnoDB table
FULLTEXT index and associated
processing

INNODB_FT_DEFAULT_STOPWORDDefault list of stopwords for
InnoDB FULLTEXT indexes

INNODB_FT_DELETED Rows deleted from InnoDB table
FULLTEXT index

INNODB_FT_INDEX_CACHE Token information for newly
inserted rows in InnoDB
FULLTEXT index

3266

INFORMATION_SCHEMA Table Reference

Table Name Description Introduced

INNODB_FT_INDEX_TABLE Inverted index information for
processing text searches against
InnoDB table FULLTEXT index

INNODB_LOCK_WAITS InnoDB transaction lock-wait
information

INNODB_LOCKS InnoDB transaction lock
information

INNODB_METRICS InnoDB performance information

INNODB_SYS_COLUMNS Columns in each InnoDB table

INNODB_SYS_DATAFILES Data file path information for
InnoDB file-per-table and general
tablespaces

INNODB_SYS_FIELDS Key columns of InnoDB indexes

INNODB_SYS_FOREIGN InnoDB foreign-key metadata

INNODB_SYS_FOREIGN_COLS InnoDB foreign-key column status
information

INNODB_SYS_INDEXES InnoDB index metadata

INNODB_SYS_TABLES InnoDB table metadata

INNODB_SYS_TABLESPACES InnoDB file-per-table, general, and
undo tablespace metadata

INNODB_SYS_TABLESTATS InnoDB table low-level status
information

INNODB_TRX Active InnoDB transaction
information

KEY_COLUMN_USAGE Which key columns have
constraints

MYSQL_FIREWALL_USERS Firewall in-memory data for
account profiles

MYSQL_FIREWALL_WHITELIST Firewall in-memory data for
account profile allowlists

ndb_transid_mysql_connection_mapNDB transaction information

OPTIMIZER_TRACE Information produced by optimizer
trace activity

PARAMETERS Stored routine parameters and
stored function return values

PARTITIONS Table partition information

PLUGINS Plugin information

PROCESSLIST Information about currently
executing threads

PROFILING Statement profiling information

REFERENTIAL_CONSTRAINTS Foreign key information

ROUTINES Stored routine information

3267

INFORMATION_SCHEMA General Tables

Table Name Description Introduced

SCHEMA_PRIVILEGES Privileges defined on schemas

SCHEMATA Schema information

SESSION_STATUS Status variables for current
session

SESSION_VARIABLES System variables for current
session

STATISTICS Table index statistics

TABLE_CONSTRAINTS Which tables have constraints

TABLE_PRIVILEGES Privileges defined on tables

TABLES Table information

TABLESPACES Tablespace information

TP_THREAD_GROUP_STATE Thread pool thread group states

TP_THREAD_GROUP_STATS Thread pool thread group
statistics

TP_THREAD_STATE Thread pool thread information

TRIGGERS Trigger information

USER_PRIVILEGES Privileges defined globally per
user

VIEWS View information

21.3 INFORMATION_SCHEMA General Tables

The following sections describe what may be denoted as the “general” set of INFORMATION_SCHEMA
tables. These are the tables not associated with particular storage engines, components, or plugins.

21.3.1 INFORMATION_SCHEMA General Table Reference

The following table summarizes INFORMATION_SCHEMA general tables. For greater detail, see the
individual table descriptions.

Table 21.2 INFORMATION_SCHEMA General Tables

Table Name Description

CHARACTER_SETS Available character sets

COLLATION_CHARACTER_SET_APPLICABILITY Character set applicable to each collation

COLLATIONS Collations for each character set

COLUMN_PRIVILEGES Privileges defined on columns

COLUMNS Columns in each table

ENGINES Storage engine properties

EVENTS Event Manager events

FILES Files that store tablespace data

GLOBAL_STATUS Global status variables

3268

The INFORMATION_SCHEMA CHARACTER_SETS Table

Table Name Description

GLOBAL_VARIABLES Global system variables

KEY_COLUMN_USAGE Which key columns have constraints

ndb_transid_mysql_connection_map NDB transaction information

OPTIMIZER_TRACE Information produced by optimizer trace activity

PARAMETERS Stored routine parameters and stored function
return values

PARTITIONS Table partition information

PLUGINS Plugin information

PROCESSLIST Information about currently executing threads

PROFILING Statement profiling information

REFERENTIAL_CONSTRAINTS Foreign key information

ROUTINES Stored routine information

SCHEMA_PRIVILEGES Privileges defined on schemas

SCHEMATA Schema information

SESSION_STATUS Status variables for current session

SESSION_VARIABLES System variables for current session

STATISTICS Table index statistics

TABLE_CONSTRAINTS Which tables have constraints

TABLE_PRIVILEGES Privileges defined on tables

TABLES Table information

TABLESPACES Tablespace information

TRIGGERS Trigger information

USER_PRIVILEGES Privileges defined globally per user

VIEWS View information

21.3.2 The INFORMATION_SCHEMA CHARACTER_SETS Table

The CHARACTER_SETS table provides information about available character sets.

The CHARACTER_SETS table has these columns:

• CHARACTER_SET_NAME

The character set name.

• DEFAULT_COLLATE_NAME

The default collation for the character set.

• DESCRIPTION

A description of the character set.

• MAXLEN

The maximum number of bytes required to store one character.

3269

The INFORMATION_SCHEMA COLLATIONS Table

Notes

Character set information is also available from the SHOW CHARACTER SET statement. See
Section 13.7.5.4, “SHOW CHARACTER SET Statement”. The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
 [WHERE CHARACTER_SET_NAME LIKE 'wild']

SHOW CHARACTER SET
 [LIKE 'wild']

21.3.3 The INFORMATION_SCHEMA COLLATIONS Table

The COLLATIONS table provides information about collations for each character set.

The COLLATIONS table has these columns:

• COLLATION_NAME

The collation name.

• CHARACTER_SET_NAME

The name of the character set with which the collation is associated.

• ID

The collation ID.

• IS_DEFAULT

Whether the collation is the default for its character set.

• IS_COMPILED

Whether the character set is compiled into the server.

• SORTLEN

This is related to the amount of memory required to sort strings expressed in the character set.

Notes

Collation information is also available from the SHOW COLLATION statement. See Section 13.7.5.5,
“SHOW COLLATION Statement”. The following statements are equivalent:

SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
 [WHERE COLLATION_NAME LIKE 'wild']

SHOW COLLATION
 [LIKE 'wild']

21.3.4 The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY Table

The COLLATION_CHARACTER_SET_APPLICABILITY table indicates what character set is applicable for
what collation.

The COLLATION_CHARACTER_SET_APPLICABILITY table has these columns:

3270

The INFORMATION_SCHEMA COLUMNS Table

• COLLATION_NAME

The collation name.

• CHARACTER_SET_NAME

The name of the character set with which the collation is associated.

Notes

The COLLATION_CHARACTER_SET_APPLICABILITY columns are equivalent to the first two columns
displayed by the SHOW COLLATION statement.

21.3.5 The INFORMATION_SCHEMA COLUMNS Table

The COLUMNS table provides information about columns in tables.

The COLUMNS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table containing the column belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table containing the column belongs.

• TABLE_NAME

The name of the table containing the column.

• COLUMN_NAME

The name of the column.

• ORDINAL_POSITION

The position of the column within the table. ORDINAL_POSITION is necessary because you might want
to say ORDER BY ORDINAL_POSITION. Unlike SHOW COLUMNS, SELECT from the COLUMNS table does
not have automatic ordering.

• COLUMN_DEFAULT

The default value for the column. This is NULL if the column has an explicit default of NULL, or if the
column definition includes no DEFAULT clause.

• IS_NULLABLE

The column nullability. The value is YES if NULL values can be stored in the column, NO if not.

• DATA_TYPE

The column data type.

The DATA_TYPE value is the type name only with no other information. The COLUMN_TYPE value
contains the type name and possibly other information such as the precision or length.

• CHARACTER_MAXIMUM_LENGTH

3271

The INFORMATION_SCHEMA COLUMNS Table

For string columns, the maximum length in characters.

• CHARACTER_OCTET_LENGTH

For string columns, the maximum length in bytes.

• NUMERIC_PRECISION

For numeric columns, the numeric precision.

• NUMERIC_SCALE

For numeric columns, the numeric scale.

• DATETIME_PRECISION

For temporal columns, the fractional seconds precision.

• CHARACTER_SET_NAME

For character string columns, the character set name.

• COLLATION_NAME

For character string columns, the collation name.

• COLUMN_TYPE

The column data type.

The DATA_TYPE value is the type name only with no other information. The COLUMN_TYPE value
contains the type name and possibly other information such as the precision or length.

• COLUMN_KEY

Whether the column is indexed:

• If COLUMN_KEY is empty, the column either is not indexed or is indexed only as a secondary column in
a multiple-column, nonunique index.

• If COLUMN_KEY is PRI, the column is a PRIMARY KEY or is one of the columns in a multiple-column
PRIMARY KEY.

• If COLUMN_KEY is UNI, the column is the first column of a UNIQUE index. (A UNIQUE index permits
multiple NULL values, but you can tell whether the column permits NULL by checking the Null
column.)

• If COLUMN_KEY is MUL, the column is the first column of a nonunique index in which multiple
occurrences of a given value are permitted within the column.

If more than one of the COLUMN_KEY values applies to a given column of a table, COLUMN_KEY displays
the one with the highest priority, in the order PRI, UNI, MUL.

A UNIQUE index may be displayed as PRI if it cannot contain NULL values and there is no PRIMARY
KEY in the table. A UNIQUE index may display as MUL if several columns form a composite UNIQUE
index; although the combination of the columns is unique, each column can still hold multiple
occurrences of a given value.

3272

The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table

• EXTRA

Any additional information that is available about a given column. The value is nonempty in
these cases: auto_increment for columns that have the AUTO_INCREMENT attribute; on
update CURRENT_TIMESTAMP for TIMESTAMP or DATETIME columns that have the ON UPDATE
CURRENT_TIMESTAMP attribute.

• PRIVILEGES

The privileges you have for the column.

• COLUMN_COMMENT

Any comment included in the column definition.

Notes

• In SHOW COLUMNS, the Type display includes values from several different COLUMNS columns.

• CHARACTER_OCTET_LENGTH should be the same as CHARACTER_MAXIMUM_LENGTH, except for
multibyte character sets.

• CHARACTER_SET_NAME can be derived from COLLATION_NAME. For example, if you say SHOW FULL
COLUMNS FROM t, and you see in the COLLATION_NAME column a value of latin1_swedish_ci, the
character set is what is before the first underscore: latin1.

Column information is also available from the SHOW COLUMNS statement. See Section 13.7.5.6, “SHOW
COLUMNS Statement”. The following statements are nearly equivalent:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE table_name = 'tbl_name'
 [AND table_schema = 'db_name']
 [AND column_name LIKE 'wild']

SHOW COLUMNS
 FROM tbl_name
 [FROM db_name]
 [LIKE 'wild']

21.3.6 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table

The COLUMN_PRIVILEGES table provides information about column privileges. It takes its values from the
mysql.columns_priv system table.

The COLUMN_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog to which the table containing the column belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table containing the column belongs.

• TABLE_NAME

3273

The INFORMATION_SCHEMA ENGINES Table

The name of the table containing the column.

• COLUMN_NAME

The name of the column.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the column level; see
Section 13.7.1.4, “GRANT Statement”. Each row lists a single privilege, so there is one row per column
privilege held by the grantee.

In the output from SHOW FULL COLUMNS, the privileges are all in one column and in lowercase, for
example, select,insert,update,references. In COLUMN_PRIVILEGES, there is one privilege per
row, in uppercase.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT OPTION
as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

Notes

• COLUMN_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES

SHOW GRANTS ...

21.3.7 The INFORMATION_SCHEMA ENGINES Table

The ENGINES table provides information about storage engines. This is particularly useful for checking
whether a storage engine is supported, or to see what the default engine is.

The ENGINES table has these columns:

• ENGINE

The name of the storage engine.

• SUPPORT

The server's level of support for the storage engine, as shown in the following table.

Value Meaning

YES The engine is supported and is active

DEFAULT Like YES, plus this is the default engine

NO The engine is not supported

DISABLED The engine is supported but has been disabled

A value of NO means that the server was compiled without support for the engine, so it cannot be
enabled at runtime.

3274

The INFORMATION_SCHEMA EVENTS Table

A value of DISABLED occurs either because the server was started with an option that disables the
engine, or because not all options required to enable it were given. In the latter case, the error log should
contain a reason indicating why the option is disabled. See Section 5.4.2, “The Error Log”.

You might also see DISABLED for a storage engine if the server was compiled to support it, but was
started with a --skip-engine_name option. For the NDB storage engine, DISABLED means the server
was compiled with support for NDB Cluster, but was not started with the --ndbcluster option.

All MySQL servers support MyISAM tables. It is not possible to disable MyISAM.

• COMMENT

A brief description of the storage engine.

• TRANSACTIONS

Whether the storage engine supports transactions.

• XA

Whether the storage engine supports XA transactions.

• SAVEPOINTS

Whether the storage engine supports savepoints.

Notes

• ENGINES is a nonstandard INFORMATION_SCHEMA table.

Storage engine information is also available from the SHOW ENGINES statement. See Section 13.7.5.17,
“SHOW ENGINES Statement”. The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.ENGINES

SHOW ENGINES

21.3.8 The INFORMATION_SCHEMA EVENTS Table

The EVENTS table provides information about Event Manager events, which are discussed in Section 20.4,
“Using the Event Scheduler”.

The EVENTS table has these columns:

• EVENT_CATALOG

The name of the catalog to which the event belongs. This value is always def.

• EVENT_SCHEMA

The name of the schema (database) to which the event belongs.

• EVENT_NAME

The name of the event.

• DEFINER

3275

The INFORMATION_SCHEMA EVENTS Table

The account named in the DEFINER clause (often the user who created the event), in
'user_name'@'host_name' format.

• TIME_ZONE

The event time zone, which is the time zone used for scheduling the event and that is in effect within the
event as it executes. The default value is SYSTEM.

• EVENT_BODY

The language used for the statements in the event's DO clause. The value is always SQL.

• EVENT_DEFINITION

The text of the SQL statement making up the event's DO clause; in other words, the statement executed
by this event.

• EVENT_TYPE

The event repetition type, either ONE TIME (transient) or RECURRING (repeating).

• EXECUTE_AT

For a one-time event, this is the DATETIME value specified in the AT clause of the CREATE EVENT
statement used to create the event, or of the last ALTER EVENT statement that modified the event. The
value shown in this column reflects the addition or subtraction of any INTERVAL value included in the
event's AT clause. For example, if an event is created using ON SCHEDULE AT CURRENT_TIMESTAMP
+ '1:6' DAY_HOUR, and the event was created at 2018-02-09 14:05:30, the value shown in this
column would be '2018-02-10 20:05:30'. If the event's timing is determined by an EVERY clause
instead of an AT clause (that is, if the event is recurring), the value of this column is NULL.

• INTERVAL_VALUE

For a recurring event, the number of intervals to wait between event executions. For a transient event,
the value is always NULL.

• INTERVAL_FIELD

The time units used for the interval which a recurring event waits before repeating. For a transient event,
the value is always NULL.

• SQL_MODE

The SQL mode in effect when the event was created or altered, and under which the event executes.
For the permitted values, see Section 5.1.10, “Server SQL Modes”.

• STARTS

The start date and time for a recurring event. This is displayed as a DATETIME value, and is NULL if
no start date and time are defined for the event. For a transient event, this column is always NULL. For
a recurring event whose definition includes a STARTS clause, this column contains the corresponding
DATETIME value. As with the EXECUTE_AT column, this value resolves any expressions used. If there is
no STARTS clause affecting the timing of the event, this column is NULL

3276

The INFORMATION_SCHEMA EVENTS Table

• ENDS

For a recurring event whose definition includes a ENDS clause, this column contains the corresponding
DATETIME value. As with the EXECUTE_AT column, this value resolves any expressions used. If there is
no ENDS clause affecting the timing of the event, this column is NULL.

• STATUS

The event status. One of ENABLED, DISABLED, or SLAVESIDE_DISABLED. SLAVESIDE_DISABLED
indicates that the creation of the event occurred on another MySQL server acting as a replication source
and replicated to the current MySQL server which is acting as a replica, but the event is not presently
being executed on the replica. For more information, see Section 17.4.1.16, “Replication of Invoked
Features”. information.

• ON_COMPLETION

One of the two values PRESERVE or NOT PRESERVE.

• CREATED

The date and time when the event was created. This is a TIMESTAMP value.

• LAST_ALTERED

The date and time when the event was last modified. This is a TIMESTAMP value. If the event has not
been modified since its creation, this value is the same as the CREATED value.

• LAST_EXECUTED

The date and time when the event last executed. This is a DATETIME value. If the event has never
executed, this column is NULL.

LAST_EXECUTED indicates when the event started. As a result, the ENDS column is never less than
LAST_EXECUTED.

• EVENT_COMMENT

The text of the comment, if the event has one. If not, this value is empty.

• ORIGINATOR

The server ID of the MySQL server on which the event was created; used in replication. This value may
be updated by ALTER EVENT to the server ID of the server on which that statement occurs, if executed
on a replication source. The default value is 0.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the event was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the event was created.

• DATABASE_COLLATION

The collation of the database with which the event is associated.

3277

The INFORMATION_SCHEMA EVENTS Table

Notes

• EVENTS is a nonstandard INFORMATION_SCHEMA table.

• Times in the EVENTS table are displayed using the event time zone, the current session time zone, or
UTC, as described in Section 20.4.4, “Event Metadata”.

• For more information about SLAVESIDE_DISABLED and the ORIGINATOR column, see
Section 17.4.1.16, “Replication of Invoked Features”.

Example

Suppose that the user 'jon'@'ghidora' creates an event named e_daily, and then modifies it a few
minutes later using an ALTER EVENT statement, as shown here:

DELIMITER |

CREATE EVENT e_daily
 ON SCHEDULE
 EVERY 1 DAY
 COMMENT 'Saves total number of sessions then clears the table each day'
 DO
 BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END |

DELIMITER ;

ALTER EVENT e_daily
 ENABLE;

(Note that comments can span multiple lines.)

This user can then run the following SELECT statement, and obtain the output shown:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
 WHERE EVENT_NAME = 'e_daily'
 AND EVENT_SCHEMA = 'myschema'\G
*************************** 1. row ***************************
 EVENT_CATALOG: def
 EVENT_SCHEMA: myschema
 EVENT_NAME: e_daily
 DEFINER: jon@ghidora
 TIME_ZONE: SYSTEM
 EVENT_BODY: SQL
 EVENT_DEFINITION: BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END
 EVENT_TYPE: RECURRING
 EXECUTE_AT: NULL
 INTERVAL_VALUE: 1
 INTERVAL_FIELD: DAY
 SQL_MODE: NO_ENGINE_SUBSTITUTION
 STARTS: 2018-08-08 11:06:34
 ENDS: NULL
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
 CREATED: 2018-08-08 11:06:34

3278

The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables

 LAST_ALTERED: 2018-08-08 11:06:34
 LAST_EXECUTED: 2018-08-08 16:06:34
 EVENT_COMMENT: Saves total number of sessions then clears the
 table each day
 ORIGINATOR: 1
CHARACTER_SET_CLIENT: utf8
COLLATION_CONNECTION: utf8_general_ci
 DATABASE_COLLATION: latin1_swedish_ci

Event information is also available from the SHOW EVENTS statement. See Section 13.7.5.19, “SHOW
EVENTS Statement”. The following statements are equivalent:

SELECT
 EVENT_SCHEMA, EVENT_NAME, DEFINER, TIME_ZONE, EVENT_TYPE, EXECUTE_AT,
 INTERVAL_VALUE, INTERVAL_FIELD, STARTS, ENDS, STATUS, ORIGINATOR,
 CHARACTER_SET_CLIENT, COLLATION_CONNECTION, DATABASE_COLLATION
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE table_schema = 'db_name'
 [AND column_name LIKE 'wild']

SHOW EVENTS
 [FROM db_name]
 [LIKE 'wild']

21.3.9 The INFORMATION_SCHEMA GLOBAL_STATUS and
SESSION_STATUS Tables

The GLOBAL_STATUS and SESSION_STATUS tables provide information about server status variables.
Their contents correspond to the information produced by the SHOW GLOBAL STATUS and SHOW
SESSION STATUS statements (see Section 13.7.5.36, “SHOW STATUS Statement”).

Notes

• The VARIABLE_VALUE column for each of these tables is defined as VARCHAR(1024).

21.3.10 The INFORMATION_SCHEMA GLOBAL_VARIABLES and
SESSION_VARIABLES Tables

The GLOBAL_VARIABLES and SESSION_VARIABLES tables provide information about server status
variables. Their contents correspond to the information produced by the SHOW GLOBAL VARIABLES and
SHOW SESSION VARIABLES statements (see Section 13.7.5.40, “SHOW VARIABLES Statement”).

Notes

• The VARIABLE_VALUE column for each of these tables is defined as VARCHAR(1024). For variables
with very long values that are not completely displayed, use SELECT as a workaround. For example:

SELECT @@GLOBAL.innodb_data_file_path;

21.3.11 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table

The KEY_COLUMN_USAGE table describes which key columns have constraints.

The KEY_COLUMN_USAGE table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the constraint belongs. This value is always def.

3279

The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the constraint belongs.

• CONSTRAINT_NAME

The name of the constraint.

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table that has the constraint.

• COLUMN_NAME

The name of the column that has the constraint.

If the constraint is a foreign key, then this is the column of the foreign key, not the column that the foreign
key references.

• ORDINAL_POSITION

The column's position within the constraint, not the column's position within the table. Column positions
are numbered beginning with 1.

• POSITION_IN_UNIQUE_CONSTRAINT

NULL for unique and primary-key constraints. For foreign-key constraints, this column is the ordinal
position in key of the table that is being referenced.

• REFERENCED_TABLE_SCHEMA

The name of the schema (database) referenced by the constraint.

• REFERENCED_TABLE_NAME

The name of the table referenced by the constraint.

• REFERENCED_COLUMN_NAME

The name of the column referenced by the constraint.

Suppose that there are two tables name t1 and t3 that have the following definitions:

CREATE TABLE t1
(
 s1 INT,
 s2 INT,
 s3 INT,
 PRIMARY KEY(s3)
) ENGINE=InnoDB;

CREATE TABLE t3
(

3280

The INFORMATION_SCHEMA OPTIMIZER_TRACE Table

 s1 INT,
 s2 INT,
 s3 INT,
 KEY(s1),
 CONSTRAINT CO FOREIGN KEY (s2) REFERENCES t1(s3)
) ENGINE=InnoDB;

For those two tables, the KEY_COLUMN_USAGE table has two rows:

• One row with CONSTRAINT_NAME = 'PRIMARY', TABLE_NAME = 't1', COLUMN_NAME = 's3',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = NULL.

• One row with CONSTRAINT_NAME = 'CO', TABLE_NAME = 't3', COLUMN_NAME = 's2',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = 1.

21.3.12 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table

The OPTIMIZER_TRACE table provides information produced by the optimizer tracing capability for traced
statements. To enable tracking, use the optimizer_trace system variable. For details, see MySQL
Internals: Tracing the Optimizer.

The OPTIMIZER_TRACE table has these columns:

• QUERY

The text of the traced statement.

• TRACE

The trace, in JSON format.

• MISSING_BYTES_BEYOND_MAX_MEM_SIZE

Each remembered trace is a string that is extended as optimization progresses and appends data to it.
The optimizer_trace_max_mem_size variable sets a limit on the total amount of memory used by
all currently remembered traces. If this limit is reached, the current trace is not extended (and thus is
incomplete), and the MISSING_BYTES_BEYOND_MAX_MEM_SIZE column shows the number of bytes
missing from the trace.

• INSUFFICIENT_PRIVILEGES

If a traced query uses views or stored routines that have SQL SECURITY with a value of DEFINER, it
may be that a user other than the definer is denied from seeing the trace of the query. In that case, the
trace is shown as empty and INSUFFICIENT_PRIVILEGES has a value of 1. Otherwise, the value is 0.

21.3.13 The INFORMATION_SCHEMA PARAMETERS Table

The PARAMETERS table provides information about parameters for stored routines (stored procedures and
stored functions), and about return values for stored functions. The PARAMETERS table does not include
built-in (native) functions or loadable functions. Parameter information is similar to the contents of the
param_list column in the mysql.proc table.

The PARAMETERS table has these columns:

• SPECIFIC_CATALOG

The name of the catalog to which the routine containing the parameter belongs. This value is always
def.

3281

https://dev.mysql.com/doc/internals/en/optimizer-tracing.html
https://dev.mysql.com/doc/internals/en/optimizer-tracing.html

The INFORMATION_SCHEMA PARAMETERS Table

• SPECIFIC_SCHEMA

The name of the schema (database) to which the routine containing the parameter belongs.

• SPECIFIC_NAME

The name of the routine containing the parameter.

• ORDINAL_POSITION

For successive parameters of a stored procedure or function, the ORDINAL_POSITION values are 1,
2, 3, and so forth. For a stored function, there is also a row that applies to the function return value (as
described by the RETURNS clause). The return value is not a true parameter, so the row that describes it
has these unique characteristics:

• The ORDINAL_POSITION value is 0.

• The PARAMETER_NAME and PARAMETER_MODE values are NULL because the return value has no
name and the mode does not apply.

• PARAMETER_MODE

The mode of the parameter. This value is one of IN, OUT, or INOUT. For a stored function return value,
this value is NULL.

• PARAMETER_NAME

The name of the parameter. For a stored function return value, this value is NULL.

• DATA_TYPE

The parameter data type.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• CHARACTER_MAXIMUM_LENGTH

For string parameters, the maximum length in characters.

• CHARACTER_OCTET_LENGTH

For string parameters, the maximum length in bytes.

• NUMERIC_PRECISION

For numeric parameters, the numeric precision.

• NUMERIC_SCALE

For numeric parameters, the numeric scale.

• DATETIME_PRECISION

For temporal parameters, the fractional seconds precision.

• CHARACTER_SET_NAME

For character string parameters, the character set name.

3282

The INFORMATION_SCHEMA PARTITIONS Table

• COLLATION_NAME

For character string parameters, the collation name.

• DTD_IDENTIFIER

The parameter data type.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• ROUTINE_TYPE

PROCEDURE for stored procedures, FUNCTION for stored functions.

21.3.14 The INFORMATION_SCHEMA PARTITIONS Table

The PARTITIONS table provides information about table partitions. Each row in this table corresponds to
an individual partition or subpartition of a partitioned table. For more information about partitioning tables,
see Chapter 19, Partitioning.

The PARTITIONS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the database to which the table belongs.

• TABLE_NAME

The name of the table containing the partition.

• PARTITION_NAME

The name of the partition.

• SUBPARTITION_NAME

If the PARTITIONS table row represents a subpartition, the name of subpartition; otherwise NULL.

• PARTITION_ORDINAL_POSITION

All partitions are indexed in the same order as they are defined, with 1 being the number assigned to the
first partition. The indexing can change as partitions are added, dropped, and reorganized; the number
shown is this column reflects the current order, taking into account any indexing changes.

• SUBPARTITION_ORDINAL_POSITION

Subpartitions within a given partition are also indexed and reindexed in the same manner as partitions
are indexed within a table.

• PARTITION_METHOD

One of the values RANGE, LIST, HASH, LINEAR HASH, KEY, or LINEAR KEY; that is, one of the
available partitioning types as discussed in Section 19.2, “Partitioning Types”.

3283

The INFORMATION_SCHEMA PARTITIONS Table

• SUBPARTITION_METHOD

One of the values HASH, LINEAR HASH, KEY, or LINEAR KEY; that is, one of the available
subpartitioning types as discussed in Section 19.2.6, “Subpartitioning”.

• PARTITION_EXPRESSION

The expression for the partitioning function used in the CREATE TABLE or ALTER TABLE statement that
created the table's current partitioning scheme.

For example, consider a partitioned table created in the test database using this statement:

CREATE TABLE tp (
 c1 INT,
 c2 INT,
 c3 VARCHAR(25)
)
PARTITION BY HASH(c1 + c2)
PARTITIONS 4;

The PARTITION_EXPRESSION column in a PARTITIONS table row for a partition from this table
displays c1 + c2, as shown here:

mysql> SELECT DISTINCT PARTITION_EXPRESSION
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_NAME='tp' AND TABLE_SCHEMA='test';
+----------------------+
| PARTITION_EXPRESSION |
+----------------------+
| c1 + c2 |
+----------------------+

For an NDB table that is not explicitly partitioned, this column is empty. For tables using other storage
engines and which are not partitioned, this column is NULL.

• SUBPARTITION_EXPRESSION

This works in the same fashion for the subpartitioning expression that defines the subpartitioning for
a table as PARTITION_EXPRESSION does for the partitioning expression used to define a table's
partitioning.

If the table has no subpartitions, this column is NULL.

• PARTITION_DESCRIPTION

This column is used for RANGE and LIST partitions. For a RANGE partition, it contains the value set in
the partition's VALUES LESS THAN clause, which can be either an integer or MAXVALUE. For a LIST
partition, this column contains the values defined in the partition's VALUES IN clause, which is a list of
comma-separated integer values.

For partitions whose PARTITION_METHOD is other than RANGE or LIST, this column is always NULL.

• TABLE_ROWS

The number of table rows in the partition.

For partitioned InnoDB tables, the row count given in the TABLE_ROWS column is only an estimated
value used in SQL optimization, and may not always be exact.

For NDB tables, you can also obtain this information using the ndb_desc utility.

3284

The INFORMATION_SCHEMA PARTITIONS Table

• AVG_ROW_LENGTH

The average length of the rows stored in this partition or subpartition, in bytes. This is the same as
DATA_LENGTH divided by TABLE_ROWS.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• DATA_LENGTH

The total length of all rows stored in this partition or subpartition, in bytes; that is, the total number of
bytes stored in the partition or subpartition.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• MAX_DATA_LENGTH

The maximum number of bytes that can be stored in this partition or subpartition.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• INDEX_LENGTH

The length of the index file for this partition or subpartition, in bytes.

For partitions of NDB tables, whether the tables use implicit or explicit partitioning, the INDEX_LENGTH
column value is always 0. However, you can obtain equivalent information using the ndb_desc utility.

• DATA_FREE

The number of bytes allocated to the partition or subpartition but not used.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• CREATE_TIME

The time that the partition or subpartition was created.

Prior to MySQL 5.6.25, for partitioned InnoDB tables, this column was always NULL. The correct
creation time is shown in MySQL 5.6.25 and later. (Bug #17299181, Bug #69990)

• UPDATE_TIME

The time that the partition or subpartition was last modified.

For partitioned InnoDB tables, the value is always NULL.

• CHECK_TIME

The last time that the table to which this partition or subpartition belongs was checked.

For partitioned InnoDB tables, this column is always NULL.

• CHECKSUM

The checksum value, if any; otherwise NULL.

• PARTITION_COMMENT

The text of the comment, if the partition has one. If not, this value is empty.

3285

The INFORMATION_SCHEMA PLUGINS Table

The maximum length for a partition comment is defined as 1024 characters, and the display width of the
PARTITION_COMMENT column is also 1024, characters to match this limit.

• NODEGROUP

This is the nodegroup to which the partition belongs. For NDB Cluster tables, this is always default.
For partitioned tables using storage engines other than NDB, the value is also default. Otherwise, this
column is empty.

• TABLESPACE_NAME

The name of the tablespace to which the partition belongs. The value is always DEFAULT, unless the
table uses the NDB storage engine (see the Notes at the end of this section).

Notes

• PARTITIONS is a nonstandard INFORMATION_SCHEMA table.

• A table using any storage engine other than NDB and which is not partitioned has one row in
the PARTITIONS table. However, the values of the PARTITION_NAME, SUBPARTITION_NAME,
PARTITION_ORDINAL_POSITION, SUBPARTITION_ORDINAL_POSITION, PARTITION_METHOD,
SUBPARTITION_METHOD, PARTITION_EXPRESSION, SUBPARTITION_EXPRESSION, and
PARTITION_DESCRIPTION columns are all NULL. Also, the PARTITION_COMMENT column in this case
is blank.

• An NDB table which is not explicitly partitioned has one row in the PARTITIONS table for each data node
in the NDB cluster. For each such row:

• The SUBPARTITION_NAME, SUBPARTITION_ORDINAL_POSITION, SUBPARTITION_METHOD,'
SUBPARTITION_EXPRESSION, CREATE_TIME, UPDATE_TIME, CHECK_TIME, CHECKSUM, and
TABLESPACE_NAME columns are all NULL.

• The PARTITION_METHOD is always KEY.

• The NODEGROUP column is default.

• The PARTITION_EXPRESSION and PARTITION_COMMENT columns are empty.

21.3.15 The INFORMATION_SCHEMA PLUGINS Table

The PLUGINS table provides information about server plugins.

The PLUGINS table has these columns:

• PLUGIN_NAME

The name used to refer to the plugin in statements such as INSTALL PLUGIN and UNINSTALL
PLUGIN.

• PLUGIN_VERSION

The version from the plugin's general type descriptor.

• PLUGIN_STATUS

The plugin status, one of ACTIVE, INACTIVE, DISABLED, or DELETED.

• PLUGIN_TYPE

3286

The INFORMATION_SCHEMA PROCESSLIST Table

The type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or AUTHENTICATION.

• PLUGIN_TYPE_VERSION

The version from the plugin's type-specific descriptor.

• PLUGIN_LIBRARY

The name of the plugin shared library file. This is the name used to refer to the plugin file in statements
such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in the directory named by
the plugin_dir system variable. If the library name is NULL, the plugin is compiled in and cannot be
uninstalled with UNINSTALL PLUGIN.

• PLUGIN_LIBRARY_VERSION

The plugin API interface version.

• PLUGIN_AUTHOR

The plugin author.

• PLUGIN_DESCRIPTION

A short description of the plugin.

• PLUGIN_LICENSE

How the plugin is licensed (for example, GPL).

• LOAD_OPTION

How the plugin was loaded. The value is OFF, ON, FORCE, or FORCE_PLUS_PERMANENT. See
Section 5.5.1, “Installing and Uninstalling Plugins”.

Notes

• PLUGINS is a nonstandard INFORMATION_SCHEMA table.

• For plugins installed with INSTALL PLUGIN, the PLUGIN_NAME and PLUGIN_LIBRARY values are also
registered in the mysql.plugin table.

• For information about plugin data structures that form the basis of the information in the PLUGINS table,
see The MySQL Plugin API.

Plugin information is also available from the SHOW PLUGINS statement. See Section 13.7.5.26, “SHOW
PLUGINS Statement”. These statements are equivalent:

SELECT
 PLUGIN_NAME, PLUGIN_STATUS, PLUGIN_TYPE,
 PLUGIN_LIBRARY, PLUGIN_LICENSE
FROM INFORMATION_SCHEMA.PLUGINS;

SHOW PLUGINS;

21.3.16 The INFORMATION_SCHEMA PROCESSLIST Table

The MySQL process list indicates the operations currently being performed by the set of threads executing
within the server. The PROCESSLIST table is one source of process information. For a comparison of this
table with other sources, see Sources of Process Information.

3287

https://dev.mysql.com/doc/extending-mysql/5.6/en/plugin-api.html

The INFORMATION_SCHEMA PROCESSLIST Table

The PROCESSLIST table has these columns:

• ID

The connection identifier. This is the same value displayed in the Id column of the SHOW PROCESSLIST
statement, displayed in the PROCESSLIST_ID column of the Performance Schema threads table, and
returned by the CONNECTION_ID() function within the thread.

• USER

The MySQL user who issued the statement. A value of system user refers to a nonclient thread
spawned by the server to handle tasks internally, for example, a delayed-row handler thread or an I/O
or SQL thread used on replica hosts. For system user, there is no host specified in the Host column.
unauthenticated user refers to a thread that has become associated with a client connection but for
which authentication of the client user has not yet occurred. event_scheduler refers to the thread that
monitors scheduled events (see Section 20.4, “Using the Event Scheduler”).

• HOST

The host name of the client issuing the statement (except for system user, for which there is no host).
The host name for TCP/IP connections is reported in host_name:client_port format to make it
easier to determine which client is doing what.

• DB

The default database for the thread, or NULL if none has been selected.

• COMMAND

The type of command the thread is executing on behalf of the client, or Sleep if the session is idle. For
descriptions of thread commands, see Section 8.14, “Examining Server Thread (Process) Information”.
The value of this column corresponds to the COM_xxx commands of the client/server protocol and
Com_xxx status variables. See Section 5.1.9, “Server Status Variables”.

• TIME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Section 17.2.1, “Replication Threads”.

• STATE

An action, event, or state that indicates what the thread is doing. For descriptions of STATE values, see
Section 8.14, “Examining Server Thread (Process) Information”.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• INFO

The statement the thread is executing, or NULL if it is executing no statement. The statement might be
the one sent to the server, or an innermost statement if the statement executes other statements. For
example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the
INFO value shows the SELECT statement.

Notes

• PROCESSLIST is a nonstandard INFORMATION_SCHEMA table.

3288

The INFORMATION_SCHEMA PROFILING Table

• Like the output from the SHOW PROCESSLIST statement, the PROCESSLIST table provides information
about all threads, even those belonging to other users, if you have the PROCESS privilege. Otherwise
(without the PROCESS privilege), nonanonymous users have access to information about their own
threads but not threads for other users, and anonymous users have no access to thread information.

• If an SQL statement refers to the PROCESSLIST table, MySQL populates the entire table once, when
statement execution begins, so there is read consistency during the statement. There is no read
consistency for a multi-statement transaction.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST

SHOW FULL PROCESSLIST

21.3.17 The INFORMATION_SCHEMA PROFILING Table

The PROFILING table provides statement profiling information. Its contents correspond to the information
produced by the SHOW PROFILE and SHOW PROFILES statements (see Section 13.7.5.31, “SHOW
PROFILE Statement”). The table is empty unless the profiling session variable is set to 1.

The PROFILING table has these columns:

• QUERY_ID

A numeric statement identifier.

• SEQ

A sequence number indicating the display order for rows with the same QUERY_ID value.

• STATE

The profiling state to which the row measurements apply.

• DURATION

How long statement execution remained in the given state, in seconds.

• CPU_USER, CPU_SYSTEM

User and system CPU use, in seconds.

• CONTEXT_VOLUNTARY, CONTEXT_INVOLUNTARY

How many voluntary and involuntary context switches occurred.

• BLOCK_OPS_IN, BLOCK_OPS_OUT

The number of block input and output operations.

• MESSAGES_SENT, MESSAGES_RECEIVED

The number of communication messages sent and received.

• PAGE_FAULTS_MAJOR, PAGE_FAULTS_MINOR

The number of major and minor page faults.

• SWAPS

3289

The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table

How many swaps occurred.

• SOURCE_FUNCTION, SOURCE_FILE, and SOURCE_LINE

Information indicating where in the source code the profiled state executes.

Notes

• PROFILING is a nonstandard INFORMATION_SCHEMA table.

Profiling information is also available from the SHOW PROFILE and SHOW PROFILES statements. See
Section 13.7.5.31, “SHOW PROFILE Statement”. For example, the following queries are equivalent:

SHOW PROFILE FOR QUERY 2;

SELECT STATE, FORMAT(DURATION, 6) AS DURATION
FROM INFORMATION_SCHEMA.PROFILING
WHERE QUERY_ID = 2 ORDER BY SEQ;

21.3.18 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table

The REFERENTIAL_CONSTRAINTS table provides information about foreign keys.

The REFERENTIAL_CONSTRAINTS table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the constraint belongs. This value is always def.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the constraint belongs.

• CONSTRAINT_NAME

The name of the constraint.

• UNIQUE_CONSTRAINT_CATALOG

The name of the catalog containing the unique constraint that the constraint references. This value is
always def.

• UNIQUE_CONSTRAINT_SCHEMA

The name of the schema (database) containing the unique constraint that the constraint references.

• UNIQUE_CONSTRAINT_NAME

The name of the unique constraint that the constraint references.

• MATCH_OPTION

The value of the constraint MATCH attribute. The only valid value at this time is NONE.

• UPDATE_RULE

The value of the constraint ON UPDATE attribute. The possible values are CASCADE, SET NULL, SET
DEFAULT, RESTRICT, NO ACTION.

• DELETE_RULE

3290

The INFORMATION_SCHEMA ROUTINES Table

The value of the constraint ON DELETE attribute. The possible values are CASCADE, SET NULL, SET
DEFAULT, RESTRICT, NO ACTION.

• TABLE_NAME

The name of the table. This value is the same as in the TABLE_CONSTRAINTS table.

• REFERENCED_TABLE_NAME

The name of the table referenced by the constraint.

21.3.19 The INFORMATION_SCHEMA ROUTINES Table

The ROUTINES table provides information about stored routines (stored procedures and stored functions).
The ROUTINES table does not include built-in (native) functions or loadable functions.

The column named “mysql.proc Name” indicates the mysql.proc table column that corresponds to the
INFORMATION_SCHEMA ROUTINES table column, if any.

The ROUTINES table has these columns:

• SPECIFIC_NAME

The name of the routine.

• ROUTINE_CATALOG

The name of the catalog to which the routine belongs. This value is always def.

• ROUTINE_SCHEMA

The name of the schema (database) to which the routine belongs.

• ROUTINE_NAME

The name of the routine.

• ROUTINE_TYPE

PROCEDURE for stored procedures, FUNCTION for stored functions.

• DATA_TYPE

If the routine is a stored function, the return value data type. If the routine is a stored procedure, this
value is empty.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• CHARACTER_MAXIMUM_LENGTH

For stored function string return values, the maximum length in characters. If the routine is a stored
procedure, this value is NULL.

• CHARACTER_OCTET_LENGTH

For stored function string return values, the maximum length in bytes. If the routine is a stored
procedure, this value is NULL.

3291

The INFORMATION_SCHEMA ROUTINES Table

• NUMERIC_PRECISION

For stored function numeric return values, the numeric precision. If the routine is a stored procedure, this
value is NULL.

• NUMERIC_SCALE

For stored function numeric return values, the numeric scale. If the routine is a stored procedure, this
value is NULL.

• DATETIME_PRECISION

For stored function temporal return values, the fractional seconds precision. If the routine is a stored
procedure, this value is NULL.

• CHARACTER_SET_NAME

For stored function character string return values, the character set name. If the routine is a stored
procedure, this value is NULL.

• COLLATION_NAME

For stored function character string return values, the collation name. If the routine is a stored procedure,
this value is NULL.

• DTD_IDENTIFIER

If the routine is a stored function, the return value data type. If the routine is a stored procedure, this
value is empty.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• ROUTINE_BODY

The language used for the routine definition. This value is always SQL.

• ROUTINE_DEFINITION

The text of the SQL statement executed by the routine.

• EXTERNAL_NAME

This value is always NULL.

• EXTERNAL_LANGUAGE

The language of the stored routine. MySQL calculates EXTERNAL_LANGUAGE thus:

• If mysql.proc.language='SQL', EXTERNAL_LANGUAGE is NULL

• Otherwise, EXTERNAL_LANGUAGE is what is in mysql.proc.language. However, we do not have
external languages yet, so it is always NULL.

• PARAMETER_STYLE

This value is always SQL.

• IS_DETERMINISTIC

3292

The INFORMATION_SCHEMA ROUTINES Table

YES or NO, depending on whether the routine is defined with the DETERMINISTIC characteristic.

• SQL_DATA_ACCESS

The data access characteristic for the routine. The value is one of CONTAINS SQL, NO SQL, READS
SQL DATA, or MODIFIES SQL DATA.

• SQL_PATH

This value is always NULL.

• SECURITY_TYPE

The routine SQL SECURITY characteristic. The value is one of DEFINER or INVOKER.

• CREATED

The date and time when the routine was created. This is a TIMESTAMP value.

• LAST_ALTERED

The date and time when the routine was last modified. This is a TIMESTAMP value. If the routine has not
been modified since its creation, this value is the same as the CREATED value.

• SQL_MODE

The SQL mode in effect when the routine was created or altered, and under which the routine executes.
For the permitted values, see Section 5.1.10, “Server SQL Modes”.

• ROUTINE_COMMENT

The text of the comment, if the routine has one. If not, this value is empty.

• DEFINER

The account named in the DEFINER clause (often the user who created the routine), in
'user_name'@'host_name' format.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the routine was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the routine was created.

• DATABASE_COLLATION

The collation of the database with which the routine is associated.

Notes

• To see information about a routine, you must be the user named in the routine DEFINER clause or have
SELECT access to the mysql.proc table. If you do not have privileges for the routine itself, the value
displayed for the ROUTINE_DEFINITION column is NULL.

• Information about stored function return values is also available in the PARAMETERS table. The return
value row for a stored function can be identified as the row that has an ORDINAL_POSITION value of 0.

3293

The INFORMATION_SCHEMA SCHEMATA Table

21.3.20 The INFORMATION_SCHEMA SCHEMATA Table

A schema is a database, so the SCHEMATA table provides information about databases.

The SCHEMATA table has these columns:

• CATALOG_NAME

The name of the catalog to which the schema belongs. This value is always def.

• SCHEMA_NAME

The name of the schema.

• DEFAULT_CHARACTER_SET_NAME

The schema default character set.

• DEFAULT_COLLATION_NAME

The schema default collation.

• SQL_PATH

This value is always NULL.

Schema names are also available from the SHOW DATABASES statement. See Section 13.7.5.15, “SHOW
DATABASES Statement”. The following statements are equivalent:

SELECT SCHEMA_NAME AS `Database`
 FROM INFORMATION_SCHEMA.SCHEMATA
 [WHERE SCHEMA_NAME LIKE 'wild']

SHOW DATABASES
 [LIKE 'wild']

You see only those databases for which you have some kind of privilege, unless you have the global SHOW
DATABASES privilege.

Caution

Because a global privilege is considered a privilege for all databases, any global
privilege enables a user to see all database names with SHOW DATABASES or by
examining the INFORMATION_SCHEMA SCHEMATA table.

21.3.21 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table

The SCHEMA_PRIVILEGES table provides information about schema (database) privileges. It takes its
values from the mysql.db system table.

The SCHEMA_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog to which the schema belongs. This value is always def.

• TABLE_SCHEMA

3294

The INFORMATION_SCHEMA STATISTICS Table

The name of the schema.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the schema level; see
Section 13.7.1.4, “GRANT Statement”. Each row lists a single privilege, so there is one row per schema
privilege held by the grantee.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT OPTION
as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

Notes

• SCHEMA_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.SCHEMA_PRIVILEGES

SHOW GRANTS ...

21.3.22 The INFORMATION_SCHEMA STATISTICS Table

The STATISTICS table provides information about table indexes.

The STATISTICS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table containing the index belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table containing the index belongs.

• TABLE_NAME

The name of the table containing the index.

• NON_UNIQUE

0 if the index cannot contain duplicates, 1 if it can.

• INDEX_SCHEMA

The name of the schema (database) to which the index belongs.

• INDEX_NAME

The name of the index. If the index is the primary key, the name is always PRIMARY.

• SEQ_IN_INDEX

The column sequence number in the index, starting with 1.

• COLUMN_NAME

The column name. See also the description for the EXPRESSION column.

3295

The INFORMATION_SCHEMA STATISTICS Table

• COLLATION

How the column is sorted in the index. This can have values A (ascending), D (descending), or NULL (not
sorted).

• CARDINALITY

An estimate of the number of unique values in the index. To update this number, run ANALYZE TABLE
or (for MyISAM tables) myisamchk -a.

CARDINALITY is counted based on statistics stored as integers, so the value is not necessarily exact
even for small tables. The higher the cardinality, the greater the chance that MySQL uses the index
when doing joins.

• SUB_PART

The index prefix. That is, the number of indexed characters if the column is only partly indexed, NULL if
the entire column is indexed.

Note

Prefix limits are measured in bytes. However, prefix lengths for index
specifications in CREATE TABLE, ALTER TABLE, and CREATE INDEX
statements are interpreted as number of characters for nonbinary string types
(CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY,
VARBINARY, BLOB). Take this into account when specifying a prefix length for a
nonbinary string column that uses a multibyte character set.

For additional information about index prefixes, see Section 8.3.4, “Column Indexes”, and
Section 13.1.13, “CREATE INDEX Statement”.

• PACKED

Indicates how the key is packed. NULL if it is not.

• NULLABLE

Contains YES if the column may contain NULL values and '' if not.

• INDEX_TYPE

The index method used (BTREE, FULLTEXT, HASH, RTREE).

• COMMENT

Information about the index not described in its own column, such as disabled if the index is disabled.

• INDEX_COMMENT

Any comment provided for the index with a COMMENT attribute when the index was created.

Notes

• There is no standard INFORMATION_SCHEMA table for indexes. The MySQL column list is similar to
what SQL Server 2000 returns for sp_statistics, except that QUALIFIER and OWNER are replaced
with CATALOG and SCHEMA, respectively.

Information about table indexes is also available from the SHOW INDEX statement. See Section 13.7.5.23,
“SHOW INDEX Statement”. The following statements are equivalent:

3296

The INFORMATION_SCHEMA TABLES Table

SELECT * FROM INFORMATION_SCHEMA.STATISTICS
 WHERE table_name = 'tbl_name'
 AND table_schema = 'db_name'

SHOW INDEX
 FROM tbl_name
 FROM db_name

21.3.23 The INFORMATION_SCHEMA TABLES Table

The TABLES table provides information about tables in databases.

The TABLES table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• TABLE_TYPE

BASE TABLE for a table, VIEW for a view, or SYSTEM VIEW for an INFORMATION_SCHEMA table.

The TABLES table does not list TEMPORARY tables.

• ENGINE

The storage engine for the table. See Chapter 14, The InnoDB Storage Engine, and Chapter 15,
Alternative Storage Engines.

For partitioned tables, ENGINE shows the name of the storage engine used by all partitions.

• VERSION

The version number of the table's .frm file.

• ROW_FORMAT

The row-storage format (Fixed, Dynamic, Compressed, Redundant, Compact). For MyISAM tables,
Dynamic corresponds to what myisamchk -dvv reports as Packed. InnoDB table format is either
Redundant or Compact when using the Antelope file format, or Compressed or Dynamic when
using the Barracuda file format.

• TABLE_ROWS

The number of rows. Some storage engines, such as MyISAM, store the exact count. For other storage
engines, such as InnoDB, this value is an approximation, and may vary from the actual value by as
much as 40% to 50%. In such cases, use SELECT COUNT(*) to obtain an accurate count.

TABLE_ROWS is NULL for INFORMATION_SCHEMA tables.

For InnoDB tables, the row count is only a rough estimate used in SQL optimization. (This is also true if
the InnoDB table is partitioned.)

3297

The INFORMATION_SCHEMA TABLES Table

• AVG_ROW_LENGTH

The average row length.

Refer to the notes at the end of this section for related information.

• DATA_LENGTH

For MyISAM, DATA_LENGTH is the length of the data file, in bytes.

For InnoDB, DATA_LENGTH is the approximate amount of space allocated for the clustered index, in
bytes. Specifically, it is the clustered index size, in pages, multiplied by the InnoDB page size.

Refer to the notes at the end of this section for information regarding other storage engines.

• MAX_DATA_LENGTH

For MyISAM, MAX_DATA_LENGTH is maximum length of the data file. This is the total number of bytes of
data that can be stored in the table, given the data pointer size used.

Unused for InnoDB.

Refer to the notes at the end of this section for information regarding other storage engines.

• INDEX_LENGTH

For MyISAM, INDEX_LENGTH is the length of the index file, in bytes.

For InnoDB, INDEX_LENGTH is the approximate amount of space allocated for non-clustered indexes,
in bytes. Specifically, it is the sum of non-clustered index sizes, in pages, multiplied by the InnoDB page
size.

Refer to the notes at the end of this section for information regarding other storage engines.

• DATA_FREE

The number of allocated but unused bytes.

InnoDB tables report the free space of the tablespace to which the table belongs. For a table located
in the shared tablespace, this is the free space of the shared tablespace. If you are using multiple
tablespaces and the table has its own tablespace, the free space is for only that table. Free space
means the number of bytes in completely free extents minus a safety margin. Even if free space displays
as 0, it may be possible to insert rows as long as new extents need not be allocated.

For NDB Cluster, DATA_FREE shows the space allocated on disk for, but not used by, a Disk Data table
or fragment on disk. (In-memory data resource usage is reported by the DATA_LENGTH column.)

For partitioned tables, this value is only an estimate and may not be absolutely correct. A more accurate
method of obtaining this information in such cases is to query the INFORMATION_SCHEMA PARTITIONS
table, as shown in this example:

SELECT SUM(DATA_FREE)
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_SCHEMA = 'mydb'
 AND TABLE_NAME = 'mytable';

For more information, see Section 21.3.14, “The INFORMATION_SCHEMA PARTITIONS Table”.

• AUTO_INCREMENT

3298

The INFORMATION_SCHEMA TABLES Table

The next AUTO_INCREMENT value.

• CREATE_TIME

When the table was created.

Prior to MySQL 5.6.25, for partitioned InnoDB tables, the CREATE_TIME column shows NULL.
This column shows the correct table creation time for such tables in MySQL 5.6.25 and later. (Bug
#17299181, Bug #69990)

• UPDATE_TIME

When the data file was last updated. For some storage engines, this value is NULL. For example,
InnoDB stores multiple tables in its system tablespace and the data file timestamp does not apply. Even
with file-per-table mode with each InnoDB table in a separate .ibd file, change buffering can delay the
write to the data file, so the file modification time is different from the time of the last insert, update, or
delete. For MyISAM, the data file timestamp is used; however, on Windows the timestamp is not updated
by updates, so the value is inaccurate.

For partitioned InnoDB tables, UPDATE_TIME is always NULL.

• CHECK_TIME

When the table was last checked. Not all storage engines update this time, in which case, the value is
always NULL.

For partitioned InnoDB tables, CHECK_TIME is always NULL.

• TABLE_COLLATION

The table default collation. The output does not explicitly list the table default character set, but the
collation name begins with the character set name.

• CHECKSUM

The live checksum value, if any.

• CREATE_OPTIONS

Extra options used with CREATE TABLE.

CREATE_OPTIONS shows partitioned for partitioned tables.

When creating a table with strict mode disabled, the storage engine's default row format is used if the
specified row format is not supported. The actual row format of the table is reported in the ROW_FORMAT
column. CREATE_OPTIONS shows the row format that was specified in the CREATE TABLE statement.

When altering the storage engine of a table, table options that are not applicable to the new storage
engine are retained in the table definition to enable reverting the table with its previously defined options
to the original storage engine, if necessary. The CREATE_OPTIONS column may show retained options.

• TABLE_COMMENT

The comment used when creating the table (or information as to why MySQL could not access the table
information).

3299

The INFORMATION_SCHEMA TABLESPACES Table

Notes

• For NDB tables, the output of this statement shows appropriate values for the AVG_ROW_LENGTH and
DATA_LENGTH columns, with the exception that BLOB columns are not taken into account.

• For NDB tables, DATA_LENGTH includes data stored in main memory only; the MAX_DATA_LENGTH and
DATA_FREE columns apply to Disk Data.

• For NDB Cluster Disk Data tables, MAX_DATA_LENGTH shows the space allocated for the disk part of a
Disk Data table or fragment. (In-memory data resource usage is reported by the DATA_LENGTH column.)

• For MEMORY tables, the DATA_LENGTH, MAX_DATA_LENGTH, and INDEX_LENGTH values approximate
the actual amount of allocated memory. The allocation algorithm reserves memory in large amounts to
reduce the number of allocation operations.

• For views, all TABLES columns are NULL except that TABLE_NAME indicates the view name and
TABLE_COMMENT says VIEW.

Table information is also available from the SHOW TABLE STATUS and SHOW TABLES statements.
See Section 13.7.5.37, “SHOW TABLE STATUS Statement”, and Section 13.7.5.38, “SHOW TABLES
Statement”. The following statements are equivalent:

SELECT
 TABLE_NAME, ENGINE, VERSION, ROW_FORMAT, TABLE_ROWS, AVG_ROW_LENGTH,
 DATA_LENGTH, MAX_DATA_LENGTH, INDEX_LENGTH, DATA_FREE, AUTO_INCREMENT,
 CREATE_TIME, UPDATE_TIME, CHECK_TIME, TABLE_COLLATION, CHECKSUM,
 CREATE_OPTIONS, TABLE_COMMENT
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_schema = 'db_name'
 [AND table_name LIKE 'wild']

SHOW TABLE STATUS
 FROM db_name
 [LIKE 'wild']

The following statements are equivalent:

SELECT
 TABLE_NAME, TABLE_TYPE
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_schema = 'db_name'
 [AND table_name LIKE 'wild']

SHOW FULL TABLES
 FROM db_name
 [LIKE 'wild']

21.3.24 The INFORMATION_SCHEMA TABLESPACES Table

This table is unused. Other INFORMATION_SCHEMA tables may provide related information:

• For NDB, the INFORMATION_SCHEMA FILES table provides tablespace-related information.

• For InnoDB, the INFORMATION_SCHEMA INNODB_SYS_TABLESPACES and INNODB_SYS_DATAFILES
tables provide tablespace metadata.

21.3.25 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table

The TABLE_CONSTRAINTS table describes which tables have constraints.

3300

The INFORMATION_SCHEMA TABLE_PRIVILEGES Table

The TABLE_CONSTRAINTS table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the constraint belongs. This value is always def.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the constraint belongs.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• The CONSTRAINT_TYPE

The type of constraint. The value can be UNIQUE, PRIMARY KEY, FOREIGN KEY, or CHECK. This is a
CHAR (not ENUM) column. The CHECK value is not available until MySQL supports CHECK.

The UNIQUE and PRIMARY KEY information is about the same as what you get from the Key_name
column in the output from SHOW INDEX when the Non_unique column is 0.

21.3.26 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table

The TABLE_PRIVILEGES table provides information about table privileges. It takes its values from the
mysql.tables_priv system table.

The TABLE_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the table level; see
Section 13.7.1.4, “GRANT Statement”. Each row lists a single privilege, so there is one row per table
privilege held by the grantee.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT OPTION
as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

3301

The INFORMATION_SCHEMA TRIGGERS Table

Notes

• TABLE_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES

SHOW GRANTS ...

21.3.27 The INFORMATION_SCHEMA TRIGGERS Table

The TRIGGERS table provides information about triggers. To see information about a table's triggers, you
must have the TRIGGER privilege for the table.

The TRIGGERS table has these columns:

• TRIGGER_CATALOG

The name of the catalog to which the trigger belongs. This value is always def.

• TRIGGER_SCHEMA

The name of the schema (database) to which the trigger belongs.

• TRIGGER_NAME

The name of the trigger.

• EVENT_MANIPULATION

The trigger event. This is the type of operation on the associated table for which the trigger activates.
The value is INSERT (a row was inserted), DELETE (a row was deleted), or UPDATE (a row was
modified).

• EVENT_OBJECT_CATALOG, EVENT_OBJECT_SCHEMA, and EVENT_OBJECT_TABLE

As noted in Section 20.3, “Using Triggers”, every trigger is associated with exactly one table. These
columns indicate the catalog and schema (database) in which this table occurs, and the table name,
respectively. The EVENT_OBJECT_CATALOG value is always def.

• ACTION_ORDER

The ordinal position of the trigger's action within the list of all similar triggers on the same table.
This value is always 0 because it is not possible to have more than one trigger with the same
EVENT_MANIPULATION and ACTION_TIMING on the same table.

• ACTION_CONDITION

This value is always NULL.

• ACTION_STATEMENT

The trigger body; that is, the statement executed when the trigger activates. This text uses UTF-8
encoding.

• ACTION_ORIENTATION

This value is always ROW.

3302

The INFORMATION_SCHEMA TRIGGERS Table

• ACTION_TIMING

Whether the trigger activates before or after the triggering event. The value is BEFORE or AFTER.

• ACTION_REFERENCE_OLD_TABLE

This value is always NULL.

• ACTION_REFERENCE_NEW_TABLE

This value is always NULL.

• ACTION_REFERENCE_OLD_ROW and ACTION_REFERENCE_NEW_ROW

The old and new column identifiers, respectively. The ACTION_REFERENCE_OLD_ROW value is always
OLD and the ACTION_REFERENCE_NEW_ROW value is always NEW.

• CREATED

This value is always NULL.

• SQL_MODE

The SQL mode in effect when the trigger was created, and under which the trigger executes. For the
permitted values, see Section 5.1.10, “Server SQL Modes”.

• DEFINER

The account named in the DEFINER clause (often the user who created the trigger), in
'user_name'@'host_name' format.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the trigger was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the trigger was created.

• DATABASE_COLLATION

The collation of the database with which the trigger is associated.

Example

The following example uses the ins_sum trigger defined in Section 20.3, “Using Triggers”:

mysql> SELECT * FROM INFORMATION_SCHEMA.TRIGGERS
 WHERE TRIGGER_SCHEMA='test' AND TRIGGER_NAME='ins_sum'\G
*************************** 1. row ***************************
 TRIGGER_CATALOG: def
 TRIGGER_SCHEMA: test
 TRIGGER_NAME: ins_sum
 EVENT_MANIPULATION: INSERT
 EVENT_OBJECT_CATALOG: def
 EVENT_OBJECT_SCHEMA: test
 EVENT_OBJECT_TABLE: account
 ACTION_ORDER: 0
 ACTION_CONDITION: NULL
 ACTION_STATEMENT: SET @sum = @sum + NEW.amount
 ACTION_ORIENTATION: ROW

3303

The INFORMATION_SCHEMA USER_PRIVILEGES Table

 ACTION_TIMING: BEFORE
ACTION_REFERENCE_OLD_TABLE: NULL
ACTION_REFERENCE_NEW_TABLE: NULL
 ACTION_REFERENCE_OLD_ROW: OLD
 ACTION_REFERENCE_NEW_ROW: NEW
 CREATED: NULL
 SQL_MODE: NO_ENGINE_SUBSTITUTION
 DEFINER: me@localhost
 CHARACTER_SET_CLIENT: utf8
 COLLATION_CONNECTION: utf8_general_ci
 DATABASE_COLLATION: latin1_swedish_ci

Trigger information is also available from the SHOW TRIGGERS statement. See Section 13.7.5.39, “SHOW
TRIGGERS Statement”.

21.3.28 The INFORMATION_SCHEMA USER_PRIVILEGES Table

The USER_PRIVILEGES table provides information about global privileges. It takes its values from the
mysql.user system table.

The USER_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog. This value is always def.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the global level; see
Section 13.7.1.4, “GRANT Statement”. Each row lists a single privilege, so there is one row per global
privilege held by the grantee.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT OPTION
as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

Notes

• USER_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.USER_PRIVILEGES

SHOW GRANTS ...

21.3.29 The INFORMATION_SCHEMA VIEWS Table

The VIEWS table provides information about views in databases. You must have the SHOW VIEW privilege
to access this table.

The VIEWS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the view belongs. This value is always def.

3304

The INFORMATION_SCHEMA VIEWS Table

• TABLE_SCHEMA

The name of the schema (database) to which the view belongs.

• TABLE_NAME

The name of the view.

• VIEW_DEFINITION

The SELECT statement that provides the definition of the view. This column has most of what you see
in the Create Table column that SHOW CREATE VIEW produces. Skip the words before SELECT and
skip the words WITH CHECK OPTION. Suppose that the original statement was:

CREATE VIEW v AS
 SELECT s2,s1 FROM t
 WHERE s1 > 5
 ORDER BY s1
 WITH CHECK OPTION;

Then the view definition looks like this:

SELECT s2,s1 FROM t WHERE s1 > 5 ORDER BY s1

• CHECK_OPTION

The value of the CHECK_OPTION attribute. The value is one of NONE, CASCADE, or LOCAL.

• IS_UPDATABLE

MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true)
if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is set to NO
(false). The IS_UPDATABLE column in the VIEWS table displays the status of this flag. It means that the
server always knows whether a view is updatable.

If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and are rejected.
(Even if a view is updatable, it might not be possible to insert into it; for details, refer to Section 20.5.3,
“Updatable and Insertable Views”.)

• DEFINER

The account of the user who created the view, in 'user_name'@'host_name' format.

• SECURITY_TYPE

The view SQL SECURITY characteristic. The value is one of DEFINER or INVOKER.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the view was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the view was created.

Notes

MySQL permits different sql_mode settings to tell the server the type of SQL syntax to support. For
example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard SQL
concatenation operator, the double bar (||), in your queries. If you then create a view that concatenates

3305

INFORMATION_SCHEMA InnoDB Tables

items, you might worry that changing the sql_mode setting to a value different from ANSI could cause
the view to become invalid. But this is not the case. No matter how you write out a view definition, MySQL
always stores it the same way, in a canonical form. Here is an example that shows how the server changes
a double bar concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT VIEW_DEFINITION FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v';
+----------------------------------+
| VIEW_DEFINITION |
+----------------------------------+
| select concat('a','b') AS `col1` |
+----------------------------------+
1 row in set (0.00 sec)

The advantage of storing a view definition in canonical form is that changes made later to the value of
sql_mode do not affect the results from the view. However, an additional consequence is that comments
prior to SELECT are stripped from the definition by the server.

21.4 INFORMATION_SCHEMA InnoDB Tables
This section provides table definitions for INFORMATION_SCHEMA InnoDB tables. For related information
and examples, see Section 14.15, “InnoDB INFORMATION_SCHEMA Tables”.

INFORMATION_SCHEMA InnoDB tables can be used to monitor ongoing InnoDB activity, to detect
inefficiencies before they turn into issues, or to troubleshoot performance and capacity issues. As your
database becomes bigger and busier, running up against the limits of your hardware capacity, you monitor
and tune these aspects to keep the database running smoothly.

21.4.1 INFORMATION_SCHEMA InnoDB Table Reference

The following table summarizes INFORMATION_SCHEMA InnoDB tables. For greater detail, see the
individual table descriptions.

Table 21.3 INFORMATION_SCHEMA InnoDB Tables

Table Name Description

INNODB_BUFFER_PAGE Pages in InnoDB buffer pool

INNODB_BUFFER_PAGE_LRU LRU ordering of pages in InnoDB buffer pool

INNODB_BUFFER_POOL_STATS InnoDB buffer pool statistics

INNODB_CMP Status for operations related to compressed InnoDB
tables

INNODB_CMP_PER_INDEX Status for operations related to compressed InnoDB
tables and indexes

INNODB_CMP_PER_INDEX_RESET Status for operations related to compressed InnoDB
tables and indexes

INNODB_CMP_RESET Status for operations related to compressed InnoDB
tables

INNODB_CMPMEM Status for compressed pages within InnoDB buffer
pool

3306

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

Table Name Description

INNODB_CMPMEM_RESET Status for compressed pages within InnoDB buffer
pool

INNODB_FT_BEING_DELETED Snapshot of INNODB_FT_DELETED table

INNODB_FT_CONFIG Metadata for InnoDB table FULLTEXT index and
associated processing

INNODB_FT_DEFAULT_STOPWORD Default list of stopwords for InnoDB FULLTEXT
indexes

INNODB_FT_DELETED Rows deleted from InnoDB table FULLTEXT index

INNODB_FT_INDEX_CACHE Token information for newly inserted rows in InnoDB
FULLTEXT index

INNODB_FT_INDEX_TABLE Inverted index information for processing text
searches against InnoDB table FULLTEXT index

INNODB_LOCK_WAITS InnoDB transaction lock-wait information

INNODB_LOCKS InnoDB transaction lock information

INNODB_METRICS InnoDB performance information

INNODB_SYS_COLUMNS Columns in each InnoDB table

INNODB_SYS_DATAFILES Data file path information for InnoDB file-per-table
and general tablespaces

INNODB_SYS_FIELDS Key columns of InnoDB indexes

INNODB_SYS_FOREIGN InnoDB foreign-key metadata

INNODB_SYS_FOREIGN_COLS InnoDB foreign-key column status information

INNODB_SYS_INDEXES InnoDB index metadata

INNODB_SYS_TABLES InnoDB table metadata

INNODB_SYS_TABLESPACES InnoDB file-per-table, general, and undo tablespace
metadata

INNODB_SYS_TABLESTATS InnoDB table low-level status information

INNODB_TRX Active InnoDB transaction information

21.4.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

The INNODB_BUFFER_PAGE table provides information about each page in the InnoDB buffer pool.

For related usage information and examples, see Section 14.15.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

Warning

Querying the INNODB_BUFFER_PAGE table can affect performance. Do not query
this table on a production system unless you are aware of the performance impact
and have determined it to be acceptable. To avoid impacting performance on a
production system, reproduce the issue you want to investigate and query buffer
pool statistics on a test instance.

The INNODB_BUFFER_PAGE table has these columns:

• POOL_ID

3307

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

The buffer pool ID. This is an identifier to distinguish between multiple buffer pool instances.

• BLOCK_ID

The buffer pool block ID.

• SPACE

The tablespace ID; the same value as INNODB_SYS_TABLES.SPACE.

• PAGE_NUMBER

The page number.

• PAGE_TYPE

The page type. The following table shows the permitted values.

Table 21.4 INNODB_BUFFER_PAGE.PAGE_TYPE Values

Page Type Description

ALLOCATED Freshly allocated page

BLOB Uncompressed BLOB page

COMPRESSED_BLOB2 Subsequent comp BLOB page

COMPRESSED_BLOB First compressed BLOB page

EXTENT_DESCRIPTOR Extent descriptor page

FILE_SPACE_HEADER File space header

IBUF_BITMAP Insert buffer bitmap

IBUF_FREE_LIST Insert buffer free list

IBUF_INDEX Insert buffer index

INDEX B-tree node

INODE Index node

SYSTEM System page

TRX_SYSTEM Transaction system data

UNDO_LOG Undo log page

UNKNOWN Unknown

• FLUSH_TYPE

The flush type.

• FIX_COUNT

The number of threads using this block within the buffer pool. When zero, the block is eligible to be
evicted.

• IS_HASHED

Whether a hash index has been built on this page.

• NEWEST_MODIFICATION

3308

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

The Log Sequence Number of the youngest modification.

• OLDEST_MODIFICATION

The Log Sequence Number of the oldest modification.

• ACCESS_TIME

An abstract number used to judge the first access time of the page.

• TABLE_NAME

The name of the table the page belongs to. This column is applicable only to pages with a PAGE_TYPE
value of INDEX.

• INDEX_NAME

The name of the index the page belongs to. This can be the name of a clustered index or a secondary
index. This column is applicable only to pages with a PAGE_TYPE value of INDEX.

• NUMBER_RECORDS

The number of records within the page.

• DATA_SIZE

The sum of the sizes of the records. This column is applicable only to pages with a PAGE_TYPE value of
INDEX.

• COMPRESSED_SIZE

The compressed page size. NULL for pages that are not compressed.

• PAGE_STATE

The page state. The following table shows the permitted values.

Table 21.5 INNODB_BUFFER_PAGE.PAGE_STATE Values

Page State Description

FILE_PAGE A buffered file page

MEMORY Contains a main memory object

NOT_USED In the free list

NULL Clean compressed pages, compressed pages
in the flush list, pages used as buffer pool watch
sentinels

READY_FOR_USE A free page

REMOVE_HASH Hash index should be removed before placing in
the free list

• IO_FIX

Whether any I/O is pending for this page: IO_NONE = no pending I/O, IO_READ = read pending,
IO_WRITE = write pending.

• IS_OLD

3309

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

Whether the block is in the sublist of old blocks in the LRU list.

• FREE_PAGE_CLOCK

The value of the freed_page_clock counter when the block was the last placed at the head of the
LRU list. The freed_page_clock counter tracks the number of blocks removed from the end of the
LRU list.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE LIMIT 1\G
*************************** 1. row ***************************
 POOL_ID: 0
 BLOCK_ID: 0
 SPACE: 97
 PAGE_NUMBER: 2473
 PAGE_TYPE: INDEX
 FLUSH_TYPE: 1
 FIX_COUNT: 0
 IS_HASHED: YES
NEWEST_MODIFICATION: 733855581
OLDEST_MODIFICATION: 0
 ACCESS_TIME: 3378385672
 TABLE_NAME: `employees`.`salaries`
 INDEX_NAME: PRIMARY
 NUMBER_RECORDS: 468
 DATA_SIZE: 14976
 COMPRESSED_SIZE: 0
 PAGE_STATE: FILE_PAGE
 IO_FIX: IO_NONE
 IS_OLD: YES
 FREE_PAGE_CLOCK: 66

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing performance-
related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• When tables, table rows, partitions, or indexes are deleted, associated pages remain in the buffer pool
until space is required for other data. The INNODB_BUFFER_PAGE table reports information about these
pages until they are evicted from the buffer pool. For more information about how the InnoDB manages
buffer pool data, see Section 14.5.1, “Buffer Pool”.

21.4.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

The INNODB_BUFFER_PAGE_LRU table provides information about the pages in the InnoDB buffer pool;
in particular, how they are ordered in the LRU list that determines which pages to evict from the buffer pool
when it becomes full.

The INNODB_BUFFER_PAGE_LRU table has the same columns as the INNODB_BUFFER_PAGE table,
except that the INNODB_BUFFER_PAGE_LRU table has LRU_POSITION and COMPRESSED columns
instead of BLOCK_ID and PAGE_STATE columns.

For related usage information and examples, see Section 14.15.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

3310

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

Warning

Querying the INNODB_BUFFER_PAGE_LRU table can affect performance. Do not
query this table on a production system unless you are aware of the performance
impact and have determined it to be acceptable. To avoid impacting performance
on a production system, reproduce the issue you want to investigate and query
buffer pool statistics on a test instance.

The INNODB_BUFFER_PAGE_LRU table has these columns:

• POOL_ID

The buffer pool ID. This is an identifier to distinguish between multiple buffer pool instances.

• LRU_POSITION

The position of the page in the LRU list.

• SPACE

The tablespace ID; the same value as INNODB_SYS_TABLES.SPACE.

• PAGE_NUMBER

The page number.

• PAGE_TYPE

The page type. The following table shows the permitted values.

Table 21.6 INNODB_BUFFER_PAGE_LRU.PAGE_TYPE Values

Page Type Description

ALLOCATED Freshly allocated page

BLOB Uncompressed BLOB page

COMPRESSED_BLOB2 Subsequent comp BLOB page

COMPRESSED_BLOB First compressed BLOB page

EXTENT_DESCRIPTOR Extent descriptor page

FILE_SPACE_HEADER File space header

IBUF_BITMAP Insert buffer bitmap

IBUF_FREE_LIST Insert buffer free list

IBUF_INDEX Insert buffer index

INDEX B-tree node

INODE Index node

SYSTEM System page

TRX_SYSTEM Transaction system data

UNDO_LOG Undo log page

UNKNOWN Unknown

• FLUSH_TYPE

The flush type.

3311

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

• FIX_COUNT

The number of threads using this block within the buffer pool. When zero, the block is eligible to be
evicted.

• IS_HASHED

Whether a hash index has been built on this page.

• NEWEST_MODIFICATION

The Log Sequence Number of the youngest modification.

• OLDEST_MODIFICATION

The Log Sequence Number of the oldest modification.

• ACCESS_TIME

An abstract number used to judge the first access time of the page.

• TABLE_NAME

The name of the table the page belongs to. This column is applicable only to pages with a PAGE_TYPE
value of INDEX.

• INDEX_NAME

The name of the index the page belongs to. This can be the name of a clustered index or a secondary
index. This column is applicable only to pages with a PAGE_TYPE value of INDEX.

• NUMBER_RECORDS

The number of records within the page.

• DATA_SIZE

The sum of the sizes of the records. This column is applicable only to pages with a PAGE_TYPE value of
INDEX.

• COMPRESSED_SIZE

The compressed page size. NULL for pages that are not compressed.

• COMPRESSED

Whether the page is compressed.

• IO_FIX

Whether any I/O is pending for this page: IO_NONE = no pending I/O, IO_READ = read pending,
IO_WRITE = write pending.

• IS_OLD

Whether the block is in the sublist of old blocks in the LRU list.

3312

The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

• FREE_PAGE_CLOCK

The value of the freed_page_clock counter when the block was the last placed at the head of the
LRU list. The freed_page_clock counter tracks the number of blocks removed from the end of the
LRU list.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE_LRU LIMIT 1\G
*************************** 1. row ***************************
 POOL_ID: 0
 LRU_POSITION: 0
 SPACE: 97
 PAGE_NUMBER: 1984
 PAGE_TYPE: INDEX
 FLUSH_TYPE: 1
 FIX_COUNT: 0
 IS_HASHED: YES
NEWEST_MODIFICATION: 719490396
OLDEST_MODIFICATION: 0
 ACCESS_TIME: 3378383796
 TABLE_NAME: `employees`.`salaries`
 INDEX_NAME: PRIMARY
 NUMBER_RECORDS: 468
 DATA_SIZE: 14976
 COMPRESSED_SIZE: 0
 COMPRESSED: NO
 IO_FIX: IO_NONE
 IS_OLD: YES
 FREE_PAGE_CLOCK: 0

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing performance-
related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• Querying this table can require MySQL to allocate a large block of contiguous memory, more than 64
bytes times the number of active pages in the buffer pool. This allocation could potentially cause an out-
of-memory error, especially for systems with multi-gigabyte buffer pools.

• Querying this table requires MySQL to lock the data structure representing the buffer pool while
traversing the LRU list, which can reduce concurrency, especially for systems with multi-gigabyte buffer
pools.

• When tables, table rows, partitions, or indexes are deleted, associated pages remain in the buffer pool
until space is required for other data. The INNODB_BUFFER_PAGE_LRU table reports information about
these pages until they are evicted from the buffer pool. For more information about how the InnoDB
manages buffer pool data, see Section 14.5.1, “Buffer Pool”.

21.4.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

The INNODB_BUFFER_POOL_STATS table provides much of the same buffer pool information provided
in SHOW ENGINE INNODB STATUS output. Much of the same information may also be obtained using
InnoDB buffer pool server status variables.

3313

The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

The idea of making pages in the buffer pool “young” or “not young” refers to transferring them between the
sublists at the head and tail of the buffer pool data structure. Pages made “young” take longer to age out of
the buffer pool, while pages made “not young” are moved much closer to the point of eviction.

For related usage information and examples, see Section 14.15.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

The INNODB_BUFFER_POOL_STATS table has these columns:

• POOL_ID

The buffer pool ID. This is an identifier to distinguish between multiple buffer pool instances.

• POOL_SIZE

The InnoDB buffer pool size in pages.

• FREE_BUFFERS

The number of free pages in the InnoDB buffer pool.

• DATABASE_PAGES

The number of pages in the InnoDB buffer pool containing data. This number includes both dirty and
clean pages.

• OLD_DATABASE_PAGES

The number of pages in the old buffer pool sublist.

• MODIFIED_DATABASE_PAGES

The number of modified (dirty) database pages.

• PENDING_DECOMPRESS

The number of pages pending decompression.

• PENDING_READS

The number of pending reads.

• PENDING_FLUSH_LRU

The number of pages pending flush in the LRU.

• PENDING_FLUSH_LIST

The number of pages pending flush in the flush list.

• PAGES_MADE_YOUNG

The number of pages made young.

• PAGES_NOT_MADE_YOUNG

The number of pages not made young.

• PAGES_MADE_YOUNG_RATE

3314

The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

The number of pages made young per second (pages made young since the last printout / time
elapsed).

• PAGES_MADE_NOT_YOUNG_RATE

The number of pages not made per second (pages not made young since the last printout / time
elapsed).

• NUMBER_PAGES_READ

The number of pages read.

• NUMBER_PAGES_CREATED

The number of pages created.

• NUMBER_PAGES_WRITTEN

The number of pages written.

• PAGES_READ_RATE

The number of pages read per second (pages read since the last printout / time elapsed).

• PAGES_CREATE_RATE

The number of pages created per second (pages created since the last printout / time elapsed).

• PAGES_WRITTEN_RATE

The number of pages written per second (pages written since the last printout / time elapsed).

• NUMBER_PAGES_GET

The number of logical read requests.

• HIT_RATE

The buffer pool hit rate.

• YOUNG_MAKE_PER_THOUSAND_GETS

The number of pages made young per thousand gets.

• NOT_YOUNG_MAKE_PER_THOUSAND_GETS

The number of pages not made young per thousand gets.

• NUMBER_PAGES_READ_AHEAD

The number of pages read ahead.

• NUMBER_READ_AHEAD_EVICTED

The number of pages read into the InnoDB buffer pool by the read-ahead background thread that were
subsequently evicted without having been accessed by queries.

• READ_AHEAD_RATE

The read-ahead rate per second (pages read ahead since the last printout / time elapsed).

3315

The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

• READ_AHEAD_EVICTED_RATE

The number of read-ahead pages evicted without access per second (read-ahead pages not accessed
since the last printout / time elapsed).

• LRU_IO_TOTAL

Total LRU I/O.

• LRU_IO_CURRENT

LRU I/O for the current interval.

• UNCOMPRESS_TOTAL

The total number of pages decompressed.

• UNCOMPRESS_CURRENT

The number of pages decompressed in the current interval.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_POOL_STATS\G
*************************** 1. row ***************************
 POOL_ID: 0
 POOL_SIZE: 8192
 FREE_BUFFERS: 1
 DATABASE_PAGES: 8085
 OLD_DATABASE_PAGES: 2964
 MODIFIED_DATABASE_PAGES: 0
 PENDING_DECOMPRESS: 0
 PENDING_READS: 0
 PENDING_FLUSH_LRU: 0
 PENDING_FLUSH_LIST: 0
 PAGES_MADE_YOUNG: 22821
 PAGES_NOT_MADE_YOUNG: 3544303
 PAGES_MADE_YOUNG_RATE: 357.62602199870594
 PAGES_MADE_NOT_YOUNG_RATE: 0
 NUMBER_PAGES_READ: 2389
 NUMBER_PAGES_CREATED: 12385
 NUMBER_PAGES_WRITTEN: 13111
 PAGES_READ_RATE: 0
 PAGES_CREATE_RATE: 0
 PAGES_WRITTEN_RATE: 0
 NUMBER_PAGES_GET: 33322210
 HIT_RATE: 1000
 YOUNG_MAKE_PER_THOUSAND_GETS: 18
NOT_YOUNG_MAKE_PER_THOUSAND_GETS: 0
 NUMBER_PAGES_READ_AHEAD: 2024
 NUMBER_READ_AHEAD_EVICTED: 0
 READ_AHEAD_RATE: 0
 READ_AHEAD_EVICTED_RATE: 0
 LRU_IO_TOTAL: 0
 LRU_IO_CURRENT: 0
 UNCOMPRESS_TOTAL: 0
 UNCOMPRESS_CURRENT: 0

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing performance-
related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

3316

The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

21.4.5 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET
Tables

The INNODB_CMP and INNODB_CMP_RESET tables provide status information on operations related to
compressed InnoDB tables.

The INNODB_CMP and INNODB_CMP_RESET tables have these columns:

• PAGE_SIZE

The compressed page size in bytes.

• COMPRESS_OPS

The number of times a B-tree page of size PAGE_SIZE has been compressed. Pages are compressed
whenever an empty page is created or the space for the uncompressed modification log runs out.

• COMPRESS_OPS_OK

The number of times a B-tree page of size PAGE_SIZE has been successfully compressed. This count
should never exceed COMPRESS_OPS.

• COMPRESS_TIME

The total time in seconds used for attempts to compress B-tree pages of size PAGE_SIZE.

• UNCOMPRESS_OPS

The number of times a B-tree page of size PAGE_SIZE has been uncompressed. B-tree pages are
uncompressed whenever compression fails or at first access when the uncompressed page does not
exist in the buffer pool.

• UNCOMPRESS_TIME

The total time in seconds used for uncompressing B-tree pages of the size PAGE_SIZE.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMP\G
*************************** 1. row ***************************
 page_size: 1024
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 2. row ***************************
 page_size: 2048
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 3. row ***************************
 page_size: 4096
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0

3317

The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables

 uncompress_ops: 0
uncompress_time: 0
*************************** 4. row ***************************
 page_size: 8192
 compress_ops: 86955
compress_ops_ok: 81182
 compress_time: 27
 uncompress_ops: 26828
uncompress_time: 5
*************************** 5. row ***************************
 page_size: 16384
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0

Notes

• Use these tables to measure the effectiveness of InnoDB table compression in your database.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For usage information, see Section 14.9.4, “Monitoring InnoDB Table Compression at Runtime” and
Section 14.15.1.3, “Using the Compression Information Schema Tables”. For general information about
InnoDB table compression, see Section 14.9, “InnoDB Table Compression”.

21.4.6 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables provide status information on compressed
pages within the InnoDB buffer pool.

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables have these columns:

• PAGE_SIZE

The block size in bytes. Each record of this table describes blocks of this size.

• BUFFER_POOL_INSTANCE

A unique identifier for the buffer pool instance.

• PAGES_USED

The number of blocks of size PAGE_SIZE that are currently in use.

• PAGES_FREE

The number of blocks of size PAGE_SIZE that are currently available for allocation. This column shows
the external fragmentation in the memory pool. Ideally, these numbers should be at most 1.

• RELOCATION_OPS

The number of times a block of size PAGE_SIZE has been relocated. The buddy system can relocate the
allocated “buddy neighbor” of a freed block when it tries to form a bigger freed block. Reading from the
INNODB_CMPMEM_RESET table resets this count.

3318

The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables

• RELOCATION_TIME

The total time in microseconds used for relocating blocks of size PAGE_SIZE. Reading from the table
INNODB_CMPMEM_RESET resets this count.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMPMEM\G
*************************** 1. row ***************************
 page_size: 1024
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 2. row ***************************
 page_size: 2048
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 3. row ***************************
 page_size: 4096
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 4. row ***************************
 page_size: 8192
buffer_pool_instance: 0
 pages_used: 7673
 pages_free: 15
 relocation_ops: 4638
 relocation_time: 0
*************************** 5. row ***************************
 page_size: 16384
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0

Notes

• Use these tables to measure the effectiveness of InnoDB table compression in your database.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For usage information, see Section 14.9.4, “Monitoring InnoDB Table Compression at Runtime” and
Section 14.15.1.3, “Using the Compression Information Schema Tables”. For general information about
InnoDB table compression, see Section 14.9, “InnoDB Table Compression”.

21.4.7 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables

The INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET tables provide status information
on operations related to compressed InnoDB tables and indexes, with separate statistics for each

3319

The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables

combination of database, table, and index, to help you evaluate the performance and usefulness of
compression for specific tables.

For a compressed InnoDB table, both the table data and all the secondary indexes are compressed. In
this context, the table data is treated as just another index, one that happens to contain all the columns: the
clustered index.

The INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET tables have these columns:

• DATABASE_NAME

The schema (database) containing the applicable table.

• TABLE_NAME

The table to monitor for compression statistics.

• INDEX_NAME

The index to monitor for compression statistics.

• COMPRESS_OPS

The number of compression operations attempted. Pages are compressed whenever an empty page is
created or the space for the uncompressed modification log runs out.

• COMPRESS_OPS_OK

The number of successful compression operations. Subtract from the COMPRESS_OPS value to get
the number of compression failures. Divide by the COMPRESS_OPS value to get the percentage of
compression failures.

• COMPRESS_TIME

The total time in seconds used for compressing data in this index.

• UNCOMPRESS_OPS

The number of uncompression operations performed. Compressed InnoDB pages are uncompressed
whenever compression fails, or the first time a compressed page is accessed in the buffer pool and the
uncompressed page does not exist.

• UNCOMPRESS_TIME

The total time in seconds used for uncompressing data in this index.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX\G
*************************** 1. row ***************************
 database_name: employees
 table_name: salaries
 index_name: PRIMARY
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 23451
uncompress_time: 4
*************************** 2. row ***************************
 database_name: employees
 table_name: salaries

3320

The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table

 index_name: emp_no
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 1597
uncompress_time: 0

Notes

• Use these tables to measure the effectiveness of InnoDB table compression for specific tables, indexes,
or both.

• You must have the PROCESS privilege to query these tables.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of these tables, including data types and default values.

• Because collecting separate measurements for every index imposes substantial performance overhead,
INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET statistics are not gathered by
default. You must enable the innodb_cmp_per_index_enabled system variable before performing
the operations on compressed tables that you want to monitor.

• For usage information, see Section 14.9.4, “Monitoring InnoDB Table Compression at Runtime” and
Section 14.15.1.3, “Using the Compression Information Schema Tables”. For general information about
InnoDB table compression, see Section 14.9, “InnoDB Table Compression”.

21.4.8 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table

The INNODB_FT_BEING_DELETED table provides a snapshot of the INNODB_FT_DELETED table;
it is used only during an OPTIMIZE TABLE maintenance operation. When OPTIMIZE TABLE is
run, the INNODB_FT_BEING_DELETED table is emptied, and DOC_ID values are removed from the
INNODB_FT_DELETED table. Because the contents of INNODB_FT_BEING_DELETED typically have
a short lifetime, this table has limited utility for monitoring or debugging. For information about running
OPTIMIZE TABLE on tables with FULLTEXT indexes, see Section 12.10.6, “Fine-Tuning MySQL Full-Text
Search”.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT
index; for example test/articles. The output appears similar to the example provided for the
INNODB_FT_DELETED table.

For related usage information and examples, see Section 14.15.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_BEING_DELETED table has these columns:

• DOC_ID

The document ID of the row that is in the process of being deleted. This value might reflect the value
of an ID column that you defined for the underlying table, or it can be a sequence value generated by
InnoDB when the table contains no suitable column. This value is used when you do text searches, to
skip rows in the INNODB_FT_INDEX_TABLE table before data for deleted rows is physically removed
from the FULLTEXT index by an OPTIMIZE TABLE statement. For more information, see Optimizing
InnoDB Full-Text Indexes.

Notes

• You must have the PROCESS privilege to query this table.

3321

The INFORMATION_SCHEMA INNODB_FT_CONFIG Table

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 14.6.2.3, “InnoDB Full-Text
Indexes”, and Section 12.10, “Full-Text Search Functions”.

21.4.9 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table

The INNODB_FT_CONFIG table provides metadata about the FULLTEXT index and associated processing
for an InnoDB table.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index; for
example test/articles.

For related usage information and examples, see Section 14.15.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_CONFIG table has these columns:

• KEY

The name designating an item of metadata for an InnoDB table containing a FULLTEXT index.

The values for this column might change, depending on the needs for performance tuning and
debugging for InnoDB full-text processing. The key names and their meanings include:

• optimize_checkpoint_limit: The number of seconds after which an OPTIMIZE TABLE run
stops.

• synced_doc_id: The next DOC_ID to be issued.

• stopword_table_name: The database/table name for a user-defined stopword table. The
VALUE column is empty if there is no user-defined stopword table.

• use_stopword: Indicates whether a stopword table is used, which is defined when the FULLTEXT
index is created.

• VALUE

The value associated with the corresponding KEY column, reflecting some limit or current value for an
aspect of a FULLTEXT index for an InnoDB table.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_CONFIG;
+---------------------------+-------------------+
| KEY | VALUE |
+---------------------------+-------------------+
optimize_checkpoint_limit	180
synced_doc_id	0
stopword_table_name	test/my_stopwords
use_stopword	1
+---------------------------+-------------------+

Notes

• This table is intended only for internal configuration. It is not intended for statistical information purposes.

3322

The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 14.6.2.3, “InnoDB Full-Text
Indexes”, and Section 12.10, “Full-Text Search Functions”.

21.4.10 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD
Table

The INNODB_FT_DEFAULT_STOPWORD table holds a list of stopwords that are used by default when
creating a FULLTEXT index on InnoDB tables. For information about the default InnoDB stopword list and
how to define your own stopword lists, see Section 12.10.4, “Full-Text Stopwords”.

For related usage information and examples, see Section 14.15.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_DEFAULT_STOPWORD table has these columns:

• value

A word that is used by default as a stopword for FULLTEXT indexes on InnoDB tables. This is not used
if you override the default stopword processing with either the innodb_ft_server_stopword_table
or the innodb_ft_user_stopword_table system variable.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DEFAULT_STOPWORD;
+-------+
| value |
+-------+
| a |
| about |
| an |
| are |
| as |
| at |
| be |
| by |
| com |
| de |
| en |
| for |
| from |
| how |
| i |
| in |
| is |
| it |
| la |
| of |
| on |
| or |
| that |
| the |
| this |
| to |
| was |
| what |
| when |
| where |

3323

The INFORMATION_SCHEMA INNODB_FT_DELETED Table

| who |
| will |
| with |
| und |
| the |
| www |
+-------+
36 rows in set (0.00 sec)

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 14.6.2.3, “InnoDB Full-Text
Indexes”, and Section 12.10, “Full-Text Search Functions”.

21.4.11 The INFORMATION_SCHEMA INNODB_FT_DELETED Table

The INNODB_FT_DELETED table stores rows that are deleted from the FULLTEXT index for an InnoDB
table. To avoid expensive index reorganization during DML operations for an InnoDB FULLTEXT index,
the information about newly deleted words is stored separately, filtered out of search results when you
do a text search, and removed from the main search index only when you issue an OPTIMIZE TABLE
statement for the InnoDB table. For more information, see Optimizing InnoDB Full-Text Indexes.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index; for
example test/articles.

For related usage information and examples, see Section 14.15.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_DELETED table has these columns:

• DOC_ID

The document ID of the newly deleted row. This value might reflect the value of an ID column that
you defined for the underlying table, or it can be a sequence value generated by InnoDB when the
table contains no suitable column. This value is used when you do text searches, to skip rows in
the INNODB_FT_INDEX_TABLE table before data for deleted rows is physically removed from the
FULLTEXT index by an OPTIMIZE TABLE statement. For more information, see Optimizing InnoDB Full-
Text Indexes.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;
+--------+
| DOC_ID |
+--------+
| 6 |
| 7 |
| 8 |
+--------+

Notes

• You must have the PROCESS privilege to query this table.

3324

The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 14.6.2.3, “InnoDB Full-Text
Indexes”, and Section 12.10, “Full-Text Search Functions”.

21.4.12 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table

The INNODB_FT_INDEX_CACHE table provides token information about newly inserted rows in a
FULLTEXT index. To avoid expensive index reorganization during DML operations, the information about
newly indexed words is stored separately, and combined with the main search index only when OPTIMIZE
TABLE is run, when the server is shut down, or when the cache size exceeds a limit defined by the
innodb_ft_cache_size or innodb_ft_total_cache_size system variable.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index; for
example test/articles.

For related usage information and examples, see Section 14.15.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_INDEX_CACHE table has these columns:

• WORD

A word extracted from the text of a newly inserted row.

• FIRST_DOC_ID

The first document ID in which this word appears in the FULLTEXT index.

• LAST_DOC_ID

The last document ID in which this word appears in the FULLTEXT index.

• DOC_COUNT

The number of rows in which this word appears in the FULLTEXT index. The same word can occur
several times within the cache table, once for each combination of DOC_ID and POSITION values.

• DOC_ID

The document ID of the newly inserted row. This value might reflect the value of an ID column that you
defined for the underlying table, or it can be a sequence value generated by InnoDB when the table
contains no suitable column.

• POSITION

The position of this particular instance of the word within the relevant document identified by the DOC_ID
value. The value does not represent an absolute position; it is an offset added to the POSITION of the
previous instance of that word.

Notes

• This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT
index; for example test/articles. The following example demonstrates how to use the

3325

The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table

innodb_ft_aux_table system variable to show information about a FULLTEXT index for a specified
table.

mysql> USE test;

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;

mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');

mysql> SET GLOBAL innodb_ft_aux_table = 'test/articles';

mysql> SELECT WORD, DOC_COUNT, DOC_ID, POSITION
 FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE LIMIT 5;
+------------+-----------+--------+----------+
| WORD | DOC_COUNT | DOC_ID | POSITION |
+------------+-----------+--------+----------+
1001	1	4	0
after	1	2	22
comparison	1	5	44
configured	1	6	20
database	2	1	31
+------------+-----------+--------+----------+

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 14.6.2.3, “InnoDB Full-Text
Indexes”, and Section 12.10, “Full-Text Search Functions”.

21.4.13 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table

The INNODB_FT_INDEX_TABLE table provides information about the inverted index used to process text
searches against the FULLTEXT index of an InnoDB table.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index; for
example test/articles.

For related usage information and examples, see Section 14.15.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_INDEX_TABLE table has these columns:

• WORD

A word extracted from the text of the columns that are part of a FULLTEXT.

• FIRST_DOC_ID

The first document ID in which this word appears in the FULLTEXT index.

3326

The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table

• LAST_DOC_ID

The last document ID in which this word appears in the FULLTEXT index.

• DOC_COUNT

The number of rows in which this word appears in the FULLTEXT index. The same word can occur
several times within the cache table, once for each combination of DOC_ID and POSITION values.

• DOC_ID

The document ID of the row containing the word. This value might reflect the value of an ID column that
you defined for the underlying table, or it can be a sequence value generated by InnoDB when the table
contains no suitable column.

• POSITION

The position of this particular instance of the word within the relevant document identified by the DOC_ID
value.

Notes

• This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT
index; for example test/articles. The following example demonstrates how to use the
innodb_ft_aux_table system variable to show information about a FULLTEXT index for a specified
table. Before information for newly inserted rows appears in INNODB_FT_INDEX_TABLE, the FULLTEXT
index cache must be flushed to disk. This is accomplished by running an OPTIMIZE TABLE operation
on the indexed table with the innodb_optimize_fulltext_only system variable enabled. (The
example disables that variable again at the end because it is intended to be enabled only temporarily.)

mysql> USE test;

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;

mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');

mysql> SET GLOBAL innodb_optimize_fulltext_only=ON;

mysql> OPTIMIZE TABLE articles;
+---------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------------+----------+----------+----------+
| test.articles | optimize | status | OK |
+---------------+----------+----------+----------+

mysql> SET GLOBAL innodb_ft_aux_table = 'test/articles';

mysql> SELECT WORD, DOC_COUNT, DOC_ID, POSITION
 FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_TABLE LIMIT 5;
+------------+-----------+--------+----------+

3327

The INFORMATION_SCHEMA INNODB_LOCKS Table

| WORD | DOC_COUNT | DOC_ID | POSITION |
+------------+-----------+--------+----------+
1001	1	4	0
after	1	2	22
comparison	1	5	44
configured	1	6	20
database	2	1	31
+------------+-----------+--------+----------+

mysql> SET GLOBAL innodb_optimize_fulltext_only=OFF;

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 14.6.2.3, “InnoDB Full-Text
Indexes”, and Section 12.10, “Full-Text Search Functions”.

21.4.14 The INFORMATION_SCHEMA INNODB_LOCKS Table

The INNODB_LOCKS table provides information about each lock that an InnoDB transaction has requested
but not yet acquired, and each lock that a transaction holds that is blocking another transaction.

The INNODB_LOCKS table has these columns:

• LOCK_ID

A unique lock ID number, internal to InnoDB. Treat it as an opaque string. Although LOCK_ID currently
contains TRX_ID, the format of the data in LOCK_ID is subject to change at any time. Do not write
applications that parse the LOCK_ID value.

• LOCK_TRX_ID

The ID of the transaction holding the lock. To obtain details about the transaction, join this column with
the TRX_ID column of the INNODB_TRX table.

• LOCK_MODE

How the lock is requested. Permitted lock mode descriptors are S, X, IS, IX, GAP, AUTO_INC, and
UNKNOWN. Lock mode descriptors may be used in combination to identify particular lock modes. For
information about InnoDB lock modes, see Section 14.7.1, “InnoDB Locking”.

• LOCK_TYPE

The type of lock. Permitted values are RECORD for a row-level lock, TABLE for a table-level lock.

• LOCK_TABLE

The name of the table that has been locked or contains locked records.

• LOCK_INDEX

The name of the index, if LOCK_TYPE is RECORD; otherwise NULL.

• LOCK_SPACE

The tablespace ID of the locked record, if LOCK_TYPE is RECORD; otherwise NULL.

• LOCK_PAGE

3328

The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table

The page number of the locked record, if LOCK_TYPE is RECORD; otherwise NULL.

• LOCK_REC

The heap number of the locked record within the page, if LOCK_TYPE is RECORD; otherwise NULL.

• LOCK_DATA

The data associated with the lock, if any. A value is shown if the LOCK_TYPE is RECORD, otherwise the
value is NULL. Primary key values of the locked record are shown for a lock placed on the primary key
index. Secondary index values of the locked record are shown for a lock placed on a unique secondary
index. Secondary index values are shown with primary key values appended if the secondary index is
not unique. If there is no primary key, LOCK_DATA shows either the key values of a selected unique
index or the unique InnoDB internal row ID number, according to the rules governing InnoDB clustered
index use (see Section 14.6.2.1, “Clustered and Secondary Indexes”). LOCK_DATA reports “supremum
pseudo-record” for a lock taken on a supremum pseudo-record. If the page containing the locked record
is not in the buffer pool because it was written to disk while the lock was held, InnoDB does not fetch the
page from disk. Instead, LOCK_DATA reports NULL.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCKS\G
*************************** 1. row ***************************
 lock_id: 3723:72:3:2
lock_trx_id: 3723
 lock_mode: X
 lock_type: RECORD
 lock_table: `mysql`.`t`
 lock_index: PRIMARY
 lock_space: 72
 lock_page: 3
 lock_rec: 2
 lock_data: 1, 9
*************************** 2. row ***************************
 lock_id: 3722:72:3:2
lock_trx_id: 3722
 lock_mode: S
 lock_type: RECORD
 lock_table: `mysql`.`t`
 lock_index: PRIMARY
 lock_space: 72
 lock_page: 3
 lock_rec: 2
 lock_data: 1, 9

Notes

• Use this table to help diagnose performance problems that occur during times of heavy concurrent load.
Its contents are updated as described in Section 14.15.2.3, “Persistence and Consistency of InnoDB
Transaction and Locking Information”.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For usage information, see Section 14.15.2.1, “Using InnoDB Transaction and Locking Information”.

21.4.15 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table

3329

The INFORMATION_SCHEMA INNODB_METRICS Table

The INNODB_LOCK_WAITS table contains one or more rows for each blocked InnoDB transaction,
indicating the lock it has requested and any locks that are blocking that request.

The INNODB_LOCK_WAITS table has these columns:

• REQUESTING_TRX_ID

The ID of the requesting (blocked) transaction.

• REQUESTED_LOCK_ID

The ID of the lock for which a transaction is waiting. To obtain details about the lock, join this column
with the LOCK_ID column of the INNODB_LOCKS table.

• BLOCKING_TRX_ID

The ID of the blocking transaction.

• BLOCKING_LOCK_ID

The ID of a lock held by a transaction blocking another transaction from proceeding. To obtain details
about the lock, join this column with the LOCK_ID column of the INNODB_LOCKS table.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCK_WAITS\G
*************************** 1. row ***************************
requesting_trx_id: 3396
requested_lock_id: 3396:91:3:2
 blocking_trx_id: 3395
 blocking_lock_id: 3395:91:3:2

Notes

• Use this table to help diagnose performance problems that occur during times of heavy concurrent load.
Its contents are updated as described in Section 14.15.2.3, “Persistence and Consistency of InnoDB
Transaction and Locking Information”.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For usage information, see Section 14.15.2.1, “Using InnoDB Transaction and Locking Information”.

21.4.16 The INFORMATION_SCHEMA INNODB_METRICS Table

The INNODB_METRICS table provides a wide variety of InnoDB performance information, complementing
the specific focus areas of the Performance Schema tables for InnoDB. With simple queries, you can
check the overall health of the system. With more detailed queries, you can diagnose issues such as
performance bottlenecks, resource shortages, and application issues.

Each monitor represents a point within the InnoDB source code that is instrumented to gather counter
information. Each counter can be started, stopped, and reset. You can also perform these actions for a
group of counters using their common module name.

By default, relatively little data is collected. To start, stop, and reset counters, set one of the system
variables innodb_monitor_enable, innodb_monitor_disable, innodb_monitor_reset, or

3330

The INFORMATION_SCHEMA INNODB_METRICS Table

innodb_monitor_reset_all, using the name of the counter, the name of the module, a wildcard match
for such a name using the “%” character, or the special keyword all.

For usage information, see Section 14.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”.

The INNODB_METRICS table has these columns:

• NAME

A unique name for the counter.

• SUBSYSTEM

The aspect of InnoDB that the metric applies to.

• COUNT

The value since the counter was enabled.

• MAX_COUNT

The maximum value since the counter was enabled.

• MIN_COUNT

The minimum value since the counter was enabled.

• AVG_COUNT

The average value since the counter was enabled.

• COUNT_RESET

The counter value since it was last reset. (The _RESET columns act like the lap counter on a stopwatch:
you can measure the activity during some time interval, while the cumulative figures are still available in
COUNT, MAX_COUNT, and so on.)

• MAX_COUNT_RESET

The maximum counter value since it was last reset.

• MIN_COUNT_RESET

The minimum counter value since it was last reset.

• AVG_COUNT_RESET

The average counter value since it was last reset.

• TIME_ENABLED

The timestamp of the last start.

• TIME_DISABLED

The timestamp of the last stop.

• TIME_ELAPSED

The elapsed time in seconds since the counter started.

3331

The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table

• TIME_RESET

The timestamp of the last reset.

• STATUS

Whether the counter is still running (enabled) or stopped (disabled).

• TYPE

Whether the item is a cumulative counter, or measures the current value of some resource.

• COMMENT

The counter description.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME='dml_inserts'\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.046153846153846156
 COUNT_RESET: 3
MAX_COUNT_RESET: 3
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 65
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

21.4.17 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table

The INNODB_SYS_COLUMNS table provides metadata about InnoDB table columns, equivalent to the
information from the SYS_COLUMNS table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.15.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_COLUMNS table has these columns:

• TABLE_ID

An identifier representing the table associated with the column; the same value as
INNODB_SYS_TABLES.TABLE_ID.

3332

The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table

• NAME

The name of the column. These names can be uppercase or lowercase depending on the
lower_case_table_names setting. There are no special system-reserved names for columns.

• POS

The ordinal position of the column within the table, starting from 0 and incrementing sequentially. When
a column is dropped, the remaining columns are reordered so that the sequence has no gaps.

• MTYPE

Stands for “main type”. A numeric identifier for the column type. 1 = VARCHAR, 2 = CHAR, 3 =
FIXBINARY, 4 = BINARY, 5 = BLOB, 6 = INT, 7 = SYS_CHILD, 8 = SYS, 9 = FLOAT, 10 = DOUBLE, 11 =
DECIMAL, 12 = VARMYSQL, 13 = MYSQL.

• PRTYPE

The InnoDB “precise type”, a binary value with bits representing MySQL data type, character set code,
and nullability.

• LEN

The column length, for example 4 for INT and 8 for BIGINT. For character columns in multibyte
character sets, this length value is the maximum length in bytes needed to represent a definition such as
VARCHAR(N); that is, it might be 2*N, 3*N, and so on depending on the character encoding.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_COLUMNS where TABLE_ID = 71\G
*************************** 1. row ***************************
TABLE_ID: 71
 NAME: col1
 POS: 0
 MTYPE: 6
 PRTYPE: 1027
 LEN: 4
*************************** 2. row ***************************
TABLE_ID: 71
 NAME: col2
 POS: 1
 MTYPE: 2
 PRTYPE: 524542
 LEN: 10
*************************** 3. row ***************************
TABLE_ID: 71
 NAME: col3
 POS: 2
 MTYPE: 1
 PRTYPE: 524303
 LEN: 10

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

21.4.18 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table

3333

The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table

The INNODB_SYS_DATAFILES table provides data file path information for InnoDB tablespaces,
equivalent to the information in the SYS_DATAFILES table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.15.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_DATAFILES table has these columns:

• SPACE

The tablespace ID.

• PATH

The tablespace data file path. If a file-per-table tablespace is created in a location outside the MySQL
data directory, the path value is a fully qualified directory path. Otherwise, the path is relative to the data
directory.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_DATAFILES WHERE SPACE = 57\G
*************************** 1. row ***************************
SPACE: 57
 PATH: ./test/t1.ibd

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

21.4.19 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table

The INNODB_SYS_FIELDS table provides metadata about the key columns (fields) of InnoDB indexes,
equivalent to the information from the SYS_FIELDS table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.15.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_FIELDS table has these columns:

• INDEX_ID

An identifier for the index associated with this key field; the same value as
INNODB_SYS_INDEXES.INDEX_ID.

• NAME

The name of the original column from the table; the same value as INNODB_SYS_COLUMNS.NAME.

• POS

The ordinal position of the key field within the index, starting from 0 and incrementing sequentially. When
a column is dropped, the remaining columns are reordered so that the sequence has no gaps.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FIELDS WHERE INDEX_ID = 117\G
*************************** 1. row ***************************

3334

The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table

INDEX_ID: 117
 NAME: col1
 POS: 0

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

21.4.20 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table

The INNODB_SYS_FOREIGN table provides metadata about InnoDB foreign keys, equivalent to the
information from the SYS_FOREIGN table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.15.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_FOREIGN table has these columns:

• ID

The name (not a numeric value) of the foreign key index, preceded by the schema (database) name (for
example, test/products_fk).

• FOR_NAME

The name of the child table in this foreign key relationship.

• REF_NAME

The name of the parent table in this foreign key relationship.

• N_COLS

The number of columns in the foreign key index.

• TYPE

A collection of bit flags with information about the foreign key column, ORed together. 0 = ON DELETE/
UPDATE RESTRICT, 1 = ON DELETE CASCADE, 2 = ON DELETE SET NULL, 4 = ON UPDATE
CASCADE, 8 = ON UPDATE SET NULL, 16 = ON DELETE NO ACTION, 32 = ON UPDATE NO ACTION.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN\G
*************************** 1. row ***************************
 ID: test/fk1
FOR_NAME: test/child
REF_NAME: test/parent
 N_COLS: 1
 TYPE: 1

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

3335

The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table

21.4.21 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table

The INNODB_SYS_FOREIGN_COLS table provides status information about the columns of InnoDB foreign
keys, equivalent to the information from the SYS_FOREIGN_COLS table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.15.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_FOREIGN_COLS table has these columns:

• ID

The foreign key index associated with this index key field, using the same value as
INNODB_SYS_FOREIGN.ID.

• FOR_COL_NAME

The name of the associated column in the child table.

• REF_COL_NAME

The name of the associated column in the parent table.

• POS

The ordinal position of this key field within the foreign key index, starting from 0.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN_COLS WHERE ID = 'test/fk1'\G
*************************** 1. row ***************************
 ID: test/fk1
FOR_COL_NAME: parent_id
REF_COL_NAME: id
 POS: 0

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

21.4.22 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table

The INNODB_SYS_INDEXES table provides metadata about InnoDB indexes, equivalent to the information
in the internal SYS_INDEXES table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.15.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_INDEXES table has these columns:

• INDEX_ID

An identifier for the index. Index identifiers are unique across all the databases in an instance.

• NAME

3336

The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table

The name of the index. Most indexes created implicitly by InnoDB have consistent names but the index
names are not necessarily unique. Examples: PRIMARY for a primary key index, GEN_CLUST_INDEX for
the index representing a primary key when one is not specified, and ID_IND, FOR_IND, and REF_IND
for foreign key constraints.

• TABLE_ID

An identifier representing the table associated with the index; the same value as
INNODB_SYS_TABLES.TABLE_ID.

• TYPE

A numeric value derived from bit-level information that identifies the index type. 0 = nonunique
secondary index; 1 = automatically generated clustered index (GEN_CLUST_INDEX); 2 = unique
nonclustered index; 3 = clustered index; 32 = full-text index

• N_FIELDS

The number of columns in the index key. For GEN_CLUST_INDEX indexes, this value is 0 because the
index is created using an artificial value rather than a real table column.

• PAGE_NO

The root page number of the index B-tree. For full-text indexes, the PAGE_NO column is unused and set
to -1 (FIL_NULL) because the full-text index is laid out in several B-trees (auxiliary tables).

• SPACE

An identifier for the tablespace where the index resides. 0 means the InnoDB system tablespace. Any
other number represents a table created with a separate .ibd file in file-per-table mode. This identifier
stays the same after a TRUNCATE TABLE statement. Because all indexes for a table reside in the same
tablespace as the table, this value is not necessarily unique.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_INDEXES WHERE TABLE_ID = 74\G
*************************** 1. row ***************************
INDEX_ID: 116
 NAME: GEN_CLUST_INDEX
TABLE_ID: 74
 TYPE: 1
N_FIELDS: 0
 PAGE_NO: 3
 SPACE: 60
*************************** 2. row ***************************
INDEX_ID: 117
 NAME: i1
TABLE_ID: 74
 TYPE: 0
N_FIELDS: 1
 PAGE_NO: 4
 SPACE: 60

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

3337

The INFORMATION_SCHEMA INNODB_SYS_TABLES Table

21.4.23 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table

The INNODB_SYS_TABLES table provides metadata about InnoDB tables, equivalent to the information
from the SYS_TABLES table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.15.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_TABLES table has these columns:

• TABLE_ID

An identifier for the InnoDB table. This value is unique across all databases in the instance.

• NAME

The name of the table, preceded by the schema (database) name where appropriate (for example,
test/t1). Names of databases and user tables are in the same case as they were originally defined,
possibly influenced by the lower_case_table_names setting.

• FLAG

A numeric value that represents bit-level information about table format and storage characteristics.

• N_COLS

The number of columns in the table. The number reported includes three hidden columns that are
created by InnoDB (DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR).

• SPACE

An identifier for the tablespace where the table resides. 0 means the InnoDB system tablespace. Any
other number represents a table created in file-per-table mode with a separate .ibd file. This identifier
stays the same after a TRUNCATE TABLE statement. Other than the zero value, this identifier is unique
for tables across all the databases in the instance.

• FILE_FORMAT

The table's file format (Antelope or Barracuda).

• ROW_FORMAT

The table's row format (Compact, Redundant, Dynamic, or Compressed).

• ZIP_PAGE_SIZE

The zip page size. Applies only to tables with a row format of Compressed.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE TABLE_ID = 74\G
*************************** 1. row ***************************
 TABLE_ID: 74
 NAME: test/t1
 FLAG: 1
 N_COLS: 6
 SPACE: 60
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact

3338

The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table

ZIP_PAGE_SIZE: 0

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

21.4.24 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table

The INNODB_SYS_TABLESPACES table provides metadata about InnoDB tablespaces, equivalent to the
information in the SYS_TABLESPACES table in the InnoDB data dictionary.

For related usage information and examples, see Section 14.15.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_TABLESPACES table has these columns:

• SPACE

The tablespace ID.

• NAME

The schema (database) and table name.

• FLAG

A numeric value that represents bit-level information about tablespace format and storage
characteristics.

• FILE_FORMAT

The tablespace file format (for example, Antelope or Barracuda). The data in this field is interpreted
from the tablespace flags information that resides in the .ibd file. For more information about InnoDB file
formats, see Section 14.10, “InnoDB File-Format Management”.

• ROW_FORMAT

The tablespace row format (Compact or Redundant, Dynamic, or Compressed). The data in this
column is interpreted from the tablespace flags information that resides in the .ibd file.

• PAGE_SIZE

The tablespace page size. The data in this column is interpreted from the tablespace flags information
that resides in the .ibd file.

• ZIP_PAGE_SIZE

The tablespace zip page size. The data in this column is interpreted from the tablespace flags
information that resides in the .ibd file.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES WHERE SPACE = 57\G
*************************** 1. row ***************************
 SPACE: 57

3339

The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View

 NAME: test/t1
 FLAG: 0
 FILE_FORMAT: Antelope
 ROW_FORMAT: Compact or Redundant
 PAGE_SIZE: 16384
ZIP_PAGE_SIZE: 0

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• Because tablespace flags are always zero for all Antelope file formats (unlike table flags), there is no
way to determine from this flag integer if the tablespace row format is Redundant or Compact. As a
result, the possible values for the ROW_FORMAT field are “Compact or Redundant”, “Compressed”, or
“Dynamic.”

21.4.25 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View

The INNODB_SYS_TABLESTATS table provides a view of low-level status information about InnoDB
tables. This data is used by the MySQL optimizer to calculate which index to use when querying an
InnoDB table. This information is derived from in-memory data structures rather than data stored on disk.
There is no corresponding internal InnoDB system table.

InnoDB tables are represented in this view if they have been opened since the last server restart and have
not aged out of the table cache. Tables for which persistent stats are available are always represented in
this view.

Table statistics are updated only for DELETE or UPDATE operations that modify indexed columns. Statistics
are not updated by operations that modify only nonindexed columns.

ANALYZE TABLE clears table statistics and sets the STATS_INITIALIZED column to Uninitialized.
Statistics are collected again the next time the table is accessed.

For related usage information and examples, see Section 14.15.3, “InnoDB INFORMATION_SCHEMA
System Tables”.

The INNODB_SYS_TABLESTATS table has these columns:

• TABLE_ID

An identifier representing the table for which statistics are available; the same value as
INNODB_SYS_TABLES.TABLE_ID.

• NAME

The name of the table; the same value as INNODB_SYS_TABLES.NAME.

• STATS_INITIALIZED

The value is Initialized if the statistics are already collected, Uninitialized if not.

• NUM_ROWS

The current estimated number of rows in the table. Updated after each DML operation. The value could
be imprecise if uncommitted transactions are inserting into or deleting from the table.

3340

The INFORMATION_SCHEMA INNODB_TRX Table

• CLUST_INDEX_SIZE

The number of pages on disk that store the clustered index, which holds the InnoDB table data in
primary key order. This value might be null if no statistics are collected yet for the table.

• OTHER_INDEX_SIZE

The number of pages on disk that store all secondary indexes for the table. This value might be null if no
statistics are collected yet for the table.

• MODIFIED_COUNTER

The number of rows modified by DML operations, such as INSERT, UPDATE, DELETE, and also cascade
operations from foreign keys. This column is reset each time table statistics are recalculated

• AUTOINC

The next number to be issued for any auto-increment-based operation. The rate at which the AUTOINC
value changes depends on how many times auto-increment numbers have been requested and how
many numbers are granted per request.

• REF_COUNT

When this counter reaches zero, the table metadata can be evicted from the table cache.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS where TABLE_ID = 71\G
*************************** 1. row ***************************
 TABLE_ID: 71
 NAME: test/t1
STATS_INITIALIZED: Initialized
 NUM_ROWS: 1
 CLUST_INDEX_SIZE: 1
 OTHER_INDEX_SIZE: 0
 MODIFIED_COUNTER: 1
 AUTOINC: 0
 REF_COUNT: 1

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing performance-
related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

21.4.26 The INFORMATION_SCHEMA INNODB_TRX Table

The INNODB_TRX table provides information about every transaction currently executing inside InnoDB,
including whether the transaction is waiting for a lock, when the transaction started, and the SQL statement
the transaction is executing, if any.

For usage information, see Section 14.15.2.1, “Using InnoDB Transaction and Locking Information”.

The INNODB_TRX table has these columns:

3341

The INFORMATION_SCHEMA INNODB_TRX Table

• TRX_ID

A unique transaction ID number, internal to InnoDB. (Starting in MySQL 5.6, these IDs are not created
for transactions that are read only and nonlocking. For details, see Section 8.5.3, “Optimizing InnoDB
Read-Only Transactions”.)

• TRX_WEIGHT

The weight of a transaction, reflecting (but not necessarily the exact count of) the number of rows
altered and the number of rows locked by the transaction. To resolve a deadlock, InnoDB selects
the transaction with the smallest weight as the “victim” to roll back. Transactions that have changed
nontransactional tables are considered heavier than others, regardless of the number of altered and
locked rows.

• TRX_STATE

The transaction execution state. Permitted values are RUNNING, LOCK WAIT, ROLLING BACK, and
COMMITTING.

• TRX_STARTED

The transaction start time.

• TRX_REQUESTED_LOCK_ID

The ID of the lock the transaction is currently waiting for, if TRX_STATE is LOCK WAIT; otherwise NULL.
To obtain details about the lock, join this column with the LOCK_ID column of the INNODB_LOCKS table.

• TRX_WAIT_STARTED

The time when the transaction started waiting on the lock, if TRX_STATE is LOCK WAIT; otherwise
NULL.

• TRX_MYSQL_THREAD_ID

The MySQL thread ID. To obtain details about the thread, join this column with the ID column of the
INFORMATION_SCHEMA PROCESSLIST table, but see Section 14.15.2.3, “Persistence and Consistency
of InnoDB Transaction and Locking Information”.

• TRX_QUERY

The SQL statement that is being executed by the transaction.

• TRX_OPERATION_STATE

The transaction's current operation, if any; otherwise NULL.

• TRX_TABLES_IN_USE

The number of InnoDB tables used while processing the current SQL statement of this transaction.

• TRX_TABLES_LOCKED

The number of InnoDB tables that the current SQL statement has row locks on. (Because these are row
locks, not table locks, the tables can usually still be read from and written to by multiple transactions,
despite some rows being locked.)

• TRX_LOCK_STRUCTS

3342

The INFORMATION_SCHEMA INNODB_TRX Table

The number of locks reserved by the transaction.

• TRX_LOCK_MEMORY_BYTES

The total size taken up by the lock structures of this transaction in memory.

• TRX_ROWS_LOCKED

The approximate number or rows locked by this transaction. The value might include delete-marked
rows that are physically present but not visible to the transaction.

• TRX_ROWS_MODIFIED

The number of modified and inserted rows in this transaction.

• TRX_CONCURRENCY_TICKETS

A value indicating how much work the current transaction can do before being swapped out, as specified
by the innodb_concurrency_tickets system variable.

• TRX_ISOLATION_LEVEL

The isolation level of the current transaction.

• TRX_UNIQUE_CHECKS

Whether unique checks are turned on or off for the current transaction. For example, they might be
turned off during a bulk data load.

• TRX_FOREIGN_KEY_CHECKS

Whether foreign key checks are turned on or off for the current transaction. For example, they might be
turned off during a bulk data load.

• TRX_LAST_FOREIGN_KEY_ERROR

The detailed error message for the last foreign key error, if any; otherwise NULL.

• TRX_ADAPTIVE_HASH_LATCHED

Whether the adaptive hash index is locked by the current transaction. (Only a single transaction at a time
can modify the adaptive hash index.)

• TRX_ADAPTIVE_HASH_TIMEOUT

Whether to relinquish the search latch immediately for the adaptive hash index, or reserve it across calls
from MySQL. When there is no adaptive hash index contention, this value remains zero and statements
reserve the latch until they finish. During times of contention, it counts down to zero, and statements
release the latch immediately after each row lookup.

• TRX_IS_READ_ONLY

A value of 1 indicates the transaction is read only.

• TRX_AUTOCOMMIT_NON_LOCKING

A value of 1 indicates the transaction is a SELECT statement that does not use the FOR UPDATE or
LOCK IN SHARED MODE clauses, and is executing with autocommit enabled so that the transaction

3343

INFORMATION_SCHEMA NDB Cluster Tables

contains only this one statement. When this column and TRX_IS_READ_ONLY are both 1, InnoDB
optimizes the transaction to reduce the overhead associated with transactions that change table data.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TRX\G
*************************** 1. row ***************************
 trx_id: 3298
 trx_state: RUNNING
 trx_started: 2014-11-19 13:54:39
 trx_requested_lock_id: NULL
 trx_wait_started: NULL
 trx_weight: 316436
 trx_mysql_thread_id: 2
 trx_query: DELETE FROM employees.salaries WHERE salary > 65000
 trx_operation_state: updating or deleting
 trx_tables_in_use: 1
 trx_tables_locked: 1
 trx_lock_structs: 1621
 trx_lock_memory_bytes: 243240
 trx_rows_locked: 759343
 trx_rows_modified: 314815
 trx_concurrency_tickets: 0
 trx_isolation_level: REPEATABLE READ
 trx_unique_checks: 1
 trx_foreign_key_checks: 1
trx_last_foreign_key_error: NULL
 trx_adaptive_hash_latched: 0
 trx_adaptive_hash_timeout: 10000
 trx_is_read_only: 0
trx_autocommit_non_locking: 0

Notes

• Use this table to help diagnose performance problems that occur during times of heavy concurrent load.
Its contents are updated as described in Section 14.15.2.3, “Persistence and Consistency of InnoDB
Transaction and Locking Information”.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

21.5 INFORMATION_SCHEMA NDB Cluster Tables
The following sections provide information about INFORMATION_SCHEMA tables which are specific
to NDB Cluster. (The FILES table is available in standard MySQL 5.6 but is not used there.) The
ndb_transid_mysql_connection_map table is implemented as an INFORMATION_SCHEMA plugin
available only in NDB Cluster binaries or source, and does not exist in MySQL Server 5.6.

Additional statistical and other data about NDB Cluster transactions, operations, threads, blocks, and other
aspects of performance can be obtained from the tables in the ndbinfo database. For information about
these tables, see Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”.

21.5.1 The INFORMATION_SCHEMA FILES Table

The FILES table provides information about the files in which MySQL NDB Disk Data tables are stored.

The FILES table has these columns:

• FILE_ID

3344

The INFORMATION_SCHEMA FILES Table

A file identifier. FILE_ID column values are auto-generated.

• FILE_NAME

The name of an UNDO log file created by CREATE LOGFILE GROUP or ALTER LOGFILE GROUP, or of a
data file created by CREATE TABLESPACE or ALTER TABLESPACE.

• FILE_TYPE

One of the values UNDO LOG, DATAFILE, or TABLESPACE.

• TABLESPACE_NAME

The name of the tablespace with which the file is associated.

• TABLE_CATALOG

This value is always empty.

• TABLE_SCHEMA

This value is always NULL.

• TABLE_NAME

The name of the Disk Data table with which the file is associated, if any.

• LOGFILE_GROUP_NAME

The name of the log file group to which the log file or data file belongs.

• LOGFILE_GROUP_NUMBER

For an UNDO log file, the auto-generated ID number of the log file group to which the log file belongs.

• ENGINE

For an NDB Cluster Disk Data log file or data file, this value always NDB or NDBCLUSTER.

• FULLTEXT_KEYS

For an NDB Cluster Disk Data log file or data file, this value is always empty.

• DELETED_ROWS

This value is always NULL.

• UPDATE_COUNT

This value is always NULL.

• FREE_EXTENTS

The number of extents which have not yet been used by the file.

• TOTAL_EXTENTS

The total number of extents allocated to the file.

3345

The INFORMATION_SCHEMA FILES Table

• EXTENT_SIZE

The size of an extent for the file in bytes.

• INITIAL_SIZE

The size of the file in bytes. This is the same value that was used in the INITIAL_SIZE clause of the
CREATE LOGFILE GROUP, ALTER LOGFILE GROUP, CREATE TABLESPACE, or ALTER TABLESPACE
statement used to create the file.

• MAXIMUM_SIZE

For NDB Cluster Disk Data files, this value is always the same as the INITIAL_SIZE value.

• AUTOEXTEND_SIZE

For NDB Cluster Disk Data files, this value is always empty.

• CREATION_TIME

The date and time when the file was created.

• LAST_UPDATE_TIME

The date and time when the file was last modified.

• LAST_ACCESS_TIME

The date and time when the file was last accessed by the server.

• RECOVER_TIME

For NDB Cluster Disk Data files, this value is always 0.

• TRANSACTION_COUNTER

For NDB Cluster Disk Data files, this value is always 0.

• VERSION

For NDB Cluster Disk Data files, this value is always NULL.

• ROW_FORMAT

For NDB Cluster Disk Data files, this value is always NULL.

• TABLE_ROWS

For NDB Cluster Disk Data files, this value is always NULL.

• AVG_ROW_LENGTH

For NDB Cluster Disk Data files, this value is always NULL.

• DATA_LENGTH

For NDB Cluster Disk Data files, this value is always NULL.

• MAX_DATA_LENGTH

3346

The INFORMATION_SCHEMA FILES Table

For NDB Cluster Disk Data files, this value is always NULL.

• INDEX_LENGTH

For NDB Cluster Disk Data files, this value is always NULL.

• DATA_FREE

For NDB Cluster Disk Data files, this value is always NULL.

• CREATE_TIME

For NDB Cluster Disk Data files, this value is always NULL.

• UPDATE_TIME

For NDB Cluster Disk Data files, this value is always NULL.

• CHECK_TIME

For NDB Cluster Disk Data files, this value is always NULL.

• CHECKSUM

For NDB Cluster Disk Data files, this value is always NULL.

• STATUS

For NDB Cluster Disk Data files, this value is always NORMAL.

• EXTRA

For NDB Cluster Disk Data files, the EXTRA column shows which data node the file belongs to (each
data node having its own copy), as well as the size of its undo buffer. Suppose that you use this
statement on an NDB Cluster with four data nodes:

CREATE LOGFILE GROUP mygroup
 ADD UNDOFILE 'new_undo.dat'
 INITIAL_SIZE 2G
 ENGINE NDB;

After running the CREATE LOGFILE GROUP statement successfully, you should see a result similar to
the one shown here for this query against the FILES table:

mysql> SELECT LOGFILE_GROUP_NAME, FILE_TYPE, EXTRA
 FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME = 'new_undo.dat';

+--------------------+-----------+---+
| LOGFILE_GROUP_NAME | FILE_TYPE | EXTRA |
+--------------------+-----------+---+
mygroup	UNDO LOG	CLUSTER_NODE=5;UNDO_BUFFER_SIZE=8388608
mygroup	UNDO LOG	CLUSTER_NODE=6;UNDO_BUFFER_SIZE=8388608
mygroup	UNDO LOG	CLUSTER_NODE=7;UNDO_BUFFER_SIZE=8388608
mygroup	UNDO LOG	CLUSTER_NODE=8;UNDO_BUFFER_SIZE=8388608
+--------------------+-----------+---+

Notes

• The FILES table is a nonstandard INFORMATION_SCHEMA table.

3347

The INFORMATION_SCHEMA FILES Table

NDB Notes

• This table provides information about Disk Data files only; you cannot use it for determining disk space
allocation or availability for individual NDB tables. However, it is possible to see how much space is
allocated for each NDB table having data stored on disk—as well as how much remains available for
storage of data on disk for that table—using ndb_desc. For more information, see Section 18.5.10,
“ndb_desc — Describe NDB Tables”.

• The CREATION_TIME, LAST_UPDATE_TIME, and LAST_ACCESSED values are as reported by the
operating system, and are not supplied by the NDB storage engine. Where no value is provided by the
operating system, these columns display 0000-00-00 00:00:00.

• The difference between the TOTAL EXTENTS and FREE_EXTENTS columns is the number of extents
currently in use by the file:

SELECT TOTAL_EXTENTS - FREE_EXTENTS AS extents_used
 FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME = 'myfile.dat';

To approximate the amount of disk space in use by the file, multiply that difference by the value of the
EXTENT_SIZE column, which gives the size of an extent for the file in bytes:

SELECT (TOTAL_EXTENTS - FREE_EXTENTS) * EXTENT_SIZE AS bytes_used
 FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME = 'myfile.dat';

Similarly, you can estimate the amount of space that remains available in a given file by multiplying
FREE_EXTENTS by EXTENT_SIZE:

SELECT FREE_EXTENTS * EXTENT_SIZE AS bytes_free
 FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME = 'myfile.dat';

Important

The byte values produced by the preceding queries are approximations only, and
their precision is inversely proportional to the value of EXTENT_SIZE. That is, the
larger EXTENT_SIZE becomes, the less accurate the approximations are.

It is also important to remember that once an extent is used, it cannot be freed again without dropping
the data file of which it is a part. This means that deletes from a Disk Data table do not release disk
space.

The extent size can be set in a CREATE TABLESPACE statement. For more information, see
Section 13.1.18, “CREATE TABLESPACE Statement”.

• An additional row is present in the FILES table following the creation of a logfile group. This row has
NULL for the value of the FILE_NAME column. For this row, the value of the FILE_ID column is always
0, that of the FILE_TYPE column is always UNDO LOG, and that of the STATUS column is always
NORMAL. The value of the ENGINE column is always NDBCLUSTER.

The FREE_EXTENTS column in this row shows the total number of free extents available to all undo files
belonging to a given log file group whose name and number are shown in the LOGFILE_GROUP_NAME
and LOGFILE_GROUP_NUMBER columns, respectively.

Suppose there are no existing log file groups on your NDB Cluster, and you create one using the
following statement:

mysql> CREATE LOGFILE GROUP lg1

3348

The INFORMATION_SCHEMA FILES Table

 ADD UNDOFILE 'undofile.dat'
 INITIAL_SIZE = 16M
 UNDO_BUFFER_SIZE = 1M
 ENGINE = NDB;

You can now see this NULL row when you query the FILES table:

mysql> SELECT DISTINCT
 FILE_NAME AS File,
 FREE_EXTENTS AS Free,
 TOTAL_EXTENTS AS Total,
 EXTENT_SIZE AS Size,
 INITIAL_SIZE AS Initial
 FROM INFORMATION_SCHEMA.FILES;
+--------------+---------+---------+------+----------+
| File | Free | Total | Size | Initial |
+--------------+---------+---------+------+----------+
| undofile.dat | NULL | 4194304 | 4 | 16777216 |
| NULL | 4184068 | NULL | 4 | NULL |
+--------------+---------+---------+------+----------+

The total number of free extents available for undo logging is always somewhat less than the sum of
the TOTAL_EXTENTS column values for all undo files in the log file group due to overhead required for
maintaining the undo files. This can be seen by adding a second undo file to the log file group, then
repeating the previous query against the FILES table:

mysql> ALTER LOGFILE GROUP lg1
 ADD UNDOFILE 'undofile02.dat'
 INITIAL_SIZE = 4M
 ENGINE = NDB;

mysql> SELECT DISTINCT
 FILE_NAME AS File,
 FREE_EXTENTS AS Free,
 TOTAL_EXTENTS AS Total,
 EXTENT_SIZE AS Size,
 INITIAL_SIZE AS Initial
 FROM INFORMATION_SCHEMA.FILES;
+----------------+---------+---------+------+----------+
| File | Free | Total | Size | Initial |
+----------------+---------+---------+------+----------+
undofile.dat	NULL	4194304	4	16777216
undofile02.dat	NULL	1048576	4	4194304
NULL	5223944	NULL	4	NULL
+----------------+---------+---------+------+----------+

The amount of free space in bytes which is available for undo logging by Disk Data tables using this log
file group can be approximated by multiplying the number of free extents by the initial size:

mysql> SELECT
 FREE_EXTENTS AS 'Free Extents',
 FREE_EXTENTS * EXTENT_SIZE AS 'Free Bytes'
 FROM INFORMATION_SCHEMA.FILES
 WHERE LOGFILE_GROUP_NAME = 'lg1'
 AND FILE_NAME IS NULL;
+--------------+------------+
| Free Extents | Free Bytes |
+--------------+------------+
| 5223944 | 20895776 |

3349

The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table

+--------------+------------+

If you create an NDB Cluster Disk Data table and then insert some rows into it, you can see
approximately how much space remains for undo logging afterward, for example:

mysql> CREATE TABLESPACE ts1
 ADD DATAFILE 'data1.dat'
 USE LOGFILE GROUP lg1
 INITIAL_SIZE 512M
 ENGINE = NDB;

mysql> CREATE TABLE dd (
 c1 INT NOT NULL PRIMARY KEY,
 c2 INT,
 c3 DATE
)
 TABLESPACE ts1 STORAGE DISK
 ENGINE = NDB;

mysql> INSERT INTO dd VALUES
 (NULL, 1234567890, '2007-02-02'),
 (NULL, 1126789005, '2007-02-03'),
 (NULL, 1357924680, '2007-02-04'),
 (NULL, 1642097531, '2007-02-05');

mysql> SELECT
 FREE_EXTENTS AS 'Free Extents',
 FREE_EXTENTS * EXTENT_SIZE AS 'Free Bytes'
 FROM INFORMATION_SCHEMA.FILES
 WHERE LOGFILE_GROUP_NAME = 'lg1'
 AND FILE_NAME IS NULL;
+--------------+------------+
| Free Extents | Free Bytes |
+--------------+------------+
| 5207565 | 20830260 |
+--------------+------------+

• An additional row is present in the FILES table for any NDB Cluster tablespace, whether or not any data
files are associated with the tablespace. This row has NULL for the value of the FILE_NAME column.
For this row, the value of the FILE_ID column is always 0, that of the FILE_TYPE column is always
TABLESPACE, and that of the STATUS column is always NORMAL. The value of the ENGINE column is
always NDBCLUSTER.

• For additional information, and examples of creating and dropping NDB Cluster Disk Data objects, see
Section 18.6.11, “NDB Cluster Disk Data Tables”.

21.5.2 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map
Table

The ndb_transid_mysql_connection_map table provides a mapping between NDB transactions, NDB
transaction coordinators, and MySQL Servers attached to an NDB Cluster as API nodes. This information
is used when populating the server_operations and server_transactions tables of the ndbinfo
NDB Cluster information database.

The ndb_transid_mysql_connection_map table has these columns:

• mysql_connection_id

The MySQL server connection ID.

• node_id

3350

INFORMATION_SCHEMA Thread Pool Tables

The transaction coordinator node ID.

• ndb_transid

The NDB transaction ID.

Notes

The mysql_connection_id value is the same as the connection or session ID shown in the output of
SHOW PROCESSLIST.

There are no SHOW statements associated with this table.

This is a nonstandard table, specific to NDB Cluster. It is implemented as an INFORMATION_SCHEMA
plugin; you can verify that it is supported by checking the output of SHOW PLUGINS. If
ndb_transid_mysql_connection_map support is enabled, the output from this statement includes
a plugin having this name, of type INFORMATION SCHEMA, and having status ACTIVE, as shown here
(using emphasized text):

mysql> SHOW PLUGINS;
+----------------------------------+--------+--------------------+---------+---------+
| Name | Status | Type | Library | License |
+----------------------------------+--------+--------------------+---------+---------+
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
mysql_native_password	ACTIVE	AUTHENTICATION	NULL	GPL
mysql_old_password	ACTIVE	AUTHENTICATION	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
PERFORMANCE_SCHEMA	ACTIVE	STORAGE ENGINE	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbcluster	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbinfo	ACTIVE	STORAGE ENGINE	NULL	GPL
ndb_transid_mysql_connection_map	ACTIVE	INFORMATION SCHEMA	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
INNODB_TRX	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_LOCKS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_LOCK_WAITS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMPMEM	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMPMEM_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL
partition	ACTIVE	STORAGE ENGINE	NULL	GPL
+----------------------------------+--------+--------------------+---------+---------+
22 rows in set (0.00 sec)

The plugin is enabled by default. You can disable it (or force the server not to run unless the plugin
starts) by starting the server with the --ndb-transid-mysql-connection-map option. If the plugin is
disabled, the status is shown by SHOW PLUGINS as DISABLED. The plugin cannot be enabled or disabled
at runtime.

Although the names of this table and its columns are displayed using lowercase, you can use uppercase or
lowercase when referring to them in SQL statements.

For this table to be created, the MySQL Server must be a binary supplied with the NDB Cluster distribution,
or one built from the NDB Cluster sources with NDB storage engine support enabled. It is not available in
the standard MySQL 5.6 Server.

21.6 INFORMATION_SCHEMA Thread Pool Tables

3351

INFORMATION_SCHEMA Thread Pool Table Reference

The following sections describe the INFORMATION_SCHEMA tables associated with the thread pool
plugin (see Section 5.5.3, “MySQL Enterprise Thread Pool”). They provide information about thread pool
operation:

• TP_THREAD_GROUP_STATE: Information about thread pool thread group states

• TP_THREAD_GROUP_STATS: Thread group statistics

• TP_THREAD_STATE: Information about thread pool thread states

Rows in these tables represent snapshots in time. In the case of TP_THREAD_STATE, all rows for a thread
group comprise a snapshot in time. Thus, the MySQL server holds the mutex of the thread group while
producing the snapshot. But it does not hold mutexes on all thread groups at the same time, to prevent a
statement against TP_THREAD_STATE from blocking the entire MySQL server.

The thread pool INFORMATION_SCHEMA tables are implemented by individual plugins and the decision
whether to load one can be made independently of the others (see Section 5.5.3.2, “Thread Pool
Installation”). However, the content of all the tables depends on the thread pool plugin being enabled. If a
table plugin is enabled but the thread pool plugin is not, the table becomes visible and can be accessed but
is empty.

21.6.1 INFORMATION_SCHEMA Thread Pool Table Reference

The following table summarizes INFORMATION_SCHEMA thread pool tables. For greater detail, see the
individual table descriptions.

Table 21.7 INFORMATION_SCHEMA Thread Pool Tables

Table Name Description

TP_THREAD_GROUP_STATE Thread pool thread group states

TP_THREAD_GROUP_STATS Thread pool thread group statistics

TP_THREAD_STATE Thread pool thread information

21.6.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table

The TP_THREAD_GROUP_STATE table has one row per thread group in the thread pool. Each row provides
information about the current state of a group.

The TP_THREAD_GROUP_STATE table has these columns:

• TP_GROUP_ID

The thread group ID. This is a unique key within the table.

• CONSUMER THREADS

The number of consumer threads. There is at most one thread ready to start executing if the active
threads become stalled or blocked.

• RESERVE_THREADS

The number of threads in the reserved state. This means that they are not started until there is a need
to wake a new thread and there is no consumer thread. This is where most threads end up when the
thread group has created more threads than needed for normal operation. Often a thread group needs
additional threads for a short while and then does not need them again for a while. In this case, they go

3352

The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table

into the reserved state and remain until needed again. They take up some extra memory resources, but
no extra computing resources.

• CONNECT_THREAD_COUNT

The number of threads that are processing or waiting to process connection initialization and
authentication. There can be a maximum of four connection threads per thread group; these threads
expire after a period of inactivity.

This column was added in MySQL 5.6.36.

• CONNECTION_COUNT

The number of connections using this thread group.

• QUEUED_QUERIES

The number of statements waiting in the high-priority queue.

• QUEUED_TRANSACTIONS

The number of statements waiting in the low-priority queue. These are the initial statements for
transactions that have not started, so they also represent queued transactions.

• STALL_LIMIT

The value of the thread_pool_stall_limit system variable for the thread group. This is the same
value for all thread groups.

• PRIO_KICKUP_TIMER

The value of the thread_pool_prio_kickup_timer system variable for the thread group. This is the
same value for all thread groups.

• ALGORITHM

The value of the thread_pool_algorithm system variable for the thread group. This is the same
value for all thread groups.

• THREAD_COUNT

The number of threads started in the thread pool as part of this thread group.

• ACTIVE_THREAD_COUNT

The number of threads active in executing statements.

• STALLED_THREAD_COUNT

The number of stalled statements in the thread group. A stalled statement could be executing, but from a
thread pool perspective it is stalled and making no progress. A long-running statement quickly ends up in
this category.

• WAITING_THREAD_NUMBER

If there is a thread handling the polling of statements in the thread group, this specifies the thread
number within this thread group. It is possible that this thread could be executing a statement.

• OLDEST_QUEUED

3353

The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table

How long in milliseconds the oldest queued statement has been waiting for execution.

• MAX_THREAD_IDS_IN_GROUP

The maximum thread ID of the threads in the group. This is the same as MAX(TP_THREAD_NUMBER) for
the threads when selected from the TP_THREAD_STATE table. That is, these two queries are equivalent:

SELECT TP_GROUP_ID, MAX_THREAD_IDS_IN_GROUP
FROM TP_THREAD_GROUP_STATE;

SELECT TP_GROUP_ID, MAX(TP_THREAD_NUMBER)
FROM TP_THREAD_STATE GROUP BY TP_GROUP_ID;

21.6.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table

The TP_THREAD_GROUP_STATS table reports statistics per thread group. There is one row per group.

The TP_THREAD_GROUP_STATS table has these columns:

• TP_GROUP_ID

The thread group ID. This is a unique key within the table.

• CONNECTIONS_STARTED

The number of connections started.

• CONNECTIONS_CLOSED

The number of connections closed.

• QUERIES_EXECUTED

The number of statements executed. This number is incremented when a statement starts executing, not
when it finishes.

• QUERIES_QUEUED

The number of statements received that were queued for execution. This does not count statements that
the thread group was able to begin executing immediately without queuing, which can happen under the
conditions described in Section 5.5.3.3, “Thread Pool Operation”.

• THREADS_STARTED

The number of threads started.

• PRIO_KICKUPS

The number of statements that have been moved from low-priority queue to high-priority queue based
on the value of the thread_pool_prio_kickup_timer system variable. If this number increases
quickly, consider increasing the value of that variable. A quickly increasing counter means that the
priority system is not keeping transactions from starting too early. For InnoDB, this most likely means
deteriorating performance due to too many concurrent transactions..

• STALLED_QUERIES_EXECUTED

The number of statements that have become defined as stalled due to executing for longer than the
value of the thread_pool_stall_limit system variable.

3354

The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table

• BECOME_CONSUMER_THREAD

The number of times thread have been assigned the consumer thread role.

• BECOME_RESERVE_THREAD

The number of times threads have been assigned the reserve thread role.

• BECOME_WAITING_THREAD

The number of times threads have been assigned the waiter thread role. When statements are queued,
this happens very often, even in normal operation, so rapid increases in this value are normal in the case
of a highly loaded system where statements are queued up.

• WAKE_THREAD_STALL_CHECKER

The number of times the stall check thread decided to wake or create a thread to possibly handle some
statements or take care of the waiter thread role.

• SLEEP_WAITS

The number of THD_WAIT_SLEEP waits. These occur when threads go to sleep; for example, by calling
the SLEEP() function.

• DISK_IO_WAITS

The number of THD_WAIT_DISKIO waits. These occur when threads perform disk I/O that is likely to
not hit the file system cache. Such waits occur when the buffer pool reads and writes data to disk, not for
normal reads from and writes to files.

• ROW_LOCK_WAITS

The number of THD_WAIT_ROW_LOCK waits for release of a row lock by another transaction.

• GLOBAL_LOCK_WAITS

The number of THD_WAIT_GLOBAL_LOCK waits for a global lock to be released.

• META_DATA_LOCK_WAITS

The number of THD_WAIT_META_DATA_LOCK waits for a metadata lock to be released.

• TABLE_LOCK_WAITS

The number of THD_WAIT_TABLE_LOCK waits for a table to be unlocked that the statement needs to
access.

• USER_LOCK_WAITS

The number of THD_WAIT_USER_LOCK waits for a special lock constructed by the user thread.

• BINLOG_WAITS

The number of THD_WAIT_BINLOG_WAITS waits for the binary log to become free.

• GROUP_COMMIT_WAITS

The number of THD_WAIT_GROUP_COMMIT waits. These occur when a group commit must wait for the
other parties to complete their part of a transaction.

3355

The INFORMATION_SCHEMA TP_THREAD_STATE Table

• FSYNC_WAITS

The number of THD_WAIT_SYNC waits for a file sync operation.

21.6.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table

The TP_THREAD_STATE table has one row per thread created by the thread pool to handle connections.

The TP_THREAD_STATE table has these columns:

• TP_GROUP_ID

The thread group ID.

• TP_THREAD_NUMBER

The ID of the thread within its thread group. TP_GROUP_ID and TP_THREAD_NUMBER together provide a
unique key within the table.

• PROCESS_COUNT

The 10ms interval in which the statement that uses this thread is currently executing. 0 means no
statement is executing, 1 means it is in the first 10ms, and so forth.

• WAIT_TYPE

The type of wait for the thread. NULL means the thread is not blocked. Otherwise, the thread is blocked
by a call to thd_wait_begin() and the value specifies the type of wait. The xxx_WAIT columns of the
TP_THREAD_GROUP_STATS table accumulate counts for each wait type.

The WAIT_TYPE value is a string that describes the type of wait, as shown in the following table.

Table 21.8 TP_THREAD_STATE Table WAIT_TYPE Values

Wait Type Meaning

THD_WAIT_SLEEP Waiting for sleep

THD_WAIT_DISKIO Waiting for Disk IO

THD_WAIT_ROW_LOCK Waiting for row lock

THD_WAIT_GLOBAL_LOCK Waiting for global lock

THD_WAIT_META_DATA_LOCK Waiting for metadata lock

THD_WAIT_TABLE_LOCK Waiting for table lock

THD_WAIT_USER_LOCK Waiting for user lock

THD_WAIT_BINLOG Waiting for binlog

THD_WAIT_GROUP_COMMIT Waiting for group commit

THD_WAIT_SYNC Waiting for fsync

21.7 INFORMATION_SCHEMA Connection-Control Tables

The following sections describe the INFORMATION_SCHEMA tables associated with the
CONNECTION_CONTROL plugin.

21.7.1 INFORMATION_SCHEMA Connection-Control Table Reference

3356

The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table

The following table summarizes INFORMATION_SCHEMA connection-control tables. For greater detail, see
the individual table descriptions.

Table 21.9 INFORMATION_SCHEMA Connection-Control Tables

Table Name Description Introduced

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTSCurrent number of consecutive
failed connection attempts per
account

5.6.35

21.7.2 The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table

This table provides information about the current number of consecutive failed connection attempts per
account (user/host combination). The table was added in MySQL 5.6.35.

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS has these columns:

• USERHOST

The user/host combination indicating an account that has failed connection attempts, in
'user_name'@'host_name' format.

• FAILED_ATTEMPTS

The current number of consecutive failed connection attempts for the USERHOST value. This counts
all failed attempts, regardless of whether they were delayed. The number of attempts for which the
server added a delay to its response is the difference between the FAILED_ATTEMPTS value and the
connection_control_failed_connections_threshold system variable value.

Notes

• The CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS plugin must be activated for this table to be
available, and the CONNECTION_CONTROL plugin must be activated or the table contents are always
empty. See Section 6.4.2, “The Connection-Control Plugins”.

• The table contains rows only for accounts that have had one or more consecutive failed connection
attempts without a subsequent successful attempt. When an account connects successfully, its failed-
connection count is reset to zero and the server removes any row corresponding to the account.

• Assigning a value to the connection_control_failed_connections_threshold system variable
at runtime resets all accumulated failed-connection counters to zero, which causes the table to become
empty.

21.8 INFORMATION_SCHEMA MySQL Enterprise Firewall Tables
The following sections describe the INFORMATION_SCHEMA tables associated with MySQL Enterprise
Firewall (see Section 6.4.5, “MySQL Enterprise Firewall”). They provide views into the firewall in-memory
data cache. These tables are available only if the appropriate firewall plugins are enabled.

21.8.1 INFORMATION_SCHEMA Firewall Table Reference

The following table summarizes INFORMATION_SCHEMA firewall tables. For greater detail, see the
individual table descriptions.

3357

The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table

Table 21.10 INFORMATION_SCHEMA Firewall Tables

Table Name Description

MYSQL_FIREWALL_USERS Firewall in-memory data for account profiles

MYSQL_FIREWALL_WHITELIST Firewall in-memory data for account profile allowlists

21.8.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table

The MYSQL_FIREWALL_USERS table provides a view into the in-memory data cache for MySQL Enterprise
Firewall. It lists names and operational modes of registered firewall account profiles. It is used in
conjunction with the mysql.firewall_users system table that provides persistent storage of firewall
data; see MySQL Enterprise Firewall Tables.

The MYSQL_FIREWALL_USERS table has these columns:

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTING (as of
MySQL 5.6.26), PROTECTING, RECORDING, and RESET. For details about their meanings, see Firewall
Concepts.

21.8.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table

The MYSQL_FIREWALL_WHITELIST table provides a view into the in-memory data cache for MySQL
Enterprise Firewall. It lists allowlist rules of registered firewall account profiles. It is used in conjunction with
the mysql.firewall_whitelist system table that provides persistent storage of firewall data; see
MySQL Enterprise Firewall Tables.

The MYSQL_FIREWALL_WHITELIST table has these columns:

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is the
union of its rules.

21.9 Extensions to SHOW Statements

Some extensions to SHOW statements accompany the implementation of INFORMATION_SCHEMA:

• SHOW can be used to get information about the structure of INFORMATION_SCHEMA itself.

• Several SHOW statements accept a WHERE clause that provides more flexibility in specifying which rows
to display.

INFORMATION_SCHEMA is an information database, so its name is included in the output from SHOW
DATABASES. Similarly, SHOW TABLES can be used with INFORMATION_SCHEMA to obtain a list of its
tables:

3358

Extensions to SHOW Statements

mysql> SHOW TABLES FROM INFORMATION_SCHEMA;
+---------------------------------------+
| Tables_in_INFORMATION_SCHEMA |
+---------------------------------------+
| CHARACTER_SETS |
| COLLATIONS |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| COLUMNS |
| COLUMN_PRIVILEGES |
| ENGINES |
| EVENTS |
| FILES |
| GLOBAL_STATUS |
| GLOBAL_VARIABLES |
| KEY_COLUMN_USAGE |
| PARTITIONS |
| PLUGINS |
| PROCESSLIST |
| REFERENTIAL_CONSTRAINTS |
| ROUTINES |
| SCHEMATA |
| SCHEMA_PRIVILEGES |
| SESSION_STATUS |
| SESSION_VARIABLES |
| STATISTICS |
| TABLES |
| TABLE_CONSTRAINTS |
| TABLE_PRIVILEGES |
| TRIGGERS |
| USER_PRIVILEGES |
| VIEWS |
+---------------------------------------+

SHOW COLUMNS and DESCRIBE can display information about the columns in individual
INFORMATION_SCHEMA tables.

SHOW statements that accept a LIKE clause to limit the rows displayed also permit a WHERE clause that
specifies more general conditions that selected rows must satisfy:

SHOW CHARACTER SET
SHOW COLLATION
SHOW COLUMNS
SHOW DATABASES
SHOW FUNCTION STATUS
SHOW INDEX
SHOW OPEN TABLES
SHOW PROCEDURE STATUS
SHOW STATUS
SHOW TABLE STATUS
SHOW TABLES
SHOW TRIGGERS
SHOW VARIABLES

The WHERE clause, if present, is evaluated against the column names displayed by the SHOW statement.
For example, the SHOW CHARACTER SET statement produces these output columns:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1

3359

Extensions to SHOW Statements

| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |
...

To use a WHERE clause with SHOW CHARACTER SET, you would refer to those column names. As an
example, the following statement displays information about character sets for which the default collation
contains the string 'japanese':

mysql> SHOW CHARACTER SET WHERE `Default collation` LIKE '%japanese%';
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

This statement displays the multibyte character sets:

mysql> SHOW CHARACTER SET WHERE Maxlen > 1;
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
euckr	EUC-KR Korean	euckr_korean_ci	2
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
utf8	UTF-8 Unicode	utf8_general_ci	3
ucs2	UCS-2 Unicode	ucs2_general_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

3360

Chapter 22 MySQL Performance Schema

Table of Contents
22.1 Performance Schema Quick Start .. 3363
22.2 Performance Schema Build Configuration .. 3369
22.3 Performance Schema Startup Configuration ... 3370
22.4 Performance Schema Runtime Configuration ... 3372

22.4.1 Performance Schema Event Timing .. 3373
22.4.2 Performance Schema Event Filtering .. 3376
22.4.3 Event Pre-Filtering .. 3378
22.4.4 Pre-Filtering by Instrument .. 3379
22.4.5 Pre-Filtering by Object .. 3380
22.4.6 Pre-Filtering by Thread ... 3382
22.4.7 Pre-Filtering by Consumer .. 3383
22.4.8 Example Consumer Configurations ... 3385
22.4.9 Naming Instruments or Consumers for Filtering Operations .. 3390
22.4.10 Determining What Is Instrumented .. 3391

22.5 Performance Schema Queries ... 3391
22.6 Performance Schema Instrument Naming Conventions ... 3392
22.7 Performance Schema Status Monitoring ... 3394
22.8 Performance Schema Atom and Molecule Events ... 3398
22.9 Performance Schema Tables for Current and Historical Events ... 3398
22.10 Performance Schema Statement Digests ... 3399
22.11 Performance Schema General Table Characteristics ... 3403
22.12 Performance Schema Table Descriptions ... 3404

22.12.1 Performance Schema Table Reference ... 3404
22.12.2 Performance Schema Setup Tables .. 3406
22.12.3 Performance Schema Instance Tables .. 3411
22.12.4 Performance Schema Wait Event Tables ... 3416
22.12.5 Performance Schema Stage Event Tables ... 3421
22.12.6 Performance Schema Statement Event Tables .. 3425
22.12.7 Performance Schema Connection Tables .. 3433
22.12.8 Performance Schema Connection Attribute Tables ... 3436
22.12.9 Performance Schema Summary Tables ... 3439
22.12.10 Performance Schema Miscellaneous Tables .. 3452

22.13 Performance Schema Option and Variable Reference ... 3460
22.14 Performance Schema Command Options ... 3463
22.15 Performance Schema System Variables ... 3464
22.16 Performance Schema Status Variables .. 3476
22.17 Performance Schema and Plugins ... 3479
22.18 Using the Performance Schema to Diagnose Problems ... 3479

22.18.1 Query Profiling Using Performance Schema .. 3480
22.19 Restrictions on Performance Schema ... 3482

The MySQL Performance Schema is a feature for monitoring MySQL Server execution at a low level. The
Performance Schema has these characteristics:

• The Performance Schema provides a way to inspect internal execution of the server at runtime. It
is implemented using the PERFORMANCE_SCHEMA storage engine and the performance_schema
database. The Performance Schema focuses primarily on performance data. This differs from
INFORMATION_SCHEMA, which serves for inspection of metadata.

3361

• The Performance Schema monitors server events. An “event” is anything the server does that takes time
and has been instrumented so that timing information can be collected. In general, an event could be a
function call, a wait for the operating system, a stage of an SQL statement execution such as parsing or
sorting, or an entire statement or group of statements. Event collection provides access to information
about synchronization calls (such as for mutexes) file and table I/O, table locks, and so forth for the
server and for several storage engines.

• Performance Schema events are distinct from events written to the server's binary log (which describe
data modifications) and Event Scheduler events (which are a type of stored program).

• Performance Schema events are specific to a given instance of the MySQL Server. Performance
Schema tables are considered local to the server, and changes to them are not replicated or written to
the binary log.

• Current events are available, as well as event histories and summaries. This enables you to determine
how many times instrumented activities were performed and how much time they took. Event information
is available to show the activities of specific threads, or activity associated with particular objects such as
a mutex or file.

• The PERFORMANCE_SCHEMA storage engine collects event data using “instrumentation points” in server
source code.

• Collected events are stored in tables in the performance_schema database. These tables can be
queried using SELECT statements like other tables.

• Performance Schema configuration can be modified dynamically by updating tables in the
performance_schema database through SQL statements. Configuration changes affect data collection
immediately.

• Tables in the Performance Schema are in-memory tables that use no persistent on-disk storage. The
contents are repopulated beginning at server startup and discarded at server shutdown.

• Monitoring is available on all platforms supported by MySQL.

Some limitations might apply: The types of timers might vary per platform. Instruments that apply
to storage engines might not be implemented for all storage engines. Instrumentation of each third-
party engine is the responsibility of the engine maintainer. See also Section 22.19, “Restrictions on
Performance Schema”.

• Data collection is implemented by modifying the server source code to add instrumentation. There are no
separate threads associated with the Performance Schema, unlike other features such as replication or
the Event Scheduler.

The Performance Schema is intended to provide access to useful information about server execution while
having minimal impact on server performance. The implementation follows these design goals:

• Activating the Performance Schema causes no changes in server behavior. For example, it does
not cause thread scheduling to change, and it does not cause query execution plans (as shown by
EXPLAIN) to change.

• No memory allocation is done beyond that which occurs during server startup. By using early allocation
of structures with a fixed size, it is never necessary to resize or reallocate them, which is critical for
achieving good runtime performance.

• Server monitoring occurs continuously and unobtrusively with very little overhead. Activating the
Performance Schema does not make the server unusable.

• The parser is unchanged. There are no new keywords or statements.

3362

Performance Schema Quick Start

• Execution of server code proceeds normally even if the Performance Schema fails internally.

• When there is a choice between performing processing during event collection initially or during event
retrieval later, priority is given to making collection faster. This is because collection is ongoing whereas
retrieval is on demand and might never happen at all.

• It is easy to add new instrumentation points.

• Instrumentation is versioned. If the instrumentation implementation changes, previously instrumented
code should continue to work. This benefits developers of third-party plugins because it is not necessary
to upgrade each plugin to stay synchronized with the latest Performance Schema changes.

Note

 The MySQL sys schema is a set of objects that provides convenient access
to data collected by the Performance Schema. In MySQL 5.7, the sys schema
is installed by default. For MySQL 5.6, you can obtain it from the schema
development website at https://github.com/mysql/mysql-sys. For usage instructions,
see MySQL sys Schema.

22.1 Performance Schema Quick Start
This section briefly introduces the Performance Schema with examples that show how to use it. For
additional examples, see Section 22.18, “Using the Performance Schema to Diagnose Problems”.

For the Performance Schema to be available, support for it must have been configured when
MySQL was built. You can verify whether this is the case by checking the server's help output. If the
Performance Schema is available, the output includes several variables with names that begin with
performance_schema:

$> mysqld --verbose --help
...
 --performance_schema
 Enable the performance schema.
 --performance_schema_events_waits_history_long_size=#
 Number of rows in events_waits_history_long.
...

If such variables do not appear in the output, your server has not been built to support the Performance
Schema. In this case, see Section 22.2, “Performance Schema Build Configuration”.

Assuming that the Performance Schema is available, it is enabled by default. To enable or disable it
explicitly, start the server with the performance_schema variable set to an appropriate value. For
example, use these lines in your my.cnf file:

[mysqld]
performance_schema=ON

When the server starts, it sees performance_schema and attempts to initialize the Performance
Schema. To verify successful initialization, use this statement:

mysql> SHOW VARIABLES LIKE 'performance_schema';
+--------------------+-------+
| Variable_name | Value |
+--------------------+-------+
| performance_schema | ON |
+--------------------+-------+

A value of ON means that the Performance Schema initialized successfully and is ready for use. A value of
OFF means that some error occurred. Check the server error log for information about what went wrong.

3363

https://github.com/mysql/mysql-sys
https://dev.mysql.com/doc/refman/5.7/en/sys-schema.html

Performance Schema Quick Start

The Performance Schema is implemented as a storage engine. If this engine is available (which you
should already have checked earlier), you should see it listed with a SUPPORT value of YES in the output
from the Information Schema ENGINES table or the SHOW ENGINES statement:

mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES
 WHERE ENGINE='PERFORMANCE_SCHEMA'\G
*************************** 1. row ***************************
 ENGINE: PERFORMANCE_SCHEMA
 SUPPORT: YES
 COMMENT: Performance Schema
TRANSACTIONS: NO
 XA: NO
 SAVEPOINTS: NO

mysql> SHOW ENGINES\G
...
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
...

The PERFORMANCE_SCHEMA storage engine operates on tables in the performance_schema database.
You can make performance_schema the default database so that references to its tables need not be
qualified with the database name:

mysql> USE performance_schema;

Performance Schema tables are stored in the performance_schema database. Information about the
structure of this database and its tables can be obtained, as for any other database, by selecting from
the INFORMATION_SCHEMA database or by using SHOW statements. For example, use either of these
statements to see what Performance Schema tables exist:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema';
+--+
| TABLE_NAME |
+--+
| accounts |
| cond_instances |
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
| events_stages_summary_by_account_by_event_name |
| events_stages_summary_by_host_by_event_name |
| events_stages_summary_by_thread_by_event_name |
| events_stages_summary_by_user_by_event_name |
| events_stages_summary_global_by_event_name |
| events_statements_current |
| events_statements_history |
| events_statements_history_long |
...
| file_instances |
| file_summary_by_event_name |
| file_summary_by_instance |
| host_cache |
| hosts |
| mutex_instances |
| objects_summary_global_by_type |
| performance_timers |
| rwlock_instances |
| session_account_connect_attrs |
| session_connect_attrs |

3364

Performance Schema Quick Start

| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_timers |
| socket_instances |
| socket_summary_by_event_name |
| socket_summary_by_instance |
| table_io_waits_summary_by_index_usage |
| table_io_waits_summary_by_table |
| table_lock_waits_summary_by_table |
| threads |
| users |
+--+

mysql> SHOW TABLES FROM performance_schema;
+--+
| Tables_in_performance_schema |
+--+
| accounts |
| cond_instances |
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
...

The number of Performance Schema tables increases over time as implementation of additional
instrumentation proceeds.

The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

To see the structure of individual tables, use SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE performance_schema.setup_consumers\G
*************************** 1. row ***************************
 Table: setup_consumers
Create Table: CREATE TABLE `setup_consumers` (
 `NAME` varchar(64) NOT NULL,
 `ENABLED` enum('YES','NO') NOT NULL
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

Table structure is also available by selecting from tables such as INFORMATION_SCHEMA.COLUMNS or by
using statements such as SHOW COLUMNS.

Tables in the performance_schema database can be grouped according to the type of information
in them: Current events, event histories and summaries, object instances, and setup (configuration)
information. The following examples illustrate a few uses for these tables. For detailed information about
the tables in each group, see Section 22.12, “Performance Schema Table Descriptions”.

Initially, not all instruments and consumers are enabled, so the performance schema does not collect all
events. To turn all of these on and enable event timing, execute two statements (the row counts may differ
depending on MySQL version):

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES';
Query OK, 338 rows affected (0.12 sec)
mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES';
Query OK, 8 rows affected (0.00 sec)

To see what the server is doing at the moment, examine the events_waits_current table. It contains
one row per thread showing each thread's most recent monitored event:

3365

Performance Schema Quick Start

mysql> SELECT *
 FROM performance_schema.events_waits_current\G
*************************** 1. row ***************************
 THREAD_ID: 0
 EVENT_ID: 5523
 END_EVENT_ID: 5523
 EVENT_NAME: wait/synch/mutex/mysys/THR_LOCK::mutex
 SOURCE: thr_lock.c:525
 TIMER_START: 201660494489586
 TIMER_END: 201660494576112
 TIMER_WAIT: 86526
 SPINS: NULL
 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 INDEX_NAME: NULL
 OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 142270668
 NESTING_EVENT_ID: NULL
 NESTING_EVENT_TYPE: NULL
 OPERATION: lock
 NUMBER_OF_BYTES: NULL
 FLAGS: 0
...

This event indicates that thread 0 was waiting for 86,526 picoseconds to acquire a lock on
THR_LOCK::mutex, a mutex in the mysys subsystem. The first few columns provide the following
information:

• The ID columns indicate which thread the event comes from and the event number.

• EVENT_NAME indicates what was instrumented and SOURCE indicates which source file contains the
instrumented code.

• The timer columns show when the event started and stopped and how long it took. If an event is still
in progress, the TIMER_END and TIMER_WAIT values are NULL. Timer values are approximate and
expressed in picoseconds. For information about timers and event time collection, see Section 22.4.1,
“Performance Schema Event Timing”.

The history tables contain the same kind of rows as the current-events table but have more rows and show
what the server has been doing “recently” rather than “currently.” The events_waits_history and
events_waits_history_long tables contain the most recent 10 events per thread and most recent
10,000 events, respectively. For example, to see information for recent events produced by thread 13, do
this:

mysql> SELECT EVENT_ID, EVENT_NAME, TIMER_WAIT
 FROM performance_schema.events_waits_history
 WHERE THREAD_ID = 13
 ORDER BY EVENT_ID;
+----------+---+------------+
| EVENT_ID | EVENT_NAME | TIMER_WAIT |
+----------+---+------------+
86	wait/synch/mutex/mysys/THR_LOCK::mutex	686322
87	wait/synch/mutex/mysys/THR_LOCK_malloc	320535
88	wait/synch/mutex/mysys/THR_LOCK_malloc	339390
89	wait/synch/mutex/mysys/THR_LOCK_malloc	377100
90	wait/synch/mutex/sql/LOCK_plugin	614673
91	wait/synch/mutex/sql/LOCK_open	659925
92	wait/synch/mutex/sql/THD::LOCK_thd_data	494001
93	wait/synch/mutex/mysys/THR_LOCK_malloc	222489
94	wait/synch/mutex/mysys/THR_LOCK_malloc	214947
95	wait/synch/mutex/mysys/LOCK_alarm	312993
+----------+---+------------+

As new events are added to a history table, older events are discarded if the table is full.

3366

Performance Schema Quick Start

Summary tables provide aggregated information for all events over time. The tables in this group
summarize event data in different ways. To see which instruments have been executed the most times or
have taken the most wait time, sort the events_waits_summary_global_by_event_name table on
the COUNT_STAR or SUM_TIMER_WAIT column, which correspond to a COUNT(*) or SUM(TIMER_WAIT)
value, respectively, calculated over all events:

mysql> SELECT EVENT_NAME, COUNT_STAR
 FROM performance_schema.events_waits_summary_global_by_event_name
 ORDER BY COUNT_STAR DESC LIMIT 10;
+---+------------+
| EVENT_NAME | COUNT_STAR |
+---+------------+
wait/synch/mutex/mysys/THR_LOCK_malloc	6419
wait/io/file/sql/FRM	452
wait/synch/mutex/sql/LOCK_plugin	337
wait/synch/mutex/mysys/THR_LOCK_open	187
wait/synch/mutex/mysys/LOCK_alarm	147
wait/synch/mutex/sql/THD::LOCK_thd_data	115
wait/io/file/myisam/kfile	102
wait/synch/mutex/sql/LOCK_global_system_variables	89
wait/synch/mutex/mysys/THR_LOCK::mutex	89
wait/synch/mutex/sql/LOCK_open	88
+---+------------+

mysql> SELECT EVENT_NAME, SUM_TIMER_WAIT
 FROM performance_schema.events_waits_summary_global_by_event_name
 ORDER BY SUM_TIMER_WAIT DESC LIMIT 10;
+--+----------------+
| EVENT_NAME | SUM_TIMER_WAIT |
+--+----------------+
wait/io/file/sql/MYSQL_LOG	1599816582
wait/synch/mutex/mysys/THR_LOCK_malloc	1530083250
wait/io/file/sql/binlog_index	1385291934
wait/io/file/sql/FRM	1292823243
wait/io/file/myisam/kfile	411193611
wait/io/file/myisam/dfile	322401645
wait/synch/mutex/mysys/LOCK_alarm	145126935
wait/io/file/sql/casetest	104324715
wait/synch/mutex/sql/LOCK_plugin	86027823
wait/io/file/sql/pid	72591750
+--+----------------+

These results show that the THR_LOCK_malloc mutex is “hot,” both in terms of how often it is used and
amount of time that threads wait attempting to acquire it.

Note

The THR_LOCK_malloc mutex is used only in debug builds. In production builds it
is not hot because it is nonexistent.

Instance tables document what types of objects are instrumented. An instrumented object, when used
by the server, produces an event. These tables provide event names and explanatory notes or status
information. For example, the file_instances table lists instances of instruments for file I/O operations
and their associated files:

mysql> SELECT *
 FROM performance_schema.file_instances\G
*************************** 1. row ***************************
 FILE_NAME: /opt/mysql-log/60500/binlog.000007
EVENT_NAME: wait/io/file/sql/binlog
OPEN_COUNT: 0
*************************** 2. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/tables_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile

3367

Performance Schema Quick Start

OPEN_COUNT: 1
*************************** 3. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/columns_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
...

Setup tables are used to configure and display monitoring characteristics. For example,
setup_instruments lists the set of instruments for which events can be collected and shows which of
them are enabled:

mysql> SELECT * FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
stage/sql/end	NO	NO
stage/sql/executing	NO	NO
stage/sql/init	NO	NO
stage/sql/insert	NO	NO
...		
statement/sql/load	YES	YES
statement/sql/grant	YES	YES
statement/sql/check	YES	YES
statement/sql/flush	YES	YES
...		
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

To understand how to interpret instrument names, see Section 22.6, “Performance Schema Instrument
Naming Conventions”.

To control whether events are collected for an instrument, set its ENABLED value to YES or NO. For
example:

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'NO'
 WHERE NAME = 'wait/synch/mutex/sql/LOCK_mysql_create_db';

The Performance Schema uses collected events to update tables in the performance_schema
database, which act as “consumers” of event information. The setup_consumers table lists the available
consumers and which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES

3368

Performance Schema Build Configuration

events_statements_history	NO
events_statements_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+--------------------------------+---------+

To control whether the Performance Schema maintains a consumer as a destination for event information,
set its ENABLED value.

For more information about the setup tables and how to use them to control event collection, see
Section 22.4.2, “Performance Schema Event Filtering”.

There are some miscellaneous tables that do not fall into any of the previous groups. For example,
performance_timers lists the available event timers and their characteristics. For information about
timers, see Section 22.4.1, “Performance Schema Event Timing”.

22.2 Performance Schema Build Configuration

For the Performance Schema to be available, it must be configured into the MySQL server at build time.
Binary MySQL distributions provided by Oracle Corporation are configured to support the Performance
Schema. If you use a binary MySQL distribution from another provider, check with the provider whether the
distribution has been appropriately configured.

If you build MySQL from a source distribution, enable the Performance Schema by running CMake with the
WITH_PERFSCHEMA_STORAGE_ENGINE option enabled:

$> cmake . -DWITH_PERFSCHEMA_STORAGE_ENGINE=1

Configuring MySQL with the -DWITHOUT_PERFSCHEMA_STORAGE_ENGINE=1 option prevents inclusion
of the Performance Schema, so if you want it included, do not use this option. See Section 2.9.7, “MySQL
Source-Configuration Options”.

If you install MySQL over a previous installation that was configured without the Performance Schema (or
with an older version of the Performance Schema that has missing or out-of-date tables). One indication of
this issue is the presence of messages such as the following in the error log:

[ERROR] Native table 'performance_schema'.'events_waits_history'
has the wrong structure
[ERROR] Native table 'performance_schema'.'events_waits_history_long'
has the wrong structure
...

To correct that problem, perform the MySQL upgrade procedure. See Section 2.11, “Upgrading MySQL”.

To verify whether a server was built with Performance Schema support, check its help output. If the
Performance Schema is available, the output includes several variables with names that begin with
performance_schema:

$> mysqld --verbose --help
...
 --performance_schema
 Enable the performance schema.
 --performance_schema_events_waits_history_long_size=#
 Number of rows in events_waits_history_long.
...

3369

Performance Schema Startup Configuration

You can also connect to the server and look for a line that names the PERFORMANCE_SCHEMA storage
engine in the output from SHOW ENGINES:

mysql> SHOW ENGINES\G
...
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
...

If the Performance Schema was not configured into the server at build time, no row for
PERFORMANCE_SCHEMA appears in the output from SHOW ENGINES. You might see
performance_schema listed in the output from SHOW DATABASES, but it contains no tables and you
cannot use it.

A line for PERFORMANCE_SCHEMA in the SHOW ENGINES output means that the Performance Schema is
available, not that it is enabled. To enable it, you must do so at server startup, as described in the next
section.

22.3 Performance Schema Startup Configuration

To use the MySQL Performance Schema, it must be enabled at server startup to enable event collection to
occur.

Assuming that the Performance Schema is available, it is enabled by default. To enable or disable it
explicitly, start the server with the performance_schema variable set to an appropriate value. For
example, use these lines in your my.cnf file:

[mysqld]
performance_schema=ON

If the server is unable to allocate any internal buffer during Performance Schema initialization, the
Performance Schema disables itself and sets performance_schema to OFF, and the server runs without
instrumentation.

The Performance Schema also permits instrument and consumer configuration at server startup.

To control an instrument at server startup, use an option of this form:

--performance-schema-instrument='instrument_name=value'

Here, instrument_name is an instrument name such as wait/synch/mutex/sql/LOCK_open, and
value is one of these values:

• OFF, FALSE, or 0: Disable the instrument

• ON, TRUE, or 1: Enable and time the instrument

• COUNTED: Enable and count (rather than time) the instrument

Each --performance-schema-instrument option can specify only one instrument name, but
multiple instances of the option can be given to configure multiple instruments. In addition, patterns are
permitted in instrument names to configure instruments that match the pattern. To configure all condition
synchronization instruments as enabled and counted, use this option:

3370

Performance Schema Startup Configuration

--performance-schema-instrument='wait/synch/cond/%=COUNTED'

To disable all instruments, use this option:

--performance-schema-instrument='%=OFF'

Longer instrument name strings take precedence over shorter pattern names, regardless of order. For
information about specifying patterns to select instruments, see Section 22.4.9, “Naming Instruments or
Consumers for Filtering Operations”.

An unrecognized instrument name is ignored. It is possible that a plugin installed later may create the
instrument, at which time the name is recognized and configured.

To control a consumer at server startup, use an option of this form:

--performance-schema-consumer-consumer_name=value

Here, consumer_name is a consumer name such as events_waits_history, and value is one of
these values:

• OFF, FALSE, or 0: Do not collect events for the consumer

• ON, TRUE, or 1: Collect events for the consumer

For example, to enable the events_waits_history consumer, use this option:

--performance-schema-consumer-events-waits-history=ON

The permitted consumer names can be found by examining the setup_consumers table. Patterns are
not permitted. Consumer names in the setup_consumers table use underscores, but for consumers set
at startup, dashes and underscores within the name are equivalent.

The Performance Schema includes several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+--+---------+
| Variable_name | Value |
+--+---------+
performance_schema	ON
performance_schema_accounts_size	100
performance_schema_digests_size	200
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000
performance_schema_events_statements_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10
performance_schema_hosts_size	100
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	1000
...

The performance_schema variable is ON or OFF to indicate whether the Performance Schema is
enabled or disabled. The other variables indicate table sizes (number of rows) or memory allocation
values.

Note

With the Performance Schema enabled, the number of Performance Schema
instances affects the server memory footprint, perhaps to a large extent. It may be

3371

Performance Schema Runtime Configuration

necessary to tune the values of Performance Schema system variables to find the
number of instances that balances insufficient instrumentation against excessive
memory consumption.

To change the value of Performance Schema system variables, set them at server startup. For example,
put the following lines in a my.cnf file to change the sizes of the history tables for wait events:

[mysqld]
performance_schema
performance_schema_events_waits_history_size=20
performance_schema_events_waits_history_long_size=15000

The Performance Schema automatically sizes the values of several of its parameters at server startup if
they are not set explicitly. For example, it sizes the parameters that control the sizes of the events waits
tables this way. To see which parameters are autosized under this policy, use mysqld --verbose --
help and look for those with a default value of −1, or see Section 22.15, “Performance Schema System
Variables”.

For each autosized parameter that is not set at server startup, the Performance Schema determines how
to set its value based on the value of the following system values, which are considered as “hints” about
how you have configured your MySQL server:

max_connections
open_files_limit
table_definition_cache
table_open_cache

To override autosizing for a given parameter, set it to a value other than −1 at startup. In this case, the
Performance Schema assigns it the specified value.

At runtime, SHOW VARIABLES displays the actual values that autosized parameters were set to.

If the Performance Schema is disabled, its autosized parameters remain set to −1 and SHOW VARIABLES
displays −1.

22.4 Performance Schema Runtime Configuration

Specific Performance Schema features can be enabled at runtime to control which types of event collection
occur.

Performance Schema setup tables contain information about monitoring configuration:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema'
 AND TABLE_NAME LIKE 'setup%';
+-------------------+
| TABLE_NAME |
+-------------------+
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_timers |
+-------------------+

You can examine the contents of these tables to obtain information about Performance Schema monitoring
characteristics. If you have the UPDATE privilege, you can change Performance Schema operation by
modifying setup tables to affect how monitoring occurs. For additional details about these tables, see
Section 22.12.2, “Performance Schema Setup Tables”.

3372

Performance Schema Event Timing

To see which event timers are selected, query the setup_timers tables:

mysql> SELECT * FROM performance_schema.setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
+-----------+-------------+

The NAME value indicates the type of instrument to which the timer applies, and TIMER_NAME indicates
which timer applies to those instruments. The timer applies to instruments where their name begins with an
element matching the NAME value.

To change the timer, update the NAME value. For example, to use the NANOSECOND timer for the wait
timer:

mysql> UPDATE performance_schema.setup_timers
 SET TIMER_NAME = 'NANOSECOND'
 WHERE NAME = 'wait';
mysql> SELECT * FROM performance_schema.setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
idle	MICROSECOND
wait	NANOSECOND
stage	NANOSECOND
statement	NANOSECOND
+-----------+-------------+

For discussion of timers, see Section 22.4.1, “Performance Schema Event Timing”.

The setup_instruments and setup_consumers tables list the instruments for which events can be
collected and the types of consumers for which event information actually is collected, respectively. Other
setup tables enable further modification of the monitoring configuration. Section 22.4.2, “Performance
Schema Event Filtering”, discusses how you can modify these tables to affect event collection.

If there are Performance Schema configuration changes that must be made at runtime using SQL
statements and you would like these changes to take effect each time the server starts, put the statements
in a file and start the server with the init_file system variable set to name the file. This strategy
can also be useful if you have multiple monitoring configurations, each tailored to produce a different
kind of monitoring, such as casual server health monitoring, incident investigation, application behavior
troubleshooting, and so forth. Put the statements for each monitoring configuration into their own file and
specify the appropriate file as the init_file value when you start the server.

22.4.1 Performance Schema Event Timing

Events are collected by means of instrumentation added to the server source code. Instruments time
events, which is how the Performance Schema provides an idea of how long events take. It is also possible
to configure instruments not to collect timing information. This section discusses the available timers and
their characteristics, and how timing values are represented in events.

Performance Schema Timers

Two Performance Schema tables provide timer information:

• performance_timers lists the available timers and their characteristics.

3373

Performance Schema Event Timing

• setup_timers indicates which timers are used for which instruments.

Each timer row in setup_timers must refer to one of the timers listed in performance_timers.

Timers vary in precision and amount of overhead. To see what timers are available and their
characteristics, check the performance_timers table:

mysql> SELECT * FROM performance_schema.performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	2389029850	1	72
NANOSECOND	1000000000	1	112
MICROSECOND	1000000	1	136
MILLISECOND	1036	1	168
TICK	105	1	2416
+-------------+-----------------+------------------+----------------+

If the values associated with a given timer name are NULL, that timer is not supported on your platform.
The rows that do not contain NULL indicate which timers you can use in setup_timers.

The columns have these meanings:

• The TIMER_NAME column shows the names of the available timers. CYCLE refers to the timer that is
based on the CPU (processor) cycle counter. The timers in setup_timers that you can use are those
that do not have NULL in the other columns. If the values associated with a given timer name are NULL,
that timer is not supported on your platform.

• TIMER_FREQUENCY indicates the number of timer units per second. For a cycle timer, the frequency
is generally related to the CPU speed. The value shown was obtained on a system with a 2.4GHz
processor. The other timers are based on fixed fractions of seconds. For TICK, the frequency may vary
by platform (for example, some use 100 ticks/second, others 1000 ticks/second).

• TIMER_RESOLUTION indicates the number of timer units by which timer values increase at a time. If a
timer has a resolution of 10, its value increases by 10 each time.

• TIMER_OVERHEAD is the minimal number of cycles of overhead to obtain one timing with the given timer.
The overhead per event is twice the value displayed because the timer is invoked at the beginning and
end of the event.

To see which timers are in effect or to change timers, access the setup_timers table:

mysql> SELECT * FROM performance_schema.setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
+-----------+-------------+

mysql> UPDATE performance_schema.setup_timers
 SET TIMER_NAME = 'MICROSECOND'
 WHERE NAME = 'idle';

mysql> SELECT * FROM performance_schema.setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
| idle | MICROSECOND |
| wait | CYCLE |

3374

Performance Schema Event Timing

| stage | NANOSECOND |
| statement | NANOSECOND |
+-----------+-------------+

By default, the Performance Schema uses the best timer available for each instrument type, but you can
select a different one.

To time wait events, the most important criterion is to reduce overhead, at the possible expense of the
timer accuracy, so using the CYCLE timer is the best.

The time a statement (or stage) takes to execute is in general orders of magnitude larger than the time
it takes to execute a single wait. To time statements, the most important criterion is to have an accurate
measure, which is not affected by changes in processor frequency, so using a timer which is not based
on cycles is the best. The default timer for statements is NANOSECOND. The extra “overhead” compared
to the CYCLE timer is not significant, because the overhead caused by calling a timer twice (once when
the statement starts, once when it ends) is orders of magnitude less compared to the CPU time used to
execute the statement itself. Using the CYCLE timer has no benefit here, only drawbacks.

The precision offered by the cycle counter depends on processor speed. If the processor runs at 1 GHz
(one billion cycles/second) or higher, the cycle counter delivers sub-nanosecond precision. Using the cycle
counter is much cheaper than getting the actual time of day. For example, the standard gettimeofday()
function can take hundreds of cycles, which is an unacceptable overhead for data gathering that may occur
thousands or millions of times per second.

Cycle counters also have disadvantages:

• End users expect to see timings in wall-clock units, such as fractions of a second. Converting from
cycles to fractions of seconds can be expensive. For this reason, the conversion is a quick and fairly
rough multiplication operation.

• Processor cycle rate might change, such as when a laptop goes into power-saving mode or when a CPU
slows down to reduce heat generation. If a processor's cycle rate fluctuates, conversion from cycles to
real-time units is subject to error.

• Cycle counters might be unreliable or unavailable depending on the processor or the operating system.
For example, on Pentiums, the instruction is RDTSC (an assembly-language rather than a C instruction)
and it is theoretically possible for the operating system to prevent user-mode programs from using it.

• Some processor details related to out-of-order execution or multiprocessor synchronization might cause
the counter to seem fast or slow by up to 1000 cycles.

MySQL works with cycle counters on x386 (Windows, macOS, Linux, Solaris, and other Unix flavors),
PowerPC, and IA-64.

Performance Schema Timer Representation in Events

Rows in Performance Schema tables that store current events and historical events have three columns to
represent timing information: TIMER_START and TIMER_END indicate when an event started and finished,
and TIMER_WAIT indicates event duration.

The setup_instruments table has an ENABLED column to indicate the instruments for which to collect
events. The table also has a TIMED column to indicate which instruments are timed. If an instrument is not
enabled, it produces no events. If an enabled instrument is not timed, events produced by the instrument
have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT timer values. This in turn causes
those values to be ignored when calculating aggregate time values in summary tables (sum, minimum,
maximum, and average).

3375

Performance Schema Event Filtering

Internally, times within events are stored in units given by the timer in effect when event timing begins.
For display when events are retrieved from Performance Schema tables, times are shown in picoseconds
(trillionths of a second) to normalize them to a standard unit, regardless of which timer is selected.

Modifications to the setup_timers table affect monitoring immediately. Events already in progress may
use the original timer for the begin time and the new timer for the end time. To avoid unpredictable results
after you make timer changes, use TRUNCATE TABLE to reset Performance Schema statistics.

The timer baseline (“time zero”) occurs at Performance Schema initialization during server startup.
TIMER_START and TIMER_END values in events represent picoseconds since the baseline. TIMER_WAIT
values are durations in picoseconds.

Picosecond values in events are approximate. Their accuracy is subject to the usual forms of error
associated with conversion from one unit to another. If the CYCLE timer is used and the processor rate
varies, there might be drift. For these reasons, it is not reasonable to look at the TIMER_START value for
an event as an accurate measure of time elapsed since server startup. On the other hand, it is reasonable
to use TIMER_START or TIMER_WAIT values in ORDER BY clauses to order events by start time or
duration.

The choice of picoseconds in events rather than a value such as microseconds has a performance
basis. One implementation goal was to show results in a uniform time unit, regardless of the timer.
In an ideal world this time unit would look like a wall-clock unit and be reasonably precise; in other
words, microseconds. But to convert cycles or nanoseconds to microseconds, it would be necessary to
perform a division for every instrumentation. Division is expensive on many platforms. Multiplication is not
expensive, so that is what is used. Therefore, the time unit is an integer multiple of the highest possible
TIMER_FREQUENCY value, using a multiplier large enough to ensure that there is no major precision
loss. The result is that the time unit is “picoseconds.” This precision is spurious, but the decision enables
overhead to be minimized.

Before MySQL 5.6.26, while a wait, stage, or statement event is executing, the respective current-event
tables display the event with TIMER_START populated, but with TIMER_END and TIMER_WAIT set to
NULL:

events_waits_current
events_stages_current
events_statements_current

As of MySQL 5.6.26, current-event timing provides more information. To make it possible to determine how
long a not-yet-completed event has been running, the timer columns are set as follows:

• TIMER_START is populated.

• TIMER_END is populated with the current timer value.

• TIMER_WAIT is populated with the time elapsed so far (TIMER_END − TIMER_START).

Events that have not yet completed have an END_EVENT_ID value of NULL. To assess time elapsed so far
for an event, use the TIMER_WAIT column. Therefore, to identify events that have not yet completed and
have taken longer than N picoseconds thus far, monitoring applications can use this expression in queries:

WHERE END_EVENT_ID IS NULL AND TIMER_WAIT > N

Event identification as just described assumes that the corresponding instruments have ENABLED and
TIMED set to YES and that the relevant consumers are enabled.

22.4.2 Performance Schema Event Filtering

3376

Performance Schema Event Filtering

Events are processed in a producer/consumer fashion:

• Instrumented code is the source for events and produces events to be collected. The
setup_instruments table lists the instruments for which events can be collected, whether they are
enabled, and (for enabled instruments) whether to collect timing information:

mysql> SELECT * FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...

The setup_instruments table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables may
be used as described in Section 22.4.3, “Event Pre-Filtering”.

• Performance Schema tables are the destinations for events and consume events. The
setup_consumers table lists the types of consumers to which event information can be sent and
whether they are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+--------------------------------+---------+

Filtering can be done at different stages of performance monitoring:

• Pre-filtering. This is done by modifying Performance Schema configuration so that only certain types
of events are collected from producers, and collected events update only certain consumers. To do this,
enable or disable instruments or consumers. Pre-filtering is done by the Performance Schema and has a
global effect that applies to all users.

Reasons to use pre-filtering:

• To reduce overhead. Performance Schema overhead should be minimal even with all instruments
enabled, but perhaps you want to reduce it further. Or you do not care about timing events and want to
disable the timing code to eliminate timing overhead.

• To avoid filling the current-events or history tables with events in which you have no interest. Pre-
filtering leaves more “room” in these tables for instances of rows for enabled instrument types. If you
enable only file instruments with pre-filtering, no rows are collected for nonfile instruments. With post-
filtering, nonfile events are collected, leaving fewer rows for file events.

3377

Event Pre-Filtering

• To avoid maintaining some kinds of event tables. If you disable a consumer, the server does not
spend time maintaining destinations for that consumer. For example, if you do not care about event
histories, you can disable the history table consumers to improve performance.

• Post-filtering. This involves the use of WHERE clauses in queries that select information from
Performance Schema tables, to specify which of the available events you want to see. Post-filtering
is performed on a per-user basis because individual users select which of the available events are of
interest.

Reasons to use post-filtering:

• To avoid making decisions for individual users about which event information is of interest.

• To use the Performance Schema to investigate a performance issue when the restrictions to impose
using pre-filtering are not known in advance.

The following sections provide more detail about pre-filtering and provide guidelines for naming
instruments or consumers in filtering operations. For information about writing queries to retrieve
information (post-filtering), see Section 22.5, “Performance Schema Queries”.

22.4.3 Event Pre-Filtering

Pre-filtering is done by the Performance Schema and has a global effect that applies to all users. Pre-
filtering can be applied to either the producer or consumer stage of event processing:

• To configure pre-filtering at the producer stage, several tables can be used:

• setup_instruments indicates which instruments are available. An instrument disabled in this
table produces no events regardless of the contents of the other production-related setup tables. An
instrument enabled in this table is permitted to produce events, subject to the contents of the other
tables.

• setup_objects controls whether the Performance Schema monitors particular table objects.

• threads indicates whether monitoring is enabled for each server thread.

• setup_actors determines the initial monitoring state for new foreground threads.

• To configure pre-filtering at the consumer stage, modify the setup_consumers table. This determines
the destinations to which events are sent. setup_consumers also implicitly affects event production.
If a given event is not sent to any destination (is not consumed), the Performance Schema does not
produce it.

Modifications to any of these tables affect monitoring immediately, with some exceptions:

• Modifications to some instruments in the setup_instruments table are effective only at server startup;
changing them at runtime has no effect. This affects primarily mutexes, conditions, and rwlocks in the
server, although there may be other instruments for which this is true.

• Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads.

When you change the monitoring configuration, the Performance Schema does not flush the history tables.
Events already collected remain in the current-events and history tables until displaced by newer events.
If you disable instruments, you might need to wait a while before events for them are displaced by newer
events of interest. Alternatively, use TRUNCATE TABLE to empty the history tables.

3378

Pre-Filtering by Instrument

After making instrumentation changes, you might want to truncate the summary tables. Generally, the
effect is to reset the summary columns to 0 or NULL, not to remove rows. This enables you to clear
collected values and restart aggregation. That might be useful, for example, after you have made a
runtime configuration change. Exceptions to this truncation behavior are noted in individual summary table
sections.

The following sections describe how to use specific tables to control Performance Schema pre-filtering.

22.4.4 Pre-Filtering by Instrument

The setup_instruments table lists the available instruments:

mysql> SELECT * FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
stage/sql/end	NO	NO
stage/sql/executing	NO	NO
stage/sql/init	NO	NO
stage/sql/insert	NO	NO
...		
statement/sql/load	YES	YES
statement/sql/grant	YES	YES
statement/sql/check	YES	YES
statement/sql/flush	YES	YES
...		
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

To control whether an instrument is enabled, set its ENABLED column to YES or NO. To configure whether
to collect timing information for an enabled instrument, set its TIMED value to YES or NO. Setting the TIMED
column affects Performance Schema table contents as described in Section 22.4.1, “Performance Schema
Event Timing”.

Modifications to most setup_instruments rows affect monitoring immediately. For some instruments,
modifications are effective only at server startup; changing them at runtime has no effect. This affects
primarily mutexes, conditions, and rwlocks in the server, although there may be other instruments for which
this is true.

The setup_instruments table provides the most basic form of control over event production. To further
refine event production based on the type of object or thread being monitored, other tables may be used as
described in Section 22.4.3, “Event Pre-Filtering”.

The following examples demonstrate possible operations on the setup_instruments table. These
changes, like other pre-filtering operations, affect all users. Some of these queries use the LIKE operator
and a pattern match instrument names. For additional information about specifying patterns to select
instruments, see Section 22.4.9, “Naming Instruments or Consumers for Filtering Operations”.

3379

Pre-Filtering by Object

• Disable all instruments:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO';

Now no events are collected.

• Disable all file instruments, adding them to the current set of disabled instruments:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME LIKE 'wait/io/file/%';

• Disable only file instruments, enable all other instruments:

UPDATE performance_schema.setup_instruments
SET ENABLED = IF(NAME LIKE 'wait/io/file/%', 'NO', 'YES');

• Enable all but those instruments in the mysys library:

UPDATE performance_schema.setup_instruments
SET ENABLED = CASE WHEN NAME LIKE '%/mysys/%' THEN 'YES' ELSE 'NO' END;

• Disable a specific instrument:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• To toggle the state of an instrument, “flip” its ENABLED value:

UPDATE performance_schema.setup_instruments
SET ENABLED = IF(ENABLED = 'YES', 'NO', 'YES')
WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• Disable timing for all events:

UPDATE performance_schema.setup_instruments
SET TIMED = 'NO';

22.4.5 Pre-Filtering by Object

The setup_objects table controls whether the Performance Schema monitors particular table objects.
The initial setup_objects contents look like this:

mysql> SELECT * FROM performance_schema.setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+

Modifications to the setup_objects table affect object monitoring immediately.

The OBJECT_TYPE column indicates the type of object to which a row applies. TABLE filtering affects table
I/O events (wait/io/table/sql/handler instrument) and table lock events (wait/lock/table/
sql/handler instrument).

The OBJECT_SCHEMA and OBJECT_NAME columns should contain a literal schema or table name, or '%'
to match any name.

3380

Pre-Filtering by Object

The ENABLED column indicates whether matching objects are monitored, and TIMED indicates whether
to collect timing information. Setting the TIMED column affects Performance Schema table contents as
described in Section 22.4.1, “Performance Schema Event Timing”.

The effect of the default object configuration is to instrument all tables except those in the mysql,
INFORMATION_SCHEMA, and performance_schema databases. (Tables in the INFORMATION_SCHEMA
database are not instrumented regardless of the contents of setup_objects; the row for
information_schema.% simply makes this default explicit.)

When the Performance Schema checks for a match in setup_objects, it tries to find more specific
matches first. For rows that match a given OBJECT_TYPE, the Performance Schema checks rows in this
order:

• Rows with OBJECT_SCHEMA='literal' and OBJECT_NAME='literal'.

• Rows with OBJECT_SCHEMA='literal' and OBJECT_NAME='%'.

• Rows with OBJECT_SCHEMA='%' and OBJECT_NAME='%'.

For example, with a table db1.t1, the Performance Schema looks in TABLE rows for a match for 'db1'
and 't1', then for 'db1' and '%', then for '%' and '%'. The order in which matching occurs matters
because different matching setup_objects rows can have different ENABLED and TIMED values.

For table-related events, the Performance Schema combines the contents of setup_objects with
setup_instruments to determine whether to enable instruments and whether to time enabled
instruments:

• For tables that match a row in setup_objects, table instruments produce events only if ENABLED is
YES in both setup_instruments and setup_objects.

• The TIMED values in the two tables are combined, so that timing information is collected only when both
values are YES.

Suppose that setup_objects contains the following TABLE rows that apply to db1, db2, and db3:

+-------------+---------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+---------------+-------------+---------+-------+
TABLE	db1	t1	YES	YES
TABLE	db1	t2	NO	NO
TABLE	db2	%	YES	YES
TABLE	db3	%	NO	NO
TABLE	%	%	YES	YES
+-------------+---------------+-------------+---------+-------+

If a table-related instrument in setup_instruments has an ENABLED value of NO, events for the object
are not monitored. If the ENABLED value is YES, event monitoring occurs according to the ENABLED value
in the relevant setup_objects row:

• db1.t1 events are monitored

• db1.t2 events are not monitored

• db2.t3 events are monitored

• db3.t4 events are not monitored

• db4.t5 events are monitored

3381

Pre-Filtering by Thread

Similar logic applies for combining the TIMED columns from the setup_instruments and
setup_objects tables to determine whether to collect event timing information.

If a persistent table and a temporary table have the same name, matching against setup_objects
rows occurs the same way for both. It is not possible to enable monitoring for one table but not the other.
However, each table is instrumented separately.

22.4.6 Pre-Filtering by Thread

The threads table contains a row for each server thread. Each row contains information about a thread
and indicates whether monitoring is enabled for it. For the Performance Schema to monitor a thread, these
things must be true:

• The thread_instrumentation consumer in the setup_consumers table must be YES.

• The threads.INSTRUMENTED column must be YES.

• Monitoring occurs only for those thread events produced from instruments that are enabled in the
setup_instruments table.

The INSTRUMENTED column in the threads table indicates the monitoring state for each thread. For
foreground threads (resulting from client connections), the initial INSTRUMENTED value is determined by
whether the user account associated with the thread matches any row in the setup_actors table.

For background threads, there is no associated user. INSTRUMENTED is YES by default and
setup_actors is not consulted.

The initial setup_actors contents look like this:

mysql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+
| HOST | USER | ROLE |
+------+------+------+
| % | % | % |
+------+------+------+

The HOST and USER columns should contain a literal host or user name, or '%' to match any name.

The Performance Schema uses the HOST and USER columns to match each new foreground thread. (ROLE
is unused.) The INSTRUMENTED value for the thread becomes YES if any row matches, NO otherwise. This
enables instrumenting to be applied selectively per host, user, or combination of host and user.

By default, monitoring is enabled for all new foreground threads because the setup_actors table initially
contains a row with '%' for both HOST and USER. To perform more limited matching such as to enable
monitoring only for some foreground threads, you must delete this row because it matches any connection.

Suppose that you modify setup_actors as follows:

TRUNCATE TABLE performance_schema.setup_actors;

Now setup_actors is empty and there are no rows that could match incoming connections.
Consequently, the Performance Schema sets the INSTRUMENTED column to NO for all new foreground
threads.

Suppose that you further modify setup_actors:

INSERT INTO performance_schema.setup_actors
(HOST,USER,ROLE) VALUES('localhost','joe','%');

3382

Pre-Filtering by Consumer

INSERT INTO performance_schema.setup_actors
(HOST,USER,ROLE) VALUES('%','sam','%');

Now the Performance Schema determines how to set the INSTRUMENTED value for new connection
threads as follows:

• If joe connects from the local host, the connection matches the first inserted row.

• If joe connects from any other host, there is no match.

• If sam connects from any host, the connection matches the second inserted row.

• For any other connection, there is no match.

Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the INSTRUMENTED column of
threads table rows.

22.4.7 Pre-Filtering by Consumer

The setup_consumers table lists the available consumer types and which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+--------------------------------+---------+

Modify the setup_consumers table to affect pre-filtering at the consumer stage and determine the
destinations to which events are sent. To enable or disable a consumer, set its ENABLED value to YES or
NO.

Modifications to the setup_consumers table affect monitoring immediately.

If you disable a consumer, the server does not spend time maintaining destinations for that consumer. For
example, if you do not care about historical event information, disable the history consumers:

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%history%';

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower. The
following principles apply:

• Destinations associated with a consumer receive no events unless the Performance Schema checks the
consumer and the consumer is enabled.

• A consumer is checked only if all consumers it depends on (if any) are enabled.

3383

Pre-Filtering by Consumer

• If a consumer is not checked, or is checked but is disabled, other consumers that depend on it are not
checked.

• Dependent consumers may have their own dependent consumers.

• If an event would not be sent to any destination, the Performance Schema does not produce it.

The following lists describe the available consumer values. For discussion of several representative
consumer configurations and their effect on instrumentation, see Section 22.4.8, “Example Consumer
Configurations”.

• Global and Thread Consumers

• Wait Event Consumers

• Stage Event Consumers

• Statement Event Consumers

• Statement Digest Consumer

Global and Thread Consumers

• global_instrumentation is the highest level consumer. If global_instrumentation is NO,
it disables global instrumentation. All other settings are lower level and are not checked; it does
not matter what they are set to. No global or per thread information is maintained and no individual
events are collected in the current-events or event-history tables. If global_instrumentation
is YES, the Performance Schema maintains information for global states and also checks the
thread_instrumentation consumer.

• thread_instrumentation is checked only if global_instrumentation is YES. Otherwise,
if thread_instrumentation is NO, it disables thread-specific instrumentation and all lower-level
settings are ignored. No information is maintained per thread and no individual events are collected
in the current-events or event-history tables. If thread_instrumentation is YES, the Performance
Schema maintains thread-specific information and also checks events_xxx_current consumers.

Wait Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be YES
or they are not checked. If checked, they act as follows:

• events_waits_current, if NO, disables collection of individual wait events in the
events_waits_current table. If YES, it enables wait event collection and the Performance Schema
checks the events_waits_history and events_waits_history_long consumers.

• events_waits_history is not checked if event_waits_current is NO. Otherwise, an
events_waits_history value of NO or YES disables or enables collection of wait events in the
events_waits_history table.

• events_waits_history_long is not checked if event_waits_current is NO. Otherwise, an
events_waits_history_long value of NO or YES disables or enables collection of wait events in the
events_waits_history_long table.

Stage Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be YES
or they are not checked. If checked, they act as follows:

3384

Example Consumer Configurations

• events_stages_current, if NO, disables collection of individual stage events in the
events_stages_current table. If YES, it enables stage event collection and the Performance
Schema checks the events_stages_history and events_stages_history_long consumers.

• events_stages_history is not checked if event_stages_current is NO. Otherwise, an
events_stages_history value of NO or YES disables or enables collection of stage events in the
events_stages_history table.

• events_stages_history_long is not checked if event_stages_current is NO. Otherwise, an
events_stages_history_long value of NO or YES disables or enables collection of stage events in
the events_stages_history_long table.

Statement Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be YES
or they are not checked. If checked, they act as follows:

• events_statements_current, if NO, disables collection of individual statement
events in the events_statements_current table. If YES, it enables statement event
collection and the Performance Schema checks the events_statements_history and
events_statements_history_long consumers.

• events_statements_history is not checked if events_statements_current is NO. Otherwise,
an events_statements_history value of NO or YES disables or enables collection of statement
events in the events_statements_history table.

• events_statements_history_long is not checked if events_statements_current is NO.
Otherwise, an events_statements_history_long value of NO or YES disables or enables collection
of statement events in the events_statements_history_long table.

Statement Digest Consumer

The statements_digest consumer requires global_instrumentation to be YES or it is not
checked. There is no dependency on the statement event consumers, so you can obtain statistics per
digest without having to collect statistics in events_statements_current, which is advantageous
in terms of overhead. Conversely, you can get detailed statements in events_statements_current
without digests (the DIGEST and DIGEST_TEXT columns are NULL).

For more information about statement digesting, see Section 22.10, “Performance Schema Statement
Digests”.

22.4.8 Example Consumer Configurations

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower.
The following discussion describes how consumers work, showing specific configurations and their
effects as consumer settings are enabled progressively from high to low. The consumer values shown
are representative. The general principles described here apply to other consumer values that may be
available.

The configuration descriptions occur in order of increasing functionality and overhead. If you do not need
the information provided by enabling lower-level settings, disable them and the Performance Schema
executes less code on your behalf and you have less information to sift through.

The setup_consumers table contains the following hierarchy of values:

global_instrumentation

3385

Example Consumer Configurations

 thread_instrumentation
 events_waits_current
 events_waits_history
 events_waits_history_long
 events_stages_current
 events_stages_history
 events_stages_history_long
 events_statements_current
 events_statements_history
 events_statements_history_long
 statements_digest

Note

In the consumer hierarchy, the consumers for waits, stages, and statements are
all at the same level. This differs from the event nesting hierarchy, for which wait
events nest within stage events, which nest within statement events.

If a given consumer setting is NO, the Performance Schema disables the instrumentation associated with
the consumer and ignores all lower-level settings. If a given setting is YES, the Performance Schema
enables the instrumentation associated with it and checks the settings at the next lowest level. For a
description of the rules for each consumer, see Section 22.4.7, “Pre-Filtering by Consumer”.

For example, if global_instrumentation is enabled, thread_instrumentation is checked. If
thread_instrumentation is enabled, the events_xxx_current consumers are checked. If of these
events_waits_current is enabled, events_waits_history and events_waits_history_long
are checked.

Each of the following configuration descriptions indicates which setup elements the Performance Schema
checks and which output tables it maintains (that is, for which tables it collects information).

• No Instrumentation

• Global Instrumentation Only

• Global and Thread Instrumentation Only

• Global, Thread, and Current-Event Instrumentation

• Global, Thread, Current-Event, and Event-History instrumentation

No Instrumentation

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | NO |
...
+---------------------------+---------+

In this configuration, nothing is instrumented.

Setup elements checked:

• Table setup_consumers, consumer global_instrumentation

Output tables maintained:

3386

Example Consumer Configurations

• None

Global Instrumentation Only

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | YES |
| thread_instrumentation | NO |
...
+---------------------------+---------+

In this configuration, instrumentation is maintained only for global states. Per-thread instrumentation is
disabled.

Additional setup elements checked, relative to the preceding configuration:

• Table setup_consumers, consumer thread_instrumentation

• Table setup_instruments

• Table setup_objects

• Table setup_timers

Additional output tables maintained, relative to the preceding configuration:

• mutex_instances

• rwlock_instances

• cond_instances

• file_instances

• users

• hosts

• accounts

• socket_summary_by_event_name

• file_summary_by_instance

• file_summary_by_event_name

• objects_summary_global_by_type

• table_lock_waits_summary_by_table

• table_io_waits_summary_by_index_usage

• table_io_waits_summary_by_table

• events_waits_summary_by_instance

3387

Example Consumer Configurations

• events_waits_summary_global_by_event_name

• events_stages_summary_global_by_event_name

• events_statements_summary_global_by_event_name

Global and Thread Instrumentation Only

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	NO
...	
events_stages_current	NO
...	
events_statements_current	YES
...
+--------------------------------+---------+

In this configuration, instrumentation is maintained globally and per thread. No individual events are
collected in the current-events or event-history tables.

Additional setup elements checked, relative to the preceding configuration:

• Table setup_consumers, consumers events_xxx_current, where xxx is waits, stages,
statements

• Table setup_actors

• Column threads.instrumented

Additional output tables maintained, relative to the preceding configuration:

• events_xxx_summary_by_yyy_by_event_name, where xxx is waits, stages, statements; and
yyy is thread, user, host, account

Global, Thread, and Current-Event Instrumentation

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	NO
events_waits_history_long	NO
events_stages_current	YES
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
...
+--------------------------------+---------+

3388

Example Consumer Configurations

In this configuration, instrumentation is maintained globally and per thread. Individual events are collected
in the current-events table, but not in the event-history tables.

Additional setup elements checked, relative to the preceding configuration:

• Consumers events_xxx_history, where xxx is waits, stages, statements

• Consumers events_xxx_history_long, where xxx is waits, stages, statements

Additional output tables maintained, relative to the preceding configuration:

• events_xxx_current, where xxx is waits, stages, statements

Global, Thread, Current-Event, and Event-History instrumentation

The preceding configuration collects no event history because the events_xxx_history and
events_xxx_history_long consumers are disabled. Those consumers can be enabled separately or
together to collect event history per thread, globally, or both.

This configuration collects event history per thread, but not globally:

mysql> SELECT * FROM performance_schema.setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	NO
events_stages_current	YES
events_stages_history	YES
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
...
+--------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history, where xxx is waits, stages, statements

This configuration collects event history globally, but not per thread:

mysql> SELECT * FROM performance_schema.setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	NO
events_waits_history_long	YES
events_stages_current	YES
events_stages_history	NO
events_stages_history_long	YES
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	YES
...
+--------------------------------+---------+

3389

Naming Instruments or Consumers for Filtering Operations

Event-history tables maintained for this configuration:

• events_xxx_history_long, where xxx is waits, stages, statements

This configuration collects event history per thread and globally:

mysql> SELECT * FROM performance_schema.setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	YES
events_stages_current	YES
events_stages_history	YES
events_stages_history_long	YES
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	YES
...
+--------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history, where xxx is waits, stages, statements

• events_xxx_history_long, where xxx is waits, stages, statements

22.4.9 Naming Instruments or Consumers for Filtering Operations

Names given for filtering operations can be as specific or general as required. To indicate a single
instrument or consumer, specify its name in full:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME = 'wait/synch/mutex/myisammrg/MYRG_INFO::mutex';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME = 'events_waits_current';

To specify a group of instruments or consumers, use a pattern that matches the group members:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME LIKE 'wait/synch/mutex/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%history%';

If you use a pattern, it should be chosen so that it matches all the items of interest and no others. For
example, to select all file I/O instruments, it is better to use a pattern that includes the entire instrument
name prefix:

... WHERE NAME LIKE 'wait/io/file/%';

The pattern '%/file/%' matches other instruments that have an element of '/file/' anywhere in the
name. Even less suitable is the pattern '%file%' because it matches instruments with 'file' anywhere
in the name, such as wait/synch/mutex/sql/LOCK_des_key_file.

3390

Determining What Is Instrumented

To check which instrument or consumer names a pattern matches, perform a simple test:

SELECT NAME FROM performance_schema.setup_instruments
WHERE NAME LIKE 'pattern';

SELECT NAME FROM performance_schema.setup_consumers
WHERE NAME LIKE 'pattern';

For information about the types of names that are supported, see Section 22.6, “Performance Schema
Instrument Naming Conventions”.

22.4.10 Determining What Is Instrumented

It is always possible to determine what instruments the Performance Schema includes by checking the
setup_instruments table. For example, to see what file-related events are instrumented for the InnoDB
storage engine, use this query:

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/file/innodb/%';
+--------------------------------------+---------+-------+
| NAME | ENABLED | TIMED |
+--------------------------------------+---------+-------+
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
+--------------------------------------+---------+-------+

An exhaustive description of precisely what is instrumented is not given in this documentation, for several
reasons:

• What is instrumented is the server code. Changes to this code occur often, which also affects the set of
instruments.

• It is not practical to list all the instruments because there are hundreds of them.

• As described earlier, it is possible to find out by querying the setup_instruments table. This
information is always up to date for your version of MySQL, also includes instrumentation for
instrumented plugins you might have installed that are not part of the core server, and can be used by
automated tools.

22.5 Performance Schema Queries

Pre-filtering limits which event information is collected and is independent of any particular user. By
contrast, post-filtering is performed by individual users through the use of queries with appropriate WHERE
clauses that restrict what event information to select from the events available after pre-filtering has been
applied.

In Section 22.4.3, “Event Pre-Filtering”, an example showed how to pre-filter for file instruments. If the
event tables contain both file and nonfile information, post-filtering is another way to see information only
for file events. Add a WHERE clause to queries to restrict event selection appropriately:

mysql> SELECT THREAD_ID, NUMBER_OF_BYTES
 FROM performance_schema.events_waits_history
 WHERE EVENT_NAME LIKE 'wait/io/file/%'
 AND NUMBER_OF_BYTES IS NOT NULL;
+-----------+-----------------+
| THREAD_ID | NUMBER_OF_BYTES |
+-----------+-----------------+
| 11 | 66 |

3391

Performance Schema Instrument Naming Conventions

11	47
11	139
5	24
5	834
+-----------+-----------------+

22.6 Performance Schema Instrument Naming Conventions

An instrument name consists of a sequence of elements separated by '/' characters. Example names:

wait/io/file/myisam/log
wait/io/file/mysys/charset
wait/lock/table/sql/handler
wait/synch/cond/mysys/COND_alarm
wait/synch/cond/sql/BINLOG::update_cond
wait/synch/mutex/mysys/BITMAP_mutex
wait/synch/mutex/sql/LOCK_delete
wait/synch/rwlock/sql/Query_cache_query::lock
stage/sql/closing tables
stage/sql/Sorting result
statement/com/Execute
statement/com/Query
statement/sql/create_table
statement/sql/lock_tables

The instrument name space has a tree-like structure. The elements of an instrument name from left to right
provide a progression from more general to more specific. The number of elements a name has depends
on the type of instrument.

The interpretation of a given element in a name depends on the elements to the left of it. For example,
myisam appears in both of the following names, but myisam in the first name is related to file I/O, whereas
in the second it is related to a synchronization instrument:

wait/io/file/myisam/log
wait/synch/cond/myisam/MI_SORT_INFO::cond

Instrument names consist of a prefix with a structure defined by the Performance Schema implementation
and a suffix defined by the developer implementing the instrument code. The top-level element of an
instrument prefix indicates the type of instrument. This element also determines which event timer in the
setup_timers table applies to the instrument. For the prefix part of instrument names, the top level
indicates the type of instrument.

The suffix part of instrument names comes from the code for the instruments themselves. Suffixes may
include levels such as these:

• A name for the major element (a server module such as myisam, innodb, mysys, or sql) or a plugin
name.

• The name of a variable in the code, in the form XXX (a global variable) or CCC::MMM (a member MMM in
class CCC). Examples: COND_thread_cache, THR_LOCK_myisam, BINLOG::LOCK_index.

• Top-Level Instrument Elements

• Idle Instrument Elements

• Stage Instrument Elements

• Statement Instrument Elements

• Wait Instrument Elements

3392

Top-Level Instrument Elements

Top-Level Instrument Elements

• idle: An instrumented idle event. This instrument has no further elements.

• stage: An instrumented stage event.

• statement: An instrumented statement event.

• wait: An instrumented wait event.

Idle Instrument Elements

The idle instrument is used for idle events, which The Performance Schema generates as discussed in
the description of the socket_instances.STATE column in Section 22.12.3.5, “The socket_instances
Table”.

Stage Instrument Elements

Stage instruments have names of the form stage/code_area/stage_name, where code_area is
a value such as sql or myisam, and stage_name indicates the stage of statement processing, such
as Sorting result or Sending data. Stages correspond to the thread states displayed by SHOW
PROCESSLIST or that are visible in the Information Schema PROCESSLIST table.

Statement Instrument Elements

• statement/abstract/*: An abstract instrument for statement operations. Abstract instruments
are used during the early stages of statement classification before the exact statement type is known,
then changed to a more specific statement instrument when the type is known. For a description of this
process, see Section 22.12.6, “Performance Schema Statement Event Tables”.

• statement/com: An instrumented command operation. These have names corresponding to
COM_xxx operations (see the mysql_com.h header file and sql/sql_parse.cc. For example,
the statement/com/Connect and statement/com/Init DB instruments correspond to the
COM_CONNECT and COM_INIT_DB commands.

• statement/sql: An instrumented SQL statement operation. For example, the statement/sql/
create_db and statement/sql/select instruments are used for CREATE DATABASE and SELECT
statements.

Wait Instrument Elements

• wait/io

An instrumented I/O operation.

• wait/io/file

An instrumented file I/O operation. For files, the wait is the time waiting for the file operation to
complete (for example, a call to fwrite()). Due to caching, the physical file I/O on the disk might not
happen within this call.

• wait/io/socket

An instrumented socket operation. Socket instruments have names of the form wait/io/socket/
sql/socket_type. The server has a listening socket for each network protocol that it supports.
The instruments associated with listening sockets for TCP/IP or Unix socket file connections have a

3393

Performance Schema Status Monitoring

socket_type value of server_tcpip_socket or server_unix_socket, respectively. When a
listening socket detects a connection, the server transfers the connection to a new socket managed
by a separate thread. The instrument for the new connection thread has a socket_type value of
client_connection.

• wait/io/table

An instrumented table I/O operation. These include row-level accesses to persistent base tables or
temporary tables. Operations that affect rows are fetch, insert, update, and delete. For a view, waits
are associated with base tables referenced by the view.

Unlike most waits, a table I/O wait can include other waits. For example, table I/O might include file I/O
or memory operations. Thus, events_waits_current for a table I/O wait usually has two rows. For
more information, see Section 22.8, “Performance Schema Atom and Molecule Events”.

Some row operations might cause multiple table I/O waits. For example, an insert might activate a
trigger that causes an update.

• wait/lock

An instrumented lock operation.

• wait/lock/table

An instrumented table lock operation.

• wait/synch

An instrumented synchronization object. For synchronization objects, the TIMER_WAIT time includes the
amount of time blocked while attempting to acquire a lock on the object, if any.

• wait/synch/cond

A condition is used by one thread to signal to other threads that something they were waiting for has
happened. If a single thread was waiting for a condition, it can wake up and proceed with its execution.
If several threads were waiting, they can all wake up and compete for the resource for which they were
waiting.

• wait/synch/mutex

A mutual exclusion object used to permit access to a resource (such as a section of executable code)
while preventing other threads from accessing the resource.

• wait/synch/rwlock

A read/write lock object used to lock a specific variable for access while preventing its use by other
threads. A shared read lock can be acquired simultaneously by multiple threads. An exclusive write
lock can be acquired by only one thread at a time.

22.7 Performance Schema Status Monitoring
There are several status variables associated with the Performance Schema:

mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
| Performance_schema_accounts_lost | 0 |

3394

Performance Schema Status Monitoring

Performance_schema_cond_classes_lost	0
Performance_schema_cond_instances_lost	0
Performance_schema_digest_lost	0
Performance_schema_file_classes_lost	0
Performance_schema_file_handles_lost	0
Performance_schema_file_instances_lost	0
Performance_schema_hosts_lost	0
Performance_schema_locker_lost	0
Performance_schema_mutex_classes_lost	0
Performance_schema_mutex_instances_lost	0
Performance_schema_rwlock_classes_lost	0
Performance_schema_rwlock_instances_lost	0
Performance_schema_session_connect_attrs_lost	0
Performance_schema_socket_classes_lost	0
Performance_schema_socket_instances_lost	0
Performance_schema_stage_classes_lost	0
Performance_schema_statement_classes_lost	0
Performance_schema_table_handles_lost	0
Performance_schema_table_instances_lost	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Performance_schema_users_lost	0
+---+-------+

The Performance Schema status variables provide information about instrumentation that could not be
loaded or created due to memory constraints. Names for these variables have several forms:

• Performance_schema_xxx_classes_lost indicates how many instruments of type xxx could not
be loaded.

• Performance_schema_xxx_instances_lost indicates how many instances of object type xxx
could not be created.

• Performance_schema_xxx_handles_lost indicates how many instances of object type xxx could
not be opened.

• Performance_schema_locker_lost indicates how many events are “lost” or not recorded.

For example, if a mutex is instrumented in the server source but the server cannot allocate memory
for the instrumentation at runtime, it increments Performance_schema_mutex_classes_lost.
The mutex still functions as a synchronization object (that is, the server continues to function normally),
but performance data for it is not collected. If the instrument can be allocated, it can be used for
initializing instrumented mutex instances. For a singleton mutex such as a global mutex, there is
only one instance. Other mutexes have an instance per connection, or per page in various caches
and data buffers, so the number of instances varies over time. Increasing the maximum number of
connections or the maximum size of some buffers increases the maximum number of instances that
might be allocated at once. If the server cannot create a given instrumented mutex instance, it increments
Performance_schema_mutex_instances_lost.

Suppose that the following conditions hold:

• The server was started with the --performance_schema_max_mutex_classes=200 option and
thus has room for 200 mutex instruments.

• 150 mutex instruments have been loaded already.

• The plugin named plugin_a contains 40 mutex instruments.

• The plugin named plugin_b contains 20 mutex instruments.

The server allocates mutex instruments for the plugins depending on how many they need and how many
are available, as illustrated by the following sequence of statements:

3395

Performance Schema Status Monitoring

INSTALL PLUGIN plugin_a

The server now has 150+40 = 190 mutex instruments.

UNINSTALL PLUGIN plugin_a;

The server still has 190 instruments. All the historical data generated by the plugin code is still available,
but new events for the instruments are not collected.

INSTALL PLUGIN plugin_a;

The server detects that the 40 instruments are already defined, so no new instruments are created, and
previously assigned internal memory buffers are reused. The server still has 190 instruments.

INSTALL PLUGIN plugin_b;

The server has room for 200-190 = 10 instruments (in this case, mutex classes), and sees that the
plugin contains 20 new instruments. 10 instruments are loaded, and 10 are discarded or “lost.” The
Performance_schema_mutex_classes_lost indicates the number of instruments (mutex classes)
lost:

mysql> SHOW STATUS LIKE "perf%mutex_classes_lost";
+---------------------------------------+-------+
| Variable_name | Value |
+---------------------------------------+-------+
| Performance_schema_mutex_classes_lost | 10 |
+---------------------------------------+-------+
1 row in set (0.10 sec)

The instrumentation still works and collects (partial) data for plugin_b.

When the server cannot create a mutex instrument, these results occur:

• No row for the instrument is inserted into the setup_instruments table.

• Performance_schema_mutex_classes_lost increases by 1.

• Performance_schema_mutex_instances_lost does not change. (When the mutex instrument is
not created, it cannot be used to create instrumented mutex instances later.)

The pattern just described applies to all types of instruments, not just mutexes.

A value of Performance_schema_mutex_classes_lost greater than 0 can happen in two cases:

• To save a few bytes of memory, you start the server with --
performance_schema_max_mutex_classes=N, where N is less than the default value. The default
value is chosen to be sufficient to load all the plugins provided in the MySQL distribution, but this can
be reduced if some plugins are never loaded. For example, you might choose not to load some of the
storage engines in the distribution.

• You load a third-party plugin that is instrumented for the Performance Schema but do not allow for the
plugin's instrumentation memory requirements when you start the server. Because it comes from a third
party, the instrument memory consumption of this engine is not accounted for in the default value chosen
for performance_schema_max_mutex_classes.

If the server has insufficient resources for the plugin's instruments and you do not explicitly allocate more
using --performance_schema_max_mutex_classes=N, loading the plugin leads to starvation of
instruments.

If the value chosen for performance_schema_max_mutex_classes is too small, no error is
reported in the error log and there is no failure at runtime. However, the content of the tables in the

3396

Performance Schema Status Monitoring

performance_schema database misses events. The Performance_schema_mutex_classes_lost
status variable is the only visible sign to indicate that some events were dropped internally due to failure to
create instruments.

If an instrument is not lost, it is known to the Performance Schema, and is used when instrumenting
instances. For example, wait/synch/mutex/sql/LOCK_delete is the name of a mutex instrument
in the setup_instruments table. This single instrument is used when creating a mutex in the code (in
THD::LOCK_delete) however many instances of the mutex are needed as the server runs. In this case,
LOCK_delete is a mutex that is per connection (THD), so if a server has 1000 connections, there are 1000
threads, and 1000 instrumented LOCK_delete mutex instances (THD::LOCK_delete).

If the server does not have room for all these 1000 instrumented mutexes (instances), some mutexes
are created with instrumentation, and some are created without instrumentation. If the server can
create only 800 instances, 200 instances are lost. The server continues to run, but increments
Performance_schema_mutex_instances_lost by 200 to indicate that instances could not be
created.

A value of Performance_schema_mutex_instances_lost greater than 0 can
happen when the code initializes more mutexes at runtime than were allocated for --
performance_schema_max_mutex_instances=N.

The bottom line is that if SHOW STATUS LIKE 'perf%' says that nothing was lost (all values are zero),
the Performance Schema data is accurate and can be relied upon. If something was lost, the data is
incomplete, and the Performance Schema could not record everything given the insufficient amount
of memory it was given to use. In this case, the specific Performance_schema_xxx_lost variable
indicates the problem area.

It might be appropriate in some cases to cause deliberate instrument starvation. For example, if you do not
care about performance data for file I/O, you can start the server with all Performance Schema parameters
related to file I/O set to 0. No memory is allocated for file-related classes, instances, or handles, and all file
events are lost.

Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the Performance
Schema code:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
 Type: performance_schema
 Name: events_waits_history.row_size
Status: 76
*************************** 4. row ***************************
 Type: performance_schema
 Name: events_waits_history.row_count
Status: 10000
*************************** 5. row ***************************
 Type: performance_schema
 Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
 Type: performance_schema
 Name: performance_schema.memory
Status: 26459600
...

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements. For a description of the field meanings, see Section 13.7.5.16,
“SHOW ENGINE Statement”.

3397

Performance Schema Atom and Molecule Events

22.8 Performance Schema Atom and Molecule Events
For a table I/O event, there are usually two rows in events_waits_current, not one. For example, a
row fetch might result in rows like this:

Row# EVENT_NAME TIMER_START TIMER_END
---- ---------- ----------- ---------
 1 wait/io/file/myisam/dfile 10001 10002
 2 wait/io/table/sql/handler 10000 NULL

The row fetch causes a file read. In the example, the table I/O fetch event started before the file I/O event
but has not finished (its TIMER_END value is NULL). The file I/O event is “nested” within the table I/O event.

This occurs because, unlike other “atomic” wait events such as for mutexes or file I/O, table I/O events
are “molecular” and include (overlap with) other events. In events_waits_current, the table I/O event
usually has two rows:

• One row for the most recent table I/O wait event

• One row for the most recent wait event of any kind

Usually, but not always, the “of any kind” wait event differs from the table I/O event. As each subsidiary
event completes, it disappears from events_waits_current. At this point, and until the next subsidiary
event begins, the table I/O wait is also the most recent wait of any kind.

22.9 Performance Schema Tables for Current and Historical Events
For wait, stage, and statement events, the Performance Schema can monitor and store current events.
In addition, when events end, the Performance Schema can store them in history tables. For each event
type, the Performance Schema uses three tables for storing current and historical events. The tables have
names of the following forms, where xxx indicates the event type (waits, stages, statements):

• events_xxx_current: The “current events” table stores the current monitored event for each thread
(one row per thread).

• events_xxx_history: The “recent history” table stores the most recent events that have ended per
thread (up to a maximum number of rows per thread).

• events_xxx_history_long: The “long history” table stores the most recent events that have ended
globally (across all threads, up to a maximum number of rows per table).

The _current table for each event type contains one row per thread, so there is no system variable for
configuring its maximum size. The Performance Schema autosizes the history tables, or the sizes can be
configured explicitly at server startup using table-specific system variables, as indicated in the sections
that describe the individual history tables. Typical autosized values are 10 rows per thread for _history
tables, and 10,000 rows total for _history_long tables.

For each event type, the _current, _history, and _history_long tables have the same columns.

The _current tables show what is currently happening within the server. When a current event ends, it is
removed from its _current table.

The _history and _history_long tables show what has happened in the recent past. When the history
tables become full, old events are discarded as new events are added. Rows expire from the _history
and _history_long tables in different ways because the tables serve different purposes:

• _history is meant to investigate individual threads, independently of the global server load.

3398

Performance Schema Statement Digests

• _history_long is meant to investigate the server globally, not each thread.

The difference between the two types of history tables relates to the data retention policy. Both tables
contains the same data when an event is first seen. However, data within each table expires differently
over time, so that data might be preserved for a longer or shorter time in each table:

• For _history, when the table contains the maximum number of rows for a given thread, the oldest
thread row is discarded when a new row for that thread is added.

• For _history_long, when the table becomes full, the oldest row is discarded when a new row is
added, regardless of which thread generated either row.

When a thread ends, all its rows are discarded from the _history table but not from the _history_long
table.

The following example illustrates the differences in how events are added to and discarded from the two
types of history tables. The principles apply equally to all event types. The example is based on these
assumptions:

• The Performance Schema is configured to retain 10 rows per thread in the _history table and 10,000
rows total in the _history_long table.

• Thread A generates 1 event per second.

Thread B generates 100 events per second.

• No other threads are running.

After 5 seconds of execution:

• A and B have generated 5 and 500 events, respectively.

• _history contains 5 rows for A and 10 rows for B. Because storage per thread is limited to 10 rows, no
rows have been discarded for A, whereas 490 rows have been discarded for B.

• _history_long contains 5 rows for A and 500 rows for B. Because the table has a maximum size of
10,000 rows, no rows have been discarded for either thread.

After 5 minutes (300 seconds) of execution:

• A and B have generated 300 and 30,000 events, respectively.

• _history contains 10 rows for A and 10 rows for B. Because storage per thread is limited to 10 rows,
290 rows have been discarded for A, whereas 29,990 rows have been discarded for B. Rows for A
include data up to 10 seconds old, whereas rows for B include data up to only .1 seconds old.

• _history_long contains 10,000 rows. Because A and B together generate 101 events per second, the
table contains data up to approximately 10,000/101 = 99 seconds old, with a mix of rows approximately
100 to 1 from B as opposed to A.

22.10 Performance Schema Statement Digests
The MySQL server is capable of maintaining statement digest information. The digesting process converts
each SQL statement to normalized form (the statement digest) and computes an MD5 hash value (the
digest hash value) from the normalized result. Normalization permits statements that are similar to be
grouped and summarized to expose information about the types of statements the server is executing and
how often they occur. This section describes how statement digesting occurs and how it can be useful.

3399

Statement Digest General Concepts

As of 5.6.24, digesting occurs in the parser regardless of whether the Performance Schema is available,
so that other server components such as MySQL Enterprise Firewall have access to statement digests.
Before MySQL 5.6.24, statement digesting was a function of the Performance Schema.

• Statement Digest General Concepts

• Statement Digests in the Performance Schema

• Statement Digest Memory Use

Statement Digest General Concepts

When the parser receives an SQL statement, it computes a statement digest if that digest is needed, which
is true if any of the following conditions are true:

• Performance Schema digest instrumentation is enabled

• MySQL Enterprise Firewall is enabled

The max_digest_length system variable value determines the maximum number of bytes available
per session for computation of normalized statement digests. Once that amount of space is used during
digest computation, truncation occurs: no further tokens from a parsed statement are collected or figure
into its digest value. Statements that differ only after that many bytes of parsed tokens produce the same
normalized statement digest and are considered identical if compared or if aggregated for digest statistics.

Warning

Setting the max_digest_length system variable to zero disables digest
production, which also disables server functionality that requires digests.

After the normalized statement has been computed, an MD5 hash value is computed from it. In addition:

• If MySQL Enterprise Firewall is enabled, it is called and the digest as computed is available to it.

• If the Performance Schema has digest instrumentation enabled, it makes a copy of the normalized
statement digest, allocating a maximum of performance_schema_max_digest_length bytes for it.
Consequently, if performance_schema_max_digest_length is less than max_digest_length,
the copy is truncated relative to the original. The copy of the normalized statement digest is stored in
the appropriate Performance Schema tables, along with the MD5 hash value computed from the original
normalized statement. (If the Performance Schema truncates its copy of the normalized statement digest
relative to the original, it does not recompute the MD5 hash value.)

In MySQL 5.6.24 and 5.6.25, performance_schema_max_digest_length is not available
and max_digest_length applies to all digest computation. Before MySQL 5.6.24, neither
max_digest_length nor performance_schema_max_digest_length are available and a fixed
maximum of 1024 bytes applies to all digest computation.

Statement normalization transforms the statement text to a more standardized digest string representation
that preserves the general statement structure while removing information not essential to the structure:

• Object identifiers such as database and table names are preserved.

• Literal values are converted to parameter markers. A normalized statement does not retain information
such as names, passwords, dates, and so forth.

• Comments are removed and whitespace is adjusted.

3400

Statement Digests in the Performance Schema

Consider these statements:

SELECT * FROM orders WHERE customer_id=10 AND quantity>20
SELECT * FROM orders WHERE customer_id = 20 AND quantity > 100

To normalize these statements, the parser replaces data values by ? and adjusts whitespace. Both
statements yield the same normalized form and thus are considered “the same”:

SELECT * FROM orders WHERE customer_id = ? AND quantity > ?

The normalized statement contains less information but is still representative of the original statement.
Other similar statements that have different data values have the same normalized form.

Now consider these statements:

SELECT * FROM customers WHERE customer_id = 1000
SELECT * FROM orders WHERE customer_id = 1000

In this case, the normalized statements differ because the object identifiers differ:

SELECT * FROM customers WHERE customer_id = ?
SELECT * FROM orders WHERE customer_id = ?

If normalization produces a statement that exceeds the space available in the digest buffer (as determined
by max_digest_length), truncation occurs and the text ends with “...”. Long normalized statements that
differ only in the part that occurs following the “...” are considered the same. Consider these statements:

SELECT * FROM mytable WHERE cola = 10 AND colb = 20
SELECT * FROM mytable WHERE cola = 10 AND colc = 20

If the cutoff happens to be right after the AND, both statements have this normalized form:

SELECT * FROM mytable WHERE cola = ? AND ...

In this case, the difference in the second column name is lost and both statements are considered the
same.

Statement Digests in the Performance Schema

In the Performance Schema, statement digesting involves these elements:

• A statements_digest consumer in the setup_consumers table controls whether the Performance
Schema maintains digest information. See Statement Digest Consumer.

• The statement event tables (events_statements_current, events_statements_history, and
events_statements_history_long) have columns for storing normalized statement digests and
the corresponding digest MD5 hash values:

• DIGEST_TEXT is the text of the normalized statement digest. This is a copy of the original normalized
statement that was computed to a maximum of max_digest_length bytes, further truncated as
necessary to performance_schema_max_digest_length bytes.

• DIGEST is the digest MD5 hash value computed from the original normalized statement.

See Section 22.12.6, “Performance Schema Statement Event Tables”.

• The events_statements_summary_by_digest summary table provides aggregated statement
digest information. This table aggregates information for statements per SCHEMA_NAME and DIGEST

3401

Statement Digest Memory Use

combination. The Performance Schema uses MD5 hash values for aggregation because they are fast
to compute and have a favorable statistical distribution that minimizes collisions. See Section 22.12.9.3,
“Statement Summary Tables”.

The statement event tables also have an SQL_TEXT column that contains the original SQL statement. The
maximum space available for statement display is 1024 bytes.

The performance_schema_max_digest_length system variable determines the maximum
number of bytes available per statement for digest value storage in the Performance Schema.
However, the display length of statement digests may be longer than the available buffer size due
to internal encoding of statement elements such as keywords and literal values. Consequently,
values selected from the DIGEST_TEXT column of statement event tables may appear to exceed the
performance_schema_max_digest_length value.

The events_statements_summary_by_digest summary table provides a profile of the statements
executed by the server. It shows what kinds of statements an application is executing and how often. An
application developer can use this information together with other information in the table to assess the
application's performance characteristics. For example, table columns that show wait times, lock times,
or index use may highlight types of queries that are inefficient. This gives the developer insight into which
parts of the application need attention.

The events_statements_summary_by_digest summary table has a fixed size. By default the
Performance Schema estimates the size to use at startup. To specify the table size explicitly, set the
performance_schema_digests_size system variable at server startup. If the table becomes
full, the Performance Schema groups statements that have SCHEMA_NAME and DIGEST values not
matching existing values in the table in a special row with SCHEMA_NAME and DIGEST set to NULL. This
permits all statements to be counted. However, if the special row accounts for a significant percentage
of the statements executed, it might be desirable to increase the summary table size by increasing
performance_schema_digests_size.

Statement Digest Memory Use

For applications that generate very long statements that differ only at the end, increasing
max_digest_length enables computation of digests that distinguish statements that would otherwise
aggregate to the same digest. Conversely, decreasing max_digest_length causes the server to devote
less memory to digest storage but increases the likelihood of longer statements aggregating to the same
digest. Administrators should keep in mind that larger values result in correspondingly increased memory
requirements, particularly for workloads that involve large numbers of simultaneous sessions (the server
allocates max_digest_length bytes per session).

As described previously, normalized statement digests as computed by the parser are constrained
to a maximum of max_digest_length bytes, whereas normalized statement digests stored in the
Performance Schema use performance_schema_max_digest_length bytes. The following
memory-use considerations apply regarding the relative values of max_digest_length and
performance_schema_max_digest_length:

• If max_digest_length is less than performance_schema_max_digest_length:

• Server components other than the Performance Schema use normalized statement digests that take
up to max_digest_length bytes.

• The Performance Schema does not further truncate normalized statement digests that it stores, but
allocates more memory than max_digest_length bytes per digest, which is unnecessary.

• If max_digest_length equals performance_schema_max_digest_length:

3402

Performance Schema General Table Characteristics

• Server components other than the Performance Schema use normalized statement digests that take
up to max_digest_length bytes.

• The Performance Schema does not further truncate normalized statement digests that it stores, and
allocates the same amount of memory as max_digest_length bytes per digest.

• If max_digest_length is greater than performance_schema_max_digest_length:

• Server components other than the Performance Schema use normalized statement digests that take
up to max_digest_length bytes.

• The Performance Schema further truncates normalized statement digests that it stores, and allocates
less memory than max_digest_length bytes per digest.

Because the Performance Schema statement event tables might store many digests, setting
performance_schema_max_digest_length smaller than max_digest_length enables
administrators to balance these factors:

• The need to have long normalized statement digests available for server components outside the
Performance Schema

• Many concurrent sessions, each of which allocates digest-computation memory

• The need to limit memory consumption by the Performance Schema statement event tables when
storing many statement digests

The performance_schema_max_digest_length setting is not per session, it is per statement, and a
session can store multiple statements in the events_statements_history table. A typical number of
statements in this table is 10 per session, so each session consumes 10 times the memory indicated by
the performance_schema_max_digest_length value, for this table alone.

There are also many statements (and digests) collected globally, most notably in the
events_statements_history_long table. Here, too, N statements stored consume N times the
memory indicated by the performance_schema_max_digest_length value.

22.11 Performance Schema General Table Characteristics

The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

Many tables in the performance_schema database are read only and cannot be modified:

mysql> TRUNCATE TABLE performance_schema.setup_instruments;
ERROR 1683 (HY000): Invalid performance_schema usage.

Some of the setup tables have columns that can be modified to affect Performance Schema operation;
some also permit rows to be inserted or deleted. Truncation is permitted to clear collected events, so
TRUNCATE TABLE can be used on tables containing those kinds of information, such as tables named with
a prefix of events_waits_.

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the summary
columns to 0 or NULL, not to remove rows. This enables you to clear collected values and restart
aggregation. That might be useful, for example, after you have made a runtime configuration change.
Exceptions to this truncation behavior are noted in individual summary table sections.

Privileges are as for other databases and tables:

3403

Performance Schema Table Descriptions

• To retrieve from performance_schema tables, you must have the SELECT privilege.

• To change those columns that can be modified, you must have the UPDATE privilege.

• To truncate tables that can be truncated, you must have the DROP privilege.

Because only a limited set of privileges apply to Performance Schema tables, attempts to use GRANT ALL
as shorthand for granting privileges at the database or table leval fail with an error:

mysql> GRANT ALL ON performance_schema.*
 TO 'u1'@'localhost';
ERROR 1044 (42000): Access denied for user 'root'@'localhost'
to database 'performance_schema'
mysql> GRANT ALL ON performance_schema.setup_instruments
 TO 'u2'@'localhost';
ERROR 1044 (42000): Access denied for user 'root'@'localhost'
to database 'performance_schema'

Instead, grant exactly the desired privileges:

mysql> GRANT SELECT ON performance_schema.*
 TO 'u1'@'localhost';
Query OK, 0 rows affected (0.03 sec)

mysql> GRANT SELECT, UPDATE ON performance_schema.setup_instruments
 TO 'u2'@'localhost';
Query OK, 0 rows affected (0.02 sec)

22.12 Performance Schema Table Descriptions
Tables in the performance_schema database can be grouped as follows:

• Setup tables. These tables are used to configure and display monitoring characteristics.

• Current events tables. The events_waits_current table contains the most recent event for
each thread. Other similar tables contain current events at different levels of the event hierarchy:
events_stages_current for stage events, and events_statements_current for statement
events.

• History tables. These tables have the same structure as the current events tables, but contain more
rows. For example, for wait events, events_waits_history table contains the most recent 10 events
per thread. events_waits_history_long contains the most recent 10,000 events. Other similar
tables exist for stage and statement histories.

To change the sizes of the history tables, set the appropriate system variables
at server startup. For example, to set the sizes of the wait event history
tables, set performance_schema_events_waits_history_size and
performance_schema_events_waits_history_long_size.

• Summary tables. These tables contain information aggregated over groups of events, including those
that have been discarded from the history tables.

• Instance tables. These tables document what types of objects are instrumented. An instrumented object,
when used by the server, produces an event. These tables provide event names and explanatory notes
or status information.

• Miscellaneous tables. These do not fall into any of the other table groups.

22.12.1 Performance Schema Table Reference

3404

Performance Schema Table Reference

The following table summarizes all available Performance Schema tables. For greater detail, see the
individual table descriptions.

Table 22.1 Performance Schema Tables

Table Name Description

accounts Connection statistics per client account

cond_instances Synchronization object instances

events_stages_current Current stage events

events_stages_history Most recent stage events per thread

events_stages_history_long Most recent stage events overall

events_stages_summary_by_account_by_event_nameStage events per account and event name

events_stages_summary_by_host_by_event_nameStage events per host name and event name

events_stages_summary_by_thread_by_event_nameStage waits per thread and event name

events_stages_summary_by_user_by_event_nameStage events per user name and event name

events_stages_summary_global_by_event_nameStage waits per event name

events_statements_current Current statement events

events_statements_history Most recent statement events per thread

events_statements_history_long Most recent statement events overall

events_statements_summary_by_account_by_event_nameStatement events per account and event name

events_statements_summary_by_digest Statement events per schema and digest value

events_statements_summary_by_host_by_event_nameStatement events per host name and event name

events_statements_summary_by_thread_by_event_nameStatement events per thread and event name

events_statements_summary_by_user_by_event_nameStatement events per user name and event name

events_statements_summary_global_by_event_nameStatement events per event name

events_waits_current Current wait events

events_waits_history Most recent wait events per thread

events_waits_history_long Most recent wait events overall

events_waits_summary_by_account_by_event_nameWait events per account and event name

events_waits_summary_by_host_by_event_nameWait events per host name and event name

events_waits_summary_by_instance Wait events per instance

events_waits_summary_by_thread_by_event_nameWait events per thread and event name

events_waits_summary_by_user_by_event_nameWait events per user name and event name

events_waits_summary_global_by_event_nameWait events per event name

file_instances File instances

file_summary_by_event_name File events per event name

file_summary_by_instance File events per file instance

host_cache Information from internal host cache

hosts Connection statistics per client host name

mutex_instances Mutex synchronization object instances

objects_summary_global_by_type Object summaries

3405

Performance Schema Setup Tables

Table Name Description

performance_timers Which event timers are available

rwlock_instances Lock synchronization object instances

session_account_connect_attrs Connection attributes per for current session

session_connect_attrs Connection attributes for all sessions

setup_actors How to initialize monitoring for new foreground
threads

setup_consumers Consumers for which event information can be
stored

setup_instruments Classes of instrumented objects for which events
can be collected

setup_objects Which objects should be monitored

setup_timers Currently selected event timers

socket_instances Active connection instances

socket_summary_by_event_name Socket waits and I/O per event name

socket_summary_by_instance Socket waits and I/O per instance

table_io_waits_summary_by_index_usage Table I/O waits per index

table_io_waits_summary_by_table Table I/O waits per table

table_lock_waits_summary_by_table Table lock waits per table

threads Information about server threads

users Connection statistics per client user name

22.12.2 Performance Schema Setup Tables

The setup tables provide information about the current instrumentation and enable the monitoring
configuration to be changed. For this reason, some columns in these tables can be changed if you have
the UPDATE privilege.

The use of tables rather than individual variables for setup information provides a high degree of flexibility
in modifying Performance Schema configuration. For example, you can use a single statement with
standard SQL syntax to make multiple simultaneous configuration changes.

These setup tables are available:

• setup_actors: How to initialize monitoring for new foreground threads

• setup_consumers: The destinations to which event information can be sent and stored

• setup_instruments: The classes of instrumented objects for which events can be collected

• setup_objects: Which objects should be monitored

• setup_timers: The current event timer

22.12.2.1 The setup_actors Table

The setup_actors table contains information that determines whether to enable monitoring for new
foreground server threads (threads associated with client connections). This table has a maximum size of
100 rows by default. To change the table size, modify the performance_schema_setup_actors_size
system variable at server startup.

3406

Performance Schema Setup Tables

For each new foreground thread, the Performance Schema matches the user and host for the thread
against the rows of the setup_actors table. If a row from that table matches, its ENABLED column
value is used to set the INSTRUMENTED column of the threads table row for the thread. This enables
instrumenting to be applied selectively per host, user, or account (user and host combination). If there is no
match, the INSTRUMENTED column for the thread is set to NO.

For background threads, there is no associated user. INSTRUMENTED is YES by default and
setup_actors is not consulted.

The initial contents of the setup_actors table match any user and host combination, so monitoring is
enabled by default for all foreground threads:

mysql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+
| HOST | USER | ROLE |
+------+------+------+
| % | % | % |
+------+------+------+

For information about how to use the setup_actors table to affect event monitoring, see Section 22.4.6,
“Pre-Filtering by Thread”.

Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the INSTRUMENTED column of
threads table rows.

The setup_actors table has these columns:

• HOST

The host name. This should be a literal name, or '%' to mean “any host.”

• USER

The user name. This should be a literal name, or '%' to mean “any user.”

• ROLE

Unused.

TRUNCATE TABLE is permitted for the setup_actors table. It removes the rows.

22.12.2.2 The setup_consumers Table

The setup_consumers table lists the types of consumers for which event information can be stored and
which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES

3407

Performance Schema Setup Tables

| thread_instrumentation | YES |
| statements_digest | YES |
+--------------------------------+---------+

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower. For
detailed information about the effect of enabling different consumers, see Section 22.4.7, “Pre-Filtering by
Consumer”.

Modifications to the setup_consumers table affect monitoring immediately.

The setup_consumers table has these columns:

• NAME

The consumer name.

• ENABLED

Whether the consumer is enabled. The value is YES or NO. This column can be modified. If you disable a
consumer, the server does not spend time adding event information to it.

TRUNCATE TABLE is not permitted for the setup_consumers table.

22.12.2.3 The setup_instruments Table

The setup_instruments table lists classes of instrumented objects for which events can be collected:

mysql> SELECT * FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
stage/sql/end	NO	NO
stage/sql/executing	NO	NO
stage/sql/init	NO	NO
stage/sql/insert	NO	NO
...		
statement/sql/load	YES	YES
statement/sql/grant	YES	YES
statement/sql/check	YES	YES
statement/sql/flush	YES	YES
...		
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

Each instrument added to the source code provides a row for the setup_instruments table, even
when the instrumented code is not executed. When an instrument is enabled and executed, instrumented
instances are created, which are visible in the xxx_instances tables, such as file_instances or
rwlock_instances.

3408

Performance Schema Setup Tables

Modifications to most setup_instruments rows affect monitoring immediately. For some instruments,
modifications are effective only at server startup; changing them at runtime has no effect. This affects
primarily mutexes, conditions, and rwlocks in the server, although there may be other instruments for which
this is true.

For more information about the role of the setup_instruments table in event filtering, see
Section 22.4.3, “Event Pre-Filtering”.

The setup_instruments table has these columns:

• NAME

The instrument name. Instrument names may have multiple parts and form a hierarchy, as discussed in
Section 22.6, “Performance Schema Instrument Naming Conventions”. Events produced from execution
of an instrument have an EVENT_NAME value that is taken from the instrument NAME value. (Events do
not really have a “name,” but this provides a way to associate events with instruments.)

• ENABLED

Whether the instrument is enabled. The value is YES or NO. A disabled instrument produces no events.
This column can be modified, although setting ENABLED has no effect for instruments that have already
been created.

• TIMED

Whether the instrument is timed. The value is YES or NO. This column can be modified, although setting
TIMED has no effect for instruments that have already been created.

If an enabled instrument is not timed, the instrument code is enabled, but the timer is not. Events
produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT timer
values. This in turn causes those values to be ignored when calculating the sum, minimum, maximum,
and average time values in summary tables.

TRUNCATE TABLE is not permitted for the setup_instruments table.

22.12.2.4 The setup_objects Table

The setup_objects table controls whether the Performance Schema monitors particular objects.
This table has a maximum size of 100 rows by default. To change the table size, modify the
performance_schema_setup_objects_size system variable at server startup.

The initial setup_objects contents look like this:

mysql> SELECT * FROM performance_schema.setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+

Modifications to the setup_objects table affect object monitoring immediately.

For object types listed in setup_objects, the Performance Schema uses the table to how to monitor
them. Object matching is based on the OBJECT_SCHEMA and OBJECT_NAME columns. Objects for which
there is no match are not monitored.

3409

Performance Schema Setup Tables

The effect of the default object configuration is to instrument all tables except those in the mysql,
INFORMATION_SCHEMA, and performance_schema databases. (Tables in the INFORMATION_SCHEMA
database are not instrumented regardless of the contents of setup_objects; the row for
information_schema.% simply makes this default explicit.)

When the Performance Schema checks for a match in setup_objects, it tries to find more specific
matches first. For example, with a table db1.t1, it looks for a match for 'db1' and 't1', then for 'db1'
and '%', then for '%' and '%'. The order in which matching occurs matters because different matching
setup_objects rows can have different ENABLED and TIMED values.

Rows can be inserted into or deleted from setup_objects by users with the INSERT or DELETE privilege
on the table. For existing rows, only the ENABLED and TIMED columns can be modified, by users with the
UPDATE privilege on the table.

For more information about the role of the setup_objects table in event filtering, see Section 22.4.3,
“Event Pre-Filtering”.

The setup_objects table has these columns:

• OBJECT_TYPE

The type of object to instrument. This is always 'TABLE' (base table).

TABLE filtering affects table I/O events (wait/io/table/sql/handler instrument) and table lock
events (wait/lock/table/sql/handler instrument).

• OBJECT_SCHEMA

The schema that contains the object. This should be a literal name, or '%' to mean “any schema.”

• OBJECT_NAME

The name of the instrumented object. This should be a literal name, or '%' to mean “any object.”

• ENABLED

Whether events for the object are instrumented. The value is YES or NO. This column can be modified.

• TIMED

Whether events for the object are timed. The value is YES or NO. This column can be modified.

TRUNCATE TABLE is permitted for the setup_objects table. It removes the rows.

22.12.2.5 The setup_timers Table

The setup_timers table shows the currently selected event timers:

mysql> SELECT * FROM performance_schema.setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
+-----------+-------------+

The setup_timers.TIMER_NAME value can be changed to select a different timer. The value can be any
of the values in the performance_timers.TIMER_NAME column. For an explanation of how event timing
occurs, see Section 22.4.1, “Performance Schema Event Timing”.

3410

Performance Schema Instance Tables

Modifications to the setup_timers table affect monitoring immediately. Events already in progress may
use the original timer for the begin time and the new timer for the end time. To avoid unpredictable results
after you make timer changes, use TRUNCATE TABLE to reset Performance Schema statistics.

The setup_timers table has these columns:

• NAME

The type of instrument the timer is used for.

• TIMER_NAME

The timer that applies to the instrument type. This column can be modified.

TRUNCATE TABLE is not permitted for the setup_timers table.

22.12.3 Performance Schema Instance Tables

Instance tables document what types of objects are instrumented. They provide event names and
explanatory notes or status information:

• cond_instances: Condition synchronization object instances

• file_instances: File instances

• mutex_instances: Mutex synchronization object instances

• rwlock_instances: Lock synchronization object instances

• socket_instances: Active connection instances

These tables list instrumented synchronization objects, files, and connections. There are three types
of synchronization objects: cond, mutex, and rwlock. Each instance table has an EVENT_NAME or
NAME column to indicate the instrument associated with each row. Instrument names may have multiple
parts and form a hierarchy, as discussed in Section 22.6, “Performance Schema Instrument Naming
Conventions”.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for investigating
performance bottlenecks or deadlocks. For examples of how to use them for this purpose, see
Section 22.18, “Using the Performance Schema to Diagnose Problems”

22.12.3.1 The cond_instances Table

The cond_instances table lists all the conditions seen by the Performance Schema while the server
executes. A condition is a synchronization mechanism used in the code to signal that a specific event has
happened, so that a thread waiting for this condition can resume work.

When a thread is waiting for something to happen, the condition name is an indication of what the thread is
waiting for, but there is no immediate way to tell which other threads cause the condition to happen.

The cond_instances table has these columns:

• NAME

The instrument name associated with the condition.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented condition.

3411

Performance Schema Instance Tables

TRUNCATE TABLE is not permitted for the cond_instances table.

22.12.3.2 The file_instances Table

The file_instances table lists all the files seen by the Performance Schema when executing file I/O
instrumentation. If a file on disk has never been opened, it is not listed in file_instances. When a file is
deleted from the disk, it is also removed from the file_instances table.

The file_instances table has these columns:

• FILE_NAME

The file name.

• EVENT_NAME

The instrument name associated with the file.

• OPEN_COUNT

The count of open handles on the file. If a file was opened and then closed, it was opened 1 time, but
OPEN_COUNT is 0. To list all the files currently opened by the server, use WHERE OPEN_COUNT > 0.

TRUNCATE TABLE is not permitted for the file_instances table.

22.12.3.3 The mutex_instances Table

The mutex_instances table lists all the mutexes seen by the Performance Schema while the server
executes. A mutex is a synchronization mechanism used in the code to enforce that only one thread at
a given time can have access to some common resource. The resource is said to be “protected” by the
mutex.

When two threads executing in the server (for example, two user sessions executing a query
simultaneously) do need to access the same resource (a file, a buffer, or some piece of data), these two
threads compete against each other, so that the first query to obtain a lock on the mutex causes the other
query to wait until the first is done and unlocks the mutex.

The work performed while holding a mutex is said to be in a “critical section,” and multiple queries do
execute this critical section in a serialized way (one at a time), which is a potential bottleneck.

The mutex_instances table has these columns:

• NAME

The instrument name associated with the mutex.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented mutex.

• LOCKED_BY_THREAD_ID

When a thread currently has a mutex locked, LOCKED_BY_THREAD_ID is the THREAD_ID of the locking
thread, otherwise it is NULL.

TRUNCATE TABLE is not permitted for the mutex_instances table.

For every mutex instrumented in the code, the Performance Schema provides the following information.

3412

Performance Schema Instance Tables

• The setup_instruments table lists the name of the instrumentation point, with the prefix wait/
synch/mutex/.

• When some code creates a mutex, a row is added to the mutex_instances table. The
OBJECT_INSTANCE_BEGIN column is a property that uniquely identifies the mutex.

• When a thread attempts to lock a mutex, the events_waits_current table shows a row for that
thread, indicating that it is waiting on a mutex (in the EVENT_NAME column), and indicating which mutex
is waited on (in the OBJECT_INSTANCE_BEGIN column).

• When a thread succeeds in locking a mutex:

• events_waits_current shows that the wait on the mutex is completed (in the TIMER_END and
TIMER_WAIT columns)

• The completed wait event is added to the events_waits_history and
events_waits_history_long tables

• mutex_instances shows that the mutex is now owned by the thread (in the THREAD_ID column).

• When a thread unlocks a mutex, mutex_instances shows that the mutex now has no owner (the
THREAD_ID column is NULL).

• When a mutex object is destroyed, the corresponding row is removed from mutex_instances.

By performing queries on both of the following tables, a monitoring application or a DBA can detect
bottlenecks or deadlocks between threads that involve mutexes:

• events_waits_current, to see what mutex a thread is waiting for

• mutex_instances, to see which other thread currently owns a mutex

22.12.3.4 The rwlock_instances Table

The rwlock_instances table lists all the rwlock instances (read write locks) seen by the Performance
Schema while the server executes. An rwlock is a synchronization mechanism used in the code to
enforce that threads at a given time can have access to some common resource following certain rules.
The resource is said to be “protected” by the rwlock. The access is either shared (many threads can have
a read lock at the same time) or exclusive (only one thread can have a write lock at a given time).

Depending on how many threads are requesting a lock, and the nature of the locks requested, access can
be either granted in shared mode, granted in exclusive mode, or not granted at all, waiting for other threads
to finish first.

The rwlock_instances table has these columns:

• NAME

The instrument name associated with the lock.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented lock.

• WRITE_LOCKED_BY_THREAD_ID

When a thread currently has an rwlock locked in exclusive (write) mode,
WRITE_LOCKED_BY_THREAD_ID is the THREAD_ID of the locking thread, otherwise it is NULL.

• READ_LOCKED_BY_COUNT

3413

Performance Schema Instance Tables

When a thread currently has an rwlock locked in shared (read) mode, READ_LOCKED_BY_COUNT is
incremented by 1. This is a counter only, so it cannot be used directly to find which thread holds a read
lock, but it can be used to see whether there is a read contention on an rwlock, and see how many
readers are currently active.

TRUNCATE TABLE is not permitted for the rwlock_instances table.

By performing queries on both of the following tables, a monitoring application or a DBA may detect some
bottlenecks or deadlocks between threads that involve locks:

• events_waits_current, to see what rwlock a thread is waiting for

• rwlock_instances, to see which other thread currently owns an rwlock

There is a limitation: The rwlock_instances can be used only to identify the thread holding a write lock,
but not the threads holding a read lock.

22.12.3.5 The socket_instances Table

The socket_instances table provides a real-time snapshot of the active connections to the MySQL
server. The table contains one row per TCP/IP or Unix socket file connection. Information available in
this table provides a real-time snapshot of the active connections to the server. (Additional information is
available in socket summary tables, including network activity such as socket operations and number of
bytes transmitted and received; see Section 22.12.9.7, “Socket Summary Tables”).

mysql> SELECT * FROM performance_schema.socket_instances\G
*************************** 1. row ***************************
 EVENT_NAME: wait/io/socket/sql/server_unix_socket
OBJECT_INSTANCE_BEGIN: 4316619408
 THREAD_ID: 1
 SOCKET_ID: 16
 IP:
 PORT: 0
 STATE: ACTIVE
*************************** 2. row ***************************
 EVENT_NAME: wait/io/socket/sql/client_connection
OBJECT_INSTANCE_BEGIN: 4316644608
 THREAD_ID: 21
 SOCKET_ID: 39
 IP: 127.0.0.1
 PORT: 55233
 STATE: ACTIVE
*************************** 3. row ***************************
 EVENT_NAME: wait/io/socket/sql/server_tcpip_socket
OBJECT_INSTANCE_BEGIN: 4316699040
 THREAD_ID: 1
 SOCKET_ID: 14
 IP: 0.0.0.0
 PORT: 50603
 STATE: ACTIVE

Socket instruments have names of the form wait/io/socket/sql/socket_type and are used like
this:

1. The server has a listening socket for each network protocol that it supports. The instruments associated
with listening sockets for TCP/IP or Unix socket file connections have a socket_type value of
server_tcpip_socket or server_unix_socket, respectively.

2. When a listening socket detects a connection, the server transfers the connection to a new socket
managed by a separate thread. The instrument for the new connection thread has a socket_type
value of client_connection.

3414

Performance Schema Instance Tables

3. When a connection terminates, the row in socket_instances corresponding to it is deleted.

The socket_instances table has these columns:

• EVENT_NAME

The name of the wait/io/socket/* instrument that produced the event. This is a NAME value from
the setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 22.6, “Performance Schema Instrument Naming Conventions”.

• OBJECT_INSTANCE_BEGIN

This column uniquely identifies the socket. The value is the address of an object in memory.

• THREAD_ID

The internal thread identifier assigned by the server. Each socket is managed by a single thread, so
each socket can be mapped to a thread which can be mapped to a server process.

• SOCKET_ID

The internal file handle assigned to the socket.

• IP

The client IP address. The value may be either an IPv4 or IPv6 address, or blank to indicate a Unix
socket file connection.

• PORT

The TCP/IP port number, in the range from 0 to 65535.

• STATE

The socket status, either IDLE or ACTIVE. Wait times for active sockets are tracked using the
corresponding socket instrument. Wait times for idle sockets are tracked using the idle instrument.

A socket is idle if it is waiting for a request from the client. When a socket becomes idle, the event row
in socket_instances that is tracking the socket switches from a status of ACTIVE to IDLE. The
EVENT_NAME value remains wait/io/socket/*, but timing for the instrument is suspended. Instead,
an event is generated in the events_waits_current table with an EVENT_NAME value of idle.

When the next request is received, the idle event terminates, the socket instance switches from IDLE
to ACTIVE, and timing of the socket instrument resumes.

TRUNCATE TABLE is not permitted for the socket_instances table.

The IP:PORT column combination value identifies the connection. This combination value is used in the
OBJECT_NAME column of the events_waits_xxx tables, to identify the connection from which socket
events come:

• For the Unix domain listener socket (server_unix_socket), the port is 0, and the IP is ''.

• For client connections via the Unix domain listener (client_connection), the port is 0, and the IP is
''.

• For the TCP/IP server listener socket (server_tcpip_socket), the port is always the master port (for
example, 3306), and the IP is always 0.0.0.0.

3415

Performance Schema Wait Event Tables

• For client connections via the TCP/IP listener (client_connection), the port is whatever the server
assigns, but never 0. The IP is the IP of the originating host (127.0.0.1 or ::1 for the local host)

22.12.4 Performance Schema Wait Event Tables

The Performance Schema instruments waits, which are events that take time. Within the event hierarchy,
wait events nest within stage events, which nest within statement events.

These tables store wait events:

• events_waits_current: The current wait event for each thread.

• events_waits_history: The most recent wait events that have ended per thread.

• events_waits_history_long: The most recent wait events that have ended globally (across all
threads).

The following sections describe the wait event tables. There are also summary tables that aggregate
information about wait events; see Section 22.12.9.1, “Wait Event Summary Tables”.

For more information about the relationship between the three wait event tables, see Section 22.9,
“Performance Schema Tables for Current and Historical Events”.

Configuring Wait Event Collection

To control whether to collect wait events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains instruments with names that begin with wait. Use these
instruments to enable or disable collection of individual wait event classes.

• The setup_consumers table contains consumer values with names corresponding to the current and
historical wait event table names. Use these consumers to filter collection of wait events.

Some wait instruments are enabled by default; others are disabled. For example:

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/file/innodb%';
+--------------------------------------+---------+-------+
| NAME | ENABLED | TIMED |
+--------------------------------------+---------+-------+
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
+--------------------------------------+---------+-------+
mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/socket/%';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
wait/io/socket/sql/server_tcpip_socket	NO	NO
wait/io/socket/sql/server_unix_socket	NO	NO
wait/io/socket/sql/client_connection	NO	NO
+--+---------+-------+

The wait consumers are disabled by default:

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE 'events_waits%';

3416

Performance Schema Wait Event Tables

+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
+---------------------------+---------+

To control wait event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='wait/%=ON'
performance-schema-consumer-events-waits-current=ON
performance-schema-consumer-events-waits-history=ON
performance-schema-consumer-events-waits-history-long=ON

• Disable:

[mysqld]
performance-schema-instrument='wait/%=OFF'
performance-schema-consumer-events-waits-current=OFF
performance-schema-consumer-events-waits-history=OFF
performance-schema-consumer-events-waits-history-long=OFF

To control wait event collection at runtime, update the setup_instruments and setup_consumers
tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'wait/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE 'events_waits%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'wait/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE 'events_waits%';

To collect only specific wait events, enable only the corresponding wait instruments. To collect wait events
only for specific wait event tables, enable the wait instruments but only the wait consumers corresponding
to the desired tables.

The setup_timers table contains a row with a NAME value of wait that indicates the unit for wait event
timing. The default unit is CYCLE:

mysql> SELECT *
 FROM performance_schema.setup_timers
 WHERE NAME = 'wait';
+------+------------+
| NAME | TIMER_NAME |
+------+------------+
| wait | CYCLE |
+------+------------+

3417

Performance Schema Wait Event Tables

To change the timing unit, modify the TIMER_NAME value:

UPDATE performance_schema.setup_timers
SET TIMER_NAME = 'NANOSECOND'
WHERE NAME = 'wait';

For additional information about configuring event collection, see Section 22.3, “Performance Schema
Startup Configuration”, and Section 22.4, “Performance Schema Runtime Configuration”.

22.12.4.1 The events_waits_current Table

The events_waits_current table contains current wait events. The table stores one row per thread
showing the current status of the thread's most recent monitored wait event, so there is no system variable
for configuring the table size.

Of the tables that contain wait event rows, events_waits_current is the most fundamental. Other
tables that contain wait event rows are logically derived from the current events. For example, the
events_waits_history and events_waits_history_long tables are collections of the most recent
wait events that have ended, up to a maximum number of rows per thread and globally across all threads,
respectively.

For more information about the relationship between the three wait event tables, see Section 22.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect wait events, see Section 22.12.4, “Performance
Schema Wait Event Tables”.

The events_waits_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts. The
THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have the same
pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

• EVENT_NAME

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 22.6, “Performance Schema Instrument Naming Conventions”.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved. For example, if a mutex or lock is being blocked, you can check
the context in which this occurs.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TIMER_START and TIMER_END values indicate when event timing started and ended. TIMER_WAIT is
the event elapsed time (duration).

3418

Performance Schema Wait Event Tables

If an event has not finished, TIMER_END and TIMER_WAIT are NULL before MySQL 5.6.26. As of
5.6.26, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed so far (TIMER_END
− TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 22.4.1, “Performance Schema Event Timing”.

• SPINS

For a mutex, the number of spin rounds. If the value is NULL, the code does not use spin rounds or
spinning is not instrumented.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE, OBJECT_INSTANCE_BEGIN

These columns identify the object “being acted on.” What that means depends on the object type.

For a synchronization object (cond, mutex, rwlock):

• OBJECT_SCHEMA, OBJECT_NAME, and OBJECT_TYPE are NULL.

• OBJECT_INSTANCE_BEGIN is the address of the synchronization object in memory.

For a file I/O object:

• OBJECT_SCHEMA is NULL.

• OBJECT_NAME is the file name.

• OBJECT_TYPE is FILE.

• OBJECT_INSTANCE_BEGIN is an address in memory.

For a socket object:

• OBJECT_NAME is the IP:PORT value for the socket.

• OBJECT_INSTANCE_BEGIN is an address in memory.

For a table I/O object:

• OBJECT_SCHEMA is the name of the schema that contains the table.

• OBJECT_NAME is the table name.

• OBJECT_TYPE is TABLE for a persistent base table or TEMPORARY TABLE for a temporary table.

• OBJECT_INSTANCE_BEGIN is an address in memory.

An OBJECT_INSTANCE_BEGIN value itself has no meaning, except that different values indicate
different objects. OBJECT_INSTANCE_BEGIN can be used for debugging. For example, it can be used
with GROUP BY OBJECT_INSTANCE_BEGIN to see whether the load on 1,000 mutexes (that protect,
say, 1,000 pages or blocks of data) is spread evenly or just hitting a few bottlenecks. This can help you
correlate with other sources of information if you see the same object address in a log file or another
debugging or performance tool.

3419

Performance Schema Wait Event Tables

• INDEX_NAME

The name of the index used. PRIMARY indicates the table primary index. NULL means that no index was
used.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested.

• NESTING_EVENT_TYPE

The nesting event type. The value is STATEMENT, STAGE, or WAIT.

• OPERATION

The type of operation performed, such as lock, read, or write.

• NUMBER_OF_BYTES

The number of bytes read or written by the operation. For table I/O waits (events for the wait/io/
table/sql/handler instrument), NUMBER_OF_BYTES is NULL.

• FLAGS

Reserved for future use.

TRUNCATE TABLE is permitted for the events_waits_current table. It removes the rows.

22.12.4.2 The events_waits_history Table

The events_waits_history table contains the N most recent wait events that have ended per thread.
Wait events are not added to the table until they have ended. When the table contains the maximum
number of rows for a given thread, the oldest thread row is discarded when a new row for that thread is
added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the performance_schema_events_waits_history_size system variable at
server startup.

The events_waits_history table has the same columns as events_waits_current. See
Section 22.12.4.1, “The events_waits_current Table”.

TRUNCATE TABLE is permitted for the events_waits_history table. It removes the rows.

For more information about the relationship between the three wait event tables, see Section 22.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect wait events, see Section 22.12.4, “Performance
Schema Wait Event Tables”.

22.12.4.3 The events_waits_history_long Table

The events_waits_history_long table contains N the most recent wait events that have ended
globally, across all threads. Wait events are not added to the table until they have ended. When the table
becomes full, the oldest row is discarded when a new row is added, regardless of which thread generated
either row.

The Performance Schema autosizes the value of N during server startup. To set the table size explicitly, set
the performance_schema_events_waits_history_long_size system variable at server startup.

3420

Performance Schema Stage Event Tables

The events_waits_history_long table has the same columns as events_waits_current. See
Section 22.12.4.1, “The events_waits_current Table”.

TRUNCATE TABLE is permitted for the events_waits_history_long table. It removes the rows.

For more information about the relationship between the three wait event tables, see Section 22.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect wait events, see Section 22.12.4, “Performance
Schema Wait Event Tables”.

22.12.5 Performance Schema Stage Event Tables

The Performance Schema instruments stages, which are steps during the statement-execution process,
such as parsing a statement, opening a table, or performing a filesort operation. Stages correspond
to the thread states displayed by SHOW PROCESSLIST or that are visible in the Information Schema
PROCESSLIST table. Stages begin and end when state values change.

Within the event hierarchy, wait events nest within stage events, which nest within statement events.

These tables store stage events:

• events_stages_current: The current stage event for each thread.

• events_stages_history: The most recent stage events that have ended per thread.

• events_stages_history_long: The most recent stage events that have ended globally (across all
threads).

The following sections describe the stage event tables. There are also summary tables that aggregate
information about stage events; see Section 22.12.9.2, “Stage Summary Tables”.

For more information about the relationship between the three stage event tables, see Section 22.9,
“Performance Schema Tables for Current and Historical Events”.

• Configuring Stage Event Collection

Configuring Stage Event Collection

To control whether to collect stage events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains instruments with names that begin with stage. Use these
instruments to enable or disable collection of individual stage event classes.

• The setup_consumers table contains consumer values with names corresponding to the current and
historical stage event table names. Use these consumers to filter collection of stage events.

The stage instruments are disabled by default. For example:

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME RLIKE 'stage/sql/[a-c]';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
stage/sql/After create	NO	NO
stage/sql/allocating local table	NO	NO
stage/sql/altering table	NO	NO
stage/sql/committing alter table to storage engine	NO	NO
stage/sql/Changing master	NO	NO
stage/sql/Checking master version	NO	NO

3421

Performance Schema Stage Event Tables

stage/sql/checking permissions	NO	NO
stage/sql/checking privileges on cached query	NO	NO
stage/sql/checking query cache for query	NO	NO
stage/sql/cleaning up	NO	NO
stage/sql/closing tables	NO	NO
stage/sql/Connecting to master	NO	NO
stage/sql/converting HEAP to MyISAM	NO	NO
stage/sql/Copying to group table	NO	NO
stage/sql/Copying to tmp table	NO	NO
stage/sql/copy to tmp table	NO	NO
stage/sql/Creating delayed handler	NO	NO
stage/sql/Creating sort index	NO	NO
stage/sql/creating table	NO	NO
stage/sql/Creating tmp table	NO	NO
+--+---------+-------+

The stage consumers are disabled by default:

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE 'events_stages%';
+----------------------------+---------+
| NAME | ENABLED |
+----------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
+----------------------------+---------+

To control stage event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='stage/%=ON'
performance-schema-consumer-events-stages-current=ON
performance-schema-consumer-events-stages-history=ON
performance-schema-consumer-events-stages-history-long=ON

• Disable:

[mysqld]
performance-schema-instrument='stage/%=OFF'
performance-schema-consumer-events-stages-current=OFF
performance-schema-consumer-events-stages-history=OFF
performance-schema-consumer-events-stages-history-long=OFF

To control stage event collection at runtime, update the setup_instruments and setup_consumers
tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'stage/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE 'events_stages%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'stage/%';

3422

Performance Schema Stage Event Tables

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE 'events_stages%';

To collect only specific stage events, enable only the corresponding stage instruments. To collect stage
events only for specific stage event tables, enable the stage instruments but only the stage consumers
corresponding to the desired tables.

The setup_timers table contains a row with a NAME value of stage that indicates the unit for stage
event timing. The default unit is NANOSECOND:

mysql> SELECT *
 FROM performance_schema.setup_timers
 WHERE NAME = 'stage';
+-------+------------+
| NAME | TIMER_NAME |
+-------+------------+
| stage | NANOSECOND |
+-------+------------+

To change the timing unit, modify the TIMER_NAME value:

UPDATE performance_schema.setup_timers
SET TIMER_NAME = 'MICROSECOND'
WHERE NAME = 'stage';

For additional information about configuring event collection, see Section 22.3, “Performance Schema
Startup Configuration”, and Section 22.4, “Performance Schema Runtime Configuration”.

22.12.5.1 The events_stages_current Table

The events_stages_current table contains current stage events. The table stores one row per thread
showing the current status of the thread's most recent monitored stage event, so there is no system
variable for configuring the table size.

Of the tables that contain stage event rows, events_stages_current is the most fundamental. Other
tables that contain stage event rows are logically derived from the current events. For example, the
events_stages_history and events_stages_history_long tables are collections of the most
recent stage events that have ended, up to a maximum number of rows per thread and globally across all
threads, respectively.

For more information about the relationship between the three stage event tables, see Section 22.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect stage events, see Section 22.12.5, “Performance
Schema Stage Event Tables”.

The events_stages_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts. The
THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have the same
pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

• EVENT_NAME

3423

Performance Schema Stage Event Tables

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 22.6, “Performance Schema Instrument Naming Conventions”.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TIMER_START and TIMER_END values indicate when event timing started and ended. TIMER_WAIT is
the event elapsed time (duration).

If an event has not finished, TIMER_END and TIMER_WAIT are NULL before MySQL 5.6.26. As of
5.6.26, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed so far (TIMER_END
− TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 22.4.1, “Performance Schema Event Timing”.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested. The nesting event for a stage event
is usually a statement event.

• NESTING_EVENT_TYPE

The nesting event type. The value is STATEMENT, STAGE, or WAIT.

TRUNCATE TABLE is permitted for the events_stages_current table. It removes the rows.

22.12.5.2 The events_stages_history Table

The events_stages_history table contains the N most recent stage events that have ended per
thread. Stage events are not added to the table until they have ended. When the table contains the
maximum number of rows for a given thread, the oldest thread row is discarded when a new row for that
thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the performance_schema_events_stages_history_size system variable at
server startup.

The events_stages_history table has the same columns as events_stages_current. See
Section 22.12.5.1, “The events_stages_current Table”.

TRUNCATE TABLE is permitted for the events_stages_history table. It removes the rows.

For more information about the relationship between the three stage event tables, see Section 22.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect stage events, see Section 22.12.5, “Performance
Schema Stage Event Tables”.

3424

Performance Schema Statement Event Tables

22.12.5.3 The events_stages_history_long Table

The events_stages_history_long table contains the N most recent stage events that have ended
globally, across all threads. Stage events are not added to the table until they have ended. When the table
becomes full, the oldest row is discarded when a new row is added, regardless of which thread generated
either row.

The Performance Schema autosizes the value of N during server startup. To set the table size explicitly, set
the performance_schema_events_stages_history_long_size system variable at server startup.

The events_stages_history_long table has the same columns as events_stages_current. See
Section 22.12.5.1, “The events_stages_current Table”.

TRUNCATE TABLE is permitted for the events_stages_history_long table. It removes the rows.

For more information about the relationship between the three stage event tables, see Section 22.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect stage events, see Section 22.12.5, “Performance
Schema Stage Event Tables”.

22.12.6 Performance Schema Statement Event Tables

The Performance Schema instruments statement execution. Statement events occur at a high level of the
event hierarchy: Wait events nest within stage events, which nest within statement events.

These tables store statement events:

• events_statements_current: The current statement event for each thread.

• events_statements_history: The most recent statement events that have ended per thread.

• events_statements_history_long: The most recent statement events that have ended globally
(across all threads).

The following sections describe the statement event tables. There are also summary tables that aggregate
information about statement events; see Section 22.12.9.3, “Statement Summary Tables”.

For more information about the relationship between the three events_statements_xxx event tables,
see Section 22.9, “Performance Schema Tables for Current and Historical Events”.

• Configuring Statement Event Collection

• Statement Monitoring

Configuring Statement Event Collection

To control whether to collect statement events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains instruments with names that begin with statement. Use
these instruments to enable or disable collection of individual statement event classes.

• The setup_consumers table contains consumer values with names corresponding to the current and
historical statement event table names, and the statement digest consumer. Use these consumers to
filter collection of statement events and statement digesting.

The statement instruments are enabled by default, and the events_statements_current and
statements_digest statement consumers are enabled by default:

3425

Performance Schema Statement Event Tables

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'statement/%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
statement/sql/select	YES	YES
statement/sql/create_table	YES	YES
statement/sql/create_index	YES	YES
...		
statement/sp/stmt	YES	YES
statement/sp/set	YES	YES
statement/sp/set_trigger_field	YES	YES
statement/scheduler/event	YES	YES
statement/com/Sleep	YES	YES
statement/com/Quit	YES	YES
statement/com/Init DB	YES	YES
...		
statement/abstract/Query	YES	YES
statement/abstract/new_packet	YES	YES
statement/abstract/relay_log	YES	YES
+---+---------+-------+

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE '%statements%';
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
statements_digest	YES
+--------------------------------+---------+

To control statement event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='statement/%=ON'
performance-schema-consumer-events-statements-current=ON
performance-schema-consumer-events-statements-history=ON
performance-schema-consumer-events-statements-history-long=ON
performance-schema-consumer-statements-digest=ON

• Disable:

[mysqld]
performance-schema-instrument='statement/%=OFF'
performance-schema-consumer-events-statements-current=OFF
performance-schema-consumer-events-statements-history=OFF
performance-schema-consumer-events-statements-history-long=OFF
performance-schema-consumer-statements-digest=OFF

To control statement event collection at runtime, update the setup_instruments and
setup_consumers tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'statement/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'

3426

Performance Schema Statement Event Tables

WHERE NAME LIKE '%statements%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'statement/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%statements%';

To collect only specific statement events, enable only the corresponding statement instruments. To collect
statement events only for specific statement event tables, enable the statement instruments but only the
statement consumers corresponding to the desired tables.

The setup_timers table contains a row with a NAME value of statement that indicates the unit for
statement event timing. The default unit is NANOSECOND:

mysql> SELECT *
 FROM performance_schema.setup_timers
 WHERE NAME = 'statement';
+-----------+------------+
| NAME | TIMER_NAME |
+-----------+------------+
| statement | NANOSECOND |
+-----------+------------+

To change the timing unit, modify the TIMER_NAME value:

UPDATE performance_schema.setup_timers
SET TIMER_NAME = 'MICROSECOND'
WHERE NAME = 'statement';

For additional information about configuring event collection, see Section 22.3, “Performance Schema
Startup Configuration”, and Section 22.4, “Performance Schema Runtime Configuration”.

Statement Monitoring

Statement monitoring begins from the moment the server sees that activity is requested on a thread, to the
moment when all activity has ceased. Typically, this means from the time the server gets the first packet
from the client to the time the server has finished sending the response. Monitoring occurs only for top-
level statements. Statements within stored programs and subqueries are not seen separately.

When the Performance Schema instruments a request (server command or SQL statement), it uses
instrument names that proceed in stages from more general (or “abstract”) to more specific until it arrives
at a final instrument name.

Final instrument names correspond to server commands and SQL statements:

• Server commands correspond to the COM_xxx codes defined in the mysql_com.h header file
and processed in sql/sql_parse.cc. Examples are COM_PING and COM_QUIT. Instruments for
commands have names that begin with statement/com, such as statement/com/Ping and
statement/com/Quit.

• SQL statements are expressed as text, such as DELETE FROM t1 or SELECT * FROM t2.
Instruments for SQL statements have names that begin with statement/sql, such as statement/
sql/delete and statement/sql/select.

Some final instrument names are specific to error handling:

3427

Performance Schema Statement Event Tables

• statement/com/Error accounts for messages received by the server that are out of band. It can be
used to detect commands sent by clients that the server does not understand. This may be helpful for
purposes such as identifying clients that are misconfigured or using a version of MySQL more recent
than that of the server, or clients that are attempting to attack the server.

• statement/sql/error accounts for SQL statements that fail to parse. It can be used to detect
malformed queries sent by clients. A query that fails to parse differs from a query that parses but fails
due to an error during execution. For example, SELECT * FROM is malformed, and the statement/
sql/error instrument is used. By contrast, SELECT * parses but fails with a No tables used error.
In this case, statement/sql/select is used and the statement event contains information to indicate
the nature of the error.

A request can be obtained from any of these sources:

• As a command or statement request from a client, which sends the request as packets

• As a statement string read from the relay log on a replica

The details for a request are not initially known and the Performance Schema proceeds from abstract to
specific instrument names in a sequence that depends on the source of the request.

For a request received from a client:

1. When the server detects a new packet at the socket level, a new statement is started with an abstract
instrument name of statement/abstract/new_packet.

2. When the server reads the packet number, it knows more about the type of request received, and the
Performance Schema refines the instrument name. For example, if the request is a COM_PING packet,
the instrument name becomes statement/com/Ping and that is the final name. If the request is
a COM_QUERY packet, it is known to correspond to an SQL statement but not the particular type of
statement. In this case, the instrument changes from one abstract name to a more specific but still
abstract name, statement/abstract/Query, and the request requires further classification.

3. If the request is a statement, the statement text is read and given to the parser. After parsing, the
exact statement type is known. If the request is, for example, an INSERT statement, the Performance
Schema refines the instrument name from statement/abstract/Query to statement/sql/
insert, which is the final name.

For a request read as a statement from the relay log on a replica:

1. Statements in the relay log are stored as text and are read as such. There is no network protocol, so
the statement/abstract/new_packet instrument is not used. Instead, the initial instrument is
statement/abstract/relay_log.

2. When the statement is parsed, the exact statement type is known. If the request is, for example,
an INSERT statement, the Performance Schema refines the instrument name from statement/
abstract/Query to statement/sql/insert, which is the final name.

The preceding description applies only for statement-based replication. For row-based replication, table I/
O done on the replica as it processes row changes can be instrumented, but row events in the relay log do
not appear as discrete statements.

For statistics to be collected for statements, it is not sufficient to enable only the final statement/sql/*
instruments used for individual statement types. The abtract statement/abstract/* instruments must
be enabled as well. This should not normally be an issue because all statement instruments are enabled
by default. However, an application that enables or disables statement instruments selectively must
take into account that disabling abstract instruments also disables statistics collection for the individual
statement instruments. For example, to collect statistics for INSERT statements, statement/sql/

3428

Performance Schema Statement Event Tables

insert must be enabled, but also statement/abstract/new_packet and statement/abstract/
Query. Similarly, for replicated statements to be instrumented, statement/abstract/relay_log must
be enabled.

No statistics are aggregated for abstract instruments such as statement/abstract/Query because no
statement is ever classified with an abstract instrument as the final statement name.

The abstract instrument names in the preceding discussion are as of MySQL 5.6.15. In earlier 5.6 versions,
there was some renaming before those names were settled on:

• statement/abstract/new_packet was statement/com/ in MySQL 5.6.14, statement/com/
new_packet in MySQL 5.6.13, and statement/com/ before that.

• statement/abstract/Query was statement/com/Query before MySQL 5.6.15.

• statement/abstract/relay_log was statement/rpl/relay_log from MySQL 5.6.13 to 5.6.14
and did not exist before that.

22.12.6.1 The events_statements_current Table

The events_statements_current table contains current statement events. The table stores one row
per thread showing the current status of the thread's most recent monitored statement event, so there is no
system variable for configuring the table size.

Of the tables that contain statement event rows, events_statements_current is the most
fundamental. Other tables that contain statement event rows are logically derived from the current events.
For example, the events_statements_history and events_statements_history_long tables
are collections of the most recent statement events that have ended, up to a maximum number of rows per
thread and globally across all threads, respectively.

For more information about the relationship between the three events_statements_xxx event tables,
see Section 22.9, “Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect statement events, see Section 22.12.6, “Performance
Schema Statement Event Tables”.

The events_statements_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts. The
THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have the same
pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number when
the event ends.

• EVENT_NAME

The name of the instrument from which the event was collected. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 22.6, “Performance Schema Instrument Naming Conventions”.

For SQL statements, the EVENT_NAME value initially is statement/com/Query until the statement
is parsed, then changes to a more appropriate value, as described in Section 22.12.6, “Performance
Schema Statement Event Tables”.

3429

Performance Schema Statement Event Tables

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The
TIMER_START and TIMER_END values indicate when event timing started and ended. TIMER_WAIT is
the event elapsed time (duration).

If an event has not finished, TIMER_END and TIMER_WAIT are NULL before MySQL 5.6.26. As of
5.6.26, TIMER_END is the current timer value and TIMER_WAIT is the time elapsed so far (TIMER_END
− TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 22.4.1, “Performance Schema Event Timing”.

• LOCK_TIME

The time spent waiting for table locks. This value is computed in microseconds but normalized to
picoseconds for easier comparison with other Performance Schema timers.

• SQL_TEXT

The text of the SQL statement. For a command not associated with an SQL statement, the value is
NULL. The maximum space available for statement display is 1024 bytes.

• DIGEST

The statement digest MD5 value as a string of 32 hexadecimal characters, or NULL if the
statements_digest consumer is no. For more information about statement digesting, see
Section 22.10, “Performance Schema Statement Digests”.

• DIGEST_TEXT

The normalized statement digest text, or NULL if the statements_digest consumer is no. For more
information about statement digesting, see Section 22.10, “Performance Schema Statement Digests”.

The performance_schema_max_digest_length system variable determines the maximum number
of bytes available per session for digest value storage. However, the display length of statement digests
may be longer than the available buffer size due to encoding of statement elements such as keywords
and literal values in digest buffer. Consequently, values selected from the DIGEST_TEXT column of
statement event tables may appear to exceed the performance_schema_max_digest_length
value.

performance_schema_max_digest_length was added in MySQL 5.6.26. In MySQL 5.6.24 and
5.6.25, performance_schema_max_digest_length is not available and the max_digest_length
value determines the maximum number of bytes available for digest value storage. Before MySQL
5.6.24, neither max_digest_length nor performance_schema_max_digest_length are
available and a fixed maximum of 1024 bytes is available for digest value storage.

• CURRENT_SCHEMA

3430

Performance Schema Statement Event Tables

The default database for the statement, NULL if there is none.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE

Reserved. Always NULL.

• OBJECT_INSTANCE_BEGIN

This column identifies the statement. The value is the address of an object in memory.

• MYSQL_ERRNO

The statement error number, from the statement diagnostics area.

• RETURNED_SQLSTATE

The statement SQLSTATE value, from the statement diagnostics area.

• MESSAGE_TEXT

The statement error message, from the statement diagnostics area.

• ERRORS

Whether an error occurred for the statement. The value is 0 if the SQLSTATE value begins with 00
(completion) or 01 (warning). The value is 1 is the SQLSTATE value is anything else.

• WARNINGS

The number of warnings, from the statement diagnostics area.

• ROWS_AFFECTED

The number of rows affected by the statement. For a description of the meaning of “affected,” see
mysql_affected_rows().

• ROWS_SENT

The number of rows returned by the statement.

• ROWS_EXAMINED

The number of rows examined by the server layer (not counting any processing internal to storage
engines).

• CREATED_TMP_DISK_TABLES

Like the Created_tmp_disk_tables status variable, but specific to the statement.

• CREATED_TMP_TABLES

Like the Created_tmp_tables status variable, but specific to the statement.

• SELECT_FULL_JOIN

Like the Select_full_join status variable, but specific to the statement.

• SELECT_FULL_RANGE_JOIN

3431

https://dev.mysql.com/doc/c-api/5.6/en/mysql-affected-rows.html

Performance Schema Statement Event Tables

Like the Select_full_range_join status variable, but specific to the statement.

• SELECT_RANGE

Like the Select_range status variable, but specific to the statement.

• SELECT_RANGE_CHECK

Like the Select_range_check status variable, but specific to the statement.

• SELECT_SCAN

Like the Select_scan status variable, but specific to the statement.

• SORT_MERGE_PASSES

Like the Sort_merge_passes status variable, but specific to the statement.

• SORT_RANGE

Like the Sort_range status variable, but specific to the statement.

• SORT_ROWS

Like the Sort_rows status variable, but specific to the statement.

• SORT_SCAN

Like the Sort_scan status variable, but specific to the statement.

• NO_INDEX_USED

1 if the statement performed a table scan without using an index, 0 otherwise.

• NO_GOOD_INDEX_USED

1 if the server found no good index to use for the statement, 0 otherwise. For additional information,
see the description of the Extra column from EXPLAIN output for the Range checked for each
record value in Section 8.8.2, “EXPLAIN Output Format”.

• NESTING_EVENT_ID, NESTING_EVENT_TYPE

Reserved. Always NULL.

TRUNCATE TABLE is permitted for the events_statements_current table. It removes the rows.

22.12.6.2 The events_statements_history Table

The events_statements_history table contains the N most recent statement events that have ended
per thread. Statement events are not added to the table until they have ended. When the table contains the
maximum number of rows for a given thread, the oldest thread row is discarded when a new row for that
thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows per
thread explicitly, set the performance_schema_events_statements_history_size system variable
at server startup.

The events_statements_history table has the same columns as events_statements_current.
See Section 22.12.6.1, “The events_statements_current Table”.

3432

Performance Schema Connection Tables

TRUNCATE TABLE is permitted for the events_statements_history table. It removes the rows.

For more information about the relationship between the three events_statements_xxx event tables,
see Section 22.9, “Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect statement events, see Section 22.12.6, “Performance
Schema Statement Event Tables”.

22.12.6.3 The events_statements_history_long Table

The events_statements_history_long table contains the N most recent statement events that have
ended globally, across all threads. Statement events are not added to the table until they have ended.
When the table becomes full, the oldest row is discarded when a new row is added, regardless of which
thread generated either row.

The value of N is autosized at server startup. To set the table size explicitly, set the
performance_schema_events_statements_history_long_size system variable at server
startup.

The events_statements_history_long table has the same columns as
events_statements_current. See Section 22.12.6.1, “The events_statements_current Table”.

TRUNCATE TABLE is permitted for the events_statements_history_long table. It removes the rows.

For more information about the relationship between the three events_statements_xxx event tables,
see Section 22.9, “Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect statement events, see Section 22.12.6, “Performance
Schema Statement Event Tables”.

22.12.7 Performance Schema Connection Tables

When a client connects to the MySQL server, it does so under a particular user name and from a particular
host. The Performance Schema provides statistics about these connections, tracking them per account
(user and host combination) as well as separately per user name and host name, using these tables:

• accounts: Connection statistics per client account

• hosts: Connection statistics per client host name

• users: Connection statistics per client user name

The meaning of “account” in the connection tables is similar to its meaning in the MySQL grant tables in
the mysql system database, in the sense that the term refers to a combination of user and host values.
They differ in that, for grant tables, the host part of an account can be a pattern, whereas for Performance
Schema tables, the host value is always a specific nonpattern host name.

Each connection table has CURRENT_CONNECTIONS and TOTAL_CONNECTIONS columns to track the
current and total number of connections per “tracking value” on which its statistics are based. The tables
differ in what they use for the tracking value. The accounts table has USER and HOST columns to track
connections per user and host combination. The users and hosts tables have a USER and HOST column,
respectively, to track connections per user name and host name.

The Performance Schema also counts internal threads and threads for user sessions that failed to
authenticate, using rows with USER and HOST column values of NULL.

Suppose that clients named user1 and user2 each connect one time from hosta and hostb. The
Performance Schema tracks the connections as follows:

3433

Performance Schema Connection Tables

• The accounts table has four rows, for the user1/hosta, user1/hostb, user2/hosta, and
user2/hostb account values, each row counting one connection per account.

• The hosts table has two rows, for hosta and hostb, each row counting two connections per host
name.

• The users table has two rows, for user1 and user2, each row counting two connections per user
name.

When a client connects, the Performance Schema determines which row in each connection table
applies, using the tracking value appropriate to each table. If there is no such row, one is added. Then
the Performance Schema increments by one the CURRENT_CONNECTIONS and TOTAL_CONNECTIONS
columns in that row.

When a client disconnects, the Performance Schema decrements by one the CURRENT_CONNECTIONS
column in the row and leaves the TOTAL_CONNECTIONS column unchanged.

TRUNCATE TABLE is permitted for connection tables. It has these effects:

• Rows are removed for accounts, hosts, or users that have no current connections (rows with
CURRENT_CONNECTIONS = 0).

• Nonremoved rows are reset to count only current connections: For rows with CURRENT_CONNECTIONS
> 0, TOTAL_CONNECTIONS is reset to CURRENT_CONNECTIONS.

• Summary tables that depend on the connection table are implicitly truncated, as described later in this
section.

The Performance Schema maintains summary tables that aggregate connection statistics for various event
types by account, host, or user. These tables have _summary_by_account, _summary_by_host, or
_summary_by_user in the name. To identify them, use this query:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema'
 AND TABLE_NAME REGEXP '_summary_by_(account|host|user)'
 ORDER BY TABLE_NAME;
+--+
| TABLE_NAME |
+--+
| events_stages_summary_by_account_by_event_name |
| events_stages_summary_by_host_by_event_name |
| events_stages_summary_by_user_by_event_name |
| events_statements_summary_by_account_by_event_name |
| events_statements_summary_by_host_by_event_name |
| events_statements_summary_by_user_by_event_name |
| events_waits_summary_by_account_by_event_name |
| events_waits_summary_by_host_by_event_name |
| events_waits_summary_by_user_by_event_name |
+--+

For details about individual connection summary tables, consult the section that describes tables for the
summarized event type:

• Wait event summaries: Section 22.12.9.1, “Wait Event Summary Tables”

• Stage event summaries: Section 22.12.9.2, “Stage Summary Tables”

• Statement event summaries: Section 22.12.9.3, “Statement Summary Tables”

TRUNCATE TABLE is permitted for connection summary tables. It removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows. In

3434

Performance Schema Connection Tables

addition, each summary table that is aggregated by account, host, user, or thread is implicitly truncated
by truncation of the connection table on which it depends. The following table describes the relationship
between connection table truncation and implicitly truncated tables.

Table 22.2 Implicit Effects of Connection Table Truncation

Truncated Connection Table Implicitly Truncated Summary Tables

accounts Tables with names containing
_summary_by_account, _summary_by_thread

hosts Tables with names containing
_summary_by_account, _summary_by_host,
_summary_by_thread

users Tables with names containing
_summary_by_account, _summary_by_user,
_summary_by_thread

Truncating a _summary_global summary table also implicitly truncates its corresponding connection and
thread summary tables. For example, truncating events_waits_summary_global_by_event_name
implicitly truncates the wait event summary tables that are aggregated by account, host, user, or thread.

22.12.7.1 The accounts Table

The accounts table contains a row for each account that has connected to the MySQL server. For each
account, the table counts the current and total number of connections. The table size is autosized at server
startup. To set the table size explicitly, set the performance_schema_accounts_size system variable
at server startup. To disable account statistics, set this variable to 0.

The accounts table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 22.12.7, “Performance
Schema Connection Tables”.

• USER

The client user name for the connection. This is NULL for an internal thread, or for a user session that
failed to authenticate.

• HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session that
failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the account.

• TOTAL_CONNECTIONS

The total number of connections for the account.

22.12.7.2 The hosts Table

The hosts table contains a row for each host from which clients have connected to the MySQL server. For
each host name, the table counts the current and total number of connections. The table size is autosized
at server startup. To set the table size explicitly, set the performance_schema_hosts_size system
variable at server startup. To disable host statistics, set this variable to 0.

3435

Performance Schema Connection Attribute Tables

The hosts table has the following columns. For a description of how the Performance Schema maintains
rows in this table, including the effect of TRUNCATE TABLE, see Section 22.12.7, “Performance Schema
Connection Tables”.

• HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session that
failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the host.

• TOTAL_CONNECTIONS

The total number of connections for the host.

22.12.7.3 The users Table

The users table contains a row for each user who has connected to the MySQL server. For each user
name, the table counts the current and total number of connections. The table size is autosized at server
startup. To set the table size explicitly, set the performance_schema_users_size system variable at
server startup. To disable user statistics, set this variable to 0.

The users table has the following columns. For a description of how the Performance Schema maintains
rows in this table, including the effect of TRUNCATE TABLE, see Section 22.12.7, “Performance Schema
Connection Tables”.

• USER

The client user name for the connection. This is NULL for an internal thread, or for a user session that
failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the user.

• TOTAL_CONNECTIONS

The total number of connections for the user.

22.12.8 Performance Schema Connection Attribute Tables

Connection attributes are key-value pairs that application programs can pass to the server at connect
time. For applications based on the C API implemented by the libmysqlclient client library, the
mysql_options() and mysql_options4() functions define the connection attribute set. Other MySQL
Connectors may provide their own attribute-definition methods.

These Performance Schema tables expose attribute information:

• session_account_connect_attrs: Connection attributes for the current session, and other
sessions associated with the session account

• session_connect_attrs: Connection attributes for all sessions

Attribute names that begin with an underscore (_) are reserved for internal use and should not be created
by application programs. This convention permits new attributes to be introduced by MySQL without
colliding with application attributes, and enables application programs to define their own attributes that do
not collide with internal attributes.

3436

https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-options4.html

Performance Schema Connection Attribute Tables

• Available Connection Atrributes

• Connection Atrribute Limits

Available Connection Atrributes

The set of connection attributes visible within a given connection varies depending on factors such as your
platform, MySQL Connector used to establish the connection, or client program.

The libmysqlclient client library sets these attributes:

• _client_name: The client name (libmysql for the client library).

• _client_version: The client library version.

• _os: The operating system (for example, Linux, Win64).

• _pid: The client process ID.

• _platform: The machine platform (for example, x86_64).

• _thread: The client thread ID (Windows only).

Other MySQL Connectors may define their own connection attributes.

MySQL Connector/J defines these attributes:

• _client_license: The connector license type.

• _runtime_vendor: The Java runtime environment (JRE) vendor.

• _runtime_version: The Java runtime environment (JRE) version.

MySQL Connector/NET defines these attributes:

• _client_version: The client library version.

• _os: The operating system (for example, Linux, Win64).

• _pid: The client process ID.

• _platform: The machine platform (for example, x86_64).

• _program_name: The client name.

• _thread: The client thread ID (Windows only).

PHP defines attributes that depend on how it was compiled:

• Compiled using libmysqlclient: The standard libmysqlclient attributes, described previously.

• Compiled using mysqlnd: Only the _client_name attribute, with a value of mysqlnd.

Many MySQL client programs set a program_name attribute with a value equal to the client name.
For example, mysqladmin and mysqldump set program_name to mysqladmin and mysqldump,
respectively.

Some MySQL client programs define additional attributes:

• mysqlbinlog:

• _client_role: binary_log_listener

3437

Performance Schema Connection Attribute Tables

• Replica connections:

• program_name: mysqld

• _client_role: binary_log_listener

• FEDERATED storage engine connections:

• program_name: mysqld

• _client_role: federated_storage

Connection Atrribute Limits

There are limits on the amount of connection attribute data transmitted from client to server:

• A fixed limit imposed by the client prior to connect time.

• A fixed limit imposed by the server at connect time.

• A configurable limit imposed by the Performance Schema at connect time.

For connections initiated using the C API, the libmysqlclient library imposes a limit of 64KB on the
aggregate size of connection attribute data on the client side: Calls to mysql_options() that cause
this limit to be exceeded produce a CR_INVALID_PARAMETER_NO error. Other MySQL Connectors may
impose their own client-side limits on how much connection attribute data can be transmitted to the server.

On the server side, these size checks on connection attribute data occur:

• The server imposes a limit of 64KB on the aggregate size of connection attribute data it can accept. If a
client attempts to send more than 64KB of attribute data, the server rejects the connection.

• For accepted connections, the Performance Schema checks aggregate attribute size against the value
of the performance_schema_session_connect_attrs_size system variable. If attribute size
exceeds this value, these actions take place:

• The Performance Schema truncates the attribute data and increments the
Performance_schema_session_connect_attrs_lost status variable, which indicates the
number of connections for which attribute truncation occurred.

• The Performance Schema writes a message to the error log if the log_warnings system variable is
greater than zero:

[Warning] Connection attributes of length N were truncated

22.12.8.1 The session_account_connect_attrs Table

Application programs can provide key-value connection attributes to be passed to the server at connect
time. For descriptions of common attributes, see Section 22.12.8, “Performance Schema Connection
Attribute Tables”.

The session_account_connect_attrs table contains connection attributes only for the current
session, and other sessions associated with the session account. To see connection attributes for all
sessions, use the session_connect_attrs table.

The session_account_connect_attrs table has these columns:

• PROCESSLIST_ID

3438

https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html
https://dev.mysql.com/doc/mysql-errors/5.6/en/client-error-reference.html#error_cr_invalid_parameter_no

Performance Schema Summary Tables

The connection identifier for the session.

• ATTR_NAME

The attribute name.

• ATTR_VALUE

The attribute value.

• ORDINAL_POSITION

The order in which the attribute was added to the set of connection attributes.

TRUNCATE TABLE is not permitted for the session_account_connect_attrs table.

22.12.8.2 The session_connect_attrs Table

Application programs can provide key-value connection attributes to be passed to the server at connect
time. For descriptions of common attributes, see Section 22.12.8, “Performance Schema Connection
Attribute Tables”.

The session_connect_attrs table contains connection attributes for all sessions. To see connection
attributes only for the current session, and other sessions associated with the session account, use the
session_account_connect_attrs table.

The session_connect_attrs table has these columns:

• PROCESSLIST_ID

The connection identifier for the session.

• ATTR_NAME

The attribute name.

• ATTR_VALUE

The attribute value.

• ORDINAL_POSITION

The order in which the attribute was added to the set of connection attributes.

TRUNCATE TABLE is not permitted for the session_connect_attrs table.

22.12.9 Performance Schema Summary Tables

Summary tables provide aggregated information for terminated events over time. The tables in this group
summarize event data in different ways.

Each summary table has grouping columns that determine how to group the data to be aggregated, and
summary columns that contain the aggregated values. Tables that summarize events in similar ways often
have similar sets of summary columns and differ only in the grouping columns used to determine how
events are aggregated.

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the summary
columns to 0 or NULL, not to remove rows. This enables you to clear collected values and restart

3439

Performance Schema Summary Tables

aggregation. That might be useful, for example, after you have made a runtime configuration change.
Exceptions to this truncation behavior are noted in individual summary table sections.

Wait Event Summaries

Table 22.3 Performance Schema Wait Event Summary Tables

Table Name Description

events_waits_summary_by_account_by_event_nameWait events per account and event name

events_waits_summary_by_host_by_event_nameWait events per host name and event name

events_waits_summary_by_instance Wait events per instance

events_waits_summary_by_thread_by_event_nameWait events per thread and event name

events_waits_summary_by_user_by_event_nameWait events per user name and event name

events_waits_summary_global_by_event_nameWait events per event name

Stage Summaries

Table 22.4 Performance Schema Stage Event Summary Tables

Table Name Description

events_stages_summary_by_account_by_event_nameStage events per account and event name

events_stages_summary_by_host_by_event_nameStage events per host name and event name

events_stages_summary_by_thread_by_event_nameStage waits per thread and event name

events_stages_summary_by_user_by_event_nameStage events per user name and event name

events_stages_summary_global_by_event_nameStage waits per event name

Statement Summaries

Table 22.5 Performance Schema Statement Event Summary Tables

Table Name Description

events_statements_summary_by_account_by_event_nameStatement events per account and event name

events_statements_summary_by_digest Statement events per schema and digest value

events_statements_summary_by_host_by_event_nameStatement events per host name and event name

events_statements_summary_by_thread_by_event_nameStatement events per thread and event name

events_statements_summary_by_user_by_event_nameStatement events per user name and event name

events_statements_summary_global_by_event_nameStatement events per event name

Object Wait Summaries

Table 22.6 Performance Schema Object Event Summary Tables

Table Name Description

objects_summary_global_by_type Object summaries

File I/O Summaries

Table 22.7 Performance Schema File I/O Event Summary Tables

Table Name Description

file_summary_by_event_name File events per event name

3440

Performance Schema Summary Tables

Table Name Description

file_summary_by_instance File events per file instance

Table I/O and Lock Wait Summaries

Table 22.8 Performance Schema Table I/O and Lock Wait Event Summary Tables

Table Name Description

table_io_waits_summary_by_index_usage Table I/O waits per index

table_io_waits_summary_by_table Table I/O waits per table

table_lock_waits_summary_by_table Table lock waits per table

Socket Summaries

Table 22.9 Performance Schema Socket Event Summary Tables

Table Name Description

socket_summary_by_event_name Socket waits and I/O per event name

socket_summary_by_instance Socket waits and I/O per instance

22.12.9.1 Wait Event Summary Tables

The Performance Schema maintains tables for collecting current and recent wait events, and aggregates
that information in summary tables. Section 22.12.4, “Performance Schema Wait Event Tables” describes
the events on which wait summaries are based. See that discussion for information about the content of
wait events, the current and recent wait event tables, and how to control wait event collection, which is
disabled by default.

Example wait event summary information:

mysql> SELECT *
 FROM performance_schema.events_waits_summary_global_by_event_name\G
...
*************************** 6. row ***************************
 EVENT_NAME: wait/synch/mutex/sql/BINARY_LOG::LOCK_index
 COUNT_STAR: 8
SUM_TIMER_WAIT: 2119302
MIN_TIMER_WAIT: 196092
AVG_TIMER_WAIT: 264912
MAX_TIMER_WAIT: 569421
...
*************************** 9. row ***************************
 EVENT_NAME: wait/synch/mutex/sql/hash_filo::lock
 COUNT_STAR: 69
SUM_TIMER_WAIT: 16848828
MIN_TIMER_WAIT: 0
AVG_TIMER_WAIT: 244185
MAX_TIMER_WAIT: 735345
...

Each wait event summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• events_waits_summary_by_account_by_event_name has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

3441

Performance Schema Summary Tables

• events_waits_summary_by_host_by_event_name has EVENT_NAME and HOST columns. Each
row summarizes events for a given host and event name.

• events_waits_summary_by_instance has EVENT_NAME and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given event name and object. If an instrument is used
to create multiple instances, each instance has a unique OBJECT_INSTANCE_BEGIN value and is
summarized separately in this table.

• events_waits_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_waits_summary_by_user_by_event_name has EVENT_NAME and USER columns. Each
row summarizes events for a given user and event name.

• events_waits_summary_global_by_event_name has an EVENT_NAME column. Each row
summarizes events for a given event name. An instrument might be used to create multiple instances
of the instrumented object. For example, if there is an instrument for a mutex that is created for each
connection, there are as many instances as there are connections. The summary row for the instrument
summarizes over all these instances.

Each wait event summary table has these summary columns containing aggregated values:

• COUNT_STAR

The number of summarized events. This value includes all events, whether timed or nontimed.

• SUM_TIMER_WAIT

The total wait time of the summarized timed events. This value is calculated only for timed events
because nontimed events have a wait time of NULL. The same is true for the other xxx_TIMER_WAIT
values.

• MIN_TIMER_WAIT

The minimum wait time of the summarized timed events.

• AVG_TIMER_WAIT

The average wait time of the summarized timed events.

• MAX_TIMER_WAIT

The maximum wait time of the summarized timed events.

TRUNCATE TABLE is permitted for wait summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero rather than removing rows.

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each wait summary table that is aggregated by account, host, user, or thread is
implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_waits_summary_global_by_event_name. For details, see Section 22.12.7, “Performance
Schema Connection Tables”.

22.12.9.2 Stage Summary Tables

3442

Performance Schema Summary Tables

The Performance Schema maintains tables for collecting current and recent stage events, and aggregates
that information in summary tables. Section 22.12.5, “Performance Schema Stage Event Tables” describes
the events on which stage summaries are based. See that discussion for information about the content of
stage events, the current and historical stage event tables, and how to control stage event collection, which
is disabled by default.

Example stage event summary information:

mysql> SELECT *
 FROM performance_schema.events_stages_summary_global_by_event_name\G
...
*************************** 5. row ***************************
 EVENT_NAME: stage/sql/checking permissions
 COUNT_STAR: 57
SUM_TIMER_WAIT: 26501888880
MIN_TIMER_WAIT: 7317456
AVG_TIMER_WAIT: 464945295
MAX_TIMER_WAIT: 12858936792
...
*************************** 9. row ***************************
 EVENT_NAME: stage/sql/closing tables
 COUNT_STAR: 37
SUM_TIMER_WAIT: 662606568
MIN_TIMER_WAIT: 1593864
AVG_TIMER_WAIT: 17907891
MAX_TIMER_WAIT: 437977248
...

Each stage summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• events_stages_summary_by_account_by_event_name has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

• events_stages_summary_by_host_by_event_name has EVENT_NAME and HOST columns. Each
row summarizes events for a given host and event name.

• events_stages_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_stages_summary_by_user_by_event_name has EVENT_NAME and USER columns. Each
row summarizes events for a given user and event name.

• events_stages_summary_global_by_event_name has an EVENT_NAME column. Each row
summarizes events for a given event name.

Each stage summary table has these summary columns containing aggregated values: COUNT_STAR,
SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, and MAX_TIMER_WAIT. These columns are
analogous to the columns of the same names in the wait event summary tables (see Section 22.12.9.1,
“Wait Event Summary Tables”), except that the stage summary tables aggregate events from
events_stages_current rather than events_waits_current.

TRUNCATE TABLE is permitted for stage summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary columns to
zero rather than removing rows.

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows.

3443

Performance Schema Summary Tables

In addition, each stage summary table that is aggregated by account, host, user, or thread is
implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_stages_summary_global_by_event_name. For details, see Section 22.12.7, “Performance
Schema Connection Tables”.

22.12.9.3 Statement Summary Tables

The Performance Schema maintains tables for collecting current and recent statement events, and
aggregates that information in summary tables. Section 22.12.6, “Performance Schema Statement
Event Tables” describes the events on which statement summaries are based. See that discussion for
information about the content of statement events, the current and historical statement event tables, and
how to control statement event collection, which is partially disabled by default.

Example statement event summary information:

mysql> SELECT *
 FROM performance_schema.events_statements_summary_global_by_event_name\G
*************************** 1. row ***************************
 EVENT_NAME: statement/sql/select
 COUNT_STAR: 25
 SUM_TIMER_WAIT: 1535983999000
 MIN_TIMER_WAIT: 209823000
 AVG_TIMER_WAIT: 61439359000
 MAX_TIMER_WAIT: 1363397650000
 SUM_LOCK_TIME: 20186000000
 SUM_ERRORS: 0
 SUM_WARNINGS: 0
 SUM_ROWS_AFFECTED: 0
 SUM_ROWS_SENT: 388
 SUM_ROWS_EXAMINED: 370
SUM_CREATED_TMP_DISK_TABLES: 0
 SUM_CREATED_TMP_TABLES: 0
 SUM_SELECT_FULL_JOIN: 0
 SUM_SELECT_FULL_RANGE_JOIN: 0
 SUM_SELECT_RANGE: 0
 SUM_SELECT_RANGE_CHECK: 0
 SUM_SELECT_SCAN: 6
 SUM_SORT_MERGE_PASSES: 0
 SUM_SORT_RANGE: 0
 SUM_SORT_ROWS: 0
 SUM_SORT_SCAN: 0
 SUM_NO_INDEX_USED: 6
 SUM_NO_GOOD_INDEX_USED: 0
...

Each statement summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• events_statements_summary_by_account_by_event_name has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

• events_statements_summary_by_digest has SCHEMA_NAME and DIGEST columns. Each
row summarizes events per schema and digest value. (The DIGEST_TEXT column contains the
corresponding normalized statement digest text, but is neither a grouping nor a summary column.)

The maximum number of rows in the table is autosized at server startup. To set this maximum explicitly,
set the performance_schema_digests_size system variable at server startup.

• events_statements_summary_by_host_by_event_name has EVENT_NAME and HOST columns.
Each row summarizes events for a given host and event name.

3444

Performance Schema Summary Tables

• events_statements_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_statements_summary_by_user_by_event_name has EVENT_NAME and USER columns.
Each row summarizes events for a given user and event name.

• events_statements_summary_global_by_event_name has an EVENT_NAME column. Each row
summarizes events for a given event name.

Each statement summary table has these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns are analogous to the columns of the same names in the wait event summary tables (see
Section 22.12.9.1, “Wait Event Summary Tables”), except that the statement summary tables aggregate
events from events_statements_current rather than events_waits_current.

• SUM_xxx

The aggregate of the corresponding xxx column in the events_statements_current table. For
example, the SUM_LOCK_TIME and SUM_ERRORS columns in statement summary tables are the
aggregates of the LOCK_TIME and ERRORS columns in events_statements_current table.

The events_statements_summary_by_digest table has these additional summary columns:

• FIRST_SEEN, LAST_SEEN

Timestamps indicating when statements with the given digest value were first seen and most recently
seen.

TRUNCATE TABLE is permitted for statement summary tables. It has these effects:

• For events_statements_summary_by_digest, it removes the rows.

• For other summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

• For other summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each statement summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_statements_summary_global_by_event_name. For details, see Section 22.12.7,
“Performance Schema Connection Tables”.

Statement Digest Aggregation Rules

If the statements_digest consumer is enabled, aggregation into
events_statements_summary_by_digest occurs as follows when a statement completes.
Aggregation is based on the DIGEST value computed for the statement.

• If a events_statements_summary_by_digest row already exists with the digest value for the
statement that just completed, statistics for the statement are aggregated to that row. The LAST_SEEN
column is updated to the current time.

• If no row has the digest value for the statement that just completed, and the table is not full, a new row
is created for the statement. The FIRST_SEEN and LAST_SEEN columns are initialized with the current
time.

3445

Performance Schema Summary Tables

• If no row has the statement digest value for the statement that just completed, and the table is full, the
statistics for the statement that just completed are added to a special “catch-all” row with DIGEST =
NULL, which is created if necessary. If the row is created, the FIRST_SEEN and LAST_SEEN columns
are initialized with the current time. Otherwise, the LAST_SEEN column is updated with the current time.

The row with DIGEST = NULL is maintained because Performance Schema tables have a maximum size
due to memory constraints. The DIGEST = NULL row permits digests that do not match other rows to be
counted even if the summary table is full, using a common “other” bucket. This row helps you estimate
whether the digest summary is representative:

• A DIGEST = NULL row that has a COUNT_STAR value that represents 5% of all digests shows that the
digest summary table is very representative; the other rows cover 95% of the statements seen.

• A DIGEST = NULL row that has a COUNT_STAR value that represents 50% of all digests shows that
the digest summary table is not very representative; the other rows cover only half the statements
seen. Most likely the DBA should increase the maximum table size so that more of the rows counted
in the DIGEST = NULL row would be counted using more specific rows instead. By default, the table is
autosized, but if this size is too small, set the performance_schema_digests_size system variable
to a larger value at server startup.

22.12.9.4 Object Wait Summary Table

The Performance Schema maintains the objects_summary_global_by_type table for aggregating
object wait events.

Example object wait event summary information:

mysql> SELECT * FROM performance_schema.objects_summary_global_by_type\G
...
*************************** 3. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: test
 OBJECT_NAME: t
 COUNT_STAR: 3
SUM_TIMER_WAIT: 263126976
MIN_TIMER_WAIT: 1522272
AVG_TIMER_WAIT: 87708678
MAX_TIMER_WAIT: 258428280
...
*************************** 10. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: mysql
 OBJECT_NAME: user
 COUNT_STAR: 14
SUM_TIMER_WAIT: 365567592
MIN_TIMER_WAIT: 1141704
AVG_TIMER_WAIT: 26111769
MAX_TIMER_WAIT: 334783032
...

The objects_summary_global_by_type table has these grouping columns to indicate how the table
aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. Each row summarizes events
for the given object.

objects_summary_global_by_type has the same summary columns as the
events_waits_summary_by_xxx tables. See Section 22.12.9.1, “Wait Event Summary Tables”.

TRUNCATE TABLE is permitted for the object summary table. It resets the summary columns to zero rather
than removing rows.

3446

Performance Schema Summary Tables

22.12.9.5 File I/O Summary Tables

The Performance Schema maintains file I/O summary tables that aggregate information about I/O
operations.

Example file I/O event summary information:

mysql> SELECT * FROM performance_schema.file_summary_by_event_name\G
...
*************************** 2. row ***************************
 EVENT_NAME: wait/io/file/sql/binlog
 COUNT_STAR: 31
 SUM_TIMER_WAIT: 8243784888
 MIN_TIMER_WAIT: 0
 AVG_TIMER_WAIT: 265928484
 MAX_TIMER_WAIT: 6490658832
...
mysql> SELECT * FROM performance_schema.file_summary_by_instance\G
...
*************************** 2. row ***************************
 FILE_NAME: /var/mysql/share/english/errmsg.sys
 EVENT_NAME: wait/io/file/sql/ERRMSG
 EVENT_NAME: wait/io/file/sql/ERRMSG
 OBJECT_INSTANCE_BEGIN: 4686193384
 COUNT_STAR: 5
 SUM_TIMER_WAIT: 13990154448
 MIN_TIMER_WAIT: 26349624
 AVG_TIMER_WAIT: 2798030607
 MAX_TIMER_WAIT: 8150662536
...

Each file I/O summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• file_summary_by_event_name has an EVENT_NAME column. Each row summarizes events for a
given event name.

• file_summary_by_instance has FILE_NAME, EVENT_NAME, and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given file and event name.

Each file I/O summary table has the following summary columns containing aggregated values. Some
columns are more general and have values that are the same as the sum of the values of more fine-
grained columns. In this way, aggregations at higher levels are available directly without the need for user-
defined views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all I/O operations.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ,
SUM_NUMBER_OF_BYTES_READ

These columns aggregate all read operations, including FGETS, FGETC, FREAD, and READ.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE,
SUM_NUMBER_OF_BYTES_WRITE

These columns aggregate all write operations, including FPUTS, FPUTC, FPRINTF, VFPRINTF, FWRITE,
and PWRITE.

• COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC

3447

Performance Schema Summary Tables

These columns aggregate all other I/O operations, including CREATE, DELETE, OPEN, CLOSE,
STREAM_OPEN, STREAM_CLOSE, SEEK, TELL, FLUSH, STAT, FSTAT, CHSIZE, RENAME, and SYNC.
There are no byte counts for these operations.

TRUNCATE TABLE is permitted for file I/O summary tables. It resets the summary columns to zero rather
than removing rows.

The MySQL server uses several techniques to avoid I/O operations by caching information read from files,
so it is possible that statements you might expect to result in I/O events do not. You may be able to ensure
that I/O does occur by flushing caches or restarting the server to reset its state.

22.12.9.6 Table I/O and Lock Wait Summary Tables

The following sections describe the table I/O and lock wait summary tables:

• table_io_waits_summary_by_index_usage: Table I/O waits per index

• table_io_waits_summary_by_table: Table I/O waits per table

• table_lock_waits_summary_by_table: Table lock waits per table

The table_io_waits_summary_by_table Table

The table_io_waits_summary_by_table table aggregates all table I/O wait events, as generated by
the wait/io/table/sql/handler instrument. The grouping is by table.

The table_io_waits_summary_by_table table has these grouping columns to indicate how the table
aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have the same
meaning as in the events_waits_current table. They identify the table to which the row applies.

table_io_waits_summary_by_table has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values that are
the same as the sum of the values of more fine-grained columns. For example, columns that aggregate all
writes hold the sum of the corresponding columns that aggregate inserts, updates, and deletes. In this way,
aggregations at higher levels are available directly without the need for user-defined views that sum lower-
level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all I/O operations. They are the same as the sum of the corresponding
xxx_READ and xxx_WRITE columns.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ

These columns aggregate all read operations. They are the same as the sum of the corresponding
xxx_FETCH columns.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE

These columns aggregate all write operations. They are the same as the sum of the corresponding
xxx_INSERT, xxx_UPDATE, and xxx_DELETE columns.

• COUNT_FETCH, SUM_TIMER_FETCH, MIN_TIMER_FETCH, AVG_TIMER_FETCH, MAX_TIMER_FETCH

These columns aggregate all fetch operations.

• COUNT_INSERT, SUM_TIMER_INSERT, MIN_TIMER_INSERT, AVG_TIMER_INSERT,
MAX_TIMER_INSERT

3448

Performance Schema Summary Tables

These columns aggregate all insert operations.

• COUNT_UPDATE, SUM_TIMER_UPDATE, MIN_TIMER_UPDATE, AVG_TIMER_UPDATE,
MAX_TIMER_UPDATE

These columns aggregate all update operations.

• COUNT_DELETE, SUM_TIMER_DELETE, MIN_TIMER_DELETE, AVG_TIMER_DELETE,
MAX_TIMER_DELETE

These columns aggregate all delete operations.

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary
columns to zero rather than removing rows. Truncating this table also truncates the
table_io_waits_summary_by_index_usage table.

The table_io_waits_summary_by_index_usage Table

The table_io_waits_summary_by_index_usage table aggregates all table index I/O wait events, as
generated by the wait/io/table/sql/handler instrument. The grouping is by table index.

The columns of table_io_waits_summary_by_index_usage are nearly identical to
table_io_waits_summary_by_table. The only difference is the additional group column,
INDEX_NAME, which corresponds to the name of the index that was used when the table I/O wait event
was recorded:

• A value of PRIMARY indicates that table I/O used the primary index.

• A value of NULL means that table I/O used no index.

• Inserts are counted against INDEX_NAME = NULL.

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary
columns to zero rather than removing rows. This table is also truncated by truncation of the
table_io_waits_summary_by_table table. A DDL operation that changes the index structure of a
table may cause the per-index statistics to be reset.

The table_lock_waits_summary_by_table Table

The table_lock_waits_summary_by_table table aggregates all table lock wait events, as generated
by the wait/lock/table/sql/handler instrument. The grouping is by table.

This table contains information about internal and external locks:

• An internal lock corresponds to a lock in the SQL layer. This is currently implemented by a call to
thr_lock(). In event rows, these locks are distinguished by the OPERATION column, which has one of
these values:

read normal
read with shared locks
read high priority
read no insert
write allow write
write concurrent insert
write delayed
write low priority
write normal

3449

Performance Schema Summary Tables

• An external lock corresponds to a lock in the storage engine layer. This is currently implemented by a
call to handler::external_lock(). In event rows, these locks are distinguished by the OPERATION
column, which has one of these values:

read external
write external

The table_lock_waits_summary_by_table table has these grouping columns to indicate how the
table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have the
same meaning as in the events_waits_current table. They identify the table to which the row applies.

table_lock_waits_summary_by_table has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values that are
the same as the sum of the values of more fine-grained columns. For example, columns that aggregate
all locks hold the sum of the corresponding columns that aggregate read and write locks. In this way,
aggregations at higher levels are available directly without the need for user-defined views that sum lower-
level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all lock operations. They are the same as the sum of the corresponding
xxx_READ and xxx_WRITE columns.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ

These columns aggregate all read-lock operations. They are the same as the sum of the corresponding
xxx_READ_NORMAL, xxx_READ_WITH_SHARED_LOCKS, xxx_READ_HIGH_PRIORITY, and
xxx_READ_NO_INSERT columns.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE

These columns aggregate all write-lock operations. They are the same as the sum of the corresponding
xxx_WRITE_ALLOW_WRITE, xxx_WRITE_CONCURRENT_INSERT, xxx_WRITE_DELAYED,
xxx_WRITE_LOW_PRIORITY, and xxx_WRITE_NORMAL columns.

• COUNT_READ_NORMAL, SUM_TIMER_READ_NORMAL, MIN_TIMER_READ_NORMAL,
AVG_TIMER_READ_NORMAL, MAX_TIMER_READ_NORMAL

These columns aggregate internal read locks.

• COUNT_READ_WITH_SHARED_LOCKS, SUM_TIMER_READ_WITH_SHARED_LOCKS,
MIN_TIMER_READ_WITH_SHARED_LOCKS, AVG_TIMER_READ_WITH_SHARED_LOCKS,
MAX_TIMER_READ_WITH_SHARED_LOCKS

These columns aggregate internal read locks.

• COUNT_READ_HIGH_PRIORITY, SUM_TIMER_READ_HIGH_PRIORITY,
MIN_TIMER_READ_HIGH_PRIORITY, AVG_TIMER_READ_HIGH_PRIORITY,
MAX_TIMER_READ_HIGH_PRIORITY

These columns aggregate internal read locks.

• COUNT_READ_NO_INSERT, SUM_TIMER_READ_NO_INSERT, MIN_TIMER_READ_NO_INSERT,
AVG_TIMER_READ_NO_INSERT, MAX_TIMER_READ_NO_INSERT

These columns aggregate internal read locks.

• COUNT_READ_EXTERNAL, SUM_TIMER_READ_EXTERNAL, MIN_TIMER_READ_EXTERNAL,
AVG_TIMER_READ_EXTERNAL, MAX_TIMER_READ_EXTERNAL

3450

Performance Schema Summary Tables

These columns aggregate external read locks.

• COUNT_WRITE_ALLOW_WRITE, SUM_TIMER_WRITE_ALLOW_WRITE,
MIN_TIMER_WRITE_ALLOW_WRITE, AVG_TIMER_WRITE_ALLOW_WRITE,
MAX_TIMER_WRITE_ALLOW_WRITE

These columns aggregate internal write locks.

• COUNT_WRITE_CONCURRENT_INSERT, SUM_TIMER_WRITE_CONCURRENT_INSERT,
MIN_TIMER_WRITE_CONCURRENT_INSERT, AVG_TIMER_WRITE_CONCURRENT_INSERT,
MAX_TIMER_WRITE_CONCURRENT_INSERT

These columns aggregate internal write locks.

• COUNT_WRITE_DELAYED, SUM_TIMER_WRITE_DELAYED, MIN_TIMER_WRITE_DELAYED,
AVG_TIMER_WRITE_DELAYED, MAX_TIMER_WRITE_DELAYED

These columns aggregate internal write locks.

DELAYED inserts are deprecated; expect these columns to be removed in a future release.

• COUNT_WRITE_LOW_PRIORITY, SUM_TIMER_WRITE_LOW_PRIORITY,
MIN_TIMER_WRITE_LOW_PRIORITY, AVG_TIMER_WRITE_LOW_PRIORITY,
MAX_TIMER_WRITE_LOW_PRIORITY

These columns aggregate internal write locks.

• COUNT_WRITE_NORMAL, SUM_TIMER_WRITE_NORMAL, MIN_TIMER_WRITE_NORMAL,
AVG_TIMER_WRITE_NORMAL, MAX_TIMER_WRITE_NORMAL

These columns aggregate internal write locks.

• COUNT_WRITE_EXTERNAL, SUM_TIMER_WRITE_EXTERNAL, MIN_TIMER_WRITE_EXTERNAL,
AVG_TIMER_WRITE_EXTERNAL, MAX_TIMER_WRITE_EXTERNAL

These columns aggregate external write locks.

TRUNCATE TABLE is permitted for table lock summary tables. It resets the summary columns to zero
rather than removing rows.

22.12.9.7 Socket Summary Tables

The Performance Schema maintains socket summary tables, which aggregate timer and byte count
information for socket operations:

• socket_summary_by_event_name: Aggregate timer and byte count statistics generated by the
wait/io/socket/* instruments for all socket I/O operations, per socket instrument.

• socket_summary_by_instance: Aggregate timer and byte count statistics generated by the wait/
io/socket/* instruments for all socket I/O operations, per socket instance. When a connection
terminates, the row in socket_summary_by_instance corresponding to it is deleted.

The socket summary tables do not aggregate waits generated by idle events while sockets are waiting
for the next request from the client. For idle event aggregations, use the wait-event summary tables; see
Section 22.12.9.1, “Wait Event Summary Tables”.

Each socket summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

3451

Performance Schema Miscellaneous Tables

• socket_summary_by_event_name has an EVENT_NAME column. Each row summarizes events for a
given event name.

• socket_summary_by_instance has an OBJECT_INSTANCE_BEGIN column. Each row summarizes
events for a given object.

Each socket summary table has these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all operations.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ,
SUM_NUMBER_OF_BYTES_READ

These columns aggregate all receive operations (RECV, RECVFROM, and RECVMSG).

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE,
SUM_NUMBER_OF_BYTES_WRITE

These columns aggregate all send operations (SEND, SENDTO, and SENDMSG).

• COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC

These columns aggregate all other socket operations, such as CONNECT, LISTEN, ACCEPT, CLOSE, and
SHUTDOWN. There are no byte counts for these operations.

The socket_summary_by_instance table also has an EVENT_NAME column that indicates the class of
the socket: client_connection, server_tcpip_socket, server_unix_socket. This column can
be grouped on to isolate, for example, client activity from that of the server listening sockets.

TRUNCATE TABLE is permitted for socket summary tables. Except for
events_statements_summary_by_digest, tt resets the summary columns to zero rather than
removing rows.

22.12.10 Performance Schema Miscellaneous Tables

The following sections describe tables that do not fall into the table categories discussed in the preceding
sections:

• host_cache: Information from the internal host cache.

• performance_timers: Which event timers are available.

• threads: Information about server threads.

22.12.10.1 The host_cache Table

The MySQL server maintains an in-memory host cache that contains client host name and IP address
information and is used to avoid Domain Name System (DNS) lookups. The host_cache table exposes
the contents of this cache. The host_cache_size system variable controls the size of the host cache,
as well as the size of the host_cache table. For operational and configuration information about the host
cache, see Section 5.1.11.2, “DNS Lookups and the Host Cache”.

Because the host_cache table exposes the contents of the host cache, it can be examined using SELECT
statements. This may help you diagnose the causes of connection problems. The Performance Schema
must be enabled or this table is empty.

3452

Performance Schema Miscellaneous Tables

The host_cache table has these columns:

• IP

The IP address of the client that connected to the server, expressed as a string.

• HOST

The resolved DNS host name for that client IP, or NULL if the name is unknown.

• HOST_VALIDATED

Whether the IP-to-host name-to-IP DNS resolution was performed successfully for the client IP. If
HOST_VALIDATED is YES, the HOST column is used as the host name corresponding to the IP so that
additional calls to DNS can be avoided. While HOST_VALIDATED is NO, DNS resolution is attempted
for each connection attempt, until it eventually completes with either a valid result or a permanent error.
This information enables the server to avoid caching bad or missing host names during temporary DNS
failures, which would negatively affect clients forever.

• SUM_CONNECT_ERRORS

The number of connection errors that are deemed “blocking” (assessed against the
max_connect_errors system variable). Only protocol handshake errors are counted, and only for
hosts that passed validation (HOST_VALIDATED = YES).

Once SUM_CONNECT_ERRORS for a given host reaches the value of max_connect_errors,
new connections from that host are blocked. The SUM_CONNECT_ERRORS value can exceed
the max_connect_errors value because multiple connection attempts from a host can occur
simultaneously while the host is not blocked. Any or all of them can fail, independently incrementing
SUM_CONNECT_ERRORS, possibly beyond the value of max_connect_errors.

Suppose that max_connect_errors is 200 and SUM_CONNECT_ERRORS for a given host is
199. If 10 clients attempt to connect from that host simultaneously, none of them are blocked
because SUM_CONNECT_ERRORS has not reached 200. If blocking errors occur for five of the clients,
SUM_CONNECT_ERRORS is increased by one for each client, for a resulting SUM_CONNECT_ERRORS
value of 204. The other five clients succeed and are not blocked because the value of
SUM_CONNECT_ERRORS when their connection attempts began had not reached 200. New connections
from the host that begin after SUM_CONNECT_ERRORS reaches 200 are blocked.

• COUNT_HOST_BLOCKED_ERRORS

The number of connections that were blocked because SUM_CONNECT_ERRORS exceeded the value of
the max_connect_errors system variable.

• COUNT_NAMEINFO_TRANSIENT_ERRORS

The number of transient errors during IP-to-host name DNS resolution.

• COUNT_NAMEINFO_PERMANENT_ERRORS

The number of permanent errors during IP-to-host name DNS resolution.

• COUNT_FORMAT_ERRORS

The number of host name format errors. MySQL does not perform matching of Host column values in
the mysql.user system table against host names for which one or more of the initial components of the
name are entirely numeric, such as 1.2.example.com. The client IP address is used instead. For the
rationale why this type of matching does not occur, see Section 6.2.4, “Specifying Account Names”.

3453

Performance Schema Miscellaneous Tables

• COUNT_ADDRINFO_TRANSIENT_ERRORS

The number of transient errors during host name-to-IP reverse DNS resolution.

• COUNT_ADDRINFO_PERMANENT_ERRORS

The number of permanent errors during host name-to-IP reverse DNS resolution.

• COUNT_FCRDNS_ERRORS

The number of forward-confirmed reverse DNS errors. These errors occur when IP-to-host name-to-IP
DNS resolution produces an IP address that does not match the client originating IP address.

• COUNT_HOST_ACL_ERRORS

The number of errors that occur because no users are permitted to connect from the client host. In
such cases, the server returns ER_HOST_NOT_PRIVILEGED and does not even ask for a user name or
password.

• COUNT_NO_AUTH_PLUGIN_ERRORS

The number of errors due to requests for an unavailable authentication plugin. A plugin can be
unavailable if, for example, it was never loaded or a load attempt failed.

• COUNT_AUTH_PLUGIN_ERRORS

The number of errors reported by authentication plugins.

An authentication plugin can report different error codes to indicate the root cause
of a failure. Depending on the type of error, one of these columns is incremented:
COUNT_AUTHENTICATION_ERRORS, COUNT_AUTH_PLUGIN_ERRORS, COUNT_HANDSHAKE_ERRORS.
New return codes are an optional extension to the existing plugin API. Unknown or unexpected plugin
errors are counted in the COUNT_AUTH_PLUGIN_ERRORS column.

• COUNT_HANDSHAKE_ERRORS

The number of errors detected at the wire protocol level.

• COUNT_PROXY_USER_ERRORS

The number of errors detected when proxy user A is proxied to another user B who does not exist.

• COUNT_PROXY_USER_ACL_ERRORS

The number of errors detected when proxy user A is proxied to another user B who does exist but for
whom A does not have the PROXY privilege.

• COUNT_AUTHENTICATION_ERRORS

The number of errors caused by failed authentication.

• COUNT_SSL_ERRORS

The number of errors due to SSL problems.

• COUNT_MAX_USER_CONNECTIONS_ERRORS

The number of errors caused by exceeding per-user connection quotas. See Section 6.2.13, “Setting
Account Resource Limits”.

3454

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_host_not_privileged

Performance Schema Miscellaneous Tables

• COUNT_MAX_USER_CONNECTIONS_PER_HOUR_ERRORS

The number of errors caused by exceeding per-user connections-per-hour quotas. See Section 6.2.13,
“Setting Account Resource Limits”.

• COUNT_DEFAULT_DATABASE_ERRORS

The number of errors related to the default database. For example, the database does not exist or the
user has no privileges to access it.

• COUNT_INIT_CONNECT_ERRORS

The number of errors caused by execution failures of statements in the init_connect system variable
value.

• COUNT_LOCAL_ERRORS

The number of errors local to the server implementation and not related to the network, authentication, or
authorization. For example, out-of-memory conditions fall into this category.

• COUNT_UNKNOWN_ERRORS

The number of other, unknown errors not accounted for by other columns in this table. This column is
reserved for future use, in case new error conditions must be reported, and if preserving the backward
compatibility and structure of the host_cache table is required.

• FIRST_SEEN

The timestamp of the first connection attempt seen from the client in the IP column.

• LAST_SEEN

The timestamp of the most recent connection attempt seen from the client in the IP column.

• FIRST_ERROR_SEEN

The timestamp of the first error seen from the client in the IP column.

• LAST_ERROR_SEEN

The timestamp of the most recent error seen from the client in the IP column.

TRUNCATE TABLE is permitted for the host_cache table. It requires the DROP privilege for the table.
Truncating the table flushes the host cache, which has the effects described in Flushing the Host Cache.

22.12.10.2 The performance_timers Table

The performance_timers table shows which event timers are available:

mysql> SELECT * FROM performance_schema.performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	2389029850	1	72
NANOSECOND	1000000000	1	112
MICROSECOND	1000000	1	136
MILLISECOND	1036	1	168
TICK	105	1	2416
+-------------+-----------------+------------------+----------------+

3455

Performance Schema Miscellaneous Tables

If the values associated with a given timer name are NULL, that timer is not supported on your platform.
The rows that do not contain NULL indicate which timers you can use in setup_timers. For an
explanation of how event timing occurs, see Section 22.4.1, “Performance Schema Event Timing”.

The performance_timers table has these columns:

• TIMER_NAME

The name by which to refer to the timer when configuring the setup_timers table.

• TIMER_FREQUENCY

The number of timer units per second. For a cycle timer, the frequency is generally related to the CPU
speed. For example, on a system with a 2.4GHz processor, the CYCLE may be close to 2400000000.

• TIMER_RESOLUTION

Indicates the number of timer units by which timer values increase. If a timer has a resolution of 10, its
value increases by 10 each time.

• TIMER_OVERHEAD

The minimal number of cycles of overhead to obtain one timing with the given timer. The Performance
Schema determines this value by invoking the timer 20 times during initialization and picking the smallest
value. The total overhead really is twice this amount because the instrumentation invokes the timer at
the start and end of each event. The timer code is called only for timed events, so this overhead does
not apply for nontimed events.

TRUNCATE TABLE is not permitted for the performance_timers table.

22.12.10.3 The threads Table

The threads table contains a row for each server thread. Each row contains information about a thread
and indicates whether monitoring is enabled for it:

mysql> SELECT * FROM performance_schema.threads\G
*************************** 1. row ***************************
 THREAD_ID: 1
 NAME: thread/sql/main
 TYPE: BACKGROUND
 PROCESSLIST_ID: NULL
 PROCESSLIST_USER: NULL
 PROCESSLIST_HOST: NULL
 PROCESSLIST_DB: NULL
PROCESSLIST_COMMAND: NULL
 PROCESSLIST_TIME: 80284
 PROCESSLIST_STATE: NULL
 PROCESSLIST_INFO: NULL
 PARENT_THREAD_ID: NULL
 ROLE: NULL
 INSTRUMENTED: YES
...
*************************** 4. row ***************************
 THREAD_ID: 51
 NAME: thread/sql/one_connection
 TYPE: FOREGROUND
 PROCESSLIST_ID: 34
 PROCESSLIST_USER: isabella
 PROCESSLIST_HOST: localhost
 PROCESSLIST_DB: performance_schema
PROCESSLIST_COMMAND: Query
 PROCESSLIST_TIME: 0

3456

Performance Schema Miscellaneous Tables

 PROCESSLIST_STATE: Sending data
 PROCESSLIST_INFO: SELECT * FROM performance_schema.threads
 PARENT_THREAD_ID: 1
 ROLE: NULL
 INSTRUMENTED: YES
...

When the Performance Schema initializes, it populates the threads table based on the threads in
existence then. Thereafter, a new row is added each time the server creates a thread.

The INSTRUMENTED column value for new threads is determined by the contents of the setup_actors
table. For information about how to use the setup_actors table to control this column, see
Section 22.4.6, “Pre-Filtering by Thread”.

Removal of rows from the threads table occurs when threads end. For a thread associated with a client
session, removal occurs when the session ends. If a client has auto-reconnect enabled and the session
reconnects after a disconnect, the session becomes associated with a new row in the threads table
that has a different PROCESSLIST_ID value. The initial INSTRUMENTED value for the new thread may be
different from that of the original thread: The setup_actors table may have changed in the meantime,
and if the INSTRUMENTED value for the original thread was changed after it was initialized, that change
does not carry over to the new thread.

You can enable or disable thread monitoring (that is, whether events executed by the thread are
instrumented). To control the initial INSTRUMENTED value for new foreground threads, use the
setup_actors table. To control monitoring of existing threads, set the INSTRUMENTED column of
threads table rows. (For more information about the conditions under which thread monitoring occurs,
see the description of the INSTRUMENTED column.)

For a comparison of the threads table columns with names having a prefix of PROCESSLIST_ to other
process information sources, see Sources of Process Information.

Important

For thread information sources other than the threads table, information about
threads for other users is shown only if the current user has the PROCESS privilege.
That is not true of the threads table; all rows are shown to any user who has
the SELECT privilege for the table. Users who should not be able to see threads
for other users by accessing the threads table should not be given the SELECT
privilege for it.

The threads table has these columns:

• THREAD_ID

A unique thread identifier.

• NAME

The name associated with the thread instrumentation code in the server. For example, thread/sql/
one_connection corresponds to the thread function in the code responsible for handling a user
connection, and thread/sql/main stands for the main() function of the server.

• TYPE

The thread type, either FOREGROUND or BACKGROUND. User connection threads are foreground threads.
Threads associated with internal server activity are background threads. Examples are internal InnoDB
threads, “binlog dump” threads sending information to replicas, and replica I/O and SQL threads.

• PROCESSLIST_ID

3457

Performance Schema Miscellaneous Tables

For a foreground thread (associated with a user connection), this is the connection identifier. This is the
same value displayed in the ID column of the INFORMATION_SCHEMA PROCESSLIST table, displayed in
the Id column of SHOW PROCESSLIST output, and returned by the CONNECTION_ID() function within
the thread.

For a background thread (not associated with a user connection), PROCESSLIST_ID is NULL, so the
values are not unique.

• PROCESSLIST_USER

The user associated with a foreground thread, NULL for a background thread.

• PROCESSLIST_HOST

The host name of the client associated with a foreground thread, NULL for a background thread.

Unlike the HOST column of the INFORMATION_SCHEMA PROCESSLIST table or the Host column of
SHOW PROCESSLIST output, the PROCESSLIST_HOST column does not include the port number for
TCP/IP connections. To obtain this information from the Performance Schema, enable the socket
instrumentation (which is not enabled by default) and examine the socket_instances table:

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/socket%';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
wait/io/socket/sql/server_tcpip_socket	NO	NO
wait/io/socket/sql/server_unix_socket	NO	NO
wait/io/socket/sql/client_connection	NO	NO
+--+---------+-------+
3 rows in set (0.01 sec)

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED='YES'
 WHERE NAME LIKE 'wait/io/socket%';
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

mysql> SELECT * FROM performance_schema.socket_instances\G
*************************** 1. row ***************************
 EVENT_NAME: wait/io/socket/sql/client_connection
OBJECT_INSTANCE_BEGIN: 140612577298432
 THREAD_ID: 31
 SOCKET_ID: 53
 IP: ::ffff:127.0.0.1
 PORT: 55642
 STATE: ACTIVE
...

• PROCESSLIST_DB

The default database for the thread, or NULL if none has been selected.

• PROCESSLIST_COMMAND

For foreground threads, the type of command the thread is executing on behalf of the client, or Sleep if
the session is idle. For descriptions of thread commands, see Section 8.14, “Examining Server Thread
(Process) Information”. The value of this column corresponds to the COM_xxx commands of the client/
server protocol and Com_xxx status variables. See Section 5.1.9, “Server Status Variables”

Background threads do not execute commands on behalf of clients, so this column may be NULL.

3458

Performance Schema Miscellaneous Tables

• PROCESSLIST_TIME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Section 17.2.1, “Replication Threads”.

• PROCESSLIST_STATE

An action, event, or state that indicates what the thread is doing. For descriptions of
PROCESSLIST_STATE values, see Section 8.14, “Examining Server Thread (Process) Information”.
If the value if NULL, the thread may correspond to an idle client session or the work it is doing is not
instrumented with stages.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that bears investigation.

• PROCESSLIST_INFO

The statement the thread is executing, or NULL if it is executing no statement. The statement might be
the one sent to the server, or an innermost statement if the statement executes other statements. For
example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the
PROCESSLIST_INFO value shows the SELECT statement.

• PARENT_THREAD_ID

If this thread is a subthread (spawned by another thread), this is the THREAD_ID value of the spawning
thread. Thread spawning occurs, for example, to handle insertion of rows from INSERT DELAYED
statements.

• ROLE

Unused.

• INSTRUMENTED

Whether events executed by the thread are instrumented. The value is YES or NO.

• For foreground threads, the initial INSTRUMENTED value is determined by whether the user account
associated with the thread matches any row in the setup_actors table. Matching is based on the
values of the PROCESSLIST_USER and PROCESSLIST_HOST columns.

If the thread spawns a subthread, matching occurs again for the threads table row created for the
subthread.

• For background threads, INSTRUMENTED is YES by default. setup_actors is not consulted because
there is no associated user for background threads.

• For any thread, its INSTRUMENTED value can be changed during the lifetime of the thread. This is the
only threads table column that can be modified.

For monitoring of events executed by the thread to occur, these things must be true:

• The thread_instrumentation consumer in the setup_consumers table must be YES.

• The threads.INSTRUMENTED column must be YES.

• Monitoring occurs only for those thread events produced from instruments that have the ENABLED
column set to YES in the setup_instruments table.

3459

Performance Schema Option and Variable Reference

TRUNCATE TABLE is not permitted for the threads table.

22.13 Performance Schema Option and Variable Reference
Table 22.10 Performance Schema Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schemaYes Yes Yes Global No

Performance_schema_accounts_lost Yes Global No

performance_schema_accounts_sizeYes Yes Yes Global No

Performance_schema_cond_classes_lost Yes Global No

Performance_schema_cond_instances_lost Yes Global No

performance-
schema-
consumer-
events-
stages-
current

Yes Yes

performance-
schema-
consumer-
events-
stages-history

Yes Yes

performance-
schema-
consumer-
events-
stages-
history-long

Yes Yes

performance-
schema-
consumer-
events-
statements-
current

Yes Yes

performance-
schema-
consumer-
events-
statements-
history

Yes Yes

performance-
schema-
consumer-
events-
statements-
history-long

Yes Yes

performance-
schema-
consumer-

Yes Yes

3460

Performance Schema Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic
events-waits-
current

performance-
schema-
consumer-
events-waits-
history

Yes Yes

performance-
schema-
consumer-
events-waits-
history-long

Yes Yes

performance-
schema-
consumer-
global-
instrumentation

Yes Yes

performance-
schema-
consumer-
statements-
digest

Yes Yes

performance-
schema-
consumer-
thread-
instrumentation

Yes Yes

Performance_schema_digest_lost Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

Performance_schema_file_classes_lost Yes Global No

Performance_schema_file_handles_lost Yes Global No

Performance_schema_file_instances_lost Yes Global No

Performance_schema_hosts_lost Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

performance-
schema-
instrument

Yes Yes

Performance_schema_locker_lost Yes Global No

3461

Performance Schema Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_digest_lengthYes Yes Yes Global No

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

Performance_schema_mutex_classes_lost Yes Global No

Performance_schema_mutex_instances_lost Yes Global No

Performance_schema_rwlock_classes_lost Yes Global No

Performance_schema_rwlock_instances_lost Yes Global No

Performance_schema_session_connect_attrs_lost Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

Performance_schema_socket_classes_lost Yes Global No

Performance_schema_socket_instances_lost Yes Global No

Performance_schema_stage_classes_lost Yes Global No

Performance_schema_statement_classes_lost Yes Global No

Performance_schema_table_handles_lost Yes Global No

Performance_schema_table_instances_lost Yes Global No

Performance_schema_thread_classes_lost Yes Global No

Performance_schema_thread_instances_lost Yes Global No

Performance_schema_users_lost Yes Global No

performance_schema_users_sizeYes Yes Yes Global No

3462

Performance Schema Command Options

22.14 Performance Schema Command Options
Performance Schema parameters can be specified at server startup on the command line or in option files
to configure Performance Schema instruments and consumers. Runtime configuration is also possible in
many cases (see Section 22.4, “Performance Schema Runtime Configuration”), but startup configuration
must be used when runtime configuration is too late to affect instruments that have already been initialized
during the startup process.

Performance Schema consumers and instruments can be configured at startup using the following syntax.
For additional details, see Section 22.3, “Performance Schema Startup Configuration”.

• --performance-schema-consumer-consumer_name=value

Configure a Performance Schema consumer. Consumer names in the setup_consumers table use
underscores, but for consumers set at startup, dashes and underscores within the name are equivalent.
Options for configuring individual consumers are detailed later in this section.

• --performance-schema-instrument=instrument_name=value

Configure a Performance Schema instrument. The name may be given as a pattern to configure
instruments that match the pattern.

The following items configure individual consumers:

• --performance-schema-consumer-events-stages-current=value

Configure the events-stages-current consumer.

• --performance-schema-consumer-events-stages-history=value

Configure the events-stages-history consumer.

• --performance-schema-consumer-events-stages-history-long=value

Configure the events-stages-history-long consumer.

• --performance-schema-consumer-events-statements-current=value

Configure the events-statements-current consumer.

• --performance-schema-consumer-events-statements-history=value

Configure the events-statements-history consumer.

• --performance-schema-consumer-events-statements-history-long=value

Configure the events-statements-history-long consumer.

• --performance-schema-consumer-events-waits-current=value

Configure the events-waits-current consumer.

• --performance-schema-consumer-events-waits-history=value

Configure the events-waits-history consumer.

• --performance-schema-consumer-events-waits-history-long=value

Configure the events-waits-history-long consumer.

3463

Performance Schema System Variables

• --performance-schema-consumer-global-instrumentation=value

Configure the global-instrumentation consumer.

• --performance-schema-consumer-statements-digest=value

Configure the statements-digest consumer.

• --performance-schema-consumer-thread-instrumentation=value

Configure the thread-instrumentation consumer.

22.15 Performance Schema System Variables
The Performance Schema implements several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+--+---------+
| Variable_name | Value |
+--+---------+
performance_schema	ON
performance_schema_accounts_size	100
performance_schema_digests_size	200
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000
performance_schema_events_statements_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10
performance_schema_hosts_size	100
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	1000
performance_schema_max_file_classes	50
performance_schema_max_file_handles	32768
performance_schema_max_file_instances	10000
performance_schema_max_mutex_classes	200
performance_schema_max_mutex_instances	1000000
performance_schema_max_rwlock_classes	30
performance_schema_max_rwlock_instances	1000000
performance_schema_max_socket_classes	10
performance_schema_max_socket_instances	1000
performance_schema_max_stage_classes	150
performance_schema_max_statement_classes	165
performance_schema_max_table_handles	10000
performance_schema_max_table_instances	1000
performance_schema_max_thread_classes	50
performance_schema_max_thread_instances	1000
performance_schema_session_connect_attrs_size	512
performance_schema_setup_actors_size	100
performance_schema_setup_objects_size	100
performance_schema_users_size	100
+--+---------+

Performance Schema system variables can be set at server startup on the command line or in option
files, and many can be set at runtime. See Section 22.13, “Performance Schema Option and Variable
Reference”.

The Performance Schema automatically sizes the values of several of its parameters at server startup
if they are not set explicitly. For more information, see Section 22.3, “Performance Schema Startup
Configuration”.

Performance Schema system variables have the following meanings:

• performance_schema

3464

Performance Schema System Variables

Command-Line Format --performance-schema[={OFF|ON}]

System Variable performance_schema

Scope Global

Dynamic No

Type Boolean

Default Value ON

The value of this variable is ON or OFF to indicate whether the Performance Schema is enabled. By
default, the value is ON. At server startup, you can specify this variable with no value or a value of ON or
1 to enable it, or with a value of OFF or 0 to disable it.

• performance_schema_accounts_size

Command-Line Format --performance-schema-accounts-size=#

System Variable performance_schema_accounts_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the accounts table. If this variable is 0, the Performance Schema does not
maintain connection statistics in the accounts table.

• performance_schema_digests_size

Command-Line Format --performance-schema-digests-size=#

System Variable performance_schema_digests_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of rows in the events_statements_summary_by_digest table. If this
maximum is exceeded such that a digest cannot be instrumented, the Performance Schema increments
the Performance_schema_digest_lost status variable.

For more information about statement digesting, see Section 22.10, “Performance Schema Statement
Digests”.

3465

Performance Schema System Variables

• performance_schema_events_stages_history_long_size

Command-Line Format --performance-schema-events-stages-
history-long-size=#

System Variable performance_schema_events_stages_history_long_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_stages_history_long table.

• performance_schema_events_stages_history_size

Command-Line Format --performance-schema-events-stages-
history-size=#

System Variable performance_schema_events_stages_history_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_stages_history table.

• performance_schema_events_statements_history_long_size

Command-Line Format --performance-schema-events-
statements-history-long-size=#

System Variable performance_schema_events_statements_history_long_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

3466

Performance Schema System Variables

Maximum Value 1048576

The number of rows in the events_statements_history_long table.

• performance_schema_events_statements_history_size

Command-Line Format --performance-schema-events-
statements-history-size=#

System Variable performance_schema_events_statements_history_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_statements_history table.

• performance_schema_events_waits_history_long_size

Command-Line Format --performance-schema-events-waits-
history-long-size=#

System Variable performance_schema_events_waits_history_long_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_waits_history_long table.

• performance_schema_events_waits_history_size

Command-Line Format --performance-schema-events-waits-
history-size=#

System Variable performance_schema_events_waits_history_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

3467

Performance Schema System Variables

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_waits_history table.

• performance_schema_hosts_size

Command-Line Format --performance-schema-hosts-size=#

System Variable performance_schema_hosts_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the hosts table. If this variable is 0, the Performance Schema does not maintain
connection statistics in the hosts table.

• performance_schema_max_cond_classes

Command-Line Format --performance-schema-max-cond-
classes=#

System Variable performance_schema_max_cond_classes

Scope Global

Dynamic No

Type Integer

Default Value 80

Minimum Value 0

Maximum Value 256

The maximum number of condition instruments. For information about how to set and use this variable,
see Section 22.7, “Performance Schema Status Monitoring”.

• performance_schema_max_cond_instances

Command-Line Format --performance-schema-max-cond-
instances=#

System Variable performance_schema_max_cond_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

3468

Performance Schema System Variables

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The maximum number of instrumented condition objects. For information about how to set and use this
variable, see Section 22.7, “Performance Schema Status Monitoring”.

• performance_schema_max_digest_length

Command-Line Format --performance-schema-max-digest-
length=#

Introduced 5.6.26

System Variable performance_schema_max_digest_length

Scope Global

Dynamic No

Type Integer

Default Value 1024

Minimum Value 0

Maximum Value 1048576

Unit bytes

The maximum number of bytes of memory reserved per statement for computation of normalized
statement digest values in the Performance Schema. This variable is related to max_digest_length;
see the description of that variable in Section 5.1.7, “Server System Variables”.

For more information about statement digesting, including considerations regarding memory use, see
Section 22.10, “Performance Schema Statement Digests”.

• performance_schema_max_file_classes

Command-Line Format --performance-schema-max-file-
classes=#

System Variable performance_schema_max_file_classes

Scope Global

Dynamic No

Type Integer

Default Value 50

Minimum Value 0

Maximum Value 256

The maximum number of file instruments. For information about how to set and use this variable, see
Section 22.7, “Performance Schema Status Monitoring”.

• performance_schema_max_file_handles

Command-Line Format --performance-schema-max-file-
handles=#

3469

Performance Schema System Variables

System Variable performance_schema_max_file_handles

Scope Global

Dynamic No

Type Integer

Default Value 32768

Minimum Value 0

Maximum Value 1048576

The maximum number of opened file objects. For information about how to set and use this variable, see
Section 22.7, “Performance Schema Status Monitoring”.

The value of performance_schema_max_file_handles should be greater than the value of
open_files_limit: open_files_limit affects the maximum number of open file handles the
server can support and performance_schema_max_file_handles affects how many of these file
handles can be instrumented.

• performance_schema_max_file_instances

Command-Line Format --performance-schema-max-file-
instances=#

System Variable performance_schema_max_file_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

The maximum number of instrumented file objects. For information about how to set and use this
variable, see Section 22.7, “Performance Schema Status Monitoring”.

• performance_schema_max_mutex_classes

Command-Line Format --performance-schema-max-mutex-
classes=#

System Variable performance_schema_max_mutex_classes

Scope Global

Dynamic No

Type Integer

Default Value 200

Minimum Value 0

Maximum Value 256

The maximum number of mutex instruments. For information about how to set and use this variable, see
Section 22.7, “Performance Schema Status Monitoring”.

3470

Performance Schema System Variables

• performance_schema_max_mutex_instances

Command-Line Format --performance-schema-max-mutex-
instances=#

System Variable performance_schema_max_mutex_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 104857600

The maximum number of instrumented mutex objects. For information about how to set and use this
variable, see Section 22.7, “Performance Schema Status Monitoring”.

• performance_schema_max_rwlock_classes

Command-Line Format --performance-schema-max-rwlock-
classes=#

System Variable performance_schema_max_rwlock_classes

Scope Global

Dynamic No

Type Integer

Default Value (≥ 5.6.15) 40

Default Value (≤ 5.6.14) 30

Minimum Value 0

Maximum Value 256

The maximum number of rwlock instruments. For information about how to set and use this variable, see
Section 22.7, “Performance Schema Status Monitoring”.

• performance_schema_max_rwlock_instances

Command-Line Format --performance-schema-max-rwlock-
instances=#

System Variable performance_schema_max_rwlock_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 104857600

3471

Performance Schema System Variables

The maximum number of instrumented rwlock objects. For information about how to set and use this
variable, see Section 22.7, “Performance Schema Status Monitoring”.

• performance_schema_max_socket_classes

Command-Line Format --performance-schema-max-socket-
classes=#

System Variable performance_schema_max_socket_classes

Scope Global

Dynamic No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 256

The maximum number of socket instruments. For information about how to set and use this variable, see
Section 22.7, “Performance Schema Status Monitoring”.

• performance_schema_max_socket_instances

Command-Line Format --performance-schema-max-socket-
instances=#

System Variable performance_schema_max_socket_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented socket objects. For information about how to set and use this
variable, see Section 22.7, “Performance Schema Status Monitoring”.

• performance_schema_max_stage_classes

Command-Line Format --performance-schema-max-stage-
classes=#

System Variable performance_schema_max_stage_classes

Scope Global

Dynamic No

Type Integer

Default Value 150

Minimum Value 0

Maximum Value 256

3472

Performance Schema System Variables

The maximum number of stage instruments. For information about how to set and use this variable, see
Section 22.7, “Performance Schema Status Monitoring”.

• performance_schema_max_statement_classes

Command-Line Format --performance-schema-max-statement-
classes=#

System Variable performance_schema_max_statement_classes

Scope Global

Dynamic No

Type Integer

Minimum Value 0

Maximum Value 256

The maximum number of statement instruments. For information about how to set and use this variable,
see Section 22.7, “Performance Schema Status Monitoring”.

The default value is calculated at server build time based on the number of commands in the client/
server protocol and the number of SQL statement types supported by the server.

This variable should not be changed, unless to set it to 0 to disable all statement instrumentation and
save all memory associated with it. Setting the variable to nonzero values other than the default has no
benefit; in particular, values larger than the default cause more memory to be allocated then is needed.

• performance_schema_max_table_handles

Command-Line Format --performance-schema-max-table-
handles=#

System Variable performance_schema_max_table_handles

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

The maximum number of opened table objects. For information about how to set and use this variable,
see Section 22.7, “Performance Schema Status Monitoring”.

• performance_schema_max_table_instances

Command-Line Format --performance-schema-max-table-
instances=#

System Variable performance_schema_max_table_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

3473

Performance Schema System Variables

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented table objects. For information about how to set and use this
variable, see Section 22.7, “Performance Schema Status Monitoring”.

• performance_schema_max_thread_classes

Command-Line Format --performance-schema-max-thread-
classes=#

System Variable performance_schema_max_thread_classes

Scope Global

Dynamic No

Type Integer

Default Value 50

Minimum Value 0

Maximum Value 256

The maximum number of thread instruments. For information about how to set and use this variable, see
Section 22.7, “Performance Schema Status Monitoring”.

• performance_schema_max_thread_instances

Command-Line Format --performance-schema-max-thread-
instances=#

System Variable performance_schema_max_thread_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented thread objects. The value controls the size of the threads table.
If this maximum is exceeded such that a thread cannot be instrumented, the Performance Schema
increments the Performance_schema_thread_instances_lost status variable. For information
about how to set and use this variable, see Section 22.7, “Performance Schema Status Monitoring”.

The max_connections system variable affects how many threads are run in the server.
performance_schema_max_thread_instances affects how many of these running threads can
be instrumented. The default value of performance_schema_max_thread_instances is autosized
based on the value of max_connections.

3474

Performance Schema System Variables

• performance_schema_session_connect_attrs_size

Command-Line Format --performance-schema-session-connect-
attrs-size=#

System Variable performance_schema_session_connect_attrs_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 1048576

Unit bytes

The amount of preallocated memory per thread reserved to hold connection attribute key-
value pairs. If the aggregate size of connection attribute data sent by a client is larger
than this amount, the Performance Schema truncates the attribute data, increments the
Performance_schema_session_connect_attrs_lost status variable, and writes a message to
the error log indicating that truncation occurred if the log_warnings system variable value is greater
than zero.

The default value of performance_schema_session_connect_attrs_size
is autosized at server startup. This value may be small, so if truncation occurs
(Performance_schema_session_connect_attrs_lost becomes nonzero), you may wish to set
performance_schema_session_connect_attrs_size explicitly to a larger value.

Although the maximum permitted performance_schema_session_connect_attrs_size value is
1MB, the effective maximum is 64KB because the server imposes a limit of 64KB on the aggregate size
of connection attribute data it can accept. If a client attempts to send more than 64KB of attribute data,
the server rejects the connection. For more information, see Section 22.12.8, “Performance Schema
Connection Attribute Tables”.

• performance_schema_setup_actors_size

Command-Line Format --performance-schema-setup-actors-
size=#

System Variable performance_schema_setup_actors_size

Scope Global

Dynamic No

Type Integer

Default Value 100

Minimum Value 0

Maximum Value 1048576

The number of rows in the setup_actors table.

3475

Performance Schema Status Variables

• performance_schema_setup_objects_size

Command-Line Format --performance-schema-setup-objects-
size=#

System Variable performance_schema_setup_objects_size

Scope Global

Dynamic No

Type Integer

Default Value 100

Minimum Value 0

Maximum Value 1048576

The number of rows in the setup_objects table.

• performance_schema_users_size

Command-Line Format --performance-schema-users-size=#

System Variable performance_schema_users_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the users table. If this variable is 0, the Performance Schema does not maintain
connection statistics in the users table.

22.16 Performance Schema Status Variables

The Performance Schema implements several status variables that provide information about
instrumentation that could not be loaded or created due to memory constraints:

mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
Performance_schema_accounts_lost	0
Performance_schema_cond_classes_lost	0
Performance_schema_cond_instances_lost	0
Performance_schema_file_classes_lost	0
Performance_schema_file_handles_lost	0
Performance_schema_file_instances_lost	0
Performance_schema_hosts_lost	0
Performance_schema_locker_lost	0
Performance_schema_mutex_classes_lost	0
Performance_schema_mutex_instances_lost	0
Performance_schema_rwlock_classes_lost	0
Performance_schema_rwlock_instances_lost	0
Performance_schema_socket_classes_lost	0

3476

Performance Schema Status Variables

Performance_schema_socket_instances_lost	0
Performance_schema_stage_classes_lost	0
Performance_schema_statement_classes_lost	0
Performance_schema_table_handles_lost	0
Performance_schema_table_instances_lost	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Performance_schema_users_lost	0
+---+-------+

For information on using these variables to check Performance Schema status, see Section 22.7,
“Performance Schema Status Monitoring”.

Performance Schema status variables have the following meanings:

• Performance_schema_accounts_lost

The number of times a row could not be added to the accounts table because it was full.

• Performance_schema_cond_classes_lost

How many condition instruments could not be loaded.

• Performance_schema_cond_instances_lost

How many condition instrument instances could not be created.

• Performance_schema_digest_lost

The number of digest instances that could not be instrumented in the
events_statements_summary_by_digest table. This can be nonzero if the value of
performance_schema_digests_size is too small.

• Performance_schema_file_classes_lost

How many file instruments could not be loaded.

• Performance_schema_file_handles_lost

How many file instrument instances could not be opened.

• Performance_schema_file_instances_lost

How many file instrument instances could not be created.

• Performance_schema_hosts_lost

The number of times a row could not be added to the hosts table because it was full.

• Performance_schema_locker_lost

How many events are “lost” or not recorded, due to the following conditions:

• Events are recursive (for example, waiting for A caused a wait on B, which caused a wait on C).

• The depth of the nested events stack is greater than the limit imposed by the implementation.

Events recorded by the Performance Schema are not recursive, so this variable should always be 0.

• Performance_schema_mutex_classes_lost

3477

Performance Schema Status Variables

How many mutex instruments could not be loaded.

• Performance_schema_mutex_instances_lost

How many mutex instrument instances could not be created.

• Performance_schema_rwlock_classes_lost

How many rwlock instruments could not be loaded.

• Performance_schema_rwlock_instances_lost

How many rwlock instrument instances could not be created.

• Performance_schema_session_connect_attrs_lost

The number of connections for which connection attribute truncation has occurred.
For a given connection, if the client sends connection attribute key-value pairs
for which the aggregate size is larger than the reserved storage permitted by the
value of the performance_schema_session_connect_attrs_size system
variable, the Performance Schema truncates the attribute data and increments
Performance_schema_session_connect_attrs_lost. If this value is nonzero, you may wish to
set performance_schema_session_connect_attrs_size to a larger value.

For more information about connection attributes, see Section 22.12.8, “Performance Schema
Connection Attribute Tables”.

• Performance_schema_socket_classes_lost

How many socket instruments could not be loaded.

• Performance_schema_socket_instances_lost

How many socket instrument instances could not be created.

• Performance_schema_stage_classes_lost

How many stage instruments could not be loaded.

• Performance_schema_statement_classes_lost

How many statement instruments could not be loaded.

• Performance_schema_table_handles_lost

How many table instrument instances could not be opened.

• Performance_schema_table_instances_lost

How many table instrument instances could not be created.

• Performance_schema_thread_classes_lost

How many thread instruments could not be loaded.

• Performance_schema_thread_instances_lost

The number of thread instances that could not be instrumented in the threads table. This can be
nonzero if the value of performance_schema_max_thread_instances is too small.

3478

Performance Schema and Plugins

• Performance_schema_users_lost

The number of times a row could not be added to the users table because it was full.

22.17 Performance Schema and Plugins

Removing a plugin with UNINSTALL PLUGIN does not affect information already collected for code in
that plugin. Time spent executing the code while the plugin was loaded was still spent even if the plugin
is unloaded later. The associated event information, including aggregate information, remains readable in
performance_schema database tables. For additional information about the effect of plugin installation
and removal, see Section 22.7, “Performance Schema Status Monitoring”.

A plugin implementor who instruments plugin code should document its instrumentation characteristics to
enable those who load the plugin to account for its requirements. For example, a third-party storage engine
should include in its documentation how much memory the engine needs for mutex and other instruments.

22.18 Using the Performance Schema to Diagnose Problems

The Performance Schema is a tool to help a DBA do performance tuning by taking real measurements
instead of “wild guesses.” This section demonstrates some ways to use the Performance Schema for this
purpose. The discussion here relies on the use of event filtering, which is described in Section 22.4.2,
“Performance Schema Event Filtering”.

The following example provides one methodology that you can use to analyze a repeatable problem,
such as investigating a performance bottleneck. To begin, you should have a repeatable use case where
performance is deemed “too slow” and needs optimization, and you should enable all instrumentation (no
pre-filtering at all).

1. Run the use case.

2. Using the Performance Schema tables, analyze the root cause of the performance problem. This
analysis relies heavily on post-filtering.

3. For problem areas that are ruled out, disable the corresponding instruments. For example, if analysis
shows that the issue is not related to file I/O in a particular storage engine, disable the file I/O
instruments for that engine. Then truncate the history and summary tables to remove previously
collected events.

4. Repeat the process at step 1.

At each iteration, the Performance Schema output, particularly the events_waits_history_long
table, contains less and less “noise” caused by nonsignificant instruments, and given that this table has
a fixed size, contains more and more data relevant to the analysis of the problem at hand.

At each iteration, investigation should lead closer and closer to the root cause of the problem, as the
signal-to-noise ratio improves, making analysis easier.

5. Once a root cause of performance bottleneck is identified, take the appropriate corrective action, such
as:

• Tune the server parameters (cache sizes, memory, and so forth).

• Tune a query by writing it differently,

• Tune the database schema (tables, indexes, and so forth).

3479

Query Profiling Using Performance Schema

• Tune the code (this applies to storage engine or server developers only).

6. Start again at step 1, to see the effects of the changes on performance.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for investigating
performance bottlenecks or deadlocks. This is made possible by Performance Schema instrumentation as
follows:

1. Suppose that thread 1 is stuck waiting for a mutex.

2. You can determine what the thread is waiting for:

SELECT * FROM performance_schema.events_waits_current
WHERE THREAD_ID = thread_1;

Say the query result identifies that the thread is waiting for mutex A, found in
events_waits_current.OBJECT_INSTANCE_BEGIN.

3. You can determine which thread is holding mutex A:

SELECT * FROM performance_schema.mutex_instances
WHERE OBJECT_INSTANCE_BEGIN = mutex_A;

Say the query result identifies that it is thread 2 holding mutex A, as found in
mutex_instances.LOCKED_BY_THREAD_ID.

4. You can see what thread 2 is doing:

SELECT * FROM performance_schema.events_waits_current
WHERE THREAD_ID = thread_2;

22.18.1 Query Profiling Using Performance Schema

The following example demonstrates how to use Performance Schema statement events and stage events
to retrieve data comparable to profiling information provided by SHOW PROFILES and SHOW PROFILE
statements.

In this example, statement and stage event data is collected in the
events_statements_history_long and events_stages_history_long tables. On a busy
server with many active foreground threads, data could age out of the history tables before you are able to
retrieve the information you want to analyze. If you encounter this problem, options include:

• Running the query on a test instance where there is less foreground thread activity.

• Disabling instrumentation for other existing foreground threads by setting the INSTRUMENTED field
of the threads table to NO for other thread records. For example, the following statement disables
instrumentation for all foreground threads except the test_user thread:

mysql> UPDATE performance_schema.threads
 SET INSTRUMENTED = 'NO'
 WHERE TYPE='FOREGROUND' AND PROCESSLIST_USER NOT LIKE 'test_user';

However, be aware that new threads are always instrumented by default.

• Increasing the number of rows in the events_statements_history_long and
events_stages_history_long tables. The
performance_schema_events_statements_history_size and

3480

Query Profiling Using Performance Schema

performance_schema_events_stages_history_size configuration options are autosized
by default but can also be set explicitly at startup. You can view current settings by running SHOW
VARIABLES. For information about autosized Performance Schema parameters, see Section 22.3,
“Performance Schema Startup Configuration”.

Performance Schema displays event timer information in picoseconds (trillionths of a second) to
normalize timing data to a standard unit. In the following example, TIMER_WAIT values are divided by
1000000000000 to show data in units of seconds. Values are also truncated to 6 decimal places to display
data in the same format as SHOW PROFILES and SHOW PROFILE statements.

1. Ensure that statement and stage instrumentation is enabled by updating the setup_instruments
table. Some instruments may already be enabled by default.

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES'
 WHERE NAME LIKE '%statement/%';

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES'
 WHERE NAME LIKE '%stage/%';

2. Ensure that events_statements_* and events_stages_* consumers are enabled. Some
consumers may already be enabled by default.

mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_statements_%';

mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_stages_%';

3. Run the statement that you want to profile. For example:

mysql> SELECT * FROM employees.employees WHERE emp_no = 10001;
+--------+------------+------------+-----------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |
+--------+------------+------------+-----------+--------+------------+
| 10001 | 1953-09-02 | Georgi | Facello | M | 1986-06-26 |
+--------+------------+------------+-----------+--------+------------+

4. Identify the EVENT_ID of the statement by querying the events_statements_history_long
table. This step is similar to running SHOW PROFILES to identify the Query_ID. The following query
produces output similar to SHOW PROFILES:

mysql> SELECT EVENT_ID, TRUNCATE(TIMER_WAIT/1000000000000,6) as Duration, SQL_TEXT
 FROM performance_schema.events_statements_history_long WHERE SQL_TEXT like '%10001%';
+----------+----------+--+
| event_id | duration | sql_text |
+----------+----------+--+
| 31 | 0.028310 | SELECT * FROM employees.employees WHERE emp_no = 10001 |
+----------+----------+--+

5. Query the events_stages_history_long table to retrieve the statement's stage events. Stages
are linked to statements using event nesting. Each stage event record has a NESTING_EVENT_ID
column that contains the EVENT_ID of the parent statement.

mysql> SELECT event_name AS Stage, TRUNCATE(TIMER_WAIT/1000000000000,6) AS Duration
 FROM performance_schema.events_stages_history_long WHERE NESTING_EVENT_ID=31;
+--------------------------------+----------+
| Stage | Duration |
+--------------------------------+----------+
| stage/sql/starting | 0.000080 |

3481

Restrictions on Performance Schema

stage/sql/checking permissions	0.000005
stage/sql/Opening tables	0.027759
stage/sql/init	0.000052
stage/sql/System lock	0.000009
stage/sql/optimizing	0.000006
stage/sql/statistics	0.000082
stage/sql/preparing	0.000008
stage/sql/executing	0.000000
stage/sql/Sending data	0.000017
stage/sql/end	0.000001
stage/sql/query end	0.000004
stage/sql/closing tables	0.000006
stage/sql/freeing items	0.000272
stage/sql/cleaning up	0.000001
+--------------------------------+----------+

22.19 Restrictions on Performance Schema

The Performance Schema avoids using mutexes to collect or produce data, so there are no guarantees of
consistency and results can sometimes be incorrect. Event values in performance_schema tables are
nondeterministic and nonrepeatable.

If you save event information in another table, you should not assume that the original events remain
available later. For example, if you select events from a performance_schema table into a temporary
table, intending to join that table with the original table later, there might be no matches.

mysqldump and BACKUP DATABASE ignore tables in the performance_schema database.

Tables in the performance_schema database cannot be locked with LOCK TABLES, except the
setup_xxx tables.

Tables in the performance_schema database cannot be indexed.

Results for queries that refer to tables in the performance_schema database are not saved in the query
cache.

Tables in the performance_schema database are not replicated.

The Performance Schema is not available in libmysqld, the embedded server.

The types of timers might vary per platform. The performance_timers table shows which event timers
are available. If the values in this table for a given timer name are NULL, that timer is not supported on your
platform.

Instruments that apply to storage engines might not be implemented for all storage engines.
Instrumentation of each third-party engine is the responsibility of the engine maintainer.

3482

Chapter 23 Connectors and APIs

Table of Contents
23.1 MySQL Connector/C++ ... 3486
23.2 MySQL Connector/J .. 3486
23.3 MySQL Connector/NET ... 3486
23.4 MySQL Connector/ODBC .. 3486
23.5 MySQL Connector/Python ... 3486
23.6 libmysqld, the Embedded MySQL Server Library .. 3487

23.6.1 Compiling Programs with libmysqld ... 3487
23.6.2 Restrictions When Using the Embedded MySQL Server ... 3488
23.6.3 Options with the Embedded Server ... 3488
23.6.4 Embedded Server Examples ... 3489

23.7 MySQL C API ... 3492
23.8 MySQL PHP API .. 3492
23.9 MySQL Perl API ... 3492
23.10 MySQL Python API ... 3493
23.11 MySQL Ruby APIs .. 3493

23.11.1 The MySQL/Ruby API .. 3494
23.11.2 The Ruby/MySQL API .. 3494

23.12 MySQL Tcl API ... 3494
23.13 MySQL Eiffel Wrapper ... 3494

MySQL Connectors provide connectivity to the MySQL server for client programs. APIs provide low-
level access to the MySQL protocol and MySQL resources. Both Connectors and the APIs enable you to
connect and execute MySQL statements from another language or environment, including ODBC, Java
(JDBC), Perl, Python, PHP, Ruby, and native C and embedded MySQL instances.

MySQL Connectors

Oracle develops a number of connectors:

• Connector/C++ enables C++ applications to connect to MySQL.

• Connector/J provides driver support for connecting to MySQL from Java applications using the standard
Java Database Connectivity (JDBC) API.

• Connector/NET enables developers to create .NET applications that connect to MySQL. Connector/NET
implements a fully functional ADO.NET interface and provides support for use with ADO.NET aware
tools. Applications that use Connector/NET can be written in any supported .NET language.

MySQL for Visual Studio works with Connector/NET and Microsoft Visual Studio 2012, 2013, 2015,
and 2017. MySQL for Visual Studio provides access to MySQL objects and data from Visual Studio. As
a Visual Studio package, it integrates directly into Server Explorer providing the ability to create new
connections and work with MySQL database objects.

• Connector/ODBC provides driver support for connecting to MySQL using the Open Database
Connectivity (ODBC) API. Support is available for ODBC connectivity from Windows, Unix, and macOS
platforms.

• Connector/Python provides driver support for connecting to MySQL from Python applications using an
API that is compliant with the Python DB API version 2.0. No additional Python modules or MySQL client
libraries are required.

3483

https://dev.mysql.com/doc/connector-cpp/8.0/en/
https://dev.mysql.com/doc/connector-j/8.0/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/visual-studio/en/
https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-python/en/
http://www.python.org/dev/peps/pep-0249/

The MySQL C API

The MySQL C API

For direct access to using MySQL natively within a C application, there are two methods:

• The C API provides low-level access to the MySQL client/server protocol through the libmysqlclient
client library. This is the primary method used to connect to an instance of the MySQL server, and is
used both by MySQL command-line clients and many of the MySQL Connectors and third-party APIs
detailed here.

libmysqlclient is included in MySQL distributions.

• libmysqld is an embedded MySQL server library that enables you to embed an instance of the MySQL
server into your C applications.

libmysqld is included in MySQL distributions.

See also MySQL C API Implementations.

To access MySQL from a C application, or to build an interface to MySQL for a language not supported by
the Connectors or APIs in this chapter, the C API is where to start. A number of programmer's utilities are
available to help with the process; see Section 4.7, “Program Development Utilities”.

Third-Party MySQL APIs

The remaining APIs described in this chapter provide an interface to MySQL from specific application
languages. These third-party solutions are not developed or supported by Oracle. Basic information on
their usage and abilities is provided here for reference purposes only.

All the third-party language APIs are developed using one of two methods, using libmysqlclient or by
implementing a native driver. The two solutions offer different benefits:

• Using libmysqlclient offers complete compatibility with MySQL because it uses the same libraries
as the MySQL client applications. However, the feature set is limited to the implementation and
interfaces exposed through libmysqlclient and the performance may be lower as data is copied
between the native language, and the MySQL API components.

• Native drivers are an implementation of the MySQL network protocol entirely within the host language
or environment. Native drivers are fast, as there is less copying of data between components, and they
can offer advanced functionality not available through the standard MySQL API. Native drivers are also
easier for end users to build and deploy because no copy of the MySQL client libraries is needed to build
the native driver components.

Table 23.1, “MySQL APIs and Interfaces” lists many of the libraries and interfaces available for MySQL.

Table 23.1 MySQL APIs and Interfaces

Environment API Type Notes

Ada GNU Ada MySQL
Bindings

libmysqlclient See MySQL Bindings for
GNU Ada

C C API libmysqlclient See MySQL 5.6 C API
Developer Guide.

C++ Connector/C++ libmysqlclient See MySQL Connector/C
++ 8.0 Developer Guide.

MySQL++ libmysqlclient See MySQL++ website.

3484

https://dev.mysql.com/doc/c-api/5.6/en/
https://dev.mysql.com/doc/c-api/5.6/en/c-api-implementations.html
https://dev.mysql.com/doc/c-api/5.6/en/
http://gnade.sourceforge.net/
http://gnade.sourceforge.net/
https://dev.mysql.com/doc/c-api/5.6/en/
https://dev.mysql.com/doc/c-api/5.6/en/
https://dev.mysql.com/doc/connector-cpp/8.0/en/
https://dev.mysql.com/doc/connector-cpp/8.0/en/
http://tangentsoft.net/mysql++/doc/

Third-Party MySQL APIs

Environment API Type Notes

MySQL wrapped libmysqlclient See MySQL wrapped.

Cocoa MySQL-Cocoa libmysqlclient Compatible with
the Objective-C
Cocoa environment.
See http://mysql-
cocoa.sourceforge.net/

D MySQL for D libmysqlclient See MySQL for D.

Eiffel Eiffel MySQL libmysqlclient See Section 23.13,
“MySQL Eiffel Wrapper”.

Erlang erlang-mysql-driver libmysqlclient See erlang-mysql-
driver.

Haskell Haskell MySQL Bindings Native Driver See Brian O'Sullivan's
pure Haskell MySQL
bindings.

hsql-mysql libmysqlclient See MySQL driver for
Haskell.

Java/JDBC Connector/J Native Driver See MySQL Connector/J
8.0 Developer Guide.

Kaya MyDB libmysqlclient See MyDB.

Lua LuaSQL libmysqlclient See LuaSQL.

.NET/Mono Connector/NET Native Driver See MySQL Connector/
NET Developer Guide.

Objective Caml OBjective Caml MySQL
Bindings

libmysqlclient See MySQL Bindings for
Objective Caml.

Octave Database bindings for
GNU Octave

libmysqlclient See Database bindings
for GNU Octave.

ODBC Connector/ODBC libmysqlclient See MySQL Connector/
ODBC Developer Guide.

Perl DBI/DBD::mysql libmysqlclient See Section 23.9,
“MySQL Perl API”.

Net::MySQL Native Driver See Net::MySQL at
CPAN

PHP mysql, ext/mysql
interface (deprecated)

libmysqlclient See MySQL and PHP.

mysqli, ext/mysqli
interface

libmysqlclient See MySQL and PHP.

PDO_MYSQL libmysqlclient See MySQL and PHP.

PDO mysqlnd Native Driver

Python Connector/Python Native Driver See MySQL Connector/
Python Developer Guide.

Python Connector/Python C
Extension

libmysqlclient See MySQL Connector/
Python Developer Guide.

MySQLdb libmysqlclient See Section 23.10,
“MySQL Python API”.

3485

http://www.alhem.net/project/mysql/
http://mysql-cocoa.sourceforge.net/
http://mysql-cocoa.sourceforge.net/
http://www.steinmole.de/d/
http://code.google.com/p/erlang-mysql-driver/
http://code.google.com/p/erlang-mysql-driver/
http://www.serpentine.com/blog/software/mysql/
http://www.serpentine.com/blog/software/mysql/
http://www.serpentine.com/blog/software/mysql/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hsql-mysql-1.7
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hsql-mysql-1.7
https://dev.mysql.com/doc/connector-j/8.0/en/
https://dev.mysql.com/doc/connector-j/8.0/en/
http://kayalang.org/library/latest/MyDB
http://keplerproject.github.io/luasql/doc/us/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/connector-net/en/
http://raevnos.pennmush.org/code/ocaml-mysql/
http://raevnos.pennmush.org/code/ocaml-mysql/
http://octave.sourceforge.net/database/index.html
http://octave.sourceforge.net/database/index.html
https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-odbc/en/
http://search.cpan.org/dist/Net-MySQL/MySQL.pm
https://dev.mysql.com/doc/apis-php/en/
https://dev.mysql.com/doc/apis-php/en/
https://dev.mysql.com/doc/apis-php/en/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/

MySQL Connector/C++

Environment API Type Notes

Ruby mysql2 libmysqlclient Uses libmysqlclient.
See Section 23.11,
“MySQL Ruby APIs”.

Scheme Myscsh libmysqlclient See Myscsh.

SPL sql_mysql libmysqlclient See sql_mysql for SPL.

Tcl MySQLtcl libmysqlclient See Section 23.12,
“MySQL Tcl API”.

23.1 MySQL Connector/C++

The MySQL Connector/C++ manual is published in standalone form, not as part of the MySQL Reference
Manual. For information, see these documents:

• Main manual: MySQL Connector/C++ 8.0 Developer Guide

• Release notes: MySQL Connector/C++ Release Notes

23.2 MySQL Connector/J

The MySQL Connector/J manual is published in standalone form, not as part of the MySQL Reference
Manual. For information, see these documents:

• Main manual: MySQL Connector/J Developer Guide

• Release notes: MySQL Connector/J Release Notes

23.3 MySQL Connector/NET

The MySQL Connector/NET manual is published in standalone form, not as part of the MySQL Reference
Manual. For information, see these documents:

• Main manual: MySQL Connector/NET Developer Guide

• Release notes: MySQL Connector/NET Release Notes

23.4 MySQL Connector/ODBC

The MySQL Connector/ODBC manual is published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/ODBC Developer Guide

• Release notes: MySQL Connector/ODBC Release Notes

23.5 MySQL Connector/Python

The MySQL Connector/Python manual is published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/Python Developer Guide

3486

https://github.com/aehrisch/myscsh
http://www.clifford.at/spl/spldoc/sql_mysql.html
https://dev.mysql.com/doc/connector-cpp/8.0/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/connector-j/en/
https://dev.mysql.com/doc/relnotes/connector-j/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/relnotes/connector-net/en/
https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/relnotes/connector-odbc/en/
https://dev.mysql.com/doc/connector-python/en/

libmysqld, the Embedded MySQL Server Library

• Release notes: MySQL Connector/Python Release Notes

23.6 libmysqld, the Embedded MySQL Server Library

The embedded MySQL server library makes it possible to run a full-featured MySQL server inside a
client application. The main benefits are increased speed and more simple management for embedded
applications.

The embedded server library is based on the client/server version of MySQL, which is written in C/C++.
Consequently, the embedded server also is written in C/C++. There is no embedded server available in
other languages.

The API is identical for the embedded MySQL version and the client/server version. To change a threaded
application to use the embedded library, you normally only have to add calls to the following functions.

Table 23.2 MySQL Embedded Server Library Functions

Function When to Call

mysql_library_init() Call it before any other MySQL function is called,
preferably early in the main() function.

mysql_library_end() Call it before your program exits.

mysql_thread_init() Call it in each thread you create that accesses
MySQL.

mysql_thread_end() Call it before calling pthread_exit().

Then, link your code with libmysqld.a instead of libmysqlclient.a. To ensure binary compatibility
between your application and the server library, always compile your application against headers for
the same series of MySQL that was used to compile the server library. For example, if libmysqld was
compiled against MySQL 5.5 headers, do not compile your application against MySQL 5.6 headers, or vice
versa.

Because the mysql_library_xxx() functions are also included in libmysqlclient.a, you can
change between the embedded and the client/server version by just linking your application with the right
library. See mysql_library_init().

One difference between the embedded server and the standalone server is that for the embedded server,
authentication for connections is disabled by default.

23.6.1 Compiling Programs with libmysqld

In precompiled binary MySQL distributions that include libmysqld, the embedded server library, MySQL
builds the library using the appropriate vendor compiler if there is one.

To get a libmysqld library if you build MySQL from source yourself, you should configure MySQL with
the -DWITH_EMBEDDED_SERVER=1 option. See Section 2.9.7, “MySQL Source-Configuration Options”.

When you link your program with libmysqld, you must also include the system-specific pthread
libraries and some libraries that the MySQL server uses. You can get the full list of libraries by executing
mysql_config --libmysqld-libs.

The correct flags for compiling and linking a threaded program must be used, even if you do not directly
call any thread functions in your code.

3487

https://dev.mysql.com/doc/relnotes/connector-python/en/
https://dev.mysql.com/doc/c-api/5.6/en/mysql-library-init.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-library-end.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-thread-init.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-thread-end.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-library-init.html

Restrictions When Using the Embedded MySQL Server

To compile a C program to include the necessary files to embed the MySQL server library into an
executable version of a program, the compiler needs to know where to find various files and needs
instructions on how to compile the program. The following example shows how a program could be
compiled from the command line, assuming that you are using gcc, use the GNU C compiler:

gcc mysql_test.c -o mysql_test \
`/usr/local/mysql/bin/mysql_config --include --libmysqld-libs`

Immediately following the gcc command is the name of the C program source file. After it, the -o option
is given to indicate that the file name that follows is the name that the compiler is to give to the output file,
the compiled program. The next line of code tells the compiler to obtain the location of the include files
and libraries and other settings for the system on which it is compiled. The mysql_config command is
contained in backticks, not single quotation marks.

On some non-gcc platforms, the embedded library depends on C++ runtime libraries and linking against
the embedded library might result in missing-symbol errors. To solve this, link using a C++ compiler or
explicitly list the required libraries on the link command line.

23.6.2 Restrictions When Using the Embedded MySQL Server

The embedded server has the following limitations:

• No loadable functions.

• No stack trace on core dump.

• You cannot set this up as a source or a replica (no replication).

• Very large result sets may be unusable on low memory systems.

• You cannot connect to an embedded server from an outside process with sockets or TCP/IP. However,
you can connect to an intermediate application, which in turn can connect to an embedded server on the
behalf of a remote client or outside process.

• libmysqld does not support encrypted connections. An implication is that if an application linked
against libmysqld establishes a connection to a remote server, the connection cannot be encrypted.

• InnoDB is not reentrant in the embedded server and cannot be used for multiple connections, either
successively or simultaneously.

• The Event Scheduler is not available. Because of this, the event_scheduler system variable is
disabled.

• The Performance Schema is not available.

Some of these limitations can be changed by editing the mysql_embed.h include file and recompiling
MySQL.

23.6.3 Options with the Embedded Server

Any options that may be given with the mysqld server daemon, may be used with an embedded server
library. Server options may be given in an array as an argument to the mysql_library_init(),
which initializes the server. They also may be given in an option file like my.cnf. To specify an option
file for a C program, use the --defaults-file option as one of the elements of the second argument
of the mysql_library_init() function. See mysql_library_init(), for more information on the
mysql_library_init() function.

3488

https://dev.mysql.com/doc/c-api/5.6/en/mysql-library-init.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-library-init.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-library-init.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-library-init.html

Embedded Server Examples

Using option files can make it easier to switch between a client/server application and one where MySQL
is embedded. Put common options under the [server] group. These are read by both MySQL versions.
Client/server-specific options should go under the [mysqld] section. Put options specific to the embedded
MySQL server library in the [embedded] section. Options specific to applications go under section labeled
[ApplicationName_SERVER]. See Section 4.2.2.2, “Using Option Files”.

23.6.4 Embedded Server Examples

These two example programs should work without any changes on a Linux or FreeBSD system. For other
operating systems, minor changes are needed, mostly with file paths. These examples are designed to
give enough details for you to understand the problem, without the clutter that is a necessary part of a real
application. The first example is very straightforward. The second example is a little more advanced with
some error checking. The first is followed by a command-line entry for compiling the program. The second
is followed by a GNUmake file that may be used for compiling instead.

Example 1

test1_libmysqld.c

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include "mysql.h"

MYSQL *mysql;
MYSQL_RES *results;
MYSQL_ROW record;

static char *server_options[] = \
 { "mysql_test", "--defaults-file=my.cnf", NULL };
int num_elements = (sizeof(server_options) / sizeof(char *)) - 1;

static char *server_groups[] = { "libmysqld_server",
 "libmysqld_client", NULL };

int main(void)
{
 mysql_library_init(num_elements, server_options, server_groups);
 mysql = mysql_init(NULL);
 mysql_options(mysql, MYSQL_READ_DEFAULT_GROUP, "libmysqld_client");
 mysql_options(mysql, MYSQL_OPT_USE_EMBEDDED_CONNECTION, NULL);

 mysql_real_connect(mysql, NULL,NULL,NULL, "database1", 0,NULL,0);

 mysql_query(mysql, "SELECT column1, column2 FROM table1");

 results = mysql_store_result(mysql);

 while((record = mysql_fetch_row(results))) {
 printf("%s - %s \n", record[0], record[1]);
 }

 mysql_free_result(results);
 mysql_close(mysql);
 mysql_library_end();

 return 0;
}

Here is the command line for compiling the above program:

gcc test1_libmysqld.c -o test1_libmysqld \
 `/usr/local/mysql/bin/mysql_config --include --libmysqld-libs`

3489

Embedded Server Examples

Example 2

To try the example, create an test2_libmysqld directory at the same level as the MySQL source
directory. Save the test2_libmysqld.c source and the GNUmakefile in the directory, and run GNU
make from inside the test2_libmysqld directory.

test2_libmysqld.c

/*
 * A simple example client, using the embedded MySQL server library
*/

#include <mysql.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>

MYSQL *db_connect(const char *dbname);
void db_disconnect(MYSQL *db);
void db_do_query(MYSQL *db, const char *query);

const char *server_groups[] = {
 "test2_libmysqld_SERVER", "embedded", "server", NULL
};

int
main(int argc, char **argv)
{
 MYSQL *one, *two;

 /* mysql_library_init() must be called before any other mysql
 * functions.
 *
 * You can use mysql_library_init(0, NULL, NULL), and it
 * initializes the server using groups = {
 * "server", "embedded", NULL
 * }.
 *
 * In your $HOME/.my.cnf file, you probably want to put:

[test2_libmysqld_SERVER]
language = /path/to/source/of/mysql/sql/share/english

 * You could, of course, modify argc and argv before passing
 * them to this function. Or you could create new ones in any
 * way you like. But all of the arguments in argv (except for
 * argv[0], which is the program name) should be valid options
 * for the MySQL server.
 *
 * If you link this client against the normal mysqlclient
 * library, this function is just a stub that does nothing.
 */
 mysql_library_init(argc, argv, (char **)server_groups);

 one = db_connect("test");
 two = db_connect(NULL);

 db_do_query(one, "SHOW TABLE STATUS");
 db_do_query(two, "SHOW DATABASES");

 mysql_close(two);
 mysql_close(one);

 /* This must be called after all other mysql functions */
 mysql_library_end();

3490

Embedded Server Examples

 exit(EXIT_SUCCESS);
}

static void
die(MYSQL *db, char *fmt, ...)
{
 va_list ap;
 va_start(ap, fmt);
 vfprintf(stderr, fmt, ap);
 va_end(ap);
 (void)putc('\n', stderr);
 if (db)
 db_disconnect(db);
 exit(EXIT_FAILURE);
}

MYSQL *
db_connect(const char *dbname)
{
 MYSQL *db = mysql_init(NULL);
 if (!db)
 die(db, "mysql_init failed: no memory");
 /*
 * Notice that the client and server use separate group names.
 * This is critical, because the server does not accept the
 * client's options, and vice versa.
 */
 mysql_options(db, MYSQL_READ_DEFAULT_GROUP, "test2_libmysqld_CLIENT");
 if (!mysql_real_connect(db, NULL, NULL, NULL, dbname, 0, NULL, 0))
 die(db, "mysql_real_connect failed: %s", mysql_error(db));

 return db;
}

void
db_disconnect(MYSQL *db)
{
 mysql_close(db);
}

void
db_do_query(MYSQL *db, const char *query)
{
 if (mysql_query(db, query) != 0)
 goto err;

 if (mysql_field_count(db) > 0)
 {
 MYSQL_RES *res;
 MYSQL_ROW row, end_row;
 int num_fields;

 if (!(res = mysql_store_result(db)))
 goto err;
 num_fields = mysql_num_fields(res);
 while ((row = mysql_fetch_row(res)))
 {
 (void)fputs(">> ", stdout);
 for (end_row = row + num_fields; row < end_row; ++row)
 (void)printf("%s\t", row ? (char*)*row : "NULL");
 (void)fputc('\n', stdout);
 }
 (void)fputc('\n', stdout);
 mysql_free_result(res);
 }
 else
 (void)printf("Affected rows: %lld\n", mysql_affected_rows(db));

3491

MySQL C API

 return;

err:
 die(db, "db_do_query failed: %s [%s]", mysql_error(db), query);
}

GNUmakefile

This assumes the MySQL software is installed in /usr/local/mysql
inc := /usr/local/mysql/include/mysql
lib := /usr/local/mysql/lib

If you have not installed the MySQL software yet, try this instead
#inc := $(HOME)/mysql-5.6/include
#lib := $(HOME)/mysql-5.6/libmysqld

CC := gcc
CPPFLAGS := -I$(inc) -D_THREAD_SAFE -D_REENTRANT
CFLAGS := -g -W -Wall
LDFLAGS := -static
You can change -lmysqld to -lmysqlclient to use the
client/server library
LDLIBS = -L$(lib) -lmysqld -lm -ldl -lcrypt

ifneq (,$(shell grep FreeBSD /COPYRIGHT 2>/dev/null))
FreeBSD
LDFLAGS += -pthread
else
Assume Linux
LDLIBS += -lpthread
endif

This works for simple one-file test programs
sources := $(wildcard *.c)
objects := $(patsubst %c,%o,$(sources))
targets := $(basename $(sources))

all: $(targets)

clean:
 rm -f $(targets) $(objects) *.core

23.7 MySQL C API

The MySQL C API Developer Guide is published in standalone form, not as part of the MySQL Reference
Manual. See MySQL 5.6 C API Developer Guide.

23.8 MySQL PHP API

The MySQL PHP API manual is now published in standalone form, not as part of the MySQL Reference
Manual. See MySQL and PHP.

23.9 MySQL Perl API

The Perl DBI module provides a generic interface for database access. You can write a DBI script that
works with many different database engines without change. To use DBI with MySQL, install the following:

1. The DBI module.

2. The DBD::mysql module. This is the DataBase Driver (DBD) module for Perl.

3492

https://dev.mysql.com/doc/c-api/5.6/en/
https://dev.mysql.com/doc/apis-php/en/

MySQL Python API

3. Optionally, the DBD module for any other type of database server you want to access.

Perl DBI is the recommended Perl interface. It replaces an older interface called mysqlperl, which should
be considered obsolete.

These sections contain information about using Perl with MySQL and writing MySQL applications in Perl:

• For installation instructions for Perl DBI support, see Section 2.13, “Perl Installation Notes”.

• For an example of reading options from option files, see Section 5.7.4, “Using Client Programs in a
Multiple-Server Environment”.

• For secure coding tips, see Section 6.1.1, “Security Guidelines”.

• For debugging tips, see Section 5.8.1.4, “Debugging mysqld under gdb”.

• For some Perl-specific environment variables, see Section 4.9, “Environment Variables”.

• For considerations for running on macOS, see Section 2.4, “Installing MySQL on macOS”.

• For ways to quote string literals, see Section 9.1.1, “String Literals”.

DBI information is available at the command line, online, or in printed form:

• Once you have the DBI and DBD::mysql modules installed, you can get information about them at the
command line with the perldoc command:

$> perldoc DBI
$> perldoc DBI::FAQ
$> perldoc DBD::mysql

You can also use pod2man, pod2html, and so on to translate this information into other formats.

• For online information about Perl DBI, visit the DBI website, http://dbi.perl.org/. That site hosts a general
DBI mailing list.

• For printed information, the official DBI book is Programming the Perl DBI (Alligator Descartes and Tim
Bunce, O'Reilly & Associates, 2000). Information about the book is available at the DBI website, http://
dbi.perl.org/.

23.10 MySQL Python API

MySQLdb is a third-party driver that provides MySQL support for Python, compliant with the Python DB API
version 2.0. It can be found at http://sourceforge.net/projects/mysql-python/.

The new MySQL Connector/Python component provides an interface to the same Python API, and is built
into the MySQL Server and supported by Oracle. See MySQL Connector/Python Developer Guide for
details on the Connector, as well as coding guidelines for Python applications and sample Python code.

23.11 MySQL Ruby APIs

The mysql2 Ruby gem provides an API for connecting to MySQL, performing queries, and iterating
through results; it is intended to support MySQL 5.6, 5.7, and 8.0. For more information, see the mysql2
page at RubyGems.org or the project's GitHub page.

For background and syntax information about the Ruby language, see Ruby Programming Language.

3493

http://dbi.perl.org/
http://dbi.perl.org/
http://dbi.perl.org/
http://sourceforge.net/projects/mysql-python/
https://dev.mysql.com/doc/connector-python/en/
https://rubygems.org/gems/mysql2/
https://rubygems.org/gems/mysql2/
https://github.com/brianmario/mysql2
http://www.ruby-lang.org

The MySQL/Ruby API

23.11.1 The MySQL/Ruby API

The MySQL/Ruby module provides access to MySQL databases using Ruby through libmysqlclient.

For information on installing the module, and the functions exposed, see MySQL/Ruby.

23.11.2 The Ruby/MySQL API

The Ruby/MySQL module provides access to MySQL databases using Ruby through a native driver
interface using the MySQL network protocol.

For information on installing the module, and the functions exposed, see Ruby/MySQL.

23.12 MySQL Tcl API

MySQLtcl is a simple API for accessing a MySQL database server from the Tcl programming language. It
can be found at http://www.xdobry.de/mysqltcl/.

23.13 MySQL Eiffel Wrapper

Eiffel MySQL is an interface to the MySQL database server using the Eiffel programming language, written
by Michael Ravits. It can be found at http://efsa.sourceforge.net/archive/ravits/mysql.htm.

3494

http://tmtm.org/en/mysql/ruby/
http://tmtm.org/en/ruby/mysql/README_en.html
http://en.wikipedia.org/wiki/Tcl
http://www.xdobry.de/mysqltcl/
http://en.wikipedia.org/wiki/Eiffel_(programming_language)
http://efsa.sourceforge.net/archive/ravits/mysql.htm

Chapter 24 MySQL Enterprise Edition

Table of Contents
24.1 MySQL Enterprise Monitor Overview .. 3495
24.2 MySQL Enterprise Backup Overview .. 3496
24.3 MySQL Enterprise Security Overview ... 3497
24.4 MySQL Enterprise Encryption Overview ... 3497
24.5 MySQL Enterprise Audit Overview ... 3498
24.6 MySQL Enterprise Firewall Overview ... 3498
24.7 MySQL Enterprise Thread Pool Overview .. 3498
24.8 MySQL Enterprise Data Masking and De-Identification Overview ... 3498

MySQL Enterprise Edition is a commercial product. Like MySQL Community Edition, MySQL Enterprise
Edition includes MySQL Server, a fully integrated transaction-safe, ACID-compliant database with full
commit, rollback, crash-recovery, and row-level locking capabilities. In addition, MySQL Enterprise Edition
includes the following components designed to provide monitoring and online backup, as well as improved
security and scalability:

The following sections briefly discuss each of these components and indicate where to find more detailed
information. To learn more about commercial products, see https://www.mysql.com/products/.

• MySQL Enterprise Monitor

• MySQL Enterprise Backup

• MySQL Enterprise Security

• MySQL Enterprise Encryption

• MySQL Enterprise Audit

• MySQL Enterprise Firewall

• MySQL Enterprise Thread Pool

• MySQL Enterprise Data Masking and De-Identification

24.1 MySQL Enterprise Monitor Overview

MySQL Enterprise Monitor is an enterprise monitoring system for MySQL that keeps an eye on your
MySQL servers, notifies you of potential issues and problems, and advises you how to fix the issues.
MySQL Enterprise Monitor can monitor all kinds of configurations, from a single MySQL server that is
important to your business, all the way up to a huge farm of MySQL servers powering a busy website.

The following discussion briefly summarizes the basic components that make up the MySQL Enterprise
Monitor product. For more information, see the MySQL Enterprise Monitor manual, available at https://
dev.mysql.com/doc/mysql-monitor/en/.

MySQL Enterprise Monitor components can be installed in various configurations depending on your
database and network topology, to give you the best combination of reliable and responsive monitoring
data, with minimal overhead on the database server machines. A typical MySQL Enterprise Monitor
installation consists of:

3495

https://www.mysql.com/products/
https://dev.mysql.com/doc/mysql-monitor/en/
https://dev.mysql.com/doc/mysql-monitor/en/

MySQL Enterprise Backup Overview

• One or more MySQL servers to monitor. MySQL Enterprise Monitor can monitor both Community and
Enterprise MySQL server releases.

• A MySQL Enterprise Monitor Agent for each monitored host.

• A single MySQL Enterprise Service Manager, which collates information from the agents and provides
the user interface to the collected data.

MySQL Enterprise Monitor is designed to monitor one or more MySQL servers. The monitoring information
is collected by using an agent, MySQL Enterprise Monitor Agent. The agent communicates with the hosts
and MySQL servers that it monitors, collecting variables, status and health information, and sending this
information to the MySQL Enterprise Service Manager.

The information collected by the agent about each MySQL server and host you are monitoring is sent to
the MySQL Enterprise Service Manager. This server collates all of the information from the agents. As it
collates the information sent by the agents, the MySQL Enterprise Service Manager continually tests the
collected data, comparing the status of the server to reasonable values. When thresholds are reached,
the server can trigger an event (including an alarm and notification) to highlight a potential issue, such
as low memory, high CPU usage, or more complex conditions such insufficient buffer sizes and status
information. We call each test, with its associated threshold value, a rule.

These rules, and the alarms and notifications, are each known as a MySQL Enterprise Advisors. Advisors
form a critical part of the MySQL Enterprise Service Manager, as they provide warning information and
troubleshooting advice about potential problems.

The MySQL Enterprise Service Manager includes a web server, and you interact with it through any web
browser. This interface, the MySQL Enterprise Monitor User Interface, displays all of the information
collected by the agents, and lets you view all of your servers and their current status as a group or
individually. You control and configure all aspects of the service using the MySQL Enterprise Monitor User
Interface.

The information supplied by the MySQL Enterprise Monitor Agent processes also includes statistical and
query information, which you can view in the form of graphs. For example, you can view aspects such as
server load, query numbers, or index usage information as a graph over time. The graph lets you pinpoint
problems or potential issues on your server, and can help diagnose the impact from database or external
problems (such as external system or network failure) by examining the data from a specific time interval.

The MySQL Enterprise Monitor Agent can also be configured to collect detailed information about the
queries executed on your server, including the row counts and performance times for executing each
query. You can correlate the detailed query data with the graphical information to identify which queries
were executing when you experienced a particularly high load, index or other issue. The query data is
supported by a system called Query Analyzer, and the data can be presented in different ways depending
on your needs.

24.2 MySQL Enterprise Backup Overview
MySQL Enterprise Backup performs hot backup operations for MySQL databases. The product is
architected for efficient and reliable backups of tables created by the InnoDB storage engine. For
completeness, it can also back up tables from MyISAM and other storage engines.

The following discussion briefly summarizes MySQL Enterprise Backup. For more information, see the
MySQL Enterprise Backup manual, available at https://dev.mysql.com/doc/mysql-enterprise-backup/en/.

Hot backups are performed while the database is running and applications are reading and writing to
it. This type of backup does not block normal database operations, and it captures even changes that
occur while the backup is happening. For these reasons, hot backups are desirable when your database

3496

https://dev.mysql.com/doc/mysql-enterprise-backup/en/

MySQL Enterprise Security Overview

“grows up” -- when the data is large enough that the backup takes significant time, and when your data
is important enough to your business that you must capture every last change, without taking your
application, website, or web service offline.

MySQL Enterprise Backup does a hot backup of all tables that use the InnoDB storage engine. For tables
using MyISAM or other non-InnoDB storage engines, it does a “warm” backup, where the database
continues to run, but those tables cannot be modified while being backed up. For efficient backup
operations, you can designate InnoDB as the default storage engine for new tables, or convert existing
tables to use the InnoDB storage engine.

24.3 MySQL Enterprise Security Overview

MySQL Enterprise Edition provides plugins that implement security features using external services:

• MySQL Enterprise Edition includes an authentication plugin that enables MySQL Server to use LDAP
(Lightweight Directory Access Protocol) to authenticate MySQL users. LDAP Authentications supports
user name and password, SASL, and GSSAPI/Kerberos authentication methods to LDAP services. For
more information, see LDAP Pluggable Authentication.

• MySQL Enterprise Edition includes an authentication plugin that enables MySQL Server to use Native
Kerberos to authenticate MySQL users using there Kerberos Principals. For more information, see
Kerberos Pluggable Authentication.

• MySQL Enterprise Edition includes an authentication plugin that enables MySQL Server to use PAM
(Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to use a
standard interface to access various kinds of authentication methods, such as Unix passwords or an
LDAP directory. For more information, see Section 6.4.1.6, “PAM Pluggable Authentication”.

• MySQL Enterprise Edition includes an authentication plugin that performs external authentication on
Windows, enabling MySQL Server to use native Windows services to authenticate client connections.
Users who have logged in to Windows can connect from MySQL client programs to the server based on
the information in their environment without specifying an additional password. For more information, see
Section 6.4.1.7, “Windows Pluggable Authentication”.

• MySQL Enterprise Edition includes a suite of masking and de-identification functions that perform
subsetting, random generation, and dictionary replacement to de-identify strings, numerics, phone
numbers, emails and more. These functions enable masking existing data using several methods such
as obfuscation (removing identifying characteristics), generation of formatted random data, and data
replacement or substitution. For more information, see Using MySQL Enterprise Data Masking and De-
Identification.

• MySQL Enterprise Edition includes a set of encryption functions based on the OpenSSL library that
expose OpenSSL capabilities at the SQL level. For more information, see Section 24.4, “MySQL
Enterprise Encryption Overview”.

• MySQL Enterprise Edition 5.7 and higher includes a keyring plugin that uses Oracle Key Vault as a
backend for keyring storage. For more information, see The MySQL Keyring.

• MySQL Transparent Data Encryption (TDE) provides at-rest encryption for MySQL Server for all files
that might contain sensitive data. For more information, see InnoDB Data-at-Rest Encryption, Encrypting
Binary Log Files and Relay Log Files, and Encrypting Audit Log Files.

For other related Enterprise security features, see Section 24.4, “MySQL Enterprise Encryption Overview”.

24.4 MySQL Enterprise Encryption Overview

3497

https://dev.mysql.com/doc/refman/5.7/en/ldap-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html
https://dev.mysql.com/doc/refman/5.7/en/data-masking-usage.html
https://dev.mysql.com/doc/refman/5.7/en/data-masking-usage.html
https://dev.mysql.com/doc/refman/5.7/en/keyring.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-data-encryption.html
https://dev.mysql.com/doc/refman/8.0/en/replication-binlog-encryption.html
https://dev.mysql.com/doc/refman/8.0/en/replication-binlog-encryption.html
https://dev.mysql.com/doc/refman/5.7/en/audit-log-logging-configuration.html#audit-log-file-encryption

MySQL Enterprise Audit Overview

MySQL Enterprise Edition includes a set of encryption functions based on the OpenSSL library that expose
OpenSSL capabilities at the SQL level. These functions enable Enterprise applications to perform the
following operations:

• Implement added data protection using public-key asymmetric cryptography

• Create public and private keys and digital signatures

• Perform asymmetric encryption and decryption

• Use cryptographic hashing for digital signing and data verification and validation

For more information, see Section 6.5, “MySQL Enterprise Encryption”.

For other related Enterprise security features, see Section 24.3, “MySQL Enterprise Security Overview”.

24.5 MySQL Enterprise Audit Overview

MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a server plugin. MySQL
Enterprise Audit uses the open MySQL Audit API to enable standard, policy-based monitoring and logging
of connection and query activity executed on specific MySQL servers. Designed to meet the Oracle audit
specification, MySQL Enterprise Audit provides an out of box, easy to use auditing and compliance solution
for applications that are governed by both internal and external regulatory guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access.

For more information, see Section 6.4.4, “MySQL Enterprise Audit”.

24.6 MySQL Enterprise Firewall Overview

MySQL Enterprise Edition includes MySQL Enterprise Firewall, an application-level firewall that enables
database administrators to permit or deny SQL statement execution based on matching against allowlists
of accepted statement patterns. This helps harden MySQL Server against attacks such as SQL injection or
attempts to exploit applications by using them outside of their legitimate query workload characteristics.

Each MySQL account registered with the firewall has its own statement allowlist, enabling protection to
be tailored per account. For a given account, the firewall can operate in recording or protecting mode, for
training in the accepted statement patterns or protection against unacceptable statements.

For more information, see Section 6.4.5, “MySQL Enterprise Firewall”.

24.7 MySQL Enterprise Thread Pool Overview

MySQL Enterprise Edition includes MySQL Enterprise Thread Pool, implemented using a server plugin.
The default thread-handling model in MySQL Server executes statements using one thread per client
connection. As more clients connect to the server and execute statements, overall performance degrades.
In MySQL Enterprise Edition, a thread pool plugin provides an alternative thread-handling model designed
to reduce overhead and improve performance. The plugin implements a thread pool that increases server
performance by efficiently managing statement execution threads for large numbers of client connections.

For more information, see Section 5.5.3, “MySQL Enterprise Thread Pool”.

24.8 MySQL Enterprise Data Masking and De-Identification Overview

3498

MySQL Enterprise Data Masking and De-Identification Overview

MySQL Enterprise Edition 5.7 and higher includes MySQL Enterprise Data Masking and De-Identification,
implemented as a plugin library containing a plugin and several loadable functions. Data masking hides
sensitive information by replacing real values with substitutes. MySQL Enterprise Data Masking and De-
Identification functions enable masking existing data using several methods such as obfuscation (removing
identifying characteristics), generation of formatted random data, and data replacement or substitution.

For more information, see MySQL Enterprise Data Masking and De-Identification.

3499

https://dev.mysql.com/doc/refman/5.7/en/data-masking.html

3500

Chapter 25 MySQL Workbench
MySQL Workbench provides a graphical tool for working with MySQL servers and databases. MySQL
Workbench fully supports MySQL versions 5.5 and higher.

The following discussion briefly describes MySQL Workbench capabilities. For more information, see the
MySQL Workbench manual, available at https://dev.mysql.com/doc/workbench/en/.

MySQL Workbench provides five main areas of functionality:

• SQL Development: Enables you to create and manage connections to database servers. As well as
enabling you to configure connection parameters, MySQL Workbench provides the capability to execute
SQL queries on the database connections using the built-in SQL Editor. This functionality replaces that
previously provided by the Query Browser standalone application.

• Data Modeling: Enables you to create models of your database schema graphically, reverse and
forward engineer between a schema and a live database, and edit all aspects of your database using
the comprehensive Table Editor. The Table Editor provides easy-to-use facilities for editing Tables,
Columns, Indexes, Triggers, Partitioning, Options, Inserts and Privileges, Routines and Views.

• Server Administration: Enables you to create and administer server instances.

• Data Migration: Allows you to migrate from Microsoft SQL Server, Sybase ASE, SQLite, SQL
Anywhere, PostreSQL, and other RDBMS tables, objects and data to MySQL. Migration also supports
migrating from earlier versions of MySQL to the latest releases.

• MySQL Enterprise Support: Support for Enterprise products such as MySQL Enterprise Backup and
MySQL Audit.

MySQL Workbench is available in two editions, the Community Edition and the Commercial Edition. The
Community Edition is available free of charge. The Commercial Edition provides additional Enterprise
features, such as database documentation generation, at low cost.

3501

https://dev.mysql.com/doc/workbench/en/

3502

Appendix A MySQL 5.6 Frequently Asked Questions

Table of Contents
A.1 MySQL 5.6 FAQ: General ... 3503
A.2 MySQL 5.6 FAQ: Storage Engines .. 3505
A.3 MySQL 5.6 FAQ: Server SQL Mode .. 3505
A.4 MySQL 5.6 FAQ: Stored Procedures and Functions ... 3506
A.5 MySQL 5.6 FAQ: Triggers .. 3510
A.6 MySQL 5.6 FAQ: Views .. 3512
A.7 MySQL 5.6 FAQ: INFORMATION_SCHEMA ... 3513
A.8 MySQL 5.6 FAQ: Migration ... 3514
A.9 MySQL 5.6 FAQ: Security ... 3514
A.10 MySQL 5.6 FAQ: NDB Cluster .. 3515
A.11 MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets 3529
A.12 MySQL 5.6 FAQ: Connectors & APIs .. 3541
A.13 MySQL 5.6 FAQ: C API, libmysql .. 3542
A.14 MySQL 5.6 FAQ: Replication .. 3542
A.15 MySQL 5.6 FAQ: MySQL Enterprise Thread Pool .. 3546
A.16 MySQL 5.6 FAQ: InnoDB Change Buffer ... 3548
A.17 MySQL 5.6 FAQ: Virtualization Support ... 3550

A.1 MySQL 5.6 FAQ: General

A.1.1 Which version of MySQL is production-ready (GA)? .. 3503
A.1.2 Can MySQL 5.6 do subqueries? .. 3504
A.1.3 Can MySQL 5.6 perform multiple-table inserts, updates, and deletes? 3504
A.1.4 Does MySQL 5.6 have a Query Cache? Does it work on Server, Instance or Database? 3504
A.1.5 Does MySQL 5.6 have Sequences? ... 3504
A.1.6 Does MySQL 5.6 have a NOW() function with fractions of seconds? 3504
A.1.7 Does MySQL 5.6 work with multi-core processors? ... 3504
A.1.8 Why do I see multiple processes for mysqld? .. 3504
A.1.9 Can MySQL 5.6 perform ACID transactions? .. 3505

A.1.1. Which version of MySQL is production-ready (GA)?

MySQL 8.0, 5.7, and MySQL 5.6 are supported for production use.

MySQL 8.0 achieved General Availability (GA) status with MySQL 8.0.11, which was released for
production use on 19 April 2018.

MySQL 5.7 achieved General Availability (GA) status with MySQL 5.7.9, which was released for
production use on 21 October 2015.

MySQL 5.6 achieved General Availability (GA) status with MySQL 5.6.10, which was released for
production use on 5 February 2013.

MySQL 5.5 achieved General Availability (GA) status with MySQL 5.5.8, which was released for
production use on 3 December 2010. Active development for MySQL 5.5 has ended.

MySQL 5.1 achieved General Availability (GA) status with MySQL 5.1.30, which was released for
production use on 14 November 2008. Active development for MySQL 5.1 has ended.

3503

MySQL 5.6 FAQ: General

MySQL 5.0 achieved General Availability (GA) status with MySQL 5.0.15, which was released for
production use on 19 October 2005. Active development for MySQL 5.0 has ended.

A.1.2. Can MySQL 5.6 do subqueries?

Yes. See Section 13.2.10, “Subqueries”.

A.1.3. Can MySQL 5.6 perform multiple-table inserts, updates, and deletes?

Yes. For the syntax required to perform multiple-table updates, see Section 13.2.11, “UPDATE
Statement”; for that required to perform multiple-table deletes, see Section 13.2.2, “DELETE
Statement”.

A multiple-table insert can be accomplished using a trigger whose FOR EACH ROW clause contains
multiple INSERT statements within a BEGIN ... END block. See Section 20.3, “Using Triggers”.

A.1.4. Does MySQL 5.6 have a Query Cache? Does it work on Server, Instance or Database?

Yes. The query cache operates on the server level, caching complete result sets matched with
the original query string. If an exactly identical query is made (which often happens, particularly in
web applications), no parsing or execution is necessary; the result is sent directly from the cache.
Various tuning options are available. See Section 8.10.3, “The MySQL Query Cache”.

A.1.5. Does MySQL 5.6 have Sequences?

No. However, MySQL has an AUTO_INCREMENT system, which in MySQL 5.6 can also handle
inserts in a multi-source replication setup. With the auto_increment_increment and
auto_increment_offset system variables, you can set each server to generate auto-increment
values that don't conflict with other servers. The auto_increment_increment value should be
greater than the number of servers, and each server should have a unique offset.

A.1.6. Does MySQL 5.6 have a NOW() function with fractions of seconds?

Yes, see Section 11.2.7, “Fractional Seconds in Time Values”.

A.1.7. Does MySQL 5.6 work with multi-core processors?

Yes. MySQL is fully multithreaded, and makes use of all CPUs made available to it. Not all CPUs
may be available; modern operating systems should be able to utilize all underlying CPUs, but also
make it possible to restrict a process to a specific CPU or sets of CPUs.

On Windows, there is currently a limit to the number of (logical) processors that mysqld can use: a
single processor group, which is limited to a maximum of 64 logical processors.

Use of multiple cores may be seen in these ways:

• A single core is usually used to service the commands issued from one session.

• A few background threads make limited use of extra cores; for example, to keep background I/O
tasks moving.

• If the database is I/O-bound (indicated by CPU consumption less than capacity), adding more
CPUs is futile. If the database is partitioned into an I/O-bound part and a CPU-bond part, adding
CPUs may still be useful.

A.1.8. Why do I see multiple processes for mysqld?

3504

MySQL 5.6 FAQ: Storage Engines

mysqld is a single-process program, not a multi-process program, and does not fork or launch other
processes. However, mysqld is multithreaded and some process-reporting system utilities display
separate entries for each thread of multithreaded processes, which may lead to the appearance of
multiple mysqld processes when in fact there is only one.

A.1.9. Can MySQL 5.6 perform ACID transactions?

Yes. All current MySQL versions support transactions. The InnoDB storage engine offers full ACID
transactions with row-level locking, multi-versioning, nonlocking repeatable reads, and all four SQL
standard isolation levels.

The NDB storage engine supports the READ COMMITTED transaction isolation level only.

A.2 MySQL 5.6 FAQ: Storage Engines
A.2.1 Where can I obtain complete documentation for MySQL storage engines? 3505
A.2.2 Are there any new storage engines in MySQL 5.6? ... 3505
A.2.3 Have any storage engines been removed in MySQL 5.6? .. 3505
A.2.4 What are the unique benefits of the ARCHIVE storage engine? .. 3505

A.2.1. Where can I obtain complete documentation for MySQL storage engines?

See Chapter 15, Alternative Storage Engines. That chapter contains information about all MySQL
storage engines except for the InnoDB storage engine and the NDB storage engine (used for
MySQL Cluster). InnoDB is covered in Chapter 14, The InnoDB Storage Engine. NDB is covered in
Chapter 18, MySQL NDB Cluster 7.3 and NDB Cluster 7.4.

A.2.2. Are there any new storage engines in MySQL 5.6?

The features from the optional InnoDB Plugin from MySQL 5.1 are folded into the built-in InnoDB
storage engine, so you can take advantage of features such as the Barracuda file format, InnoDB
table compression, and the new configuration options for performance. See Chapter 14, The
InnoDB Storage Engine for details. InnoDB also becomes the default storage engine for new tables.
See Section 14.1, “Introduction to InnoDB” for details.

A.2.3. Have any storage engines been removed in MySQL 5.6?

No.

A.2.4. What are the unique benefits of the ARCHIVE storage engine?

The ARCHIVE storage engine stores large amounts of data without indexes; it has a small footprint,
and performs selects using table scans. See Section 15.5, “The ARCHIVE Storage Engine”, for
details.

A.3 MySQL 5.6 FAQ: Server SQL Mode
A.3.1 What are server SQL modes? .. 3505
A.3.2 How many server SQL modes are there? ... 3506
A.3.3 How do you determine the server SQL mode? .. 3506
A.3.4 Is the mode dependent on the database or connection? .. 3506
A.3.5 Can the rules for strict mode be extended? .. 3506
A.3.6 Does strict mode impact performance? ... 3506
A.3.7 What is the default server SQL mode when MySQL 5.6 is installed? 3506

A.3.1. What are server SQL modes?

3505

MySQL 5.6 FAQ: Stored Procedures and Functions

Server SQL modes define what SQL syntax MySQL should support and what kind of data validation
checks it should perform. This makes it easier to use MySQL in different environments and to use
MySQL together with other database servers. The MySQL Server apply these modes individually to
different clients. For more information, see Section 5.1.10, “Server SQL Modes”.

A.3.2. How many server SQL modes are there?

Each mode can be independently switched on and off. See Section 5.1.10, “Server SQL Modes”, for
a complete list of available modes.

A.3.3. How do you determine the server SQL mode?

You can set the default SQL mode (for mysqld startup) with the --sql-mode option. Using the
statement SET [GLOBAL|SESSION] sql_mode='modes', you can change the settings from
within a connection, either locally to the connection, or to take effect globally. You can retrieve the
current mode by issuing a SELECT @@sql_mode statement.

A.3.4. Is the mode dependent on the database or connection?

A mode is not linked to a particular database. Modes can be set locally to the session (connection),
or globally for the server. you can change these settings using SET [GLOBAL|SESSION]
sql_mode='modes'.

A.3.5. Can the rules for strict mode be extended?

When we refer to strict mode, we mean a mode where at least one of the modes TRADITIONAL,
STRICT_TRANS_TABLES, or STRICT_ALL_TABLES is enabled. Options can be combined, so you
can add restrictions to a mode. See Section 5.1.10, “Server SQL Modes”, for more information.

A.3.6. Does strict mode impact performance?

The intensive validation of input data that some settings requires more time than if the validation
is not done. While the performance impact is not that great, if you do not require such validation
(perhaps your application already handles all of this), then MySQL gives you the option of leaving
strict mode disabled. However, if you do require it, strict mode can provide such validation.

A.3.7. What is the default server SQL mode when MySQL 5.6 is installed?

The default SQL mode is NO_ENGINE_SUBSTITUTION. For information about all available modes
and default MySQL behavior, see Section 5.1.10, “Server SQL Modes”.

A.4 MySQL 5.6 FAQ: Stored Procedures and Functions
A.4.1 Does MySQL 5.6 support stored procedures and functions? .. 3507
A.4.2 Where can I find documentation for MySQL stored procedures and stored functions? 3507
A.4.3 Is there a discussion forum for MySQL stored procedures? .. 3507
A.4.4 Where can I find the ANSI SQL 2003 specification for stored procedures? 3507
A.4.5 How do you manage stored routines? .. 3507
A.4.6 Is there a way to view all stored procedures and stored functions in a given database? 3507
A.4.7 Where are stored procedures stored? ... 3508
A.4.8 Is it possible to group stored procedures or stored functions into packages? 3508
A.4.9 Can a stored procedure call another stored procedure? ... 3508
A.4.10 Can a stored procedure call a trigger? .. 3508
A.4.11 Can a stored procedure access tables? .. 3508
A.4.12 Do stored procedures have a statement for raising application errors? 3508
A.4.13 Do stored procedures provide exception handling? .. 3508
A.4.14 Can MySQL 5.6 stored routines return result sets? .. 3508
A.4.15 Is WITH RECOMPILE supported for stored procedures? .. 3508

3506

MySQL 5.6 FAQ: Stored Procedures and Functions

A.4.16 Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly to
a stored procedure in the database? ... 3508

A.4.17 Can I pass an array as input to a stored procedure? ... 3508
A.4.18 Can I pass a cursor as an IN parameter to a stored procedure? .. 3508
A.4.19 Can I return a cursor as an OUT parameter from a stored procedure? 3509
A.4.20 Can I print out a variable's value within a stored routine for debugging purposes? 3509
A.4.21 Can I commit or roll back transactions inside a stored procedure? .. 3509
A.4.22 Do MySQL 5.6 stored procedures and functions work with replication? 3509
A.4.23 Are stored procedures and functions created on a replication source server replicated to a

replica? .. 3509
A.4.24 How are actions that take place inside stored procedures and functions replicated? 3509
A.4.25 Are there special security requirements for using stored procedures and functions together

with replication? .. 3509
A.4.26 What limitations exist for replicating stored procedure and function actions? 3509
A.4.27 Do the preceding limitations affect the ability of MySQL to do point-in-time recovery? 3510
A.4.28 What is being done to correct the aforementioned limitations? .. 3510

A.4.1. Does MySQL 5.6 support stored procedures and functions?

Yes. MySQL 5.6 supports two types of stored routines, stored procedures and stored functions.

A.4.2. Where can I find documentation for MySQL stored procedures and stored functions?

See Section 20.2, “Using Stored Routines”.

A.4.3. Is there a discussion forum for MySQL stored procedures?

Yes. See https://forums.mysql.com/list.php?98.

A.4.4. Where can I find the ANSI SQL 2003 specification for stored procedures?

Unfortunately, the official specifications are not freely available (ANSI makes them available for
purchase). However, there are books, such as SQL-99 Complete, Really by Peter Gulutzan and
Trudy Pelzer, that provide a comprehensive overview of the standard, including coverage of stored
procedures.

A.4.5. How do you manage stored routines?

It is always good practice to use a clear naming scheme for your stored routines. You can
manage stored procedures with CREATE [FUNCTION|PROCEDURE], ALTER [FUNCTION|
PROCEDURE], DROP [FUNCTION|PROCEDURE], and SHOW CREATE [FUNCTION|PROCEDURE].
You can obtain information about existing stored procedures using the ROUTINES table in
the INFORMATION_SCHEMA database (see Section 21.3.19, “The INFORMATION_SCHEMA
ROUTINES Table”).

A.4.6. Is there a way to view all stored procedures and stored functions in a given database?

Yes. For a database named dbname, use this query on the INFORMATION_SCHEMA.ROUTINES
table:

SELECT ROUTINE_TYPE, ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_SCHEMA='dbname';

For more information, see Section 21.3.19, “The INFORMATION_SCHEMA ROUTINES Table”.

The body of a stored routine can be viewed using SHOW CREATE FUNCTION (for a stored function)
or SHOW CREATE PROCEDURE (for a stored procedure). See Section 13.7.5.11, “SHOW CREATE
PROCEDURE Statement”, for more information.

3507

https://forums.mysql.com/list.php?98

MySQL 5.6 FAQ: Stored Procedures and Functions

A.4.7. Where are stored procedures stored?

In the proc table of the mysql system database. However, you should not access the tables
in the system database directly. Instead, query the INFORMATION_SCHEMA ROUTINES and
PARAMETERS tables. See Section 21.3.19, “The INFORMATION_SCHEMA ROUTINES Table”, and
Section 21.3.13, “The INFORMATION_SCHEMA PARAMETERS Table”.

You can also use SHOW CREATE FUNCTION to obtain information about stored functions, and
SHOW CREATE PROCEDURE to obtain information about stored procedures. See Section 13.7.5.11,
“SHOW CREATE PROCEDURE Statement”.

A.4.8. Is it possible to group stored procedures or stored functions into packages?

No. This is not supported in MySQL 5.6.

A.4.9. Can a stored procedure call another stored procedure?

Yes.

A.4.10.Can a stored procedure call a trigger?

A stored procedure can execute an SQL statement, such as an UPDATE, that causes a trigger to
activate.

A.4.11.Can a stored procedure access tables?

Yes. A stored procedure can access one or more tables as required.

A.4.12.Do stored procedures have a statement for raising application errors?

Yes. MySQL 5.6 implements the SQL standard SIGNAL and RESIGNAL statements. See
Section 13.6.7, “Condition Handling”.

A.4.13.Do stored procedures provide exception handling?

MySQL implements HANDLER definitions according to the SQL standard. See Section 13.6.7.2,
“DECLARE ... HANDLER Statement”, for details.

A.4.14.Can MySQL 5.6 stored routines return result sets?

Stored procedures can, but stored functions cannot. If you perform an ordinary SELECT inside a
stored procedure, the result set is returned directly to the client. You need to use the MySQL 4.1 (or
higher) client/server protocol for this to work. This means that, for example, in PHP, you need to use
the mysqli extension rather than the old mysql extension.

A.4.15.Is WITH RECOMPILE supported for stored procedures?

Not in MySQL 5.6.

A.4.16.Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly to a
stored procedure in the database?

There is no equivalent in MySQL 5.6.

A.4.17.Can I pass an array as input to a stored procedure?

Not in MySQL 5.6.

A.4.18.Can I pass a cursor as an IN parameter to a stored procedure?

In MySQL 5.6, cursors are available inside stored procedures only.

3508

MySQL 5.6 FAQ: Stored Procedures and Functions

A.4.19.Can I return a cursor as an OUT parameter from a stored procedure?

In MySQL 5.6, cursors are available inside stored procedures only. However, if you do not open a
cursor on a SELECT, the result is sent directly to the client. You can also SELECT INTO variables.
See Section 13.2.9, “SELECT Statement”.

A.4.20.Can I print out a variable's value within a stored routine for debugging purposes?

Yes, you can do this in a stored procedure, but not in a stored function. If you perform an ordinary
SELECT inside a stored procedure, the result set is returned directly to the client. You must use the
MySQL 4.1 (or above) client/server protocol for this to work. This means that, for example, in PHP,
you need to use the mysqli extension rather than the old mysql extension.

A.4.21.Can I commit or roll back transactions inside a stored procedure?

Yes. However, you cannot perform transactional operations within a stored function.

A.4.22.Do MySQL 5.6 stored procedures and functions work with replication?

Yes, standard actions carried out in stored procedures and functions are replicated from a
replication source server to a replica. There are a few limitations that are described in detail in
Section 20.7, “Stored Program Binary Logging”.

A.4.23.Are stored procedures and functions created on a replication source server replicated to a replica?

Yes, creation of stored procedures and functions carried out through normal DDL statements on a
replication source server are replicated to a replica, so that the objects exist on both servers. ALTER
and DROP statements for stored procedures and functions are also replicated.

A.4.24.How are actions that take place inside stored procedures and functions replicated?

MySQL records each DML event that occurs in a stored procedure and replicates those individual
actions to a replica. The actual calls made to execute stored procedures are not replicated.

Stored functions that change data are logged as function invocations, not as the DML events that
occur inside each function.

A.4.25.Are there special security requirements for using stored procedures and functions together with
replication?

Yes. Because a replica has authority to execute any statement read from a source's binary log,
special security constraints exist for using stored functions with replication. If replication or binary
logging in general (for the purpose of point-in-time recovery) is active, then MySQL DBAs have two
security options open to them:

1. Any user wishing to create stored functions must be granted the SUPER privilege.

2. Alternatively, a DBA can set the log_bin_trust_function_creators system variable to 1,
which enables anyone with the standard CREATE ROUTINE privilege to create stored functions.

A.4.26.What limitations exist for replicating stored procedure and function actions?

Nondeterministic (random) or time-based actions embedded in stored procedures may not
replicate properly. By their very nature, randomly produced results are not predictable and
cannot be exactly reproduced; therefore, random actions replicated to a replica do not mirror
those performed on a source. Declaring stored functions to be DETERMINISTIC or setting the
log_bin_trust_function_creators system variable to 0 keeps random operations producing
random values from being invoked.

3509

MySQL 5.6 FAQ: Triggers

In addition, time-based actions cannot be reproduced on a replica because the timing of such
actions in a stored procedure is not reproducible through the binary log used for replication. It
records only DML events and does not factor in timing constraints.

Finally, nontransactional tables for which errors occur during large DML actions (such as bulk
inserts) may experience replication issues in that a source may be partially updated from DML
activity, but no updates are done to the replica because of the errors that occurred. A workaround
is for a function's DML actions to be carried out with the IGNORE keyword so that updates on the
source that cause errors are ignored and updates that do not cause errors are replicated to the
replica.

A.4.27.Do the preceding limitations affect the ability of MySQL to do point-in-time recovery?

The same limitations that affect replication do affect point-in-time recovery.

A.4.28.What is being done to correct the aforementioned limitations?

You can choose either statement-based replication or row-based replication. The original replication
implementation is based on statement-based binary logging. Row-based binary logging resolves the
limitations mentioned earlier.

Mixed replication is also available (by starting the server with --binlog-format=mixed). This
hybrid form of replication “knows” whether statement-level replication can safely be used, or row-
level replication is required.

For additional information, see Section 17.1.2, “Replication Formats”.

A.5 MySQL 5.6 FAQ: Triggers
A.5.1 Where can I find the documentation for MySQL 5.6 triggers? ... 3510
A.5.2 Is there a discussion forum for MySQL Triggers? .. 3510
A.5.3 Does MySQL 5.6 have statement-level or row-level triggers? ... 3510
A.5.4 Are there any default triggers? ... 3510
A.5.5 How are triggers managed in MySQL? ... 3511
A.5.6 Is there a way to view all triggers in a given database? ... 3511
A.5.7 Where are triggers stored? .. 3511
A.5.8 Can a trigger call a stored procedure? .. 3511
A.5.9 Can triggers access tables? ... 3511
A.5.10 Can a table have multiple triggers with the same trigger event and action time? 3511
A.5.11 Is it possible for a trigger to update tables on a remote server? .. 3511
A.5.12 Do triggers work with replication? ... 3511
A.5.13 How are actions carried out through triggers on a source replicated to a replica? 3512

A.5.1. Where can I find the documentation for MySQL 5.6 triggers?

See Section 20.3, “Using Triggers”.

A.5.2. Is there a discussion forum for MySQL Triggers?

Yes. It is available at https://forums.mysql.com/list.php?99.

A.5.3. Does MySQL 5.6 have statement-level or row-level triggers?

In MySQL 5.6, all triggers are FOR EACH ROW; that is, the trigger is activated for each row that is
inserted, updated, or deleted. MySQL 5.6 does not support triggers using FOR EACH STATEMENT.

A.5.4. Are there any default triggers?

3510

https://forums.mysql.com/list.php?99

MySQL 5.6 FAQ: Triggers

Not explicitly. MySQL does have specific special behavior for some TIMESTAMP columns, as well as
for columns which are defined using AUTO_INCREMENT.

A.5.5. How are triggers managed in MySQL?

In MySQL 5.6, triggers can be created using the CREATE TRIGGER statement, and dropped using
DROP TRIGGER. See Section 13.1.19, “CREATE TRIGGER Statement”, and Section 13.1.30,
“DROP TRIGGER Statement”, for more about these statements.

Information about triggers can be obtained by querying the INFORMATION_SCHEMA.TRIGGERS
table. See Section 21.3.27, “The INFORMATION_SCHEMA TRIGGERS Table”.

A.5.6. Is there a way to view all triggers in a given database?

Yes. You can obtain a listing of all triggers defined on database dbname using a query on the
INFORMATION_SCHEMA.TRIGGERS table such as the one shown here:

SELECT TRIGGER_NAME, EVENT_MANIPULATION, EVENT_OBJECT_TABLE, ACTION_STATEMENT
 FROM INFORMATION_SCHEMA.TRIGGERS
 WHERE TRIGGER_SCHEMA='dbname';

For more information about this table, see Section 21.3.27, “The INFORMATION_SCHEMA
TRIGGERS Table”.

You can also use the SHOW TRIGGERS statement, which is specific to MySQL. See
Section 13.7.5.39, “SHOW TRIGGERS Statement”.

A.5.7. Where are triggers stored?

Triggers are stored in .TRG files, with one such file one per table.

A.5.8. Can a trigger call a stored procedure?

Yes.

A.5.9. Can triggers access tables?

A trigger can access both old and new data in its own table. A trigger can also affect other tables,
but it is not permitted to modify a table that is already being used (for reading or writing) by the
statement that invoked the function or trigger.

A.5.10.Can a table have multiple triggers with the same trigger event and action time?

In MySQL 5.6, there cannot be multiple triggers for a given table that have the same trigger event
and action time. For example, you cannot have two BEFORE UPDATE triggers for a table. This
limitation is lifted in MySQL 5.7.

A.5.11.Is it possible for a trigger to update tables on a remote server?

Yes. A table on a remote server could be updated using the FEDERATED storage engine. (See
Section 15.8, “The FEDERATED Storage Engine”).

A.5.12.Do triggers work with replication?

Yes. However, the way in which they work depends whether you are using MySQL's “classic”
statement-based or row-based replication format.

When using statement-based replication, triggers on the replica are executed by statements that are
executed on the source (and replicated to the replica).

3511

MySQL 5.6 FAQ: Views

When using row-based replication, triggers are not executed on the replica due to statements
that were run on the source and then replicated to the replica. Instead, when using row-based
replication, the changes caused by executing the trigger on the source are applied on the replica.

For more information, see Section 17.4.1.33, “Replication and Triggers”.

A.5.13.How are actions carried out through triggers on a source replicated to a replica?

Again, this depends on whether you are using statement-based or row-based replication.

Statement-based replication. First, the triggers that exist on a source must be re-created on the
replica server. Once this is done, the replication flow works as any other standard DML statement
that participates in replication. For example, consider a table EMP that has an AFTER insert trigger,
which exists on a replication source server. The same EMP table and AFTER insert trigger exist on
the replica server as well. The replication flow would be:

1. An INSERT statement is made to EMP.

2. The AFTER trigger on EMP activates.

3. The INSERT statement is written to the binary log.

4. The replica picks up the INSERT statement to EMP and executes it.

5. The AFTER trigger on EMP that exists on the replica activates.

Row-based replication. When you use row-based replication, the changes caused by executing
the trigger on the source are applied on the replica. However, the triggers themselves are not
actually executed on the replica under row-based replication. This is because, if both the source and
the replica applied the changes from the source and, in addition, the trigger causing these changes
were applied on the replica, the changes would in effect be applied twice on the replica, leading to
different data on the source and the replica.

In most cases, the outcome is the same for both row-based and statement-based replication.
However, if you use different triggers on the source and replica, you cannot use row-based
replication. (This is because the row-based format replicates the changes made by triggers
executing on the source to the replicas, rather than the statements that caused the triggers to
execute, and the corresponding triggers on the replica are not executed.) Instead, any statements
causing such triggers to be executed must be replicated using statement-based replication.

For more information, see Section 17.4.1.33, “Replication and Triggers”.

A.6 MySQL 5.6 FAQ: Views
A.6.1 Where can I find documentation covering MySQL Views? .. 3512
A.6.2 Is there a discussion forum for MySQL Views? ... 3513
A.6.3 What happens to a view if an underlying table is dropped or renamed? 3513
A.6.4 Does MySQL 5.6 have table snapshots? .. 3513
A.6.5 Does MySQL 5.6 have materialized views? .. 3513
A.6.6 Can you insert into views that are based on joins? .. 3513

A.6.1. Where can I find documentation covering MySQL Views?

See Section 20.5, “Using Views”.

You may also find the MySQL User Forums to be helpful.

3512

https://forums.mysql.com/list.php?20

MySQL 5.6 FAQ: INFORMATION_SCHEMA

A.6.2. Is there a discussion forum for MySQL Views?

See the MySQL User Forums.

A.6.3. What happens to a view if an underlying table is dropped or renamed?

After a view has been created, it is possible to drop or alter a table or view to which the definition
refers. To check a view definition for problems of this kind, use the CHECK TABLE statement. (See
Section 13.7.2.2, “CHECK TABLE Statement”.)

A.6.4. Does MySQL 5.6 have table snapshots?

No.

A.6.5. Does MySQL 5.6 have materialized views?

No.

A.6.6. Can you insert into views that are based on joins?

It is possible, provided that your INSERT statement has a column list that makes it clear there is only
one table involved.

You cannot insert into multiple tables with a single insert on a view.

A.7 MySQL 5.6 FAQ: INFORMATION_SCHEMA
A.7.1 Where can I find documentation for the MySQL INFORMATION_SCHEMA database? 3513
A.7.2 Is there a discussion forum for INFORMATION_SCHEMA? ... 3513
A.7.3 Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA? 3513
A.7.4 What is the difference between the Oracle Data Dictionary and MySQL

INFORMATION_SCHEMA? .. 3513
A.7.5 Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database? 3513

A.7.1. Where can I find documentation for the MySQL INFORMATION_SCHEMA database?

See Chapter 21, INFORMATION_SCHEMA Tables.

You may also find the MySQL User Forums to be helpful.

A.7.2. Is there a discussion forum for INFORMATION_SCHEMA?

See the MySQL User Forums.

A.7.3. Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?

Unfortunately, the official specifications are not freely available. (ANSI makes them available
for purchase.) However, there are books available, such as SQL-99 Complete, Really by Peter
Gulutzan and Trudy Pelzer, that provide a comprehensive overview of the standard, including
INFORMATION_SCHEMA.

A.7.4. What is the difference between the Oracle Data Dictionary and MySQL INFORMATION_SCHEMA?

Both Oracle and MySQL provide metadata in tables. However, Oracle and MySQL use different
table names and column names. The MySQL implementation is more similar to those found in DB2
and SQL Server, which also support INFORMATION_SCHEMA as defined in the SQL standard.

A.7.5. Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database?

3513

https://forums.mysql.com/list.php?20
https://forums.mysql.com/list.php?20
https://forums.mysql.com/list.php?20

MySQL 5.6 FAQ: Migration

No. Since applications may rely on a certain standard structure, this should not be modified.
For this reason, we cannot support bugs or other issues which result from modifying
INFORMATION_SCHEMA tables or data.

A.8 MySQL 5.6 FAQ: Migration
A.8.1 Where can I find information on how to migrate from MySQL 5.5 to MySQL 5.6? 3514
A.8.2 How has storage engine (table type) support changed in MySQL 5.6 from previous versions? ... 3514

A.8.1. Where can I find information on how to migrate from MySQL 5.5 to MySQL 5.6?

For detailed upgrade information, see Section 2.11, “Upgrading MySQL”. Do not skip a major
version when upgrading, but rather complete the process in steps, upgrading from one major
version to the next in each step. This may seem more complicated, but ultimately saves time and
trouble. If you encounter problems during the upgrade, their origin is easier to identify, either by you
or, if you have a MySQL Enterprise subscription, by MySQL support.

A.8.2. How has storage engine (table type) support changed in MySQL 5.6 from previous versions?

Storage engine support has changed as follows:

• Support for ISAM tables was removed in MySQL 5.0 and you should now use the MyISAM storage
engine in place of ISAM. To convert a table tblname from ISAM to MyISAM, simply issue a
statement such as this one:

ALTER TABLE tblname ENGINE=MYISAM;

• Internal RAID for MyISAM tables was also removed in MySQL 5.0. This was formerly used to
allow large tables in file systems that did not support file sizes greater than 2GB. All modern file
systems allow for larger tables; in addition, there are now other solutions such as MERGE tables
and views.

• The VARCHAR column type now retains trailing spaces in all storage engines.

• MEMORY tables (formerly known as HEAP tables) can also contain VARCHAR columns.

A.9 MySQL 5.6 FAQ: Security
A.9.1 Where can I find documentation that addresses security issues for MySQL? 3514
A.9.2 What is the default authentication plugin in MySQL 5.6? .. 3515
A.9.3 Does MySQL 5.6 have native support for SSL? .. 3515
A.9.4 Is SSL support built into MySQL binaries, or must I recompile the binary myself to enable it? 3515
A.9.5 Does MySQL 5.6 have built-in authentication against LDAP directories? 3515
A.9.6 Does MySQL 5.6 include support for Roles Based Access Control (RBAC)? 3515

A.9.1. Where can I find documentation that addresses security issues for MySQL?

The best place to start is Chapter 6, Security.

Other portions of the MySQL Documentation which you may find useful with regard to specific
security concerns include the following:

• Section 6.1.1, “Security Guidelines”.

• Section 6.1.3, “Making MySQL Secure Against Attackers”.

• Section B.3.3.2, “How to Reset the Root Password”.

3514

MySQL 5.6 FAQ: NDB Cluster

• Section 6.1.5, “How to Run MySQL as a Normal User”.

• Section 6.1.4, “Security-Related mysqld Options and Variables”.

• Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”.

• Section 2.10, “Postinstallation Setup and Testing”.

• Section 6.3, “Using Encrypted Connections”.

• Loadable Function Security Precautions.

There is also the Secure Deployment Guide, which provides procedures for deploying a generic
binary distribution of MySQL Enterprise Edition Server with features for managing the security of
your MySQL installation.

A.9.2. What is the default authentication plugin in MySQL 5.6?

The default authentication plugin in MySQL 5.6 is mysql_native_password. For information
about this plugin, see Section 6.4.1.1, “Native Pluggable Authentication”. For general information
about pluggable authentication and other available authentication plugins, see Section 6.2.11,
“Pluggable Authentication”, and Section 6.4.1, “Authentication Plugins”.

A.9.3. Does MySQL 5.6 have native support for SSL?

Most 5.6 binaries have support for SSL connections between the client and server. See Section 6.3,
“Using Encrypted Connections”.

You can also tunnel a connection using SSH, if (for example) the client application does not support
SSL connections. For an example, see Section 6.3.5, “Connecting to MySQL Remotely from
Windows with SSH”.

A.9.4. Is SSL support built into MySQL binaries, or must I recompile the binary myself to enable it?

Most 5.6 binaries have SSL enabled for client/server connections that are secured, authenticated, or
both. See Section 6.3, “Using Encrypted Connections”.

A.9.5. Does MySQL 5.6 have built-in authentication against LDAP directories?

The Enterprise edition includes a PAM Authentication Plugin that supports authentication against an
LDAP directory.

A.9.6. Does MySQL 5.6 include support for Roles Based Access Control (RBAC)?

Not at this time.

A.10 MySQL 5.6 FAQ: NDB Cluster
In the following section, we answer questions that are frequently asked about NDB Cluster and the NDB
storage engine.

A.10.1 Which versions of the MySQL software support NDB Cluster? Do I have to compile from
source? .. 3516

A.10.2 What do “NDB” and “NDBCLUSTER” mean? .. 3517
A.10.3 What is the difference between using NDB Cluster versus using MySQL Replication? 3517
A.10.4 Do I need any special networking to run NDB Cluster? How do computers in a cluster

communicate? .. 3518

3515

https://dev.mysql.com/doc/extending-mysql/5.6/en/adding-loadable-function.html#loadable-function-security
https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/

MySQL 5.6 FAQ: NDB Cluster

A.10.5 How many computers do I need to run an NDB Cluster, and why? 3518
A.10.6 What do the different computers do in an NDB Cluster? .. 3518
A.10.7 When I run the SHOW command in the NDB Cluster management client, I see a line of output

that looks like this: .. 3519
A.10.8 With which operating systems can I use NDB Cluster? .. 3519
A.10.9 What are the hardware requirements for running NDB Cluster? .. 3519
A.10.10 How much RAM do I need to use NDB Cluster? Is it possible to use disk memory at all? 3520
A.10.11 What file systems can I use with NDB Cluster? What about network file systems or network

shares? .. 3521
A.10.12 Can I run NDB Cluster nodes inside virtual machines (such as those created by VMWare,

VirtualBox, Parallels, or Xen)? ... 3521
A.10.13 I am trying to populate an NDB Cluster database. The loading process terminates

prematurely and I get an error message like this one: .. 3521
A.10.14 NDB Cluster uses TCP/IP. Does this mean that I can run it over the Internet, with one or

more nodes in remote locations? ... 3522
A.10.15 Do I have to learn a new programming or query language to use NDB Cluster? 3522
A.10.16 What programming languages and APIs are supported by NDB Cluster? 3522
A.10.17 Does NDB Cluster include any management tools? ... 3523
A.10.18 How do I find out what an error or warning message means when using NDB Cluster? 3523
A.10.19 Is NDB Cluster transaction-safe? What isolation levels are supported? 3523
A.10.20 What storage engines are supported by NDB Cluster? ... 3523
A.10.21 In the event of a catastrophic failure— for example, the whole city loses power and my UPS

fails—would I lose all my data? ... 3523
A.10.22 Is it possible to use FULLTEXT indexes with NDB Cluster? .. 3523
A.10.23 Can I run multiple nodes on a single computer? .. 3523
A.10.24 Can I add data nodes to an NDB Cluster without restarting it? .. 3524
A.10.25 Are there any limitations that I should be aware of when using NDB Cluster? 3524
A.10.26 Does NDB Cluster support foreign keys? .. 3525
A.10.27 How do I import an existing MySQL database into an NDB Cluster? 3525
A.10.28 How do NDB Cluster nodes communicate with one another? ... 3525
A.10.29 What is an arbitrator? .. 3525
A.10.30 What data types are supported by NDB Cluster? ... 3526
A.10.31 How do I start and stop NDB Cluster? .. 3526
A.10.32 What happens to NDB Cluster data when the NDB Cluster is shut down? 3527
A.10.33 Is it a good idea to have more than one management node for an NDB Cluster? 3527
A.10.34 Can I mix different kinds of hardware and operating systems in one NDB Cluster? 3527
A.10.35 Can I run two data nodes on a single host? Two SQL nodes? .. 3527
A.10.36 Can I use host names with NDB Cluster? ... 3527
A.10.37 Does NDB Cluster support IPv6? .. 3527
A.10.38 How do I handle MySQL users in an NDB Cluster having multiple MySQL servers? 3528
A.10.39 How do I continue to send queries in the event that one of the SQL nodes fails? 3528
A.10.40 How do I back up and restore an NDB Cluster? .. 3528
A.10.41 What is an “angel process”? ... 3528

A.10.1.Which versions of the MySQL software support NDB Cluster? Do I have to compile from source?

NDB Cluster is not supported in standard MySQL Server 5.6 releases. Instead, MySQL NDB Cluster
is provided as a separate product. Available NDB Cluster release series include the following:

• NDB Cluster 7.2. This series is no longer supported for new deployments or maintained.
Users of NDB Cluster 7.2 should upgrade to a newer release series as soon as possible. We
recommend that new deployments use the latest NDB Cluster 8.0 release.

• NDB Cluster 7.3. This series is a previous General Availability (GA) version of NDB Cluster,
still available for production use, although we recommend that new deployments use the latest

3516

MySQL 5.6 FAQ: NDB Cluster

NDB Cluster 8.0 release. The most recent NDB Cluster 7.3 release can be obtained from https://
dev.mysql.com/downloads/cluster/.

• NDB Cluster 7.4. This series is a previous General Availability (GA) version of NDB Cluster,
still available for production use, although we recommend that new deployments use the latest
NDB Cluster 8.0 release. The most recent NDB Cluster 7.4 release can be obtained from https://
dev.mysql.com/downloads/cluster/.

• NDB Cluster 7.5. This series is a previous General Availability (GA) version of NDB Cluster,
still available for production use, although we recommend that new deployments use the latest
NDB Cluster 7.6 release. The latest NDB Cluster 7.5 releases can be obtained from https://
dev.mysql.com/downloads/cluster/.

• NDB Cluster 7.6. This series is a previous General Availability (GA) version of NDB Cluster,
still available for production use, although we recommend that new deployments use the latest
NDB Cluster 8.0 release. The latest NDB Cluster 7.6 releases can be obtained from https://
dev.mysql.com/downloads/cluster/.

• NDB Cluster 8.0. This series is the most recent General Availability (GA) version of NDB
Cluster, based on version 8.0 of the NDB storage engine and MySQL Server 8.0. NDB Cluster 8.0
is available for production use; new deployments intended for production should use the latest GA
release in this series, which is currently NDB Cluster 8.0.33. You can obtain the most recent NDB
Cluster 8.0 release from https://dev.mysql.com/downloads/cluster/. For information about new
features and other important changes in this series, see What is New in MySQL NDB Cluster.

You can obtain and compile NDB Cluster from source (see Section 18.3.1.4, “Building NDB Cluster
from Source on Linux”, and Section 18.3.2.2, “Compiling and Installing NDB Cluster from Source
on Windows”), but for all but the most specialized cases, we recommend using one of the following
installers provided by Oracle that is appropriate to your operating platform and circumstances:

• Linux binary release (tar.gz file)

• Linux RPM package

• Linux .deb file

• Windows binary “no-install” release

• Windows MSI Installer

Installation packages may also be available from your platform's package management system.

You can determine whether your MySQL Server has NDB support using one of the statements SHOW
VARIABLES LIKE 'have_%', SHOW ENGINES, or SHOW PLUGINS.

A.10.2.What do “NDB” and “NDBCLUSTER” mean?

“NDB” stands for “Network Database”. NDB and NDBCLUSTER are both names for the storage
engine that enables clustering support with MySQL. NDB is preferred, but either name is correct.

A.10.3.What is the difference between using NDB Cluster versus using MySQL Replication?

In traditional MySQL replication, a source MySQL server updates one or more replicas.
Transactions are committed sequentially, and a slow transaction can cause the replica to lag behind
the source. This means that if the source fails, it is possible that the replica might not have recorded
the last few transactions. If a transaction-safe engine such as InnoDB is being used, a transaction
is either completed on the replica or not applied at all, but replication does not guarantee that all

3517

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html

MySQL 5.6 FAQ: NDB Cluster

data on the source and the replica remains consistent at all times. In NDB Cluster, all data nodes
are kept in synchrony, and a transaction committed by any one data node is committed for all data
nodes. In the event of a data node failure, all remaining data nodes remain in a consistent state.

In short, whereas standard MySQL replication is asynchronous, NDB Cluster is synchronous.

Asynchronous replication is also available in NDB Cluster. NDB Cluster Replication (also sometimes
known as “geo-replication”) includes the capability to replicate both between two NDB Clusters, and
from an NDB Cluster to a non-Cluster MySQL server. See Section 18.7, “NDB Cluster Replication”.

A.10.4.Do I need any special networking to run NDB Cluster? How do computers in a cluster
communicate?

NDB Cluster is intended to be used in a high-bandwidth environment, with computers connecting
using TCP/IP. Its performance depends directly upon the connection speed between the cluster's
computers. The minimum connectivity requirements for NDB Cluster include a typical 100-megabit
Ethernet network or the equivalent. We recommend you use gigabit Ethernet whenever available.

A.10.5.How many computers do I need to run an NDB Cluster, and why?

A minimum of three computers is required to run a viable cluster. However, the minimum
recommended number of computers in an NDB Cluster is four: one each to run the management
and SQL nodes, and two computers to serve as data nodes. The purpose of the two data nodes
is to provide redundancy; the management node must run on a separate machine to guarantee
continued arbitration services in the event that one of the data nodes fails.

To provide increased throughput and high availability, you should use multiple SQL nodes (MySQL
Servers connected to the cluster). It is also possible (although not strictly necessary) to run multiple
management servers.

A.10.6.What do the different computers do in an NDB Cluster?

An NDB Cluster has both a physical and logical organization, with computers being the physical
elements. The logical or functional elements of a cluster are referred to as nodes, and a computer
housing a cluster node is sometimes referred to as a cluster host. There are three types of nodes,
each corresponding to a specific role within the cluster. These are:

• Management node. This node provides management services for the cluster as a whole,
including startup, shutdown, backups, and configuration data for the other nodes. The
management node server is implemented as the application ndb_mgmd; the management client
used to control NDB Cluster is ndb_mgm. See Section 18.5.4, “ndb_mgmd — The NDB Cluster
Management Server Daemon”, and Section 18.5.5, “ndb_mgm — The NDB Cluster Management
Client”, for information about these programs.

• Data node. This type of node stores and replicates data. Data node functionality is handled by
instances of the NDB data node process ndbd. For more information, see Section 18.5.1, “ndbd —
The NDB Cluster Data Node Daemon”.

• SQL node. This is simply an instance of MySQL Server (mysqld) that is built with support
for the NDBCLUSTER storage engine and started with the --ndb-cluster option to enable
the engine and the --ndb-connectstring option to enable it to connect to an NDB Cluster
management server. For more about these options, see MySQL Server Options for NDB Cluster.

Note

An API node is any application that makes direct use of Cluster data nodes
for data storage and retrieval. An SQL node can thus be considered a

3518

MySQL 5.6 FAQ: NDB Cluster

type of API node that uses a MySQL Server to provide an SQL interface
to the Cluster. You can write such applications (that do not depend on
a MySQL Server) using the NDB API, which supplies a direct, object-
oriented transaction and scanning interface to NDB Cluster data; see NDB
Cluster API Overview: The NDB API, for more information.

A.10.7.When I run the SHOW command in the NDB Cluster management client, I see a line of output that
looks like this:

id=2 @10.100.10.32 (Version: 8.0.33-ndb-8.0.33 Nodegroup: 0, *)

What does the * mean? How is this node different from the others?

The simplest answer is, “It's not something you can control, and it's nothing that you need to worry
about in any case, unless you're a software engineer writing or analyzing the NDB Cluster source
code”.

If you don't find that answer satisfactory, here's a longer and more technical version:

A number of mechanisms in NDB Cluster require distributed coordination among the data nodes.
These distributed algorithms and protocols include global checkpointing, DDL (schema) changes,
and node restart handling. To make this coordination simpler, the data nodes “elect” one of their
number to act as leader. There is no user-facing mechanism for influencing this selection, which is
completely automatic; the fact that it is automatic is a key part of NDB Cluster's internal architecture.

When a node acts as the “leader” for any of these mechanisms, it is usually the point of coordination
for the activity, and the other nodes act as “followers”, carrying out their parts of the activity as
directed by the leader. If the node acting as leader fails, then the remaining nodes elect a new
leader. Tasks in progress that were being coordinated by the old leader may either fail or be
continued by the new leader, depending on the actual mechanism involved.

It is possible for some of these different mechanisms and protocols to have different leader nodes,
but in general the same leader is chosen for all of them. The node indicated as the leader in the
output of SHOW in the management client is known internally as the DICT manager, responsible for
coordinating DDL and metadata activity.

NDB Cluster is designed in such a way that the choice of leader has no discernible effect outside
the cluster itself. For example, the current leader does not have significantly higher CPU or resource
usage than the other data nodes, and failure of the leader should not have a significantly different
impact on the cluster than the failure of any other data node.

A.10.8.With which operating systems can I use NDB Cluster?

NDB Cluster is supported on most Unix-like operating systems. NDB Cluster is also supported in
production settings on Microsoft Windows operating systems.

For more detailed information concerning the level of support which is offered for NDB Cluster on
various operating system versions, operating system distributions, and hardware platforms, please
refer to https://www.mysql.com/support/supportedplatforms/cluster.html.

A.10.9.What are the hardware requirements for running NDB Cluster?

NDB Cluster should run on any platform for which NDB-enabled binaries are available. For data
nodes and API nodes, faster CPUs and more memory are likely to improve performance, and 64-
bit CPUs are likely to be more effective than 32-bit processors. There must be sufficient memory
on machines used for data nodes to hold each node's share of the database (see How much RAM
do I Need? for more information). For a computer which is used only for running the NDB Cluster

3519

https://dev.mysql.com/doc/ndbapi/en/overview-ndb-api.html
https://dev.mysql.com/doc/ndbapi/en/overview-ndb-api.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://www.mysql.com/support/supportedplatforms/cluster.html

MySQL 5.6 FAQ: NDB Cluster

management server, the requirements are minimal; a common desktop PC (or the equivalent) is
generally sufficient for this task. Nodes can communicate through the standard TCP/IP network and
hardware. They can also use the high-speed SCI protocol; however, special networking hardware
and software are required to use SCI (see Section 18.4.4, “Using High-Speed Interconnects with
NDB Cluster”).

A.10.10.How much RAM do I need to use NDB Cluster? Is it possible to use disk memory at all?

NDB Cluster was originally implemented as in-memory only, but all versions currently available
also provide the ability to store NDB Cluster on disk. See Section 18.6.11, “NDB Cluster Disk Data
Tables”, for more information.

For in-memory NDB tables, you can use the following formula for obtaining a rough estimate of how
much RAM is needed for each data node in the cluster:

(SizeofDatabase × NumberOfReplicas × 1.1) / NumberOfDataNodes

To calculate the memory requirements more exactly requires determining, for each table in the
cluster database, the storage space required per row (see Section 11.6, “Data Type Storage
Requirements”, for details), and multiplying this by the number of rows. You must also remember to
account for any column indexes as follows:

• Each primary key or hash index created for an NDBCLUSTER table requires 21−25 bytes per
record. These indexes use IndexMemory.

• Each ordered index requires 10 bytes storage per record, using DataMemory.

• Creating a primary key or unique index also creates an ordered index, unless this index is created
with USING HASH. In other words:

• A primary key or unique index on a Cluster table normally takes up 31 to 35 bytes per record.

• However, if the primary key or unique index is created with USING HASH, then it requires only
21 to 25 bytes per record.

Creating NDB Cluster tables with USING HASH for all primary keys and unique indexes generally
causes table updates to run more quickly—in some cases by a much as 20 to 30 percent faster than
updates on tables where USING HASH was not used in creating primary and unique keys. This is
due to the fact that less memory is required (because no ordered indexes are created), and that less
CPU must be utilized (because fewer indexes must be read and possibly updated). However, it also
means that queries that could otherwise use range scans must be satisfied by other means, which
can result in slower selects.

When calculating Cluster memory requirements, you may find useful the ndb_size.pl utility
which is available in recent MySQL 5.6 releases. This Perl script connects to a current (non-Cluster)
MySQL database and creates a report on how much space that database would require if it used
the NDBCLUSTER storage engine. For more information, see Section 18.5.26, “ndb_size.pl —
NDBCLUSTER Size Requirement Estimator”.

It is especially important to keep in mind that every NDB Cluster table must have a primary key.
The NDB storage engine creates a primary key automatically if none is defined; this primary key is
created without USING HASH.

You can determine how much memory is being used for storage of NDB Cluster data and indexes
at any given time using the REPORT MEMORYUSAGE command in the ndb_mgm client; see
Section 18.6.1, “Commands in the NDB Cluster Management Client”, for more information. In

3520

MySQL 5.6 FAQ: NDB Cluster

addition, warnings are written to the cluster log when 80% of available DataMemory or (prior to
NDB 7.6) IndexMemory is in use, and again when usage reaches 90%, 99%, and 100%.

A.10.11.What file systems can I use with NDB Cluster? What about network file systems or network shares?

Generally, any file system that is native to the host operating system should work well with NDB
Cluster. If you find that a given file system works particularly well (or not so especially well) with
NDB Cluster, we invite you to discuss your findings in the NDB Cluster Forums.

For Windows, we recommend that you use NTFS file systems for NDB Cluster, just as we do for
standard MySQL. We do not test NDB Cluster with FAT or VFAT file systems. Because of this, we
do not recommend their use with MySQL or NDB Cluster.

NDB Cluster is implemented as a shared-nothing solution; the idea behind this is that the failure of a
single piece of hardware should not cause the failure of multiple cluster nodes, or possibly even the
failure of the cluster as a whole. For this reason, the use of network shares or network file systems
is not supported for NDB Cluster. This also applies to shared storage devices such as SANs.

A.10.12.Can I run NDB Cluster nodes inside virtual machines (such as those created by VMWare,
VirtualBox, Parallels, or Xen)?

NDB Cluster is supported for use in virtual machines. We currently support and test using Oracle
VM.

Some NDB Cluster users have successfully deployed NDB Cluster using other virtualization
products; in such cases, Oracle can provide NDB Cluster support, but issues specific to the virtual
environment must be referred to that product's vendor.

A.10.13.I am trying to populate an NDB Cluster database. The loading process terminates prematurely and I
get an error message like this one:

ERROR 1114: The table 'my_cluster_table' is full

Why is this happening?

The cause is very likely to be that your setup does not provide sufficient RAM for all table data and
all indexes, including the primary key required by the NDB storage engine and automatically created
in the event that the table definition does not include the definition of a primary key.

It is also worth noting that all data nodes should have the same amount of RAM, since no data node
in a cluster can use more memory than the least amount available to any individual data node. For
example, if there are four computers hosting Cluster data nodes, and three of these have 3GB of
RAM available to store Cluster data while the remaining data node has only 1GB RAM, then each
data node can devote at most 1GB to NDB Cluster data and indexes.

In some cases it is possible to get Table is full errors in MySQL client applications even when
ndb_mgm -e "ALL REPORT MEMORYUSAGE" shows significant free DataMemory. You can force
NDB to create extra partitions for NDB Cluster tables and thus have more memory available for hash
indexes by using the MAX_ROWS option for CREATE TABLE. In general, setting MAX_ROWS to twice
the number of rows that you expect to store in the table should be sufficient.

For similar reasons, you can also sometimes encounter problems with data node restarts on nodes
that are heavily loaded with data. The MinFreePct parameter can help with this issue by reserving
a portion (5% by default) of DataMemory and (prior to NDB 7.6) IndexMemory for use in restarts.
This reserved memory is not available for storing NDB tables or data.

3521

https://forums.mysql.com/list.php?25
http://www.oracle.com/technetwork/server-storage/vm/index.html
http://www.oracle.com/technetwork/server-storage/vm/index.html

MySQL 5.6 FAQ: NDB Cluster

A.10.14.NDB Cluster uses TCP/IP. Does this mean that I can run it over the Internet, with one or more
nodes in remote locations?

It is very unlikely that a cluster would perform reliably under such conditions, as NDB Cluster was
designed and implemented with the assumption that it would be run under conditions guaranteeing
dedicated high-speed connectivity such as that found in a LAN setting using 100 Mbps or gigabit
Ethernet—preferably the latter. We neither test nor warrant its performance using anything slower
than this.

Also, it is extremely important to keep in mind that communications between the nodes in an
NDB Cluster are not secure; they are neither encrypted nor safeguarded by any other protective
mechanism. The most secure configuration for a cluster is in a private network behind a firewall,
with no direct access to any Cluster data or management nodes from outside. (For SQL nodes, you
should take the same precautions as you would with any other instance of the MySQL server.) For
more information, see Section 18.6.17, “NDB Cluster Security Issues”.

A.10.15.Do I have to learn a new programming or query language to use NDB Cluster?

No. Although some specialized commands are used to manage and configure the cluster itself, only
standard (My)SQL statements are required for the following operations:

• Creating, altering, and dropping tables

• Inserting, updating, and deleting table data

• Creating, changing, and dropping primary and unique indexes

Some specialized configuration parameters and files are required to set up an NDB Cluster—see
Section 18.4.3, “NDB Cluster Configuration Files”, for information about these.

A few simple commands are used in the NDB Cluster management client (ndb_mgm) for tasks
such as starting and stopping cluster nodes. See Section 18.6.1, “Commands in the NDB Cluster
Management Client”.

A.10.16.What programming languages and APIs are supported by NDB Cluster?

NDB Cluster supports the same programming APIs and languages as the standard MySQL Server,
including ODBC, .Net, the MySQL C API, and numerous drivers for popular scripting languages
such as PHP, Perl, and Python. NDB Cluster applications written using these APIs behave similarly
to other MySQL applications; they transmit SQL statements to a MySQL Server (in the case of NDB
Cluster, an SQL node), and receive responses containing rows of data. For more information about
these APIs, see Chapter 23, Connectors and APIs.

NDB Cluster also supports application programming using the NDB API, which provides a low-level
C++ interface to NDB Cluster data without needing to go through a MySQL Server. See The NDB
API. In addition, many NDBCLUSTER management functions are exposed by the C-language MGM
API; see The MGM API, for more information.

NDB Cluster also supports Java application programming using ClusterJ, which supports a domain
object model of data using sessions and transactions. See Java and NDB Cluster, for more
information.

In addition, NDB Cluster provides support for memcached, allowing developers to access data
stored in NDB Cluster using the memcached interface; for more information, see ndbmemcache—
Memcache API for NDB Cluster (NO LONGER SUPPORTED).

3522

https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/ndbapi/en/mgm-api.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
https://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html
https://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html

MySQL 5.6 FAQ: NDB Cluster

NDB Cluster also includes adapters supporting NoSQL applications written against Node.js, with
NDB Cluster as the data store. See MySQL NoSQL Connector for JavaScript, for more information.

A.10.17.Does NDB Cluster include any management tools?

NDB Cluster includes a command line client for performing basic management functions. See
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”, and Section 18.6.1,
“Commands in the NDB Cluster Management Client”.

NDB Cluster 7.6 and earlier are also supported by MySQL Cluster Manager, a separate product
providing an advanced command line interface that can automate many NDB Cluster management
tasks such as rolling restarts and configuration changes. Beginning with version 1.4.8, MySQL
Cluster Manager also provides experimental support for NDB Cluster 8.0. For more information
about MySQL Cluster Manager, see MySQL Cluster Manager 1.4.8 User Manual.

A.10.18.How do I find out what an error or warning message means when using NDB Cluster?

There are two ways in which this can be done:

• From within the mysql client, use SHOW ERRORS or SHOW WARNINGS immediately upon being
notified of the error or warning condition.

• From a system shell prompt, use perror --ndb error_code.

A.10.19.Is NDB Cluster transaction-safe? What isolation levels are supported?

Yes. For tables created with the NDB storage engine, transactions are supported. Currently, NDB
Cluster supports only the READ COMMITTED transaction isolation level.

A.10.20.What storage engines are supported by NDB Cluster?

NDB Cluster requires the NDB storage engine. That is, in order for a table to be shared between
nodes in an NDB Cluster, the table must be created using ENGINE=NDB (or the equivalent option
ENGINE=NDBCLUSTER).

It is possible to create tables using other storage engines (such as InnoDB or MyISAM) on a MySQL
server being used with NDB Cluster, but since these tables do not use NDB, they do not participate
in clustering; each such table is strictly local to the individual MySQL server instance on which it is
created.

An NDB Cluster cannot be created using the InnoDB storage engine. For information about the
differences between the NDB and InnoDB storage engines, see Section 18.2.6, “MySQL Server
Using InnoDB Compared with NDB Cluster”.

A.10.21.In the event of a catastrophic failure— for example, the whole city loses power and my UPS fails—
would I lose all my data?

All committed transactions are logged. Therefore, although it is possible that some data could be
lost in the event of a catastrophe, this should be quite limited. Data loss can be further reduced by
minimizing the number of operations per transaction. (It is not a good idea to perform large numbers
of operations per transaction in any case.)

A.10.22.Is it possible to use FULLTEXT indexes with NDB Cluster?

FULLTEXT indexing is currently supported only by the InnoDB and MyISAM storage engines. See
Section 12.10, “Full-Text Search Functions”, for more information.

A.10.23.Can I run multiple nodes on a single computer?

3523

https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

MySQL 5.6 FAQ: NDB Cluster

It is possible but not always advisable. One of the chief reasons to run a cluster is to provide
redundancy. To obtain the full benefits of this redundancy, each node should reside on a separate
machine. If you place multiple nodes on a single machine and that machine fails, you lose all of
those nodes. For this reason, if you do run multiple data nodes on a single machine, it is extremely
important that they be set up in such a way that the failure of this machine does not cause the loss
of all the data nodes in a given node group.

Given that NDB Cluster can be run on commodity hardware loaded with a low-cost (or even no-cost)
operating system, the expense of an extra machine or two is well worth it to safeguard mission-
critical data. It also worth noting that the requirements for a cluster host running a management
node are minimal. This task can be accomplished with a 300 MHz Pentium or equivalent CPU and
sufficient RAM for the operating system, plus a small amount of overhead for the ndb_mgmd and
ndb_mgm processes.

It is acceptable to run multiple cluster data nodes on a single host that has multiple CPUs, cores,
or both. The NDB Cluster distribution also provides a multithreaded version of the data node binary
intended for use on such systems. For more information, see Section 18.5.3, “ndbmtd — The NDB
Cluster Data Node Daemon (Multi-Threaded)”.

It is also possible in some cases to run data nodes and SQL nodes concurrently on the same
machine; how well such an arrangement performs is dependent on a number of factors such as
number of cores and CPUs as well as the amount of disk and memory available to the data node
and SQL node processes, and you must take these factors into account when planning such a
configuration.

A.10.24.Can I add data nodes to an NDB Cluster without restarting it?

It is possible to add new data nodes to a running NDB Cluster without taking the cluster offline. For
more information, see Section 18.6.7, “Adding NDB Cluster Data Nodes Online”.

For other types of NDB Cluster nodes, a rolling restart is all that is required (see Section 18.6.5,
“Performing a Rolling Restart of an NDB Cluster”).

A.10.25.Are there any limitations that I should be aware of when using NDB Cluster?

Limitations on NDB tables in MySQL NDB Cluster include the following:

• Temporary tables are not supported; a CREATE TEMPORARY TABLE statement using
ENGINE=NDB or ENGINE=NDBCLUSTER fails with an error.

• The only types of user-defined partitioning supported for NDBCLUSTER tables are KEY and
LINEAR KEY. Trying to create an NDB table using any other partitioning type fails with an error.

• FULLTEXT indexes are not supported.

• Index prefixes are not supported. Only complete columns may be indexed.

• Spatial indexes are not supported (although spatial columns can be used). See Section 11.4,
“Spatial Data Types”.

• Support for partial transactions and partial rollbacks is comparable to that of other transactional
storage engines such as InnoDB that can roll back individual statements.

• The maximum number of attributes allowed per table is 512. Attribute names cannot be any
longer than 31 characters. For each table, the maximum combined length of the table and
database names is 122 characters.

3524

MySQL 5.6 FAQ: NDB Cluster

• Priot to NDB 8.0, the maximum size for a table row is 14 kilobytes, not counting BLOB values. In
NDB 8.0, this maximum is increased to 30000 bytes. See Section 18.2.7.5, “Limits Associated
with Database Objects in NDB Cluster”, for more information.

There is no set limit for the number of rows per NDB table. Limits on table size depend on a
number of factors, in particular on the amount of RAM available to each data node.

For a complete listing of limitations in NDB Cluster, see Section 18.2.7, “Known Limitations of NDB
Cluster”. See also Section 18.2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 7.3”.

A.10.26.Does NDB Cluster support foreign keys?

NDB Cluster provides support for foreign key constraints which is comparable to that found in
the InnoDB storage engine; see Section 1.6.3.2, “FOREIGN KEY Constraints”, for more detailed
information, as well as Section 13.1.17.5, “FOREIGN KEY Constraints”. Applications requiring
foreign key support should use NDB Cluster 7.3, 7.4, 7.5, or later.

A.10.27.How do I import an existing MySQL database into an NDB Cluster?

You can import databases into NDB Cluster much as you would with any other version of MySQL.
Other than the limitations mentioned elsewhere in this FAQ, the only other special requirement is
that any tables to be included in the cluster must use the NDB storage engine. This means that the
tables must be created with ENGINE=NDB or ENGINE=NDBCLUSTER.

It is also possible to convert existing tables that use other storage engines to NDBCLUSTER using
one or more ALTER TABLE statement. However, the definition of the table must be compatible
with the NDBCLUSTER storage engine prior to making the conversion. In MySQL 5.6, an additional
workaround is also required; see Section 18.2.7, “Known Limitations of NDB Cluster”, for details.

A.10.28.How do NDB Cluster nodes communicate with one another?

Cluster nodes can communicate through any of three different transport mechanisms: TCP/IP, SHM
(shared memory), and SCI (Scalable Coherent Interface). Where available, SHM is used by default
between nodes residing on the same cluster host; however, this is considered experimental. SCI is
a high-speed (1 gigabit per second and higher), high-availability protocol used in building scalable
multi-processor systems; it requires special hardware and drivers. See Section 18.4.4, “Using High-
Speed Interconnects with NDB Cluster”, for more about using SCI as a transport mechanism for
NDB Cluster.

A.10.29.What is an arbitrator?

If one or more data nodes in a cluster fail, it is possible that not all cluster data nodes are able to
“see” one another. In fact, it is possible that two sets of data nodes might become isolated from
one another in a network partitioning, also known as a “split-brain” scenario. This type of situation
is undesirable because each set of data nodes tries to behave as though it is the entire cluster. An
arbitrator is required to decide between the competing sets of data nodes.

When all data nodes in at least one node group are alive, network partitioning is not an issue,
because no single subset of the cluster can form a functional cluster on its own. The real problem
arises when no single node group has all its nodes alive, in which case network partitioning (the
“split-brain” scenario) becomes possible. Then an arbitrator is required. All cluster nodes recognize
the same node as the arbitrator, which is normally the management server; however, it is possible
to configure any of the MySQL Servers in the cluster to act as the arbitrator instead. The arbitrator
accepts the first set of cluster nodes to contact it, and tells the remaining set to shut down. Arbitrator
selection is controlled by the ArbitrationRank configuration parameter for MySQL Server and
management server nodes. You can also use the ArbitrationRank configuration parameter

3525

MySQL 5.6 FAQ: NDB Cluster

to control the arbitrator selection process. For more information about these parameters, see
Section 18.4.3.5, “Defining an NDB Cluster Management Server”.

The role of arbitrator does not in and of itself impose any heavy demands upon the host so
designated, and thus the arbitrator host does not need to be particularly fast or to have extra
memory especially for this purpose.

A.10.30.What data types are supported by NDB Cluster?

NDB Cluster supports all of the usual MySQL data types, including those associated with
MySQL's spatial extensions; however, the NDB storage engine does not support spatial indexes.
(Spatial indexes are supported only by MyISAM; see Section 11.4, “Spatial Data Types”, for more
information.) In addition, there are some differences with regard to indexes when used with NDB
tables.

Note

NDB Cluster Disk Data tables (that is, tables created with TABLESPACE ...
STORAGE DISK ENGINE=NDB or TABLESPACE ... STORAGE DISK
ENGINE=NDBCLUSTER) have only fixed-width rows. This means that (for
example) each Disk Data table record containing a VARCHAR(255) column
requires space for 255 characters (as required for the character set and
collation being used for the table), regardless of the actual number of
characters stored therein.

See Section 18.2.7, “Known Limitations of NDB Cluster”, for more information about these issues.

A.10.31.How do I start and stop NDB Cluster?

It is necessary to start each node in the cluster separately, in the following order:

1. Start the management node, using the ndb_mgmd command.

You must include the -f or --config-file option to tell the management node where its
configuration file can be found.

2. Start each data node with the ndbd command.

Each data node must be started with the -c or --ndb-connectstring option so that the data
node knows how to connect to the management server.

3. Start each MySQL Server (SQL node) using your preferred startup script, such as
mysqld_safe.

Each MySQL Server must be started with the --ndbcluster and --ndb-connectstring
options. These options cause mysqld to enable NDBCLUSTER storage engine support and how
to connect to the management server.

Each of these commands must be run from a system shell on the machine housing the affected
node. (You do not have to be physically present at the machine—a remote login shell can be used
for this purpose.) You can verify that the cluster is running by starting the NDB management client
ndb_mgm on the machine housing the management node and issuing the SHOW or ALL STATUS
command.

To shut down a running cluster, issue the command SHUTDOWN in the management client.
Alternatively, you may enter the following command in a system shell:

3526

MySQL 5.6 FAQ: NDB Cluster

$> ndb_mgm -e "SHUTDOWN"

(The quotation marks in this example are optional, since there are no spaces in the command
string following the -e option; in addition, the SHUTDOWN command, like other management client
commands, is not case-sensitive.)

Either of these commands causes the ndb_mgm, ndb_mgm, and any ndbd processes to terminate
gracefully. MySQL servers running as SQL nodes can be stopped using mysqladmin shutdown.

For more information, see Section 18.6.1, “Commands in the NDB Cluster Management Client”, and
Section 18.3.6, “Safe Shutdown and Restart of NDB Cluster”.

MySQL Cluster Manager provides additional ways to handle starting ansd stopping of NDB Cluster
nodes. See MySQL Cluster Manager 1.4.8 User Manual, for more information about this tool.

A.10.32.What happens to NDB Cluster data when the NDB Cluster is shut down?

The data that was held in memory by the cluster's data nodes is written to disk, and is reloaded into
memory the next time that the cluster is started.

A.10.33.Is it a good idea to have more than one management node for an NDB Cluster?

It can be helpful as a fail-safe. Only one management node controls the cluster at any given time,
but it is possible to configure one management node as primary, and one or more additional
management nodes to take over in the event that the primary management node fails.

See Section 18.4.3, “NDB Cluster Configuration Files”, for information on how to configure NDB
Cluster management nodes.

A.10.34.Can I mix different kinds of hardware and operating systems in one NDB Cluster?

Yes, as long as all machines and operating systems have the same “endianness” (all big-endian or
all little-endian).

It is also possible to use software from different NDB Cluster releases on different nodes. However,
we support such use only as part of a rolling upgrade procedure (see Section 18.6.5, “Performing a
Rolling Restart of an NDB Cluster”).

A.10.35.Can I run two data nodes on a single host? Two SQL nodes?

Yes, it is possible to do this. In the case of multiple data nodes, it is advisable (but not required) for
each node to use a different data directory. If you want to run multiple SQL nodes on one machine,
each instance of mysqld must use a different TCP/IP port.

Running data nodes and SQL nodes together on the same host is possible, but you should be
aware that the ndbd or ndbmtd processes may compete for memory with mysqld.

A.10.36.Can I use host names with NDB Cluster?

Yes, it is possible to use DNS and DHCP for cluster hosts. However, if your application requires
“five nines” availability, you should use fixed (numeric) IP addresses, since making communication
between Cluster hosts dependent on services such as DNS and DHCP introduces additional
potential points of failure.

A.10.37.Does NDB Cluster support IPv6?

IPv6 is supported for connections between SQL nodes (MySQL servers), but connections between
all other types of NDB Cluster nodes must use IPv4.

3527

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

MySQL 5.6 FAQ: NDB Cluster

In practical terms, this means that you can use IPv6 for replication between NDB Clusters, but
connections between nodes in the same NDB Cluster must use IPv4. For more information, see
Section 18.7.3, “Known Issues in NDB Cluster Replication”.

A.10.38.How do I handle MySQL users in an NDB Cluster having multiple MySQL servers?

MySQL user accounts and privileges are normally not automatically propagated between different
MySQL servers accessing the same NDB Cluster. MySQL NDB Cluster provides support for
distributed privileges, which you can enable by following a procedure provided in the documentation;
see Section 18.6.13, “Distributed Privileges Using Shared Grant Tables”, for more information.

Important

The mechanism for handling users distributed or shared between
NDB Cluster SQL nodes has changed significantly in NDB 8.0; this
implementation is not compatible with that in NDB 7.6 and earlier. See
Privilege Synchronization and NDB_STORED_USER, for details.

A.10.39.How do I continue to send queries in the event that one of the SQL nodes fails?

MySQL NDB Cluster does not provide any sort of automatic failover between SQL nodes. Your
application must be prepared to handle the loss of SQL nodes and to fail over between them.

A.10.40.How do I back up and restore an NDB Cluster?

You can use the NDB Cluster native backup and restore functionality in the NDB management
client and the ndb_restore program. See Section 18.6.8, “Online Backup of NDB Cluster”, and
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”.

You can also use the traditional functionality provided for this purpose in mysqldump and the
MySQL server. See Section 4.5.4, “mysqldump — A Database Backup Program”, for more
information.

A.10.41.What is an “angel process”?

This process monitors and, if necessary, attempts to restart the data node process. If you check the
list of active processes on your system after starting ndbd, you can see that there are actually 2
processes running by that name, as shown here (we omit the output from ndb_mgmd and ndbd for
brevity):

$> ./ndb_mgmd

$> ps aux | grep ndb
me 23002 0.0 0.0 122948 3104 ? Ssl 14:14 0:00 ./ndb_mgmd
me 23025 0.0 0.0 5284 820 pts/2 S+ 14:14 0:00 grep ndb

$> ./ndbd -c 127.0.0.1 --initial

$> ps aux | grep ndb
me 23002 0.0 0.0 123080 3356 ? Ssl 14:14 0:00 ./ndb_mgmd
me 23096 0.0 0.0 35876 2036 ? Ss 14:14 0:00 ./ndbmtd -c 127.0.0.1 --initial
me 23097 1.0 2.4 524116 91096 ? Sl 14:14 0:00 ./ndbmtd -c 127.0.0.1 --initial
me 23168 0.0 0.0 5284 812 pts/2 R+ 14:15 0:00 grep ndb

The ndbd process showing 0.0 for both memory and CPU usage is the angel process (although it
actually does use a very small amount of each). This process merely checks to see if the main ndbd
or ndbmtd process (the primary data node process which actually handles the data) is running. If
permitted to do so (for example, if the StopOnError configuration parameter is set to false), the
angel process tries to restart the primary data node process.

3528

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-privilege-synchronization.html

MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

A.11 MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean
Character Sets

This set of Frequently Asked Questions derives from the experience of MySQL's Support and Development
groups in handling many inquiries about CJK (Chinese-Japanese-Korean) issues.

A.11.1 What CJK character sets are available in MySQL? .. 3529
A.11.2 I have inserted CJK characters into my table. Why does SELECT display them as “?”

characters? ... 3530
A.11.3 What problems should I be aware of when working with the Big5 Chinese character set? 3532
A.11.4 Why do Japanese character set conversions fail? ... 3532
A.11.5 What should I do if I want to convert SJIS 81CA to cp932? ... 3534
A.11.6 How does MySQL represent the Yen (¥) sign? ... 3534
A.11.7 Of what issues should I be aware when working with Korean character sets in MySQL? 3534
A.11.8 Why do I get Incorrect string value error messages? .. 3534
A.11.9 Why does my GUI front end or browser display CJK characters incorrectly in my application

using Access, PHP, or another API? ... 3535
A.11.10 I've upgraded to MySQL 5.6. How can I revert to behavior like that in MySQL 4.0 with regard

to character sets? ... 3536
A.11.11 Why do some LIKE and FULLTEXT searches with CJK characters fail? 3537
A.11.12 How do I know whether character X is available in all character sets? 3537
A.11.13 Why do CJK strings sort incorrectly in Unicode? (I) ... 3538
A.11.14 Why do CJK strings sort incorrectly in Unicode? (II) ... 3540
A.11.15 Why are my supplementary characters rejected by MySQL? .. 3541
A.11.16 Should “CJK” be “CJKV”? .. 3541
A.11.17 Does MySQL permit CJK characters to be used in database and table names? 3541
A.11.18 Where can I find translations of the MySQL Manual into Chinese, Japanese, and Korean? ... 3541
A.11.19 Where can I get help with CJK and related issues in MySQL? .. 3541

A.11.1.What CJK character sets are available in MySQL?

The list of CJK character sets may vary depending on your MySQL version. For example,
the gb18030 character set is not supported prior to MySQL 5.7.4. However, since the name
of the applicable language appears in the DESCRIPTION column for every entry in the
INFORMATION_SCHEMA.CHARACTER_SETS table, you can obtain a current list of all the non-
Unicode CJK character sets using this query:

mysql> SELECT CHARACTER_SET_NAME, DESCRIPTION
 FROM INFORMATION_SCHEMA.CHARACTER_SETS
 WHERE DESCRIPTION LIKE '%Chin%'
 OR DESCRIPTION LIKE '%Japanese%'
 OR DESCRIPTION LIKE '%Korean%'
 ORDER BY CHARACTER_SET_NAME;
+--------------------+---------------------------------+
| CHARACTER_SET_NAME | DESCRIPTION |
+--------------------+---------------------------------+
big5	Big5 Traditional Chinese
cp932	SJIS for Windows Japanese
eucjpms	UJIS for Windows Japanese
euckr	EUC-KR Korean
gb18030	China National Standard GB18030
gb2312	GB2312 Simplified Chinese
gbk	GBK Simplified Chinese
sjis	Shift-JIS Japanese
ujis	EUC-JP Japanese
+--------------------+---------------------------------+

3529

MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

(For more information, see Section 21.3.2, “The INFORMATION_SCHEMA CHARACTER_SETS
Table”.)

MySQL supports three variants of the GB (Guojia Biaozhun, or National Standard, or Simplified
Chinese) character sets which are official in the People's Republic of China: gb2312, gbk, and (as
of MySQL 5.7.4) gb18030.

Sometimes people try to insert gbk characters into gb2312, and it works most of the time because
gbk is a superset of gb2312. But eventually they try to insert a rarer Chinese character and it does
not work. (For an example, see Bug #16072).

Here, we try to clarify exactly what characters are legitimate in gb2312 or gbk, with reference to the
official documents. Please check these references before reporting gb2312 or gbk bugs:

• The MySQL gbk character set is in reality “Microsoft code page 936”. This differs from the official
gbk for characters A1A4 (middle dot), A1AA (em dash), A6E0-A6F5, and A8BB-A8C0.

• For a listing of gbk/Unicode mappings, see http://www.unicode.org/Public/MAPPINGS/
VENDORS/MICSFT/WINDOWS/CP936.TXT.

It is also possible to store CJK characters in Unicode character sets, although the available
collations may not sort characters quite as you expect:

• The utf8 and ucs2 character sets support the characters from Unicode Basic Multilingual Plane
(BMP). These characters have code point values between U+0000 and U+FFFF.

• The utf8mb4, utf16, utf16le, and utf32 character sets support BMP characters, as well as
supplementary characters that lie outside the BMP. Supplementary characters have code point
values between U+10000 and U+10FFFF.

The collation used for a Unicode character set determines the ability to sort (that is, distinguish)
characters in the set:

• Collations based on Unicode Collation Algorithm (UCA) 4.0.0 distinguish only BMP characters.

• Collations based on UCA 5.2.0 or 9.0.0 distinguish BMP and supplementary characters.

• Non-UCA collations may not distinguish all Unicode characters. For example, the utf8mb4
default collation is utf8mb4_general_ci, which distinguishes only BMP characters.

Moreover, distinguishing characters is not the same as ordering them per the conventions
of a given CJK language. Currently, MySQL has only one CJK-specific UCA collation,
gb18030_unicode_520_ci (which requires use of the non-Unicode gb18030 character set).

For information about Unicode collations and their differentiating properties, including collation
properties for supplementary characters, see Section 10.10.1, “Unicode Character Sets”.

A.11.2.I have inserted CJK characters into my table. Why does SELECT display them as “?” characters?

This problem is usually due to a setting in MySQL that does not match the settings for the
application program or the operating system. Here are some common steps for correcting these
types of issues:

• Be certain of what MySQL version you are using.

Use the statement SELECT VERSION(); to determine this.

3530

http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT

MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

• Make sure that the database is actually using the desired character set.

People often think that the client character set is always the same as either the server character
set or the character set used for display purposes. However, both of these are false assumptions.
You can make sure by checking the result of SHOW CREATE TABLE tablename or, better yet,
by using this statement:

SELECT character_set_name, collation_name
 FROM information_schema.columns
 WHERE table_schema = your_database_name
 AND table_name = your_table_name
 AND column_name = your_column_name;

• Determine the hexadecimal value of the character or characters that are not being displayed
correctly.

You can obtain this information for a column column_name in the table table_name using the
following query:

SELECT HEX(column_name)
FROM table_name;

3F is the encoding for the ? character; this means that ? is the character actually stored in the
column. This most often happens because of a problem converting a particular character from
your client character set to the target character set.

• Make sure that a round trip is possible. When you select literal (or _introducer
hexadecimal-value), do you obtain literal as a result?

For example, the Japanese Katakana character Pe (ペ') exists in all CJK character sets, and has
the code point value (hexadecimal coding) 0x30da. To test a round trip for this character, use this
query:

SELECT 'ペ' AS `ペ`; /* or SELECT _ucs2 0x30da; */

If the result is not also ペ, the round trip failed.

For bug reports regarding such failures, we might ask you to follow up with SELECT
HEX('ペ');. Then we can determine whether the client encoding is correct.

• Make sure that the problem is not with the browser or other application, rather than with MySQL.

Use the mysql client program to accomplish this task. If mysql displays characters correctly but
your application does not, your problem is probably due to system settings.

To determine your settings, use the SHOW VARIABLES statement, whose output should resemble
what is shown here:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8

3531

MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

| character_sets_dir | /usr/local/mysql/share/mysql/charsets/ |
+--------------------------+--+

These are typical character-set settings for an international-oriented client (notice the use of utf8
Unicode) connected to a server in the West (latin1 is a West Europe character set).

Although Unicode (usually the utf8 variant on Unix, and the ucs2 variant on Windows) is
preferable to Latin, it is often not what your operating system utilities support best. Many Windows
users find that a Microsoft character set, such as cp932 for Japanese Windows, is suitable.

If you cannot control the server settings, and you have no idea what setting your underlying
computer uses, try changing to a common character set for the country that you're in (euckr =
Korea; gb18030, gb2312 or gbk = People's Republic of China; big5 = Taiwan; sjis, ujis,
cp932, or eucjpms = Japan; ucs2 or utf8 = anywhere). Usually it is necessary to change only
the client and connection and results settings. The SET NAMES. statement changes all three at
once. For example:

SET NAMES 'big5';

Once the setting is correct, you can make it permanent by editing my.cnf or my.ini. For
example you might add lines looking like these:

[mysqld]
character-set-server=big5
[client]
default-character-set=big5

It is also possible that there are issues with the API configuration setting being used in your
application; see Why does my GUI front end or browser not display CJK characters correctly...?
for more information.

A.11.3.What problems should I be aware of when working with the Big5 Chinese character set?

MySQL supports the Big5 character set which is common in Hong Kong and Taiwan (Republic of
China). The MySQL big5 character set is in reality Microsoft code page 950, which is very similar to
the original big5 character set.

A feature request for adding HKSCS extensions has been filed. People who need this extension may
find the suggested patch for Bug #13577 to be of interest.

A.11.4.Why do Japanese character set conversions fail?

MySQL supports the sjis, ujis, cp932, and eucjpms character sets, as well as Unicode. A
common need is to convert between character sets. For example, there might be a Unix server
(typically with sjis or ujis) and a Windows client (typically with cp932).

In the following conversion table, the ucs2 column represents the source, and the sjis, cp932,
ujis, and eucjpms columns represent the destinations; that is, the last 4 columns provide the
hexadecimal result when we use CONVERT(ucs2) or we assign a ucs2 column containing the
value to an sjis, cp932, ujis, or eucjpms column.

Character
Name

ucs2 sjis cp932 ujis eucjpms

BROKEN BAR 00A6 3F 3F 8FA2C3 3F

FULLWIDTH
BROKEN BAR

FFE4 3F FA55 3F 8FA2

3532

MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

Character
Name

ucs2 sjis cp932 ujis eucjpms

YEN SIGN 00A5 3F 3F 20 3F

FULLWIDTH
YEN SIGN

FFE5 818F 818F A1EF 3F

TILDE 007E 7E 7E 7E 7E

OVERLINE 203E 3F 3F 20 3F

HORIZONTAL
BAR

2015 815C 815C A1BD A1BD

EM DASH 2014 3F 3F 3F 3F

REVERSE
SOLIDUS

005C 815F 5C 5C 5C

FULLWIDTH
REVERSE
SOLIDUS

FF3C 3F 815F 3F A1C0

WAVE DASH 301C 8160 3F A1C1 3F

FULLWIDTH
TILDE

FF5E 3F 8160 3F A1C1

DOUBLE
VERTICAL
LINE

2016 8161 3F A1C2 3F

PARALLEL TO 2225 3F 8161 3F A1C2

MINUS SIGN 2212 817C 3F A1DD 3F

FULLWIDTH
HYPHEN-
MINUS

FF0D 3F 817C 3F A1DD

CENT SIGN 00A2 8191 3F A1F1 3F

FULLWIDTH
CENT SIGN

FFE0 3F 8191 3F A1F1

POUND SIGN 00A3 8192 3F A1F2 3F

FULLWIDTH
POUND SIGN

FFE1 3F 8192 3F A1F2

NOT SIGN 00AC 81CA 3F A2CC 3F

FULLWIDTH
NOT SIGN

FFE2 3F 81CA 3F A2CC

Now consider the following portion of the table.

ucs2 sjis cp932

NOT SIGN 00AC 81CA 3F

FULLWIDTH NOT
SIGN

FFE2 3F 81CA

3533

MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

This means that MySQL converts the NOT SIGN (Unicode U+00AC) to sjis code point 0x81CA
and to cp932 code point 3F. (3F is the question mark (“?”. This is what is always used when the
conversion cannot be performed.)

A.11.5.What should I do if I want to convert SJIS 81CA to cp932?

Our answer is: “?”. There are disadvantages to this, and many people would prefer a “loose”
conversion, so that 81CA (NOT SIGN) in sjis becomes 81CA (FULLWIDTH NOT SIGN) in
cp932.

A.11.6.How does MySQL represent the Yen (¥) sign?

A problem arises because some versions of Japanese character sets (both sjis and euc) treat 5C
as a reverse solidus (\, also known as a backslash), whereas others treat it as a yen sign (¥).

MySQL follows only one version of the JIS (Japanese Industrial Standards) standard description. In
MySQL, 5C is always the reverse solidus (\).

A.11.7.Of what issues should I be aware when working with Korean character sets in MySQL?

In theory, while there have been several versions of the euckr (Extended Unix Code Korea)
character set, only one problem has been noted. We use the “ASCII” variant of EUC-KR, in which
the code point 0x5c is REVERSE SOLIDUS, that is \, instead of the “KS-Roman” variant of EUC-
KR, in which the code point 0x5c is WON SIGN (₩). This means that you cannot convert Unicode U
+20A9 to euckr:

mysql> SELECT
 CONVERT('₩' USING euckr) AS euckr,

 HEX(CONVERT('₩' USING euckr)) AS hexeuckr;
+-------+----------+
| euckr | hexeuckr |
+-------+----------+
| ? | 3F |
+-------+----------+

A.11.8.Why do I get Incorrect string value error messages?

To see the problem, create a table with one Unicode (ucs2) column and one Chinese (gb2312)
column.

mysql> CREATE TABLE ch
 (ucs2 CHAR(3) CHARACTER SET ucs2,
 gb2312 CHAR(3) CHARACTER SET gb2312);

In nonstrict SQL mode, try to place the rare character 汌 in both columns.

mysql> SET sql_mode = '';
mysql> INSERT INTO ch VALUES ('A汌B','A汌B');
Query OK, 1 row affected, 1 warning (0.00 sec)

The INSERT produces a warning. Use the following statement to see what it is:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1366
Message: Incorrect string value: '\xE6\xB1\x8CB' for column 'gb2312' at row 1

So it is a warning about the gb2312 column only.

mysql> SELECT ucs2,HEX(ucs2),gb2312,HEX(gb2312) FROM ch;

3534

MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

+-------+--------------+--------+-------------+
| ucs2 | HEX(ucs2) | gb2312 | HEX(gb2312) |
+-------+--------------+--------+-------------+
| A汌B | 00416C4C0042 | A?B | 413F42 |
+-------+--------------+--------+-------------+

Several things need explanation here:

1. The 汌 character is not in the gb2312 character set, as described earlier.

2. If you are using an old version of MySQL, you may see a different message.

3. A warning occurs rather than an error because MySQL is not set to use strict SQL mode. In
nonstrict mode, MySQL tries to do what it can, to get the best fit, rather than give up. With
strict SQL mode, the Incorrect string value message occurs as an error rather than a
warning, and the INSERT fails.

A.11.9.Why does my GUI front end or browser display CJK characters incorrectly in my application using
Access, PHP, or another API?

Obtain a direct connection to the server using the mysql client, and try the same query there. If
mysql responds correctly, the trouble may be that your application interface requires initialization.
Use mysql to tell you what character set or sets it uses with the statement SHOW VARIABLES
LIKE 'char%';. If you are using Access, you are most likely connecting with Connector/ODBC.
In this case, you should check Configuring Connector/ODBC. If, for example, you use big5, you
would enter SET NAMES 'big5'. (In this case, no ; character is required.) If you are using ASP,
you might need to add SET NAMES in the code. Here is an example that has worked in the past:

<%
Session.CodePage=0
Dim strConnection
Dim Conn
strConnection="driver={MySQL ODBC 3.51 Driver};server=server;uid=username;" \
 & "pwd=password;database=database;stmt=SET NAMES 'big5';"
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open strConnection
%>

In much the same way, if you are using any character set other than latin1 with Connector/NET,
you must specify the character set in the connection string. See Connector/NET Connections, for
more information.

If you are using PHP, try this:

<?php
 $link = new mysqli($host, $usr, $pwd, $db);

 if(mysqli_connect_errno())
 {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
 }

 $link->query("SET NAMES 'utf8'");
?>

In this case, we used SET NAMES to change character_set_client,
character_set_connection, and character_set_results.

Another issue often encountered in PHP applications has to do with assumptions made by
the browser. Sometimes adding or changing a <meta> tag suffices to correct the problem: for

3535

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration.html
https://dev.mysql.com/doc/connector-net/en/connector-net-connections.html

MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

example, to insure that the user agent interprets page content as UTF-8, include <meta http-
equiv="Content-Type" content="text/html; charset=utf-8"> in the <head> section
of the HTML page.

If you are using Connector/J, see Using Character Sets and Unicode.

A.11.10.I've upgraded to MySQL 5.6. How can I revert to behavior like that in MySQL 4.0 with regard to
character sets?

In MySQL Version 4.0, there was a single “global” character set for both server and client, and the
decision as to which character to use was made by the server administrator. This changed starting
with MySQL Version 4.1. What happens now is a “handshake”, as described in Section 10.4,
“Connection Character Sets and Collations”:

When a client connects, it sends to the server the name of the character set that
it wants to use. The server uses the name to set the character_set_client,
character_set_results, and character_set_connection system
variables. In effect, the server performs a SET NAMES operation using the character
set name.

The effect of this is that you cannot control the client character set by starting mysqld with --
character-set-server=utf8. However, some Asian customers prefer the MySQL 4.0
behavior. To make it possible to retain this behavior, we added a mysqld switch, --character-
set-client-handshake, which can be turned off with --skip-character-set-client-
handshake. If you start mysqld with --skip-character-set-client-handshake, then,
when a client connects, it sends to the server the name of the character set that it wants to use.
However, the server ignores this request from the client.

By way of example, suppose that your favorite server character set is latin1. Suppose further that
the client uses utf8 because this is what the client's operating system supports. Start the server
with latin1 as its default character set:

mysqld --character-set-server=latin1

And then start the client with the default character set utf8:

mysql --default-character-set=utf8

The resulting settings can be seen by viewing the output of SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+

Now stop the client, and stop the server using mysqladmin. Then start the server again, but this
time tell it to skip the handshake like so:

mysqld --character-set-server=utf8 --skip-character-set-client-handshake

3536

https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-charsets.html

MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

Start the client with utf8 once again as the default character set, then display the resulting settings:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	latin1
character_set_connection	latin1
character_set_database	latin1
character_set_filesystem	binary
character_set_results	latin1
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+

As you can see by comparing the differing results from SHOW VARIABLES, the server ignores the
client's initial settings if the --skip-character-set-client-handshake option is used.

A.11.11.Why do some LIKE and FULLTEXT searches with CJK characters fail?

For LIKE searches, there is a very simple problem with binary string column types such as BINARY
and BLOB: we must know where characters end. With multibyte character sets, different characters
might have different octet lengths. For example, in utf8, A requires one byte but ペ requires three
bytes, as shown here:

+-------------------------+---------------------------+
| OCTET_LENGTH(_utf8 'A') | OCTET_LENGTH(_utf8 'ペ') |
+-------------------------+---------------------------+
| 1 | 3 |
+-------------------------+---------------------------+

If we do not know where the first character in a string ends, we do not know where the second
character begins, in which case even very simple searches such as LIKE '_A%' fail. The solution
is to use a nonbinary string column type defined to have the proper CJK character set. For example:
mycol TEXT CHARACTER SET sjis. Alternatively, convert to a CJK character set before
comparing.

This is one reason why MySQL cannot permit encodings of nonexistent characters. If it is not strict
about rejecting bad input, it has no way of knowing where characters end.

For FULLTEXT searches, we must know where words begin and end. With Western languages, this
is rarely a problem because most (if not all) of these use an easy-to-identify word boundary: the
space character. However, this is not usually the case with Asian writing. We could use arbitrary
halfway measures, like assuming that all Han characters represent words, or (for Japanese)
depending on changes from Katakana to Hiragana due to grammatical endings. However, the only
sure solution requires a comprehensive word list, which means that we would have to include a
dictionary in the server for each Asian language supported. This is simply not feasible.

A.11.12.How do I know whether character X is available in all character sets?

The majority of simplified Chinese and basic nonhalfwidth Japanese Kana characters appear in all
CJK character sets. The following stored procedure accepts a UCS-2 Unicode character, converts it
to other character sets, and displays the results in hexadecimal.

DELIMITER //

CREATE PROCEDURE p_convert(ucs2_char CHAR(1) CHARACTER SET ucs2)
BEGIN

3537

MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

CREATE TABLE tj
 (ucs2 CHAR(1) character set ucs2,
 utf8 CHAR(1) character set utf8,
 big5 CHAR(1) character set big5,
 cp932 CHAR(1) character set cp932,
 eucjpms CHAR(1) character set eucjpms,
 euckr CHAR(1) character set euckr,
 gb2312 CHAR(1) character set gb2312,
 gbk CHAR(1) character set gbk,
 sjis CHAR(1) character set sjis,
 ujis CHAR(1) character set ujis);

INSERT INTO tj (ucs2) VALUES (ucs2_char);

UPDATE tj SET utf8=ucs2,
 big5=ucs2,
 cp932=ucs2,
 eucjpms=ucs2,
 euckr=ucs2,
 gb2312=ucs2,
 gbk=ucs2,
 sjis=ucs2,
 ujis=ucs2;

/* If there are conversion problems, UPDATE produces warnings. */

SELECT hex(ucs2) AS ucs2,
 hex(utf8) AS utf8,
 hex(big5) AS big5,
 hex(cp932) AS cp932,
 hex(eucjpms) AS eucjpms,
 hex(euckr) AS euckr,
 hex(gb2312) AS gb2312,
 hex(gbk) AS gbk,
 hex(sjis) AS sjis,
 hex(ujis) AS ujis
FROM tj;

DROP TABLE tj;

END//

DELIMITER ;

The input can be any single ucs2 character, or it can be the code value (hexadecimal
representation) of that character. For example, from Unicode's list of ucs2 encodings and names
(http://www.unicode.org/Public/UNIDATA/UnicodeData.txt), we know that the Katakana character
Pe appears in all CJK character sets, and that its code value is X'30DA'. If we use this value as the
argument to p_convert(), the result is as shown here:

mysql> CALL p_convert(X'30DA');
+------+--------+------+-------+---------+-------+--------+------+------+------+
| ucs2 | utf8 | big5 | cp932 | eucjpms | euckr | gb2312 | gbk | sjis | ujis |
+------+--------+------+-------+---------+-------+--------+------+------+------+
| 30DA | E3839A | C772 | 8379 | A5DA | ABDA | A5DA | A5DA | 8379 | A5DA |
+------+--------+------+-------+---------+-------+--------+------+------+------+

Since none of the column values is 3F (that is, the question mark character, ?), we know that every
conversion worked.

A.11.13.Why do CJK strings sort incorrectly in Unicode? (I)

3538

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt

MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

Note

The CJK sorting problems described here can occur for MySQL versions
prior to MySQL 8.0. As of MySQL 8.0, they can be solved by using the
utf8mb4 character set and the utf8mb4_ja_0900_as_cs collation.

Sometimes people observe that the result of a utf8_unicode_ci or ucs2_unicode_ci search,
or of an ORDER BY sort is not what they think a native would expect. Although we never rule out the
possibility that there is a bug, we have found in the past that many people do not correctly read the
standard table of weights for the Unicode Collation Algorithm. MySQL uses the tables found under
http://www.unicode.org/Public/UCA/:

• UCA 4.0.0 table: http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

This includes xxx_unicode_ci collations with no version number in the collation name.

• UCA 5.2.0 table: http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt

This includes collations with _520_ in the collation name.

• UCA 9.0.0 table: http://www.unicode.org/Public/UCA/9.0.0/allkeys.txt

This includes collations with _0900_ in the collation name.

To handle newer UCA versions, we create new collations. We are very wary about changing
ordering of existing collations because that affects indexes, which can bring about situations such as
that reported in Bug #16526, illustrated as follows:

mysql> CREATE TABLE tj (s1 CHAR(1) CHARACTER SET utf8 COLLATE utf8_unicode_ci);
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO tj VALUES ('が'),('か');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM tj WHERE s1 = 'か';
+------+
| s1 |
+------+
| が |

| か |
+------+

The character in the first result row is not the one that we searched for. Why did MySQL retrieve
it? First we look for the Unicode code point value, which is possible by reading the hexadecimal
number for the ucs2 version of the characters:

mysql> SELECT s1, HEX(CONVERT(s1 USING ucs2)) FROM tj;
+------+-----------------------------+
| s1 | HEX(CONVERT(s1 USING ucs2)) |
+------+-----------------------------+
| が | 304C |

| か | 304B |
+------+-----------------------------+

Now we search for 304B and 304C in the 4.0.0 allkeys table, and find these lines:

304B ; [.1E57.0020.000E.304B] # HIRAGANA LETTER KA
304C ; [.1E57.0020.000E.304B][.0000.0140.0002.3099] # HIRAGANA LETTER GA; QQCM

3539

http://www.unicode.org/Public/UCA/
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/9.0.0/allkeys.txt

MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

The official Unicode names (following the “#” mark) tell us the Japanese syllabary (Hiragana),
the informal classification (letter, digit, or punctuation mark), and the Western identifier (KA or GA,
which happen to be voiced and unvoiced components of the same letter pair). More importantly,
the primary weight (the first hexadecimal number inside the square brackets) is 1E57 on both lines.
For comparisons in both searching and sorting, MySQL pays attention to the primary weight only,
ignoring all the other numbers. This means that we are sorting が and か correctly according to the
Unicode specification. If we wanted to distinguish them, we'd have to use a non-UCA (Unicode
Collation Algorithm) collation (utf8_bin or utf8_general_ci), or to compare the HEX() values,
or use ORDER BY CONVERT(s1 USING sjis). Being correct “according to Unicode” is not
enough, of course: the person who submitted the bug was equally correct. To solve this, we need
another collation for Japanese according to the JIS X 4061 standard, in which voiced/unvoiced letter
pairs like KA/GA are distinguishable for ordering purposes.

A.11.14.Why do CJK strings sort incorrectly in Unicode? (II)

Note

The CJK sorting problems described here can occur for MySQL versions
prior to MySQL 8.0. As of MySQL 8.0, they can be solved by using the
utf8mb4 character set and the utf8mb4_ja_0900_as_cs collation.

If you are using Unicode (ucs2 or utf8), and you know what the Unicode sort order is (see
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”), but
MySQL still seems to sort your table incorrectly, first verify the character set in the table definition:

mysql> SHOW CREATE TABLE t\G
******************** 1. row ******************
Table: t
Create Table: CREATE TABLE `t` (
`s1` char(1) CHARACTER SET ucs2 DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1

Since the character set for the column s1 appears to be correct (ucs2), check what information the
INFORMATION_SCHEMA.COLUMNS table can provide about this column:

mysql> SELECT COLUMN_NAME, CHARACTER_SET_NAME, COLLATION_NAME
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE COLUMN_NAME = 's1'
 AND TABLE_NAME = 't';
+-------------+--------------------+-----------------+
| COLUMN_NAME | CHARACTER_SET_NAME | COLLATION_NAME |
+-------------+--------------------+-----------------+
| s1 | ucs2 | ucs2_general_ci |
+-------------+--------------------+-----------------+

(See Section 21.3.5, “The INFORMATION_SCHEMA COLUMNS Table”, for more information.)

You can see that the collation is ucs2_general_ci instead of ucs2_unicode_ci. The reason
why this is so can be found using SHOW CHARACTER SET, as shown here:

mysql> SHOW CHARSET LIKE 'ucs2%';
+---------+---------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------+-------------------+--------+
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
+---------+---------------+-------------------+--------+

For ucs2 and utf8, the default collation is “general”. To specify a Unicode UCA collation, use
COLLATE ucs2_unicode_ci, as shown in the preceding item.

3540

MySQL 5.6 FAQ: Connectors & APIs

A.11.15.Why are my supplementary characters rejected by MySQL?

Supplementary characters lie outside the Unicode Basic Multilingual Plane / Plane 0. BMP
characters have code point values between U+0000 and U+FFFF. Supplementary characters have
code point values between U+10000 and U+10FFFF.

To store supplementary characters, you must use a character set that permits them:

• The utf8 and ucs2 character sets support BMP characters only.

The utf8 character set permits only UTF-8 characters that take up to three bytes. This has led to
reports such as that found in Bug #12600, which we rejected as “not a bug”. With utf8, MySQL
must truncate an input string when it encounters bytes that it does no understand. Otherwise, it is
unknown how long the bad multibyte character is.

One possible workaround is to use ucs2 instead of utf8, in which case the “bad” characters are
changed to question marks. However, no truncation takes place. You can also change the data
type to BLOB or BINARY, which perform no validity checking.

• The utf8mb4, utf16, utf16le, and utf32 character sets support BMP characters, as well as
supplementary characters outside the BMP.

A.11.16.Should “CJK” be “CJKV”?

No. The term “CJKV” (Chinese Japanese Korean Vietnamese) refers to Vietnamese character sets
which contain Han (originally Chinese) characters. MySQL supports the modern Vietnamese script
with Western characters, but does not support the old Vietnamese script using Han characters.

As of MySQL 5.6, there are Vietnamese collations for Unicode character sets, as described in
Section 10.10.1, “Unicode Character Sets”.

A.11.17.Does MySQL permit CJK characters to be used in database and table names?

Yes.

A.11.18.Where can I find translations of the MySQL Manual into Chinese, Japanese, and Korean?

The Japanese translation of the MySQL 5.6 manual can be downloaded from https://dev.mysql.com/
doc/.

A.11.19.Where can I get help with CJK and related issues in MySQL?

The following resources are available:

• A listing of MySQL user groups can be found at https://wikis.oracle.com/display/mysql/List+of
+MySQL+User+Groups.

• View feature requests relating to character set issues at http://tinyurl.com/y6xcuf.

• Visit the MySQL Character Sets, Collation, Unicode Forum. http://forums.mysql.com/ also
provides foreign-language forums.

A.12 MySQL 5.6 FAQ: Connectors & APIs
For common questions, issues, and answers relating to the MySQL Connectors and other APIs, see the
following areas of the Manual:

• Using C API Features

3541

https://dev.mysql.com/doc/
https://dev.mysql.com/doc/
https://wikis.oracle.com/display/mysql/List+of+MySQL+User+Groups
https://wikis.oracle.com/display/mysql/List+of+MySQL+User+Groups
http://tinyurl.com/y6xcuf
https://forums.mysql.com/list.php?103
http://forums.mysql.com/
https://dev.mysql.com/doc/c-api/5.6/en/c-api-features.html

MySQL 5.6 FAQ: C API, libmysql

• Connector/ODBC Notes and Tips

• Connector/NET Programming

• MySQL Connector/J 8.0 Developer Guide

A.13 MySQL 5.6 FAQ: C API, libmysql
Frequently asked questions about MySQL C API and libmysql.

A.13.1 What is “MySQL Native C API”? What are typical benefits and use cases? 3542
A.13.2 Which version of libmysql should I use? ... 3542
A.13.3 What if I want to use the “NoSQL” X DevAPI? .. 3542
A.13.4 How to I download libmysql? .. 3542
A.13.5 Where is the documentation? ... 3542
A.13.6 How do I report bugs? ... 3542
A.13.7 Is it possible to compile the library myself? ... 3542

A.13.1.What is “MySQL Native C API”? What are typical benefits and use cases?

libmysql is a C-based API that you can use in C applications to connect with the MySQL database
server. It is also itself used as the foundation for drivers for standard database APIs like ODBC,
Perl's DBI, and Python's DB API.

A.13.2.Which version of libmysql should I use?

For MySQL 8.0, 5.7, 5.6, and 5.5, we recommend libmysql 8.0.

A.13.3.What if I want to use the “NoSQL” X DevAPI?

For C-language and X DevApi Document Store for MySQL 8.0, we recommend MySQL Connector/
C++. Connector/C++ 8.0 has compatible C headers. (This is not applicable to MySQL 5.7 or before.)

A.13.4.How to I download libmysql?

• Linux: The Client Utilities Package is available from the MySQL Community Server download
page.

• Repos: The Client Utilities Package is available from the Yum, APT, SuSE repositories.

• Windows: The Client Utilities Package is available from Windows Installer.

A.13.5.Where is the documentation?

See MySQL 5.6 C API Developer Guide.

A.13.6.How do I report bugs?

Please report any bugs or inconsistencies you observe to our Bugs Database. Select the C API
Client as shown.

A.13.7.Is it possible to compile the library myself?

Compiling MySQL Server also compiles libmysqlclient; there is not a way to only compile
libmysqlclient. For related information, see MySQL C API Implementations.

A.14 MySQL 5.6 FAQ: Replication

3542

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes.html
https://dev.mysql.com/doc/connector-net/en/connector-net-programming.html
https://dev.mysql.com/doc/connector-j/8.0/en/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/installer/
https://dev.mysql.com/doc/c-api/5.6/en/
https://bugs.mysql.com/
https://dev.mysql.com/doc/c-api/5.6/en/c-api-implementations.html

MySQL 5.6 FAQ: Replication

In the following section, we provide answers to questions that are most frequently asked about MySQL
Replication.

A.14.1 Must the replica be connected to the source all the time? .. 3543
A.14.2 Must I enable networking on my source and replica to enable replication? 3543
A.14.3 How do I know how late a replica is compared to the source? In other words, how do I know

the date of the last statement replicated by the replica? ... 3543
A.14.4 How do I force the source to block updates until the replica catches up? 3544
A.14.5 What issues should I be aware of when setting up two-way replication? 3544
A.14.6 How can I use replication to improve performance of my system? .. 3544
A.14.7 What should I do to prepare client code in my own applications to use performance-enhancing

replication? ... 3545
A.14.8 When and how much can MySQL replication improve the performance of my system? 3545
A.14.9 How can I use replication to provide redundancy or high availability? 3546
A.14.10 How do I tell whether a replication source server is using statement-based or row-based

binary logging format? .. 3546
A.14.11 How do I tell a replica to use row-based replication? ... 3546
A.14.12 How do I prevent GRANT and REVOKE statements from replicating to replica machines? 3546
A.14.13 Does replication work on mixed operating systems (for example, the source runs on Linux

while replicas run on macOS and Windows)? .. 3546
A.14.14 Does replication work on mixed hardware architectures (for example, the source runs on a

64-bit machine while replicas run on 32-bit machines)? .. 3546

A.14.1.Must the replica be connected to the source all the time?

No, it does not. The replica can go down or stay disconnected for hours or even days, and then
reconnect and catch up on updates. For example, you can set up a source/replica relationship over
a dial-up link where the link is up only sporadically and for short periods of time. The implication of
this is that, at any given time, the replica is not guaranteed to be in synchrony with the source unless
you take some special measures.

To ensure that catchup can occur for a replica that has been disconnected, you must not remove
binary log files from the source that contain information that has not yet been replicated to the
replicas. Asynchronous replication can work only if the replica is able to continue reading the binary
log from the point where it last read events.

A.14.2.Must I enable networking on my source and replica to enable replication?

Yes, networking must be enabled on the source and replica. If networking is not enabled, the replica
cannot connect to the source and transfer the binary log. Verify that the skip_networking system
variable has not been enabled in the configuration file for either server.

A.14.3.How do I know how late a replica is compared to the source? In other words, how do I know the
date of the last statement replicated by the replica?

Check the Seconds_Behind_Master column in the output from SHOW REPLICA | SLAVE
STATUS. See Section 17.1.5.1, “Checking Replication Status”.

When the replication SQL thread executes an event read from the source, it modifies its own time
to the event timestamp. (This is why TIMESTAMP is well replicated.) In the Time column in the
output of SHOW PROCESSLIST, the number of seconds displayed for the replication SQL thread
is the number of seconds between the timestamp of the last replicated event and the real time
of the replica machine. You can use this to determine the date of the last replicated event. Note
that if your replica has been disconnected from the source for one hour, and then reconnects,
you may immediately see large Time values such as 3600 for the replication SQL thread in SHOW

3543

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

MySQL 5.6 FAQ: Replication

PROCESSLIST. This is because the replica is executing statements that are one hour old. See
Section 17.2.1, “Replication Threads”.

A.14.4.How do I force the source to block updates until the replica catches up?

Use the following procedure:

1. On the source, execute these statements:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;

Record the replication coordinates (the current binary log file name and position) from the output
of the SHOW statement.

2. On the replica, issue the following statement, where the arguments to the
SOURCE_POS_WAIT() or MASTER_POS_WAIT() function are the replication coordinate values
obtained in the previous step:

mysql> SELECT MASTER_POS_WAIT('log_name', log_pos);

Or from MySQL 8.0.26:
mysql> SELECT SOURCE_POS_WAIT('log_name', log_pos);

The SELECT statement blocks until the replica reaches the specified log file and position. At that
point, the replica is in synchrony with the source and the statement returns.

3. On the source, issue the following statement to enable the source to begin processing updates
again:

mysql> UNLOCK TABLES;

A.14.5.What issues should I be aware of when setting up two-way replication?

MySQL replication currently does not support any locking protocol between source and replica to
guarantee the atomicity of a distributed (cross-server) update. In other words, it is possible for client
A to make an update to co-source 1, and in the meantime, before it propagates to co-source 2,
client B could make an update to co-source 2 that makes the update of client A work differently than
it did on co-source 1. Thus, when the update of client A makes it to co-source 2, it produces tables
that are different from what you have on co-source 1, even after all the updates from co-source
2 have also propagated. This means that you should not chain two servers together in a two-way
replication relationship unless you are sure that your updates can safely happen in any order, or
unless you take care of mis-ordered updates somehow in the client code.

You should also realize that two-way replication actually does not improve performance very much
(if at all) as far as updates are concerned. Each server must do the same number of updates, just
as you would have a single server do. The only difference is that there is a little less lock contention
because the updates originating on another server are serialized in one replication thread. Even this
benefit might be offset by network delays.

A.14.6.How can I use replication to improve performance of my system?

Set up one server as the source and direct all writes to it. Then configure as many replicas
as you have the budget and rackspace for, and distribute the reads among the source and
the replicas. You can also start the replicas with the --skip-innodb option, enable the
low_priority_updates system variable, and set the delay_key_write system variable to
ALL to get speed improvements on the replica end. In this case, the replica uses nontransactional
MyISAM tables instead of InnoDB tables to get more speed by eliminating transactional overhead.

3544

https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_source-pos-wait

MySQL 5.6 FAQ: Replication

A.14.7.What should I do to prepare client code in my own applications to use performance-enhancing
replication?

See the guide to using replication as a scale-out solution, Section 17.3.4, “Using Replication for
Scale-Out”.

A.14.8.When and how much can MySQL replication improve the performance of my system?

MySQL replication is most beneficial for a system that processes frequent reads and infrequent
writes. In theory, by using a single-source/multiple-replica setup, you can scale the system by
adding more replicas until you either run out of network bandwidth, or your update load grows to the
point that the source cannot handle it.

To determine how many replicas you can use before the added benefits begin to level out, and how
much you can improve performance of your site, you must know your query patterns, and determine
empirically by benchmarking the relationship between the throughput for reads and writes on a
typical source and a typical replica. The example here shows a rather simplified calculation of what
you can get with replication for a hypothetical system. Let reads and writes denote the number of
reads and writes per second, respectively.

Let's say that system load consists of 10% writes and 90% reads, and we have determined by
benchmarking that reads is 1200 - 2 * writes. In other words, the system can do 1,200 reads per
second with no writes, the average write is twice as slow as the average read, and the relationship
is linear. Suppose that the source and each replica have the same capacity, and that we have one
source and N replicas. Then we have for each server (source or replica):

reads = 1200 - 2 * writes

reads = 9 * writes / (N + 1) (reads are split, but writes replicated to all replicas)

9 * writes / (N + 1) + 2 * writes = 1200

writes = 1200 / (2 + 9/(N + 1))

The last equation indicates the maximum number of writes for N replicas, given a maximum possible
read rate of 1,200 per second and a ratio of nine reads per write.

This analysis yields the following conclusions:

• If N = 0 (which means we have no replication), our system can handle about 1200/11 = 109 writes
per second.

• If N = 1, we get up to 184 writes per second.

• If N = 8, we get up to 400 writes per second.

• If N = 17, we get up to 480 writes per second.

• Eventually, as N approaches infinity (and our budget negative infinity), we can get very close to
600 writes per second, increasing system throughput about 5.5 times. However, with only eight
servers, we increase it nearly four times.

These computations assume infinite network bandwidth and neglect several other factors that could
be significant on your system. In many cases, you may not be able to perform a computation similar
to the one just shown that accurately predicts what happens on your system if you add N replicas.
However, answering the following questions should help you decide whether and by how much
replication may improve the performance of your system:

3545

MySQL 5.6 FAQ: MySQL Enterprise Thread Pool

• What is the read/write ratio on your system?

• How much more write load can one server handle if you reduce the reads?

• For how many replicas do you have bandwidth available on your network?

A.14.9.How can I use replication to provide redundancy or high availability?

How you implement redundancy is entirely dependent on your application and circumstances. High-
availability solutions (with automatic failover) require active monitoring and either custom scripts or
third party tools to provide the failover support from the original MySQL server to the replica.

To handle the process manually, you should be able to switch from a failed source to a pre-
configured replica by altering your application to talk to the new server or by adjusting the DNS for
the MySQL server from the failed server to the new server.

For more information and some example solutions, see Section 17.3.7, “Switching Sources During
Failover”.

A.14.10.How do I tell whether a replication source server is using statement-based or row-based binary
logging format?

Check the value of the binlog_format system variable:

mysql> SHOW VARIABLES LIKE 'binlog_format';

The value shown is always one of STATEMENT, ROW, or MIXED. For MIXED mode, statement-
based logging is used by default but replication switches automatically to row-based logging under
certain conditions, such as unsafe statements. For information about when this may occur, see
Section 5.4.4.3, “Mixed Binary Logging Format”.

A.14.11.How do I tell a replica to use row-based replication?

Replicas automatically know which format to use.

A.14.12.How do I prevent GRANT and REVOKE statements from replicating to replica machines?

Start the server with the --replicate-wild-ignore-table=mysql.% option to ignore
replication for tables in the mysql database.

A.14.13.Does replication work on mixed operating systems (for example, the source runs on Linux while
replicas run on macOS and Windows)?

Yes.

A.14.14.Does replication work on mixed hardware architectures (for example, the source runs on a 64-bit
machine while replicas run on 32-bit machines)?

Yes.

A.15 MySQL 5.6 FAQ: MySQL Enterprise Thread Pool
A.15.1 What is the Thread Pool and what problem does it solve? ... 3547
A.15.2 How does the Thread Pool limit and manage concurrent sessions and transactions for optimal

performance and throughput? .. 3547
A.15.3 How is the Thread Pool different from the client side Connection Pool? 3547
A.15.4 When should I use the Thread Pool? .. 3547

3546

MySQL 5.6 FAQ: MySQL Enterprise Thread Pool

A.15.5 Are there recommended Thread Pool configurations? .. 3548

A.15.1.What is the Thread Pool and what problem does it solve?

The MySQL Thread Pool is a MySQL server plugin that extends the default connection-handling
capabilities of the MySQL server to limit the number of concurrently executing statements/queries
and transactions to ensure that each has sufficient CPU and memory resources to fulfill its task. For
MySQL 5.6, the Thread Pool plugin is included in MySQL Enterprise Edition, a commercial product.

The default thread-handling model in MySQL Server executes statements using one thread
per client connection. As more clients connect to the server and execute statements, overall
performance degrades. The Thread Pool plugin provides an alternative thread-handling model
designed to reduce overhead and improve performance. The Thread Pool plugin increases server
performance by efficiently managing statement execution threads for large numbers of client
connections, especially on modern multi-CPU/Core systems.

For more information, see Section 5.5.3, “MySQL Enterprise Thread Pool”.

A.15.2.How does the Thread Pool limit and manage concurrent sessions and transactions for optimal
performance and throughput?

The Thread Pool uses a “divide and conquer” approach to limiting and balancing concurrency.
Unlike the default connection handling of the MySQL Server, the Thread Pool separates
connections and threads, so there is no fixed relationship between connections and the threads
that execute statements received from those connections. The Thread Pool then manages client
connections within configurable thread groups, where they are prioritized and queued based on the
nature of the work they were submitted to accomplish.

For more information, see Section 5.5.3.3, “Thread Pool Operation”.

A.15.3.How is the Thread Pool different from the client side Connection Pool?

The MySQL Connection Pool operates on the client side to ensure that a MySQL client does
not constantly connect to and disconnect from the MySQL server. It is designed to cache idle
connections in the MySQL client for use by other users as they are needed. This minimizes the
overhead and expense of establishing and tearing down connections as queries are submitted
to the MySQL server. The MySQL Connection Pool has no visibility as to the query handling
capabilities or load of the back-end MySQL server. By contrast, the Thread Pool operates on the
MySQL server side and is designed to manage the execution of inbound concurrent connections
and queries as they are received from the client connections accessing the back-end MySQL
database. Because of the separation of duties, the MySQL Connection Pool and Thread Pool are
orthogonal and can be used independent of each other.

MySQL Connection Pooling via the MySQL Connectors is covered in Chapter 23, Connectors and
APIs.

A.15.4.When should I use the Thread Pool?

There are a few rules of thumb to consider for optimal Thread Pool use cases:

The MySQL Threads_running variable keeps track of the number of concurrent statements
currently executing in the MySQL Server. If this variable consistently exceeds a region where the
server won't operate optimally (usually going beyond 40 for InnoDB workloads), the Thread Pool
should be beneficial, especially in extreme parallel overload situations.

If you are using the innodb_thread_concurrency to limit the number of concurrently executing
statements, you should find that the Thread Pool solves the same problem, only better, by assigning

3547

MySQL 5.6 FAQ: InnoDB Change Buffer

connections to thread groups, then queuing executions based on transactional content, user defined
designations, and so forth.

Lastly, if your workload comprises mainly short queries, the Thread Pool should be beneficial.

To learn more, see Section 5.5.3.4, “Thread Pool Tuning”.

A.15.5.Are there recommended Thread Pool configurations?

The Thread Pool has a number of user case driven configuration parameters that affect its
performance. To learn about these and tips on tuning, see Section 5.5.3.4, “Thread Pool Tuning”.

A.16 MySQL 5.6 FAQ: InnoDB Change Buffer
A.16.1 What types of operations modify secondary indexes and result in change buffering? 3548
A.16.2 What is the benefit of the InnoDB change buffer? ... 3548
A.16.3 Does the change buffer support other types of indexes? .. 3548
A.16.4 How much space does InnoDB use for the change buffer? ... 3548
A.16.5 How do I determine the current size of the change buffer? ... 3549
A.16.6 When does change buffer merging occur? .. 3549
A.16.7 When is the change buffer flushed? ... 3549
A.16.8 When should the change buffer be used? ... 3549
A.16.9 When should the change buffer not be used? ... 3549
A.16.10 Where can I find additional information about the change buffer? .. 3550

A.16.1.What types of operations modify secondary indexes and result in change buffering?

INSERT, UPDATE, and DELETE operations can modify secondary indexes. If an affected index page
is not in the buffer pool, the changes can be buffered in the change buffer.

A.16.2.What is the benefit of the InnoDB change buffer?

Buffering secondary index changes when secondary index pages are not in the buffer pool avoids
expensive random access I/O operations that would be required to immediately read in affected
index pages from disk. Buffered changes can be applied later, in batches, as pages are read into
the buffer pool by other read operations.

A.16.3.Does the change buffer support other types of indexes?

No. The change buffer only supports secondary indexes. Clustered indexes, full-text indexes, and
spatial indexes are not supported. Full-text indexes have their own caching mechanism.

A.16.4.How much space does InnoDB use for the change buffer?

Prior to the introduction of the innodb_change_buffer_max_size configuration option in
MySQL 5.6, the maximum size of the on-disk change buffer in the system tablespace was 1/3 of the
InnoDB buffer pool size.

In MySQL 5.6 and later, the innodb_change_buffer_max_size configuration option defines
the maximum size of the change buffer as a percentage of the total buffer pool size. By default,
innodb_change_buffer_max_size is set to 25. The maximum setting is 50.

InnoDB does not buffer an operation if it would cause the on-disk change buffer to exceed the
defined limit.

Change buffer pages are not required to persist in the buffer pool and may be evicted by LRU
operations.

3548

MySQL 5.6 FAQ: InnoDB Change Buffer

A.16.5.How do I determine the current size of the change buffer?

The current size of the change buffer is reported by SHOW ENGINE INNODB STATUS \G, under
the INSERT BUFFER AND ADAPTIVE HASH INDEX heading. For example:

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 0, seg size 2, 0 merges

Relevant data points include:

• size: The number of pages used within the change buffer. Change buffer size is equal to seg
size - (1 + free list len). The 1 + value represents the change buffer header page.

• seg size: The size of the change buffer, in pages.

For information about monitoring change buffer status, see Section 14.5.2, “Change Buffer”.

A.16.6.When does change buffer merging occur?

• When a page is read into the buffer pool, buffered changes are merged upon completion of the
read, before the page is made available.

• Change buffer merging is performed as a background task. The innodb_io_capacity
parameter sets an upper limit on the I/O activity performed by InnoDB background tasks such as
merging data from the change buffer.

• A change buffer merge is performed during crash recovery. Changes are applied from the change
buffer (in the system tablespace) to leaf pages of secondary indexes as index pages are read into
the buffer pool.

• The change buffer is fully durable and can survive a system crash. Upon restart, change buffer
merge operations resume as part of normal operations.

• A full merge of the change buffer can be forced as part of a slow server shutdown using --
innodb-fast-shutdown=0.

A.16.7.When is the change buffer flushed?

Updated pages are flushed by the same flushing mechanism that flushes the other pages that
occupy the buffer pool.

A.16.8.When should the change buffer be used?

The change buffer is a feature designed to reduce random I/O to secondary indexes as indexes
grow larger and no longer fit in the InnoDB buffer pool. Generally, the change buffer should be used
when the entire data set does not fit into the buffer pool, when there is substantial DML activity that
modifies secondary index pages, or when there are lots of secondary indexes that are regularly
changed by DML activity.

A.16.9.When should the change buffer not be used?

You might consider disabling the change buffer if the entire data set fits within the InnoDB buffer
pool, if you have relatively few secondary indexes, or if you are using solid-state storage, where
random reads are about as fast as sequential reads. Before making configuration changes, it is
recommended that you run tests using a representative workload to determine if disabling the
change buffer provides any benefit.

3549

MySQL 5.6 FAQ: Virtualization Support

A.16.10.Where can I find additional information about the change buffer?

See Section 14.5.2, “Change Buffer”.

A.17 MySQL 5.6 FAQ: Virtualization Support

A.17.1 Is MySQL supported on virtualized environments such as Oracle VM, VMWare, Docker,
Microsoft Hyper-V, or others? .. 3550

A.17.1.Is MySQL supported on virtualized environments such as Oracle VM, VMWare, Docker, Microsoft
Hyper-V, or others?

MySQL is supported on virtualized environments, but is certified only for Oracle VM. Contact Oracle
Support for more information.

Be aware of potential problems when using virtualization software. The usual ones are related to
performance, performance degradations, slowness, or unpredictability of disk, I/O, network, and
memory.

3550

http://www.oracle.com/technetwork/server-storage/vm/index.html

Appendix B Error Messages and Common Problems

Table of Contents
B.1 Error Message Sources and Elements ... 3551
B.2 Error Information Interfaces ... 3553
B.3 Problems and Common Errors .. 3554

B.3.1 How to Determine What Is Causing a Problem .. 3555
B.3.2 Common Errors When Using MySQL Programs .. 3556
B.3.3 Administration-Related Issues ... 3568
B.3.4 Query-Related Issues .. 3576
B.3.5 Optimizer-Related Issues ... 3583
B.3.6 Table Definition-Related Issues .. 3584
B.3.7 Known Issues in MySQL .. 3585

This appendix describes the types of error information MySQL provides and how to obtain information
about them. The final section is for troubleshooting. It describes common problems and errors that may
occur and potential resolutions.

Additional Resources

Other error-related documentation includes:

• Information about configuring where and how the server writes the error log: Section 5.4.2, “The Error
Log”

• Information about the character set used for error messages: Section 10.6, “Error Message Character
Set”

• Information about the language used for error messages: Section 10.12, “Setting the Error Message
Language”

• Information about errors related to InnoDB: Section 14.21.4, “InnoDB Error Handling”

• Information about errors specific to NDB Cluster: NDB Cluster API Errors; see also NDB API Errors and
Error Handling, and MGM API Errors

• Descriptions of the error messages that the MySQL server and client programs generate: MySQL 5.6
Error Message Reference

B.1 Error Message Sources and Elements
This section discusses how error messages originate within MySQL and the elements they contain.

• Error Message Sources

• Error Message Elements

Error Message Sources

Error messages can originate on the server side or the client side:

• On the server side, error messages may occur during the startup and shutdown processes, as a result of
issues that occur during SQL statement execution, and so forth.

3551

https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html
https://dev.mysql.com/doc/ndbapi/en/ndb-api-errors.html
https://dev.mysql.com/doc/ndbapi/en/ndb-api-errors.html
https://dev.mysql.com/doc/ndbapi/en/mgm-errors.html
https://dev.mysql.com/doc/mysql-errors/5.6/en/
https://dev.mysql.com/doc/mysql-errors/5.6/en/

Error Message Elements

• The MySQL server writes some error messages to its error log. These indicate issues of interest to
database administrators or that require DBA action.

• The server sends other error messages to client programs. These indicate issues pertaining only to
a particular client. The MySQL client library takes errors received from the server and makes them
available to the host client program.

• Client-side error messages are generated from within the MySQL client library, usually involving
problems communicating with the server.

Example server-side error messages written to the error log:

• This message produced during the startup process provides a status or progress indicator:

2018-08-29 08:27:31 16664 [Note] Event Scheduler: scheduler
thread started with id 1

• This message indicates an issue that requires DBA action:

2018-10-02 03:20:39 0 [ERROR] Can't open the mysql.plugin
table. Please run mysql_upgrade to create it.

Example server-side error message sent to client programs, as displayed by the mysql client:

mysql> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Example client-side error message originating from within the client library, as displayed by the mysql
client:

$> mysql -h no-such-host
ERROR 2005 (HY000): Unknown MySQL server host 'no-such-host' (0)

Whether an error originates from within the client library or is received from the server, a MySQL client
program may respond in varying ways. As just illustrated, the client may display the error message so the
user can take corrective measures. The client may instead internally attempt to resolve or retry a failed
operation, or take other action.

Error Message Elements

When an error occurs, error information includes several elements: an error code, SQLSTATE value, and
message string. These elements have the following characteristics:

• Error code: This value is numeric. It is MySQL-specific and is not portable to other database systems.

Each error number has a corresponding symbolic value. Examples:

• The symbol for server error number 1146 is ER_NO_SUCH_TABLE.

• The symbol for client error number 2005 is CR_UNKNOWN_HOST.

Error codes are stable across General Availability (GA) releases of a given MySQL series. Before a
series reaches GA status, new codes may still be under development and are subject to change.

• SQLSTATE value: This value is a five-character string (for example, '42S02'). SQLSTATE values are
taken from ANSI SQL and ODBC and are more standardized than the numeric error codes. The first two
characters of an SQLSTATE value indicate the error class:

3552

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_no_such_table
https://dev.mysql.com/doc/mysql-errors/5.6/en/client-error-reference.html#error_cr_unknown_host

Error Information Interfaces

• Class = '00' indicates success.

• Class = '01' indicates a warning.

• Class = '02' indicates “not found.” This is relevant within the context of cursors and is used to
control what happens when a cursor reaches the end of a data set. This condition also occurs for
SELECT ... INTO var_list statements that retrieve no rows.

• Class > '02' indicates an exception.

For server-side errors, not all MySQL error numbers have corresponding SQLSTATE values. In these
cases, 'HY000' (general error) is used.

For client-side errors, the SQLSTATE value is always 'HY000' (general error), so it is not meaningful
for distinguishing one client error from another.

• Message string: This string provides a textual description of the error.

B.2 Error Information Interfaces

Error messages can originate on the server side or the client side, and each error message includes an
error code, SQLSTATE value, and message string, as described in Section B.1, “Error Message Sources
and Elements”. For lists of server-side, client-side, and global (shared between server and clients) errors,
see MySQL 5.6 Error Message Reference.

For error checking from within programs, use error code numbers or symbols, not error message strings.
Message strings do not change often, but it is possible. Also, if the database administrator changes the
language setting, that affects the language of message strings; see Section 10.12, “Setting the Error
Message Language”.

Error information in MySQL is available in the server error log, at the SQL level, from within client
programs, and at the command line.

• Error Log

• SQL Error Message Interface

• Client Error Message Interface

• Command-Line Error Message Interface

Error Log

On the server side, some messages are intended for the error log. For information about configuring where
and how the server writes the log, see Section 5.4.2, “The Error Log”.

Other server error messages are intended to be sent to client programs and are available as described in
Client Error Message Interface.

SQL Error Message Interface

At the SQL level, there are several sources of error information in MySQL:

• SQL statement warning and error information is available through the SHOW WARNINGS and SHOW
ERRORS statements. The warning_count system variable indicates the number of errors, warnings,

3553

https://dev.mysql.com/doc/mysql-errors/5.6/en/

Client Error Message Interface

and notes (with notes excluded if the sql_notes system variable is disabled). The error_count
system variable indicates the number of errors. Its value excludes warnings and notes.

• The GET DIAGNOSTICS statement may be used to inspect the diagnostic information in the diagnostics
area. See Section 13.6.7.3, “GET DIAGNOSTICS Statement”.

• SHOW SLAVE STATUS statement output includes information about replication errors occurring on
replica servers.

• SHOW ENGINE INNODB STATUS statement output includes information about the most recent foreign
key error if a CREATE TABLE statement for an InnoDB table fails.

Client Error Message Interface

Client programs receive errors from two sources:

• Errors that originate on the client side from within the MySQL client library.

• Errors that originate on the server side and are sent to the client by the server. These are received within
the client library, which makes them available to the host client program.

Regardless of whether an error originates from within the client library or is received from the server,
a MySQL client program obtains the error code, SQLSTATE value, message string, and other related
information by calling C API functions in the client library:

• mysql_errno() returns the MySQL error code.

• mysql_sqlstate() returns the SQLSTATE value.

• mysql_error() returns the message string.

• mysql_stmt_errno(), mysql_stmt_sqlstate(), and mysql_stmt_error() are the
corresponding error functions for prepared statements.

• mysql_warning_count() returns the number of errors, warnings, and notes for the most recent
statement.

For descriptions of the client library error functions, see MySQL 5.6 C API Developer Guide.

A MySQL client program may respond to an error in varying ways. The client may display the error
message so the user can take corrective measures, internally attempt to resolve or retry a failed operation,
or take other action. For example, (using the mysql client), a failure to connect to the server might result in
this message:

$> mysql -h no-such-host
ERROR 2005 (HY000): Unknown MySQL server host 'no-such-host' (0)

Command-Line Error Message Interface

The perror program provides information from the command line about error numbers. See Section 4.8.1,
“perror — Display MySQL Error Message Information”.

$> perror 1231
MySQL error code 1231 (ER_WRONG_VALUE_FOR_VAR): Variable '%-.64s' can't
be set to the value of '%-.200s'

B.3 Problems and Common Errors

3554

https://dev.mysql.com/doc/c-api/5.6/en/mysql-errno.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-sqlstate.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-error.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-stmt-errno.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-stmt-sqlstate.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-stmt-error.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-warning-count.html
https://dev.mysql.com/doc/c-api/5.6/en/

How to Determine What Is Causing a Problem

This section lists some common problems and error messages that you may encounter. It describes how to
determine the causes of the problems and what to do to solve them.

B.3.1 How to Determine What Is Causing a Problem

When you run into a problem, the first thing you should do is to find out which program or piece of
equipment is causing it:

• If you have one of the following symptoms, then it is probably a hardware problems (such as memory,
motherboard, CPU, or hard disk) or kernel problem:

• The keyboard does not work. This can normally be checked by pressing the Caps Lock key. If the
Caps Lock light does not change, you have to replace your keyboard. (Before doing this, you should
try to restart your computer and check all cables to the keyboard.)

• The mouse pointer does not move.

• The machine does not answer to a remote machine's pings.

• Other programs that are not related to MySQL do not behave correctly.

• Your system restarted unexpectedly. (A faulty user-level program should never be able to take down
your system.)

In this case, you should start by checking all your cables and run some diagnostic tool to check your
hardware! You should also check whether there are any patches, updates, or service packs for your
operating system that could likely solve your problem. Check also that all your libraries (such as glibc)
are up to date.

It is always good to use a machine with ECC memory to discover memory problems early.

• If your keyboard is locked up, you may be able to recover by logging in to your machine from another
machine and executing kbd_mode -a.

• Please examine your system log file (/var/log/messages or similar) for reasons for your problem.
If you think the problem is in MySQL, you should also examine MySQL's log files. See Section 5.4,
“MySQL Server Logs”.

• If you do not think you have hardware problems, you should try to find out which program is causing
problems. Try using top, ps, Task Manager, or some similar program, to check which program is taking
all CPU or is locking the machine.

• Use top, df, or a similar program to check whether you are out of memory, disk space, file descriptors,
or some other critical resource.

• If the problem is some runaway process, you can always try to kill it. If it does not want to die, there is
probably a bug in the operating system.

If you have examined all other possibilities and concluded that the MySQL server or a MySQL client is
causing the problem, it is time to create a bug report, see Section 1.5, “How to Report Bugs or Problems”.
In the bug report, try to give a complete description of how the system is behaving and what you think is
happening. Also state why you think that MySQL is causing the problem. Take into consideration all the
situations described in this chapter. State any problems exactly how they appear when you examine your
system. Use the “copy and paste” method for any output and error messages from programs and log files.

Try to describe in detail which program is not working and all symptoms you see. We have in the past
received many bug reports that state only “the system does not work.” This provides us with no information
about what could be the problem.

3555

Common Errors When Using MySQL Programs

If a program fails, it is always useful to know the following information:

• Has the program in question made a segmentation fault (did it dump core)?

• Is the program taking up all available CPU time? Check with top. Let the program run for a while, it may
simply be evaluating something computationally intensive.

• If the mysqld server is causing problems, can you get any response from it with mysqladmin -u
root ping or mysqladmin -u root processlist?

• What does a client program say when you try to connect to the MySQL server? (Try with mysql, for
example.) Does the client jam? Do you get any output from the program?

When sending a bug report, you should follow the outline described in Section 1.5, “How to Report Bugs or
Problems”.

B.3.2 Common Errors When Using MySQL Programs

This section lists some errors that users frequently encounter when running MySQL programs. Although
the problems show up when you try to run client programs, the solutions to many of the problems involves
changing the configuration of the MySQL server.

B.3.2.1 Access denied

An Access denied error can have many causes. Often the problem is related to the MySQL accounts
that the server permits client programs to use when connecting. See Section 6.2, “Access Control and
Account Management”, and Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”.

B.3.2.2 Can't connect to [local] MySQL server

A MySQL client on Unix can connect to the mysqld server in two different ways: By using a Unix socket
file to connect through a file in the file system (default /tmp/mysql.sock), or by using TCP/IP, which
connects through a port number. A Unix socket file connection is faster than TCP/IP, but can be used only
when connecting to a server on the same computer. A Unix socket file is used if you do not specify a host
name or if you specify the special host name localhost.

If the MySQL server is running on Windows, you can connect using TCP/IP. If the server is started with
the named_pipe system variable enabled, you can also connect with named pipes if you run the client on
the host where the server is running. The name of the named pipe is MySQL by default. If you do not give
a host name when connecting to mysqld, a MySQL client first tries to connect to the named pipe. If that
does not work, it connects to the TCP/IP port. You can force the use of named pipes on Windows by using
. as the host name.

The error (2002) Can't connect to ... normally means that there is no MySQL server running on
the system or that you are using an incorrect Unix socket file name or TCP/IP port number when trying to
connect to the server. You should also check that the TCP/IP port you are using has not been blocked by a
firewall or port blocking service.

The error (2003) Can't connect to MySQL server on 'server' (10061) indicates that the
network connection has been refused. You should check that there is a MySQL server running, that it has
network connections enabled, and that the network port you specified is the one configured on the server.

Start by checking whether there is a process named mysqld running on your server host. (Use ps xa |
grep mysqld on Unix or the Task Manager on Windows.) If there is no such process, you should start the
server. See Section 2.10.2, “Starting the Server”.

3556

Common Errors When Using MySQL Programs

If a mysqld process is running, you can check it by trying the following commands. The port number or
Unix socket file name might be different in your setup. host_ip represents the IP address of the machine
where the server is running.

$> mysqladmin version
$> mysqladmin variables
$> mysqladmin -h `hostname` version variables
$> mysqladmin -h `hostname` --port=3306 version
$> mysqladmin -h host_ip version
$> mysqladmin --protocol=SOCKET --socket=/tmp/mysql.sock version

Regarding the use of backticks rather than forward quotation marks with the hostname command; these
cause the output of hostname (that is, the current host name) to be substituted into the mysqladmin
command. If you have no hostname command or are running on Windows, you can manually type the
host name of your machine (without backticks) following the -h option. You can also try -h 127.0.0.1 to
connect with TCP/IP to the local host.

Make sure that the server has not been configured to ignore network connections or (if you are attempting
to connect remotely) that it has not been configured to listen only locally on its network interfaces. If
the server was started with the skip_networking system variable enabled, it does accept TCP/IP
connections at all. If the server was started with the bind_address system variable set to 127.0.0.1,
it listens for TCP/IP connections only locally on the loopback interface and does not accept remote
connections.

Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be configured on
the basis of the application being executed, or the port number used by MySQL for communication (3306
by default). Under Linux or Unix, check your IP tables (or similar) configuration to ensure that the port has
not been blocked. Under Windows, applications such as ZoneAlarm or Windows Firewall may need to be
configured not to block the MySQL port.

Here are some reasons the Can't connect to local MySQL server error might occur:

• mysqld is not running on the local host. Check your operating system's process list to ensure the
mysqld process is present.

• You're running a MySQL server on Windows with many TCP/IP connections to it. If you're experiencing
that quite often your clients get that error, you can find a workaround here: Connection to MySQL Server
Failing on Windows.

• Someone has removed the Unix socket file that mysqld uses (/tmp/mysql.sock by default). For
example, you might have a cron job that removes old files from the /tmp directory. You can always run
mysqladmin version to check whether the Unix socket file that mysqladmin is trying to use really
exists. The fix in this case is to change the cron job to not remove mysql.sock or to place the socket
file somewhere else. See Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”.

• You have started the mysqld server with the --socket=/path/to/socket option, but forgotten
to tell client programs the new name of the socket file. If you change the socket path name for the
server, you must also notify the MySQL clients. You can do this by providing the same --socket option
when you run client programs. You also need to ensure that clients have permission to access the
mysql.sock file. To find out where the socket file is, you can do:

$> netstat -ln | grep mysql

See Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”.

• You are using Linux and one server thread has died (dumped core). In this case, you must kill the
other mysqld threads (for example, with kill) before you can restart the MySQL server. See
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”.

3557

Common Errors When Using MySQL Programs

• The server or client program might not have the proper access privileges for the directory that holds the
Unix socket file or the socket file itself. In this case, you must either change the access privileges for
the directory or socket file so that the server and clients can access them, or restart mysqld with a --
socket option that specifies a socket file name in a directory where the server can create it and where
client programs can access it.

If you get the error message Can't connect to MySQL server on some_host, you can try the
following things to find out what the problem is:

• Check whether the server is running on that host by executing telnet some_host 3306 and pressing
the Enter key a couple of times. (3306 is the default MySQL port number. Change the value if your
server is listening to a different port.) If there is a MySQL server running and listening to the port, you
should get a response that includes the server's version number. If you get an error such as telnet:
Unable to connect to remote host: Connection refused, then there is no server running
on the given port.

• If the server is running on the local host, try using mysqladmin -h localhost variables to
connect using the Unix socket file. Verify the TCP/IP port number that the server is configured to listen to
(it is the value of the port variable.)

• If you are running under Linux and Security-Enhanced Linux (SELinux) is enabled, see Section 6.6,
“SELinux”.

Connection to MySQL Server Failing on Windows

When you're running a MySQL server on Windows with many TCP/IP connections to it, and you're
experiencing that quite often your clients get a Can't connect to MySQL server error, the reason
might be that Windows does not allow for enough ephemeral (short-lived) ports to serve those connections.

The purpose of TIME_WAIT is to keep a connection accepting packets even after the connection has been
closed. This is because Internet routing can cause a packet to take a slow route to its destination and it
may arrive after both sides have agreed to close. If the port is in use for a new connection, that packet
from the old connection could break the protocol or compromise personal information from the original
connection. The TIME_WAIT delay prevents this by ensuring that the port cannot be reused until after
some time has been permitted for those delayed packets to arrive.

It is safe to reduce TIME_WAIT greatly on LAN connections because there is little chance of packets
arriving at very long delays, as they could through the Internet with its comparatively large distances and
latencies.

Windows permits ephemeral (short-lived) TCP ports to the user. After any port is closed it remains in a
TIME_WAIT status for 120 seconds. The port is not available again until this time expires. The default
range of port numbers depends on the version of Windows, with a more limited number of ports in older
versions:

• Windows through Server 2003: Ports in range 1025–5000

• Windows Vista, Server 2008, and newer: Ports in range 49152–65535

With a small stack of available TCP ports (5000) and a high number of TCP ports being open and closed
over a short period of time along with the TIME_WAIT status you have a good chance for running out of
ports. There are two ways to address this problem:

• Reduce the number of TCP ports consumed quickly by investigating connection pooling or persistent
connections where possible

• Tune some settings in the Windows registry (see below)

3558

Common Errors When Using MySQL Programs

Important

The following procedure involves modifying the Windows registry. Before you
modify the registry, make sure to back it up and make sure that you understand
how to restore it if a problem occurs. For information about how to back up, restore,
and edit the registry, view the following article in the Microsoft Knowledge Base:
http://support.microsoft.com/kb/256986/EN-US/.

1. Start Registry Editor (Regedt32.exe).

2. Locate the following key in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

3. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: MaxUserPort
Data Type: REG_DWORD
Value: 65534

This sets the number of ephemeral ports available to any user. The valid range is between 5000 and
65534 (decimal). The default value is 0x1388 (5000 decimal).

4. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: TcpTimedWaitDelay
Data Type: REG_DWORD
Value: 30

This sets the number of seconds to hold a TCP port connection in TIME_WAIT state before closing.
The valid range is between 30 and 300 decimal, although you may wish to check with Microsoft for the
latest permitted values. The default value is 0x78 (120 decimal).

5. Quit Registry Editor.

6. Reboot the machine.

Note

Undoing the above should be as simple as deleting the registry entries you've
created.

B.3.2.3 Lost connection to MySQL server

There are three likely causes for this error message.

Usually it indicates network connectivity trouble and you should check the condition of your network if this
error occurs frequently. If the error message includes “during query,” this is probably the case you are
experiencing.

Sometimes the “during query” form happens when millions of rows are being sent as part of one or more
queries. If you know that this is happening, you should try increasing net_read_timeout from its default
of 30 seconds to 60 seconds or longer, sufficient for the data transfer to complete.

More rarely, it can happen when the client is attempting the initial connection to the server. In this case, if
your connect_timeout value is set to only a few seconds, you may be able to resolve the problem by
increasing it to ten seconds, perhaps more if you have a very long distance or slow connection. You can
determine whether you are experiencing this more uncommon cause by using SHOW GLOBAL STATUS
LIKE 'Aborted_connects'. It increases by one for each initial connection attempt that the server

3559

http://support.microsoft.com/kb/256986/EN-US/

Common Errors When Using MySQL Programs

aborts. You may see “reading authorization packet” as part of the error message; if so, that also suggests
that this is the solution that you need.

If the cause is none of those just described, you may be experiencing a problem with BLOB values
that are larger than max_allowed_packet, which can cause this error with some clients. Sometime
you may see an ER_NET_PACKET_TOO_LARGE error, and that confirms that you need to increase
max_allowed_packet.

B.3.2.4 Client does not support authentication protocol

The current implementation of the authentication protocol uses a password hashing algorithm that is
incompatible with that used by older (pre-4.1) clients. Attempts to connect to a 4.1 or higher server with an
older client may fail with the following message:

$> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

To deal with this problem, the preferred solution is to upgrade all client programs to use a 4.1.1 or higher
client library. If that is not possible, use one of the following approaches:

• To connect to the server with a pre-4.1 client program, use an account that still has a pre-4.1-style
password.

• Reset the password to pre-4.1 style for each user that needs to use a pre-4.1 client program. This can
be done using the SET PASSWORD statement and the OLD_PASSWORD() function. As of MySQL 5.6.6, it
is also necessary to first ensure that the authentication plugin for the account is mysql_old_password:

mysql> UPDATE mysql.user SET plugin = 'mysql_old_password'
mysql> WHERE User = 'some_user' AND Host = 'some_host';
mysql> FLUSH PRIVILEGES;
mysql> SET PASSWORD FOR
 -> 'some_user'@'some_host' = OLD_PASSWORD('new_password');

Substitute the password you want to use for “new_password” in the preceding example. MySQL cannot
tell you what the original password was, so you'll need to pick a new one.

• Tell the server to use the older password hashing algorithm by default:

1. Start mysqld with the old_passwords system variable set to 1.

2. Assign an old-format password to each account that has had its password updated to the longer 4.1
format. You can identify these accounts with the following query:

mysql> SELECT Host, User, Password FROM mysql.user
 -> WHERE LENGTH(Password) > 16;

For each account record displayed by the query, use the Host and User values and assign a
password using one of the methods described previously.

The Client does not support authentication protocol error also can occur if multiple
versions of MySQL are installed but client programs are dynamically linked and link to an older library.
Make sure that clients use the most recent library version with which they are compatible. The procedure to
do this depends on your system.

Note

The PHP mysql extension does not support the authentication protocol in MySQL
4.1.1 and higher. This is true regardless of the PHP version being used. If you wish

3560

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_net_packet_too_large

Common Errors When Using MySQL Programs

to use the mysql extension with MySQL 4.1 or higher, you may need to follow one
of the options discussed above for configuring MySQL to work with old clients. The
mysqli extension (stands for "MySQL, Improved"; added in PHP 5) is compatible
with the improved password hashing employed in MySQL 4.1 and higher, and no
special configuration of MySQL need be done to use this MySQL client library. For
more information about the mysqli extension, see http://php.net/mysqli.

For additional background on password hashing and authentication, see Section 6.1.2.4, “Password
Hashing in MySQL”.

B.3.2.5 Password Fails When Entered Interactively

MySQL client programs prompt for a password when invoked with a --password or -p option that has no
following password value:

$> mysql -u user_name -p
Enter password:

On some systems, you may find that your password works when specified in an option file or on the
command line, but not when you enter it interactively at the Enter password: prompt. This occurs
when the library provided by the system to read passwords limits password values to a small number of
characters (typically eight). That is a problem with the system library, not with MySQL. To work around it,
change your MySQL password to a value that is eight or fewer characters long, or put your password in an
option file.

B.3.2.6 Too many connections

If clients encounter Too many connections errors when attempting to connect to the mysqld server, all
available connections are in use by other clients.

The permitted number of connections is controlled by the max_connections system variable. To support
more connections, set max_connections to a larger value.

mysqld actually permits max_connections + 1 client connections. The extra connection is reserved
for use by accounts that have the SUPER privilege. By granting the privilege to administrators and not
to normal users (who should not need it), an administrator who also has the PROCESS privilege can
connect to the server and use SHOW PROCESSLIST to diagnose problems even if the maximum number of
unprivileged clients are connected. See Section 13.7.5.30, “SHOW PROCESSLIST Statement”.

For more information about how the server handles client connections, see Section 5.1.11.1, “Connection
Interfaces”.

B.3.2.7 Out of memory

If you issue a query using the mysql client program and receive an error like the following one, it means
that mysql does not have enough memory to store the entire query result:

mysql: Out of memory at line 42, 'malloc.c'
mysql: needed 8136 byte (8k), memory in use: 12481367 bytes (12189k)
ERROR 2008: MySQL client ran out of memory

To remedy the problem, first check whether your query is correct. Is it reasonable that it should return so
many rows? If not, correct the query and try again. Otherwise, you can invoke mysql with the --quick
option. This causes it to use the mysql_use_result() C API function to retrieve the result set, which
places less of a load on the client (but more on the server).

B.3.2.8 MySQL server has gone away

3561

http://php.net/mysqli
https://dev.mysql.com/doc/c-api/5.6/en/mysql-use-result.html

Common Errors When Using MySQL Programs

This section also covers the related Lost connection to server during query error.

The most common reason for the MySQL server has gone away error is that the server timed out and
closed the connection. In this case, you normally get one of the following error codes (which one you get is
operating system-dependent).

Error Code Description

CR_SERVER_GONE_ERROR The client couldn't send a question to the server.

CR_SERVER_LOST The client didn't get an error when writing to the
server, but it didn't get a full answer (or any answer)
to the question.

By default, the server closes the connection after eight hours if nothing has happened. You can change
the time limit by setting the wait_timeout variable when you start mysqld. See Section 5.1.7, “Server
System Variables”.

If you have a script, you just have to issue the query again for the client to do an automatic reconnection.
This assumes that you have automatic reconnection in the client enabled (which is the default for the
mysql command-line client).

Some other common reasons for the MySQL server has gone away error are:

• You (or the db administrator) has killed the running thread with a KILL statement or a mysqladmin
kill command.

• You tried to run a query after closing the connection to the server. This indicates a logic error in the
application that should be corrected.

• A client application running on a different host does not have the necessary privileges to connect to the
MySQL server from that host.

• You got a timeout from the TCP/IP connection on the client side. This may happen if you have
been using the commands: mysql_options(..., MYSQL_OPT_READ_TIMEOUT,...) or
mysql_options(..., MYSQL_OPT_WRITE_TIMEOUT,...). In this case increasing the timeout may
help solve the problem.

• You have encountered a timeout on the server side and the automatic reconnection in the client is
disabled (the reconnect flag in the MYSQL structure is equal to 0).

• You are using a Windows client and the server had dropped the connection (probably because
wait_timeout expired) before the command was issued.

The problem on Windows is that in some cases MySQL does not get an error from the OS when writing
to the TCP/IP connection to the server, but instead gets the error when trying to read the answer from
the connection.

The solution to this is to either do a mysql_ping() on the connection if there has been a long time
since the last query (this is what Connector/ODBC does) or set wait_timeout on the mysqld server
so high that it in practice never times out.

• You can also get these errors if you send a query to the server that is incorrect or too large. If mysqld
receives a packet that is too large or out of order, it assumes that something has gone wrong with
the client and closes the connection. If you need big queries (for example, if you are working with
big BLOB columns), you can increase the query limit by setting the server's max_allowed_packet
variable, which has a default value of 4MB (1MB before MySQL 5.6.6). You may also need to increase

3562

https://dev.mysql.com/doc/mysql-errors/5.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/5.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-ping.html

Common Errors When Using MySQL Programs

the maximum packet size on the client end. More information on setting the packet size is given in
Section B.3.2.9, “Packet Too Large”.

An INSERT or REPLACE statement that inserts a great many rows can also cause these sorts of errors.
Either one of these statements sends a single request to the server irrespective of the number of rows
to be inserted; thus, you can often avoid the error by reducing the number of rows sent per INSERT or
REPLACE.

• It is also possible to see this error if host name lookups fail (for example, if the DNS server on which your
server or network relies goes down). This is because MySQL is dependent on the host system for name
resolution, but has no way of knowing whether it is working—from MySQL's point of view the problem is
indistinguishable from any other network timeout.

You may also see the MySQL server has gone away error if MySQL is started with the
skip_networking system variable enabled.

Another networking issue that can cause this error occurs if the MySQL port (default 3306) is blocked by
your firewall, thus preventing any connections at all to the MySQL server.

• You can also encounter this error with applications that fork child processes, all of which try to use the
same connection to the MySQL server. This can be avoided by using a separate connection for each
child process.

• You have encountered a bug where the server died while executing the query.

You can check whether the MySQL server died and restarted by executing mysqladmin version and
examining the server's uptime. If the client connection was broken because mysqld crashed and restarted,
you should concentrate on finding the reason for the crash. Start by checking whether issuing the query
again kills the server again. See Section B.3.3.3, “What to Do If MySQL Keeps Crashing”.

You can obtain more information about lost connections by starting mysqld with the --log-warnings=2
option. This logs some of the disconnected errors in the hostname.err file. See Section 5.4.2, “The Error
Log”.

If you want to create a bug report regarding this problem, be sure that you include the following
information:

• Indicate whether the MySQL server died. You can find information about this in the server error log. See
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”.

• If a specific query kills mysqld and the tables involved were checked with CHECK TABLE before you ran
the query, can you provide a reproducible test case? See Section 5.8, “Debugging MySQL”.

• What is the value of the wait_timeout system variable in the MySQL server? (mysqladmin
variables gives you the value of this variable.)

• Have you tried to run mysqld with the general query log enabled to determine whether the problem
query appears in the log? (See Section 5.4.3, “The General Query Log”.)

See also Section B.3.2.10, “Communication Errors and Aborted Connections”, and Section 1.5, “How to
Report Bugs or Problems”.

B.3.2.9 Packet Too Large

A communication packet is a single SQL statement sent to the MySQL server, a single row that is sent to
the client, or a binary log event sent from a replication source server to a replica.

The largest possible packet that can be transmitted to or from a MySQL 5.6 server or client is 1GB.

3563

Common Errors When Using MySQL Programs

When a MySQL client or the mysqld server receives a packet bigger than max_allowed_packet bytes,
it issues an ER_NET_PACKET_TOO_LARGE error and closes the connection. With some clients, you may
also get a Lost connection to MySQL server during query error if the communication packet is
too large.

Both the client and the server have their own max_allowed_packet variable, so if you want to handle big
packets, you must increase this variable both in the client and in the server.

If you are using the mysql client program, its default max_allowed_packet variable is 16MB. To set a
larger value, start mysql like this:

$> mysql --max_allowed_packet=32M

That sets the packet size to 32MB.

The server's default max_allowed_packet value is 4MB (1MB before MySQL 5.6.6). You can increase
this if the server needs to handle big queries (for example, if you are working with big BLOB columns). For
example, to set the variable to 16MB, start the server like this:

$> mysqld --max_allowed_packet=16M

You can also use an option file to set max_allowed_packet. For example, to set the size for the server
to 16MB, add the following lines in an option file:

[mysqld]
max_allowed_packet=16M

It is safe to increase the value of this variable because the extra memory is allocated only when needed.
For example, mysqld allocates more memory only when you issue a long query or when mysqld must
return a large result row. The small default value of the variable is a precaution to catch incorrect packets
between the client and server and also to ensure that you do not run out of memory by using large packets
accidentally.

You can also get strange problems with large packets if you are using large BLOB values but have not
given mysqld access to enough memory to handle the query. If you suspect this is the case, try adding
ulimit -d 256000 to the beginning of the mysqld_safe script and restarting mysqld.

B.3.2.10 Communication Errors and Aborted Connections

If connection problems occur such as communication errors or aborted connections, use these sources of
information to diagnose problems:

• The error log. See Section 5.4.2, “The Error Log”.

• The general query log. See Section 5.4.3, “The General Query Log”.

• The Aborted_xxx and Connection_errors_xxx status variables. See Section 5.1.9, “Server Status
Variables”.

• The host cache, which is accessible using the Performance Schema host_cache table. See
Section 5.1.11.2, “DNS Lookups and the Host Cache”, and Section 22.12.10.1, “The host_cache Table”.

If you start the server with the --log-warnings option, you might find messages like this in your error
log:

Aborted connection 854 to db: 'employees' user: 'josh'

If a client is unable even to connect, the server increments the Aborted_connects status variable.
Unsuccessful connection attempts can occur for the following reasons:

3564

https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_net_packet_too_large

Common Errors When Using MySQL Programs

• A client attempts to access a database but has no privileges for it.

• A client uses an incorrect password.

• A connection packet does not contain the right information.

• It takes more than connect_timeout seconds to obtain a connect packet. See Section 5.1.7, “Server
System Variables”.

If these kinds of things happen, it might indicate that someone is trying to break into your server! If the
general query log is enabled, messages for these types of problems are logged to it.

If a client successfully connects but later disconnects improperly or is terminated, the server increments the
Aborted_clients status variable, and logs an Aborted connection message to the error log. The
cause can be any of the following:

• The client program did not call mysql_close() before exiting.

• The client had been sleeping more than wait_timeout or interactive_timeout seconds without
issuing any requests to the server. See Section 5.1.7, “Server System Variables”.

• The client program ended abruptly in the middle of a data transfer.

Other reasons for problems with aborted connections or aborted clients:

• The max_allowed_packet variable value is too small or queries require more memory than you have
allocated for mysqld. See Section B.3.2.9, “Packet Too Large”.

• Use of Ethernet protocol with Linux, both half and full duplex. Some Linux Ethernet drivers have this
bug. You should test for this bug by transferring a huge file using FTP between the client and server
machines. If a transfer goes in burst-pause-burst-pause mode, you are experiencing a Linux duplex
syndrome. Switch the duplex mode for both your network card and hub/switch to either full duplex or to
half duplex and test the results to determine the best setting.

• A problem with the thread library that causes interrupts on reads.

• Badly configured TCP/IP.

• Faulty Ethernets, hubs, switches, cables, and so forth. This can be diagnosed properly only by replacing
hardware.

See also Section B.3.2.8, “MySQL server has gone away”.

B.3.2.11 The table is full

If a table-full error occurs, it may be that the disk is full or that the table has reached its maximum size. The
effective maximum table size for MySQL databases is usually determined by operating system constraints
on file sizes, not by MySQL internal limits. See Section 8.4.6, “Limits on Table Size”.

B.3.2.12 Can't create/write to file

If you get an error of the following type for some queries, it means that MySQL cannot create a temporary
file for the result set in the temporary directory:

Can't create/write to file '\\sqla3fe_0.ism'.

The preceding error is a typical message for Windows; the Unix message is similar.

One fix is to start mysqld with the --tmpdir option or to add the option to the [mysqld] section of your
option file. For example, to specify a directory of C:\temp, use these lines:

3565

https://dev.mysql.com/doc/c-api/5.6/en/mysql-close.html

Common Errors When Using MySQL Programs

[mysqld]
tmpdir=C:/temp

The C:\temp directory must exist and have sufficient space for the MySQL server to write to. See
Section 4.2.2.2, “Using Option Files”.

Another cause of this error can be permissions issues. Make sure that the MySQL server can write to the
tmpdir directory.

Check also the error code that you get with perror. One reason the server cannot write to a table is that
the file system is full:

$> perror 28
OS error code 28: No space left on device

If you get an error of the following type during startup, it indicates that the file system or directory used for
storing data files is write protected. Provided that the write error is to a test file, the error is not serious and
can be safely ignored.

Can't create test file /usr/local/mysql/data/master.lower-test

B.3.2.13 Commands out of sync

If you get Commands out of sync; you can't run this command now in your client code, you
are calling client functions in the wrong order.

This can happen, for example, if you are using mysql_use_result() and try to execute a new query
before you have called mysql_free_result(). It can also happen if you try to execute two queries that
return data without calling mysql_use_result() or mysql_store_result() in between.

B.3.2.14 Ignoring user

If you get the following error, it means that when mysqld was started or when it reloaded the grant tables,
it found an account in the user table that had an invalid password.

Found wrong password for user 'some_user'@'some_host'; ignoring user

As a result, the account is simply ignored by the permission system.

The following list indicates possible causes of and fixes for this problem:

• You may be running a new version of mysqld with an old user table. Check whether the
Password column of that table is shorter than 16 characters. If so, correct this condition by running
mysql_upgrade.

• The account has an old password (eight characters long). Update the account in the user table to have
a new password.

• You have specified a password in the user table without using the PASSWORD() function. Use mysql
to update the account in the user table with a new password, making sure to use the PASSWORD()
function:

mysql> UPDATE user SET Password=PASSWORD('new_password')
 -> WHERE User='some_user' AND Host='some_host';

B.3.2.15 Table 'tbl_name' doesn't exist

If you get either of the following errors, it usually means that no table exists in the default database with the
given name:

3566

https://dev.mysql.com/doc/c-api/5.6/en/mysql-use-result.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-free-result.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-use-result.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-store-result.html

Common Errors When Using MySQL Programs

Table 'tbl_name' doesn't exist
Can't find file: 'tbl_name' (errno: 2)

In some cases, it may be that the table does exist but that you are referring to it incorrectly:

• Because MySQL uses directories and files to store databases and tables, database and table names are
case-sensitive if they are located on a file system that has case-sensitive file names.

• Even for file systems that are not case-sensitive, such as on Windows, all references to a given table
within a query must use the same lettercase.

You can check which tables are in the default database with SHOW TABLES. See Section 13.7.5, “SHOW
Statements”.

B.3.2.16 Can't initialize character set

You might see an error like this if you have character set problems:

MySQL Connection Failed: Can't initialize character set charset_name

This error can have any of the following causes:

• The character set is a multibyte character set and you have no support for the character
set in the client. In this case, you need to recompile the client by running CMake with the -
DDEFAULT_CHARSET=charset_name or -DWITH_EXTRA_CHARSETS=charset_name option. See
Section 2.9.7, “MySQL Source-Configuration Options”.

All standard MySQL binaries are compiled with -DWITH_EXTRA_CHARSETS=complex, which enables
support for all multibyte character sets. See Section 2.9.7, “MySQL Source-Configuration Options”.

• The character set is a simple character set that is not compiled into mysqld, and the character set
definition files are not in the place where the client expects to find them.

In this case, you need to use one of the following methods to solve the problem:

• Recompile the client with support for the character set. See Section 2.9.7, “MySQL Source-
Configuration Options”.

• Specify to the client the directory where the character set definition files are located. For many clients,
you can do this with the --character-sets-dir option.

• Copy the character definition files to the path where the client expects them to be.

B.3.2.17 File Not Found and Similar Errors

If you get ERROR 'file_name' not found (errno: 23), Can't open file: file_name
(errno: 24), or any other error with errno 23 or errno 24 from MySQL, it means that you have not
allocated enough file descriptors for the MySQL server. You can use the perror utility to get a description
of what the error number means:

$> perror 23
OS error code 23: File table overflow
$> perror 24
OS error code 24: Too many open files
$> perror 11
OS error code 11: Resource temporarily unavailable

The problem here is that mysqld is trying to keep open too many files simultaneously. You can either tell
mysqld not to open so many files at once or increase the number of file descriptors available to mysqld.

3567

Administration-Related Issues

To tell mysqld to keep open fewer files at a time, you can make the table cache smaller by reducing the
value of the table_open_cache system variable (the default value is 64). This may not entirely prevent
running out of file descriptors because in some circumstances the server may attempt to extend the cache
size temporarily, as described in Section 8.4.3.1, “How MySQL Opens and Closes Tables”. Reducing the
value of max_connections also reduces the number of open files (the default value is 100).

To change the number of file descriptors available to mysqld, you can use the --open-files-limit
option to mysqld_safe or set the open_files_limit system variable. See Section 5.1.7, “Server
System Variables”. The easiest way to set these values is to add an option to your option file. See
Section 4.2.2.2, “Using Option Files”. If you have an old version of mysqld that does not support setting
the open files limit, you can edit the mysqld_safe script. There is a commented-out line ulimit -n 256
in the script. You can remove the # character to uncomment this line, and change the number 256 to set
the number of file descriptors to be made available to mysqld.

--open-files-limit and ulimit can increase the number of file descriptors, but only up to the
limit imposed by the operating system. There is also a “hard” limit that can be overridden only if you
start mysqld_safe or mysqld as root (just remember that you also need to start the server with the
--user option in this case so that it does not continue to run as root after it starts up). If you need to
increase the operating system limit on the number of file descriptors available to each process, consult the
documentation for your system.

Note

If you run the tcsh shell, ulimit does not work! tcsh also reports incorrect
values when you ask for the current limits. In this case, you should start
mysqld_safe using sh.

B.3.2.18 Table-Corruption Issues

If you have started mysqld with the myisam_recover_options system variable set, MySQL
automatically checks and tries to repair MyISAM tables if they are marked as 'not closed properly' or
'crashed'. If this happens, MySQL writes an entry in the hostname.err file 'Warning: Checking
table ...' which is followed by Warning: Repairing table if the table needs to be repaired. If you
get a lot of these errors, without mysqld having died unexpectedly just before, then something is wrong
and needs to be investigated further.

When the server detects MyISAM table corruption, it writes additional information to the error log, such as
the name and line number of the source file, and the list of threads accessing the table. Example: Got an
error from thread_id=1, mi_dynrec.c:368. This is useful information to include in bug reports.

See also Section 5.1.6, “Server Command Options”, and Section 5.8.1.7, “Making a Test Case If You
Experience Table Corruption”.

B.3.3 Administration-Related Issues

B.3.3.1 Problems with File Permissions

If you have problems with file permissions, the UMASK or UMASK_DIR environment variable might be set
incorrectly when mysqld starts. For example, mysqld might issue the following error message when you
create a table:

ERROR: Can't find file: 'path/with/filename.frm' (Errcode: 13)

The default UMASK and UMASK_DIR values are 0660 and 0700, respectively. mysqld assumes that the
value for UMASK or UMASK_DIR is in octal if it starts with a zero. For example, setting UMASK=0600 is
equivalent to UMASK=384 because 0600 octal is 384 decimal.

3568

Administration-Related Issues

Assuming that you start mysqld using mysqld_safe, change the default UMASK value as follows:

UMASK=384 # = 600 in octal
export UMASK
mysqld_safe &

Note

An exception applies for the error log file if you start mysqld using mysqld_safe,
which does not respect UMASK: mysqld_safe may create the error log file if it does
not exist prior to starting mysqld, and mysqld_safe uses a umask set to a strict
value of 0137. If this is unsuitable, create the error file manually with the desired
access mode prior to executing mysqld_safe.

By default, mysqld creates database directories with an access permission value of 0700. To modify
this behavior, set the UMASK_DIR variable. If you set its value, new directories are created with the
combined UMASK and UMASK_DIR values. For example, to give group access to all new directories, start
mysqld_safe as follows:

UMASK_DIR=504 # = 770 in octal
export UMASK_DIR
mysqld_safe &

For additional details, see Section 4.9, “Environment Variables”.

B.3.3.2 How to Reset the Root Password

If you have never assigned a root password for MySQL, the server does not require a password at
all for connecting as root. However, this is insecure. For instructions on assigning passwords, see
Section 2.10.4, “Securing the Initial MySQL Accounts”.

If you know the root password and want to change it, see Section 13.7.1.7, “SET PASSWORD
Statement”.

If you assigned a root password previously but have forgotten it, you can assign a new password. The
following sections provide instructions for Windows and Unix and Unix-like systems, as well as generic
instructions that apply to any system.

Resetting the Root Password: Windows Systems

On Windows, use the following procedure to reset the password for the MySQL 'root'@'localhost'
account. To change the password for a root account with a different host name part, modify the
instructions to use that host name.

1. Log on to your system as Administrator.

2. Stop the MySQL server if it is running. For a server that is running as a Windows service, go to the
Services manager: From the Start menu, select Control Panel, then Administrative Tools, then
Services. Find the MySQL service in the list and stop it.

If your server is not running as a service, you may need to use the Task Manager to force it to stop.

3. Create a text file containing the following statement on a single line. Replace the password with the
password that you want to use.

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPass');

3569

Administration-Related Issues

4. Save the file. This example assumes that you name the file C:\mysql-init.txt.

5. Open a console window to get to the command prompt: From the Start menu, select Run, then enter
cmd as the command to be run.

6. Start the MySQL server with the init_file system variable set to name the file (notice that the
backslash in the option value is doubled):

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.6\bin"
C:\> mysqld --init-file=C:\\mysql-init.txt

If you installed MySQL to a different location, adjust the cd command accordingly.

The server executes the contents of the file named by the init_file system variable at startup,
changing the 'root'@'localhost' account password.

To have server output to appear in the console window rather than in a log file, add the --console
option to the mysqld command.

If you installed MySQL using the MySQL Installation Wizard, you may need to specify a --defaults-
file option. For example:

C:\> mysqld
 --defaults-file="C:\\ProgramData\\MySQL\\MySQL Server 5.6\\my.ini"
 --init-file=C:\\mysql-init.txt

The appropriate --defaults-file setting can be found using the Services Manager: From the Start
menu, select Control Panel, then Administrative Tools, then Services. Find the MySQL service in
the list, right-click it, and choose the Properties option. The Path to executable field contains
the --defaults-file setting.

7. After the server has started successfully, delete C:\mysql-init.txt.

You should now be able to connect to the MySQL server as root using the new password. Stop the
MySQL server and restart it normally. If you run the server as a service, start it from the Windows Services
window. If you start the server manually, use whatever command you normally use.

Resetting the Root Password: Unix and Unix-Like Systems

On Unix, use the following procedure to reset the password for the MySQL 'root'@'localhost'
account. To change the password for a root account with a different host name part, modify the
instructions to use that host name.

The instructions assume that you start the MySQL server from the Unix login account that you normally
use for running it. For example, if you run the server using the mysql login account, you should log in as
mysql before using the instructions. Alternatively, you can log in as root, but in this case you must start
mysqld with the --user=mysql option. If you start the server as root without using --user=mysql,
the server may create root-owned files in the data directory, such as log files, and these may cause
permission-related problems for future server startups. If that happens, you must either change the
ownership of the files to mysql or remove them.

1. Log on to your system as the Unix user that the MySQL server runs as (for example, mysql).

2. Stop the MySQL server if it is running. Locate the .pid file that contains the server's process ID.
The exact location and name of this file depend on your distribution, host name, and configuration.
Common locations are /var/lib/mysql/, /var/run/mysqld/, and /usr/local/mysql/data/.
Generally, the file name has an extension of .pid and begins with either mysqld or your system's host
name.

3570

Administration-Related Issues

Stop the MySQL server by sending a normal kill (not kill -9) to the mysqld process. Use the
actual path name of the .pid file in the following command:

$> kill `cat /mysql-data-directory/host_name.pid`

Use backticks (not forward quotation marks) with the cat command. These cause the output of cat to
be substituted into the kill command.

3. Create a text file containing the following statement on a single line. Replace the password with the
password that you want to use.

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPass');

4. Save the file. This example assumes that you name the file /home/me/mysql-init. The file contains
the password, so do not save it where it can be read by other users. If you are not logged in as mysql
(the user the server runs as), make sure that the file has permissions that permit mysql to read it.

5. Start the MySQL server with the init_file system variable set to name the file:

$> mysqld --init-file=/home/me/mysql-init &

The server executes the contents of the file named by the init_file system variable at startup,
changing the 'root'@'localhost' account password.

Other options may be necessary as well, depending on how you normally start your server. For
example, --defaults-file may be needed before the init_file argument.

6. After the server has started successfully, delete /home/me/mysql-init.

You should now be able to connect to the MySQL server as root using the new password. Stop the server
and restart it normally.

Resetting the Root Password: Generic Instructions

The preceding sections provide password-resetting instructions specifically for Windows and Unix and
Unix-like systems. Alternatively, on any platform, you can reset the password using the mysql client (but
this approach is less secure):

1. Stop the MySQL server if necessary, then restart it with the --skip-grant-tables option.
This enables anyone to connect without a password and with all privileges, and disables account-
management statements such as SET PASSWORD. Because this is insecure, you might want to use --
skip-grant-tables in conjunction with enabling the skip_networking system variable to prevent
remote clients from connecting.

2. Connect to the MySQL server using the mysql client; no password is necessary because the server
was started with --skip-grant-tables:

$> mysql

3. In the mysql client, tell the server to reload the grant tables so that account-management statements
work:

mysql> FLUSH PRIVILEGES;

Then change the 'root'@'localhost' account password. Replace the password with the password
that you want to use. To change the password for a root account with a different host name part,
modify the instructions to use that host name.

3571

Administration-Related Issues

mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPass');

You should now be able to connect to the MySQL server as root using the new password. Stop the
server and restart it normally (without the --skip-grant-tables option and without enabling the
skip_networking system variable).

B.3.3.3 What to Do If MySQL Keeps Crashing

Each MySQL version is tested on many platforms before it is released. This does not mean that there are
no bugs in MySQL, but if there are bugs, they should be very few and can be hard to find. If you have a
problem, it always helps if you try to find out exactly what crashes your system, because you have a much
better chance of getting the problem fixed quickly.

First, you should try to find out whether the problem is that the mysqld server dies or whether your
problem has to do with your client. You can check how long your mysqld server has been up by executing
mysqladmin version. If mysqld has died and restarted, you may find the reason by looking in the
server's error log. See Section 5.4.2, “The Error Log”.

On some systems, you can find in the error log a stack trace of where mysqld died that you can resolve
with the resolve_stack_dump program. See Section 5.8, “Debugging MySQL”. Note that the variable
values written in the error log may not always be 100% correct.

Many unexpected server exits are caused by corrupted data files or index files. MySQL updates the files
on disk with the write() system call after every SQL statement and before the client is notified about the
result. (This is not true if you are running with the delay_key_write system variable enabled, in which
case data files are written but not index files.) This means that data file contents are safe even if mysqld
crashes, because the operating system ensures that the unflushed data is written to disk. You can force
MySQL to flush everything to disk after every SQL statement by starting mysqld with the --flush option.

The preceding means that normally you should not get corrupted tables unless one of the following
happens:

• The MySQL server or the server host was killed in the middle of an update.

• You have found a bug in mysqld that caused it to die in the middle of an update.

• Some external program is manipulating data files or index files at the same time as mysqld without
locking the table properly.

• You are running many mysqld servers using the same data directory on a system that does not support
good file system locks (normally handled by the lockd lock manager), or you are running multiple
servers with external locking disabled.

• You have a crashed data file or index file that contains very corrupt data that confused mysqld.

• You have found a bug in the data storage code. This isn't likely, but it is at least possible. In this case,
you can try to change the storage engine to another engine by using ALTER TABLE on a repaired copy
of the table.

Because it is very difficult to know why something is crashing, first try to check whether things that work for
others result in an unexpected exit for you. Try the following things:

• Stop the mysqld server with mysqladmin shutdown, run myisamchk --silent --force */
*.MYI from the data directory to check all MyISAM tables, and restart mysqld. This ensures that you
are running from a clean state. See Chapter 5, MySQL Server Administration.

3572

Administration-Related Issues

• Start mysqld with the general query log enabled (see Section 5.4.3, “The General Query Log”). Then try
to determine from the information written to the log whether some specific query kills the server. About
95% of all bugs are related to a particular query. Normally, this is one of the last queries in the log file
just before the server restarts. See Section 5.4.3, “The General Query Log”. If you can repeatedly kill
MySQL with a specific query, even when you have checked all tables just before issuing it, then you
have isolated the bug and should submit a bug report for it. See Section 1.5, “How to Report Bugs or
Problems”.

• Try to make a test case that we can use to repeat the problem. See Section 5.8, “Debugging MySQL”.

• Try the fork_big.pl script. (It is located in the tests directory of source distributions.)

• Configuring MySQL for debugging makes it much easier to gather information about possible errors
if something goes wrong. Reconfigure MySQL with the -DWITH_DEBUG=1 option to CMake and then
recompile. See Section 5.8, “Debugging MySQL”.

• Make sure that you have applied the latest patches for your operating system.

• Use the --skip-external-locking option to mysqld. On some systems, the lockd lock manager
does not work properly; the --skip-external-locking option tells mysqld not to use external
locking. (This means that you cannot run two mysqld servers on the same data directory and that you
must be careful if you use myisamchk. Nevertheless, it may be instructive to try the option as a test.)

• If mysqld appears to be running but not responding, try mysqladmin -u root processlist.
Sometimes mysqld is not hung even though it seems unresponsive. The problem may be that
all connections are in use, or there may be some internal lock problem. mysqladmin -u root
processlist usually is able to make a connection even in these cases, and can provide useful
information about the current number of connections and their status.

• Run the command mysqladmin -i 5 status or mysqladmin -i 5 -r status in a separate
window to produce statistics while running other queries.

• Try the following:

1. Start mysqld from gdb (or another debugger). See Section 5.8, “Debugging MySQL”.

2. Run your test scripts.

3. Print the backtrace and the local variables at the three lowest levels. In gdb, you can do this with the
following commands when mysqld has crashed inside gdb:

backtrace
info local
up
info local
up
info local

With gdb, you can also examine which threads exist with info threads and switch to a specific
thread with thread N, where N is the thread ID.

• Try to simulate your application with a Perl script to force MySQL to exit or misbehave.

• Send a normal bug report. See Section 1.5, “How to Report Bugs or Problems”. Be even more detailed
than usual. Because MySQL works for many people, the crash might result from something that exists
only on your computer (for example, an error that is related to your particular system libraries).

• If you have a problem with tables containing dynamic-length rows and you are using only VARCHAR
columns (not BLOB or TEXT columns), you can try to change all VARCHAR to CHAR with ALTER TABLE.

3573

Administration-Related Issues

This forces MySQL to use fixed-size rows. Fixed-size rows take a little extra space, but are much more
tolerant to corruption.

The current dynamic row code has been in use for several years with very few problems, but dynamic-
length rows are by nature more prone to errors, so it may be a good idea to try this strategy to see
whether it helps.

• Consider the possibility of hardware faults when diagnosing problems. Defective hardware can be
the cause of data corruption. Pay particular attention to your memory and disk subsystems when
troubleshooting hardware.

B.3.3.4 How MySQL Handles a Full Disk

This section describes how MySQL responds to disk-full errors (such as “no space left on device”), and to
quota-exceeded errors (such as “write failed” or “user block limit reached”).

This section is relevant for writes to MyISAM tables. It also applies for writes to binary log files and binary
log index file, except that references to “row” and “record” should be understood to mean “event.”

When a disk-full condition occurs, MySQL does the following:

• It checks once every minute to see whether there is enough space to write the current row. If there is
enough space, it continues as if nothing had happened.

• Every 10 minutes it writes an entry to the log file, warning about the disk-full condition.

To alleviate the problem, take the following actions:

• To continue, you only have to free enough disk space to insert all records.

• Alternatively, to abort the thread, use mysqladmin kill. The thread is aborted the next time it checks
the disk (in one minute).

• Other threads might be waiting for the table that caused the disk-full condition. If you have several
“locked” threads, killing the one thread that is waiting on the disk-full condition enables the other threads
to continue.

Exceptions to the preceding behavior are when you use REPAIR TABLE or OPTIMIZE TABLE or when
the indexes are created in a batch after LOAD DATA or after an ALTER TABLE statement. All of these
statements may create large temporary files that, if left to themselves, would cause big problems for the
rest of the system. If the disk becomes full while MySQL is doing any of these operations, it removes the
big temporary files and mark the table as crashed. The exception is that for ALTER TABLE, the old table is
left unchanged.

B.3.3.5 Where MySQL Stores Temporary Files

On Unix, MySQL uses the value of the TMPDIR environment variable as the path name of the directory
in which to store temporary files. If TMPDIR is not set, MySQL uses the system default, which is usually /
tmp, /var/tmp, or /usr/tmp.

On Windows, MySQL checks in order the values of the TMPDIR, TEMP, and TMP environment variables.
For the first one found to be set, MySQL uses it and does not check those remaining. If none of TMPDIR,
TEMP, or TMP are set, MySQL uses the Windows system default, which is usually C:\windows\temp\.

If the file system containing your temporary file directory is too small, you can use the mysqld --tmpdir
option to specify a directory in a file system where you have enough space.

3574

Administration-Related Issues

The --tmpdir option can be set to a list of several paths that are used in round-robin fashion. Paths
should be separated by colon characters (:) on Unix and semicolon characters (;) on Windows.

Note

To spread the load effectively, these paths should be located on different physical
disks, not different partitions of the same disk.

If the MySQL server is acting as a replica, you can set the slave_load_tmpdir system variable to
specify a separate directory for holding temporary files when replicating LOAD DATA statements. This
directory should be in a disk-based file system (not a memory-based file system) so that the temporary files
used to replicate LOAD DATA can survive machine restarts. The directory also should not be one that is
cleared by the operating system during the system startup process. However, replication can now continue
after a restart if the temporary files have been removed.

MySQL arranges that temporary files are removed if mysqld is terminated. On platforms that support it
(such as Unix), this is done by unlinking the file after opening it. The disadvantage of this is that the name
does not appear in directory listings and you do not see a big temporary file that fills up the file system in
which the temporary file directory is located. (In such cases, lsof +L1 may be helpful in identifying large
files associated with mysqld.)

When sorting (ORDER BY or GROUP BY), MySQL normally uses one or two temporary files. The maximum
disk space required is determined by the following expression:

(length of what is sorted + sizeof(row pointer))
* number of matched rows
* 2

The row pointer size is usually four bytes, but may grow in the future for really big tables.

For some statements, MySQL creates temporary SQL tables that are not hidden and have names that
begin with #sql.

Some SELECT queries creates temporary SQL tables to hold intermediate results.

DDL operations that rebuild the table and are not performed online using the ALGORITHM=INPLACE
technique create a temporary copy of the original table in the same directory as the original table.

Online DDL operations may use temporary log files for recording concurrent DML, temporary sort files
when creating an index, and temporary intermediate tables files when rebuilding the table. For more
information, see Section 14.13.3, “Online DDL Space Requirements”.

See also Orphan Temporary Tables.

B.3.3.6 How to Protect or Change the MySQL Unix Socket File

The default location for the Unix socket file that the server uses for communication with local clients is /
tmp/mysql.sock. (For some distribution formats, the directory might be different, such as /var/lib/
mysql for RPMs.)

On some versions of Unix, anyone can delete files in the /tmp directory or other similar directories
used for temporary files. If the socket file is located in such a directory on your system, this might cause
problems.

On most versions of Unix, you can protect your /tmp directory so that files can be deleted only by their
owners or the superuser (root). To do this, set the sticky bit on the /tmp directory by logging in as
root and using the following command:

$> chmod +t /tmp

3575

Query-Related Issues

You can check whether the sticky bit is set by executing ls -ld /tmp. If the last permission character
is t, the bit is set.

Another approach is to change the place where the server creates the Unix socket file. If you do this, you
should also let client programs know the new location of the file. You can specify the file location in several
ways:

• Specify the path in a global or local option file. For example, put the following lines in /etc/my.cnf:

[mysqld]
socket=/path/to/socket

[client]
socket=/path/to/socket

See Section 4.2.2.2, “Using Option Files”.

• Specify a --socket option on the command line to mysqld_safe and when you run client programs.

• Set the MYSQL_UNIX_PORT environment variable to the path of the Unix socket file.

• Recompile MySQL from source to use a different default Unix socket file location. Define the path to
the file with the MYSQL_UNIX_ADDR option when you run CMake. See Section 2.9.7, “MySQL Source-
Configuration Options”.

You can test whether the new socket location works by attempting to connect to the server with this
command:

$> mysqladmin --socket=/path/to/socket version

B.3.3.7 Time Zone Problems

If you have a problem with SELECT NOW() returning values in UTC and not your local time, you have
to tell the server your current time zone. The same applies if UNIX_TIMESTAMP() returns the wrong
value. This should be done for the environment in which the server runs (for example, in mysqld_safe or
mysql.server). See Section 4.9, “Environment Variables”.

You can set the time zone for the server with the --timezone=timezone_name option to
mysqld_safe. You can also set it by setting the TZ environment variable before you start mysqld.

The permissible values for --timezone or TZ are system dependent. Consult your operating system
documentation to see what values are acceptable.

B.3.4 Query-Related Issues

B.3.4.1 Case Sensitivity in String Searches

For nonbinary strings (CHAR, VARCHAR, TEXT), string searches use the collation of the comparison
operands. For binary strings (BINARY, VARBINARY, BLOB), comparisons use the numeric values of the
bytes in the operands; this means that for alphabetic characters, comparisons are case-sensitive.

A comparison between a nonbinary string and binary string is treated as a comparison of binary strings.

Simple comparison operations (>=, >, =, <, <=, sorting, and grouping) are based on each character's
“sort value.” Characters with the same sort value are treated as the same character. For example, if e and
é have the same sort value in a given collation, they compare as equal.

The default character set and collation are latin1 and latin1_swedish_ci, so nonbinary string
comparisons are case-insensitive by default. This means that if you search with col_name LIKE 'a

3576

Query-Related Issues

%', you get all column values that start with A or a. To make this search case-sensitive, make sure that
one of the operands has a case-sensitive or binary collation. For example, if you are comparing a column
and a string that both have the latin1 character set, you can use the COLLATE operator to cause either
operand to have the latin1_general_cs or latin1_bin collation:

col_name COLLATE latin1_general_cs LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_general_cs
col_name COLLATE latin1_bin LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_bin

If you want a column always to be treated in case-sensitive fashion, declare it with a case-sensitive or
binary collation. See Section 13.1.17, “CREATE TABLE Statement”.

To cause a case-sensitive comparison of nonbinary strings to be case-insensitive, use COLLATE to name
a case-insensitive collation. The strings in the following example normally are case-sensitive, but COLLATE
changes the comparison to be case-insensitive:

mysql> SET @s1 = 'MySQL' COLLATE latin1_bin,
 -> @s2 = 'mysql' COLLATE latin1_bin;
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 0 |
+-----------+
mysql> SELECT @s1 COLLATE latin1_swedish_ci = @s2;
+-------------------------------------+
| @s1 COLLATE latin1_swedish_ci = @s2 |
+-------------------------------------+
| 1 |
+-------------------------------------+

A binary string is case-sensitive in comparisons. To compare the string as case-insensitive, convert it to a
nonbinary string and use COLLATE to name a case-insensitive collation:

mysql> SET @s = BINARY 'MySQL';
mysql> SELECT @s = 'mysql';
+--------------+
| @s = 'mysql' |
+--------------+
| 0 |
+--------------+
mysql> SELECT CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql';
+--+
| CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql' |
+--+
| 1 |
+--+

To determine whether a value compares as a nonbinary or binary string, use the COLLATION() function.
This example shows that VERSION() returns a string that has a case-insensitive collation, so comparisons
are case-insensitive:

mysql> SELECT COLLATION(VERSION());
+----------------------+
| COLLATION(VERSION()) |
+----------------------+
| utf8_general_ci |
+----------------------+

For binary strings, the collation value is binary, so comparisons are case-sensitive. One context in which
you may see binary is for compression functions, which return binary strings as a general rule: string:

mysql> SELECT COLLATION(COMPRESS('x'));

3577

Query-Related Issues

+--------------------------+
| COLLATION(COMPRESS('x')) |
+--------------------------+
| binary |
+--------------------------+

To check the sort value of a string, the WEIGHT_STRING() may be helpful. See Section 12.8, “String
Functions and Operators”.

B.3.4.2 Problems Using DATE Columns

The format of a DATE value is 'YYYY-MM-DD'. According to standard SQL, no other format is permitted.
You should use this format in UPDATE expressions and in the WHERE clause of SELECT statements. For
example:

SELECT * FROM t1 WHERE date >= '2003-05-05';

As a convenience, MySQL automatically converts a date to a number if the date is used in numeric context
and vice versa. MySQL also permits a “relaxed” string format when updating and in a WHERE clause
that compares a date to a DATE, DATETIME, or TIMESTAMP column. “Relaxed” format means that any
punctuation character may be used as the separator between parts. For example, '2004-08-15' and
'2004#08#15' are equivalent. MySQL can also convert a string containing no separators (such as
'20040815'), provided it makes sense as a date.

When you compare a DATE, TIME, DATETIME, or TIMESTAMP to a constant string with the <, <=, =,
>=, >, or BETWEEN operators, MySQL normally converts the string to an internal long integer for faster
comparison (and also for a bit more “relaxed” string checking). However, this conversion is subject to the
following exceptions:

• When you compare two columns

• When you compare a DATE, TIME, DATETIME, or TIMESTAMP column to an expression

• When you use any comparison method other than those just listed, such as IN or STRCMP().

For those exceptions, the comparison is done by converting the objects to strings and performing a string
comparison.

To be on the safe side, assume that strings are compared as strings and use the appropriate string
functions if you want to compare a temporal value to a string.

The special “zero” date '0000-00-00' can be stored and retrieved as '0000-00-00'. When a
'0000-00-00' date is used through Connector/ODBC, it is automatically converted to NULL because
ODBC cannot handle that kind of date.

Because MySQL performs the conversions just described, the following statements work (assume that
idate is a DATE column):

INSERT INTO t1 (idate) VALUES (19970505);
INSERT INTO t1 (idate) VALUES ('19970505');
INSERT INTO t1 (idate) VALUES ('97-05-05');
INSERT INTO t1 (idate) VALUES ('1997.05.05');
INSERT INTO t1 (idate) VALUES ('1997 05 05');
INSERT INTO t1 (idate) VALUES ('0000-00-00');

SELECT idate FROM t1 WHERE idate >= '1997-05-05';
SELECT idate FROM t1 WHERE idate >= 19970505;
SELECT MOD(idate,100) FROM t1 WHERE idate >= 19970505;
SELECT idate FROM t1 WHERE idate >= '19970505';

3578

Query-Related Issues

However, the following statement does not work:

SELECT idate FROM t1 WHERE STRCMP(idate,'20030505')=0;

STRCMP() is a string function, so it converts idate to a string in 'YYYY-MM-DD' format and performs
a string comparison. It does not convert '20030505' to the date '2003-05-05' and perform a date
comparison.

If you enable the ALLOW_INVALID_DATES SQL mode, MySQL permits you to store dates that are given
only limited checking: MySQL requires only that the day is in the range from 1 to 31 and the month is in
the range from 1 to 12. This makes MySQL very convenient for Web applications where you obtain year,
month, and day in three different fields and you want to store exactly what the user inserted (without date
validation).

MySQL permits you to store dates where the day or month and day are zero. This is convenient if you want
to store a birthdate in a DATE column and you know only part of the date. To disallow zero month or day
parts in dates, enable the NO_ZERO_IN_DATE SQL mode.

MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” This is in some cases
more convenient than using NULL values. If a date to be stored in a DATE column cannot be converted
to any reasonable value, MySQL stores '0000-00-00'. To disallow '0000-00-00', enable the
NO_ZERO_DATE SQL mode.

To have MySQL check all dates and accept only legal dates (unless overridden by IGNORE), set the
sql_mode system variable to "NO_ZERO_IN_DATE,NO_ZERO_DATE".

B.3.4.3 Problems with NULL Values

The concept of the NULL value is a common source of confusion for newcomers to SQL, who often
think that NULL is the same thing as an empty string ''. This is not the case. For example, the following
statements are completely different:

mysql> INSERT INTO my_table (phone) VALUES (NULL);
mysql> INSERT INTO my_table (phone) VALUES ('');

Both statements insert a value into the phone column, but the first inserts a NULL value and the second
inserts an empty string. The meaning of the first can be regarded as “phone number is not known” and the
meaning of the second can be regarded as “the person is known to have no phone, and thus no phone
number.”

To help with NULL handling, you can use the IS NULL and IS NOT NULL operators and the IFNULL()
function.

In SQL, the NULL value is never true in comparison to any other value, even NULL. An expression that
contains NULL always produces a NULL value unless otherwise indicated in the documentation for the
operators and functions involved in the expression. All columns in the following example return NULL:

mysql> SELECT NULL, 1+NULL, CONCAT('Invisible',NULL);

To search for column values that are NULL, you cannot use an expr = NULL test. The following
statement returns no rows, because expr = NULL is never true for any expression:

mysql> SELECT * FROM my_table WHERE phone = NULL;

To look for NULL values, you must use the IS NULL test. The following statements show how to find the
NULL phone number and the empty phone number:

mysql> SELECT * FROM my_table WHERE phone IS NULL;
mysql> SELECT * FROM my_table WHERE phone = '';

3579

Query-Related Issues

See Section 3.3.4.6, “Working with NULL Values”, for additional information and examples.

You can add an index on a column that can have NULL values if you are using the MyISAM, InnoDB, or
MEMORY storage engine. Otherwise, you must declare an indexed column NOT NULL, and you cannot
insert NULL into the column.

When reading data with LOAD DATA, empty or missing columns are updated with ''. To load a NULL
value into a column, use \N in the data file. The literal word NULL may also be used under some
circumstances. See Section 13.2.6, “LOAD DATA Statement”.

When using DISTINCT, GROUP BY, or ORDER BY, all NULL values are regarded as equal.

When using ORDER BY, NULL values are presented first, or last if you specify DESC to sort in descending
order.

Aggregate (group) functions such as COUNT(), MIN(), and SUM() ignore NULL values. The exception
to this is COUNT(*), which counts rows and not individual column values. For example, the following
statement produces two counts. The first is a count of the number of rows in the table, and the second is a
count of the number of non-NULL values in the age column:

mysql> SELECT COUNT(*), COUNT(age) FROM person;

For some data types, MySQL handles NULL values specially. For example, if you insert NULL into an
integer or floating-point column that has the AUTO_INCREMENT attribute, the next number in the sequence
is inserted. Under certain conditions, if you insert NULL into a TIMESTAMP column, the current date and
time is inserted; this behavior depends in part on the server SQL mode (see Section 5.1.10, “Server SQL
Modes”) as well as the value of the explicit_defaults_for_timestamp system variable.

B.3.4.4 Problems with Column Aliases

An alias can be used in a query select list to give a column a different name. You can use the alias in
GROUP BY, ORDER BY, or HAVING clauses to refer to the column:

SELECT SQRT(a*b) AS root FROM tbl_name
 GROUP BY root HAVING root > 0;
SELECT id, COUNT(*) AS cnt FROM tbl_name
 GROUP BY id HAVING cnt > 0;
SELECT id AS 'Customer identity' FROM tbl_name;

Standard SQL disallows references to column aliases in a WHERE clause. This restriction is imposed
because when the WHERE clause is evaluated, the column value may not yet have been determined. For
example, the following query is illegal:

SELECT id, COUNT(*) AS cnt FROM tbl_name
 WHERE cnt > 0 GROUP BY id;

The WHERE clause determines which rows should be included in the GROUP BY clause, but it refers to
the alias of a column value that is not known until after the rows have been selected, and grouped by the
GROUP BY.

In the select list of a query, a quoted column alias can be specified using identifier or string quoting
characters:

SELECT 1 AS `one`, 2 AS 'two';

Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference is
treated as a string literal. For example, this statement groups by the values in column id, referenced using
the alias `a`:

3580

Query-Related Issues

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
 GROUP BY `a`;

But this statement groups by the literal string 'a' and does not work as expected:

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
 GROUP BY 'a';

B.3.4.5 Rollback Failure for Nontransactional Tables

If you receive the following message when trying to perform a ROLLBACK, it means that one or more of the
tables you used in the transaction do not support transactions:

Warning: Some non-transactional changed tables couldn't be rolled back

These nontransactional tables are not affected by the ROLLBACK statement.

If you were not deliberately mixing transactional and nontransactional tables within the transaction, the
most likely cause for this message is that a table you thought was transactional actually is not. This can
happen if you try to create a table using a transactional storage engine that is not supported by your
mysqld server (or that was disabled with a startup option). If mysqld does not support a storage engine, it
instead creates the table as a MyISAM table, which is nontransactional.

You can check the storage engine for a table by using either of these statements:

SHOW TABLE STATUS LIKE 'tbl_name';
SHOW CREATE TABLE tbl_name;

See Section 13.7.5.37, “SHOW TABLE STATUS Statement”, and Section 13.7.5.12, “SHOW CREATE
TABLE Statement”.

To check which storage engines your mysqld server supports, use this statement:

SHOW ENGINES;

See Section 13.7.5.17, “SHOW ENGINES Statement” for full details.

B.3.4.6 Deleting Rows from Related Tables

If the total length of the DELETE statement for related_table is more than 1MB (the default value
of the max_allowed_packet system variable), you should split it into smaller parts and execute
multiple DELETE statements. You probably get the fastest DELETE by specifying only 100 to 1,000
related_column values per statement if the related_column is indexed. If the related_column isn't
indexed, the speed is independent of the number of arguments in the IN clause.

B.3.4.7 Solving Problems with No Matching Rows

If you have a complicated query that uses many tables but that returns no rows, you should use the
following procedure to find out what is wrong:

1. Test the query with EXPLAIN to check whether you can find something that is obviously wrong. See
Section 13.8.2, “EXPLAIN Statement”.

2. Select only those columns that are used in the WHERE clause.

3. Remove one table at a time from the query until it returns some rows. If the tables are large, it is a good
idea to use LIMIT 10 with the query.

4. Issue a SELECT for the column that should have matched a row against the table that was last removed
from the query.

3581

Query-Related Issues

5. If you are comparing FLOAT or DOUBLE columns with numbers that have decimals, you cannot use
equality (=) comparisons. This problem is common in most computer languages because not all
floating-point values can be stored with exact precision. In some cases, changing the FLOAT to a
DOUBLE fixes this. See Section B.3.4.8, “Problems with Floating-Point Values”.

6. If you still cannot figure out what is wrong, create a minimal test that can be run with mysql test
< query.sql that shows your problems. You can create a test file by dumping the tables with
mysqldump --quick db_name tbl_name_1 ... tbl_name_n > query.sql. Open the file in
an editor, remove some insert lines (if there are more than needed to demonstrate the problem), and
add your SELECT statement at the end of the file.

Verify that the test file demonstrates the problem by executing these commands:

$> mysqladmin create test2
$> mysql test2 < query.sql

Attach the test file to a bug report, which you can file using the instructions in Section 1.5, “How to
Report Bugs or Problems”.

B.3.4.8 Problems with Floating-Point Values

Floating-point numbers sometimes cause confusion because they are approximate and not stored as
exact values. A floating-point value as written in an SQL statement may not be the same as the value
represented internally. Attempts to treat floating-point values as exact in comparisons may lead to
problems. They are also subject to platform or implementation dependencies. The FLOAT and DOUBLE
data types are subject to these issues. For DECIMAL columns, MySQL performs operations with a
precision of 65 decimal digits, which should solve most common inaccuracy problems.

The following example uses DOUBLE to demonstrate how calculations that are done using floating-point
operations are subject to floating-point error.

mysql> CREATE TABLE t1 (i INT, d1 DOUBLE, d2 DOUBLE);
mysql> INSERT INTO t1 VALUES (1, 101.40, 21.40), (1, -80.00, 0.00),
 -> (2, 0.00, 0.00), (2, -13.20, 0.00), (2, 59.60, 46.40),
 -> (2, 30.40, 30.40), (3, 37.00, 7.40), (3, -29.60, 0.00),
 -> (4, 60.00, 15.40), (4, -10.60, 0.00), (4, -34.00, 0.00),
 -> (5, 33.00, 0.00), (5, -25.80, 0.00), (5, 0.00, 7.20),
 -> (6, 0.00, 0.00), (6, -51.40, 0.00);

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b
 -> FROM t1 GROUP BY i HAVING a <> b;

+------+-------+------+
| i | a | b |
+------+-------+------+
1	21.4	21.4
2	76.8	76.8
3	7.4	7.4
4	15.4	15.4
5	7.2	7.2
6	-51.4	0
+------+-------+------+

The result is correct. Although the first five records look like they should not satisfy the comparison (the
values of a and b do not appear to be different), they may do so because the difference between the
numbers shows up around the tenth decimal or so, depending on factors such as computer architecture
or the compiler version or optimization level. For example, different CPUs may evaluate floating-point
numbers differently.

If columns d1 and d2 had been defined as DECIMAL rather than DOUBLE, the result of the SELECT query
would have contained only one row—the last one shown above.

3582

Optimizer-Related Issues

The correct way to do floating-point number comparison is to first decide on an acceptable tolerance for
differences between the numbers and then do the comparison against the tolerance value. For example,
if we agree that floating-point numbers should be regarded the same if they are same within a precision of
one in ten thousand (0.0001), the comparison should be written to find differences larger than the tolerance
value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
 -> GROUP BY i HAVING ABS(a - b) > 0.0001;
+------+-------+------+
| i | a | b |
+------+-------+------+
| 6 | -51.4 | 0 |
+------+-------+------+
1 row in set (0.00 sec)

Conversely, to get rows where the numbers are the same, the test should find differences within the
tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
 -> GROUP BY i HAVING ABS(a - b) <= 0.0001;
+------+------+------+
| i | a | b |
+------+------+------+
1	21.4	21.4
2	76.8	76.8
3	7.4	7.4
4	15.4	15.4
5	7.2	7.2
+------+------+------+
5 rows in set (0.03 sec)

Floating-point values are subject to platform or implementation dependencies. Suppose that you execute
the following statements:

CREATE TABLE t1(c1 FLOAT(53,0), c2 FLOAT(53,0));
INSERT INTO t1 VALUES('1e+52','-1e+52');
SELECT * FROM t1;

On some platforms, the SELECT statement returns inf and -inf. On others, it returns 0 and -0.

An implication of the preceding issues is that if you attempt to create a replica by dumping table contents
with mysqldump on the source and reloading the dump file into the replica, tables containing floating-point
columns might differ between the two hosts.

B.3.5 Optimizer-Related Issues

MySQL uses a cost-based optimizer to determine the best way to resolve a query. In many cases, MySQL
can calculate the best possible query plan, but sometimes MySQL does not have enough information
about the data at hand and has to make “educated” guesses about the data.

For the cases when MySQL does not do the "right" thing, tools that you have available to help MySQL are:

• Use the EXPLAIN statement to get information about how MySQL processes a query. To use it, just add
the keyword EXPLAIN to the front of your SELECT statement:

mysql> EXPLAIN SELECT * FROM t1, t2 WHERE t1.i = t2.i;

EXPLAIN is discussed in more detail in Section 13.8.2, “EXPLAIN Statement”.

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 13.7.2.1, “ANALYZE TABLE Statement”.

3583

Table Definition-Related Issues

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive compared
to using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;

USE INDEX and IGNORE INDEX may also be useful. See Section 8.9.3, “Index Hints”.

• Global and table-level STRAIGHT_JOIN. See Section 13.2.9, “SELECT Statement”.

• You can tune global or thread-specific system variables. For example, start mysqld with the --max-
seeks-for-key=1000 option or use SET max_seeks_for_key=1000 to tell the optimizer to assume
that no key scan causes more than 1,000 key seeks. See Section 5.1.7, “Server System Variables”.

B.3.6 Table Definition-Related Issues

B.3.6.1 Problems with ALTER TABLE

If you get a duplicate-key error when using ALTER TABLE to change the character set or collation of a
character column, the cause is either that the new column collation maps two keys to the same value or
that the table is corrupted. In the latter case, you should run REPAIR TABLE on the table. REPAIR TABLE
works for MyISAM, ARCHIVE, and CSV tables.

If ALTER TABLE dies with the following error, the problem may be that MySQL crashed during an earlier
ALTER TABLE operation and there is an old table named A-xxx or B-xxx lying around:

Error on rename of './database/name.frm'
to './database/B-xxx.frm' (Errcode: 17)

In this case, go to the MySQL data directory and delete all files that have names starting with A- or B-.
(You may want to move them elsewhere instead of deleting them.)

ALTER TABLE works in the following way:

• Create a new table named A-xxx with the requested structural changes.

• Copy all rows from the original table to A-xxx.

• Rename the original table to B-xxx.

• Rename A-xxx to your original table name.

• Delete B-xxx.

If something goes wrong with the renaming operation, MySQL tries to undo the changes. If something
goes seriously wrong (although this shouldn't happen), MySQL may leave the old table as B-xxx. A simple
rename of the table files at the system level should get your data back.

If you use ALTER TABLE on a transactional table or if you are using Windows, ALTER TABLE unlocks the
table if you had done a LOCK TABLE on it. This is done because InnoDB and these operating systems
cannot drop a table that is in use.

B.3.6.2 TEMPORARY Table Problems

Temporary tables created with CREATE TEMPORARY TABLE have the following limitations:

• TEMPORARY tables are supported only by the InnoDB, MEMORY, MyISAM, and MERGE storage engines.

3584

Known Issues in MySQL

• Temporary tables are not supported for NDB Cluster.

• The SHOW TABLES statement does not list TEMPORARY tables.

• To rename TEMPORARY tables, RENAME TABLE does not work. Use ALTER TABLE instead:

ALTER TABLE old_name RENAME new_name;

• You cannot refer to a TEMPORARY table more than once in the same query. For example, the following
does not work:

SELECT * FROM temp_table JOIN temp_table AS t2;

The statement produces this error:

ERROR 1137: Can't reopen table: 'temp_table'

• The Can't reopen table error also occurs if you refer to a temporary table multiple times in a stored
function under different aliases, even if the references occur in different statements within the function.
It may occur for temporary tables created outside stored functions and referred to across multiple calling
and callee functions.

• If a TEMPORARY is created with the same name as an existing non-TEMPORARY table, the
non-TEMPORARY table is hidden until the TEMPORARY table is dropped, even if the tables use different
storage engines.

• There are known issues in using temporary tables with replication. See Section 17.4.1.29, “Replication
and Temporary Tables”, for more information.

B.3.7 Known Issues in MySQL

This section lists known issues in recent versions of MySQL.

For information about platform-specific issues, see the installation and debugging instructions in
Section 2.1, “General Installation Guidance”, and Section 5.8, “Debugging MySQL”.

The following problems are known:

• Subquery optimization for IN is not as effective as for =.

• Even if you use lower_case_table_names=2 (which enables MySQL to remember the case used
for databases and table names), MySQL does not remember the case used for database names for the
function DATABASE() or within the various logs (on case-insensitive systems).

• Dropping a FOREIGN KEY constraint does not work in replication because the constraint may have
another name on the replica.

• REPLACE (and LOAD DATA with the REPLACE option) does not trigger ON DELETE CASCADE.

• DISTINCT with ORDER BY does not work inside GROUP_CONCAT() if you do not use all and only those
columns that are in the DISTINCT list.

• When inserting a big integer value (between 263 and 264−1) into a decimal or string column, it is inserted
as a negative value because the number is evaluated in signed integer context.

• ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE may cause problems on nontransactional
tables for which you are using INSERT DELAYED.

3585

Known Issues in MySQL

• With statement-based binary logging, the source server writes the executed queries to the binary log.
This is a very fast, compact, and efficient logging method that works perfectly in most cases. However,
it is possible for the data on the source and replica to become different if a query is designed in such a
way that the data modification is nondeterministic (generally not a recommended practice, even outside
of replication).

For example:

• CREATE TABLE ... SELECT or INSERT ... SELECT statements that insert zero or NULL values
into an AUTO_INCREMENT column.

• DELETE if you are deleting rows from a table that has foreign keys with ON DELETE CASCADE
properties.

• REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key values in the
inserted data.

If and only if the preceding queries have no ORDER BY clause guaranteeing a deterministic order.

For example, for INSERT ... SELECT with no ORDER BY, the SELECT may return rows in a
different order (which results in a row having different ranks, hence getting a different number in the
AUTO_INCREMENT column), depending on the choices made by the optimizers on the source and
replica.

A query is optimized differently on the source and replica only if:

• The table is stored using a different storage engine on the source than on the replica. (It is possible
to use different storage engines on the source and replica. For example, you can use InnoDB on the
source, but MyISAM on the replica if the replica has less available disk space.)

• MySQL buffer sizes (key_buffer_size, and so on) are different on the source and replica.

• The source and replica run different MySQL versions, and the optimizer code differs between these
versions.

This problem may also affect database restoration using mysqlbinlog|mysql.

The easiest way to avoid this problem is to add an ORDER BY clause to the aforementioned
nondeterministic queries to ensure that the rows are always stored or modified in the same order. Using
row-based or mixed logging format also avoids the problem.

• Log file names are based on the server host name if you do not specify a file name with the startup
option. To retain the same log file names if you change your host name to something else, you
must explicitly use options such as --log-bin=old_host_name-bin. See Section 5.1.6, “Server
Command Options”. Alternatively, rename the old files to reflect your host name change. If these are
binary logs, you must edit the binary log index file and fix the binary log file names there as well. (The
same is true for the relay logs on a replica.)

• mysqlbinlog does not delete temporary files left after a LOAD DATA statement. See Section 4.6.8,
“mysqlbinlog — Utility for Processing Binary Log Files”.

• RENAME does not work with TEMPORARY tables or tables used in a MERGE table.

• When using SET CHARACTER SET, you cannot use translated characters in database, table, and
column names.

• You cannot use _ or % with ESCAPE in LIKE ... ESCAPE.

3586

Known Issues in MySQL

• The server uses only the first max_sort_length bytes when comparing data values. This means
that values cannot reliably be used in GROUP BY, ORDER BY, or DISTINCT if they differ only after the
first max_sort_length bytes. To work around this, increase the variable value. The default value of
max_sort_length is 1024 and can be changed at server startup time or at runtime.

• Numeric calculations are done with BIGINT or DOUBLE (both are normally 64 bits long). Which precision
you get depends on the function. The general rule is that bit functions are performed with BIGINT
precision, IF() and ELT() with BIGINT or DOUBLE precision, and the rest with DOUBLE precision.
You should try to avoid using unsigned long long values if they resolve to be larger than 63 bits
(9223372036854775807) for anything other than bit fields.

• You can have up to 255 ENUM and SET columns in one table.

• In MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and SET columns by
their string value rather than by the string's relative position in the set.

• In an UPDATE statement, columns are updated from left to right. If you refer to an updated column, you
get the updated value instead of the original value. For example, the following statement increments KEY
by 2, not 1:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

• You can refer to multiple temporary tables in the same query, but you cannot refer to any given
temporary table more than once. For example, the following does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

• The optimizer may handle DISTINCT differently when you are using “hidden” columns in a join than
when you are not. In a join, hidden columns are counted as part of the result (even if they are not
shown), whereas in normal queries, hidden columns do not participate in the DISTINCT comparison.

An example of this is:

SELECT DISTINCT mp3id FROM band_downloads
 WHERE userid = 9 ORDER BY id DESC;

and

SELECT DISTINCT band_downloads.mp3id
 FROM band_downloads,band_mp3
 WHERE band_downloads.userid = 9
 AND band_mp3.id = band_downloads.mp3id
 ORDER BY band_downloads.id DESC;

In the second case, you may get two identical rows in the result set (because the values in the hidden id
column may differ).

This happens only for queries that do not have the ORDER BY columns in the result.

• If you execute a PROCEDURE on a query that returns an empty set, in some cases the PROCEDURE does
not transform the columns.

• Creation of a table of type MERGE does not check whether the underlying tables are compatible types.

• If you use ALTER TABLE to add a UNIQUE index to a table used in a MERGE table and then add a normal
index on the MERGE table, the key order is different for the tables if there was an old, non-UNIQUE key
in the table. This is because ALTER TABLE puts UNIQUE indexes before normal indexes to be able to
detect duplicate keys as early as possible.

3587

3588

Appendix C Indexes

Table of Contents
General Index ... 3589
C Function Index .. 3811
Command Index ... 3814
Function Index .. 3859
INFORMATION_SCHEMA Index ... 3896
Join Types Index .. 3907
Operator Index ... 3909
Option Index ... 3917
Privileges Index .. 4015
SQL Modes Index ... 4025
Statement/Syntax Index .. 4029
Status Variable Index .. 4108
System Variable Index .. 4132
Transaction Isolation Level Index .. 4197

General Index

Symbols
! (logical NOT), 1454
!= (not equal), 1449
", 1230
#mysql50 identifier prefix, 1232, 1238
%, 1462
% (modulo), 1467
% (wildcard character), 1223
& (bitwise AND), 1560
&& (logical AND), 1455
() (parentheses), 1447
(Control+Z) \Z, 1223, 1756
* (multiplication), 1461
+ (addition), 1461
- (subtraction), 1461
- (unary minus), 1461
--init-rpl-role

removed features, 22
--innodb-read-only

new features, 13
--language

deprecated features, 21
--log

removed features, 21
--one-thread

removed features, 21
--password option, 844
--rpl-recovery-rank

removed features, 22

3589

--safe-mode
removed features, 21

--skip-innodb
deprecated features, 21

--skip-thread-priority
removed features, 22

--table-cache
removed features, 22

-c option (ndb_mgmd) (OBSOLETE), 2832
-d option

ndb_index_stat, 2892
ndb_mgmd, 2833

-e option
ndb_mgm, 2843

-f option
ndb_mgmd, 2832

-l option
ndbinfo_select_all, 2825

-n option
ndbd, 2819
ndbmtd, 2819

-p option, 844
-P option

ndb_mgmd, 2838
-v option

ndb_mgmd, 2839
.frm file, 1703
.ibd file, 1703
.my.cnf option file, 286, 287, 306, 810, 845, 903
.MYD file, 1703
.MYI file, 1703
.mylogin.cnf option file, 286, 459
.mysql_history file, 358, 845
.mysql_secret file, 326
.pid (process ID) file, 1048
/ (division), 1462
/etc/passwd, 853, 1779
3306 port, 196, 594
:= (assignment operator), 1456
:= (assignment), 1266
< (less than), 1449
<< (left shift), 273, 1560
<= (less than or equal), 1449
<=> (equal to), 1449
<> (not equal), 1449
= (assignment operator), 1456
= (assignment), 1266
= (equal), 1448
> (greater than), 1450
>= (greater than or equal), 1449
>> (right shift), 1561
[api] (NDB Cluster), 2650
[computer] (NDB Cluster), 2651
[mgm] (NDB Cluster), 2649

3590

[mysqld] (NDB Cluster), 2650
[ndbd default] (NDB Cluster), 2643
[ndbd] (NDB Cluster), 2643
[ndb_mgmd] (NDB Cluster), 2649
[shm] (NDB Cluster), 2651
[tcp] (NDB Cluster), 2651
\" (double quote), 1223
\' (single quote), 1223
\. (mysql client command), 267, 361
\0 (ASCII NUL), 1222, 1756
\b (backspace), 1223, 1756
\n (linefeed), 1223, 1756
\n (newline), 1223, 1756
\N (NULL), 1756
\r (carriage return), 1223, 1756
\t (tab), 1223, 1756
\Z (Control+Z) ASCII 26, 1223, 1756
\\ (escape), 1223
^ (bitwise XOR), 1560
_ (wildcard character), 1223
_ai collation sufffix, 1284
_as collation sufffix, 1284
_bin collation sufffix, 1284, 1307
_ci collation sufffix, 1284
_cs collation sufffix, 1284
_rowid

SELECT statements, 1668, 1687, 1688
`, 1230
| (bitwise OR), 1560
|| (logical OR), 1455
~ (invert bits), 1561

A
abort-on-error option

ndb_move_data, 2899
abort-slave-event-count option

mysqld, 2453
aborted clients, 3564
aborted connection, 3564
Aborted_clients status variable, 719
Aborted_connects status variable, 719
ABS(), 1463
access control, 859, 877
access denied errors, 3556
access privileges, 859
account management, 859
account names, 875
accounts

adding privileges, 882
anonymous user, 211
creating, 882
default, 211
deleting, 885

3591

root, 211
accounts table

performance_schema, 3435
ACID, 1983, 1988, 4199
ACLs, 859
ACOS(), 1463
activating plugins, 789
ActiveState Perl, 240
adaptive flushing, 4199
adaptive hash index, 2001, 4199
add-drop-database option

mysqldump, 394
add-drop-table option

mysqldump, 394
add-drop-trigger option

mysqldump, 395
add-locks option

mysqldump, 404
add-missing option

ndb_blob_tool, 2847
ADDDATE(), 1474
adding

character sets, 1335
new account privileges, 882
new user privileges, 882

addition (+), 1461
ADDTIME(), 1474
addtodest option

mysqlhotcopy, 493
administration

server, 365
administration of NDB Cluster, 2840
administrative programs, 280
ADO.NET, 4200
AES_DECRYPT(), 1563
AES_ENCRYPT(), 1563
After create

thread state, 1207
age

calculating, 256
aggregate functions, 1607
AIO, 4200
alias names

case sensitivity, 1235
aliases

for expressions, 1616
for tables, 1774
in GROUP BY clauses, 1616
names, 1230
on expressions, 1773

ALL, 1791
SELECT modifier, 1777

ALL join type
optimizer, 1154

3592

ALL privilege, 863
ALL PRIVILEGES privilege, 863
all-databases option

mysqlcheck, 378
mysqldump, 402

all-in-1 option
mysqlcheck, 379

all-tablespaces option
mysqldump, 395

allocating local table
thread state, 1213

allow-keywords option
mysqldump, 395

allow-suspicious-udfs option
mysqld, 580

allowold option
mysqlhotcopy, 493

ALLOW_INVALID_DATES SQL mode, 739
ALTER COLUMN, 1648
ALTER DATABASE, 1634
ALTER EVENT, 1635

and replication, 2558
ALTER FUNCTION, 1637
ALTER IGNORE TABLE

deprecated features, 21
ALTER LOGFILE GROUP, 1637

(see also NDB Cluster Disk Data)
ALTER privilege, 863
ALTER PROCEDURE, 1639
ALTER ROUTINE privilege, 864
ALTER SCHEMA, 1634
ALTER SERVER, 1639
ALTER TABLE, 1639, 1648, 3584

and replication metadata repositories, 2512
ROW_FORMAT, 2113

ALTER TABLESPACE, 1660
(see also NDB Cluster Disk Data)

ALTER USER statement, 1876
ALTER VIEW, 1661
altering

database, 1634
schema, 1634

altering table
thread state, 1207

altering user accounts, 1876
ANALYSE()

PROCEDURE, 1124
analyze option

myisamchk, 443
mysqlcheck, 379

ANALYZE TABLE
and partitioning, 3194

ANALYZE TABLE statement, 1895
Analyzing

3593

thread state, 1207
AND

bitwise, 1560
logical, 1455

anonymous user, 211, 212, 877, 880
ANSI, 4200
ANSI mode

running, 43
ansi option

mysqld, 580
ANSI SQL mode, 738, 744
ANSI_QUOTES SQL mode, 739
Antelope, 4200
Antelope file format, 2103, 2160
ANY, 1790
Apache, 276
API, 4200
API node (NDB Cluster)

defined, 2580
API nodes (see SQL nodes)
APIs, 3483

list of, 59
Perl, 3492

append option
ndb_restore, 2912

application error handling, 858
application programming interface (API), 4200
apply, 4200
apply-slave-statements option

mysqldump, 397
apply_status table (OBSOLETE), 3109

(see also NDB Cluster replication)
approximate-value literals, 1623
approximate-value numeric literals, 1224, 1624
Arbitration, 2714
ArbitrationDelay, 2674, 2746
ArbitrationRank, 2673, 2746
ArbitrationTimeout, 2714
arbitrator_validity_detail

ndbinfo table, 3049
arbitrator_validity_summary

ndbinfo table, 3050
ARCHIVE storage engine, 2307, 2326
Area(), 1597
arithmetic expressions, 1461
arithmetic functions, 1559
arithmetic operators, 1559
.ARM file, 4199
.ARZ file, 4199
AS, 1774, 1780
AsBinary(), 1591
ASCII(), 1495
ASIN(), 1463
ASP.net, 4200

3594

assembly, 4201
assignment operator

:=, 1456
=, 1456

assignment operators, 1456
AsText(), 1591
asymmetric_decrypt(), 1015
asymmetric_derive(), 1015
asymmetric_encrypt(), 1015
asymmetric_sign(), 1016
asymmetric_verify(), 1017
asynchronous I/O, 2072, 4201
asynchronous replication (see NDB Cluster replication)
ATAN(), 1464
ATAN2(), 1464
atomic, 4201
atomic DDL, 4201
atomic instruction, 4201
attackers

security against, 852
attribute demotion

replication, 2551
attribute promotion

replication, 2551
audit-log option

mysqld, 986
audit_log plugin, 967

installing, 969
startup failure, 981

audit_log_buffer_size system variable, 987
audit_log_connection_policy system variable, 987
audit_log_current_session system variable, 988
Audit_log_current_size status variable, 993
Audit_log_events status variable, 993
Audit_log_events_filtered status variable, 993
Audit_log_events_lost status variable, 993
Audit_log_events_written status variable, 993
Audit_log_event_max_drop_size status variable, 993
audit_log_exclude_accounts system variable, 988
audit_log_file system variable, 989
audit_log_flush system variable, 989
audit_log_format system variable, 989
audit_log_include_accounts system variable, 990
audit_log_policy system variable, 990
audit_log_rotate_on_size system variable, 991
audit_log_statement_policy system variable, 992
audit_log_strategy system variable, 992
Audit_log_total_size status variable, 993
Audit_log_write_waits status variable, 993
authentication

for the InnoDB memcached interface, 2271
authentication plugin

authentication_pam, 935
authentication_windows, 945

3595

authentication_windows_client, 945
auth_socket, 950
auth_test_plugin, 952
mysql_clear_password, 934
mysql_native_password, 924
mysql_old_password, 925
sha256_password, 930
test_plugin_server, 952

authentication_pam authentication plugin, 935
AUTHENTICATION_PAM_LOG environment variable, 506, 945
authentication_windows authentication plugin, 945
authentication_windows_client authentication plugin, 945
authentication_windows_log_level system variable, 604
authentication_windows_use_principal_name system variable, 605
auth_socket authentication plugin, 950
auth_test_plugin authentication plugin, 952
auto-generate-sql option

mysqlslap, 426
auto-generate-sql-add-autoincrement option

mysqlslap, 426
auto-generate-sql-execute-number option

mysqlslap, 426
auto-generate-sql-guid-primary option

mysqlslap, 426
auto-generate-sql-load-type option

mysqlslap, 426
auto-generate-sql-secondary-indexes option

mysqlslap, 426
auto-generate-sql-unique-query-number option

mysqlslap, 426
auto-generate-sql-unique-write-number option

mysqlslap, 426
auto-generate-sql-write-number option

mysqlslap, 426
auto-inc lock, 2038
auto-inc option

ndb_desc, 2874
auto-increment, 2016, 2016, 2021, 2022, 4201
auto-increment locking, 4202
auto-rehash option

mysql, 342
auto-repair option

mysqlcheck, 379
auto-vertical-output option

mysql, 342
auto.cnf file, 2441

and SHOW SLAVE HOSTS statement, 1947
autocommit, 4202
autocommit mode, 2045
autocommit system variable, 606
automatic_sp_privileges system variable, 606
AutoReconnect

API and SQL nodes, 2748
AUTO_INCREMENT, 273, 1365

3596

and NULL values, 3580
and replication, 2546

auto_increment_increment system variable, 2448
auto_increment_offset system variable, 2451
availability, 4202
AVG(), 1608
AVG(DISTINCT), 1608
avoid_temporal_upgrade system variable, 606

B
B-tree, 4202
B-tree indexes, 1115, 2023
background threads, 2073

read, 2072
write, 2072

backslash
escape character, 1221

backspace (\b), 1223, 1756
backticks, 4202
backup, 4203
BACKUP Events (NDB Cluster), 2992
backup identifiers

native backup and restore, 3014
backup option

myisamchk, 442
myisampack, 453

backup-path option
ndb_restore, 2912

BackupDataBufferSize, 2720, 3015
BackupDataDir, 2681
BackupDiskWriteSpeedPct, 2721
backupid option

ndb_restore, 2913
BackupLogBufferSize, 2722, 3015
BackupMaxWriteSize, 2723, 3016
BackupMemory, 2722, 3015
BackupReportFrequency, 2722
backups, 1025, 3496

databases and tables, 384, 492
in NDB Cluster, 2908, 3011, 3012, 3012, 3015
in NDB Cluster replication, 3121
InnoDB, 2255
with mysqldump, 1035

backups, troubleshooting
in NDB Cluster, 3016

BackupWriteSize, 2723, 3016
back_log system variable, 607
Barracuda, 4203
Barracuda file format, 2091, 2103, 2160
base64-output option

mysqlbinlog, 473
basedir option

mysql.server, 317

3597

mysqld, 580
mysqld_safe, 312
mysql_install_db, 325
mysql_plugin, 328
mysql_upgrade, 334

basedir system variable, 607
batch mode, 266
batch option

mysql, 342
batch SQL files, 337
BatchByteSize, 2747
Batched Key Access

optimization, 1076, 1078
batched updates (NDB Cluster Replication), 3118
BatchSize, 2747
BatchSizePerLocalScan, 2690
BEGIN, 1804, 1840

labels, 1841
XA transactions, 1819

BENCHMARK(), 1573
benchmarks, 1201, 1202
beta, 4203
BETWEEN ... AND, 1450
bidirectional replication

in NDB Cluster, 3127
NDB Cluster, 3133

big5, 3529
BIGINT data type, 1362
big_tables system variable, 608
BIN(), 1495
BINARY, 1542
binary collation, 1307
BINARY data type, 1386, 1389
binary distributions

installing, 82
binary log, 772, 4203

event groups, 1831
binary logging

and NDB Cluster, 2609
binary-as-hex option

mysql, 343
binary-mode option

mysql, 343
bind-address option

mysql, 343
mysqladmin, 370
mysqlbinlog, 473
mysqlcheck, 379
mysqldump, 391
mysqlimport, 410
mysqlshow, 418
ndb_mgmd, 2831

bind_address system variable, 608
binlog, 4203

3598

Binlog Dump
thread command, 1205

BINLOG statement, 1964
mysqlbinlog output, 483

binlog-checksum option
mysqld, 2486

binlog-do-db option
mysqld, 2483

binlog-ignore-db option
mysqld, 2485

binlog-row-event-max-size option
mysqlbinlog, 473
mysqld, 2482

binlogging_impossible_mode system variable, 2491
Binlog_cache_disk_use status variable, 719
binlog_cache_size system variable, 2487
Binlog_cache_use status variable, 719
binlog_checksum system variable, 2487
binlog_direct_non_transactional_updates system variable, 2488
binlog_error_action system variable, 2489
binlog_format

BLACKHOLE, 2547
binlog_format system variable, 2489
binlog_gtid_simple_recovery, 2501
binlog_index table (OBSOLETE) (see NDB Cluster replication)
binlog_max_flush_queue_time system variable, 2491
binlog_order_commits system variable, 2491
binlog_rows_query_log_events system variable, 2493
binlog_row_image system variable, 2492
Binlog_stmt_cache_disk_use status variable, 720
binlog_stmt_cache_size system variable, 2494
Binlog_stmt_cache_use status variable, 720
BIT data type, 1361
bit functions, 1559

example, 273
bit operators, 1559
bit-value literal introducer, 1229
bit-value literals, 1229
BIT_AND(), 1608
BIT_COUNT, 273
BIT_COUNT(), 1561
BIT_LENGTH(), 1495
BIT_OR, 273
BIT_OR(), 1608
BIT_XOR(), 1608
BLACKHOLE

binlog_format, 2547
replication, 2547

BLACKHOLE storage engine, 2307, 2328
blind query expansion, 1531, 4203
BLOB, 4204
BLOB columns

default values, 1391
indexing, 1111, 1685

3599

inserting binary data, 1224
size, 1418

BLOB data type, 1386, 1391
blob-info option

ndb_desc, 2874
Block Nested-Loop

optimization, 1076, 1077
Block Nested-Loop join algorithm, 1065
block-search option

myisamchk, 444
blocked hosts

unblocking, 751
blocks

ndbinfo table, 3050
block_encryption_mode system variable, 609
BOOL data type, 1361
BOOLEAN data type, 1361
boolean literals, 1230
boolean options, 292
Boolean search, 1525
bootstrap option

mysqld, 581
bottleneck, 4204
bounce, 4204
brackets

square, 1360
brief option

mysqlaccess, 467
buddy allocator, 2206, 4204
buffer, 4204
buffer pool, 1169, 2063, 2064, 2065, 2066, 2068, 4204

and compressed tables, 2099
monitoring, 1995

buffer pool instance, 4204
buffer sizes, 1169

client, 3483
Buffer(), 1600
bugs

known, 3585
NDB Cluster

reporting, 2887
reporting, 2, 37

bugs database, 37
bugs.mysql.com, 37
builddir option

mysql_install_db, 325
BuildIndexThreads, 2724
BUILD_CONFIG option

CMake, 191
built-in, 4205
built-in functions

reference, 1424
built-in operators

reference, 1424

3600

bulk loading
for InnoDB tables, 1135
for MyISAM tables, 1143

bulk_insert_buffer_size system variable, 609, 2315
business rules, 4205
Bytes_received status variable, 720
Bytes_sent status variable, 720

C
C, 4205
C API, 3483, 3492, 4205

FAQ, 3542
C#, 4205
C++, 3486, 4206
C:\my.cnf option file, 810
cache, 4206
CACHE INDEX

and partitioning, 3210
CACHE INDEX statement, 1965
caches

clearing, 1966
cache_policies table, 2289
calculating

aggregate value for a set of rows, 1607
cardinality, 1936
dates, 256

calendar, 1520
CALL, 1733
can't create/write to file, 3565
Can't reopen table

error message, 3585
cardinality, 1091, 4206
carriage return (\r), 1223, 1756
CASE, 1457, 1844
case sensitivity

access checking, 874
account names, 876
in identifiers, 1235
in names, 1235
in searches, 3576
in string comparisons, 1510
of database names, 43
of replication filtering options, 2519
of table names, 43

CAST, 1544
cast functions, 1541
cast operators, 1541
casts, 1442, 1448, 1541
CC environment variable, 202, 506
CEIL(), 1464
CEILING(), 1464
Centroid(), 1597
.cfg file, 4205

3601

cflags option
mysql_config, 500

change buffer, 1997, 4206
monitoring, 2000

change buffering, 4206
disabling, 1999

CHANGE MASTER TO, 1825
in NDB Cluster, 3116

Change user
thread command, 1205

changes to privileges, 885
changing

column, 1646
field, 1646
socket location, 317, 3576
table, 1639, 1648, 3584

Changing master
thread state, 1217

CHAR data type, 1384, 1385
CHAR VARYING data type, 1386
CHAR(), 1495
CHARACTER data type, 1385
character set introducer, 1291
character set repertoire, 1315
character sets, 1278

adding, 1335
and replication, 2547
Asian, 1330
Baltic, 1329
binary, 1333
Central European, 1327
Cyrillic, 1329
Middle East, 1328
repertoire, 1281
restrictions, 1334
South European, 1328
Unicode, 1320
West European, 1326

CHARACTER VARYING data type, 1386
character-set-client-handshake option

mysqld, 581
character-sets-dir option

myisamchk, 442
myisampack, 453
mysql, 344
mysqladmin, 370
mysqlbinlog, 473
mysqlcheck, 379
mysqldump, 397
mysqlimport, 410
mysqlshow, 418
mysql_upgrade, 334
ndbd, 2813
ndbinfo_select_all, 2823

3602

ndb_blob_tool, 2847
ndb_config, 2854
ndb_delete_all, 2866
ndb_desc, 2874
ndb_drop_index, 2879
ndb_drop_table, 2884
ndb_index_stat, 2892
ndb_mgm, 2842
ndb_mgmd, 2832
ndb_move_data, 2899
ndb_restore, 2914
ndb_select_all, 2936
ndb_select_count, 2943
ndb_show_tables, 2947
ndb_waiter, 2956

characters
multibyte, 1338

CHARACTER_LENGTH(), 1496
CHARACTER_SETS

INFORMATION_SCHEMA table, 3269
character_sets_dir system variable, 612
character_set_client system variable, 610
character_set_connection system variable, 610
character_set_database system variable, 611
character_set_filesystem system variable, 611
character_set_results system variable, 611
character_set_server system variable, 611
character_set_system system variable, 612
charset command

mysql, 353
charset option

comp_err, 322
CHARSET(), 1574
CHAR_LENGTH(), 1496
check option

myisamchk, 441
mysqlcheck, 379

check options
myisamchk, 441

CHECK TABLE
and partitioning, 3194

CHECK TABLE statement, 1897
check-missing option

ndb_blob_tool, 2848
check-only-changed option

myisamchk, 441
mysqlcheck, 379

check-orphans option
ndb_blob_tool, 2848

check-upgrade option
mysqlcheck, 379

checking
tables for errors, 1044

Checking master version

3603

thread state, 1215
checking permissions

thread state, 1207
checking privileges on cached query

thread state, 1214
checking query cache for query

thread state, 1214
Checking table

thread state, 1207
checkpoint, 4207
CHECKPOINT Events (NDB Cluster), 2987
checkpoint option

mysqlhotcopy, 493
Checksum, 2800
checksum, 4207
Checksum (NDB Cluster), 2805
checksum errors, 173
CHECKSUM TABLE

and replication, 2547
CHECKSUM TABLE statement, 1900
child table, 4207
Chinese, Japanese, Korean character sets

frequently asked questions, 3529
choosing

a MySQL version, 64
data types, 1420

chroot option
mysqld, 581
mysqlhotcopy, 493

circular replication
in NDB Cluster, 3102, 3128, 3133

CJK (Chinese, Japanese, Korean)
Access, PHP, etc., 3529
availability of specific characters, 3529
big5, 3529
character sets available, 3529
characters displayed as question marks, 3529
CJKV, 3529
collations, 3529, 3529
conversion problems with Japanese character sets, 3529
data truncation, 3529
Database and table names, 3529
documentation in Chinese, 3529
documentation in Japanese, 3529
documentation in Korean, 3529
FAQ, 3529
gb2312, gbk, 3529
Japanese character sets, 3529
Korean character set, 3529
LIKE and FULLTEXT, 3529
MySQL 4.0 behavior, 3529
ORDER BY treatment, 3529, 3529
problems with Access, PHP, etc., 3529
problems with Big5 character sets (Chinese), 3529

3604

problems with data truncation, 3529
problems with euckr character set (Korean), 3529
problems with GB character sets (Chinese), 3529
problems with LIKE and FULLTEXT, 3529
problems with Yen sign (Japanese), 3529
rejected characters, 3529
sort order problems, 3529, 3529
sorting problems, 3529, 3529
testing availability of characters, 3529
Unicode collations, 3529
Vietnamese, 3529
Yen sign, 3529

clean page, 4207
clean shutdown, 761, 805, 2562, 4207
cleaning up

thread state, 1207
clear command

mysql, 353
Clearing

thread state, 1218
clearing

caches, 1966
client, 4207

signal handling, 509
client connections, 746
client libraries, 4207
client programs, 279
client tools, 3483
client-side prepared statement, 4208
clients

debugging, 817
CLOB, 4208
cloning tables, 1705
CLOSE, 1849
Close stmt

thread command, 1205
closing

tables, 1125
closing tables

thread state, 1207
cluster database (OBSOLETE) (see NDB Cluster replication)
cluster logs, 2984, 2985
clustered index, 4208

InnoDB, 2022
Clustering (see NDB Cluster)
CLUSTERLOG commands (NDB Cluster), 2985
CLUSTERLOG STATISTICS command (NDB Cluster), 2993
cluster_operations

ndbinfo table, 3051
cluster_replication database (OBSOLETE) (see NDB Cluster replication)
cluster_transactions

ndbinfo table, 3052
CMake

BUILD_CONFIG option, 191

3605

CMAKE_BUILD_TYPE option, 191
CMAKE_CXX_FLAGS option, 199
CMAKE_C_FLAGS option, 199
CMAKE_INSTALL_PREFIX option, 191
COMPILATION_COMMENT option, 194
CPACK_MONOLITHIC_INSTALL option, 191
DEFAULT_CHARSET option, 194
DEFAULT_COLLATION option, 194
ENABLED_LOCAL_INFILE option, 195, 856
ENABLED_PROFILING option, 195
ENABLE_DEBUG_SYNC option, 194
ENABLE_DOWNLOADS option, 195
ENABLE_DTRACE option, 195
ENABLE_GCOV option, 195
ENABLE_GPROF option, 195
IGNORE_AIO_CHECK option, 196
INNODB_PAGE_ATOMIC_REF_COUNT option, 196
INSTALL_BINDIR option, 191
INSTALL_DOCDIR option, 191
INSTALL_DOCREADMEDIR option, 191
INSTALL_INCLUDEDIR option, 191
INSTALL_INFODIR option, 191
INSTALL_LAYOUT option, 192
INSTALL_LIBDIR option, 192
INSTALL_MANDIR option, 192
INSTALL_MYSQLSHAREDIR option, 192
INSTALL_MYSQLTESTDIR option, 192
INSTALL_PLUGINDIR option, 192
INSTALL_SBINDIR option, 192
INSTALL_SCRIPTDIR option, 192
INSTALL_SECURE_FILE_PRIVDIR option, 192
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR option, 192
INSTALL_SHAREDIR option, 193
INSTALL_SQLBENCHDIR option, 193
INSTALL_SUPPORTFILESDIR option, 193
MEMCACHED_HOME option, 200
MYSQL_DATADIR option, 193
MYSQL_MAINTAINER_MODE option, 196
MYSQL_PROJECT_NAME option, 196
MYSQL_TCP_PORT option, 196
MYSQL_UNIX_ADDR option, 196
ODBC_INCLUDES option, 193
ODBC_LIB_DIR option, 193
OPTIMIZER_TRACE option, 196
options, 185
REPRODUCIBLE_BUILD option, 196
running after prior invocation, 181, 201
SUNPRO_CXX_LIBRARY option, 199
SYSCONFDIR option, 193
TMPDIR option, 193
VERSION file, 203
WITHOUT_SERVER option, 195
WITH_ASAN option, 197
WITH_BUNDLED_LIBEVENT option, 200

3606

WITH_BUNDLED_MEMCACHED option, 200
WITH_CLASSPATH option, 200
WITH_DEBUG option, 197
WITH_DEFAULT_COMPILER_OPTIONS option, 199
WITH_DEFAULT_FEATURE_SET option, 197
WITH_EDITLINE option, 197
WITH_EMBEDDED_SERVER option, 197
WITH_EMBEDDED_SHARED_LIBRARY option, 197
WITH_ERROR_INSERT option, 200
WITH_EXTRA_CHARSETS option, 197
WITH_GMOCK option, 197
WITH_INNODB_MEMCACHED option, 197
WITH_LIBEDIT option, 198
WITH_LIBEVENT option, 198
WITH_LIBWRAP option, 198
WITH_NDBAPI_EXAMPLES option, 200
WITH_NDBCLUSTER option, 201
WITH_NDBCLUSTER_STORAGE_ENGINE option, 201
WITH_NDBMTD option, 201
WITH_NDB_BINLOG option, 201
WITH_NDB_DEBUG option, 201
WITH_NDB_JAVA option, 201
WITH_NDB_PORT option, 201
WITH_NDB_TEST option, 201
WITH_NUMA option, 198
WITH_SSL option, 198
WITH_SYMVER16 option, 199
WITH_UNIT_TESTS option, 199
WITH_UNIXODBC option, 199
WITH_VALGRIND option, 199
WITH_ZLIB option, 199

CMakeCache.txt file, 201
CMAKE_BUILD_TYPE option

CMake, 191
CMAKE_CXX_FLAGS option

CMake, 199
CMAKE_C_FLAGS option

CMake, 199
CMAKE_INSTALL_PREFIX option

CMake, 191
COALESCE(), 1450
code injection

XPath, 1558
coercibility

collation, 1305
COERCIBILITY(), 1574
cold backup, 4208
collating

strings, 1338
collation

adding, 1339
coercibility, 1305
INFORMATION_SCHEMA, 1310
modifying, 1340

3607

COLLATION(), 1575
collations, 1278

Asian, 1330
Baltic, 1329
binary, 1307, 1333
Central European, 1327
Cyrillic, 1329
Middle East, 1328
naming conventions, 1284
PAD SPACE, 1308, 1389
South European, 1328
Unicode, 1320
West European, 1326
_ai suffix, 1284
_as suffix, 1284
_bin suffix, 1284, 1307
_ci suffix, 1284
_ss suffix, 1284

COLLATIONS
INFORMATION_SCHEMA table, 3270

COLLATION_CHARACTER_SET_APPLICABILITY
INFORMATION_SCHEMA table, 3270

collation_connection system variable, 612
collation_database system variable, 612
collation_server system variable, 613
column, 4208

changing, 1646
types, 1360

column alias
problems, 3580
quoting, 1231, 3580

column comments, 1686
column format, 1686
column index, 4208
column names

case sensitivity, 1235
column prefix, 4208
column storage, 1686
column-names option

mysql, 344
column-type-info option

mysql, 344
columns

displaying, 415
indexes, 1110
names, 1230
other types, 1420
selecting, 254
storage requirements, 1415

COLUMNS
INFORMATION_SCHEMA table, 3271

columns option
mysqlimport, 410

columns partitioning, 3160

3608

columns per table
maximum, 1129

columns_priv table
system table, 764, 869

COLUMN_PRIVILEGES
INFORMATION_SCHEMA table, 3273

comma-separated values data, reading, 1755, 1780
command interceptor, 4209
command option precedence, 284
command options

mysql, 338
mysqladmin, 368
mysqld, 579

command options (NDB Cluster)
mysqld, 2752
ndbd, 2811
ndbinfo_select_all, 2822
ndb_mgm, 2840
ndb_mgmd, 2828

command syntax, 4
command-line history

mysql, 358
command-line tool, 112, 337
commands

for binary distribution, 83
commands out of sync, 3566
comment syntax, 1274
comments

adding, 1274
starting, 49

comments option
mysql, 344
mysqldump, 395

COMMIT, 1804
XA transactions, 1819

commit, 4209
commit option

mysqlaccess, 467
mysqlslap, 426

committing alter table to storage engine
thread state, 1207

Committing events to binlog
thread state, 1218

compact option
mysqldump, 399

compact row format, 2110, 4209
comparison operators, 1447
comparisons

access checking, 874
account names, 876

compatibility
between MySQL versions, 218
with mSQL, 1514
with ODBC, 682, 1233, 1363, 1443, 1452, 1686, 1782

3609

with Oracle, 44, 1611, 1647, 1976
with PostgreSQL, 45
with standard SQL, 42

compatible option
mysqldump, 399

COMPILATION_COMMENT option
CMake, 194

compiling
optimizing, 1191

compiling MySQL server
problems, 201

complete-insert option
mysqldump, 399

completion_type system variable, 613
composite index, 4209
composite partitioning, 3173
compound statements, 1840
compress option

mysql, 344
mysqladmin, 370
mysqlcheck, 379
mysqldump, 391
mysqlimport, 410
mysqlshow, 418
mysqlslap, 426
mysql_upgrade, 334

COMPRESS(), 1565
compressed backup, 4209
compressed row format, 2112, 4209
compressed table, 4210
compressed tables, 453, 2318
CompressedBackup, 2723
CompressedLCP, 2702
compression, 2090, 4210

algorithms, 2097
application and schema design, 2094
BLOBs, VARCHAR and TEXT, 2098
buffer pool considerations, 2099
compressed page size, 2096
configuration characteristics, 2095
connection, 308
data and indexes, 2097
data characteristics, 2093
enabling for a table, 2091
implementation, 2097
information schema, 2206
KEY_BLOCK_SIZE, 2096
log file format, 2100
modification log, 2098
monitoring, 2096
overflow pages, 2099
overview, 2090
tuning, 2092
workload characteristics, 2095

3610

compression failure, 4210
Compression status variable, 721
comp_err, 279, 322

charset option, 322
debug option, 322
debug-info option, 322
header-file option, 322
help option, 322
in-file option, 322
name-file option, 322
out-dir option, 322
out-file option, 323
state-file option, 323
version option, 323

CONCAT(), 1497
concatenation

string, 1221, 1497
CONCAT_WS(), 1497
concurrency, 1983, 4210

of commits, 2155
of threads, 2199
tickets, 2157

concurrency option
mysqlslap, 426

concurrent inserts, 1184, 1186
concurrent_insert system variable, 614
condition handling

INOUT parameters, 1875
new features, 19
OUT parameters, 1875

Conditions, 1851
conditions, 1931, 1962
cond_instances table

performance_schema, 3411
config-cache option

ndb_mgmd, 2831
config-file option

my_print_defaults, 502
ndb_config, 2855
ndb_mgmd, 2832

config.ini (NDB Cluster), 2629, 2661, 2662, 2840
configdir option

ndb_mgmd, 2832
configinfo option

ndb_config, 2854
configuration

NDB Cluster, 2642
server, 512

configuration file, 4211
configuration files, 903
configure action

MySQLInstallerConsole, 115
configuring backups

in NDB Cluster, 3015

3611

configuring NDB Cluster, 2612, 2640, 2840, 3018
Configuring NDB Cluster (concepts), 2580
config_from_node option

ndb_config, 2855
config_options table, 2289
config_params

ndbinfo table, 3053
conflict detection status variables

NDB Cluster Replication, 3141
conflict resolution

enabling, 3134
NDB Cluster Replication, 3133
ndb_replication table, 3111

Connect
thread command, 1205

connect command
mysql, 353

CONNECT command (NDB Cluster), 2961
connect option

ndb_restore, 2914
Connect Out

thread command, 1205
connect-delay option

ndbd, 2814
ndbmtd, 2814

connect-expired-password option
mysql, 344

connect-retries option
ndbd, 2814
ndbinfo_select_all, 2823
ndbmtd, 2814
ndb_blob_tool, 2848
ndb_config, 2856
ndb_delete_all, 2866
ndb_desc, 2874
ndb_drop_index, 2879
ndb_drop_table, 2884
ndb_index_stat, 2892
ndb_mgm, 2842
ndb_mgmd, 2832
ndb_move_data, 2899
ndb_restore, 2914
ndb_select_all, 2936
ndb_select_count, 2943
ndb_show_tables, 2947
ndb_waiter, 2956

connect-retry-delay option
ndbd, 2814
ndbinfo_select_all, 2824
ndbmtd, 2814
ndb_blob_tool, 2848
ndb_config, 2856
ndb_delete_all, 2866
ndb_desc, 2874

3612

ndb_drop_index, 2879
ndb_drop_table, 2884
ndb_index_stat, 2892
ndb_mgm, 2842
ndb_mgmd, 2833
ndb_move_data, 2899
ndb_restore, 2914
ndb_select_all, 2936
ndb_select_count, 2943
ndb_show_tables, 2948
ndb_waiter, 2956

connect-string option
ndbd, 2814
ndbinfo_select_all, 2824
ndb_blob_tool, 2848
ndb_config, 2856
ndb_delete_all, 2866
ndb_desc, 2875
ndb_drop_index, 2879
ndb_drop_table, 2884
ndb_index_stat, 2892
ndb_mgm, 2842
ndb_mgmd, 2833
ndb_move_data, 2899
ndb_restore, 2914
ndb_select_all, 2937
ndb_select_count, 2943
ndb_show_tables, 2948
ndb_waiter, 2956

connect-timeout option
mysql, 344
mysqladmin, 370

ConnectBackoffMaxTime, 2750
ConnectCheckIntervalDelay, 2707
connecting

remotely with SSH, 923
to the server, 243, 304
verification, 877

Connecting to master
thread state, 1215

connection, 4211
aborted, 3564

connection compression, 308
CONNECTION Events (NDB Cluster), 2987
connection management, 746
connection pool, 4211
connection string, 4211 (see NDB Cluster)
connection-control table reference

INFORMATION_SCHEMA, 3357
connection-server-id option

mysqlbinlog, 474
connection-timeout option

ndb_error_reporter, 2887
ConnectionMap, 2745

3613

connections option
ndb_config, 2856

Connections status variable, 721
CONNECTION_CONTROL plugin

installing, 954
status variables, 960
system variables, 959

Connection_control_delay_generated status variable, 960
connection_control_failed_connections_threshold system variable, 959
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS

INFORMATION_SCHEMA table, 3357
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS plugin

installing, 954
connection_control_max_connection_delay system variable, 959
connection_control_min_connection_delay system variable, 960
Connection_errors_accept status variable, 721
Connection_errors_internal status variable, 721
Connection_errors_max_connections status variable, 721
Connection_errors_peer_address status variable, 721
Connection_errors_select status variable, 721
Connection_errors_tcpwrap status variable, 721
CONNECTION_ID(), 1575
connector, 4211
Connector/C++, 3483, 3486, 4211
Connector/J, 3483, 3486, 4212
Connector/NET, 3483, 3486, 4212
Connector/ODBC, 3483, 3486, 4212
Connector/PHP, 4212
Connector/Python, 3483, 3486
Connectors, 3483
connect_timeout system variable, 615
consistent read, 4212
consistent reads, 2046
console option

mysqld, 581
const table

optimizer, 1152, 1777
constant table, 1054
constraint, 4212
constraints, 49

foreign keys, 1708
containers table, 2289
Contains(), 1605
context option

ndb_desc, 2875
contributing companies

list of, 60
contributors

list of, 53
Control+C

statement termination, 338, 351
CONV(), 1464
conventions

syntax, 2

3614

typographical, 2
CONVERT, 1545
CONVERT TO, 1650
converting HEAP to MyISAM

thread state, 1207
CONVERT_TZ(), 1474
copy option

mysqlaccess, 467
copy to tmp table

thread state, 1207
copying databases, 233
copying tables, 1705
Copying to group table

thread state, 1208
Copying to tmp table

thread state, 1208
Copying to tmp table on disk

thread state, 1208
core-file option

mysqld, 582
ndbd, 2815
ndbinfo_select_all, 2824
ndb_blob_tool, 2848
ndb_config, 2857
ndb_delete_all, 2866
ndb_desc, 2875
ndb_drop_index, 2880
ndb_drop_table, 2885
ndb_index_stat, 2892
ndb_mgm, 2843
ndb_mgmd, 2833
ndb_move_data, 2899
ndb_restore, 2914
ndb_select_all, 2937
ndb_select_count, 2943
ndb_show_tables, 2948
ndb_waiter, 2957

core-file-size option
mysqld_safe, 312

core_file system variable, 615
correct-checksum option

myisamchk, 442
correlated subqueries, 1793
corruption, 2297

InnoDB, 2256
COS(), 1465
COT(), 1465
count option

myisam_ftdump, 433
mysqladmin, 370
mysqlshow, 418

COUNT(), 1609
COUNT(DISTINCT), 1609
counter, 4212

3615

counters
ndbinfo table, 3054

counting
table rows, 261

covering index, 4213
CPACK_MONOLITHIC_INSTALL option

CMake, 191
CPU-bound, 4213
crash, 810, 4213

recovery, 1043
repeated, 3572
replication, 2562

crash recovery, 4213
InnoDB, 2257

crash-me, 1202
crash-me program, 1201
crash-safe binary log, 16
crash-safe replication, 16, 2468, 2528
CrashOnCorruptedTuple, 2701
CRC32(), 1465
CREATE ... IF NOT EXISTS

and replication, 2547
CREATE DATABASE, 1661
Create DB

thread command, 1205
CREATE EVENT, 1662

and replication, 2558
CREATE FUNCTION, 1674
CREATE FUNCTION statement, 1906
CREATE INDEX, 1667
CREATE LOGFILE GROUP, 1672

(see also NDB Cluster Disk Data)
CREATE NODEGROUP command (NDB Cluster), 2962
create option

mysqlslap, 427
CREATE privilege, 864
CREATE PROCEDURE, 1674
CREATE ROUTINE privilege, 864
CREATE SCHEMA, 1661
CREATE SERVER, 1679
CREATE TABLE, 1681

DIRECTORY options
and replication, 2553

KEY_BLOCK_SIZE, 2096
NDB_COLUMN options, 1716
options for table compression, 2091
ROW_FORMAT, 2113

CREATE TABLE ... SELECT
and replication, 2548

CREATE TABLESPACE, 1718
(see also NDB Cluster Disk Data)

CREATE TABLESPACE privilege, 864
CREATE TEMPORARY TABLES privilege, 864
CREATE TRIGGER, 1720

3616

CREATE USER privilege, 864
CREATE USER statement, 882, 886, 1876
CREATE VIEW, 1722
CREATE VIEW privilege, 864
create-options option

mysqldump, 399
create-schema option

mysqlslap, 427
Created_tmp_disk_tables status variable, 721
Created_tmp_files status variable, 721
Created_tmp_tables status variable, 722
create_asymmetric_priv_key(), 1017
create_asymmetric_pub_key(), 1018
create_dh_parameters(), 1018
create_digest(), 1018
creating

bug reports, 37
database, 1661
databases, 247
default startup options, 286
loadable function, 1906
schema, 1661
tables, 249

Creating delayed handler
thread state, 1213

Creating index
thread state, 1208

Creating sort index
thread state, 1208

creating table
thread state, 1208

Creating tmp table
thread state, 1208

creating user accounts, 1876
CROSS JOIN, 1780
cross-bootstrap option

mysql_install_db, 325
Crosses(), 1602
CRUD, 4213
CR_SERVER_GONE_ERROR, 3561
CR_SERVER_LOST_ERROR, 3561
CSV data, reading, 1755, 1780
csv option

mysqlslap, 427
CSV storage engine, 2307, 2325
CURDATE(), 1474
CURRENT_DATE, 1475
CURRENT_TIME, 1475
CURRENT_TIMESTAMP, 1475
CURRENT_USER(), 1575
cursor, 4213
Cursors, 1848
CURTIME(), 1475
CXX environment variable, 202, 506

3617

cxxflags option
mysql_config, 500

D
Daemon

thread command, 1205
daemon option

ndb_mgmd, 2833
daemon_memcached_enable_binlog system variable, 2139
daemon_memcached_engine_lib_name system variable, 2140
daemon_memcached_engine_lib_path system variable, 2140
daemon_memcached_option system variable, 2140
daemon_memcached_r_batch_size system variable, 2141
daemon_memcached_w_batch_size system variable, 2141
data

importing, 361, 407
loading into tables, 250
retrieving, 252
size, 1121

data dictionary, 4214
data directory, 4214

mysql_upgrade_info file, 332
DATA DIRECTORY

and replication, 2553
data files, 4214
data node (NDB Cluster)

defined, 2580
data nodes

memory allocation, 2725
data nodes (NDB Cluster), 2811, 2827
Data on disk (NDB Cluster)

and INFORMATION_SCHEMA.FILES table, 3344
Data truncation with CJK characters, 3529
data type

BIGINT, 1362
BINARY, 1386, 1389
BIT, 1361
BLOB, 1386, 1391
BOOL, 1361, 1420
BOOLEAN, 1361, 1420
CHAR, 1384, 1385
CHAR VARYING, 1386
CHARACTER, 1385
CHARACTER VARYING, 1386
DATE, 1370, 1372
DATETIME, 1370, 1372
DEC, 1363
DECIMAL, 1362, 1623
DOUBLE, 1363
DOUBLE PRECISION, 1364
ENUM, 1387, 1392
FIXED, 1363
FLOAT, 1363, 1363, 1363

3618

GEOMETRY, 1399
GEOMETRYCOLLECTION, 1399
INT, 1362
INTEGER, 1362
LINESTRING, 1399
LONG, 1391
LONGBLOB, 1387
LONGTEXT, 1387
MEDIUMBLOB, 1387
MEDIUMINT, 1362
MEDIUMTEXT, 1387
MULTILINESTRING, 1399
MULTIPOINT, 1399
MULTIPOLYGON, 1399
NATIONAL CHAR, 1385
NATIONAL VARCHAR, 1386
NCHAR, 1385
NUMERIC, 1363
NVARCHAR, 1386
POINT, 1399
POLYGON, 1399
REAL, 1364
SET, 1387, 1395
SMALLINT, 1362
TEXT, 1386, 1391
TIME, 1371, 1373
TIMESTAMP, 1370, 1372
TINYBLOB, 1386
TINYINT, 1361
TINYTEXT, 1386
VARBINARY, 1386, 1389
VARCHAR, 1384, 1386
VARCHARACTER, 1386
YEAR, 1371, 1374

data types, 1360
date and time, 1368
new features, 19
numeric, 1360
string, 1384

data warehouse, 4214
data-file-length option

myisamchk, 442
database, 4214

altering, 1634
creating, 1661
deleting, 1726
renaming, 1732

Database information
obtaining, 1914

database metadata, 3262
database names

case sensitivity, 43, 1235
database objects

metadata, 1282

3619

database option
mysql, 344
mysqlbinlog, 474
ndb_blob_tool, 2848
ndb_delete_all, 2866
ndb_desc, 2875
ndb_drop_index, 2880
ndb_drop_table, 2885
ndb_index_stat, 2892
ndb_move_data, 2900
ndb_show_tables, 2948

DATABASE(), 1576
databases

backups, 1025
copying, 233
creating, 247, 1661
defined, 4
displaying, 415
dumping, 384, 492
information about, 265
names, 1230
replicating, 2411
selecting, 248, 1979
symbolic links, 1193
using, 247

databases option
mysqlcheck, 379
mysqldump, 402

DataDir, 2674, 2680
datadir option

mysql.server, 317
mysqld, 582
mysqld_safe, 312
mysql_install_db, 325
mysql_plugin, 328
mysql_upgrade, 334

datadir system variable, 615
DataMemory, 2682
DATE, 3578
date and time data types, 1368
date and time functions, 1471
date calculations, 256
DATE columns

problems, 3578
DATE data type, 1370, 1372
date data types

storage requirements, 1417
date literals, 1224
date values

problems, 1372
DATE(), 1475
DATEDIFF(), 1475
dates

used with partitioning, 3152

3620

used with partitioning (examples), 3155, 3168, 3173, 3198
DATETIME data type, 1370, 1372
datetime_format

deprecated features, 21
datetime_format system variable, 615
DATE_ADD(), 1475
date_format

deprecated features, 21
date_format system variable, 615
DATE_FORMAT(), 1477
DATE_SUB(), 1475, 1478
DAY(), 1478
Daylight Saving Time, 759, 1119, 1490
DAYNAME(), 1478
DAYOFMONTH(), 1478
DAYOFWEEK(), 1479
DAYOFYEAR(), 1479
db option

mysqlaccess, 467
db table

sorting, 881
system table, 211, 763, 869

DB2 SQL mode, 744
DBI interface, 3492
DBI->quote, 1224
DBI->trace, 813
DBI/DBD interface, 3492
DBI_TRACE environment variable, 506, 813
DBI_USER environment variable, 506
DBUG package, 817
DCL, 1880, 1892, 4214
DDEX provider, 4214
DDL, 1634, 4215
DDL log, 787
deadlock, 1182, 1812, 2050, 2054, 2054, 2055, 2055, 2187, 2564, 3479, 4215
deadlock detection, 4215
DEALLOCATE PREPARE, 1835, 1840
deb file

MySQL APT Repository, 155
MySQL SLES Repository, 155

Debug
thread command, 1205

debug option
comp_err, 322
myisamchk, 438
myisampack, 453
mysql, 344
mysqlaccess, 467
mysqladmin, 371
mysqlbinlog, 475
mysqlcheck, 379
mysqld, 582
mysqldump, 395
mysqldumpslow, 491

3621

mysqlhotcopy, 494
mysqlimport, 411
mysqlshow, 418
mysqlslap, 427
mysql_config_editor, 462
mysql_upgrade, 334
my_print_defaults, 502

debug system variable, 615
debug-check option

mysql, 344
mysqladmin, 371
mysqlbinlog, 475
mysqlcheck, 380
mysqldump, 395
mysqlimport, 411
mysqlshow, 418
mysqlslap, 427
mysql_upgrade, 334

debug-info option
comp_err, 322
mysql, 345
mysqladmin, 371
mysqlbinlog, 475
mysqlcheck, 380
mysqldump, 396
mysqlimport, 411
mysqlshow, 418
mysqlslap, 427
mysql_upgrade, 334

debug-sync-timeout option
mysqld, 583

debugging
client, 817
MySQL, 810
server, 810

debugging support, 185
debug_sync system variable, 616
DEC data type, 1363
decimal arithmetic, 1623
DECIMAL data type, 1362, 1623
decimal point, 1360
DECLARE, 1842
DECODE(), 1565
decode_bits myisamchk variable, 439
DEFAULT

constraint, 51
removed features, 22

default
privileges, 211

default accounts, 211
default host name, 304
default installation location, 82
default options, 286
default proxy user, 897

3622

DEFAULT value clause, 1414, 1685
default values, 1414, 1685, 1742

BLOB and TEXT columns, 1391
explicit, 1414
implicit, 1414
suppression, 51

DEFAULT(), 1617
default-auth option, 298

mysql, 345
mysqladmin, 371
mysqlbinlog, 475
mysqlcheck, 380
mysqldump, 392
mysqlimport, 411
mysqlshow, 419
mysqlslap, 427
mysql_upgrade, 334

default-authentication-plugin option
mysqld, 583

default-character-set option
mysql, 345
mysqladmin, 371
mysqlcheck, 380
mysqldump, 397
mysqlimport, 411
mysqlshow, 419
mysql_upgrade, 334

default-time-zone option
mysqld, 584

DefaultHashMapSize, 2692, 2749
DefaultOperationRedoProblemAction

API and SQL nodes, 2749
defaults

embedded, 3488
defaults-extra-file option, 291

myisamchk, 438
mysql, 345
mysqladmin, 371
mysqlbinlog, 475
mysqlcheck, 380
mysqld, 584
mysqldump, 393
mysqld_multi, 319
mysqld_safe, 312
mysqlimport, 411
mysqlshow, 419
mysqlslap, 427
mysql_install_db, 325
mysql_upgrade, 335
my_print_defaults, 502
ndbd, 2815
ndbinfo_select_all, 2824
ndb_blob_tool, 2849
ndb_config, 2857

3623

ndb_delete_all, 2867
ndb_desc, 2875
ndb_drop_index, 2880
ndb_drop_table, 2885
ndb_index_stat, 2893
ndb_mgm, 2843
ndb_mgmd, 2833
ndb_move_data, 2900
ndb_restore, 2915
ndb_select_all, 2937
ndb_select_count, 2944
ndb_show_tables, 2948
ndb_waiter, 2957

defaults-file option, 291
myisamchk, 438
mysql, 345
mysqladmin, 371
mysqlbinlog, 476
mysqlcheck, 380
mysqld, 585
mysqldump, 394
mysqld_multi, 319
mysqld_safe, 312
mysqlimport, 411
mysqlshow, 419
mysqlslap, 427
mysql_install_db, 325
mysql_upgrade, 335
my_print_defaults, 502
ndbd, 2815
ndbinfo_select_all, 2824
ndb_blob_tool, 2849
ndb_config, 2857
ndb_delete_all, 2867
ndb_desc, 2875
ndb_drop_index, 2880
ndb_drop_table, 2885
ndb_index_stat, 2893
ndb_mgm, 2843
ndb_mgmd, 2834
ndb_move_data, 2900
ndb_restore, 2915
ndb_select_all, 2937
ndb_select_count, 2944
ndb_show_tables, 2948
ndb_waiter, 2957

defaults-group-suffix option, 292
myisamchk, 438
mysql, 345
mysqladmin, 371
mysqlbinlog, 476
mysqlcheck, 380
mysqld, 585
mysqldump, 394

3624

mysqlimport, 411
mysqlshow, 419
mysqlslap, 428
mysql_upgrade, 335
my_print_defaults, 502
ndbd, 2815
ndbinfo_select_all, 2824
ndb_blob_tool, 2849
ndb_config, 2857
ndb_delete_all, 2867
ndb_desc, 2875
ndb_drop_index, 2880
ndb_drop_table, 2885
ndb_index_stat, 2893
ndb_mgm, 2843
ndb_mgmd, 2834
ndb_move_data, 2900
ndb_restore, 2915
ndb_select_all, 2937
ndb_select_count, 2944
ndb_show_tables, 2949
ndb_waiter, 2957

DEFAULT_CHARSET option
CMake, 194

DEFAULT_COLLATION option
CMake, 194

default_storage_engine system variable, 617
default_tmp_storage_engine system variable, 617
default_week_format system variable, 618
DEFINER privileges, 1934, 3245
DEGREES(), 1465
delay option

ndbinfo_select_all, 2825
DELAYED, 1748

INSERT modifier, 1744
when ignored, 1744

Delayed insert
thread command, 1205

delayed inserts
thread states, 1213

delayed replication, 2544
delayed-insert option

mysqldump, 403
Delayed_errors status variable, 722
delayed_insert_limit, 1749
delayed_insert_limit system variable, 619
Delayed_insert_threads status variable, 722
delayed_insert_timeout system variable, 619
delayed_queue_size system variable, 620
Delayed_writes status variable, 722
delay_key_write system variable, 618, 2315
DELETE, 1735

and NDB Cluster, 2603
delete, 4215

3625

delete buffering, 4215
delete option

mysqlimport, 412
ndb_index_stat, 2893

DELETE privilege, 864
delete-master-logs option

mysqldump, 397
delete-orphans option

ndb_blob_tool, 2849
deleting

accounts, 885
database, 1726
foreign key, 1649, 1712
function, 1907
index, 1648, 1727
primary key, 1648
rows, 3581
schema, 1726
table, 1729
user, 1880
users, 1880

deleting from main table
thread state, 1208

deleting from reference tables
thread state, 1208

deletion
mysql.sock, 3575

delimiter command
mysql, 354

delimiter option
mysql, 345
mysqlslap, 428
ndb_select_all, 2938

demo_test table, 2266
denormalized, 4215
deprecated features, 20

--language, 21
--skip-innodb, 21
ALTER IGNORE TABLE, 21
datetime_format, 21
date_format, 21
ERROR_FOR_DIVISION_BY_ZERO, 20
GROUP BY sorting, 20
have_profiling, 21
innodb_additional_mem_pool_size, 21
innodb_locks_unsafe_for_binlog, 21
innodb_use_sys_malloc, 21
msql2mysql, 21
mysqlaccess, 21
mysqlbug, 21
mysqlhotcopy, 21
mysql_convert_table_format, 21
mysql_find_rows, 21
mysql_fix_extensions, 21

3626

mysql_old_password, 21
mysql_setpermission, 21
mysql_waitpid, 21
mysql_zap, 21
NO_ZERO_DATE, 20
NO_ZERO_IN_DATE, 20
OLD_PASSWORD(), 21
old_passwords, 21
pre-4.1 passwords, 21
profiling, 21
profiling_history_size, 21
secure_auth, 21
SQL mode, 20
timed_mutexes, 21
time_format, 21

derived tables, 1794
optimization, 1091, 1100

des-key-file option
mysqld, 585

DESC, 1975
descending index, 4216
descending option

ndb_select_all, 2937
DESCRIBE, 265, 1975
description option

myisamchk, 444
design

issues, 3585
DES_DECRYPT(), 1565
DES_ENCRYPT(), 1566
detach option

mysqlslap, 428
development of NDB Cluster, 2587
development source tree, 182
dictionary collation, German, 1280, 1327, 1327
dict_obj_types

ndbinfo table, 3055
diff-default option

ndb_config, 2857
digits, 1360
Dimension(), 1592
directory structure

default, 82
dirty page, 2142, 4216
dirty read, 4216
disable named command

mysql, 346
--disable option prefix, 292
disable-indexes option

ndb_restore, 2915
disable-keys option

mysqldump, 403
disable-log-bin option

mysqlbinlog, 476

3627

DISCARD TABLESPACE, 1651, 2010
discard_or_import_tablespace

thread state, 1208
disconnect-slave-event-count option

mysqld, 2453
disconnecting

from the server, 243
disconnect_on_expired_password system variable, 620
Disjoint(), 1605
Disk Data tables (NDB Cluster) (see NDB Cluster Disk Data)
disk failure

InnoDB, 2256
disk full, 3574
disk I/O, 1137
disk option

ndb_select_all, 2938
disk performance, 1192
disk-based, 4216
disk-bound, 4216
DiskCheckpointSpeed, 2711
DiskCheckpointSpeedInRestart, 2712
DiskIOThreadPool, 2735, 2739
Diskless, 2701
diskpagebuffer

ndbinfo table, 3058
DiskPageBufferEntries, 2734
DiskPageBufferMemory, 2734, 2739
disks

splitting data across, 1195
diskscan option

ndb_delete_all, 2867
DiskSyncSize, 2711
disk_write_speed_aggregate

ndbinfo table, 3056
disk_write_speed_aggregate_node

ndbinfo table, 3057
disk_write_speed_base

ndbinfo table, 3055
display size, 1360
display triggers, 1959
display width, 1360
displaying

database information, 415
information

Cardinality, 1936
Collation, 1935
SHOW, 1914, 1918, 1958
SHOW statement, 1934, 1937

table status, 1955
DISTINCT, 254, 1086

AVG(), 1608
COUNT(), 1609
MAX(), 1610
MIN(), 1611

3628

SELECT modifier, 1777
SUM(), 1611

DISTINCTROW
SELECT modifier, 1777

distributed privileges (NDB Cluster), 3030
and NDB API applications, 3033

DIV, 1462
division (/), 1462
div_precision_increment system variable, 621
DML, 1733, 4216

DELETE statement, 1735
INSERT statement, 1741
UPDATE statement, 1801

DNS, 748
DO, 1739
DocBook XML

documentation source format, 4
Docker images

on Windows, 172
document id, 4216
Documentation

in Chinese, 3529
in Japanese, 3529
in Korean, 3529

Documenters
list of, 57

dont-ignore-systab-0 option
ndb_restore, 2915

DOUBLE data type, 1363
DOUBLE PRECISION data type, 1364
double quote (\"), 1223
doublewrite buffer, 726, 2114, 2159, 4217
downgrades

NDB Cluster, 2637, 2997
downgrading, 234
downloading, 65
drop, 4217
DROP ... IF EXISTS

and replication, 2554
DROP DATABASE, 1726
Drop DB

thread command, 1205
DROP EVENT, 1727
DROP FOREIGN KEY, 1649, 1712
DROP FUNCTION, 1728
DROP FUNCTION statement, 1907
DROP INDEX, 1648, 1727
DROP LOGFILE GROUP, 1728

(see also NDB Cluster Disk Data)
DROP NODEGROUP command (NDB Cluster), 2962
DROP PREPARE, 1840
DROP PRIMARY KEY, 1648
DROP privilege, 864
DROP PROCEDURE, 1728

3629

DROP SCHEMA, 1726
DROP SERVER, 1729
DROP TABLE, 1729

and NDB Cluster, 2603
DROP TABLESPACE, 1730

(see also NDB Cluster Disk Data)
DROP TRIGGER, 1730
DROP USER statement, 882, 1879
DROP VIEW, 1731
drop-source option

ndb_move_data, 2900
dropping

accounts, 885
user, 1880

dry-scp option
ndb_error_reporter, 2888

dryrun option
mysqlhotcopy, 494

DSN, 4217
DTrace, 820

and memcached, 2361
DUAL, 1773
dump option

myisam_ftdump, 433
ndb_index_stat, 2893
ndb_redo_log_reader, 2906

dump-date option
mysqldump, 396

dump-file option
ndb_blob_tool, 2849

dump-slave option
mysqldump, 397

DUMPFILE, 1780
dumping

databases and tables, 384, 492
Duplicate Weedout

semijoin strategy, 1093
duplicate-key error, 2022
dynamic cursor, 4217
dynamic row format, 2112, 4217
dynamic SQL, 4217
dynamic statement, 4217
dynamic table characteristics, 2317

E
early adopter, 4218
edit command

mysql, 354
ego command

mysql, 354
Eiffel, 4218
Eiffel Wrapper, 3494
ELT(), 1497

3630

embedded, 4218
embedded MySQL server library, 3487
embedded option

mysql_config, 500
embedded-libs option

mysql_config, 500
--enable option prefix, 292
enable-cleartext-plugin option

mysql, 346
mysqladmin, 372
mysqlcheck, 381
mysqldump, 392
mysqlimport, 412
mysqlshow, 419
mysqlslap, 428

ENABLED_LOCAL_INFILE option
CMake, 195, 856

ENABLED_PROFILING option
CMake, 195

ENABLE_DEBUG_SYNC option
CMake, 194

ENABLE_DOWNLOADS option
CMake, 195

ENABLE_DTRACE option
CMake, 195

ENABLE_GCOV option
CMake, 195

ENABLE_GPROF option
CMake, 195

ENCODE(), 1567
ENCRYPT(), 1567
encrypted connections, 908

command options, 300
encryption, 852, 908
encryption functions, 1561
end

thread state, 1208
END, 1840
EndPoint(), 1595
end_markers_in_json system variable, 621
enforce_gtid_consistency system variable, 2501
engine condition pushdown, 1061
engine option

mysqlslap, 428
ENGINES

INFORMATION_SCHEMA table, 3274
engine_condition_pushdown

removed features, 22
ENTER SINGLE USER MODE command (NDB Cluster), 2963
entering

queries, 244
enterprise components

MySQL Enterprise Audit, 3498
MySQL Enterprise Backup, 3496

3631

MySQL Enterprise Data Masking and De-Identification, 3499
MySQL Enterprise Encryption, 3497
MySQL Enterprise Firewall, 3498
MySQL Enterprise Monitor, 3495
MySQL Enterprise Security, 3497
MySQL Enterprise Thread Pool, 3498

enterprise extensions
MySQL Enterprise Audit, 967
MySQL Enterprise Encryption, 1010
MySQL Enterprise Firewall, 994
MySQL Enterprise Security, 935, 945
MySQL Enterprise Thread Pool, 794

ENUM
size, 1419

ENUM data type, 1387, 1392
Envelope(), 1592
environment variable

AUTHENTICATION_PAM_LOG, 506, 945
CC, 202, 506
CXX, 202, 506
DBI_TRACE, 506, 813
DBI_USER, 506
HOME, 358, 506
LD_LIBRARY_PATH, 241
LD_RUN_PATH, 241, 506
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN, 506
LIBMYSQL_PLUGINS, 506
LIBMYSQL_PLUGIN_DIR, 506
MYSQL_DEBUG, 282, 506, 817
MYSQL_GROUP_SUFFIX, 506
MYSQL_HISTFILE, 358, 506
MYSQL_HISTIGNORE, 358, 506
MYSQL_HOME, 506
MYSQL_HOST, 306, 506
MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD, 506, 1013
MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD, 506, 1013
MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD, 506, 1013
MYSQL_PS1, 506
MYSQL_PWD, 282, 306, 506
MYSQL_TCP_PORT, 282, 506, 809, 809
MYSQL_TEST_LOGIN_FILE, 292, 459, 506
MYSQL_UNIX_PORT, 206, 282, 506, 809, 809
PATH, 126, 132, 210, 283, 506
TMPDIR, 206, 282, 506, 3574
TZ, 506, 755, 3576
UMASK, 506, 3568
UMASK_DIR, 506, 3569
USER, 306, 506

environment variables, 282, 308, 903
list of, 505

epoch, 1370
equal (=), 1448
Equals(), 1605
eq_ref join type

3632

optimizer, 1152
Errcode, 503
errno, 503
Error

thread command, 1205
ERROR Events (NDB Cluster), 2992
error handling

application, 858
error log, 4218
error logs (NDB Cluster), 2820
error messages

can't find file, 3568
Can't reopen table, 3585
displaying, 503
languages, 1335, 1335
The used command is not allowed with this MySQL version, 857

error-insert option
ndb_move_data, 2900

errors
access denied, 3556
and replication, 2563
checking tables for, 1044
common, 3554
directory checksum, 173
in subqueries, 1796
known, 3585
list of, 3556
lost connection, 3559
reporting, 37, 37
sources of information, 3553

error_count system variable, 622
ERROR_FOR_DIVISION_BY_ZERO

deprecated features, 20
ERROR_FOR_DIVISION_BY_ZERO SQL mode, 739
escape (\\), 1223
escape sequences

option files, 289
strings, 1221

establishing encrypted connections, 909
estimating

query performance, 1162
event groups, 1831
event log format (NDB Cluster), 2987
event logs (NDB Cluster), 2984, 2985, 2986
EVENT privilege, 864
event scheduler, 3223

thread states, 1218
Event Scheduler, 3232

altering events, 1635
and MySQL privileges, 3237
and mysqladmin debug, 3237
and replication, 2557, 2558
and SHOW PROCESSLIST, 3234
concepts, 3233

3633

creating events, 1662
dropping events, 1727
enabling and disabling, 3234
event metadata, 3236
obtaining status information, 3237
SQL statements, 3236
starting and stopping, 3234
time representation, 3236

event severity levels (NDB Cluster), 2986
event table

system table, 764
event types (NDB Cluster), 2984, 2987
EventLogBufferSize, 2716
events, 3223, 3232

altering, 1635
creating, 1662
dropping, 1727
metadata, 3236
restrictions, 3254
status variables, 3240

EVENTS
INFORMATION_SCHEMA table, 3238, 3275

events option
mysqldump, 402

events_stages_current table
performance_schema, 3423

events_stages_history table
performance_schema, 3424

events_stages_history_long table
performance_schema, 3425

events_stages_summary_by_account_by_event_name table
performance_schema, 3442

events_stages_summary_by_host_by_event_name table
performance_schema, 3442

events_stages_summary_by_thread_by_event_name table
performance_schema, 3442

events_stages_summary_by_user_by_event_name table
performance_schema, 3442

events_stages_summary_global_by_event_name table
performance_schema, 3442

events_statements_current table
performance_schema, 3429

events_statements_history table
performance_schema, 3432

events_statements_history_long table
performance_schema, 3433

events_statements_summary_by_account_by_event_name table
performance_schema, 3444

events_statements_summary_by_digest table
performance_schema, 3444

events_statements_summary_by_host_by_event_name table
performance_schema, 3444

events_statements_summary_by_thread_by_event_name table
performance_schema, 3444

3634

events_statements_summary_by_user_by_event_name table
performance_schema, 3444

events_statements_summary_global_by_event_name table
performance_schema, 3444

events_waits_current table
performance_schema, 3418

events_waits_history table
performance_schema, 3420

events_waits_history_long table
performance_schema, 3420

events_waits_summary_by_account_by_event_name table
performance_schema, 3441

events_waits_summary_by_host_by_event_name table
performance_schema, 3441

events_waits_summary_by_instance table
performance_schema, 3441

events_waits_summary_by_thread_by_event_name table
performance_schema, 3441

events_waits_summary_by_user_by_event_name table
performance_schema, 3441

events_waits_summary_global_by_event_name table
performance_schema, 3441

event_scheduler system variable, 622
eviction, 4218
exact-value literals, 1623
exact-value numeric literals, 1224, 1624
example option

mysqld_multi, 319
EXAMPLE storage engine, 2307, 2341
examples

compressed tables, 454
myisamchk output, 444
queries, 267

exception interceptor, 4218
exceptions table

NDB Cluster Replication, 3139
exclude-databases option

ndb_restore, 2915
exclude-gtids option

mysqlbinlog, 476
exclude-intermediate-sql-tables option

ndb_restore, 2916
exclude-missing-columns option

ndb_move_data, 2900
ndb_restore, 2916

exclude-missing-tables option
ndb_restore, 2916

exclude-tables option
ndb_restore, 2916

exclusive lock, 2038, 4218
Execute

thread command, 1205
EXECUTE, 1835, 1840
execute option

3635

mysql, 346
ndb_mgm, 2843

EXECUTE privilege, 864
ExecuteOnComputer, 2671, 2678, 2745
executing

thread state, 1209
executing SQL statements from text files, 266, 361
Execution of init_command

thread state, 1209
execution threads (NDB Cluster), 2727
EXISTS

with subqueries, 1792
exit command

mysql, 354
EXIT command (NDB Cluster), 2963
EXIT SINGLE USER MODE command (NDB Cluster), 2963
exit-info option

mysqld, 585
EXP(), 1465
expired passwords, 887
expire_logs_days system variable, 2494
EXPLAIN, 1146, 1975
EXPLAIN PARTITIONS, 3195, 3196
EXPLAIN used with partitioned tables, 3195
explicit default values, 1414
explicit_defaults_for_timestamp system variable, 623
EXPORT_SET(), 1497
expression aliases, 1616, 1773
expression syntax, 1269
expressions

extended, 259
extend-check option

myisamchk, 441, 442
extended option

mysqlcheck, 380
extended-insert option

mysqldump, 403
extensions

to standard SQL, 42
extent, 4218
ExteriorRing(), 1597
external locking, 585, 678, 1043, 1190, 1211
external-locking option

mysqld, 585
external_user system variable, 625
extra-file option

my_print_defaults, 502
extra-node-info option

ndb_desc, 2876
extra-partition-info option

ndb_desc, 2876
EXTRACT(), 1479
extracting

dates, 256

3636

ExtractValue(), 1550
ExtraSendBufferMemory

API nodes, 2747
data nodes, 2740
management nodes, 2675

F
failover, 4219

in NDB Cluster replication, 3120
Java clients, 2582

FALSE, 1224, 1230
testing for, 1452, 1452

FAQs
C API, 3542
Connectors and APIs, 3541
libmysql, 3542
NDB Cluster, 3515
replication, 3542
Virtualization Support, 3550

Fast Index Creation, 2117, 4219
fast option

myisamchk, 441
mysqlcheck, 381

fast shutdown, 4219
features of MySQL, 5
features, deprecated (see deprecated features)
features, new (see new features)
features, removed (see removed features)
FEDERATED storage engine, 2307, 2336
Fetch

thread command, 1205
FETCH, 1849
field

changing, 1646
Field List

thread command, 1206
FIELD(), 1498
fields option

ndb_config, 2857
fields-enclosed-by option

mysqldump, 400, 412
ndb_restore, 2918

fields-escaped-by option
mysqldump, 400, 412

fields-optionally-enclosed-by option
mysqldump, 400, 412
ndb_restore, 2918

fields-terminated-by option
mysqldump, 400, 412
ndb_restore, 2918

FILE, 1500
file descriptors

innodb_open_files, 2185

3637

max_connections, 748
MERGE, 2334
mysqlbinlog, 477
open_files_limit, 661
partitioned MyISAM tables, 3209
table cache, 1125
table_definition_cache, 689
too many open files, 3567

file format, 2103, 4220
Antelope, 2099
Barracuda, 2091
identifying, 2107
modifying, 2108

FILE privilege, 864
file-per-table, 2005, 4220
files

binary log, 772
created by CREATE TABLE, 1703
DDL log, 787
error messages, 1335
general query log, 771
log, 787
metadata log, 787
not found message, 3568
permissions, 3568
repairing, 442
script, 266
size limits, 1128
slow query log, 785
text, 361, 407
tmp, 206

FILES
INFORMATION_SCHEMA table, 3344

filesort optimization, 1082
FileSystemPath, 2681
FileSystemPathDataFiles, 2737
FileSystemPathDD, 2736
FileSystemPathUndoFiles, 2737
file_instances table

performance_schema, 3412
file_summary_by_event_name table

performance_schema, 3447
file_summary_by_instance table

performance_schema, 3447
fill factor, 2023, 4220
fill_help_tables.sql, 760
FIND_IN_SET(), 1498
Finished reading one binlog; switching to next binlog

thread state, 1215
firewall table reference

INFORMATION_SCHEMA, 3357
firewalls (software)

and NDB Cluster, 3092, 3094
Firewall_access_denied status variable, 1010

3638

Firewall_access_granted status variable, 1010
Firewall_access_suspicious status variable, 1010
Firewall_cached_entries status variable, 1010
firewall_users MySQL Enterprise Firewall table, 1006
firewall_users table

system table, 765
firewall_whitelist MySQL Enterprise Firewall table, 1006
firewall_whitelist table

system table, 765
FirstMatch

semijoin strategy, 1093
fix-db-names option

mysqlcheck, 381
fix-table-names option

mysqlcheck, 381
FIXED data type, 1363
fixed row format, 4220
fixed-point arithmetic, 1623
FLOAT data type, 1363, 1363, 1363
floating-point number, 1363
floating-point values

and replication, 2554
floats, 1224
FLOOR(), 1465
flow control functions, 1457
FLUSH

and replication, 2554
flush, 4220
flush list, 4221
FLUSH MASTER

removed features, 22
flush option

mysqld, 585
FLUSH SLAVE

removed features, 22
FLUSH statement, 1966
flush system variable, 625
flush tables, 368
flush-logs option

mysqldump, 404
flush-privileges option

mysqldump, 405
flushing, 2066
flushlog option

mysqlhotcopy, 494
Flush_commands status variable, 722
flush_time system variable, 625
FOR UPDATE, 1777
FORCE

plugin activation option, 792
FORCE INDEX, 1167, 3584
FORCE KEY, 1167
force option

myisamchk, 441, 442

3639

myisampack, 454
mysql, 346
mysqladmin, 372
mysqlcheck, 381
mysqldump, 396
mysqlimport, 412
mysql_convert_table_format, 495
mysql_install_db, 325
mysql_upgrade, 335

force-if-open option
mysqlbinlog, 476

force-read option
mysqlbinlog, 476

FORCE_PLUS_PERMANENT
plugin activation option, 792

foreign key, 4221
constraint, 50, 50
deleting, 1649, 1712

FOREIGN KEY constraint, 4221
foreign key constraints, 1708
FOREIGN KEY constraints

and online DDL, 2132
foreign keys, 46, 270, 1649
foreign_key_checks system variable, 626
FORMAT(), 1498
FOUND_ROWS(), 1576
fractional seconds

and replication, 2554
fractional seconds precision, 1360, 1369
fragment replicas (NDB Cluster), 2583
FragmentLogFileSize, 2693
FreeBSD troubleshooting, 202
freeing items

thread state, 1209
.frm file, 4219
FROM, 1774
FROM_BASE64(), 1498
FROM_DAYS(), 1479
FROM_UNIXTIME(), 1479
fs option

ndb_error_reporter, 2888
FTS, 4221
ft_boolean_syntax system variable, 626
ft_max_word_len myisamchk variable, 439
ft_max_word_len system variable, 627
ft_min_word_len myisamchk variable, 439
ft_min_word_len system variable, 627
ft_query_expansion_limit system variable, 628
ft_stopword_file myisamchk variable, 439
ft_stopword_file system variable, 628
full backup, 4221
full disk, 3574
full table scan, 4221
full table scans

3640

avoiding, 1091
full-text index

InnoDB, 2023
monitoring, 2028

full-text queries
optimization, 1111

full-text search, 1521, 4222
FULLTEXT, 1521
fulltext

stopword list, 1534
FULLTEXT index, 4222
FULLTEXT initialization

thread state, 1209
fulltext join type

optimizer, 1152
func table

system table, 764, 802
function

creating, 1906
deleting, 1907

function names
parsing, 1239
resolving ambiguity, 1239

functions, 1424
aggregate, 1607
and replication, 2555
arithmetic, 1559
bit, 1559
cast, 1541
date and time, 1471
encryption, 1561
flow control, 1457
for SELECT and WHERE clauses, 1424
GROUP BY, 1607
grouping, 1447
GTIDs, 1605
information, 1572
loadable, 1906, 1907
locking, 1571
mathematical, 1463
miscellaneous, 1616
stored, 3225
string, 1493
string comparison, 1510

fuzzy checkpointing, 4222

G
GA, 4222

MySQL releases, 64
GAC, 4222
gap, 4222
gap event, 3102
gap lock, 2038, 4222

3641

InnoDB, 2053, 2175
gb2312, gbk, 3529
gci option

ndb_select_all, 2938
gci64 option

ndb_select_all, 2938
GCP Stop errors (NDB Cluster), 2739
gdb

using, 812
gdb option

mysqld, 586
general information, 1
General Public License, 5
general query log, 771, 4222
general table reference

INFORMATION_SCHEMA, 3268
general tablespace, 4223
general_log system variable, 628
general_log table

system table, 764
general_log_file system variable, 629
geographic feature, 1398
GeomCollFromText(), 1587
GeomCollFromWKB(), 1589
geometry, 1398
GEOMETRY data type, 1399
geometry values

internal storage format, 1408
WKB format, 1407
WKT format, 1406

GEOMETRYCOLLECTION data type, 1399
GeometryCollection(), 1591
GeometryCollectionFromText(), 1587
GeometryCollectionFromWKB(), 1589
GeometryFromText(), 1587
GeometryFromWKB(), 1589
GeometryN(), 1599
GeometryType(), 1592
GeomFromText(), 1587
GeomFromWKB(), 1589
geospatial feature, 1398
German dictionary collation, 1280, 1327, 1327
German phone book collation, 1280, 1327, 1327
GET DIAGNOSTICS, 1855
getting MySQL, 65
GET_FORMAT(), 1480
GET_LOCK(), 1571
GIS, 1398
GIS data types

storage requirements, 1419
Git tree, 182
Glassfish, 4223
GLength(), 1595
GLOBAL

3642

SET statement, 1909
global privileges, 1880, 1892
global transaction, 4223
GLOBAL_STATUS

INFORMATION_SCHEMA table, 3279
GLOBAL_VARIABLES

INFORMATION_SCHEMA table, 3279
go command

mysql, 354
Google Test, 195
got handler lock

thread state, 1213
got old table

thread state, 1213
GRANT OPTION privilege, 865
GRANT statement, 882, 1880
grant table distribution (NDB Cluster), 3030
grant tables

columns_priv table, 764, 869
db table, 211, 763, 869
host table, 763
procs_priv table, 764, 869
proxies_priv, 896
proxies_priv table, 211, 764, 869
re-creating, 206
sorting, 879, 881
structure, 869
tables_priv table, 764, 869
user table, 211, 763, 869

granting
privileges, 1880

grants
display, 1934

greater than (>), 1450
greater than or equal (>=), 1449
greatest timestamp wins (conflict resolution), 3135
greatest timestamp, delete wins (conflict resolution), 3135
GREATEST(), 1450
Group (NDB Cluster), 2806
GROUP BY

aliases in, 1616
extensions to standard SQL, 1615, 1775
implicit sorting, 1082
maximum sort length, 1775
WITH ROLLUP, 1612

GROUP BY functions, 1607
GROUP BY optimizing, 1084
GROUP BY sorting

deprecated features, 20
group commit, 4223
grouping

expressions, 1447
GROUP_CONCAT(), 1609
group_concat_max_len system variable, 629

3643

GTID functions, 1605
gtid_executed system variable, 2502
gtid_mode system variable, 2503
gtid_next system variable, 2504
gtid_owned system variable, 2504
gtid_purged system variable, 2505
GTID_SUBSET(), 1606
GTID_SUBTRACT(), 1606
GUID, 4223

H
HANDLER, 1739
Handlers, 1852
Handler_commit status variable, 722
Handler_delete status variable, 722
Handler_discover status variable, 2783
Handler_external_lock status variable, 722
Handler_mrr_init status variable, 723
Handler_prepare status variable, 723
Handler_read_first status variable, 723
Handler_read_key status variable, 723
Handler_read_last status variable, 723
Handler_read_next status variable, 723
Handler_read_prev status variable, 723
Handler_read_rnd status variable, 723
Handler_read_rnd_next status variable, 723
Handler_rollback status variable, 723
Handler_savepoint status variable, 723
Handler_savepoint_rollback status variable, 723
Handler_update status variable, 724
Handler_write status variable, 724
hash index, 4223
hash indexes, 1115
hash partitioning, 3168
hash partitions

managing, 3187
splitting and merging, 3187

have_compress system variable, 629
have_crypt system variable, 629
have_csv

removed features, 22
have_dynamic_loading system variable, 629
have_geometry system variable, 630
have_innodb

removed features, 22
have_ndbcluster

removed features, 22
have_openssl system variable, 630
have_partitioning

removed features, 22
have_profiling

deprecated features, 21
have_profiling system variable, 630

3644

have_query_cache system variable, 630
have_rtree_keys system variable, 630
have_ssl system variable, 630
have_symlink system variable, 630
HAVING clause, 1775
HDD, 4224
header option

ndb_select_all, 2938
header-file option

comp_err, 322
HEAP storage engine, 2307, 2320
heartbeat, 4224
HeartbeatIntervalDbApi, 2705
HeartbeatIntervalDbDb, 2704
HeartbeatIntervalMgmdMgmd

management nodes, 2676
HeartbeatOrder, 2705
HeartbeatThreadPriority, 2675, 2747
help action

MySQLInstallerConsole, 115
help command

mysql, 353
HELP command (NDB Cluster), 2963
help option

comp_err, 322
myisamchk, 438
myisampack, 453
myisam_ftdump, 433
mysql, 342
mysqlaccess, 467
mysqladmin, 370
mysqlbinlog, 472
mysqlcheck, 378
mysqld, 580
mysqldump, 396
mysqldumpslow, 491
mysqld_multi, 319
mysqld_safe, 311
mysqlhotcopy, 493
mysqlimport, 410
mysqlshow, 418
mysqlslap, 426
mysql_config_editor, 462
mysql_convert_table_format, 495
mysql_find_rows, 497
mysql_install_db, 325
mysql_plugin, 328
mysql_setpermission, 498
mysql_upgrade, 334
mysql_waitpid, 498
my_print_defaults, 502
ndbd, 2816
ndbinfo_select_all, 2825
ndb_blob_tool, 2849

3645

ndb_config, 2857
ndb_delete_all, 2867
ndb_desc, 2876
ndb_drop_index, 2880
ndb_drop_table, 2885
ndb_error_reporter, 2888
ndb_index_stat, 2893
ndb_mgm, 2844
ndb_mgmd, 2834
ndb_move_data, 2900
ndb_restore, 2919
ndb_select_all, 2938
ndb_select_count, 2944
ndb_show_tables, 2949
ndb_waiter, 2957
perror, 504
resolveip, 505
resolve_stack_dump, 503

HELP option
myisamchk, 438

HELP statement, 1977
help tables

system tables, 764
help_category table

system table, 764
help_keyword table

system table, 764
help_relation table

system table, 764
help_topic table

system table, 764
hex option

ndb_restore, 2919
HEX(), 1466, 1499
hex-blob option

mysqldump, 400
hexadecimal literal introducer, 1228
hexadecimal literals, 1227
hexdump option

mysqlbinlog, 476
high-water mark, 4224
HIGH_NOT_PRECEDENCE SQL mode, 740
HIGH_PRIORITY

INSERT modifier, 1744
SELECT modifier, 1777

hints, 43
index, 1167, 1774

histignore option
mysql, 346

history list, 4224
history of MySQL, 8
hole punching, 4224
HOME environment variable, 358, 506
host, 4224

3646

host cache, 748
new features, 20

host name
default, 304

host name caching, 748
host name resolution, 748
host names, 304

in account names, 875
in default accounts, 211

host option, 298
mysql, 346
mysqlaccess, 467
mysqladmin, 372
mysqlbinlog, 476
mysqlcheck, 381
mysqldump, 392
mysqlhotcopy, 494
mysqlimport, 412
mysqlshow, 419
mysqlslap, 428
mysql_convert_table_format, 496
mysql_setpermission, 498
mysql_upgrade, 335
ndb_config, 2858

host table
system table, 763

HostName, 2671, 2678, 2746
HostName (NDB Cluster), 3091
hostname system variable, 631
HostName1, 2800, 2806
HostName2, 2800, 2806
hosts table

performance_schema, 3435
host_cache table

performance_schema, 748, 3452
hot, 4224
hot backup, 4224
HOUR(), 1481
howto option

mysqlaccess, 467
html option

mysql, 346

I
i-am-a-dummy option

mysql, 350
ib-file set, 2104, 4225
ibbackup_logfile, 4225
.ibd file, 4225
ibdata file, 1703, 4226
ibtmp file, 4226
.ibz file, 4225
ib_logfile, 4226

3647

icc
MySQL builds, 82

Id, 2670, 2678, 2744
identifiers, 1230

case sensitivity, 1235
quoting, 1230

identity system variable, 631
IF, 1845
IF(), 1458
IFNULL(), 1458
IGNORE

DELETE modifier, 1736
INSERT modifier, 1744
LOAD DATA modifier, 1753
UPDATE modifier, 1802
with partitioned tables, 1744

IGNORE INDEX, 1167
IGNORE KEY, 1167
ignore option

mysqlimport, 412
ignore-db-dir option

mysqld, 586
ignore-lines option

mysqlimport, 412
ignore-spaces option

mysql, 346
ignore-table option

mysqldump, 402
IGNORE_AIO_CHECK option

CMake, 196
ignore_builtin_innodb system variable, 2141
ignore_db_dirs system variable, 631
IGNORE_SPACE SQL mode, 740
ilist, 4226
implicit default values, 1414
implicit GROUP BY sorting, 1082
implicit row lock, 4226
IMPORT TABLESPACE, 1651, 2010
importing

data, 361, 407
importing data

NDB Cluster, 3016
IN, 1790
IN(), 1451
in-file option

comp_err, 322
in-memory database, 4226
include option

mysql_config, 500
include-databases option

ndb_restore, 2919
include-gtids option

mysqlbinlog, 476
include-master-host-port option

3648

mysqldump, 398
include-tables option

ndb_restore, 2919
increasing with replication

speed, 2411
incremental backup, 4226
incremental recovery, 1040

using NDB Cluster replication, 3127
index, 4227

deleting, 1648, 1727
rebuilding, 232

index cache, 4227
index condition pushdown, 4227
INDEX DIRECTORY

and replication, 2553
index dives

range optimization, 1059
index dives (for statistics estimation), 2084
index extensions, 1116
index hint, 4227
index hints, 1167, 1774
index join type

optimizer, 1153
index prefix, 4227
index prefixes

partitioning, 3211
INDEX privilege, 865
index statistics

NDB, 2742
index-record lock

InnoDB, 2053, 2175
indexed temporary table

semijoin strategy, 1093
indexes, 1667

and BLOB columns, 1111, 1685
and IS NULL, 1115
and LIKE, 1115
and ndb_restore, 2925
and NULL values, 1685
and TEXT columns, 1111, 1685
assigning to key cache, 1965
BLOB columns, 1668
block size, 634
column prefixes, 1111
columns, 1110
leftmost prefix of, 1109, 1113
multi-column, 1112
multiple-part, 1667
names, 1230
TEXT columns, 1668
TIMESTAMP lookups, 1119
use of, 1109

IndexMemory, 2683
IndexStatAutoCreate

3649

data nodes, 2742
IndexStatAutoUpdate

data nodes, 2742
IndexStatSaveScale

data nodes, 2743
IndexStatSaveSize

data nodes, 2742
IndexStatTriggerPct

data nodes, 2743
IndexStatTriggerScale

data nodes, 2743
IndexStatUpdateDelay

data nodes, 2743
index_merge join type

optimizer, 1153
index_subquery join type

optimizer, 1153
INET6_ATON(), 1618
INET6_NTOA(), 1619
INET_ATON(), 1617
INET_NTOA(), 1617
infimum record, 4227
INFO Events (NDB Cluster), 2992
information functions, 1572
information option

myisamchk, 441
INFORMATION SCHEMA

InnoDB tables, 2205
INFORMATION_SCHEMA, 3262, 4228

and security issues, 3096
collation and searching, 1310
connection-control table reference, 3356
connection-control tables, 3356
firewall table reference, 3357
general table reference, 3268
general tables, 3268
InnoDB table reference, 3306
InnoDB tables, 3306
INNODB_CMP table, 2206
INNODB_CMPMEM table, 2206
INNODB_CMPMEM_RESET table, 2206
INNODB_CMP_RESET table, 2206
INNODB_LOCKS table, 2208
INNODB_LOCK_WAITS table, 2208
INNODB_TRX table, 2207
MySQL Enterprise Firewall tables, 3357
NDB Cluster tables, 3344
table reference, 3265
thread pool table reference, 3352
Thread pool tables, 3351

INFORMATION_SCHEMA queries
optimization, 1101

INFORMATION_SCHEMA.ENGINES table
and NDB Cluster, 3086

3650

INFORMATION_SCHEMA.GLOBAL_STATUS table
and NDB Cluster, 3090

INFORMATION_SCHEMA.GLOBAL_VARIABLES table
and NDB Cluster, 3087

INFO_BIN file
binary distribution configuration options, 39, 176

init
thread state, 1209

Init DB
thread command, 1206

init-command option
mysql, 346

InitFragmentLogFiles, 2693
initial option

ndbd, 2816
ndbmtd, 2816
ndb_mgmd, 2834

initial-start option
ndbd, 2817
ndbmtd, 2817

Initialized
thread state, 1219

InitialLogFileGroup, 2737
InitialNoOfOpenFiles, 2694
InitialTablespace, 2738
init_connect system variable, 632
init_file system variable, 632
init_slave system variable, 2464
injection

SQL, 857, 994, 1558, 1836
XPath code, 1558

INNER JOIN, 1780
innochecksum, 280, 431
InnoDB, 1983, 4228

.frm files, 2002
adaptive hash index, 2001
and application feature requirements, 2599
application performance, 2015
applications supported, 2599
architecture, 1990
asynchronous I/O, 2072
auto-inc lock, 2038
auto-increment columns, 2016
autocommit mode, 2045, 2045
availability, 2597
backups, 2255
change buffer, 1997
checkpoints, 2116
clustered index, 2022
COMPACT row format, 2111
compared to NDB Cluster, 2597, 2597, 2599, 2599
configuration parameters, 2133
consistent reads, 2046
corruption, 2256

3651

crash recovery, 2256, 2257
creating tables, 2002
data files, 2029
deadlock detection, 2055
deadlock example, 2054
deadlocks, 2012, 2054, 2055
disk failure, 2256
disk I/O, 2114
disk I/O optimization, 1137
DYNAMIC row format, 2112, 2113
exclusive lock, 2038
file space management, 2115
file-per-table tablespace, 2031
files, 2015
full-text indexes, 2023
gap lock, 2038, 2053, 2175
in-memory structures, 1991
index-record lock, 2053, 2175
insert-intention lock, 2038
intention lock, 2038
limitations, 2304
limits, 2303
Linux, 2072
lock modes, 2038
locking, 2037, 2038, 2050
locking reads, 2048
log files, 2036
memory usage, 2011
migrating tables, 2009
Monitors, 2115, 2256, 2296
multi-versioning, 1989
new features, 11
next-key lock, 2038, 2053, 2175
NFS, 2058
on-disk structures, 2002
online DDL, 2117
page size, 2023
physical index structure, 2023
point-in-time recovery, 2256
primary keys, 2003, 2014
raw partitions, 2030
record-level locks, 2053, 2175
recovery, 2256
redo log, 2035
REDUNDANT row format, 2110
replication, 2258
restrictions, 2304
row format, 2003, 2113
secondary index, 2022
semi-consistent read, 2175
shared lock, 2038
Solaris issues, 173
storage, 2014
storage layout, 2013

3652

system variables, 2133
table properties, 2003
tables, 2002

converting from other storage engines, 2011
transaction model, 2037, 2042
transactions, 2012
transferring data, 2013
troubleshooting, 2296

CREATE TABLE failure, 2299
data dictionary problems, 2298
deadlocks, 2054, 2055
defragmenting tables, 2116
I/O problems, 2296
online DDL, 2132
open file error, 2299
orphan intermediate tables, 2299
orphan temporary tables, 2300
performance problems, 1132
recovery problems, 2297
restoring orphan ibd files, 2301
SQL errors, 2302
tablespace does not exist, 2301

InnoDB buffer pool, 1169, 1995, 2063, 2064, 2065, 2068
InnoDB Monitors, 2240

enabling, 2241
output, 2244

innodb option
mysqld, 2138

InnoDB parameters, new
innodb_file_format_check, 2105
innodb_large_prefix, 2173

InnoDB storage engine, 1983, 2307
InnoDB table reference

INFORMATION_SCHEMA, 3306
InnoDB tables

storage requirements, 1416
innodb-status-file option

mysqld, 2139
innodb_adaptive_flushing system variable, 2142
innodb_adaptive_flushing_lwm system variable, 2142
innodb_adaptive_hash_index

and innodb_thread_concurrency, 2071
innodb_adaptive_hash_index system variable, 2142
innodb_adaptive_max_sleep_delay system variable, 2143
innodb_additional_mem_pool_size

deprecated features, 21
innodb_additional_mem_pool_size system variable, 2143

and innodb_use_sys_malloc, 2070
innodb_api_bk_commit_interval system variable, 2144
innodb_api_disable_rowlock system variable, 2144
innodb_api_enable_binlog system variable, 2145
innodb_api_enable_mdl system variable, 2145
innodb_api_trx_level system variable, 2145
innodb_autoextend_increment system variable, 2146

3653

innodb_autoinc_lock_mode, 4228
innodb_autoinc_lock_mode system variable, 2146
Innodb_available_undo_logs status variable, 724
INNODB_BUFFER_PAGE

INFORMATION_SCHEMA table, 3307
INNODB_BUFFER_PAGE_LRU

INFORMATION_SCHEMA table, 3310
Innodb_buffer_pool_bytes_data status variable, 724
Innodb_buffer_pool_bytes_dirty status variable, 724
innodb_buffer_pool_dump_at_shutdown system variable, 2147
innodb_buffer_pool_dump_now system variable, 2147
Innodb_buffer_pool_dump_status status variable, 724
innodb_buffer_pool_filename system variable, 2147
innodb_buffer_pool_instances system variable, 2148
innodb_buffer_pool_load_abort system variable, 2149
innodb_buffer_pool_load_at_startup system variable, 2149
innodb_buffer_pool_load_now system variable, 2149
Innodb_buffer_pool_load_status status variable, 724
Innodb_buffer_pool_pages_data status variable, 724
Innodb_buffer_pool_pages_dirty status variable, 724
Innodb_buffer_pool_pages_flushed status variable, 724
Innodb_buffer_pool_pages_free status variable, 725
Innodb_buffer_pool_pages_latched status variable, 725
Innodb_buffer_pool_pages_misc status variable, 725
Innodb_buffer_pool_pages_total status variable, 725
Innodb_buffer_pool_reads status variable, 725
Innodb_buffer_pool_read_ahead status variable, 725
Innodb_buffer_pool_read_ahead_evicted status variable, 725
Innodb_buffer_pool_read_ahead_rnd status variable, 725
Innodb_buffer_pool_read_requests status variable, 725
innodb_buffer_pool_size system variable, 2150
INNODB_BUFFER_POOL_STATS

INFORMATION_SCHEMA table, 3313
Innodb_buffer_pool_wait_free status variable, 725
Innodb_buffer_pool_write_requests status variable, 725
innodb_change_buffering, 1999
innodb_change_buffering system variable, 2151
innodb_change_buffering_debug, 2152
innodb_change_buffer_max_size system variable, 2151
innodb_checksums system variable, 2154
innodb_checksum_algorithm system variable, 2152
INNODB_CMP

INFORMATION_SCHEMA table, 3317
INNODB_CMPMEM

INFORMATION_SCHEMA table, 3318
INNODB_CMPMEM_RESET

INFORMATION_SCHEMA table, 3318
INNODB_CMP_PER_INDEX

INFORMATION_SCHEMA table, 3319
innodb_cmp_per_index_enabled system variable, 2155
INNODB_CMP_PER_INDEX_RESET

INFORMATION_SCHEMA table, 3319
INNODB_CMP_RESET

INFORMATION_SCHEMA table, 3317

3654

innodb_commit_concurrency system variable, 2155
innodb_compression_failure_threshold_pct

new features, 13
innodb_compression_failure_threshold_pct system variable, 2155
innodb_compression_level

new features, 13
innodb_compression_level system variable, 2156
innodb_compression_pad_pct_max

new features, 13
innodb_compression_pad_pct_max system variable, 2156
innodb_concurrency_tickets, 2070
innodb_concurrency_tickets system variable, 2157
innodb_data_file_path system variable, 2157
Innodb_data_fsyncs status variable, 726
innodb_data_home_dir system variable, 2158
Innodb_data_pending_fsyncs status variable, 726
Innodb_data_pending_reads status variable, 726
Innodb_data_pending_writes status variable, 726
Innodb_data_read status variable, 726
Innodb_data_reads status variable, 726
Innodb_data_writes status variable, 726
Innodb_data_written status variable, 726
Innodb_dblwr_pages_written status variable, 726
Innodb_dblwr_writes status variable, 726
innodb_disable_sort_file_cache system variable, 2158
innodb_doublewrite system variable, 2159
innodb_fast_shutdown system variable, 2159
innodb_file_format, 2103, 4228

Antelope, 2099
Barracuda, 2091
identifying, 2107

innodb_file_format system variable, 2160
innodb_file_format_check, 2105
innodb_file_format_check system variable, 2160
innodb_file_format_max system variable, 2161
innodb_file_per_table, 2091, 4228
innodb_file_per_table system variable, 2161
innodb_fil_make_page_dirty_debug, 2160
innodb_flushing_avg_loops system variable, 2166
innodb_flush_log_at_timeout system variable, 2162
innodb_flush_log_at_trx_commit system variable, 2162
innodb_flush_method system variable, 2163
innodb_flush_neighbors system variable, 2165
innodb_force_load_corrupted system variable, 2166
innodb_force_recovery system variable, 2166

DROP TABLE, 1730
innodb_ft_aux_table system variable, 2167
INNODB_FT_BEING_DELETED

INFORMATION_SCHEMA table, 3321
innodb_ft_cache_size system variable, 2167
INNODB_FT_CONFIG

INFORMATION_SCHEMA table, 3322
INNODB_FT_DEFAULT_STOPWORD

INFORMATION_SCHEMA table, 3323

3655

INNODB_FT_DELETED
INFORMATION_SCHEMA table, 3324

innodb_ft_enable_diag_print system variable, 2168
innodb_ft_enable_stopword system variable, 2168
INNODB_FT_INDEX_CACHE

INFORMATION_SCHEMA table, 3325
INNODB_FT_INDEX_TABLE

INFORMATION_SCHEMA table, 3326
innodb_ft_max_token_size system variable, 2169
innodb_ft_min_token_size system variable, 2169
innodb_ft_num_word_optimize system variable, 2169
innodb_ft_result_cache_limit system variable, 2170
innodb_ft_server_stopword_table system variable, 2171
innodb_ft_sort_pll_degree system variable, 2171
innodb_ft_total_cache_size system variable, 2171
innodb_ft_user_stopword_table system variable, 2172
Innodb_have_atomic_builtins status variable, 726
innodb_index_stats table

system table, 765, 2077
innodb_io_capacity, 2073
innodb_io_capacity system variable, 2172
innodb_io_capacity_max system variable, 2173
innodb_large_prefix system variable, 2173
innodb_limit_optimistic_insert_debug, 2174
INNODB_LOCKS

INFORMATION_SCHEMA table, 3328
innodb_locks_unsafe_for_binlog

deprecated features, 21
innodb_locks_unsafe_for_binlog system variable, 2175
INNODB_LOCK_WAITS

INFORMATION_SCHEMA table, 3329
innodb_lock_wait_timeout, 4229
innodb_lock_wait_timeout system variable, 2174
innodb_log_buffer_size system variable, 2177
innodb_log_checkpoint_now system variable, 2178
innodb_log_compressed_pages

new features, 13
innodb_log_compressed_pages system variable, 2178
innodb_log_files_in_group system variable, 2179
innodb_log_file_size system variable, 2179
innodb_log_group_home_dir system variable, 2180
Innodb_log_waits status variable, 726
Innodb_log_writes status variable, 726
Innodb_log_write_requests status variable, 726
innodb_lru_scan_depth system variable, 2180
innodb_max_dirty_pages_pct system variable, 2181
innodb_max_dirty_pages_pct_lwm system variable, 2181
innodb_max_purge_lag system variable, 2181
innodb_max_purge_lag_delay system variable, 2182
innodb_memcache database, 2266, 2289
innodb_memcached_config.sql script, 2266
INNODB_METRICS

INFORMATION_SCHEMA table, 3330
innodb_mirrored_log_groups system variable, 2182

3656

innodb_monitor_disable system variable, 2182
innodb_monitor_enable system variable, 2183
innodb_monitor_reset system variable, 2183
innodb_monitor_reset_all system variable, 2183
innodb_numa_interleave variable, 2184
Innodb_num_open_files status variable, 727
innodb_old_blocks_pct, 2064
innodb_old_blocks_pct system variable, 2184
innodb_old_blocks_time, 2064
innodb_old_blocks_time system variable, 2184
innodb_online_alter_log_max_size system variable, 2185
innodb_open_files system variable, 2185
innodb_optimize_fulltext_only system variable, 2186
Innodb_os_log_fsyncs status variable, 727
Innodb_os_log_pending_fsyncs status variable, 727
Innodb_os_log_pending_writes status variable, 727
Innodb_os_log_written status variable, 727
Innodb_pages_created status variable, 727
Innodb_pages_read status variable, 727
Innodb_pages_written status variable, 727
INNODB_PAGE_ATOMIC_REF_COUNT option

CMake, 196
Innodb_page_size status variable, 727
innodb_page_size system variable, 2186
innodb_print_all_deadlocks system variable, 2187

innodb_print_all_deadlocks, 2187
innodb_purge_batch_size system variable, 2187
innodb_purge_threads system variable, 2188
innodb_random_read_ahead system variable, 2188
innodb_read_ahead_threshold, 2065
innodb_read_ahead_threshold system variable, 2189
innodb_read_io_threads, 2072
innodb_read_io_threads system variable, 2189
innodb_read_only system variable, 2190
innodb_replication_delay system variable, 2190
innodb_rollback_on_timeout system variable, 2190
innodb_rollback_segments system variable, 2191
Innodb_rows_deleted status variable, 727
Innodb_rows_inserted status variable, 728
Innodb_rows_read status variable, 728
Innodb_rows_updated status variable, 728
Innodb_row_lock_current_waits status variable, 727
Innodb_row_lock_time status variable, 727
Innodb_row_lock_time_avg status variable, 727
Innodb_row_lock_time_max status variable, 727
Innodb_row_lock_waits status variable, 727
innodb_saved_page_number_debug, 2191
innodb_sort_buffer_size system variable, 2192
innodb_spin_wait_delay, 2074
innodb_spin_wait_delay system variable, 2192
innodb_stats_auto_recalc system variable, 2192
innodb_stats_include_delete_marked system variable, 2079, 2193
innodb_stats_method system variable, 2193
innodb_stats_on_metadata system variable, 2194

3657

innodb_stats_persistent system variable
innodb_stats_persistent, 2194

innodb_stats_persistent_sample_pages system variable, 2195
innodb_stats_sample_pages system variable, 2195
innodb_stats_transient_sample_pages, 2084
innodb_stats_transient_sample_pages system variable, 2196
innodb_status_output

new features, 13
innodb_status_output system variable, 2196
innodb_status_output_locks

new features, 13
innodb_status_output_locks system variable, 2196
innodb_stat_persistent system variable, 2194
innodb_strict_mode, 1130, 4229
innodb_strict_mode system variable, 2197
innodb_support_xa system variable, 2197
innodb_sync_array_size system variable, 2198
innodb_sync_spin_loops system variable, 2198
INNODB_SYS_COLUMNS

INFORMATION_SCHEMA table, 3332
INNODB_SYS_DATAFILES

INFORMATION_SCHEMA table, 3333
INNODB_SYS_FIELDS

INFORMATION_SCHEMA table, 3334
INNODB_SYS_FOREIGN

INFORMATION_SCHEMA table, 3335
INNODB_SYS_FOREIGN_COLS

INFORMATION_SCHEMA table, 3336
INNODB_SYS_INDEXES

INFORMATION_SCHEMA table, 3336
INNODB_SYS_TABLES

INFORMATION_SCHEMA table, 3338
INNODB_SYS_TABLESPACES

INFORMATION_SCHEMA table, 3339
INNODB_SYS_TABLESTATS

INFORMATION_SCHEMA table, 3340
innodb_table_locks system variable, 2199
innodb_table_stats table

system table, 765, 2077
innodb_thread_concurrency, 2071
innodb_thread_concurrency system variable, 2199
innodb_thread_sleep_delay, 2071
innodb_thread_sleep_delay system variable, 2200
innodb_tmpdir system variable, 2201
Innodb_truncated_status_writes status variable, 728
INNODB_TRX

INFORMATION_SCHEMA table, 3341
innodb_trx_purge_view_update_only_debug, 2202
innodb_trx_rseg_n_slots_debug, 2202
innodb_undo_directory system variable, 2202
innodb_undo_logs system variable, 2203
innodb_undo_tablespaces system variable, 2203
innodb_use_native_aio, 2072
innodb_use_native_aio system variable, 2204

3658

innodb_use_sys_malloc
and innodb_thread_concurrency, 2071
deprecated features, 21

innodb_use_sys_malloc system variable, 2070, 2204
innodb_version system variable, 2205
innodb_write_io_threads, 2072
innodb_write_io_threads system variable, 2205
INOUT parameter

condition handling, 1875
INSERT, 1106, 1741
insert, 4229

thread state, 1214
INSERT ... SELECT, 1745
insert buffer, 4229
insert buffering, 4229

disabling, 1999
INSERT DELAYED, 1748, 1748
insert intention lock, 4229
INSERT privilege, 865
INSERT(), 1499
insert-ignore option

mysqldump, 404
insert-intention lock, 2038
insertable views

insertable, 3242
inserting

speed of, 1106
inserts

concurrent, 1184, 1186
insert_id system variable, 632
install action

MySQLInstallerConsole, 116
install option

mysqld, 586
ndbd, 2817
ndbmtd, 2817
ndb_mgmd, 2834

INSTALL PLUGIN statement, 1907
install-manual option

mysqld, 587
Installation, 112
installation layouts, 82
installation overview, 176
installing

binary distribution, 82
Linux RPM packages, 156
macOS DMG packages, 135
overview, 62
Perl, 239
Perl on Windows, 240
Solaris PKG packages, 173
source distribution, 176

installing loadable functions, 801
installing NDB Cluster, 2612

3659

Debian Linux, 2619
Linux, 2614
Linux binary release, 2615
Linux RPM, 2617
Linux source release, 2619
Ubuntu Linux, 2619
Windows, 2621
Windows binary release, 2621
Windows source, 2624

installing plugins, 789, 1907
INSTALL_BINDIR option

CMake, 191
INSTALL_DOCDIR option

CMake, 191
INSTALL_DOCREADMEDIR option

CMake, 191
INSTALL_INCLUDEDIR option

CMake, 191
INSTALL_INFODIR option

CMake, 191
INSTALL_LAYOUT option

CMake, 192
INSTALL_LIBDIR option

CMake, 192
INSTALL_MANDIR option

CMake, 192
INSTALL_MYSQLSHAREDIR option

CMake, 192
INSTALL_MYSQLTESTDIR option

CMake, 192
INSTALL_PLUGINDIR option

CMake, 192
INSTALL_SBINDIR option

CMake, 192
INSTALL_SCRIPTDIR option

CMake, 192
INSTALL_SECURE_FILE_PRIVDIR option

CMake, 192
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR option

CMake, 192
INSTALL_SHAREDIR option

CMake, 193
INSTALL_SQLBENCHDIR option

CMake, 193
INSTALL_SUPPORTFILESDIR option

CMake, 193
instance, 4229
INSTR(), 1499
instrumentation, 4230
INT data type, 1362
integer arithmetic, 1623
INTEGER data type, 1362
integers, 1224
intention lock, 2038, 4230

3660

interactive option
ndb_mgmd, 2835

interactive_timeout system variable, 633
interceptor, 4230
InteriorRingN(), 1597
internal locking, 1182
internal memory allocator

disabling, 2070
internal storage format

geometry values, 1408
Intersects(), 1605
INTERVAL

temporal interval syntax, 1271
interval syntax, 1271
INTERVAL(), 1452
INTO

SELECT, 1778
introducer

binary character set, 1334
bit-value literal, 1229
character set, 1291
hexadecimal literal, 1228
string literal, 1222, 1289

invalid data
constraint, 51

invalidating query cache entries
thread state, 1214

inverted index, 4230
invisible index, 1667
INVOKER privileges, 1934, 3245
IOPS, 4230
IP addresses

in account names, 875
in default accounts, 211

IPv6 addresses
in account names, 875
in default accounts, 211

IPv6 connections, 212, 679
IS boolean_value, 1452
IS NOT boolean_value, 1452
IS NOT DISTINCT FROM operator, 1449
IS NOT NULL, 1453
IS NULL, 1079, 1452

and indexes, 1115
IsClosed(), 1595
IsEmpty(), 1592
.isl file, 4225
ISNULL(), 1453
ISOLATION LEVEL, 1815
isolation level, 2042, 4230
IsSimple(), 1592
IS_FREE_LOCK(), 1572
IS_IPV4(), 1619
IS_IPV4_COMPAT(), 1619

3661

IS_IPV4_MAPPED(), 1620
IS_IPV6(), 1620
IS_USED_LOCK(), 1572
ITERATE, 1846
iterations option

mysqlslap, 428

J
J2EE, 4231
Japanese character sets

conversion, 3529
Japanese, Korean, Chinese character sets

frequently asked questions, 3529
Java, 3486, 4231
JBoss, 4231
JDBC, 3483, 4231
jdbc:mysql:loadbalance://, 2582
JNDI, 4231
join, 4231

nested-loop algorithm, 1069
JOIN, 1780
join algorithm

Block Nested-Loop, 1065
Nested-Loop, 1065

join option
myisampack, 454

join type
ALL, 1154
const, 1152
eq_ref, 1152
fulltext, 1152
index, 1153
index_merge, 1153
index_subquery, 1153
range, 1153
ref, 1152
ref_or_null, 1152
system, 1151
unique_subquery, 1153

joins
USING versus ON, 1785

join_buffer_size system variable, 633

K
keep-my-cnf option

mysql_install_db, 325
keepold option

mysqlhotcopy, 494
keep_files_on_create system variable, 634
Key cache

MyISAM, 1170
key cache

assigning indexes to, 1965

3662

key partitioning, 3171
key partitions

managing, 3187
splitting and merging, 3187

key space
MyISAM, 2316

key-value store, 1116
keys, 1110

foreign, 46, 270
multi-column, 1112
searching on two, 273

keys option
mysqlshow, 419

keys-used option
myisamchk, 442

keystore, 4231
keywords, 1243
Key_blocks_not_flushed status variable, 728
Key_blocks_unused status variable, 728
Key_blocks_used status variable, 728
KEY_BLOCK_SIZE, 2091, 2096, 4231
key_buffer_size myisamchk variable, 439
key_buffer_size system variable, 634
key_cache_age_threshold system variable, 636
key_cache_block_size system variable, 636
key_cache_division_limit system variable, 636
KEY_COLUMN_USAGE

INFORMATION_SCHEMA table, 3279
Key_reads status variable, 728
Key_read_requests status variable, 728
Key_writes status variable, 728
Key_write_requests status variable, 728
Kill

thread command, 1206
KILL statement, 1972
Killed

thread state, 1209
Killing slave

thread state, 1217
known errors, 3585
Korean, 3529

L
labels

stored program block, 1841
language option

mysqld, 587
language support

error messages, 1335
lap option

ndb_redo_log_reader, 2907
large page support, 1199
large tables

3663

NDB Cluster, 1694
large-pages option

mysqld, 587
large_files_support system variable, 637
large_pages system variable, 637
large_page_size system variable, 637
LAST_DAY(), 1481
last_insert_id system variable, 637
LAST_INSERT_ID(), 1578, 1744

and replication, 2546
and stored routines, 3227
and triggers, 3227

Last_query_cost status variable, 728
Last_query_partial_plans status variable, 729
latch, 4232
LateAlloc, 2699
layout of installation, 82
lc-messages option

mysqld, 588
lc-messages-dir option

mysqld, 588
LCASE(), 1499
LcpScanProgressTimeout, 2695
lc_messages system variable, 638
lc_messages_dir system variable, 638
lc_time_names system variable, 638
ldata option

mysql_install_db, 326
LDML syntax, 1347
LD_LIBRARY_PATH environment variable, 241
LD_RUN_PATH environment variable, 241, 506
LEAST(), 1454
LEAVE, 1846
ledir option

mysqld_safe, 312
LEFT JOIN, 1072, 1780
LEFT OUTER JOIN, 1780
LEFT(), 1499
leftmost prefix of indexes, 1109, 1113
legal names, 1230
length option

myisam_ftdump, 433
LENGTH(), 1500
less than (<), 1449
less than or equal (<=), 1449
libaio, 83, 159, 196
libmysql, 4232

FAQ, 3542
libmysqlclient, 4232
libmysqlclient library, 3483
libmysqld, 3487, 4232

options, 3488
libmysqld library, 3483
libmysqld-libs option

3664

mysql_config, 500
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN environment variable, 506
LIBMYSQL_PLUGINS environment variable, 506
LIBMYSQL_PLUGIN_DIR environment variable, 506
library

libmysqlclient, 3483
libmysqld, 3483

libs option
mysql_config, 501

libs_r option
mysql_config, 501

license system variable, 638
lifecycle interceptor, 4232
LIKE, 1510

and indexes, 1115
and wildcards, 1115

LIMIT, 1576, 1776
and replication, 2559
optimizations, 1086

limitations
InnoDB, 2304
replication, 2545

limitations of NDB Cluster, 2600
limits

file-size, 1128
InnoDB, 2303
maximum columns per table, 1129
maximum number of databases, 1128, 1662
maximum number of tables, 1128, 1683
maximum row size, 1130
maximum tables per join, 1782
maximum tables per view, 3258
table size, 1128

line-numbers option
mysql, 346

linear hash partitioning, 3170
linear key partitioning, 3172
linefeed (\n), 1223, 1756
LineFromText(), 1587
LineFromWKB(), 1589
lines-terminated-by option

mysqldump, 400, 412
ndb_restore, 2920

LINESTRING data type, 1399
LineString(), 1591
LineStringFromText(), 1587
LineStringFromWKB(), 1589
links

symbolic, 1193
list, 4232
list action

MySQLInstallerConsole, 118
list partitioning, 3158, 3160
list partitions

3665

adding and dropping, 3181
managing, 3181

literals, 1221
bit value, 1229
boolean, 1230
date, 1224
hexadecimal, 1227
numeric, 1224
string, 1221
time, 1224

LN(), 1466
load balancing, 4232
LOAD DATA, 1750, 3580

and replication, 2559
LOCAL loading, 855

load emulation, 422
LOAD INDEX INTO CACHE

and partitioning, 3210
LOAD XML, 1762
loadable function

creating, 1906
deleting, 1907

loadable functions, 801
API, 801
installing, 801
reference, 1442
uninstalling, 801

loading
tables, 250

LOAD_FILE(), 1500
local option

mysqlimport, 412, 856
local-infile option

mysql, 346, 856
local-load option

mysqlbinlog, 476
local-service option

mysqld, 588
localhost, 4232

special treatment of, 305
LOCALTIME, 1481
LOCALTIMESTAMP, 1481
local_infile system variable, 639, 856
LOCATE(), 1500
lock, 4232
lock escalation, 4233
LOCK IN SHARE MODE, 1777
lock mode, 4233
Lock Monitor, 2240, 2244
lock option

ndb_select_all, 2938
LOCK TABLES, 1809
LOCK TABLES privilege, 865
lock-all-tables option

3666

mysqldump, 405
lock-tables option

mysqldump, 405
mysqlimport, 412

locked_in_memory system variable, 640
LockExecuteThreadToCPU, 2725
locking, 1191, 2037, 4233

external, 585, 678, 1043, 1190, 1211
information schema, 2207
InnoDB, 2038
internal, 1182
metadata, 1187
row-level, 1182
table-level, 1182

locking functions, 1571
locking methods, 1182
locking read, 4233
LockMaintThreadsToCPU, 2725
LockPagesInMainMemory, 2699
lock_wait_timeout system variable, 639
log, 4233

removed features, 21
log buffer, 4233
log file, 4234
log files

maintaining, 787
log files (NDB Cluster), 2820

ndbmtd, 2827
log group, 4234
log option

mysqld_multi, 319
LOG(), 1466
log-bin option

mysqld, 2482
log-bin-index option

mysqld, 2483
log-error option

mysqld, 588
mysqldump, 396
mysqld_safe, 312

log-isam option
mysqld, 589

log-name option
ndb_mgmd, 2835

log-raw option
mysqld, 589

log-short-format option
mysqld, 589

log-slow-admin-statements option
mysqld, 589

log-slow-slave-statements option
mysqld, 2454

log-tc option
mysqld, 590

3667

log-tc-size option
mysqld, 590

log-warnings option
mysqld, 590, 2454

LOG10(), 1467
LOG2(), 1466
logbuffers

ndbinfo table, 3059
LogDestination, 2672
logging

passwords, 846
logging commands (NDB Cluster), 2985
logging slow query

thread state, 1209
logical, 4234
logical backup, 4234
logical operators, 1454
login

thread state, 1209
login-path option, 292

mysql, 347
mysqladmin, 372
mysqlbinlog, 477
mysqlcheck, 381
mysqldump, 392
mysqlimport, 412
mysqlshow, 419
mysqlslap, 428
mysql_upgrade, 335
my_print_defaults, 502
ndbd, 2817
ndbinfo_select_all, 2825
ndb_blob_tool, 2850
ndb_config, 2858
ndb_delete_all, 2867
ndb_desc, 2876
ndb_drop_index, 2880
ndb_drop_table, 2885
ndb_index_stat, 2893
ndb_mgm, 2844
ndb_mgmd, 2835
ndb_move_data, 2901
ndb_restore, 2920
ndb_select_all, 2938
ndb_select_count, 2944
ndb_show_tables, 2949
ndb_waiter, 2957

LogLevelCheckpoint, 2718
LogLevelCongestion, 2719
LogLevelConnection, 2718
LogLevelError, 2718
LogLevelInfo, 2719
LogLevelNodeRestart, 2718
LogLevelShutdown, 2717

3668

LogLevelStartup, 2717
LogLevelStatistic, 2717
logs

flushing, 766
server, 765

logspaces
ndbinfo table, 3060

log_bin system variable, 2495
log_bin_basename system variable, 2495
log_bin_index system variable, 2495
log_bin_trust_function_creators system variable, 2495
log_bin_use_v1_row_events system variable, 2496
log_error system variable, 640
log_output system variable, 640
log_queries_not_using_indexes system variable, 641
log_slave_updates system variable, 2496
log_slow_admin_statements system variable

mysqld, 641
log_slow_queries

removed features, 21
log_slow_slave_statements system variable, 2464
log_throttle_queries_not_using_indexes system variable, 641
log_warnings system variable, 642
Long Data

thread command, 1206
LONG data type, 1391
LONGBLOB data type, 1387
LongMessageBuffer, 2691
LONGTEXT data type, 1387
long_query_time system variable, 642
LOOP, 1846

labels, 1841
loops option

ndbinfo_select_all, 2825
ndb_index_stat, 2894
ndb_show_tables, 2949

Loose Index Scan
GROUP BY optimizing, 1084

--loose option prefix, 292
LooseScan

semijoin strategy, 1093
loose_, 4234
lossy-conversions option

ndb_move_data, 2901
ndb_restore, 2920

lost connection errors, 3559
lost+found directory, 586
low-priority option

mysqlimport, 413
low-water mark, 4234
LOWER(), 1500
lower_case_file_system system variable, 643

GRANT, 1886
lower_case_table_names system variable, 643

3669

LOW_PRIORITY
DELETE modifier, 1736
INSERT modifier, 1744
UPDATE modifier, 1802

low_priority_updates system variable, 643
LPAD(), 1501
LRU, 4234
LRU page replacement, 2064
LSN, 4234
LTRIM(), 1501

M
macOS

installation, 135
main features of MySQL, 5
maintaining

log files, 787
tables, 1048

maintenance
tables, 375

MAKEDATE(), 1481
MAKETIME(), 1481
MAKE_SET(), 1501
Making temporary file (append) before replaying LOAD DATA INFILE

thread state, 1216
Making temporary file (create) before replaying LOAD DATA INFILE

thread state, 1216
malicious SQL statements

and NDB Cluster, 3096
manage keys

thread state, 1209
management client (NDB Cluster), 2840

(see also mgm)
management node (NDB Cluster)

defined, 2580
Management node parameters (NDB)

MaxNoOfSavedEvents, 2676
management nodes (NDB Cluster), 2828

(see also mgmd)
managing NDB Cluster, 2960
managing NDB Cluster processes, 2811
manual

available formats, 2
online location, 2
syntax conventions, 2
typographical conventions, 2

Master has sent all binlog to slave; waiting for binlog to be updated
thread state, 1215

master thread, 4235
master-data option

mysqldump, 398
master-info-file option

mysqld, 2454

3670

master-retry-count option
mysqld, 2455

master_info_repository system variable, 2465, 2512
MASTER_POS_WAIT(), 1620, 1830
master_verify_checksum system variable, 2497
MATCH ... AGAINST(), 1521
matching

patterns, 259
materialization

subqueries, 1094
math, 1623
mathematical functions, 1463
MAX(), 1610
MAX(DISTINCT), 1610
max-allowed-packet option

mysql, 347
mysqldump, 404

max-binlog-dump-events option
mysqld, 2486

max-join-size option
mysql, 347

max-record-length option
myisamchk, 442

max-relay-log-size option
mysqld, 2455

MaxAllocate, 2691
MaxBufferedEpochBytes, 2709
MaxBufferedEpochs, 2709
MAXDB SQL mode, 744
MaxDiskWriteSpeed, 2712
MaxDiskWriteSpeedOtherNodeRestart, 2712
MaxDiskWriteSpeedOwnRestart, 2713
MaxDMLOperationsPerTransaction, 2688
--maximum option prefix, 292
maximums

maximum columns per table, 1129
maximum number of databases, 1128, 1662
maximum number of tables, 1128, 1683
maximum row size, 1129
maximum tables per join, 1782
maximum tables per view, 3258
table size, 1128

MaxLCPStartDelay, 2694
MaxNoOfAttributes, 2695
MaxNoOfConcurrentIndexOperations, 2688
MaxNoOfConcurrentOperations, 2686
MaxNoOfConcurrentScans, 2689
MaxNoOfConcurrentSubOperations, 2699
MaxNoOfConcurrentTransactions, 2686
MaxNoOfExecutionThreads

ndbmtd, 2727
MaxNoOfFiredTriggers, 2689
MaxNoOfIndexes, 2698
MaxNoOfLocalOperations, 2687

3671

MaxNoOfLocalScans, 2690
MaxNoOfOpenFiles, 2694
MaxNoOfOrderedIndexes, 2697
MaxNoOfSavedEvents, 2676
MaxNoOfSavedMessages, 2694
MaxNoOfSubscribers, 2698
MaxNoOfSubscriptions, 2698
MaxNoOfTables, 2696
MaxNoOfTriggers, 2697
MaxNoOfUniqueHashIndexes, 2697
MaxParallelCopyInstances, 2691
MaxParallelScansPerFragment, 2691
MaxScanBatchSize, 2748
MaxStartFailRetries, 2741
max_allowed_packet

and replication, 2559
max_allowed_packet system variable, 644
max_binlog_cache_size system variable, 2497
max_binlog_size system variable, 2498
max_binlog_stmt_cache_size system variable, 2498
MAX_BLOB_PART_SIZE, 1716
max_connections system variable, 645
MAX_CONNECTIONS_PER_HOUR, 900
max_connect_errors system variable, 645
max_delayed_threads system variable, 645
max_digest_length system variable, 646
max_error_count system variable, 647
max_heap_table_size system variable, 647
max_insert_delayed_threads system variable, 648
max_join_size system variable, 363, 648
max_length_for_sort_data system variable, 649
max_long_data_size

removed features, 22
max_prepared_stmt_count system variable, 649
MAX_QUERIES_PER_HOUR, 900
max_relay_log_size system variable, 2465
MAX_ROWS

and NDB Cluster, 3151
NDB Cluster, 1694

max_seeks_for_key system variable, 649
max_sort_length system variable, 650
max_sp_recursion_depth system variable, 650
max_tmp_tables system variable, 650
MAX_UPDATES_PER_HOUR, 900
Max_used_connections status variable, 729
MAX_USER_CONNECTIONS, 900
max_user_connections system variable, 651
max_write_lock_count system variable, 651
MBR, 1603
MBRContains(), 1603
MBRDisjoint(), 1604
MBREqual(), 1604
MBRIntersects(), 1604
MBROverlaps(), 1604

3672

MBRTouches(), 1604
MBRWithin(), 1604
MD5(), 1567
MDL, 4235
medium trust, 4235
medium-check option

myisamchk, 441
mysqlcheck, 381

MEDIUMBLOB data type, 1387
MEDIUMINT data type, 1362
MEDIUMTEXT data type, 1387
membership

ndbinfo table, 3061
memcached, 2260, 4235
MEMCACHED_HOME option

CMake, 200
MEMCACHED_SASL_PWDB environment variable, 2271
memcapable command, 2261
memlock option

mysqld, 591
memory allocation library, 312
memory allocator

innodb_use_sys_malloc, 2070
MEMORY storage engine, 2307, 2320

and replication, 2560
optimization, 1112

memory usage
myisamchk, 451

memory use, 1197
in NDB Cluster, 2603
Performance Schema, 3371

memoryusage
ndbinfo table, 3063

memory_per_fragment
ndbinfo table, 3064

MemReportFrequency, 2719
merge, 4236
MERGE storage engine, 2307, 2331
MERGE tables

defined, 2331
metadata

database, 3262
database object, 1282
InnoDB, 3306
stored routines, 3227
triggers, 3232
views, 3244

metadata lock, 4236
metadata locking, 1187
metadata log, 787
metadata_locks_cache_size system variable, 652
metadata_locks_hash_instances system variable, 652
method option

mysqlhotcopy, 494

3673

methods
locking, 1182

metrics counter, 4236
mgmd (NDB Cluster)

defined, 2580
(see also management node (NDB Cluster))

MICROSECOND(), 1481
MID(), 1501
midpoint insertion, 2064
midpoint insertion strategy, 4236
milestone

MySQL releases, 64
MIN(), 1611
MIN(DISTINCT), 1611
MinDiskWriteSpeed, 2713
MinFreePct, 2685
mini-transaction, 4236
minimum bounding rectangle, 1603
minus

unary (-), 1461
MINUTE(), 1482
min_examined_row_limit system variable, 652
mirror sites, 65
miscellaneous functions, 1616
mixed statements (Replication), 2565
mixed-mode insert, 4236
MLineFromText(), 1587
MLineFromWKB(), 1589
MM.MySQL, 4236
MOD (modulo), 1467
MOD(), 1467
modes

batch, 266
modify action

MySQLInstallerConsole, 118
modulo (%), 1467
modulo (MOD), 1467
monitor

terminal, 243
monitoring, 1995, 2000, 2028, 2096, 2236, 3495

threads, 1203
Monitors, 2240

enabling, 2241
InnoDB, 2115, 2256, 2296
output, 2244

Mono, 4237
MONTH(), 1482
MONTHNAME(), 1482
MPointFromText(), 1587
MPointFromWKB(), 1589
MPolyFromText(), 1587
MPolyFromWKB(), 1589
.MRG file, 4235
mSQL compatibility, 1514

3674

msql2mysql, 500
deprecated features, 21

MSSQL SQL mode, 744
multi mysqld, 318
multi-column indexes, 1112
multi-core, 4237
Multi-Range Read

optimization, 1075
multi-source replication

in NDB Cluster, 3133
multibyte character sets, 3567
multibyte characters, 1338
MULTILINESTRING data type, 1399
MultiLineString(), 1591
MultiLineStringFromText(), 1587
MultiLineStringFromWKB(), 1589
multiple buffer pools, 2063
multiple servers, 803
multiple-part index, 1667
multiplication (*), 1461
MULTIPOINT data type, 1399
MultiPoint(), 1591
MultiPointFromText(), 1587
MultiPointFromWKB(), 1589
MULTIPOLYGON data type, 1399
MultiPolygon(), 1591
MultiPolygonFromText(), 1587
MultiPolygonFromWKB(), 1589
mutex, 4237
mutex wait

monitoring, 2236
mutex_instances table

performance_schema, 3412
MVCC, 4237
MVCC (multi-version concurrency control), 1989
My

derivation, 8
my-print-defaults option

mysql_plugin, 328
my.cnf, 4237

and NDB Cluster, 2629, 2661, 2662
in NDB Cluster, 3018

my.cnf option file, 2545
my.ini, 4237
mycnf option

ndb_config, 2858
ndb_mgmd, 2835

.MYD file, 4235

.MYI file, 4235
MyISAM

compressed tables, 453, 2318
converting tables to InnoDB, 2011

MyISAM key cache, 1169
MyISAM storage engine, 2307, 2311

3675

myisam-block-size option
mysqld, 591

myisamchk, 280, 433
analyze option, 443
backup option, 442
block-search option, 444
character-sets-dir option, 442
check option, 441
check-only-changed option, 441
correct-checksum option, 442
data-file-length option, 442
debug option, 438
defaults-extra-file option, 438
defaults-file option, 438
defaults-group-suffix option, 438
description option, 444
example output, 444
extend-check option, 441, 442
fast option, 441
force option, 441, 442
help option, 438
HELP option, 438
information option, 441
keys-used option, 442
max-record-length option, 442
medium-check option, 441
no-defaults option, 438
no-symlinks option, 442
options, 438
parallel-recover option, 443
print-defaults option, 439
quick option, 443
read-only option, 441
recover option, 443
safe-recover option, 443
set-auto-increment[option, 444
set-collation option, 443
silent option, 439
sort-index option, 444
sort-records option, 444
sort-recover option, 443
tmpdir option, 443
unpack option, 443
update-state option, 442
verbose option, 439
version option, 439
wait option, 439

myisamlog, 280, 451
myisampack, 280, 453, 1716, 2318

backup option, 453
character-sets-dir option, 453
debug option, 453
force option, 454
help option, 453

3676

join option, 454
silent option, 454
test option, 454
tmpdir option, 454
verbose option, 454
version option, 454
wait option, 454

myisam_block_size myisamchk variable, 439
myisam_data_pointer_size system variable, 653
myisam_ftdump, 280, 432

count option, 433
dump option, 433
help option, 433
length option, 433
stats option, 433
verbose option, 433

myisam_max_sort_file_size system variable, 653, 2315
myisam_mmap_size system variable, 654
myisam_recover_options system variable, 654, 2315
myisam_repair_threads system variable, 655
myisam_sort_buffer_size myisamchk variable, 439
myisam_sort_buffer_size system variable, 655, 2315
myisam_stats_method system variable, 656
myisam_use_mmap system variable, 656
MyODBC drivers, 4237
MySQL

debugging, 810
defined, 4
introduction, 4
pronunciation, 5
upgrading, 330

mysql, 279, 337, 4237
auto-rehash option, 342
auto-vertical-output option, 342
batch option, 342
binary-as-hex option, 343
binary-mode option, 343
bind-address option, 343
character-sets-dir option, 344
charset command, 353
clear command, 353
column-names option, 344
column-type-info option, 344
comments option, 344
compress option, 344
connect command, 353
connect-expired-password option, 344
connect-timeout option, 344
database option, 344
debug option, 344
debug-check option, 344
debug-info option, 345
default-auth option, 345
default-character-set option, 345

3677

defaults-extra-file option, 345
defaults-file option, 345
defaults-group-suffix option, 345
delimiter command, 354
delimiter option, 345
disable named commands, 346
edit command, 354
ego command, 354
enable-cleartext-plugin option, 346
execute option, 346
exit command, 354
force option, 346
go command, 354
help command, 353
help option, 342
histignore option, 346
host option, 346
html option, 346
i-am-a-dummy option, 350
ignore-spaces option, 346
init-command option, 346
line-numbers option, 346
local-infile option, 346, 856
login-path option, 347
max-allowed-packet option, 347
max-join-size option, 347
named-commands option, 347
net-buffer-length option, 347
no-auto-rehash option, 347
no-beep option, 347
no-defaults option, 347
nopager command, 354
notee command, 354
nowarning command, 354
one-database option, 348
pager command, 355
pager option, 348
password option, 348
pipe option, 348
plugin-dir option, 349
port option, 349
print command, 355
print-defaults option, 349
prompt command, 355
prompt option, 349
protocol option, 349
quick option, 349
quit command, 355
raw option, 349
reconnect option, 350
rehash command, 355
safe-updates option, 350
secure-auth option, 350
select-limit option, 350

3678

server-public-key-path option, 350
shared-memory-base-name option, 350
show-warnings option, 351
sigint-ignore option, 351
silent option, 351
skip-column-names option, 351
skip-line-numbers option, 351
socket option, 351
source command, 355
SSL options, 351
status command, 355
system command, 355
table option, 351
tee command, 355
tee option, 351
unbuffered option, 351
use command, 356
user option, 351
verbose option, 352
version option, 352
vertical option, 352
wait option, 352
warnings command, 356
xml option, 352

MySQL APT Repository, 155, 229
MySQL binary distribution, 64
MySQL C API, 3492
mysql client parser

versus mysqld parser, 364
MySQL Cluster Manager

and ndb_mgm, 2961
mysql command options, 338
mysql commands

list of, 352
MySQL Dolphin name, 8
MySQL Enterprise Audit, 967, 3498

new features, 11
MySQL Enterprise Backup, 3496, 4237
MySQL Enterprise Data Masking and De-Identification, 3498
MySQL Enterprise Encryption, 1010, 3497

new features, 11
MySQL Enterprise Firewall, 994, 3498

installing, 995
new features, 11
using, 998

MySQL Enterprise Firewall functions
mysql_firewall_flush_status(), 1008
normalize_statement(), 1008
read_firewall_users(), 1008
read_firewall_whitelist(), 1008
set_firewall_mode(), 1008

MySQL Enterprise Firewall stored procedures
sp_reload_firewall_rules(), 1006
sp_set_firewall_mode(), 1007

3679

MySQL Enterprise Firewall tables
firewall_users, 1006
firewall_whitelist, 1006

MySQL Enterprise Monitor, 3495
MySQL Enterprise Security, 935, 945, 3497
MySQL Enterprise Thread Pool, 794, 3498

elements, 795
installing, 795

MySQL history, 8
mysql history file, 358
MySQL Installer, 90
MySQL name, 8
MySQL privileges

and NDB Cluster, 3095
mysql prompt command, 356
MySQL server

mysqld, 310, 512
MySQL SLES Repository, 155, 229
mysql source (command for reading from text files), 267, 361
MySQL source distribution, 64
MySQL storage engines, 2307
MySQL system tables

and NDB Cluster, 3095
and replication, 2561

MySQL version, 65
MySQL Yum Repository, 149, 153, 227
mysql \. (command for reading from text files), 267, 361
mysql.event table, 3239
mysql.server, 278, 316

basedir option, 317
datadir option, 317
pid-file option, 317
service-startup-timeout option, 318

mysql.slave_master_info table, 2512
mysql.slave_relay_log_info table, 2512
mysql.sock

protection, 3575
MYSQL323 SQL mode, 744
MYSQL40 SQL mode, 745
mysqlaccess, 280, 465

brief option, 467
commit option, 467
copy option, 467
db option, 467
debug option, 467
deprecated features, 21
help option, 467
host option, 467
howto option, 467
old_server option, 467
password option, 467
plan option, 467
preview option, 468
relnotes option, 468

3680

rhost option, 468
rollback option, 468
spassword option, 468
superuser option, 468
table option, 468
user option, 468
version option, 468

mysqladmin, 279, 365, 1662, 1727, 1954, 1960, 1966, 1972
bind-address option, 370
character-sets-dir option, 370
compress option, 370
connect-timeout option, 370
count option, 370
debug option, 371
debug-check option, 371
debug-info option, 371
default-auth option, 371
default-character-set option, 371
defaults-extra-file option, 371
defaults-file option, 371
defaults-group-suffix option, 371
enable-cleartext-plugin option, 372
force option, 372
help option, 370
host option, 372
login-path option, 372
no-beep option, 372
no-defaults option, 372
password option, 373
pipe option, 373
plugin-dir option, 373
port option, 373
print-defaults option, 373
protocol option, 373
relative option, 373
secure-auth option, 373
shared-memory-base-name option, 374
shutdown-timeout option, 374
silent option, 374
sleep option, 374
socket option, 374
SSL options, 374
user option, 374
verbose option, 374
version option, 374
vertical option, 375
wait option, 375

mysqladmin command options, 368
mysqladmin option

mysqld_multi, 319
mysqlbackup command, 4238
mysqlbinlog, 280, 468

base64-output option, 473
bind-address option, 473

3681

binlog-row-event-max-size option, 473
character-sets-dir option, 473
connection-server-id option, 474
database option, 474
debug option, 475
debug-check option, 475
debug-info option, 475
default-auth option, 475
defaults-extra-file option, 475
defaults-file option, 476
defaults-group-suffix option, 476
disable-log-bin option, 476
exclude-gtids option, 476
force-if-open option, 476
force-read option, 476
help option, 472
hexdump option, 476
host option, 476
include-gtids option, 476
local-load option, 476
login-path option, 477
no-defaults option, 477
offset option, 477
open-files-limit option, 477
password option, 477
plugin-dir option, 478
port option, 478
print-defaults option, 478
protocol option, 478
raw option, 478
read-from-remote-master option, 478
read-from-remote-server option, 478
result-file option, 479
secure-auth option, 479
server-id option, 479
server-id-bits option, 479
set-charset option, 479
shared-memory-base-name option, 479
short-form option, 480
skip-gtids option, 480
socket option, 480
SSL options, 480
start-datetime option, 480
start-position option, 480
stop-datetime option, 480
stop-never option, 481
stop-never-slave-server-id option, 481
stop-position option, 481
to-last-log option, 481
user option, 481
verbose option, 481
verify-binlog-checksum option, 481
version option, 481

mysqlbug, 323

3682

deprecated features, 21
mysqlcheck, 279, 375

all-databases option, 378
all-in-1 option, 379
analyze option, 379
auto-repair option, 379
bind-address option, 379
character-sets-dir option, 379
check option, 379
check-only-changed option, 379
check-upgrade option, 379
compress option, 379
databases option, 379
debug option, 379
debug-check option, 380
debug-info option, 380
default-auth option, 380
default-character-set option, 380
defaults-extra-file option, 380
defaults-file option, 380
defaults-group-suffix option, 380
enable-cleartext-plugin option, 381
extended option, 380
fast option, 381
fix-db-names option, 381
fix-table-names option, 381
force option, 381
help option, 378
host option, 381
login-path option, 381
medium-check option, 381
no-defaults option, 381
optimize option, 382
password option, 382
pipe option, 382
plugin-dir option, 382
port option, 382
print-defaults option, 382
protocol option, 382
quick option, 382
repair option, 382
secure-auth option, 382
shared-memory-base-name option, 383
silent option, 383
skip-database option, 383
socket option, 383
SSL options, 383
tables option, 383
use-frm option, 384
user option, 384
verbose option, 384
version option, 384
write-binlog option, 384

mysqlclient, 4238

3683

mysqld, 278, 4238
abort-slave-event-count option, 2453
allow-suspicious-udfs option, 580
ansi option, 580
as NDB Cluster process, 2752, 3017
audit-log option, 986
basedir option, 580
binlog-checksum option, 2486
binlog-do-db option, 2483
binlog-ignore-db option, 2485
binlog-row-event-max-size option, 2482
bootstrap option, 581
character-set-client-handshake option, 581
chroot option, 581
command options, 579
console option, 581
core-file option, 582
datadir option, 582
debug option, 582
debug-sync-timeout option, 583
default-authentication-plugin option, 583
default-time-zone option, 584
defaults-extra-file option, 584
defaults-file option, 585
defaults-group-suffix option, 585
des-key-file option, 585
disconnect-slave-event-count option, 2453
exit-info option, 585
external-locking option, 585
flush option, 585
gdb option, 586
help option, 580
ignore-db-dir option, 586
innodb option, 2138
innodb-status-file option, 2139
install option, 586
install-manual option, 587
language option, 587
large-pages option, 587
lc-messages option, 588
lc-messages-dir option, 588
local-service option, 588
log-bin option, 2482
log-bin-index option, 2483
log-error option, 588
log-isam option, 589
log-raw option, 589
log-short-format option, 589
log-slow-admin-statements option, 589
log-slow-slave-statements option, 2454
log-tc option, 590
log-tc-size option, 590
log-warnings option, 590, 2454
log_slow_admin_statements system variable, 641

3684

master-info-file option, 2454
master-retry-count option, 2455
max-binlog-dump-events option, 2486
max-relay-log-size option, 2455
memlock option, 591
myisam-block-size option, 591
MySQL server, 310, 512
ndb-batch-size option, 2752
ndb-blob-read-batch-bytes option, 2754
ndb-blob-write-batch-bytes option, 2754
ndb-cluster-connection-pool option, 2753
ndb-connectstring option, 2755
ndb-log-apply-status, 2756
ndb-log-empty-epochs, 2756
ndb-log-empty-update, 2757
ndb-log-exclusive-reads, 2757
ndb-log-fail-terminate, 2757
ndb-log-orig, 2757
ndb-log-transaction-id, 2758
ndb-nodeid, 2760
ndb-optimization-delay option, 2761
ndb-optimized-node-selection option, 2761
ndb-transid-mysql-connection-map option, 2761
ndb-wait-connected option, 2762
ndb-wait-setup option, 2762
ndbcluster option, 2752
no-defaults option, 592
old-style-user-limits option, 592
partition option, 592
performance-schema-consumer-events-stages-current option, 3463
performance-schema-consumer-events-stages-history option, 3463
performance-schema-consumer-events-stages-history-long option, 3463
performance-schema-consumer-events-statements-current option, 3463
performance-schema-consumer-events-statements-history option, 3463
performance-schema-consumer-events-statements-history-long option, 3463
performance-schema-consumer-events-waits-current option, 3463
performance-schema-consumer-events-waits-history option, 3463
performance-schema-consumer-events-waits-history-long option, 3463
performance-schema-consumer-global-instrumentation option, 3464
performance-schema-consumer-statements-digest option, 3464
performance-schema-consumer-thread-instrumentation option, 3464
performance-schema-consumer-xxx option, 3463
performance-schema-instrument option, 3463
plugin option prefix, 594
plugin-load option, 592
plugin-load-add option, 593
port option, 594
port-open-timeout option, 595
print-defaults option, 595
relay-log-purge option, 2455
relay-log-space-limit option, 2456
remove option, 595
replicate-do-db option, 2456
replicate-do-table option, 2459

3685

replicate-ignore-db option, 2458
replicate-ignore-table option, 2459
replicate-rewrite-db option, 2459
replicate-same-server-id option, 2460
replicate-wild-do-table option, 2461
replicate-wild-ignore-table option, 2461
role in NDB Cluster (see SQL Node (NDB Cluster))
safe-user-create option, 595
server-id-bits option, 2762
server_uuid variable, 2441
show-slave-auth-info option, 2447
skip-grant-tables option, 595
skip-host-cache option, 596
skip-innodb option, 597, 2139
skip-ndbcluster option, 2763
skip-new option, 597
skip-partition option, 597
skip-show-database option, 597
skip-slave-start option, 2461
skip-ssl option, 599
skip-stack-trace option, 597
skip-symbolic-links option, 600
slave-skip-errors option, 2462
slave-sql-verify-checksum option, 2463
slow-start-timeout option, 598
socket option, 598
sporadic-binlog-dump-fail option, 2487
sql-mode option, 598
ssl option, 599
standalone option, 600
starting, 855
super-large-pages option, 600
symbolic-links option, 600
sysdate-is-now option, 600
tc-heuristic-recover option, 601
temp-pool option, 601
tmpdir option, 602
transaction-isolation option, 601
transaction-read-only option, 602
user option, 602
validate-password option, 963
validate-user-plugins option, 603
verbose option, 603
version option, 603

mysqld (NDB Cluster), 2811
mysqld option

malloc-lib, 312
mysqld_multi, 319
mysqld_safe, 313
mysql_plugin, 328

mysqld options, 513
mysqld options and variables

NDB Cluster, 2752
mysqld parser

3686

versus mysql client parser, 364
mysqld system variables, 513
mysqld-version option

mysqld_safe, 313
MySQLdb, 4238
mysqldump, 234, 280, 384, 4238

add-drop-database option, 394
add-drop-table option, 394
add-drop-trigger option, 395
add-locks option, 404
all-databases option, 402
all-tablespaces option, 395
allow-keywords option, 395
apply-slave-statements option, 397
bind-address option, 391
character-sets-dir option, 397
comments option, 395
compact option, 399
compatible option, 399
complete-insert option, 399
compress option, 391
create-options option, 399
databases option, 402
debug option, 395
debug-check option, 395
debug-info option, 396
default-auth option, 392
default-character-set option, 397
defaults-extra-file option, 393
defaults-file option, 394
defaults-group-suffix option, 394
delayed-insert option, 403
delete-master-logs option, 397
disable-keys option, 403
dump-date option, 396
dump-slave option, 397
enable-cleartext-plugin option, 392
events option, 402
extended-insert option, 403
fields-enclosed-by option, 400, 412
fields-escaped-by option, 400, 412
fields-optionally-enclosed-by option, 400, 412
fields-terminated-by option, 400, 412
flush-logs option, 404
flush-privileges option, 405
force option, 396
help option, 396
hex-blob option, 400
host option, 392
ignore-table option, 402
include-master-host-port option, 398
insert-ignore option, 404
lines-terminated-by option, 400, 412
lock-all-tables option, 405

3687

lock-tables option, 405
log-error option, 396
login-path option, 392
master-data option, 398
max-allowed-packet option, 404
net-buffer-length option, 404
no-autocommit option, 405
no-create-db option, 395
no-create-info option, 395
no-data option, 402
no-defaults option, 394
no-set-names option, 397
no-tablespaces option, 395
opt option, 404
order-by-primary option, 405
password option, 392
pipe option, 392
plugin-dir option, 392
port option, 392
print-defaults option, 394
problems, 407, 3259
protocol option, 393
quick option, 404
quote-names option, 400
replace option, 395
result-file option, 400
routines option, 402
secure-auth option, 393
set-charset option, 397
set-gtid-purged option, 398
shared-memory-base-name option, 405
single-transaction option, 405
skip-comments option, 396
skip-opt option, 404
socket option, 393
SSL options, 393
tab option, 400
tables option, 403
triggers option, 403
tz-utc option, 400
user option, 393
using for backups, 1035
verbose option, 396
version option, 396
views, 407, 3259
where option, 403
workarounds, 407, 3259
xml option, 401

mysqldumpslow, 281, 490
debug option, 491
help option, 491
verbose option, 492

mysqld_multi, 279, 318
defaults-extra-file option, 319

3688

defaults-file option, 319
example option, 319
help option, 319
log option, 319
mysqladmin option, 319
mysqld option, 319
no-defaults option, 319
no-log option, 319
password option, 320
silent option, 320
tcp-ip option, 320
user option, 320
verbose option, 320
version option, 320

mysqld_safe, 278, 310
basedir option, 312
core-file-size option, 312
datadir option, 312
defaults-extra-file option, 312
defaults-file option, 312
help option, 311
ledir option, 312
log-error option, 312
malloc-lib option, 312
mysqld option, 313
mysqld-version option, 313
nice option, 313
no-defaults option, 313
open-files-limit option, 314
pid-file option, 314
plugin-dir option, 314
port option, 314
skip-kill-mysqld option, 314
skip-syslog option, 314
socket option, 314
syslog option, 314
syslog-tag option, 314
timezone option, 314
user option, 314

mysqlhotcopy, 281, 492
addtodest option, 493
allowold option, 493
checkpoint option, 493
chroot option, 493
debug option, 494
deprecated features, 21
dryrun option, 494
flushlog option, 494
help option, 493
host option, 494
keepold option, 494
method option, 494
noindices option, 494
old_server option, 494

3689

password option, 494
port option, 494
quiet option, 494
record_log_pos option, 494
regexp option, 495
resetmaster option, 495
resetslave option, 495
socket option, 495
suffix option, 495
tmpdir option, 495
user option, 495

mysqlimport, 234, 280, 407, 1751
bind-address option, 410
character-sets-dir option, 410
columns option, 410
compress option, 410
debug option, 411
debug-check option, 411
debug-info option, 411
default-auth option, 411
default-character-set option, 411
defaults-extra-file option, 411
defaults-file option, 411
defaults-group-suffix option, 411
delete option, 412
enable-cleartext-plugin option, 412
force option, 412
help option, 410
host option, 412
ignore option, 412
ignore-lines option, 412
local option, 412, 856
lock-tables option, 412
login-path option, 412
low-priority option, 413
no-defaults option, 413
password option, 413
pipe option, 413
plugin-dir option, 413
port option, 413
print-defaults option, 414
protocol option, 414
replace option, 414
secure-auth option, 414
shared-memory-base-name option, 414
silent option, 414
socket option, 415
SSL options, 415
use-threads option, 415
user option, 415
verbose option, 415
version option, 415

MySQLInstallerConsole, 112
configure action, 115

3690

help action, 115
install action, 116
list action, 118
modify action, 118
remove action, 119
set action, 119
status action, 120
update action, 121
upgrade action, 121

mysqlshow, 280, 415
bind-address option, 418
character-sets-dir option, 418
compress option, 418
count option, 418
debug option, 418
debug-check option, 418
debug-info option, 418
default-auth option, 419
default-character-set option, 419
defaults-extra-file option, 419
defaults-file option, 419
defaults-group-suffix option, 419
enable-cleartext-plugin option, 419
help option, 418
host option, 419
keys option, 419
login-path option, 419
no-defaults option, 420
password option, 420
pipe option, 420
plugin-dir option, 420
port option, 420
print-defaults option, 420
protocol option, 421
secure-auth option, 421
shared-memory-base-name option, 421
show-table-type option, 421
socket option, 421
SSL options, 421
status option, 421
user option, 421
verbose option, 422
version option, 422

mysqlslap, 280, 422
auto-generate-sql option, 426
auto-generate-sql-add-autoincrement option, 426
auto-generate-sql-execute-number option, 426
auto-generate-sql-guid-primary option, 426
auto-generate-sql-load-type option, 426
auto-generate-sql-secondary-indexes option, 426
auto-generate-sql-unique-query-number option, 426
auto-generate-sql-unique-write-number option, 426
auto-generate-sql-write-number option, 426
commit option, 426

3691

compress option, 426
concurrency option, 426
create option, 427
create-schema option, 427
csv option, 427
debug option, 427
debug-check option, 427
debug-info option, 427
default-auth option, 427
defaults-extra-file option, 427
defaults-file option, 427
defaults-group-suffix option, 428
delimiter option, 428
detach option, 428
enable-cleartext-plugin option, 428
engine option, 428
help option, 426
host option, 428
iterations option, 428
login-path option, 428
no-defaults option, 429
no-drop option, 428
number-char-cols option, 429
number-int-cols option, 429
number-of-queries option, 429
only-print option, 429
password option, 429
pipe option, 429
plugin-dir option, 430
port option, 430
post-query option, 430
post-system option, 430
pre-query option, 430
pre-system option, 430
print-defaults option, 430
protocol option, 430
query option, 430
secure-auth option, 430
shared-memory-base-name option, 431
silent option, 431
socket option, 431
SSL options, 431
user option, 431
verbose option, 431
version option, 431

mysql_clear_password authentication plugin, 934
mysql_cluster_backup_privileges, 3031
mysql_cluster_move_grant_tables, 3031
mysql_cluster_move_privileges, 3031
mysql_cluster_privileges_are_distributed, 3031
mysql_cluster_restore_local_privileges, 3033
mysql_cluster_restore_privileges, 3033
mysql_cluster_restore_privileges_from_local, 3033
mysql_config, 500

3692

cflags option, 500
cxxflags option, 500
embedded option, 500
embedded-libs option, 500
include option, 500
libmysqld-libs option, 500
libs option, 501
libs_r option, 501
plugindir option, 501
port option, 501
socket option, 501
variable option, 501
version option, 501

mysql_config_editor, 280, 459
debug option, 462
help option, 462
verbose option, 462
version option, 462

mysql_convert_table_format, 281, 495
deprecated features, 21
force option, 495
help option, 495
host option, 496
password option, 496
port option, 496
socket option, 496
type option, 496
user option, 496
verbose option, 496
version option, 496

MYSQL_DATADIR option
CMake, 193

MYSQL_DEBUG environment variable, 282, 506, 817
mysql_find_rows, 281, 496

deprecated features, 21
help option, 497
regexp option, 497
rows option, 497
skip-use-db option, 497
start_row option, 497

mysql_firewall_flush_status() MySQL Enterprise Firewall function, 1008
mysql_firewall_max_query_size system variable, 1009
mysql_firewall_mode system variable, 1009
mysql_firewall_trace system variable, 1009
MYSQL_FIREWALL_USERS

INFORMATION_SCHEMA table, 3358
MYSQL_FIREWALL_WHITELIST

INFORMATION_SCHEMA table, 3358
mysql_fix_extensions, 281, 497

deprecated features, 21
MYSQL_GROUP_SUFFIX environment variable, 506
MYSQL_HISTFILE environment variable, 358, 506
MYSQL_HISTIGNORE environment variable, 358, 506
MYSQL_HOME environment variable, 506

3693

MYSQL_HOST environment variable, 306, 506
mysql_info(), 1641, 1743, 1761, 1802
mysql_insert_id(), 1744
mysql_install_db, 205, 279, 323

basedir option, 325
builddir option, 325
cross-bootstrap option, 325
datadir option, 325
defaults-extra-file option, 325
defaults-file option, 325
force option, 325
help option, 325
keep-my-cnf option, 325
ldata option, 326
no-defaults option, 326
random-passwords option, 326
rpm option, 326
skip-name-resolve option, 327
srcdir option, 327
user option, 327
verbose option, 327
windows option, 327

MYSQL_MAINTAINER_MODE option
CMake, 196

mysql_native_password authentication plugin, 924
mysql_old_password

deprecated features, 21
mysql_old_password authentication plugin, 925
MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD environment variable, 506, 1013
MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD environment variable, 506, 1013
MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD environment variable, 506, 1013
mysql_options()

MYSQL_OPT_LOCAL_INFILE, 856
mysql_plugin, 279, 327

basedir option, 328
datadir option, 328
help option, 328
my-print-defaults option, 328
mysqld option, 328
no-defaults option, 329
plugin-dir option, 329
plugin-ini option, 329
print-defaults option, 329
verbose option, 329
version option, 329

MYSQL_PROJECT_NAME option
CMake, 196

MYSQL_PS1 environment variable, 506
MYSQL_PWD environment variable, 282, 306, 506
mysql_real_escape_string(), 1224, 1502
mysql_secure_installation, 279, 329
mysql_setpermission, 281, 497

deprecated features, 21
help option, 498

3694

host option, 498
password option, 498
port option, 498
socket option, 498
user option, 498

MYSQL_TCP_PORT environment variable, 282, 506, 809, 809
MYSQL_TCP_PORT option

CMake, 196
MYSQL_TEST_LOGIN_FILE environment variable, 292, 459, 506
mysql_tzinfo_to_sql, 279, 329
MYSQL_UNIX_ADDR option

CMake, 196
MYSQL_UNIX_PORT environment variable, 206, 282, 506, 809, 809
mysql_upgrade, 279, 330

basedir option, 334
character-sets-dir option, 334
compress option, 334
datadir option, 334
debug option, 334
debug-check option, 334
debug-info option, 334
default-auth option, 334
default-character-set option, 334
defaults-extra-file option, 335
defaults-file option, 335
defaults-group-suffix option, 335
force option, 335
help option, 334
host option, 335
login-path option, 335
mysql_upgrade_info file, 332
no-defaults option, 335
password option, 336
pipe option, 336
plugin-dir option, 336
port option, 336
print-defaults option, 336
protocol option, 336
shared-memory-base-name option, 336
socket option, 337
SSL options, 337
tmpdir option, 337
upgrade-system-tables option, 337
user option, 337
verbose option, 337
version-check option, 337
write-binlog option, 337

mysql_upgrade_info file
mysql_upgrade, 332

mysql_waitpid, 281, 498
deprecated features, 21
help option, 498
verbose option, 499
version option, 499

3695

mysql_zap, 281, 499
deprecated features, 21

my_print_defaults, 282, 501
config-file option, 502
debug option, 502
defaults-extra-file option, 502
defaults-file option, 502
defaults-group-suffix option, 502
extra-file option, 502
help option, 502
login-path option, 502
no-defaults option, 502
show option, 503
verbose option, 503
version option, 503

N
name-file option

comp_err, 322
named pipes, 124, 129
named time zone support

Unknown or incorrect time zone, 756
named-commands option

mysql, 347
named_pipe system variable, 656
named_pipe_full_access_group system variable, 657
names, 1230

case sensitivity, 1235
variables, 1266

NAME_CONST(), 1621, 3253
naming

releases of MySQL, 64
NATIONAL CHAR data type, 1385
NATIONAL VARCHAR data type, 1386
native backup and restore

backup identifiers, 3014
native C API, 4238
native functions

reference, 1424
native operators

reference, 1424
NATURAL JOIN, 1780
natural key, 4238
NATURAL LEFT JOIN, 1780
NATURAL LEFT OUTER JOIN, 1780
NATURAL RIGHT JOIN, 1780
NATURAL RIGHT OUTER JOIN, 1780
NCHAR data type, 1385
NDB API

and distributed grant tables, 3033
and distributed privileges, 3033

NDB API counters (NDB Cluster), 3033
scope, 3037

3696

status variables associated with, 3039
types, 3037

NDB API database objects
and NDB Cluster replication, 3101

NDB API replica status variables
and NDB Cluster Replication, 3099

NDB Cluster, 2576
"quick" configuration, 2640
administration, 2752, 2811, 2828, 2840, 2840, 2961, 2993
and application feature requirements, 2599
and DNS, 2613
and INFORMATION_SCHEMA, 3096
and IP addressing, 2613
and MySQL privileges, 3095
and MySQL root user, 3095, 3097
and networking, 2586
and transactions, 2682
API node, 2580, 2744
applications supported, 2599
availability, 2597
available platforms, 2577
BACKUP Events, 2992
backups, 2908, 3011, 3012, 3012, 3015, 3016
CHECKPOINT Events, 2987
cluster logs, 2984, 2985
CLUSTERLOG commands, 2985
CLUSTERLOG STATISTICS command, 2993
commands, 2752, 2811, 2828, 2840, 2961
compared to InnoDB, 2597, 2597, 2599, 2599
compared to standalone MySQL Server, 2597, 2597, 2599, 2599
concepts, 2580
configuration, 2612, 2640, 2640, 2669, 2670, 2677, 2744, 2840, 3018
configuration (example), 2662
configuration changes, 2998
configuration files, 2629, 2661
configuration parameters, 2642, 2643, 2649, 2650, 2651
configuring, 3015
CONNECT command, 2961
CONNECTION Events, 2987
connection string, 2667
CREATE NODEGROUP command, 2962
data node, 2580, 2677
data nodes, 2811, 2827
defining node hosts, 2669
direct connections between nodes, 2804
Disk Data tables (see NDB Cluster Disk Data)
DROP NODEGROUP command, 2962
ENTER SINGLE USER MODE command, 2963
ERROR Events, 2992
error logs, 2820
event log format, 2987
event logging thresholds, 2986
event logs, 2984, 2985
event severity levels, 2986

3697

event types, 2984, 2987
execution threads, 2727
EXIT command, 2963
EXIT SINGLE USER MODE command, 2963
FAQ, 3515
fragment replicas, 2583
GCP Stop errors, 2739
general description, 2579
HELP command, 2963
HostName parameter

and security, 3091
importing data, 3016
INFO Events, 2992
information sources, 2578
insecurity of communication protocols, 3091
installation, 2612
installation (Linux), 2614
installation (Windows), 2621
installing .deb file (Linux), 2619
installing binary (Windows), 2621
installing binary release (Linux), 2615
installing from source (Linux), 2619
installing from source (Windows), 2624
installing RPM (Linux), 2617
interconnects, 2810
Java clients, 2582
large tables, 1694
log files, 2820, 2827
logging commands, 2985
management client (ndb_mgm), 2840
management commands, 2993
management node, 2580, 2670
management nodes, 2828
managing, 2960
MAX_ROWS, 1694
memory usage and recovery, 2603, 2998
mgm client, 2961
mgm management client, 2993
mgm process, 2840
mgmd process, 2828
monitoring, 3033
multiple management servers, 2999
mysqld options and variables for, 2752
mysqld process, 2752, 3017
ndbd, 2811
ndbd process, 2811, 2995
ndbinfo_select_all, 2821
ndbmtd, 2827
ndb_mgm, 2632, 2840
ndb_mgmd process, 2828
network configuration

and security, 3091
network transporters, 2810
networking, 2804, 2805

3698

new features, 15
node failure (single user mode), 3000
node identifiers, 2806, 2807
node logs, 2984
NODERESTART Events, 2989
nodes and node groups, 2583
nodes and types, 2580
partitioning support, 2603
partitions, 2583
performing queries, 2632
preparing for replication, 3115
process management, 2811
QUIT command, 2963
replication, 3098

(see also NDB Cluster replication)
REPORT command, 2963
requirements, 2586
resetting, 2998
RESTART command, 2963
restarting, 2636
restoring backups, 2908
rolling restarts (multiple management servers), 2999
runtime statistics, 2993
SCHEMA Events, 2991
security, 3090

and firewalls, 3092, 3094
and HostName parameter, 3091
and network configuration, 3091
and network ports, 3094
and remote administration, 3095
networking, 3091

security procedures, 3097
shared memory transport, 2805
SHOW command, 2964
SHUTDOWN command, 2965
shutting down, 2636
single user mode, 2963, 2999
SINGLEUSER Events, 2992
SQL node, 2580, 2744
SQL nodes, 3017
SQL statements for monitoring, 3085
START BACKUP command, 3122
START command, 2965
start phases (summary), 2996
starting, 2640
starting nodes, 2625, 2631
starting or restarting, 2996
STARTUP Events, 2988
STATISTICS Events, 2991
STATUS command, 2965
status variables, 2783
STOP command, 2966
storage requirements, 1416
thread states, 1218

3699

trace files, 2820
transaction handling, 2606
transaction isolation level, 2604
transporters

shared memory (SHM), 2805
TCP/IP, 2804

troubleshooting backups, 3016
upgrades and downgrades, 2637, 2997
USING HASH, 1670
using tables and data, 2632

NDB Cluster 7.3, 2587
NDB Cluster 7.4, 2587
NDB Cluster Auto-Installer (NO LONGER SUPPORTED), 2640
NDB Cluster Disk Data, 3019

creating log file groups, 3020
creating tables, 3019, 3021
creating tablespaces, 3021
dropping Disk Data objects, 3023
storage requirements, 3026

NDB Cluster How-To, 2612
NDB Cluster limitations, 2600

and differences from standard MySQL limits, 2603
binary logging, 2609
database objects, 2607
Disk Data storage, 2610
error handling and reporting, 2607
geometry data types, 2602
implementation, 2609
imposed by configuration, 2604
memory usage and transaction handling, 2606
multiple management servers, 2611
multiple MySQL servers, 2611
partitioning, 2603
performance, 2609
resolved in current version from previous versions, 2612
syntax, 2600
transactions, 2604
unsupported features, 2608

NDB Cluster processes, 2811
NDB Cluster programs, 2811
NDB Cluster replication, 3098

and --initial option, 3106
and circular replication, 3102
and NDB API database objects, 3101
and primary key, 3105
and single point of failure, 3119
and unique keys, 3105
backups, 3121
bidirectional replication, 3127
circular replication, 3127
concepts, 3100, 3100
conflict resolution, 3133
failover, 3119, 3120
gap event, 3102

3700

known issues, 3101
loss of connection, 3101
point-in-time recovery, 3127
preparing, 3115
read conflict detection and resolution, 3143
requirements, 3100
reset-replica.pl backup automation script, 3124
restoring from backup, 3121
starting, 3117
storage engines other than NDB on replica, 3106
synchronization of source and replica, 3124
system tables used, 3108

NDB Cluster Replication
and NDB API replica status variables, 3099

NDB Cluster replication conflict resolution
exceptions table, 3139

ndb option
perror, 504

NDB statistics variables
and NDB API counters, 3039

NDB statistics variables (NDB Cluster), 3033
scope, 3037
types, 3037

NDB storage engine (see NDB Cluster)
FAQ, 3515

NDB tables
and MySQL root user, 3095

NDB utilities
security issues, 3098

NDB$CFT_CAUSE, 3140
NDB$EPOCH(), 3136

limitations, 3137
NDB$EPOCH2(), 3138
NDB$EPOCH2_TRANS(), 3138
NDB$EPOCH_TRANS(), 3136, 3137
NDB$MAX(), 3135
NDB$MAX_DELETE_WIN(), 3135
NDB$OLD, 3135
NDB$OP_TYPE, 3140
NDB$ORIG_TRANSID, 3140
ndb-batch-size option

mysqld, 2752
ndb-blob-read-batch-bytes option

mysqld, 2754
ndb-blob-write-batch-bytes option

mysqld, 2754
ndb-cluster-connection-pool option

mysqld, 2753
ndb-connectstring option

mysqld, 2755
ndbd, 2818
ndbinfo_select_all, 2825
ndb_blob_tool, 2850
ndb_config, 2858

3701

ndb_delete_all, 2867
ndb_desc, 2876
ndb_drop_index, 2881
ndb_drop_table, 2886
ndb_index_stat, 2894
ndb_mgm, 2844
ndb_mgmd, 2835
ndb_move_data, 2901
ndb_restore, 2921
ndb_select_all, 2938
ndb_select_count, 2944
ndb_show_tables, 2949
ndb_waiter, 2957

ndb-deferred-constraints option (NDB Cluster), 2755
ndb-distribution option (NDB Cluster), 2755
ndb-log-apply-status option

mysqld, 2756
ndb-log-empty-epochs option

mysqld, 2756
ndb-log-empty-update option

mysqld, 2757
ndb-log-exclusive-reads option

mysqld, 2757
ndb-log-fail-terminate option

mysqld, 2757
ndb-log-orig option

mysqld, 2757
ndb-log-transaction-id option

mysqld, 2758
ndb-log-update-as-write

conflict resolution, 3134
ndb-log-update-as-write option (NDB Cluster), 2758
ndb-log-update-minimal option (NDB Cluster), 2759
ndb-log-update-write, 3115
ndb-log-updated-only, 3115
ndb-log-updated-only option (NDB Cluster), 2759
ndb-mgmd-host option

ndbd, 2818
ndbinfo_select_all, 2825
ndb_blob_tool, 2850
ndb_config, 2858
ndb_delete_all, 2868
ndb_desc, 2876
ndb_drop_index, 2881
ndb_drop_table, 2886
ndb_index_stat, 2894
ndb_mgm, 2844
ndb_mgmd, 2835
ndb_move_data, 2901
ndb_restore, 2921
ndb_select_all, 2939
ndb_select_count, 2944
ndb_show_tables, 2949
ndb_waiter, 2958

3702

ndb-mgmd-host option (NDB Cluster), 2760
ndb-nodegroup-map option

ndb_restore, 2921
ndb-nodeid option

mysqld, 2760
ndbd, 2818
ndbinfo_select_all, 2826
ndb_blob_tool, 2850
ndb_config, 2859
ndb_delete_all, 2868
ndb_desc, 2876
ndb_drop_index, 2881
ndb_drop_table, 2886
ndb_index_stat, 2894
ndb_mgm, 2844
ndb_mgmd, 2836
ndb_move_data, 2901
ndb_restore, 2921
ndb_select_all, 2939
ndb_select_count, 2945
ndb_show_tables, 2949
ndb_waiter, 2958

ndb-optimization-delay option
mysqld, 2761

ndb-optimized-node-selection option
mysqld, 2761
ndbd, 2818
ndbinfo_select_all, 2826
ndb_blob_tool, 2850
ndb_config, 2859
ndb_delete_all, 2868
ndb_desc, 2877
ndb_drop_index, 2881
ndb_drop_table, 2886
ndb_index_stat, 2894
ndb_mgm, 2844
ndb_mgmd, 2836
ndb_move_data, 2901
ndb_restore, 2922
ndb_select_all, 2939
ndb_select_count, 2945
ndb_show_tables, 2950
ndb_waiter, 2958

ndb-transid-mysql-connection-map option
mysqld, 2761

ndb-wait-connected option
mysqld, 2762

ndb-wait-setup option
mysqld, 2762

ndbcluster option
mysqld, 2752

NDBCLUSTER storage engine (see NDB Cluster)
ndbd, 2811, 2811

-n option, 2819

3703

character-sets-dir option, 2813
connect-delay option, 2814
connect-retries option, 2814
connect-retry-delay option, 2814
connect-string option, 2814
core-file option, 2815
defaults-extra-file option, 2815
defaults-file option, 2815
defaults-group-suffix option, 2815
help option, 2816
initial option, 2816
initial-start option, 2817
install option, 2817
login-path option, 2817
ndb-connectstring option, 2818
ndb-mgmd-host option, 2818
ndb-nodeid option, 2818
ndb-optimized-node-selection option, 2818
no-defaults option, 2818
nostart option, 2819
nowait-nodes option, 2819
print-defaults option, 2819
remove option, 2819
usage option, 2819
verbose option, 2820
version option, 2820

ndbd (NDB Cluster)
defined, 2580

(see also data node (NDB Cluster))
ndbinfo database, 3045

and query cache, 3047
basic usage, 3048
determining support for, 3045

ndbinfo_database system variable, 2781
ndbinfo_max_bytes system variable, 2781
ndbinfo_max_rows system variable, 2782
ndbinfo_offline system variable, 2782
ndbinfo_select_all, 2811, 2821

-l option, 2825
character-sets-dir option, 2823
connect-retries option, 2823
connect-retry-delay option, 2824
connect-string option, 2824
core-file option, 2824
defaults-extra-file option, 2824
defaults-file option, 2824
defaults-group-suffix option, 2824
delay option, 2825
help option, 2825
login-path option, 2825
loops option, 2825
ndb-connectstring option, 2825
ndb-mgmd-host option, 2825
ndb-nodeid option, 2826

3704

ndb-optimized-node-selection option, 2826
no-defaults option, 2826
print-defaults option, 2826
usage option, 2826
version option, 2826

ndbinfo_show_hidden system variable, 2782
ndbinfo_table_prefix system variable, 2783
ndbinfo_version system variable, 2783, 2783
ndbmtd, 2811, 2827

-n option, 2819
configuration, 2731, 2731
connect-delay option, 2814
connect-retries option, 2814
connect-retry-delay option, 2814
initial option, 2816
initial-start option, 2817
install option, 2817
MaxNoOfExecutionThreads, 2727
nostart option, 2819
nowait-nodes option, 2819
remove option, 2819
trace files, 2827, 2827
verbose option, 2820

Ndb_api_adaptive_send_deferred_count status variable, 2783
Ndb_api_adaptive_send_deferred_count_session status variable, 2783
Ndb_api_adaptive_send_deferred_count_slave status variable, 2784
Ndb_api_adaptive_send_forced_count status variable, 2784
Ndb_api_adaptive_send_forced_count_session status variable, 2784
Ndb_api_adaptive_send_forced_count_slave status variable, 2784
Ndb_api_adaptive_send_unforced_count status variable, 2784
Ndb_api_adaptive_send_unforced_count_slave session variable, 2784
Ndb_api_adaptive_send_unforced_count_slave status variable, 2784
Ndb_api_bytes_received_count status variable, 2785
Ndb_api_bytes_received_count_session status variable, 2785
Ndb_api_bytes_received_count_slave status variable, 2785
Ndb_api_bytes_sent_count status variable, 2785
Ndb_api_bytes_sent_count_session status variable, 2784
Ndb_api_bytes_sent_count_slave status variable, 2785
Ndb_api_event_bytes_count status variable, 2786
Ndb_api_event_bytes_count_injector status variable, 2786
Ndb_api_event_data_count status variable, 2785
Ndb_api_event_data_count_injector status variable, 2785
Ndb_api_event_nondata_count status variable, 2786
Ndb_api_event_nondata_count_injector status variable, 2786
Ndb_api_pk_op_count status variable, 2787
Ndb_api_pk_op_count_session status variable, 2786
Ndb_api_pk_op_count_slave status variable, 2786
Ndb_api_pruned_scan_count status variable, 2787
Ndb_api_pruned_scan_count_session status variable, 2787
Ndb_api_pruned_scan_count_slave status variable, 2787
Ndb_api_range_scan_count status variable, 2788
Ndb_api_range_scan_count_session status variable, 2787
Ndb_api_range_scan_count_slave status variable, 2787
Ndb_api_read_row_count status variable, 2788

3705

Ndb_api_read_row_count_session status variable, 2788
Ndb_api_read_row_count_slave status variable, 2788
Ndb_api_scan_batch_count status variable, 2789
Ndb_api_scan_batch_count_session status variable, 2789
Ndb_api_scan_batch_count_slave status variable, 2789
Ndb_api_table_scan_count status variable, 2789
Ndb_api_table_scan_count_session status variable, 2789
Ndb_api_table_scan_count_slave status variable, 2789
Ndb_api_trans_abort_count status variable, 2790
Ndb_api_trans_abort_count_session status variable, 2790
Ndb_api_trans_abort_count_slave status variable, 2790
Ndb_api_trans_close_count status variable, 2791
Ndb_api_trans_close_count_session status variable, 2790
Ndb_api_trans_close_count_slave status variable, 2790
Ndb_api_trans_commit_count status variable, 2791
Ndb_api_trans_commit_count_session status variable, 2791
Ndb_api_trans_commit_count_slave status variable, 2791
Ndb_api_trans_local_read_row_count status variable, 2792
Ndb_api_trans_local_read_row_count_session status variable, 2791
Ndb_api_trans_local_read_row_count_slave status variable, 2792
Ndb_api_trans_start_count status variable, 2792
Ndb_api_trans_start_count_session status variable, 2792
Ndb_api_trans_start_count_slave status variable, 2792
Ndb_api_uk_op_count status variable, 2793
Ndb_api_uk_op_count_session status variable, 2792
Ndb_api_uk_op_count_slave status variable, 2792
Ndb_api_wait_exec_complete_count status variable, 2793
Ndb_api_wait_exec_complete_count_session status variable, 2793
Ndb_api_wait_exec_complete_count_slave status variable, 2793
Ndb_api_wait_meta_request_count status variable, 2794
Ndb_api_wait_meta_request_count_session status variable, 2794
Ndb_api_wait_meta_request_count_slave status variable, 2794
Ndb_api_wait_nanos_count status variable, 2795
Ndb_api_wait_nanos_count_session status variable, 2794
Ndb_api_wait_nanos_count_slave status variable, 2794
Ndb_api_wait_scan_result_count status variable, 2795
Ndb_api_wait_scan_result_count_session status variable, 2795
Ndb_api_wait_scan_result_count_slave status variable, 2795
ndb_apply_status table (NDB Cluster replication), 3109, 3120

(see also NDB Cluster replication)
ndb_autoincrement_prefetch_sz system variable, 2764
ndb_binlog_index table

system table, 765
ndb_binlog_index table (NDB Cluster replication), 3109, 3120

(see also NDB Cluster replication)
ndb_blob_tool, 2811, 2845

add-missing option, 2847
character-sets-dir option, 2847
check-missing option, 2848
check-orphans option, 2848
connect-retries option, 2848
connect-retry-delay option, 2848
connect-string option, 2848
core-file option, 2848

3706

database option, 2848
defaults-extra-file option, 2849
defaults-file option, 2849
defaults-group-suffix option, 2849
delete-orphans option, 2849
dump-file option, 2849
help option, 2849
login-path option, 2850
ndb-connectstring option, 2850
ndb-mgmd-host option, 2850
ndb-nodeid option, 2850
ndb-optimized-node-selection option, 2850
no-defaults option, 2850
print-defaults option, 2850
usage option, 2851
verbose option, 2851
version option, 2851

ndb_cache_check_time system variable, 2764
ndb_clear_apply_status system variable, 2765
Ndb_cluster_node_id status variable, 2795
NDB_COLUMN, 1716
ndb_config, 2811, 2852

character-sets-dir option, 2854
config-file option, 2855
configinfo option, 2854
config_from_node option, 2855
connect-retries option, 2856
connect-retry-delay option, 2856
connect-string option, 2856
connections option, 2856
core-file option, 2857
defaults-extra-file option, 2857
defaults-file option, 2857
defaults-group-suffix option, 2857
diff-default option, 2857
fields option, 2857
help option, 2857
host option, 2858
login-path option, 2858
mycnf option, 2858
ndb-connectstring option, 2858
ndb-mgmd-host option, 2858
ndb-nodeid option, 2859
ndb-optimized-node-selection option, 2859
no-defaults option, 2859
nodeid option, 2859
nodes option, 2859
print-defaults option, 2860
query option, 2859, 2860
query-all option, 2860
rows option, 2860
system option, 2860
type option, 2861
usage option, 2861

3707

version option, 2861
xml option, 2861

Ndb_config_from_host status variable, 2795
Ndb_config_from_port status variable, 2796
Ndb_conflict_fn_epoch status variable, 2796
Ndb_conflict_fn_epoch2 status variable, 2796
Ndb_conflict_fn_epoch2_trans status variable, 2796
Ndb_conflict_fn_epoch_trans status variable, 2796
Ndb_conflict_fn_max status variable, 2796
Ndb_conflict_fn_max_del_win status variable, 2796
Ndb_conflict_fn_old status variable, 2796
Ndb_conflict_last_conflict_epoch status variable, 2797
Ndb_conflict_last_stable_epoch status variable, 2797
Ndb_conflict_reflected_op_discard_count status variable, 2797
Ndb_conflict_reflected_op_prepare_count status variable, 2797
Ndb_conflict_refresh_op_count status variable, 2797
Ndb_conflict_trans_conflict_commit_count status variable, 2798
Ndb_conflict_trans_detect_iter_count status variable, 2798
Ndb_conflict_trans_reject_count status variable, 2798
Ndb_conflict_trans_row_conflict_count status variable, 2797
Ndb_conflict_trans_row_reject_count status variable, 2797
ndb_cpcd, 2811, 2864
ndb_deferred_constraints system variable, 2765
ndb_delete_all, 2811, 2864

character-sets-dir option, 2866
connect-retries option, 2866
connect-retry-delay option, 2866
connect-string option, 2866
core-file option, 2866
database option, 2866
defaults-extra-file option, 2867
defaults-file option, 2867
defaults-group-suffix option, 2867
diskscan option, 2867
help option, 2867
login-path option, 2867
ndb-connectstring option, 2867
ndb-mgmd-host option, 2868
ndb-nodeid option, 2868
ndb-optimized-node-selection option, 2868
no-defaults option, 2868
print-defaults option, 2868
transactional option, 2868
tupscan option, 2868
usage option, 2869
version option, 2869

ndb_desc, 2811, 2869
auto-inc option, 2874
blob-info option, 2874
character-sets-dir option, 2874
connect-retries option, 2874
connect-retry-delay option, 2874
connect-string option, 2875
context option, 2875

3708

core-file option, 2875
database option, 2875
defaults-extra-file option, 2875
defaults-file option, 2875
defaults-group-suffix option, 2875
extra-node-info option, 2876
extra-partition-info option, 2876
help option, 2876
login-path option, 2876
ndb-connectstring option, 2876
ndb-mgmd-host option, 2876
ndb-nodeid option, 2876
ndb-optimized-node-selection option, 2877
no-defaults option, 2877
print-defaults option, 2877
retries option, 2877
table option, 2877
unqualified option, 2877
usage option, 2877
version option, 2877

ndb_distribution system variable, 2765
ndb_dist_priv.sql, 3030
ndb_drop_index, 2811, 2877

character-sets-dir option, 2879
connect-retries option, 2879
connect-retry-delay option, 2879
connect-string option, 2879
core-file option, 2880
database option, 2880
defaults-extra-file option, 2880
defaults-file option, 2880
defaults-group-suffix option, 2880
help option, 2880
login-path option, 2880
ndb-connectstring option, 2881
ndb-mgmd-host option, 2881
ndb-nodeid option, 2881
ndb-optimized-node-selection option, 2881
no-defaults option, 2881
print-defaults option, 2881
usage option, 2881
version option, 2882

ndb_drop_table, 2811, 2882
character-sets-dir option, 2884
connect-retries option, 2884
connect-retry-delay option, 2884
connect-string option, 2884
core-file option, 2885
database option, 2885
defaults-extra-file option, 2885
defaults-file option, 2885
defaults-group-suffix option, 2885
help option, 2885
login-path option, 2885

3709

ndb-connectstring option, 2886
ndb-mgmd-host option, 2886
ndb-nodeid option, 2886
ndb-optimized-node-selection option, 2886
no-defaults option, 2886
print-defaults option, 2886
usage option, 2886
version option, 2887

Ndb_epoch_delete_delete_count status variable, 2798
ndb_error_reporter, 2811, 2887

connection-timeout option, 2887
dry-scp option, 2888
fs option, 2888
help option, 2888
options, 2887
skip-nodegroup option, 2888

ndb_eventbuffer_free_percent system variable, 2766
ndb_eventbuffer_max_alloc system variable, 2766
Ndb_execute_count status variable, 2798
ndb_extra_logging system variable, 2766
ndb_force_send system variable, 2767
ndb_index_stat, 2811, 2888

-d option, 2892
character-sets-dir option, 2892
connect-retries option, 2892
connect-retry-delay option, 2892
connect-string option, 2892
core-file option, 2892
database option, 2892
defaults-extra-file option, 2893
defaults-file option, 2893
defaults-group-suffix option, 2893
delete option, 2893
dump option, 2893
example, 2889
help option, 2893
interpreting output, 2889
login-path option, 2893
loops option, 2894
ndb-connectstring option, 2894
ndb-mgmd-host option, 2894
ndb-nodeid option, 2894
ndb-optimized-node-selection option, 2894
no-defaults option, 2894
print-defaults option, 2894
query option, 2895
sys-check option, 2895
sys-create option, 2895
sys-create-if-not-exist option, 2895
sys-create-if-not-valid option, 2895
sys-drop option, 2895
sys-skip-events option, 2895
sys-skip-tables option, 2895
update option, 2896

3710

usage option, 2896
verbose option, 2896
version option, 2896

ndb_index_stat_enable system variable, 2768
ndb_index_stat_option system variable, 2768
ndb_join_pushdown system variable, 2770
Ndb_last_commit_epoch_server status variable, 2798
Ndb_last_commit_epoch_session status variable, 2798
ndb_log_apply_status system variable, 2772
ndb_log_apply_status variable (NDB Cluster replication), 3120
ndb_log_bin system variable, 2772
ndb_log_binlog_index system variable, 2773
ndb_log_empty_epochs system variable, 2773
ndb_log_empty_update system variable, 2773
ndb_log_exclusive_reads (system variable), 3144
ndb_log_exclusive_reads system variable, 2773
ndb_log_orig system variable, 2774
ndb_log_transaction_id system variable, 2774
ndb_mgm, 2811, 2840 (see mgm)

-e option, 2843
character-sets-dir option, 2842
connect-retries option, 2842
connect-retry-delay option, 2842
connect-string option, 2842
core-file option, 2843
defaults-extra-file option, 2843
defaults-file option, 2843
defaults-group-suffix option, 2843
execute option, 2843
help option, 2844
login-path option, 2844
ndb-connectstring option, 2844
ndb-mgmd-host option, 2844
ndb-nodeid option, 2844
ndb-optimized-node-selection option, 2844
no-defaults option, 2844
print-defaults option, 2845
usage option, 2845
using with MySQL Cluster Manager, 2961
version option, 2845

ndb_mgm (NDB Cluster management node client), 2632
ndb_mgmd, 2811 (see mgmd)

-d option, 2833
-f option, 2832
-P option, 2838
-v option, 2839
bind-address option, 2831
character-sets-dir option, 2832
config-cache option, 2831
config-file option, 2832
configdir option, 2832
connect-retries option, 2832
connect-retry-delay option, 2833
connect-string option, 2833

3711

core-file option, 2833
daemon option, 2833
defaults-extra-file option, 2833
defaults-file option, 2834
defaults-group-suffix option, 2834
help option, 2834
initial option, 2834
install option, 2834
interactive option, 2835
log-name option, 2835
login-path option, 2835
mycnf option, 2835
ndb-connectstring option, 2835
ndb-mgmd-host option, 2835
ndb-nodeid option, 2836
ndb-optimized-node-selection option, 2836
no-defaults option, 2836
no-nodeid-checks option, 2836
nodaemon option, 2836
nowait-nodes option, 2836
print-defaults option, 2838
print-full-config option, 2838
reload option, 2838
remove option, 2839
skip-config-file option, 2839
usage option, 2839
verbose option, 2839
version option, 2839

ndb_mgmd (NDB Cluster process), 2828
ndb_mgmd (NDB Cluster)

defined, 2580
(see also management node (NDB Cluster))

ndb_move_data, 2811, 2897
abort-on-error option, 2899
character-sets-dir option, 2899
connect-retries option, 2899
connect-retry-delay option, 2899
connect-string option, 2899
core-file option, 2899
database option, 2900
defaults-extra-file option, 2900
defaults-file option, 2900
defaults-group-suffix option, 2900
drop-source option, 2900
error-insert option, 2900
exclude-missing-columns option, 2900
help option, 2900
login-path option, 2901
lossy-conversions option, 2901
ndb-connectstring option, 2901
ndb-mgmd-host option, 2901
ndb-nodeid option, 2901
ndb-optimized-node-selection option, 2901
no-defaults option, 2901

3712

print-defaults option, 2902
promote-attributes option, 2902
staging-tries option, 2902
usage option, 2902
verbose option, 2902
version option, 2902

Ndb_number_of_data_nodes status variable, 2798
ndb_optimized_node_selection system variable, 2774
ndb_print_backup_file, 2811, 2902
ndb_print_file, 2811, 2903
ndb_print_frag_file, 2811, 2903
ndb_print_schema_file, 2811, 2904
ndb_print_sys_file, 2811, 2905
Ndb_pruned_scan_count status variable, 2799
Ndb_pushed_queries_defined status variable, 2798
Ndb_pushed_queries_dropped status variable, 2799
Ndb_pushed_queries_executed status variable, 2799
Ndb_pushed_reads status variable, 2799
ndb_recv_thread_activation_threshold system variable, 2775
ndb_recv_thread_cpu_mask system variable, 2776
ndb_redo_log_reader, 2905

dump option, 2906
lap option, 2907
twiddle option, 2908

ndb_replication table, 3111
ndb_report_thresh_binlog_epoch_slip system variable, 2776
ndb_report_thresh_binlog_mem_usage system variable, 2776
ndb_restore, 2908

and circular replication, 3130
and distributed privileges, 3033
append option, 2912
backup-path option, 2912
backupid option, 2913
character-sets-dir option, 2914
connect option, 2914
connect-retries option, 2914
connect-retry-delay option, 2914
connect-string option, 2914
core-file option, 2914
defaults-extra-file option, 2915
defaults-file option, 2915
defaults-group-suffix option, 2915
disable-indexes option, 2915
dont-ignore-systab-0 option, 2915
errors, 2928
exclude-databases option, 2915
exclude-intermediate-sql-tables option, 2916
exclude-missing-columns option, 2916
exclude-missing-tables option, 2916
exclude-tables option, 2916
fields-enclosed-by option, 2918
fields-optionally-enclosed-by option, 2918
fields-terminated-by option, 2918
help option, 2919

3713

hex option, 2919
include-databases option, 2919
include-tables option, 2919
lines-terminated-by option, 2920
login-path option, 2920
lossy-conversions option, 2920
ndb-connectstring option, 2921
ndb-mgmd-host option, 2921
ndb-nodegroup-map option, 2921
ndb-nodeid option, 2921
ndb-optimized-node-selection option, 2922
no-binlog option, 2921
no-defaults option, 2921
no-restore-disk-objects option, 2921
no-upgrade option, 2921
nodeid option, 2922
parallelism option, 2922
preserve-trailing-spaces option, 2922
print option, 2923
print-data option, 2923
print-defaults option, 2923
print-log option, 2923
print-meta option, 2923
progress-frequency option, 2923
promote-attributes option, 2924
rebuild-indexes option, 2925
restore-data option, 2925
restore-epoch option, 2925
restore-meta option, 2925
restore-privilege-tables option, 2926
rewrite-database option, 2926
skip-broken-objects option, 2927
skip-table-check option, 2927
skip-unknown-objects option, 2927
tab option, 2927
typical and required options, 2928
usage option, 2927
verbose option, 2928
version option, 2928

Ndb_scan_count status variable, 2799
ndb_select_all, 2811, 2934

character-sets-dir option, 2936
connect-retries option, 2936
connect-retry-delay option, 2936
connect-string option, 2937
core-file option, 2937
database option, 2937
defaults-extra-file option, 2937
defaults-file option, 2937
defaults-group-suffix option, 2937
delimiter option, 2938
descending option, 2937
disk option, 2938
gci option, 2938

3714

gci64 option, 2938
header option, 2938
help option, 2938
lock option, 2938
login-path option, 2938
ndb-connectstring option, 2938
ndb-mgmd-host option, 2939
ndb-nodeid option, 2939
ndb-optimized-node-selection option, 2939
no-defaults option, 2939
nodata option, 2938
order option, 2939
parallelism option, 2939
print-defaults option, 2940
rowid option, 2940
tupscan option, 2940
usage option, 2940
useHexFormat option, 2940
version option, 2940

ndb_select_count, 2811, 2941
character-sets-dir option, 2943
connect-retries option, 2943
connect-retry-delay option, 2943
connect-string option, 2943
core-file option, 2943
defaults-extra-file option, 2944
defaults-file option, 2944
defaults-group-suffix option, 2944
help option, 2944
login-path option, 2944
ndb-connectstring option, 2944
ndb-mgmd-host option, 2944
ndb-nodeid option, 2945
ndb-optimized-node-selection option, 2945
no-defaults option, 2945
print-defaults option, 2945
usage option, 2945
version option, 2945

ndb_setup.py (NO LONGER SUPPORTED), 2811
ndb_show_foreign_key_mock_tables system variable, 2777
ndb_show_tables, 2811, 2945

character-sets-dir option, 2947
connect-retries option, 2947
connect-retry-delay option, 2948
connect-string option, 2948
core-file option, 2948
database option, 2948
defaults-extra-file option, 2948
defaults-file option, 2948
defaults-group-suffix option, 2949
help option, 2949
login-path option, 2949
loops option, 2949
ndb-connectstring option, 2949

3715

ndb-mgmd-host option, 2949
ndb-nodeid option, 2949
ndb-optimized-node-selection option, 2950
no-defaults option, 2950
parsable option, 2950
print-defaults option, 2950
show-temp-status option, 2950
type option, 2950
unqualified option, 2950
usage option, 2950
version option, 2951

ndb_size.pl, 2811, 2951
ndb_size.pl script, 1416
ndb_slave_conflict_role system variable, 2777
ndb_table_no_logging system variable, 2778
ndb_table_temporary system variable, 2778
ndb_transid_mysql_connection_map

INFORMATION_SCHEMA table, 3350
ndb_use_copying_alter_table system variable, 2779
ndb_use_exact_count system variable, 2779
ndb_use_transactions system variable, 2779
ndb_version system variable, 2779
ndb_version_string system variable, 2780
ndb_waiter, 2811, 2954

character-sets-dir option, 2956
connect-retries option, 2956
connect-retry-delay option, 2956
connect-string option, 2956
core-file option, 2957
defaults-extra-file option, 2957
defaults-file option, 2957
defaults-group-suffix option, 2957
help option, 2957
login-path option, 2957
ndb-connectstring option, 2957
ndb-mgmd-host option, 2958
ndb-nodeid option, 2958
ndb-optimized-node-selection option, 2958
no-contact option, 2958
no-defaults option, 2958
not-started option, 2958
nowait-nodes option, 2958
print-defaults option, 2959
single-user option, 2959
timeout option, 2959
usage option, 2959
version option, 2959
wait-nodes option, 2959

negative values, 1224
neighbor page, 4239
nested queries, 1788
Nested-Loop join algorithm, 1065
nested-loop join algorithm, 1069
.NET, 4238

3716

net-buffer-length option
mysql, 347
mysqldump, 404

netmask notation
in account names, 876

network ports
and NDB Cluster, 3094

net_buffer_length system variable, 658
net_read_timeout system variable, 658
net_retry_count system variable, 658
net_write_timeout system variable, 659
new features, 9

--innodb-read-only, 13
condition handling, 19
data types, 19
host cache, 20
InnoDB, 11
innodb_compression_failure_threshold_pct, 13
innodb_compression_level, 13
innodb_compression_pad_pct_max, 13
innodb_log_compressed_pages, 13
innodb_status_output, 13
innodb_status_output_locks, 13
MySQL Enterprise Audit, 11
MySQL Enterprise Encryption, 11
MySQL Enterprise Firewall, 11
NDB Cluster, 15
OpenGIS, 20
optimizer, 17
partitioning, 14
Performance Schema, 15
replication and logging, 15
security, 9
server defaults, 11

new features in NDB Cluster, 2587
new system variable, 659
newline (\n), 1223, 1756
next-key lock, 2038, 4239

InnoDB, 2053, 2175
NFS

InnoDB, 2058
nice option

mysqld_safe, 313
no matching rows, 3581
no-auto-rehash option

mysql, 347
no-autocommit option

mysqldump, 405
no-beep option

mysql, 347
mysqladmin, 372

no-binlog option
ndb_restore, 2921

no-contact option

3717

ndb_waiter, 2958
no-create-db option

mysqldump, 395
no-create-info option

mysqldump, 395
no-data option

mysqldump, 402
no-defaults option, 292

myisamchk, 438
mysql, 347
mysqladmin, 372
mysqlbinlog, 477
mysqlcheck, 381
mysqld, 592
mysqldump, 394
mysqld_multi, 319
mysqld_safe, 313
mysqlimport, 413
mysqlshow, 420
mysqlslap, 429
mysql_install_db, 326
mysql_plugin, 329
mysql_upgrade, 335
my_print_defaults, 502
ndbd, 2818
ndbinfo_select_all, 2826
ndb_blob_tool, 2850
ndb_config, 2859
ndb_delete_all, 2868
ndb_desc, 2877
ndb_drop_index, 2881
ndb_drop_table, 2886
ndb_index_stat, 2894
ndb_mgm, 2844
ndb_mgmd, 2836
ndb_move_data, 2901
ndb_restore, 2921
ndb_select_all, 2939
ndb_select_count, 2945
ndb_show_tables, 2950
ndb_waiter, 2958

no-drop option
mysqlslap, 428

no-log option
mysqld_multi, 319

no-nodeid-checks option
ndb_mgmd, 2836

no-restore-disk-objects option
ndb_restore, 2921

no-set-names option
mysqldump, 397

no-symlinks option
myisamchk, 442

no-tablespaces option

3718

mysqldump, 395
no-upgrade option

ndb_restore, 2921
nodaemon option

ndb_mgmd, 2836
nodata option

ndb_select_all, 2938
node groups (NDB Cluster), 2583
node logs (NDB Cluster), 2984
NodeGroup, 2679
NodeId, 2670, 2678, 2745
nodeid option

ndb_config, 2859
ndb_restore, 2922

NodeId1, 2801, 2806
NodeId2, 2801, 2807
NodeIdServer, 2801, 2807
NODERESTART Events (NDB Cluster), 2989
nodes

ndbinfo table, 3066
nodes option

ndb_config, 2859
noindices option

mysqlhotcopy, 494
non-locking read, 4239
non-repeatable read, 4239
nonblocking I/O, 4239
nondelimited strings, 1226
nondeterministic functions

optimization, 1088
replication, 1088

Nontransactional tables, 3581
NoOfDiskPagesToDiskAfterRestartACC (DEPRECATED), 2714
NoOfDiskPagesToDiskAfterRestartTUP (DEPRECATED), 2712
NoOfDiskPagesToDiskDuringRestartACC, 2714
NoOfDiskPagesToDiskDuringRestartTUP, 2714
NoOfFragmentLogFiles, 2692
NoOfFragmentLogParts, 2731
NoOfReplicas, 2680
nopager command

mysql, 354
normalized, 4239
normalize_statement() MySQL Enterprise Firewall function, 1008
NoSQL, 4240
nostart option

ndbd, 2819
ndbmtd, 2819

NOT
logical, 1454

NOT BETWEEN, 1450
not equal (!=), 1449
not equal (<>), 1449
NOT EXISTS

with subqueries, 1792

3719

NOT IN, 1451
NOT LIKE, 1512
NOT NULL

constraint, 51
NOT NULL constraint, 4240
NOT REGEXP, 1514
not-started option

ndb_waiter, 2958
notee command

mysql, 354
Not_flushed_delayed_rows status variable, 729
NOW(), 1482
NOWAIT (START BACKUP command), 3013
nowait-nodes option

ndbd, 2819
ndbmtd, 2819
ndb_mgmd, 2836
ndb_waiter, 2958

nowarning command
mysql, 354

NO_AUTO_CREATE_USER SQL mode, 740
NO_AUTO_VALUE_ON_ZERO SQL mode, 740
NO_BACKSLASH_ESCAPES SQL mode, 741
NO_DIR_IN_CREATE SQL mode, 741
NO_ENGINE_SUBSTITUTION SQL mode, 741
NO_FIELD_OPTIONS SQL mode, 741
NO_KEY_OPTIONS SQL mode, 741
NO_TABLE_OPTIONS SQL mode, 741
NO_UNSIGNED_SUBTRACTION SQL mode, 741
NO_ZERO_DATE

deprecated features, 20
NO_ZERO_DATE SQL mode, 742
NO_ZERO_IN_DATE

deprecated features, 20
NO_ZERO_IN_DATE SQL mode, 742
NUL, 1222, 1756
NULL, 258, 3579, 4240

ORDER BY, 1082, 1775
testing for null, 1449, 1450, 1452, 1453, 1458

NULL value, 258, 1230
ORDER BY, 1230

NULL values
and AUTO_INCREMENT columns, 3580
and indexes, 1685
and TIMESTAMP columns, 3580
vs. empty values, 3579

NULL-complemented row, 1069, 1073
null-rejected condition, 1073
NULLIF(), 1459
Numa, 2725
number-char-cols option

mysqlslap, 429
number-int-cols option

mysqlslap, 429

3720

number-of-queries option
mysqlslap, 429

numbers, 1224
NUMERIC data type, 1363
numeric data types, 1360

storage requirements, 1416
numeric literals

approximate-value, 1224, 1624
exact-value, 1224, 1624

numeric precision, 1360
numeric scale, 1360
numeric-dump-file option

resolve_stack_dump, 503
NumInteriorRings(), 1597
NumPoints(), 1595
NVARCHAR data type, 1386

O
objects

stored, 3223
objects_summary_global_by_type table

performance_schema, 3446
obtaining information about partitions, 3195
OCT(), 1501
OCTET_LENGTH(), 1501
ODBC, 4240
ODBC compatibility, 682, 1233, 1363, 1443, 1452, 1686, 1782
ODBC_INCLUDES= option

CMake, 193
ODBC_LIB_DIR option

CMake, 193
ODirect, 2701
OFF

plugin activation option, 792
off-page column, 4241
offset option

mysqlbinlog, 477
OGC (see Open Geospatial Consortium)
OLAP, 1612
old system variable, 659
old-style-user-limits option

mysqld, 592
old_alter_table system variable, 660
OLD_PASSWORD(), 1567

deprecated features, 21
old_passwords

deprecated features, 21
old_passwords system variable, 660
old_server option

mysqlaccess, 467
mysqlhotcopy, 494

OLTP, 4241
ON

3721

plugin activation option, 792
ON DUPLICATE KEY

INSERT modifier, 1745
ON DUPLICATE KEY UPDATE, 1741
ON versus USING

joins, 1785
one-database option

mysql, 348
ONE_SHOT

removed features, 22
online, 4241
online DDL, 2117, 2118, 4241

concurrency, 2127
limitations, 2132

online location of manual, 2
online upgrades and downgrades (NDB Cluster), 2997
only-print option

mysqlslap, 429
ONLY_FULL_GROUP_BY

SQL mode, 1615
ONLY_FULL_GROUP_BY SQL mode, 743
OPEN, 1850
Open Geospatial Consortium, 1398
Open Source

defined, 5
open tables, 368, 1125
open-files-limit option

mysqlbinlog, 477
mysqld_safe, 314

Opened_files status variable, 729
Opened_tables status variable, 729
Opened_table_definitions status variable, 729
OpenGIS, 1398

new features, 20
opening

tables, 1125
Opening master dump table

thread state, 1217
Opening mysql.ndb_apply_status

thread state, 1218
Opening table

thread state, 1209
Opening tables

thread state, 1209
opens, 368
OpenSSL, 184, 908

compared to yaSSL, 922
OpenSSL versus yaSSL

detecting, 923
Open_files status variable, 729
open_files_limit system variable, 661
Open_streams status variable, 729
Open_tables status variable, 729
Open_table_definitions status variable, 729

3722

operating systems
file-size limits, 1128
supported, 64

operations
arithmetic, 1461

operations_per_fragment
ndbinfo table, 3068

operators, 1424
arithmetic, 1559
assignment, 1266, 1456
bit, 1559
cast, 1460, 1541
logical, 1454
precedence, 1446
string, 1493
string comparison, 1510

.OPT file, 4240
opt option

mysqldump, 404
optimistic, 4241
optimization, 1050, 1137

Batched Key Access, 1076, 1078
benchmarking, 1200
BLOB types, 1124
Block Nested-Loop, 1076, 1077
character and string types, 1123
data change statements, 1106
data size, 1121
DELETE statements, 1107
derived tables, 1091
disk I/O, 1192
foreign keys, 1110
full table scans, 1091
full-text queries, 1111
indexes, 1108
INFORMATION_SCHEMA queries, 1101
InnoDB tables, 1132
INSERT statements, 1106
many tables, 1124
MEMORY storage engine, 1112
MEMORY tables, 1146
memory usage, 1197
Multi-Range Read, 1075
MyISAM tables, 1142
nondeterministic functions, 1088
numeric types, 1123
Performance Schema queries, 1103
PERFORMANCE_SCHEMA, 1203
primary keys, 1110
REPAIR TABLE statements, 1145
SELECT statements, 1052
spatial queries, 1112
SQL statements, 1052
subqueries, 1091

3723

subquery, 1095
subquery materialization, 1094
tips, 1108
UPDATE statements, 1107
WHERE clauses, 1053

optimization (NDB), 1062, 2770
optimizations, 1059

LIMIT clause, 1087
row constructors, 1090

optimize option
mysqlcheck, 382

OPTIMIZE TABLE
and partitioning, 3194

OPTIMIZE TABLE statement, 1901
optimizer, 4242

and replication, 2561
controlling, 1163
new features, 17
query plan evaluation, 1163
switchable optimizations, 1164

optimizer statistics
for InnoDB tables, 2077

Optimizer Statistics, 2084
optimizer_prune_level system variable, 662
optimizer_search_depth system variable, 663
optimizer_switch system variable, 663, 1164
OPTIMIZER_TRACE

INFORMATION_SCHEMA table, 3281
OPTIMIZER_TRACE option

CMake, 196
optimizer_trace system variable, 664
optimizer_trace_features system variable, 664
optimizer_trace_limit system variable, 664
optimizer_trace_max_mem_size system variable, 665
optimizer_trace_offset system variable, 665
optimizing

DISTINCT, 1086
filesort, 1082
GROUP BY, 1084
LEFT JOIN, 1072
ORDER BY, 1079
outer joins, 1072
RIGHT JOIN, 1072
tables, 1047
thread state, 1209

OPTION
removed features, 22

option, 4242
option file, 4242
option files, 286, 903

.my.cnf, 286, 287, 306, 810, 845, 903

.mylogin.cnf, 286, 459
C:\my.cnf, 810
escape sequences, 289

3724

my.cnf, 2545
option prefix

--disable, 292
--enable, 292
--loose, 292
--maximum, 292
--skip, 292

options
boolean, 292
CMake, 185
command-line

mysql, 338
mysqladmin, 368

embedded server, 3488
libmysqld, 3488
myisamchk, 438
mysqld, 513
provided by MySQL, 243
replication, 2545

OR, 272, 1059
bitwise, 1560
logical, 1455

OR Index Merge optimization, 1059
Oracle compatibility, 44, 1611, 1647, 1976
ORACLE SQL mode, 745
ORD(), 1502
ORDER BY, 255, 1651, 1774

maximum sort length, 1775
NULL, 1082, 1775
NULL value, 1230

ORDER BY optimization, 1079
order option

ndb_select_all, 2939
order-by-primary option

mysqldump, 405
orphan stored objects, 3246
Out of resources error

and partitioned tables, 3210
OUT parameter

condition handling, 1875
out-dir option

comp_err, 322
out-file option

comp_err, 323
out-of-range handling, 1366
outer joins

optimizing, 1072
OUTFILE, 1779
overflow handling, 1366
overflow page, 4242
Overlaps(), 1605
OverloadLimit, 2801, 2807
overview, 1

3725

P
packages

list of, 59
PAD SPACE collations, 1308, 1389
PAD_CHAR_TO_FULL_LENGTH SQL mode, 743
page, 4242
page cleaner, 4242
page size, 4243

InnoDB, 2023
pager command

mysql, 355
pager option

mysql, 348
PAM

pluggable authentication, 935
.par file, 4242
parallel-recover option

myisamchk, 443
parallelism option

ndb_restore, 2922
parameters

server, 512
PARAMETERS

INFORMATION_SCHEMA table, 3281
parent table, 4243
parentheses (and), 1447
parsable option

ndb_show_tables, 2950
partial backup, 4243
partial index, 4243
partial trust, 4243
partial updates

and replication, 2563
PARTITION, 3147
PARTITION BY LIST COLUMNS, 3160
PARTITION BY RANGE COLUMNS, 3160
partition management, 3180
partition option

mysqld, 592
partition pruning, 3197
partitioning, 3147

advantages, 3151
and dates, 3152
and foreign keys, 3210
and FULLTEXT indexes, 3210
and key cache, 3210
and query cache, 3210
and replication, 2561, 2563
and SQL mode, 2563, 3207
and subqueries, 3211
and temporary tables, 3211, 3214
by hash, 3168
by key, 3171

3726

by linear hash, 3170
by linear key, 3172
by list, 3158
by range, 3154
COLUMNS, 3160
concepts, 3149
data type of partitioning key, 3211
enabling, 3147
functions allowed in partitioning expressions, 3218
index prefixes, 3211
keys, 3151
limitations, 3206
new features, 14
operators not permitted in partitioning expressions, 3206
operators supported in partitioning expressions, 3206
optimization, 3196, 3197
partitioning expression, 3151
resources, 3149
storage engines (limitations), 3217
subpartitioning, 3212
support, 3147
support in NDB Cluster, 2603
tables, 3147
types, 3152

Partitioning
maximum number of partitions, 3210

partitioning information statements, 3195
partitioning keys and primary keys, 3214
partitioning keys and unique keys, 3214
partitions

adding and dropping, 3180
analyzing, 3194
checking, 3194
managing, 3180
modifying, 3180
optimizing, 3194
repairing, 3194
splitting and merging, 3180
truncating, 3180

PARTITIONS
INFORMATION_SCHEMA table, 3283

partitions (NDB Cluster), 2583
password

root user, 211
password encryption

reversibility of, 1569
password option, 298

mysql, 348
mysqlaccess, 467
mysqladmin, 373
mysqlbinlog, 477
mysqlcheck, 382
mysqldump, 392
mysqld_multi, 320

3727

mysqlhotcopy, 494
mysqlimport, 413
mysqlshow, 420
mysqlslap, 429
mysql_convert_table_format, 496
mysql_setpermission, 498
mysql_upgrade, 336

password policy, 960
password validation, 960
PASSWORD(), 877, 886, 1568, 3566
passwords

administrator guidelines, 845
expiration, 887
for the InnoDB memcached interface, 2271
for users, 860
forgotten, 3569
hashing, 846
logging, 846
lost, 3569
resetting, 887, 3569
security, 844, 859
setting, 886, 1884, 1893
user guidelines, 844

PATH environment variable, 126, 132, 210, 283, 506
path name separators

Windows, 289
pattern matching, 259, 1513
performance, 1050

benchmarks, 1202
disk I/O, 1192
estimating, 1162

Performance Schema, 2235, 3361, 4243
event filtering, 3376
memory use, 3371
new features, 15
table reference, 3404

Performance Schema queries
optimization, 1103

performance-schema-consumer-events-stages-current option
mysqld, 3463

performance-schema-consumer-events-stages-history option
mysqld, 3463

performance-schema-consumer-events-stages-history-long option
mysqld, 3463

performance-schema-consumer-events-statements-current option
mysqld, 3463

performance-schema-consumer-events-statements-history option
mysqld, 3463

performance-schema-consumer-events-statements-history-long option
mysqld, 3463

performance-schema-consumer-events-waits-current option
mysqld, 3463

performance-schema-consumer-events-waits-history option
mysqld, 3463

3728

performance-schema-consumer-events-waits-history-long option
mysqld, 3463

performance-schema-consumer-global-instrumentation option
mysqld, 3464

performance-schema-consumer-statements-digest option
mysqld, 3464

performance-schema-consumer-thread-instrumentation option
mysqld, 3464

performance-schema-consumer-xxx option
mysqld, 3463

performance-schema-instrument option
mysqld, 3463

performance_schema
accounts table, 3435
cond_instances table, 3411
events_stages_current table, 3423
events_stages_history table, 3424
events_stages_history_long table, 3425
events_stages_summary_by_account_by_event_name table, 3442
events_stages_summary_by_host_by_event_name table, 3442
events_stages_summary_by_thread_by_event_name table, 3442
events_stages_summary_by_user_by_event_name table, 3442
events_stages_summary_global_by_event_name table, 3442
events_statements_current table, 3429
events_statements_history table, 3432
events_statements_history_long table, 3433
events_statements_summary_by_account_by_event_name table, 3444
events_statements_summary_by_digest table, 3444
events_statements_summary_by_host_by_event_name table, 3444
events_statements_summary_by_thread_by_event_name table, 3444
events_statements_summary_by_user_by_event_name table, 3444
events_statements_summary_global_by_event_name table, 3444
events_waits_current table, 3418
events_waits_history table, 3420
events_waits_history_long table, 3420
events_waits_summary_by_account_by_event_name table, 3441
events_waits_summary_by_host_by_event_name table, 3441
events_waits_summary_by_instance table, 3441
events_waits_summary_by_thread_by_event_name table, 3441
events_waits_summary_by_user_by_event_name table, 3441
events_waits_summary_global_by_event_name table, 3441
file_instances table, 3412
file_summary_by_event_name table, 3447
file_summary_by_instance table, 3447
hosts table, 3435
host_cache table, 748, 3452
mutex_instances table, 3412
objects_summary_global_by_type table, 3446
performance_timers table, 3455
rwlock_instances table, 3413
session_account_connect_attrs table, 3438
session_connect_attrs table, 3439
setup_actors table, 3406
setup_consumers table, 3407

3729

setup_instruments table, 3408
setup_objects table, 3409
setup_timers table, 3410
socket_instances table, 3414
socket_summary_by_event_name table, 3451
socket_summary_by_instance table, 3451
table_io_waits_summary_by_index_usage table, 3449
table_io_waits_summary_by_table table, 3448
table_lock_waits_summary_by_table table, 3449
thread table, 3456
users table, 3436

performance_schema database, 3361
restrictions, 3482
TRUNCATE TABLE, 3403, 3482

PERFORMANCE_SCHEMA storage engine, 3361
performance_schema system variable, 3464
Performance_schema_accounts_lost status variable, 3477
performance_schema_accounts_size system variable, 3465
Performance_schema_cond_classes_lost status variable, 3477
Performance_schema_cond_instances_lost status variable, 3477
performance_schema_digests_size system variable, 3465
Performance_schema_digest_lost status variable, 3477
performance_schema_events_stages_history_long_size system variable, 3466
performance_schema_events_stages_history_size system variable, 3466
performance_schema_events_statements_history_long_size system variable, 3466
performance_schema_events_statements_history_size system variable, 3467
performance_schema_events_waits_history_long_size system variable, 3467
performance_schema_events_waits_history_size system variable, 3467
Performance_schema_file_classes_lost status variable, 3477
Performance_schema_file_handles_lost status variable, 3477
Performance_schema_file_instances_lost status variable, 3477
Performance_schema_hosts_lost status variable, 3477
performance_schema_hosts_size system variable, 3468
Performance_schema_locker_lost status variable, 3477
performance_schema_max_cond_classes system variable, 3468
performance_schema_max_cond_instances system variable, 3468
performance_schema_max_digest_length system variable, 3469
performance_schema_max_file_classes system variable, 3469
performance_schema_max_file_handles system variable, 3469
performance_schema_max_file_instances system variable, 3470
performance_schema_max_mutex_classes system variable, 3470
performance_schema_max_mutex_instances system variable, 3471
performance_schema_max_rwlock_classes system variable, 3471
performance_schema_max_rwlock_instances system variable, 3471
performance_schema_max_socket_classes system variable, 3472
performance_schema_max_socket_instances system variable, 3472
performance_schema_max_stage_classes system variable, 3472
performance_schema_max_statement_classes system variable, 3473
performance_schema_max_table_handles system variable, 3473
performance_schema_max_table_instances system variable, 3473
performance_schema_max_thread_classes system variable, 3474
performance_schema_max_thread_instances system variable, 3474
Performance_schema_mutex_classes_lost status variable, 3478
Performance_schema_mutex_instances_lost status variable, 3478

3730

Performance_schema_rwlock_classes_lost status variable, 3478
Performance_schema_rwlock_instances_lost status variable, 3478
Performance_schema_session_connect_attrs_lost status variable, 3478
performance_schema_session_connect_attrs_size system variable, 3475
performance_schema_setup_actors_size system variable, 3475
performance_schema_setup_objects_size system variable, 3476
Performance_schema_socket_classes_lost status variable, 3478
Performance_schema_socket_instances_lost status variable, 3478
Performance_schema_stage_classes_lost status variable, 3478
Performance_schema_statement_classes_lost status variable, 3478
Performance_schema_table_handles_lost status variable, 3478
Performance_schema_table_instances_lost status variable, 3478
Performance_schema_thread_classes_lost status variable, 3478
Performance_schema_thread_instances_lost status variable, 3478
Performance_schema_users_lost status variable, 3479
performance_schema_users_size system variable, 3476
performance_timers table

performance_schema, 3455
PERIOD_ADD(), 1483
PERIOD_DIFF(), 1483
Perl, 4243

installing, 239
installing on Windows, 240

Perl API, 3492, 4244
Perl DBI/DBD

installation problems, 241
permission checks

effect on speed, 1108
perror, 282, 503

help option, 504
ndb option, 504
silent option, 504
verbose option, 504
version option, 504

persistent statistics, 4244
pessimistic, 4244
phantom, 4244
phantom rows, 2053
phone book collation, German, 1280, 1327, 1327
PHP, 4244
PHP API, 4244
physical, 4244
physical backup, 4245
PI(), 1467
pid-file option

mysql.server, 317
mysqld_safe, 314

pid_file system variable, 665
Ping

thread command, 1206
pipe option, 298

mysql, 348, 382
mysqladmin, 373
mysqldump, 392

3731

mysqlimport, 413
mysqlshow, 420
mysqlslap, 429
mysql_upgrade, 336

PIPES_AS_CONCAT SQL mode, 744
PITR, 4245
plan option

mysqlaccess, 467
plan stability, 4245
platforms

supported, 64
pluggable authentication

PAM, 935
restrictions, 892
Windows, 945

plugin
audit_log, 967

plugin activation options
FORCE, 792
FORCE_PLUS_PERMANENT, 792
OFF, 792
ON, 792

plugin API, 789
plugin installing

audit_log, 969
CONNECTION_CONTROL, 954
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS, 954
MySQL Enterprise Firewall plugins, 995
MySQL Enterprise Thread Pool, 795
validate_password, 962

plugin option prefix
mysqld, 594

plugin services, 800
plugin table

system table, 764
plugin-dir option, 298

mysql, 349
mysqladmin, 373
mysqlbinlog, 478
mysqlcheck, 382
mysqldump, 392
mysqld_safe, 314
mysqlimport, 413
mysqlshow, 420
mysqlslap, 430
mysql_plugin, 329
mysql_upgrade, 336

plugin-ini option
mysql_plugin, 329

plugin-load option
mysqld, 592

plugin-load-add option
mysqld, 593

plugindir option

3732

mysql_config, 501
plugins

activating, 789
installing, 789, 1907
security, 923
server, 789
uninstalling, 789, 1909

PLUGINS
INFORMATION_SCHEMA table, 3286

plugin_dir system variable, 666
POINT data type, 1399
Point(), 1591
point-in-time recovery, 1040, 4245

InnoDB, 2256
using NDB Cluster replication, 3127

PointFromText(), 1587
PointFromWKB(), 1589
PointN(), 1595
PolyFromText(), 1588
PolyFromWKB(), 1589
POLYGON data type, 1399
Polygon(), 1591
PolygonFromText(), 1588
PolygonFromWKB(), 1589
port, 4245
port option, 298

mysql, 349
mysqladmin, 373
mysqlbinlog, 478
mysqlcheck, 382
mysqld, 594
mysqldump, 392
mysqld_safe, 314
mysqlhotcopy, 494
mysqlimport, 413
mysqlshow, 420
mysqlslap, 430
mysql_config, 501
mysql_convert_table_format, 496
mysql_setpermission, 498
mysql_upgrade, 336

port system variable, 666
port-open-timeout option

mysqld, 595
portability, 1052

types, 1420
PortNumber, 2671, 2807
PortNumber (OBSOLETE / REMOVED), 2802
PortNumberStats, 2674
ports, 196, 207, 304, 478, 505, 808, 842, 902, 923, 3414, 3556
POSITION(), 1502
post-filtering

Performance Schema, 3377
post-query option

3733

mysqlslap, 430
post-system option

mysqlslap, 430
PostgreSQL compatibility, 45
POSTGRESQL SQL mode, 745
postinstall

multiple servers, 803
postinstallation

setup and testing, 203
POW(), 1467
POWER(), 1467
pre-4.1 passwords

deprecated features, 21
pre-filtering

Performance Schema, 3377
pre-query option

mysqlslap, 430
pre-system option

mysqlslap, 430
precedence

command options, 284
operator, 1446

precision
arithmetic, 1623
fractional seconds, 1360, 1369
numeric, 1360

precision math, 1623
preload_buffer_size system variable, 666
Prepare

thread command, 1206
PREPARE, 1835, 1839

XA transactions, 1819
prepared backup, 4245
prepared statement, 4245
prepared statements, 1835, 1839, 1840, 1840

repreparation, 1181
Prepared_stmt_count status variable, 729
preparing

thread state, 1209
preparing for alter table

thread state, 1209
preserve-trailing-spaces option

ndb_restore, 2922
preview option

mysqlaccess, 468
primary key, 4245

constraint, 50
deleting, 1648

PRIMARY KEY, 1648, 1687
primary keys

and partitioning keys, 3214
print command

mysql, 355
print option

3734

ndb_restore, 2923
print-data option

ndb_restore, 2923
print-defaults option, 292

myisamchk, 439
mysql, 349
mysqladmin, 373
mysqlbinlog, 478
mysqlcheck, 382
mysqld, 595
mysqldump, 394
mysqlimport, 414
mysqlshow, 420
mysqlslap, 430
mysql_plugin, 329
mysql_upgrade, 336
ndbd, 2819
ndbinfo_select_all, 2826
ndb_blob_tool, 2850
ndb_config, 2860
ndb_delete_all, 2868
ndb_desc, 2877
ndb_drop_index, 2881
ndb_drop_table, 2886
ndb_index_stat, 2894
ndb_mgm, 2845
ndb_mgmd, 2838
ndb_move_data, 2902
ndb_restore, 2923
ndb_select_all, 2940
ndb_select_count, 2945
ndb_show_tables, 2950
ndb_waiter, 2959

print-full-config option
ndb_mgmd, 2838

print-log option
ndb_restore, 2923

print-meta option
ndb_restore, 2923

privilege
changes, 885

privilege checks
effect on speed, 1108

privilege information
location, 869

privilege system, 859
privileges

access, 859
adding, 882
ALL, 863
ALL PRIVILEGES, 863
ALTER, 863
ALTER ROUTINE, 864
and replication, 2561

3735

checking, 884
CREATE, 864
CREATE ROUTINE, 864
CREATE TABLESPACE, 864
CREATE TEMPORARY TABLES, 864
CREATE USER, 864
CREATE VIEW, 864
default, 211
DEFINER, 1934, 3245
DELETE, 864
deleting, 1880
display, 1934
DROP, 864
dropping, 1880
EVENT, 864
EXECUTE, 864
FILE, 864
GRANT OPTION, 865
granting, 1880
INDEX, 865
INSERT, 865
INVOKER, 1934, 3245
LOCK TABLES, 865
PROCESS, 865
PROXY, 865
REFERENCES, 866
RELOAD, 866
REPLICATION CLIENT, 866
REPLICATION SLAVE, 866
revoking, 884, 1892
SELECT, 866
SHOW DATABASES, 867
SHOW VIEW, 867
SHUTDOWN, 867
SQL SECURITY, 3245
stored objects, 3245
SUPER, 867
TEMPORARY tables, 864, 1705, 1887
TRIGGER, 868
UPDATE, 868
USAGE, 868

problems
access denied errors, 3556
common errors, 3554
compiling MySQL server, 201
DATE columns, 3578
date values, 1372
installing on Solaris, 173
installing Perl, 241
lost connection errors, 3559
reporting, 2, 37
starting the server, 207
table locking, 1185
time zone, 3576

3736

proc table
system table, 764

PROCEDURE, 1777
PROCEDURE ANALYSE(), 1124
procedures

stored, 3225
process, 4246
process management (NDB Cluster), 2811
PROCESS privilege, 865
processes

display, 1941
monitoring, 1203

Processing events
thread state, 1218

Processing events from schema table
thread state, 1218

Processlist
thread command, 1206

PROCESSLIST, 1941
INFORMATION_SCHEMA table, 3287
possible inconsistency with INFORMATION_SCHEMA tables, 2213

procs_priv table
system table, 764, 869

profiling
deprecated features, 21

PROFILING
INFORMATION_SCHEMA table, 3289

profiling system variable, 667
profiling_history_size

deprecated features, 21
profiling_history_size system variable, 667
program variables

setting, 293
program-development utilities, 281
programs

administrative, 280
client, 279
stored, 1840, 3223
utility, 280

progress-frequency option
ndb_restore, 2923

promote-attributes option
ndb_move_data, 2902
ndb_restore, 2924

prompt command
mysql, 355

prompt option
mysql, 349

prompts
meanings, 246

pronunciation
MySQL, 5

protocol option, 298
mysql, 349

3737

mysqladmin, 373
mysqlbinlog, 478
mysqlcheck, 382
mysqldump, 393
mysqlimport, 414
mysqlshow, 421
mysqlslap, 430
mysql_upgrade, 336

protocol_version system variable, 667
proxies_priv

grant table, 896
proxies_priv table

system table, 211, 764, 869
proximity search, 1525
Proxy, 2802
PROXY privilege, 865
proxy users, 894

conflict with anonymous users, 898
default proxy user, 897
PAM authentication, 942
PROXY privilege, 896
system variables, 899
Windows authentication, 949

proxy_user system variable, 667
pseudo-record, 4246
pseudo_slave_mode system variable, 668
pseudo_thread_id system variable, 668
Pthreads, 4246
purge, 2075, 4246
PURGE BINARY LOGS, 1823
purge buffering, 4246
purge configuration, 2075
purge lag, 4246
PURGE MASTER LOGS, 1823
purge scheduling, 2075
purge thread, 4246
Purging old relay logs

thread state, 1210
pushdown joins (NDB), 2770
Python, 3486, 4246

third-party driver, 3493
Python API, 4246

Q
Qcache_free_blocks status variable, 730
Qcache_free_memory status variable, 730
Qcache_hits status variable, 730
Qcache_inserts status variable, 730
Qcache_lowmem_prunes status variable, 730
Qcache_not_cached status variable, 730
Qcache_queries_in_cache status variable, 730
Qcache_total_blocks status variable, 730
QUARTER(), 1483

3738

queries
entering, 244
estimating performance, 1162
examples, 267
speed of, 1052

Queries status variable, 730
Query

thread command, 1206
query, 4247
Query Cache, 1174
query cache

and ndbinfo database tables, 3047
and partitioned tables, 3210
thread states, 1214

query end
thread state, 1210

query execution plan, 4247
query expansion, 1531
query option

mysqlslap, 430
ndb_config, 2859, 2860
ndb_index_stat, 2895

query-all option
ndb_config, 2860

query_alloc_block_size system variable, 668
query_cache_limit system variable, 668
query_cache_min_res_unit system variable, 669
query_cache_size system variable, 669
query_cache_type system variable, 670
query_cache_wlock_invalidate system variable, 670
query_prealloc_size system variable, 671
questions, 367
Questions status variable, 730
Queueing master event to the relay log

thread state, 1215
QUICK

DELETE modifier, 1736
quick option

myisamchk, 443
mysql, 349
mysqlcheck, 382
mysqldump, 404

quiesce, 4247
quiet option

mysqlhotcopy, 494
Quit

thread command, 1206
quit command

mysql, 355
QUIT command (NDB Cluster), 2963
quotation marks

in strings, 1223
QUOTE(), 1224, 1502
quote-names option

3739

mysqldump, 400
quoting, 1224

account names, 875
column alias, 1231, 3580
host names in account names, 875
schema objects, 1882
user names in account names, 875

quoting binary data, 1224
quoting of identifiers, 1230

R
R-tree, 4247
RADIANS(), 1468
RAID, 4247
RAND(), 1468
random dive, 4247
random-passwords option

mysql_install_db, 326
RANDOM_BYTES(), 1569
rand_seed1 system variable, 671
rand_seed2 system variable, 672
range join type

optimizer, 1153
range partitioning, 3154, 3160
range partitions

adding and dropping, 3181
managing, 3181

range_alloc_block_size system variable, 672
raw backup, 4247
raw option

mysql, 349
mysqlbinlog, 478

raw partitions, 2030
RC

MySQL releases, 64
re-creating

grant tables, 206
READ COMMITTED, 4248

implementation in NDB Cluster, 2604
transaction isolation level, 2043

read conflict detection and resolution
in NDB Cluster Replication, 3143

read phenomena, 4248
READ UNCOMMITTED, 4248

transaction isolation level, 2045
read view, 4248
read-ahead, 4248

linear, 2065
random, 2065

read-from-remote-master option
mysqlbinlog, 478

read-from-remote-server option
mysqlbinlog, 478

3740

read-only option
myisamchk, 441

read-only transaction, 4248
Reading event from the relay log

thread state, 1217
Reading from net

thread state, 1210
Reading master dump table data

thread state, 1218
read_buffer_size myisamchk variable, 439
read_buffer_size system variable, 672
read_firewall_users() MySQL Enterprise Firewall function, 1008
read_firewall_whitelist() MySQL Enterprise Firewall function, 1008
read_only system variable, 673
read_rnd_buffer_size system variable, 674
REAL data type, 1364
RealtimeScheduler, 2726
REAL_AS_FLOAT SQL mode, 744
rebuild-indexes option

ndb_restore, 2925
Rebuilding the index on master dump table

thread state, 1218
ReceiveBufferMemory, 2802
reconfiguring, 201
reconnect option

mysql, 350
Reconnecting after a failed binlog dump request

thread state, 1215
Reconnecting after a failed master event read

thread state, 1216
reconnection

automatic, 3457
record lock, 4249
record-level locks

InnoDB, 2053, 2175
record_log_pos option

mysqlhotcopy, 494
RECOVER

XA transactions, 1819
recover option

myisamchk, 443
recovery

from crash, 1043
incremental, 1040
InnoDB, 2256
point in time, 1040

redo, 4249
redo log, 2035, 2036, 4249
redo log archiving, 4249
RedoBuffer, 2716
RedoOverCommitCounter

data nodes, 2740
RedoOverCommitLimit

data nodes, 2741

3741

reducing
data size, 1121

redundant row format, 2109, 4249
ref join type

optimizer, 1152
references, 1649
REFERENCES privilege, 866
referential integrity, 1983, 4249
REFERENTIAL_CONSTRAINTS

INFORMATION_SCHEMA table, 3290
Refresh

thread command, 1206
ref_or_null, 1079
ref_or_null join type

optimizer, 1152
REGEXP, 1514
REGEXP operator, 1513
regexp option

mysqlhotcopy, 495
mysql_find_rows, 497

Register Slave
thread command, 1206

Registering slave on master
thread state, 1216

regular expression syntax, 1513
rehash command

mysql, 355
relational, 4249
relational databases

defined, 5
relative option

mysqladmin, 373
relay log (replication), 2512
relay-log-purge option

mysqld, 2455
relay-log-space-limit option

mysqld, 2456
relay_log system variable, 2465
relay_log_basename system variable, 2466
relay_log_index system variable, 2466
relay_log_info_file system variable, 2467
relay_log_info_repository system variable, 2467, 2512
relay_log_purge system variable, 2468
relay_log_recovery system variable, 2468
relay_log_space_limit system variable, 2468
release numbers, 64
RELEASE SAVEPOINT, 1809
releases

GA, 64
milestone, 64
naming scheme, 64
RC, 64

RELEASE_LOCK(), 1572
relevance, 4250

3742

relnotes option
mysqlaccess, 468

reload option
ndb_mgmd, 2838

RELOAD privilege, 866
remote administration (NDB Cluster)

and security issues, 3095
remove action

MySQLInstallerConsole, 119
remove option

mysqld, 595
ndbd, 2819
ndbmtd, 2819
ndb_mgmd, 2839

removed features, 21
--init-rpl-role, 22
--log, 21
--one-thread, 21
--rpl-recovery-rank, 22
--safe-mode, 21
--skip-thread-priority, 22
--table-cache, 22
DEFAULT, 22
engine_condition_pushdown, 22
FLUSH MASTER, 22
FLUSH SLAVE, 22
have_csv, 22
have_innodb, 22
have_ndbcluster, 22
have_partitioning, 22
log, 21
log_slow_queries, 21
max_long_data_size, 22
ONE_SHOT, 22
OPTION, 22
rpl_recovery_rank, 22
Rpl_status, 22
SHOW AUTHORS, 22
SHOW CONTRIBUTORS, 22
SHOW ENGINE INNODB MUTEX, 22
SLAVE START, 22
SLAVE STOP, 22
sql_big_tables, 22
sql_low_priority_updates, 22
sql_max_join_size, 22

Removing duplicates
thread state, 1210

removing tmp table
thread state, 1210

rename
thread state, 1210

rename database, 1732
rename result table

thread state, 1210

3743

RENAME TABLE, 1731
RENAME USER statement, 1892
renaming user accounts, 1892
Reopen tables

thread state, 1210
repair

tables, 375
Repair by sorting

thread state, 1210
Repair done

thread state, 1210
repair option

mysqlcheck, 382
repair options

myisamchk, 442
REPAIR TABLE

and partitioning, 3194
and replication, 2561

REPAIR TABLE statement, 1904
and replication, 1905
options, 1905
output, 1906
partitioning support, 1905
storage engine support, 1905

Repair with keycache
thread state, 1210

repairing
tables, 1045

REPEAT, 1847
labels, 1841

REPEAT(), 1502
REPEATABLE READ, 4250

transaction isolation level, 2043
repertoire, 4250

character set, 1281, 1315
string, 1281

replace, 282
REPLACE, 1769

LOAD DATA modifier, 1753
replace option

mysqldump, 395
mysqlimport, 414

replace utility, 504
REPLACE(), 1502
replica, 4250
replicas

statements, 1825
replicate-do-db option

mysqld, 2456
replicate-do-table option

mysqld, 2459
replicate-ignore-db option

mysqld, 2458
replicate-ignore-table option

3744

mysqld, 2459
replicate-rewrite-db option

mysqld, 2459
replicate-same-server-id option

mysqld, 2460
replicate-wild-do-table option

mysqld, 2461
replicate-wild-ignore-table option

mysqld, 2461
replication, 2411, 4250

and AUTO_INCREMENT, 2546
and character sets, 2547
and CHECKSUM TABLE statement, 2547
and CREATE ... IF NOT EXISTS, 2547
and CREATE TABLE ... SELECT, 2548
and DATA DIRECTORY, 2553
and DROP ... IF EXISTS, 2554
and errors on replica, 2563
and floating-point values, 2554
and FLUSH, 2554
and fractional seconds, 2554
and functions, 2555
and INDEX DIRECTORY, 2553
and invoked features, 2557
and LAST_INSERT_ID(), 2546
and LIMIT, 2559
and LOAD DATA, 2559
and max_allowed_packet, 2559
and MEMORY tables, 2560
and mysql (system) database, 2561
and partial updates, 2563
and partitioned tables, 2561
and partitioning, 2563
and privileges, 2561
and query optimizer, 2561
and REPAIR TABLE statement, 1905, 2561
and reserved words, 2561
and scheduled events, 2557, 2558
and SQL mode, 2563
and stored routines, 2557
and temporary tables, 2564
and time zones, 2564
and TIMESTAMP, 2546
and transactions, 2564, 2565
and triggers, 2557, 2566
and TRUNCATE TABLE, 2567
and variables, 2567
and views, 2569
attribute demotion, 2551
attribute promotion, 2551
BLACKHOLE, 2547
circular, 3102
crashes, 2562
delayed, 2544

3745

in NDB Cluster, 3098
(see also NDB Cluster replication)

nondeterministic functions, 1088
relay log, 2512
replication metadata repositories, 2512
row-based vs statement-based, 2424
safe and unsafe statements, 2429
semisynchronous, 2540
shutdown and restart, 2562, 2564
statements incompatible with STATEMENT format, 2425
timeouts, 2564
unexpected halt, 2528
with differing tables on source and replica, 2549
with ZFS, 2347

replication and logging
new features, 15

REPLICATION CLIENT privilege, 866
replication filtering options

and case sensitivity, 2519
replication formats

compared, 2424
replication implementation, 2508
replication limitations, 2545
replication metadata repositories, 2512
replication options, 2545
replication replica

thread states, 1215, 1216, 1217
REPLICATION SLAVE privilege, 866
replication source

thread states, 1215
replication source servers

statements, 1822
replication, asynchronous (see NDB Cluster replication)
REPORT command (NDB Cluster), 2963
reporting

bugs, 2, 37
errors, 37
problems, 2

report_host system variable, 2469
report_password system variable, 2469
report_port system variable, 2469
report_user system variable, 2470
REPRODUCIBLE_BUILD option

CMake, 196
Requesting binlog dump

thread state, 1216
REQUIRE option

GRANT statement, 1888
reschedule

thread state, 1214
reserved words, 1243

and replication, 2561
ReservedSendBufferMemory, 2740
RESET MASTER, 1824

3746

RESET MASTER statement, 1975
RESET SLAVE, 1830
RESET SLAVE ALL, 1830
RESET SLAVE statement, 1975
Reset stmt

thread command, 1206
reset-replica.pl

NDB Cluster replication, 3124
resetmaster option

mysqlhotcopy, 495
resetslave option

mysqlhotcopy, 495
RESIGNAL, 1858
resolveip, 282, 505

help option, 505
silent option, 505
version option, 505

resolve_stack_dump, 282, 503
help option, 503
numeric-dump-file option, 503
symbols-file option, 503
version option, 503

resource limits
user accounts, 651, 900, 1891

resources
ndbinfo table, 3071

RESTART command (NDB Cluster), 2963
restarting

the server, 210
RestartOnErrorInsert, 2702
RestartSubscriberConnectTimeout, 2715
restart_info

ndbinfo table, 3072
restore, 4251
restore-data option

ndb_restore, 2925
restore-epoch option

ndb_restore, 2925
restore-meta option

ndb_restore, 2925
restore-privilege-tables option

ndb_restore, 2926
restoring backups

in NDB Cluster, 2908
restoring from backup

in NDB Cluster replication, 3121
restoring NDB backups

between NDB release series, 2929
to earlier versions of NDB, 2929
to later versions of NDB, 2929

restrictions
character sets, 1334
events, 3254
InnoDB, 2304

3747

performance_schema database, 3482
pluggable authentication, 892
server-side cursors, 1850
signals, 1875
stored routines, 3254
subqueries, 1800
triggers, 3254
views, 3258
XA transactions, 1822

result-file option
mysqlbinlog, 479
mysqldump, 400

retries option
ndb_desc, 2877

retrieving
data from tables, 252

RETURN, 1847
return (\r), 1223, 1756
REVERSE(), 1502
REVOKE statement, 882, 1892
revoking

privileges, 1892
rewrite-database option

ndb_restore, 2926
rhost option

mysqlaccess, 468
RIGHT JOIN, 1072, 1780
RIGHT OUTER JOIN, 1780
RIGHT(), 1503
RLIKE, 1514
ROLLBACK, 1804

XA transactions, 1819
rollback, 4251
rollback option

mysqlaccess, 468
rollback segment, 2034, 4251
ROLLBACK TO SAVEPOINT, 1809
Rolling back

thread state, 1210
rolling restart (NDB Cluster), 2997
ROLLUP, 1612
root password, 211
root user, 842

password resetting, 3569
ROUND(), 1469
rounding, 1623
rounding errors, 1362
routines

stored, 3223, 3225
ROUTINES

INFORMATION_SCHEMA table, 3291
routines option

mysqldump, 402
ROW, 1792

3748

row, 4251
row constructors, 1792

optimizations, 1090
row format, 4251
row lock, 4251
row size

maximum, 1130
row subqueries, 1792
row-based replication, 4251

advantages, 2426
disadvantages, 2427

row-level locking, 1182, 4252
rowid option

ndb_select_all, 2940
rows

counting, 261
deleting, 3581
matching problems, 3581
selecting, 252
sorting, 255

rows option
mysql_find_rows, 497
ndb_config, 2860

ROW_COUNT(), 1581
ROW_FORMAT

COMPACT, 1130, 2110
COMPRESSED, 1130, 2091, 2112
DYNAMIC, 1130, 2112
REDUNDANT, 1130, 2109

RPAD(), 1503
rpl_recovery_rank

removed features, 22
Rpl_semi_sync_master_clients status variable, 730
rpl_semi_sync_master_enabled system variable, 2451
Rpl_semi_sync_master_net_avg_wait_time status variable, 731
Rpl_semi_sync_master_net_waits status variable, 731
Rpl_semi_sync_master_net_wait_time status variable, 731
Rpl_semi_sync_master_no_times status variable, 731
Rpl_semi_sync_master_no_tx status variable, 731
Rpl_semi_sync_master_status status variable, 731
Rpl_semi_sync_master_timefunc_failures status variable, 731
rpl_semi_sync_master_timeout system variable, 2451
rpl_semi_sync_master_trace_level system variable, 2452
Rpl_semi_sync_master_tx_avg_wait_time status variable, 731
Rpl_semi_sync_master_tx_waits status variable, 731
Rpl_semi_sync_master_tx_wait_time status variable, 731
rpl_semi_sync_master_wait_no_slave system variable, 2452
Rpl_semi_sync_master_wait_pos_backtraverse status variable, 732
Rpl_semi_sync_master_wait_sessions status variable, 732
Rpl_semi_sync_master_yes_tx status variable, 732
rpl_semi_sync_slave_enabled system variable, 2470
Rpl_semi_sync_slave_status status variable, 732
rpl_semi_sync_slave_trace_level system variable, 2470
Rpl_status

3749

removed features, 22
rpl_stop_slave_timeout system variable, 2471
RPM file, 149, 153, 156
rpm option

mysql_install_db, 326
RPM Package Manager, 156
Rsa_public_key status variable, 732
RTRIM(), 1503
Ruby, 4252
Ruby API, 3493, 4252
running

ANSI mode, 43
batch mode, 266
multiple servers, 803
queries, 244

running CMake after prior invocation, 181, 201
rw-lock, 4252
rwlock_instances table

performance_schema, 3413

S
safe statement (replication)

defined, 2429
safe-recover option

myisamchk, 443
safe-updates mode, 363
safe-updates option

mysql, 350, 363
safe-user-create option

mysqld, 595
Sakila, 8
same value wins (conflict resolution), 3135
sandbox mode

for expired-password accounts, 887
SASL, 2271
SAVEPOINT, 1809
savepoint, 4252
Saving state

thread state, 1210
scalability, 4252
Scalable Coherent Interface (NDB Cluster) (OBSOLETE), 2810
scale

arithmetic, 1623
numeric, 1360

scale out, 4253
scale up, 4253
SchedulerExecutionTimer, 2726
SchedulerResponsiveness, 2726
SchedulerSpinTimer, 2727
schema, 4253

altering, 1634
creating, 1661
deleting, 1726

3750

SCHEMA Events (NDB Cluster), 2991
SCHEMA(), 1582
SCHEMATA

INFORMATION_SCHEMA table, 3294
SCHEMA_PRIVILEGES

INFORMATION_SCHEMA table, 3294
SCI (NDB Cluster) (OBSOLETE), 2810
script files, 266
scripts, 310, 318

mysql_install_db, 205
SQL, 337

search index, 4253
searching

and case sensitivity, 3576
full-text, 1521
MySQL Web pages, 37
two keys, 273

Searching rows for update
thread state, 1211

SECOND(), 1483
secondary index, 4253

InnoDB, 2022
secure connections, 908

command options, 300
secure-auth option, 299

mysql, 350
mysqladmin, 373
mysqlbinlog, 479
mysqlcheck, 382
mysqldump, 393
mysqlimport, 414
mysqlshow, 421
mysqlslap, 430

secure_auth
deprecated features, 21

secure_auth system variable, 675
secure_file_priv system variable, 675
securing an NDB Cluster, 3097
security

against attackers, 852
and malicious SQL statements, 3096
and NDB utilities, 3098
for the InnoDB memcached interface, 2271
new features, 9
plugins, 923

security system, 859
SEC_TO_TIME(), 1483
segment, 4253
SELECT

INTO, 1778
LIMIT, 1772
optimizing, 1146, 1975
Query Cache, 1174

SELECT INTO TABLE, 46

3751

SELECT privilege, 866
select-limit option

mysql, 350
selecting

databases, 248
selectivity, 4254
Select_full_join status variable, 732
Select_full_range_join status variable, 732
Select_range status variable, 732
Select_range_check status variable, 732
Select_scan status variable, 733
SELinux, 1018

error log file context, 1021
file context, 1020
mode, 1020
MySQL data directory context, 1021
MySQL feature TCP port context, 1022
MySQL Server policies, 1020
mysqld TCP port context, 1022
PID file context, 1021
secure_file_priv directory context, 1021
status, 1019
TCP port context, 1022
troubleshooting, 1022
Unix domain file context, 1021

semi-consistent read, 4254
InnoDB, 2175

semijoins, 1092
semisynchronous replication, 2540

administrative interface, 2541
configuration, 2542
installation, 2542
monitoring, 2544

SendBufferMemory, 2802
Sending binlog event to slave

thread state, 1215
sending cached result to client

thread state, 1214
SendSignalId, 2803, 2808
SEQUENCE, 273
sequence emulation, 1581
sequences, 273
SERIAL, 1360, 1362
SERIAL DEFAULT VALUE, 1414
SERIALIZABLE, 4254

transaction isolation level, 2045
server, 4254

connecting, 243, 304
debugging, 810
disconnecting, 243
logs, 765
restart, 210
shutdown, 210
signal handling, 508

3752

starting, 204
starting and stopping, 216
starting problems, 207

server administration, 365
server configuration, 512
server connections

command options, 297
server defaults

new features, 11
server plugins, 789
server variables, 1960 (see system variables)
server-id option

mysqlbinlog, 479
server-id-bits option

mysqlbinlog, 479
mysqld, 2762

server-public-key-path option, 300
mysql, 350

server-side cursors
restrictions, 1850

server-side prepared statement, 4254
ServerPort, 2679
servers

multiple, 803
servers table

system table, 765
server_id system variable, 2440
server_id_bits system variable, 2780
server_operations

ndbinfo table, 3076
server_transactions

ndbinfo table, 3077
server_uuid system variable

mysqld, 2441
service-startup-timeout option

mysql.server, 318
services

for plugins, 800
servlet, 4254
SESSION

SET statement, 1909
session variables

and replication, 2567
session_account_connect_attrs table

performance_schema, 3438
session_connect_attrs table

performance_schema, 3439
SESSION_STATUS

INFORMATION_SCHEMA table, 3279
SESSION_USER(), 1582
SESSION_VARIABLES

INFORMATION_SCHEMA table, 3279
SET

CHARACTER SET, 1294

3753

NAMES, 1294
ONE_SHOT, 1913
size, 1419

set action
MySQLInstallerConsole, 119

SET CHARACTER SET statement, 1913
SET CHARSET statement, 1913
SET data type, 1387, 1395
SET GLOBAL sql_slave_skip_counter, 1831
SET GLOBAL statement, 707
SET NAMES, 1300
SET NAMES statement, 1913
Set option

thread command, 1206
SET PASSWORD statement, 886, 1893
SET SESSION statement, 707
SET sql_log_bin, 1824
SET statement

assignment operator, 1456
CHARACTER SET, 1913
CHARSET, 1913
NAMES, 1913
variable assignment, 1909

SET TRANSACTION, 1815
set-auto-increment[option

myisamchk, 444
set-charset option

mysqlbinlog, 479
mysqldump, 397

set-collation option
myisamchk, 443

set-gtid-purged option
mysqldump, 398

setting
passwords, 886

setting passwords, 1893
setting program variables, 293
setup

postinstallation, 203
thread state, 1211

setup_actors table
performance_schema, 3406

setup_consumers table
performance_schema, 3407

setup_instruments table
performance_schema, 3408

setup_objects table
performance_schema, 3409

setup_timers table
performance_schema, 3410

set_firewall_mode() MySQL Enterprise Firewall function, 1008
SHA(), 1569
SHA1(), 1569
SHA2(), 1570

3754

sha256_password authentication plugin, 930
sha256_password_private_key_path system variable, 676
sha256_password_public_key_path system variable, 677
shared lock, 2038, 4255
Shared memory parameters (NDB)

PortNumber, 2807
shared memory transporter (see NDB Cluster)
shared tablespace, 4255
shared-memory-base-name option, 299

mysql, 350
mysqladmin, 374
mysqlbinlog, 479
mysqlcheck, 383
mysqldump, 405
mysqlimport, 414
mysqlshow, 421
mysqlslap, 431
mysql_upgrade, 336

SharedGlobalMemory, 2735
shared_memory system variable, 677
shared_memory_base_name system variable, 677
sharp checkpoint, 4255
shell syntax, 4
ShmKey, 2808
ShmSize, 2808
short-form option

mysqlbinlog, 480
SHOW

in NDB Cluster management client, 2642
SHOW AUTHORS, 1915

removed features, 22
SHOW AUTHORS statement, 1914
SHOW BINARY LOGS statement, 1914, 1915
SHOW BINLOG EVENTS statement, 1914, 1915
SHOW CHARACTER SET statement, 1914, 1916
SHOW COLLATION statement, 1914, 1917
SHOW COLUMNS statement, 1914, 1918
SHOW command (NDB Cluster), 2964
SHOW CONTRIBUTORS, 1920

removed features, 22
SHOW CONTRIBUTORS statement, 1914
SHOW CREATE DATABASE statement, 1914, 1920
SHOW CREATE EVENT statement, 1914
SHOW CREATE FUNCTION statement, 1914, 1921
SHOW CREATE PROCEDURE statement, 1914, 1921
SHOW CREATE SCHEMA statement, 1914, 1920
SHOW CREATE TABLE statement, 1914, 1922
SHOW CREATE TRIGGER statement, 1914, 1923
SHOW CREATE VIEW statement, 1914, 1923
SHOW DATABASES privilege, 867
SHOW DATABASES statement, 1914, 1924
SHOW ENGINE

and NDB Cluster, 3085
SHOW ENGINE INNODB MUTEX

3755

removed features, 22
SHOW ENGINE INNODB STATUS

and innodb_use_sys_malloc, 2070
SHOW ENGINE INNODB STATUS statement, 1925
SHOW ENGINE NDB STATUS, 1925, 3085
SHOW ENGINE NDBCLUSTER STATUS, 1925, 3085
SHOW ENGINE statement, 1914, 1925
SHOW ENGINES

and NDB Cluster, 3085
SHOW ENGINES statement, 1914, 1929
SHOW ERRORS statement, 1914, 1931
SHOW EVENTS statement, 1914, 1931
SHOW extensions, 3358
SHOW FIELDS statement, 1914, 1918
SHOW FUNCTION CODE statement, 1914, 1933
SHOW FUNCTION STATUS statement, 1914, 1934
SHOW GRANTS statement, 1914, 1934
SHOW INDEX statement, 1914, 1934
SHOW KEYS statement, 1914, 1934
SHOW MASTER LOGS statement, 1914, 1915
SHOW MASTER STATUS statement, 1914, 1936
SHOW OPEN TABLES statement, 1914, 1937
show option

my_print_defaults, 503
SHOW PLUGINS statement, 1914, 1937
SHOW PRIVILEGES statement, 1914, 1938
SHOW PROCEDURE CODE statement, 1914, 1939
SHOW PROCEDURE STATUS statement, 1914, 1940
SHOW PROCESSLIST statement, 1914, 1941
SHOW PROFILE statement, 1914, 1943
SHOW PROFILES statement, 1914, 1943, 1945
SHOW RELAYLOG EVENTS statement, 1914, 1946
SHOW SCHEDULER STATUS, 3237
SHOW SCHEMAS statement, 1924
SHOW SLAVE HOSTS statement, 1914, 1947
SHOW SLAVE STATUS statement, 1914, 1947
SHOW STATUS

and NDB Cluster, 3088
SHOW STATUS statement, 1914, 1954
SHOW STORAGE ENGINES statement, 1929
SHOW TABLE STATUS statement, 1914, 1955
SHOW TABLES statement, 1914, 1958
SHOW TRIGGERS statement, 1914, 1959
SHOW VARIABLES

and NDB Cluster, 3086
SHOW VARIABLES statement, 1914, 1960
SHOW VIEW privilege, 867
SHOW WARNINGS statement, 1914, 1962
SHOW with WHERE, 3262, 3358
show-slave-auth-info option

mysqld, 2447
show-table-type option

mysqlshow, 421
show-temp-status option

3756

ndb_show_tables, 2950
show-warnings option

mysql, 351
showing

database information, 415
show_old_temporals system variable, 678
shutdown, 4255

server, 761
Shutdown

thread command, 1206
SHUTDOWN command (NDB Cluster), 2965
SHUTDOWN privilege, 867
shutdown-timeout option

mysqladmin, 374
shutting down

the server, 210
Shutting down

thread state, 1218
SIGHUP signal

log maintenance, 788
server response, 508, 1967

SIGINT signal
client response, 509
mysql client, 351
server response, 508, 812

sigint-ignore option
mysql, 351

SIGN(), 1470
SIGNAL, 1863
signal handling, 507
signals

client response, 509
restrictions, 1875
server response, 508

SigNum, 2808
SIGPIPE signal

client response, 509
SIGTERM signal

server response, 508
silent column changes, 1715
silent option

myisamchk, 439
myisampack, 454
mysql, 351
mysqladmin, 374
mysqlcheck, 383
mysqld_multi, 320
mysqlimport, 414
mysqlslap, 431
perror, 504
resolveip, 505

simplified_binlog_gtid_recovery, 2505
SIN(), 1470
single quote (\'), 1223

3757

single user mode (NDB Cluster), 2963, 2999
and ndb_restore, 2908

single-transaction option
mysqldump, 405

single-user option
ndb_waiter, 2959

SINGLEUSER Events (NDB Cluster), 2992
size of tables, 1128
sizes

display, 1360
--skip option prefix, 292
skip-broken-objects option

ndb_restore, 2927
skip-column-names option

mysql, 351
skip-comments option

mysqldump, 396
skip-config-file option

ndb_mgmd, 2839
skip-database option

mysqlcheck, 383
skip-grant-tables option

mysqld, 595
skip-gtids option

mysqlbinlog, 480
skip-host-cache option

mysqld, 596
skip-innodb option

mysqld, 597, 2139
skip-kill-mysqld option

mysqld_safe, 314
skip-line-numbers option

mysql, 351
skip-name-resolve option

mysql_install_db, 327
skip-ndbcluster option

mysqld, 2763
skip-new option

mysqld, 597
skip-nodegroup option

ndb_error_reporter, 2888
skip-opt option

mysqldump, 404
skip-partition option

mysqld, 597
skip-show-database option

mysqld, 597
skip-slave-start option

mysqld, 2461
skip-ssl option, 301

mysqld, 599
skip-stack-trace option

mysqld, 597
skip-symbolic-links option

3758

mysqld, 600
skip-syslog option

mysqld_safe, 314
skip-table-check option

ndb_restore, 2927
skip-unknown-objects option

ndb_restore, 2927
skip-use-db option

mysql_find_rows, 497
skip_external_locking system variable, 678
skip_name_resolve system variable, 678
skip_networking system variable, 679
skip_show_database system variable, 679
Slave has read all relay log; waiting for more updates

thread state, 1217
SLAVE START

removed features, 22
SLAVE STOP

removed features, 22
slave-skip-errors option

mysqld, 2462
slave-sql-verify-checksum option

mysqld, 2463
slave_allow_batching, 3118
slave_allow_batching system variable, 2780
slave_checkpoint_group system variable, 2471
slave_checkpoint_period system variable, 2472
slave_compressed_protocol system variable, 2473
slave_exec_mode system variable, 2473
Slave_heartbeat_period status variable, 733
Slave_last_heartbeat status variable, 733
slave_load_tmpdir system variable, 2473
slave_master_info table

system table, 765
slave_max_allowed_packet system variable, 2474
slave_net_timeout system variable, 2474
Slave_open_temp_tables status variable, 733
slave_parallel_workers system variable, 2475
slave_pending_jobs_size_max system variable, 2476
Slave_received_heartbeats status variable, 733
slave_relay_log_info table

system table, 765
Slave_retried_transactions status variable, 733
Slave_rows_last_search_algorithm_used status variable, 733
slave_rows_search_algorithms system variable, 2476
Slave_running status variable, 733
slave_skip_errors system variable, 2478
slave_sql_verify_checksum system variable, 2478
slave_transaction_retries system variable, 2478
slave_type_conversions system variable, 2479
slave_worker_info table

system table, 765
Sleep

thread command, 1206

3759

sleep option
mysqladmin, 374

SLEEP(), 1621
slow queries, 368
slow query log, 785, 4255
slow shutdown, 4255
slow-start-timeout option

mysqld, 598
Slow_launch_threads status variable, 733
slow_launch_time system variable, 680
slow_log table

system table, 764
Slow_queries status variable, 733
slow_query_log system variable, 680
slow_query_log_file system variable, 680
SMALLINT data type, 1362
snapshot, 4255
SNAPSHOTEND (START BACKUP command), 3013
SNAPSHOTSTART (START BACKUP command), 3013
socket option, 299

mysql, 351
mysqladmin, 374
mysqlbinlog, 480
mysqlcheck, 383
mysqld, 598
mysqldump, 393
mysqld_safe, 314
mysqlhotcopy, 495
mysqlimport, 415
mysqlshow, 421
mysqlslap, 431
mysql_config, 501
mysql_convert_table_format, 496
mysql_setpermission, 498
mysql_upgrade, 337

socket system variable, 681
socket_instances table

performance_schema, 3414
socket_summary_by_event_name table

performance_schema, 3451
socket_summary_by_instance table

performance_schema, 3451
Solaris

installation, 173
Solaris installation problems, 173
Solaris troubleshooting, 202
Solaris x86_64 issues, 1137
SOME, 1790
sort buffer, 4255
sort-index option

myisamchk, 444
sort-records option

myisamchk, 444
sort-recover option

3760

myisamchk, 443
sorting

data, 255
grant tables, 879, 881
table rows, 255

Sorting for group
thread state, 1211

Sorting for order
thread state, 1211

Sorting index
thread state, 1211

Sorting result
thread state, 1211

sort_buffer_size myisamchk variable, 439
sort_buffer_size system variable, 681
sort_key_blocks myisamchk variable, 439
Sort_merge_passes status variable, 733
Sort_range status variable, 734
Sort_rows status variable, 734
Sort_scan status variable, 734
SOUNDEX(), 1503
SOUNDS LIKE, 1504
source, 4255
source (mysql client command), 267, 361
source command

mysql, 355
source distribution

installing, 176
space ID, 4256
SPACE(), 1504
sparse file, 4256
spassword option

mysqlaccess, 468
spatial data types, 1398

storage requirements, 1419
spatial extensions in MySQL, 1398
spatial functions, 1583
spatial queries

optimization, 1112
speed

increasing with replication, 2411
inserting, 1106
of queries, 1052

spin, 4256
sporadic-binlog-dump-fail option

mysqld, 2487
Spring, 4256
sp_reload_firewall_rules() MySQL Enterprise Firewall stored procedure, 1006
sp_set_firewall_mode() MySQL Enterprise Firewall stored procedure, 1007
SQL, 4256

defined, 5
SQL injection, 857, 994, 1558, 1836
SQL mode, 737

ALLOW_INVALID_DATES, 739

3761

and partitioning, 2563, 3207
and replication, 2563
ANSI, 738, 744
ANSI_QUOTES, 739
DB2, 744
deprecated features, 20
ERROR_FOR_DIVISION_BY_ZERO, 739
HIGH_NOT_PRECEDENCE, 740
IGNORE_SPACE, 740
MAXDB, 744
MSSQL, 744
MYSQL323, 744
MYSQL40, 745
NO_AUTO_CREATE_USER, 740
NO_AUTO_VALUE_ON_ZERO, 740
NO_BACKSLASH_ESCAPES, 741
NO_DIR_IN_CREATE, 741
NO_ENGINE_SUBSTITUTION, 741
NO_FIELD_OPTIONS, 741
NO_KEY_OPTIONS, 741
NO_TABLE_OPTIONS, 741
NO_UNSIGNED_SUBTRACTION, 741
NO_ZERO_DATE, 742
NO_ZERO_IN_DATE, 742
ONLY_FULL_GROUP_BY, 743, 1615
ORACLE, 745
PAD_CHAR_TO_FULL_LENGTH, 743
PIPES_AS_CONCAT, 744
POSTGRESQL, 745
REAL_AS_FLOAT, 744
strict, 739
STRICT_ALL_TABLES, 744
STRICT_TRANS_TABLES, 738, 744
TRADITIONAL, 739, 745

SQL node (NDB Cluster)
defined, 2580

SQL nodes (NDB Cluster), 3017
SQL scripts, 337
SQL SECURITY

effect on privileges, 3245
SQL statements

replicas, 1825
replication source servers, 1822

SQL statements relating to NDB Cluster, 3085
SQL-92

extensions to, 42
sql-mode option

mysqld, 598
SQLState, 4256
sql_auto_is_null system variable, 682
SQL_BIG_RESULT

SELECT modifier, 1778
sql_big_selects system variable, 682
sql_big_tables

3762

removed features, 22
SQL_BUFFER_RESULT

SELECT modifier, 1778
sql_buffer_result system variable, 682
SQL_CACHE, 1177

SELECT modifier, 1778
SQL_CALC_FOUND_ROWS, 1087

SELECT modifier, 1778
sql_log_bin system variable, 2499
sql_log_off system variable, 683
sql_low_priority_updates

removed features, 22
sql_max_join_size

removed features, 22
sql_mode system variable, 683
sql_notes system variable, 684
SQL_NO_CACHE, 1177

SELECT modifier, 1778
sql_quote_show_create system variable, 685
sql_safe_updates system variable, 363, 685
sql_select_limit system variable, 363, 685
sql_slave_skip_counter, 1831
sql_slave_skip_counter system variable, 2479
SQL_SMALL_RESULT

SELECT modifier, 1778
SQL_THREAD_WAIT_AFTER_GTIDS(), 1606
sql_warnings system variable, 686
SQRT(), 1470
square brackets, 1360
srcdir option

mysql_install_db, 327
SRID values

handling by spatial functions, 1587
SRID(), 1592
SSD, 2090, 4256
SSH, 852, 923
SSL, 908, 4256

command options, 300
establishing connections, 909
OpenSSL compared to yaSSL, 922
X.509 Basics, 908

SSL library
configuring, 184

ssl option, 301
mysqld, 599

SSL options
mysql, 351
mysqladmin, 374
mysqlbinlog, 480
mysqlcheck, 383
mysqldump, 393
mysqlimport, 415
mysqlshow, 421
mysqlslap, 431

3763

mysql_upgrade, 337
SSL related options

GRANT statement, 1888
ssl-ca option, 301
ssl-capath option, 302
ssl-cert option, 302
ssl-cipher option, 302
ssl-crl option, 302
ssl-crlpath option, 302
ssl-key option, 303
ssl-mode option, 303
ssl-verify-server-cert option, 303
Ssl_accepts status variable, 734
Ssl_accept_renegotiates status variable, 734
ssl_ca system variable, 686
Ssl_callback_cache_hits status variable, 734
ssl_capath system variable, 686
ssl_cert system variable, 686
Ssl_cipher status variable, 734
ssl_cipher system variable, 687
Ssl_cipher_list status variable, 734
Ssl_client_connects status variable, 734
Ssl_connect_renegotiates status variable, 734
ssl_crl system variable, 687
ssl_crlpath system variable, 687
Ssl_ctx_verify_depth status variable, 734
Ssl_ctx_verify_mode status variable, 734
Ssl_default_timeout status variable, 734
Ssl_finished_accepts status variable, 734
Ssl_finished_connects status variable, 734
ssl_key system variable, 688
Ssl_server_not_after status variable, 735
Ssl_server_not_before status variable, 735
Ssl_sessions_reused status variable, 735
Ssl_session_cache_hits status variable, 735
Ssl_session_cache_misses status variable, 735
Ssl_session_cache_mode status variable, 735
Ssl_session_cache_overflows status variable, 735
Ssl_session_cache_size status variable, 735
Ssl_session_cache_timeouts status variable, 735
Ssl_used_session_cache_entries status variable, 735
Ssl_verify_depth status variable, 735
Ssl_verify_mode status variable, 736
Ssl_version status variable, 736
staging-tries option

ndb_move_data, 2902
standalone option

mysqld, 600
Standard Monitor, 2240, 2244, 2248
Standard SQL

differences from, 46, 1891
extensions to, 42, 43

standards compatibility, 42
START

3764

XA transactions, 1819
START BACKUP

NOWAIT, 3013
SNAPSHOTEND, 3013
SNAPSHOTSTART, 3013
syntax, 3012
WAIT COMPLETED, 3013
WAIT STARTED, 3013

START command (NDB Cluster), 2965
START SLAVE, 1831
START TRANSACTION, 1804
start-datetime option

mysqlbinlog, 480
start-position option

mysqlbinlog, 480
StartConnectBackoffMaxTime, 2750
StartFailRetryDelay, 2741
StartFailureTimeout, 2704
starting

comments, 49
mysqld, 855
the server, 204
the server automatically, 216

Starting many servers, 803
StartNoNodeGroupTimeout, 2704
StartPartialTimeout, 2703
StartPartitionedTimeout, 2703
StartPoint(), 1597
startup, 4257
STARTUP Events (NDB Cluster), 2988
startup options

default, 286
startup parameters, 512

mysql, 338
mysqladmin, 368
tuning, 1191

StartupStatusReportFrequency, 2720
start_row option

mysql_find_rows, 497
state-file option

comp_err, 323
statement interceptor, 4257
statement termination

Control+C, 338, 351
statement-based replication, 4257

advantages, 2424
disadvantages, 2425
unsafe statements, 2425

statements
compound, 1840
CREATE USER, 882
DROP USER, 882
GRANT, 882
replicas, 1825

3765

replication source servers, 1822
REVOKE, 882

Statistics
thread command, 1207

statistics, 4257
thread state, 1211

STATISTICS
INFORMATION_SCHEMA table, 3295

STATISTICS Events (NDB Cluster), 2991
stats option

myisam_ftdump, 433
stats_method myisamchk variable, 439
status

tables, 1955
status action

MySQLInstallerConsole, 120
status command

mysql, 355
results, 367

STATUS command (NDB Cluster), 2965
status option

mysqlshow, 421
status variable

Aborted_clients, 719
Aborted_connects, 719
Audit_log_current_size, 993
Audit_log_events, 993
Audit_log_events_filtered, 993
Audit_log_events_lost, 993
Audit_log_events_written, 993
Audit_log_event_max_drop_size, 993
Audit_log_total_size, 993
Audit_log_write_waits, 993
Binlog_cache_disk_use, 719
Binlog_cache_use, 719
Binlog_stmt_cache_disk_use, 720
Binlog_stmt_cache_use, 720
Bytes_received, 720
Bytes_sent, 720
Compression, 721
Connections, 721
Connection_control_delay_generated, 960
Connection_errors_accept, 721
Connection_errors_internal, 721
Connection_errors_max_connections, 721
Connection_errors_peer_address, 721
Connection_errors_select, 721
Connection_errors_tcpwrap, 721
Created_tmp_disk_tables, 721
Created_tmp_files, 721
Created_tmp_tables, 722
Delayed_errors, 722
Delayed_insert_threads, 722
Delayed_writes, 722

3766

Firewall_access_denied, 1010
Firewall_access_granted, 1010
Firewall_access_suspicious, 1010
Firewall_cached_entries, 1010
Flush_commands, 722
Handler_commit, 722
Handler_delete, 722
Handler_discover, 2783
Handler_external_lock, 722
Handler_mrr_init, 723
Handler_prepare, 723
Handler_read_first, 723
Handler_read_key, 723
Handler_read_last, 723
Handler_read_next, 723
Handler_read_prev, 723
Handler_read_rnd, 723
Handler_read_rnd_next, 723
Handler_rollback, 723
Handler_savepoint, 723
Handler_savepoint_rollback, 723
Handler_update, 724
Handler_write, 724
Innodb_available_undo_logs, 724
Innodb_buffer_pool_bytes_data, 724
Innodb_buffer_pool_bytes_dirty, 724
Innodb_buffer_pool_dump_status, 724
Innodb_buffer_pool_load_status, 724
Innodb_buffer_pool_pages_data, 724
Innodb_buffer_pool_pages_dirty, 724
Innodb_buffer_pool_pages_flushed, 724
Innodb_buffer_pool_pages_free, 725
Innodb_buffer_pool_pages_latched, 725
Innodb_buffer_pool_pages_misc, 725
Innodb_buffer_pool_pages_total, 725
Innodb_buffer_pool_reads, 725
Innodb_buffer_pool_read_ahead, 725
Innodb_buffer_pool_read_ahead_evicted, 725
Innodb_buffer_pool_read_ahead_rnd, 725
Innodb_buffer_pool_read_requests, 725
Innodb_buffer_pool_wait_free, 725
Innodb_buffer_pool_write_requests, 725
Innodb_data_fsyncs, 726
Innodb_data_pending_fsyncs, 726
Innodb_data_pending_reads, 726
Innodb_data_pending_writes, 726
Innodb_data_read, 726
Innodb_data_reads, 726
Innodb_data_writes, 726
Innodb_data_written, 726
Innodb_dblwr_pages_written, 726
Innodb_dblwr_writes, 726
Innodb_have_atomic_builtins, 726
Innodb_log_waits, 726

3767

Innodb_log_writes, 726
Innodb_log_write_requests, 726
Innodb_num_open_files, 727
Innodb_os_log_fsyncs, 727
Innodb_os_log_pending_fsyncs, 727
Innodb_os_log_pending_writes, 727
Innodb_os_log_written, 727
Innodb_pages_created, 727
Innodb_pages_read, 727
Innodb_pages_written, 727
Innodb_page_size, 727
Innodb_rows_deleted, 727
Innodb_rows_inserted, 728
Innodb_rows_read, 728
Innodb_rows_updated, 728
Innodb_row_lock_current_waits, 727
Innodb_row_lock_time, 727
Innodb_row_lock_time_avg, 727
Innodb_row_lock_time_max, 727
Innodb_row_lock_waits, 727
Innodb_truncated_status_writes, 728
Key_blocks_not_flushed, 728
Key_blocks_unused, 728
Key_blocks_used, 728
Key_reads, 728
Key_read_requests, 728
Key_writes, 728
Key_write_requests, 728
Last_query_cost, 728
Last_query_partial_plans, 729
Max_used_connections, 729
Ndb_api_adaptive_send_deferred_count, 2783
Ndb_api_adaptive_send_deferred_count_session, 2783
Ndb_api_adaptive_send_deferred_count_slave, 2784
Ndb_api_adaptive_send_forced_count, 2784
Ndb_api_adaptive_send_forced_count_session, 2784
Ndb_api_adaptive_send_forced_count_slave, 2784
Ndb_api_adaptive_send_unforced_count, 2784
Ndb_api_adaptive_send_unforced_count_session, 2784
Ndb_api_adaptive_send_unforced_count_slave, 2784
Ndb_api_bytes_received_count, 2785
Ndb_api_bytes_received_count_session, 2785
Ndb_api_bytes_received_count_slave, 2785
Ndb_api_bytes_sent_count, 2785
Ndb_api_bytes_sent_count_session, 2784
Ndb_api_bytes_sent_count_slave, 2785
Ndb_api_event_bytes_count, 2786
Ndb_api_event_bytes_count_injector, 2786
Ndb_api_event_data_count, 2785
Ndb_api_event_data_count_injector, 2785
Ndb_api_event_nondata_count, 2786
Ndb_api_event_nondata_count_injector, 2786
Ndb_api_pk_op_count, 2787
Ndb_api_pk_op_count_session, 2786

3768

Ndb_api_pk_op_count_slave, 2786
Ndb_api_pruned_scan_count, 2787
Ndb_api_pruned_scan_count_session, 2787
Ndb_api_pruned_scan_count_slave, 2787
Ndb_api_range_scan_count, 2788
Ndb_api_range_scan_count_session, 2787
Ndb_api_range_scan_count_slave, 2787
Ndb_api_read_row_count, 2788
Ndb_api_read_row_count_session, 2788
Ndb_api_read_row_count_slave, 2788
Ndb_api_scan_batch_count, 2789
Ndb_api_scan_batch_count_session, 2789
Ndb_api_scan_batch_count_slave, 2789
Ndb_api_table_scan_count, 2789
Ndb_api_table_scan_count_session, 2789
Ndb_api_table_scan_count_slave, 2789
Ndb_api_trans_abort_count, 2790
Ndb_api_trans_abort_count_session, 2790
Ndb_api_trans_abort_count_slave, 2790
Ndb_api_trans_close_count, 2791
Ndb_api_trans_close_count_session, 2790
Ndb_api_trans_close_count_slave, 2790
Ndb_api_trans_commit_count, 2791
Ndb_api_trans_commit_count_session, 2791
Ndb_api_trans_commit_count_slave, 2791
Ndb_api_trans_local_read_row_count, 2792
Ndb_api_trans_local_read_row_count_session, 2791
Ndb_api_trans_local_read_row_count_slave, 2792
Ndb_api_trans_start_count, 2792
Ndb_api_trans_start_count_session, 2792
Ndb_api_trans_start_count_slave, 2792
Ndb_api_uk_op_count, 2793
Ndb_api_uk_op_count_session, 2792
Ndb_api_uk_op_count_slave, 2792
Ndb_api_wait_exec_complete_count, 2793
Ndb_api_wait_exec_complete_count_session, 2793
Ndb_api_wait_exec_complete_count_slave, 2793
Ndb_api_wait_meta_request_count, 2794
Ndb_api_wait_meta_request_count_session, 2794
Ndb_api_wait_meta_request_count_slave, 2794
Ndb_api_wait_nanos_count, 2795
Ndb_api_wait_nanos_count_session, 2794
Ndb_api_wait_nanos_count_slave, 2794
Ndb_api_wait_scan_result_count, 2795
Ndb_api_wait_scan_result_count_session, 2795
Ndb_api_wait_scan_result_count_slave, 2795
Ndb_cluster_node_id, 2795
Ndb_config_from_host, 2795
Ndb_config_from_port, 2796
Ndb_conflict_fn_epoch, 2796
Ndb_conflict_fn_epoch2, 2796
Ndb_conflict_fn_epoch2_trans, 2796
Ndb_conflict_fn_epoch_trans, 2796
Ndb_conflict_fn_max, 2796

3769

Ndb_conflict_fn_max_del_win, 2796
Ndb_conflict_fn_old, 2796
Ndb_conflict_last_conflict_epoch, 2797
Ndb_conflict_last_stable_epoch, 2797
Ndb_conflict_reflected_op_discard_count, 2797
Ndb_conflict_reflected_op_prepare_count, 2797
Ndb_conflict_refresh_op_count, 2797
Ndb_conflict_trans_conflict_commit_count, 2798
Ndb_conflict_trans_detect_iter_count, 2798
Ndb_conflict_trans_reject_count, 2798
Ndb_conflict_trans_row_conflict_count, 2797
Ndb_conflict_trans_row_reject_count, 2797
Ndb_epoch_delete_delete_count, 2798
Ndb_execute_count, 2798
Ndb_last_commit_epoch_server, 2798
Ndb_last_commit_epoch_session, 2798
Ndb_number_of_data_nodes, 2798
Ndb_pruned_scan_count, 2799
Ndb_pushed_queries_defined, 2798
Ndb_pushed_queries_dropped, 2799
Ndb_pushed_queries_executed, 2799
Ndb_pushed_reads, 2799
Ndb_scan_count, 2799
Not_flushed_delayed_rows, 729
Opened_files, 729
Opened_tables, 729
Opened_table_definitions, 729
Open_files, 729
Open_streams, 729
Open_tables, 729
Open_table_definitions, 729
Performance_schema_accounts_lost, 3477
Performance_schema_cond_classes_lost, 3477
Performance_schema_cond_instances_lost, 3477
Performance_schema_digest_lost, 3477
Performance_schema_file_classes_lost, 3477
Performance_schema_file_handles_lost, 3477
Performance_schema_file_instances_lost, 3477
Performance_schema_hosts_lost, 3477
Performance_schema_locker_lost, 3477
Performance_schema_mutex_classes_lost, 3478
Performance_schema_mutex_instances_lost, 3478
Performance_schema_rwlock_classes_lost, 3478
Performance_schema_rwlock_instances_lost, 3478
Performance_schema_session_connect_attrs_lost, 3478
Performance_schema_socket_classes_lost, 3478
Performance_schema_socket_instances_lost, 3478
Performance_schema_stage_classes_lost, 3478
Performance_schema_statement_classes_lost, 3478
Performance_schema_table_handles_lost, 3478
Performance_schema_table_instances_lost, 3478
Performance_schema_thread_classes_lost, 3478
Performance_schema_thread_instances_lost, 3478
Performance_schema_users_lost, 3479

3770

Prepared_stmt_count, 729
Qcache_free_blocks, 730
Qcache_free_memory, 730
Qcache_hits, 730
Qcache_inserts, 730
Qcache_lowmem_prunes, 730
Qcache_not_cached, 730
Qcache_queries_in_cache, 730
Qcache_total_blocks, 730
Queries, 730
Questions, 730
Rpl_semi_sync_master_clients, 730
Rpl_semi_sync_master_net_avg_wait_time, 731
Rpl_semi_sync_master_net_waits, 731
Rpl_semi_sync_master_net_wait_time, 731
Rpl_semi_sync_master_no_times, 731
Rpl_semi_sync_master_no_tx, 731
Rpl_semi_sync_master_status, 731
Rpl_semi_sync_master_timefunc_failures, 731
Rpl_semi_sync_master_tx_avg_wait_time, 731
Rpl_semi_sync_master_tx_waits, 731
Rpl_semi_sync_master_tx_wait_time, 731
Rpl_semi_sync_master_wait_pos_backtraverse, 732
Rpl_semi_sync_master_wait_sessions, 732
Rpl_semi_sync_master_yes_tx, 732
Rpl_semi_sync_slave_status, 732
Rsa_public_key, 732
Select_full_join, 732
Select_full_range_join, 732
Select_range, 732
Select_range_check, 732
Select_scan, 733
Slave_heartbeat_period, 733
Slave_last_heartbeat, 733
Slave_open_temp_tables, 733
Slave_received_heartbeats, 733
Slave_retried_transactions, 733
Slave_rows_last_search_algorithm_used, 733
Slave_running, 733
Slow_launch_threads, 733
Slow_queries, 733
Sort_merge_passes, 733
Sort_range, 734
Sort_rows, 734
Sort_scan, 734
Ssl_accepts, 734
Ssl_accept_renegotiates, 734
Ssl_callback_cache_hits, 734
Ssl_cipher, 734
Ssl_cipher_list, 734
Ssl_client_connects, 734
Ssl_connect_renegotiates, 734
Ssl_ctx_verify_depth, 734
Ssl_ctx_verify_mode, 734

3771

Ssl_default_timeout, 734
Ssl_finished_accepts, 734
Ssl_finished_connects, 734
Ssl_server_not_after, 735
Ssl_server_not_before, 735
Ssl_sessions_reused, 735
Ssl_session_cache_hits, 735
Ssl_session_cache_misses, 735
Ssl_session_cache_mode, 735
Ssl_session_cache_overflows, 735
Ssl_session_cache_size, 735
Ssl_session_cache_timeouts, 735
Ssl_used_session_cache_entries, 735
Ssl_verify_depth, 735
Ssl_verify_mode, 736
Ssl_version, 736
Table_locks_immediate, 736
Table_locks_waited, 736
Table_open_cache_hits, 736
Table_open_cache_misses, 736
Table_open_cache_overflows, 736
Tc_log_max_pages_used, 736
Tc_log_page_siz, 736
Tc_log_page_waits, 737
Threads_cached, 737
Threads_connected, 737
Threads_created, 737
Threads_running, 737
Uptime, 737
Uptime_since_flush_status, 737
validate_password_dictionary_file_last_parsed, 967
validate_password_dictionary_file_words_count, 967

status variables, 719, 1954
NDB Cluster, 2783
NDB Cluster replication conflict detection, 3141

STD(), 1611
STDDEV(), 1611
STDDEV_POP(), 1611
STDDEV_SAMP(), 1611
stemming, 4257
STOP command (NDB Cluster), 2966
STOP SLAVE, 1835
stop-datetime option

mysqlbinlog, 480
stop-never option

mysqlbinlog, 481
stop-never-slave-server-id option

mysqlbinlog, 481
stop-position option

mysqlbinlog, 481
StopOnError, 2700
stopping

the server, 216
stopword, 4257

3772

stopword list
user-defined, 1534

stopwords, 1532
storage engine, 4258

ARCHIVE, 2326
InnoDB, 1983
PERFORMANCE_SCHEMA, 3361

storage engines
and application feature requirements, 2599
applications supported, 2599
availability, 2597
choosing, 2307
differences between NDB and InnoDB, 2597
usage scenarios, 2599

storage nodes - see data nodes, ndbd (see data nodes, ndbd)
storage nodes - see data nodes, ndbd, ndbmtd (see data nodes, ndbd, ndbmtd)
storage requirements

data types, 1415
date data types, 1417
InnoDB tables, 1416
NDB Cluster, 1416
numeric data types, 1416
spatial data types, 1419
string data types, 1418
time data types, 1417

storage space
minimizing, 1121

storage_engine system variable, 688
stored functions, 3225

and INSERT DELAYED, 1744
stored object, 4258
stored object privileges, 3245
stored objects, 3223

orphan, 3246
stored procedures, 3225
stored program, 4258
stored programs, 1840, 3223

reparsing, 1181
stored routine, 4258
stored routines, 3223, 3225

and replication, 2557
LAST_INSERT_ID(), 3227
metadata, 3227
restrictions, 3254

stored_program_cache system variable, 688
storing result in query cache

thread state, 1215
storing row into queue

thread state, 1213
STRAIGHT_JOIN, 1072, 1147, 1160, 1780, 1977

SELECT modifier, 1093, 1777
STRCMP(), 1513
strict mode, 4258
strict SQL mode, 739

3773

STRICT_ALL_TABLES SQL mode, 744
STRICT_TRANS_TABLES SQL mode, 738, 744
string collating, 1338
string comparison functions, 1510
string comparison operators, 1510
string comparisons

case sensitivity, 1510
string concatenation, 1221, 1497
string data types, 1384

storage requirements, 1418
string functions, 1493
string literal introducer, 1222, 1289
string literals, 1221
string operators, 1493
string replacement

replace utility, 504
string types, 1384
StringMemory, 2684
strings

defined, 1221
escape sequences, 1221
nondelimited, 1226
repertoire, 1281

striping
defined, 1192

STR_TO_DATE(), 1483
ST_Area(), 1598
ST_AsBinary(), 1591
ST_AsText(), 1592
ST_Buffer(), 1600
ST_Centroid(), 1598
ST_Contains(), 1602
ST_Crosses(), 1602
ST_Difference(), 1600
ST_Dimension(), 1592
ST_Disjoint(), 1602
ST_Distance(), 1602
ST_EndPoint(), 1595
ST_Envelope(), 1593
ST_Equals(), 1602
ST_ExteriorRing(), 1598
ST_GeomCollFromWKB(), 1590
ST_GeometryCollectionFromWKB(), 1590
ST_GeometryFromText(), 1588
ST_GeometryFromWKB(), 1590
ST_GeometryN(), 1599
ST_GeometryType(), 1593
ST_GeomFromText(), 1588
ST_GeomFromWKB(), 1590
ST_InteriorRingN(), 1599
ST_Intersection(), 1601
ST_Intersects(), 1603
ST_IsClosed(), 1596
ST_IsEmpty(), 1593

3774

ST_IsSimple(), 1594
ST_LineFromText(), 1588
ST_LineFromWKB(), 1590
ST_LineStringFromText(), 1588
ST_LineStringFromWKB(), 1590
ST_NumGeometries(), 1600
ST_NumInteriorRings(), 1599
ST_NumPoints(), 1596
ST_Overlaps(), 1603
ST_PointFromText(), 1588
ST_PointFromWKB(), 1590
ST_PointN(), 1597
ST_PolyFromText(), 1588
ST_PolyFromWKB(), 1590
ST_PolygonFromText(), 1588
ST_PolygonFromWKB(), 1590
ST_SRID(), 1594
ST_StartPoint(), 1597
ST_SymDifference(), 1601
ST_Touches(), 1603
ST_Union(), 1601
ST_Within(), 1603
ST_X(), 1594
ST_Y(), 1594
SUBDATE(), 1485
sublist, 4258
SUBPARTITION BY KEY

known issues, 3212
subpartitioning, 3173
subpartitions, 3173

known issues, 3212
subqueries, 1788

correlated, 1793
errors, 1796
in FROM clause (see derived tables)
optimization, 1091, 1095
restrictions, 1800
rewriting as joins, 1799
with ALL, 1791
with ANY, IN, SOME, 1790
with EXISTS, 1792
with NOT EXISTS, 1792
with row constructors, 1792

subquery (see subqueries)
subquery materialization, 1094
subselects, 1788
SUBSTR(), 1504
SUBSTRING(), 1504
SUBSTRING_INDEX(), 1504
SUBTIME(), 1485
subtraction (-), 1461
suffix option

mysqlhotcopy, 495
SUM(), 1611

3775

SUM(DISTINCT), 1611
SUNPRO_CXX_LIBRARY option

CMake, 199
SUPER privilege, 867
super-large-pages option

mysqld, 600
superuser, 211
superuser option

mysqlaccess, 468
support

for operating systems, 64
for platforms, 64

suppression
default values, 51

supremum record, 4258
surrogate key, 4258
symbolic links, 1193, 1195

databases, 1193
tables, 1194
Windows, 1195

symbolic-links option
mysqld, 600

symbols-file option
resolve_stack_dump, 503

synchronization of source and replica
in NDB Cluster Replication, 3124

Syncing ndb table schema operation and binlog
thread state, 1218

sync_binlog system variable, 2499
sync_frm system variable, 689
sync_master_info system variable, 2480
sync_relay_log system variable, 2480
sync_relay_log_info system variable, 2481
syntax

regular expression, 1513
syntax conventions, 2
synthetic key, 4258
sys schema, 3363
sys-check option

ndb_index_stat, 2895
sys-create option

ndb_index_stat, 2895
sys-create-if-not-exist option

ndb_index_stat, 2895
sys-create-if-not-valid option

ndb_index_stat, 2895
sys-drop option

ndb_index_stat, 2895
sys-skip-events option

ndb_index_stat, 2895
sys-skip-tables option

ndb_index_stat, 2895
SYSCONFDIR option

CMake, 193

3776

SYSDATE(), 1485
sysdate-is-now option

mysqld, 600
syslog option

mysqld_safe, 314
syslog-tag option

mysqld_safe, 314
system

privilege, 859
security, 842

system command
mysql, 355

System lock
thread state, 1211

system optimization, 1191
system option

ndb_config, 2860
system table

optimizer, 1151, 1777
system tables

columns_priv table, 764, 869
db table, 211, 763, 869
event table, 764
firewall_users table, 765
firewall_whitelist table, 765
func table, 764, 802
general_log table, 764
help tables, 764
help_category table, 764
help_keyword table, 764
help_relation table, 764
help_topic table, 764
host table, 763
innodb_index_stats table, 765, 2077
innodb_table_stats table, 765, 2077
ndb_binlog_index table, 765
plugin table, 764
proc table, 764
procs_priv table, 764, 869
proxies_priv table, 211, 764, 869
servers table, 765
slave_master_info table, 765
slave_relay_log_info table, 765
slave_worker_info table, 765
slow_log table, 764
tables_priv table, 764, 869
time zone tables, 765
time_zone table, 765
time_zone_leap_second table, 765
time_zone_name table, 765
time_zone_transition table, 765
time_zone_transition_type table, 765
user table, 211, 763, 869

system tablespace, 4259

3777

system variable
audit_log_buffer_size, 987
audit_log_connection_policy, 987
audit_log_current_session, 988
audit_log_exclude_accounts, 988
audit_log_file, 989
audit_log_flush, 989
audit_log_format, 989
audit_log_include_accounts, 990
audit_log_policy, 990
audit_log_rotate_on_size, 991
audit_log_statement_policy, 992
audit_log_strategy, 992
authentication_windows_log_level, 604
authentication_windows_use_principal_name, 605
autocommit, 606
automatic_sp_privileges, 606
auto_increment_increment, 2448
auto_increment_offset, 2451
avoid_temporal_upgrade, 606
back_log, 607
basedir, 607
big_tables, 608
bind_address, 608
binlogging_impossible_mode, 2491
binlog_cache_size, 2487
binlog_checksum, 2487
binlog_direct_non_transactional_updates, 2488
binlog_error_action, 2489
binlog_format, 2489
binlog_gtid_simple_recovery, 2501
binlog_max_flush_queue_time, 2491
binlog_order_commits, 2491
binlog_rows_query_log_events, 2493
binlog_row_image, 2492
binlog_stmt_cache_size, 2494
block_encryption_mode, 609
bulk_insert_buffer_size, 609, 2315
character_sets_dir, 612
character_set_client, 610
character_set_connection, 610
character_set_database, 611
character_set_filesystem, 611
character_set_results, 611
character_set_server, 611
character_set_system, 612
collation_connection, 612
collation_database, 612
collation_server, 613
completion_type, 613
concurrent_insert, 614
connection_control_failed_connections_threshold, 959
connection_control_max_connection_delay, 959
connection_control_min_connection_delay, 960

3778

connect_timeout, 615
core_file, 615
daemon_memcached_enable_binlog, 2139
daemon_memcached_engine_lib_name, 2140
daemon_memcached_engine_lib_path, 2140
daemon_memcached_option, 2140
daemon_memcached_r_batch_size, 2141
daemon_memcached_w_batch_size, 2141
datadir, 615
datetime_format, 615
date_format, 615
debug, 615
debug_sync, 616
default_storage_engine, 617
default_tmp_storage_engine, 617
default_week_format, 618
delayed_insert_limit, 619
delayed_insert_timeout, 619
delayed_queue_size, 620
delay_key_write, 618, 2315
disconnect_on_expired_password, 620
div_precision_increment, 621
end_markers_in_json, 621
error_count, 622
event_scheduler, 622
expire_logs_days, 2494
explicit_defaults_for_timestamp, 623
external_user, 625
flush, 625
flush_time, 625
foreign_key_checks, 626
ft_boolean_syntax, 626
ft_max_word_len, 627
ft_min_word_len, 627
ft_query_expansion_limit, 628
ft_stopword_file, 628
general_log, 628
general_log_file, 629
group_concat_max_len, 629
gtid_executed, 2502
gtid_purged, 2505
have_compress, 629
have_crypt, 629
have_dynamic_loading, 629
have_geometry, 630
have_openssl, 630
have_profiling, 630
have_query_cache, 630
have_rtree_keys, 630
have_ssl, 630
have_symlink, 630
hostname, 631
identity, 631
ignore_builtin_innodb, 2141

3779

ignore_db_dirs, 631
init_connect, 632
init_file, 632
init_slave, 2464
innodb_adaptive_flushing, 2142
innodb_adaptive_flushing_lwm, 2142
innodb_adaptive_hash_index, 2142
innodb_adaptive_max_sleep_delay, 2143
innodb_additional_mem_pool_size, 2143
innodb_api_bk_commit_interval, 2144
innodb_api_disable_rowlock, 2144
innodb_api_enable_binlog, 2145
innodb_api_enable_mdl, 2145
innodb_api_trx_level, 2145
innodb_autoextend_increment, 2146
innodb_autoinc_lock_mode, 2146
innodb_buffer_pool_dump_at_shutdown, 2147
innodb_buffer_pool_dump_now, 2147
innodb_buffer_pool_filename, 2147
innodb_buffer_pool_instances, 2148
innodb_buffer_pool_load_abort, 2149
innodb_buffer_pool_load_at_startup, 2149
innodb_buffer_pool_load_now, 2149
innodb_buffer_pool_size, 2150
innodb_change_buffering, 2151
innodb_change_buffering_debug, 2152
innodb_change_buffer_max_size, 2151
innodb_checksums, 2154
innodb_checksum_algorithm, 2152
innodb_cmp_per_index_enabled, 2155
innodb_commit_concurrency, 2155
innodb_compression_failure_threshold_pct, 2155
innodb_compression_level, 2156
innodb_compression_pad_pct_max, 2156
innodb_concurrency_tickets, 2157
innodb_data_file_path, 2157
innodb_data_home_dir, 2158
innodb_disable_sort_file_cache, 2158
innodb_doublewrite, 2159
innodb_fast_shutdown, 2159
innodb_file_format, 2160
innodb_file_format_check, 2160
innodb_file_format_max, 2161
innodb_file_per_table, 2161
innodb_fil_make_page_dirty_debug, 2160
innodb_flushing_avg_loops, 2166
innodb_flush_log_at_timeout, 2162
innodb_flush_log_at_trx_commit, 2162
innodb_flush_method, 2163
innodb_flush_neighbors, 2165
innodb_force_load_corrupted, 2166
innodb_force_recovery, 2166
innodb_ft_aux_table, 2167
innodb_ft_cache_size, 2167

3780

innodb_ft_enable_diag_print, 2168
innodb_ft_enable_stopword, 2168
innodb_ft_max_token_size, 2169
innodb_ft_min_token_size, 2169
innodb_ft_num_word_optimize, 2169
innodb_ft_result_cache_limit, 2170
innodb_ft_server_stopword_table, 2171
innodb_ft_sort_pll_degree, 2171
innodb_ft_total_cache_size, 2171
innodb_ft_user_stopword_table, 2172
innodb_io_capacity, 2172
innodb_io_capacity_max, 2173
innodb_limit_optimistic_insert_debug, 2174
innodb_locks_unsafe_for_binlog, 2175
innodb_lock_wait_timeout, 2174
innodb_log_buffer_size, 2177
innodb_log_checkpoint_now, 2178
innodb_log_compressed_pages, 2178
innodb_log_files_in_group, 2179
innodb_log_file_size, 2179
innodb_log_group_home_dir, 2180
innodb_lru_scan_depth, 2180
innodb_max_dirty_pages_pct, 2181
innodb_max_dirty_pages_pct_lwm, 2181
innodb_max_purge_lag, 2181
innodb_max_purge_lag_delay, 2182
innodb_mirrored_log_groups, 2182
innodb_monitor_disable, 2182
innodb_monitor_enable, 2183
innodb_monitor_reset, 2183
innodb_monitor_reset_all, 2183
innodb_numa_interleave, 2184
innodb_old_blocks_pct, 2184
innodb_old_blocks_time, 2184
innodb_online_alter_log_max_size, 2185
innodb_open_files, 2185
innodb_optimize_fulltext_only, 2186
innodb_page_size, 2186
innodb_purge_batch_size, 2187
innodb_purge_threads, 2188
innodb_random_read_ahead, 2188
innodb_read_ahead_threshold, 2189
innodb_read_io_threads, 2189
innodb_read_only, 2190
innodb_replication_delay, 2190
innodb_rollback_on_timeout, 2190
innodb_rollback_segments, 2191
innodb_saved_page_number_debug, 2191
innodb_sort_buffer_size, 2192
innodb_spin_wait_delay, 2192
innodb_stats_auto_recalc, 2192
innodb_stats_include_delete_marked, 2079, 2193
innodb_stats_method, 2193
innodb_stats_on_metadata, 2194

3781

innodb_stats_persistent_sample_pages, 2195
innodb_stats_sample_pages, 2195
innodb_stats_transient_sample_pages, 2196
innodb_status_output, 2196
innodb_status_output_locks, 2196
innodb_strict_mode, 2197
innodb_support_xa, 2197
innodb_sync_array_size, 2198
innodb_sync_spin_loops, 2198
innodb_table_locks, 2199
innodb_thread_concurrency, 2199
innodb_thread_sleep_delay, 2200
innodb_tmpdir, 2201
innodb_trx_purge_view_update_only_debug, 2202
innodb_trx_rseg_n_slots_debug, 2202
innodb_undo_directory, 2202
innodb_undo_tablespaces, 2203
innodb_use_native_aio, 2204
innodb_use_sys_malloc, 2204
innodb_version, 2205
innodb_write_io_threads, 2205
insert_id, 632
interactive_timeout, 633
join_buffer_size, 633
keep_files_on_create, 634
key_buffer_size, 634
key_cache_age_threshold, 636
key_cache_block_size, 636
key_cache_division_limit, 636
large_files_support, 637
large_pages, 637
large_page_size, 637
last_insert_id, 637
lc_messages, 638
lc_messages_dir, 638
lc_time_names, 638
license, 638
local_infile, 639, 856
locked_in_memory, 640
lock_wait_timeout, 639
log_bin, 2495
log_bin_basename, 2495
log_bin_index, 2495
log_bin_trust_function_creators, 2495
log_bin_use_v1_row_events, 2496
log_error, 640
log_output, 640
log_queries_not_using_indexes, 641
log_slave_updates, 2496
log_slow_slave_statements, 2464
log_throttle_queries_not_using_indexes, 641
log_warnings, 642
long_query_time, 642
lower_case_file_system, 643

3782

lower_case_table_names, 643
low_priority_updates, 643
master_info_repository, 2465
master_verify_checksum, 2497
max_allowed_packet, 644
max_binlog_cache_size, 2497
max_binlog_size, 2498
max_binlog_stmt_cache_size, 2498
max_connections, 645
max_connect_errors, 645
max_delayed_threads, 645
max_digest_length, 646
max_error_count, 647
max_heap_table_size, 647
max_insert_delayed_threads, 648
max_join_size, 363, 648
max_length_for_sort_data, 649
max_prepared_stmt_count, 649
max_relay_log_size, 2465
max_seeks_for_key, 649
max_sort_length, 650
max_sp_recursion_depth, 650
max_tmp_tables, 650
max_user_connections, 651
max_write_lock_count, 651
metadata_locks_cache_size, 652
metadata_locks_hash_instances, 652
min_examined_row_limit, 652
myisam_data_pointer_size, 653
myisam_max_sort_file_size, 653, 2315
myisam_mmap_size, 654
myisam_recover_options, 654, 2315
myisam_repair_threads, 655
myisam_sort_buffer_size, 655, 2315
myisam_stats_method, 656
myisam_use_mmap, 656
mysql_firewall_max_query_size, 1009
mysql_firewall_mode, 1009
mysql_firewall_trace, 1009
named_pipe, 656
named_pipe_full_access_group, 657
ndbinfo_database, 2781
ndbinfo_max_bytes, 2781
ndbinfo_max_rows, 2782
ndbinfo_offline, 2782
ndbinfo_show_hidden, 2782
ndbinfo_table_prefix, 2783
ndbinfo_version, 2783, 2783
ndb_autoincrement_prefetch_sz, 2764
ndb_cache_check_time, 2764
ndb_clear_apply_status, 2765
ndb_deferred_constraints, 2765
ndb_distribution, 2765
ndb_eventbuffer_free_percent, 2766

3783

ndb_eventbuffer_max_alloc, 2766
ndb_extra_logging, 2766
ndb_force_send, 2767
ndb_index_stat_enable, 2768
ndb_index_stat_option, 2768
ndb_join_pushdown, 2770
ndb_log_apply_status, 2772
ndb_log_bin, 2772
ndb_log_binlog_index, 2773
ndb_log_empty_epochs, 2773
ndb_log_empty_update, 2773
ndb_log_exclusive_reads, 2773
ndb_log_orig, 2774
ndb_log_transaction_id, 2774
ndb_optimized_node_selection, 2774
ndb_recv_thread_activation_threshold, 2775
ndb_recv_thread_cpu_mask, 2776
ndb_report_thresh_binlog_epoch_slip, 2776
ndb_report_thresh_binlog_mem_usage, 2776
ndb_show_foreign_key_mock_tables, 2777
ndb_slave_conflict_role, 2777
ndb_table_no_logging, 2778
ndb_table_temporary, 2778
ndb_use_copying_alter_table, 2779
ndb_use_exact_count, 2779
ndb_use_transactions, 2779
ndb_version, 2779
ndb_version_string, 2780
net_buffer_length, 658
net_read_timeout, 658
net_retry_count, 658
net_write_timeout, 659
new, 659
old, 659
old_alter_table, 660
old_passwords, 660
open_files_limit, 661
optimizer_prune_level, 662
optimizer_search_depth, 663
optimizer_switch, 663
optimizer_trace, 664
optimizer_trace_features, 664
optimizer_trace_limit, 664
optimizer_trace_max_mem_size, 665
optimizer_trace_offset, 665
performance_schema, 3464
performance_schema_accounts_size, 3465
performance_schema_digests_size, 3465
performance_schema_events_stages_history_long_size, 3466
performance_schema_events_stages_history_size, 3466
performance_schema_events_statements_history_long_size, 3466
performance_schema_events_statements_history_size, 3467
performance_schema_events_waits_history_long_size, 3467
performance_schema_events_waits_history_size, 3467

3784

performance_schema_hosts_size, 3468
performance_schema_max_cond_classes, 3468
performance_schema_max_cond_instances, 3468
performance_schema_max_digest_length, 3469
performance_schema_max_file_classes, 3469
performance_schema_max_file_handles, 3469
performance_schema_max_file_instances, 3470
performance_schema_max_mutex_classes, 3470
performance_schema_max_mutex_instances, 3471
performance_schema_max_rwlock_classes, 3471
performance_schema_max_rwlock_instances, 3471
performance_schema_max_socket_classes, 3472
performance_schema_max_socket_instances, 3472
performance_schema_max_stage_classes, 3472
performance_schema_max_statement_classes, 3473
performance_schema_max_table_handles, 3473
performance_schema_max_table_instances, 3473
performance_schema_max_thread_classes, 3474
performance_schema_max_thread_instances, 3474
performance_schema_session_connect_attrs_size, 3475
performance_schema_setup_actors_size, 3475
performance_schema_setup_objects_size, 3476
performance_schema_users_size, 3476
pid_file, 665
plugin_dir, 666
port, 666
preload_buffer_size, 666
profiling, 667
profiling_history_size, 667
protocol_version, 667
proxy_user, 667
pseudo_slave_mode, 668
pseudo_thread_id, 668
query_alloc_block_size, 668
query_cache_limit, 668
query_cache_min_res_unit, 669
query_cache_size, 669
query_cache_type, 670
query_cache_wlock_invalidate, 670
query_prealloc_size, 671
rand_seed1, 671
rand_seed2, 672
range_alloc_block_size, 672
read_buffer_size, 672
read_only, 673
read_rnd_buffer_size, 674
relay_log, 2465
relay_log_basename, 2466
relay_log_index, 2466
relay_log_info_file, 2467
relay_log_info_repository, 2467
relay_log_purge, 2468
relay_log_recovery, 2468
relay_log_space_limit, 2468

3785

report_host, 2469
report_password, 2469
report_port, 2469
report_user, 2470
rpl_semi_sync_master_enabled, 2451
rpl_semi_sync_master_timeout, 2451
rpl_semi_sync_master_trace_level, 2452
rpl_semi_sync_master_wait_no_slave, 2452
rpl_semi_sync_slave_enabled, 2470
rpl_semi_sync_slave_trace_level, 2470
rpl_stop_slave_timeout, 2471
secure_auth, 675
secure_file_priv, 675
server_id, 2440
server_id_bits, 2780
sha256_password_private_key_path, 676
sha256_password_public_key_path, 677
shared_memory, 677
shared_memory_base_name, 677
show_old_temporals, 678
simplified_binlog_gtid_recovery, 2505
skip_external_locking, 678
skip_name_resolve, 678
skip_networking, 679
skip_show_database, 679
slave_allow_batching, 2780
slave_checkpoint_group, 2471
slave_checkpoint_period, 2472
slave_compressed_protocol, 2473
slave_exec_mode, 2473
slave_load_tmpdir, 2473
slave_max_allowed_packet, 2474
slave_net_timeout, 2474
slave_parallel_workers, 2475
slave_pending_jobs_size_max, 2476
slave_rows_search_algorithms, 2476
slave_skip_errors, 2478
slave_sql_verify_checksum, 2478
slave_transaction_retries, 2478
slave_type_conversions, 2479
slow_launch_time, 680
slow_query_log, 680
slow_query_log_file, 680
socket, 681
sort_buffer_size, 681
sql_auto_is_null, 682
sql_big_selects, 682
sql_buffer_result, 682
sql_log_bin, 2499
sql_log_off, 683
sql_mode, 683
sql_notes, 684
sql_quote_show_create, 685
sql_safe_updates, 363, 685

3786

sql_select_limit, 363, 685
sql_slave_skip_counter, 2479
sql_warnings, 686
ssl_ca, 686
ssl_capath, 686
ssl_cert, 686
ssl_cipher, 687
ssl_crl, 687
ssl_crlpath, 687
ssl_key, 688
storage_engine, 688
stored_program_cache, 688
sync_binlog, 2499
sync_frm, 689
sync_master_info, 2480
sync_relay_log, 2480
sync_relay_log_info, 2481
system_time_zone, 689, 755
table_definition_cache, 689
table_open_cache, 690
table_open_cache_instances, 691
thread_cache_size, 691
thread_concurrency, 692
thread_handling, 692
thread_pool_algorithm, 692
thread_pool_high_priority_connection, 693
thread_pool_max_unused_threads, 693
thread_pool_prio_kickup_timer, 694
thread_pool_size, 694
thread_pool_stall_limit, 695
thread_stack, 695
timed_mutexes, 696
timestamp, 696
time_format, 696
time_zone, 696, 755
tmpdir, 697
tmp_table_size, 697
transaction_alloc_block_size, 698
transaction_allow_batching, 2781
transaction_prealloc_size, 698
tx_isolation, 699
tx_read_only, 700
unique_checks, 702
updatable_views_with_limit, 702
validate_password_dictionary_file, 964
validate_password_length, 965
validate_password_mixed_case_count, 965
validate_password_number_count, 965
validate_password_policy, 966
validate_password_special_char_count, 966
version, 703
version_comment, 703
version_compile_machine, 703
version_compile_os, 703

3787

wait_timeout, 704
warning_count, 704

system variables, 603, 704, 1960
and replication, 2567
enforce_gtid_consistency, 2501
gtid_mode, 2503
gtid_next, 2504
gtid_owned, 2504
mysqld, 513
privileges required, 707

system_time_zone system variable, 689, 755
SYSTEM_USER(), 1582

T
tab (\t), 1223, 1756
tab option

mysqldump, 400
ndb_restore, 2927

table, 4259
changing, 1639, 1648, 3584
deleting, 1729
rebuilding, 232
repair, 232
row size, 1415

table aliases, 1774
table cache, 1125
table description

myisamchk, 444
table is full, 608, 3565
table lock, 4260
Table Monitor, 2240, 2251
table names

case sensitivity, 43, 1235
table option

mysql, 351
mysqlaccess, 468
ndb_desc, 2877

table pullout
semijoin strategy, 1093

table reference
INFORMATION_SCHEMA, 3265
Performance Schema, 3404

table scan, 2064
table type, 4260

choosing, 2307
table-level locking, 1182
tables

BLACKHOLE, 2328
checking, 441
cloning, 1705
closing, 1125
compressed, 453
compressed format, 2318

3788

const, 1152
constant, 1054
copying, 1705
counting rows, 261
creating, 249
CSV, 2325
defragment, 2317
defragmenting, 1048, 1901
deleting rows, 3581
displaying, 415
displaying status, 1955
dumping, 384, 492
dynamic, 2317
error checking, 1044
EXAMPLE, 2342
FEDERATED, 2336
flush, 368
fragmentation, 1901
HEAP, 2320
importing, 2005
improving performance, 1121
information, 444
information about, 265
InnoDB, 1983
loading data, 250
maintenance, 375
maintenance schedule, 1048
maximum size, 1128
MEMORY, 2320
MERGE, 2331
merging, 2331
multiple, 263
MyISAM, 2312
names, 1230
open, 1125
opening, 1125
optimizing, 1047
partitioning, 2331
repair, 375
repairing, 1045
retrieving data, 252
selecting columns, 254
selecting rows, 253
sorting rows, 255
symbolic links, 1194
system, 1151
TEMPORARY, 1704
too many, 1126

TABLES
INFORMATION_SCHEMA table, 3297

tables option
mysqlcheck, 383
mysqldump, 403

tablespace, 2031, 4260

3789

Tablespace Monitor, 2240, 2249
InnoDB, 2115, 2256

TABLESPACES
INFORMATION_SCHEMA table, 3300

tables_priv table
system table, 764, 869

TABLE_CONSTRAINTS
INFORMATION_SCHEMA table, 3300

table_definition_cache system variable, 689
table_io_waits_summary_by_index_usage table

performance_schema, 3449
table_io_waits_summary_by_table table

performance_schema, 3448
Table_locks_immediate status variable, 736
Table_locks_waited status variable, 736
table_lock_waits_summary_by_table table

performance_schema, 3449
table_open_cache, 1125
table_open_cache system variable, 690
Table_open_cache_hits status variable, 736
table_open_cache_instances system variable, 691
Table_open_cache_misses status variable, 736
Table_open_cache_overflows status variable, 736
TABLE_PRIVILEGES

INFORMATION_SCHEMA table, 3301
TAN(), 1471
tar

problems on Solaris, 173, 173
tc-heuristic-recover option

mysqld, 601
Tcl, 4261
Tcl API, 3494
TCP parameters (NDB)

NodeIdServer, 2801
Proxy, 2802

tcp-ip option
mysqld_multi, 320

TCP/IP, 124, 129, 196, 304, 314, 349, 478, 501, 505, 594, 746, 803, 852, 902, 3414, 3556
TCP_MAXSEG_SIZE, 2803
TCP_RCV_BUF_SIZE, 2803
TCP_SND_BUF_SIZE, 2804
Tc_log_max_pages_used status variable, 736
Tc_log_page_size status variable, 736
Tc_log_page_waits status variable, 737
tc_time_track_stats

ndbinfo table, 3079
tee command

mysql, 355
tee option

mysql, 351
temp-pool option

mysqld, 601
temporal interval syntax, 1271
temporary file

3790

write access, 206
temporary files, 3574
temporary table, 4261
TEMPORARY table privileges, 864, 1705, 1887
temporary tables

and replication, 2564
internal, 1126
problems, 3584

TEMPORARY tables, 1704
renaming, 1732

temporary tablespace, 4261
terminal monitor

defined, 243
test option

myisampack, 454
testing

connection to the server, 877
installation, 204
postinstallation, 203

test_plugin_server authentication plugin, 952
TEXT

size, 1418
text collection, 4261
TEXT columns

default values, 1391
indexes, 1668, 1668
indexing, 1111, 1685

TEXT data type, 1386, 1391
text files

importing, 361, 407, 1750
The used command is not allowed with this MySQL version

error message, 857
thread, 4261
thread cache, 746
thread command

Binlog Dump, 1205
Change user, 1205
Close stmt, 1205
Connect, 1205
Connect Out, 1205
Create DB, 1205
Daemon, 1205
Debug, 1205
Delayed insert, 1205
Drop DB, 1205
Error, 1205
Execute, 1205
Fetch, 1205
Field List, 1206
Init DB, 1206
Kill, 1206
Long Data, 1206
Ping, 1206
Prepare, 1206

3791

Processlist, 1206
Query, 1206
Quit, 1206
Refresh, 1206
Register Slave, 1206
Reset stmt, 1206
Set option, 1206
Shutdown, 1206
Sleep, 1206
Statistics, 1207
Time, 1207

thread commands, 1205
thread pool table reference

INFORMATION_SCHEMA, 3352
thread state

After create, 1207
allocating local table, 1213
altering table, 1207
Analyzing, 1207
Changing master, 1217
Checking master version, 1215
checking permissions, 1207
checking privileges on cached query, 1214
checking query cache for query, 1214
Checking table, 1207
cleaning up, 1207
Clearing, 1218
closing tables, 1207
committing alter table to storage engine, 1207
Committing events to binlog, 1218
Connecting to master, 1215
converting HEAP to MyISAM, 1207
copy to tmp table, 1207
Copying to group table, 1208
Copying to tmp table, 1208
Copying to tmp table on disk, 1208
Creating delayed handler, 1213
Creating index, 1208
Creating sort index, 1208
creating table, 1208
Creating tmp table, 1208
deleting from main table, 1208
deleting from reference tables, 1208
discard_or_import_tablespace, 1208
end, 1208
executing, 1209
Execution of init_command, 1209
Finished reading one binlog; switching to next binlog, 1215
freeing items, 1209
FULLTEXT initialization, 1209
got handler lock, 1213
got old table, 1213
init, 1209
Initialized, 1219

3792

insert, 1214
invalidating query cache entries, 1214
Killed, 1209
Killing slave, 1217
logging slow query, 1209
login, 1209
Making temporary file (append) before replaying LOAD DATA INFILE, 1216
Making temporary file (create) before replaying LOAD DATA INFILE, 1216
manage keys, 1209
Master has sent all binlog to slave; waiting for binlog to be updated, 1215
Opening master dump table, 1217
Opening mysql.ndb_apply_status, 1218
Opening table, 1209
Opening tables, 1209
optimizing, 1209
preparing, 1209
preparing for alter table, 1209
Processing events, 1218
Processing events from schema table, 1218
Purging old relay logs, 1210
query end, 1210
Queueing master event to the relay log, 1215
Reading event from the relay log, 1217
Reading from net, 1210
Reading master dump table data, 1218
Rebuilding the index on master dump table, 1218
Reconnecting after a failed binlog dump request, 1215
Reconnecting after a failed master event read, 1216
Registering slave on master, 1216
Removing duplicates, 1210
removing tmp table, 1210
rename, 1210
rename result table, 1210
Reopen tables, 1210
Repair by sorting, 1210
Repair done, 1210
Repair with keycache, 1210
Requesting binlog dump, 1216
reschedule, 1214
Rolling back, 1210
Saving state, 1210
Searching rows for update, 1211
Sending binlog event to slave, 1215
sending cached result to client, 1214
setup, 1211
Shutting down, 1218
Slave has read all relay log; waiting for more updates, 1217
Sorting for group, 1211
Sorting for order, 1211
Sorting index, 1211
Sorting result, 1211
statistics, 1211
storing result in query cache, 1215
storing row into queue, 1213

3793

Syncing ndb table schema operation and binlog, 1218
System lock, 1211
update, 1211
Updating, 1211
updating main table, 1211
updating reference tables, 1212
upgrading lock, 1214
User lock, 1212
User sleep, 1212
Waiting for allowed to take ndbcluster global schema lock, 1218
Waiting for an event from Coordinator, 1217
Waiting for commit lock, 1212
waiting for delay_list, 1214
Waiting for event from ndbcluster, 1218
Waiting for first event from ndbcluster, 1218
Waiting for global read lock, 1212, 1212
waiting for handler insert, 1214
waiting for handler lock, 1214
waiting for handler open, 1214
Waiting for INSERT, 1214
Waiting for master to send event, 1216
Waiting for master update, 1216
Waiting for ndbcluster binlog update to reach current position, 1218
Waiting for ndbcluster global schema lock, 1218
Waiting for ndbcluster to start, 1218
Waiting for next activation, 1219
Waiting for query cache lock, 1215
Waiting for scheduler to stop, 1219
Waiting for schema epoch, 1218
Waiting for schema metadata lock, 1212
Waiting for slave mutex on exit, 1216, 1217
Waiting for Slave Workers to free pending events, 1217
Waiting for stored function metadata lock, 1212
Waiting for stored procedure metadata lock, 1212
Waiting for table flush, 1212
Waiting for table level lock, 1212
Waiting for table metadata lock, 1212
Waiting for tables, 1212
Waiting for the next event in relay log, 1217
Waiting for the slave SQL thread to free enough relay log space, 1216
Waiting for trigger metadata lock, 1212
Waiting on cond, 1213
Waiting on empty queue, 1219
Waiting to finalize termination, 1215
Waiting to reconnect after a failed binlog dump request, 1216
Waiting to reconnect after a failed master event read, 1216
Waiting until MASTER_DELAY seconds after master executed event, 1217
Writing to net, 1213

thread states, 1203
delayed inserts, 1213
event scheduler, 1218
general, 1207
NDB Cluster, 1218
query cache, 1214

3794

replication replica, 1215, 1216, 1217
replication source, 1215

thread table
performance_schema, 3456

threadblocks
ndbinfo table, 3080

ThreadConfig, 2731
ThreadPool (see DiskIOThreadPool)
threads, 367, 1941

display, 1941
monitoring, 1203, 1941, 3287, 3456

threadstat
ndbinfo table, 3081

Threads_cached status variable, 737
Threads_connected status variable, 737
Threads_created status variable, 737
Threads_running status variable, 737
thread_cache_size system variable, 691
thread_concurrency system variable, 692
thread_handling system variable, 692
thread_pool_algorithm system variable, 692
thread_pool_high_priority_connection system variable, 693
thread_pool_max_unused_threads system variable, 693
thread_pool_prio_kickup_timer system variable, 694
thread_pool_size system variable, 694
thread_pool_stall_limit system variable, 695
thread_stack system variable, 695
Time

thread command, 1207
TIME data type, 1371, 1373
time data types

storage requirements, 1417
time literals, 1224
time representation

Event Scheduler, 3236
time zone problems, 3576
time zone tables, 329

system tables, 765
time zones

and replication, 2564
leap seconds, 759
support, 755
upgrading, 758

TIME(), 1486
TimeBetweenEpochs, 2708
TimeBetweenEpochsTimeout, 2709
TimeBetweenGlobalCheckpoints, 2708, 2739
TimeBetweenGlobalCheckpointsTimeout, 2708
TimeBetweenInactiveTransactionAbortCheck, 2710
TimeBetweenLocalCheckpoints, 2707
TimeBetweenWatchDogCheck, 2702
TimeBetweenWatchDogCheckInitial, 2703
TIMEDIFF(), 1486
timed_mutexes

3795

deprecated features, 21
timed_mutexes system variable, 696
timeout, 615, 1571, 1750
timeout option

ndb_waiter, 2959
timeouts (replication), 2564
TIMESTAMP

and NULL values, 3580
and replication, 2546
indexes, 1119
initialization and updating, 1377

TIMESTAMP data type, 1370, 1372
timestamp system variable, 696
TIMESTAMP(), 1486
TIMESTAMPADD(), 1487
TIMESTAMPDIFF(), 1487
timezone option

mysqld_safe, 314
time_format

deprecated features, 21
time_format system variable, 696
TIME_FORMAT(), 1487
TIME_TO_SEC(), 1487
time_zone system variable, 696, 755
time_zone table

system table, 765
time_zone_leap_second table

system table, 765
time_zone_name table

system table, 765
time_zone_transition table

system table, 765
time_zone_transition_type table

system table, 765
TINYBLOB data type, 1386
TINYINT data type, 1361
TINYTEXT data type, 1386
tips

optimization, 1108
TLS, 908

command options, 300
establishing connections, 909

TMPDIR environment variable, 206, 282, 506, 3574
TMPDIR option

CMake, 193
tmpdir option

myisamchk, 443
myisampack, 454
mysqld, 602
mysqlhotcopy, 495
mysql_upgrade, 337

tmpdir system variable, 697
tmp_table_size system variable, 697
to-last-log option

3796

mysqlbinlog, 481
Tomcat, 4261
too many open files, 3567
tools

command-line, 112, 337
list of, 59
mysqld_multi, 318
mysqld_safe, 310

torn page, 2114, 4261
TotalSendBufferMemory

API and SQL nodes, 2748
data nodes, 2740
management nodes, 2676

Touches(), 1603
TO_BASE64(), 1504
TO_DAYS(), 1488
TO_SECONDS(), 1488
TPS, 4261
TP_THREAD_GROUP_STATE

INFORMATION_SCHEMA table, 3352
TP_THREAD_GROUP_STATS

INFORMATION_SCHEMA table, 3354
TP_THREAD_STATE

INFORMATION_SCHEMA table, 3356
trace DBI method, 813
trace files

ndbmtd, 2827
trace files (NDB Cluster), 2820
TRADITIONAL SQL mode, 739, 745
trailing spaces

CHAR, 1385, 1387
ENUM, 1394
in comparisons, 1387
SET, 1396
VARCHAR, 1386, 1387

transaction, 4262
transaction access mode, 1815
transaction ID, 4262
transaction isolation level, 1815

NDB Cluster, 2604
READ COMMITTED, 2043
READ UNCOMMITTED, 2045
REPEATABLE READ, 2043
SERIALIZABLE, 2045

transaction-isolation option
mysqld, 601

transaction-read-only option
mysqld, 602

transaction-safe tables, 1983
transactional option

ndb_delete_all, 2868
TransactionBufferMemory, 2689
TransactionDeadlockDetectionTimeout, 2710
TransactionInactiveTimeout, 2710

3797

transactions, 2037
and replication, 2564, 2565
isolation levels, 2042
metadata locking, 1187
support, 1983

transaction_alloc_block_size system variable, 698
transaction_allow_batching session variable (NDB Cluster), 2781
transaction_prealloc_size system variable, 698
Translators

list of, 57
transparent page compression, 4262
transportable tablespace, 4262
Transportable Tablespaces, 2005
transporters

ndbinfo table, 3082
.TRG file, 4259
TRIGGER privilege, 868
triggers, 1720, 1730, 1959, 3223, 3227

and INSERT DELAYED, 1744
and replication, 2557, 2566
LAST_INSERT_ID(), 3227
metadata, 3232
restrictions, 3254

TRIGGERS
INFORMATION_SCHEMA table, 3302

triggers option
mysqldump, 403

TRIM(), 1505
.TRN file, 4259
troubleshooting, 3553, 4262

ALTER TABLE problems, 3584
compiling MySQL server, 201
connection problems, 902
InnoDB deadlocks, 2054, 2055
InnoDB errors, 2302
InnoDB recovery problems, 2297
InnoDB table fragmentation, 2116
replication, 2572
startup problems, 207
with MySQL Enterprise Monitor, 3495
with MySQL Performance Schema, 3479

TRUE, 1224, 1230
testing for, 1452, 1452

truncate, 4262
TRUNCATE TABLE, 1732

and NDB Cluster, 2603
and replication, 2567
performance_schema database, 3403, 3482

TRUNCATE(), 1471
truststore, 4263
tuning, 1050

InnoDB compressed tables, 2092
tuple, 4263
tupscan option

3798

ndb_delete_all, 2868
ndb_select_all, 2940

tutorial, 243
twiddle option

ndb_redo_log_reader, 2908
two-phase commit, 722, 723, 2197, 4263
TwoPassInitialNodeRestartCopy, 2727
tx_isolation system variable, 699
tx_read_only system variable, 700
type conversions, 1442, 1448
type option

mysql_convert_table_format, 496
ndb_config, 2861
ndb_show_tables, 2950

types
columns, 1360, 1420
data, 1360
date and time, 1368
numeric, 1360
of tables, 2307
portability, 1420
string, 1384

typographical conventions, 2
TZ environment variable, 506, 755, 3576
tz-utc option

mysqldump, 400

U
UCASE(), 1505
UCS-2, 1278
ucs2 character set, 1315

as client character set, 1295
UDFs (see loadable functions)
ulimit, 3568
UMASK environment variable, 506, 3568
UMASK_DIR environment variable, 506, 3569
unary minus (-), 1461
unblocking blocked hosts, 751
unbuffered option

mysql, 351
UNCOMPRESS(), 1570
UNCOMPRESSED_LENGTH(), 1570
undo, 4263
undo log, 2034, 4263
undo log segment, 4263
undo tablespace, 4263
undo tablespaces, 2034
UndoDataBuffer, 2716
UndoIndexBuffer, 2715
unexpected halt

replication, 2468, 2528
UNHEX(), 1505
Unicode, 1278, 4264

3799

Unicode Collation Algorithm, 1321
UNINSTALL PLUGIN statement, 1909
uninstalling loadable functions, 801
uninstalling plugins, 789, 1909
UNION, 273, 1786
UNIQUE, 1648
unique constraint, 4264
unique index, 4264
unique key, 4264

constraint, 50
unique keys

and partitioning keys, 3214
unique_checks system variable, 702
unique_subquery join type

optimizer, 1153
Unix signal handling, 507
UNIX_TIMESTAMP(), 1489
UNKNOWN

testing for, 1452, 1452
Unknown column ... in 'on clause', 1785, 1786
Unknown or incorrect time zone

error, 756
unloading

tables, 252
UNLOCK TABLES, 1809
unnamed views, 1794
unpack option

myisamchk, 443
unqualified option

ndb_desc, 2877
ndb_show_tables, 2950

unsafe statement (replication)
defined, 2429

unsafe statements (replication), 2430
UNSIGNED, 1360, 1365
UNTIL, 1847
updatable views, 3242
updatable_views_with_limit system variable, 702
UPDATE, 46, 1801
update

thread state, 1211
update action

MySQLInstallerConsole, 121
update option

ndb_index_stat, 2896
UPDATE privilege, 868
update-state option

myisamchk, 442
UpdateXML(), 1552
Updating

thread state, 1211
updating main table

thread state, 1211
updating reference tables

3800

thread state, 1212
upgrade action

MySQLInstallerConsole, 121
upgrade-system-tables option

mysql_upgrade, 337
upgrades

NDB Cluster, 2637, 2997
upgrades and downgrades (NDB Cluster)

compatibility between versions, 2637
upgrading, 217

different architecture, 233
to ¤t-series;, 218
with MySQL APT Repository, 229
with MySQL SLES Repository, 229
with MySQL Yum Repository, 227

upgrading lock
thread state, 1214

upgrading MySQL, 330
UPPER(), 1506
uptime, 367
Uptime status variable, 737
Uptime_since_flush_status status variable, 737
URLs for downloading MySQL, 65
usage option

ndbd, 2819
ndbinfo_select_all, 2826
ndb_blob_tool, 2851
ndb_config, 2861
ndb_delete_all, 2869
ndb_desc, 2877
ndb_drop_index, 2881
ndb_drop_table, 2886
ndb_index_stat, 2896
ndb_mgm, 2845
ndb_mgmd, 2839
ndb_move_data, 2902
ndb_restore, 2927
ndb_select_all, 2940
ndb_select_count, 2945
ndb_show_tables, 2950
ndb_waiter, 2959

USAGE privilege, 868
USE, 1979
use command

mysql, 356
USE INDEX, 1167
USE KEY, 1167
use-frm option

mysqlcheck, 384
use-threads option

mysqlimport, 415
useHexFormat option

ndb_select_all, 2940
user accounts

3801

altering, 1876
creating, 882, 1876
renaming, 1892
resource limits, 651, 900, 1891

USER environment variable, 306, 506
User lock

thread state, 1212
user management, 859
user names

and passwords, 860
in account names, 875
in default accounts, 211

user option, 300
mysql, 351
mysqlaccess, 468
mysqladmin, 374
mysqlbinlog, 481
mysqlcheck, 384
mysqld, 602
mysqldump, 393
mysqld_multi, 320
mysqld_safe, 314
mysqlhotcopy, 495
mysqlimport, 415
mysqlshow, 421
mysqlslap, 431
mysql_convert_table_format, 496
mysql_install_db, 327
mysql_setpermission, 498
mysql_upgrade, 337

user privileges
adding, 882
checking, 884
deleting, 1880
dropping, 1880
revoking, 884

User sleep
thread state, 1212

user table
sorting, 879
system table, 211, 763, 869

user variables
and replication, 2567

USER(), 1582
user-defined functions (see loadable functions)
user-defined variables, 1266
users

deleting, 885, 1880
root, 211

users table
performance_schema, 3436

USER_PRIVILEGES
INFORMATION_SCHEMA table, 3304

USING HASH

3802

with NDB tables, 1670
using multiple disks to start data, 1195
using NDB Cluster programs, 2811
USING versus ON

joins, 1785
UTC_DATE(), 1491
UTC_TIME(), 1491
UTC_TIMESTAMP(), 1491
UTF-8, 1278

database object metadata, 1282
utf16 character set, 1316

as client character set, 1295
utf16le character set, 1316

as client character set, 1295
utf16_bin collation, 1325
utf32 character set, 1316

as client character set, 1295
utf8 character set, 1315

alias for utf8mb3, 1315, 1315
utf8mb3 character set, 1315

utf8 alias, 1315, 1315
utf8mb4 character set, 1314
utilities

program-development, 281
utility programs, 280
UUID(), 1622
UUID_SHORT(), 1622

V
valid numbers

examples, 1224
validate-password option

mysqld, 963
validate-user-plugins option

mysqld, 603
validate_password plugin, 960

configuring, 963
installing, 962
options, 963
status variables, 967
system variables, 964

validate_password_dictionary_file system variable, 964
validate_password_dictionary_file_last_parsed status variable, 967
validate_password_dictionary_file_words_count status variable, 967
validate_password_length system variable, 965
validate_password_mixed_case_count system variable, 965
validate_password_number_count system variable, 965
validate_password_policy system variable, 966
validate_password_special_char_count system variable, 966
VALIDATE_PASSWORD_STRENGTH(), 1570
VALUES(), 1623
VARBINARY data type, 1386, 1389
VARCHAR

3803

size, 1418
VARCHAR data type, 1384, 1386
VARCHARACTER data type, 1386
variable option

mysql_config, 501
variable-length type, 4264
variables

and replication, 2567
environment, 282
server, 1960
status, 719, 1954
system, 603, 704, 1960
user defined, 1266

VARIANCE(), 1612
VAR_POP(), 1611
VAR_SAMP(), 1612
verbose option

myisamchk, 439
myisampack, 454
myisam_ftdump, 433
mysql, 352
mysqladmin, 374
mysqlbinlog, 481
mysqlcheck, 384
mysqld, 603
mysqldump, 396
mysqldumpslow, 492
mysqld_multi, 320
mysqlimport, 415
mysqlshow, 422
mysqlslap, 431
mysql_config_editor, 462
mysql_convert_table_format, 496
mysql_install_db, 327
mysql_plugin, 329
mysql_upgrade, 337
mysql_waitpid, 499
my_print_defaults, 503
ndbd, 2820
ndbmtd, 2820
ndb_blob_tool, 2851
ndb_index_stat, 2896
ndb_mgmd, 2839
ndb_move_data, 2902
ndb_restore, 2928
perror, 504

verify-binlog-checksum option
mysqlbinlog, 481

version
choosing, 64
latest, 65

VERSION file
CMake, 203

version option

3804

comp_err, 323
myisamchk, 439
myisampack, 454
mysql, 352
mysqlaccess, 468
mysqladmin, 374
mysqlbinlog, 481
mysqlcheck, 384
mysqld, 603
mysqldump, 396
mysqld_multi, 320
mysqlimport, 415
mysqlshow, 422
mysqlslap, 431
mysql_config, 501
mysql_config_editor, 462
mysql_convert_table_format, 496
mysql_plugin, 329
mysql_waitpid, 499
my_print_defaults, 503
ndbd, 2820
ndbinfo_select_all, 2826
ndb_blob_tool, 2851
ndb_config, 2861
ndb_delete_all, 2869
ndb_desc, 2877
ndb_drop_index, 2882
ndb_drop_table, 2887
ndb_index_stat, 2896
ndb_mgm, 2845
ndb_mgmd, 2839
ndb_move_data, 2902
ndb_restore, 2928
ndb_select_all, 2940
ndb_select_count, 2945
ndb_show_tables, 2951
ndb_waiter, 2959
perror, 504
resolveip, 505
resolve_stack_dump, 503

version system variable, 703
VERSION(), 1583
version-check option

mysql_upgrade, 337
version_comment system variable, 703
version_compile_machine system variable, 703
version_compile_os system variable, 703
vertical option

mysql, 352
mysqladmin, 375

victim, 4264
Vietnamese, 3529
view, 4265
views, 1722, 3223, 3240

3805

algorithms, 3241
and replication, 2569
limitations, 3259
metadata, 3245
privileges, 3259
problems, 3259
restrictions, 3258
updatable, 1722, 3242

VIEWS
INFORMATION_SCHEMA table, 3304

Visual Studio, 4265

W
wait, 4265
WAIT COMPLETED (START BACKUP command), 3013
wait option

myisamchk, 439
myisampack, 454
mysql, 352
mysqladmin, 375

WAIT STARTED (START BACKUP command), 3013
wait-nodes option

ndb_waiter, 2959
Waiting for allowed to take ndbcluster global schema lock

thread state, 1218
Waiting for an event from Coordinator

thread state, 1217
Waiting for commit lock

thread state, 1212
waiting for delay_list

thread state, 1214
Waiting for event from ndbcluster

thread state, 1218
Waiting for event metadata lock

thread state, 1212
Waiting for event read lock

thread state, 1212
Waiting for first event from ndbcluster

thread state, 1218
Waiting for global read lock

thread state, 1212
waiting for handler insert

thread state, 1214
waiting for handler lock

thread state, 1214
waiting for handler open

thread state, 1214
Waiting for INSERT

thread state, 1214
Waiting for master to send event

thread state, 1216
Waiting for master update

thread state, 1216

3806

Waiting for ndbcluster binlog update to reach current position
thread state, 1218

Waiting for ndbcluster global schema lock
thread state, 1218

Waiting for ndbcluster to start
thread state, 1218

Waiting for next activation
thread state, 1219

Waiting for query cache lock
thread state, 1215

Waiting for scheduler to stop
thread state, 1219

Waiting for schema epoch
thread state, 1218

Waiting for schema metadata lock
thread state, 1212

Waiting for slave mutex on exit
thread state, 1216, 1217

Waiting for Slave Workers to free pending events
thread state, 1217

Waiting for stored function metadata lock
thread state, 1212

Waiting for stored procedure metadata lock
thread state, 1212

Waiting for table flush
thread state, 1212

Waiting for table level lock
thread state, 1212

Waiting for table metadata lock
thread state, 1212

Waiting for tables
thread state, 1212

Waiting for the next event in relay log
thread state, 1217

Waiting for the slave SQL thread to free enough relay log space
thread state, 1216

Waiting for trigger metadata lock
thread state, 1212

Waiting on cond
thread state, 1213

Waiting on empty queue
thread state, 1219

Waiting to finalize termination
thread state, 1215

Waiting to reconnect after a failed binlog dump request
thread state, 1216

Waiting to reconnect after a failed master event read
thread state, 1216

Waiting until MASTER_DELAY seconds after master executed event
thread state, 1217

wait_timeout system variable, 704
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(), 1607
Wan, 2675, 2750
warm backup, 4265

3807

warm up, 4265
warnings command

mysql, 356
warning_count system variable, 704
WEEK(), 1491
WEEKDAY(), 1492
WEEKOFYEAR(), 1492
WEIGHT_STRING(), 1507
Well-Known Binary format

geometry values, 1407
Well-Known Text format

geometry values, 1406
WHERE, 1053

with SHOW, 3262, 3358
where option

mysqldump, 403
WHILE, 1848

labels, 1841
widths

display, 1360
Wildcard character (%), 1223
Wildcard character (_), 1223
wildcards

and LIKE, 1115
in account names, 876
in mysql.columns_priv table, 881
in mysql.db table, 880
in mysql.procs_priv table, 881
in mysql.tables_priv table, 881

Windows
MySQL restrictions, 133
path name separators, 289
pluggable authentication, 945
upgrading, 229

windows option
mysql_install_db, 327

WITH ROLLUP, 1612
Within(), 1605
WITHOUT_SERVER option

CMake, 195
WITH_ASAN option

CMake, 197
WITH_BUNDLED_LIBEVENT option

CMake, 200
WITH_BUNDLED_MEMCACHED option

CMake, 200
WITH_CLASSPATH option

CMake, 200
WITH_DEBUG option

CMake, 197
WITH_DEFAULT_COMPILER_OPTIONS option

CMake, 199
WITH_DEFAULT_FEATURE_SET option

CMake, 197

3808

WITH_EDITLINE option
CMake, 197

WITH_EMBEDDED_SERVER option
CMake, 197

WITH_EMBEDDED_SHARED_LIBRARY option
CMake, 197

WITH_ERROR_INSERT option
CMake, 200

WITH_EXTRA_CHARSETS option
CMake, 197

WITH_GMOCK option
CMake, 197

WITH_INNODB_MEMCACHED option
CMake, 197

WITH_LIBEDIT option
CMake, 198

WITH_LIBEVENT option
CMake, 198

WITH_LIBWRAP option
CMake, 198

WITH_NDBAPI_EXAMPLES option
CMake, 200

WITH_NDBCLUSTER option
CMake, 201

WITH_NDBCLUSTER_STORAGE_ENGINE option
CMake, 201

WITH_NDBMTD option
CMake, 201

WITH_NDB_BINLOG option
CMake, 201

WITH_NDB_DEBUG option
CMake, 201

WITH_NDB_JAVA option
CMake, 201

WITH_NDB_PORT option
CMake, 201

WITH_NDB_TEST option
CMake, 201

WITH_NUMA option
CMake, 198

WITH_SSL option
CMake, 198

WITH_SYMVER16 option
CMake, 199

WITH_UNIT_TESTS option
CMake, 199

WITH_UNIXODBC option
CMake, 199

WITH_VALGRIND option
CMake, 199

WITH_ZLIB option
CMake, 199

WKB format
geometry values, 1407

3809

WKT format
geometry values, 1406

workload, 4265
wrappers

Eiffel, 3494
write access

tmp, 206
write combining, 4265
write-binlog option

mysqlcheck, 384
mysql_upgrade, 337

write_buffer_size myisamchk variable, 439
Writing to net

thread state, 1213

X
X(), 1594
X.509/Certificate, 908
XA, 4266
XA BEGIN, 1819
XA COMMIT, 1819
XA PREPARE, 1819
XA RECOVER, 1819
XA ROLLBACK, 1819
XA START, 1819
XA transactions, 1818

restrictions, 1822
transaction identifiers, 1819

xid
XA transaction identifier, 1819

xml option
mysql, 352
mysqldump, 401
ndb_config, 2861

XOR
bitwise, 1560
logical, 1455

XPath code injection, 1558

Y
Y(), 1594
yaSSL, 184, 908

compared to OpenSSL, 922
yaSSL versus OpenSSL

detecting, 923
YEAR data type, 1371, 1374
YEAR(), 1493
YEARWEEK(), 1493
Yen sign (Japanese), 3529
young, 4266
Your password does not satisfy the current policy requirements

password error, 961

3810

Z
ZEROFILL, 1360, 1365
ZFS, 2347

C Function Index

mysql_affected_rows()
Section 13.2.1, “CALL Statement”
Section 12.16, “Information Functions”
Section 13.2.5, “INSERT Statement”
Section 13.2.8, “REPLACE Statement”

mysql_close()
Section B.3.2.10, “Communication Errors and Aborted Connections”

mysql_errno()
Section 6.4.4.3, “Audit Log File Formats”
Section B.2, “Error Information Interfaces”
Section 13.6.7.5, “SIGNAL Statement”

mysql_error()
Section B.2, “Error Information Interfaces”
Section 13.6.7.5, “SIGNAL Statement”

mysql_escape_string()
Section 6.1.7, “Client Programming Security Guidelines”

mysql_fetch_row()
Section 15.8.1, “FEDERATED Storage Engine Overview”

mysql_free_result()
Section B.3.2.13, “Commands out of sync”

mysql_get_character_set_info()
Section 10.14.2, “Choosing a Collation ID”

mysql_info()
Section 13.1.7, “ALTER TABLE Statement”
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 13.2.5, “INSERT Statement”
Section 13.2.6, “LOAD DATA Statement”
Section 1.6.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 13.2.11, “UPDATE Statement”

mysql_insert_id()
Section 13.1.17, “CREATE TABLE Statement”
Section 12.16, “Information Functions”
Section 13.2.5, “INSERT Statement”
Section 5.1.7, “Server System Variables”
Section 3.6.9, “Using AUTO_INCREMENT”

3811

mysql_library_end()
Section 23.6, “libmysqld, the Embedded MySQL Server Library”

mysql_library_init()
Section 23.6, “libmysqld, the Embedded MySQL Server Library”
Section 23.6.3, “Options with the Embedded Server”

mysql_next_result()
Section 13.2.1, “CALL Statement”

mysql_options()
Section 6.2.1, “Account User Names and Passwords”
Section 6.4.1.5, “Client-Side Cleartext Pluggable Authentication”
Section 10.4, “Connection Character Sets and Collations”
Section 4.2.6, “Connection Compression Control”
Section B.3.2.8, “MySQL server has gone away”
Section 22.12.8, “Performance Schema Connection Attribute Tables”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 6.2.10, “Server Handling of Expired Passwords”
Section 6.4.1.4, “SHA-256 Pluggable Authentication”
Section 5.7.4, “Using Client Programs in a Multiple-Server Environment”

mysql_options4()
Section 22.12.8, “Performance Schema Connection Attribute Tables”

mysql_ping()
Section B.3.2.8, “MySQL server has gone away”

mysql_query()
Section 13.2.1, “CALL Statement”

mysql_real_connect()
Section 13.2.1, “CALL Statement”
Chapter 12, Functions and Operators
Section 12.16, “Information Functions”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5, “INSERT Statement”
Section 13.5, “Prepared Statements”
Section 6.2.10, “Server Handling of Expired Passwords”
Section 5.1.7, “Server System Variables”
Section 20.2.1, “Stored Routine Syntax”
Section 4.10, “Unix Signal Handling in MySQL”
Section 5.7.4, “Using Client Programs in a Multiple-Server Environment”

mysql_real_escape_string()
Section 6.1.7, “Client Programming Security Guidelines”
Section 11.4.5, “Populating Spatial Columns”
Section 9.1.1, “String Literals”

mysql_real_query()
Section 13.2.1, “CALL Statement”

3812

Section 15.8.1, “FEDERATED Storage Engine Overview”

mysql_shutdown()
Section 6.2.2, “Privileges Provided by MySQL”

mysql_sqlstate()
Section B.2, “Error Information Interfaces”
Section 13.6.7.5, “SIGNAL Statement”

mysql_stmt_attr_set()
Section 13.6.6.5, “Restrictions on Server-Side Cursors”

mysql_stmt_errno()
Section B.2, “Error Information Interfaces”

mysql_stmt_error()
Section B.2, “Error Information Interfaces”

mysql_stmt_execute()
Section 8.10.3.1, “How the Query Cache Operates”

mysql_stmt_next_result()
Section 13.2.1, “CALL Statement”

mysql_stmt_prepare()
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 8.10.3.1, “How the Query Cache Operates”
Section 13.5, “Prepared Statements”

mysql_stmt_send_long_data()
Section 5.1.7, “Server System Variables”

mysql_stmt_sqlstate()
Section B.2, “Error Information Interfaces”

mysql_store_result()
Section B.3.2.13, “Commands out of sync”
Section 15.8.1, “FEDERATED Storage Engine Overview”
Section 4.5.1, “mysql — The MySQL Command-Line Client”

mysql_thread_end()
Section 23.6, “libmysqld, the Embedded MySQL Server Library”

mysql_thread_init()
Section 23.6, “libmysqld, the Embedded MySQL Server Library”

mysql_use_result()
Section B.3.2.13, “Commands out of sync”
Section 4.5.1, “mysql — The MySQL Command-Line Client”
Section B.3.2.7, “Out of memory”

3813

mysql_warning_count()
Section B.2, “Error Information Interfaces”
Section 13.7.5.41, “SHOW WARNINGS Statement”

Command Index
A | B | C | D | E | G | H | I | K | L | M | N | O | P | R | S | T | U | V | W | Y | Z

A

[index top]

Access
Section 13.2.2, “DELETE Statement”

addgroup
Section 18.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

addr2line
Section 5.8.1.5, “Using a Stack Trace”

adduser
Section 18.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

ALL STATUS
Section 18.6.6, “NDB Cluster Single User Mode”

ALTER TABLE
Section 18.6.12, “Online Operations with ALTER TABLE in NDB Cluster”

APF
Section 18.6.17.1, “NDB Cluster Security and Networking Issues”

apt-get
Section 16.2.1, “Installing memcached”
Section 2.5.7, “Installing MySQL on Linux from the Native Software Repositories”
Section 14.20.4, “Security Considerations for the InnoDB memcached Plugin”
Section 16.2.3.3, “Using libmemcached with C and C++”

audit2allow
Section 6.6.6, “Troubleshooting SELinux”

B

[index top]

bash
Section 1.1, “About This Manual”

3814

Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 2.4.1, “General Notes on Installing MySQL on macOS”
Section 4.2.1, “Invoking MySQL Programs”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 4.2.7, “Setting Environment Variables”

bison
Section 1.7.1, “Contributors to MySQL”
Section 2.9.8, “Dealing with Problems Compiling MySQL”
Section 2.9.2, “Source Installation Prerequisites”

C

[index top]

c++filt
Section 5.8.1.5, “Using a Stack Trace”

cat
Section 4.5.1.1, “mysql Client Options”

cd
Resetting the Root Password: Windows Systems

chkconfig
Section 18.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.5.7, “Installing MySQL on Linux from the Native Software Repositories”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”

chroot
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

CMake
Section 10.13, “Adding a Character Set”
Section 18.3.1.4, “Building NDB Cluster from Source on Linux”
Section B.3.2.16, “Can't initialize character set”
Section 18.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”
Section 10.5, “Configuring Application Character Set and Collation”
Section 2.9.6, “Configuring SSL Library Support”
Section 2.9.8, “Dealing with Problems Compiling MySQL”
Section 4.9, “Environment Variables”
Section 18.1, “General Information”
Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 2.9.5, “Installing MySQL Using a Development Source Tree”
Section 2.9.4, “Installing MySQL Using a Standard Source Distribution”
Section 18.6.10, “MySQL Server Usage for NDB Cluster”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 22.2, “Performance Schema Build Configuration”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”

3815

Section 10.3.2, “Server Character Set and Collation”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 2.9.2, “Source Installation Prerequisites”
Section 15.5, “The ARCHIVE Storage Engine”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 15.9, “The EXAMPLE Storage Engine”
Section 15.8, “The FEDERATED Storage Engine”
Section 1.2.2, “The Main Features of MySQL”
Section 5.8.4, “Tracing mysqld Using DTrace”
Section 4.2.2.2, “Using Option Files”
Section 18.2.4.1, “What is New in NDB Cluster 7.3”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

cmake
Section 2.9.4, “Installing MySQL Using a Standard Source Distribution”
Section 14.20.4, “Security Considerations for the InnoDB memcached Plugin”

cmd
Resetting the Root Password: Windows Systems

cmd.exe
Section 1.1, “About This Manual”
Section 4.2.1, “Invoking MySQL Programs”

command.com
Section 1.1, “About This Manual”
Section 4.2.1, “Invoking MySQL Programs”

comp_err
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.1, “Overview of MySQL Programs”

configure
Section 1.1, “About This Manual”
Section 1.5, “How to Report Bugs or Problems”
Section 16.2.1, “Installing memcached”
Section 16.2.3.3, “Using libmemcached with C and C++”
Section 16.2.3.6, “Using MySQL and memcached with PHP”

copy
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”

coreadm
Section 2.7, “Installing MySQL on Solaris”
Section 5.1.6, “Server Command Options”

cp
Section 17.3.1.2, “Backing Up Raw Data from a Replica”
Section 7.1, “Backup and Recovery Types”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”

3816

Section 17.1.1.9, “Introducing Additional Replicas to an Existing Replication Environment”

crash-me
Section 8.13.2, “The MySQL Benchmark Suite”

cron
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 15.2.1, “MyISAM Startup Options”
Section 5.4.7, “Server Log Maintenance”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 3.5, “Using mysql in Batch Mode”

csh
Section 1.1, “About This Manual”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.7, “Setting Environment Variables”

D

[index top]

daemon_memcached
Section 14.20.5.2, “Adapting a memcached Application for the InnoDB memcached Plugin”
Section 14.20.2, “InnoDB memcached Architecture”

date
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

df
Section B.3.1, “How to Determine What Is Causing a Problem”

Directory Utility
Section 2.4.1, “General Notes on Installing MySQL on macOS”

dnf
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”
Section 2.11.5, “Upgrading MySQL with the MySQL Yum Repository”

docker exec
Section 2.5.8.1, “Basic Steps for MySQL Server Deployment with Docker”

docker inspect
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

docker logs mysqld-container
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

docker ps
Section 2.5.8.1, “Basic Steps for MySQL Server Deployment with Docker”

3817

docker pull
Section 2.5.8.1, “Basic Steps for MySQL Server Deployment with Docker”

docker rm
Section 2.5.8.1, “Basic Steps for MySQL Server Deployment with Docker”

docker run
Section 2.5.8.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

docker stop
Section 2.5.8.1, “Basic Steps for MySQL Server Deployment with Docker”

dump
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”

E

[index top]

emerge
Section 16.2.1, “Installing memcached”
Section 2.5.7, “Installing MySQL on Linux from the Native Software Repositories”

G

[index top]

gcc
Section 23.6.1, “Compiling Programs with libmysqld”
Section 2.13.3, “Problems Using the Perl DBI/DBD Interface”
Section 1.7.4, “Tools that were used to create MySQL”

gdb
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 5.8.1.4, “Debugging mysqld under gdb”
Section 1.7.4, “Tools that were used to create MySQL”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

getenforce
Section 6.6.2, “Changing the SELinux Mode”

git branch
Section 2.9.5, “Installing MySQL Using a Development Source Tree”

git checkout
Section 2.9.5, “Installing MySQL Using a Development Source Tree”

gmake
Section 2.8, “Installing MySQL on FreeBSD”
Section 2.9.4, “Installing MySQL Using a Standard Source Distribution”

3818

Section 2.9.2, “Source Installation Prerequisites”

GnuPG
Section 2.1.4.2, “Signature Checking Using GnuPG”

gnutar
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 2.9.2, “Source Installation Prerequisites”

gogoc
Section 5.1.12.5, “Obtaining an IPv6 Address from a Broker”

gpg
Section 2.1.4.2, “Signature Checking Using GnuPG”

grep
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 3.3.4.7, “Pattern Matching”

groupadd
Section 18.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

gtar
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 2.9.2, “Source Installation Prerequisites”

gunzip
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 2.9.4, “Installing MySQL Using a Standard Source Distribution”

gzip
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 1.5, “How to Report Bugs or Problems”
Section 2.4, “Installing MySQL on macOS”

H

[index top]

help contents
Section 4.5.1.4, “mysql Client Server-Side Help”

hostname
Section B.3.2.2, “Can't connect to [local] MySQL server”

I

[index top]

3819

icc
Section 2.1.6, “Compiler-Specific Build Characteristics”

ifconfig
Section 5.1.12.1, “Verifying System Support for IPv6”

innochecksum
Section 13.7.2.2, “CHECK TABLE Statement”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
MySQL Glossary
Section 4.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 5.6”

iptables
Section 18.6.17.1, “NDB Cluster Security and Networking Issues”

K

[index top]

kill
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 13.3.7.3, “Restrictions on XA Transactions”
Section 4.10, “Unix Signal Handling in MySQL”

ksh
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.7, “Setting Environment Variables”

kswapd
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”

L

[index top]

less
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”

libmemcached
libmemcached Command-Line Utilities

ln
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

3820

Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

logger
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

ls
Section 6.6, “SELinux”

lsof +L1
Section B.3.3.5, “Where MySQL Stores Temporary Files”

M

[index top]

m4
Section 2.9.2, “Source Installation Prerequisites”

make
Section 2.9.8, “Dealing with Problems Compiling MySQL”
Section 16.2.1, “Installing memcached”
Section 2.8, “Installing MySQL on FreeBSD”
Section 2.9.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.13.3, “Problems Using the Perl DBI/DBD Interface”
Section 2.9.2, “Source Installation Prerequisites”

make && make install
Section 18.3.1.4, “Building NDB Cluster from Source on Linux”

make install
Section 18.3.1.4, “Building NDB Cluster from Source on Linux”
Section 16.2.1, “Installing memcached”

make package
Section 2.9.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.9.7, “MySQL Source-Configuration Options”

make test
Section 2.9.5, “Installing MySQL Using a Development Source Tree”
Section 2.13.1, “Installing Perl on Unix”

make VERBOSE=1
Section 2.9.8, “Dealing with Problems Compiling MySQL”

md5
Section 2.1.4.1, “Verifying the MD5 Checksum”

md5.exe
Section 2.1.4.1, “Verifying the MD5 Checksum”

3821

md5sum
Section 2.1.4.1, “Verifying the MD5 Checksum”

memcache
Section 16.2.2.5, “memcached Hashing/Distribution Types”
Section 16.2.3.5, “Using MySQL and memcached with Python”

memcached
Section 14.20.5.2, “Adapting a memcached Application for the InnoDB memcached Plugin”
Section 14.20.5.1, “Adapting an Existing MySQL Schema for the InnoDB memcached Plugin”
Section 14.20.5.5, “Adapting DML Statements to memcached Operations”
Section 16.2.3.1, “Basic memcached Operations”
Section 14.20.1, “Benefits of the InnoDB memcached Plugin”
Section 14.20.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 16.2.2.4, “Data Expiry”
Section 16.2.3, “Developing a memcached Application”
Section 16.2.4, “Getting memcached Statistics”
Section 14.20.2, “InnoDB memcached Architecture”
Section 14.20, “InnoDB memcached Plugin”
Section 14.20.7, “InnoDB memcached Plugin Internals”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 16.2.1, “Installing memcached”
libmemcached Command-Line Utilities
libmemcached Set Functions
Section 16.2.2.1, “memcached Command-Line Options”
Section 16.2.2.2, “memcached Deployment”
Section 16.2.4.5, “memcached Detail Statistics”
Section 16.2.5, “memcached FAQ”
Section 16.2.4.1, “memcached General Statistics”
Section 16.2.2.5, “memcached Hashing/Distribution Types”
Section 16.2.4.3, “memcached Item Statistics”
Section 16.2.2.9, “memcached Logs”
Section 16.2.4.4, “memcached Size Statistics”
Section 16.2.4.2, “memcached Slabs Statistics”
Section 16.2.2.8, “memcached Thread Support”
Section 16.2.2.7, “Memory Allocation within memcached”
MySQL Glossary
Section 14.20.5.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 14.20.4, “Security Considerations for the InnoDB memcached Plugin”
Section 14.20.3, “Setting Up the InnoDB memcached Plugin”
Section 14.20.6, “The InnoDB memcached Plugin and Replication”
Section 14.20.8, “Troubleshooting the InnoDB memcached Plugin”
Section 14.20.5.3, “Tuning InnoDB memcached Plugin Performance”
Section 16.2.3.3, “Using libmemcached with C and C++”
Section 16.2.2, “Using memcached”
Section 16.2.2.6, “Using memcached and DTrace”
Section 16.2.3.2, “Using memcached as a MySQL Caching Layer”
Section 16.2.4.6, “Using memcached-tool”
Section 16.2.3.7, “Using MySQL and memcached with Java”
Section 16.2.3.4, “Using MySQL and memcached with Perl”
Section 16.2.3.6, “Using MySQL and memcached with PHP”
Section 16.2.3.5, “Using MySQL and memcached with Python”
Section 16.2, “Using MySQL with memcached”

3822

Section 16.2.2.3, “Using Namespaces”
Section 16.2.3.8, “Using the memcached TCP Text Protocol”
Section 1.3, “What Is New in MySQL 5.6”
Section 14.20.5, “Writing Applications for the InnoDB memcached Plugin”

memcached-1.2.5 directory:
Section 16.2.1, “Installing memcached”

memcached-tool
Section 16.2.4, “Getting memcached Statistics”
Section 16.2.4.6, “Using memcached-tool”

memcapable
Section 14.20.2, “InnoDB memcached Architecture”

memcat
Section 14.20.2, “InnoDB memcached Architecture”
libmemcached Command-Line Utilities

memcp
Section 14.20.2, “InnoDB memcached Architecture”
libmemcached Command-Line Utilities

memflush
Section 14.20.2, “InnoDB memcached Architecture”
libmemcached Command-Line Utilities

memrm
Section 14.20.2, “InnoDB memcached Architecture”
libmemcached Command-Line Utilities

memslap
libmemcached Command-Line Utilities
Section 14.20.5.3, “Tuning InnoDB memcached Plugin Performance”

mgmd
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 18.3, “NDB Cluster Installation”

mkdir
Section 13.1.10, “CREATE DATABASE Statement”

mklink
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”

more
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”

msql2mysql
Section 4.7.1, “msql2mysql — Convert mSQL Programs for Use with MySQL”

3823

Section 4.1, “Overview of MySQL Programs”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 1.3, “What Is New in MySQL 5.6”

mv
Section 5.4.2.5, “Error Log File Flushing and Renaming”
Section 5.4.7, “Server Log Maintenance”
Section 5.4.3, “The General Query Log”

my_print_defaults
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.1, “Overview of MySQL Programs”
Section 4.7, “Program Development Utilities”

myisam_ftdump
Section 12.10, “Full-Text Search Functions”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.1, “Overview of MySQL Programs”

myisamchk
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 15.2.3.3, “Compressed Table Characteristics”
Section 15.2.4.1, “Corrupted MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 5.8.1, “Debugging a MySQL Server”
Section 13.2.2, “DELETE Statement”
Section 15.2.3.2, “Dynamic Table Characteristics”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.11.5, “External Locking”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 8.4.6, “Limits on Table Size”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Statement”
Section 19.3.4, “Maintenance of Partitions”
Section 5.8.1.7, “Making a Test Case If You Experience Table Corruption”
Section 15.2.1, “MyISAM Startup Options”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 7.6.4, “MyISAM Table Optimization”
Section 15.2.3, “MyISAM Table Storage Formats”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

3824

Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 4.6.3.4, “Other myisamchk Options”
Section 4.1, “Overview of MySQL Programs”
Section 15.2.4.2, “Problems from Tables Not Being Closed Properly”
Section 13.7.2.5, “REPAIR TABLE Statement”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 13.7.5.23, “SHOW INDEX Statement”
Section 13.7.5.37, “SHOW TABLE STATUS Statement”
Section 15.2.3.1, “Static (Fixed-Length) Table Characteristics”
Section 8.12.1, “System Factors”
Section 21.3.22, “The INFORMATION_SCHEMA STATISTICS Table”
Section 21.3.23, “The INFORMATION_SCHEMA TABLES Table”
Section 1.2.2, “The Main Features of MySQL”
Section 15.2, “The MyISAM Storage Engine”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 5.8.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

myisamchk *.MYI
Section 7.6.3, “How to Repair MyISAM Tables”

myisamchk tbl_name
Section 7.6.2, “How to Check MyISAM Tables for Errors”

myisamlog
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.1, “Overview of MySQL Programs”

myisampack
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 15.2.3.3, “Compressed Table Characteristics”
Section 13.1.17, “CREATE TABLE Statement”
Section 8.11.5, “External Locking”
Section 8.4.6, “Limits on Table Size”
Section 15.7.1, “MERGE Table Advantages and Disadvantages”
Section 15.2.3, “MyISAM Table Storage Formats”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 8.4.1, “Optimizing Data Size”
Section 4.1, “Overview of MySQL Programs”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 13.1.17.6, “Silent Column Specification Changes”
Section 15.7, “The MERGE Storage Engine”
Section 15.2, “The MyISAM Storage Engine”

mysql
Section 1.1, “About This Manual”

3825

Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 18.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 12.19.1, “Aggregate Function Descriptions”
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 7.1, “Backup and Recovery Types”
Section 2.5.8.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 13.6.1, “BEGIN ... END Compound Statement”
Section 12.11, “Cast Functions and Operators”
Section 6.4.1.5, “Client-Side Cleartext Pluggable Authentication”
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 18.6.1, “Commands in the NDB Cluster Management Client”
Section 9.6, “Comments”
Section 18.4, “Configuration of NDB Cluster”
Section 10.5, “Configuring Application Character Set and Collation”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 3.1, “Connecting to and Disconnecting from the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 5.1.12.4, “Connecting Using IPv6 Nonlocal Host Addresses”
Section 5.1.12.3, “Connecting Using the IPv6 Local Host Address”
Section 10.4, “Connection Character Sets and Collations”
Section 4.2.5, “Connection Transport Protocols”
Section 1.7.1, “Contributors to MySQL”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 2.11.11, “Copying MySQL Databases to Another Machine”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 3.3.1, “Creating and Selecting a Database”
Section 2.3.4.6, “Customizing the PATH for MySQL Tools”
Section 5.8.2, “Debugging a MySQL Client”
Section 18.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 20.1, “Defining Stored Programs”
Section 18.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 2.12.5, “Downgrade Troubleshooting”
Section 2.12, “Downgrading MySQL”
Section 14.17.2, “Enabling InnoDB Monitors”
Section 12.14, “Encryption and Compression Functions”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 3.2, “Entering Queries”
Section 4.9, “Environment Variables”
Section B.2, “Error Information Interfaces”
Section B.1, “Error Message Sources and Elements”
Section 20.4.2, “Event Scheduler Configuration”
Section 7.3, “Example Backup and Recovery Strategy”
Section 3.6, “Examples of Common Queries”
Section 19.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 4.5.1.5, “Executing SQL Statements from a Text File”
Chapter 12, Functions and Operators
Section 18.1, “General Information”
Section 2.4.1, “General Notes on Installing MySQL on macOS”
Section 13.6.7.3, “GET DIAGNOSTICS Statement”
Section 13.7.1.4, “GRANT Statement”
Section 13.8.3, “HELP Statement”

3826

Section B.3.1, “How to Determine What Is Causing a Problem”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 1.5, “How to Report Bugs or Problems”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section B.3.2.14, “Ignoring user”
Section 18.6.9, “Importing Data Into MySQL Cluster”
Section 12.16, “Information Functions”
Section 18.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 14.18.2, “InnoDB Recovery”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 18.3.1.2, “Installing NDB Cluster from RPM”
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 4.2.1, “Invoking MySQL Programs”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
Section 8.2.1.16, “LIMIT Query Optimization”
Section 13.2.6, “LOAD DATA Statement”
Section 13.2.7, “LOAD XML Statement”
Section 7.4.5.1, “Making a Copy of a Database”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 18.6, “Management of NDB Cluster”
Section 8.13.1, “Measuring the Speed of Expressions and Functions”
Section 12.20, “Miscellaneous Functions”
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.3, “mysql Client Logging”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.4, “mysql Client Server-Side Help”
Section 4.5.1.6, “mysql Client Tips”
MySQL Glossary
Section 2.3.3.1, “MySQL Installer Initial Setup”
Section 5.1.13, “MySQL Server Time Zone Support”
Section 18.6.10, “MySQL Server Usage for NDB Cluster”
Section 4.5.1, “mysql — The MySQL Command-Line Client”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.6, “mysql_tzinfo_to_sql — Load the Time Zone Tables”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 18.6.14, “NDB API Statistics Counters and Variables”
Section 18.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.6.11.1, “NDB Cluster Disk Data Objects”
Section 18.3.5, “NDB Cluster Example with Tables and Data”
Section 18.7, “NDB Cluster Replication”
NDB Cluster System Variables
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

3827

Section 4.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section B.3.2.7, “Out of memory”
Section 4.1, “Overview of MySQL Programs”
Section B.3.2.9, “Packet Too Large”
Section 6.4.1.6, “PAM Pluggable Authentication”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.2.11, “Pluggable Authentication”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”
Section 13.5, “Prepared Statements”
Section 18.7.5, “Preparing the NDB Cluster for Replication”
Section 4.2.2.4, “Program Option Modifiers”
Section 19.2.3.1, “RANGE COLUMNS partitioning”
Section 2.11.10, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 7.4.2, “Reloading SQL-Format Backups”
Resetting the Root Password: Generic Instructions
Restoring an NDB backup to a later version of NDB Cluster
Restoring to More Nodes Than the Original
Section 13.7.1.6, “REVOKE Statement”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 6.2.10, “Server Handling of Expired Passwords”
Section 5.1.7, “Server System Variables”
Section 5.1.14, “Server-Side Help Support”
Section 13.1.17.7, “Setting NDB Comment Options”
Section 6.4.1.4, “SHA-256 Pluggable Authentication”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 13.7.5.41, “SHOW WARNINGS Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 6.4.1.8, “Socket Peer-Credential Pluggable Authentication”
Section 4.2.2, “Specifying Program Options”
Section 2.3.4.7, “Starting MySQL as a Windows Service”
Section 18.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 12.8.1, “String Comparison Functions and Operators”
Section 12.8, “String Functions and Operators”
Section 9.1.1, “String Literals”
Section 2.10.3, “Testing the Server”
Section 11.3.3, “The BINARY and VARBINARY Types”
Section 10.10.8, “The Binary Character Set”
Section 11.3.4, “The BLOB and TEXT Types”
Section 18.6.15.17, “The ndbinfo memory_per_fragment Table”
Section 18.6.15.27, “The ndbinfo transporters Table”
Section 20.3.1, “Trigger Syntax and Examples”
Section 14.21.3, “Troubleshooting InnoDB Data Dictionary Operations”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Chapter 3, Tutorial
Section 4.10, “Unix Signal Handling in MySQL”
Section 2.11, “Upgrading MySQL”
Section 7.3.2, “Using Backups for Recovery”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 6.4.5.3, “Using MySQL Enterprise Firewall”
Section 3.5, “Using mysql in Batch Mode”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 7.4, “Using mysqldump for Backups”

3828

Section 4.2.2.2, “Using Option Files”
Section 4.2.2.1, “Using Options on the Command Line”
Section 4.2.2.5, “Using Options to Set Program Variables”
Section 5.8.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”
Section 18.6.11.2, “Using Symbolic Links with Disk Data Objects”
Section 1.3, “What Is New in MySQL 5.6”
Section 2.3.6, “Windows Postinstallation Procedures”
Section 12.12, “XML Functions”

mysql ...
Section 5.8.1.1, “Compiling MySQL for Debugging”

mysql-server
Section 2.8, “Installing MySQL on FreeBSD”

mysql-test-run.pl
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.2.2, “Using Option Files”

mysql.exe
Section 18.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 4.5.1.6, “mysql Client Tips”

mysql.server
Section 2.5, “Installing MySQL on Linux”
Section 18.3.1.2, “Installing NDB Cluster from RPM”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 5.1.6, “Server Command Options”
Section 2.10.5, “Starting and Stopping MySQL Automatically”
Section B.3.3.7, “Time Zone Problems”

mysql.server stop
Section 4.3.3, “mysql.server — MySQL Server Startup Script”

mysql_config
Section 23.6.1, “Compiling Programs with libmysqld”
Section 2.9.8, “Dealing with Problems Compiling MySQL”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
Section 4.1, “Overview of MySQL Programs”

mysql_config_editor
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 4.9, “Environment Variables”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Client Options”

3829

Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 4.1, “Overview of MySQL Programs”
Section 4.2.2.2, “Using Option Files”
Section 1.3, “What Is New in MySQL 5.6”

mysql_convert_table_format
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 5.6”

mysql_find_rows
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”
Section 4.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 5.6”

mysql_fix_extensions
Section 4.6.13, “mysql_fix_extensions — Normalize Table File Name Extensions”
Section 4.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 5.6”

mysql_install_db
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 2.10.1, “Initializing the Data Directory”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 2.9.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.1, “Overview of MySQL Programs”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section 5.1.6, “Server Command Options”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 5.1.2.2, “Using a Sample Default Server Configuration File”
Section 1.3, “What Is New in MySQL 5.6”

mysql_plugin
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.1, “Overview of MySQL Programs”

mysql_secure_installation
Section 2.5.7, “Installing MySQL on Linux from the Native Software Repositories”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”

3830

Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.5, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.1, “Overview of MySQL Programs”
Section 2.10.4, “Securing the Initial MySQL Accounts”

mysql_setpermission
Section 1.7.1, “Contributors to MySQL”
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 5.6”

mysql_setpermissions
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”

mysql_stmt_execute()
Section 5.1.9, “Server Status Variables”

mysql_stmt_prepare()
Section 5.1.9, “Server Status Variables”

mysql_tzinfo_to_sql
Section 5.1.13, “MySQL Server Time Zone Support”
Section 4.4.6, “mysql_tzinfo_to_sql — Load the Time Zone Tables”
Section 4.1, “Overview of MySQL Programs”

mysql_upgrade
Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 13.1.1, “ALTER DATABASE Statement”
Section 2.12.4, “Downgrading Binary and Package-based Installations on Unix/Linux”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 6.2.3, “Grant Tables”
Section B.3.2.14, “Ignoring user”
Section 6.4.1.3, “Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 18.7.4, “NDB Cluster Replication Schema and Tables”
Section 4.1, “Overview of MySQL Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 2.11.10, “Rebuilding or Repairing Tables or Indexes”
Section 2.5.2, “Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository”
Section 17.1.3.4, “Restrictions on Replication with GTIDs”
Section 5.1.6, “Server Command Options”
Section 17.4.3, “Upgrading a Replication Setup”
Section 18.3.7, “Upgrading and Downgrading NDB Cluster”
Section 2.11.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 2.11.8, “Upgrading MySQL on Windows”
Section 2.11.5, “Upgrading MySQL with the MySQL Yum Repository”
Section 1.3, “What Is New in MySQL 5.6”

mysql_waitpid
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”

3831

Section 4.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 5.6”

mysql_waitpid()
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”

mysql_zap
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 5.6”

mysqlaccess
Section 1.7.1, “Contributors to MySQL”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 5.6”

mysqladmin
Section 6.2.9, “Assigning Account Passwords”
Section 17.3.1.1, “Backing Up a Replica Using mysqldump”
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 6.4.1.5, “Client-Side Cleartext Pluggable Authentication”
Section 5.1.1, “Configuring the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 10.4, “Connection Character Sets and Collations”
Section 1.7.1, “Contributors to MySQL”
Section 13.1.10, “CREATE DATABASE Statement”
Section 2.3.4.6, “Customizing the PATH for MySQL Tools”
Section 5.8.1, “Debugging a MySQL Server”
Section 17.1.3.5, “Disabling GTID Transactions”
Section 13.1.21, “DROP DATABASE Statement”
Section 13.7.6.3, “FLUSH Statement”
Section 2.4.1, “General Notes on Installing MySQL on macOS”
Section B.3.1, “How to Determine What Is Causing a Problem”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 2.3.3.1, “MySQL Installer Initial Setup”
Section 5.4, “MySQL Server Logs”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.1, “Overview of MySQL Programs”
Section 22.12.8, “Performance Schema Connection Attribute Tables”
Section 6.2.11, “Pluggable Authentication”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 6.2.10, “Server Handling of Expired Passwords”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 2.3.4.7, “Starting MySQL as a Windows Service”

3832

Section 2.3.4.5, “Starting MySQL from the Windows Command Line”
Section 2.10.3, “Testing the Server”
Section 1.2.2, “The Main Features of MySQL”
Section 5.1.15, “The Server Shutdown Process”
Section 2.11.8, “Upgrading MySQL on Windows”
Section 4.2.2.2, “Using Option Files”
Section 4.2.2.1, “Using Options on the Command Line”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

mysqladmin debug
Section 5.8.1, “Debugging a MySQL Server”
Section 20.4.5, “Event Scheduler Status”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

mysqladmin extended-status
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 13.7.5.36, “SHOW STATUS Statement”

mysqladmin flush-hosts
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”

mysqladmin flush-logs
Section 7.3.3, “Backup Strategy Summary”
Section 5.4.2.5, “Error Log File Flushing and Renaming”
Section 7.3.1, “Establishing a Backup Policy”
Section 5.4.7, “Server Log Maintenance”
Section 5.4.4, “The Binary Log”
Section 17.2.2.1, “The Relay Log”

mysqladmin flush-privileges
Section 2.11.11, “Copying MySQL Databases to Another Machine”
Section 6.2.3, “Grant Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 5.1.6, “Server Command Options”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 6.2.8, “When Privilege Changes Take Effect”

mysqladmin flush-tables
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.11.5, “External Locking”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 7.6.1, “Using myisamchk for Crash Recovery”

mysqladmin flush-xxx
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”

mysqladmin kill
Section B.3.3.4, “How MySQL Handles a Full Disk”

3833

Section 13.7.6.4, “KILL Statement”
Section 12.15, “Locking Functions”
Section B.3.2.8, “MySQL server has gone away”
Section 6.2.2, “Privileges Provided by MySQL”

mysqladmin password
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.2.10, “Server Handling of Expired Passwords”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”

mysqladmin processlist
Section 8.14.1, “Accessing the Process List”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 13.7.6.4, “KILL Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.2.2, “Privileges Provided by MySQL”

mysqladmin processlist status
Section 5.8.1, “Debugging a MySQL Server”

mysqladmin refresh
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 5.4.7, “Server Log Maintenance”

mysqladmin reload
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 6.2.3, “Grant Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 5.1.6, “Server Command Options”
Section 6.2.13, “Setting Account Resource Limits”
Section 6.2.8, “When Privilege Changes Take Effect”

mysqladmin reload version
Section 1.5, “How to Report Bugs or Problems”

mysqladmin shutdown
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 5.8.1.2, “Creating Trace Files”
Section 13.7.1.4, “GRANT Statement”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 2.4.2, “Installing MySQL on macOS Using Native Packages”
Section 5.8.1.7, “Making a Test Case If You Experience Table Corruption”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.4.1.29, “Replication and Temporary Tables”
Section 18.3.6, “Safe Shutdown and Restart of NDB Cluster”

3834

Section 2.3.4.7, “Starting MySQL as a Windows Service”
Section 5.1.15, “The Server Shutdown Process”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

mysqladmin status
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

mysqladmin variables
Section B.3.2.8, “MySQL server has gone away”
Section 13.7.5.40, “SHOW VARIABLES Statement”

mysqladmin variables extended-status processlist
Section 1.5, “How to Report Bugs or Problems”

mysqladmin ver
Section 5.8.1.1, “Compiling MySQL for Debugging”

mysqladmin version
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 1.5, “How to Report Bugs or Problems”
Section B.3.2.8, “MySQL server has gone away”
Section 2.10.3, “Testing the Server”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

mysqlanalyze
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

mysqlbackup
Section 7.1, “Backup and Recovery Types”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 14.18.1, “InnoDB Backup”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”

mysqlbinlog
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.7.6.1, “BINLOG Statement”
Command Probes
Section 17.1.3.1, “GTID Concepts”
Section 17.4.5, “How to Report Replication Bugs or Problems”
Section 14.18.2, “InnoDB Recovery”
Section B.3.7, “Known Issues in MySQL”
Section 12.20, “Miscellaneous Functions”
Section 4.5.1.1, “mysql Client Options”
MySQL Glossary
MySQL Server Options for NDB Cluster
Section 4.6.8.1, “mysqlbinlog Hex Dump Format”
Section 4.6.8.2, “mysqlbinlog Row Event Display”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 22.12.8, “Performance Schema Connection Attribute Tables”

3835

Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”
Section 7.5.2, “Point-in-Time Recovery Using Event Positions”
Section 7.5.1, “Point-in-Time Recovery Using Event Times”
Section 18.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.4.1.18, “Replication and LOAD DATA”
Section 17.4.1.35, “Replication and Variables”
Section 17.1.3.4, “Restrictions on Replication with GTIDs”
Section 13.7.5.3, “SHOW BINLOG EVENTS Statement”
Section 13.7.5.33, “SHOW RELAYLOG EVENTS Statement”
Section 4.6.8.4, “Specifying the mysqlbinlog Server ID”
Section 13.4.2.5, “START SLAVE Statement”
Section 5.4.4, “The Binary Log”
Section 5.4.3, “The General Query Log”
Section 17.2.2.1, “The Relay Log”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”
Section 7.3.2, “Using Backups for Recovery”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 1.3, “What Is New in MySQL 5.6”

mysqlbinlog binary-log-file | mysql
Section 5.8.1.7, “Making a Test Case If You Experience Table Corruption”

mysqlbinlog|mysql
Section B.3.7, “Known Issues in MySQL”

mysqlbug
Section 1.3, “What Is New in MySQL 5.6”

mysqlcheck
Section 13.1.1, “ALTER DATABASE Statement”
Section 6.4.1.5, “Client-Side Cleartext Pluggable Authentication”
Section 10.4, “Connection Character Sets and Collations”
Section 19.3.4, “Maintenance of Partitions”
Section 9.2.4, “Mapping of Identifiers to File Names”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.1, “Overview of MySQL Programs”
Section 2.11.10, “Rebuilding or Repairing Tables or Indexes”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”
Section 1.2.2, “The Main Features of MySQL”
Section 15.2, “The MyISAM Storage Engine”

mysqld
Section 1.1, “About This Manual”
Section 8.2.1.19, “Avoiding Full Table Scans”
Section 2.5.8.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 17.1.4.4, “Binary Log Options and Variables”
Section 5.4.4.1, “Binary Logging Formats”

3836

Section 18.3.1.4, “Building NDB Cluster from Source on Linux”
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section B.3.2.12, “Can't create/write to file”
Section B.3.2.16, “Can't initialize character set”
Section B.3.2.4, “Client does not support authentication protocol”
Section 18.6.1, “Commands in the NDB Cluster Management Client”
Section 9.6, “Comments”
Section B.3.2.10, “Communication Errors and Aborted Connections”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 18.4, “Configuration of NDB Cluster”
Section 2.9.6, “Configuring SSL Library Support”
Section 5.1.1, “Configuring the Server”
Section 5.1.11.1, “Connection Interfaces”
Section 14.20.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 15.2.4.1, “Corrupted MyISAM Tables”
Section 13.1.17, “CREATE TABLE Statement”
Section 5.8.1.2, “Creating Trace Files”
Section 14.7.5, “Deadlocks in InnoDB”
Section 5.8.1, “Debugging a MySQL Server”
Section 5.8.1.4, “Debugging mysqld under gdb”
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 18.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 17.1.3.5, “Disabling GTID Transactions”
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 14.6.5, “Doublewrite Buffer”
Section 14.10.1, “Enabling File Formats”
Section 14.17.2, “Enabling InnoDB Monitors”
Section 4.9, “Environment Variables”
Section 5.4.2.5, “Error Log File Flushing and Renaming”
Section 5.4.2.2, “Error Logging on Unix and Unix-Like Systems”
Section 5.4.2.1, “Error Logging on Windows”
Section 5.4.2.3, “Error Logging to the System Log”
Section 8.11.5, “External Locking”
Section B.3.2.17, “File Not Found and Similar Errors”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.21.2, “Forcing InnoDB Recovery”
Section 18.1, “General Information”
Section 18.7.2, “General Requirements for NDB Cluster Replication”
Section 8.14.3, “General Thread States”
Section 16.1.3, “Handling MySQL Recovery with ZFS”
Section 8.12.4.1, “How MySQL Uses Memory”
Section B.3.1, “How to Determine What Is Causing a Problem”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 9.2.3, “Identifier Case Sensitivity”
Section B.3.2.14, “Ignoring user”
Section 18.7.8, “Implementing Failover with NDB Cluster Replication”
Section 12.16, “Information Functions”
Section 18.3.3, “Initial Configuration of NDB Cluster”
Section 18.3.4, “Initial Startup of NDB Cluster”
Section 14.18.1, “InnoDB Backup”

3837

Section 14.12.1, “InnoDB Disk I/O”
Section 14.20.2, “InnoDB memcached Architecture”
Section 14.18.2, “InnoDB Recovery”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.21, “InnoDB Troubleshooting”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 13.2.5, “INSERT Statement”
Section 18.3.1, “Installation of NDB Cluster on Linux”
Section 18.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.4.2, “Installing MySQL on macOS Using Native Packages”
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 18.3.1.2, “Installing NDB Cluster from RPM”
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
Section 13.7.6.4, “KILL Statement”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 13.2.6, “LOAD DATA Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 12.15, “Locking Functions”
Section 5.8.1.7, “Making a Test Case If You Experience Table Corruption”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 18.6, “Management of NDB Cluster”
Section 12.20, “Miscellaneous Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 14.6.1.4, “Moving or Copying InnoDB Tables”
Section 15.2.1, “MyISAM Startup Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section A.1, “MySQL 5.6 FAQ: General”
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section A.3, “MySQL 5.6 FAQ: Server SQL Mode”
Section 4.5.1.6, “mysql Client Tips”
MySQL Glossary
Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”
Chapter 5, MySQL Server Administration
Section B.3.2.8, “MySQL server has gone away”
Section 5.4, “MySQL Server Logs”
MySQL Server Options for NDB Cluster
Section 5.1.13, “MySQL Server Time Zone Support”
Section 18.6.10, “MySQL Server Usage for NDB Cluster”
Section 18.2.6, “MySQL Server Using InnoDB Compared with NDB Cluster”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 1.6, “MySQL Standards Compliance”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”

3838

Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.1, “mysqld — The MySQL Server”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 18.6.14, “NDB API Statistics Counters and Variables”
Section 18.6.17.3, “NDB Cluster and MySQL Security Procedures”
Section 18.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 18.2.1, “NDB Cluster Core Concepts”
Section 18.3, “NDB Cluster Installation”
Section 18.4.2.5, “NDB Cluster mysqld Option and Variable Reference”
Section 18.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”
Section 18.2, “NDB Cluster Overview”
Section 18.5, “NDB Cluster Programs”
Section 18.7, “NDB Cluster Replication”
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
Section 18.7.4, “NDB Cluster Replication Schema and Tables”
Section 18.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
NDB Cluster Status Variables
NDB Cluster System Variables
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 18.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section B.3.5, “Optimizer-Related Issues”
Section 23.6.3, “Options with the Embedded Server”
Section 18.2.5.1, “Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.3”
Section 18.2.5.2, “Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.4”
Section 4.1, “Overview of MySQL Programs”
Section 18.4.2, “Overview of NDB Cluster Configuration Parameters, Options, and Variables”
Section B.3.2.9, “Packet Too Large”
Section 22.3, “Performance Schema Startup Configuration”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.7.5, “Preparing the NDB Cluster for Replication”
Section 15.2.4.2, “Problems from Tables Not Being Closed Properly”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section B.3.3.1, “Problems with File Permissions”
Section 4.2.2.4, “Program Option Modifiers”
Section 8.10.3.3, “Query Cache Configuration”
Section 14.6.6, “Redo Log”
Section 13.7.2.5, “REPAIR TABLE Statement”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.1.4.1, “Replication and Binary Logging Option and Variable Reference”
Section 17.1.4, “Replication and Binary Logging Options and Variables”
Section 17.4.1.26, “Replication and Source or Replica Shutdowns”
Section 17.2.2.2, “Replication Metadata Repositories”
Section 17.1.4.2, “Replication Source Options and Variables”
Section 13.4.2.3, “RESET SLAVE Statement”
Resetting the Root Password: Unix and Unix-Like Systems
Resetting the Root Password: Windows Systems

3839

Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Restoring an NDB backup to a later version of NDB Cluster
Restoring an NDB backup to a previous version of NDB Cluster
Section 17.1.3.4, “Restrictions on Replication with GTIDs”
Section B.3.4.5, “Rollback Failure for Nontransactional Tables”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 6.1.4, “Security-Related mysqld Options and Variables”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 2.3.4.3, “Selecting a MySQL Server Type”
Section 6.6, “SELinux”
Section 4.3, “Server and Server-Startup Programs”
Section 10.3.2, “Server Character Set and Collation”
Section 5.1.6, “Server Command Options”
Section 5.4.7, “Server Log Maintenance”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 10.12, “Setting the Error Message Language”
Section 6.6.5.1, “Setting the TCP Port Context for mysqld”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 14.20.3, “Setting Up the InnoDB memcached Plugin”
Section 13.7.5.16, “SHOW ENGINE Statement”
Section 4.2.2, “Specifying Program Options”
Section 2.10.5, “Starting and Stopping MySQL Automatically”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 5.7.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.4.7, “Starting MySQL as a Windows Service”
Section 2.3.4.5, “Starting MySQL from the Windows Command Line”
Section 18.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 1.7.5, “Supporters of MySQL”
Section 17.3.7, “Switching Sources During Failover”
Section 8.11.2, “Table Locking Issues”
Section B.3.2.18, “Table-Corruption Issues”
Section 2.3.4.8, “Testing The MySQL Installation”
Section 2.10.3, “Testing the Server”
Section 5.4.4, “The Binary Log”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 5.8.3, “The DBUG Package”
Section 5.4.6, “The DDL Log”
Section 5.4.2, “The Error Log”
Section 5.4.3, “The General Query Log”
Section 14.20.6, “The InnoDB memcached Plugin and Replication”
Section 15.2, “The MyISAM Storage Engine”
Section 8.10.3, “The MySQL Query Cache”
Section 5.1, “The MySQL Server”
Section 18.6.15.19, “The ndbinfo operations_per_fragment Table”
Section 5.4.5, “The Slow Query Log”
Section B.3.3.7, “Time Zone Problems”
Section B.3.2.6, “Too many connections”
Section 5.8.4, “Tracing mysqld Using DTrace”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 14.21.1, “Troubleshooting InnoDB I/O Problems”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”

3840

Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 4.10, “Unix Signal Handling in MySQL”
Section 2.11.9, “Upgrade Troubleshooting”
Section 2.11.8, “Upgrading MySQL on Windows”
Section 5.8.1.5, “Using a Stack Trace”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 4.2.2.2, “Using Option Files”
Section 5.8.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 18.7.7, “Using Two Replication Channels for NDB Cluster Replication”
Section 5.8.1.3, “Using WER with PDB to create a Windows crashdump”
Section 18.2.4.2, “What is New in NDB Cluster 7.4”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”
Section 6.2.8, “When Privilege Changes Take Effect”
Section B.3.3.5, “Where MySQL Stores Temporary Files”
Section 2.1.2, “Which MySQL Version and Distribution to Install”

mysqld mysqld.trace
Section 5.8.1.2, “Creating Trace Files”

mysqld-debug
Section 5.8.1.2, “Creating Trace Files”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 4.3.1, “mysqld — The MySQL Server”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 2.3.4.3, “Selecting a MySQL Server Type”

mysqld.exe
Section 18.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”

mysqld_multi
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.1, “Overview of MySQL Programs”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”

mysqld_safe
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 5.1.1, “Configuring the Server”
Section 17.1.3.5, “Disabling GTID Transactions”
Section 8.12.4.2, “Enabling Large Page Support”
Section 5.4.2.2, “Error Logging on Unix and Unix-Like Systems”
Section 5.4.2.3, “Error Logging to the System Log”
Section B.3.2.17, “File Not Found and Similar Errors”
Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 14.21, “InnoDB Troubleshooting”
Section 18.3.1.2, “Installing NDB Cluster from RPM”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 5.1.13, “MySQL Server Time Zone Support”

3841

Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 18.6.17.3, “NDB Cluster and MySQL Security Procedures”
Section 4.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section 4.1, “Overview of MySQL Programs”
Section B.3.2.9, “Packet Too Large”
Section B.3.3.1, “Problems with File Permissions”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 2.10.5, “Starting and Stopping MySQL Automatically”
Section 2.10.2, “Starting the Server”
Section 2.10.3, “Testing the Server”
Section 5.4.2, “The Error Log”
Section B.3.3.7, “Time Zone Problems”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 5.1.2.2, “Using a Sample Default Server Configuration File”
Section 4.2.2.2, “Using Option Files”

mysqldump
Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”
Section 17.3.1.1, “Backing Up a Replica Using mysqldump”
Section 17.3.1.3, “Backing Up a Source or Replica by Making It Read Only”
Chapter 7, Backup and Recovery
Section 7.1, “Backup and Recovery Types”
Section 7.3.3, “Backup Strategy Summary”
Section 14.5.1, “Buffer Pool”
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 2.11.3, “Changes in MySQL 5.6”
Section 6.4.1.5, “Client-Side Cleartext Pluggable Authentication”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.2.5, “Connection Transport Protocols”
Section 1.7.1, “Contributors to MySQL”
Section 10.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 2.11.11, “Copying MySQL Databases to Another Machine”
Section 13.1.17, “CREATE TABLE Statement”
Section 17.1.1.5, “Creating a Data Snapshot Using mysqldump”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 2.3.4.6, “Customizing the PATH for MySQL Tools”
Section 7.2, “Database Backup Methods”
Section 14.12.4, “Defragmenting a Table”
Section 18.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 2.12.3, “Downgrade Notes”
Section 2.12.5, “Downgrade Troubleshooting”
Section 2.12.4, “Downgrading Binary and Package-based Installations on Unix/Linux”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 7.4.5.3, “Dumping Stored Programs”

3842

Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 7.3.1, “Establishing a Backup Policy”
Section 7.3, “Example Backup and Recovery Strategy”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 1.5, “How to Report Bugs or Problems”
Section 17.1.1, “How to Set Up Replication”
Section 9.2.3, “Identifier Case Sensitivity”
Section 18.6.9, “Importing Data Into MySQL Cluster”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 14.18.1, “InnoDB Backup”
Section 2.6, “Installing MySQL Using Unbreakable Linux Network (ULN)”
Section 13.2.6, “LOAD DATA Statement”
Section 13.2.7, “LOAD XML Statement”
Section 7.4.5.1, “Making a Copy of a Database”
Section 9.2.4, “Mapping of Identifiers to File Names”
Section 14.6.1.4, “Moving or Copying InnoDB Tables”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 4.5.1.1, “mysql Client Options”
Section 5.4, “MySQL Server Logs”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 7.4.5, “mysqldump Tips”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.3.5, “NDB Cluster Example with Tables and Data”
Section 18.2, “NDB Cluster Overview”
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 17.1.1.4, “Obtaining the Replication Source Binary Log Coordinates”
Section 18.6.8, “Online Backup of NDB Cluster”
Section 4.1, “Overview of MySQL Programs”
Section 22.12.8, “Performance Schema Connection Attribute Tables”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 18.7.5, “Preparing the NDB Cluster for Replication”
Section 6.2.2, “Privileges Provided by MySQL”
Section B.3.4.8, “Problems with Floating-Point Values”
Section 14.8.10, “Purge Configuration”
Section 2.11.10, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 17.3.5, “Replicating Different Databases to Different Replicas”
Restoring an NDB backup to a later version of NDB Cluster
Restoring an NDB backup to a previous version of NDB Cluster
Restoring to More Nodes Than the Original
Section 22.19, “Restrictions on Performance Schema”
Section 17.1.3.4, “Restrictions on Replication with GTIDs”
Section 20.9, “Restrictions on Views”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.4.7, “Server Log Maintenance”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 17.1.1.8, “Setting Up Replication with Existing Data”
Section B.3.4.7, “Solving Problems with No Matching Rows”
Section 4.2.2, “Specifying Program Options”
Section 2.3.4.7, “Starting MySQL as a Windows Service”
Section 11.3.4, “The BLOB and TEXT Types”

3843

Section 14.20.6, “The InnoDB memcached Plugin and Replication”
Section 1.2.2, “The Main Features of MySQL”
Section 14.6.3.1, “The System Tablespace”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 13.7.3.4, “UNINSTALL PLUGIN Statement”
Section 17.4.3, “Upgrading a Replication Setup”
Section 2.11.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 7.4, “Using mysqldump for Backups”
Section 4.2.2.2, “Using Option Files”
Section 17.3.1, “Using Replication for Backups”
Section 17.3.3, “Using Replication with Different Source and Replica Storage Engines”
Section 1.3, “What Is New in MySQL 5.6”
Section 12.12, “XML Functions”

mysqldump mysql
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”

mysqldumpslow
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 5.4.5, “The Slow Query Log”

mysqlhotcopy
Chapter 7, Backup and Recovery
Section 7.1, “Backup and Recovery Types”
Section 1.7.1, “Contributors to MySQL”
Section 7.2, “Database Backup Methods”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 5.6”

mysqlimport
Section 7.1, “Backup and Recovery Types”
Section 10.4, “Connection Character Sets and Collations”
Section 2.11.11, “Copying MySQL Databases to Another Machine”
Section 7.2, “Database Backup Methods”
Section 2.12.5, “Downgrade Troubleshooting”
Section 13.2.6, “LOAD DATA Statement”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.1, “Overview of MySQL Programs”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”

MySQLInstallerConsole
Section 2.3.3.5, “MySQL Installer Console Reference”

MySQLInstallerConsole.exe
Section 2.3.3.5, “MySQL Installer Console Reference”
Section 2.3.3.1, “MySQL Installer Initial Setup”

3844

mysqloptimize
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

mysqlpump
Section 18.6.9, “Importing Data Into MySQL Cluster”

mysqlrepair
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

mysqlshow
Section 6.4.1.5, “Client-Side Cleartext Pluggable Authentication”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 10.4, “Connection Character Sets and Collations”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.1, “Overview of MySQL Programs”
Section 13.7.5.15, “SHOW DATABASES Statement”
Section 13.7.5.23, “SHOW INDEX Statement”
Section 13.7.5.37, “SHOW TABLE STATUS Statement”
Section 2.3.4.8, “Testing The MySQL Installation”
Section 2.10.3, “Testing the Server”
Section 2.3.6, “Windows Postinstallation Procedures”

mysqlshow db_name
Section 13.7.5.38, “SHOW TABLES Statement”

mysqlshow db_name tbl_name
Section 13.7.5.6, “SHOW COLUMNS Statement”

mysqlslap
Section 6.4.1.5, “Client-Side Cleartext Pluggable Authentication”
Section 14.16.1, “Monitoring InnoDB Mutex Waits Using Performance Schema”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 4.1, “Overview of MySQL Programs”
Section 8.13.3, “Using Your Own Benchmarks”

mysqltest
Section 6.2.10, “Server Handling of Expired Passwords”
Section 6.4.1.4, “SHA-256 Pluggable Authentication”

N

[index top]

nbdmtd
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”

ndb_blob_tool
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”

ndb_config
Section 18.5, “NDB Cluster Programs”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

3845

ndb_delete_all
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”

ndb_desc
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 19.2.5, “KEY Partitioning”
Section 18.6.17.3, “NDB Cluster and MySQL Security Procedures”
Section 18.6.11.1, “NDB Cluster Disk Data Objects”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 13.1.17.7, “Setting NDB Comment Options”
Section 21.5.1, “The INFORMATION_SCHEMA FILES Table”
Section 21.3.14, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 18.6.15.4, “The ndbinfo cluster_operations Table”
Section 18.6.15.22, “The ndbinfo server_operations Table”

ndb_drop_index
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”

ndb_drop_table
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”

ndb_error_reporter
Section 18.5.13, “ndb_error_reporter — NDB Error-Reporting Utility”

ndb_import
Section 18.6.9, “Importing Data Into MySQL Cluster”

ndb_index_stat
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

ndb_mgm
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 18.3.1.4, “Building NDB Cluster from Source on Linux”
Section 18.6.1, “Commands in the NDB Cluster Management Client”
Section 18.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 18.1, “General Information”
Section 18.3.4, “Initial Startup of NDB Cluster”
Section 18.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.3.1, “Installation of NDB Cluster on Linux”
Section 18.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 18.3.1.2, “Installing NDB Cluster from RPM”
Section 18.3.1.3, “Installing NDB Cluster Using .deb Files”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 18.2.1, “NDB Cluster Core Concepts”
Section 18.6.3.1, “NDB Cluster Logging Management Commands”
Section 18.5, “NDB Cluster Programs”
Section 18.6.17.1, “NDB Cluster Security and Networking Issues”
Section 18.6.6, “NDB Cluster Single User Mode”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”

3846

Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.6.8, “Online Backup of NDB Cluster”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Restoring an NDB backup to a later version of NDB Cluster
Restoring to More Nodes Than the Original
Section 18.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 18.6.15.1, “The ndbinfo arbitrator_validity_detail Table”
Section 18.6.15.15, “The ndbinfo membership Table”
Section 18.6.15.16, “The ndbinfo memoryusage Table”
Section 18.6.15.18, “The ndbinfo nodes Table”
Section 18.6.15.27, “The ndbinfo transporters Table”
Section 18.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”

ndb_mgm.exe
Section 18.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”

ndb_mgmd
Section 18.3.1.4, “Building NDB Cluster from Source on Linux”
Section 18.6.1, “Commands in the NDB Cluster Management Client”
Section 18.4.3.5, “Defining an NDB Cluster Management Server”
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 18.3.4, “Initial Startup of NDB Cluster”
Section 18.3.1, “Installation of NDB Cluster on Linux”
Section 18.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 18.3.1.2, “Installing NDB Cluster from RPM”
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 18.3.1.3, “Installing NDB Cluster Using .deb Files”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 18.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 18.4.3.3, “NDB Cluster Connection Strings”
Section 18.2.1, “NDB Cluster Core Concepts”
Section 18.6.3.1, “NDB Cluster Logging Management Commands”
Section 18.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”
Section 18.5, “NDB Cluster Programs”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.4.1, “Quick Test Setup of NDB Cluster”
Section 18.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 18.6.4, “Summary of NDB Cluster Start Phases”

ndb_mgmd.exe
Section 18.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”

ndb_move_data
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”

3847

ndb_print_backup_file
Section 18.5.16, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 18.5.18, “ndb_print_frag_file — Print NDB Fragment List File Contents”
Section 18.5.19, “ndb_print_schema_file — Print NDB Schema File Contents”
Section 18.5.20, “ndb_print_sys_file — Print NDB System File Contents”
Section 18.5.21, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”

ndb_print_file
Section 18.5.17, “ndb_print_file — Print NDB Disk Data File Contents”

ndb_print_frag_file
Section 18.5.18, “ndb_print_frag_file — Print NDB Fragment List File Contents”

ndb_print_schema_file
Section 18.5.16, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 18.5.17, “ndb_print_file — Print NDB Disk Data File Contents”
Section 18.5.18, “ndb_print_frag_file — Print NDB Fragment List File Contents”
Section 18.5.19, “ndb_print_schema_file — Print NDB Schema File Contents”
Section 18.5.20, “ndb_print_sys_file — Print NDB System File Contents”
Section 18.5.21, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”

ndb_print_sys_file
Section 18.5.16, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 18.5.17, “ndb_print_file — Print NDB Disk Data File Contents”
Section 18.5.18, “ndb_print_frag_file — Print NDB Fragment List File Contents”
Section 18.5.19, “ndb_print_schema_file — Print NDB Schema File Contents”
Section 18.5.20, “ndb_print_sys_file — Print NDB System File Contents”

ndb_redo_log_reader
Section 18.5.21, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”

ndb_restore
Section 7.1, “Backup and Recovery Types”
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 18.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 18.6.9, “Importing Data Into MySQL Cluster”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 18.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.2.1, “NDB Cluster Core Concepts”
Section 18.2, “NDB Cluster Overview”
Section 18.5, “NDB Cluster Programs”
Section 18.7.4, “NDB Cluster Replication Schema and Tables”
Section 18.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
Section 18.6.6, “NDB Cluster Single User Mode”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.6.8, “Online Backup of NDB Cluster”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Restoring an NDB backup to a later version of NDB Cluster
Restoring an NDB backup to a previous version of NDB Cluster
Restoring to Fewer Nodes Than the Original
Restoring to More Nodes Than the Original

3848

Section 18.2.4.1, “What is New in NDB Cluster 7.3”
Section 18.2.4.2, “What is New in NDB Cluster 7.4”

ndb_select_all
Section 18.6.17.3, “NDB Cluster and MySQL Security Procedures”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”

ndb_select_count
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”

ndb_setup.py
Section 18.2.4.1, “What is New in NDB Cluster 7.3”
Section 18.2.4.2, “What is New in NDB Cluster 7.4”

ndb_show_tables
Section 18.6.17.3, “NDB Cluster and MySQL Security Procedures”
Section 18.5, “NDB Cluster Programs”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.6.15.4, “The ndbinfo cluster_operations Table”
Section 18.6.15.19, “The ndbinfo operations_per_fragment Table”
Section 18.6.15.22, “The ndbinfo server_operations Table”
Section 18.2.4.2, “What is New in NDB Cluster 7.4”

ndb_size.pl
Section 11.6, “Data Type Storage Requirements”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 18.5.26, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

ndb_waiter
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.2.4.2, “What is New in NDB Cluster 7.4”

ndbd
Section 18.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.3.1.4, “Building NDB Cluster from Source on Linux”
Section 18.6.1, “Commands in the NDB Cluster Management Client”
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 18.3.4, “Initial Startup of NDB Cluster”
Section 18.3.1, “Installation of NDB Cluster on Linux”
Section 18.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 18.3.1.2, “Installing NDB Cluster from RPM”
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 18.3.1.3, “Installing NDB Cluster Using .deb Files”
Section 18.6, “Management of NDB Cluster”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 18.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 18.2.1, “NDB Cluster Core Concepts”
Section 18.4.2.1, “NDB Cluster Data Node Configuration Parameters”
Section 18.3, “NDB Cluster Installation”

3849

Section 18.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”
Section 18.5, “NDB Cluster Programs”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”
Section 18.4.2, “Overview of NDB Cluster Configuration Parameters, Options, and Variables”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 18.4.1, “Quick Test Setup of NDB Cluster”
Section 18.4.3.2, “Recommended Starting Configuration for NDB Cluster”
Section 18.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 18.6.4, “Summary of NDB Cluster Start Phases”
Section 18.6.15.18, “The ndbinfo nodes Table”
Section 18.6.3.3, “Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client”

ndbd.exe
Section 18.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”

ndbinfo_select_all
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

ndbmtd
Section 18.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.3.1.4, “Building NDB Cluster from Source on Linux”
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 18.3.1, “Installation of NDB Cluster on Linux”
Section 18.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 18.3.1.2, “Installing NDB Cluster from RPM”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 18.2.1, “NDB Cluster Core Concepts”
Section 18.4.2.1, “NDB Cluster Data Node Configuration Parameters”
Section 18.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”
Section 18.5, “NDB Cluster Programs”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 18.4.3.2, “Recommended Starting Configuration for NDB Cluster”
Restoring to Fewer Nodes Than the Original
Section 18.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 18.6.15.18, “The ndbinfo nodes Table”
Section 18.6.15.20, “The ndbinfo resources Table”

ndbmtd.exe
Section 18.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”

3850

NET
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 2.3.4.7, “Starting MySQL as a Windows Service”

NET START
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”

NET START mysqld_service_name
Section 2.3.4.7, “Starting MySQL as a Windows Service”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 2.11.8, “Upgrading MySQL on Windows”

NET STOP
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”

NET STOP mysqld_service_name
Section 2.3.4.7, “Starting MySQL as a Windows Service”
Section 2.11.8, “Upgrading MySQL on Windows”

NET STOP service_name
Section 18.3.6, “Safe Shutdown and Restart of NDB Cluster”

nm
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 5.8.1.5, “Using a Stack Trace”

nsupdate
Section 17.3.7, “Switching Sources During Failover”

numactl
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”

O

[index top]

openssl
Section 6.3.3.2, “Creating RSA Keys Using openssl”
Section 6.3.3, “Creating SSL and RSA Certificates and Keys”
Section 6.3.3.1, “Creating SSL Certificates and Keys Using openssl”

openssl md5 package_name
Section 2.1.4.1, “Verifying the MD5 Checksum”

P

[index top]

perror
Section B.3.2.12, “Can't create/write to file”

3851

Section B.2, “Error Information Interfaces”
Section B.3.2.17, “File Not Found and Similar Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.1, “perror — Display MySQL Error Message Information”

pfexec
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

PGP
Section 2.1.4.2, “Signature Checking Using GnuPG”

ping6
Section 5.1.12.5, “Obtaining an IPv6 Address from a Broker”

pkgadd
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”

pkgrm
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”

ppm
Section 2.13, “Perl Installation Notes”

ps
Section 6.2.9, “Assigning Account Passwords”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 8.12.4.1, “How MySQL Uses Memory”
Section B.3.1, “How to Determine What Is Causing a Problem”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6, “SELinux”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”

ps xa | grep mysqld
Section B.3.2.2, “Can't connect to [local] MySQL server”

R

[index top]

rename
Section 5.4.2.5, “Error Log File Flushing and Renaming”
Section 5.4.7, “Server Log Maintenance”
Section 5.4.3, “The General Query Log”

replace
Section 4.7.1, “msql2mysql — Convert mSQL Programs for Use with MySQL”
Section 4.1, “Overview of MySQL Programs”

3852

Section 4.8.2, “replace — A String-Replacement Utility”
Section 17.3.4, “Using Replication for Scale-Out”

resolve_stack_dump
Section 4.1, “Overview of MySQL Programs”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 5.8.1.5, “Using a Stack Trace”

resolveip
Section 4.1, “Overview of MySQL Programs”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”

rm
Section 13.4.1.1, “PURGE BINARY LOGS Statement”

rpm
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.9.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.1.4.4, “Signature Checking Using RPM”

rpmbuild
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.9.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.9.2, “Source Installation Prerequisites”

rsync
Section 7.1, “Backup and Recovery Types”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 17.1.1.9, “Introducing Additional Replicas to an Existing Replication Environment”

S

[index top]

SC
Section 2.3.4.7, “Starting MySQL as a Windows Service”

SC DELETE
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”

SC DELETE mysqld_service_name
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.7, “Starting MySQL as a Windows Service”

SC DELETE service_name
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”

SC START
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”

3853

Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”

SC START mysqld_service_name
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 2.11.8, “Upgrading MySQL on Windows”

sc start mysqld_service_name
Section 2.3.4.7, “Starting MySQL as a Windows Service”

SC STOP
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”

SC STOP mysqld_service_name
Section 2.3.4.7, “Starting MySQL as a Windows Service”

sc stop mysqld_service_name
Section 2.3.4.7, “Starting MySQL as a Windows Service”

SC STOP service_name
Section 18.3.6, “Safe Shutdown and Restart of NDB Cluster”

scp
Section 7.1, “Backup and Recovery Types”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”

sed
Section 3.3.4.7, “Pattern Matching”

SELECT
Section 18.3.5, “NDB Cluster Example with Tables and Data”

semanage
Section 6.6.6, “Troubleshooting SELinux”

semodule
Section 6.6.3, “MySQL Server SELinux Policies”

service
Section 2.5.7, “Installing MySQL on Linux from the Native Software Repositories”

Service Control Manager
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 2.3.4.7, “Starting MySQL as a Windows Service”

Services
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 2.3.4.7, “Starting MySQL as a Windows Service”

3854

sestatus
Section 6.6.2, “Changing the SELinux Mode”
Section 6.6.1, “Check if SELinux is Enabled”

setenforce
Section 6.6.2, “Changing the SELinux Mode”
Section 6.6.6, “Troubleshooting SELinux”

setenv
Section 4.2.7, “Setting Environment Variables”

setrlimit
Section 16.2.2.1, “memcached Command-Line Options”
Section 16.2.2, “Using memcached”

sh
Section 1.1, “About This Manual”
Section B.3.2.17, “File Not Found and Similar Errors”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.7, “Setting Environment Variables”

SHOW
Section 18.4.1, “Quick Test Setup of NDB Cluster”

SHOW ERRORS
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”

SHOW WARNINGS
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”

sleep
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

ssh
Section 18.6.17.1, “NDB Cluster Security and Networking Issues”
Section 16.1.1, “Using ZFS for File System Replication”

Start>Run>cmd.exe
Section 6.3.3.1, “Creating SSL Certificates and Keys Using openssl”

strings
Section 6.1.1, “Security Guidelines”

su root
Section 18.3.1.1, “Installing an NDB Cluster Binary Release on Linux”

sudo
Section 18.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

3855

Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

System Preferences...
Section 2.4.4, “Installing and Using the MySQL Preference Pane”

T

[index top]

tar
Section 17.3.1.2, “Backing Up Raw Data from a Replica”
Section 7.1, “Backup and Recovery Types”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 3.3, “Creating and Using a Database”
Section 1.5, “How to Report Bugs or Problems”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.4, “Installing MySQL on macOS”
Section 2.7, “Installing MySQL on Solaris”
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 2.9.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.13.1, “Installing Perl on Unix”
Section 17.1.1.9, “Introducing Additional Replicas to an Existing Replication Environment”
Section 2.9.1, “Source Installation Methods”
Section 2.9.2, “Source Installation Prerequisites”
Section 2.1.2, “Which MySQL Version and Distribution to Install”

tcpdump
Section 6.1.1, “Security Guidelines”

tcsh
Section 1.1, “About This Manual”
Section B.3.2.17, “File Not Found and Similar Errors”
Section 2.4.1, “General Notes on Installing MySQL on macOS”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.7, “Setting Environment Variables”

tee
Section 4.5.1.2, “mysql Client Commands”

Telnet
Section 16.2.4, “Getting memcached Statistics”

telnet
Section 16.2.4, “Getting memcached Statistics”
Section 14.20.2, “InnoDB memcached Architecture”
Section 6.1.1, “Security Guidelines”
Section 14.20.3, “Setting Up the InnoDB memcached Plugin”

Terminal
Section 2.4, “Installing MySQL on macOS”

3856

Text in this style
Section 1.1, “About This Manual”

top
Section B.3.1, “How to Determine What Is Causing a Problem”

U

[index top]

ulimit
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 8.12.4.2, “Enabling Large Page Support”
Section B.3.2.17, “File Not Found and Similar Errors”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section B.3.2.9, “Packet Too Large”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

unix_chkpwd
Section 6.4.1.6, “PAM Pluggable Authentication”

update-rc.d
Section 18.3.1.1, “Installing an NDB Cluster Binary Release on Linux”

useradd
Section 18.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

V

[index top]

vi
Section 18.3.3, “Initial Configuration of NDB Cluster”
Section 4.5.1.2, “mysql Client Commands”
Section 3.3.4.7, “Pattern Matching”

vmstat
Section 16.2.2.1, “memcached Command-Line Options”

W

[index top]

WinDbg
Section 5.8.1.3, “Using WER with PDB to create a Windows crashdump”

windbg.exe
Section 5.8.1.3, “Using WER with PDB to create a Windows crashdump”

3857

winMd5Sum
Section 2.1.4.1, “Verifying the MD5 Checksum”

WinZip
Section 17.3.1.2, “Backing Up Raw Data from a Replica”
Section 2.9.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.9.2, “Source Installation Prerequisites”

WordPad
Section 13.2.6, “LOAD DATA Statement”

Y

[index top]

yacc
Section 2.9.8, “Dealing with Problems Compiling MySQL”
Section 9.3, “Keywords and Reserved Words”

yum
Section 16.2.1, “Installing memcached”
Section 2.5.7, “Installing MySQL on Linux from the Native Software Repositories”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”
Section 2.11.5, “Upgrading MySQL with the MySQL Yum Repository”
Section 16.2.3.3, “Using libmemcached with C and C++”

yum install
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”

yum update
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”
Section 2.5.2, “Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository”

yum update mysql-server
Section 2.5.2, “Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository”

yum-config-manager
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”
Section 2.5.2, “Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository”

Z

[index top]

zfs recv
Section 16.1.1, “Using ZFS for File System Replication”

zip
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 1.5, “How to Report Bugs or Problems”

3858

zsh
Section 4.2.7, “Setting Environment Variables”

zypper
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”

Function Index
Symbols | A | B | C | D | E | F | G | H | I | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y

Symbols

[index top]

%
Section 1.6.1, “MySQL Extensions to Standard SQL”

A

[index top]

ABS()
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 12.6.2, “Mathematical Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

ACOS()
Section 12.6.2, “Mathematical Functions”

add()
Section 16.2.3.1, “Basic memcached Operations”

ADDDATE()
Section 12.7, “Date and Time Functions”

addslashes()
Section 6.1.7, “Client Programming Security Guidelines”

ADDTIME()
Section 12.7, “Date and Time Functions”

AES_DECRYPT()
Section 12.14, “Encryption and Compression Functions”
Section 6.5.4, “MySQL Enterprise Encryption Function Descriptions”
Section 5.1.7, “Server System Variables”
Section 6.3.4, “SSL Library-Dependent Capabilities”

AES_ENCRYPT()
Section 12.14, “Encryption and Compression Functions”
Section 6.5.4, “MySQL Enterprise Encryption Function Descriptions”

3859

Section 5.1.7, “Server System Variables”
Section 6.3.4, “SSL Library-Dependent Capabilities”

Area()
Section 12.17.7.4, “Polygon and MultiPolygon Property Functions”

AsBinary()
Section 11.4.6, “Fetching Spatial Data”
Section 12.17.6, “Geometry Format Conversion Functions”

ASCII()
Section 13.8.3, “HELP Statement”
Section 12.8, “String Functions and Operators”

ASIN()
Section 12.6.2, “Mathematical Functions”

AsText()
Section 11.4.6, “Fetching Spatial Data”
Section 12.17.6, “Geometry Format Conversion Functions”

AsWKB()
Section 12.17.6, “Geometry Format Conversion Functions”

AsWKT()
Section 12.17.6, “Geometry Format Conversion Functions”

asymmetric_decrypt()
Section 6.5.4, “MySQL Enterprise Encryption Function Descriptions”

asymmetric_derive()
Section 6.5.4, “MySQL Enterprise Encryption Function Descriptions”

asymmetric_encrypt()
Section 6.5.4, “MySQL Enterprise Encryption Function Descriptions”

asymmetric_sign()
Section 6.5.4, “MySQL Enterprise Encryption Function Descriptions”

asymmetric_verify()
Section 6.5.4, “MySQL Enterprise Encryption Function Descriptions”

ATAN()
Section 12.6.2, “Mathematical Functions”

ATAN2()
Section 12.6.2, “Mathematical Functions”

AVG()
Section 12.19.1, “Aggregate Function Descriptions”

3860

Section 11.2.1, “Date and Time Data Type Syntax”
Section 8.2.1.14, “GROUP BY Optimization”
Section 11.3.5, “The ENUM Type”
Section 1.2.2, “The Main Features of MySQL”
Section 11.3.6, “The SET Type”

B

[index top]

BENCHMARK()
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.16, “Information Functions”
Section 8.13.1, “Measuring the Speed of Expressions and Functions”
Section 13.2.10.10, “Optimizing Subqueries”

BIN()
Section 9.1.5, “Bit-Value Literals”
Section 12.8, “String Functions and Operators”

BIT_AND()
Section 12.19.1, “Aggregate Function Descriptions”
Section 12.13, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

BIT_COUNT()
Section 12.13, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

BIT_LENGTH()
Section 12.8, “String Functions and Operators”

BIT_OR()
Section 12.19.1, “Aggregate Function Descriptions”
Section 12.13, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

BIT_XOR()
Section 12.19.1, “Aggregate Function Descriptions”
Section 12.13, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

Buffer()
Section 12.17.8, “Spatial Operator Functions”

C

[index top]

CAST()
Section 9.1.5, “Bit-Value Literals”
Section 12.11, “Cast Functions and Operators”

3861

Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.4.2, “Comparison Functions and Operators”
Section 11.2.8, “Conversion Between Date and Time Types”
Section 12.7, “Date and Time Functions”
Section 9.5, “Expressions”
Section 9.1.4, “Hexadecimal Literals”
Section 1.6.2, “MySQL Differences from Standard SQL”
Section 12.3, “Type Conversion in Expression Evaluation”
Section 9.4, “User-Defined Variables”

CAST(expr AS type
Section 12.11, “Cast Functions and Operators”

CEIL()
Section 12.6.2, “Mathematical Functions”

CEILING()
Section 19.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

Centroid()
Section 12.17.7.4, “Polygon and MultiPolygon Property Functions”

CHAR()
Section 12.14, “Encryption and Compression Functions”
Section 4.5.1.1, “mysql Client Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.8, “String Functions and Operators”

CHAR_LENGTH()
Section 12.8, “String Functions and Operators”
Section 10.10.1, “Unicode Character Sets”

CHARACTER_LENGTH()
Section 12.8, “String Functions and Operators”

CHARSET()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.16, “Information Functions”

COALESCE()
Section 12.4.2, “Comparison Functions and Operators”
Section 13.2.9.2, “JOIN Clause”

COERCIBILITY()
Section 10.8.4, “Collation Coercibility in Expressions”
Section 12.16, “Information Functions”

COLLATION()
Section B.3.4.1, “Case Sensitivity in String Searches”

3862

Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.16, “Information Functions”

COMPRESS()
Section 12.14, “Encryption and Compression Functions”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 5.1.7, “Server System Variables”

CONCAT()
Section 12.19.1, “Aggregate Function Descriptions”
Section 12.11, “Cast Functions and Operators”
Section 12.8.3, “Character Set and Collation of Function Results”
Section 10.2.1, “Character Set Repertoire”
Section 10.8.4, “Collation Coercibility in Expressions”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 12.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 5.1.10, “Server SQL Modes”
Section 13.7.5.14, “SHOW CREATE VIEW Statement”
Section 12.8, “String Functions and Operators”
Section 21.3.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 12.3, “Type Conversion in Expression Evaluation”
Section 12.12, “XML Functions”

CONCAT_WS()
Section 12.19.1, “Aggregate Function Descriptions”
Section 12.8, “String Functions and Operators”

CONNECTION_ID()
Section 6.4.4.3, “Audit Log File Formats”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.16, “Information Functions”
Section 13.7.6.4, “KILL Statement”
Section 5.1.7, “Server System Variables”
Section 13.7.5.30, “SHOW PROCESSLIST Statement”
Section 21.3.16, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 22.12.10.3, “The threads Table”

Contains()
Section 12.17.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”
Section 1.3, “What Is New in MySQL 5.6”

CONV()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.6.2, “Mathematical Functions”
Section 12.8, “String Functions and Operators”

CONVERT()
Section 12.11, “Cast Functions and Operators”
Section 10.3.8, “Character Set Introducers”
Section 10.3.6, “Character String Literal Character Set and Collation”

3863

Section 12.4.2, “Comparison Functions and Operators”
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 4.5.1.1, “mysql Client Options”

CONVERT_TZ()
Section 12.7, “Date and Time Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 8.3.10, “Indexed Lookups from TIMESTAMP Columns”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”

COS()
Section 12.6.2, “Mathematical Functions”

COT()
Section 12.6.2, “Mathematical Functions”

COUNT()
Section 12.19.1, “Aggregate Function Descriptions”
Section 3.3.4.8, “Counting Rows”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 8.2.1.14, “GROUP BY Optimization”
Section 14.23, “InnoDB Restrictions and Limitations”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 18.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 1.6.1, “MySQL Extensions to Standard SQL”
NDB Cluster Status Variables
Section B.3.4.3, “Problems with NULL Values”
Section 5.1.10, “Server SQL Modes”
Section 1.2.2, “The Main Features of MySQL”
Section 20.5.3, “Updatable and Insertable Views”
Section 20.5.2, “View Processing Algorithms”
Section 8.2.1.1, “WHERE Clause Optimization”

CRC32()
Section 12.6.2, “Mathematical Functions”

create_asymmetric_priv_key()
Section 4.9, “Environment Variables”
Section 6.5.4, “MySQL Enterprise Encryption Function Descriptions”
Section 6.5.2, “MySQL Enterprise Encryption Usage and Examples”

create_asymmetric_pub_key()
Section 6.5.4, “MySQL Enterprise Encryption Function Descriptions”

create_dh_parameters()
Section 4.9, “Environment Variables”
Section 6.5.4, “MySQL Enterprise Encryption Function Descriptions”
Section 6.5.2, “MySQL Enterprise Encryption Usage and Examples”

create_digest()
Section 6.5.4, “MySQL Enterprise Encryption Function Descriptions”

3864

Crosses()
Section 12.17.9.1, “Spatial Relation Functions That Use Object Shapes”

crypt()
Section 12.14, “Encryption and Compression Functions”
Section 5.1.7, “Server System Variables”

CURDATE()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_DATE
Section 11.5, “Data Type Default Values”
Section 12.7, “Date and Time Functions”

CURRENT_DATE()
Section 11.2.8, “Conversion Between Date and Time Types”
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_TIME
Section 12.7, “Date and Time Functions”

CURRENT_TIME()
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_TIMESTAMP
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 13.1.11, “CREATE EVENT Statement”
Section 11.5, “Data Type Default Values”
Section 12.7, “Date and Time Functions”
Section 5.1.7, “Server System Variables”

CURRENT_TIMESTAMP()
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_USER
Section 13.7.1.1, “ALTER USER Statement”
Section 13.1.11, “CREATE EVENT Statement”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 13.1.20, “CREATE VIEW Statement”
Section 6.2.3, “Grant Tables”
Section 12.16, “Information Functions”

3865

Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.15, “Replication and System Functions”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 6.2.4, “Specifying Account Names”
Section 20.6, “Stored Object Access Control”

CURRENT_USER()
Section 6.2.5, “Access Control, Stage 1: Connection Verification”
Section 13.7.1.1, “ALTER USER Statement”
Section 6.4.2.1, “Connection-Control Plugin Installation”
Section 13.1.11, “CREATE EVENT Statement”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 13.1.20, “CREATE VIEW Statement”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.16, “Information Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 6.2.12, “Proxy Users”
Section 17.4.1.15, “Replication and System Functions”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 6.2.4, “Specifying Account Names”
Section 6.2.15, “SQL-Based Account Activity Auditing”
Section 20.6, “Stored Object Access Control”
Section 10.2.2, “UTF-8 for Metadata”

CURTIME()
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 11.2.7, “Fractional Seconds in Time Values”
Section 8.10.3.1, “How the Query Cache Operates”
Section 5.1.13, “MySQL Server Time Zone Support”
Section 17.4.1.14, “Replication and Fractional Seconds Support”

D

[index top]

DATABASE()
Section 17.1.4.4, “Binary Log Options and Variables”
Section 3.3.1, “Creating and Selecting a Database”
Section 13.1.21, “DROP DATABASE Statement”
Section 3.4, “Getting Information About Databases and Tables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.16, “Information Functions”
Section B.3.7, “Known Issues in MySQL”
Section 10.2.2, “UTF-8 for Metadata”

DATE()
Section 12.7, “Date and Time Functions”

DATE_ADD()
Section 12.6.1, “Arithmetic Operators”

3866

Section 11.2, “Date and Time Data Types”
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 9.5, “Expressions”

DATE_FORMAT()
Section 12.11, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 10.16, “MySQL Server Locale Support”
Section 5.1.7, “Server System Variables”

DATE_SUB()
Section 11.2, “Date and Time Data Types”
Section 12.7, “Date and Time Functions”
Section 9.5, “Expressions”

DATEDIFF()
Section 12.7, “Date and Time Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

DAY()
Section 12.7, “Date and Time Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

DAYNAME()
Section 12.7, “Date and Time Functions”
Section 10.16, “MySQL Server Locale Support”
Section 5.1.7, “Server System Variables”

DAYOFMONTH()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

DAYOFWEEK()
Section 12.7, “Date and Time Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

DAYOFYEAR()
Section 12.7, “Date and Time Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”
Section 19.2, “Partitioning Types”

DECODE()
Section 12.14, “Encryption and Compression Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”

decr()
Section 16.2.3.1, “Basic memcached Operations”

DEFAULT()
Section 11.5, “Data Type Default Values”

3867

Section 13.2.5, “INSERT Statement”
Section 12.20, “Miscellaneous Functions”
Section 13.2.8, “REPLACE Statement”

DEGREES()
Section 12.6.2, “Mathematical Functions”

delete()
Section 16.2.3.1, “Basic memcached Operations”

DES_DECRYPT()
Section 12.14, “Encryption and Compression Functions”
Section 5.1.6, “Server Command Options”

DES_ENCRYPT()
Section 12.14, “Encryption and Compression Functions”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.6, “Server Command Options”

Dimension()
Section 12.17.7.1, “General Geometry Property Functions”

Disjoint()
Section 12.17.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

E

[index top]

ELT()
Section 12.8.3, “Character Set and Collation of Function Results”
Section B.3.7, “Known Issues in MySQL”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.8, “String Functions and Operators”

ENCODE()
Section 12.14, “Encryption and Compression Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”

ENCRYPT()
Section 12.14, “Encryption and Compression Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 10.11, “Restrictions on Character Sets”
Section 5.1.7, “Server System Variables”

EndPoint()
Section 12.17.7.3, “LineString and MultiLineString Property Functions”

Envelope()
Section 12.17.7.1, “General Geometry Property Functions”

3868

Equals()
Section 12.17.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

EXP()
Section 12.6.2, “Mathematical Functions”

EXPORT_SET()
Section 12.8, “String Functions and Operators”

ExteriorRing()
Section 12.17.7.4, “Polygon and MultiPolygon Property Functions”

EXTRACT()
Section 12.11, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 9.5, “Expressions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

ExtractValue()
Section 12.12, “XML Functions”

F

[index top]

FIELD()
Section 12.8, “String Functions and Operators”

FIND_IN_SET()
Section 12.8, “String Functions and Operators”
Section 11.3.6, “The SET Type”

FLOOR()
Section 12.6.2, “Mathematical Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

flush_all
Section 16.2.3.1, “Basic memcached Operations”

FORMAT()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.6.2, “Mathematical Functions”
Section 12.20, “Miscellaneous Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 10.16, “MySQL Server Locale Support”
Section 12.8, “String Functions and Operators”

FOUND_ROWS()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

3869

Section 12.16, “Information Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.15, “Replication and System Functions”

FROM_BASE64()
Section 12.8, “String Functions and Operators”

FROM_DAYS()
Section 12.7, “Date and Time Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”

FROM_UNIXTIME()
Section 6.4.4.4, “Configuring Audit Logging Characteristics”
Section 12.7, “Date and Time Functions”
Section 8.3.10, “Indexed Lookups from TIMESTAMP Columns”
Section 17.4.1.31, “Replication and Time Zones”

G

[index top]

GeomCollFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

GeomCollFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

GeometryCollection()
Section 12.17.5, “MySQL-Specific Functions That Create Geometry Values”

GeometryCollectionFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

GeometryCollectionFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

GeometryFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

GeometryFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

GeometryN()
Section 12.17.7.5, “GeometryCollection Property Functions”

GeometryType()
Section 12.17.7.1, “General Geometry Property Functions”

GeomFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”
Section 11.4.5, “Populating Spatial Columns”

3870

GeomFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

get()
Section 16.2.3.1, “Basic memcached Operations”

GET_FORMAT()
Section 12.7, “Date and Time Functions”
Section 10.16, “MySQL Server Locale Support”

GET_LOCK()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.1.11, “CREATE EVENT Statement”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 20.4.1, “Event Scheduler Overview”
Section 8.14.3, “General Thread States”
Section 8.10.3.1, “How the Query Cache Operates”
Section 8.11.1, “Internal Locking Methods”
Section 13.7.6.4, “KILL Statement”
Section 18.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 12.15, “Locking Functions”
Section 17.4.1.15, “Replication and System Functions”

gethostbyaddr()
Section 5.1.11.2, “DNS Lookups and the Host Cache”

gethostbyname()
Section 5.1.11.2, “DNS Lookups and the Host Cache”

getrusage()
Section 18.6.15.26, “The ndbinfo threadstat Table”

gettimeofday()
Section 18.6.15.26, “The ndbinfo threadstat Table”

GLength()
Section 12.17.7.3, “LineString and MultiLineString Property Functions”
Section 11.4, “Spatial Data Types”
Section 12.8, “String Functions and Operators”

GREATEST()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.4.2, “Comparison Functions and Operators”

GROUP_CONCAT()
Section 12.19.1, “Aggregate Function Descriptions”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section B.3.7, “Known Issues in MySQL”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 5.1.7, “Server System Variables”

3871

Section 1.2.2, “The Main Features of MySQL”

GTID_SUBSET()
Section 12.18, “Functions Used with Global Transaction IDs”
Section 17.1.3.1, “GTID Concepts”

GTID_SUBTRACT()
Section 12.18, “Functions Used with Global Transaction IDs”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 17.1.3.1, “GTID Concepts”

H

[index top]

HEX()
Section 9.1.5, “Bit-Value Literals”
Section 12.8.3, “Character Set and Collation of Function Results”
Section 10.3.6, “Character String Literal Character Set and Collation”
Section 9.1.4, “Hexadecimal Literals”
Section 12.6.2, “Mathematical Functions”
Section 12.20, “Miscellaneous Functions”
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 12.8, “String Functions and Operators”

HOUR()
Section 12.7, “Date and Time Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

I

[index top]

IF()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.5, “Flow Control Functions”
Section 13.6.5.2, “IF Statement”
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section B.3.7, “Known Issues in MySQL”
Section 1.6.1, “MySQL Extensions to Standard SQL”

IFNULL()
Section 12.5, “Flow Control Functions”
Section B.3.4.3, “Problems with NULL Values”

incr()
Section 16.2.3.1, “Basic memcached Operations”

INET6_ATON()
Section 5.1.12, “IPv6 Support”
Section 12.20, “Miscellaneous Functions”

3872

INET6_NTOA()
Section 5.1.12, “IPv6 Support”
Section 12.20, “Miscellaneous Functions”

INET_ATON()
Section 5.1.12, “IPv6 Support”
Section 12.20, “Miscellaneous Functions”

INET_NTOA()
Section 5.1.12, “IPv6 Support”
Section 12.20, “Miscellaneous Functions”

INSERT()
Section 12.8, “String Functions and Operators”

INSTR()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

InteriorRingN()
Section 12.17.7.4, “Polygon and MultiPolygon Property Functions”

Intersects()
Section 12.17.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

INTERVAL()
Section 12.4.2, “Comparison Functions and Operators”

IS_FREE_LOCK()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.15, “Locking Functions”
Section 17.4.1.15, “Replication and System Functions”

IS_IPV4()
Section 12.20, “Miscellaneous Functions”

IS_IPV4_COMPAT()
Section 12.20, “Miscellaneous Functions”

IS_IPV4_MAPPED()
Section 12.20, “Miscellaneous Functions”

IS_IPV6()
Section 12.20, “Miscellaneous Functions”

IS_USED_LOCK()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”

3873

Section 8.10.3.1, “How the Query Cache Operates”
Section 12.15, “Locking Functions”
Section 17.4.1.15, “Replication and System Functions”

IsClosed()
Section 12.17.7.3, “LineString and MultiLineString Property Functions”

IsEmpty()
Section 12.17.7.1, “General Geometry Property Functions”

ISNULL()
Section 12.4.2, “Comparison Functions and Operators”

IsSimple()
Section 12.17.7.1, “General Geometry Property Functions”

L

[index top]

LAST_DAY()
Section 12.7, “Date and Time Functions”

LAST_INSERT_ID()
Section 12.4.2, “Comparison Functions and Operators”
Section 13.1.17, “CREATE TABLE Statement”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.16, “Information Functions”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 13.2.5, “INSERT Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 17.4.1.1, “Replication and AUTO_INCREMENT”
Section 17.4.1.15, “Replication and System Functions”
Section 5.1.7, “Server System Variables”
Section 20.2.4, “Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()”
Section 17.4.4, “Troubleshooting Replication”
Section 20.5.3, “Updatable and Insertable Views”
Section 3.6.9, “Using AUTO_INCREMENT”

LCASE()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

LEAST()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.4.2, “Comparison Functions and Operators”

LEFT()
Section 12.8, “String Functions and Operators”

3874

LENGTH()
Section 11.6, “Data Type Storage Requirements”
Section 12.8, “String Functions and Operators”
Section 11.4.3, “Supported Spatial Data Formats”

Length()
Section 12.17.7.3, “LineString and MultiLineString Property Functions”
Section 11.4, “Spatial Data Types”

LineFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

LineFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

LineString()
Section 12.17.5, “MySQL-Specific Functions That Create Geometry Values”

LineStringFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

LineStringFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

LN()
Section 12.6.2, “Mathematical Functions”

LOAD_FILE()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 13.2.7, “LOAD XML Statement”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 6.5.2, “MySQL Enterprise Encryption Usage and Examples”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.4.1.15, “Replication and System Functions”
Section 5.1.7, “Server System Variables”
Section 12.8, “String Functions and Operators”

LOCALTIME
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”

LOCALTIME()
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”

LOCALTIMESTAMP
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”

3875

Section 12.7, “Date and Time Functions”

LOCALTIMESTAMP()
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”

LOCATE()
Section 12.8, “String Functions and Operators”

LOG()
Section 19.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

LOG10()
Section 12.6.2, “Mathematical Functions”

LOG2()
Section 12.6.2, “Mathematical Functions”

LOWER()
Section 12.11, “Cast Functions and Operators”
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”
Section 10.10.1, “Unicode Character Sets”
Section 10.8.7, “Using Collation in INFORMATION_SCHEMA Searches”

LPAD()
Section 12.8, “String Functions and Operators”

LTRIM()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

M

[index top]

MAKE_SET()
Section 12.8, “String Functions and Operators”

MAKEDATE()
Section 12.7, “Date and Time Functions”

MAKETIME()
Section 12.7, “Date and Time Functions”

MASTER_POS_WAIT()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”

3876

Section 8.10.3.1, “How the Query Cache Operates”
Section 12.20, “Miscellaneous Functions”
Section A.14, “MySQL 5.6 FAQ: Replication”

MATCH
Section 9.5, “Expressions”

MATCH ()
Section 12.10, “Full-Text Search Functions”

MATCH()
Section 12.10.2, “Boolean Full-Text Searches”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.10.5, “Full-Text Restrictions”
Section 12.10, “Full-Text Search Functions”
Section 14.6.2.3, “InnoDB Full-Text Indexes”
MySQL Glossary
Section 12.10.1, “Natural Language Full-Text Searches”
Section 1.3, “What Is New in MySQL 5.6”

MAX()
Section 11.2.9, “2-Digit Years in Dates”
Section 12.19.1, “Aggregate Function Descriptions”
Section 8.2.1.14, “GROUP BY Optimization”
Section 8.3.1, “How MySQL Uses Indexes”
Section B.3.7, “Known Issues in MySQL”
Section 11.1.1, “Numeric Data Type Syntax”
Section 13.2.10.10, “Optimizing Subqueries”
Section 5.1.10, “Server SQL Modes”
Section 21.6.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 1.2.2, “The Main Features of MySQL”
Section 20.5.3, “Updatable and Insertable Views”
Section 8.3.9, “Use of Index Extensions”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 20.5.2, “View Processing Algorithms”

MBRContains()
Section 12.17.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”
Section 11.4.9, “Using Spatial Indexes”

MBRDisjoint()
Section 12.17.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBREqual()
Section 12.17.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBRIntersects()
Section 12.17.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBROverlaps()
Section 12.17.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

3877

MBRTouches()
Section 12.17.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBRWithin()
Section 12.17.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”
Section 11.4.9, “Using Spatial Indexes”

MD5()
Section 12.14, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 19.2.5, “KEY Partitioning”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 9.2, “Schema Object Names”

MICROSECOND()
Section 12.7, “Date and Time Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

MID()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

MIN()
Section 11.2.9, “2-Digit Years in Dates”
Section 12.19.1, “Aggregate Function Descriptions”
Section 8.2.1.14, “GROUP BY Optimization”
Section 8.3.1, “How MySQL Uses Indexes”
Section B.3.7, “Known Issues in MySQL”
Section 11.1.1, “Numeric Data Type Syntax”
Section 13.2.10.10, “Optimizing Subqueries”
Section B.3.4.3, “Problems with NULL Values”
Section 1.2.2, “The Main Features of MySQL”
Section 20.5.3, “Updatable and Insertable Views”
Section 8.3.9, “Use of Index Extensions”
Section 20.5.2, “View Processing Algorithms”
Section 8.2.1.1, “WHERE Clause Optimization”

MINUTE()
Section 12.7, “Date and Time Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

MLineFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

MLineFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

MOD()
Section 12.6.1, “Arithmetic Operators”
Section 3.3.4.5, “Date Calculations”
Section 12.6.2, “Mathematical Functions”

3878

Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 19.6.3, “Partitioning Limitations Relating to Functions”
Section 5.1.10, “Server SQL Modes”

MONTH()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 19.6.3, “Partitioning Limitations Relating to Functions”
Section 19.2, “Partitioning Types”

MONTHNAME()
Section 12.7, “Date and Time Functions”
Section 10.16, “MySQL Server Locale Support”
Section 5.1.7, “Server System Variables”

MPointFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

MPointFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

MPolyFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

MPolyFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

MultiLineString()
Section 12.17.5, “MySQL-Specific Functions That Create Geometry Values”

MultiLineStringFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

MultiLineStringFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

MultiPoint()
Section 12.17.5, “MySQL-Specific Functions That Create Geometry Values”

MultiPointFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

MultiPointFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

MultiPolygon()
Section 12.17.5, “MySQL-Specific Functions That Create Geometry Values”

MultiPolygonFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

3879

MultiPolygonFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

my_open()
Section 5.1.9, “Server Status Variables”

mysql_firewall_flush_status()
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”

N

[index top]

NAME_CONST()
Section 12.20, “Miscellaneous Functions”
Section 20.7, “Stored Program Binary Logging”

normalize_statement()
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”

NOW()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 11.5, “Data Type Default Values”
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 11.2.7, “Fractional Seconds in Time Values”
Section 8.10.3.1, “How the Query Cache Operates”
Section A.1, “MySQL 5.6 FAQ: General”
Section 5.1.13, “MySQL Server Time Zone Support”
Section 17.4.1.15, “Replication and System Functions”
Section 17.4.1.31, “Replication and Time Zones”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 11.2.4, “The YEAR Type”

NULLIF()
Section 12.5, “Flow Control Functions”

NumGeometries()
Section 12.17.7.5, “GeometryCollection Property Functions”

NumInteriorRings()
Section 12.17.7.4, “Polygon and MultiPolygon Property Functions”

NumPoints()
Section 12.17.7.3, “LineString and MultiLineString Property Functions”

O

[index top]

3880

OCT()
Section 12.8, “String Functions and Operators”

OCTET_LENGTH()
Section 12.8, “String Functions and Operators”

OLD_PASSWORD()
Section 2.11.3, “Changes in MySQL 5.6”
Section B.3.2.4, “Client does not support authentication protocol”
Section 13.7.1.2, “CREATE USER Statement”
Section 12.14, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.7, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 6.4.3, “The Password Validation Plugin”
Section 1.3, “What Is New in MySQL 5.6”

ORD()
Section 12.8, “String Functions and Operators”

Overlaps()
Section 12.17.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

P

[index top]

PASSWORD()
Section 6.2.5, “Access Control, Stage 1: Connection Verification”
Section 6.2.9, “Assigning Account Passwords”
Section 2.11.3, “Changes in MySQL 5.6”
Section 13.7.1.2, “CREATE USER Statement”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.14, “Encryption and Compression Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section B.3.2.14, “Ignoring user”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 19.2.5, “KEY Partitioning”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.1.2.3, “Passwords and Logging”
Section 5.1.7, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 6.4.1.4, “SHA-256 Pluggable Authentication”
Section 6.4.3, “The Password Validation Plugin”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 1.3, “What Is New in MySQL 5.6”

PERIOD_ADD()
Section 12.7, “Date and Time Functions”

3881

Section 1.6.1, “MySQL Extensions to Standard SQL”

PERIOD_DIFF()
Section 12.7, “Date and Time Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”

PI()
Section 9.2.5, “Function Name Parsing and Resolution”
Section 12.6.2, “Mathematical Functions”

Point()
Section 12.17.5, “MySQL-Specific Functions That Create Geometry Values”
Section 11.4.3, “Supported Spatial Data Formats”

PointFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

PointFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

PointN()
Section 12.17.7.3, “LineString and MultiLineString Property Functions”

PolyFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

PolyFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

Polygon()
Section 12.17.5, “MySQL-Specific Functions That Create Geometry Values”

PolygonFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

PolygonFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

POSITION()
Section 12.8, “String Functions and Operators”

POW()
Section 8.2.1.17, “Function Call Optimization”
Section 19.2.4, “HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

POWER()
Section 19.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

3882

pthread_mutex()
Section 1.7.1, “Contributors to MySQL”

Q

[index top]

QUARTER()
Section 12.7, “Date and Time Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

QUOTE()
Section 12.8, “String Functions and Operators”
Section 9.1.1, “String Literals”

R

[index top]

RADIANS()
Section 12.6.2, “Mathematical Functions”

RAND()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.2.1.17, “Function Call Optimization”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.6.2, “Mathematical Functions”
Section 17.4.1.15, “Replication and System Functions”
Section 5.1.7, “Server System Variables”

RANDOM_BYTES()
Section 12.14, “Encryption and Compression Functions”
Section 8.10.3.1, “How the Query Cache Operates”

read_firewall_users()
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”

read_firewall_whitelist()
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”

RELEASE_ALL_LOCKS()
Section 8.10.3.1, “How the Query Cache Operates”

RELEASE_LOCK()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 13.2.3, “DO Statement”
Section 8.10.3.1, “How the Query Cache Operates”
Section 8.11.1, “Internal Locking Methods”

3883

Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 12.15, “Locking Functions”
Section 17.4.1.15, “Replication and System Functions”

REPEAT()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

REPLACE()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

replace()
Section 16.2.3.1, “Basic memcached Operations”

REVERSE()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

RIGHT()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

ROUND()
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 12.6.2, “Mathematical Functions”
Section 12.21, “Precision Math”
Section 12.21.5, “Precision Math Examples”
Section 12.21.4, “Rounding Behavior”

ROW_COUNT()
Section 13.2.1, “CALL Statement”
Section 13.2.2, “DELETE Statement”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.16, “Information Functions”
Section 13.2.5, “INSERT Statement”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.15, “Replication and System Functions”
Section 13.6.7.7, “The MySQL Diagnostics Area”

RPAD()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

RTRIM()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

S

[index top]

3884

SCHEMA()
Section 12.16, “Information Functions”

SEC_TO_TIME()
Section 12.7, “Date and Time Functions”

SECOND()
Section 12.7, “Date and Time Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

SESSION_USER()
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.16, “Information Functions”
Section 10.2.2, “UTF-8 for Metadata”

set()
Section 16.2.3.1, “Basic memcached Operations”

set_firewall_mode()
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”

setrlimit()
Section 5.1.7, “Server System Variables”

SHA()
Section 12.14, “Encryption and Compression Functions”

SHA1()
Section 12.14, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”

SHA2()
Section 12.14, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 6.1.1, “Security Guidelines”

SIGN()
Section 12.6.2, “Mathematical Functions”

SIN()
Section 12.6.2, “Mathematical Functions”

SLEEP()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.14.3, “General Thread States”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.20, “Miscellaneous Functions”

3885

Section 21.6.3, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table”

SOUNDEX()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

SOURCE_POS_WAIT()
Section A.14, “MySQL 5.6 FAQ: Replication”

SPACE()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

SQL_THREAD_WAIT_AFTER_GTIDS()
Section 12.18, “Functions Used with Global Transaction IDs”

SQRT()
Section 12.6.2, “Mathematical Functions”

SRID()
Section 12.17.7.1, “General Geometry Property Functions”

ST_Area()
Section 12.17.7, “Geometry Property Functions”
Section 12.17.7.4, “Polygon and MultiPolygon Property Functions”

ST_AsBinary()
Section 12.17.6, “Geometry Format Conversion Functions”

ST_AsText()
Section 12.17.6, “Geometry Format Conversion Functions”

ST_AsWKB()
Section 12.17.6, “Geometry Format Conversion Functions”

ST_AsWKT()
Section 12.17.6, “Geometry Format Conversion Functions”

ST_Buffer()
Section 12.17.8, “Spatial Operator Functions”

ST_Centroid()
Section 12.17.7.4, “Polygon and MultiPolygon Property Functions”

ST_Contains()
Section 12.17.9.1, “Spatial Relation Functions That Use Object Shapes”
Section 1.3, “What Is New in MySQL 5.6”

ST_Crosses()
Section 12.17.9.1, “Spatial Relation Functions That Use Object Shapes”

3886

ST_Difference()
Section 12.17.8, “Spatial Operator Functions”

ST_Dimension()
Section 12.17.7.1, “General Geometry Property Functions”

ST_Disjoint()
Section 12.17.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_Distance()
Section 12.17.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_EndPoint()
Section 12.17.7.3, “LineString and MultiLineString Property Functions”
Section 12.17.8, “Spatial Operator Functions”

ST_Envelope()
Section 12.17.7.1, “General Geometry Property Functions”
Section 12.17.8, “Spatial Operator Functions”

ST_Equals()
Section 12.17.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_ExteriorRing()
Section 12.17.7.4, “Polygon and MultiPolygon Property Functions”
Section 12.17.8, “Spatial Operator Functions”

ST_GeomCollFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

ST_GeomCollFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

ST_GeometryCollectionFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

ST_GeometryCollectionFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

ST_GeometryFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

ST_GeometryFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

ST_GeometryN()
Section 12.17.7.5, “GeometryCollection Property Functions”
Section 12.17.8, “Spatial Operator Functions”

ST_GeometryType()
Section 12.17.7.1, “General Geometry Property Functions”

3887

ST_GeomFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”
Section 11.4.3, “Supported Spatial Data Formats”

ST_GeomFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

ST_InteriorRingN()
Section 12.17.7.4, “Polygon and MultiPolygon Property Functions”
Section 12.17.8, “Spatial Operator Functions”

ST_Intersection()
Section 12.17.8, “Spatial Operator Functions”

ST_Intersects()
Section 12.17.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_IsClosed()
Section 12.17.7.3, “LineString and MultiLineString Property Functions”

ST_IsEmpty()
Section 12.17.7.1, “General Geometry Property Functions”

ST_IsSimple()
Section 12.17.7.1, “General Geometry Property Functions”

ST_LineFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

ST_LineFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

ST_LineStringFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

ST_LineStringFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

ST_NumGeometries()
Section 12.17.7.5, “GeometryCollection Property Functions”

ST_NumInteriorRings()
Section 12.17.7.4, “Polygon and MultiPolygon Property Functions”

ST_NumPoints()
Section 12.17.7.3, “LineString and MultiLineString Property Functions”

ST_Overlaps()
Section 12.17.9.1, “Spatial Relation Functions That Use Object Shapes”

3888

ST_PointFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

ST_PointFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

ST_PointN()
Section 12.17.7.3, “LineString and MultiLineString Property Functions”
Section 12.17.8, “Spatial Operator Functions”

ST_PolyFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

ST_PolyFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

ST_PolygonFromText()
Section 12.17.3, “Functions That Create Geometry Values from WKT Values”

ST_PolygonFromWKB()
Section 12.17.4, “Functions That Create Geometry Values from WKB Values”

ST_SRID()
Section 12.17.7.1, “General Geometry Property Functions”

ST_StartPoint()
Section 12.17.7.3, “LineString and MultiLineString Property Functions”

ST_SymDifference()
Section 12.17.8, “Spatial Operator Functions”

ST_Touches()
Section 12.17.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_Union()
Section 12.17.8, “Spatial Operator Functions”

ST_Within()
Section 12.17.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_X()
Section 12.17.7.2, “Point Property Functions”
Section 11.4.3, “Supported Spatial Data Formats”

ST_Y()
Section 12.17.7.2, “Point Property Functions”

StartPoint()
Section 12.17.7.3, “LineString and MultiLineString Property Functions”

3889

Section 12.17.8, “Spatial Operator Functions”

STD()
Section 12.19.1, “Aggregate Function Descriptions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 1.2.2, “The Main Features of MySQL”

STDDEV()
Section 12.19.1, “Aggregate Function Descriptions”

STDDEV_POP()
Section 12.19.1, “Aggregate Function Descriptions”

STDDEV_SAMP()
Section 12.19.1, “Aggregate Function Descriptions”

STR_TO_DATE()
Section 11.2, “Date and Time Data Types”
Section 12.7, “Date and Time Functions”
Section 10.16, “MySQL Server Locale Support”

STRCMP()
Section B.3.4.2, “Problems Using DATE Columns”
Section 12.8.1, “String Comparison Functions and Operators”

SUBDATE()
Section 12.7, “Date and Time Functions”

SUBSTR()
Section 12.8, “String Functions and Operators”

SUBSTRING()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

SUBSTRING_INDEX()
Section 6.2.15, “SQL-Based Account Activity Auditing”
Section 12.8, “String Functions and Operators”

SUBTIME()
Section 12.7, “Date and Time Functions”

SUM()
Section 12.19.1, “Aggregate Function Descriptions”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 11.2.1, “Date and Time Data Type Syntax”
Section 8.2.1.14, “GROUP BY Optimization”
Section B.3.4.3, “Problems with NULL Values”
Section 11.3.5, “The ENUM Type”
Section 1.2.2, “The Main Features of MySQL”
Section 11.3.6, “The SET Type”

3890

Section 20.5.3, “Updatable and Insertable Views”
Section 20.5.2, “View Processing Algorithms”

SYSDATE()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 11.2.7, “Fractional Seconds in Time Values”
Section 8.10.3.1, “How the Query Cache Operates”
Section 17.4.1.14, “Replication and Fractional Seconds Support”
Section 17.4.1.15, “Replication and System Functions”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

SYSTEM_USER()
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.16, “Information Functions”
Section 10.2.2, “UTF-8 for Metadata”

T

[index top]

TAN()
Section 12.6.2, “Mathematical Functions”

thr_setconcurrency()
Section 5.1.7, “Server System Variables”

TIME()
Section 12.7, “Date and Time Functions”

TIME_FORMAT()
Section 12.11, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”

TIME_TO_SEC()
Section 12.7, “Date and Time Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

TIMEDIFF()
Section 12.7, “Date and Time Functions”

TIMESTAMP()
Section 12.7, “Date and Time Functions”

TIMESTAMPADD()
Section 12.7, “Date and Time Functions”

TIMESTAMPDIFF()
Section 12.7, “Date and Time Functions”

3891

Section 3.3.4.5, “Date Calculations”

TO_BASE64()
Section 12.8, “String Functions and Operators”

TO_DAYS()
Section 12.7, “Date and Time Functions”
Section 19.2.4, “HASH Partitioning”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 19.4, “Partition Pruning”
Section 19.6.3, “Partitioning Limitations Relating to Functions”
Section 19.2, “Partitioning Types”

TO_SECONDS()
Section 12.7, “Date and Time Functions”
Section 19.4, “Partition Pruning”
Section 19.6.3, “Partitioning Limitations Relating to Functions”
Section 19.2, “Partitioning Types”

Touches()
Section 12.17.9.1, “Spatial Relation Functions That Use Object Shapes”

TRIM()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 10.7, “Column Character Set Conversion”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.8, “String Functions and Operators”

TRUNCATE()
Section 12.6.2, “Mathematical Functions”

U

[index top]

UCASE()
Section 12.8.3, “Character Set and Collation of Function Results”
Section 12.8, “String Functions and Operators”

UNCOMPRESS()
Section 12.14, “Encryption and Compression Functions”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 5.1.7, “Server System Variables”

UNCOMPRESSED_LENGTH()
Section 12.14, “Encryption and Compression Functions”

UNHEX()
Section 12.14, “Encryption and Compression Functions”
Section 4.5.1.1, “mysql Client Options”

3892

Section 12.8, “String Functions and Operators”

UNIX_TIMESTAMP()
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 8.3.10, “Indexed Lookups from TIMESTAMP Columns”
Section 19.6.3, “Partitioning Limitations Relating to Functions”
Section 19.2.1, “RANGE Partitioning”
Section 5.1.7, “Server System Variables”
Section B.3.3.7, “Time Zone Problems”

UpdateXML()
Section 12.12, “XML Functions”

UPPER()
Section 12.11, “Cast Functions and Operators”
Section 12.8.3, “Character Set and Collation of Function Results”
Section 10.2.1, “Character Set Repertoire”
Section 12.8, “String Functions and Operators”
Section 10.10.1, “Unicode Character Sets”
Section 10.8.7, “Using Collation in INFORMATION_SCHEMA Searches”

USER()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 10.8.4, “Collation Coercibility in Expressions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.16, “Information Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 6.2.12, “Proxy Users”
Section 17.4.1.15, “Replication and System Functions”
Section 6.2.15, “SQL-Based Account Activity Auditing”
Section 10.2.2, “UTF-8 for Metadata”

UTC_DATE
Section 12.7, “Date and Time Functions”

UTC_DATE()
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”

UTC_TIME
Section 12.7, “Date and Time Functions”

UTC_TIME()
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”

UTC_TIMESTAMP
Section 12.7, “Date and Time Functions”

3893

UTC_TIMESTAMP()
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 11.2.7, “Fractional Seconds in Time Values”
Section 5.1.13, “MySQL Server Time Zone Support”
Section 17.4.1.14, “Replication and Fractional Seconds Support”

UUID()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.4.4, “Binary Log Options and Variables”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.2.1.17, “Function Call Optimization”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.20, “Miscellaneous Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.15, “Replication and System Functions”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 20.7, “Stored Program Binary Logging”

UUID_SHORT()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.20, “Miscellaneous Functions”

V

[index top]

VALIDATE_PASSWORD_STRENGTH()
Section 12.14, “Encryption and Compression Functions”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”
Section 1.3, “What Is New in MySQL 5.6”

VALUES()
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 12.20, “Miscellaneous Functions”

VAR_POP()
Section 12.19.1, “Aggregate Function Descriptions”

VAR_SAMP()
Section 12.19.1, “Aggregate Function Descriptions”

VARIANCE()
Section 12.19.1, “Aggregate Function Descriptions”

VERSION()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 6.4.4.3, “Audit Log File Formats”

3894

Section B.3.4.1, “Case Sensitivity in String Searches”
Section 10.8.4, “Collation Coercibility in Expressions”
Section 12.16, “Information Functions”
Section 17.4.1.15, “Replication and System Functions”
Section 10.2.2, “UTF-8 for Metadata”

W

[index top]

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()
Section 12.18, “Functions Used with Global Transaction IDs”

WEEK()
Section 12.7, “Date and Time Functions”
Section 5.1.7, “Server System Variables”

WEEKDAY()
Section 12.7, “Date and Time Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 19.6.3, “Partitioning Limitations Relating to Functions”
Section 19.2, “Partitioning Types”

WEEKOFYEAR()
Section 12.7, “Date and Time Functions”

WEIGHT_STRING()
Section 10.14, “Adding a Collation to a Character Set”
Section B.3.4.1, “Case Sensitivity in String Searches”
Section 12.8, “String Functions and Operators”
Section 10.10.1, “Unicode Character Sets”

Within()
Section 12.17.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

X

[index top]

X()
Section 12.17.7.2, “Point Property Functions”

Y

[index top]

Y()
Section 12.17.7.2, “Point Property Functions”

YEAR()
Section 12.7, “Date and Time Functions”

3895

Section 3.3.4.5, “Date Calculations”
Section 19.2.4, “HASH Partitioning”
Section 19.2.7, “How MySQL Partitioning Handles NULL”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 19.4, “Partition Pruning”
Section 19.6.3, “Partitioning Limitations Relating to Functions”
Section 19.2, “Partitioning Types”
Section 19.2.1, “RANGE Partitioning”

YEARWEEK()
Section 12.7, “Date and Time Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”

INFORMATION_SCHEMA Index
C | E | F | G | I | K | M | N | O | P | R | S | T | U | V

C

[index top]

CHARACTER_SETS
Section 10.3.8, “Character Set Introducers”
Section 10.2, “Character Sets and Collations in MySQL”
Section 10.3.6, “Character String Literal Character Set and Collation”
Section 10.3.5, “Column Character Set and Collation”
Section 10.3.3, “Database Character Set and Collation”
Section 13.7.5.4, “SHOW CHARACTER SET Statement”
Section 10.10, “Supported Character Sets and Collations”
Section 10.3.4, “Table Character Set and Collation”
Section 21.3.2, “The INFORMATION_SCHEMA CHARACTER_SETS Table”

COLLATION_CHARACTER_SET_APPLICABILITY
Section 21.3.4, “The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table”

COLLATIONS
Section 10.15, “Character Set Configuration”
Section 10.2, “Character Sets and Collations in MySQL”
Section 10.14.2, “Choosing a Collation ID”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 13.7.5.5, “SHOW COLLATION Statement”
Section 21.3.3, “The INFORMATION_SCHEMA COLLATIONS Table”

COLUMN_PRIVILEGES
Section 21.3.6, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”

COLUMNS
Section 13.1.17, “CREATE TABLE Statement”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 5.1.7, “Server System Variables”

3896

Section 13.7.5.6, “SHOW COLUMNS Statement”
Section 21.3.5, “The INFORMATION_SCHEMA COLUMNS Table”
Section 21.4.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 21.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”
Section 21.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”
Section 21.4.5, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 21.4.7, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 21.4.6, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”
Section 21.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 21.4.9, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 21.4.10, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”
Section 21.4.11, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 21.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 21.4.13, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”
Section 21.4.15, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”
Section 21.4.14, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 21.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”
Section 21.4.17, “The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table”
Section 21.4.18, “The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table”
Section 21.4.19, “The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table”
Section 21.4.20, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table”
Section 21.4.21, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table”
Section 21.4.22, “The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table”
Section 21.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 21.4.24, “The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table”
Section 21.4.25, “The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View”
Section 21.4.26, “The INFORMATION_SCHEMA INNODB_TRX Table”

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS
Section 6.4.2.1, “Connection-Control Plugin Installation”
Section 6.4.2.2, “Connection-Control System and Status Variables”
Section 6.4.2, “The Connection-Control Plugins”
Section 21.7.2, “The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS
Table”

E

[index top]

ENGINES
Section 14.1.3, “Checking InnoDB Availability”
Section 22.1, “Performance Schema Quick Start”
Section 18.6.16, “Quick Reference: NDB Cluster SQL Statements”
Section 5.1.7, “Server System Variables”
Section 13.7.5.17, “SHOW ENGINES Statement”
Section 21.3.7, “The INFORMATION_SCHEMA ENGINES Table”

EVENTS
Section 20.4.4, “Event Metadata”
Section 20.4.2, “Event Scheduler Configuration”
Section 17.4.1.16, “Replication of Invoked Features”

3897

Section 20.8, “Restrictions on Stored Programs”
Section 13.7.5.19, “SHOW EVENTS Statement”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 21.3.8, “The INFORMATION_SCHEMA EVENTS Table”

F

[index top]

FILES
Section 13.1.4, “ALTER LOGFILE GROUP Statement”
Section 13.1.8, “ALTER TABLESPACE Statement”
Section 13.1.14, “CREATE LOGFILE GROUP Statement”
Section 13.1.18, “CREATE TABLESPACE Statement”
Section 21.5, “INFORMATION_SCHEMA NDB Cluster Tables”
Section 18.6.11.1, “NDB Cluster Disk Data Objects”
Section 18.6.11.3, “NDB Cluster Disk Data Storage Requirements”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 6.2.2, “Privileges Provided by MySQL”
Section 21.5.1, “The INFORMATION_SCHEMA FILES Table”
Section 21.3.24, “The INFORMATION_SCHEMA TABLESPACES Table”

G

[index top]

GLOBAL_STATUS
Section 18.6, “Management of NDB Cluster”
Section 18.6.14, “NDB API Statistics Counters and Variables”
Section 18.7, “NDB Cluster Replication”
Section 13.7.5.36, “SHOW STATUS Statement”
Section 21.3.9, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”

GLOBAL_VARIABLES
Section 13.7.5.40, “SHOW VARIABLES Statement”
Section 21.3.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

I

[index top]

INFORMATION_SCHEMA
Section 2.12.3, “Downgrade Notes”
Section 14.15, “InnoDB INFORMATION_SCHEMA Tables”
MySQL Glossary
Section 5.2, “The MySQL Data Directory”

INFORMATION_SCHEMA.CHARACTER_SETS
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”

3898

INFORMATION_SCHEMA.COLUMNS
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 22.1, “Performance Schema Quick Start”

INFORMATION_SCHEMA.EVENTS
Section 17.4.1.16, “Replication of Invoked Features”

INFORMATION_SCHEMA.FILES
Section 13.1.18, “CREATE TABLESPACE Statement”

INFORMATION_SCHEMA.INNODB_CMP
MySQL Glossary

INFORMATION_SCHEMA.INNODB_SYS_TABLES
Section 19.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 14.21.3, “Troubleshooting InnoDB Data Dictionary Operations”

INFORMATION_SCHEMA.INNODB_SYS_TABLESPACES
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”

INFORMATION_SCHEMA.INNODB_SYS_TABLESTATS
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”

INFORMATION_SCHEMA.PARTITIONS
Section 19.2.7, “How MySQL Partitioning Handles NULL”

INFORMATION_SCHEMA.PLUGINS
Section 5.5.1, “Installing and Uninstalling Plugins”

INFORMATION_SCHEMA.ROUTINES
Section A.4, “MySQL 5.6 FAQ: Stored Procedures and Functions”

INFORMATION_SCHEMA.STATISTICS
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

INFORMATION_SCHEMA.TRIGGERS
Section A.5, “MySQL 5.6 FAQ: Triggers”

INNODB_BUFFER_PAGE
Section 14.5.2, “Change Buffer”
Section 14.15.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 21.4.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 21.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”

INNODB_BUFFER_PAGE_LRU
Section 14.15.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 14.8.3.5, “Saving and Restoring the Buffer Pool State”

3899

Section 21.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”

INNODB_BUFFER_POOL_STATS
Section 14.5.1, “Buffer Pool”
Section 14.15.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 21.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”

INNODB_CMP
Section 14.15.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”
Section 14.15.1.1, “INNODB_CMP and INNODB_CMP_RESET”
Section 14.15.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”
Section 14.9.4, “Monitoring InnoDB Table Compression at Runtime”
Section 21.4.5, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 14.9.3, “Tuning Compression for InnoDB Tables”
Section 14.15.1.3, “Using the Compression Information Schema Tables”

INNODB_CMP_PER_INDEX
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.9.4, “Monitoring InnoDB Table Compression at Runtime”
Section 21.4.7, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 14.9.3, “Tuning Compression for InnoDB Tables”
Section 14.15.1.3, “Using the Compression Information Schema Tables”

INNODB_CMP_PER_INDEX_RESET
Section 21.4.7, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”

INNODB_CMP_RESET
Section 14.15.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”
Section 14.15.1.1, “INNODB_CMP and INNODB_CMP_RESET”
Section 14.15.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”
Section 21.4.5, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”

INNODB_CMPMEM
Section 14.15.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”
Section 14.15.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”
Section 21.4.6, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”
Section 14.15.1.3, “Using the Compression Information Schema Tables”

INNODB_CMPMEM_RESET
Section 14.15.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”
Section 14.15.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”
Section 21.4.6, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”

INNODB_FT_BEING_DELETED
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 21.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”

3900

INNODB_FT_CONFIG
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 21.4.9, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”

INNODB_FT_DEFAULT_STOPWORD
Section 12.10.4, “Full-Text Stopwords”
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 21.4.10, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”

INNODB_FT_DELETED
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 21.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 21.4.11, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”

INNODB_FT_INDEX_CACHE
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 21.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”

INNODB_FT_INDEX_TABLE
Section 12.10.4, “Full-Text Stopwords”
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 21.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 21.4.11, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 21.4.13, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”

INNODB_LOCK_WAITS
Section 14.15.2, “InnoDB INFORMATION_SCHEMA Transaction and Locking Information”
Section 14.15.2.2, “InnoDB Lock and Lock-Wait Information”
Section 14.15.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”
Section 21.4.15, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”
Section 14.15.2.1, “Using InnoDB Transaction and Locking Information”

INNODB_LOCKS
Section 14.15.2, “InnoDB INFORMATION_SCHEMA Transaction and Locking Information”
Section 14.15.2.2, “InnoDB Lock and Lock-Wait Information”
Section 14.15.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”
Section 21.4.15, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”
Section 21.4.14, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 21.4.26, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 14.15.2.1, “Using InnoDB Transaction and Locking Information”

INNODB_METRICS
Section 14.5.2, “Change Buffer”

3901

Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 14.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 21.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”

INNODB_SYS_COLUMNS
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 21.4.17, “The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table”

INNODB_SYS_DATAFILES
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 21.4.18, “The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table”
Section 21.3.24, “The INFORMATION_SCHEMA TABLESPACES Table”

INNODB_SYS_FIELDS
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 21.4.19, “The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table”

INNODB_SYS_FOREIGN
Section 1.6.3.2, “FOREIGN KEY Constraints”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 21.4.20, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table”

INNODB_SYS_FOREIGN_COLS
Section 1.6.3.2, “FOREIGN KEY Constraints”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 21.4.21, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table”

INNODB_SYS_INDEXES
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 21.4.22, “The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table”

INNODB_SYS_TABLES
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 14.11, “InnoDB Row Formats”
Section 21.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”

INNODB_SYS_TABLESPACES
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 21.4.24, “The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table”
Section 21.3.24, “The INFORMATION_SCHEMA TABLESPACES Table”

INNODB_SYS_TABLESTATS
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”

3902

Section 21.4.25, “The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View”

INNODB_TRX
Section 14.15.2, “InnoDB INFORMATION_SCHEMA Transaction and Locking Information”
Section 14.15.2.2, “InnoDB Lock and Lock-Wait Information”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.15.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”
Section 21.4.14, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 21.4.26, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 14.15.2.1, “Using InnoDB Transaction and Locking Information”

K

[index top]

KEY_COLUMN_USAGE
Section 2.11.3, “Changes in MySQL 5.6”
Section 1.6.3.2, “FOREIGN KEY Constraints”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 21.3.11, “The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table”

M

[index top]

MYSQL_FIREWALL_USERS
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”
Section 21.8.2, “The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table”

MYSQL_FIREWALL_WHITELIST
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”
Section 21.8.3, “The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table”

N

[index top]

NDB_TRANSID_MYSQL_CONNECTION_MAP
Section 18.6.15.22, “The ndbinfo server_operations Table”
Section 18.6.15.23, “The ndbinfo server_transactions Table”

ndb_transid_mysql_connection_map
Section 21.5, “INFORMATION_SCHEMA NDB Cluster Tables”
MySQL Server Options for NDB Cluster
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 21.5.2, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”

O

[index top]

3903

OPTIMIZER_TRACE
Section 21.3.12, “The INFORMATION_SCHEMA OPTIMIZER_TRACE Table”
Section 1.3, “What Is New in MySQL 5.6”

P

[index top]

PARAMETERS
Section A.4, “MySQL 5.6 FAQ: Stored Procedures and Functions”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Statement”
Section 21.3.13, “The INFORMATION_SCHEMA PARAMETERS Table”
Section 21.3.19, “The INFORMATION_SCHEMA ROUTINES Table”

PARTITIONS
Section 19.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 19.2.7, “How MySQL Partitioning Handles NULL”
Section 19.2.5, “KEY Partitioning”
Section 19.3.5, “Obtaining Information About Partitions”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Chapter 19, Partitioning
Section 19.2.3.1, “RANGE COLUMNS partitioning”
Section 5.1.6, “Server Command Options”
Section 13.7.5.37, “SHOW TABLE STATUS Statement”
Section 21.3.14, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 21.3.23, “The INFORMATION_SCHEMA TABLES Table”

PLUGINS
Section 6.4.2.1, “Connection-Control Plugin Installation”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 6.4.4.1, “Installing MySQL Enterprise Audit”
Section 5.5.2, “Obtaining Server Plugin Information”
Section 6.4.1.6, “PAM Pluggable Authentication”
Chapter 19, Partitioning
Section 6.4.3.1, “Password Validation Plugin Installation”
Section 17.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.6, “Server Command Options”
Section 6.4.1.8, “Socket Peer-Credential Pluggable Authentication”
Section 6.4.1.9, “Test Pluggable Authentication”
Section 21.3.15, “The INFORMATION_SCHEMA PLUGINS Table”
Section 5.5.3.2, “Thread Pool Installation”
Section 1.3, “What Is New in MySQL 5.6”
Section 6.4.1.7, “Windows Pluggable Authentication”

PROCESSLIST
Section 8.14.1, “Accessing the Process List”
Section 12.16, “Information Functions”
Section 13.7.6.4, “KILL Statement”
Section 22.6, “Performance Schema Instrument Naming Conventions”
Section 22.12.5, “Performance Schema Stage Event Tables”

3904

Section 14.15.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.30, “SHOW PROCESSLIST Statement”
Section 21.4.26, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 21.3.16, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 22.12.10.3, “The threads Table”
Section 14.15.2.1, “Using InnoDB Transaction and Locking Information”

PROFILING
Section 13.7.5.31, “SHOW PROFILE Statement”
Section 21.3.17, “The INFORMATION_SCHEMA PROFILING Table”

R

[index top]

REFERENTIAL_CONSTRAINTS
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 21.3.18, “The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table”

ROUTINES
Section 21.1, “Introduction”
Section A.4, “MySQL 5.6 FAQ: Stored Procedures and Functions”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Statement”
Section 20.6, “Stored Object Access Control”
Section 20.2.3, “Stored Routine Metadata”
Section 21.3.19, “The INFORMATION_SCHEMA ROUTINES Table”

S

[index top]

SCHEMA_PRIVILEGES
Section 21.3.21, “The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table”

SCHEMATA
Section 6.2.3, “Grant Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.7, “Server System Variables”
Section 13.7.5.15, “SHOW DATABASES Statement”
Section 21.3.20, “The INFORMATION_SCHEMA SCHEMATA Table”

SESSION_STATUS
Section 18.6, “Management of NDB Cluster”
Section 18.6.14, “NDB API Statistics Counters and Variables”
Section 18.7, “NDB Cluster Replication”
Section 13.7.5.36, “SHOW STATUS Statement”
Section 21.3.9, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”

SESSION_VARIABLES
Section 13.7.5.40, “SHOW VARIABLES Statement”

3905

Section 21.3.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

STATISTICS
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 8.9.3, “Index Hints”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 13.7.5.23, “SHOW INDEX Statement”
Section 21.3.22, “The INFORMATION_SCHEMA STATISTICS Table”

T

[index top]

TABLE_CONSTRAINTS
Section 2.11.3, “Changes in MySQL 5.6”
Section 14.13.1, “Online DDL Operations”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 21.3.18, “The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table”
Section 21.3.25, “The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table”

TABLE_PRIVILEGES
Section 21.3.26, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”

TABLES
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 13.1.7, “ALTER TABLE Statement”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 21.1, “Introduction”
NDB Cluster System Variables
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 5.1.6, “Server Command Options”
Section 13.7.5.37, “SHOW TABLE STATUS Statement”
Section 13.7.5.38, “SHOW TABLES Statement”
Section 21.3.23, “The INFORMATION_SCHEMA TABLES Table”

TP_THREAD_GROUP_STATE
Section 21.6, “INFORMATION_SCHEMA Thread Pool Tables”
Section 21.6.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 5.5.3.1, “Thread Pool Elements”

TP_THREAD_GROUP_STATS
Section 21.6, “INFORMATION_SCHEMA Thread Pool Tables”
Section 21.6.3, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table”
Section 21.6.4, “The INFORMATION_SCHEMA TP_THREAD_STATE Table”
Section 5.5.3.1, “Thread Pool Elements”

TP_THREAD_STATE
Section 21.6, “INFORMATION_SCHEMA Thread Pool Tables”

3906

Section 21.6.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 21.6.4, “The INFORMATION_SCHEMA TP_THREAD_STATE Table”
Section 5.5.3.1, “Thread Pool Elements”
Section 5.5.3.2, “Thread Pool Installation”

TRIGGERS
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 13.7.5.13, “SHOW CREATE TRIGGER Statement”
Section 13.7.5.39, “SHOW TRIGGERS Statement”
Section 21.3.27, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 20.3.2, “Trigger Metadata”

U

[index top]

USER_PRIVILEGES
Section 21.3.28, “The INFORMATION_SCHEMA USER_PRIVILEGES Table”

V

[index top]

VIEWS
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 13.7.5.14, “SHOW CREATE VIEW Statement”
Section 21.3.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 20.5.3, “Updatable and Insertable Views”
Section 20.5.5, “View Metadata”

Join Types Index
A | C | E | F | I | R | S | U

A

[index top]

ALL
Section 8.2.1.19, “Avoiding Full Table Scans”
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.6, “Nested-Loop Join Algorithms”

C

[index top]

const
Section 8.8.2, “EXPLAIN Output Format”
Section 8.8.3, “Extended EXPLAIN Output Format”

3907

NDB Cluster System Variables
Section 8.2.1.13, “ORDER BY Optimization”
Section 8.2.1.2, “Range Optimization”
Section 13.2.9, “SELECT Statement”

E

[index top]

eq_ref
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.5, “Index Condition Pushdown Optimization”
Section 15.7.1, “MERGE Table Advantages and Disadvantages”
NDB Cluster System Variables
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

F

[index top]

fulltext
Section 8.8.2, “EXPLAIN Output Format”

I

[index top]

index
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.6, “Nested-Loop Join Algorithms”

index_merge
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.3, “Index Merge Optimization”

index_subquery
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.10.10, “Optimizing Subqueries”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

R

[index top]

range
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.14, “GROUP BY Optimization”
Section 8.2.1.5, “Index Condition Pushdown Optimization”
Section 8.2.1.3, “Index Merge Optimization”

3908

Section 8.2.1.6, “Nested-Loop Join Algorithms”
Section 8.2.1.2, “Range Optimization”

ref
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 8.2.1.5, “Index Condition Pushdown Optimization”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 15.7.1, “MERGE Table Advantages and Disadvantages”
NDB Cluster System Variables
Section 8.2.2.4, “Optimizing Derived Tables”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

ref_or_null
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.5, “Index Condition Pushdown Optimization”
Section 8.2.1.12, “IS NULL Optimization”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

S

[index top]

system
Section 8.8.2, “EXPLAIN Output Format”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 8.2.1.2, “Range Optimization”
Section 13.2.9, “SELECT Statement”

U

[index top]

unique_subquery
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.10.10, “Optimizing Subqueries”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

Operator Index
Symbols | A | B | C | D | E | I | L | N | O | R | X

Symbols

[index top]

-
Section 12.6.1, “Arithmetic Operators”
Section 12.11, “Cast Functions and Operators”
Section 9.5, “Expressions”
Section 11.1.1, “Numeric Data Type Syntax”

3909

Section 19.6, “Restrictions and Limitations on Partitioning”

!
Section 9.5, “Expressions”
Section 12.4.3, “Logical Operators”
Section 12.4.1, “Operator Precedence”

!=
Section 12.4.2, “Comparison Functions and Operators”
Section 12.4.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”

%
Section 12.6.1, “Arithmetic Operators”

&
Section 12.13, “Bit Functions and Operators”
Section 13.1.17, “CREATE TABLE Statement”
Section 19.6, “Restrictions and Limitations on Partitioning”

&&
Section 12.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

>
Section 12.4.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”

>>
Section 12.13, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 19.6, “Restrictions and Limitations on Partitioning”

>=
Section 12.4.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”

<
Section 12.4.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”

3910

Section 8.2.1.2, “Range Optimization”
Section 3.3.4.6, “Working with NULL Values”

<>
Section 12.4.2, “Comparison Functions and Operators”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”
Section 3.3.4.6, “Working with NULL Values”

<<
Section 12.13, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 19.6, “Restrictions and Limitations on Partitioning”

<=
Section 12.4.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”

<=>
Section 12.4.2, “Comparison Functions and Operators”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”
Section 12.3, “Type Conversion in Expression Evaluation”

*
Section 12.6.1, “Arithmetic Operators”
Section 11.1.1, “Numeric Data Type Syntax”
Section 19.6, “Restrictions and Limitations on Partitioning”

+
Section 12.6.1, “Arithmetic Operators”
Section 12.11, “Cast Functions and Operators”
Section 9.5, “Expressions”
Section 11.1.1, “Numeric Data Type Syntax”
Section 19.6, “Restrictions and Limitations on Partitioning”

/
Section 12.6.1, “Arithmetic Operators”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”

:=
Section 12.4.4, “Assignment Operators”
Section 12.4.1, “Operator Precedence”

3911

Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 9.4, “User-Defined Variables”

=
Section 12.4.4, “Assignment Operators”
Section 12.4.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”
Section 13.2.10.12, “Restrictions on Subqueries”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 12.8.1, “String Comparison Functions and Operators”
Section 9.4, “User-Defined Variables”
Section 3.3.4.6, “Working with NULL Values”

^
Section 12.13, “Bit Functions and Operators”
Section 9.5, “Expressions”
Section 12.4.1, “Operator Precedence”
Section 19.6, “Restrictions and Limitations on Partitioning”

|
Section 12.13, “Bit Functions and Operators”
Section 19.6, “Restrictions and Limitations on Partitioning”

||
Section 12.8.3, “Character Set and Collation of Function Results”
Section 10.8.2, “COLLATE Clause Precedence”
Section 9.5, “Expressions”
Section 12.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 5.1.10, “Server SQL Modes”

~
Section 12.13, “Bit Functions and Operators”
Section 19.6, “Restrictions and Limitations on Partitioning”

A

[index top]

AND
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 13.1.17, “CREATE TABLE Statement”
Section 8.2.1.3, “Index Merge Optimization”
Section 12.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 8.2.2.1, “Optimizing Subqueries with Semijoin Transformations”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

3912

Section 8.2.1.2, “Range Optimization”
Section 13.2.10.12, “Restrictions on Subqueries”
Section 8.2.1.18, “Row Constructor Expression Optimization”
Section 3.6.7, “Searching on Two Keys”
Section 3.3.4.2, “Selecting Particular Rows”
Section 12.8.1, “String Comparison Functions and Operators”
Section 20.5.2, “View Processing Algorithms”

B

[index top]

BETWEEN
Section 12.4.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.2, “Range Optimization”
Section 12.3, “Type Conversion in Expression Evaluation”

BINARY
Section 12.11, “Cast Functions and Operators”
Section 8.4.2.2, “Optimizing for Character and String Types”
Section 3.3.4.7, “Pattern Matching”
Section 3.3.4.4, “Sorting Rows”

C

[index top]

CASE
Section 13.6.5.1, “CASE Statement”
Section 9.5, “Expressions”
Section 12.5, “Flow Control Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”

CASE value WHEN compare_value THEN result END
Section 12.5, “Flow Control Functions”

CASE WHEN condition THEN result END
Section 12.5, “Flow Control Functions”

CASE WHEN expr1 = expr2 THEN NULL ELSE expr1 END
Section 12.5, “Flow Control Functions”

D

[index top]

DIV
Section 12.6.1, “Arithmetic Operators”
Section 19.6, “Restrictions and Limitations on Partitioning”

3913

E

[index top]

expr BETWEEN min AND max
Section 12.4.2, “Comparison Functions and Operators”

expr IN ()
Section 12.4.2, “Comparison Functions and Operators”

expr LIKE pat
Section 12.8.1, “String Comparison Functions and Operators”

expr NOT BETWEEN min AND max
Section 12.4.2, “Comparison Functions and Operators”

expr NOT IN ()
Section 12.4.2, “Comparison Functions and Operators”

expr NOT LIKE pat
Section 12.8.1, “String Comparison Functions and Operators”

expr NOT REGEXP pat
Section 12.8.2, “Regular Expressions”

expr NOT RLIKE pat
Section 12.8.2, “Regular Expressions”

expr REGEXP pat
Section 12.8.2, “Regular Expressions”

expr RLIKE pat
Section 12.8.2, “Regular Expressions”

expr1 SOUNDS LIKE expr2
Section 12.8, “String Functions and Operators”

I

[index top]

IN()
Section 8.8.2, “EXPLAIN Output Format”
Section 12.4.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”
Section 8.2.1.18, “Row Constructor Expression Optimization”
Section 12.3, “Type Conversion in Expression Evaluation”

IS
Section 12.4.1, “Operator Precedence”

3914

IS boolean_value
Section 12.4.2, “Comparison Functions and Operators”

IS NOT boolean_value
Section 12.4.2, “Comparison Functions and Operators”

IS NOT NULL
Section 12.4.2, “Comparison Functions and Operators”
Section B.3.4.3, “Problems with NULL Values”
Section 8.2.1.2, “Range Optimization”
Section 3.3.4.6, “Working with NULL Values”

IS NULL
Section 12.4.2, “Comparison Functions and Operators”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.12, “IS NULL Optimization”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section B.3.4.3, “Problems with NULL Values”
Section 8.2.1.2, “Range Optimization”
Section 5.1.7, “Server System Variables”
Section 3.3.4.6, “Working with NULL Values”

L

[index top]

LIKE
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 12.11, “Cast Functions and Operators”
Section 10.2, “Character Sets and Collations in MySQL”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 21.9, “Extensions to SHOW Statements”
Section 13.8.3, “HELP Statement”
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 4.5.1.4, “mysql Client Server-Side Help”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 18.7.4, “NDB Cluster Replication Schema and Tables”
Section 12.4.1, “Operator Precedence”
Section 3.3.4.7, “Pattern Matching”
Section 22.4.4, “Pre-Filtering by Instrument”
Section 18.6.16, “Quick Reference: NDB Cluster SQL Statements”
Section 8.2.1.2, “Range Optimization”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 5.1.10, “Server SQL Modes”
Section 13.7.5.4, “SHOW CHARACTER SET Statement”
Section 13.7.5.5, “SHOW COLLATION Statement”
Section 13.7.5.6, “SHOW COLUMNS Statement”
Section 13.7.5.15, “SHOW DATABASES Statement”
Section 13.7.5.19, “SHOW EVENTS Statement”
Section 13.7.5.25, “SHOW OPEN TABLES Statement”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Statement”

3915

Section 13.7.5.36, “SHOW STATUS Statement”
Section 13.7.5.37, “SHOW TABLE STATUS Statement”
Section 13.7.5.38, “SHOW TABLES Statement”
Section 13.7.5.39, “SHOW TRIGGERS Statement”
Section 13.7.5.40, “SHOW VARIABLES Statement”
Section 6.2.4, “Specifying Account Names”
Section 12.8.1, “String Comparison Functions and Operators”
Section 9.1.1, “String Literals”
Section 5.1.8.3, “Structured System Variables”
Section 11.3.2, “The CHAR and VARCHAR Types”
Section 11.3.6, “The SET Type”
Section 5.1.8, “Using System Variables”

LIKE '_A%'
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”

LIKE 'pattern'
Section 8.2.1.2, “Range Optimization”
Section 13.7.5, “SHOW Statements”

LIKE ... ESCAPE
Section B.3.7, “Known Issues in MySQL”

N

[index top]

N % M
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”

N MOD M
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”

NOT
Section 12.4.3, “Logical Operators”
Section 5.1.10, “Server SQL Modes”

NOT LIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.8.1, “String Comparison Functions and Operators”

NOT REGEXP
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 3.3.4.7, “Pattern Matching”
Section 12.8.1, “String Comparison Functions and Operators”

NOT RLIKE
Section 3.3.4.7, “Pattern Matching”

3916

Section 12.8.1, “String Comparison Functions and Operators”

O

[index top]

OR
Section 9.5, “Expressions”
Section 13.7.1.4, “GRANT Statement”
Section 8.2.1.3, “Index Merge Optimization”
Section 12.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 8.2.1.2, “Range Optimization”
Section 8.2.1.18, “Row Constructor Expression Optimization”
Section 3.6.7, “Searching on Two Keys”
Section 3.3.4.2, “Selecting Particular Rows”
Section 5.1.10, “Server SQL Modes”
Section 12.8.1, “String Comparison Functions and Operators”

R

[index top]

REGEXP
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.4.1, “Operator Precedence”
Section 3.3.4.7, “Pattern Matching”
Section 12.8.2, “Regular Expressions”
Section 10.11, “Restrictions on Character Sets”

RLIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.8.2, “Regular Expressions”
Section 10.11, “Restrictions on Character Sets”

X

[index top]

XOR
Section 12.19.1, “Aggregate Function Descriptions”
Section 12.4.3, “Logical Operators”

Option Index
Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Symbols

[index top]

3917

--
Section 1.6.2.4, “'--' as the Start of a Comment”
Section 4.8.2, “replace — A String-Replacement Utility”

-#
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 5.1.6, “Server Command Options”
Section 5.8.3, “The DBUG Package”

-do-
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”

-ignore-
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”

-1
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

-?
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

3918

Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.13, “ndb_error_reporter — NDB Error-Reporting Utility”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.17, “ndb_print_file — Print NDB Disk Data File Contents”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 4.8.1, “perror — Display MySQL Error Message Information”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.6, “Server Command Options”
Section 1.2.2, “The Main Features of MySQL”
Section 4.2.2.1, “Using Options on the Command Line”

A

[index top]

-A
Section 4.5.1.1, “mysql Client Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 4.6.3.4, “Other myisamchk Options”

-a
Section 18.6.1, “Commands in the NDB Cluster Management Client”
Section 16.2.2.1, “memcached Command-Line Options”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 4.6.3.4, “Other myisamchk Options”

--abort-on-error
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”

3919

--abort-slave-event-count
Section 17.1.4.3, “Replica Server Options and Variables”

--add-drop-database
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”

--add-drop-table
Section 4.5.4, “mysqldump — A Database Backup Program”

--add-drop-trigger
Section 4.5.4, “mysqldump — A Database Backup Program”

--add-locks
Section 4.5.4, “mysqldump — A Database Backup Program”

--add-missing
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”

--addtodest
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

--all
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”

--all-databases
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 9.2.4, “Mapping of Identifiers to File Names”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 2.11.10, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 5.1.7, “Server System Variables”
Section 2.11.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”

--all-in-1
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--all-tablespaces
Section 4.5.4, “mysqldump — A Database Backup Program”

--allow-keywords
Section 4.5.4, “mysqldump — A Database Backup Program”

--allow-suspicious-udfs
Section 5.1.6, “Server Command Options”

3920

--allowold
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

--analyze
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.7, “Server System Variables”

--ansi
Section 1.6, “MySQL Standards Compliance”
Section 5.1.6, “Server Command Options”

antonio
Section 6.4.1.6, “PAM Pluggable Authentication”

--append
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--apply-slave-statements
Section 4.5.4, “mysqldump — A Database Backup Program”

--audit-log
Section 6.4.4.6, “Audit Log Reference”
Section 6.4.4.1, “Installing MySQL Enterprise Audit”

--auto-generate-sql
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-add-autoincrement
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-execute-number
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-guid-primary
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-load-type
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-secondary-indexes
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-unique-query-number
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-unique-write-number
Section 4.5.7, “mysqlslap — A Load Emulation Client”

3921

--auto-generate-sql-write-number
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--auto-inc
Section 18.5.10, “ndb_desc — Describe NDB Tables”

--auto-rehash
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”

auto-rehash
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”

--auto-repair
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--auto-vertical-output
Section 4.5.1.1, “mysql Client Options”

--autocommit
Section 5.1.7, “Server System Variables”

B

[index top]

-B
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”

-b
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.6, “Server Command Options”

--back_log
Section 2.7, “Installing MySQL on Solaris”

--backup
Section 4.6.3.3, “myisamchk Repair Options”

3922

Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

--backup-path
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Restoring to Fewer Nodes Than the Original

backup-path
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--backupid
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Restoring to Fewer Nodes Than the Original

--base64-output
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.3.1, “GTID Concepts”
Section 4.6.8.2, “mysqlbinlog Row Event Display”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

--basedir
Section 2.10.1, “Initializing the Data Directory”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 18.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.1.6, “Server Command Options”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”

basedir
Section 2.3.4.2, “Creating an Option File”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”

--batch
Section 4.5.1.3, “mysql Client Logging”
Section 4.5.1.1, “mysql Client Options”

--binary-as-hex
Section 12.19.1, “Aggregate Function Descriptions”
Section 12.11, “Cast Functions and Operators”
Section 12.14, “Encryption and Compression Functions”
Section 12.20, “Miscellaneous Functions”
Section 4.5.1.1, “mysql Client Options”
Section 12.8.1, “String Comparison Functions and Operators”
Section 12.8, “String Functions and Operators”
Section 9.1.1, “String Literals”
Section 11.3.3, “The BINARY and VARBINARY Types”
Section 10.10.8, “The Binary Character Set”

3923

Section 11.3.4, “The BLOB and TEXT Types”

--binary-mode
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”

--bind-address
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--binlog-checksum
Section 17.1.4.4, “Binary Log Options and Variables”

--binlog-do-db
Section 17.1.4.4, “Binary Log Options and Variables”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 5.4.4, “The Binary Log”

--binlog-format
Section 5.4.4.1, “Binary Logging Formats”
Section 18.7.2, “General Requirements for NDB Cluster Replication”
Section A.4, “MySQL 5.6 FAQ: Stored Procedures and Functions”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 18.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 18.2.7.6, “Unsupported or Missing Features in NDB Cluster”

--binlog-ignore-db
Section 17.1.4.4, “Binary Log Options and Variables”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 5.4.4, “The Binary Log”

--binlog-row-event-max-size
Section 17.1.4.4, “Binary Log Options and Variables”
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”

3924

Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 5.4.4.2, “Setting The Binary Log Format”

--blob-info
Section 18.5.10, “ndb_desc — Describe NDB Tables”

--block-search
Section 4.6.3.4, “Other myisamchk Options”

--bootstrap
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

--brief
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”

--builddir
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

C

[index top]

-C
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”

-c
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”

3925

Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Restoring to Fewer Nodes Than the Original

--cflags
Section 2.9.8, “Dealing with Problems Compiling MySQL”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--character-set-client-handshake
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 5.1.6, “Server Command Options”
Section 10.10.7.1, “The cp932 Character Set”

--character-set-server
Section 10.15, “Character Set Configuration”
Section 10.5, “Configuring Application Character Set and Collation”
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 10.3.2, “Server Character Set and Collation”

--character-sets-dir
Section B.3.2.16, “Can't initialize character set”
Section 10.15, “Character Set Configuration”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

3926

Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--character_set_server
Section 2.9.7, “MySQL Source-Configuration Options”

--charset
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--check-missing
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”

--check-only-changed
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--check-orphans
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”

--check-upgrade
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--checkpoint
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

--chroot
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 5.1.6, “Server Command Options”

CMAKE_BUILD_TYPE
Section 2.9.7, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 2.9.8, “Dealing with Problems Compiling MySQL”
Section 2.9.7, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS_build_type
Section 2.9.7, “MySQL Source-Configuration Options”

3927

CMAKE_C_FLAGS_RELWITHDEBINFO
Section 2.9.7, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 2.9.8, “Dealing with Problems Compiling MySQL”
Section 2.9.7, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS_build_type
Section 2.9.7, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS_RELWITHDEBINFO
Section 2.9.7, “MySQL Source-Configuration Options”

CMAKE_INSTALL_PREFIX
Section 2.9.5, “Installing MySQL Using a Development Source Tree”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.7, “Server System Variables”

CMAKE_PREFIX_PATH
Section 2.9.7, “MySQL Source-Configuration Options”

--collation-server
Section 10.15, “Character Set Configuration”
Section 10.5, “Configuring Application Character Set and Collation”
Section 10.3.2, “Server Character Set and Collation”

--collation_server
Section 2.9.7, “MySQL Source-Configuration Options”

--column-names
Section 4.5.1.1, “mysql Client Options”
Section 4.2.2.4, “Program Option Modifiers”

--column-type-info
Section 8.2.1.16, “LIMIT Query Optimization”
Section 4.5.1.1, “mysql Client Options”

--columns
Section 4.5.5, “mysqlimport — A Data Import Program”

--comments
Section 4.5.1.1, “mysql Client Options”
Section 4.5.4, “mysqldump — A Database Backup Program”

--commit
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.7, “mysqlslap — A Load Emulation Client”

3928

--comp
Section 4.2.2, “Specifying Program Options”

--compact
Section 4.5.4, “mysqldump — A Database Backup Program”

--compatible
Section 4.5.4, “mysqldump — A Database Backup Program”

COMPILATION_COMMENT
Section 5.1.7, “Server System Variables”

--complete-insert
Section 4.5.4, “mysqldump — A Database Backup Program”

--compr
Section 4.2.2, “Specifying Program Options”

--compress
Section 4.2.6, “Connection Compression Control”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 4.2.2, “Specifying Program Options”

--concurrency
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--config-cache
Section 18.4.3, “NDB Cluster Configuration Files”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--config-dir
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--config-file
Section 18.3.4, “Initial Startup of NDB Cluster”
Section 18.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 18.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--config-from-node
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

3929

--config_from_node
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--configdir
Section 18.4.3, “NDB Cluster Configuration Files”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--configinfo
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

configure
Section 2.3.3.5, “MySQL Installer Console Reference”

--connect
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--connect-delay
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--connect-expired-password
Section 4.5.1.1, “mysql Client Options”
Section 6.2.10, “Server Handling of Expired Passwords”

--connect-retries
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--connect-retry-delay
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”

3930

Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--connect-string
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--connect-timeout
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

--connection-control
Section 6.4.2.1, “Connection-Control Plugin Installation”

--connection-control-failed-login-attempts
Section 6.4.2.1, “Connection-Control Plugin Installation”

--connection-server-id
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

--connection-timeout
Section 18.5.13, “ndb_error_reporter — NDB Error-Reporting Utility”

--connections
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--console
Section 14.17.2, “Enabling InnoDB Monitors”
Section 5.4.2.1, “Error Logging on Windows”

3931

Section 18.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 14.21, “InnoDB Troubleshooting”
Resetting the Root Password: Windows Systems
Section 5.1.6, “Server Command Options”
Section 2.3.4.5, “Starting MySQL from the Windows Command Line”
Section 2.3.4.4, “Starting the Server for the First Time”

--context
Section 18.5.10, “ndb_desc — Describe NDB Tables”

--copy
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”

--core-file
Section 5.8.1.4, “Debugging mysqld under gdb”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

core-file
Section 5.8.1.3, “Using WER with PDB to create a Windows crashdump”

--core-file-size
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.1.6, “Server Command Options”

--correct-checksum
Section 4.6.3.3, “myisamchk Repair Options”

--count
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”

--create
Section 4.5.7, “mysqlslap — A Load Emulation Client”

3932

--create-old-temporals
NDB Cluster System Variables

--create-options
Section 4.5.4, “mysqldump — A Database Backup Program”

--create-schema
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--cross-bootstrap
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

--csv
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--cxxflags
Section 2.9.8, “Dealing with Problems Compiling MySQL”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

D

[index top]

-D
Section 10.13, “Adding a Character Set”
Section 18.3.1.4, “Building NDB Cluster from Source on Linux”
Section B.3.2.16, “Can't initialize character set”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 18.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 23.6.1, “Compiling Programs with libmysqld”
Section 2.9.6, “Configuring SSL Library Support”
Section 5.8.2, “Debugging a MySQL Client”
Section 2.9.4, “Installing MySQL Using a Standard Source Distribution”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Client Options”
Section 18.6.10, “MySQL Server Usage for NDB Cluster”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Chapter 19, Partitioning
Section 22.2, “Performance Schema Build Configuration”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 14.20.3, “Setting Up the InnoDB memcached Plugin”
Section 15.5, “The ARCHIVE Storage Engine”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 15.9, “The EXAMPLE Storage Engine”
Section 15.8, “The FEDERATED Storage Engine”

3933

Section 5.8.4, “Tracing mysqld Using DTrace”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”
Section 2.1.2, “Which MySQL Version and Distribution to Install”

-d
Section 2.5.8.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.21, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.7, “Server System Variables”

--daemon
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--data-file-length
Section 4.6.3.3, “myisamchk Repair Options”

--database
Section 4.5.1.1, “mysql Client Options”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”

3934

Section 18.5.26, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--databases
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 7.4.5.1, “Making a Copy of a Database”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 2.11.10, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.2, “Reloading SQL-Format Backups”

--datadir
Section 2.3.4.2, “Creating an Option File”
Section 2.10.1, “Initializing the Data Directory”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 18.6.17.3, “NDB Cluster and MySQL Security Procedures”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.6, “Server Command Options”
Section 5.7.1, “Setting Up Multiple Data Directories”
Section 5.2, “The MySQL Data Directory”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 4.2.2.2, “Using Option Files”

datadir
Section 2.3.4.2, “Creating an Option File”
Section 2.4.1, “General Notes on Installing MySQL on macOS”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 2.3.7, “Windows Platform Restrictions”

--db
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”

--debug
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

3935

Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 2.3.4.5, “Starting MySQL from the Windows Command Line”
Section 5.8.3, “The DBUG Package”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”

--debug-check
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--debug-info
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--debug-sync-timeout
Section 2.9.7, “MySQL Source-Configuration Options”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

--default-auth
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”

3936

Section 6.4.1.1, “Native Pluggable Authentication”
Section 6.4.1.2, “Old Native Pluggable Authentication”
Section 6.2.11, “Pluggable Authentication”

--default-authentication-plugin
Section 6.4.1, “Authentication Plugins”
Section 13.7.1.2, “CREATE USER Statement”
Section 6.2.11, “Pluggable Authentication”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

default-authentication-plugin
Section 6.4.1.4, “SHA-256 Pluggable Authentication”

--default-character-set
Section 6.2.1, “Account User Names and Passwords”
Section 10.15, “Character Set Configuration”
Section 10.5, “Configuring Application Character Set and Collation”
Section 10.4, “Connection Character Sets and Collations”
Section 4.5.1.5, “Executing SQL Statements from a Text File”
Section 13.2.6, “LOAD DATA Statement”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 5.1.7, “Server System Variables”

--default-storage-engine
Section 14.14, “InnoDB Startup Options and System Variables”
Section 5.1.6, “Server Command Options”
Section 14.1.5, “Turning Off InnoDB”

--default-time-zone
Section 5.1.13, “MySQL Server Time Zone Support”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

--default-tmp-storage-engine
Section 14.14, “InnoDB Startup Options and System Variables”
Section 5.1.6, “Server Command Options”
Section 14.1.5, “Turning Off InnoDB”

--default.key_buffer_size
Section 5.1.8.3, “Structured System Variables”

DEFAULT_CHARSET
Section 10.5, “Configuring Application Character Set and Collation”
Section 10.3.2, “Server Character Set and Collation”

3937

DEFAULT_COLLATION
Section 10.5, “Configuring Application Character Set and Collation”
Section 10.3.2, “Server Character Set and Collation”

--defaults-extra-file
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 5.1.6, “Server Command Options”
Section 4.2.2.2, “Using Option Files”

--defaults-file
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 14.8.1, “InnoDB Startup Configuration”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Client Options”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

3938

Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 23.6.3, “Options with the Embedded Server”
Resetting the Root Password: Unix and Unix-Like Systems
Resetting the Root Password: Windows Systems
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.6, “Server Command Options”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 5.7.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.4.7, “Starting MySQL as a Windows Service”

--defaults-group-suffix
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 4.9, “Environment Variables”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”

3939

Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 5.1.6, “Server Command Options”

--delay
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--delay-key-write
Section 8.11.5, “External Locking”

delay_key_write
Section 15.2.1, “MyISAM Startup Options”

--delayed-insert
Section 4.5.4, “mysqldump — A Database Backup Program”

--delete
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--delete-master-logs
Section 4.5.4, “mysqldump — A Database Backup Program”

--delete-orphans
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”

--delimiter
Section 4.5.1.1, “mysql Client Options”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

--demangle
Section 5.8.1.5, “Using a Stack Trace”

--des-key-file
Section 12.14, “Encryption and Compression Functions”
Section 13.7.6.3, “FLUSH Statement”
Section 5.1.6, “Server Command Options”

--descending
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

3940

--description
Section 4.6.3.4, “Other myisamchk Options”

--detach
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--diff-default
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--disable
Section 4.2.2.4, “Program Option Modifiers”

--disable-auto-rehash
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 4.5.1.1, “mysql Client Options”

--disable-indexes
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Restoring to More Nodes Than the Original

--disable-innodb
Section 14.1.5, “Turning Off InnoDB”
Section 1.3, “What Is New in MySQL 5.6”

--disable-keys
Section 4.5.4, “mysqldump — A Database Backup Program”

--disable-log-bin
Section 17.1.4.4, “Binary Log Options and Variables”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

--disable-named-commands
Section 4.5.1.1, “mysql Client Options”

--disable-plugin_name
Section 5.5.1, “Installing and Uninstalling Plugins”

--disable-ssl
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 5.1.6, “Server Command Options”

--disconnect-slave-event-count
Section 17.1.4.3, “Replica Server Options and Variables”

--disk
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

--diskscan
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”

3941

--dont-ignore-systab-0
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--drop-source
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”

--dry-scp
Section 18.5.13, “ndb_error_reporter — NDB Error-Reporting Utility”

--dryrun
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

--dump
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--dump-date
Section 4.5.4, “mysqldump — A Database Backup Program”

--dump-file
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”

--dump-slave
Section 4.5.4, “mysqldump — A Database Backup Program”

E

[index top]

-E
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.4, “mysqldump — A Database Backup Program”

-e
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 13.2.7, “LOAD XML Statement”
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

3942

Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 18.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 4.2.2.1, “Using Options on the Command Line”
Section 18.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”

--embedded
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--embedded-libs
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--enable-64bit
Section 16.2.1, “Installing memcached”

--enable-cleartext-plugin
Section 6.4.1.5, “Client-Side Cleartext Pluggable Authentication”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 6.4.1.6, “PAM Pluggable Authentication”

--enable-dtrace
Section 16.2.1, “Installing memcached”
Section 16.2.2.6, “Using memcached and DTrace”

--enable-memcache
Section 16.2.3.6, “Using MySQL and memcached with PHP”

--enable-plugin_name
Section 5.5.1, “Installing and Uninstalling Plugins”

--enable-threads
Section 16.2.1, “Installing memcached”

ENABLE_DEBUG_SYNC
Section 2.9.7, “MySQL Source-Configuration Options”

enabled
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”

ENABLED_LOCAL_INFILE
Section 2.9.7, “MySQL Source-Configuration Options”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”

--enforce-gtid-consistency
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 17.1.3.4, “Restrictions on Replication with GTIDs”

3943

--engine
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--env
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

--error-insert
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”

--event-scheduler
Section 20.4.2, “Event Scheduler Configuration”

event-scheduler
Section 20.4.2, “Event Scheduler Configuration”

--events
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 2.11.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”

--example
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--exclude-*
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-databases
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-gtids
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

--exclude-intermediate-sql-tables
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-missing-columns
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-missing-tables
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-tables
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--excludedbs
Section 18.5.26, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

3944

--excludetables
Section 18.5.26, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--execute
Section 4.5.1.3, “mysql Client Logging”
Section 4.5.1.1, “mysql Client Options”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 4.2.2.1, “Using Options on the Command Line”
Section 18.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”

--exit-info
Section 5.1.6, “Server Command Options”

--extend-check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.3, “myisamchk Repair Options”

--extended
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--extended-insert
Section 4.5.4, “mysqldump — A Database Backup Program”

--external-locking
Section 8.11.5, “External Locking”
Section 15.2.1, “MyISAM Startup Options”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 8.12.1, “System Factors”

--extra-file
Section 4.7.3, “my_print_defaults — Display Options from Option Files”

--extra-node-info
Section 18.5.10, “ndb_desc — Describe NDB Tables”

--extra-partition-info
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.6.15.4, “The ndbinfo cluster_operations Table”
Section 18.6.15.22, “The ndbinfo server_operations Table”

F

[index top]

-F
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.2, “mysql Client Commands”

3945

Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — A Load Emulation Client”

-f
Section 18.6.1, “Commands in the NDB Cluster Management Client”
Section 18.3.4, “Initial Startup of NDB Cluster”
Section 18.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.21, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 5.8.1.5, “Using a Stack Trace”

--fast
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--federated
Section 15.8, “The FEDERATED Storage Engine”

--fields
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--fields-enclosed-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--fields-escaped-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

--fields-optionally-enclosed-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”

3946

Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--fields-terminated-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--fields-xxx
Section 4.5.4, “mysqldump — A Database Backup Program”

--fix-db-names
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--fix-table-names
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--flush
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

--flush-logs
Section 7.3.1, “Establishing a Backup Policy”
Section 5.4, “MySQL Server Logs”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”

--flush-privileges
Section 4.5.4, “mysqldump — A Database Backup Program”

--flushlog
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

--force
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.7.4, “NDB Cluster Replication Schema and Tables”
Section 3.5, “Using mysql in Batch Mode”

--force-if-open
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

3947

--force-read
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

--foreground
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--format
Section 18.5.26, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--fs
Section 18.5.13, “ndb_error_reporter — NDB Error-Reporting Utility”

G

[index top]

-G
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”

-g
Section 5.8.1.1, “Compiling MySQL for Debugging”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”

--gci
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

--gci64
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

--gdb
Section 5.8.1.4, “Debugging mysqld under gdb”
Section 5.1.6, “Server Command Options”
Section 4.10, “Unix Signal Handling in MySQL”

--general-log
Section 4.2.2.1, “Using Options on the Command Line”
Section 5.1.8, “Using System Variables”

--general_log
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.4.3, “The General Query Log”
Section 4.2.2.1, “Using Options on the Command Line”
Section 5.1.8, “Using System Variables”

--general_log_file
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.1.7, “Server System Variables”
Section 5.4.3, “The General Query Log”

3948

H

[index top]

-H
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

-h
Section 1.1, “About This Manual”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.2.1, “Invoking MySQL Programs”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.17, “ndb_print_file — Print NDB Disk Data File Contents”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 5.1.6, “Server Command Options”
Section 4.2.2.1, “Using Options on the Command Line”

--header
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

--header-file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--HELP
Section 4.6.3.1, “myisamchk General Options”

--help
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”

3949

Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.13, “ndb_error_reporter — NDB Error-Reporting Utility”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.17, “ndb_print_file — Print NDB Disk Data File Contents”
Section 18.5.21, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.1, “perror — Display MySQL Error Message Information”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.6, “Server Command Options”
Section 2.10.3, “Testing the Server”
Section 1.2.2, “The Main Features of MySQL”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”
Chapter 3, Tutorial
Section 4.2.2.2, “Using Option Files”
Section 4.2.2.1, “Using Options on the Command Line”

3950

help
Section 2.3.3.5, “MySQL Installer Console Reference”

--hex
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--hex-blob
Section 4.5.4, “mysqldump — A Database Backup Program”

--hexdump
Section 4.6.8.1, “mysqlbinlog Hex Dump Format”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

--histignore
Section 4.5.1.3, “mysql Client Logging”
Section 4.5.1.1, “mysql Client Options”

--host
Section 1.1, “About This Manual”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 4.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section 5.1.7, “Server System Variables”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 5.7.4, “Using Client Programs in a Multiple-Server Environment”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 4.2.2.2, “Using Option Files”
Section 4.2.2.1, “Using Options on the Command Line”

host
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.2.2, “Using Option Files”

--hostname
Section 18.5.26, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

3951

--howto
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”

--html
Section 4.5.1.1, “mysql Client Options”

I

[index top]

-I
Section 16.2.2.1, “memcached Command-Line Options”
Section 16.2.5, “memcached FAQ”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.8.1, “perror — Display MySQL Error Message Information”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”

-i
Section 18.6.1, “Commands in the NDB Cluster Management Client”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--i-am-a-dummy
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”

--id
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--ignore
Section 4.5.5, “mysqlimport — A Data Import Program”

--ignore-db-dir
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

--ignore-lines
Section 4.5.5, “mysqlimport — A Data Import Program”

3952

--ignore-spaces
Section 4.5.1.1, “mysql Client Options”

--ignore-table
Section 4.5.4, “mysqldump — A Database Backup Program”

--in-file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--include
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--include-*
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--include-databases
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--include-gtids
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

--include-master-host-port
Section 4.5.4, “mysqldump — A Database Backup Program”

--include-tables
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--info
Section 4.8.1, “perror — Display MySQL Error Message Information”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”

--Information
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”

--information
Section 4.6.3.2, “myisamchk Check Options”

--init-command
Section 18.6.9, “Importing Data Into MySQL Cluster”
Section 4.5.1.1, “mysql Client Options”

--init-rpl-role
Section 1.3, “What Is New in MySQL 5.6”

--init_connect
Section 10.5, “Configuring Application Character Set and Collation”

--initial
Section 18.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”

3953

Section 18.6.1, “Commands in the NDB Cluster Management Client”
Section 18.4.3.5, “Defining an NDB Cluster Management Server”
Section 18.4.3.4, “Defining Computers in an NDB Cluster”
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 18.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 18.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 18.3.4, “Initial Startup of NDB Cluster”
Section 18.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 18.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 18.4.3, “NDB Cluster Configuration Files”
Section 18.6.11.3, “NDB Cluster Disk Data Storage Requirements”
Section 18.4.3.11, “NDB Cluster Shared-Memory Connections”
Section 18.4.3.9, “NDB Cluster TCP/IP Connections”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”
Section 18.4.2, “Overview of NDB Cluster Configuration Parameters, Options, and Variables”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Restoring to Fewer Nodes Than the Original
Section 18.6.4, “Summary of NDB Cluster Start Phases”

--initial-start
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--innodb
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.1.5, “Turning Off InnoDB”
Section 1.3, “What Is New in MySQL 5.6”

--innodb-adaptive-hash-index
Section 14.14, “InnoDB Startup Options and System Variables”

--innodb-file-per-table
Section 5.1.6, “Server Command Options”

innodb-file-per-table
Section 5.1.6, “Server Command Options”

--innodb-rollback-on-timeout
Section 14.21.4, “InnoDB Error Handling”
Section 14.14, “InnoDB Startup Options and System Variables”

--innodb-status-file
Section 14.17.2, “Enabling InnoDB Monitors”
Section 14.14, “InnoDB Startup Options and System Variables”

--innodb-xxx
Section 5.1.6, “Server Command Options”

3954

--innodb_file_per_table
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”

innodb_file_per_table
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”

--innodb_support_xa
Section 5.4.4, “The Binary Log”

--insert-ignore
Section 4.5.4, “mysqldump — A Database Backup Program”

--install
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 5.1.6, “Server Command Options”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.7, “Starting MySQL as a Windows Service”

install
Section 2.3.3.5, “MySQL Installer Console Reference”

--install-manual
Section 5.1.6, “Server Command Options”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.7, “Starting MySQL as a Windows Service”

INSTALL_LAYOUT
Section 2.9.7, “MySQL Source-Configuration Options”
Section 5.1.7, “Server System Variables”

INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR
Section 2.9.7, “MySQL Source-Configuration Options”
Section 5.1.7, “Server System Variables”

INSTALL_SECURE_FILE_PRIVDIR
Section 5.1.7, “Server System Variables”

--interactive
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--iterations
Section 4.5.7, “mysqlslap — A Load Emulation Client”

J

[index top]

-j
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

3955

Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

--join
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

K

[index top]

-K
Section 4.5.4, “mysqldump — A Database Backup Program”

-k
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”

--keep-my-cnf
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

--keep_files_on_create
Section 13.1.17, “CREATE TABLE Statement”

--keepold
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

--key_buffer_size
Section 5.1.6, “Server Command Options”

--keys
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”

--keys-used
Section 4.6.3.3, “myisamchk Repair Options”

L

[index top]

-L
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 2.13.3, “Problems Using the Perl DBI/DBD Interface”

-l
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

3956

Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.21, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--language
Section 5.1.6, “Server Command Options”
Section 1.3, “What Is New in MySQL 5.6”

--large-pages
Section 8.12.4.2, “Enabling Large Page Support”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

--lc-messages
Section 5.1.6, “Server Command Options”
Section 1.3, “What Is New in MySQL 5.6”

--lc-messages-dir
Section 5.1.6, “Server Command Options”
Section 1.3, “What Is New in MySQL 5.6”

--ldata
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

--ledir
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--length
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”

--libmysqld-libs
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--libs
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--libs_r
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--line-numbers
Section 4.5.1.1, “mysql Client Options”

--lines-terminated-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

3957

Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

list
Section 2.3.3.5, “MySQL Installer Console Reference”

--loadqueries
Section 18.5.26, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--local
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”

--local-infile
Section 13.2.7, “LOAD XML Statement”
Section 4.5.1.1, “mysql Client Options”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”

--local-load
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

--local-service
Section 5.1.6, “Server Command Options”
Section 2.3.4.7, “Starting MySQL as a Windows Service”

--lock
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”

--lock-all-tables
Section 4.5.4, “mysqldump — A Database Backup Program”

--lock-tables
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

--log
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 1.3, “What Is New in MySQL 5.6”

--log-bin
Section 7.3.3, “Backup Strategy Summary”
Section 17.1.4.4, “Binary Log Options and Variables”
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 17.4.5, “How to Report Replication Bugs or Problems”
Section B.3.7, “Known Issues in MySQL”
Section 18.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”
Section 13.4.1.1, “PURGE BINARY LOGS Statement”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 17.3.7, “Switching Sources During Failover”

3958

Section 5.4.4, “The Binary Log”
Section 17.4.4, “Troubleshooting Replication”
Section 17.4.3, “Upgrading a Replication Setup”
Section 7.3.2, “Using Backups for Recovery”
Section 4.2.2.1, “Using Options on the Command Line”
Section 1.3, “What Is New in MySQL 5.6”

--log-bin-index
Section 17.1.4.4, “Binary Log Options and Variables”
Section 18.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 5.4.4, “The Binary Log”

--log-bin-use-v1-row-events
Section 2.12.3, “Downgrade Notes”

--log-error
Section 5.4.2.2, “Error Logging on Unix and Unix-Like Systems”
Section 5.4.2.1, “Error Logging on Windows”
Section 5.4.2.3, “Error Logging to the System Log”
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.1.6, “Server Command Options”
Section 5.4.7, “Server Log Maintenance”
Section 2.3.4.5, “Starting MySQL from the Windows Command Line”
Section 2.3.4.4, “Starting the Server for the First Time”

--log-isam
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 5.1.6, “Server Command Options”

--log-name
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--log-raw
Section 6.1.2.3, “Passwords and Logging”
Section 5.1.6, “Server Command Options”
Section 5.4.3, “The General Query Log”

--log-short-format
Section 5.1.6, “Server Command Options”
Section 5.4.5, “The Slow Query Log”

--log-slave-updates
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 17.4.5, “How to Report Replication Bugs or Problems”
Section 17.3.7, “Switching Sources During Failover”
Section 5.4.4, “The Binary Log”

--log-slow-admin-statements
Section 5.1.6, “Server Command Options”

3959

Section 5.1.7, “Server System Variables”

--log-slow-slave-statements
Section 17.1.4.3, “Replica Server Options and Variables”

--log-tc
Section 5.1.6, “Server Command Options”

--log-tc-size
Section 5.1.6, “Server Command Options”
Section 5.1.9, “Server Status Variables”

--log-warnings
Section B.3.2.10, “Communication Errors and Aborted Connections”
Section 5.4.2.4, “Error Log Filtering”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section B.3.2.8, “MySQL server has gone away”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 5.1.6, “Server Command Options”

--log_bin
Section 4.2.2.1, “Using Options on the Command Line”

--log_output
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”

--login-path
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”

3960

Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 4.2.2.2, “Using Option Files”

--loops
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--loose
Section 4.2.2.4, “Program Option Modifiers”

--loose-opt_name
Section 4.2.2.2, “Using Option Files”

--lossy-conversions
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--low-priority
Section 4.5.5, “mysqlimport — A Data Import Program”

--low-priority-updates
Section 8.11.3, “Concurrent Inserts”
Section 13.2.5, “INSERT Statement”
Section 8.11.2, “Table Locking Issues”

--lower-case-table-names
Section 9.2.3, “Identifier Case Sensitivity”

M

[index top]

-M
Section 16.2.2.1, “memcached Command-Line Options”

-m
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 18.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.5.21, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--malloc-lib
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--master-connect-retry
Section 17.1.4.3, “Replica Server Options and Variables”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”

3961

--master-data
Section 17.1.1.5, “Creating a Data Snapshot Using mysqldump”
Section 7.3.1, “Establishing a Backup Policy”
Section 5.4, “MySQL Server Logs”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”

--master-host
Section 17.1.4.3, “Replica Server Options and Variables”

--master-info-file
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.2.2.2, “Replication Metadata Repositories”

--master-password
Section 17.1.4.3, “Replica Server Options and Variables”

--master-port
Section 17.1.4.3, “Replica Server Options and Variables”

--master-retry-count
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”

--master-ssl
Section 17.1.4.3, “Replica Server Options and Variables”

--master-ssl-ca
Section 17.1.4.3, “Replica Server Options and Variables”

--master-ssl-capath
Section 17.1.4.3, “Replica Server Options and Variables”

--master-ssl-cert
Section 17.1.4.3, “Replica Server Options and Variables”

--master-ssl-cipher
Section 17.1.4.3, “Replica Server Options and Variables”

--master-ssl-key
Section 17.1.4.3, “Replica Server Options and Variables”

--master-user
Section 17.1.4.3, “Replica Server Options and Variables”

--max
Section 4.2.2.5, “Using Options to Set Program Variables”

3962

--max-allowed-packet
Section 4.5.1.1, “mysql Client Options”
Section 4.5.4, “mysqldump — A Database Backup Program”

--max-binlog-dump-events
Section 17.1.4.4, “Binary Log Options and Variables”

--max-binlog-size
Section 17.1.4.3, “Replica Server Options and Variables”

--max-join-size
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”

--max-record-length
Section 4.6.3.3, “myisamchk Repair Options”
Section 13.7.2.5, “REPAIR TABLE Statement”

--max-relay-log-size
Section 17.1.4.3, “Replica Server Options and Variables”

--max-seeks-for-key
Section 8.2.1.19, “Avoiding Full Table Scans”
Section B.3.5, “Optimizer-Related Issues”

--max_a
Section 4.2.2.5, “Using Options to Set Program Variables”

--maximum
Section 4.2.2.4, “Program Option Modifiers”

--maximum-back_log
Section 4.2.2.4, “Program Option Modifiers”

--maximum-innodb-log-file-size
Section 5.1.8, “Using System Variables”

--maximum-max_heap_table_size
Section 4.2.2.4, “Program Option Modifiers”

--maximum-query_cache_size
Section 8.10.3.3, “Query Cache Configuration”

--maximum-var_name
Section 5.1.6, “Server Command Options”
Section 5.1.8, “Using System Variables”

--medium-check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

3963

--memlock
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 14.6.3.1, “The System Tablespace”

--method
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

modify
Section 2.3.3.5, “MySQL Installer Console Reference”

--mount
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

--my-plugin
Section 5.5.1, “Installing and Uninstalling Plugins”

--my-print-defaults
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”

--my_plugin
Section 5.5.1, “Installing and Uninstalling Plugins”

--mycnf
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--myisam-block-size
Section 8.10.2.5, “Key Cache Block Size”
Section 5.1.6, “Server Command Options”

--myisam_sort_buffer_size
Section 4.6.3.6, “myisamchk Memory Usage”

MYSQL_ALLOW_EMPTY_PASSWORD
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_DATABASE
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_LOG_CONSOLE
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_MAINTAINER_MODE
Section 2.9.8, “Dealing with Problems Compiling MySQL”

MYSQL_ONETIME_PASSWORD
Section 2.5.8.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

3964

MYSQL_PASSWORD
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_RANDOM_ROOT_PASSWORD
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_ROOT_HOST
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_ROOT_PASSWORD
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_TCP_PORT
Section 2.9.5, “Installing MySQL Using a Development Source Tree”
Section 2.9.7, “MySQL Source-Configuration Options”

MYSQL_UNIX_ADDR
Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 2.9.5, “Installing MySQL Using a Development Source Tree”
Section 2.9.7, “MySQL Source-Configuration Options”

MYSQL_USER
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

--mysqladmin
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--mysqld
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--mysqld-version
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

N

[index top]

-N
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.4, “mysqldump — A Database Backup Program”

-n
Section 18.6.1, “Commands in the NDB Cluster Management Client”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.4, “mysqldump — A Database Backup Program”

3965

Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.21, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”

--name
Section 2.5.8.1, “Basic Steps for MySQL Server Deployment with Docker”

--name-file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--named-commands
Section 4.5.1.1, “mysql Client Options”

--ndb
Section 4.8.1, “perror — Display MySQL Error Message Information”

--ndb-batch-size
MySQL Server Options for NDB Cluster
Section 18.7.5, “Preparing the NDB Cluster for Replication”

--ndb-blob-read-batch-bytes
MySQL Server Options for NDB Cluster

--ndb-blob-write-batch-bytes
MySQL Server Options for NDB Cluster
Section 18.7.5, “Preparing the NDB Cluster for Replication”

--ndb-cluster
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”

--ndb-cluster-connection-pool
MySQL Server Options for NDB Cluster

--ndb-connectstring
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
MySQL Server Options for NDB Cluster
Section 18.6.10, “MySQL Server Usage for NDB Cluster”
Section 18.6.17.2, “NDB Cluster and MySQL Privileges”
Section 18.2.1, “NDB Cluster Core Concepts”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

3966

Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 18.7.5, “Preparing the NDB Cluster for Replication”
Section 18.4.3.2, “Recommended Starting Configuration for NDB Cluster”
Restoring to Fewer Nodes Than the Original
Restoring to More Nodes Than the Original

ndb-connectstring
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--ndb-deferred-constraints
MySQL Server Options for NDB Cluster

--ndb-distribution
MySQL Server Options for NDB Cluster

--ndb-log-apply-status
MySQL Server Options for NDB Cluster
NDB Cluster System Variables

--ndb-log-empty-epochs
MySQL Server Options for NDB Cluster
Section 18.7.4, “NDB Cluster Replication Schema and Tables”

--ndb-log-empty-update
MySQL Server Options for NDB Cluster

--ndb-log-exclusive-reads
MySQL Server Options for NDB Cluster

--ndb-log-fail-terminate
MySQL Server Options for NDB Cluster
Section 18.2.4.2, “What is New in NDB Cluster 7.4”

--ndb-log-orig
MySQL Server Options for NDB Cluster
Section 18.7.4, “NDB Cluster Replication Schema and Tables”
NDB Cluster System Variables

--ndb-log-transaction-id
Section 17.1.4.4, “Binary Log Options and Variables”
MySQL Server Options for NDB Cluster
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster System Variables

3967

--ndb-log-update-as-write
Section 18.7.3, “Known Issues in NDB Cluster Replication”
MySQL Server Options for NDB Cluster
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
Section 18.7.4, “NDB Cluster Replication Schema and Tables”

--ndb-log-update-minimal
MySQL Server Options for NDB Cluster
Section 18.7.4, “NDB Cluster Replication Schema and Tables”

--ndb-log-updated-only
MySQL Server Options for NDB Cluster
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
Section 18.7.4, “NDB Cluster Replication Schema and Tables”

--ndb-mgmd-host
MySQL Server Options for NDB Cluster
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--ndb-nodegroup-map
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--ndb-nodeid
MySQL Server Options for NDB Cluster
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

3968

Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--ndb-optimization-delay
MySQL Server Options for NDB Cluster
Section 13.7.2.4, “OPTIMIZE TABLE Statement”

--ndb-optimized-node-selection
MySQL Server Options for NDB Cluster
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--ndb-transid-mysql-connection-map
MySQL Server Options for NDB Cluster
Section 21.5.2, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”

--ndb-wait-connected
MySQL Server Options for NDB Cluster

--ndb-wait-setup
MySQL Server Options for NDB Cluster

--ndbcluster
Section 18.4, “Configuration of NDB Cluster”
Section 18.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
MySQL Server Options for NDB Cluster
Section 18.6.10, “MySQL Server Usage for NDB Cluster”
Section 18.6.17.2, “NDB Cluster and MySQL Privileges”
Section 18.2.1, “NDB Cluster Core Concepts”
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 18.4.3.2, “Recommended Starting Configuration for NDB Cluster”
Section 13.7.5.17, “SHOW ENGINES Statement”
Section 21.3.7, “The INFORMATION_SCHEMA ENGINES Table”

3969

--net-buffer-length
Section 4.5.1.1, “mysql Client Options”
Section 4.5.4, “mysqldump — A Database Backup Program”

net_retry_count
Section 17.2.1.1, “Monitoring Replication Main Threads”

net_write_timeout
Section 17.2.1.1, “Monitoring Replication Main Threads”

--network
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”

--nice
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--no-auto-rehash
Section 4.5.1.1, “mysql Client Options”

--no-autocommit
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-beep
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

--no-binlog
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--no-contact
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--no-create-db
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-create-info
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-data
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-defaults
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”

3970

Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 5.1.6, “Server Command Options”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 4.2.2.2, “Using Option Files”

--no-drop
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--no-log
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--no-nodeid-checks
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--no-restore-disk-objects
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--no-set-names
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-symlinks
Section 4.6.3.3, “myisamchk Repair Options”

--no-tablespaces
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-upgrade
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

3971

--nodaemon
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--nodata
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

--nodeid
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Restoring to Fewer Nodes Than the Original
Restoring to More Nodes Than the Original

--nodes
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--noindices
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

--nostart
Section 18.6.1, “Commands in the NDB Cluster Management Client”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--not-started
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--nowait-nodes
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--number-char-cols
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--number-int-cols
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--number-of-queries
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--numeric-dump-file
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”

O

[index top]

-O
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 2.9.7, “MySQL Source-Configuration Options”

3972

-o
Section 23.6.1, “Compiling Programs with libmysqld”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 8.12.2, “Optimizing Disk I/O”

--offset
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

--old-style-user-limits
Section 5.1.6, “Server Command Options”
Section 6.2.13, “Setting Account Resource Limits”

--old_server
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

ON
Section 3.3.4.9, “Using More Than one Table”

--one-database
Section 4.5.1.1, “mysql Client Options”

--one-thread
Section 1.3, “What Is New in MySQL 5.6”

--only-print
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--open-files-limit
Section B.3.2.17, “File Not Found and Similar Errors”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.1.7, “Server System Variables”

--opt
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”

--opt_name
Section 4.2.2.2, “Using Option Files”

--optimize
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--order
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

3973

--order-by-primary
Section 4.5.4, “mysqldump — A Database Backup Program”

--out-dir
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--out-file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

P

[index top]

-P
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.2.1, “Invoking MySQL Programs”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 5.1.6, “Server Command Options”

-p
Section 6.2.1, “Account User Names and Passwords”
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 2.12, “Downgrading MySQL”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.2.1, “Invoking MySQL Programs”
Section 19.2.5, “KEY Partitioning”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”

3974

Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.21, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section B.3.2.5, “Password Fails When Entered Interactively”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 2.3.4.7, “Starting MySQL as a Windows Service”
Section 2.3.4.5, “Starting MySQL from the Windows Command Line”
Section 2.3.4.8, “Testing The MySQL Installation”
Section 2.10.3, “Testing the Server”
Section 18.6.15.4, “The ndbinfo cluster_operations Table”
Section 18.6.15.22, “The ndbinfo server_operations Table”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 2.11, “Upgrading MySQL”
Section 2.11.8, “Upgrading MySQL on Windows”
Section 4.2.2.1, “Using Options on the Command Line”
Section 2.3.6, “Windows Postinstallation Procedures”

--pager
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”

--parallel-recover
Section 4.6.3.3, “myisamchk Repair Options”

--parallelism
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

parallelism
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

--parsable
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”

--partition
Section 5.1.6, “Server Command Options”

--password
Section 6.2.1, “Account User Names and Passwords”

3975

Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 7.3, “Example Backup and Recovery Strategy”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.26, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”
Section B.3.2.5, “Password Fails When Entered Interactively”
Section 6.4.1.9, “Test Pluggable Authentication”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 4.2.2.1, “Using Options on the Command Line”

password
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.2.2, “Using Option Files”

--performance-schema-consumer-consumer_name
Section 22.14, “Performance Schema Command Options”

--performance-schema-consumer-events-stages-current
Section 22.14, “Performance Schema Command Options”

--performance-schema-consumer-events-stages-history
Section 22.14, “Performance Schema Command Options”

--performance-schema-consumer-events-stages-history-long
Section 22.14, “Performance Schema Command Options”

--performance-schema-consumer-events-statements-current
Section 22.14, “Performance Schema Command Options”

--performance-schema-consumer-events-statements-history
Section 22.14, “Performance Schema Command Options”

--performance-schema-consumer-events-statements-history-long
Section 22.14, “Performance Schema Command Options”

3976

--performance-schema-consumer-events-waits-current
Section 22.14, “Performance Schema Command Options”

--performance-schema-consumer-events-waits-history
Section 22.14, “Performance Schema Command Options”

--performance-schema-consumer-events-waits-history-long
Section 22.14, “Performance Schema Command Options”

--performance-schema-consumer-global-instrumentation
Section 22.14, “Performance Schema Command Options”

--performance-schema-consumer-statements-digest
Section 22.14, “Performance Schema Command Options”

--performance-schema-consumer-thread-instrumentation
Section 22.14, “Performance Schema Command Options”

--performance-schema-instrument
Section 22.14, “Performance Schema Command Options”
Section 22.3, “Performance Schema Startup Configuration”

--performance-schema-xxx
Section 5.1.6, “Server Command Options”

--performance_schema_max_mutex_classes
Section 22.7, “Performance Schema Status Monitoring”

--performance_schema_max_mutex_instances
Section 22.7, “Performance Schema Status Monitoring”

--pid-file
Section 17.1.4.4, “Binary Log Options and Variables”
Section 5.4.2.1, “Error Logging on Windows”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.1.6, “Server Command Options”
Section 5.4.4, “The Binary Log”

pid-file
Section 4.3.3, “mysql.server — MySQL Server Startup Script”

--pipe
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”

3977

Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 2.3.4.8, “Testing The MySQL Installation”

--plan
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”

--plugin
Section 5.1.6, “Server Command Options”

--plugin-dir
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 6.2.11, “Pluggable Authentication”

--plugin-ini
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”

--plugin-innodb-file-per-table
Section 5.1.6, “Server Command Options”

--plugin-load
Section 6.4.4.6, “Audit Log Reference”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 5.1.6, “Server Command Options”

--plugin-load-add
Section 6.4.4.6, “Audit Log Reference”
Section 6.4.2.1, “Connection-Control Plugin Installation”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 6.4.4.1, “Installing MySQL Enterprise Audit”
Section 6.4.1.6, “PAM Pluggable Authentication”
Section 6.4.3.1, “Password Validation Plugin Installation”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 5.1.6, “Server Command Options”
Section 6.4.1.8, “Socket Peer-Credential Pluggable Authentication”
Section 6.4.1.9, “Test Pluggable Authentication”
Section 5.5.3.2, “Thread Pool Installation”

3978

Section 6.4.1.7, “Windows Pluggable Authentication”

--plugin-sql-mode
Section 5.1.6, “Server Command Options”

--plugin-xxx
Section 5.1.6, “Server Command Options”

--plugin_dir
Section 2.9.7, “MySQL Source-Configuration Options”

--plugin_name
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”

--plugindir
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--port
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Client Options”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 5.7.4, “Using Client Programs in a Multiple-Server Environment”

port
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.2.2, “Using Option Files”

--port-open-timeout
Section 5.1.6, “Server Command Options”

3979

--post-query
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--post-system
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--pre-query
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--pre-system
Section 4.5.7, “mysqlslap — A Load Emulation Client”

PREFIX
Section 18.3.1.4, “Building NDB Cluster from Source on Linux”

--prefix
Section 16.2.1, “Installing memcached”

--preserve-trailing-spaces
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--preview
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”

--print
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--print-data
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--print-defaults
Section 4.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

3980

Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 5.1.6, “Server Command Options”
Section 2.11.9, “Upgrade Troubleshooting”

--print-full-config
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--print-log
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--print-meta
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--print_*
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--progress-frequency
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--promote-attributes
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--prompt
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”

--protocol
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.2.5, “Connection Transport Protocols”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 2.3.4.4, “Starting the Server for the First Time”
Section 2.3.4.8, “Testing The MySQL Installation”
Section 1.2.2, “The Main Features of MySQL”
Section 5.7.4, “Using Client Programs in a Multiple-Server Environment”

3981

Q

[index top]

-Q
Section 4.5.4, “mysqldump — A Database Backup Program”

-q
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.17, “ndb_print_file — Print NDB Disk Data File Contents”

--query
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--query-all
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--query-cache-size
Section 8.11.5, “External Locking”

--quick
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1, “mysql — The MySQL Command-Line Client”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section B.3.2.7, “Out of memory”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 4.2.2.2, “Using Option Files”

--quiet
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

--quote-names
Section 4.5.4, “mysqldump — A Database Backup Program”

R

[index top]

-R
Section 16.2.2.1, “memcached Command-Line Options”

3982

Section 16.2.4.1, “memcached General Statistics”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.3.4, “Other myisamchk Options”
Section 6.2.2, “Privileges Provided by MySQL”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”

-r
Section 7.6.3, “How to Repair MyISAM Tables”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 5.1.6, “Server Command Options”

--random-passwords
Section 2.10.1, “Initializing the Data Directory”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 1.3, “What Is New in MySQL 5.6”

--raw
Section 4.5.1.1, “mysql Client Options”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 1.3, “What Is New in MySQL 5.6”

--read-from-remote-master
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”

--read-from-remote-server
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.2.2, “Privileges Provided by MySQL”
Section 4.6.8.4, “Specifying the mysqlbinlog Server ID”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 1.3, “What Is New in MySQL 5.6”

3983

--read-only
Section 4.6.3.2, “myisamchk Check Options”

--real_table_name
Section 18.5.26, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--rebuild-indexes
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--reconnect
Section 4.5.1.1, “mysql Client Options”

--record_log_pos
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

--recover
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--regexp
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

--relative
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

--relay-log-purge
Section 17.1.4.3, “Replica Server Options and Variables”

--relay-log-recovery
Section 17.2.2, “Relay Log and Replication Metadata Repositories”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.2.2.2, “Replication Metadata Repositories”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 5.1.15, “The Server Shutdown Process”

--relay-log-space-limit
Section 17.1.4.3, “Replica Server Options and Variables”

--relnotes
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”

--reload
Section 18.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.3.4, “Initial Startup of NDB Cluster”
Section 18.3.2.3, “Initial Startup of NDB Cluster on Windows”

3984

Section 18.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 18.4.3, “NDB Cluster Configuration Files”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”

--remove
Section 18.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 2.3.3.5, “MySQL Installer Console Reference”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 5.1.6, “Server Command Options”
Section 5.7.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.7, “Starting MySQL as a Windows Service”

remove
Section 2.3.3.5, “MySQL Installer Console Reference”

--remove{
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--repair
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--replace
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

--replicate-*
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 17.1.4.3, “Replica Server Options and Variables”

--replicate-*-db
Section 17.1.4.3, “Replica Server Options and Variables”
Section 20.8, “Restrictions on Stored Programs”

--replicate-do-*
Section 18.7.3, “Known Issues in NDB Cluster Replication”

--replicate-do-db
Section 17.1.4.4, “Binary Log Options and Variables”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.3.5, “Replicating Different Databases to Different Replicas”
Section 17.4.1.25, “Replication and Reserved Words”
Section 17.4.1.29, “Replication and Temporary Tables”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 5.4.4, “The Binary Log”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

3985

--replicate-do-table
Section 17.2.3.2, “Evaluation of Table-Level Replication Options”
Section 17.2.3.3, “Interactions Between Replication Filtering Options”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.25, “Replication and Reserved Words”
Section 17.4.1.15, “Replication and System Functions”
Section 17.4.1.29, “Replication and Temporary Tables”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

--replicate-ignore-*
Section 18.7.3, “Known Issues in NDB Cluster Replication”

--replicate-ignore-db
Section 17.1.4.4, “Binary Log Options and Variables”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 17.2.3.3, “Interactions Between Replication Filtering Options”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.25, “Replication and Reserved Words”
Section 17.4.1.15, “Replication and System Functions”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 5.4.4, “The Binary Log”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

--replicate-ignore-table
Section 17.2.3.2, “Evaluation of Table-Level Replication Options”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.25, “Replication and Reserved Words”
Section 17.4.1.29, “Replication and Temporary Tables”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

--replicate-rewrite-db
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

--replicate-same-server-id
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.1.4, “Replication and Binary Logging Options and Variables”

--replicate-wild-do-table
Section 17.2.3.2, “Evaluation of Table-Level Replication Options”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”

3986

Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.3.5, “Replicating Different Databases to Different Replicas”
Section 17.4.1.29, “Replication and Temporary Tables”
Section 20.8, “Restrictions on Stored Programs”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”

--replicate-wild-ignore-table
Section 17.2.3.2, “Evaluation of Table-Level Replication Options”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section A.14, “MySQL 5.6 FAQ: Replication”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.29, “Replication and Temporary Tables”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”

replication-ignore-table
Section 17.4.1.36, “Replication and Views”

--report-host
Section 17.1.5.1, “Checking Replication Status”
Section 13.7.5.34, “SHOW SLAVE HOSTS Statement”

--report-password
Section 17.1.4.2, “Replication Source Options and Variables”
Section 13.7.5.34, “SHOW SLAVE HOSTS Statement”

--report-port
Section 13.7.5.34, “SHOW SLAVE HOSTS Statement”

--report-user
Section 17.1.4.2, “Replication Source Options and Variables”
Section 13.7.5.34, “SHOW SLAVE HOSTS Statement”

--resetmaster
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

--resetslave
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

--restore-data
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Restoring an NDB backup to a previous version of NDB Cluster
Restoring to Fewer Nodes Than the Original

--restore-epoch
Section 18.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”

--restore-meta
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Restoring an NDB backup to a later version of NDB Cluster

3987

Restoring to More Nodes Than the Original

--restore-privilege-tables
Section 18.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--result-file
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”

--retries
Section 18.5.10, “ndb_desc — Describe NDB Tables”

--rewrite-database
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--rhost
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”

--rollback
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”

--routines
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 2.11.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”

--rowid
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

--rows
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--rpl-recovery-rank
Section 1.3, “What Is New in MySQL 5.6”

--rpm
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

S

[index top]

-S
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.2.1, “Invoking MySQL Programs”

3988

Section 7.6.4, “MyISAM Table Optimization”
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 4.6.3.4, “Other myisamchk Options”

-s
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 4.8.1, “perror — Display MySQL Error Message Information”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”

--safe-mode
Section 1.3, “What Is New in MySQL 5.6”

--safe-recover
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--safe-updates
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”

3989

Section 5.1.7, “Server System Variables”

--safe-user-create
Section 5.1.6, “Server Command Options”

--savequeries
Section 18.5.26, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--secure-auth
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.4.1.3, “Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 6.1.2.4, “Password Hashing in MySQL”

--select-limit
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”

--server-id
Section 18.7.2, “General Requirements for NDB Cluster Replication”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 13.7.5.34, “SHOW SLAVE HOSTS Statement”

--server-id-bits
MySQL Server Options for NDB Cluster
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
NDB Cluster System Variables

--server-public-key-path
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.5.1.1, “mysql Client Options”
Section 6.4.1.4, “SHA-256 Pluggable Authentication”

service-startup-timeout
Section 4.3.3, “mysql.server — MySQL Server Startup Script”

--set
Section 2.3.3.5, “MySQL Installer Console Reference”

set
Section 2.3.3.5, “MySQL Installer Console Reference”

--set-auto-increment
Section 4.6.3.4, “Other myisamchk Options”

3990

--set-charset
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”

--set-collation
Section 4.6.3.3, “myisamchk Repair Options”

--set-gtid-purged
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”

--shared-memory-base-name
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.7.4, “Using Client Programs in a Multiple-Server Environment”

--short-form
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

--show
Section 4.7.3, “my_print_defaults — Display Options from Option Files”

--show-slave-auth-info
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.1.4.2, “Replication Source Options and Variables”
Section 13.7.5.34, “SHOW SLAVE HOSTS Statement”

--show-table-type
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”

--show-temp-status
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”

--show-warnings
Section 4.5.1.1, “mysql Client Options”

--shutdown-timeout
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

--sigint-ignore
Section 4.5.1.1, “mysql Client Options”

3991

Section 4.10, “Unix Signal Handling in MySQL”

--silent
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 4.8.1, “perror — Display MySQL Error Message Information”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”

--single-transaction
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 14.18.1, “InnoDB Backup”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 14.8.10, “Purge Configuration”

--single-user
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--skip
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.2.2.4, “Program Option Modifiers”
Section 5.1.6, “Server Command Options”

--skip-add-drop-table
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-add-locks
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-auto-rehash
Section 4.5.1.1, “mysql Client Options”
Section 14.21.3, “Troubleshooting InnoDB Data Dictionary Operations”

--skip-broken-objects
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--skip-character-set-client-handshake
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 10.10.7.1, “The cp932 Character Set”

--skip-column-names
Section 4.5.1.1, “mysql Client Options”

3992

--skip-comments
Section 4.5.1.1, “mysql Client Options”
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-config-cache
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--skip-config-file
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--skip-database
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--skip-disable-keys
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-dump-date
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-engine_name
Section 13.7.5.17, “SHOW ENGINES Statement”
Section 21.3.7, “The INFORMATION_SCHEMA ENGINES Table”

--skip-events
Section 7.4.5.3, “Dumping Stored Programs”

--skip-extended-insert
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-external-locking
Section 8.11.5, “External Locking”
Section 8.14.3, “General Thread States”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 8.12.1, “System Factors”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

--skip-federated
Section 17.3.3, “Using Replication with Different Source and Replica Storage Engines”

--skip-grant-tables
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 18.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 20.4.2, “Event Scheduler Configuration”
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.6.1, “Installing and Uninstalling Loadable Functions”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.2.11, “Pluggable Authentication”
Resetting the Root Password: Generic Instructions

3993

Section 5.1.6, “Server Command Options”
Section 5.3, “The mysql System Database”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 4.2.2.1, “Using Options on the Command Line”
Section 6.2.8, “When Privilege Changes Take Effect”

--skip-gtids
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”

--skip-host-cache
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”

--skip-innodb
Section 14.1.3, “Checking InnoDB Availability”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section A.14, “MySQL 5.6 FAQ: Replication”
Section 5.1.6, “Server Command Options”
Section 14.1.5, “Turning Off InnoDB”
Section 1.3, “What Is New in MySQL 5.6”

--skip-innodb-adaptive-hash-index
Section 14.14, “InnoDB Startup Options and System Variables”

--skip-innodb-checksums
Section 14.14, “InnoDB Startup Options and System Variables”

--skip-innodb-doublewrite
Section 14.14, “InnoDB Startup Options and System Variables”

--skip-kill-mysqld
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--skip-line-numbers
Section 4.5.1.1, “mysql Client Options”

--skip-lock-tables
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-log-bin
Section 17.1.4.4, “Binary Log Options and Variables”

--skip-name-resolve
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

--skip-named-commands
Section 4.5.1.1, “mysql Client Options”

3994

--skip-ndb-optimized-node-selection
MySQL Server Options for NDB Cluster
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--skip-ndbcluster
MySQL Server Options for NDB Cluster
Section 18.4.2.5, “NDB Cluster mysqld Option and Variable Reference”

--skip-new
Section 5.8.1, “Debugging a MySQL Server”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

--skip-nodegroup
Section 18.5.13, “ndb_error_reporter — NDB Error-Reporting Utility”

--skip-opt
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-pager
Section 4.5.1.1, “mysql Client Options”

--skip-partition
Chapter 19, Partitioning
Section 5.1.6, “Server Command Options”

--skip-password
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

3995

Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--skip-plugin-innodb-file-per-table
Section 5.1.6, “Server Command Options”

--skip-plugin_name
Section 5.5.1, “Installing and Uninstalling Plugins”

--skip-quick
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-quote-names
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-reconnect
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”

--skip-routines
Section 7.4.5.3, “Dumping Stored Programs”

--skip-safe-updates
Section 4.5.1.1, “mysql Client Options”

--skip-secure-auth
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--skip-set-charset
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-show-database
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.6, “Server Command Options”
Section 13.7.5.15, “SHOW DATABASES Statement”
Section 1.7.5, “Supporters of MySQL”

--skip-slave-start
Section 17.1.1.9, “Introducing Additional Replicas to an Existing Replication Environment”
Section 18.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.7.5, “Preparing the NDB Cluster for Replication”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 17.1.1.8, “Setting Up Replication with Existing Data”

3996

Section 13.4.2.5, “START SLAVE Statement”
Section 18.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 17.4.4, “Troubleshooting Replication”
Section 17.4.3, “Upgrading a Replication Setup”

--skip-ssl
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 5.1.6, “Server Command Options”

--skip-stack-trace
Section 5.8.1.4, “Debugging mysqld under gdb”
Section 5.1.6, “Server Command Options”

--skip-super-large-pages
Section 8.12.4.2, “Enabling Large Page Support”
Section 5.1.6, “Server Command Options”

--skip-symbolic-links
Section 13.1.17, “CREATE TABLE Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

--skip-syslog
Section 5.4.2.3, “Error Logging to the System Log”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--skip-table-check
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--skip-thread-priority
Section 1.3, “What Is New in MySQL 5.6”

--skip-triggers
Section 7.4.5.3, “Dumping Stored Programs”
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-tz-utc
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-unknown-objects
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

--skip-use-db
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”

--skip-version-check
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”

3997

--skip-warn
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”

--skip-write-binlog
Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--skip_grant_tables
Section 4.2.2.1, “Using Options on the Command Line”

--slave-skip-errors
Section 18.7.8, “Implementing Failover with NDB Cluster Replication”
Section 17.4.1.27, “Replica Errors During Replication”
Section 17.1.4.3, “Replica Server Options and Variables”

--slave-sql-verify-checksum
Section 17.1.4.4, “Binary Log Options and Variables”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 1.3, “What Is New in MySQL 5.6”

--sleep
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

--slow-start-timeout
Section 5.1.6, “Server Command Options”

--slow_query_log
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.4.5, “The Slow Query Log”

--slow_query_log_file
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.4.5, “The Slow Query Log”

--socket
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 2.5.8.3, “Deploying MySQL on Windows and Other Non-Linux Platforms with Docker”
Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Client Options”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

3998

Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.26, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.7.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.6, “Server Command Options”
Section 2.3.4.8, “Testing The MySQL Installation”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 5.7.4, “Using Client Programs in a Multiple-Server Environment”

socket
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.2.2, “Using Option Files”

--sort-index
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.4, “Other myisamchk Options”

--sort-records
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.4, “Other myisamchk Options”

--sort-recover
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--spassword
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”

--sporadic-binlog-dump-fail
Section 17.1.4.4, “Binary Log Options and Variables”

--sql-mode
Chapter 12, Functions and Operators
Section A.3, “MySQL 5.6 FAQ: Server SQL Mode”
Section 5.1.6, “Server Command Options”
Section 5.1.10, “Server SQL Modes”

sql-mode
Section 5.1.10, “Server SQL Modes”

--srcdir
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

--ssl
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”

3999

Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

--ssl*
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”

--ssl-ca
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.3.1, “Creating SSL Certificates and Keys Using openssl”
Section 13.7.1.4, “GRANT Statement”
Section 5.1.6, “Server Command Options”
Section 6.3.4, “SSL Library-Dependent Capabilities”

--ssl-capath
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 13.7.1.4, “GRANT Statement”
Section 5.1.6, “Server Command Options”
Section 17.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 6.3.4, “SSL Library-Dependent Capabilities”

--ssl-cert
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.3.1, “Creating SSL Certificates and Keys Using openssl”
Section 13.7.1.4, “GRANT Statement”

--ssl-cipher
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 6.3.4, “SSL Library-Dependent Capabilities”

--ssl-crl
Section 4.2.3, “Command Options for Connecting to the Server”

4000

Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.4, “SSL Library-Dependent Capabilities”

--ssl-crlpath
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.4, “SSL Library-Dependent Capabilities”

--ssl-key
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.3.1, “Creating SSL Certificates and Keys Using openssl”
Section 13.7.1.4, “GRANT Statement”

--ssl-mode
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 17.3.8, “Setting Up Replication to Use Encrypted Connections”

--ssl-verify-server-cert
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”

--ssl-xxx
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 2.9.6, “Configuring SSL Library Support”
Section 17.3.8, “Setting Up Replication to Use Encrypted Connections”

--staging-tries
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”

--standalone
Section 5.8.1.2, “Creating Trace Files”
Section 5.1.6, “Server Command Options”
Section 2.3.4.5, “Starting MySQL from the Windows Command Line”

--start-datetime
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.1, “Point-in-Time Recovery Using Event Times”

--start-position
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event Positions”

--start_row
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”

--state-file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

4001

--stats
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”

--status
Section 2.3.3.5, “MySQL Installer Console Reference”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”

status
Section 2.3.3.5, “MySQL Installer Console Reference”

--stop-datetime
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.1, “Point-in-Time Recovery Using Event Times”

--stop-never
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.8.4, “Specifying the mysqlbinlog Server ID”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”

--stop-never-slave-server-id
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.8.4, “Specifying the mysqlbinlog Server ID”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”

--stop-position
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event Positions”

--suffix
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

--super-large-pages
Section 8.12.4.2, “Enabling Large Page Support”
Section 5.1.6, “Server Command Options”

--superuser
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”

--symbolic-links
Section 5.1.6, “Server Command Options”

--symbols-file
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”

--sys-*
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-check
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

4002

--sys-create
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-create-if-not-exist
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-create-if-not-valid
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-drop
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-skip-events
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-skip-tables
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

SYSCONFDIR
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.2.2.2, “Using Option Files”

--sysdate-is-now
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 12.7, “Date and Time Functions”
Section 17.4.1.15, “Replication and System Functions”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

--syslog
Section 5.4.2.3, “Error Logging to the System Log”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--syslog-tag
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--system
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

T

[index top]

-T
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”

4003

Section 5.1.6, “Server Command Options”

-t
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.21, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 5.1.6, “Server Command Options”

--tab
Section 7.1, “Backup and Recovery Types”
Section 7.2, “Database Backup Methods”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 7.4, “Using mysqldump for Backups”

--table
Section 4.5.1.1, “mysql Client Options”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 18.5.10, “ndb_desc — Describe NDB Tables”

--table-cache
Section 1.3, “What Is New in MySQL 5.6”

--tables
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”

--tc-heuristic-recover
Section 5.1.6, “Server Command Options”

--tcp-ip
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--tee
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”

4004

--temp-pool
Section 5.1.6, “Server Command Options”

--test
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

Text
Section 1.1, “About This Manual”

--thread_cache_size
Section 5.8.1.4, “Debugging mysqld under gdb”

--thread_handling
Section 1.3, “What Is New in MySQL 5.6”

--timeout
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--timezone
Section 5.1.13, “MySQL Server Time Zone Support”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.1.7, “Server System Variables”
Section B.3.3.7, “Time Zone Problems”

--tls-version
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”

--tmpdir
Section B.3.2.12, “Can't create/write to file”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.1.6, “Server Command Options”
Section 2.3.4.7, “Starting MySQL as a Windows Service”
Section B.3.3.5, “Where MySQL Stores Temporary Files”

tmpdir
Section 2.3, “Installing MySQL on Microsoft Windows”

--to-last-log
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.8.4, “Specifying the mysqlbinlog Server ID”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”

--transaction-isolation
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Statement”

4005

Section 14.7.2.1, “Transaction Isolation Levels”

--transaction-read-only
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Statement”

--transactional
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”

--triggers
Section 7.4.5.3, “Dumping Stored Programs”
Section 4.5.4, “mysqldump — A Database Backup Program”

--try-reconnect
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”

--tupscan
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

--type
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”

--tz-utc
Section 4.5.4, “mysqldump — A Database Backup Program”

U

[index top]

-U
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”

-u
Section 6.2.1, “Account User Names and Passwords”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 2.12, “Downgrading MySQL”
Section 4.2.1, “Invoking MySQL Programs”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

4006

Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 5.1.6, “Server Command Options”
Section 2.3.4.8, “Testing The MySQL Installation”
Section 2.10.3, “Testing the Server”
Section 2.11, “Upgrading MySQL”
Section 2.3.6, “Windows Postinstallation Procedures”

--unbuffered
Section 4.5.1.1, “mysql Client Options”

--unpack
Section 15.2.3, “MyISAM Table Storage Formats”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

--unqualified
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”

--update
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”

update
Section 2.3.3.5, “MySQL Installer Console Reference”

--update-state
Section 7.6.3, “How to Repair MyISAM Tables”
Section 4.6.3.2, “myisamchk Check Options”
Section 15.2, “The MyISAM Storage Engine”

--upgrade
Section 2.3.3.5, “MySQL Installer Console Reference”
Section 2.3.3.4, “MySQL Installer Product Catalog and Dashboard”

upgrade
Section 2.3.3.5, “MySQL Installer Console Reference”

--upgrade-system-tables
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 18.7.4, “NDB Cluster Replication Schema and Tables”

--usage
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”

4007

Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--use-frm
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--use-threads
Section 4.5.5, “mysqlimport — A Data Import Program”

--useHexFormat
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

--user
Section 6.2.1, “Account User Names and Passwords”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 7.3, “Example Backup and Recovery Strategy”
Section B.3.2.17, “File Not Found and Similar Errors”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 2.10.1, “Initializing the Data Directory”
Section 4.2.1, “Invoking MySQL Programs”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.6.17.3, “NDB Cluster and MySQL Security Procedures”

4008

Section 18.5.26, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”
Section 4.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”
Resetting the Root Password: Unix and Unix-Like Systems
Section 5.1.6, “Server Command Options”
Section 6.4.1.8, “Socket Peer-Credential Pluggable Authentication”
Section 4.2.2, “Specifying Program Options”
Section 2.10.2, “Starting the Server”
Section 6.4.1.9, “Test Pluggable Authentication”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 4.2.2.2, “Using Option Files”

user
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.2.2, “Using Option Files”

V

[index top]

-V
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

4009

Section 4.8.1, “perror — Display MySQL Error Message Information”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.6, “Server Command Options”
Section 4.2.2.1, “Using Options on the Command Line”

-v
Section 17.1.4.4, “Binary Log Options and Variables”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 16.2.2.1, “memcached Command-Line Options”
Section 16.2.2.9, “memcached Logs”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8.2, “mysqlbinlog Row Event Display”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.17, “ndb_print_file — Print NDB Disk Data File Contents”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 4.8.1, “perror — Display MySQL Error Message Information”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 5.1.6, “Server Command Options”
Section 4.2.2.1, “Using Options on the Command Line”

--validate-password
Section 6.4.3.1, “Password Validation Plugin Installation”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”

--validate-user-plugins
Section 5.1.6, “Server Command Options”

--var_name
Section 14.14, “InnoDB Startup Options and System Variables”
Section 4.6.3.1, “myisamchk General Options”

4010

Section 5.1.6, “Server Command Options”

--variable
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--verbose
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.4.4, “Binary Log Options and Variables”
Section 4.5.1.5, “Executing SQL Statements from a Text File”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8.2, “mysqlbinlog Row Event Display”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 4.6.3.4, “Other myisamchk Options”
Section 4.8.1, “perror — Display MySQL Error Message Information”
Section 5.1.6, “Server Command Options”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”
Section 4.2.2.2, “Using Option Files”
Section 4.2.2.1, “Using Options on the Command Line”

--verify-binlog-checksum
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

--version
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”

4011

Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.24, “ndb_select_count — Print Row Counts for NDB Tables”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 4.8.1, “perror — Display MySQL Error Message Information”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.6, “Server Command Options”
Section 4.2.2.1, “Using Options on the Command Line”

--version-check
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”

--vertical
Section 1.5, “How to Report Bugs or Problems”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

W

[index top]

-W
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”

4012

Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 5.1.6, “Server Command Options”

-w
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--wait
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”

--wait-nodes
Section 18.5.27, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--warn
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”

--where
Section 4.5.4, “mysqldump — A Database Backup Program”

--windows
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

--with-libevent
Section 16.2.1, “Installing memcached”

WITH_CLASSPATH
Section 18.3.1.4, “Building NDB Cluster from Source on Linux”
Section 18.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”

WITH_DEBUG
Section 14.14, “InnoDB Startup Options and System Variables”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Client Options”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”

4013

Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 13.7.5.16, “SHOW ENGINE Statement”

WITH_EDITLINE
Section 2.9.7, “MySQL Source-Configuration Options”

WITH_GMOCK
Section 2.9.7, “MySQL Source-Configuration Options”

WITH_LIBEDIT
Section 2.9.7, “MySQL Source-Configuration Options”

WITH_NDB_JAVA
Section 18.3.1.4, “Building NDB Cluster from Source on Linux”
Section 18.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”

WITH_NDBCLUSTER
Section 18.3.1.4, “Building NDB Cluster from Source on Linux”
Section 18.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”
Section 2.9.7, “MySQL Source-Configuration Options”

WITH_NDBCLUSTER_STORAGE_ENGINE
Section 18.3.1.4, “Building NDB Cluster from Source on Linux”
Section 18.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”

WITH_NUMA
Section 2.9.7, “MySQL Source-Configuration Options”

WITH_PERFSCHEMA_STORAGE_ENGINE
Section 22.2, “Performance Schema Build Configuration”

WITH_SSL
Section 2.9.6, “Configuring SSL Library Support”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 2.9.2, “Source Installation Prerequisites”

WITH_ZLIB
Section 2.9.7, “MySQL Source-Configuration Options”

--write-binlog
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

4014

Section 17.1.3.4, “Restrictions on Replication with GTIDs”

X

[index top]

-X
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.4, “mysqldump — A Database Backup Program”

-x
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 18.5.10, “ndb_desc — Describe NDB Tables”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

--xml
Section 13.2.7, “LOAD XML Statement”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 12.12, “XML Functions”

Y

[index top]

-Y
Section 4.5.4, “mysqldump — A Database Backup Program”

-y
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — A Load Emulation Client”

Z

[index top]

-z
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”

Privileges Index
A | C | D | E | F | G | I | L | N | P | R | S | T | U

A

[index top]

4015

ALL
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

ALL PRIVILEGES
Section 6.2.2, “Privileges Provided by MySQL”

ALTER
Section 13.1.1, “ALTER DATABASE Statement”
Section 13.1.7, “ALTER TABLE Statement”
Section 19.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.1.32, “RENAME TABLE Statement”

ALTER ROUTINE
Section 13.1.3, “ALTER FUNCTION Statement”
Section 13.1.5, “ALTER PROCEDURE Statement”
Section 17.1.4.4, “Binary Log Options and Variables”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.26, “DROP PROCEDURE and DROP FUNCTION Statements”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.7, “Server System Variables”
Section 20.7, “Stored Program Binary Logging”
Section 20.2.2, “Stored Routines and MySQL Privileges”

C

[index top]

CREATE
Section 13.1.7, “ALTER TABLE Statement”
Section 13.1.10, “CREATE DATABASE Statement”
Section 13.1.17, “CREATE TABLE Statement”
Section 19.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.1.32, “RENAME TABLE Statement”

CREATE ROUTINE
Section 17.1.4.4, “Binary Log Options and Variables”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.7.1.4, “GRANT Statement”
Section A.4, “MySQL 5.6 FAQ: Stored Procedures and Functions”
Section 6.2.2, “Privileges Provided by MySQL”
Section 20.7, “Stored Program Binary Logging”
Section 20.2.2, “Stored Routines and MySQL Privileges”

CREATE TABLESPACE
Section 13.7.1.4, “GRANT Statement”

4016

Section 6.2.2, “Privileges Provided by MySQL”

CREATE TEMPORARY TABLES
Section 13.1.17.2, “CREATE TEMPORARY TABLE Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

CREATE USER
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 13.7.1.1, “ALTER USER Statement”
Section 6.2.9, “Assigning Account Passwords”
Section 13.7.1.2, “CREATE USER Statement”
Section 13.7.1.3, “DROP USER Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Statement”
Section 13.7.1.6, “REVOKE Statement”

CREATE VIEW
Section 13.1.9, “ALTER VIEW Statement”
Section 13.1.20, “CREATE VIEW Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 20.9, “Restrictions on Views”

D

[index top]

DELETE
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 13.1.17, “CREATE TABLE Statement”
Section 13.2.2, “DELETE Statement”
Section 13.7.3.2, “DROP FUNCTION Statement for Loadable Functions”
Section 13.7.1.3, “DROP USER Statement”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 13.7.1.4, “GRANT Statement”
Section 5.6.1, “Installing and Uninstalling Loadable Functions”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 18.6.17.2, “NDB Cluster and MySQL Privileges”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.2.8, “REPLACE Statement”
Section 15.7, “The MERGE Storage Engine”
Section 22.12.2.4, “The setup_objects Table”
Section 13.7.3.4, “UNINSTALL PLUGIN Statement”

DROP
Section 6.2, “Access Control and Account Management”
Section 13.1.7, “ALTER TABLE Statement”
Section 13.1.9, “ALTER VIEW Statement”
Section 13.1.20, “CREATE VIEW Statement”
Section 5.1.11.2, “DNS Lookups and the Host Cache”

4017

Section 13.1.21, “DROP DATABASE Statement”
Section 13.1.28, “DROP TABLE Statement”
Section 13.1.31, “DROP VIEW Statement”
Section 19.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 13.7.1.4, “GRANT Statement”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 6.5.1, “MySQL Enterprise Encryption Installation”
Section 22.11, “Performance Schema General Table Characteristics”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.1.32, “RENAME TABLE Statement”
Section 22.12.10.1, “The host_cache Table”
Section 13.1.33, “TRUNCATE TABLE Statement”

E

[index top]

EVENT
Section 13.1.2, “ALTER EVENT Statement”
Section 13.1.11, “CREATE EVENT Statement”
Section 13.1.22, “DROP EVENT Statement”
Section 20.4.1, “Event Scheduler Overview”
Section 20.4.3, “Event Syntax”
Section 13.7.1.4, “GRANT Statement”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.9, “SHOW CREATE EVENT Statement”
Section 13.7.5.19, “SHOW EVENTS Statement”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”

EXECUTE
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.26, “DROP PROCEDURE and DROP FUNCTION Statements”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.7, “Server System Variables”
Section 20.6, “Stored Object Access Control”
Section 20.2.2, “Stored Routines and MySQL Privileges”
Section 6.4.5.3, “Using MySQL Enterprise Firewall”

F

[index top]

FILE
Section 13.1.17, “CREATE TABLE Statement”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 13.2.6, “LOAD DATA Statement”
Section 13.2.7, “LOAD XML Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.5.2, “MySQL Enterprise Encryption Usage and Examples”

4018

Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 5.1.7, “Server System Variables”
Section 12.8, “String Functions and Operators”
Section 11.3.4, “The BLOB and TEXT Types”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”

G

[index top]

GRANT OPTION
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.1.6, “REVOKE Statement”
Section 21.3.6, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
Section 21.3.21, “The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table”
Section 21.3.26, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
Section 21.3.28, “The INFORMATION_SCHEMA USER_PRIVILEGES Table”

I

[index top]

INDEX
Section 13.1.7, “ALTER TABLE Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

INSERT
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 13.1.7, “ALTER TABLE Statement”
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 6.2.9, “Assigning Account Passwords”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 13.7.1.2, “CREATE USER Statement”
Section 13.1.20, “CREATE VIEW Statement”
Section 19.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 13.7.1.4, “GRANT Statement”
Section 13.2.5, “INSERT Statement”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.6.1, “Installing and Uninstalling Loadable Functions”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 6.5.1, “MySQL Enterprise Encryption Installation”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 15.11.1, “Pluggable Storage Engine Architecture”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.1.32, “RENAME TABLE Statement”
Section 13.7.2.5, “REPAIR TABLE Statement”
Section 13.2.8, “REPLACE Statement”
Section 5.1.6, “Server Command Options”

4019

Section 20.6, “Stored Object Access Control”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 22.12.2.4, “The setup_objects Table”

L

[index top]

LOCK TABLES
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.1.4, “GRANT Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”

N

[index top]

NDB_STORED_USER
Restoring an NDB backup to a previous version of NDB Cluster

P

[index top]

PROCESS
Section 8.14.1, “Accessing the Process List”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 5.1.11.1, “Connection Interfaces”
Section 14.17.2, “Enabling InnoDB Monitors”
Section 20.4.2, “Event Scheduler Configuration”
Section 13.7.1.4, “GRANT Statement”
Section 21.1, “Introduction”
Section 13.7.6.4, “KILL Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 18.6.10, “MySQL Server Usage for NDB Cluster”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.16, “SHOW ENGINE Statement”
Section 13.7.5.30, “SHOW PROCESSLIST Statement”
Section 21.4.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 21.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”
Section 21.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”
Section 21.4.5, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 21.4.7, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 21.4.6, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”
Section 21.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 21.4.9, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 21.4.10, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”

4020

Section 21.4.11, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 21.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 21.4.13, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”
Section 21.4.15, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”
Section 21.4.14, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 21.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”
Section 21.4.17, “The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table”
Section 21.4.18, “The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table”
Section 21.4.19, “The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table”
Section 21.4.20, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table”
Section 21.4.21, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table”
Section 21.4.22, “The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table”
Section 21.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 21.4.24, “The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table”
Section 21.4.25, “The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View”
Section 21.4.26, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 21.3.16, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 22.12.10.3, “The threads Table”
Section B.3.2.6, “Too many connections”

PROXY
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 6.4.1.6, “PAM Pluggable Authentication”
Section 6.2.2, “Privileges Provided by MySQL”
Section 6.2.12, “Proxy Users”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 22.12.10.1, “The host_cache Table”
Section 6.4.1.7, “Windows Pluggable Authentication”

PROXY ... WITH GRANT OPTION
Section 6.2.12, “Proxy Users”

R

[index top]

REFERENCES
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

RELOAD
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 12.14, “Encryption and Compression Functions”
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”

4021

Section 13.7.6.6, “RESET Statement”
Section 5.4.7, “Server Log Maintenance”

REPLICATION CLIENT
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.2, “SHOW BINARY LOGS Statement”
Section 13.7.5.24, “SHOW MASTER STATUS Statement”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”

REPLICATION SLAVE
Section 17.1.1.3, “Creating a User for Replication”
Section 13.7.1.4, “GRANT Statement”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.3.8, “Setting Up Replication to Use Encrypted Connections”

S

[index top]

SELECT
Section 6.2, “Access Control and Account Management”
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 13.7.2.3, “CHECKSUM TABLE Statement”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.17.3, “CREATE TABLE ... LIKE Statement”
Section 13.1.17, “CREATE TABLE Statement”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 13.1.20, “CREATE VIEW Statement”
Section 13.2.2, “DELETE Statement”
Section 13.7.6.3, “FLUSH Statement”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 13.7.1.4, “GRANT Statement”
Section 13.2.5, “INSERT Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 18.6.17.2, “NDB Cluster and MySQL Privileges”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 22.11, “Performance Schema General Table Characteristics”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.2.5, “REPAIR TABLE Statement”
Section 20.9, “Restrictions on Views”
Section 13.7.5.14, “SHOW CREATE VIEW Statement”
Section 13.7.5.22, “SHOW GRANTS Statement”
Section 20.6, “Stored Object Access Control”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 15.7, “The MERGE Storage Engine”
Section 22.12.10.3, “The threads Table”
Section 20.3.1, “Trigger Syntax and Examples”

4022

Section 13.2.11, “UPDATE Statement”

SHOW DATABASES
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.7, “Server System Variables”
Section 13.7.5.15, “SHOW DATABASES Statement”

SHOW VIEW
Section 13.8.2, “EXPLAIN Statement”
Section 13.7.1.4, “GRANT Statement”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 20.9, “Restrictions on Views”
Section 13.7.5.14, “SHOW CREATE VIEW Statement”
Section 21.3.29, “The INFORMATION_SCHEMA VIEWS Table”

SHUTDOWN
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 5.1.15, “The Server Shutdown Process”

SUPER
Section 13.7.1, “Account Management Statements”
Section 13.1.3, “ALTER FUNCTION Statement”
Section 13.1.6, “ALTER SERVER Statement”
Section 13.7.1.1, “ALTER USER Statement”
Section 13.1.9, “ALTER VIEW Statement”
Section 6.2.9, “Assigning Account Passwords”
Section 17.1.4.4, “Binary Log Options and Variables”
Section 13.7.6.1, “BINLOG Statement”
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 10.5, “Configuring Application Character Set and Collation”
Section 5.1.11.1, “Connection Interfaces”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.16, “CREATE SERVER Statement”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 13.7.1.2, “CREATE USER Statement”
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 13.1.27, “DROP SERVER Statement”
Section 13.7.1.3, “DROP USER Statement”
Section 12.14, “Encryption and Compression Functions”
Section 13.7.1.4, “GRANT Statement”
Section 17.1.1, “How to Set Up Replication”
Section 13.7.6.4, “KILL Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section A.4, “MySQL 5.6 FAQ: Stored Procedures and Functions”
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”
Section 5.1.13, “MySQL Server Time Zone Support”

4023

Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Statement”
Section 13.7.1.6, “REVOKE Statement”
Section 17.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 13.3.6, “SET TRANSACTION Statement”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 13.7.5.2, “SHOW BINARY LOGS Statement”
Section 13.7.5.22, “SHOW GRANTS Statement”
Section 13.7.5.24, “SHOW MASTER STATUS Statement”
Section 13.7.5.30, “SHOW PROCESSLIST Statement”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 13.4.2.5, “START SLAVE Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.4.2.6, “STOP SLAVE Statement”
Section 20.6, “Stored Object Access Control”
Section 20.7, “Stored Program Binary Logging”
Section 5.1.8.1, “System Variable Privileges”
Section B.3.2.6, “Too many connections”
Section 6.4.5.3, “Using MySQL Enterprise Firewall”

T

[index top]

TRIGGER
Section 13.1.19, “CREATE TRIGGER Statement”
Section 13.1.30, “DROP TRIGGER Statement”
Section 13.7.1.4, “GRANT Statement”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.13, “SHOW CREATE TRIGGER Statement”
Section 13.7.5.39, “SHOW TRIGGERS Statement”
Section 21.3.27, “The INFORMATION_SCHEMA TRIGGERS Table”

U

[index top]

UPDATE
Section 13.7.1.1, “ALTER USER Statement”
Section 6.2.9, “Assigning Account Passwords”
Section 13.1.17, “CREATE TABLE Statement”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 13.7.1.4, “GRANT Statement”
Section 13.2.5, “INSERT Statement”
Section 18.6.17.2, “NDB Cluster and MySQL Privileges”
Section 22.11, “Performance Schema General Table Characteristics”
Section 22.4, “Performance Schema Runtime Configuration”

4024

Section 22.12.2, “Performance Schema Setup Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Statement”
Section 13.7.1.6, “REVOKE Statement”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 20.6, “Stored Object Access Control”
Section 15.7, “The MERGE Storage Engine”
Section 22.12.2.4, “The setup_objects Table”
Section 20.3.1, “Trigger Syntax and Examples”
Section 13.2.11, “UPDATE Statement”

USAGE
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

SQL Modes Index
A | D | E | H | I | M | N | O | P | R | S | T

A

[index top]

ALLOW_INVALID_DATES
Section 11.2, “Date and Time Data Types”
Section 12.7, “Date and Time Functions”
Section B.3.4.2, “Problems Using DATE Columns”
Section 5.1.10, “Server SQL Modes”
Section 11.2.2, “The DATE, DATETIME, and TIMESTAMP Types”

ANSI
Section 9.2.5, “Function Name Parsing and Resolution”
Section 5.1.10, “Server SQL Modes”
Section 13.7.5.14, “SHOW CREATE VIEW Statement”
Section 21.3.29, “The INFORMATION_SCHEMA VIEWS Table”

ANSI_QUOTES
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 4.5.1.6, “mysql Client Tips”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 9.2, “Schema Object Names”
Section 5.1.10, “Server SQL Modes”
Section 9.1.1, “String Literals”

D

[index top]

DB2
Section 5.1.10, “Server SQL Modes”

4025

E

[index top]

ERROR_FOR_DIVISION_BY_ZERO
Section 12.21.3, “Expression Handling”
Section 12.21.5, “Precision Math Examples”
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.6”

H

[index top]

HIGH_NOT_PRECEDENCE
Section 9.5, “Expressions”
Section 12.4.1, “Operator Precedence”
Section 5.1.10, “Server SQL Modes”

I

[index top]

IGNORE_SPACE
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 9.2.5, “Function Name Parsing and Resolution”
Section 4.5.1.1, “mysql Client Options”
Section 5.1.10, “Server SQL Modes”

M

[index top]

MAXDB
Section 11.2.1, “Date and Time Data Type Syntax”
Section 5.1.10, “Server SQL Modes”
Section 11.2.2, “The DATE, DATETIME, and TIMESTAMP Types”

MSSQL
Section 5.1.10, “Server SQL Modes”

MYSQL323
Section 5.1.10, “Server SQL Modes”

MYSQL40
Section 5.1.10, “Server SQL Modes”

N

[index top]

4026

NO_AUTO_CREATE_USER
Section 13.7.1.4, “GRANT Statement”
Section 5.1.10, “Server SQL Modes”

NO_AUTO_VALUE_ON_ZERO
Section 13.1.17, “CREATE TABLE Statement”
Section 11.1.6, “Numeric Type Attributes”
Section 5.1.10, “Server SQL Modes”
Section 3.6.9, “Using AUTO_INCREMENT”

NO_BACKSLASH_ESCAPES
Section 12.8.2, “Regular Expressions”
Section 5.1.10, “Server SQL Modes”
Section 12.8.1, “String Comparison Functions and Operators”
Section 9.1.1, “String Literals”

NO_DIR_IN_CREATE
Section 13.1.17, “CREATE TABLE Statement”
Section 17.4.1.10, “Replication and DIRECTORY Table Options”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.10, “Server SQL Modes”
Section 19.2.6, “Subpartitioning”
Section 5.4.4, “The Binary Log”

NO_ENGINE_SUBSTITUTION
Section 13.1.7, “ALTER TABLE Statement”
Section 13.1.17, “CREATE TABLE Statement”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section A.3, “MySQL 5.6 FAQ: Server SQL Mode”
Section 5.1.6, “Server Command Options”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 15.1, “Setting the Storage Engine”
Section 5.1.2.2, “Using a Sample Default Server Configuration File”
Section 17.3.3, “Using Replication with Different Source and Replica Storage Engines”

NO_FIELD_OPTIONS
Section 5.1.10, “Server SQL Modes”

NO_KEY_OPTIONS
Section 5.1.10, “Server SQL Modes”

NO_TABLE_OPTIONS
Section 5.1.10, “Server SQL Modes”

NO_UNSIGNED_SUBTRACTION
Section 12.6.1, “Arithmetic Operators”
Section 12.11, “Cast Functions and Operators”
Section 11.1.1, “Numeric Data Type Syntax”
Section 11.1.7, “Out-of-Range and Overflow Handling”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 5.1.10, “Server SQL Modes”

4027

NO_ZERO_DATE
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.11, “Cast Functions and Operators”
Section 13.1.17, “CREATE TABLE Statement”
Section 11.2, “Date and Time Data Types”
Section 12.7, “Date and Time Functions”
Section 13.2.6, “LOAD DATA Statement”
Section B.3.4.2, “Problems Using DATE Columns”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 11.2.2, “The DATE, DATETIME, and TIMESTAMP Types”
Section 1.3, “What Is New in MySQL 5.6”

NO_ZERO_IN_DATE
Section 13.1.17, “CREATE TABLE Statement”
Section 11.2, “Date and Time Data Types”
Section 13.2.6, “LOAD DATA Statement”
Section B.3.4.2, “Problems Using DATE Columns”
Section 5.1.10, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 5.6”

O

[index top]

ONLY_FULL_GROUP_BY
Section 3.3.4.8, “Counting Rows”
Section 12.19.2, “GROUP BY Modifiers”
Section 12.19.3, “MySQL Handling of GROUP BY”
Section 5.1.10, “Server SQL Modes”

ORACLE
Section 5.1.10, “Server SQL Modes”

P

[index top]

PAD_CHAR_TO_FULL_LENGTH
Section 5.1.10, “Server SQL Modes”
Section 11.3.1, “String Data Type Syntax”
Section 11.3.2, “The CHAR and VARCHAR Types”

PIPES_AS_CONCAT
Section 9.5, “Expressions”
Section 12.4.3, “Logical Operators”
Section 12.4.1, “Operator Precedence”
Section 5.1.10, “Server SQL Modes”

POSTGRESQL
Section 5.1.10, “Server SQL Modes”

4028

R

[index top]

REAL_AS_FLOAT
Section 11.1.1, “Numeric Data Type Syntax”
Section 11.1, “Numeric Data Types”
Section 5.1.10, “Server SQL Modes”

S

[index top]

STRICT_ALL_TABLES
Section 1.6.3.3, “Constraints on Invalid Data”
Section 12.21.3, “Expression Handling”
Section A.3, “MySQL 5.6 FAQ: Server SQL Mode”
Section 5.1.10, “Server SQL Modes”
Section 17.4.3, “Upgrading a Replication Setup”
Section 1.3, “What Is New in MySQL 5.6”

STRICT_TRANS_TABLES
Section 1.6.3.3, “Constraints on Invalid Data”
Section 12.21.3, “Expression Handling”
Section A.3, “MySQL 5.6 FAQ: Server SQL Mode”
Section 5.1.10, “Server SQL Modes”
Section 17.4.3, “Upgrading a Replication Setup”
Section 5.1.2.2, “Using a Sample Default Server Configuration File”
Section 1.3, “What Is New in MySQL 5.6”

T

[index top]

TRADITIONAL
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.21.3, “Expression Handling”
Section A.3, “MySQL 5.6 FAQ: Server SQL Mode”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”

Statement/Syntax Index
A | B | C | D | E | F | G | H | I | K | L | O | P | R | S | T | U | W | X

A

[index top]

ALTER DATABASE
Section 13.1.1, “ALTER DATABASE Statement”
Section 10.5, “Configuring Application Character Set and Collation”

4029

Section 10.3.3, “Database Character Set and Collation”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 17.1.4.3, “Replica Server Options and Variables”

ALTER EVENT
Section 13.1.2, “ALTER EVENT Statement”
Section 13.1.11, “CREATE EVENT Statement”
Section 20.4.4, “Event Metadata”
Section 20.4.1, “Event Scheduler Overview”
Section 20.4.3, “Event Syntax”
Section 12.16, “Information Functions”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.16, “Replication of Invoked Features”
Section 20.8, “Restrictions on Stored Programs”
Section 13.7.5.19, “SHOW EVENTS Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.6, “Stored Object Access Control”
Section 20.7, “Stored Program Binary Logging”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 21.3.8, “The INFORMATION_SCHEMA EVENTS Table”

ALTER EVENT event_name ENABLE
Section 17.4.1.16, “Replication of Invoked Features”

ALTER FUNCTION
Section 13.1.3, “ALTER FUNCTION Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.7, “Stored Program Binary Logging”
Section 20.2.1, “Stored Routine Syntax”

ALTER LOGFILE GROUP
Section 13.1.4, “ALTER LOGFILE GROUP Statement”
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
Section 18.6.11.1, “NDB Cluster Disk Data Objects”
Section 21.5.1, “The INFORMATION_SCHEMA FILES Table”

ALTER ONLINE TABLE
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”

ALTER ONLINE TABLE ... REORGANIZE PARTITION
Section 18.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 18.6.1, “Commands in the NDB Cluster Management Client”

ALTER PROCEDURE
Section 13.1.5, “ALTER PROCEDURE Statement”

4030

Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.7, “Stored Program Binary Logging”
Section 20.2.1, “Stored Routine Syntax”

ALTER SCHEMA
Section 13.1.1, “ALTER DATABASE Statement”

ALTER SERVER
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.4.1.5, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit Commit”

ALTER TABLE
Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 13.1.7.2, “ALTER TABLE Examples”
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 13.1.7, “ALTER TABLE Statement”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 17.1.4.4, “Binary Log Options and Variables”
Section 2.11.3, “Changes in MySQL 5.6”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 10.3.5, “Column Character Set and Collation”
Section 10.7, “Column Character Set Conversion”
Section 8.3.4, “Column Indexes”
Section 14.8.11, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 14.20.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 10.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.13, “CREATE INDEX Statement”
Section 13.1.17, “CREATE TABLE Statement”
Section 3.3.2, “Creating a Table”
Section 14.6.1.1, “Creating InnoDB Tables”
Section 11.4.4, “Creating Spatial Columns”
Section 11.4.8, “Creating Spatial Indexes”
Section 14.6.1.2, “Creating Tables Externally”
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 14.12.4, “Defragmenting a Table”
Section 13.1.24, “DROP INDEX Statement”
Section 14.9.2, “Enabling Compression for a Table”
Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 19.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 8.8.2, “EXPLAIN Output Format”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.21.2, “Forcing InnoDB Recovery”
Section 1.6.3.2, “FOREIGN KEY Constraints”
Section 13.1.17.5, “FOREIGN KEY Constraints”

4031

Section 12.10, “Full-Text Search Functions”
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 14.9.5, “How Compression Works for InnoDB Tables”
Section B.3.3.4, “How MySQL Handles a Full Disk”
Section 8.10.3.1, “How the Query Cache Operates”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 12.16, “Information Functions”
Section 18.3.3, “Initial Configuration of NDB Cluster”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 14.13, “InnoDB and Online DDL”
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.11, “InnoDB Row Formats”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
Section 13.7.6.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 18.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 18.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 8.4.6, “Limits on Table Size”
Section 18.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 19.3.4, “Maintenance of Partitions”
Section 19.3.2, “Management of HASH and KEY Partitions”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 14.6.1.4, “Moving or Copying InnoDB Tables”
Section 15.2.1, “MyISAM Startup Options”
Section 15.2.3, “MyISAM Table Storage Formats”
Section 4.6.3.1, “myisamchk General Options”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 18.6.11.1, “NDB Cluster Disk Data Objects”
Section 18.3.5, “NDB Cluster Example with Tables and Data”
Section 18.7.4, “NDB Cluster Replication Schema and Tables”
NDB Cluster System Variables
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 14.13.5, “Online DDL Failure Conditions”
Section 14.13.6, “Online DDL Limitations”
Section 14.13.1, “Online DDL Operations”
Section 14.13.2, “Online DDL Performance and Concurrency”
Section 18.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 11.1.7, “Out-of-Range and Overflow Handling”
Section 19.1, “Overview of Partitioning in MySQL”
Section 14.9.1, “Overview of Table Compression”
Section 19.3, “Partition Management”
Section 19.6.4, “Partitioning and Locking”
Section 19.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”

4032

Section 19.6.2, “Partitioning Limitations Relating to Storage Engines”
Section 6.2.2, “Privileges Provided by MySQL”
Section B.3.6.1, “Problems with ALTER TABLE”
Section 19.2.3.1, “RANGE COLUMNS partitioning”
Section 19.2.1, “RANGE Partitioning”
Section 2.11.10, “Rebuilding or Repairing Tables or Indexes”
Section 13.1.32, “RENAME TABLE Statement”
Section 17.4.1.1, “Replication and AUTO_INCREMENT”
Section 17.4.1.25, “Replication and Reserved Words”
Section 17.2.2.2, “Replication Metadata Repositories”
Replication with More Columns on Source or Replica
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 20.9, “Restrictions on Views”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.6, “Server Command Options”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.1.17.7, “Setting NDB Comment Options”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 15.1, “Setting the Storage Engine”
Section 13.7.5.16, “SHOW ENGINE Statement”
Section 13.7.5.23, “SHOW INDEX Statement”
Section 13.7.5.41, “SHOW WARNINGS Statement”
Section 13.1.17.6, “Silent Column Specification Changes”
Section 14.13.4, “Simplifying DDL Statements with Online DDL”
Section 14.9.7, “SQL Compression Syntax Warnings and Errors”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 11.3.1, “String Data Type Syntax”
Section 10.3.4, “Table Character Set and Collation”
Section B.3.6.2, “TEMPORARY Table Problems”
Section 21.3.14, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 21.3.22, “The INFORMATION_SCHEMA STATISTICS Table”
Section 15.3, “The MEMORY Storage Engine”
Section 15.2, “The MyISAM Storage Engine”
Section 5.4.5, “The Slow Query Log”
Section 14.21.3, “Troubleshooting InnoDB Data Dictionary Operations”
Section 18.2.7.6, “Unsupported or Missing Features in NDB Cluster”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 17.3.3, “Using Replication with Different Source and Replica Storage Engines”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 14.10.2, “Verifying File Format Compatibility”
Section 1.3, “What Is New in MySQL 5.6”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

ALTER TABLE ... ADD FOREIGN KEY
Section 13.1.7, “ALTER TABLE Statement”

ALTER TABLE ... ADD PARTITION
Section 19.3.1, “Management of RANGE and LIST Partitions”

ALTER TABLE ... ALGORITHM=COPY
Section 13.1.7, “ALTER TABLE Statement”
Section 13.1.17.5, “FOREIGN KEY Constraints”

4033

ALTER TABLE ... ALGORITHM=DEFAULT|INPLACE|COPY
Section 18.6.12, “Online Operations with ALTER TABLE in NDB Cluster”

ALTER TABLE ... ALGORITHM=INPLACE
Section 13.1.7, “ALTER TABLE Statement”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 14.13.6, “Online DDL Limitations”

ALTER TABLE ... DISABLE KEYS
Section 13.2.6, “LOAD DATA Statement”

ALTER TABLE ... DISCARD TABLESPACE
Section 14.6.1.3, “Importing InnoDB Tables”
MySQL Glossary

ALTER TABLE ... DROP FOREIGN KEY
Section 13.1.7, “ALTER TABLE Statement”

ALTER TABLE ... DROP PARTITION
Section 17.4.1.23, “Replication and Partitioning”

ALTER TABLE ... ENABLE KEYS
Section 13.2.6, “LOAD DATA Statement”

ALTER TABLE ... ENGINE = MEMORY
Section 17.4.1.20, “Replication and MEMORY Tables”

ALTER TABLE ... ENGINE = NDB
Section 18.6.13, “Distributed Privileges Using Shared Grant Tables”

ALTER TABLE ... ENGINE=...
Section 1.3, “What Is New in MySQL 5.6”

ALTER TABLE ... ENGINE=INNODB
Section 2.11.3, “Changes in MySQL 5.6”
Section 18.7.4, “NDB Cluster Replication Schema and Tables”
Section 1.3, “What Is New in MySQL 5.6”

ALTER TABLE ... ENGINE=InnoDB
Section 17.2.2.2, “Replication Metadata Repositories”

ALTER TABLE ... EXCHANGE PARTITION
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 19.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 19.6.4, “Partitioning and Locking”
Section 1.3, “What Is New in MySQL 5.6”

ALTER TABLE ... FORCE
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 1.3, “What Is New in MySQL 5.6”

4034

ALTER TABLE ... IMPORT TABLESPACE
Section 2.11.3, “Changes in MySQL 5.6”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 14.6.1.4, “Moving or Copying InnoDB Tables”
MySQL Glossary

ALTER TABLE ... OPTIMIZE PARTITION
Section 19.3.4, “Maintenance of Partitions”
Section 19.6.2, “Partitioning Limitations Relating to Storage Engines”

ALTER TABLE ... PARTITION BY
Section 19.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”

ALTER TABLE ... PARTITION BY ...
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 19.6, “Restrictions and Limitations on Partitioning”

ALTER TABLE ... RENAME
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

ALTER TABLE ... REORGANIZE PARTITION
Section 18.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”

ALTER TABLE ... REPAIR PARTITION
Section 19.3.4, “Maintenance of Partitions”

ALTER TABLE ... TRUNCATE PARTITION
Section 19.3.4, “Maintenance of Partitions”
Section 19.3, “Partition Management”
Section 19.6.4, “Partitioning and Locking”

ALTER TABLE EXCHANGE PARTITION
Section 19.3.3, “Exchanging Partitions and Subpartitions with Tables”

ALTER TABLE mysql.ndb_apply_status ENGINE=MyISAM
Section 18.7.3, “Known Issues in NDB Cluster Replication”

ALTER TABLE t TRUNCATE PARTITION ()
Section 13.2.2, “DELETE Statement”

ALTER TABLE t3 DROP PARTITION p2
Section 5.4.6, “The DDL Log”

ALTER TABLE table_name ENGINE=InnoDB;
Section 14.1.4, “Testing and Benchmarking with InnoDB”

ALTER TABLE table_name REORGANIZE PARTITION
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”

ALTER TABLE tbl_name ENGINE=INNODB
Section 13.1.7, “ALTER TABLE Statement”
Section 14.12.4, “Defragmenting a Table”

4035

ALTER TABLE tbl_name FORCE
Section 13.1.7, “ALTER TABLE Statement”
Section 14.12.4, “Defragmenting a Table”

ALTER TABLE tbl_name TABLESPACE tablespace_name
MySQL Glossary

ALTER TABLESPACE
Section 13.1.8, “ALTER TABLESPACE Statement”
Section 13.1.18, “CREATE TABLESPACE Statement”
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
Section 18.6.11.1, “NDB Cluster Disk Data Objects”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 21.5.1, “The INFORMATION_SCHEMA FILES Table”

ALTER USER
Section 13.7.1.1, “ALTER USER Statement”
Section 6.2.3, “Grant Tables”
Section 6.4.1.3, “Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”
Section 6.2.2, “Privileges Provided by MySQL”
Section 6.2.10, “Server Handling of Expired Passwords”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 1.3, “What Is New in MySQL 5.6”

ALTER USER ... PASSWORD EXPIRE
Section 6.2.10, “Server Handling of Expired Passwords”

ALTER VIEW
Section 13.1.9, “ALTER VIEW Statement”
Section 12.16, “Information Functions”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 20.8, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.6, “Stored Object Access Control”
Section 20.5.2, “View Processing Algorithms”
Section 20.5.1, “View Syntax”

ANALYZE TABLE
Section 13.1.7, “ALTER TABLE Statement”
Section 13.7.2.1, “ANALYZE TABLE Statement”
Configuring Automatic Statistics Calculation for Persistent Optimizer Statistics
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 14.8.11, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables
Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
Section 13.1.13, “CREATE INDEX Statement”
Section 13.1.17, “CREATE TABLE Statement”
Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”

4036

Section 8.14.3, “General Thread States”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Including Delete-marked Records in Persistent Statistics Calculations
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
InnoDB Persistent Statistics Tables
InnoDB Persistent Statistics Tables Example
Section 14.14, “InnoDB Startup Options and System Variables”
Section B.3.7, “Known Issues in MySQL”
Section 19.3.4, “Maintenance of Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 4.6.3.1, “myisamchk General Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1, “Optimizing SELECT Statements”
Section 6.2.2, “Privileges Provided by MySQL”
Section 8.2.1.2, “Range Optimization”
Section 17.4.1.13, “Replication and FLUSH”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.7.5.23, “SHOW INDEX Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 21.4.25, “The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View”
Section 21.3.22, “The INFORMATION_SCHEMA STATISTICS Table”
Section 5.4.5, “The Slow Query Log”

B

[index top]

BEGIN
Section 14.7.2.2, “autocommit, Commit, and Rollback”
Section 13.6.1, “BEGIN ... END Compound Statement”
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.32, “Replication and Transactions”
Section 20.8, “Restrictions on Stored Programs”
Section 5.1.7, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.7, “Stored Program Binary Logging”

BEGIN ... END
Section 13.6.1, “BEGIN ... END Compound Statement”
Section 13.6.5.1, “CASE Statement”
Section 13.6, “Compound Statements”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 13.6.6.1, “Cursor CLOSE Statement”
Section 13.6.6.3, “Cursor FETCH Statement”
Section 13.6.7.2, “DECLARE ... HANDLER Statement”

4037

Section 13.6.3, “DECLARE Statement”
Section 20.1, “Defining Stored Programs”
Section 20.4.1, “Event Scheduler Overview”
Section 13.6.5.4, “LEAVE Statement”
Section 13.6.4.1, “Local Variable DECLARE Statement”
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section 20.8, “Restrictions on Stored Programs”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.6.2, “Statement Labels”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.3.1, “Trigger Syntax and Examples”

BINLOG
Section 13.7.6.1, “BINLOG Statement”
Section 4.6.8.2, “mysqlbinlog Row Event Display”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.2.2, “Privileges Provided by MySQL”

C

[index top]

CACHE INDEX
Section 13.7.6.2, “CACHE INDEX Statement”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 8.10.2.4, “Index Preloading”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Statement”
Section 8.10.2.2, “Multiple Key Caches”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 13.3.3, “Statements That Cause an Implicit Commit”

CALL
Section 13.2.1, “CALL Statement”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.5, “Prepared Statements”
Section 20.6, “Stored Object Access Control”
Chapter 20, Stored Objects
Section 20.7, “Stored Program Binary Logging”
Section 20.2.1, “Stored Routine Syntax”
Section 20.3.1, “Trigger Syntax and Examples”

CALL p()
Section 13.6.7.4, “RESIGNAL Statement”

CALL stored_procedure()
Section 19.6.4, “Partitioning and Locking”

CASE
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 13.6.5.1, “CASE Statement”
Section 12.5, “Flow Control Functions”
Section 13.6.5, “Flow Control Statements”

4038

CHANGE MASTER TO
Section 6.2.9, “Assigning Account Passwords”
Section 17.3.1.2, “Backing Up Raw Data from a Replica”
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 17.1.5.1, “Checking Replication Status”
Section 17.1.1.5, “Creating a Data Snapshot Using mysqldump”
Section 17.3.10, “Delayed Replication”
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 13.7.1.4, “GRANT Statement”
Section 17.1.3.1, “GTID Concepts”
Section 18.7.8, “Implementing Failover with NDB Cluster Replication”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
Section 18.7.5, “Preparing the NDB Cluster for Replication”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.1.4, “Replication and Binary Logging Options and Variables”
Section 17.4.1.26, “Replication and Source or Replica Shutdowns”
Section 17.1, “Replication Configuration”
Section 17.2.2.2, “Replication Metadata Repositories”
Section 8.14.9, “Replication Replica Connection Thread States”
Section 8.14.7, “Replication Replica I/O Thread States”
Section 8.14.8, “Replication Replica SQL Thread States”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 5.1.9, “Server Status Variables”
Section 17.1.1.10, “Setting the Source Configuration on the Replica”
Section 17.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 17.1.1.8, “Setting Up Replication with Existing Data”
Section 17.1.1.7, “Setting Up Replication with New Source and Replicas”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 13.4.2.5, “START SLAVE Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 17.3.7, “Switching Sources During Failover”
Section 14.20.6, “The InnoDB memcached Plugin and Replication”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 1.3, “What Is New in MySQL 5.6”

CHANGE REPLICATION FILTER REPLICATE_REWRITE_DB
Section 17.1.4.3, “Replica Server Options and Variables”

CHECK TABLE
Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 2.11.3, “Changes in MySQL 5.6”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 15.2.4.1, “Corrupted MyISAM Tables”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.20, “CREATE VIEW Statement”
Section 8.11.5, “External Locking”

4039

Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 14.18.2, “InnoDB Recovery”
Section 14.21, “InnoDB Troubleshooting”
Section 19.3.4, “Maintenance of Partitions”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section A.6, “MySQL 5.6 FAQ: Views”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section B.3.2.8, “MySQL server has gone away”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 15.2.4.2, “Problems from Tables Not Being Closed Properly”
Section 2.11.10, “Rebuilding or Repairing Tables or Indexes”
Section 15.4.1, “Repairing and Checking CSV Tables”
Restoring an NDB backup to a later version of NDB Cluster
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 13.6.6.5, “Restrictions on Server-Side Cursors”
Section 20.8, “Restrictions on Stored Programs”
Section 20.9, “Restrictions on Views”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 15.5, “The ARCHIVE Storage Engine”
Section 15.7, “The MERGE Storage Engine”
Section 5.4.5, “The Slow Query Log”

CHECK TABLE ... EXTENDED
Section 13.7.2.2, “CHECK TABLE Statement”

CHECK TABLE ... FOR UPGRADE
Section 2.11.3, “Changes in MySQL 5.6”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 13.7.2.5, “REPAIR TABLE Statement”

CHECK TABLE QUICK
Section 13.7.2.2, “CHECK TABLE Statement”

CHECKSUM TABLE
Section 2.11.3, “Changes in MySQL 5.6”
Section 13.7.2.3, “CHECKSUM TABLE Statement”
Section 13.1.17, “CREATE TABLE Statement”
Section 17.4.1.4, “Replication and CHECKSUM TABLE”

CHECKSUM TABLE ... QUICK
Section 13.7.2.3, “CHECKSUM TABLE Statement”

COMMIT
Section 14.7.2.2, “autocommit, Commit, and Rollback”

4040

Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 14.2, “InnoDB and the ACID Model”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 4.5.4, “mysqldump — A Database Backup Program”
NDB Cluster System Variables
Section 17.1.1.4, “Obtaining the Replication Source Binary Log Coordinates”
Section 8.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.32, “Replication and Transactions”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.7, “Stored Program Binary Logging”
Section 5.4.4, “The Binary Log”
Section 13.3, “Transactional and Locking Statements”
Section 20.3.1, “Trigger Syntax and Examples”

CREATE DATABASE
Section 7.1, “Backup and Recovery Types”
Section 10.5, “Configuring Application Character Set and Collation”
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 13.1.10, “CREATE DATABASE Statement”
Section 10.3.3, “Database Character Set and Collation”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 9.2.3, “Identifier Case Sensitivity”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 22.6, “Performance Schema Instrument Naming Conventions”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 10.3.2, “Server Character Set and Collation”
Section 13.7.5.8, “SHOW CREATE DATABASE Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”

CREATE DATABASE dbx
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”

CREATE DATABASE IF NOT EXISTS
Section 17.4.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE EVENT
Section 13.1.2, “ALTER EVENT Statement”
Section 13.1.11, “CREATE EVENT Statement”

4041

Section 20.4.4, “Event Metadata”
Section 20.4.3, “Event Syntax”
Section 9.5, “Expressions”
Section 12.16, “Information Functions”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.16, “Replication of Invoked Features”
Section 20.8, “Restrictions on Stored Programs”
Section 5.1.6, “Server Command Options”
Section 13.7.5.9, “SHOW CREATE EVENT Statement”
Section 13.7.5.19, “SHOW EVENTS Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Chapter 20, Stored Objects
Section 20.7, “Stored Program Binary Logging”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 21.3.8, “The INFORMATION_SCHEMA EVENTS Table”
Section 5.3, “The mysql System Database”

CREATE EVENT IF NOT EXISTS
Section 17.4.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE FULLTEXT INDEX
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”

CREATE FUNCTION
Section 13.1.3, “ALTER FUNCTION Statement”
Section 1.7.1, “Contributors to MySQL”
Section 13.1.12, “CREATE FUNCTION Statement”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.7.3.2, “DROP FUNCTION Statement for Loadable Functions”
Section 9.2.5, “Function Name Parsing and Resolution”
Section 12.16, “Information Functions”
Section 5.6.1, “Installing and Uninstalling Loadable Functions”
Section 6.5.1, “MySQL Enterprise Encryption Installation”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 5.6.2, “Obtaining Information About Loadable Functions”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.16, “Replication of Invoked Features”
Section 20.8, “Restrictions on Stored Programs”
Section 5.1.6, “Server Command Options”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Chapter 20, Stored Objects
Section 20.7, “Stored Program Binary Logging”
Section 20.2.1, “Stored Routine Syntax”
Section 5.3, “The mysql System Database”
Section 2.11.9, “Upgrade Troubleshooting”

CREATE INDEX
Section 8.3.4, “Column Indexes”
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 14.20.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 13.1.13, “CREATE INDEX Statement”

4042

Section 13.1.17, “CREATE TABLE Statement”
Section 11.4.8, “Creating Spatial Indexes”
Section 14.9.2, “Enabling Compression for a Table”
Section 12.10, “Full-Text Search Functions”
Section 14.9.5, “How Compression Works for InnoDB Tables”
Section 14.6.2.3, “InnoDB Full-Text Indexes”
MySQL Glossary
Section 14.13.1, “Online DDL Operations”
Section 18.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 8.7, “Optimizing for MEMORY Tables”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.7.5.23, “SHOW INDEX Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 21.3.22, “The INFORMATION_SCHEMA STATISTICS Table”
Section 5.4.5, “The Slow Query Log”
Section 18.2.7.6, “Unsupported or Missing Features in NDB Cluster”

CREATE LOGFILE GROUP
Section 13.1.4, “ALTER LOGFILE GROUP Statement”
Section 13.1.14, “CREATE LOGFILE GROUP Statement”
Section 13.1.18, “CREATE TABLESPACE Statement”
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.6.11.1, “NDB Cluster Disk Data Objects”
Section 21.5.1, “The INFORMATION_SCHEMA FILES Table”
Section 18.6.15.20, “The ndbinfo resources Table”

CREATE OR REPLACE VIEW
Section 13.1.20, “CREATE VIEW Statement”
Section 20.9, “Restrictions on Views”

CREATE PROCEDURE
Section 13.1.5, “ALTER PROCEDURE Statement”
Section 13.2.1, “CALL Statement”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 12.16, “Information Functions”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.16, “Replication of Invoked Features”
Section 20.8, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Chapter 20, Stored Objects
Section 20.7, “Stored Program Binary Logging”
Section 20.2.1, “Stored Routine Syntax”

CREATE SCHEMA
Section 13.1.10, “CREATE DATABASE Statement”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
Section 18.7.9, “NDB Cluster Backups With NDB Cluster Replication”

4043

CREATE SERVER
Section 13.1.6, “ALTER SERVER Statement”
Section 15.8.2.2, “Creating a FEDERATED Table Using CREATE SERVER”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 13.7.6.3, “FLUSH Statement”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 15.8.2, “How to Create FEDERATED Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.4.1.5, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit Commit”

CREATE TABLE
Section 13.1.7.2, “ALTER TABLE Examples”
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 13.1.7, “ALTER TABLE Statement”
Chapter 15, Alternative Storage Engines
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 7.1, “Backup and Recovery Types”
Section 17.1.4.4, “Binary Log Options and Variables”
Section 2.11.3, “Changes in MySQL 5.6”
Section 10.3.5, “Column Character Set and Collation”
Section 8.3.4, “Column Indexes”
Section 14.8.11, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.11, “CREATE EVENT Statement”
Section 13.1.13, “CREATE INDEX Statement”
Section 13.1.16, “CREATE SERVER Statement”
Section 13.1.17.3, “CREATE TABLE ... LIKE Statement”
Section 13.1.17.4, “CREATE TABLE ... SELECT Statement”
Section 13.1.17, “CREATE TABLE Statement”
Section 13.1.17.2, “CREATE TEMPORARY TABLE Statement”
Section 15.8.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 3.3.2, “Creating a Table”
Section 14.6.1.1, “Creating InnoDB Tables”
Section 11.4.4, “Creating Spatial Columns”
Section 11.4.8, “Creating Spatial Indexes”
Section 7.2, “Database Backup Methods”
Section 10.3.3, “Database Character Set and Collation”
Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 14.9.2, “Enabling Compression for a Table”
Section 14.17.2, “Enabling InnoDB Monitors”
Section B.2, “Error Information Interfaces”
Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 1.6.3.2, “FOREIGN KEY Constraints”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 12.10, “Full-Text Search Functions”
Section 3.4, “Getting Information About Databases and Tables”
Section 19.2.4, “HASH Partitioning”

4044

Section 13.8.3, “HELP Statement”
Section 14.9.5, “How Compression Works for InnoDB Tables”
Section 19.2.7, “How MySQL Partitioning Handles NULL”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 9.2.3, “Identifier Case Sensitivity”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 12.16, “Information Functions”
Section 18.3.3, “Initial Configuration of NDB Cluster”
Section 14.19, “InnoDB and MySQL Replication”
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 14.11, “InnoDB Row Formats”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.21, “InnoDB Troubleshooting”
Section 17.2.3.3, “Interactions Between Replication Filtering Options”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 14.1, “Introduction to InnoDB”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
Section 19.2.5, “KEY Partitioning”
Section 18.2.7.5, “Limits Associated with Database Objects in NDB Cluster”
Section 8.4.6, “Limits on Table Size”
Section 18.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 19.2.2, “LIST Partitioning”
Section 13.2.7, “LOAD XML Statement”
Section 3.3.3, “Loading Data into a Table”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 15.2.3, “MyISAM Table Storage Formats”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 4.5.1.1, “mysql Client Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.6.14, “NDB API Statistics Counters and Variables”
Section 18.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 18.6.11.1, “NDB Cluster Disk Data Objects”
NDB Cluster System Variables
Section 18.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 18.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 14.13.1, “Online DDL Operations”
Section 18.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 8.4.1, “Optimizing Data Size”
Section 8.5.7, “Optimizing InnoDB DDL Operations”
Section 19.1, “Overview of Partitioning in MySQL”
Section 14.9.1, “Overview of Table Compression”
Section 19.3, “Partition Management”
Section 19.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”
Section 19.6.3, “Partitioning Limitations Relating to Functions”
Section 19.6.2, “Partitioning Limitations Relating to Storage Engines”
Section 19.2, “Partitioning Types”
Section 6.2.2, “Privileges Provided by MySQL”
Section 19.2.3.1, “RANGE COLUMNS partitioning”
Section 19.2.1, “RANGE Partitioning”

4045

Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 13.2.8, “REPLACE Statement”
Section 17.4.1.1, “Replication and AUTO_INCREMENT”
Section 17.4.1.3, “Replication and Character Sets”
Section 17.4.1.10, “Replication and DIRECTORY Table Options”
Section 17.4.1.14, “Replication and Fractional Seconds Support”
Section 17.4.1.15, “Replication and System Functions”
Section 17.4.1.7, “Replication of CREATE TABLE ... SELECT Statements”
Replication with More Columns on Source or Replica
Restoring an NDB backup to a previous version of NDB Cluster
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.6, “Server Command Options”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 15.1, “Setting the Storage Engine”
Section 13.7.5.6, “SHOW COLUMNS Statement”
Section 13.7.5.12, “SHOW CREATE TABLE Statement”
Section 13.7.5.16, “SHOW ENGINE Statement”
Section 13.7.5.23, “SHOW INDEX Statement”
Section 13.7.5.37, “SHOW TABLE STATUS Statement”
Section 13.7.5.41, “SHOW WARNINGS Statement”
Section 13.1.17.6, “Silent Column Specification Changes”
Section 14.9.7, “SQL Compression Syntax Warnings and Errors”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 11.3.1, “String Data Type Syntax”
Section 19.2.6, “Subpartitioning”
Section 10.3.4, “Table Character Set and Collation”
Section 14.1.4, “Testing and Benchmarking with InnoDB”
Section 15.5, “The ARCHIVE Storage Engine”
Section 11.3.5, “The ENUM Type”
Section 21.3.14, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 21.3.22, “The INFORMATION_SCHEMA STATISTICS Table”
Section 21.3.23, “The INFORMATION_SCHEMA TABLES Table”
Section 15.3, “The MEMORY Storage Engine”
Section 15.2, “The MyISAM Storage Engine”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 14.21.3, “Troubleshooting InnoDB Data Dictionary Operations”
Section 13.1.33, “TRUNCATE TABLE Statement”
Section 13.7.3.4, “UNINSTALL PLUGIN Statement”
Section 18.2.7.6, “Unsupported or Missing Features in NDB Cluster”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 3.3.4.9, “Using More Than one Table”
Section 7.4, “Using mysqldump for Backups”
Section 17.3.3, “Using Replication with Different Source and Replica Storage Engines”
Section 8.12.3, “Using Symbolic Links”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 1.3, “What Is New in MySQL 5.6”
Section 2.3.7, “Windows Platform Restrictions”

CREATE TABLE ... KEY ()
Section 2.11.3, “Changes in MySQL 5.6”

4046

CREATE TABLE ... LIKE
Section 13.1.17.3, “CREATE TABLE ... LIKE Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 17.4.1.1, “Replication and AUTO_INCREMENT”
Section 15.7, “The MERGE Storage Engine”

CREATE TABLE ... ROW_FORMAT=COMPRESSED
Section 2.11.3, “Changes in MySQL 5.6”

CREATE TABLE ... SELECT
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 12.11, “Cast Functions and Operators”
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 13.1.17.4, “CREATE TABLE ... SELECT Statement”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section B.3.7, “Known Issues in MySQL”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 17.4.1.7, “Replication of CREATE TABLE ... SELECT Statements”
Section 17.1.3.4, “Restrictions on Replication with GTIDs”
Section 1.6.2.1, “SELECT INTO TABLE Differences”
Section 13.2.9, “SELECT Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.7, “Stored Program Binary Logging”

CREATE TABLE ... SELECT ...
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 19.3.1, “Management of RANGE and LIST Partitions”

CREATE TABLE IF NOT EXISTS
Section 13.1.17.4, “CREATE TABLE ... SELECT Statement”
Section 17.4.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE TABLE IF NOT EXISTS ... LIKE
Section 17.4.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE TABLE IF NOT EXISTS ... SELECT
Section 13.1.17.4, “CREATE TABLE ... SELECT Statement”
Section 17.4.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE TABLE new_table SELECT ... FROM old_table ...
Section 13.1.17.4, “CREATE TABLE ... SELECT Statement”
Section 13.2.9, “SELECT Statement”

CREATE TABLE tbl_name ... TABLESPACE tablespace_name
MySQL Glossary

CREATE TABLE...AS SELECT
Section 8.2.1, “Optimizing SELECT Statements”

CREATE TABLESPACE
Section 13.1.8, “ALTER TABLESPACE Statement”
Section 13.1.18, “CREATE TABLESPACE Statement”

4047

Section 18.4.3.6, “Defining NDB Cluster Data Nodes”
Section 13.1.29, “DROP TABLESPACE Statement”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.6.11.1, “NDB Cluster Disk Data Objects”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 21.5.1, “The INFORMATION_SCHEMA FILES Table”

CREATE TEMPORARY TABLE
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 13.7.1.4, “GRANT Statement”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.1.3.4, “Restrictions on Replication with GTIDs”
Section 5.1.7, “Server System Variables”
Section 15.1, “Setting the Storage Engine”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section B.3.6.2, “TEMPORARY Table Problems”

CREATE TRIGGER
Section 13.1.19, “CREATE TRIGGER Statement”
Section 12.16, “Information Functions”
Section A.5, “MySQL 5.6 FAQ: Triggers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.16, “Replication of Invoked Features”
Section 20.8, “Restrictions on Stored Programs”
Section 13.7.5.13, “SHOW CREATE TRIGGER Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Chapter 20, Stored Objects
Section 20.7, “Stored Program Binary Logging”
Section 20.3.1, “Trigger Syntax and Examples”

CREATE UNDO TABLESPACE
MySQL Glossary

CREATE USER
Section 6.2, “Access Control and Account Management”
Section 6.2.1, “Account User Names and Passwords”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 6.2.9, “Assigning Account Passwords”
Section 5.1.12.3, “Connecting Using the IPv6 Local Host Address”
Section 13.7.1.2, “CREATE USER Statement”
Section 17.1.1.3, “Creating a User for Replication”
Section 12.14, “Encryption and Compression Functions”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”

4048

Section 8.12.4.1, “How MySQL Uses Memory”
Section 5.1.12, “IPv6 Support”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 18.6.17.2, “NDB Cluster and MySQL Privileges”
Section 6.4.1.6, “PAM Pluggable Authentication”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.1.2.3, “Passwords and Logging”
Section 6.2.2, “Privileges Provided by MySQL”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section 6.2.12, “Proxy Users”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 6.4.1.4, “SHA-256 Pluggable Authentication”
Section 6.2.4, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 6.4.3, “The Password Validation Plugin”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 6.4.5.3, “Using MySQL Enterprise Firewall”
Section 1.3, “What Is New in MySQL 5.6”
Section 6.4.1.7, “Windows Pluggable Authentication”

CREATE VIEW
Section 13.1.9, “ALTER VIEW Statement”
Section 13.1.20, “CREATE VIEW Statement”
Section 8.14.3, “General Thread States”
Section 9.2.1, “Identifier Length Limits”
Section 12.16, “Information Functions”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 19.6.4, “Partitioning and Locking”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 20.9, “Restrictions on Views”
Section 13.7.5.14, “SHOW CREATE VIEW Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Chapter 20, Stored Objects
Section 21.3.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 20.5.3, “Updatable and Insertable Views”
Section 20.5.2, “View Processing Algorithms”
Section 20.5.1, “View Syntax”

D

[index top]

DEALLOCATE PREPARE
Section 13.5.3, “DEALLOCATE PREPARE Statement”
Section 13.5.1, “PREPARE Statement”
Section 13.5, “Prepared Statements”
Section 20.8, “Restrictions on Stored Programs”
Section 5.1.9, “Server Status Variables”

DECLARE
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”

4049

Section 13.6.3, “DECLARE Statement”
Section 13.6.7.3, “GET DIAGNOSTICS Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.6.4, “Variables in Stored Programs”

DECLARE ... CONDITION
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Statement”
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 13.6.7.5, “SIGNAL Statement”

DECLARE ... HANDLER
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Statement”
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 13.6.7.5, “SIGNAL Statement”

DELETE
Section 6.2, “Access Control and Account Management”
Section 14.20.5.5, “Adapting DML Statements to memcached Operations”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 14.1.2, “Best Practices for InnoDB Tables”
Section 17.1.4.4, “Binary Log Options and Variables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 14.5.2, “Change Buffer”
Section 14.9.6, “Compression for OLTP Workloads”
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 13.1.20, “CREATE VIEW Statement”
Section 13.2.2, “DELETE Statement”
Section B.3.4.6, “Deleting Rows from Related Tables”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.21.2, “Forcing InnoDB Recovery”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 12.10.5, “Full-Text Restrictions”
Chapter 12, Functions and Operators
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 18.6.9, “Importing Data Into MySQL Cluster”
Section 12.16, “Information Functions”
Section 14.19, “InnoDB and MySQL Replication”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 8.11.1, “Internal Locking Methods”
Section 21.1, “Introduction”

4050

Section 13.2.9.2, “JOIN Clause”
Section 9.3, “Keywords and Reserved Words”
Section 13.7.6.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 18.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 18.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 19.2.2, “LIST Partitioning”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 18.6.17.3, “NDB Cluster and MySQL Security Procedures”
Section 18.6.11.1, “NDB Cluster Disk Data Objects”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 14.13.1, “Online DDL Operations”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 8.2.4, “Optimizing Data Change Statements”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1, “Optimizing SELECT Statements”
Section 8.2.2, “Optimizing Subqueries and Derived Tables”
Section 19.1, “Overview of Partitioning in MySQL”
Section 19.4, “Partition Pruning”
Section 19.5, “Partition Selection”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 6.2.2, “Privileges Provided by MySQL”
Section 14.8.10, “Purge Configuration”
Section 8.14.5, “Query Cache Thread States”
Section 19.2.1, “RANGE Partitioning”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.17, “Replication and LIMIT”
Section 17.4.1.20, “Replication and MEMORY Tables”
Section 17.4.1.22, “Replication and the Query Optimizer”
Section 13.2.10.11, “Rewriting Subqueries as Joins”
Section 3.3.4.1, “Selecting All Data”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Statement Probes
Section 13.2.10, “Subqueries”
Section 13.2.10.9, “Subquery Errors”
Section 8.11.2, “Table Locking Issues”
Section 15.5, “The ARCHIVE Storage Engine”
Section 5.4.4, “The Binary Log”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 21.4.25, “The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View”
Section 21.3.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 1.2.2, “The Main Features of MySQL”
Section 15.3, “The MEMORY Storage Engine”
Section 15.7, “The MERGE Storage Engine”
Section 14.7.2.1, “Transaction Isolation Levels”

4051

Section 20.3.1, “Trigger Syntax and Examples”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 13.1.33, “TRUNCATE TABLE Statement”
Section 14.6.7, “Undo Logs”
Section 20.5.3, “Updatable and Insertable Views”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”
Section 1.3, “What Is New in MySQL 5.6”
Section 6.2.8, “When Privilege Changes Take Effect”
Section 8.2.1.1, “WHERE Clause Optimization”

DELETE FROM ... WHERE ...
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”

DELETE FROM t1,t2
Statement Probes

DESCRIBE
Section 3.3.2, “Creating a Table”
Section 13.8.1, “DESCRIBE Statement”
Section 13.8.2, “EXPLAIN Statement”
Section 21.9, “Extensions to SHOW Statements”
Section 1.6.2.3, “FOREIGN KEY Constraint Differences”
Section 3.4, “Getting Information About Databases and Tables”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 13.7.5.6, “SHOW COLUMNS Statement”
Section 13.1.17.6, “Silent Column Specification Changes”
Section 10.2.2, “UTF-8 for Metadata”

DO
Section 13.1.2, “ALTER EVENT Statement”
Section 13.1.11, “CREATE EVENT Statement”
Section 13.2.3, “DO Statement”
Section 12.15, “Locking Functions”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 19.6.4, “Partitioning and Locking”
Section 20.8, “Restrictions on Stored Programs”
Section 20.7, “Stored Program Binary Logging”
Section 13.2.10, “Subqueries”
Section 21.3.8, “The INFORMATION_SCHEMA EVENTS Table”

DROP DATABASE
Section 13.1.21, “DROP DATABASE Statement”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 8.10.3.1, “How the Query Cache Operates”
Section 18.6.9, “Importing Data Into MySQL Cluster”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”

4052

Section 17.1.4.3, “Replica Server Options and Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 2.3.7, “Windows Platform Restrictions”

DROP DATABASE IF EXISTS
Section 17.4.1.11, “Replication of DROP ... IF EXISTS Statements”

DROP EVENT
Section 20.4.3, “Event Syntax”
Section 17.4.1.16, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.7, “Stored Program Binary Logging”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”

DROP FUNCTION
Section 13.1.3, “ALTER FUNCTION Statement”
Section 1.7.1, “Contributors to MySQL”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 13.1.23, “DROP FUNCTION Statement”
Section 13.7.3.2, “DROP FUNCTION Statement for Loadable Functions”
Section 13.1.26, “DROP PROCEDURE and DROP FUNCTION Statements”
Section 9.2.5, “Function Name Parsing and Resolution”
Section 5.6.1, “Installing and Uninstalling Loadable Functions”
Section 6.5.1, “MySQL Enterprise Encryption Installation”
Section 17.4.1.16, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.7, “Stored Program Binary Logging”
Section 20.2.1, “Stored Routine Syntax”
Section 2.11.9, “Upgrade Troubleshooting”

DROP INDEX
Section 13.1.7, “ALTER TABLE Statement”
Section 11.4.8, “Creating Spatial Indexes”
Section 13.1.24, “DROP INDEX Statement”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 14.13.1, “Online DDL Operations”
Section 18.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 5.4.5, “The Slow Query Log”

DROP LOGFILE GROUP
Section 13.1.25, “DROP LOGFILE GROUP Statement”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”

DROP PROCEDURE
Section 13.1.5, “ALTER PROCEDURE Statement”
Section 17.4.1.16, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.7, “Stored Program Binary Logging”
Section 20.2.1, “Stored Routine Syntax”

4053

DROP SCHEMA
Section 13.1.21, “DROP DATABASE Statement”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
Section 5.1.7, “Server System Variables”

DROP SERVER
Section 13.7.6.3, “FLUSH Statement”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.4.1.5, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit Commit”

DROP TABLE
Section 18.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 13.1.7, “ALTER TABLE Statement”
Section 6.4.4.3, “Audit Log File Formats”
Section 18.6.1, “Commands in the NDB Cluster Management Client”
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 13.1.17.2, “CREATE TEMPORARY TABLE Statement”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 13.1.28, “DROP TABLE Statement”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 14.21.2, “Forcing InnoDB Recovery”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 18.6.9, “Importing Data Into MySQL Cluster”
Section 12.16, “Information Functions”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
Section 18.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 15.7.2, “MERGE Table Problems”
Section 4.5.1.1, “mysql Client Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.5.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.5.12, “ndb_drop_table — Drop an NDB Table”
Section 8.5.7, “Optimizing InnoDB DDL Operations”
Section 18.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 6.2.2, “Privileges Provided by MySQL”
Section 20.9, “Restrictions on Views”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.4.2.5, “START SLAVE Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 15.3, “The MEMORY Storage Engine”
Section 15.7, “The MERGE Storage Engine”

4054

Section 13.6.7.7, “The MySQL Diagnostics Area”
Section 14.21.3, “Troubleshooting InnoDB Data Dictionary Operations”
Section 13.1.33, “TRUNCATE TABLE Statement”
Section 13.7.3.4, “UNINSTALL PLUGIN Statement”

DROP TABLE IF EXISTS
Section 17.4.1.11, “Replication of DROP ... IF EXISTS Statements”

DROP TABLE IF EXISTS mysql.user mysql.db mysql.tables_priv
mysql.columns_priv mysql.procs_priv
Section 18.6.13, “Distributed Privileges Using Shared Grant Tables”

DROP TABLESPACE
Section 13.1.29, “DROP TABLESPACE Statement”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
Section 13.3.3, “Statements That Cause an Implicit Commit”

DROP TEMPORARY TABLE
Section 17.1.3.4, “Restrictions on Replication with GTIDs”

DROP TEMPORARY TABLE IF EXISTS
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

DROP TRIGGER
Section 13.1.30, “DROP TRIGGER Statement”
Section A.5, “MySQL 5.6 FAQ: Triggers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 17.4.1.16, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.3.1, “Trigger Syntax and Examples”

DROP USER
Section 6.2.1, “Account User Names and Passwords”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 13.7.1.3, “DROP USER Statement”
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.1.4, “GRANT Statement”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 12.16, “Information Functions”
Section 18.6.17.2, “NDB Cluster and MySQL Privileges”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 13.7.1.6, “REVOKE Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.6, “Stored Object Access Control”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”

DROP VIEW
Section 13.1.31, “DROP VIEW Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 20.9, “Restrictions on Views”
Section 13.3.3, “Statements That Cause an Implicit Commit”

4055

Section 20.5.1, “View Syntax”

DROP VIEW IF EXISTS
Section 17.4.1.11, “Replication of DROP ... IF EXISTS Statements”

E

[index top]

EXECUTE
Section 13.2.1, “CALL Statement”
Section 13.5.2, “EXECUTE Statement”
Section 13.5.1, “PREPARE Statement”
Section 13.5, “Prepared Statements”
Section 20.8, “Restrictions on Stored Programs”
Section 20.9, “Restrictions on Views”
Section 5.1.9, “Server Status Variables”

EXPLAIN
Section 13.1.7, “ALTER TABLE Statement”
Section 8.2.1.19, “Avoiding Full Table Scans”
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 8.3.4, “Column Indexes”
Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 5.8.1, “Debugging a MySQL Server”
Section 13.2.10.8, “Derived Tables”
Section 13.8.1, “DESCRIBE Statement”
Section 8.2.1.15, “DISTINCT Optimization”
Section 8.2.1.4, “Engine Condition Pushdown Optimization”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 8.2.1.14, “GROUP BY Optimization”
Section 8.2.1.5, “Index Condition Pushdown Optimization”
Section 8.9.3, “Index Hints”
Section 8.2.1.3, “Index Merge Optimization”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 21.1, “Introduction”
Section 8.2.1.12, “IS NULL Optimization”
Section 8.2.1.10, “Multi-Range Read Optimization”
Chapter 22, MySQL Performance Schema
NDB Cluster Status Variables
NDB Cluster System Variables
Section 19.3.5, “Obtaining Information About Partitions”
Section B.3.5, “Optimizer-Related Issues”
Section 8.2.2.4, “Optimizing Derived Tables”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1, “Optimizing SELECT Statements”
Section 13.2.10.10, “Optimizing Subqueries”
Section 8.2.2.2, “Optimizing Subqueries with Materialization”
Section 8.2.2.1, “Optimizing Subqueries with Semijoin Transformations”

4056

Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 8.2.1.13, “ORDER BY Optimization”
Section 19.4, “Partition Pruning”
Section 6.2.2, “Privileges Provided by MySQL”
Section 8.2.1.2, “Range Optimization”
Section 20.8, “Restrictions on Stored Programs”
Section 13.2.9, “SELECT Statement”
Section 13.7.5.41, “SHOW WARNINGS Statement”
Section B.3.4.7, “Solving Problems with No Matching Rows”
Section 1.2.2, “The Main Features of MySQL”
Section 8.8, “Understanding the Query Execution Plan”
Section 8.3.9, “Use of Index Extensions”
Section 5.8.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 11.4.9, “Using Spatial Indexes”
Section 8.3.6, “Verifying Index Usage”
Section 1.3, “What Is New in MySQL 5.6”

EXPLAIN ... SELECT
Section 19.3.5, “Obtaining Information About Partitions”

EXPLAIN EXTENDED
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 13.7.5.41, “SHOW WARNINGS Statement”

EXPLAIN PARTITIONS
Section 13.8.2, “EXPLAIN Statement”
Section 19.3.5, “Obtaining Information About Partitions”
Section 8.8.1, “Optimizing Queries with EXPLAIN”

EXPLAIN PARTITIONS SELECT
Section 19.3.5, “Obtaining Information About Partitions”

EXPLAIN PARTITIONS SELECT COUNT()
Section 19.2.1, “RANGE Partitioning”

EXPLAIN SELECT
Section 13.2.10.8, “Derived Tables”
Section 8.8.2, “EXPLAIN Output Format”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 1.5, “How to Report Bugs or Problems”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 19.3.5, “Obtaining Information About Partitions”

EXPLAIN tbl_name
Section 8.8.1, “Optimizing Queries with EXPLAIN”

F

[index top]

4057

FETCH
Section 13.6.6.2, “Cursor DECLARE Statement”
Section 13.6.6.3, “Cursor FETCH Statement”
Section 20.8, “Restrictions on Stored Programs”

FETCH ... INTO var_list
Section 13.6.4, “Variables in Stored Programs”

FLUSH
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.3, “FLUSH Statement”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 13.7.1.4, “GRANT Statement”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.4.1.13, “Replication and FLUSH”
Section 13.7.6.6, “RESET Statement”
Section 20.8, “Restrictions on Stored Programs”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 4.10, “Unix Signal Handling in MySQL”

FLUSH BINARY LOGS
Section 13.7.6.3, “FLUSH Statement”
Section 5.4.7, “Server Log Maintenance”

FLUSH DES_KEY_FILE
Section 12.14, “Encryption and Compression Functions”
Section 13.7.6.3, “FLUSH Statement”

FLUSH ENGINE LOGS
Section 13.7.6.3, “FLUSH Statement”

FLUSH ERROR LOGS
Section 5.4.2.5, “Error Log File Flushing and Renaming”
Section 13.7.6.3, “FLUSH Statement”

FLUSH GENERAL LOGS
Section 13.7.6.3, “FLUSH Statement”

FLUSH HOSTS
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 13.7.6.3, “FLUSH Statement”

FLUSH LOGS
Section 7.3.3, “Backup Strategy Summary”
Section 7.2, “Database Backup Methods”
Section 17.1.3.5, “Disabling GTID Transactions”

4058

Section 5.4.2.5, “Error Log File Flushing and Renaming”
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.3, “FLUSH Statement”
Section 5.4, “MySQL Server Logs”
Section 17.4.1.13, “Replication and FLUSH”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.4.7, “Server Log Maintenance”
Section 5.1.9, “Server Status Variables”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 17.2.2.1, “The Relay Log”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”

FLUSH PRIVILEGES
Section 1.1, “About This Manual”
Section 18.6.13, “Distributed Privileges Using Shared Grant Tables”
Section 13.7.6.3, “FLUSH Statement”
Section 6.2.3, “Grant Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.6.17.3, “NDB Cluster and MySQL Security Procedures”
Section 17.4.1.13, “Replication and FLUSH”
Section 5.1.6, “Server Command Options”
Section 6.2.13, “Setting Account Resource Limits”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 6.2.8, “When Privilege Changes Take Effect”

FLUSH QUERY CACHE
Section 13.7.6.3, “FLUSH Statement”
Section 8.10.3.4, “Query Cache Status and Maintenance”

FLUSH RELAY LOGS
Section 13.7.6.3, “FLUSH Statement”

FLUSH SLOW LOGS
Section 13.7.6.3, “FLUSH Statement”

FLUSH STATUS
Section 13.7.6.3, “FLUSH Statement”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 8.3.9, “Use of Index Extensions”

FLUSH TABLE
Section 13.7.6.3, “FLUSH Statement”
Section 1.3, “What Is New in MySQL 5.6”

FLUSH TABLES
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 13.7.6.3, “FLUSH Statement”
Section 8.14.3, “General Thread States”
Section 13.2.4, “HANDLER Statement”

4059

Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 15.7.2, “MERGE Table Problems”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 17.1.1.4, “Obtaining the Replication Source Binary Log Coordinates”
Section 15.2.4.2, “Problems from Tables Not Being Closed Properly”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 17.4.1.13, “Replication and FLUSH”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 8.3.9, “Use of Index Extensions”

FLUSH TABLES ... FOR EXPORT
Section 14.6.1.2, “Creating Tables Externally”
Section 13.7.6.3, “FLUSH Statement”
Section 14.6.1.3, “Importing InnoDB Tables”
MySQL Glossary

FLUSH TABLES ...FOR EXPORT
Section 13.7.6.3, “FLUSH Statement”

FLUSH TABLES tbl_list WITH READ LOCK
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”

FLUSH TABLES tbl_name ...
Section 13.7.6.3, “FLUSH Statement”

FLUSH TABLES tbl_name ... FOR EXPORT
Section 13.7.6.3, “FLUSH Statement”

FLUSH TABLES tbl_name ... WITH READ LOCK
Section 13.7.6.3, “FLUSH Statement”

FLUSH TABLES tbl_name WITH READ LOCK
Section 13.2.4, “HANDLER Statement”

FLUSH TABLES WITH READ LOCK
Section 17.1.1.5, “Creating a Data Snapshot Using mysqldump”
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.3, “FLUSH Statement”
Section 8.14.3, “General Thread States”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 17.1.1.4, “Obtaining the Replication Source Binary Log Coordinates”
Section 17.4.1.13, “Replication and FLUSH”

4060

Section 13.3.7.3, “Restrictions on XA Transactions”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.3.3, “Statements That Cause an Implicit Commit”

FLUSH USER_RESOURCES
Section 13.7.6.3, “FLUSH Statement”
Section 6.2.13, “Setting Account Resource Limits”

G

[index top]

GET DIAGNOSTICS
Section 13.6.7, “Condition Handling”
Section B.2, “Error Information Interfaces”
Section 13.6.7.3, “GET DIAGNOSTICS Statement”
Section 13.6.7.4, “RESIGNAL Statement”
Section 13.6.7.9, “Restrictions on Condition Handling”
Section 20.8, “Restrictions on Stored Programs”
Section 5.1.7, “Server System Variables”
Section 13.7.5.41, “SHOW WARNINGS Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”
Section 1.3, “What Is New in MySQL 5.6”

GRANT
Section 6.2, “Access Control and Account Management”
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 6.2.1, “Account User Names and Passwords”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 6.2.9, “Assigning Account Passwords”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 5.1.12.3, “Connecting Using the IPv6 Local Host Address”
Section 13.7.1.2, “CREATE USER Statement”
Section 17.1.1.3, “Creating a User for Replication”
Section 12.14, “Encryption and Compression Functions”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 12.16, “Information Functions”
Section 5.1.12, “IPv6 Support”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section A.14, “MySQL 5.6 FAQ: Replication”
MySQL Glossary
Section 18.6.17.2, “NDB Cluster and MySQL Privileges”

4061

Section 8.2.5, “Optimizing Database Privileges”
Section 6.4.1.6, “PAM Pluggable Authentication”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.1.2.3, “Passwords and Logging”
Section 18.7.5, “Preparing the NDB Cluster for Replication”
Section 6.2.2, “Privileges Provided by MySQL”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section 6.2.12, “Proxy Users”
Section 17.4.1.13, “Replication and FLUSH”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.21, “Replication of the mysql System Database”
Section 13.7.1.6, “REVOKE Statement”
Section 6.1.1, “Security Guidelines”
Section 5.1.6, “Server Command Options”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 6.2.13, “Setting Account Resource Limits”
Section 13.7.5.22, “SHOW GRANTS Statement”
Section 6.2.4, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 6.4.3, “The Password Validation Plugin”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 6.3, “Using Encrypted Connections”
Section 6.4.5.3, “Using MySQL Enterprise Firewall”
Section 1.3, “What Is New in MySQL 5.6”
Section 6.2.8, “When Privilege Changes Take Effect”
Section 6.4.1.7, “Windows Pluggable Authentication”

GRANT ALL
Section 13.7.1.4, “GRANT Statement”

GRANT EVENT
Section 20.4.6, “The Event Scheduler and MySQL Privileges”

GRANT USAGE
Section 6.2.9, “Assigning Account Passwords”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.13, “Setting Account Resource Limits”

GROUP BY
Section 14.1.1, “Benefits of Using InnoDB Tables”

H

[index top]

HANDLER
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 13.7.6.3, “FLUSH Statement”
Section A.4, “MySQL 5.6 FAQ: Stored Procedures and Functions”
Section 1.6, “MySQL Standards Compliance”

4062

Section 19.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”

HANDLER ... CLOSE
Section 13.7.5.25, “SHOW OPEN TABLES Statement”

HANDLER ... OPEN
Section 13.7.5.25, “SHOW OPEN TABLES Statement”

HANDLER ... READ
Section 20.8, “Restrictions on Stored Programs”

HANDLER OPEN
Section 13.2.4, “HANDLER Statement”
Section 13.1.33, “TRUNCATE TABLE Statement”

HELP
Section 13.8.3, “HELP Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 5.1.14, “Server-Side Help Support”

I

[index top]

IF
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 12.5, “Flow Control Functions”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.2, “IF Statement”

INSERT
Section 6.2, “Access Control and Account Management”
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 14.7.2.2, “autocommit, Commit, and Rollback”
Section 7.1, “Backup and Recovery Types”
Section 14.1.2, “Best Practices for InnoDB Tables”
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 14.5.2, “Change Buffer”
Section 2.11.3, “Changes in MySQL 5.6”
Section 10.7, “Column Character Set Conversion”
Section 14.9.6, “Compression for OLTP Workloads”
Section 8.11.3, “Concurrent Inserts”
Section 1.6.3.3, “Constraints on Invalid Data”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”

4063

Section 13.1.13, “CREATE INDEX Statement”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.17.4, “CREATE TABLE ... SELECT Statement”
Section 13.1.17.2, “CREATE TEMPORARY TABLE Statement”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 13.1.20, “CREATE VIEW Statement”
Section 15.8.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 11.5, “Data Type Default Values”
Section 11.2.1, “Date and Time Data Type Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 13.2.2, “DELETE Statement”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 7.3.1, “Establishing a Backup Policy”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 12.21.3, “Expression Handling”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.21.2, “Forcing InnoDB Recovery”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 12.10.5, “Full-Text Restrictions”
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.16, “Information Functions”
Section 14.7.1, “InnoDB Locking”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5.1, “INSERT ... SELECT Statement”
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 13.2.5, “INSERT Statement”
Section 17.2.3.3, “Interactions Between Replication Filtering Options”
Section 8.11.1, “Internal Locking Methods”
Section 21.1, “Introduction”
Section 18.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 19.2.2, “LIST Partitioning”
Section 13.2.6, “LOAD DATA Statement”
Section 3.3.3, “Loading Data into a Table”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 8.11.4, “Metadata Locking”
Section 12.20, “Miscellaneous Functions”
Section A.1, “MySQL 5.6 FAQ: General”
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.5, “MySQL 5.6 FAQ: Triggers”
Section A.6, “MySQL 5.6 FAQ: Views”
Section 4.5.1.1, “mysql Client Options”
Section 6.5.2, “MySQL Enterprise Encryption Usage and Examples”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary

4064

Section B.3.2.8, “MySQL server has gone away”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.6.14, “NDB API Statistics Counters and Variables”
Section 18.6.11.1, “NDB Cluster Disk Data Objects”
Section 18.3.5, “NDB Cluster Example with Tables and Data”
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
Section 14.13.1, “Online DDL Operations”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 8.2.4, “Optimizing Data Change Statements”
Section 8.2.4.1, “Optimizing INSERT Statements”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 11.1.7, “Out-of-Range and Overflow Handling”
Section 19.1, “Overview of Partitioning in MySQL”
Section 19.4, “Partition Pruning”
Section 19.5, “Partition Selection”
Section 19.6.4, “Partitioning and Locking”
Section 6.1.2.3, “Passwords and Logging”
Section 22.12.6, “Performance Schema Statement Event Tables”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 11.4.5, “Populating Spatial Columns”
Section 1.6.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 6.2.2, “Privileges Provided by MySQL”
Section 14.8.10, “Purge Configuration”
Section 8.14.5, “Query Cache Thread States”
Section 19.2.1, “RANGE Partitioning”
Section 13.2.8, “REPLACE Statement”
Section 17.4.1.27, “Replica Errors During Replication”
Section 17.4.1.1, “Replication and AUTO_INCREMENT”
Section 17.4.1.28, “Replication and Server SQL Mode”
Section 17.4.1.15, “Replication and System Functions”
Section 17.4.1.35, “Replication and Variables”
Section 17.1.4.2, “Replication Source Options and Variables”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 20.8, “Restrictions on Stored Programs”
Row-Level Probes
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.7.5.28, “SHOW PROCEDURE CODE Statement”
Section 13.7.5.41, “SHOW WARNINGS Statement”
Statement Probes
Section 20.7, “Stored Program Binary Logging”
Section 13.2.10, “Subqueries”
Section 8.11.2, “Table Locking Issues”
Section 15.5, “The ARCHIVE Storage Engine”
Section 10.8.5, “The binary Collation Compared to _bin Collations”
Section 5.4.4, “The Binary Log”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 21.3.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 1.2.2, “The Main Features of MySQL”
Section 15.7, “The MERGE Storage Engine”
Section 15.2, “The MyISAM Storage Engine”

4065

Section 8.10.3, “The MySQL Query Cache”
Section 5.1.15, “The Server Shutdown Process”
Section 20.3.1, “Trigger Syntax and Examples”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 14.20.8, “Troubleshooting the InnoDB memcached Plugin”
Section 14.6.7, “Undo Logs”
Section 20.5.3, “Updatable and Insertable Views”
Section 13.2.11, “UPDATE Statement”
Section 14.15.2.1, “Using InnoDB Transaction and Locking Information”
Section 20.3, “Using Triggers”
Section 1.3, “What Is New in MySQL 5.6”
Section 6.2.8, “When Privilege Changes Take Effect”

INSERT ... ()
Statement Probes

INSERT ... ON DUPLICATE KEY UPDATE
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 12.16, “Information Functions”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 13.2.5, “INSERT Statement”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 15.7.2, “MERGE Table Problems”
Section 12.20, “Miscellaneous Functions”
MySQL Glossary
Section 19.6.4, “Partitioning and Locking”

INSERT ... SELECT
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 8.11.3, “Concurrent Inserts”
Section 13.1.17.4, “CREATE TABLE ... SELECT Statement”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5.1, “INSERT ... SELECT Statement”
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 13.2.5, “INSERT Statement”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section B.3.7, “Known Issues in MySQL”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
NDB Cluster System Variables
Section 19.5, “Partition Selection”
Section 19.6.4, “Partitioning and Locking”
Section 17.4.1.17, “Replication and LIMIT”
Section 5.1.7, “Server System Variables”
Statement Probes
Section 5.4.4, “The Binary Log”

INSERT ... SELECT ON DUPLICATE KEY UPDATE
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”

4066

Section 13.2.5.1, “INSERT ... SELECT Statement”

INSERT ... SET
Section 13.2.5, “INSERT Statement”

INSERT ... VALUES
Section 13.2.5, “INSERT Statement”

INSERT DELAYED
Section 13.1.7, “ALTER TABLE Statement”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.14.4, “Delayed-Insert Thread States”
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 13.2.5, “INSERT Statement”
Section 13.7.6.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 15.7.2, “MERGE Table Problems”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 19.6.4, “Partitioning and Locking”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 20.8, “Restrictions on Stored Programs”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 8.11.2, “Table Locking Issues”
Section 15.5, “The ARCHIVE Storage Engine”
Section 15.3, “The MEMORY Storage Engine”
Section 22.12.10.3, “The threads Table”
Section 20.5.3, “Updatable and Insertable Views”

INSERT IGNORE
Section 1.6.3.3, “Constraints on Invalid Data”
Section 13.1.17.4, “CREATE TABLE ... SELECT Statement”
Section 1.6.3.4, “ENUM and SET Constraints”
Section 12.16, “Information Functions”
Section 13.2.5, “INSERT Statement”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 5.1.10, “Server SQL Modes”

INSERT IGNORE ... SELECT
Section 13.2.5.1, “INSERT ... SELECT Statement”

INSERT INTO ... SELECT
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 1.6.3.3, “Constraints on Invalid Data”
Section 13.1.11, “CREATE EVENT Statement”
Section 13.2.5, “INSERT Statement”
Section 1.6.2.1, “SELECT INTO TABLE Differences”
Section 15.3, “The MEMORY Storage Engine”

4067

INSERT INTO ... SELECT FROM memory_table
Section 17.4.1.20, “Replication and MEMORY Tables”

INSERT INTO...SELECT
Section 8.2.1, “Optimizing SELECT Statements”

INSTALL PLUGIN
Section 6.4.4.6, “Audit Log Reference”
Section 6.4.2.1, “Connection-Control Plugin Installation”
Section 13.7.6.3, “FLUSH Statement”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 14.20.2, “InnoDB memcached Architecture”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 6.4.4.1, “Installing MySQL Enterprise Audit”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 5.5.2, “Obtaining Server Plugin Information”
Section 6.4.1.6, “PAM Pluggable Authentication”
Section 6.4.3.1, “Password Validation Plugin Installation”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 15.11.1, “Pluggable Storage Engine Architecture”
Section 17.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 14.20.3, “Setting Up the InnoDB memcached Plugin”
Section 13.7.5.26, “SHOW PLUGINS Statement”
Section 6.4.1.8, “Socket Peer-Credential Pluggable Authentication”
Section 6.4.1.9, “Test Pluggable Authentication”
Section 21.3.15, “The INFORMATION_SCHEMA PLUGINS Table”
Section 5.3, “The mysql System Database”
Section 14.20.8, “Troubleshooting the InnoDB memcached Plugin”
Section 13.7.3.4, “UNINSTALL PLUGIN Statement”
Section 6.4.1.7, “Windows Pluggable Authentication”

ITERATE
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Statement”
Section 13.6.2, “Statement Labels”

K

[index top]

KILL
Section 8.14, “Examining Server Thread (Process) Information”
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 13.7.6.4, “KILL Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”

4068

Section B.3.2.8, “MySQL server has gone away”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.30, “SHOW PROCESSLIST Statement”

KILL CONNECTION
Section 13.7.6.4, “KILL Statement”
Section 13.4.2.6, “STOP SLAVE Statement”
Section 5.1.15, “The Server Shutdown Process”

KILL QUERY
Section 13.7.6.4, “KILL Statement”
Section 12.20, “Miscellaneous Functions”
Section 13.4.2.6, “STOP SLAVE Statement”
Section 5.1.15, “The Server Shutdown Process”

L

[index top]

LEAVE
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.4, “LEAVE Statement”
Section 13.6.5.5, “LOOP Statement”
Section 20.8, “Restrictions on Stored Programs”
Section 13.6.5.7, “RETURN Statement”
Section 13.6.2, “Statement Labels”

LOAD DATA
Section 6.4.4.3, “Audit Log File Formats”
Section 6.4.4.7, “Audit Log Restrictions”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 17.3.1.2, “Backing Up Raw Data from a Replica”
Section 7.1, “Backup and Recovery Types”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.11.3, “Concurrent Inserts”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 7.2, “Database Backup Methods”
Section 10.3.3, “Database Character Set and Collation”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section B.3.3.4, “How MySQL Handles a Full Disk”
Section 12.16, “Information Functions”
Section B.3.7, “Known Issues in MySQL”
Section 18.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 13.2.6, “LOAD DATA Statement”
Section 13.2.7, “LOAD XML Statement”
Section 3.3.3, “Loading Data into a Table”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 15.2.1, “MyISAM Startup Options”
Section 4.5.1.1, “mysql Client Options”

4069

Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.5.25, “ndb_show_tables — Display List of NDB Tables”
Section 9.1.7, “NULL Values”
Section 8.2.4.1, “Optimizing INSERT Statements”
Section 11.1.7, “Out-of-Range and Overflow Handling”
Section 4.1, “Overview of MySQL Programs”
Section 19.1, “Overview of Partitioning in MySQL”
Section 19.5, “Partition Selection”
Section 19.6.4, “Partitioning and Locking”
Section 18.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 6.2.2, “Privileges Provided by MySQL”
Section B.3.4.3, “Problems with NULL Values”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.18, “Replication and LOAD DATA”
Section 17.4.2, “Replication Compatibility Between MySQL Versions”
Section 8.14.8, “Replication Replica SQL Thread States”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 10.11, “Restrictions on Character Sets”
Section 20.8, “Restrictions on Stored Programs”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 3.3.4.1, “Selecting All Data”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.7.5.41, “SHOW WARNINGS Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 13.2.10, “Subqueries”
Section 11.3.5, “The ENUM Type”
Section 15.3, “The MEMORY Storage Engine”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 9.4, “User-Defined Variables”
Section 20.3, “Using Triggers”
Section 1.3, “What Is New in MySQL 5.6”
Section B.3.3.5, “Where MySQL Stores Temporary Files”
Section 2.3.7, “Windows Platform Restrictions”

LOAD DATA ... REPLACE
Section 13.2.8, “REPLACE Statement”

LOAD DATA LOCAL
Section 13.2.6, “LOAD DATA Statement”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 5.1.7, “Server System Variables”

LOAD INDEX INTO CACHE
Section 13.7.6.2, “CACHE INDEX Statement”

4070

Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 8.10.2.4, “Index Preloading”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Statement”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 13.3.3, “Statements That Cause an Implicit Commit”

LOAD INDEX INTO CACHE ... IGNORE LEAVES
Section 13.7.6.5, “LOAD INDEX INTO CACHE Statement”

LOAD XML
Section 13.2.7, “LOAD XML Statement”
Section 19.1, “Overview of Partitioning in MySQL”
Section 19.5, “Partition Selection”
Section 20.8, “Restrictions on Stored Programs”
Section 1.3, “What Is New in MySQL 5.6”

LOAD XML LOCAL
Section 13.2.7, “LOAD XML Statement”

LOCK TABLE
Section 8.11.3, “Concurrent Inserts”
Section 8.14.3, “General Thread States”
Section B.3.6.1, “Problems with ALTER TABLE”

LOCK TABLES
Section 14.1.2, “Best Practices for InnoDB Tables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 13.1.10, “CREATE DATABASE Statement”
Section 13.1.17.3, “CREATE TABLE ... LIKE Statement”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 14.7.5.2, “Deadlock Detection”
Section 14.7.5, “Deadlocks in InnoDB”
Section 13.7.6.3, “FLUSH Statement”
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 8.11.1, “Internal Locking Methods”
Section 18.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 15.7.2, “MERGE Table Problems”
Section 8.11.4, “Metadata Locking”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 19.6.4, “Partitioning and Locking”
Section 6.2.2, “Privileges Provided by MySQL”
Section 15.2.4.2, “Problems from Tables Not Being Closed Properly”
Section 20.8, “Restrictions on Stored Programs”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”

4071

Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 8.12.1, “System Factors”
Section 8.11.2, “Table Locking Issues”

LOCK TABLES ... READ
Section 13.7.6.3, “FLUSH Statement”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”

LOCK TABLES ... WRITE
Section 14.7.1, “InnoDB Locking”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”

LOOP
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Statement”
Section 13.6.5.4, “LEAVE Statement”
Section 13.6.5.5, “LOOP Statement”
Section 13.6.2, “Statement Labels”

O

[index top]

OPTIMIZE TABLE
Section 18.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 18.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 5.8.1, “Debugging a MySQL Server”
Section 13.2.2, “DELETE Statement”
Section 15.2.3.2, “Dynamic Table Characteristics”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.14.3, “General Thread States”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section B.3.3.4, “How MySQL Handles a Full Disk”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 14.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 13.7.6.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 18.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 19.3.4, “Maintenance of Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.1, “myisamchk General Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Server Options for NDB Cluster
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 18.6.11.3, “NDB Cluster Disk Data Storage Requirements”
Section 14.13.6, “Online DDL Limitations”
Section 18.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”

4072

Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.2.4.2, “Optimizing UPDATE Statements”
Section 8.2.6, “Other Optimization Tips”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.4.1.13, “Replication and FLUSH”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 15.2.3.1, “Static (Fixed-Length) Table Characteristics”
Section 15.5, “The ARCHIVE Storage Engine”
Section 21.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 21.4.9, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 21.4.11, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 21.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 21.4.13, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”
Section 5.1.15, “The Server Shutdown Process”
Section 5.4.5, “The Slow Query Log”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 1.3, “What Is New in MySQL 5.6”

ORDER BY
Section 14.1.1, “Benefits of Using InnoDB Tables”

P

[index top]

PREPARE
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 13.2.1, “CALL Statement”
Section 13.5.3, “DEALLOCATE PREPARE Statement”
Section 13.5.2, “EXECUTE Statement”
Section 9.2.3, “Identifier Case Sensitivity”
Section 8.11.4, “Metadata Locking”
Section 13.5.1, “PREPARE Statement”
Section 13.5, “Prepared Statements”
Section 20.8, “Restrictions on Stored Programs”
Section 20.9, “Restrictions on Views”
Section 5.1.9, “Server Status Variables”

PURGE BINARY LOGS
Section 17.1.4.4, “Binary Log Options and Variables”
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.1.4, “GRANT Statement”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.4.1.1, “PURGE BINARY LOGS Statement”
Section 13.4.1.2, “RESET MASTER Statement”
Section 5.4.7, “Server Log Maintenance”
Section 5.4.4, “The Binary Log”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”

4073

R

[index top]

RELEASE SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”

RENAME TABLE
Section 13.1.7, “ALTER TABLE Statement”
Section 13.2.2, “DELETE Statement”
Section 8.14.3, “General Thread States”
Section 9.2.3, “Identifier Case Sensitivity”
Section 8.11.4, “Metadata Locking”
Section 14.6.1.4, “Moving or Copying InnoDB Tables”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 14.13.1, “Online DDL Operations”
Section 13.1.32, “RENAME TABLE Statement”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

RENAME USER
Section 13.7.1.4, “GRANT Statement”
Section 12.16, “Information Functions”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Statement”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.6, “Stored Object Access Control”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 6.2.8, “When Privilege Changes Take Effect”

REPAIR TABLE
Section 11.2.5, “2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR”
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 13.1.7, “ALTER TABLE Statement”
Section 2.11.3, “Changes in MySQL 5.6”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 15.2.4.1, “Corrupted MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 8.11.5, “External Locking”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.14.3, “General Thread States”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 16.1.3, “Handling MySQL Recovery with ZFS”
Section B.3.3.4, “How MySQL Handles a Full Disk”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 13.7.6.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 13.2.6, “LOAD DATA Statement”

4074

Section 19.3.4, “Maintenance of Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 15.2.1, “MyISAM Startup Options”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 6.2.2, “Privileges Provided by MySQL”
Section 15.2.4.2, “Problems from Tables Not Being Closed Properly”
Section B.3.6.1, “Problems with ALTER TABLE”
Section 2.11.10, “Rebuilding or Repairing Tables or Indexes”
Section 13.7.2.5, “REPAIR TABLE Statement”
Section 15.4.1, “Repairing and Checking CSV Tables”
Section 17.4.1.13, “Replication and FLUSH”
Section 17.4.1.24, “Replication and REPAIR TABLE”
Restoring an NDB backup to a later version of NDB Cluster
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 15.5, “The ARCHIVE Storage Engine”
Section 5.1.15, “The Server Shutdown Process”
Section 5.4.5, “The Slow Query Log”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

REPEAT
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 20.1, “Defining Stored Programs”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Statement”
Section 13.6.5.4, “LEAVE Statement”
Section 13.6.5.6, “REPEAT Statement”
Section 13.6.2, “Statement Labels”

REPLACE
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 13.1.17.4, “CREATE TABLE ... SELECT Statement”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 11.5, “Data Type Default Values”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 12.16, “Information Functions”
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 13.2.5, “INSERT Statement”
Section B.3.7, “Known Issues in MySQL”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 15.7.2, “MERGE Table Problems”

4075

Section 1.6.1, “MySQL Extensions to Standard SQL”
Section B.3.2.8, “MySQL server has gone away”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 19.1, “Overview of Partitioning in MySQL”
Section 19.5, “Partition Selection”
Section 19.6.4, “Partitioning and Locking”
Section 13.2.8, “REPLACE Statement”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 13.2.10, “Subqueries”
Section 15.5, “The ARCHIVE Storage Engine”
Section 1.2.2, “The Main Features of MySQL”
Section 18.6.15.19, “The ndbinfo operations_per_fragment Table”
Section 13.2.11, “UPDATE Statement”
Section 1.3, “What Is New in MySQL 5.6”

REPLACE ... SELECT
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section B.3.7, “Known Issues in MySQL”

RESET
Section 13.7.6.3, “FLUSH Statement”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.6.6, “RESET Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”

RESET MASTER
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 13.4.1.2, “RESET MASTER Statement”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 17.3.7, “Switching Sources During Failover”
Section 5.4.4, “The Binary Log”
Section 1.3, “What Is New in MySQL 5.6”

RESET QUERY CACHE
Section 8.14.5, “Query Cache Thread States”

RESET SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 17.3.10, “Delayed Replication”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
NDB Cluster System Variables
Section 17.1.4, “Replication and Binary Logging Options and Variables”
Section 17.2.2.2, “Replication Metadata Repositories”
Section 13.4.1.2, “RESET MASTER Statement”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 1.3, “What Is New in MySQL 5.6”

4076

RESET SLAVE ALL
Section 13.4.2.1, “CHANGE MASTER TO Statement”

RESIGNAL
Section 13.6.7, “Condition Handling”
Section 13.6.7.8, “Condition Handling and OUT or INOUT Parameters”
Section 13.6.7.1, “DECLARE ... CONDITION Statement”
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 13.6.7.4, “RESIGNAL Statement”
Section 13.6.7.9, “Restrictions on Condition Handling”
Section 20.8, “Restrictions on Stored Programs”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

RETURN
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.5, “LOOP Statement”
Section 20.8, “Restrictions on Stored Programs”
Section 13.6.5.7, “RETURN Statement”
Section 13.6.7.5, “SIGNAL Statement”

REVOKE
Section 6.2, “Access Control and Account Management”
Section 6.2.1, “Account User Names and Passwords”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 12.16, “Information Functions”
Section 5.1.12, “IPv6 Support”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section A.14, “MySQL 5.6 FAQ: Replication”
Section 1.6.2, “MySQL Differences from Standard SQL”
MySQL Glossary
Section 18.6.17.2, “NDB Cluster and MySQL Privileges”
Section 6.2.2, “Privileges Provided by MySQL”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section 6.2.12, “Proxy Users”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.21, “Replication of the mysql System Database”
Section 13.7.1.6, “REVOKE Statement”
Section 6.1.1, “Security Guidelines”
Section 5.1.7, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 6.2.8, “When Privilege Changes Take Effect”

4077

REVOKE ALL PRIVILEGES
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”

ROLLBACK
Section 14.7.2.2, “autocommit, Commit, and Rollback”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 12.16, “Information Functions”
Section 14.2, “InnoDB and the ACID Model”
Section 14.21.4, “InnoDB Error Handling”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.32, “Replication and Transactions”
Section B.3.4.5, “Rollback Failure for Nontransactional Tables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”
Section 5.1.7, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.3.2, “Statements That Cannot Be Rolled Back”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.7, “Stored Program Binary Logging”
Section 5.4.4, “The Binary Log”
Section 13.3, “Transactional and Locking Statements”
Section 20.3.1, “Trigger Syntax and Examples”

ROLLBACK TO SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”

ROLLBACK to SAVEPOINT
Section 20.3.1, “Trigger Syntax and Examples”

S

[index top]

SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”

SELECT
Section 1.1, “About This Manual”
Section 6.2, “Access Control and Account Management”
Section 12.19.1, “Aggregate Function Descriptions”
Section 13.1.7, “ALTER TABLE Statement”
Section 13.1.9, “ALTER VIEW Statement”
Section 12.4.4, “Assignment Operators”
Section 6.4.4.3, “Audit Log File Formats”
Section 6.4.4.5, “Audit Log Filtering”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 14.7.2.2, “autocommit, Commit, and Rollback”
Section 17.1.4.4, “Binary Log Options and Variables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 6.1.7, “Client Programming Security Guidelines”

4078

Section 12.4.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.11.3, “Concurrent Inserts”
Section 10.4, “Connection Character Sets and Collations”
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.11, “CREATE EVENT Statement”
Section 13.1.13, “CREATE INDEX Statement”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.17.4, “CREATE TABLE ... SELECT Statement”
Section 13.1.17, “CREATE TABLE Statement”
Section 13.1.17.2, “CREATE TEMPORARY TABLE Statement”
Section 13.1.20, “CREATE VIEW Statement”
Section 15.8.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 3.3.1, “Creating and Selecting a Database”
Section 13.6.6.2, “Cursor DECLARE Statement”
Section 13.6.6.3, “Cursor FETCH Statement”
Section 13.2.2, “DELETE Statement”
Section 13.2.10.8, “Derived Tables”
Section 8.4.3.2, “Disadvantages of Creating Many Tables in the Same Database”
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 13.2.3, “DO Statement”
Section 3.2, “Entering Queries”
Section 20.4.2, “Event Scheduler Configuration”
Section 10.8.6, “Examples of the Effect of Collation”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.21.2, “Forcing InnoDB Recovery”
Section 8.2.1.17, “Function Call Optimization”
Chapter 12, Functions and Operators
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 13.2.4, “HANDLER Statement”
Section 19.2.7, “How MySQL Partitioning Handles NULL”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 1.5, “How to Report Bugs or Problems”
Section 8.9.3, “Index Hints”
Section 12.16, “Information Functions”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5.1, “INSERT ... SELECT Statement”
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 13.2.5, “INSERT Statement”
Section 8.11.1, “Internal Locking Methods”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 21.1, “Introduction”
Section 13.2.9.2, “JOIN Clause”
Section 9.3, “Keywords and Reserved Words”
Section 13.7.6.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 18.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”

4079

Section 13.2.7, “LOAD XML Statement”
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.7.2.4, “Locking Reads”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 15.7.2, “MERGE Table Problems”
Section 8.3.5, “Multiple-Column Indexes”
Section 7.6.4, “MyISAM Table Optimization”
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.14, “MySQL 5.6 FAQ: Replication”
Section A.4, “MySQL 5.6 FAQ: Stored Procedures and Functions”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”
Section 6.5.2, “MySQL Enterprise Encryption Usage and Examples”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Chapter 22, MySQL Performance Schema
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 12.10.1, “Natural Language Full-Text Searches”
Section 18.6.11.1, “NDB Cluster Disk Data Objects”
Section 18.3.5, “NDB Cluster Example with Tables and Data”
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
Section 18.7.4, “NDB Cluster Replication Schema and Tables”
NDB Cluster Status Variables
NDB Cluster System Variables
Section 18.5.23, “ndb_select_all — Print Rows from an NDB Table”
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 19.3.5, “Obtaining Information About Partitions”
Section 14.13.2, “Online DDL Performance and Concurrency”
Section 8.3, “Optimization and Indexes”
Section B.3.5, “Optimizer-Related Issues”
Section 8.2.2.4, “Optimizing Derived Tables”
Section 8.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1, “Optimizing SELECT Statements”
Section 8.2.2.1, “Optimizing Subqueries with Semijoin Transformations”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 8.2.4.2, “Optimizing UPDATE Statements”
Section 4.6.3.4, “Other myisamchk Options”
Section 19.4, “Partition Pruning”
Section 19.5, “Partition Selection”
Section 19.6.4, “Partitioning and Locking”
Section 22.6, “Performance Schema Instrument Naming Conventions”
Section 14.7.4, “Phantom Rows”
Section 6.2.2, “Privileges Provided by MySQL”
Section B.3.4.2, “Problems Using DATE Columns”
Section B.3.4.8, “Problems with Floating-Point Values”
Section 14.8.10, “Purge Configuration”

4080

Section 8.10.3.2, “Query Cache SELECT Options”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 8.14.5, “Query Cache Thread States”
Section 18.6.16, “Quick Reference: NDB Cluster SQL Statements”
Section 19.2.3.1, “RANGE COLUMNS partitioning”
Section 8.2.1.2, “Range Optimization”
Section 13.2.8, “REPLACE Statement”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.2, “Replication Implementation”
Section 17.4.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”
Section 17.4.1.16, “Replication of Invoked Features”
Section 17.1.4.2, “Replication Source Options and Variables”
Section 20.8, “Restrictions on Stored Programs”
Section 3.3.4, “Retrieving Information from a Table”
Section 3.6.7, “Searching on Two Keys”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 13.2.9, “SELECT Statement”
Section 3.3.4.1, “Selecting All Data”
Section 3.3.4.2, “Selecting Particular Rows”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 13.7.5.3, “SHOW BINLOG EVENTS Statement”
Section 13.7.5.11, “SHOW CREATE PROCEDURE Statement”
Section 13.7.5.14, “SHOW CREATE VIEW Statement”
Section 13.7.5.18, “SHOW ERRORS Statement”
Section 13.7.5.28, “SHOW PROCEDURE CODE Statement”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Statement”
Section 13.7.5.30, “SHOW PROCESSLIST Statement”
Section 13.7.5.33, “SHOW RELAYLOG EVENTS Statement”
Section 13.7.5, “SHOW Statements”
Section 13.7.5.40, “SHOW VARIABLES Statement”
Section 13.7.5.41, “SHOW WARNINGS Statement”
Section B.3.4.7, “Solving Problems with No Matching Rows”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Statement Probes
Section 20.7, “Stored Program Binary Logging”
Section 20.2.1, “Stored Routine Syntax”
Section 9.1.1, “String Literals”
Section 13.2.10, “Subqueries”
Section 13.2.10.6, “Subqueries with EXISTS or NOT EXISTS”
Section 13.2.10.9, “Subquery Errors”
Section 8.11.2, “Table Locking Issues”
Section 15.5, “The ARCHIVE Storage Engine”
Section 5.4.4, “The Binary Log”
Section 11.3.5, “The ENUM Type”
Section 22.12.10.1, “The host_cache Table”
Section 21.3.5, “The INFORMATION_SCHEMA COLUMNS Table”
Section 21.3.8, “The INFORMATION_SCHEMA EVENTS Table”
Section 21.3.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”
Section 21.4.26, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 21.3.16, “The INFORMATION_SCHEMA PROCESSLIST Table”

4081

Section 21.3.19, “The INFORMATION_SCHEMA ROUTINES Table”
Section 21.3.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 1.2.2, “The Main Features of MySQL”
Section 15.7, “The MERGE Storage Engine”
Section 8.10.3, “The MySQL Query Cache”
Section 18.6.15.18, “The ndbinfo nodes Table”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 22.12.10.3, “The threads Table”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 20.3.1, “Trigger Syntax and Examples”
Section 12.3, “Type Conversion in Expression Evaluation”
Section 13.2.9.3, “UNION Clause”
Section 13.2.11, “UPDATE Statement”
Section 9.4, “User-Defined Variables”
Section 14.15.2.1, “Using InnoDB Transaction and Locking Information”
Section 4.2.2.1, “Using Options on the Command Line”
Section 8.4.2.4, “Using PROCEDURE ANALYSE”
Section 5.8.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 11.4.9, “Using Spatial Indexes”
Section 10.2.2, “UTF-8 for Metadata”
Section 20.5.1, “View Syntax”
Section 1.3, “What Is New in MySQL 5.6”
Section 8.2.1.1, “WHERE Clause Optimization”
Section B.3.3.5, “Where MySQL Stores Temporary Files”

SELECT *
Section 11.3.4, “The BLOB and TEXT Types”

SELECT * FROM
Section 18.6.15.17, “The ndbinfo memory_per_fragment Table”

SELECT * FROM t PARTITION ()
Section 19.1, “Overview of Partitioning in MySQL”

SELECT * INTO OUTFILE 'file_name' FROM tbl_name
Section 7.2, “Database Backup Methods”

SELECT ... FOR UPDATE
Section 14.1.2, “Best Practices for InnoDB Tables”
Section 14.7.5, “Deadlocks in InnoDB”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 14.7.1, “InnoDB Locking”
Section 14.7.2.4, “Locking Reads”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”

SELECT ... FROM
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”

SELECT ... INTO
Section 13.1.11, “CREATE EVENT Statement”
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section 17.4.1.15, “Replication and System Functions”

4082

Section 13.2.9.1, “SELECT ... INTO Statement”
Section 1.6.2.1, “SELECT INTO TABLE Differences”
Section 13.2.9, “SELECT Statement”

SELECT ... INTO DUMPFILE
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.7, “Server System Variables”

SELECT ... INTO OUTFILE
Section 1.1, “About This Manual”
Section 7.1, “Backup and Recovery Types”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 14.21.2, “Forcing InnoDB Recovery”
Section 13.2.6, “LOAD DATA Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 9.1.7, “NULL Values”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 1.6.2.1, “SELECT INTO TABLE Differences”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 2.3.7, “Windows Platform Restrictions”

SELECT ... INTO OUTFILE 'file_name'
Section 13.2.9.1, “SELECT ... INTO Statement”

SELECT ... INTO var_list
Section 20.8, “Restrictions on Stored Programs”
Section 13.6.4, “Variables in Stored Programs”

SELECT ... LOCK IN SHARE MODE
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 14.7.1, “InnoDB Locking”
Section 18.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 14.7.2.4, “Locking Reads”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 14.7.2.1, “Transaction Isolation Levels”

SELECT ... PARTITION
Section 1.3, “What Is New in MySQL 5.6”

SELECT DISTINCT
Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
Section 8.14.3, “General Thread States”
Section 8.2.2.1, “Optimizing Subqueries with Semijoin Transformations”

SET
Section 13.7.1.1, “ALTER USER Statement”
Section 12.4.4, “Assignment Operators”
Section 17.1.4.4, “Binary Log Options and Variables”
Section 12.1, “Built-In Function and Operator Reference”

4083

Section 14.8.8, “Configuring InnoDB I/O Capacity”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 10.4, “Connection Character Sets and Collations”
Section 20.1, “Defining Stored Programs”
Section 20.4.2, “Event Scheduler Configuration”
Chapter 12, Functions and Operators
Section 18.6.9, “Importing Data Into MySQL Cluster”
Section 12.16, “Information Functions”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 4.5.1.6, “mysql Client Tips”
Section 6.5.2, “MySQL Enterprise Encryption Usage and Examples”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
Section 12.4, “Operators”
Section 19.6.4, “Partitioning and Locking”
Section 8.10.3.3, “Query Cache Configuration”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.1.4.2, “Replication Source Options and Variables”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 5.1.6, “Server Command Options”
Section 6.2.10, “Server Handling of Expired Passwords”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.7.4, “SET Statements”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 13.3.6, “SET TRANSACTION Statement”
Section 13.7.5.40, “SHOW VARIABLES Statement”
Section 20.7, “Stored Program Binary Logging”
Section 13.2.10, “Subqueries”
Section 5.1.8.1, “System Variable Privileges”
Section 13.6.7.7, “The MySQL Diagnostics Area”
Section 5.4.5, “The Slow Query Log”
Section 20.3.1, “Trigger Syntax and Examples”
Section 9.4, “User-Defined Variables”
Section 4.2.2.1, “Using Options on the Command Line”
Section 4.2.2.5, “Using Options to Set Program Variables”
Section 5.1.8, “Using System Variables”
Section 13.6.4, “Variables in Stored Programs”
Section 1.3, “What Is New in MySQL 5.6”

SET @@GLOBAL.gtid_purged
Section 4.5.4, “mysqldump — A Database Backup Program”

SET @@GLOBAL.ndb_slave_conflict_role = 'NONE'
NDB Cluster System Variables

SET autocommit
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 13.3, “Transactional and Locking Statements”

SET autocommit = 0
Section 17.3.9, “Semisynchronous Replication”

4084

SET CHARACTER SET
Section 10.4, “Connection Character Sets and Collations”
Section 13.7.4.2, “SET CHARACTER SET Statement”
Section 13.7.4, “SET Statements”
Section 10.9, “Unicode Support”

SET CHARACTER SET 'charset_name'
Section 10.4, “Connection Character Sets and Collations”

SET CHARACTER SET charset_name
Section 10.4, “Connection Character Sets and Collations”

SET GLOBAL
Section 14.5.2, “Change Buffer”
Section 14.8.3.3, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 14.8.8, “Configuring InnoDB I/O Capacity”
Section 14.8.9, “Configuring Spin Lock Polling”
Section 6.4.2.1, “Connection-Control Plugin Installation”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 13.7.1.4, “GRANT Statement”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.8.3.2, “Making the Buffer Pool Scan Resistant”
Section 8.10.2.2, “Multiple Key Caches”
Section 17.3.9.2, “Semisynchronous Replication Installation and Configuration”

SET GLOBAL sql_slave_skip_counter
Section 13.4.2.4, “SET GLOBAL sql_slave_skip_counter Statement”

SET NAMES
Section 10.3.6, “Character String Literal Character Set and Collation”
Section 10.5, “Configuring Application Character Set and Collation”
Section 10.4, “Connection Character Sets and Collations”
Section 10.6, “Error Message Character Set”
Section 13.2.6, “LOAD DATA Statement”
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 4.5.1.2, “mysql Client Commands”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 13.7.4.3, “SET NAMES Statement”
Section 13.7.4, “SET Statements”
Section 12.3, “Type Conversion in Expression Evaluation”
Section 10.9, “Unicode Support”
Section 10.2.2, “UTF-8 for Metadata”

SET NAMES 'charset_name'
Section 10.4, “Connection Character Sets and Collations”

SET NAMES 'cp1251'
Section 10.4, “Connection Character Sets and Collations”

SET NAMES charset_name
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

4085

SET NAMES default_character_set
Section 4.5.4, “mysqldump — A Database Backup Program”

SET PASSWORD
Section 13.7.1.1, “ALTER USER Statement”
Section 6.2.9, “Assigning Account Passwords”
Section 2.11.3, “Changes in MySQL 5.6”
Section B.3.2.4, “Client does not support authentication protocol”
Section 13.7.1.2, “CREATE USER Statement”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 6.2.3, “Grant Tables”
Section 12.16, “Information Functions”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.1.2.3, “Passwords and Logging”
Section 17.4.1.35, “Replication and Variables”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Resetting the Root Password: Generic Instructions
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 6.2.10, “Server Handling of Expired Passwords”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 13.7.4, “SET Statements”
Section 6.4.1.4, “SHA-256 Pluggable Authentication”
Section 6.2.4, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 6.4.3, “The Password Validation Plugin”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 1.3, “What Is New in MySQL 5.6”
Section 6.2.8, “When Privilege Changes Take Effect”

SET PASSWORD ... = PASSWORD()
Section 6.2.9, “Assigning Account Passwords”

SET SESSION
Section 5.1.8.1, “System Variable Privileges”

SET SESSION TRANSACTION ISOLATION LEVEL
Section 5.1.7, “Server System Variables”

SET SESSION TRANSACTION {READ WRITE | READ ONLY}
Section 5.1.7, “Server System Variables”

SET sql_log_bin = 0
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

SET sql_log_bin=OFF
Section 5.4.4, “The Binary Log”

SET sql_mode='modes'
Section A.3, “MySQL 5.6 FAQ: Server SQL Mode”

4086

SET TIMESTAMP = value
Section 8.14.1, “Accessing the Process List”

SET TRANSACTION
Section 14.2, “InnoDB and the ACID Model”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 14.7.2.1, “Transaction Isolation Levels”

SET TRANSACTION ISOLATION LEVEL
Section 5.1.7, “Server System Variables”
Section 13.7.4, “SET Statements”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
Section 14.20.6, “The InnoDB memcached Plugin and Replication”

SET TRANSACTION {READ WRITE | READ ONLY}
Section 5.1.7, “Server System Variables”

SET var_name = value
Section 13.7.4, “SET Statements”

SHOW
Section 13.1.11, “CREATE EVENT Statement”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 3.3, “Creating and Using a Database”
Section 13.6.6.2, “Cursor DECLARE Statement”
Section 21.9, “Extensions to SHOW Statements”
Section 21.1, “Introduction”
Section 9.2.4, “Mapping of Identifiers to File Names”
Section A.14, “MySQL 5.6 FAQ: Replication”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 22.1, “Performance Schema Quick Start”
Section 20.8, “Restrictions on Stored Programs”
Section 13.7.5.6, “SHOW COLUMNS Statement”
Section 13.7.5, “SHOW Statements”
Section 13.7.5.38, “SHOW TABLES Statement”
Section 13.4.1, “SQL Statements for Controlling Replication Source Servers”
Section 5.4.4, “The Binary Log”
Section 1.2.2, “The Main Features of MySQL”
Section 10.2.2, “UTF-8 for Metadata”

SHOW AUTHORS
Section 13.7.5.1, “SHOW AUTHORS Statement”

SHOW BINARY LOGS
Section 6.2.2, “Privileges Provided by MySQL”

4087

Section 13.4.1.1, “PURGE BINARY LOGS Statement”
Section 13.7.5.2, “SHOW BINARY LOGS Statement”
Section 13.4.1, “SQL Statements for Controlling Replication Source Servers”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”

SHOW BINLOG EVENTS
Section 17.1.3.1, “GTID Concepts”
Section 18.7.4, “NDB Cluster Replication Schema and Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.6.6.5, “Restrictions on Server-Side Cursors”
Section 13.7.5.3, “SHOW BINLOG EVENTS Statement”
Section 13.4.1, “SQL Statements for Controlling Replication Source Servers”
Section 13.4.2.5, “START SLAVE Statement”

SHOW CHARACTER SET
Section 13.1.1, “ALTER DATABASE Statement”
Section 10.3.8, “Character Set Introducers”
Section 10.2, “Character Sets and Collations in MySQL”
Section 10.3.6, “Character String Literal Character Set and Collation”
Section 10.3.5, “Column Character Set and Collation”
Section 13.1.10, “CREATE DATABASE Statement”
Section 10.3.3, “Database Character Set and Collation”
Section 21.9, “Extensions to SHOW Statements”
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 13.7.5.4, “SHOW CHARACTER SET Statement”
Section 10.10, “Supported Character Sets and Collations”
Section 10.3.4, “Table Character Set and Collation”
Section 21.3.2, “The INFORMATION_SCHEMA CHARACTER_SETS Table”

SHOW COLLATION
Section 13.1.1, “ALTER DATABASE Statement”
Section 10.15, “Character Set Configuration”
Section 10.2, “Character Sets and Collations in MySQL”
Section 10.14.2, “Choosing a Collation ID”
Section 13.1.10, “CREATE DATABASE Statement”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 13.7.5.5, “SHOW COLLATION Statement”
Section 21.3.4, “The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table”
Section 21.3.3, “The INFORMATION_SCHEMA COLLATIONS Table”

SHOW COLUMNS
Section 13.8.2, “EXPLAIN Statement”
Section 21.9, “Extensions to SHOW Statements”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 22.1, “Performance Schema Quick Start”
Section 13.7.5.6, “SHOW COLUMNS Statement”
Section 21.3.5, “The INFORMATION_SCHEMA COLUMNS Table”
Section 21.4.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 21.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”
Section 21.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”
Section 21.4.5, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 21.4.7, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”

4088

Section 21.4.6, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”
Section 21.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 21.4.9, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 21.4.10, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”
Section 21.4.11, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 21.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 21.4.13, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”
Section 21.4.15, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”
Section 21.4.14, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 21.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”
Section 21.4.17, “The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table”
Section 21.4.18, “The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table”
Section 21.4.19, “The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table”
Section 21.4.20, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table”
Section 21.4.21, “The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table”
Section 21.4.22, “The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table”
Section 21.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 21.4.24, “The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table”
Section 21.4.25, “The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View”
Section 21.4.26, “The INFORMATION_SCHEMA INNODB_TRX Table”

SHOW COLUMNS FROM tbl_name LIKE 'enum_col'
Section 11.3.5, “The ENUM Type”

SHOW CONTRIBUTORS
Section 13.7.5.7, “SHOW CONTRIBUTORS Statement”

SHOW COUNT()
Section 13.7.5.18, “SHOW ERRORS Statement”
Section 13.7.5.41, “SHOW WARNINGS Statement”

SHOW CREATE DATABASE
Section 5.1.7, “Server System Variables”
Section 13.7.5.8, “SHOW CREATE DATABASE Statement”

SHOW CREATE EVENT
Section 20.4.4, “Event Metadata”
Section 13.7.5.19, “SHOW EVENTS Statement”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”

SHOW CREATE FUNCTION
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 1.5, “How to Report Bugs or Problems”
Section A.4, “MySQL 5.6 FAQ: Stored Procedures and Functions”
Section 13.7.5.11, “SHOW CREATE PROCEDURE Statement”
Section 20.2.3, “Stored Routine Metadata”

SHOW CREATE PROCEDURE
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 1.5, “How to Report Bugs or Problems”
Section A.4, “MySQL 5.6 FAQ: Stored Procedures and Functions”
Section 13.7.5.10, “SHOW CREATE FUNCTION Statement”

4089

Section 20.2.3, “Stored Routine Metadata”

SHOW CREATE SCHEMA
Section 13.7.5.8, “SHOW CREATE DATABASE Statement”

SHOW CREATE TABLE
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 13.1.7, “ALTER TABLE Statement”
Section 2.11.3, “Changes in MySQL 5.6”
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 13.1.17, “CREATE TABLE Statement”
Section 11.5, “Data Type Default Values”
Section 2.12.3, “Downgrade Notes”
Section 13.8.2, “EXPLAIN Statement”
Section 1.6.2.3, “FOREIGN KEY Constraint Differences”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 3.4, “Getting Information About Databases and Tables”
Section 15.8.2, “How to Create FEDERATED Tables”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 19.2.5, “KEY Partitioning”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 18.6.11.1, “NDB Cluster Disk Data Objects”
NDB Cluster System Variables
Section 18.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 19.3.5, “Obtaining Information About Partitions”
Section 22.1, “Performance Schema Quick Start”
Section 2.11.10, “Rebuilding or Repairing Tables or Indexes”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.1.17.7, “Setting NDB Comment Options”
Section 13.7.5.6, “SHOW COLUMNS Statement”
Section 13.7.5.12, “SHOW CREATE TABLE Statement”
Section 13.1.17.6, “Silent Column Specification Changes”

SHOW CREATE TRIGGER
Section 13.7.5.13, “SHOW CREATE TRIGGER Statement”
Section 20.3.2, “Trigger Metadata”

SHOW CREATE VIEW
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 20.9, “Restrictions on Views”
Section 13.7.5.14, “SHOW CREATE VIEW Statement”
Section 21.3.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 20.5.5, “View Metadata”

SHOW DATABASES
Section 13.1.10, “CREATE DATABASE Statement”
Section 3.3, “Creating and Using a Database”
Section 21.9, “Extensions to SHOW Statements”
Section 3.4, “Getting Information About Databases and Tables”
Section 13.7.1.4, “GRANT Statement”

4090

Section 6.2.3, “Grant Tables”
Section 9.2.3, “Identifier Case Sensitivity”
Section 21.1, “Introduction”
Section 18.6.17.2, “NDB Cluster and MySQL Privileges”
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 22.2, “Performance Schema Build Configuration”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.7.5.15, “SHOW DATABASES Statement”
Section 21.3.20, “The INFORMATION_SCHEMA SCHEMATA Table”

SHOW ENGINE
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.16, “SHOW ENGINE Statement”

SHOW ENGINE INNODB MUTEX
Section 13.7.5.16, “SHOW ENGINE Statement”
Section 1.3, “What Is New in MySQL 5.6”

SHOW ENGINE INNODB STATUS
Section 14.5.3, “Adaptive Hash Index”
Section 14.5.1, “Buffer Pool”
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 14.7.5, “Deadlocks in InnoDB”
Section 14.17.2, “Enabling InnoDB Monitors”
Section B.2, “Error Information Interfaces”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 14.15.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 14.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 14.15.3, “InnoDB INFORMATION_SCHEMA System Tables”
Section 14.7.1, “InnoDB Locking”
Section 14.17.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.6.1.4, “Moving or Copying InnoDB Tables”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 8.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 14.8.10, “Purge Configuration”
Section 13.7.5.16, “SHOW ENGINE Statement”
Section 21.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”

SHOW ENGINE NDB STATUS
Section 18.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.6, “Management of NDB Cluster”
Section 18.7.4, “NDB Cluster Replication Schema and Tables”
Section 18.6.16, “Quick Reference: NDB Cluster SQL Statements”

SHOW ENGINE NDBCLUSTER STATUS
MySQL Server Options for NDB Cluster
Section 18.6.16, “Quick Reference: NDB Cluster SQL Statements”

4091

SHOW ENGINE PERFORMANCE_SCHEMA STATUS
Section 22.7, “Performance Schema Status Monitoring”
Section 13.7.5.16, “SHOW ENGINE Statement”

SHOW ENGINES
Chapter 15, Alternative Storage Engines
Section 14.1.3, “Checking InnoDB Availability”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 18.6.10, “MySQL Server Usage for NDB Cluster”
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 22.2, “Performance Schema Build Configuration”
Section 22.1, “Performance Schema Quick Start”
Section 18.6.16, “Quick Reference: NDB Cluster SQL Statements”
Section 2.3.4.3, “Selecting a MySQL Server Type”
Section 5.1.7, “Server System Variables”
Section 13.7.5.17, “SHOW ENGINES Statement”
Section 15.5, “The ARCHIVE Storage Engine”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 21.3.7, “The INFORMATION_SCHEMA ENGINES Table”

SHOW ERRORS
Section B.2, “Error Information Interfaces”
Section 13.6.7.3, “GET DIAGNOSTICS Statement”
Section 13.6.7.4, “RESIGNAL Statement”
Section 5.1.7, “Server System Variables”
Section 13.7.5.18, “SHOW ERRORS Statement”
Section 13.7.5.41, “SHOW WARNINGS Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

SHOW EVENTS
Section 20.4.4, “Event Metadata”
Section 17.4.1.16, “Replication of Invoked Features”
Section 13.7.5.19, “SHOW EVENTS Statement”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 21.3.8, “The INFORMATION_SCHEMA EVENTS Table”

SHOW FULL COLUMNS
Section 13.1.17, “CREATE TABLE Statement”
Section 21.3.6, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”

SHOW FULL PROCESSLIST
Section 8.14.1, “Accessing the Process List”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 14.13.2, “Online DDL Performance and Concurrency”

SHOW FULL TABLES
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”

SHOW FUNCTION CODE
Section 13.7.5.28, “SHOW PROCEDURE CODE Statement”

4092

Section 20.2.3, “Stored Routine Metadata”

SHOW FUNCTION STATUS
Section 13.7.5.29, “SHOW PROCEDURE STATUS Statement”
Section 20.2.3, “Stored Routine Metadata”

SHOW GLOBAL STATUS
NDB Cluster Status Variables
Section 5.1.7, “Server System Variables”
Section 21.3.9, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”

SHOW GLOBAL VARIABLES
Section 21.3.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

SHOW GRANTS
Section 6.2, “Access Control and Account Management”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.1.6, “REVOKE Statement”
Section 6.1.1, “Security Guidelines”
Section 13.7.5.22, “SHOW GRANTS Statement”
Section 13.7.5.27, “SHOW PRIVILEGES Statement”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”

SHOW INDEX
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 8.9.3, “Index Hints”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 18.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 4.6.3.4, “Other myisamchk Options”
Section 13.7.5.6, “SHOW COLUMNS Statement”
Section 13.7.5.23, “SHOW INDEX Statement”
Section 21.3.22, “The INFORMATION_SCHEMA STATISTICS Table”
Section 21.3.25, “The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table”

SHOW MASTER LOGS
Section 13.7.5.2, “SHOW BINARY LOGS Statement”

SHOW MASTER STATUS
Section 17.1.1.5, “Creating a Data Snapshot Using mysqldump”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 17.1.3.1, “GTID Concepts”
Section 17.4.5, “How to Report Replication Bugs or Problems”
Section 4.5.4, “mysqldump — A Database Backup Program”

4093

Section 18.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 17.1.1.4, “Obtaining the Replication Source Binary Log Coordinates”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 13.4.1, “SQL Statements for Controlling Replication Source Servers”
Section 14.20.6, “The InnoDB memcached Plugin and Replication”
Section 17.4.4, “Troubleshooting Replication”

SHOW OPEN TABLES
Section 13.7.5.25, “SHOW OPEN TABLES Statement”

SHOW PLUGINS
Section 6.4.2.1, “Connection-Control Plugin Installation”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 6.4.4.1, “Installing MySQL Enterprise Audit”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
MySQL Server Options for NDB Cluster
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 5.5.2, “Obtaining Server Plugin Information”
Section 6.4.1.6, “PAM Pluggable Authentication”
Chapter 19, Partitioning
Section 6.4.3.1, “Password Validation Plugin Installation”
Section 17.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.6, “Server Command Options”
Section 13.7.5.26, “SHOW PLUGINS Statement”
Section 6.4.1.8, “Socket Peer-Credential Pluggable Authentication”
Section 6.4.1.9, “Test Pluggable Authentication”
Section 21.5.2, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”
Section 21.3.15, “The INFORMATION_SCHEMA PLUGINS Table”
Section 5.5.3.2, “Thread Pool Installation”
Section 1.3, “What Is New in MySQL 5.6”
Section 6.4.1.7, “Windows Pluggable Authentication”

SHOW PRIVILEGES
Section 13.7.5.27, “SHOW PRIVILEGES Statement”

SHOW PROCEDURE CODE
Section 13.7.5.20, “SHOW FUNCTION CODE Statement”
Section 20.2.3, “Stored Routine Metadata”

SHOW PROCEDURE STATUS
Section 13.7.5.21, “SHOW FUNCTION STATUS Statement”
Section 20.2.3, “Stored Routine Metadata”

SHOW PROCESSLIST
Section 8.14.1, “Accessing the Process List”
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 17.1.5.1, “Checking Replication Status”
Command Probes
Section 5.1.11.1, “Connection Interfaces”
Connection Probes

4094

Section 17.3.10, “Delayed Replication”
Section 20.4.2, “Event Scheduler Configuration”
Section 13.7.1.4, “GRANT Statement”
Section 12.16, “Information Functions”
Section 14.21.4, “InnoDB Error Handling”
Section 13.7.6.4, “KILL Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 17.2.1.1, “Monitoring Replication Main Threads”
Section A.14, “MySQL 5.6 FAQ: Replication”
Section 18.6.10, “MySQL Server Usage for NDB Cluster”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 22.6, “Performance Schema Instrument Naming Conventions”
Section 22.12.5, “Performance Schema Stage Event Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Query Execution Probes
Query Probes
Section 17.2.1, “Replication Threads”
Section 13.7.5.30, “SHOW PROCESSLIST Statement”
Section 13.7.5.31, “SHOW PROFILE Statement”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 13.4.2.5, “START SLAVE Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 17.3.7, “Switching Sources During Failover”
Section 21.5.2, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”
Section 21.3.16, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 18.6.15.22, “The ndbinfo server_operations Table”
Section 18.6.15.23, “The ndbinfo server_transactions Table”
Section 22.12.10.3, “The threads Table”
Section B.3.2.6, “Too many connections”
Section 17.4.4, “Troubleshooting Replication”

SHOW PROFILE
Section 8.14.3, “General Thread States”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 22.18.1, “Query Profiling Using Performance Schema”
Section 5.1.7, “Server System Variables”
Section 13.7.5.31, “SHOW PROFILE Statement”
Section 13.7.5.32, “SHOW PROFILES Statement”
Section 21.3.17, “The INFORMATION_SCHEMA PROFILING Table”

SHOW PROFILES
Section 2.9.7, “MySQL Source-Configuration Options”
Section 22.18.1, “Query Profiling Using Performance Schema”
Section 5.1.7, “Server System Variables”
Section 13.7.5.31, “SHOW PROFILE Statement”
Section 13.7.5.32, “SHOW PROFILES Statement”
Section 21.3.17, “The INFORMATION_SCHEMA PROFILING Table”

SHOW RELAYLOG EVENTS
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.5.3, “SHOW BINLOG EVENTS Statement”
Section 13.7.5.33, “SHOW RELAYLOG EVENTS Statement”
Section 13.4.2, “SQL Statements for Controlling Replica Servers”

4095

SHOW REPLICA | SLAVE STATUS
Section A.14, “MySQL 5.6 FAQ: Replication”

SHOW SCHEMAS
Section 13.7.5.15, “SHOW DATABASES Statement”

SHOW SESSION STATUS
NDB Cluster Status Variables
Section 21.3.9, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”

SHOW SESSION VARIABLES
Section 21.3.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

SHOW SLAVE HOSTS
Section 17.1.5.1, “Checking Replication Status”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.1.4, “Replication and Binary Logging Options and Variables”
Section 17.1.4.2, “Replication Source Options and Variables”
Section 13.4.1, “SQL Statements for Controlling Replication Source Servers”

SHOW SLAVE STATUS
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 17.1.5.1, “Checking Replication Status”
Section 17.3.10, “Delayed Replication”
Section B.2, “Error Information Interfaces”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 17.1.3.1, “GTID Concepts”
Section 17.4.5, “How to Report Replication Bugs or Problems”
Section 18.7.8, “Implementing Failover with NDB Cluster Replication”
Section 17.1.1.9, “Introducing Additional Replicas to an Existing Replication Environment”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 17.2.1.1, “Monitoring Replication Main Threads”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.4.1.1, “PURGE BINARY LOGS Statement”
Section 17.4.1.27, “Replica Errors During Replication”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.1.4, “Replication and Binary Logging Options and Variables”
Section 17.2.2.2, “Replication Metadata Repositories”
Section 8.14.7, “Replication Replica I/O Thread States”
Section 17.2.1, “Replication Threads”
Section 17.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 13.7.5.24, “SHOW MASTER STATUS Statement”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 13.4.2, “SQL Statements for Controlling Replica Servers”
Section 13.4.2.5, “START SLAVE Statement”
Section 17.4.4, “Troubleshooting Replication”

SHOW STATUS
Section 17.1.5.1, “Checking Replication Status”

4096

Section 18.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 18.6, “Management of NDB Cluster”
MySQL Server Options for NDB Cluster
Section 18.6.14, “NDB API Statistics Counters and Variables”
Section 18.7, “NDB Cluster Replication”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 18.6.16, “Quick Reference: NDB Cluster SQL Statements”
Section 17.4.1.29, “Replication and Temporary Tables”
Section 17.4.1.30, “Replication Retries and Timeouts”
Section 20.8, “Restrictions on Stored Programs”
Section 17.3.9.3, “Semisynchronous Replication Monitoring”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.5.36, “SHOW STATUS Statement”
Section 8.3.9, “Use of Index Extensions”

SHOW STATUS LIKE 'perf%'
Section 22.7, “Performance Schema Status Monitoring”

SHOW TABLE STATUS
Section 12.19.1, “Aggregate Function Descriptions”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 13.1.17, “CREATE TABLE Statement”
Section 14.6.1.1, “Creating InnoDB Tables”
Section 13.8.2, “EXPLAIN Statement”
Section 14.12.2, “File Space Management”
Section 14.23, “InnoDB Restrictions and Limitations”
Section 14.11, “InnoDB Row Formats”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 19.3.5, “Obtaining Information About Partitions”
Section 13.7.5.6, “SHOW COLUMNS Statement”
Section 13.7.5.12, “SHOW CREATE TABLE Statement”
Section 13.7.5.37, “SHOW TABLE STATUS Statement”
Section 15.5, “The ARCHIVE Storage Engine”
Section 21.3.23, “The INFORMATION_SCHEMA TABLES Table”

SHOW TABLES
Section 3.3.2, “Creating a Table”
Section 21.9, “Extensions to SHOW Statements”
Section 9.2.3, “Identifier Case Sensitivity”
Section 14.15, “InnoDB INFORMATION_SCHEMA Tables”
Section 21.1, “Introduction”
Section 9.2.4, “Mapping of Identifiers to File Names”
MySQL Glossary
Section 18.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 5.1.6, “Server Command Options”
Section 13.7.5.37, “SHOW TABLE STATUS Statement”
Section 13.7.5.38, “SHOW TABLES Statement”

4097

Section B.3.2.15, “Table 'tbl_name' doesn't exist”
Section B.3.6.2, “TEMPORARY Table Problems”
Section 21.3.23, “The INFORMATION_SCHEMA TABLES Table”
Section 6.4.5.3, “Using MySQL Enterprise Firewall”

SHOW TABLES FROM some_ndb_database
Section 18.6.17.2, “NDB Cluster and MySQL Privileges”

SHOW TRIGGERS
Section A.5, “MySQL 5.6 FAQ: Triggers”
Section 13.7.5.39, “SHOW TRIGGERS Statement”
Section 21.3.27, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 20.3.2, “Trigger Metadata”

SHOW VARIABLES
Section 6.4.4.5, “Audit Log Filtering”
Section 20.4.2, “Event Scheduler Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 22.3, “Performance Schema Startup Configuration”
Section 22.18.1, “Query Profiling Using Performance Schema”
Section 18.6.16, “Quick Reference: NDB Cluster SQL Statements”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 17.3.9.3, “Semisynchronous Replication Monitoring”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 13.7.5.40, “SHOW VARIABLES Statement”
Section 18.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 5.1.8, “Using System Variables”

SHOW WARNINGS
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.1.7, “ALTER TABLE Statement”
Section 2.11.3, “Changes in MySQL 5.6”
Section 10.14.4.3, “Diagnostics During Index.xml Parsing”
Section 13.1.26, “DROP PROCEDURE and DROP FUNCTION Statements”
Section 13.1.28, “DROP TABLE Statement”
Section B.2, “Error Information Interfaces”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 9.2.5, “Function Name Parsing and Resolution”
Section 13.6.7.3, “GET DIAGNOSTICS Statement”
Section 13.2.6, “LOAD DATA Statement”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.2.2, “Optimizing Subqueries with Materialization”
Section 8.2.2.1, “Optimizing Subqueries with Semijoin Transformations”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 1.6.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 12.21.4, “Rounding Behavior”

4098

Section 5.1.7, “Server System Variables”
Section 13.7.5.18, “SHOW ERRORS Statement”
Section 13.7.5.41, “SHOW WARNINGS Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

SIGNAL
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Statement”
Section 13.6.7.2, “DECLARE ... HANDLER Statement”
Section 12.16, “Information Functions”
Section 13.6.7.4, “RESIGNAL Statement”
Section 13.6.7.9, “Restrictions on Condition Handling”
Section 20.8, “Restrictions on Stored Programs”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

START SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 17.3.10, “Delayed Replication”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 17.1.3.1, “GTID Concepts”
Section 18.7.8, “Implementing Failover with NDB Cluster Replication”
Section 17.1.1.9, “Introducing Additional Replicas to an Existing Replication Environment”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
Section 18.5.22, “ndb_restore — Restore an NDB Cluster Backup”
Section 6.1.2.3, “Passwords and Logging”
Section 17.1.5.2, “Pausing Replication on the Slave”
Section 17.4.1.27, “Replica Errors During Replication”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.3.5, “Replicating Different Databases to Different Replicas”
Section 17.1.4, “Replication and Binary Logging Options and Variables”
Section 17.2.1, “Replication Threads”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 17.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 13.4.2.5, “START SLAVE Statement”
Section 18.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 13.4.2.6, “STOP SLAVE Statement”
Section 17.3.7, “Switching Sources During Failover”
Section 17.4.4, “Troubleshooting Replication”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 18.7.7, “Using Two Replication Channels for NDB Cluster Replication”
Section 1.3, “What Is New in MySQL 5.6”

START SLAVE UNTIL
Section 17.1.4.3, “Replica Server Options and Variables”

START SLAVE UNTIL SQL_AFTER_MTS_GAPS
Section 17.3.2, “Handling an Unexpected Halt of a Replica Server”

4099

Section 17.1.4.3, “Replica Server Options and Variables”
Section 13.4.2.5, “START SLAVE Statement”

START TRANSACTION
Section 14.7.2.2, “autocommit, Commit, and Rollback”
Section 13.6.1, “BEGIN ... END Compound Statement”
Section 13.7.6.3, “FLUSH Statement”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.7.2.4, “Locking Reads”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 8.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 20.8, “Restrictions on Stored Programs”
Section 17.3.9, “Semisynchronous Replication”
Section 5.1.7, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 13.3, “Transactional and Locking Statements”
Section 20.3.1, “Trigger Syntax and Examples”
Section 13.3.7.2, “XA Transaction States”

START TRANSACTION READ ONLY
MySQL Glossary
Section 8.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 1.3, “What Is New in MySQL 5.6”

START TRANSACTION WITH CONSISTENT SNAPSHOT
Section 14.7.2.3, “Consistent Nonlocking Reads”

STATS_PERSISTENT=0
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”

STATS_PERSISTENT=1
Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”

STOP SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 17.1.5.1, “Checking Replication Status”
Section 17.3.10, “Delayed Replication”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 17.1.1.9, “Introducing Additional Replicas to an Existing Replication Environment”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 17.1.5.2, “Pausing Replication on the Slave”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.1.4, “Replication and Binary Logging Options and Variables”
Section 13.4.1.2, “RESET MASTER Statement”
Section 13.4.2.3, “RESET SLAVE Statement”
Section 17.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 13.4.2.5, “START SLAVE Statement”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 13.4.2.6, “STOP SLAVE Statement”
Section 17.3.7, “Switching Sources During Failover”

4100

Section 17.1.2.2, “Usage of Row-Based Logging and Replication”
Section 1.3, “What Is New in MySQL 5.6”

STOP SLAVE SQL_THREAD
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

T

[index top]

TRUNCATE TABLE
Section 14.20.5.5, “Adapting DML Statements to memcached Operations”
Section 18.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 18.6.1, “Commands in the NDB Cluster Management Client”
Section 15.2.3.3, “Compressed Table Characteristics”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 13.2.2, “DELETE Statement”
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 22.4.3, “Event Pre-Filtering”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 22.12.9.5, “File I/O Summary Tables”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 13.2.4, “HANDLER Statement”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.20.7, “InnoDB memcached Plugin Internals”
Section 18.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 18.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 19.3.4, “Maintenance of Partitions”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 15.7.2, “MERGE Table Problems”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.5.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 22.12.9.4, “Object Wait Summary Table”
Section 8.5.7, “Optimizing InnoDB DDL Operations”
Section 22.12.7, “Performance Schema Connection Tables”
Section 22.4.1, “Performance Schema Event Timing”
Section 22.11, “Performance Schema General Table Characteristics”
Section 22.12.9, “Performance Schema Summary Tables”
Section 18.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.4.1.20, “Replication and MEMORY Tables”
Section 17.4.1.34, “Replication and TRUNCATE TABLE”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 22.12.9.7, “Socket Summary Tables”
Section 22.12.9.2, “Stage Summary Tables”
Section 22.12.9.3, “Statement Summary Tables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 22.12.7.1, “The accounts Table”
Section 22.12.3.1, “The cond_instances Table”

4101

Section 22.12.5.1, “The events_stages_current Table”
Section 22.12.5.2, “The events_stages_history Table”
Section 22.12.5.3, “The events_stages_history_long Table”
Section 22.12.6.1, “The events_statements_current Table”
Section 22.12.6.2, “The events_statements_history Table”
Section 22.12.6.3, “The events_statements_history_long Table”
Section 22.12.4.1, “The events_waits_current Table”
Section 22.12.4.2, “The events_waits_history Table”
Section 22.12.4.3, “The events_waits_history_long Table”
Section 22.12.3.2, “The file_instances Table”
Section 22.12.10.1, “The host_cache Table”
Section 22.12.7.2, “The hosts Table”
Section 21.4.22, “The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table”
Section 21.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 14.20.6, “The InnoDB memcached Plugin and Replication”
Section 15.3, “The MEMORY Storage Engine”
Section 22.12.3.3, “The mutex_instances Table”
Section 22.12.10.2, “The performance_timers Table”
Section 22.12.3.4, “The rwlock_instances Table”
Section 22.12.8.1, “The session_account_connect_attrs Table”
Section 22.12.8.2, “The session_connect_attrs Table”
Section 22.12.2.1, “The setup_actors Table”
Section 22.12.2.2, “The setup_consumers Table”
Section 22.12.2.3, “The setup_instruments Table”
Section 22.12.2.4, “The setup_objects Table”
Section 22.12.2.5, “The setup_timers Table”
Section 22.12.3.5, “The socket_instances Table”
The table_io_waits_summary_by_index_usage Table
The table_io_waits_summary_by_table Table
The table_lock_waits_summary_by_table Table
Section 22.12.10.3, “The threads Table”
Section 22.12.7.3, “The users Table”
Section 13.1.33, “TRUNCATE TABLE Statement”
Section 22.12.9.1, “Wait Event Summary Tables”

TRUNCATE TABLE performance_schema.host_cache
Section 13.7.6.3, “FLUSH Statement”

U

[index top]

UNINSTALL PLUGIN
Section 13.7.6.3, “FLUSH Statement”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 6.4.1.6, “PAM Pluggable Authentication”
Section 22.17, “Performance Schema and Plugins”
Section 15.11.1, “Pluggable Storage Engine Architecture”
Section 13.7.5.26, “SHOW PLUGINS Statement”
Section 6.4.1.8, “Socket Peer-Credential Pluggable Authentication”

4102

Section 6.4.1.9, “Test Pluggable Authentication”
Section 21.3.15, “The INFORMATION_SCHEMA PLUGINS Table”
Section 13.7.3.4, “UNINSTALL PLUGIN Statement”
Section 6.4.1.7, “Windows Pluggable Authentication”

UNION
Section 12.8.3, “Character Set and Collation of Function Results”
Section 13.1.17, “CREATE TABLE Statement”
Section 13.1.20, “CREATE VIEW Statement”
Section 8.8.2, “EXPLAIN Output Format”
Section 12.16, “Information Functions”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 11.1.6, “Numeric Type Attributes”
Section 8.2.2.1, “Optimizing Subqueries with Semijoin Transformations”
Section 8.2.1.2, “Range Optimization”
Section 3.6.7, “Searching on Two Keys”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 13.2.9, “SELECT Statement”
Section 5.1.9, “Server Status Variables”
Section 13.2.10, “Subqueries”
Section 15.7, “The MERGE Storage Engine”
Section 13.2.9.3, “UNION Clause”
Section 20.5.3, “Updatable and Insertable Views”
Section 8.4.2.4, “Using PROCEDURE ANALYSE”
Section 20.5.2, “View Processing Algorithms”
Section 20.5.1, “View Syntax”
Section 12.12, “XML Functions”

UNION ALL
Section 12.16, “Information Functions”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 13.2.9.3, “UNION Clause”
Section 20.5.3, “Updatable and Insertable Views”
Section 20.5.2, “View Processing Algorithms”

UNION DISTINCT
Section 13.2.9.3, “UNION Clause”

UNLOCK TABLES
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 13.7.6.3, “FLUSH Statement”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 20.8, “Restrictions on Stored Programs”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 8.12.1, “System Factors”

4103

UPDATE
Section 6.2, “Access Control and Account Management”
Section 6.2.6, “Access Control, Stage 2: Request Verification”
Section 6.2.7, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 12.4.4, “Assignment Operators”
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 14.1.2, “Best Practices for InnoDB Tables”
Section 17.1.4.4, “Binary Log Options and Variables”
Section 12.1, “Built-In Function and Operator Reference”
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 14.5.2, “Change Buffer”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 10.7, “Column Character Set Conversion”
Section 14.9.6, “Compression for OLTP Workloads”
Section 14.8.12, “Configuring the Merge Threshold for Index Pages”
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 1.6.3.3, “Constraints on Invalid Data”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.17.2, “CREATE TEMPORARY TABLE Statement”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 13.1.20, “CREATE VIEW Statement”
Section 15.8.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 11.5, “Data Type Default Values”
Section 11.2.1, “Date and Time Data Type Syntax”
Section 14.7.5, “Deadlocks in InnoDB”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Statement”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.21.2, “Forcing InnoDB Recovery”
Section 1.6.2.3, “FOREIGN KEY Constraint Differences”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 12.10.5, “Full-Text Restrictions”
Section 8.2.1.17, “Function Call Optimization”
Chapter 12, Functions and Operators
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.3, “Grant Tables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 18.6.9, “Importing Data Into MySQL Cluster”
Section 8.9.3, “Index Hints”
Section 12.16, “Information Functions”
Section 14.7.1, “InnoDB Locking”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 13.2.5.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 13.2.5, “INSERT Statement”
Section 17.2.3.3, “Interactions Between Replication Filtering Options”
Section 8.11.1, “Internal Locking Methods”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 21.1, “Introduction”

4104

Section 13.2.9.2, “JOIN Clause”
Section 13.7.6.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 13.2.6, “LOAD DATA Statement”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.7.2.4, “Locking Reads”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 12.20, “Miscellaneous Functions”
Section A.4, “MySQL 5.6 FAQ: Stored Procedures and Functions”
Section 4.5.1.1, “mysql Client Options”
Section 4.5.1.6, “mysql Client Tips”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.6.8.2, “mysqlbinlog Row Event Display”
Section 18.6.11.1, “NDB Cluster Disk Data Objects”
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
Section 14.13.1, “Online DDL Operations”
Section 12.4, “Operators”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 8.2.4, “Optimizing Data Change Statements”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.2, “Optimizing Subqueries and Derived Tables”
Section 11.1.7, “Out-of-Range and Overflow Handling”
Section 19.1, “Overview of Partitioning in MySQL”
Section 19.4, “Partition Pruning”
Section 19.5, “Partition Selection”
Section 19.6.4, “Partitioning and Locking”
Section 6.1.2.3, “Passwords and Logging”
Section 1.6.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 6.2.2, “Privileges Provided by MySQL”
Section B.3.4.2, “Problems Using DATE Columns”
Section 14.8.10, “Purge Configuration”
Section 17.4.1.27, “Replica Errors During Replication”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.17, “Replication and LIMIT”
Section 17.4.1.22, “Replication and the Query Optimizer”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 13.2.10.11, “Rewriting Subqueries as Joins”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 3.3.4.1, “Selecting All Data”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.10, “Server SQL Modes”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.5.41, “SHOW WARNINGS Statement”
Statement Probes
Section 13.2.10, “Subqueries”
Section 13.2.10.9, “Subquery Errors”
Section 8.11.2, “Table Locking Issues”
Section 15.5, “The ARCHIVE Storage Engine”
Section 10.8.5, “The binary Collation Compared to _bin Collations”
Section 5.4.4, “The Binary Log”

4105

Section 15.6, “The BLACKHOLE Storage Engine”
Section 21.4.25, “The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View”
Section 21.3.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 1.2.2, “The Main Features of MySQL”
Section 15.7, “The MERGE Storage Engine”
Section 15.2, “The MyISAM Storage Engine”
Section 5.1.15, “The Server Shutdown Process”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 20.3.1, “Trigger Syntax and Examples”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 14.6.7, “Undo Logs”
Section 20.5.3, “Updatable and Insertable Views”
Section 1.6.2.2, “UPDATE Differences”
Section 13.2.11, “UPDATE Statement”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”
Section 1.3, “What Is New in MySQL 5.6”
Section 6.2.8, “When Privilege Changes Take Effect”
Section 8.2.1.1, “WHERE Clause Optimization”

UPDATE ... ()
Section 14.7.2.3, “Consistent Nonlocking Reads”

UPDATE ... WHERE
Section 14.7.5, “Deadlocks in InnoDB”

UPDATE ... WHERE ...
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”

UPDATE IGNORE
Section 5.1.10, “Server SQL Modes”
Section 13.2.11, “UPDATE Statement”

UPDATE t1,t2 ...
Statement Probes

USE
Section 17.1.4.4, “Binary Log Options and Variables”
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 3.3.1, “Creating and Selecting a Database”
Section 3.3, “Creating and Using a Database”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 17.2.3.3, “Interactions Between Replication Filtering Options”
Section 21.1, “Introduction”
Section 4.5.1.1, “mysql Client Options”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 20.2.1, “Stored Routine Syntax”

4106

Section 13.8.4, “USE Statement”

USE db2
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

USE db_name
Section 4.5.1.1, “mysql Client Options”

USE test
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”

W

[index top]

WHERE
Section 14.1.1, “Benefits of Using InnoDB Tables”

WHILE
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Statement”
Section 13.6.5.4, “LEAVE Statement”
Section 13.6.2, “Statement Labels”
Section 13.6.5.8, “WHILE Statement”

X

[index top]

XA COMMIT
Section 2.12.4, “Downgrading Binary and Package-based Installations on Unix/Linux”
Section 5.1.7, “Server System Variables”
Section 2.11.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 13.3.7.2, “XA Transaction States”

XA END
Section 13.3.7.3, “Restrictions on XA Transactions”
Section 13.3.7.1, “XA Transaction SQL Statements”
Section 13.3.7.2, “XA Transaction States”

XA PREPARE
Section 13.3.7.2, “XA Transaction States”

XA RECOVER
Section 2.12.4, “Downgrading Binary and Package-based Installations on Unix/Linux”
Section 2.11.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 13.3.7.1, “XA Transaction SQL Statements”
Section 13.3.7.2, “XA Transaction States”

XA ROLLBACK
Section 2.12.4, “Downgrading Binary and Package-based Installations on Unix/Linux”

4107

Section 5.1.7, “Server System Variables”
Section 2.11.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 13.3.7.2, “XA Transaction States”

XA START
Section 13.3.7.3, “Restrictions on XA Transactions”
Section 13.3.7.1, “XA Transaction SQL Statements”
Section 13.3.7.2, “XA Transaction States”

XA START xid
Section 13.3.7.1, “XA Transaction SQL Statements”

Status Variable Index
A | B | C | D | F | H | I | K | L | M | N | O | P | Q | R | S | T | U | V

A

[index top]

Aborted_clients
Section B.3.2.10, “Communication Errors and Aborted Connections”
Section 5.1.9, “Server Status Variables”

Aborted_connects
Section B.3.2.10, “Communication Errors and Aborted Connections”
Section 5.1.9, “Server Status Variables”

Audit_log_current_size
Section 6.4.4.6, “Audit Log Reference”

Audit_log_event_max_drop_size
Section 6.4.4.6, “Audit Log Reference”

Audit_log_events
Section 6.4.4.6, “Audit Log Reference”

Audit_log_events_filtered
Section 6.4.4.6, “Audit Log Reference”

Audit_log_events_lost
Section 6.4.4.6, “Audit Log Reference”

Audit_log_events_written
Section 6.4.4.6, “Audit Log Reference”

Audit_log_total_size
Section 6.4.4.6, “Audit Log Reference”

Audit_log_write_waits
Section 6.4.4.6, “Audit Log Reference”

4108

B

[index top]

Binlog_cache_disk_use
Section 17.1.4.4, “Binary Log Options and Variables”
Section 5.1.9, “Server Status Variables”
Section 5.4.4, “The Binary Log”

Binlog_cache_use
Section 17.1.4.4, “Binary Log Options and Variables”
Section 5.1.9, “Server Status Variables”
Section 5.4.4, “The Binary Log”

Binlog_stmt_cache_disk_use
Section 17.1.4.4, “Binary Log Options and Variables”
Section 5.1.9, “Server Status Variables”

Binlog_stmt_cache_use
Section 17.1.4.4, “Binary Log Options and Variables”
Section 5.1.9, “Server Status Variables”

Bytes_received
Section 5.1.9, “Server Status Variables”

Bytes_sent
Section 5.1.9, “Server Status Variables”

C

[index top]

Com_flush
Section 5.1.9, “Server Status Variables”

Com_stmt_reprepare
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”

Compression
Section 5.1.9, “Server Status Variables”

Connection_control_delay_generated
Section 6.4.2.1, “Connection-Control Plugin Installation”
Section 6.4.2.2, “Connection-Control System and Status Variables”

Connection_errors_accept
Section 5.1.9, “Server Status Variables”

Connection_errors_internal
Section 5.1.9, “Server Status Variables”

4109

Connection_errors_max_connections
Section 5.1.11.1, “Connection Interfaces”
Section 5.1.9, “Server Status Variables”

Connection_errors_peer_address
Section 5.1.9, “Server Status Variables”

Connection_errors_select
Section 5.1.9, “Server Status Variables”

Connection_errors_tcpwrap
Section 5.1.9, “Server Status Variables”

Connection_errors_xxx
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 5.1.9, “Server Status Variables”
Section 1.3, “What Is New in MySQL 5.6”

Connections
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Created_tmp_disk_tables
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 22.12.6.1, “The events_statements_current Table”

Created_tmp_files
Section 5.1.9, “Server Status Variables”

Created_tmp_tables
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.5.36, “SHOW STATUS Statement”
Section 22.12.6.1, “The events_statements_current Table”

D

[index top]

Delayed_errors
Section 5.1.9, “Server Status Variables”

Delayed_insert_threads
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 5.1.9, “Server Status Variables”

Delayed_writes
Section 13.2.5.3, “INSERT DELAYED Statement”

4110

Section 5.1.9, “Server Status Variables”

F

[index top]

Firewall_access_denied
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”

Firewall_access_granted
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”
Section 6.4.5.3, “Using MySQL Enterprise Firewall”

Firewall_access_suspicious
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”

Firewall_cached_entries
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”

Flush_commands
Section 5.1.9, “Server Status Variables”

H

[index top]

Handler_commit
Section 5.1.9, “Server Status Variables”

Handler_delete
Section 5.1.9, “Server Status Variables”

Handler_discover
NDB Cluster Status Variables

Handler_external_lock
Section 5.1.9, “Server Status Variables”

Handler_mrr_init
Section 5.1.9, “Server Status Variables”

Handler_prepare
Section 5.1.9, “Server Status Variables”

Handler_read_first
Section 5.1.9, “Server Status Variables”

Handler_read_key
Section 5.1.9, “Server Status Variables”

4111

Handler_read_last
Section 5.1.9, “Server Status Variables”

Handler_read_next
Section 5.1.9, “Server Status Variables”
Section 8.3.9, “Use of Index Extensions”

Handler_read_prev
Section 5.1.9, “Server Status Variables”

Handler_read_rnd
Section 5.1.9, “Server Status Variables”

Handler_read_rnd_next
Section 5.1.9, “Server Status Variables”

Handler_rollback
Section 5.1.9, “Server Status Variables”

Handler_savepoint
Section 5.1.9, “Server Status Variables”

Handler_savepoint_rollback
Section 5.1.9, “Server Status Variables”

Handler_update
Section 5.1.9, “Server Status Variables”

Handler_write
Section 5.1.9, “Server Status Variables”

I

[index top]

Innodb_available_undo_logs
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_bytes_data
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_bytes_dirty
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_dump_status
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_load_status
Section 5.1.9, “Server Status Variables”

4112

Innodb_buffer_pool_pages_data
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_pages_dirty
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_pages_flushed
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_pages_free
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_pages_latched
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_pages_misc
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_pages_total
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_read_ahead
Section 14.8.3.3, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_read_ahead_evicted
Section 14.8.3.3, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_read_ahead_rnd
Section 14.8.3.3, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_read_requests
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_reads
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_wait_free
Section 5.1.9, “Server Status Variables”

Innodb_buffer_pool_write_requests
Section 5.1.9, “Server Status Variables”

Innodb_data_fsyncs
Section 14.14, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”

4113

Innodb_data_pending_fsyncs
Section 5.1.9, “Server Status Variables”

Innodb_data_pending_reads
Section 5.1.9, “Server Status Variables”

Innodb_data_pending_writes
Section 5.1.9, “Server Status Variables”

Innodb_data_read
Section 5.1.9, “Server Status Variables”

Innodb_data_reads
Section 5.1.9, “Server Status Variables”

Innodb_data_writes
Section 5.1.9, “Server Status Variables”

Innodb_data_written
Section 5.1.9, “Server Status Variables”

Innodb_dblwr_pages_written
Section 5.1.9, “Server Status Variables”

Innodb_dblwr_writes
Section 5.1.9, “Server Status Variables”

Innodb_have_atomic_builtins
Section 5.1.9, “Server Status Variables”

Innodb_log_waits
Section 5.1.9, “Server Status Variables”

Innodb_log_write_requests
Section 5.1.9, “Server Status Variables”

Innodb_log_writes
Section 5.1.9, “Server Status Variables”

Innodb_num_open_files
Section 5.1.9, “Server Status Variables”

Innodb_os_log_fsyncs
Section 5.1.9, “Server Status Variables”

Innodb_os_log_pending_fsyncs
Section 5.1.9, “Server Status Variables”

Innodb_os_log_pending_writes
Section 5.1.9, “Server Status Variables”

4114

Innodb_os_log_written
Section 14.14, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”

Innodb_page_size
Section 5.1.9, “Server Status Variables”

Innodb_pages_created
Section 5.1.9, “Server Status Variables”

Innodb_pages_read
Section 5.1.9, “Server Status Variables”

Innodb_pages_written
Section 5.1.9, “Server Status Variables”

Innodb_row_lock_current_waits
Section 5.1.9, “Server Status Variables”

Innodb_row_lock_time
Section 5.1.9, “Server Status Variables”

Innodb_row_lock_time_avg
Section 5.1.9, “Server Status Variables”

Innodb_row_lock_time_max
Section 5.1.9, “Server Status Variables”

Innodb_row_lock_waits
Section 5.1.9, “Server Status Variables”

Innodb_rows_deleted
Section 5.1.9, “Server Status Variables”

Innodb_rows_inserted
Section 5.1.9, “Server Status Variables”

Innodb_rows_read
Section 5.1.9, “Server Status Variables”

Innodb_rows_updated
Section 5.1.9, “Server Status Variables”

Innodb_truncated_status_writes
Section 5.1.9, “Server Status Variables”

K

[index top]

4115

Key_blocks_not_flushed
Section 5.1.9, “Server Status Variables”

Key_blocks_unused
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Key_blocks_used
Section 5.1.9, “Server Status Variables”

Key_read_requests
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Key_reads
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Key_write_requests
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Key_writes
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

L

[index top]

Last_query_cost
Section 5.1.9, “Server Status Variables”

Last_query_partial_plans
Section 5.1.9, “Server Status Variables”

M

[index top]

Max_used_connections
Section 13.7.6.3, “FLUSH Statement”
Section 5.1.9, “Server Status Variables”

N

[index top]

Ndb_api_adaptive_send_deferred_count
NDB Cluster Status Variables

4116

Ndb_api_adaptive_send_deferred_count_session
NDB Cluster Status Variables

Ndb_api_adaptive_send_deferred_count_slave
NDB Cluster Status Variables

Ndb_api_adaptive_send_forced_count
NDB Cluster Status Variables

Ndb_api_adaptive_send_forced_count_session
NDB Cluster Status Variables

Ndb_api_adaptive_send_forced_count_slave
NDB Cluster Status Variables

Ndb_api_adaptive_send_unforced_count
NDB Cluster Status Variables

Ndb_api_adaptive_send_unforced_count_session
NDB Cluster Status Variables

Ndb_api_adaptive_send_unforced_count_slave
NDB Cluster Status Variables

Ndb_api_bytes_received_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_received_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_received_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_sent_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_sent_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_sent_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_bytes_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

4117

Ndb_api_event_bytes_count_injector
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_data_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_data_count_injector
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_nondata_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_nondata_count_injector
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pk_op_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pk_op_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pk_op_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pruned_scan_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pruned_scan_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pruned_scan_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_range_scan_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_range_scan_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

4118

Ndb_api_range_scan_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_read_row_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_read_row_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_read_row_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_scan_batch_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_scan_batch_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_scan_batch_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_table_scan_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_table_scan_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_table_scan_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_abort_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_abort_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_abort_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

4119

Ndb_api_trans_close_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_close_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_close_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_commit_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_commit_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_commit_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_local_read_row_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_local_read_row_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_local_read_row_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_start_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_start_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_start_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_uk_op_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

4120

Ndb_api_uk_op_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_uk_op_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_exec_complete_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_exec_complete_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_exec_complete_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_meta_request_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_meta_request_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_meta_request_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_nanos_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_nanos_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_nanos_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_scan_result_count
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_scan_result_count_session
Section 18.6.14, “NDB API Statistics Counters and Variables”

4121

NDB Cluster Status Variables

Ndb_api_wait_scan_result_count_slave
Section 18.6.14, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_cluster_node_id
NDB Cluster Status Variables

Ndb_config_from_host
NDB Cluster Status Variables

Ndb_config_from_port
NDB Cluster Status Variables

Ndb_conflict_fn_epoch
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_epoch2
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_epoch2_trans
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_epoch_trans
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_max
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_max_del_win
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_old
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_last_conflict_epoch
NDB Cluster Status Variables

Ndb_conflict_last_stable_epoch
NDB Cluster Status Variables

Ndb_conflict_reflected_op_discard_count
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”

4122

NDB Cluster Status Variables

Ndb_conflict_reflected_op_prepare_count
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_refresh_op_count
NDB Cluster Status Variables

Ndb_conflict_trans_conflict_commit_count
NDB Cluster Status Variables

Ndb_conflict_trans_detect_iter_count
NDB Cluster Status Variables

Ndb_conflict_trans_reject_count
NDB Cluster Status Variables

Ndb_conflict_trans_row_conflict_count
NDB Cluster Status Variables

Ndb_conflict_trans_row_reject_count
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_epoch_delete_delete_count
NDB Cluster Status Variables

Ndb_execute_count
NDB Cluster Status Variables

Ndb_last_commit_epoch_server
NDB Cluster Status Variables

Ndb_last_commit_epoch_session
NDB Cluster Status Variables

Ndb_number_of_data_nodes
NDB Cluster Status Variables

Ndb_pruned_scan_count
NDB Cluster Status Variables

Ndb_pushed_queries_defined
NDB Cluster Status Variables
NDB Cluster System Variables

Ndb_pushed_queries_dropped
NDB Cluster Status Variables

4123

NDB Cluster System Variables

Ndb_pushed_queries_executed
NDB Cluster Status Variables
NDB Cluster System Variables

Ndb_pushed_reads
NDB Cluster Status Variables
NDB Cluster System Variables

Ndb_scan_count
NDB Cluster Status Variables

Ndb_slave_max_replicated_epoch
NDB Cluster Status Variables

Not_flushed_delayed_rows
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 5.1.9, “Server Status Variables”

O

[index top]

Open_files
Section 5.1.9, “Server Status Variables”

Open_streams
Section 5.1.9, “Server Status Variables”

Open_table_definitions
Section 5.1.9, “Server Status Variables”

Open_tables
Section 5.1.9, “Server Status Variables”

Opened_files
Section 5.1.9, “Server Status Variables”

Opened_table_definitions
Section 5.1.9, “Server Status Variables”

Opened_tables
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

P

[index top]

4124

Performance_schema_accounts_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_cond_classes_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_cond_instances_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_digest_lost
Section 22.16, “Performance Schema Status Variables”
Section 22.15, “Performance Schema System Variables”

Performance_schema_file_classes_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_file_handles_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_file_instances_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_hosts_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_locker_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_mutex_classes_lost
Section 22.7, “Performance Schema Status Monitoring”
Section 22.16, “Performance Schema Status Variables”

Performance_schema_mutex_instances_lost
Section 22.7, “Performance Schema Status Monitoring”
Section 22.16, “Performance Schema Status Variables”

Performance_schema_rwlock_classes_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_rwlock_instances_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_session_connect_attrs_lost
Section 22.12.8, “Performance Schema Connection Attribute Tables”
Section 22.16, “Performance Schema Status Variables”
Section 22.15, “Performance Schema System Variables”

Performance_schema_socket_classes_lost
Section 22.16, “Performance Schema Status Variables”

4125

Performance_schema_socket_instances_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_stage_classes_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_statement_classes_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_table_handles_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_table_instances_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_thread_classes_lost
Section 22.16, “Performance Schema Status Variables”

Performance_schema_thread_instances_lost
Section 22.16, “Performance Schema Status Variables”
Section 22.15, “Performance Schema System Variables”

Performance_schema_users_lost
Section 22.16, “Performance Schema Status Variables”

Prepared_stmt_count
Section 5.1.9, “Server Status Variables”

Q

[index top]

Qcache_free_blocks
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 5.1.9, “Server Status Variables”

Qcache_free_memory
Section 5.1.9, “Server Status Variables”

Qcache_hits
Section 8.10.3.1, “How the Query Cache Operates”
Section 5.1.9, “Server Status Variables”

Qcache_inserts
Section 5.1.9, “Server Status Variables”

Qcache_lowmem_prunes
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and Maintenance”

4126

Section 5.1.9, “Server Status Variables”

Qcache_not_cached
Section 5.1.9, “Server Status Variables”

Qcache_queries_in_cache
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.9, “Server Status Variables”

Qcache_total_blocks
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 5.1.9, “Server Status Variables”

Queries
Section 5.1.9, “Server Status Variables”

Questions
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 5.1.9, “Server Status Variables”

R

[index top]

Rpl_semi_sync_master_clients
Section 17.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.9.3, “Semisynchronous Replication Monitoring”
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_net_avg_wait_time
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_net_wait_time
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_net_waits
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_no_times
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_no_tx
Section 17.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.9.3, “Semisynchronous Replication Monitoring”
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_status
Section 17.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.9.3, “Semisynchronous Replication Monitoring”
Section 5.1.9, “Server Status Variables”

4127

Rpl_semi_sync_master_timefunc_failures
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_tx_avg_wait_time
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_tx_wait_time
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_tx_waits
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_wait_pos_backtraverse
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_wait_sessions
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_master_yes_tx
Section 17.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.9.3, “Semisynchronous Replication Monitoring”
Section 5.1.9, “Server Status Variables”

Rpl_semi_sync_slave_status
Section 17.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.9.3, “Semisynchronous Replication Monitoring”
Section 5.1.9, “Server Status Variables”

Rsa_public_key
Section 5.1.9, “Server Status Variables”
Section 6.4.1.4, “SHA-256 Pluggable Authentication”
Section 6.3.4, “SSL Library-Dependent Capabilities”

S

[index top]

Select_full_join
Section 5.1.9, “Server Status Variables”
Section 22.12.6.1, “The events_statements_current Table”

Select_full_range_join
Section 5.1.9, “Server Status Variables”
Section 22.12.6.1, “The events_statements_current Table”

Select_range
Section 5.1.9, “Server Status Variables”
Section 22.12.6.1, “The events_statements_current Table”

Select_range_check
Section 5.1.9, “Server Status Variables”

4128

Section 22.12.6.1, “The events_statements_current Table”

Select_scan
Section 5.1.9, “Server Status Variables”
Section 22.12.6.1, “The events_statements_current Table”

Slave_heartbeat_period
Section 5.1.9, “Server Status Variables”

Slave_last_heartbeat
Section 17.1.5.1, “Checking Replication Status”
Section 5.1.9, “Server Status Variables”

Slave_open_temp_tables
Section 17.4.1.29, “Replication and Temporary Tables”
Section 5.1.9, “Server Status Variables”

Slave_received_heartbeats
Section 5.1.9, “Server Status Variables”

Slave_retried_transactions
Section 5.1.9, “Server Status Variables”

Slave_rows_last_search_algorithm_used
Section 5.1.9, “Server Status Variables”

Slave_running
Section 5.1.9, “Server Status Variables”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”

Slow_launch_threads
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Slow_queries
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Sort_merge_passes
Section 8.2.1.13, “ORDER BY Optimization”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 22.12.6.1, “The events_statements_current Table”

Sort_range
Section 5.1.9, “Server Status Variables”
Section 22.12.6.1, “The events_statements_current Table”

Sort_rows
Section 5.1.9, “Server Status Variables”
Section 22.12.6.1, “The events_statements_current Table”

4129

Sort_scan
Section 5.1.9, “Server Status Variables”
Section 22.12.6.1, “The events_statements_current Table”

Ssl_accept_renegotiates
Section 5.1.9, “Server Status Variables”

Ssl_accepts
Section 5.1.9, “Server Status Variables”

Ssl_callback_cache_hits
Section 5.1.9, “Server Status Variables”

Ssl_cipher
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 5.1.9, “Server Status Variables”

Ssl_cipher_list
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 5.1.9, “Server Status Variables”

Ssl_client_connects
Section 5.1.9, “Server Status Variables”

Ssl_connect_renegotiates
Section 5.1.9, “Server Status Variables”

Ssl_ctx_verify_depth
Section 5.1.9, “Server Status Variables”

Ssl_ctx_verify_mode
Section 5.1.9, “Server Status Variables”

Ssl_default_timeout
Section 5.1.9, “Server Status Variables”

Ssl_finished_accepts
Section 5.1.9, “Server Status Variables”

Ssl_finished_connects
Section 5.1.9, “Server Status Variables”

Ssl_server_not_after
Section 5.1.9, “Server Status Variables”

Ssl_server_not_before
Section 5.1.9, “Server Status Variables”

Ssl_session_cache_hits
Section 5.1.9, “Server Status Variables”

4130

Ssl_session_cache_misses
Section 5.1.9, “Server Status Variables”

Ssl_session_cache_mode
Section 5.1.9, “Server Status Variables”

Ssl_session_cache_overflows
Section 5.1.9, “Server Status Variables”

Ssl_session_cache_size
Section 5.1.9, “Server Status Variables”

Ssl_session_cache_timeouts
Section 5.1.9, “Server Status Variables”

Ssl_sessions_reused
Section 5.1.9, “Server Status Variables”

Ssl_used_session_cache_entries
Section 5.1.9, “Server Status Variables”

Ssl_verify_depth
Section 5.1.9, “Server Status Variables”

Ssl_verify_mode
Section 5.1.9, “Server Status Variables”

Ssl_version
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 5.1.9, “Server Status Variables”

T

[index top]

Table_locks_immediate
Section 8.11.1, “Internal Locking Methods”
Section 5.1.9, “Server Status Variables”

Table_locks_waited
Section 8.11.1, “Internal Locking Methods”
Section 5.1.9, “Server Status Variables”

Table_open_cache_hits
Section 5.1.9, “Server Status Variables”

Table_open_cache_misses
Section 5.1.9, “Server Status Variables”

Table_open_cache_overflows
Section 5.1.9, “Server Status Variables”

4131

Tc_log_max_pages_used
Section 5.1.9, “Server Status Variables”

Tc_log_page_size
Section 5.1.9, “Server Status Variables”

Tc_log_page_waits
Section 5.1.9, “Server Status Variables”

Threads_cached
Section 5.1.11.1, “Connection Interfaces”
Section 5.1.9, “Server Status Variables”

Threads_connected
Section 5.1.9, “Server Status Variables”

Threads_created
Section 5.1.11.1, “Connection Interfaces”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

Threads_running
Section A.15, “MySQL 5.6 FAQ: MySQL Enterprise Thread Pool”
Section 5.1.9, “Server Status Variables”

U

[index top]

Uptime
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 5.1.9, “Server Status Variables”

Uptime_since_flush_status
Section 5.1.9, “Server Status Variables”

V

[index top]

validate_password_dictionary_file_last_parsed
Section 6.4.3.2, “Password Validation Plugin Options and Variables”

validate_password_dictionary_file_words_count
Section 6.4.3.2, “Password Validation Plugin Options and Variables”

System Variable Index
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W

4132

A

[index top]

audit_log_buffer_size
Section 6.4.4.6, “Audit Log Reference”
Section 6.4.4.4, “Configuring Audit Logging Characteristics”

audit_log_connection_policy
Section 6.4.4.5, “Audit Log Filtering”
Section 6.4.4.6, “Audit Log Reference”

audit_log_current_session
Section 6.4.4.6, “Audit Log Reference”

audit_log_exclude_accounts
Section 6.4.4.5, “Audit Log Filtering”
Section 6.4.4.6, “Audit Log Reference”

audit_log_file
Section 6.4.4.6, “Audit Log Reference”
Section 6.4.4.4, “Configuring Audit Logging Characteristics”
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”
Section 6.4.4, “MySQL Enterprise Audit”
Section 6.4.4.2, “MySQL Enterprise Audit Security Considerations”

audit_log_flush
Section 6.4.4.6, “Audit Log Reference”
Section 6.4.4.4, “Configuring Audit Logging Characteristics”

audit_log_format
Section 6.4.4.3, “Audit Log File Formats”
Section 6.4.4.6, “Audit Log Reference”
Section 6.4.4.4, “Configuring Audit Logging Characteristics”
Section 6.4.4, “MySQL Enterprise Audit”

audit_log_include_accounts
Section 6.4.4.5, “Audit Log Filtering”
Section 6.4.4.6, “Audit Log Reference”

audit_log_policy
Section 6.4.4.5, “Audit Log Filtering”
Section 6.4.4.6, “Audit Log Reference”
Section 5.1.8, “Using System Variables”

audit_log_rotate_on_size
Section 6.4.4.6, “Audit Log Reference”
Section 6.4.4.4, “Configuring Audit Logging Characteristics”

audit_log_statement_policy
Section 6.4.4.5, “Audit Log Filtering”

4133

Section 6.4.4.6, “Audit Log Reference”

audit_log_strategy
Section 6.4.4.6, “Audit Log Reference”
Section 6.4.4.4, “Configuring Audit Logging Characteristics”

authentication_windows_log_level
Section 5.1.7, “Server System Variables”
Section 6.4.1.7, “Windows Pluggable Authentication”

authentication_windows_use_principal_name
Section 5.1.7, “Server System Variables”
Section 6.4.1.7, “Windows Pluggable Authentication”

auto_increment_increment
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.1, “MySQL 5.6 FAQ: General”
Section 17.4.1.35, “Replication and Variables”
Section 17.1.4.2, “Replication Source Options and Variables”
Section 3.6.9, “Using AUTO_INCREMENT”

auto_increment_offset
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.1, “MySQL 5.6 FAQ: General”
Section 17.4.1.35, “Replication and Variables”
Section 17.1.4.2, “Replication Source Options and Variables”
Section 3.6.9, “Using AUTO_INCREMENT”

AUTOCOMMIT
Section 17.4.1.32, “Replication and Transactions”

autocommit
Section 14.7.2.2, “autocommit, Commit, and Rollback”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 14.7.5.2, “Deadlock Detection”
Section 13.2.2, “DELETE Statement”
Section 14.2, “InnoDB and the ACID Model”
Section 14.7, “InnoDB Locking and Transaction Model”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.7.2.4, “Locking Reads”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 14.6.1.4, “Moving or Copying InnoDB Tables”
NDB Cluster System Variables
Section 8.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 14.8.10, “Purge Configuration”
Section 17.4.1.32, “Replication and Transactions”
Section 17.1.3.4, “Restrictions on Replication with GTIDs”
Section 5.1.7, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”

4134

Section 21.4.26, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 5.5.3.3, “Thread Pool Operation”
Section 14.7.2.1, “Transaction Isolation Levels”

automatic_sp_privileges
Section 13.1.5, “ALTER PROCEDURE Statement”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 20.2.2, “Stored Routines and MySQL Privileges”

avoid_temporal_upgrade
Section 2.11.3, “Changes in MySQL 5.6”
NDB Cluster System Variables
Section 5.1.7, “Server System Variables”

B

[index top]

back_log
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 5.1.7, “Server System Variables”

basedir
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

big_tables
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.6”

bind_address
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 5.1.12.2, “Configuring the MySQL Server to Permit IPv6 Connections”
Section 5.1.12.4, “Connecting Using IPv6 Nonlocal Host Addresses”
Section 5.1.12.3, “Connecting Using the IPv6 Local Host Address”
Section 5.1.12, “IPv6 Support”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 5.1.12.5, “Obtaining an IPv6 Address from a Broker”
Section 5.7, “Running Multiple MySQL Instances on One Machine”
Section 5.1.7, “Server System Variables”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”

binlog_cache_size
Section 17.1.4.4, “Binary Log Options and Variables”
Section 5.1.9, “Server Status Variables”
Section 5.4.4, “The Binary Log”

4135

binlog_checksum
Section 17.1.4.4, “Binary Log Options and Variables”
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
MySQL Glossary
Section 17.4.2, “Replication Compatibility Between MySQL Versions”
Section 5.4.4, “The Binary Log”
Section 1.3, “What Is New in MySQL 5.6”

binlog_direct_non_transactional_updates
Section 17.1.4.4, “Binary Log Options and Variables”
Section 17.4.1.32, “Replication and Transactions”

binlog_error_action
Section 17.1.4.4, “Binary Log Options and Variables”
Section 5.4.4, “The Binary Log”

binlog_format
Section 17.1.4.4, “Binary Log Options and Variables”
Section 2.11.3, “Changes in MySQL 5.6”
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 17.2.3.2, “Evaluation of Table-Level Replication Options”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 12.16, “Information Functions”
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 17.2.3.3, “Interactions Between Replication Filtering Options”
Section 12.15, “Locking Functions”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 12.6.2, “Mathematical Functions”
Section 12.20, “Miscellaneous Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.14, “MySQL 5.6 FAQ: Replication”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.2.2, “Privileges Provided by MySQL”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.2, “Replication and BLACKHOLE Tables”
Section 17.4.1.18, “Replication and LOAD DATA”
Section 17.4.1.20, “Replication and MEMORY Tables”
Section 17.4.1.29, “Replication and Temporary Tables”
Section 17.4.1.32, “Replication and Transactions”
Section 17.1.2, “Replication Formats”
Section 17.4.1.21, “Replication of the mysql System Database”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 20.7, “Stored Program Binary Logging”
Section 5.1.8.1, “System Variable Privileges”
Section 15.6, “The BLACKHOLE Storage Engine”
Section 5.4.3, “The General Query Log”
Section 14.20.6, “The InnoDB memcached Plugin and Replication”
Section 5.4.5, “The Slow Query Log”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 17.4.3, “Upgrading a Replication Setup”

4136

Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

binlog_gtid_simple_recovery
Section 17.1.4.5, “Global Transaction ID Options and Variables”

binlog_max_flush_queue_time
Section 17.1.4.4, “Binary Log Options and Variables”

binlog_order_commits
Section 17.1.4.4, “Binary Log Options and Variables”

binlog_row_image
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.4.4, “Binary Log Options and Variables”
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 17.4.2, “Replication Compatibility Between MySQL Versions”
Section 1.3, “What Is New in MySQL 5.6”

binlog_rows_query_log_events
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.4.2, “Replication Compatibility Between MySQL Versions”

binlog_stmt_cache_size
Section 17.1.4.4, “Binary Log Options and Variables”
Section 5.1.9, “Server Status Variables”

binlogging_impossible_mode
Section 17.1.4.4, “Binary Log Options and Variables”

block_encryption_mode
Section 12.14, “Encryption and Compression Functions”
Section 5.1.7, “Server System Variables”

bulk_insert_buffer_size
Section 15.2.1, “MyISAM Startup Options”
Section 8.2.4.1, “Optimizing INSERT Statements”
Section 5.1.7, “Server System Variables”

C

[index top]

character_set_client
Section 10.15, “Character Set Configuration”
Section 10.4, “Connection Character Sets and Collations”
Section 13.2.6, “LOAD DATA Statement”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.4.2, “SET CHARACTER SET Statement”
Section 13.7.4.3, “SET NAMES Statement”

4137

Section 13.7.5.9, “SHOW CREATE EVENT Statement”
Section 13.7.5.11, “SHOW CREATE PROCEDURE Statement”
Section 13.7.5.13, “SHOW CREATE TRIGGER Statement”
Section 13.7.5.14, “SHOW CREATE VIEW Statement”
Section 13.7.5.19, “SHOW EVENTS Statement”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Statement”
Section 13.7.5.39, “SHOW TRIGGERS Statement”
Section 5.4.4, “The Binary Log”
Section 21.3.8, “The INFORMATION_SCHEMA EVENTS Table”
Section 21.3.19, “The INFORMATION_SCHEMA ROUTINES Table”
Section 21.3.27, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 21.3.29, “The INFORMATION_SCHEMA VIEWS Table”

character_set_connection
Section 12.11, “Cast Functions and Operators”
Section 12.8.3, “Character Set and Collation of Function Results”
Section 10.3.8, “Character Set Introducers”
Section 10.2.1, “Character Set Repertoire”
Section 10.3.6, “Character String Literal Character Set and Collation”
Section 10.8.4, “Collation Coercibility in Expressions”
Section 10.4, “Connection Character Sets and Collations”
Section 12.7, “Date and Time Functions”
Section 12.14, “Encryption and Compression Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 10.16, “MySQL Server Locale Support”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.4.2, “SET CHARACTER SET Statement”
Section 13.7.4.3, “SET NAMES Statement”
Section 9.1.1, “String Literals”
Section 12.3, “Type Conversion in Expression Evaluation”

character_set_database
Section 13.1.7, “ALTER TABLE Statement”
Section 10.4, “Connection Character Sets and Collations”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 10.3.3, “Database Character Set and Collation”
Section 13.2.6, “LOAD DATA Statement”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.4.2, “SET CHARACTER SET Statement”

character_set_filesystem
Section 13.2.6, “LOAD DATA Statement”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 5.1.7, “Server System Variables”
Section 12.8, “String Functions and Operators”

character_set_results
Section 10.4, “Connection Character Sets and Collations”
Section 10.6, “Error Message Character Set”

4138

Section A.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 5.1.7, “Server System Variables”
Section 13.7.4.2, “SET CHARACTER SET Statement”
Section 13.7.4.3, “SET NAMES Statement”
Section 10.2.2, “UTF-8 for Metadata”

character_set_server
Section 10.15, “Character Set Configuration”
Section 10.4, “Connection Character Sets and Collations”
Section 10.3.3, “Database Character Set and Collation”
Section 12.10.4, “Full-Text Stopwords”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.3, “Replication and Character Sets”
Section 17.4.1.35, “Replication and Variables”
Section 10.3.2, “Server Character Set and Collation”
Section 5.1.7, “Server System Variables”

character_set_system
Section 10.15, “Character Set Configuration”
Section 5.1.7, “Server System Variables”
Section 10.2.2, “UTF-8 for Metadata”

character_sets_dir
Section 10.14.3, “Adding a Simple Collation to an 8-Bit Character Set”
Section 10.14.4.1, “Defining a UCA Collation Using LDML Syntax”
Section 5.1.7, “Server System Variables”

collation_connection
Section 12.11, “Cast Functions and Operators”
Section 12.8.3, “Character Set and Collation of Function Results”
Section 10.3.8, “Character Set Introducers”
Section 10.3.6, “Character String Literal Character Set and Collation”
Section 10.8.4, “Collation Coercibility in Expressions”
Section 10.4, “Connection Character Sets and Collations”
Section 12.7, “Date and Time Functions”
Section 12.14, “Encryption and Compression Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.4.3, “SET NAMES Statement”
Section 13.7.5.9, “SHOW CREATE EVENT Statement”
Section 13.7.5.11, “SHOW CREATE PROCEDURE Statement”
Section 13.7.5.13, “SHOW CREATE TRIGGER Statement”
Section 13.7.5.14, “SHOW CREATE VIEW Statement”
Section 13.7.5.19, “SHOW EVENTS Statement”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Statement”
Section 13.7.5.39, “SHOW TRIGGERS Statement”
Section 5.4.4, “The Binary Log”
Section 21.3.8, “The INFORMATION_SCHEMA EVENTS Table”
Section 21.3.19, “The INFORMATION_SCHEMA ROUTINES Table”
Section 21.3.27, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 21.3.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 12.3, “Type Conversion in Expression Evaluation”

4139

collation_database
Section 10.4, “Connection Character Sets and Collations”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 10.3.3, “Database Character Set and Collation”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 5.4.4, “The Binary Log”

collation_server
Section 10.4, “Connection Character Sets and Collations”
Section 10.3.3, “Database Character Set and Collation”
Section 12.10.4, “Full-Text Stopwords”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.35, “Replication and Variables”
Section 10.3.2, “Server Character Set and Collation”
Section 5.1.7, “Server System Variables”
Section 5.4.4, “The Binary Log”

completion_type
Section 5.1.7, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”

concurrent_insert
Section 8.11.3, “Concurrent Inserts”
Section 8.11.1, “Internal Locking Methods”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

connect_timeout
Section B.3.2.10, “Communication Errors and Aborted Connections”
Section B.3.2.3, “Lost connection to MySQL server”
Section 5.1.7, “Server System Variables”

connection_control_failed_connections_threshold
Section 6.4.2.1, “Connection-Control Plugin Installation”
Section 6.4.2.2, “Connection-Control System and Status Variables”
Section 21.7.2, “The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS
Table”

connection_control_max_connection_delay
Section 6.4.2.1, “Connection-Control Plugin Installation”
Section 6.4.2.2, “Connection-Control System and Status Variables”

connection_control_min_connection_delay
Section 6.4.2.1, “Connection-Control Plugin Installation”
Section 6.4.2.2, “Connection-Control System and Status Variables”

core_file
Section 5.1.7, “Server System Variables”

4140

create_old_temporals
NDB Cluster System Variables

D

[index top]

daemon_memcached_enable_binlog
Section 14.14, “InnoDB Startup Options and System Variables”

daemon_memcached_engine_lib_name
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.20.3, “Setting Up the InnoDB memcached Plugin”

daemon_memcached_engine_lib_path
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.20.3, “Setting Up the InnoDB memcached Plugin”

daemon_memcached_option
Section 14.20.2, “InnoDB memcached Architecture”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.20.4, “Security Considerations for the InnoDB memcached Plugin”
Section 14.20.3, “Setting Up the InnoDB memcached Plugin”
Section 14.20.8, “Troubleshooting the InnoDB memcached Plugin”

daemon_memcached_r_batch_size
Section 14.20.2, “InnoDB memcached Architecture”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.20.5.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 14.20.3, “Setting Up the InnoDB memcached Plugin”
Section 14.20.6, “The InnoDB memcached Plugin and Replication”
Section 14.20.5.3, “Tuning InnoDB memcached Plugin Performance”

daemon_memcached_w_batch_size
Section 14.20.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 14.20.2, “InnoDB memcached Architecture”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.20.5.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 14.20.3, “Setting Up the InnoDB memcached Plugin”
Section 14.20.6, “The InnoDB memcached Plugin and Replication”
Section 14.20.5.3, “Tuning InnoDB memcached Plugin Performance”

datadir
Section 14.8.1, “InnoDB Startup Configuration”
Section 2.3, “Installing MySQL on Microsoft Windows”
MySQL Glossary
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

date_format
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.6”

4141

datetime_format
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.6”

debug
Section 5.1.7, “Server System Variables”
Section 5.8.3, “The DBUG Package”

debug_sync
Section 5.1.7, “Server System Variables”

default
Section 15.1, “Setting the Storage Engine”
Section 14.1.4, “Testing and Benchmarking with InnoDB”

default_storage_engine
Section 13.1.14, “CREATE LOGFILE GROUP Statement”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 15.1, “Setting the Storage Engine”
Section 17.3.3, “Using Replication with Different Source and Replica Storage Engines”

default_tmp_storage_engine
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 5.1.7, “Server System Variables”
Section 15.1, “Setting the Storage Engine”

default_week_format
Section 12.7, “Date and Time Functions”
Section 19.6.3, “Partitioning Limitations Relating to Functions”
Section 5.1.7, “Server System Variables”

delay_key_write
Section 13.1.17, “CREATE TABLE Statement”
Section 8.11.5, “External Locking”
Section A.14, “MySQL 5.6 FAQ: Replication”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

delayed_insert_limit
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 5.1.7, “Server System Variables”

delayed_insert_timeout
Section 13.2.5.3, “INSERT DELAYED Statement”
Section 5.1.7, “Server System Variables”

delayed_queue_size
Section 13.2.5.3, “INSERT DELAYED Statement”

4142

Section 5.1.7, “Server System Variables”

disconnect_on_expired_password
Section 6.2.10, “Server Handling of Expired Passwords”
Section 5.1.7, “Server System Variables”

div_precision_increment
Section 12.6.1, “Arithmetic Operators”
Section 5.1.7, “Server System Variables”

E

[index top]

end_markers_in_json
Section 5.1.7, “Server System Variables”

enforce_gtid_consistency
Section 17.1.3.5, “Disabling GTID Transactions”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 1.3, “What Is New in MySQL 5.6”

eq_range_index_dive_limit
Section 8.2.1.2, “Range Optimization”
Section 5.1.7, “Server System Variables”

error_count
Section B.2, “Error Information Interfaces”
Section 5.1.7, “Server System Variables”
Section 13.7.5.18, “SHOW ERRORS Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

event
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”

event_scheduler
Section 20.4.2, “Event Scheduler Configuration”
Section 23.6.2, “Restrictions When Using the Embedded MySQL Server”
Section 5.1.7, “Server System Variables”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”

expire_logs_days
Section 17.1.4.4, “Binary Log Options and Variables”
Section 13.4.1.1, “PURGE BINARY LOGS Statement”
Section 5.4.7, “Server Log Maintenance”

explicit_defaults_for_timestamp
Section 11.2.6, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 2.11.3, “Changes in MySQL 5.6”
Section 11.5, “Data Type Default Values”

4143

Section 11.2.1, “Date and Time Data Type Syntax”
Section B.3.4.3, “Problems with NULL Values”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.6”

external_user
Section 6.4.4.3, “Audit Log File Formats”
Section 6.2.12, “Proxy Users”
Section 5.1.7, “Server System Variables”

F

[index top]

flush
Section 5.1.7, “Server System Variables”

flush_time
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

foreign_key_checks
Section 13.1.7, “ALTER TABLE Statement”
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 18.6.9, “Importing Data Into MySQL Cluster”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 5.4.4.3, “Mixed Binary Logging Format”
NDB Cluster System Variables
Section 14.13.1, “Online DDL Operations”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 5.4.4, “The Binary Log”

ft_boolean_syntax
Section 12.10.2, “Boolean Full-Text Searches”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 5.1.7, “Server System Variables”

ft_max_word_len
Section 12.10.2, “Boolean Full-Text Searches”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 5.1.7, “Server System Variables”

ft_min_word_len
Section 12.10.2, “Boolean Full-Text Searches”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.10.1, “Natural Language Full-Text Searches”

4144

Section 5.1.7, “Server System Variables”

ft_query_expansion_limit
Section 5.1.7, “Server System Variables”

ft_stopword_file
Section 12.10.2, “Boolean Full-Text Searches”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.10.4, “Full-Text Stopwords”
Section 12.10.1, “Natural Language Full-Text Searches”
Section 5.1.7, “Server System Variables”

G

[index top]

general_log
MySQL Glossary
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 5.4.3, “The General Query Log”
Section 1.3, “What Is New in MySQL 5.6”

general_log_file
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 5.4.3, “The General Query Log”
Section 1.3, “What Is New in MySQL 5.6”

group_concat_max_len
Section 12.19.1, “Aggregate Function Descriptions”
Section 5.1.7, “Server System Variables”

gtid_executed
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 17.1.3.1, “GTID Concepts”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 13.4.1.2, “RESET MASTER Statement”
Section 17.1.3.4, “Restrictions on Replication with GTIDs”
Section 13.7.5.24, “SHOW MASTER STATUS Statement”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”

gtid_mode
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 17.1.3.5, “Disabling GTID Transactions”
Section 12.18, “Functions Used with Global Transaction IDs”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”

4145

Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.2, “Replication Compatibility Between MySQL Versions”
Section 17.1.3.4, “Restrictions on Replication with GTIDs”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 17.4.3, “Upgrading a Replication Setup”
Section 2.11.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 1.3, “What Is New in MySQL 5.6”

gtid_next
Section 13.1.6, “ALTER SERVER Statement”
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 13.7.6.2, “CACHE INDEX Statement”
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 13.7.2.2, “CHECK TABLE Statement”
Section 13.1.16, “CREATE SERVER Statement”
Section 13.1.27, “DROP SERVER Statement”
Section 13.7.6.3, “FLUSH Statement”
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 17.1.3.1, “GTID Concepts”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Statement”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 13.7.2.5, “REPAIR TABLE Statement”
Section 13.7.6.6, “RESET Statement”
Section 13.4.2.5, “START SLAVE Statement”
Section 13.4.2.6, “STOP SLAVE Statement”

gtid_owned
Section 17.1.4.5, “Global Transaction ID Options and Variables”

gtid_purged
Section 17.1.4.5, “Global Transaction ID Options and Variables”
Section 17.1.3.1, “GTID Concepts”
Section 13.4.1.2, “RESET MASTER Statement”
Section 17.1.3.3, “Using GTIDs for Failover and Scaleout”

H

[index top]

have_compress
Section 5.1.7, “Server System Variables”

have_crypt
Section 5.1.7, “Server System Variables”

have_dynamic_loading
Section 17.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.7, “Server System Variables”

have_geometry
Section 5.1.7, “Server System Variables”

4146

have_openssl
Section 5.1.7, “Server System Variables”

have_profiling
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.6”

have_query_cache
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.7, “Server System Variables”

have_rtree_keys
Section 5.1.7, “Server System Variables”

have_ssl
Section 2.9.6, “Configuring SSL Library Support”
Section 5.1.7, “Server System Variables”

have_symlink
Section 5.1.7, “Server System Variables”
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

host_cache_size
Section 5.1.2.1, “Changes to Server Defaults”
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 22.12.10.1, “The host_cache Table”
Section 1.3, “What Is New in MySQL 5.6”

hostname
Section 5.1.7, “Server System Variables”

I

[index top]

identity
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.7, “Server System Variables”

ignore_db_dirs
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

init_connect
Section 10.5, “Configuring Application Character Set and Collation”
Section 6.2.2, “Privileges Provided by MySQL”

4147

Section 17.1.4.3, “Replica Server Options and Variables”
Section 5.1.7, “Server System Variables”
Section 22.12.10.1, “The host_cache Table”

init_file
Section 8.10.2.2, “Multiple Key Caches”
Section 22.4, “Performance Schema Runtime Configuration”
Section 17.4.1.20, “Replication and MEMORY Tables”
Resetting the Root Password: Unix and Unix-Like Systems
Resetting the Root Password: Windows Systems
Section 5.1.7, “Server System Variables”
Section 15.3, “The MEMORY Storage Engine”

init_slave
Section 17.1.4.3, “Replica Server Options and Variables”

innodb
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section A.16, “MySQL 5.6 FAQ: InnoDB Change Buffer”
Section 1.3, “What Is New in MySQL 5.6”

innodb_adaptive_flushing
Section 14.8.3.4, “Configuring Buffer Pool Flushing”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_adaptive_flushing_lwm
Section 14.8.3.4, “Configuring Buffer Pool Flushing”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_adaptive_hash_index
Section 14.5.3, “Adaptive Hash Index”
Section 14.8.5, “Configuring Thread Concurrency for InnoDB”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.9, “Optimizing InnoDB Configuration Variables”
Section 13.1.33, “TRUNCATE TABLE Statement”

innodb_adaptive_max_sleep_delay
Section 14.8.5, “Configuring Thread Concurrency for InnoDB”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_additional_mem_pool_size
Section 14.8.4, “Configuring the Memory Allocator for InnoDB”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 5.6”

innodb_api_bk_commit_interval
Section 14.20.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 14.20.2, “InnoDB memcached Architecture”
Section 14.14, “InnoDB Startup Options and System Variables”

4148

innodb_api_disable_rowlock
Section 14.20.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_api_enable_binlog
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.20.6, “The InnoDB memcached Plugin and Replication”

innodb_api_enable_mdl
Section 14.20.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 14.20.2, “InnoDB memcached Architecture”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_api_trx_level
Section 14.20.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 14.20.2, “InnoDB memcached Architecture”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_autoextend_increment
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.6.3.1, “The System Tablespace”

innodb_autoinc_lock_mode
Section 14.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 8.5.5, “Bulk Data Loading for InnoDB Tables”
Section 12.16, “Information Functions”
Section 14.7.1, “InnoDB Locking”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
MySQL Glossary

innodb_buffer_pool_dump_at_shutdown
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_buffer_pool_dump_now
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_buffer_pool_filename
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.8.3.5, “Saving and Restoring the Buffer Pool State”

innodb_buffer_pool_instances
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 14.8.3.4, “Configuring Buffer Pool Flushing”

4149

Section 14.8.3.1, “Configuring Multiple Buffer Pool Instances”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.20.5.3, “Tuning InnoDB memcached Plugin Performance”

innodb_buffer_pool_load_abort
Section 14.14, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”

innodb_buffer_pool_load_at_startup
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 5.1.9, “Server Status Variables”

innodb_buffer_pool_load_now
Section 14.14, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”

innodb_buffer_pool_size
Section 14.5.1, “Buffer Pool”
Section 14.9.6, “Compression for OLTP Workloads”
Section 14.8.3.1, “Configuring Multiple Buffer Pool Instances”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 14.20.2, “InnoDB memcached Architecture”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 5.1.9, “Server Status Variables”
Section 14.20.5.3, “Tuning InnoDB memcached Plugin Performance”

innodb_change_buffer_max_size
Section 14.5.2, “Change Buffer”
Section 14.14, “InnoDB Startup Options and System Variables”
Section A.16, “MySQL 5.6 FAQ: InnoDB Change Buffer”
MySQL Glossary

innodb_change_buffering
Section 14.5.2, “Change Buffer”
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.2, “Optimizing InnoDB Transaction Management”

innodb_change_buffering_debug
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_checksum_algorithm
Section 14.1.1, “Benefits of Using InnoDB Tables”

4150

Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 1.3, “What Is New in MySQL 5.6”

innodb_checksums
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_cmp_per_index_enabled
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.9.4, “Monitoring InnoDB Table Compression at Runtime”
Section 21.4.7, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 14.9.3, “Tuning Compression for InnoDB Tables”

innodb_commit_concurrency
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_compression_failure_threshold_pct
Section 14.9.6, “Compression for OLTP Workloads”
Section 14.9.5, “How Compression Works for InnoDB Tables”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.9.3, “Tuning Compression for InnoDB Tables”
Section 1.3, “What Is New in MySQL 5.6”

innodb_compression_level
Section 14.9.6, “Compression for OLTP Workloads”
Section 14.9.5, “How Compression Works for InnoDB Tables”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.9.3, “Tuning Compression for InnoDB Tables”
Section 1.3, “What Is New in MySQL 5.6”

innodb_compression_pad_pct_max
Section 14.9.6, “Compression for OLTP Workloads”
Section 14.9.5, “How Compression Works for InnoDB Tables”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.9.3, “Tuning Compression for InnoDB Tables”
Section 1.3, “What Is New in MySQL 5.6”

innodb_concurrency_tickets
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 14.8.5, “Configuring Thread Concurrency for InnoDB”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 8.5.9, “Optimizing InnoDB Configuration Variables”
Section 21.4.26, “The INFORMATION_SCHEMA INNODB_TRX Table”

4151

innodb_data_file_path
Section 5.1.2.1, “Changes to Server Defaults”
Section 14.12.2, “File Space Management”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 14.6.3.1, “The System Tablespace”
Section 14.21.1, “Troubleshooting InnoDB I/O Problems”

innodb_data_home_dir
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 14.21.1, “Troubleshooting InnoDB I/O Problems”

innodb_deadlock_detect
MySQL Glossary

innodb_default_row_format
MySQL Glossary

innodb_disable_sort_file_cache
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_doublewrite
Section 14.6.5, “Doublewrite Buffer”
Section 14.12.1, “InnoDB Disk I/O”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.20.5.3, “Tuning InnoDB memcached Plugin Performance”

innodb_fast_shutdown
Section 14.10.2.1, “Compatibility Check When InnoDB Is Started”
Section 2.12.4, “Downgrading Binary and Package-based Installations on Unix/Linux”
Section 14.18.2, “InnoDB Recovery”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.6.6, “Redo Log”
Section 5.1.15, “The Server Shutdown Process”
Section 2.11.4, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”

innodb_fil_make_page_dirty_debug
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_file_format
Section 14.10.2.2, “Compatibility Check When a Table Is Opened”
Section 14.10.2.1, “Compatibility Check When InnoDB Is Started”
Section 10.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.17, “CREATE TABLE Statement”
Section 14.9.2, “Enabling Compression for a Table”
Section 14.10.1, “Enabling File Formats”

4152

Section 14.10.3, “Identifying the File Format in Use”
Section 14.11, “InnoDB Row Formats”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.9.7, “SQL Compression Syntax Warnings and Errors”

innodb_file_format_check
Section 14.10.2.2, “Compatibility Check When a Table Is Opened”
Section 14.10.2.1, “Compatibility Check When InnoDB Is Started”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_file_format_max
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_file_per_table
Section 14.1.2, “Best Practices for InnoDB Tables”
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 10.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.17, “CREATE TABLE Statement”
Section 14.6.1.1, “Creating InnoDB Tables”
Section 14.6.1.2, “Creating Tables Externally”
Section 14.9.2, “Enabling Compression for a Table”
Section 14.10.1, “Enabling File Formats”
Section 14.12.2, “File Space Management”
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 13.1.17.1, “Files Created by CREATE TABLE”
Section 13.7.6.3, “FLUSH Statement”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 14.2, “InnoDB and the ACID Model”
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.11, “InnoDB Row Formats”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.17.4, “InnoDB Tablespace Monitor Output”
MySQL Glossary
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 14.12.5, “Reclaiming Disk Space with TRUNCATE TABLE”
Section 17.3.5, “Replicating Different Databases to Different Replicas”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 14.9.7, “SQL Compression Syntax Warnings and Errors”
Section 14.21.3, “Troubleshooting InnoDB Data Dictionary Operations”

innodb_flush_log_at_timeout
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.5.4, “Log Buffer”

innodb_flush_log_at_trx_commit
Section 17.1.4.4, “Binary Log Options and Variables”
Section 14.2, “InnoDB and the ACID Model”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.5.4, “Log Buffer”
Section 8.5.2, “Optimizing InnoDB Transaction Management”

4153

Section 17.4.1.26, “Replication and Source or Replica Shutdowns”
Section 14.20.5.3, “Tuning InnoDB memcached Plugin Performance”

innodb_flush_method
Section 14.6.3.2, “File-Per-Table Tablespaces”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 5.1.9, “Server Status Variables”
Section 14.20.5.3, “Tuning InnoDB memcached Plugin Performance”

innodb_flush_neighbors
Section 14.8.3.4, “Configuring Buffer Pool Flushing”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”

innodb_flushing_avg_loops
Section 14.8.3.4, “Configuring Buffer Pool Flushing”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_force_load_corrupted
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_force_recovery
Section 13.1.28, “DROP TABLE Statement”
Section 14.21.2, “Forcing InnoDB Recovery”
Section 1.5, “How to Report Bugs or Problems”
Section 14.18.2, “InnoDB Recovery”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 2.11.10, “Rebuilding or Repairing Tables or Indexes”

innodb_ft_aux_table
Section 14.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 21.4.8, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 21.4.9, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 21.4.11, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 21.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 21.4.13, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”

innodb_ft_cache_size
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 21.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”

innodb_ft_enable_diag_print
Section 14.14, “InnoDB Startup Options and System Variables”

4154

innodb_ft_enable_stopword
Section 12.10.2, “Boolean Full-Text Searches”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 12.10.1, “Natural Language Full-Text Searches”

innodb_ft_max_token_size
Section 12.10.2, “Boolean Full-Text Searches”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.10.4, “Full-Text Stopwords”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_ft_min_token_size
Section 12.10.2, “Boolean Full-Text Searches”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.10.4, “Full-Text Stopwords”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 12.10.1, “Natural Language Full-Text Searches”

innodb_ft_num_word_optimize
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”

innodb_ft_result_cache_limit
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_ft_server_stopword_table
Section 12.10.2, “Boolean Full-Text Searches”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.10.4, “Full-Text Stopwords”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 12.10.1, “Natural Language Full-Text Searches”
Section 21.4.10, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”

innodb_ft_sort_pll_degree
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_ft_total_cache_size
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 21.4.12, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”

innodb_ft_user_stopword_table
Section 12.10.2, “Boolean Full-Text Searches”
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.10.4, “Full-Text Stopwords”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 12.10.1, “Natural Language Full-Text Searches”
Section 21.4.10, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”

4155

innodb_io_capacity
Section 14.8.3.4, “Configuring Buffer Pool Flushing”
Section 14.8.8, “Configuring InnoDB I/O Capacity”
Section 14.14, “InnoDB Startup Options and System Variables”
Section A.16, “MySQL 5.6 FAQ: InnoDB Change Buffer”
Section 8.5.8, “Optimizing InnoDB Disk I/O”

innodb_io_capacity_max
Section 14.8.3.4, “Configuring Buffer Pool Flushing”
Section 14.8.8, “Configuring InnoDB I/O Capacity”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 8.5.8, “Optimizing InnoDB Disk I/O”

innodb_large_prefix
Section 8.3.4, “Column Indexes”
Section 10.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”
Section 13.1.13, “CREATE INDEX Statement”
Section 13.1.17, “CREATE TABLE Statement”
Section 2.12.3, “Downgrade Notes”
Section 14.10, “InnoDB File-Format Management”
Section 14.22, “InnoDB Limits”
Section 14.11, “InnoDB Row Formats”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_limit_optimistic_insert_debug
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_lock_wait_timeout
Section 14.7.5.2, “Deadlock Detection”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.30, “Replication Retries and Timeouts”

innodb_locks_unsafe_for_binlog
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 14.7.1, “InnoDB Locking”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
MySQL Glossary
Section 14.7.2.1, “Transaction Isolation Levels”

innodb_log_buffer_size
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.5.4, “Log Buffer”
MySQL Glossary
Section 8.5.4, “Optimizing InnoDB Redo Logging”

innodb_log_checkpoint_now
Section 14.14, “InnoDB Startup Options and System Variables”

4156

innodb_log_compressed_pages
Section 14.9.6, “Compression for OLTP Workloads”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 1.3, “What Is New in MySQL 5.6”

innodb_log_file_size
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 14.8.3.4, “Configuring Buffer Pool Flushing”
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section 2.12.3, “Downgrade Notes”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 8.5.4, “Optimizing InnoDB Redo Logging”
Section 14.6.6, “Redo Log”
Section 5.1.8, “Using System Variables”
Section 1.3, “What Is New in MySQL 5.6”

innodb_log_files_in_group
Section 2.11.3, “Changes in MySQL 5.6”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 8.5.4, “Optimizing InnoDB Redo Logging”
Section 14.6.6, “Redo Log”
Section 1.3, “What Is New in MySQL 5.6”

innodb_log_group_home_dir
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

innodb_lru_scan_depth
Section 14.8.3.4, “Configuring Buffer Pool Flushing”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_max_dirty_pages_pct
Section 14.8.3.4, “Configuring Buffer Pool Flushing”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 8.5.8, “Optimizing InnoDB Disk I/O”

innodb_max_dirty_pages_pct_lwm
Section 14.8.3.4, “Configuring Buffer Pool Flushing”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_max_purge_lag
Section 14.3, “InnoDB Multi-Versioning”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.8.10, “Purge Configuration”

4157

innodb_max_purge_lag_delay
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.8.10, “Purge Configuration”

innodb_mirrored_log_groups
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_monitor_disable
Section 14.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 21.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”

innodb_monitor_enable
Section 14.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 21.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”

innodb_monitor_reset
Section 14.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 21.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”

innodb_monitor_reset_all
Section 14.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 21.4.16, “The INFORMATION_SCHEMA INNODB_METRICS Table”

innodb_numa_interleave
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_old_blocks_pct
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.8.3.2, “Making the Buffer Pool Scan Resistant”
MySQL Glossary

innodb_old_blocks_time
Section 14.5.1, “Buffer Pool”
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.8.3.2, “Making the Buffer Pool Scan Resistant”

innodb_online_alter_log_max_size
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.13.5, “Online DDL Failure Conditions”
Section 14.13.3, “Online DDL Space Requirements”

innodb_open_files
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 14.14, “InnoDB Startup Options and System Variables”

4158

Section 5.1.7, “Server System Variables”

innodb_optimize_fulltext_only
Section 12.10.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.6.2.3, “InnoDB Full-Text Indexes”
Section 14.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 21.4.13, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”

innodb_page_cleaners
MySQL Glossary

innodb_page_size
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 13.1.17, “CREATE TABLE Statement”
Section 2.12.3, “Downgrade Notes”
Section 14.9.2, “Enabling Compression for a Table”
Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 14.12.2, “File Space Management”
Section 14.9.5, “How Compression Works for InnoDB Tables”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 14.22, “InnoDB Limits”
Section 14.23, “InnoDB Restrictions and Limitations”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 8.4.7, “Limits on Table Column Count and Row Size”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 14.6.2.2, “The Physical Structure of an InnoDB Index”
Section 14.20.8, “Troubleshooting the InnoDB memcached Plugin”
Section 14.6.7, “Undo Logs”
Section 1.3, “What Is New in MySQL 5.6”

innodb_print_all_deadlocks
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 14.7.5, “Deadlocks in InnoDB”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.21, “InnoDB Troubleshooting”

innodb_purge_batch_size
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.8.10, “Purge Configuration”

innodb_purge_threads
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.8.10, “Purge Configuration”

innodb_random_read_ahead
Section 14.8.3.3, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”

4159

Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_read_ahead_threshold
Section 14.8.3.3, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_read_io_threads
Section 14.8.6, “Configuring the Number of Background InnoDB I/O Threads”
Section 14.17.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.8.7, “Using Asynchronous I/O on Linux”

innodb_read_only
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_replication_delay
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_rollback_on_timeout
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_rollback_segments
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”
Section 14.6.7, “Undo Logs”
Section 14.6.3.3, “Undo Tablespaces”

innodb_saved_page_number_debug
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_sort_buffer_size
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.13.3, “Online DDL Space Requirements”

innodb_spin_wait_delay
Section 14.8.9, “Configuring Spin Lock Polling”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_stats_auto_recalc
Configuring Automatic Statistics Calculation for Persistent Optimizer Statistics
Section 14.8.11, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables
Section 13.1.17, “CREATE TABLE Statement”
InnoDB Persistent Statistics Tables Example
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_stats_include_delete_marked
Including Delete-marked Records in Persistent Statistics Calculations
Section 14.14, “InnoDB Startup Options and System Variables”

4160

innodb_stats_method
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_stats_on_metadata
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_stats_persistent
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 14.8.11, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables
Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”
Section 13.1.13, “CREATE INDEX Statement”
Section 13.1.17, “CREATE TABLE Statement”
Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 8.5.10, “Optimizing InnoDB for Systems with Many Tables”

innodb_stats_persistent_sample_pages
Section 13.7.2.1, “ANALYZE TABLE Statement”
Configuring Optimizer Statistics Parameters for Individual Tables
Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_stats_sample_pages
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_stats_transient_sample_pages
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 14.8.11.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 14.8.11.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_status_output
Section 14.17.2, “Enabling InnoDB Monitors”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 5.6”

innodb_status_output_locks
Section 14.17.2, “Enabling InnoDB Monitors”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 5.6”

innodb_strict_mode
Section 13.1.17, “CREATE TABLE Statement”

4161

Section 14.9.2, “Enabling Compression for a Table”
Section 14.9.5, “How Compression Works for InnoDB Tables”
Section 14.11, “InnoDB Row Formats”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 8.4.7, “Limits on Table Column Count and Row Size”
MySQL Glossary
Section 5.1.10, “Server SQL Modes”
Section 14.9.7, “SQL Compression Syntax Warnings and Errors”

innodb_support_xa
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.2, “Optimizing InnoDB Transaction Management”

innodb_sync_array_size
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_sync_spin_loops
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_table_locks
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”

innodb_temp_data_file_path
MySQL Glossary

innodb_thread_concurrency
Section 14.8.5, “Configuring Thread Concurrency for InnoDB”
Section 14.17.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.14, “InnoDB Startup Options and System Variables”
Section A.15, “MySQL 5.6 FAQ: MySQL Enterprise Thread Pool”
Section 8.5.9, “Optimizing InnoDB Configuration Variables”

innodb_thread_sleep_delay
Section 14.8.5, “Configuring Thread Concurrency for InnoDB”
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_tmpdir
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.13.5, “Online DDL Failure Conditions”
Section 14.13.3, “Online DDL Space Requirements”

innodb_trx_purge_view_update_only_debug
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_trx_rseg_n_slots_debug
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_undo_directory
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”

4162

Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.6.3.3, “Undo Tablespaces”

innodb_undo_logs
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_undo_tablespaces
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”
Section 14.8.1, “InnoDB Startup Configuration”
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.6.3.3, “Undo Tablespaces”

innodb_use_native_aio
Section 14.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Disk I/O”
Section 14.8.7, “Using Asynchronous I/O on Linux”

innodb_use_sys_malloc
Section 14.8.4, “Configuring the Memory Allocator for InnoDB”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 5.6”

innodb_version
Section 14.14, “InnoDB Startup Options and System Variables”

innodb_write_io_threads
Section 14.8.6, “Configuring the Number of Background InnoDB I/O Threads”
Section 14.17.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.8.7, “Using Asynchronous I/O on Linux”

insert_id
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 5.1.7, “Server System Variables”

interactive_timeout
Section B.3.2.10, “Communication Errors and Aborted Connections”
Section 5.1.7, “Server System Variables”

J

[index top]

join_buffer_size
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 8.2.1.6, “Nested-Loop Join Algorithms”
Section 5.1.7, “Server System Variables”

4163

K

[index top]

keep_files_on_create
Section 5.1.7, “Server System Variables”

key_buffer_size
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 5.1.1, “Configuring the Server”
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 8.8.4, “Estimating Query Performance”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 14.8.1, “InnoDB Startup Configuration”
Section B.3.7, “Known Issues in MySQL”
Section 8.10.2.2, “Multiple Key Caches”
Section 8.2.4.3, “Optimizing DELETE Statements”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 8.10.2.6, “Restructuring a Key Cache”
Section 5.1.6, “Server Command Options”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 5.1.8.3, “Structured System Variables”
Section 8.10.2, “The MyISAM Key Cache”

key_cache_age_threshold
Section 8.10.2.3, “Midpoint Insertion Strategy”
Section 5.1.7, “Server System Variables”
Section 5.1.8.3, “Structured System Variables”

key_cache_block_size
Section 8.10.2.5, “Key Cache Block Size”
Section 8.10.2.6, “Restructuring a Key Cache”
Section 5.1.7, “Server System Variables”
Section 5.1.8.3, “Structured System Variables”

key_cache_division_limit
Section 8.10.2.3, “Midpoint Insertion Strategy”
Section 5.1.7, “Server System Variables”
Section 5.1.8.3, “Structured System Variables”

L

[index top]

large_files_support
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”

large_page_size
Section 5.1.7, “Server System Variables”

4164

large_pages
Section 5.1.7, “Server System Variables”

last_insert_id
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.7, “Server System Variables”

lc_messages
Section 5.1.7, “Server System Variables”
Section 10.12, “Setting the Error Message Language”

lc_messages_dir
Section 5.1.7, “Server System Variables”
Section 10.12, “Setting the Error Message Language”

lc_time_names
Section 12.7, “Date and Time Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 10.16, “MySQL Server Locale Support”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 12.8, “String Functions and Operators”

license
Section 5.1.7, “Server System Variables”

local
Section 13.2.7, “LOAD XML Statement”

local_infile
Section 13.2.6, “LOAD DATA Statement”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 6.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 5.1.7, “Server System Variables”

lock_wait_timeout
Section 5.1.7, “Server System Variables”

locked_in_memory
Section 5.1.7, “Server System Variables”

log
Section 14.14, “InnoDB Startup Options and System Variables”
Section 14.20.6, “The InnoDB memcached Plugin and Replication”

log_bin
Section 17.1.4.4, “Binary Log Options and Variables”
NDB Cluster System Variables
Section 5.4.4, “The Binary Log”

4165

Section 1.3, “What Is New in MySQL 5.6”

log_bin_basename
Section 17.1.4.4, “Binary Log Options and Variables”
Section 1.3, “What Is New in MySQL 5.6”

log_bin_index
Section 17.1.4.4, “Binary Log Options and Variables”

log_bin_trust_function_creators
Section 17.1.4.4, “Binary Log Options and Variables”
Section A.4, “MySQL 5.6 FAQ: Stored Procedures and Functions”
Section 20.7, “Stored Program Binary Logging”

log_bin_use_v
Section 17.1.4.4, “Binary Log Options and Variables”
MySQL Server Options for NDB Cluster
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
Section 17.4.2, “Replication Compatibility Between MySQL Versions”

log_error
Section 5.4.2.2, “Error Logging on Unix and Unix-Like Systems”
Section 5.4.2.1, “Error Logging on Windows”
Section 2.5.8.2, “More Topics on Deploying MySQL Server with Docker”
Section 5.1.7, “Server System Variables”

log_error_verbosity
Section 6.4.5.3, “Using MySQL Enterprise Firewall”

log_output
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 5.4.3, “The General Query Log”
Section 5.4.5, “The Slow Query Log”

log_queries_not_using_indexes
Section 5.1.7, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

log_slave_updates
Section 17.1.4.4, “Binary Log Options and Variables”
Section 17.3.6, “Improving Replication Performance”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
MySQL Server Options for NDB Cluster
Section 18.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
NDB Cluster System Variables
Section 17.1.4.3, “Replica Server Options and Variables”

log_slow_admin_statements
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

4166

Section 5.4.5, “The Slow Query Log”

log_slow_slave_statements
Section 17.1.4.3, “Replica Server Options and Variables”
Section 5.4.5, “The Slow Query Log”

log_throttle_queries_not_using_indexes
Section 5.1.7, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

log_warnings
Section 5.4.2.4, “Error Log Filtering”
Section 22.12.8, “Performance Schema Connection Attribute Tables”
Section 22.15, “Performance Schema System Variables”
Section 5.1.7, “Server System Variables”

long_query_time
Section 5.4, “MySQL Server Logs”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

low_priority_updates
Section A.14, “MySQL 5.6 FAQ: Replication”
Section 5.1.7, “Server System Variables”
Section 8.11.2, “Table Locking Issues”
Section 1.3, “What Is New in MySQL 5.6”

lower_case_file_system
Section 5.1.7, “Server System Variables”

lower_case_table_names
Advanced Options
Section 13.1.17.5, “FOREIGN KEY Constraints”
Section 13.7.1.4, “GRANT Statement”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 1.5, “How to Report Bugs or Problems”
Section 9.2.3, “Identifier Case Sensitivity”
Section 14.6.1.3, “Importing InnoDB Tables”
Section 17.4.1.35, “Replication and Variables”
Section 13.7.1.6, “REVOKE Statement”
Section 5.1.7, “Server System Variables”
Section 13.7.5.38, “SHOW TABLES Statement”
Section 21.4.17, “The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table”
Section 21.4.23, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 10.8.7, “Using Collation in INFORMATION_SCHEMA Searches”

M

[index top]

4167

master_info_repository
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 13.7.6.3, “FLUSH Statement”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.2.2.2, “Replication Metadata Repositories”
Section 17.1.1.8, “Setting Up Replication with Existing Data”
Section 1.3, “What Is New in MySQL 5.6”

master_verify_checksum
Section 17.1.4.4, “Binary Log Options and Variables”
MySQL Glossary
Section 5.4.4, “The Binary Log”
Section 1.3, “What Is New in MySQL 5.6”

max_allowed_packet
Section 12.19.1, “Aggregate Function Descriptions”
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section B.3.2.10, “Communication Errors and Aborted Connections”
Section 12.4.2, “Comparison Functions and Operators”
Section B.3.4.6, “Deleting Rows from Related Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section B.3.2.3, “Lost connection to MySQL server”
Section B.3.2.8, “MySQL server has gone away”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
Section B.3.2.9, “Packet Too Large”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.19, “Replication and max_allowed_packet”
Section 5.1.7, “Server System Variables”
Section 12.8, “String Functions and Operators”
Section 11.3.4, “The BLOB and TEXT Types”
Section 1.3, “What Is New in MySQL 5.6”

max_binlog_cache_size
Section 17.1.4.4, “Binary Log Options and Variables”
Section 5.4.4, “The Binary Log”

max_binlog_size
Section 17.1.4.4, “Binary Log Options and Variables”
Section 5.4, “MySQL Server Logs”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 5.4.7, “Server Log Maintenance”
Section 5.4.4, “The Binary Log”
Section 17.2.2.1, “The Relay Log”

max_binlog_stmt_cache_size
Section 17.1.4.4, “Binary Log Options and Variables”

max_connect_errors
Section 2.11.3, “Changes in MySQL 5.6”

4168

Section 5.1.2.1, “Changes to Server Defaults”
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 5.1.7, “Server System Variables”
Section 22.12.10.1, “The host_cache Table”
Section 1.3, “What Is New in MySQL 5.6”

max_connections
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 5.1.11.1, “Connection Interfaces”
Section 5.8.1.4, “Debugging mysqld under gdb”
Section B.3.2.17, “File Not Found and Similar Errors”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 22.15, “Performance Schema System Variables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 5.5.3.3, “Thread Pool Operation”
Section B.3.2.6, “Too many connections”

max_delayed_threads
Section 5.1.7, “Server System Variables”

max_digest_length
Section 8.12.4.1, “How MySQL Uses Memory”
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”
Section 22.10, “Performance Schema Statement Digests”
Section 22.15, “Performance Schema System Variables”
Section 5.1.7, “Server System Variables”
Section 22.12.6.1, “The events_statements_current Table”
Section 6.4.5.3, “Using MySQL Enterprise Firewall”

max_error_count
Section 13.2.6, “LOAD DATA Statement”
Section 13.6.7.4, “RESIGNAL Statement”
Section 5.1.7, “Server System Variables”
Section 13.7.5.18, “SHOW ERRORS Statement”
Section 13.7.5.41, “SHOW WARNINGS Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

max_heap_table_size
Section 8.12.4.1, “How MySQL Uses Memory”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 8.4.6, “Limits on Table Size”
Section 17.4.1.20, “Replication and MEMORY Tables”
Section 17.4.1.35, “Replication and Variables”
Section 13.6.6.5, “Restrictions on Server-Side Cursors”
Section 5.1.7, “Server System Variables”
Section 15.3, “The MEMORY Storage Engine”

max_insert_delayed_threads
Section 5.1.7, “Server System Variables”

4169

max_join_size
Section 8.8.2, “EXPLAIN Output Format”
Section 4.5.1.6, “mysql Client Tips”
Section 5.1.7, “Server System Variables”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 1.3, “What Is New in MySQL 5.6”

max_length_for_sort_data
Section 8.2.1.13, “ORDER BY Optimization”
Section 5.1.7, “Server System Variables”

max_prepared_stmt_count
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 13.5.3, “DEALLOCATE PREPARE Statement”
Section 13.5, “Prepared Statements”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

max_relay_log_size
Section 17.1.4.4, “Binary Log Options and Variables”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.2.2.1, “The Relay Log”

max_seeks_for_key
Section 13.7.2.1, “ANALYZE TABLE Statement”
Section 5.1.7, “Server System Variables”

max_sort_length
Section B.3.7, “Known Issues in MySQL”
Section 8.2.1.13, “ORDER BY Optimization”
Section 13.2.9, “SELECT Statement”
Section 5.1.7, “Server System Variables”
Section 11.3.4, “The BLOB and TEXT Types”

max_sp_recursion_depth
Section 5.1.7, “Server System Variables”
Section 20.2.1, “Stored Routine Syntax”

max_tmp_tables
Section 5.1.7, “Server System Variables”

max_user_connections
Section 13.7.6.3, “FLUSH Statement”
Section 13.7.1.4, “GRANT Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.7, “Server System Variables”
Section 6.2.13, “Setting Account Resource Limits”

max_write_lock_count
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Statements”
Section 8.11.4, “Metadata Locking”

4170

Section 5.1.7, “Server System Variables”
Section 8.11.2, “Table Locking Issues”

metadata_locks_cache_size
Section 5.1.7, “Server System Variables”

metadata_locks_hash_instances
Section 5.1.7, “Server System Variables”

min_examined_row_limit
Section 5.1.7, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

multi_range_count
Section 5.1.7, “Server System Variables”

myisam_data_pointer_size
Section 13.1.17, “CREATE TABLE Statement”
Section 8.4.6, “Limits on Table Size”
Section 5.1.7, “Server System Variables”

myisam_max_sort_file_size
Section 15.2.1, “MyISAM Startup Options”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”

myisam_mmap_size
Section 5.1.7, “Server System Variables”

myisam_recover_options
Section 15.2.1, “MyISAM Startup Options”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 5.1.7, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section B.3.2.18, “Table-Corruption Issues”
Section 15.2, “The MyISAM Storage Engine”
Section 5.8.1.6, “Using Server Logs to Find Causes of Errors in mysqld”

myisam_repair_threads
Section 5.1.7, “Server System Variables”

myisam_sort_buffer_size
Section 13.1.7, “ALTER TABLE Statement”
Section 15.2.1, “MyISAM Startup Options”
Section 4.6.3.1, “myisamchk General Options”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 5.1.7, “Server System Variables”

myisam_stats_method
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”

4171

Section 5.1.7, “Server System Variables”

myisam_use_mmap
Section 8.12.4.1, “How MySQL Uses Memory”
Section 5.1.7, “Server System Variables”

mysql_firewall_max_query_size
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”

mysql_firewall_mode
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”
Section 6.4.5.3, “Using MySQL Enterprise Firewall”

mysql_firewall_trace
Section 6.4.5.4, “MySQL Enterprise Firewall Reference”
Section 6.4.5.3, “Using MySQL Enterprise Firewall”

N

[index top]

named_pipe
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 2.3.4.3, “Selecting a MySQL Server Type”
Section 5.1.7, “Server System Variables”
Section 1.2.2, “The Main Features of MySQL”
Type and Networking

named_pipe_full_access_group
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.2.5, “Connection Transport Protocols”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”

4172

Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.6”

ndb_autoincrement_prefetch_sz
NDB Cluster System Variables

ndb_cache_check_time
NDB Cluster System Variables

ndb_clear_apply_status
NDB Cluster System Variables
Section 13.4.2.3, “RESET SLAVE Statement”

ndb_deferred_constraints
NDB Cluster System Variables

ndb_distribution
NDB Cluster System Variables

ndb_eventbuffer_free_percent
NDB Cluster System Variables
Section 18.2.4.2, “What is New in NDB Cluster 7.4”

ndb_eventbuffer_max_alloc
NDB Cluster System Variables

ndb_extra_logging
NDB Cluster System Variables

ndb_force_send
NDB Cluster System Variables

ndb_index_stat_cache_entries
NDB Cluster System Variables

ndb_index_stat_enable
NDB Cluster System Variables

ndb_index_stat_option
NDB Cluster System Variables

ndb_index_stat_update_freq
NDB Cluster System Variables

ndb_join_pushdown
Section 8.8.2, “EXPLAIN Output Format”
NDB Cluster System Variables

ndb_log_apply_status
Section 18.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”

4173

NDB Cluster System Variables

ndb_log_bin
NDB Cluster System Variables

ndb_log_binlog_index
NDB Cluster System Variables

ndb_log_empty_epochs
NDB Cluster System Variables

ndb_log_empty_update
NDB Cluster System Variables

ndb_log_exclusive_reads
MySQL Server Options for NDB Cluster
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster System Variables
Section 18.2.4.2, “What is New in NDB Cluster 7.4”

ndb_log_orig
NDB Cluster System Variables

ndb_log_transaction_id
NDB Cluster System Variables

ndb_optimized_node_selection
NDB Cluster System Variables
Section 18.4.3.9, “NDB Cluster TCP/IP Connections”
Section 18.6.3.3, “Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client”

ndb_recv_thread_activation_threshold
NDB Cluster System Variables

ndb_recv_thread_cpu_mask
NDB Cluster System Variables

ndb_report_thresh_binlog_epoch_slip
NDB Cluster System Variables

ndb_report_thresh_binlog_mem_usage
NDB Cluster System Variables

ndb_show_foreign_key_mock_tables
NDB Cluster System Variables

ndb_slave_conflict_role
Section 18.7.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster System Variables
Section 18.2.4, “What is New in MySQL NDB Cluster”
Section 18.2.4.2, “What is New in NDB Cluster 7.4”

4174

ndb_table_no_logging
NDB Cluster System Variables

ndb_table_temporary
NDB Cluster System Variables

ndb_use_copying_alter_table
NDB Cluster System Variables

ndb_use_exact_count
NDB Cluster System Variables

ndb_use_transactions
Section 18.6.9, “Importing Data Into MySQL Cluster”
NDB Cluster System Variables

ndb_version
NDB Cluster System Variables

ndb_version_string
NDB Cluster System Variables

ndbinfo_database
NDB Cluster System Variables

ndbinfo_max_bytes
NDB Cluster System Variables

ndbinfo_max_rows
NDB Cluster System Variables

ndbinfo_offline
NDB Cluster System Variables

ndbinfo_show_hidden
NDB Cluster System Variables
Section 18.6.15, “ndbinfo: The NDB Cluster Information Database”
Section 18.6.15.4, “The ndbinfo cluster_operations Table”
Section 18.6.15.5, “The ndbinfo cluster_transactions Table”
Section 18.6.15.22, “The ndbinfo server_operations Table”
Section 18.6.15.23, “The ndbinfo server_transactions Table”

ndbinfo_table_prefix
NDB Cluster System Variables

ndbinfo_version
NDB Cluster System Variables

net_buffer_length
Section 8.12.4.1, “How MySQL Uses Memory”

4175

Section 4.5.4, “mysqldump — A Database Backup Program”
Section 5.1.7, “Server System Variables”

net_read_timeout
Section B.3.2.3, “Lost connection to MySQL server”
Section 5.1.7, “Server System Variables”

net_retry_count
Section 5.1.7, “Server System Variables”

net_write_timeout
Section 5.1.7, “Server System Variables”

new
Section 19.6.2, “Partitioning Limitations Relating to Storage Engines”
Section 5.1.7, “Server System Variables”

O

[index top]

old
Section 8.9.3, “Index Hints”
Section 5.1.7, “Server System Variables”

old_alter_table
Section 13.1.7, “ALTER TABLE Statement”
Section 14.13, “InnoDB and Online DDL”
Section 14.13.2, “Online DDL Performance and Concurrency”
Section 13.7.2.4, “OPTIMIZE TABLE Statement”
Section 5.1.7, “Server System Variables”
Section 14.13.4, “Simplifying DDL Statements with Online DDL”

old_passwords
Section 13.7.1.1, “ALTER USER Statement”
Section 6.2.9, “Assigning Account Passwords”
Section 2.11.3, “Changes in MySQL 5.6”
Section B.3.2.4, “Client does not support authentication protocol”
Section 13.7.1.2, “CREATE USER Statement”
Section 12.14, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.6, “Server Command Options”
Section 6.2.10, “Server Handling of Expired Passwords”
Section 5.1.7, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 6.4.1.4, “SHA-256 Pluggable Authentication”
Section 1.3, “What Is New in MySQL 5.6”

open_files_limit
Section 5.1.2.1, “Changes to Server Defaults”
Section 5.1.11.1, “Connection Interfaces”

4176

Section B.3.2.17, “File Not Found and Similar Errors”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 22.15, “Performance Schema System Variables”
Section 19.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server System Variables”

optimizer_prune_level
Section 8.9.1, “Controlling Query Plan Evaluation”
Section 5.1.7, “Server System Variables”

optimizer_search_depth
Section 8.9.1, “Controlling Query Plan Evaluation”
Section 5.1.7, “Server System Variables”

optimizer_switch
Section 8.2.1.11, “Block Nested-Loop and Batched Key Access Joins”
Section 8.2.1.4, “Engine Condition Pushdown Optimization”
Section 8.2.1.5, “Index Condition Pushdown Optimization”
Section 8.2.1.3, “Index Merge Optimization”
Section 8.2.1.10, “Multi-Range Read Optimization”
Section 8.2.2.2, “Optimizing Subqueries with Materialization”
Section 8.2.2.1, “Optimizing Subqueries with Semijoin Transformations”
Section 8.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 5.1.7, “Server System Variables”
Section 8.9.2, “Switchable Optimizations”
Section 13.2.11, “UPDATE Statement”
Section 8.3.9, “Use of Index Extensions”
Section 1.3, “What Is New in MySQL 5.6”

optimizer_trace
Section 5.1.7, “Server System Variables”
Section 21.3.12, “The INFORMATION_SCHEMA OPTIMIZER_TRACE Table”

optimizer_trace_features
Section 5.1.7, “Server System Variables”

optimizer_trace_limit
Section 5.1.7, “Server System Variables”

optimizer_trace_max_mem_size
Section 5.1.7, “Server System Variables”
Section 21.3.12, “The INFORMATION_SCHEMA OPTIMIZER_TRACE Table”

optimizer_trace_offset
Section 5.1.7, “Server System Variables”

P

[index top]

performance_schema
Section 5.1.2.1, “Changes to Server Defaults”

4177

Section 22.1, “Performance Schema Quick Start”
Section 22.3, “Performance Schema Startup Configuration”
Section 22.15, “Performance Schema System Variables”

performance_schema_accounts_size
Section 22.15, “Performance Schema System Variables”
Section 22.12.7.1, “The accounts Table”

performance_schema_digests_size
Section 22.10, “Performance Schema Statement Digests”
Section 22.16, “Performance Schema Status Variables”
Section 22.15, “Performance Schema System Variables”
Section 22.12.9.3, “Statement Summary Tables”

performance_schema_events_stages_history_long_size
Section 22.15, “Performance Schema System Variables”
Section 22.12.5.3, “The events_stages_history_long Table”

performance_schema_events_stages_history_size
Section 22.15, “Performance Schema System Variables”
Section 22.18.1, “Query Profiling Using Performance Schema”
Section 22.12.5.2, “The events_stages_history Table”

performance_schema_events_statements_history_long_size
Section 22.15, “Performance Schema System Variables”
Section 22.12.6.3, “The events_statements_history_long Table”

performance_schema_events_statements_history_size
Section 22.15, “Performance Schema System Variables”
Section 22.18.1, “Query Profiling Using Performance Schema”
Section 22.12.6.2, “The events_statements_history Table”

performance_schema_events_waits_history_long_size
Section 5.1.2.1, “Changes to Server Defaults”
Section 22.15, “Performance Schema System Variables”
Section 22.12, “Performance Schema Table Descriptions”
Section 13.7.5.16, “SHOW ENGINE Statement”
Section 22.12.4.3, “The events_waits_history_long Table”

performance_schema_events_waits_history_size
Section 5.1.2.1, “Changes to Server Defaults”
Section 22.15, “Performance Schema System Variables”
Section 22.12, “Performance Schema Table Descriptions”
Section 13.7.5.16, “SHOW ENGINE Statement”
Section 22.12.4.2, “The events_waits_history Table”

performance_schema_hosts_size
Section 22.15, “Performance Schema System Variables”
Section 22.12.7.2, “The hosts Table”

performance_schema_max_cond_classes
Section 22.15, “Performance Schema System Variables”

4178

performance_schema_max_cond_instances
Section 5.1.2.1, “Changes to Server Defaults”
Section 22.15, “Performance Schema System Variables”

performance_schema_max_digest_length
Section 22.10, “Performance Schema Statement Digests”
Section 22.15, “Performance Schema System Variables”
Section 5.1.7, “Server System Variables”
Section 22.12.6.1, “The events_statements_current Table”

performance_schema_max_file_classes
Section 22.15, “Performance Schema System Variables”

performance_schema_max_file_handles
Section 22.15, “Performance Schema System Variables”

performance_schema_max_file_instances
Section 5.1.2.1, “Changes to Server Defaults”
Section 22.15, “Performance Schema System Variables”

performance_schema_max_mutex_classes
Section 22.7, “Performance Schema Status Monitoring”
Section 22.15, “Performance Schema System Variables”

performance_schema_max_mutex_instances
Section 5.1.2.1, “Changes to Server Defaults”
Section 22.15, “Performance Schema System Variables”

performance_schema_max_rwlock_classes
Section 22.15, “Performance Schema System Variables”

performance_schema_max_rwlock_instances
Section 5.1.2.1, “Changes to Server Defaults”
Section 22.15, “Performance Schema System Variables”

performance_schema_max_socket_classes
Section 22.15, “Performance Schema System Variables”

performance_schema_max_socket_instances
Section 22.15, “Performance Schema System Variables”

performance_schema_max_stage_classes
Section 22.15, “Performance Schema System Variables”

performance_schema_max_statement_classes
Section 22.15, “Performance Schema System Variables”

performance_schema_max_table_handles
Section 5.1.2.1, “Changes to Server Defaults”

4179

Section 22.15, “Performance Schema System Variables”

performance_schema_max_table_instances
Section 5.1.2.1, “Changes to Server Defaults”
Section 22.15, “Performance Schema System Variables”

performance_schema_max_thread_classes
Section 22.15, “Performance Schema System Variables”

performance_schema_max_thread_instances
Section 5.1.2.1, “Changes to Server Defaults”
Section 22.16, “Performance Schema Status Variables”
Section 22.15, “Performance Schema System Variables”
Section 13.7.5.16, “SHOW ENGINE Statement”

performance_schema_session_connect_attrs_size
Section 22.12.8, “Performance Schema Connection Attribute Tables”
Section 22.16, “Performance Schema Status Variables”
Section 22.15, “Performance Schema System Variables”

performance_schema_setup_actors_size
Section 22.15, “Performance Schema System Variables”
Section 22.12.2.1, “The setup_actors Table”

performance_schema_setup_objects_size
Section 22.15, “Performance Schema System Variables”
Section 22.12.2.4, “The setup_objects Table”

performance_schema_users_size
Section 22.15, “Performance Schema System Variables”
Section 22.12.7.3, “The users Table”

pid
Section 14.8.2, “Configuring InnoDB for Read-Only Operation”

pid_file
Section 5.1.7, “Server System Variables”

plugin_dir
Section 6.1.2.2, “Administrator Guidelines for Password Security”
Section 6.4.2.1, “Connection-Control Plugin Installation”
Section 13.7.3.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 13.7.3.3, “INSTALL PLUGIN Statement”
Section 5.5.1, “Installing and Uninstalling Plugins”
Section 6.4.4.1, “Installing MySQL Enterprise Audit”
Section 2.5.5, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.5.1, “MySQL Enterprise Encryption Installation”
Section 5.6.2, “Obtaining Information About Loadable Functions”
Section 6.4.1.6, “PAM Pluggable Authentication”
Section 6.4.3.1, “Password Validation Plugin Installation”

4180

Section 6.2.11, “Pluggable Authentication”
Section 15.11.1, “Pluggable Storage Engine Architecture”
Section 17.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 14.20.3, “Setting Up the InnoDB memcached Plugin”
Section 13.7.5.26, “SHOW PLUGINS Statement”
Section 6.4.1.8, “Socket Peer-Credential Pluggable Authentication”
Section 6.4.1.9, “Test Pluggable Authentication”
Section 21.3.15, “The INFORMATION_SCHEMA PLUGINS Table”
Section 5.5.3.2, “Thread Pool Installation”
Section 6.4.1.7, “Windows Pluggable Authentication”

port
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 5.1.7, “Server System Variables”
Section 6.6.5.1, “Setting the TCP Port Context for mysqld”

preload_buffer_size
Section 5.1.7, “Server System Variables”

profiling
Section 5.1.7, “Server System Variables”
Section 13.7.5.31, “SHOW PROFILE Statement”
Section 21.3.17, “The INFORMATION_SCHEMA PROFILING Table”
Section 1.3, “What Is New in MySQL 5.6”

profiling_history_size
Section 5.1.7, “Server System Variables”
Section 13.7.5.31, “SHOW PROFILE Statement”
Section 1.3, “What Is New in MySQL 5.6”

protocol_version
Section 5.1.7, “Server System Variables”

proxy_user
Section 6.2.12, “Proxy Users”
Section 5.1.7, “Server System Variables”

pseudo_slave_mode
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 5.1.7, “Server System Variables”

pseudo_thread_id
Section 12.16, “Information Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.7, “Server System Variables”

Q

[index top]

4181

query_alloc_block_size
Section 5.1.7, “Server System Variables”

query_cache_limit
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.7, “Server System Variables”

query_cache_min_res_unit
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.7, “Server System Variables”

query_cache_size
Section 5.1.2.1, “Changes to Server Defaults”
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.7, “Server System Variables”
Section 8.10.3, “The MySQL Query Cache”

query_cache_type
Section 5.1.2.1, “Changes to Server Defaults”
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.2, “Query Cache SELECT Options”
Section 13.2.9, “SELECT Statement”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

query_cache_wlock_invalidate
Section 5.1.7, “Server System Variables”

query_prealloc_size
Section 5.1.7, “Server System Variables”

R

[index top]

rand_seed
Section 5.1.7, “Server System Variables”

range_alloc_block_size
Section 5.1.7, “Server System Variables”

read_buffer_size
Section 8.12.4.1, “How MySQL Uses Memory”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 5.1.7, “Server System Variables”

read_only
Section 13.7.1, “Account Management Statements”
Section 13.7.1.1, “ALTER USER Statement”
Section 6.2.9, “Assigning Account Passwords”
Section 17.3.1.3, “Backing Up a Source or Replica by Making It Read Only”
Section 13.7.1.2, “CREATE USER Statement”

4182

Section 17.1.3.5, “Disabling GTID Transactions”
Section 13.7.1.3, “DROP USER Statement”
Section 13.7.6.3, “FLUSH Statement”
Section 8.14.3, “General Thread States”
Section 13.7.1.4, “GRANT Statement”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.7.1.5, “RENAME USER Statement”
Section 17.4.1.35, “Replication and Variables”
Section 13.7.1.6, “REVOKE Statement”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 13.7.1.7, “SET PASSWORD Statement”
Section 17.1.3.2, “Setting Up Replication Using GTIDs”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”

read_rnd_buffer_size
Section 5.1.1, “Configuring the Server”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 8.2.1.10, “Multi-Range Read Optimization”
Section 8.2.1.13, “ORDER BY Optimization”
Section 5.1.7, “Server System Variables”

relay_log
Section 17.3.6, “Improving Replication Performance”
Section 17.1.1.9, “Introducing Additional Replicas to an Existing Replication Environment”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.2.2.1, “The Relay Log”

relay_log_basename
Section 17.1.4.3, “Replica Server Options and Variables”
Section 1.3, “What Is New in MySQL 5.6”

relay_log_index
Section 17.1.1.9, “Introducing Additional Replicas to an Existing Replication Environment”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.2.2.1, “The Relay Log”

relay_log_info_file
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.2.2.2, “Replication Metadata Repositories”

relay_log_info_repository
Section 13.7.6.3, “FLUSH Statement”
Section 17.3.2, “Handling an Unexpected Halt of a Replica Server”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.2.2.2, “Replication Metadata Repositories”
Section 1.3, “What Is New in MySQL 5.6”

relay_log_purge
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 17.1.4.3, “Replica Server Options and Variables”

4183

Section 13.7.5.35, “SHOW SLAVE STATUS Statement”

relay_log_recovery
Section 17.3.2, “Handling an Unexpected Halt of a Replica Server”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 13.4.2.5, “START SLAVE Statement”

relay_log_space_limit
Section 17.1.4.3, “Replica Server Options and Variables”
Section 8.14.7, “Replication Replica I/O Thread States”

replica_sql_verify_checksum
MySQL Glossary

report_host
Section 17.1.4.3, “Replica Server Options and Variables”

report_password
Section 17.1.4.3, “Replica Server Options and Variables”

report_port
Section 17.1.4.3, “Replica Server Options and Variables”

report_user
Section 17.1.4.3, “Replica Server Options and Variables”

require_secure_transport
Section 4.2.5, “Connection Transport Protocols”

rpl_semi_sync_master_enabled
Section 17.1.4.2, “Replication Source Options and Variables”
Section 17.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.9.2, “Semisynchronous Replication Installation and Configuration”
Section 17.3.9.3, “Semisynchronous Replication Monitoring”

rpl_semi_sync_master_timeout
Section 17.1.4.2, “Replication Source Options and Variables”
Section 17.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.9.2, “Semisynchronous Replication Installation and Configuration”

rpl_semi_sync_master_trace_level
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.1.4.2, “Replication Source Options and Variables”

rpl_semi_sync_master_wait_no_slave
Section 17.1.4.2, “Replication Source Options and Variables”

rpl_semi_sync_slave_enabled
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.3.9.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.9.2, “Semisynchronous Replication Installation and Configuration”

4184

rpl_semi_sync_slave_trace_level
Section 17.1.4.3, “Replica Server Options and Variables”

rpl_stop_slave_timeout
Section 17.1.4.3, “Replica Server Options and Variables”
Section 13.4.2.6, “STOP SLAVE Statement”

S

[index top]

secure_auth
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 6.4.1.3, “Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.6”

secure_file_priv
Section 2.10.1, “Initializing the Data Directory”
Section 13.2.6, “LOAD DATA Statement”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.2.9.1, “SELECT ... INTO Statement”
Section 6.6.4, “SELinux File Context”
Section 5.1.7, “Server System Variables”
Section 12.8, “String Functions and Operators”

server_id
Advanced Options
Section 6.4.4.3, “Audit Log File Formats”
Section 17.1.1.9, “Introducing Additional Replicas to an Existing Replication Environment”
Section 12.20, “Miscellaneous Functions”
MySQL Server Options for NDB Cluster
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
NDB Cluster System Variables
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.1.4, “Replication and Binary Logging Options and Variables”
Section 17.1, “Replication Configuration”
Section 17.1.4.2, “Replication Source Options and Variables”
Section 17.1.1.2, “Setting the Replica Configuration”
Section 17.1.1.1, “Setting the Replication Source Configuration”
Section 17.1.1.8, “Setting Up Replication with Existing Data”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 17.4.4, “Troubleshooting Replication”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

server_id_bits
MySQL Server Options for NDB Cluster
NDB Cluster System Variables

4185

server_uuid
Section 17.1.3.1, “GTID Concepts”
Section 17.1.4, “Replication and Binary Logging Options and Variables”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 13.4.2.5, “START SLAVE Statement”

sha
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 6.4.1.4, “SHA-256 Pluggable Authentication”
Section 6.3.4, “SSL Library-Dependent Capabilities”

shared_memory
Section 4.2.3, “Command Options for Connecting to the Server”
Section 4.2.4, “Connecting to the MySQL Server Using Command Options”
Section 4.5.1.1, “mysql Client Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — A Load Emulation Client”
Section 5.1.7, “Server System Variables”
Section 5.7.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.4.4, “Starting the Server for the First Time”
Section 1.2.2, “The Main Features of MySQL”
Type and Networking

shared_memory_base_name
Section 5.1.7, “Server System Variables”
Section 5.7.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”

show_old_temporals
Section 2.11.3, “Changes in MySQL 5.6”
NDB Cluster System Variables
Section 5.1.7, “Server System Variables”

simplified_binlog_gtid_recovery
Section 17.1.4.5, “Global Transaction ID Options and Variables”

skip_external_locking
Section 8.11.5, “External Locking”
Section 5.1.7, “Server System Variables”

skip_name_resolve
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 5.1.7, “Server System Variables”
Section 2.3.4.8, “Testing The MySQL Installation”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”

4186

skip_networking
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 5.1.11.2, “DNS Lookups and the Host Cache”
Section A.14, “MySQL 5.6 FAQ: Replication”
Section B.3.2.8, “MySQL server has gone away”
Section 6.2.11, “Pluggable Authentication”
Resetting the Root Password: Generic Instructions
Section 5.1.7, “Server System Variables”
Section 17.1.1.1, “Setting the Replication Source Configuration”
Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”
Section 17.4.4, “Troubleshooting Replication”
Section 17.4.3, “Upgrading a Replication Setup”

skip_show_database
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

slave_allow_batching
NDB Cluster System Variables
Section 18.7.5, “Preparing the NDB Cluster for Replication”
Section 18.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”

slave_checkpoint_group
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 12.20, “Miscellaneous Functions”
Section 17.1.4.3, “Replica Server Options and Variables”

slave_checkpoint_period
Section 12.20, “Miscellaneous Functions”
Section 17.1.4.3, “Replica Server Options and Variables”

slave_compressed_protocol
Section 4.2.6, “Connection Compression Control”
Section 17.1.4.3, “Replica Server Options and Variables”

slave_exec_mode
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.20, “Replication and MEMORY Tables”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

slave_load_tmpdir
Section 17.3.1.2, “Backing Up Raw Data from a Replica”
Section 7.2, “Database Backup Methods”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section B.3.3.5, “Where MySQL Stores Temporary Files”

slave_max_allowed_packet
Section 17.1.4.3, “Replica Server Options and Variables”

4187

Section 17.4.1.19, “Replication and max_allowed_packet”

slave_net_timeout
Section 13.4.2.1, “CHANGE MASTER TO Statement”
Section 17.1.5.1, “Checking Replication Status”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.26, “Replication and Source or Replica Shutdowns”
Section 8.14.7, “Replication Replica I/O Thread States”
Section 5.1.7, “Server System Variables”

slave_parallel_type
Section 17.2.1.2, “Monitoring Replication Applier Worker Threads”

slave_parallel_workers
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.19, “Replication and max_allowed_packet”
Section 8.14.8, “Replication Replica SQL Thread States”
Section 17.2.1, “Replication Threads”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”
Section 13.4.2.5, “START SLAVE Statement”
Section 1.3, “What Is New in MySQL 5.6”

slave_pending_jobs_size_max
Section 17.2.1.2, “Monitoring Replication Applier Worker Threads”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.19, “Replication and max_allowed_packet”
Section 8.14.8, “Replication Replica SQL Thread States”

slave_rows_search_algorithms
Section 17.1.4.3, “Replica Server Options and Variables”
Section 5.1.9, “Server Status Variables”

slave_skip_errors
Section 17.1.4.3, “Replica Server Options and Variables”

slave_sql_verify_checksum
MySQL Glossary
Section 17.1.4.3, “Replica Server Options and Variables”
Section 5.4.4, “The Binary Log”

slave_transaction_retries
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.30, “Replication Retries and Timeouts”

slave_type_conversions
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 17.1.4.3, “Replica Server Options and Variables”

slow_launch_time
Section 5.1.9, “Server Status Variables”

4188

Section 5.1.7, “Server System Variables”

slow_query_log
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 5.4.5, “The Slow Query Log”
Section 1.3, “What Is New in MySQL 5.6”

slow_query_log_file
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 5.4.5, “The Slow Query Log”
Section 1.3, “What Is New in MySQL 5.6”

socket
Section 5.1.7, “Server System Variables”

sort_buffer_size
Section 7.6.3, “How to Repair MyISAM Tables”
Section 8.2.1.13, “ORDER BY Optimization”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 1.3, “What Is New in MySQL 5.6”

source_verify_checksum
MySQL Glossary

sql_auto_is_null
Section 12.4.2, “Comparison Functions and Operators”
Section 13.1.17, “CREATE TABLE Statement”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 5.4.4, “The Binary Log”

sql_big_selects
Section 5.1.7, “Server System Variables”

sql_buffer_result
Section 5.1.7, “Server System Variables”

sql_log_bin
Section 17.1.4.4, “Binary Log Options and Variables”
Section 18.2.7.8, “Issues Exclusive to NDB Cluster”
Section 18.7.3, “Known Issues in NDB Cluster Replication”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 18.7.4, “NDB Cluster Replication Schema and Tables”
Section 6.2.2, “Privileges Provided by MySQL”
Section 13.4.1.3, “SET sql_log_bin Statement”
Section 5.1.8.1, “System Variable Privileges”

4189

Section 17.4.3, “Upgrading a Replication Setup”

sql_log_off
MySQL Glossary
Section 6.2.2, “Privileges Provided by MySQL”
Section 5.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 5.1.7, “Server System Variables”
Section 5.4.3, “The General Query Log”

SQL_MODE
Section 14.13.1, “Online DDL Operations”

sql_mode
Section 14.1.2, “Best Practices for InnoDB Tables”
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 13.1.11, “CREATE EVENT Statement”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 13.1.19, “CREATE TRIGGER Statement”
Section 12.21.3, “Expression Handling”
Section 11.2.7, “Fractional Seconds in Time Values”
Section 1.5, “How to Report Bugs or Problems”
Section 13.2.6, “LOAD DATA Statement”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 1.6, “MySQL Standards Compliance”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section B.3.4.2, “Problems Using DATE Columns”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.10, “Server SQL Modes”
Section 5.1.7, “Server System Variables”
Section 13.7.5.14, “SHOW CREATE VIEW Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 5.4.4, “The Binary Log”
Section 21.3.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 5.1.2.2, “Using a Sample Default Server Configuration File”
Section 4.2.2.2, “Using Option Files”
Section 5.1.8, “Using System Variables”

sql_notes
Section B.2, “Error Information Interfaces”
Section 5.1.7, “Server System Variables”
Section 13.7.5.41, “SHOW WARNINGS Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

sql_quote_show_create
Section 5.1.7, “Server System Variables”
Section 13.7.5.8, “SHOW CREATE DATABASE Statement”
Section 13.7.5.12, “SHOW CREATE TABLE Statement”

sql_safe_updates
Section 4.5.1.6, “mysql Client Tips”
Section 5.1.7, “Server System Variables”

4190

sql_select_limit
Section 4.5.1.6, “mysql Client Tips”
Section 5.1.7, “Server System Variables”

sql_slave_skip_counter
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.1.3.4, “Restrictions on Replication with GTIDs”
Section 13.7.5.35, “SHOW SLAVE STATUS Statement”

sql_warnings
Section 5.1.7, “Server System Variables”

ssl_ca
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.3.1, “Creating SSL Certificates and Keys Using openssl”
Section 5.1.7, “Server System Variables”
Section 17.3.8, “Setting Up Replication to Use Encrypted Connections”
Section 6.3.4, “SSL Library-Dependent Capabilities”

ssl_capath
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 5.1.7, “Server System Variables”
Section 6.3.4, “SSL Library-Dependent Capabilities”

ssl_cert
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.3.1, “Creating SSL Certificates and Keys Using openssl”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 17.3.8, “Setting Up Replication to Use Encrypted Connections”

ssl_cipher
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 5.1.7, “Server System Variables”
Section 6.3.4, “SSL Library-Dependent Capabilities”

ssl_crl
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 5.1.7, “Server System Variables”
Section 6.3.4, “SSL Library-Dependent Capabilities”

ssl_crlpath
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 5.1.7, “Server System Variables”

4191

Section 6.3.4, “SSL Library-Dependent Capabilities”

ssl_key
Section 4.2.3, “Command Options for Connecting to the Server”
Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.3.3.1, “Creating SSL Certificates and Keys Using openssl”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 17.3.8, “Setting Up Replication to Use Encrypted Connections”

storage_engine
Section 13.1.14, “CREATE LOGFILE GROUP Statement”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 17.3.3, “Using Replication with Different Source and Replica Storage Engines”

stored_program_cache
Section 8.10.4, “Caching of Prepared Statements and Stored Programs”
Section 5.1.7, “Server System Variables”

super_read_only
Section 13.7.6.3, “FLUSH Statement”

sync_binlog
Section 17.1.4.4, “Binary Log Options and Variables”
Section 17.3.2, “Handling an Unexpected Halt of a Replica Server”
Section 14.2, “InnoDB and the ACID Model”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 17.4.1.26, “Replication and Source or Replica Shutdowns”
Section 5.4.4, “The Binary Log”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”

sync_frm
Section 5.1.7, “Server System Variables”

sync_master_info
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 17.1.4.3, “Replica Server Options and Variables”

sync_relay_log
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 17.3.2, “Handling an Unexpected Halt of a Replica Server”
Section 17.1.4.3, “Replica Server Options and Variables”

sync_relay_log_info
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 17.4.1.26, “Replication and Source or Replica Shutdowns”

4192

system_time_zone
Section 5.1.13, “MySQL Server Time Zone Support”
Section 17.4.1.31, “Replication and Time Zones”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”

T

[index top]

table_definition_cache
Section 5.1.2.1, “Changes to Server Defaults”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.6”

table_open_cache
Section 2.11.3, “Changes in MySQL 5.6”
Section 5.1.2.1, “Changes to Server Defaults”
Section 5.1.1, “Configuring the Server”
Section B.3.2.17, “File Not Found and Similar Errors”
Section 8.14.3, “General Thread States”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.6”

table_open_cache_instances
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

thread_cache_size
Section 5.1.2.1, “Changes to Server Defaults”
Section 5.1.11.1, “Connection Interfaces”
Section 5.8.1.4, “Debugging mysqld under gdb”
Section 5.1.9, “Server Status Variables”
Section 5.1.7, “Server System Variables”

thread_concurrency
Section 5.1.7, “Server System Variables”

thread_handling
Section 5.1.7, “Server System Variables”
Section 5.5.3.1, “Thread Pool Elements”

thread_pool_algorithm
Section 5.1.7, “Server System Variables”
Section 21.6.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 5.5.3.3, “Thread Pool Operation”

4193

thread_pool_high_priority_connection
Section 5.1.7, “Server System Variables”
Section 5.5.3.3, “Thread Pool Operation”

thread_pool_max_unused_threads
Section 5.1.7, “Server System Variables”
Section 5.5.3.3, “Thread Pool Operation”

thread_pool_prio_kickup_timer
Section 5.1.7, “Server System Variables”
Section 21.6.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 21.6.3, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table”
Section 5.5.3.3, “Thread Pool Operation”
Section 5.5.3.4, “Thread Pool Tuning”

thread_pool_size
Section 5.1.7, “Server System Variables”
Section 5.5.3.3, “Thread Pool Operation”
Section 5.5.3.4, “Thread Pool Tuning”

thread_pool_stall_limit
Section 5.1.7, “Server System Variables”
Section 21.6.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 21.6.3, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table”
Section 5.5.3.3, “Thread Pool Operation”
Section 5.5.3.4, “Thread Pool Tuning”

thread_stack
Section 5.1.11.1, “Connection Interfaces”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 5.1.7, “Server System Variables”
Section 20.2.1, “Stored Routine Syntax”

time_format
Section 5.1.7, “Server System Variables”
Section 1.3, “What Is New in MySQL 5.6”

time_zone
Section 13.1.11, “CREATE EVENT Statement”
Section 12.7, “Date and Time Functions”
Section 20.4.4, “Event Metadata”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 5.1.13, “MySQL Server Time Zone Support”
Section 17.4.1.31, “Replication and Time Zones”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 11.2.2, “The DATE, DATETIME, and TIMESTAMP Types”

timed_mutexes
Section 5.1.7, “Server System Variables”

4194

Section 1.3, “What Is New in MySQL 5.6”

timestamp
Section 15.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.7, “Server System Variables”

tls_version
Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”

tmp_table_size
Section 8.12.4.1, “How MySQL Uses Memory”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 13.6.6.5, “Restrictions on Server-Side Cursors”
Section 5.1.7, “Server System Variables”
Type and Networking

tmpdir
Section 17.3.1.2, “Backing Up Raw Data from a Replica”
Section B.3.2.12, “Can't create/write to file”
Section 7.2, “Database Backup Methods”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 2.9.7, “MySQL Source-Configuration Options”
Section 14.13.5, “Online DDL Failure Conditions”
Section 14.13.3, “Online DDL Space Requirements”
Section 8.2.1.13, “ORDER BY Optimization”
Section 17.1.4.3, “Replica Server Options and Variables”
Section 5.1.7, “Server System Variables”

transaction_alloc_block_size
Section 5.1.7, “Server System Variables”

transaction_allow_batching
NDB Cluster System Variables

transaction_prealloc_size
Section 5.1.7, “Server System Variables”

tx_isolation
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Statement”

tx_read_only
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Statement”

U

[index top]

4195

unique_checks
Section 14.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.35, “Replication and Variables”
Section 5.1.7, “Server System Variables”
Section 5.4.4, “The Binary Log”

updatable_views_with_limit
Section 5.1.7, “Server System Variables”
Section 20.5.3, “Updatable and Insertable Views”

V

[index top]

validate_password_dictionary_file
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”

validate_password_length
Section 12.14, “Encryption and Compression Functions”
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”

validate_password_mixed_case_count
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”

validate_password_number_count
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”

validate_password_policy
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”

validate_password_special_char_count
Section 6.4.3.2, “Password Validation Plugin Options and Variables”
Section 6.4.3, “The Password Validation Plugin”

version
Section 6.4.4.3, “Audit Log File Formats”
Section 12.16, “Information Functions”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 5.1.7, “Server System Variables”

version_comment
Section 5.1.7, “Server System Variables”
Section 13.7.5.40, “SHOW VARIABLES Statement”

4196

version_compile_machine
Section 5.1.7, “Server System Variables”

version_compile_os
Section 5.1.7, “Server System Variables”

W

[index top]

wait_timeout
Section B.3.2.10, “Communication Errors and Aborted Connections”
Section B.3.2.8, “MySQL server has gone away”
Section 5.1.7, “Server System Variables”

warning_count
Section B.2, “Error Information Interfaces”
Section 5.1.7, “Server System Variables”
Section 13.7.5.18, “SHOW ERRORS Statement”
Section 13.7.5.41, “SHOW WARNINGS Statement”
Section 13.6.7.5, “SIGNAL Statement”
Section 13.6.7.7, “The MySQL Diagnostics Area”

Transaction Isolation Level Index
R | S

R

[index top]

READ COMMITTED
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 18.2.6.1, “Differences Between the NDB and InnoDB Storage Engines”
Section 14.7.5.3, “How to Minimize and Handle Deadlocks”
Section 14.7.1, “InnoDB Locking”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 18.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section A.1, “MySQL 5.6 FAQ: General”
Section A.10, “MySQL 5.6 FAQ: NDB Cluster”
Section 18.2.6.3, “NDB and InnoDB Feature Usage Summary”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 13.3.6, “SET TRANSACTION Statement”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 13.1.33, “TRUNCATE TABLE Statement”

READ UNCOMMITTED
Section 14.7.2.3, “Consistent Nonlocking Reads”
Including Delete-marked Records in Persistent Statistics Calculations
Section 14.20.2, “InnoDB memcached Architecture”

4197

Section 14.14, “InnoDB Startup Options and System Variables”
Section 18.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 14.20.5.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 13.3.6, “SET TRANSACTION Statement”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 13.1.33, “TRUNCATE TABLE Statement”

READ-COMMITTED
Section 5.1.6, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Statement”

READ-UNCOMMITTED
Section 5.1.6, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Statement”

REPEATABLE READ
Section 14.7.2.3, “Consistent Nonlocking Reads”
Section 14.20.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 14.7.1, “InnoDB Locking”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 18.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 13.3.6, “SET TRANSACTION Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 13.3.7, “XA Transactions”

REPEATABLE-READ
Section 5.1.6, “Server Command Options”
Section 5.1.7, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Statement”

S

[index top]

SERIALIZABLE
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.14, “InnoDB Startup Options and System Variables”
Section 18.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 14.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 5.1.6, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Statement”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 14.7.2.1, “Transaction Isolation Levels”
Section 13.3.7, “XA Transactions”

4198

MySQL Glossary
These terms are commonly used in information about the MySQL database server. This glossary originated as a
reference for terminology about the InnoDB storage engine, and the majority of definitions are InnoDB-related.

A
.ARM file

 Metadata for ARCHIVE tables. Contrast with .ARZ file. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARZ file, MySQL Enterprise Backup, mysqlbackup command.

.ARZ file
 Data for ARCHIVE tables. Contrast with .ARM file. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARM file, MySQL Enterprise Backup, mysqlbackup command.

ACID
 An acronym standing for atomicity, consistency, isolation, and durability. These properties are all desirable in a
database system, and are all closely tied to the notion of a transaction. The transactional features of InnoDB
adhere to the ACID principles.

Transactions are atomic units of work that can be committed or rolled back. When a transaction makes multiple
changes to the database, either all the changes succeed when the transaction is committed, or all the changes
are undone when the transaction is rolled back.

The database remains in a consistent state at all times — after each commit or rollback, and while transactions
are in progress. If related data is being updated across multiple tables, queries see either all old values or all new
values, not a mix of old and new values.

Transactions are protected (isolated) from each other while they are in progress; they cannot interfere with
each other or see each other's uncommitted data. This isolation is achieved through the locking mechanism.
Experienced users can adjust the isolation level, trading off less protection in favor of increased performance
and concurrency, when they can be sure that the transactions really do not interfere with each other.

The results of transactions are durable: once a commit operation succeeds, the changes made by that transaction
are safe from power failures, system crashes, race conditions, or other potential dangers that many non-database
applications are vulnerable to. Durability typically involves writing to disk storage, with a certain amount of
redundancy to protect against power failures or software crashes during write operations. (In InnoDB, the
doublewrite buffer assists with durability.)
See Also atomic, commit, concurrency, doublewrite buffer, isolation level, locking, rollback, transaction.

adaptive flushing
 An algorithm for InnoDB tables that smooths out the I/O overhead introduced by checkpoints. Instead of
flushing all modified pages from the buffer pool to the data files at once, MySQL periodically flushes small sets
of modified pages. The adaptive flushing algorithm extends this process by estimating the optimal rate to perform
these periodic flushes, based on the rate of flushing and how fast redo information is generated.
See Also buffer pool, checkpoint, data files, flush, InnoDB, page, redo log.

adaptive hash index
 An optimization for InnoDB tables that can speed up lookups using = and IN operators, by constructing a hash
index in memory. MySQL monitors index searches for InnoDB tables, and if queries could benefit from a hash
index, it builds one automatically for index pages that are frequently accessed. In a sense, the adaptive hash
index configures MySQL at runtime to take advantage of ample main memory, coming closer to the architecture

4199

of main-memory databases. This feature is controlled by the innodb_adaptive_hash_index configuration
option. Because this feature benefits some workloads and not others, and the memory used for the hash index is
reserved in the buffer pool, typically you should benchmark with this feature both enabled and disabled.

The hash index is always built based on an existing B-tree index on the table. MySQL can build a hash index on
a prefix of any length of the key defined for the B-tree, depending on the pattern of searches against the index. A
hash index can be partial; the whole B-tree index does not need to be cached in the buffer pool.

In MySQL 5.6 and higher, another way to take advantage of fast single-value lookups with InnoDB tables is to
use the InnoDB memcached plugin. See Section 14.20, “InnoDB memcached Plugin” for details.
See Also B-tree, buffer pool, hash index, memcached, page, secondary index.

ADO.NET
 An object-relational mapping (ORM) framework for applications built using .NET technologies such as ASP.NET.
Such applications can interface with MySQL through the Connector/NET component.
See Also .NET, ASP.net, Connector/NET, Mono, Visual Studio.

AIO
 Acronym for asynchronous I/O. You might see this acronym in InnoDB messages or keywords.
See Also asynchronous I/O.

ANSI
 In ODBC, an alternative method of supporting character sets and other internationalization aspects. Contrast with
Unicode. Connector/ODBC 3.51 is an ANSI driver, while Connector/ODBC 5.1 is a Unicode driver.
See Also Connector/ODBC, ODBC, Unicode.

Antelope
 The code name for the original InnoDB file format. It supports the REDUNDANT and COMPACT row formats,
but not the newer DYNAMIC and COMPRESSED row formats available in the Barracuda file format.
See Also Barracuda, compact row format, compressed row format, dynamic row format, file format,
innodb_file_format, redundant row format.

API
 APIs provide low-level access to the MySQL protocol and MySQL resources from client programs. Contrast with
the higher-level access provided by a Connector.
See Also C API, client, connector, native C API, Perl API, PHP API, Python API, Ruby API.

application programming interface (API)
 A set of functions or procedures. An API provides a stable set of names and types for functions, procedures,
parameters, and return values.

apply
 When a backup produced by the MySQL Enterprise Backup product does not include the most recent changes
that occurred while the backup was underway, the process of updating the backup files to include those changes
is known as the apply step. It is specified by the apply-log option of the mysqlbackup command.

Before the changes are applied, we refer to the files as a raw backup. After the changes are applied, we refer to
the files as a prepared backup. The changes are recorded in the ibbackup_logfile file; once the apply step is
finished, this file is no longer necessary.
See Also hot backup, ibbackup_logfile, MySQL Enterprise Backup, prepared backup, raw backup.

ASP.net
 A framework for developing web-based applications using .NET technologies and languages. Such applications
can interface with MySQL through the Connector/NET component.

Another technology for writing server-side web pages with MySQL is PHP.

4200

See Also .NET, ADO.NET, Connector/NET, Mono, PHP, Visual Studio.

assembly
 A library of compiled code in a .NET system, accessed through Connector/NET. Stored in the GAC to allow
versioning without naming conflicts.
See Also .NET, GAC.

asynchronous I/O
 A type of I/O operation that allows other processing to proceed before the I/O is completed. Also known as
nonblocking I/O and abbreviated as AIO. InnoDB uses this type of I/O for certain operations that can run in
parallel without affecting the reliability of the database, such as reading pages into the buffer pool that have not
actually been requested, but might be needed soon.

Historically, InnoDB used asynchronous I/O on Windows systems only. Starting with the InnoDB Plugin 1.1
and MySQL 5.5, InnoDB uses asynchronous I/O on Linux systems. This change introduces a dependency on
libaio. Asynchronous I/O on Linux systems is configured using the innodb_use_native_aio option, which is
enabled by default. On other Unix-like systems, InnoDB uses synchronous I/O only.
See Also buffer pool, nonblocking I/O.

atomic
 In the SQL context, transactions are units of work that either succeed entirely (when committed) or have no
effect at all (when rolled back). The indivisible ("atomic") property of transactions is the “A” in the acronym ACID.
See Also ACID, commit, rollback, transaction.

atomic DDL
 An atomic DDL statement is one that combines the data dictionary updates, storage engine operations, and
binary log writes associated with a DDL operation into a single, atomic transaction. The transaction is either fully
committed or rolled back, even if the server halts during the operation. Atomic DDL support was added in MySQL
8.0. For more information, see Atomic Data Definition Statement Support.
See Also binary log, data dictionary, DDL, storage engine.

atomic instruction
 Special instructions provided by the CPU, to ensure that critical low-level operations cannot be interrupted.

auto-increment
 A property of a table column (specified by the AUTO_INCREMENT keyword) that automatically adds an ascending
sequence of values in the column.

It saves work for the developer, not to have to produce new unique values when inserting new rows. It provides
useful information for the query optimizer, because the column is known to be not null and with unique values.
The values from such a column can be used as lookup keys in various contexts, and because they are auto-
generated there is no reason to ever change them; for this reason, primary key columns are often specified as
auto-incrementing.

Auto-increment columns can be problematic with statement-based replication, because replaying the statements
on a replica might not produce the same set of column values as on the source, due to timing issues. When
you have an auto-incrementing primary key, you can use statement-based replication only with the setting
innodb_autoinc_lock_mode=1. If you have innodb_autoinc_lock_mode=2, which allows higher
concurrency for insert operations, use row-based replication rather than statement-based replication. The
setting innodb_autoinc_lock_mode=0 should not be used except for compatibility purposes.

Consecutive lock mode (innodb_autoinc_lock_mode=1) is the default setting prior to MySQL 8.0.3. As
of MySQL 8.0.3, interleaved lock mode (innodb_autoinc_lock_mode=2) is the default, which reflects the
change from statement-based to row-based replication as the default replication type.
See Also auto-increment locking, innodb_autoinc_lock_mode, primary key, row-based replication, statement-
based replication.

4201

https://dev.mysql.com/doc/refman/8.0/en/atomic-ddl.html

auto-increment locking
 The convenience of an auto-increment primary key involves some tradeoff with concurrency. In the simplest
case, if one transaction is inserting values into the table, any other transactions must wait to do their own
inserts into that table, so that rows inserted by the first transaction receive consecutive primary key values.
InnoDB includes optimizations and the innodb_autoinc_lock_mode option so that you can configure and
optimal balance between predictable sequences of auto-increment values and maximum concurrency for insert
operations.
See Also auto-increment, concurrency, innodb_autoinc_lock_mode.

autocommit
 A setting that causes a commit operation after each SQL statement. This mode is not recommended for working
with InnoDB tables with transactions that span several statements. It can help performance for read-only
transactions on InnoDB tables, where it minimizes overhead from locking and generation of undo data,
especially in MySQL 5.6.4 and up. It is also appropriate for working with MyISAM tables, where transactions are
not applicable.
See Also commit, locking, read-only transaction, SQL, transaction, undo.

availability
 The ability to cope with, and if necessary recover from, failures on the host, including failures of MySQL, the
operating system, or the hardware and maintenance activity that may otherwise cause downtime. Often paired
with scalability as critical aspects of a large-scale deployment.
See Also scalability.

B
B-tree

 A tree data structure that is popular for use in database indexes. The structure is kept sorted at all times,
enabling fast lookup for exact matches (equals operator) and ranges (for example, greater than, less than, and
BETWEEN operators). This type of index is available for most storage engines, such as InnoDB and MyISAM.

Because B-tree nodes can have many children, a B-tree is not the same as a binary tree, which is limited to 2
children per node.

Contrast with hash index, which is only available in the MEMORY storage engine. The MEMORY storage engine
can also use B-tree indexes, and you should choose B-tree indexes for MEMORY tables if some queries use range
operators.

The use of the term B-tree is intended as a reference to the general class of index design. B-tree structures used
by MySQL storage engines may be regarded as variants due to sophistications not present in a classic B-tree
design. For related information, refer to the InnoDB Page Structure Fil Header section of the MySQL Internals
Manual.
See Also hash index.

backticks
 Identifiers within MySQL SQL statements must be quoted using the backtick character (`) if they contain special
characters or reserved words. For example, to refer to a table named FOO#BAR or a column named SELECT, you
would specify the identifiers as `FOO#BAR` and `SELECT`. Since the backticks provide an extra level of safety,
they are used extensively in program-generated SQL statements, where the identifier names might not be known
in advance.

Many other database systems use double quotation marks (") around such special names. For portability, you
can enable ANSI_QUOTES mode in MySQL and use double quotation marks instead of backticks to qualify
identifier names.
See Also SQL.

4202

https://dev.mysql.com/doc/internals/en/innodb-fil-header.html
https://dev.mysql.com/doc/internals/en/index.html
https://dev.mysql.com/doc/internals/en/index.html

backup
 The process of copying some or all table data and metadata from a MySQL instance, for safekeeping. Can also
refer to the set of copied files. This is a crucial task for DBAs. The reverse of this process is the restore operation.

With MySQL, physical backups are performed by the MySQL Enterprise Backup product, and logical
backups are performed by the mysqldump command. These techniques have different characteristics in terms of
size and representation of the backup data, and speed (especially speed of the restore operation).

Backups are further classified as hot, warm, or cold depending on how much they interfere with normal database
operation. (Hot backups have the least interference, cold backups the most.)
See Also cold backup, hot backup, logical backup, MySQL Enterprise Backup, mysqldump, physical backup,
warm backup.

Barracuda
 The code name for an InnoDB file format that supports the COMPRESSED row format that enables InnoDB
table compression, and the DYNAMIC row format that improves the storage layout for long variable-length
columns.

The MySQL Enterprise Backup product version 3.5 and above supports backing up tablespaces that use the
Barracuda file format.
See Also Antelope, compact row format, compressed row format, dynamic row format, file format, file-per-table,
general tablespace, innodb_file_format, MySQL Enterprise Backup, row format, system tablespace.

beta
 An early stage in the life of a software product, when it is available only for evaluation, typically without a definite
release number or a number less than 1. InnoDB does not use the beta designation, preferring an early adopter
phase that can extend over several point releases, leading to a GA release.
See Also early adopter, GA.

binary log
 A file containing a record of all statements or row changes that attempt to change table data. The contents of the
binary log can be replayed to bring replicas up to date in a replication scenario, or to bring a database up to date
after restoring table data from a backup. The binary logging feature can be turned on and off, although Oracle
recommends always enabling it if you use replication or perform backups.

You can examine the contents of the binary log, or replay it during replication or recovery, by using the
mysqlbinlog command. For full information about the binary log, see Section 5.4.4, “The Binary Log”. For
MySQL configuration options related to the binary log, see Section 17.1.4.4, “Binary Log Options and Variables”.

For the MySQL Enterprise Backup product, the file name of the binary log and the current position within the file
are important details. To record this information for the source when taking a backup in a replication context, you
can specify the --slave-info option.

Prior to MySQL 5.0, a similar capability was available, known as the update log. In MySQL 5.0 and higher, the
binary log replaces the update log.
See Also binlog, MySQL Enterprise Backup, replication.

binlog
 An informal name for the binary log file. For example, you might see this abbreviation used in e-mail messages
or forum discussions.
See Also binary log.

blind query expansion
 A special mode of full-text search enabled by the WITH QUERY EXPANSION clause. It performs the search
twice, where the search phrase for the second search is the original search phrase concatenated with the
few most highly relevant documents from the first search. This technique is mainly applicable for short search

4203

phrases, perhaps only a single word. It can uncover relevant matches where the precise search term does not
occur in the document.
See Also full-text search.

BLOB
 An SQL data type (TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB) for objects containing any kind of binary
data, of arbitrary size. Used for storing documents, images, sound files, and other kinds of information that cannot
easily be decomposed to rows and columns within a MySQL table. The techniques for handling BLOBs within
a MySQL application vary with each Connector and API. MySQL Connector/ODBC defines BLOB values as
LONGVARBINARY. For large, free-form collections of character data, the industry term is CLOB, represented by
the MySQL TEXT data types.
See Also API, CLOB, connector, Connector/ODBC.

bottleneck
 A portion of a system that is constrained in size or capacity, that has the effect of limiting overall throughput. For
example, a memory area might be smaller than necessary; access to a single required resource might prevent
multiple CPU cores from running simultaneously; or waiting for disk I/O to complete might prevent the CPU from
running at full capacity. Removing bottlenecks tends to improve concurrency. For example, the ability to have
multiple InnoDB buffer pool instances reduces contention when multiple sessions read from and write to the
buffer pool simultaneously.
See Also buffer pool, concurrency.

bounce
 A shutdown operation immediately followed by a restart. Ideally with a relatively short warmup period so that
performance and throughput quickly return to a high level.
See Also shutdown.

buddy allocator
 A mechanism for managing different-sized pages in the InnoDB buffer pool.
See Also buffer pool, page, page size.

buffer
 A memory or disk area used for temporary storage. Data is buffered in memory so that it can be written to disk
efficiently, with a few large I/O operations rather than many small ones. Data is buffered on disk for greater
reliability, so that it can be recovered even when a crash or other failure occurs at the worst possible time. The
main types of buffers used by InnoDB are the buffer pool, the doublewrite buffer, and the change buffer.
See Also buffer pool, change buffer, crash, doublewrite buffer.

buffer pool
 The memory area that holds cached InnoDB data for both tables and indexes. For efficiency of high-volume read
operations, the buffer pool is divided into pages that can potentially hold multiple rows. For efficiency of cache
management, the buffer pool is implemented as a linked list of pages; data that is rarely used is aged out of the
cache, using a variation of the LRU algorithm. On systems with large memory, you can improve concurrency by
dividing the buffer pool into multiple buffer pool instances.

Several InnoDB status variables, INFORMATION_SCHEMA tables, and performance_schema tables help to
monitor the internal workings of the buffer pool. Starting in MySQL 5.6, you can avoid a lengthy warmup period
after restarting the server, particularly for instances with large buffer pools, by saving the buffer pool state at
server shutdown and restoring the buffer pool to the same state at server startup. See Section 14.8.3.5, “Saving
and Restoring the Buffer Pool State”.
See Also buffer pool instance, LRU, page, warm up.

buffer pool instance
 Any of the multiple regions into which the buffer pool can be divided, controlled by the
innodb_buffer_pool_instances configuration option. The total memory size specified by
innodb_buffer_pool_size is divided among all buffer pool instances. Typically, having multiple buffer pool

4204

instances is appropriate for systems that allocate multiple gigabytes to the InnoDB buffer pool, with each instance
being one gigabyte or larger. On systems loading or looking up large amounts of data in the buffer pool from
many concurrent sessions, having multiple buffer pool instances reduces contention for exclusive access to data
structures that manage the buffer pool.
See Also buffer pool.

built-in
 The built-in InnoDB storage engine within MySQL is the original form of distribution for the storage engine.
Contrast with the InnoDB Plugin. Starting with MySQL 5.5, the InnoDB Plugin is merged back into the MySQL
code base as the built-in InnoDB storage engine (known as InnoDB 1.1).

This distinction is important mainly in MySQL 5.1, where a feature or bug fix might apply to the InnoDB Plugin but
not the built-in InnoDB, or vice versa.
See Also InnoDB.

business rules
 The relationships and sequences of actions that form the basis of business software, used to run a commercial
company. Sometimes these rules are dictated by law, other times by company policy. Careful planning ensures
that the relationships encoded and enforced by the database, and the actions performed through application logic,
accurately reflect the real policies of the company and can handle real-life situations.

For example, an employee leaving a company might trigger a sequence of actions from the human resources
department. The human resources database might also need the flexibility to represent data about a person
who has been hired, but not yet started work. Closing an account at an online service might result in data being
removed from a database, or the data might be moved or flagged so that it could be recovered if the account
is re-opened. A company might establish policies regarding salary maximums, minimums, and adjustments, in
addition to basic sanity checks such as the salary not being a negative number. A retail database might not allow
a purchase with the same serial number to be returned more than once, or might not allow credit card purchases
above a certain value, while a database used to detect fraud might allow these kinds of things.
See Also relational.

C
.cfg file

 A metadata file used with the InnoDB transportable tablespace feature. It is produced by the command FLUSH
TABLES ... FOR EXPORT, puts one or more tables in a consistent state that can be copied to another server.
The .cfg file is copied along with the corresponding .ibd file, and used to adjust the internal values of the .ibd
file, such as the space ID, during the ALTER TABLE ... IMPORT TABLESPACE step.
See Also .ibd file, space ID, transportable tablespace.

C
 A programming language that combines portability with performance and access to low-level hardware features,
making it a popular choice for writing operating systems, drivers, and other kinds of system software. Many
complex applications, languages, and reusable modules feature pieces written in C, tied together with high-level
components written in other languages. Its core syntax is familiar to C++, Java, and C# developers.
See Also C API, C++, C#, Java.

C API
 The C API code is distributed with MySQL. It is included in the libmysqlclient library and enables C programs to
access a database.
See Also API, C, libmysqlclient.

C#
 A programming language combining strong typing and object-oriented features, running within the Microsoft
.NET framework or its open-source counterpart Mono. Often used for creating applications with the ASP.net
framework. Its syntax is familiar to C, C++ and Java developers.

4205

See Also .NET, ASP.net, C, Connector/NET, C++, Java, Mono.

C++
 A programming language with core syntax familiar to C developers. Provides access to low-level operations for
performance, combined with higher-level data types, object-oriented features, and garbage collection. To write C+
+ applications for MySQL, you use the Connector/C++ component.
See Also C, Connector/C++.

cache
 The general term for any memory area that stores copies of data for frequent or high-speed retrieval. In InnoDB,
the primary kind of cache structure is the buffer pool.
See Also buffer, buffer pool.

cardinality
 The number of different values in a table column. When queries refer to columns that have an associated index,
the cardinality of each column influences which access method is most efficient. For example, for a column with
a unique constraint, the number of different values is equal to the number of rows in the table. If a table has a
million rows but only 10 different values for a particular column, each value occurs (on average) 100,000 times. A
query such as SELECT c1 FROM t1 WHERE c1 = 50; thus might return 1 row or a huge number of rows, and
the database server might process the query differently depending on the cardinality of c1.

If the values in a column have a very uneven distribution, the cardinality might not be a good way to determine
the best query plan. For example, SELECT c1 FROM t1 WHERE c1 = x; might return 1 row when x=50 and
a million rows when x=30. In such a case, you might need to use index hints to pass along advice about which
lookup method is more efficient for a particular query.

Cardinality can also apply to the number of distinct values present in multiple columns, as in a composite index.
See Also column, composite index, index, index hint, persistent statistics, random dive, selectivity, unique
constraint.

change buffer
 A special data structure that records changes to pages in secondary indexes. These values could result from
SQL INSERT, UPDATE, or DELETE statements (DML). The set of features involving the change buffer is known
collectively as change buffering, consisting of insert buffering, delete buffering, and purge buffering.

Changes are only recorded in the change buffer when the relevant page from the secondary index is not in the
buffer pool. When the relevant index page is brought into the buffer pool while associated changes are still in the
change buffer, the changes for that page are applied in the buffer pool (merged) using the data from the change
buffer. Periodically, the purge operation that runs during times when the system is mostly idle, or during a slow
shutdown, writes the new index pages to disk. The purge operation can write the disk blocks for a series of index
values more efficiently than if each value were written to disk immediately.

Physically, the change buffer is part of the system tablespace, so that the index changes remain buffered across
database restarts. The changes are only applied (merged) when the pages are brought into the buffer pool due to
some other read operation.

The kinds and amount of data stored in the change buffer are governed by the innodb_change_buffering
and innodb_change_buffer_max_size configuration options. To see information about the current data in
the change buffer, issue the SHOW ENGINE INNODB STATUS command.

Formerly known as the insert buffer.
See Also buffer pool, change buffering, delete buffering, DML, insert buffer, insert buffering, merge, page, purge,
purge buffering, secondary index, system tablespace.

change buffering
 The general term for the features involving the change buffer, consisting of insert buffering, delete buffering,
and purge buffering. Index changes resulting from SQL statements, which could normally involve random I/

4206

O operations, are held back and performed periodically by a background thread. This sequence of operations
can write the disk blocks for a series of index values more efficiently than if each value were written to disk
immediately. Controlled by the innodb_change_buffering and innodb_change_buffer_max_size
configuration options.
See Also change buffer, delete buffering, insert buffering, purge buffering.

checkpoint
 As changes are made to data pages that are cached in the buffer pool, those changes are written to the data
files sometime later, a process known as flushing. The checkpoint is a record of the latest changes (represented
by an LSN value) that have been successfully written to the data files.
See Also buffer pool, data files, flush, fuzzy checkpointing, LSN.

checksum
 In InnoDB, a validation mechanism to detect corruption when a page in a tablespace is read from disk into the
InnoDB buffer pool. This feature is controlled by the innodb_checksums configuration option in MySQL 5.5.
innodb_checksums is deprecated in MySQL 5.6.3, replaced by innodb_checksum_algorithm.

The innochecksum command helps diagnose corruption problems by testing the checksum values for a
specified tablespace file while the MySQL server is shut down.

MySQL also uses checksums for replication purposes. For details, see the configuration options
binlog_checksum, source_verify_checksum or master_verify_checksum, and
replica_sql_verify_checksum or slave_sql_verify_checksum.
See Also buffer pool, page, tablespace.

child table
 In a foreign key relationship, a child table is one whose rows refer (or point) to rows in another table with an
identical value for a specific column. This is the table that contains the FOREIGN KEY ... REFERENCES
clause and optionally ON UPDATE and ON DELETE clauses. The corresponding row in the parent table must
exist before the row can be created in the child table. The values in the child table can prevent delete or update
operations on the parent table, or can cause automatic deletion or updates in the child table, based on the ON
CASCADE option used when creating the foreign key.
See Also foreign key, parent table.

clean page
 A page in the InnoDB buffer pool where all changes made in memory have also been written (flushed) to the
data files. The opposite of a dirty page.
See Also buffer pool, data files, dirty page, flush, page.

clean shutdown
 A shutdown that completes without errors and applies all changes to InnoDB tables before finishing, as
opposed to a crash or a fast shutdown. Synonym for slow shutdown.
See Also crash, fast shutdown, shutdown, slow shutdown.

client
 A program that runs outside the database server, communicating with the database by sending requests through
a Connector, or an API made available through client libraries. It can run on the same physical machine as
the database server, or on a remote machine connected over a network. It can be a special-purpose database
application, or a general-purpose program like the mysql command-line processor.
See Also API, client libraries, connector, mysql, server.

client libraries
 Files containing collections of functions for working with databases. By compiling your program with these
libraries, or installing them on the same system as your application, you can run a database application (known

4207

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_source_verify_checksum
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_sql_verify_checksum

as a client) on a machine that does not have the MySQL server installed; the application accesses the database
over a network. With MySQL, you can use the libmysqlclient library from the MySQL server itself.
See Also client, libmysqlclient.

client-side prepared statement
 A type of prepared statement where the caching and reuse are managed locally, emulating the functionality of
server-side prepared statements. Historically, used by some Connector/J, Connector/ODBC, and Connector/
PHP developers to work around issues with server-side stored procedures. With modern MySQL server versions,
server-side prepared statements are recommended for performance, scalability, and memory efficiency.
See Also Connector/J, Connector/ODBC, Connector/PHP, prepared statement.

CLOB
 An SQL data type (TINYTEXT, TEXT, MEDIUMTEXT, or LONGTEXT) for objects containing any kind of character
data, of arbitrary size. Used for storing text-based documents, with associated character set and collation order.
The techniques for handling CLOBs within a MySQL application vary with each Connector and API. MySQL
Connector/ODBC defines TEXT values as LONGVARCHAR. For storing binary data, the equivalent is the BLOB
type.
See Also API, BLOB, connector, Connector/ODBC.

clustered index
 The InnoDB term for a primary key index. InnoDB table storage is organized based on the values of the
primary key columns, to speed up queries and sorts involving the primary key columns. For best performance,
choose the primary key columns carefully based on the most performance-critical queries. Because modifying
the columns of the clustered index is an expensive operation, choose primary columns that are rarely or never
updated.

In the Oracle Database product, this type of table is known as an index-organized table.
See Also index, primary key, secondary index.

cold backup
 A backup taken while the database is shut down. For busy applications and websites, this might not be practical,
and you might prefer a warm backup or a hot backup.
See Also backup, hot backup, warm backup.

column
 A data item within a row, whose storage and semantics are defined by a data type. Each table and index is
largely defined by the set of columns it contains.

Each column has a cardinality value. A column can be the primary key for its table, or part of the primary key.
A column can be subject to a unique constraint, a NOT NULL constraint, or both. Values in different columns,
even across different tables, can be linked by a foreign key relationship.

In discussions of MySQL internal operations, sometimes field is used as a synonym.
See Also cardinality, foreign key, index, NOT NULL constraint, primary key, row, table, unique constraint.

column index
 An index on a single column.
See Also composite index, index.

column prefix
 When an index is created with a length specification, such as CREATE INDEX idx ON t1 (c1(N)), only
the first N characters of the column value are stored in the index. Keeping the index prefix small makes the
index compact, and the memory and disk I/O savings help performance. (Although making the index prefix too
small can hinder query optimization by making rows with different values appear to the query optimizer to be
duplicates.)

4208

For columns containing binary values or long text strings, where sorting is not a major consideration and storing
the entire value in the index would waste space, the index automatically uses the first N (typically 768) characters
of the value to do lookups and sorts.
See Also index.

command interceptor
 Synonym for statement interceptor. One aspect of the interceptor design pattern available for both
Connector/NET and Connector/J. What Connector/NET calls a command, Connector/J refers to as a statement.
Contrast with exception interceptor.
See Also Connector/J, Connector/NET, exception interceptor, interceptor, statement interceptor.

commit
 A SQL statement that ends a transaction, making permanent any changes made by the transaction. It is the
opposite of rollback, which undoes any changes made in the transaction.

InnoDB uses an optimistic mechanism for commits, so that changes can be written to the data files before the
commit actually occurs. This technique makes the commit itself faster, with the tradeoff that more work is required
in case of a rollback.

By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL
statement.
See Also autocommit, optimistic, rollback, SQL, transaction.

compact row format
 The default InnoDB row format for InnoDB tables since MySQL 5.0.3. The COMPACT row format provides
a more compact representation for nulls and variable-length columns than the prior default (REDUNDANT row
format).

For additional information about InnoDB COMPACT row format, see Section 14.11, “InnoDB Row Formats”.
See Also Antelope, dynamic row format, file format, redundant row format, row format.

composite index
 An index that includes multiple columns.
See Also index.

compressed backup
 The compression feature of the MySQL Enterprise Backup product makes a compressed copy of each
tablespace, changing the extension from .ibd to .ibz. Compressing backup data allows you to keep more
backups on hand, and reduces the time to transfer backups to a different server. The data is uncompressed
during the restore operation. When a compressed backup operation processes a table that is already
compressed, it skips the compression step for that table, because compressing again would result in little or no
space savings.

A set of files produced by the MySQL Enterprise Backup product, where each tablespace is compressed. The
compressed files are renamed with a .ibz file extension.

Applying compression at the start of the backup process helps to avoid storage overhead during the
compression process, and to avoid network overhead when transferring the backup files to another server. The
process of applying the binary log takes longer, and requires uncompressing the backup files.
See Also apply, binary log, compression, hot backup, MySQL Enterprise Backup, tablespace.

compressed row format
 A row format that enables data and index compression for InnoDB tables. It was introduced in the InnoDB
Plugin, available as part of the Barracuda file format. Large fields are stored away from the page that holds the
rest of the row data, as in dynamic row format. Both index pages and large fields are compressed, yielding

4209

memory and disk savings. Depending on the structure of the data, the decrease in memory and disk usage might
or might not outweigh the performance overhead of uncompressing the data as it is used. See Section 14.9,
“InnoDB Table Compression” for usage details.

For additional information about InnoDB COMPRESSED row format, see DYNAMIC Row Format.
See Also Barracuda, compression, dynamic row format, row format.

compressed table
 A table for which the data is stored in compressed form. For InnoDB, it is a table created with
ROW_FORMAT=COMPRESSED. See Section 14.9, “InnoDB Table Compression” for more information.
See Also compressed row format, compression.

compression
 A feature with wide-ranging benefits from using less disk space, performing less I/O, and using less memory for
caching. InnoDB table and index data can be kept in a compressed format during database operation.

The data is uncompressed when needed for queries, and re-compressed when changes are made by DML
operations. After you enable compression for a table, this processing is transparent to users and application
developers. DBAs can consult InnoDB INFORMATION_SCHEMA tables to monitor how efficiently the compression
parameters work for the MySQL instance and for particular compressed tables.

When InnoDB table data is compressed, the compression applies to the table itself, any associated index data,
and the pages loaded into the buffer pool. Compression does not apply to pages in the undo buffer.

The table compression feature requires using MySQL 5.5 or higher, or the InnoDB Plugin in MySQL 5.1
or earlier, and creating the table using the Barracuda file format and compressed row format, with the
innodb_file_per_table setting enabled.

Compression for each table is influenced by the KEY_BLOCK_SIZE clause of the CREATE TABLE and ALTER
TABLE statements. In MySQL 5.6 and higher, compression is also affected by the server-wide configuration
options innodb_compression_failure_threshold_pct, innodb_compression_level, and
innodb_compression_pad_pct_max. See Section 14.9, “InnoDB Table Compression” for usage details.

Another type of compression is the compressed backup feature of the MySQL Enterprise Backup product.
See Also Barracuda, buffer pool, compressed backup, compressed row format, DML, transparent page
compression.

compression failure
 Not actually an error, rather an expensive operation that can occur when using compression in combination
with DML operations. It occurs when: updates to a compressed page overflow the area on the page
reserved for recording modifications; the page is compressed again, with all changes applied to the table
data; the re-compressed data does not fit on the original page, requiring MySQL to split the data into
two new pages and compress each one separately. To check the frequency of this condition, query the
INFORMATION_SCHEMA.INNODB_CMP table and check how much the value of the COMPRESS_OPS column
exceeds the value of the COMPRESS_OPS_OK column. Ideally, compression failures do not occur often; when they
do, you can adjust the innodb_compression_level, innodb_compression_failure_threshold_pct,
and innodb_compression_pad_pct_max configuration options.
See Also compression, DML, page.

concatenated index
See composite index.

concurrency
 The ability of multiple operations (in database terminology, transactions) to run simultaneously, without
interfering with each other. Concurrency is also involved with performance, because ideally the protection for

4210

multiple simultaneous transactions works with a minimum of performance overhead, using efficient mechanisms
for locking.
See Also ACID, locking, transaction.

configuration file
 The file that holds the option values used by MySQL at startup. Traditionally, on Linux and Unix this file is
named my.cnf, and on Windows it is named my.ini. You can set a number of options related to InnoDB under
the [mysqld] section of the file.

See Section 4.2.2.2, “Using Option Files” for information about where MySQL searches for configuration files.

When you use the MySQL Enterprise Backup product, you typically use two configuration files: one that
specifies where the data comes from and how it is structured (which could be the original configuration file for
your server), and a stripped-down one containing only a small set of options that specify where the backup data
goes and how it is structured. The configuration files used with the MySQL Enterprise Backup product must
contain certain options that are typically left out of regular configuration files, so you might need to add options to
your existing configuration file for use with MySQL Enterprise Backup.
See Also my.cnf, MySQL Enterprise Backup, option, option file.

connection
 The communication channel between an application and a MySQL server. The performance and scalability
of a database applications is influenced by on how quickly a database connection can be established, how
many can be made simultaneously, and how long they persist. The parameters such as host, port, and so on
are represented as a connection string in Connector/NET, and as a DSN in Connector/ODBC. High-traffic
systems make use of an optimization known as the connection pool.
See Also connection pool, connection string, Connector/NET, Connector/ODBC, DSN, host, port.

connection pool
 A cache area that allows database connections to be reused within the same application or across different
applications, rather than setting up and tearing down a new connection for every database operation. This
technique is common with J2EE application servers. Java applications using Connector/J can use the
connection pool features of Tomcat and other application servers. The reuse is transparent to applications; the
application still opens and closes the connection as usual.
See Also connection, Connector/J, J2EE, Tomcat.

connection string
 A representation of the parameters for a database connection, encoded as a string literal so that it can be used
in program code. The parts of the string represent connection parameters such as host and port. A connection
string contains several key-value pairs, separated by semicolons. Each key-value pair is joined with an equal
sign. Frequently used with Connector/NET applications; see Creating a Connector/NET Connection String for
details.
See Also connection, Connector/NET, host, port.

connector
 MySQL Connectors provide connectivity to the MySQL server for client programs. Several programming
languages and frameworks each have their own associated Connector. Contrast with the lower-level access
provided by an API.
See Also API, client, Connector/C++, Connector/J, Connector/NET, Connector/ODBC.

Connector/C++
 Connector/C++ 8.0 can be used to access MySQL servers that implement a document store, or in a traditional
way using SQL queries. It enables development of C++ applications using X DevAPI, or plain C applications
using X DevAPI for C. It also enables development of C++ applications that use the legacy JDBC-based API from
Connector/C++ 1.1. For more information, see MySQL Connector/C++ 8.0 Developer Guide.

4211

https://dev.mysql.com/doc/connector-net/en/connector-net-connections-string.html
https://dev.mysql.com/doc/refman/5.7/en/document-store.html
https://dev.mysql.com/doc/connector-cpp/8.0/en/

See Also client, connector, JDBC.

Connector/J
 A JDBC driver that provides connectivity for client applications developed in the Java programming language.
Different versions are available that are compatible with the JDBC 3.0 and JDBC 4.0 specifications. MySQL
Connector/J is a JDBC Type 4 driver: a pure-Java implementation of the MySQL protocol that does not rely on the
MySQL client libraries. For full details, see MySQL Connector/J 8.0 Developer Guide.
See Also client, client libraries, connector, Java, JDBC.

Connector/NET
 A MySQL connector for developers writing applications using languages, technologies, and frameworks such as
C#, .NET, Mono, Visual Studio, ASP.net, and ADO.net.
See Also ADO.NET, ASP.net, connector, C#, Mono, Visual Studio.

Connector/ODBC
 The family of MySQL ODBC drivers that provide access to a MySQL database using the industry standard Open
Database Connectivity (ODBC) API. Formerly called MyODBC drivers. For full details, see MySQL Connector/
ODBC Developer Guide.
See Also connector, ODBC.

Connector/PHP
 A version of the mysql and mysqli APIs for PHP optimized for the Windows operating system.
See Also connector, PHP, PHP API.

consistent read
 A read operation that uses snapshot information to present query results based on a point in time, regardless of
changes performed by other transactions running at the same time. If queried data has been changed by another
transaction, the original data is reconstructed based on the contents of the undo log. This technique avoids some
of the locking issues that can reduce concurrency by forcing transactions to wait for other transactions to finish.

With REPEATABLE READ isolation level, the snapshot is based on the time when the first read operation is
performed. With READ COMMITTED isolation level, the snapshot is reset to the time of each consistent read
operation.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ COMMITTED
and REPEATABLE READ isolation levels. Because a consistent read does not set any locks on the tables it
accesses, other sessions are free to modify those tables while a consistent read is being performed on the table.

For technical details about the applicable isolation levels, see Section 14.7.2.3, “Consistent Nonlocking Reads”.
See Also concurrency, isolation level, locking, READ COMMITTED, REPEATABLE READ, snapshot, transaction,
undo log.

constraint
 An automatic test that can block database changes to prevent data from becoming inconsistent. (In computer
science terms, a kind of assertion related to an invariant condition.) Constraints are a crucial component of
the ACID philosophy, to maintain data consistency. Constraints supported by MySQL include FOREIGN KEY
constraints and unique constraints.
See Also ACID, foreign key, unique constraint.

counter
 A value that is incremented by a particular kind of InnoDB operation. Useful for measuring how busy a
server is, troubleshooting the sources of performance issues, and testing whether changes (for example,
to configuration settings or indexes used by queries) have the desired low-level effects. Different kinds of
counters are available through Performance Schema tables and INFORMATION_SCHEMA tables, particularly
INFORMATION_SCHEMA.INNODB_METRICS.
See Also INFORMATION_SCHEMA, metrics counter, Performance Schema.

4212

https://dev.mysql.com/doc/connector-j/8.0/en/
https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-odbc/en/

covering index
 An index that includes all the columns retrieved by a query. Instead of using the index values as pointers to
find the full table rows, the query returns values from the index structure, saving disk I/O. InnoDB can apply this
optimization technique to more indexes than MyISAM can, because InnoDB secondary indexes also include the
primary key columns. InnoDB cannot apply this technique for queries against tables modified by a transaction,
until that transaction ends.

Any column index or composite index could act as a covering index, given the right query. Design your indexes
and queries to take advantage of this optimization technique wherever possible.
See Also column index, composite index, index, primary key, secondary index.

CPU-bound
 A type of workload where the primary bottleneck is CPU operations in memory. Typically involves read-
intensive operations where the results can all be cached in the buffer pool.
See Also bottleneck, buffer pool, workload.

crash
 MySQL uses the term “crash” to refer generally to any unexpected shutdown operation where the server cannot
do its normal cleanup. For example, a crash could happen due to a hardware fault on the database server
machine or storage device; a power failure; a potential data mismatch that causes the MySQL server to halt; a
fast shutdown initiated by the DBA; or many other reasons. The robust, automatic crash recovery for InnoDB
tables ensures that data is made consistent when the server is restarted, without any extra work for the DBA.
See Also crash recovery, fast shutdown, InnoDB, shutdown.

crash recovery
 The cleanup activities that occur when MySQL is started again after a crash. For InnoDB tables, changes from
incomplete transactions are replayed using data from the redo log. Changes that were committed before the
crash, but not yet written into the data files, are reconstructed from the doublewrite buffer. When the database
is shut down normally, this type of activity is performed during shutdown by the purge operation.

During normal operation, committed data can be stored in the change buffer for a period of time before being
written to the data files. There is always a tradeoff between keeping the data files up-to-date, which introduces
performance overhead during normal operation, and buffering the data, which can make shutdown and crash
recovery take longer.
See Also change buffer, commit, crash, data files, doublewrite buffer, InnoDB, purge, redo log.

CRUD
 Acronym for “create, read, update, delete”, a common sequence of operations in database applications. Often
denotes a class of applications with relatively simple database usage (basic DDL, DML and query statements in
SQL) that can be implemented quickly in any language.
See Also DDL, DML, query, SQL.

cursor
 An internal MySQL data structure that represents the result set of an SQL statement. Often used with prepared
statements and dynamic SQL. It works like an iterator in other high-level languages, producing each value from
the result set as requested.

Although SQL usually handles the processing of cursors for you, you might delve into the inner workings when
dealing with performance-critical code.
See Also dynamic SQL, prepared statement, query.

D
data definition language

See DDL.

4213

data dictionary
 Metadata that keeps track of InnoDB-related objects such as tables, indexes, and table columns. This
metadata is physically located in the InnoDB system tablespace. For historical reasons, it overlaps to some
degree with information stored in the .frm files.

Because the MySQL Enterprise Backup product always backs up the system tablespace, all backups include
the contents of the data dictionary.
See Also column, file-per-table, .frm file, index, MySQL Enterprise Backup, system tablespace, table.

data directory
 The directory under which each MySQL instance keeps the data files for InnoDB and the directories
representing individual databases. Controlled by the datadir configuration option.
See Also data files, instance.

data files
 The files that physically contain table and index data.

The InnoDB system tablespace, which holds the InnoDB data dictionary and is capable of holding data for
multiple InnoDB tables, is represented by one or more .ibdata data files.

File-per-table tablespaces, which hold data for a single InnoDB table, are represented by a .ibd data file.

General tablespaces (introduced in MySQL 5.7.6), which can hold data for multiple InnoDB tables, are also
represented by a .ibd data file.
See Also data dictionary, file-per-table, general tablespace, .ibd file, ibdata file, index, system tablespace, table,
tablespace.

data manipulation language
See DML.

data warehouse
 A database system or application that primarily runs large queries. The read-only or read-mostly data might
be organized in denormalized form for query efficiency. Can benefit from the optimizations for read-only
transactions in MySQL 5.6 and higher. Contrast with OLTP.
See Also denormalized, OLTP, query, read-only transaction.

database
 Within the MySQL data directory, each database is represented by a separate directory. The InnoDB system
tablespace, which can hold table data from multiple databases within a MySQL instance, is kept in data files
that reside outside of individual database directories. When file-per-table mode is enabled, the .ibd files
representing individual InnoDB tables are stored inside the database directories unless created elsewhere using
the DATA DIRECTORY clause. General tablespaces, introduced in MySQL 5.7.6, also hold table data in .ibd files.
Unlike file-per-table .ibd files, general tablespace .ibd files can hold table data from multiple databases within a
MySQL instance, and can be assigned to directories relative to or independent of the MySQL data directory.

For long-time MySQL users, a database is a familiar notion. Users coming from an Oracle Database background
may find that the MySQL meaning of a database is closer to what Oracle Database calls a schema.
See Also data files, file-per-table, .ibd file, instance, schema, system tablespace.

DCL
 Data control language, a set of SQL statements for managing privileges. In MySQL, consists of the GRANT and
REVOKE statements. Contrast with DDL and DML.
See Also DDL, DML, SQL.

DDEX provider
 A feature that lets you use the data design tools within Visual Studio to manipulate the schema and objects
within a MySQL database. For MySQL applications using Connector/NET, the MySQL Visual Studio Plugin acts
as a DDEX provider with MySQL 5.0 and later.

4214

See Also Visual Studio.

DDL
 Data definition language, a set of SQL statements for manipulating the database itself rather than individual table
rows. Includes all forms of the CREATE, ALTER, and DROP statements. Also includes the TRUNCATE statement,
because it works differently than a DELETE FROM table_name statement, even though the ultimate effect is
similar.

DDL statements automatically commit the current transaction; they cannot be rolled back.

The InnoDB online DDL feature enhances performance for CREATE INDEX, DROP INDEX, and many types of
ALTER TABLE operations. See Section 14.13, “InnoDB and Online DDL” for more information. Also, the InnoDB
file-per-table setting can affect the behavior of DROP TABLE and TRUNCATE TABLE operations.

Contrast with DML and DCL.
See Also commit, DCL, DML, file-per-table, rollback, SQL, transaction.

deadlock
 A situation where different transactions are unable to proceed, because each holds a lock that the other needs.
Because both transactions are waiting for a resource to become available, neither one ever releases the locks it
holds.

A deadlock can occur when the transactions lock rows in multiple tables (through statements such as UPDATE
or SELECT ... FOR UPDATE), but in the opposite order. A deadlock can also occur when such statements
lock ranges of index records and gaps, with each transaction acquiring some locks but not others due to a timing
issue.

For background information on how deadlocks are automatically detected and handled, see Section 14.7.5.2,
“Deadlock Detection”. For tips on avoiding and recovering from deadlock conditions, see Section 14.7.5.3, “How
to Minimize and Handle Deadlocks”.
See Also gap, lock, transaction.

deadlock detection
 A mechanism that automatically detects when a deadlock occurs, and automatically rolls back one of the
transactions involved (the victim).
See Also deadlock, rollback, transaction, victim.

delete
 When InnoDB processes a DELETE statement, the rows are immediately marked for deletion and no longer
are returned by queries. The storage is reclaimed sometime later, during the periodic garbage collection known
as the purge operation. For removing large quantities of data, related operations with their own performance
characteristics are TRUNCATE and DROP.
See Also drop, purge, truncate.

delete buffering
 The technique of storing changes to secondary index pages, resulting from DELETE operations, in the change
buffer rather than writing the changes immediately, so that the physical writes can be performed to minimize
random I/O. (Because delete operations are a two-step process, this operation buffers the write that normally
marks an index record for deletion.) It is one of the types of change buffering; the others are insert buffering
and purge buffering.
See Also change buffer, change buffering, insert buffer, insert buffering, purge buffering.

denormalized
 A data storage strategy that duplicates data across different tables, rather than linking the tables with foreign
keys and join queries. Typically used in data warehouse applications, where the data is not updated after

4215

loading. In such applications, query performance is more important than making it simple to maintain consistent
data during updates. Contrast with normalized.
See Also data warehouse, foreign key, join, normalized.

descending index
 A type of index available with some database systems, where index storage is optimized to process ORDER BY
column DESC clauses. Currently, although MySQL allows the DESC keyword in the CREATE TABLE statement, it
does not use any special storage layout for the resulting index.
See Also index.

dirty page
 A page in the InnoDB buffer pool that has been updated in memory, where the changes are not yet written
(flushed) to the data files. The opposite of a clean page.
See Also buffer pool, clean page, data files, flush, page.

dirty read
 An operation that retrieves unreliable data, data that was updated by another transaction but not yet committed.
It is only possible with the isolation level known as read uncommitted.

This kind of operation does not adhere to the ACID principle of database design. It is considered very risky,
because the data could be rolled back, or updated further before being committed; then, the transaction doing
the dirty read would be using data that was never confirmed as accurate.

Its opposite is consistent read, where InnoDB ensures that a transaction does not read information updated by
another transaction, even if the other transaction commits in the meantime.
See Also ACID, commit, consistent read, isolation level, READ UNCOMMITTED, rollback.

disk-based
 A kind of database that primarily organizes data on disk storage (hard drives or equivalent). Data is brought back
and forth between disk and memory to be operated upon. It is the opposite of an in-memory database. Although
InnoDB is disk-based, it also contains features such as he buffer pool, multiple buffer pool instances, and the
adaptive hash index that allow certain kinds of workloads to work primarily from memory.
See Also adaptive hash index, buffer pool, in-memory database.

disk-bound
 A type of workload where the primary bottleneck is disk I/O. (Also known as I/O-bound.) Typically involves
frequent writes to disk, or random reads of more data than can fit into the buffer pool.
See Also bottleneck, buffer pool, workload.

DML
 Data manipulation language, a set of SQL statements for performing INSERT, UPDATE, and DELETE operations.
The SELECT statement is sometimes considered as a DML statement, because the SELECT ... FOR UPDATE
form is subject to the same considerations for locking as INSERT, UPDATE, and DELETE.

DML statements for an InnoDB table operate in the context of a transaction, so their effects can be committed
or rolled back as a single unit.

Contrast with DDL and DCL.
See Also commit, DCL, DDL, locking, rollback, SQL, transaction.

document id
 In the InnoDB full-text search feature, a special column in the table containing the FULLTEXT index,
to uniquely identify the document associated with each ilist value. Its name is FTS_DOC_ID (uppercase
required). The column itself must be of BIGINT UNSIGNED NOT NULL type, with a unique index named
FTS_DOC_ID_INDEX. Preferably, you define this column when creating the table. If InnoDB must add the column
to the table while creating a FULLTEXT index, the indexing operation is considerably more expensive.

4216

See Also full-text search, FULLTEXT index, ilist.

doublewrite buffer
 InnoDB uses a file flush technique called doublewrite. Before writing pages to the data files, InnoDB first writes
them to a storage area called the doublewrite buffer. Only after the write and the flush to the doublewrite buffer
have completed, does InnoDB write the pages to their proper positions in the data file. If there is an operating
system, storage subsystem or mysqld process crash in the middle of a page write, InnoDB can find a good copy
of the page from the doublewrite buffer during crash recovery.

Although data is always written twice, the doublewrite buffer does not require twice as much I/O overhead or twice
as many I/O operations. Data is written to the buffer itself as a large sequential chunk, with a single fsync() call
to the operating system.
See Also crash recovery, data files, page, purge.

drop
 A kind of DDL operation that removes a schema object, through a statement such as DROP TABLE or DROP
INDEX. It maps internally to an ALTER TABLE statement. From an InnoDB perspective, the performance
considerations of such operations involve the time that the data dictionary is locked to ensure that interrelated
objects are all updated, and the time to update memory structures such as the buffer pool. For a table, the drop
operation has somewhat different characteristics than a truncate operation (TRUNCATE TABLE statement).
See Also buffer pool, data dictionary, DDL, table, truncate.

DSN
 Acronym for “Database Source Name”. It is the encoding for connection information within Connector/ODBC.
See Configuring a Connector/ODBC DSN on Windows for full details. It is the equivalent of the connection
string used by Connector/NET.
See Also connection, connection string, Connector/NET, Connector/ODBC.

dynamic cursor
 A type of cursor supported by ODBC that can pick up new and changed results when the rows are read
again. Whether and how quickly the changes are visible to the cursor depends on the type of table involved
(transactional or non-transactional) and the isolation level for transactional tables. Support for dynamic cursors
must be explicitly enabled.
See Also cursor, ODBC.

dynamic row format
 A row format introduced in the InnoDB Plugin, available as part of the Barracuda file format. Because long
variable-length column values are stored outside of the page that holds the row data, it is very efficient for rows
that include large objects. Since the large fields are typically not accessed to evaluate query conditions, they are
not brought into the buffer pool as often, resulting in fewer I/O operations and better utilization of cache memory.

As of MySQL 5.7.9, the default row format is defined by innodb_default_row_format, which has a default
value of DYNAMIC.

For additional information about InnoDB DYNAMIC row format, see DYNAMIC Row Format.
See Also Barracuda, buffer pool, file format, row format.

dynamic SQL
 A feature that lets you create and execute prepared statements using more robust, secure, and efficient
methods to substitute parameter values than the naive technique of concatenating the parts of the statement into
a string variable.
See Also prepared statement.

dynamic statement
 A prepared statement created and executed through dynamic SQL.
See Also dynamic SQL, prepared statement.

4217

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration-dsn-windows.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_default_row_format

E
early adopter

 A stage similar to beta, when a software product is typically evaluated for performance, functionality, and
compatibility in a non-mission-critical setting.
See Also beta.

Eiffel
 A programming language including many object-oriented features. Some of its concepts are familiar to Java and
C# developers. For the open-source Eiffel API for MySQL, see Section 23.13, “MySQL Eiffel Wrapper”.
See Also API, C#, Java.

embedded
 The embedded MySQL server library (libmysqld) makes it possible to run a full-featured MySQL server inside
a client application. The main benefits are increased speed and more simple management for embedded
applications.
See Also client, libmysqld.

error log
 A type of log showing information about MySQL startup and critical runtime errors and crash information. For
details, see Section 5.4.2, “The Error Log”.
See Also crash, log.

eviction
 The process of removing an item from a cache or other temporary storage area, such as the InnoDB buffer
pool. Often, but not always, uses the LRU algorithm to determine which item to remove. When a dirty page is
evicted, its contents are flushed to disk, and any dirty neighbor pages might be flushed also.
See Also buffer pool, dirty page, flush, LRU, neighbor page.

exception interceptor
 A type of interceptor for tracing, debugging, or augmenting SQL errors encountered by a database application.
For example, the interceptor code could issue a SHOW WARNINGS statement to retrieve additional information,
and add descriptive text or even change the type of the exception returned to the application. Because the
interceptor code is only called when SQL statements return errors, it does not impose any performance penalty
on the application during normal (error-free) operation.

In Java applications using Connector/J, setting up this type of interceptor involves implementing the
com.mysql.jdbc.ExceptionInterceptor interface, and adding a exceptionInterceptors property to
the connection string.

In Visual Studio applications using Connector/NET, setting up this type of interceptor involves defining a
class that inherits from the BaseExceptionInterceptor class and specifying that class name as part of the
connection string.
See Also Connector/J, Connector/NET, interceptor, Java, Visual Studio.

exclusive lock
 A kind of lock that prevents any other transaction from locking the same row. Depending on the transaction
isolation level, this kind of lock might block other transactions from writing to the same row, or might also block
other transactions from reading the same row. The default InnoDB isolation level, REPEATABLE READ, enables
higher concurrency by allowing transactions to read rows that have exclusive locks, a technique known as
consistent read.
See Also concurrency, consistent read, isolation level, lock, REPEATABLE READ, shared lock, transaction.

extent
 A group of pages within a tablespace. For the default page size of 16KB, an extent contains 64 pages.
In MySQL 5.6, the page size for an InnoDB instance can be 4KB, 8KB, or 16KB, controlled by the

4218

innodb_page_size configuration option. For 4KB, 8KB, and 16KB pages sizes, the extent size is always 1MB
(or 1048576 bytes).

Support for 32KB and 64KB InnoDB page sizes was added in MySQL 5.7.6. For a 32KB page size, the extent
size is 2MB. For a 64KB page size, the extent size is 4MB.

InnoDB features such as segments, read-ahead requests and the doublewrite buffer use I/O operations that
read, write, allocate, or free data one extent at a time.
See Also doublewrite buffer, page, page size, read-ahead, segment, tablespace.

F

.frm file
 A file containing the metadata, such as the table definition, of a MySQL table.

For backups, you must always keep the full set of .frm files along with the backup data to be able to restore
tables that are altered or dropped after the backup.

Although each InnoDB table has a .frm file, InnoDB maintains its own table metadata in the system
tablespace.

.frm files are backed up by the MySQL Enterprise Backup product. These files must not be modified by an
ALTER TABLE operation while the backup is taking place, which is why backups that include non-InnoDB
tables perform a FLUSH TABLES WITH READ LOCK operation to freeze such activity while backing up .frm
files. Restoring a backup can result in .frm files being created, changed, or removed to match the state of the
database at the time of the backup.
See Also data dictionary, MySQL Enterprise Backup, system tablespace.

failover
 The ability to automatically switch to a standby server in the event of a failure. In the MySQL context, failover
involves a standby database server. Often supported within J2EE environments by the application server or
framework.
See Also Connector/J, J2EE.

Fast Index Creation
 A capability first introduced in the InnoDB Plugin, now part of MySQL in 5.5 and higher, that speeds up creation
of InnoDB secondary indexes by avoiding the need to completely rewrite the associated table. The speedup
applies to dropping secondary indexes also.

Because index maintenance can add performance overhead to many data transfer operations, consider doing
operations such as ALTER TABLE ... ENGINE=INNODB or INSERT INTO ... SELECT * FROM ...
without any secondary indexes in place, and creating the indexes afterward.

In MySQL 5.6, this feature becomes more general. You can read and write to tables while an index is being
created, and many more kinds of ALTER TABLE operations can be performed without copying the table, without
blocking DML operations, or both. Thus in MySQL 5.6 and higher, this set of features is referred to as online DDL
rather than Fast Index Creation.

For related information, see Section 14.13, “InnoDB and Online DDL”.
See Also DML, index, online DDL, secondary index.

fast shutdown
 The default shutdown procedure for InnoDB, based on the configuration setting innodb_fast_shutdown=1.
To save time, certain flush operations are skipped. This type of shutdown is safe during normal usage, because

4219

the flush operations are performed during the next startup, using the same mechanism as in crash recovery.
In cases where the database is being shut down for an upgrade or downgrade, do a slow shutdown instead to
ensure that all relevant changes are applied to the data files during the shutdown.
See Also crash recovery, data files, flush, shutdown, slow shutdown.

file format
 The file format for InnoDB tables, enabled using the innodb_file_format configuration option. Supported file
formats are Antelope and Barracuda. Antelope is the original InnoDB file format and supports the REDUNDANT
and COMPACT row formats. Barracuda is the newer InnoDB file format and supports the COMPRESSED and
DYNAMIC row formats.
See Also Antelope, Barracuda, file-per-table, .ibd file, ibdata file, row format.

file-per-table
 A general name for the setting controlled by the innodb_file_per_table option, which is an important
configuration option that affects aspects of InnoDB file storage, availability of features, and I/O characteristics. As
of MySQL 5.6.7, innodb_file_per_table is enabled by default.

With the innodb_file_per_table option enabled, you can create a table in its own .ibd file rather than
in the shared ibdata files of the system tablespace. When table data is stored in an individual .ibd file, you
have more flexibility to choose row formats required for features such as data compression. The TRUNCATE
TABLE operation is also faster, and reclaimed space can be used by the operating system rather than remaining
reserved for InnoDB.

The MySQL Enterprise Backup product is more flexible for tables that are in their own files. For example, tables
can be excluded from a backup, but only if they are in separate files. Thus, this setting is suitable for tables that
are backed up less frequently or on a different schedule.
See Also compressed row format, compression, file format, .ibd file, ibdata file, innodb_file_per_table, MySQL
Enterprise Backup, row format, system tablespace.

fill factor
 In an InnoDB index, the proportion of a page that is taken up by index data before the page is split. The
unused space when index data is first divided between pages allows for rows to be updated with longer string
values without requiring expensive index maintenance operations. If the fill factor is too low, the index consumes
more space than needed, causing extra I/O overhead when reading the index. If the fill factor is too high, any
update that increases the length of column values can cause extra I/O overhead for index maintenance. See
Section 14.6.2.2, “The Physical Structure of an InnoDB Index” for more information.
See Also index, page.

fixed row format
 This row format is used by the MyISAM storage engine, not by InnoDB. If you create an InnoDB table with
the option ROW_FORMAT=FIXED in MySQL 5.7.6 or earlier, InnoDB uses the compact row format instead,
although the FIXED value might still show up in output such as SHOW TABLE STATUS reports. As of MySQL
5.7.7, InnoDB returns an error if ROW_FORMAT=FIXED is specified.
See Also compact row format, row format.

flush
 To write changes to the database files, that had been buffered in a memory area or a temporary disk storage
area. The InnoDB storage structures that are periodically flushed include the redo log, the undo log, and the
buffer pool.

Flushing can happen because a memory area becomes full and the system needs to free some space, because
a commit operation means the changes from a transaction can be finalized, or because a slow shutdown
operation means that all outstanding work should be finalized. When it is not critical to flush all the buffered data
at once, InnoDB can use a technique called fuzzy checkpointing to flush small batches of pages to spread out
the I/O overhead.

4220

See Also buffer pool, commit, fuzzy checkpointing, redo log, slow shutdown, undo log.

flush list
 An internal InnoDB data structure that tracks dirty pages in the buffer pool: that is, pages that have been
changed and need to be written back out to disk. This data structure is updated frequently by InnoDB internal
mini-transactions, and so is protected by its own mutex to allow concurrent access to the buffer pool.
See Also buffer pool, dirty page, LRU, mini-transaction, mutex, page, page cleaner.

foreign key
 A type of pointer relationship, between rows in separate InnoDB tables. The foreign key relationship is defined
on one column in both the parent table and the child table.

In addition to enabling fast lookup of related information, foreign keys help to enforce referential integrity,
by preventing any of these pointers from becoming invalid as data is inserted, updated, and deleted. This
enforcement mechanism is a type of constraint. A row that points to another table cannot be inserted if
the associated foreign key value does not exist in the other table. If a row is deleted or its foreign key value
changed, and rows in another table point to that foreign key value, the foreign key can be set up to prevent the
deletion, cause the corresponding column values in the other table to become null, or automatically delete the
corresponding rows in the other table.

One of the stages in designing a normalized database is to identify data that is duplicated, separate that data
into a new table, and set up a foreign key relationship so that the multiple tables can be queried like a single table,
using a join operation.
See Also child table, FOREIGN KEY constraint, join, normalized, NULL, parent table, referential integrity,
relational.

FOREIGN KEY constraint
 The type of constraint that maintains database consistency through a foreign key relationship. Like other kinds
of constraints, it can prevent data from being inserted or updated if data would become inconsistent; in this case,
the inconsistency being prevented is between data in multiple tables. Alternatively, when a DML operation is
performed, FOREIGN KEY constraints can cause data in child rows to be deleted, changed to different values, or
set to null, based on the ON CASCADE option specified when creating the foreign key.
See Also child table, constraint, DML, foreign key, NULL.

FTS
 In most contexts, an acronym for full-text search. Sometimes in performance discussions, an acronym for full
table scan.
See Also full table scan, full-text search.

full backup
 A backup that includes all the tables in each MySQL database, and all the databases in a MySQL instance.
Contrast with partial backup.
See Also backup, database, instance, partial backup, table.

full table scan
 An operation that requires reading the entire contents of a table, rather than just selected portions using an
index. Typically performed either with small lookup tables, or in data warehousing situations with large tables
where all available data is aggregated and analyzed. How frequently these operations occur, and the sizes of the
tables relative to available memory, have implications for the algorithms used in query optimization and managing
the buffer pool.

The purpose of indexes is to allow lookups for specific values or ranges of values within a large table, thus
avoiding full table scans when practical.
See Also buffer pool, index.

4221

full-text search
 The MySQL feature for finding words, phrases, Boolean combinations of words, and so on within table data, in a
faster, more convenient, and more flexible way than using the SQL LIKE operator or writing your own application-
level search algorithm. It uses the SQL function MATCH() and FULLTEXT indexes.
See Also FULLTEXT index.

FULLTEXT index
 The special kind of index that holds the search index in the MySQL full-text search mechanism. Represents
the words from values of a column, omitting any that are specified as stopwords. Originally, only available for
MyISAM tables. Starting in MySQL 5.6.4, it is also available for InnoDB tables.
See Also full-text search, index, InnoDB, search index, stopword.

fuzzy checkpointing
 A technique that flushes small batches of dirty pages from the buffer pool, rather than flushing all dirty pages
at once which would disrupt database processing.
See Also buffer pool, dirty page, flush.

G
GA

 “Generally available”, the stage when a software product leaves beta and is available for sale, official support,
and production use.
See Also beta.

GAC
 Acronym for “Global Assembly Cache”. A central area for storing libraries (assemblies) on a .NET system.
Physically consists of nested folders, treated as a single virtual folder by the .NET CLR.
See Also .NET, assembly.

gap
 A place in an InnoDB index data structure where new values could be inserted. When you lock a set of rows
with a statement such as SELECT ... FOR UPDATE, InnoDB can create locks that apply to the gaps as well as
the actual values in the index. For example, if you select all values greater than 10 for update, a gap lock prevents
another transaction from inserting a new value that is greater than 10. The supremum record and infimum
record represent the gaps containing all values greater than or less than all the current index values.
See Also concurrency, gap lock, index, infimum record, isolation level, supremum record.

gap lock
 A lock on a gap between index records, or a lock on the gap before the first or after the last index record. For
example, SELECT c1 FROM t WHERE c1 BETWEEN 10 and 20 FOR UPDATE; prevents other transactions
from inserting a value of 15 into the column t.c1, whether or not there was already any such value in the column,
because the gaps between all existing values in the range are locked. Contrast with record lock and next-key
lock.

Gap locks are part of the tradeoff between performance and concurrency, and are used in some transaction
isolation levels and not others.
See Also gap, infimum record, lock, next-key lock, record lock, supremum record.

general log
See general query log.

general query log
 A type of log used for diagnosis and troubleshooting of SQL statements processed by the MySQL server. Can
be stored in a file or in a database table. You must enable this feature through the general_log configuration
option to use it. You can disable it for a specific connection through the sql_log_off configuration option.

4222

Records a broader range of queries than the slow query log. Unlike the binary log, which is used for replication,
the general query log contains SELECT statements and does not maintain strict ordering. For more information,
see Section 5.4.3, “The General Query Log”.
See Also binary log, log, slow query log.

general tablespace
 A shared InnoDB tablespace created using CREATE TABLESPACE syntax. General tablespaces can be created
outside of the MySQL data directory, are capable of holding multiple tables, and support tables of all row formats.
General tablespaces were introduced in MySQL 5.7.6.

Tables are added to a general tablespace using CREATE TABLE tbl_name ... TABLESPACE [=]
tablespace_name or ALTER TABLE tbl_name TABLESPACE [=] tablespace_name syntax.

Contrast with system tablespace and file-per-table tablespace.

For more information, see General Tablespaces.
See Also file-per-table, system tablespace, table, tablespace.

Glassfish

See Also J2EE.

global transaction
 A type of transaction involved in XA operations. It consists of several actions that are transactional in
themselves, but that all must either complete successfully as a group, or all be rolled back as a group. In essence,
this extends ACID properties “up a level” so that multiple ACID transactions can be executed in concert as
components of a global operation that also has ACID properties.
See Also ACID, transaction, XA.

group commit
 An InnoDB optimization that performs some low-level I/O operations (log write) once for a set of commit
operations, rather than flushing and syncing separately for each commit.
See Also binary log, commit.

GUID
 Acronym for “globally unique identifier”, an ID value that can be used to associate data across different
databases, languages, operating systems, and so on. (As an alternative to using sequential integers, where the
same values could appear in different tables, databases, and so on referring to different data.) Older MySQL
versions represented it as BINARY(16). Currently, it is represented as CHAR(36). MySQL has a UUID()
function that returns GUID values in character format, and a UUID_SHORT() function that returns GUID values in
integer format. Because successive GUID values are not necessarily in ascending sort order, it is not an efficient
value to use as a primary key for large InnoDB tables.

H
hash index

 A type of index intended for queries that use equality operators, rather than range operators such as greater-
than or BETWEEN. It is available for MEMORY tables. Although hash indexes are the default for MEMORY tables for
historic reasons, that storage engine also supports B-tree indexes, which are often a better choice for general-
purpose queries.

MySQL includes a variant of this index type, the adaptive hash index, that is constructed automatically for
InnoDB tables if needed based on runtime conditions.
See Also adaptive hash index, B-tree, index, InnoDB.

4223

https://dev.mysql.com/doc/refman/5.7/en/general-tablespaces.html

HDD
 Acronym for “hard disk drive”. Refers to storage media using spinning platters, usually when comparing and
contrasting with SSD. Its performance characteristics can influence the throughput of a disk-based workload.
See Also disk-based, SSD.

heartbeat
 A periodic message that is sent to indicate that a system is functioning properly. In a replication context, if the
source stops sending such messages, one of the replicas can take its place. Similar techniques can be used
between the servers in a cluster environment, to confirm that all of them are operating properly.
See Also replication, source.

high-water mark
 A value representing an upper limit, either a hard limit that should not be exceeded at runtime, or a record of the
maximum value that was actually reached. Contrast with low-water mark.
See Also low-water mark.

history list
 A list of transactions with delete-marked records scheduled to be processed by the InnoDB purge operation.
Recorded in the undo log. The length of the history list is reported by the command SHOW ENGINE INNODB
STATUS. If the history list grows longer than the value of the innodb_max_purge_lag configuration option,
each DML operation is delayed slightly to allow the purge operation to finish flushing the deleted records.

Also known as purge lag.
See Also DML, flush, purge, purge lag, rollback segment, transaction, undo log.

hole punching
 Releasing empty blocks from a page. The InnoDB transparent page compression feature relies on hole
punching support. For more information, see InnoDB Page Compression.
See Also sparse file, transparent page compression.

host
 The network name of a database server, used to establish a connection. Often specified in conjunction with a
port. In some contexts, the IP address 127.0.0.1 works better than the special name localhost for accessing
a database on the same server as the application.
See Also connection, localhost, port.

hot
 A condition where a row, table, or internal data structure is accessed so frequently, requiring some form of
locking or mutual exclusion, that it results in a performance or scalability issue.

Although “hot” typically indicates an undesirable condition, a hot backup is the preferred type of backup.
See Also hot backup.

hot backup
 A backup taken while the database is running and applications are reading and writing to it. The backup involves
more than simply copying data files: it must include any data that was inserted or updated while the backup was
in process; it must exclude any data that was deleted while the backup was in process; and it must ignore any
changes that were not committed.

The Oracle product that performs hot backups, of InnoDB tables especially but also tables from MyISAM and
other storage engines, is known as MySQL Enterprise Backup.

The hot backup process consists of two stages. The initial copying of the data files produces a raw backup. The
apply step incorporates any changes to the database that happened while the backup was running. Applying the
changes produces a prepared backup; these files are ready to be restored whenever necessary.
See Also apply, MySQL Enterprise Backup, prepared backup, raw backup.

4224

https://dev.mysql.com/doc/refman/5.7/en/innodb-page-compression.html

I
.ibd file

 The data file for file-per-table tablespaces and general tablespaces. File-per-table tablespace .ibd files contain
a single table and associated index data. General tablespace .ibd files may contain table and index data for
multiple tables. General tablespaces were introduced in MySQL 5.7.6.

The .ibd file extension does not apply to the system tablespace, which consists of one or more ibdata files.

If a file-per-table tablespace or general tablespace is created with the DATA DIRECTORY = clause, the .ibd file
is located at the specified path, outside the normal data directory, and is pointed to by a .isl file.

When a .ibd file is included in a compressed backup by the MySQL Enterprise Backup product, the
compressed equivalent is a .ibz file.
See Also database, file-per-table, general tablespace, ibdata file, .ibz file, innodb_file_per_table, .isl file, MySQL
Enterprise Backup, system tablespace.

.ibz file
 When the MySQL Enterprise Backup product performs a compressed backup, it transforms each tablespace
file that is created using the file-per-table setting from a .ibd extension to a .ibz extension.

The compression applied during backup is distinct from the compressed row format that keeps table data
compressed during normal operation. A compressed backup operation skips the compression step for a
tablespace that is already in compressed row format, as compressing a second time would slow down the backup
but produce little or no space savings.
See Also compressed backup, compressed row format, file-per-table, .ibd file, MySQL Enterprise Backup,
tablespace.

.isl file
 A file that specifies the location of an .ibd file for an InnoDB table created with the DATA DIRECTORY = clause
in MySQL 5.6 and higher, or with the CREATE TABLESPACE ... ADD DATAFILE clause in MySQL 5.7 and
higher. It functions like a symbolic link, without the platform restrictions of the actual symbolic link mechanism.
You can store InnoDB tablespaces outside the database directory, for example, on an especially large or
fast storage device depending on the usage of the table. For details, see Section 14.6.1.2, “Creating Tables
Externally”, and General Tablespaces.
See Also database, .ibd file, table, tablespace.

I/O-bound
See disk-bound.

ib-file set
 The set of files managed by InnoDB within a MySQL database: the system tablespace, file-per-table
tablespace files, and redo log files. Depending on MySQL version and InnoDB configuration, may also include
general tablespace, temporary tablespace, and undo tablespace files. This term is sometimes used in
detailed discussions of InnoDB file structures and formats to refer to the set of files managed by InnoDB within a
MySQL database.
See Also database, file-per-table, general tablespace, redo log, system tablespace, temporary tablespace, undo
tablespace.

ibbackup_logfile
 A supplemental backup file created by the MySQL Enterprise Backup product during a hot backup operation.
It contains information about any data changes that occurred while the backup was running. The initial backup
files, including ibbackup_logfile, are known as a raw backup, because the changes that occurred during
the backup operation are not yet incorporated. After you perform the apply step to the raw backup files, the
resulting files do include those final data changes, and are known as a prepared backup. At this stage, the
ibbackup_logfile file is no longer necessary.

4225

https://dev.mysql.com/doc/refman/5.7/en/general-tablespaces.html

See Also apply, hot backup, MySQL Enterprise Backup, prepared backup, raw backup.

ibdata file
 A set of files with names such as ibdata1, ibdata2, and so on, that make up the InnoDB system
tablespace. For information about the structures and data that reside in the system tablespace ibdata files, see
Section 14.6.3.1, “The System Tablespace”.

Growth of the ibdata files is influenced by the innodb_autoextend_increment configuration option.
See Also change buffer, data dictionary, doublewrite buffer, file-per-table, .ibd file, innodb_file_per_table, system
tablespace, undo log.

ibtmp file
 The InnoDB temporary tablespace data file for non-compressed InnoDB temporary tables and related
objects. The configuration file option, innodb_temp_data_file_path, allows users to define a relative path for
the temporary tablespace data file. If innodb_temp_data_file_path is not specified, the default behavior is to
create a single auto-extending 12MB data file named ibtmp1 in the data directory, alongside ibdata1.
See Also data files, temporary table, temporary tablespace.

ib_logfile
 A set of files, typically named ib_logfile0 and ib_logfile1, that form the redo log. Also sometimes
referred to as the log group. These files record statements that attempt to change data in InnoDB tables. These
statements are replayed automatically to correct data written by incomplete transactions, on startup following a
crash.

This data cannot be used for manual recovery; for that type of operation, use the binary log.
See Also binary log, log group, redo log.

ilist
 Within an InnoDB FULLTEXT index, the data structure consisting of a document ID and positional information
for a token (that is, a particular word).
See Also FULLTEXT index.

implicit row lock
 A row lock that InnoDB acquires to ensure consistency, without you specifically requesting it.
See Also row lock.

in-memory database
 A type of database system that maintains data in memory, to avoid overhead due to disk I/O and translation
between disk blocks and memory areas. Some in-memory databases sacrifice durability (the “D” in the ACID
design philosophy) and are vulnerable to hardware, power, and other types of failures, making them more suitable
for read-only operations. Other in-memory databases do use durability mechanisms such as logging changes to
disk or using non-volatile memory.

MySQL features that address the same kinds of memory-intensive processing include the InnoDB buffer pool,
adaptive hash index, and read-only transaction optimization, the MEMORY storage engine, the MyISAM key
cache, and the MySQL query cache.
See Also ACID, adaptive hash index, buffer pool, disk-based, read-only transaction.

incremental backup
 A type of hot backup, performed by the MySQL Enterprise Backup product, that only saves data changed
since some point in time. Having a full backup and a succession of incremental backups lets you reconstruct
backup data over a long period, without the storage overhead of keeping several full backups on hand. You can
restore the full backup and then apply each of the incremental backups in succession, or you can keep the full
backup up-to-date by applying each incremental backup to it, then perform a single restore operation.

The granularity of changed data is at the page level. A page might actually cover more than one row. Each
changed page is included in the backup.

4226

https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_temp_data_file_path
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_temp_data_file_path

See Also hot backup, MySQL Enterprise Backup, page.

index
 A data structure that provides a fast lookup capability for rows of a table, typically by forming a tree structure (B-
tree) representing all the values of a particular column or set of columns.

InnoDB tables always have a clustered index representing the primary key. They can also have one or more
secondary indexes defined on one or more columns. Depending on their structure, secondary indexes can be
classified as partial, column, or composite indexes.

Indexes are a crucial aspect of query performance. Database architects design tables, queries, and indexes to
allow fast lookups for data needed by applications. The ideal database design uses a covering index where
practical; the query results are computed entirely from the index, without reading the actual table data. Each
foreign key constraint also requires an index, to efficiently check whether values exist in both the parent and
child tables.

Although a B-tree index is the most common, a different kind of data structure is used for hash indexes, as in the
MEMORY storage engine and the InnoDB adaptive hash index. R-tree indexes are used for spatial indexing of
multi-dimensional information.
See Also adaptive hash index, B-tree, child table, clustered index, column index, composite index, covering index,
foreign key, hash index, parent table, partial index, primary key, query, R-tree, row, secondary index, table.

index cache
 A memory area that holds the token data for InnoDB full-text search. It buffers the data to minimize disk I/O
when data is inserted or updated in columns that are part of a FULLTEXT index. The token data is written to disk
when the index cache becomes full. Each InnoDB FULLTEXT index has its own separate index cache, whose
size is controlled by the configuration option innodb_ft_cache_size.
See Also full-text search, FULLTEXT index.

index condition pushdown
 Index condition pushdown (ICP) is an optimization that pushes part of a WHERE condition down to the storage
engine if parts of the condition can be evaluated using fields from the index. ICP can reduce the number of times
the storage engine must access the base table and the number of times the MySQL server must access the
storage engine. For more information, see Section 8.2.1.5, “Index Condition Pushdown Optimization”.
See Also index, storage engine.

index hint
 Extended SQL syntax for overriding the indexes recommended by the optimizer. For example, the FORCE
INDEX, USE INDEX, and IGNORE INDEX clauses. Typically used when indexed columns have unevenly
distributed values, resulting in inaccurate cardinality estimates.
See Also cardinality, index.

index prefix
 In an index that applies to multiple columns (known as a composite index), the initial or leading columns of the
index. A query that references the first 1, 2, 3, and so on columns of a composite index can use the index, even if
the query does not reference all the columns in the index.
See Also composite index, index.

index statistics
See statistics.

infimum record
 A pseudo-record in an index, representing the gap below the smallest value in that index. If a transaction has
a statement such as SELECT ... FROM ... WHERE col < 10 FOR UPDATE;, and the smallest value in the
column is 5, it is a lock on the infimum record that prevents other transactions from inserting even smaller values
such as 0, -10, and so on.

4227

See Also gap, index, pseudo-record, supremum record.

INFORMATION_SCHEMA
 The name of the database that provides a query interface to the MySQL data dictionary. (This name is defined
by the ANSI SQL standard.) To examine information (metadata) about the database, you can query tables such
as INFORMATION_SCHEMA.TABLES and INFORMATION_SCHEMA.COLUMNS, rather than using SHOW commands
that produce unstructured output.

The INFORMATION_SCHEMA database also contains tables specific to InnoDB that provide a query interface
to the InnoDB data dictionary. You use these tables not to see how the database is structured, but to get
real-time information about the workings of InnoDB tables to help with performance monitoring, tuning, and
troubleshooting.
See Also data dictionary, database, InnoDB.

InnoDB
 A MySQL component that combines high performance with transactional capability for reliability, robustness,
and concurrent access. It embodies the ACID design philosophy. Represented as a storage engine; it handles
tables created or altered with the ENGINE=INNODB clause. See Chapter 14, The InnoDB Storage Engine
for architectural details and administration procedures, and Section 8.5, “Optimizing for InnoDB Tables” for
performance advice.

In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables and the ENGINE=INNODB clause
is not required.

InnoDB tables are ideally suited for hot backups. See Section 24.2, “MySQL Enterprise Backup Overview” for
information about the MySQL Enterprise Backup product for backing up MySQL servers without interrupting
normal processing.
See Also ACID, hot backup, MySQL Enterprise Backup, storage engine, transaction.

innodb_autoinc_lock_mode
 The innodb_autoinc_lock_mode option controls the algorithm used for auto-increment locking. When
you have an auto-incrementing primary key, you can use statement-based replication only with the setting
innodb_autoinc_lock_mode=1. This setting is known as consecutive lock mode, because multi-row inserts
within a transaction receive consecutive auto-increment values. If you have innodb_autoinc_lock_mode=2,
which allows higher concurrency for insert operations, use row-based replication rather than statement-
based replication. This setting is known as interleaved lock mode, because multiple multi-row insert
statements running at the same time can receive auto-increment values that are interleaved. The setting
innodb_autoinc_lock_mode=0 should not be used except for compatibility purposes.

Consecutive lock mode (innodb_autoinc_lock_mode=1) is the default setting prior to MySQL 8.0.3. As
of MySQL 8.0.3, interleaved lock mode (innodb_autoinc_lock_mode=2) is the default, which reflects the
change from statement-based to row-based replication as the default replication type.
See Also auto-increment, auto-increment locking, mixed-mode insert, primary key.

innodb_file_format
 The innodb_file_format option defines the file format to use for new InnoDB file-per-table tablespaces.
Currently, you can specify the Antelope and Barracuda file formats.
See Also Antelope, Barracuda, file format, file-per-table, general tablespace, innodb_file_per_table, system
tablespace, tablespace.

innodb_file_per_table
 An important configuration option that affects many aspects of InnoDB file storage, availability of features, and
I/O characteristics. In MySQL 5.6.7 and higher, it is enabled by default. The innodb_file_per_table option
turns on file-per-table mode. With this mode enabled, a newly created InnoDB table and associated indexes can
be stored in a file-per-table .ibd file, outside the system tablespace.

4228

This option affects the performance and storage considerations for a number of SQL statements, such as DROP
TABLE and TRUNCATE TABLE.

Enabling the innodb_file_per_table option allows you to take advantage of features such as table
compression and named-table backups in MySQL Enterprise Backup.

For more information, see innodb_file_per_table, and Section 14.6.3.2, “File-Per-Table Tablespaces”.
See Also compression, file-per-table, .ibd file, MySQL Enterprise Backup, system tablespace.

innodb_lock_wait_timeout
 The innodb_lock_wait_timeout option sets the balance between waiting for shared resources to become
available, or giving up and handling the error, retrying, or doing alternative processing in your application.
Rolls back any InnoDB transaction that waits more than a specified time to acquire a lock. Especially useful if
deadlocks are caused by updates to multiple tables controlled by different storage engines; such deadlocks are
not detected automatically.
See Also deadlock, deadlock detection, lock, wait.

innodb_strict_mode
 The innodb_strict_mode option controls whether InnoDB operates in strict mode, where conditions that are
normally treated as warnings, cause errors instead (and the underlying statements fail).
See Also strict mode.

insert
 One of the primary DML operations in SQL. The performance of inserts is a key factor in data warehouse
systems that load millions of rows into tables, and OLTP systems where many concurrent connections might
insert rows into the same table, in arbitrary order. If insert performance is important to you, you should learn about
InnoDB features such as the insert buffer used in change buffering, and auto-increment columns.
See Also auto-increment, change buffering, data warehouse, DML, InnoDB, insert buffer, OLTP, SQL.

insert buffer
 The former name of the change buffer. In MySQL 5.5, support was added for buffering changes to secondary
index pages for DELETE and UPDATE operations. Previously, only changes resulting from INSERT operations
were buffered. The preferred term is now change buffer.
See Also change buffer, change buffering.

insert buffering
 The technique of storing changes to secondary index pages, resulting from INSERT operations, in the change
buffer rather than writing the changes immediately, so that the physical writes can be performed to minimize
random I/O. It is one of the types of change buffering; the others are delete buffering and purge buffering.

Insert buffering is not used if the secondary index is unique, because the uniqueness of new values cannot be
verified before the new entries are written out. Other kinds of change buffering do work for unique indexes.
See Also change buffer, change buffering, delete buffering, insert buffer, purge buffering, unique index.

insert intention lock
 A type of gap lock that is set by INSERT operations prior to row insertion. This type of lock signals the intent
to insert in such a way that multiple transactions inserting into the same index gap need not wait for each other
if they are not inserting at the same position within the gap. For more information, see Section 14.7.1, “InnoDB
Locking”.
See Also gap lock, lock, next-key lock.

instance
 A single mysqld daemon managing a data directory representing one or more databases with a set of tables.
It is common in development, testing, and some replication scenarios to have multiple instances on the same
server machine, each managing its own data directory and listening on its own port or socket. With one instance
running a disk-bound workload, the server might still have extra CPU and memory capacity to run additional
instances.

4229

See Also data directory, database, disk-bound, mysqld, replication, server, table.

instrumentation
 Modifications at the source code level to collect performance data for tuning and debugging. In MySQL, data
collected by instrumentation is exposed through an SQL interface using the INFORMATION_SCHEMA and
PERFORMANCE_SCHEMA databases.
See Also INFORMATION_SCHEMA, Performance Schema.

intention exclusive lock
See intention lock.

intention lock
 A kind of lock that applies to the table, used to indicate the kind of lock the transaction intends to acquire on
rows in the table. Different transactions can acquire different kinds of intention locks on the same table, but the
first transaction to acquire an intention exclusive (IX) lock on a table prevents other transactions from acquiring
any S or X locks on the table. Conversely, the first transaction to acquire an intention shared (IS) lock on a table
prevents other transactions from acquiring any X locks on the table. The two-phase process allows the lock
requests to be resolved in order, without blocking locks and corresponding operations that are compatible. For
more information about this locking mechanism, see Section 14.7.1, “InnoDB Locking”.
See Also lock, lock mode, locking, transaction.

intention shared lock
See intention lock.

interceptor
 Code for instrumenting or debugging some aspect of an application, which can be enabled without recompiling or
changing the source of the application itself.
See Also command interceptor, Connector/J, Connector/NET, exception interceptor.

inverted index
 A data structure optimized for document retrieval systems, used in the implementation of InnoDB full-text
search. The InnoDB FULLTEXT index, implemented as an inverted index, records the position of each word
within a document, rather than the location of a table row. A single column value (a document stored as a text
string) is represented by many entries in the inverted index.
See Also full-text search, FULLTEXT index, ilist.

IOPS
 Acronym for I/O operations per second. A common measurement for busy systems, particularly OLTP
applications. If this value is near the maximum that the storage devices can handle, the application can become
disk-bound, limiting scalability.
See Also disk-bound, OLTP, scalability.

isolation level
 One of the foundations of database processing. Isolation is the I in the acronym ACID; the isolation level is the
setting that fine-tunes the balance between performance and reliability, consistency, and reproducibility of results
when multiple transactions are making changes and performing queries at the same time.

From highest amount of consistency and protection to the least, the isolation levels supported by InnoDB are:
SERIALIZABLE, REPEATABLE READ, READ COMMITTED, and READ UNCOMMITTED.

With InnoDB tables, many users can keep the default isolation level (REPEATABLE READ) for all operations.
Expert users might choose the READ COMMITTED level as they push the boundaries of scalability with OLTP
processing, or during data warehousing operations where minor inconsistencies do not affect the aggregate
results of large amounts of data. The levels on the edges (SERIALIZABLE and READ UNCOMMITTED) change
the processing behavior to such an extent that they are rarely used.

4230

See Also ACID, OLTP, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE,
transaction.

J
J2EE

 Java Platform, Enterprise Edition: Oracle's enterprise Java platform. It consists of an API and a runtime
environment for enterprise-class Java applications. For full details, see http://www.oracle.com/technetwork/java/
javaee/overview/index.html. With MySQL applications, you typically use Connector/J for database access, and
an application server such as Tomcat or JBoss to handle the middle-tier work, and optionally a framework such
as Spring. Database-related features often offered within a J2EE stack include a connection pool and failover
support.
See Also connection pool, Connector/J, failover, Java, JBoss, Spring, Tomcat.

Java
 A programming language combining high performance, rich built-in features and data types, object-oriented
mechanisms, extensive standard library, and wide range of reusable third-party modules. Enterprise development
is supported by many frameworks, application servers, and other technologies. Much of its syntax is familiar to C
and C++ developers. To write Java applications with MySQL, you use the JDBC driver known as Connector/J.
See Also C, Connector/J, C++, JDBC.

JBoss

See Also J2EE.

JDBC
 Abbreviation for “Java Database Connectivity”, an API for database access from Java applications. Java
developers writing MySQL applications use the Connector/J component as their JDBC driver.
See Also API, Connector/J, J2EE, Java.

JNDI

See Also Java.

join
 A query that retrieves data from more than one table, by referencing columns in the tables that hold identical
values. Ideally, these columns are part of an InnoDB foreign key relationship, which ensures referential
integrity and that the join columns are indexed. Often used to save space and improve query performance by
replacing repeated strings with numeric IDs, in a normalized data design.
See Also foreign key, index, normalized, query, referential integrity.

K
keystore

See Also SSL.

KEY_BLOCK_SIZE
 An option to specify the size of data pages within an InnoDB table that uses compressed row format. The
default is 8 kilobytes. Lower values risk hitting internal limits that depend on the combination of row size and
compression percentage.

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index key blocks. The
value is treated as a hint; a different size could be used if necessary. A KEY_BLOCK_SIZE value specified for an
individual index definition overrides a table-level KEY_BLOCK_SIZE value.

4231

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html

See Also compressed row format.

L
latch

 A lightweight structure used by InnoDB to implement a lock for its own internal memory structures, typically
held for a brief time measured in milliseconds or microseconds. A general term that includes both mutexes (for
exclusive access) and rw-locks (for shared access). Certain latches are the focus of InnoDB performance tuning.
Statistics about latch use and contention are available through the Performance Schema interface.
See Also lock, locking, mutex, Performance Schema, rw-lock.

libmysql
 Informal name for the libmysqlclient library.
See Also libmysqlclient.

libmysqlclient
 The library file, named libmysqlclient.a or libmysqlclient.so, that is typically linked into client
programs written in C. Sometimes known informally as libmysql or the mysqlclient library.
See Also client, libmysql, mysqlclient.

libmysqld
 This embedded MySQL server library makes it possible to run a full-featured MySQL server inside a client
application. The main benefits are increased speed and more simple management for embedded applications.
You link with the libmysqld library rather than libmysqlclient. The API is identical between all three of these
libraries.
See Also client, embedded, libmysql, libmysqlclient.

lifecycle interceptor
 A type of interceptor supported by Connector/J. It involves implementing the interface
com.mysql.jdbc.ConnectionLifecycleInterceptor.
See Also Connector/J, interceptor.

list
 The InnoDB buffer pool is represented as a list of memory pages. The list is reordered as new pages are
accessed and enter the buffer pool, as pages within the buffer pool are accessed again and are considered
newer, and as pages that are not accessed for a long time are evicted from the buffer pool. The buffer pool is
divided into sublists, and the replacement policy is a variation of the familiar LRU technique.
See Also buffer pool, eviction, LRU, page, sublist.

load balancing
 A technique for scaling read-only connections by sending query requests to different slave servers
in a replication or Cluster configuration. With Connector/J, load balancing is enabled through the
com.mysql.jdbc.ReplicationDriver class and controlled by the configuration property
loadBalanceStrategy.
See Also Connector/J, J2EE.

localhost

See Also connection.

lock
 The high-level notion of an object that controls access to a resource, such as a table, row, or internal data
structure, as part of a locking strategy. For intensive performance tuning, you might delve into the actual
structures that implement locks, such as mutexes and latches.

4232

See Also latch, lock mode, locking, mutex.

lock escalation
 An operation used in some database systems that converts many row locks into a single table lock, saving
memory space but reducing concurrent access to the table. InnoDB uses a space-efficient representation for row
locks, so that lock escalation is not needed.
See Also locking, row lock, table lock.

lock mode
 A shared (S) lock allows a transaction to read a row. Multiple transactions can acquire an S lock on that same
row at the same time.

An exclusive (X) lock allows a transaction to update or delete a row. No other transaction can acquire any kind of
lock on that same row at the same time.

Intention locks apply to the table, and are used to indicate what kind of lock the transaction intends to acquire
on rows in the table. Different transactions can acquire different kinds of intention locks on the same table, but the
first transaction to acquire an intention exclusive (IX) lock on a table prevents other transactions from acquiring
any S or X locks on the table. Conversely, the first transaction to acquire an intention shared (IS) lock on a table
prevents other transactions from acquiring any X locks on the table. The two-phase process allows the lock
requests to be resolved in order, without blocking locks and corresponding operations that are compatible.
See Also intention lock, lock, locking, transaction.

locking
 The system of protecting a transaction from seeing or changing data that is being queried or changed by other
transactions. The locking strategy must balance reliability and consistency of database operations (the principles
of the ACID philosophy) against the performance needed for good concurrency. Fine-tuning the locking strategy
often involves choosing an isolation level and ensuring all your database operations are safe and reliable for that
isolation level.
See Also ACID, concurrency, isolation level, locking, transaction.

locking read
 A SELECT statement that also performs a locking operation on an InnoDB table. Either SELECT ... FOR
UPDATE or SELECT ... LOCK IN SHARE MODE. It has the potential to produce a deadlock, depending on the
isolation level of the transaction. The opposite of a non-locking read. Not allowed for global tables in a read-
only transaction.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.

See Section 14.7.2.4, “Locking Reads”.
See Also deadlock, isolation level, locking, non-locking read, read-only transaction.

log
 In the InnoDB context, “log” or “log files” typically refers to the redo log represented by the ib_logfileN files.
Another type of InnoDB log is the undo log, which is a storage area that holds copies of data modified by active
transactions.

Other kinds of logs that are important in MySQL are the error log (for diagnosing startup and runtime problems),
binary log (for working with replication and performing point-in-time restores), the general query log (for
diagnosing application problems), and the slow query log (for diagnosing performance problems).
See Also binary log, error log, general query log, ib_logfile, redo log, slow query log, undo log.

log buffer
 The memory area that holds data to be written to the log files that make up the redo log. It is controlled by the
innodb_log_buffer_size configuration option.

4233

See Also log file, redo log.

log file
 One of the ib_logfileN files that make up the redo log. Data is written to these files from the log buffer memory
area.
See Also ib_logfile, log buffer, redo log.

log group
 The set of files that make up the redo log, typically named ib_logfile0 and ib_logfile1. (For that reason,
sometimes referred to collectively as ib_logfile.)
See Also ib_logfile, redo log.

logical
 A type of operation that involves high-level, abstract aspects such as tables, queries, indexes, and other SQL
concepts. Typically, logical aspects are important to make database administration and application development
convenient and usable. Contrast with physical.
See Also logical backup, physical.

logical backup
 A backup that reproduces table structure and data, without copying the actual data files. For example, the
mysqldump command produces a logical backup, because its output contains statements such as CREATE
TABLE and INSERT that can re-create the data. Contrast with physical backup. A logical backup offers flexibility
(for example, you could edit table definitions or insert statements before restoring), but can take substantially
longer to restore than a physical backup.
See Also backup, mysqldump, physical backup, restore.

loose_
 A prefix added to InnoDB configuration options after server startup, so any new configuration options not
recognized by the current level of MySQL do not cause a startup failure. MySQL processes configuration options
that start with this prefix, but gives a warning rather than a failure if the part after the prefix is not a recognized
option.
See Also startup.

low-water mark
 A value representing a lower limit, typically a threshold value at which some corrective action begins or becomes
more aggressive. Contrast with high-water mark.
See Also high-water mark.

LRU
 An acronym for “least recently used”, a common method for managing storage areas. The items that have not
been used recently are evicted when space is needed to cache newer items. InnoDB uses the LRU mechanism
by default to manage the pages within the buffer pool, but makes exceptions in cases where a page might
be read only a single time, such as during a full table scan. This variation of the LRU algorithm is called the
midpoint insertion strategy. For more information, see Section 14.5.1, “Buffer Pool”.
See Also buffer pool, eviction, full table scan, midpoint insertion strategy, page.

LSN
 Acronym for “log sequence number”. This arbitrary, ever-increasing value represents a point in time
corresponding to operations recorded in the redo log. (This point in time is regardless of transaction boundaries;
it can fall in the middle of one or more transactions.) It is used internally by InnoDB during crash recovery and
for managing the buffer pool.

Prior to MySQL 5.6.3, the LSN was a 4-byte unsigned integer. The LSN became an 8-byte unsigned integer in
MySQL 5.6.3 when the redo log file size limit increased from 4GB to 512GB, as additional bytes were required
to store extra size information. Applications built on MySQL 5.6.3 or later that use LSN values should use 64-bit
rather than 32-bit variables to store and compare LSN values.

4234

In the MySQL Enterprise Backup product, you can specify an LSN to represent the point in time from which to
take an incremental backup. The relevant LSN is displayed by the output of the mysqlbackup command. Once
you have the LSN corresponding to the time of a full backup, you can specify that value to take a subsequent
incremental backup, whose output contains another LSN for the next incremental backup.
See Also buffer pool, crash recovery, incremental backup, MySQL Enterprise Backup, redo log, transaction.

M
.MRG file

 A file containing references to other tables, used by the MERGE storage engine. Files with this extension are
always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup
product.
See Also MySQL Enterprise Backup, mysqlbackup command.

.MYD file
 A file that MySQL uses to store data for a MyISAM table.
See Also .MYI file, MySQL Enterprise Backup, mysqlbackup command.

.MYI file
 A file that MySQL uses to store indexes for a MyISAM table.
See Also .MYD file, MySQL Enterprise Backup, mysqlbackup command.

master
See source.

master thread
 An InnoDB thread that performs various tasks in the background. Most of these tasks are I/O related, such as
writing changes from the change buffer to the appropriate secondary indexes.

To improve concurrency, sometimes actions are moved from the master thread to separate background threads.
For example, in MySQL 5.6 and higher, dirty pages are flushed from the buffer pool by the page cleaner
thread rather than the master thread.
See Also buffer pool, change buffer, concurrency, dirty page, flush, page cleaner, thread.

MDL
 Acronym for “metadata lock”.
See Also metadata lock.

medium trust
 Synonym for partial trust. Because the range of trust settings is so broad, “partial trust” is preferred, to avoid the
implication that there are only three levels (low, medium, and full).
See Also Connector/NET, partial trust.

memcached
 A popular component of many MySQL and NoSQL software stacks, allowing fast reads and writes for single
values and caching the results entirely in memory. Traditionally, applications required extra logic to write the
same data to a MySQL database for permanent storage, or to read data from a MySQL database when it was not
cached yet in memory. Now, applications can use the simple memcached protocol, supported by client libraries
for many languages, to communicate directly with MySQL servers using InnoDB or NDB tables. These NoSQL
interfaces to MySQL tables allow applications to achieve higher read and write performance than by issuing SQL
statements directly, and can simplify application logic and deployment configurations for systems that already
incorporate memcached for in-memory caching.

The memcached interface to InnoDB tables is available in MySQL 5.6 and higher; see Section 14.20, “InnoDB
memcached Plugin” for details. The memcached interface to NDB tables is available in NDB Cluster 7.2 and later;
see http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html for details.

4235

http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html

See Also InnoDB, NoSQL.

merge
 To apply changes to data cached in memory, such as when a page is brought into the buffer pool, and any
applicable changes recorded in the change buffer are incorporated into the page in the buffer pool. The updated
data is eventually written to the tablespace by the flush mechanism.
See Also buffer pool, change buffer, flush, tablespace.

metadata lock
 A type of lock that prevents DDL operations on a table that is being used at the same time by another
transaction. For details, see Section 8.11.4, “Metadata Locking”.

Enhancements to online operations, particularly in MySQL 5.6 and higher, are focused on reducing the amount
of metadata locking. The objective is for DDL operations that do not change the table structure (such as CREATE
INDEX and DROP INDEX for InnoDB tables) to proceed while the table is being queried, updated, and so on by
other transactions.
See Also DDL, lock, online, transaction.

metrics counter
 A feature implemented by the INNODB_METRICS table in the INFORMATION_SCHEMA, in MySQL 5.6 and
higher. You can query counts and totals for low-level InnoDB operations, and use the results for performance
tuning in combination with data from the Performance Schema.
See Also counter, INFORMATION_SCHEMA, Performance Schema.

midpoint insertion strategy
 The technique of initially bringing pages into the InnoDB buffer pool not at the “newest” end of the list,
but instead somewhere in the middle. The exact location of this point can vary, based on the setting of the
innodb_old_blocks_pct option. The intent is that pages that are only read once, such as during a full table
scan, can be aged out of the buffer pool sooner than with a strict LRU algorithm. For more information, see
Section 14.5.1, “Buffer Pool”.
See Also buffer pool, full table scan, LRU, page.

mini-transaction
 An internal phase of InnoDB processing, when making changes at the physical level to internal data structures
during DML operations. A mini-transaction (mtr) has no notion of rollback; multiple mini-transactions can
occur within a single transaction. Mini-transactions write information to the redo log that is used during crash
recovery. A mini-transaction can also happen outside the context of a regular transaction, for example during
purge processing by background threads.
See Also commit, crash recovery, DML, physical, purge, redo log, rollback, transaction.

mixed-mode insert
 An INSERT statement where auto-increment values are specified for some but not all of the new rows. For
example, a multi-value INSERT could specify a value for the auto-increment column in some cases and NULL
in other cases. InnoDB generates auto-increment values for the rows where the column value was specified as
NULL. Another example is an INSERT ... ON DUPLICATE KEY UPDATE statement, where auto-increment
values might be generated but not used, for any duplicate rows that are processed as UPDATE rather than
INSERT statements.

Can cause consistency issues between source and replica servers in a replication configuration. Can require
adjusting the value of the innodb_autoinc_lock_mode configuration option.
See Also auto-increment, innodb_autoinc_lock_mode, replica, replication, source.

MM.MySQL
 An older JDBC driver for MySQL that evolved into Connector/J when it was integrated with the MySQL product.

4236

See Also Connector/J.

Mono
 An Open Source framework developed by Novell, that works with Connector/NET and C# applications on Linux
platforms.
See Also Connector/NET, C#.

mtr
See mini-transaction.

multi-core
 A type of processor that can take advantage of multithreaded programs, such as the MySQL server.

multiversion concurrency control
See MVCC.

mutex
 Informal abbreviation for “mutex variable”. (Mutex itself is short for “mutual exclusion”.) The low-level object
that InnoDB uses to represent and enforce exclusive-access locks to internal in-memory data structures. Once
the lock is acquired, any other process, thread, and so on is prevented from acquiring the same lock. Contrast
with rw-locks, which InnoDB uses to represent and enforce shared-access locks to internal in-memory data
structures. Mutexes and rw-locks are known collectively as latches.
See Also latch, lock, Performance Schema, Pthreads, rw-lock.

MVCC
 Acronym for “multiversion concurrency control”. This technique lets InnoDB transactions with certain isolation
levels perform consistent read operations; that is, to query rows that are being updated by other transactions,
and see the values from before those updates occurred. This is a powerful technique to increase concurrency,
by allowing queries to proceed without waiting due to locks held by the other transactions.

This technique is not universal in the database world. Some other database products, and some other MySQL
storage engines, do not support it.
See Also ACID, concurrency, consistent read, isolation level, lock, transaction.

my.cnf
 The name, on Unix or Linux systems, of the MySQL option file.
See Also my.ini, option file.

my.ini
 The name, on Windows systems, of the MySQL option file.
See Also my.cnf, option file.

MyODBC drivers
 Obsolete name for Connector/ODBC.
See Also Connector/ODBC.

mysql
 The mysql program is the command-line interpreter for the MySQL database. It processes SQL statements, and
also MySQL-specific commands such as SHOW TABLES, by passing requests to the mysqld daemon.
See Also mysqld, SQL.

MySQL Enterprise Backup
 A licensed product that performs hot backups of MySQL databases. It offers the most efficiency and flexibility
when backing up InnoDB tables, but can also back up MyISAM and other kinds of tables.
See Also hot backup, InnoDB.

4237

mysqlbackup command
 A command-line tool of the MySQL Enterprise Backup product. It performs a hot backup operation for InnoDB
tables, and a warm backup for MyISAM and other kinds of tables. See Section 24.2, “MySQL Enterprise Backup
Overview” for more information about this command.
See Also hot backup, MySQL Enterprise Backup, warm backup.

mysqlclient
 The informal name for the library that is implemented by the file libmysqlclient, with extension .a or .so.
See Also libmysqlclient.

mysqld
 mysqld, also known as MySQL Server, is a single multithreaded program that does most of the work in a
MySQL installation. It does not spawn additional processes. MySQL Server manages access to the MySQL data
directory that contains databases, tables, and other information such as log files and status files.

mysqld runs as a Unix daemon or Windows service, constantly waiting for requests and performing maintenance
work in the background.
See Also instance, mysql.

MySQLdb
 The name of the open-source Python module that forms the basis of the MySQL Python API.
See Also Python, Python API.

mysqldump
 A command that performs a logical backup of some combination of databases, tables, and table data. The
results are SQL statements that reproduce the original schema objects, data, or both. For substantial amounts
of data, a physical backup solution such as MySQL Enterprise Backup is faster, particularly for the restore
operation.
See Also logical backup, MySQL Enterprise Backup, physical backup, restore.

N
.NET

See Also ADO.NET, ASP.net, Connector/NET, Mono, Visual Studio.

native C API
 Synonym for libmysqlclient.
See Also libmysql.

natural key
 An indexed column, typically a primary key, where the values have some real-world significance. Usually
advised against because:

• If the value should ever change, there is potentially a lot of index maintenance to re-sort the clustered index
and update the copies of the primary key value that are repeated in each secondary index.

• Even seemingly stable values can change in unpredictable ways that are difficult to represent correctly in the
database. For example, one country can change into two or several, making the original country code obsolete.
Or, rules about unique values might have exceptions. For example, even if taxpayer IDs are intended to be
unique to a single person, a database might have to handle records that violate that rule, such as in cases of
identity theft. Taxpayer IDs and other sensitive ID numbers also make poor primary keys, because they may
need to be secured, encrypted, and otherwise treated differently than other columns.

Thus, it is typically better to use arbitrary numeric values to form a synthetic key, for example using an auto-
increment column.

4238

See Also auto-increment, clustered index, primary key, secondary index, synthetic key.

neighbor page
 Any page in the same extent as a particular page. When a page is selected to be flushed, any neighbor pages
that are dirty are typically flushed as well, as an I/O optimization for traditional hard disks. In MySQL 5.6 and up,
this behavior can be controlled by the configuration variable innodb_flush_neighbors; you might turn that
setting off for SSD drives, which do not have the same overhead for writing smaller batches of data at random
locations.
See Also dirty page, extent, flush, page.

next-key lock
 A combination of a record lock on the index record and a gap lock on the gap before the index record.
See Also gap lock, locking, record lock.

non-locking read
 A query that does not use the SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE clauses.
The only kind of query allowed for global tables in a read-only transaction. The opposite of a locking read. See
Section 14.7.2.3, “Consistent Nonlocking Reads”.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.
See Also locking read, query, read-only transaction.

non-repeatable read
 The situation when a query retrieves data, and a later query within the same transaction retrieves what should
be the same data, but the queries return different results (changed by another transaction committing in the
meantime).

This kind of operation goes against the ACID principle of database design. Within a transaction, data should be
consistent, with predictable and stable relationships.

Among different isolation levels, non-repeatable reads are prevented by the serializable read and repeatable
read levels, and allowed by the consistent read, and read uncommitted levels.
See Also ACID, consistent read, isolation level, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE,
transaction.

nonblocking I/O
 An industry term that means the same as asynchronous I/O.
See Also asynchronous I/O.

normalized
 A database design strategy where data is split into multiple tables, and duplicate values condensed into single
rows represented by an ID, to avoid storing, querying, and updating redundant or lengthy values. It is typically
used in OLTP applications.

For example, an address might be given a unique ID, so that a census database could represent the relationship
lives at this address by associating that ID with each member of a family, rather than storing multiple copies of a
complex value such as 123 Main Street, Anytown, USA.

For another example, although a simple address book application might store each phone number in the same
table as a person's name and address, a phone company database might give each phone number a special
ID, and store the numbers and IDs in a separate table. This normalized representation could simplify large-scale
updates when area codes split apart.

Normalization is not always recommended. Data that is primarily queried, and only updated by deleting
entirely and reloading, is often kept in fewer, larger tables with redundant copies of duplicate values. This data
representation is referred to as denormalized, and is frequently found in data warehousing applications.

4239

See Also denormalized, foreign key, OLTP, relational.

NoSQL
 A broad term for a set of data access technologies that do not use the SQL language as their primary
mechanism for reading and writing data. Some NoSQL technologies act as key-value stores, only accepting
single-value reads and writes; some relax the restrictions of the ACID methodology; still others do not require
a pre-planned schema. MySQL users can combine NoSQL-style processing for speed and simplicity with SQL
operations for flexibility and convenience, by using the memcached API to directly access some kinds of MySQL
tables. The memcached interface to InnoDB tables is available in MySQL 5.6 and higher; see Section 14.20,
“InnoDB memcached Plugin” for details. The memcached interface to NDB tables is available in NDB Cluster 7.2
and later; see ndbmemcache—Memcache API for NDB Cluster (NO LONGER SUPPORTED).
See Also ACID, InnoDB, memcached, schema, SQL.

NOT NULL constraint
 A type of constraint that specifies that a column cannot contain any NULL values. It helps to preserve
referential integrity, as the database server can identify data with erroneous missing values. It also helps in the
arithmetic involved in query optimization, allowing the optimizer to predict the number of entries in an index on
that column.
See Also column, constraint, NULL, primary key, referential integrity.

NULL
 A special value in SQL, indicating the absence of data. Any arithmetic operation or equality test involving a
NULL value, in turn produces a NULL result. (Thus it is similar to the IEEE floating-point concept of NaN, “not a
number”.) Any aggregate calculation such as AVG() ignores rows with NULL values, when determining how many
rows to divide by. The only test that works with NULL values uses the SQL idioms IS NULL or IS NOT NULL.

NULL values play a part in index operations, because for performance a database must minimize the overhead
of keeping track of missing data values. Typically, NULL values are not stored in an index, because a query that
tests an indexed column using a standard comparison operator could never match a row with a NULL value for
that column. For the same reason, unique indexes do not prevent NULL values; those values simply are not
represented in the index. Declaring a NOT NULL constraint on a column provides reassurance that there are
no rows left out of the index, allowing for better query optimization (accurate counting of rows and estimation of
whether to use the index).

Because the primary key must be able to uniquely identify every row in the table, a single-column primary key
cannot contain any NULL values, and a multi-column primary key cannot contain any rows with NULL values in all
columns.

Although the Oracle database allows a NULL value to be concatenated with a string, InnoDB treats the result of
such an operation as NULL.
See Also index, primary key, SQL.

O
.OPT file

 A file containing database configuration information. Files with this extension are included in backups produced
by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command.

ODBC
 Acronym for Open Database Connectivity, an industry-standard API. Typically used with Windows-based
servers, or applications that require ODBC to communicate with MySQL. The MySQL ODBC driver is called
Connector/ODBC.
See Also Connector/ODBC.

4240

https://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html

off-page column
 A column containing variable-length data (such as BLOB and VARCHAR) that is too long to fit on a B-tree page.
The data is stored in overflow pages. The DYNAMIC row format is more efficient for such storage than the older
COMPACT row format.
See Also B-tree, compact row format, dynamic row format, overflow page.

OLTP
 Acronym for “Online Transaction Processing”. A database system, or a database application, that runs a
workload with many transactions, with frequent writes as well as reads, typically affecting small amounts of data
at a time. For example, an airline reservation system or an application that processes bank deposits. The data
might be organized in normalized form for a balance between DML (insert/update/delete) efficiency and query
efficiency. Contrast with data warehouse.

With its row-level locking and transactional capability, InnoDB is the ideal storage engine for MySQL tables
used in OLTP applications.
See Also data warehouse, DML, InnoDB, query, row lock, transaction.

online
 A type of operation that involves no downtime, blocking, or restricted operation for the database. Typically
applied to DDL. Operations that shorten the periods of restricted operation, such as fast index creation, have
evolved into a wider set of online DDL operations in MySQL 5.6.

In the context of backups, a hot backup is an online operation and a warm backup is partially an online
operation.
See Also DDL, Fast Index Creation, hot backup, online DDL, warm backup.

online DDL
 A feature that improves the performance, concurrency, and availability of InnoDB tables during DDL (primarily
ALTER TABLE) operations. See Section 14.13, “InnoDB and Online DDL” for details.

The details vary according to the type of operation. In some cases, the table can be modified concurrently
while the ALTER TABLE is in progress. The operation might be able to be performed without a table copy, or
using a specially optimized type of table copy. DML log space usage for in-place operations is controlled by the
innodb_online_alter_log_max_size configuration option.

This feature is an enhancement of the Fast Index Creation feature in MySQL 5.5.
See Also DDL, Fast Index Creation, online.

optimistic
 A methodology that guides low-level implementation decisions for a relational database system. The
requirements of performance and concurrency in a relational database mean that operations must be started or
dispatched quickly. The requirements of consistency and referential integrity mean that any operation could fail:
a transaction might be rolled back, a DML operation could violate a constraint, a request for a lock could cause
a deadlock, a network error could cause a timeout. An optimistic strategy is one that assumes most requests or
attempts succeed, so that relatively little work is done to prepare for the failure case. When this assumption is
true, the database does little unnecessary work; when requests do fail, extra work must be done to clean up and
undo changes.

InnoDB uses optimistic strategies for operations such as locking and commits. For example, data changed by
a transaction can be written to the data files before the commit occurs, making the commit itself very fast, but
requiring more work to undo the changes if the transaction is rolled back.

The opposite of an optimistic strategy is a pessimistic one, where a system is optimized to deal with operations
that are unreliable and frequently unsuccessful. This methodology is rare in a database system, because so much
care goes into choosing reliable hardware, networks, and algorithms.

4241

See Also commit, concurrency, DML, locking, pessimistic, referential integrity.

optimizer
 The MySQL component that determines the best indexes and join order to use for a query, based on
characteristics and data distribution of the relevant tables.
See Also index, join, query, table.

option
 A configuration parameter for MySQL, either stored in the option file or passed on the command line.

For the options that apply to InnoDB tables, each option name starts with the prefix innodb_.
See Also InnoDB, option, option file.

option file
 The file that holds the configuration options for the MySQL instance. Traditionally, on Linux and Unix this file is
named my.cnf, and on Windows it is named my.ini.
See Also configuration file, my.cnf, my.ini, option.

overflow page
 Separately allocated disk pages that hold variable-length columns (such as BLOB and VARCHAR) that are too
long to fit on a B-tree page. The associated columns are known as off-page columns.
See Also B-tree, off-page column, page.

P
.par file

 A file containing partition definitions. Files with this extension are included in backups produced by the
mysqlbackup command of the MySQL Enterprise Backup product.

With the introduction of native partitioning support for InnoDB tables in MySQL 5.7.6, .par files are no longer
created for partitioned InnoDB tables. Partitioned MyISAM tables continue to use .par files in MySQL 5.7. In
MySQL 8.0, partitioning support is only provided by the InnoDB storage engine. As such, .par files are no longer
used as of MySQL 8.0.
See Also MySQL Enterprise Backup, mysqlbackup command.

page
 A unit representing how much data InnoDB transfers at any one time between disk (the data files) and memory
(the buffer pool). A page can contain one or more rows, depending on how much data is in each row. If a
row does not fit entirely into a single page, InnoDB sets up additional pointer-style data structures so that the
information about the row can be stored in one page.

One way to fit more data in each page is to use compressed row format. For tables that use BLOBs or large text
fields, compact row format allows those large columns to be stored separately from the rest of the row, reducing
I/O overhead and memory usage for queries that do not reference those columns.

When InnoDB reads or writes sets of pages as a batch to increase I/O throughput, it reads or writes an extent at
a time.

All the InnoDB disk data structures within a MySQL instance share the same page size.
See Also buffer pool, compact row format, compressed row format, data files, extent, page size, row.

page cleaner
 An InnoDB background thread that flushes dirty pages from the buffer pool. Prior to MySQL 5.6, this
activity was performed by the master thread. The number of page cleaner threads is controlled by the
innodb_page_cleaners configuration option, introduced in MySQL 5.7.4.

4242

https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_page_cleaners

See Also buffer pool, dirty page, flush, master thread, thread.

page size
 For releases up to and including MySQL 5.5, the size of each InnoDB page is fixed at 16 kilobytes. This value
represents a balance: large enough to hold the data for most rows, yet small enough to minimize the performance
overhead of transferring unneeded data to memory. Other values are not tested or supported.

Starting in MySQL 5.6, the page size for an InnoDB instance can be either 4KB, 8KB, or 16KB, controlled by
the innodb_page_size configuration option. As of MySQL 5.7.6, InnoDB also supports 32KB and 64KB page
sizes. For 32KB and 64KB page sizes, ROW_FORMAT=COMPRESSED is not supported and the maximum record
size is 16KB.

Page size is set when creating the MySQL instance, and it remains constant afterward. The same page size
applies to all InnoDB tablespaces, including the system tablespace, file-per-table tablespaces, and general
tablespaces.

Smaller page sizes can help performance with storage devices that use small block sizes, particularly for SSD
devices in disk-bound workloads, such as for OLTP applications. As individual rows are updated, less data is
copied into memory, written to disk, reorganized, locked, and so on.
See Also disk-bound, file-per-table, general tablespace, instance, OLTP, page, SSD, system tablespace,
tablespace.

parent table
 The table in a foreign key relationship that holds the initial column values pointed to from the child table. The
consequences of deleting, or updating rows in the parent table depend on the ON UPDATE and ON DELETE
clauses in the foreign key definition. Rows with corresponding values in the child table could be automatically
deleted or updated in turn, or those columns could be set to NULL, or the operation could be prevented.
See Also child table, foreign key.

partial backup
 A backup that contains some of the tables in a MySQL database, or some of the databases in a MySQL
instance. Contrast with full backup.
See Also backup, full backup, table.

partial index
 An index that represents only part of a column value, typically the first N characters (the prefix) of a long
VARCHAR value.
See Also index, index prefix.

partial trust
 An execution environment typically used by hosting providers, where applications have some permissions but not
others. For example, applications might be able to access a database server over a network, but be “sandboxed”
with regard to reading and writing local files.
See Also Connector/NET.

Performance Schema
 The performance_schema schema, in MySQL 5.5 and up, presents a set of tables that you can query to get
detailed information about the performance characteristics of many internal parts of the MySQL server. See
Chapter 22, MySQL Performance Schema.
See Also INFORMATION_SCHEMA, latch, mutex, rw-lock.

Perl
 A programming language with roots in Unix scripting and report generation. Incorporates high-performance
regular expressions and file I/O. Large collection of reusable modules available through repositories such as
CPAN.
See Also Perl API.

4243

Perl API
 An open-source API for MySQL applications written in the Perl language. Implemented through the DBI and
DBD::mysql modules. For details, see Section 23.9, “MySQL Perl API”.
See Also API, Perl.

persistent statistics
 A feature that stores index statistics for InnoDB tables on disk, providing better plan stability for queries. For
more information, see Section 14.8.11.1, “Configuring Persistent Optimizer Statistics Parameters”.
See Also index, optimizer, plan stability, query, table.

pessimistic
 A methodology that sacrifices performance or concurrency in favor of safety. It is appropriate if a high proportion
of requests or attempts might fail, or if the consequences of a failed request are severe. InnoDB uses what is
known as a pessimistic locking strategy, to minimize the chance of deadlocks. At the application level, you
might avoid deadlocks by using a pessimistic strategy of acquiring all locks needed by a transaction at the very
beginning.

Many built-in database mechanisms use the opposite optimistic methodology.
See Also deadlock, locking, optimistic.

phantom
 A row that appears in the result set of a query, but not in the result set of an earlier query. For example, if a query
is run twice within a transaction, and in the meantime, another transaction commits after inserting a new row or
updating a row so that it matches the WHERE clause of the query.

This occurrence is known as a phantom read. It is harder to guard against than a non-repeatable read, because
locking all the rows from the first query result set does not prevent the changes that cause the phantom to appear.

Among different isolation levels, phantom reads are prevented by the serializable read level, and allowed by
the repeatable read, consistent read, and read uncommitted levels.
See Also consistent read, isolation level, non-repeatable read, READ UNCOMMITTED, REPEATABLE READ,
SERIALIZABLE, transaction.

PHP
 A programming language originating with web applications. The code is typically embedded as blocks within
the source of a web page, with the output substituted into the page as it is transmitted by the web server. This
is in contrast to applications such as CGI scripts that print output in the form of an entire web page. The PHP
style of coding is used for highly interactive and dynamic web pages. Modern PHP programs can also be run as
command-line or GUI applications.

MySQL applications are written using one of the PHP APIs. Reusable modules can be written in C and called
from PHP.

Another technology for writing server-side web pages with MySQL is ASP.net.
See Also ASP.net, C, PHP API.

PHP API
 Several APIs are available for writing MySQL applications in the PHP language: the original MySQL API
(Mysql) the MySQL Improved Extension (Mysqli) the MySQL Native Driver (Mysqlnd) the MySQL functions
(PDO_MYSQL), and Connector/PHP. For details, see MySQL and PHP.
See Also API, PHP.

physical
 A type of operation that involves hardware-related aspects such as disk blocks, memory pages, files, bits, disk
reads, and so on. Typically, physical aspects are important during expert-level performance tuning and problem
diagnosis. Contrast with logical.

4244

https://dev.mysql.com/doc/apis-php/en/

See Also logical, physical backup.

physical backup
 A backup that copies the actual data files. For example, the mysqlbackup command of the MySQL Enterprise
Backup product produces a physical backup, because its output contains data files that can be used directly by
the mysqld server, resulting in a faster restore operation. Contrast with logical backup.
See Also backup, logical backup, MySQL Enterprise Backup, restore.

PITR
 Acronym for point-in-time recovery.
See Also point-in-time recovery.

plan stability
 A property of a query execution plan, where the optimizer makes the same choices each time for a given
query, so that performance is consistent and predictable.
See Also query, query execution plan.

point-in-time recovery
 The process of restoring a backup to recreate the state of the database at a specific date and time. Commonly
abbreviated “PITR”. Because it is unlikely that the specified time corresponds exactly to the time of a backup, this
technique usually requires a combination of a physical backup and a logical backup. For example, with the
MySQL Enterprise Backup product, you restore the last backup that you took before the specified point in time,
then replay changes from the binary log between the time of the backup and the PITR time.
See Also backup, binary log, logical backup, MySQL Enterprise Backup, physical backup.

port
 The number of the TCP/IP socket the database server listens on, used to establish a connection. Often
specified in conjunction with a host. Depending on your use of network encryption, there might be one port for
unencrypted traffic and another port for SSL connections.
See Also connection, host, SSL.

prefix
See index prefix.

prepared backup
 A set of backup files, produced by the MySQL Enterprise Backup product, after all the stages of applying
binary logs and incremental backups are finished. The resulting files are ready to be restored. Prior to the
apply steps, the files are known as a raw backup.
See Also binary log, hot backup, incremental backup, MySQL Enterprise Backup, raw backup, restore.

prepared statement
 An SQL statement that is analyzed in advance to determine an efficient execution plan. It can be executed
multiple times, without the overhead for parsing and analysis each time. Different values can be substituted for
literals in the WHERE clause each time, through the use of placeholders. This substitution technique improves
security, protecting against some kinds of SQL injection attacks. You can also reduce the overhead for converting
and copying return values to program variables.

Although you can use prepared statements directly through SQL syntax, the various Connectors have
programming interfaces for manipulating prepared statements, and these APIs are more efficient than going
through SQL.
See Also client-side prepared statement, connector, server-side prepared statement.

primary key
 A set of columns—and by implication, the index based on this set of columns—that can uniquely identify every
row in a table. As such, it must be a unique index that does not contain any NULL values.

4245

InnoDB requires that every table has such an index (also called the clustered index or cluster index), and
organizes the table storage based on the column values of the primary key.

When choosing primary key values, consider using arbitrary values (a synthetic key) rather than relying on
values derived from some other source (a natural key).
See Also clustered index, index, natural key, synthetic key.

process
 An instance of an executing program. The operating system switches between multiple running processes,
allowing for a certain degree of concurrency. On most operating systems, processes can contain multiple
threads of execution that share resources. Context-switching between threads is faster than the equivalent
switching between processes.
See Also concurrency, thread.

pseudo-record
 An artificial record in an index, used for locking key values or ranges that do not currently exist.
See Also infimum record, locking, supremum record.

Pthreads
 The POSIX threads standard, which defines an API for threading and locking operations on Unix and Linux
systems. On Unix and Linux systems, InnoDB uses this implementation for mutexes.
See Also mutex.

purge
 A type of garbage collection performed by one or more separate background threads (controlled by
innodb_purge_threads) that runs on a periodic schedule. Purge parses and processes undo log pages from
the history list for the purpose of removing clustered and secondary index records that were marked for deletion
(by previous DELETE statements) and are no longer required for MVCC or rollback. Purge frees undo log pages
from the history list after processing them.
See Also history list, MVCC, rollback, undo log.

purge buffering
 The technique of storing changes to secondary index pages, resulting from DELETE operations, in the change
buffer rather than writing the changes immediately, so that the physical writes can be performed to minimize
random I/O. (Because delete operations are a two-step process, this operation buffers the write that normally
purges an index record that was previously marked for deletion.) It is one of the types of change buffering; the
others are insert buffering and delete buffering.
See Also change buffer, change buffering, delete buffering, insert buffer, insert buffering.

purge lag
 Another name for the InnoDB history list. Related to the innodb_max_purge_lag configuration option.
See Also history list, purge.

purge thread
 A thread within the InnoDB process that is dedicated to performing the periodic purge operation. In MySQL 5.6
and higher, multiple purge threads are enabled by the innodb_purge_threads configuration option.
See Also purge, thread.

Python
 A programming language used in a broad range of fields, from Unix scripting to large-scale applications. Includes
runtime typing, built-in high-level data types, object-oriented features, and an extensive standard library. Often
used as a “glue” language between components written in other languages. The MySQL Python API is the open-
source MySQLdb module.
See Also MySQLdb, Python API.

Python API

4246

See Also API, Python.

Q

query
 In SQL, an operation that reads information from one or more tables. Depending on the organization of data and
the parameters of the query, the lookup might be optimized by consulting an index. If multiple tables are involved,
the query is known as a join.

For historical reasons, sometimes discussions of internal processing for statements use “query” in a broader
sense, including other types of MySQL statements such as DDL and DML statements.
See Also DDL, DML, index, join, SQL, table.

query execution plan
 The set of decisions made by the optimizer about how to perform a query most efficiently, including which index
or indexes to use, and the order in which to join tables. Plan stability involves the same choices being made
consistently for a given query.
See Also index, join, plan stability, query.

query log
See general query log.

quiesce
 To reduce the amount of database activity, often in preparation for an operation such as an ALTER TABLE, a
backup, or a shutdown. Might or might not involve doing as much flushing as possible, so that InnoDB does
not continue doing background I/O.

In MySQL 5.6 and higher, the syntax FLUSH TABLES ... FOR EXPORT writes some data to disk for InnoDB
tables that make it simpler to back up those tables by copying the data files.
See Also backup, flush, InnoDB, shutdown.

R

R-tree
 A tree data structure used for spatial indexing of multi-dimensional data such as geographical coordinates,
rectangles or polygons.
See Also B-tree.

RAID
 Acronym for “Redundant Array of Inexpensive Drives”. Spreading I/O operations across multiple drives enables
greater concurrency at the hardware level, and improves the efficiency of low-level write operations that
otherwise would be performed in sequence.
See Also concurrency.

random dive
 A technique for quickly estimating the number of different values in a column (the column's cardinality). InnoDB
samples pages at random from the index and uses that data to estimate the number of different values.
See Also cardinality.

raw backup
 The initial set of backup files produced by the MySQL Enterprise Backup product, before the changes reflected
in the binary log and any incremental backups are applied. At this stage, the files are not ready to restore.
After these changes are applied, the files are known as a prepared backup.

4247

See Also binary log, hot backup, ibbackup_logfile, incremental backup, MySQL Enterprise Backup, prepared
backup, restore.

READ COMMITTED
 An isolation level that uses a locking strategy that relaxes some of the protection between transactions, in
the interest of performance. Transactions cannot see uncommitted data from other transactions, but they can see
data that is committed by another transaction after the current transaction started. Thus, a transaction never sees
any bad data, but the data that it does see may depend to some extent on the timing of other transactions.

When a transaction with this isolation level performs UPDATE ... WHERE or DELETE ... WHERE operations,
other transactions might have to wait. The transaction can perform SELECT ... FOR UPDATE, and LOCK IN
SHARE MODE operations without making other transactions wait.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.
See Also ACID, isolation level, locking, REPEATABLE READ, SERIALIZABLE, transaction.

read phenomena
 Phenomena such as dirty reads, non-repeatable reads, and phantom reads which can occur when a
transaction reads data that another transaction has modified.
See Also dirty read, non-repeatable read, phantom.

READ UNCOMMITTED
 The isolation level that provides the least amount of protection between transactions. Queries employ a
locking strategy that allows them to proceed in situations where they would normally wait for another transaction.
However, this extra performance comes at the cost of less reliable results, including data that has been changed
by other transactions and not committed yet (known as dirty read). Use this isolation level with great caution, and
be aware that the results might not be consistent or reproducible, depending on what other transactions are doing
at the same time. Typically, transactions with this isolation level only do queries, not insert, update, or delete
operations.
See Also ACID, dirty read, isolation level, locking, transaction.

read view
 An internal snapshot used by the MVCC mechanism of InnoDB. Certain transactions, depending on their
isolation level, see the data values as they were at the time the transaction (or in some cases, the statement)
started. Isolation levels that use a read view are REPEATABLE READ, READ COMMITTED, and READ
UNCOMMITTED.
See Also isolation level, MVCC, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ,
transaction.

read-ahead
 A type of I/O request that prefetches a group of pages (an entire extent) into the buffer pool asynchronously,
in case these pages are needed soon. The linear read-ahead technique prefetches all the pages of one extent
based on access patterns for pages in the preceding extent. The random read-ahead technique prefetches
all the pages for an extent once a certain number of pages from the same extent are in the buffer pool.
Random read-ahead is not part of MySQL 5.5, but is re-introduced in MySQL 5.6 under the control of the
innodb_random_read_ahead configuration option.
See Also buffer pool, extent, page.

read-only transaction
 A type of transaction that can be optimized for InnoDB tables by eliminating some of the bookkeeping involved
with creating a read view for each transaction. Can only perform non-locking read queries. It can be started
explicitly with the syntax START TRANSACTION READ ONLY, or automatically under certain conditions. See
Section 8.5.3, “Optimizing InnoDB Read-Only Transactions” for details.

4248

See Also non-locking read, read view, transaction.

record lock
 A lock on an index record. For example, SELECT c1 FROM t WHERE c1 = 10 FOR UPDATE; prevents any
other transaction from inserting, updating, or deleting rows where the value of t.c1 is 10. Contrast with gap lock
and next-key lock.
See Also gap lock, lock, next-key lock.

redo
 The data, in units of records, recorded in the redo log when DML statements make changes to InnoDB tables.
It is used during crash recovery to correct data written by incomplete transactions. The ever-increasing LSN
value represents the cumulative amount of redo data that has passed through the redo log.
See Also crash recovery, DML, LSN, redo log, transaction.

redo log
 A disk-based data structure used during crash recovery, to correct data written by incomplete transactions.
During normal operation, it encodes requests to change InnoDB table data, which result from SQL statements or
low-level API calls. Modifications that did not finish updating the data files before an unexpected shutdown are
replayed automatically.

The redo log is physically represented on disk as a set of redo log files. Redo log data is encoded in terms
of records affected; this data is collectively referred to as redo. The passage of data through the redo log is
represented by an ever-increasing LSN value.

For more information, see Section 14.6.6, “Redo Log”
See Also crash recovery, data files, ib_logfile, log buffer, LSN, redo, shutdown, transaction.

redo log archiving
 An InnoDB feature that, when enabled, sequentially writes redo log records to an archive file to avoid potential
loss of data than can occur when a backup utility fails to keep pace with redo log generation while a backup
operation is in progress. For more information, see Redo Log Archiving.
See Also redo log.

redundant row format
 The oldest InnoDB row format. Prior to MySQL 5.0.3, it was the only row format available in InnoDB. From
MySQL 5.0.3 to MySQL 5.7.8, the default row format is COMPACT. As of MySQL 5.7.9, the default row format is
defined by the innodb_default_row_format configuration option, which has a default setting of DYNAMIC.
You can still specify the REDUNDANT row format for compatibility with older InnoDB tables.

For more information, see Section 14.11, “InnoDB Row Formats”.
See Also compact row format, dynamic row format, row format.

referential integrity
 The technique of maintaining data always in a consistent format, part of the ACID philosophy. In particular, data
in different tables is kept consistent through the use of foreign key constraints, which can prevent changes
from happening or automatically propagate those changes to all related tables. Related mechanisms include
the unique constraint, which prevents duplicate values from being inserted by mistake, and the NOT NULL
constraint, which prevents blank values from being inserted by mistake.
See Also ACID, FOREIGN KEY constraint, NOT NULL constraint, unique constraint.

relational
 An important aspect of modern database systems. The database server encodes and enforces relationships
such as one-to-one, one-to-many, many-to-one, and uniqueness. For example, a person might have zero, one,
or many phone numbers in an address database; a single phone number might be associated with several family
members. In a financial database, a person might be required to have exactly one taxpayer ID, and any taxpayer
ID could only be associated with one person.

4249

https://dev.mysql.com/doc/refman/8.0/en/innodb-redo-log.html#innodb-redo-log-archiving
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_default_row_format

The database server can use these relationships to prevent bad data from being inserted, and to find efficient
ways to look up information. For example, if a value is declared to be unique, the server can stop searching as
soon as the first match is found, and it can reject attempts to insert a second copy of the same value.

At the database level, these relationships are expressed through SQL features such as columns within a table,
unique and NOT NULL constraints, foreign keys, and different kinds of join operations. Complex relationships
typically involve data split between more than one table. Often, the data is normalized, so that duplicate values in
one-to-many relationships are stored only once.

In a mathematical context, the relations within a database are derived from set theory. For example, the OR and
AND operators of a WHERE clause represent the notions of union and intersection.
See Also ACID, column, constraint, foreign key, normalized.

relevance
 In the full-text search feature, a number signifying the similarity between the search string and the data in the
FULLTEXT index. For example, when you search for a single word, that word is typically more relevant for a row
where it occurs several times in the text than a row where it appears only once.
See Also full-text search, FULLTEXT index.

REPEATABLE READ
 The default isolation level for InnoDB. It prevents any rows that are queried from being changed by other
transactions, thus blocking non-repeatable reads but not phantom reads. It uses a moderately strict locking
strategy so that all queries within a transaction see data from the same snapshot, that is, the data as it was at the
time the transaction started.

When a transaction with this isolation level performs UPDATE ... WHERE, DELETE ... WHERE, SELECT ...
FOR UPDATE, and LOCK IN SHARE MODE operations, other transactions might have to wait.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.
See Also ACID, consistent read, isolation level, locking, phantom, transaction.

repertoire
 Repertoire is a term applied to character sets. A character set repertoire is the collection of characters in the set.
See Section 10.2.1, “Character Set Repertoire”.

replica
 A database server machine in a replication topology that receives changes from another server (the source)
and applies those same changes. Thus it maintains the same contents as the source, although it might lag
somewhat behind.

In MySQL, replicas are commonly used in disaster recovery, to take the place of a source that fails. They are also
commonly used for testing software upgrades and new settings, to ensure that database configuration changes
do not cause problems with performance or reliability.

Replicas typically have high workloads, because they process all the DML (write) operations relayed from the
source, as well as user queries. To ensure that replicas can apply changes from the source fast enough, they
frequently have fast I/O devices and sufficient CPU and memory to run multiple database instances on the same
server. For example, the source might use hard drive storage while the replicas use SSDs.
See Also DML, replication, server, source, SSD.

replication
 The practice of sending changes from a source, to one or more replicas, so that all databases have the same
data. This technique has a wide range of uses, such as load-balancing for better scalability, disaster recovery,
and testing software upgrades and configuration changes. The changes can be sent between the databases by
methods called row-based replication and statement-based replication.

4250

See Also replica, row-based replication, source, statement-based replication.

restore
 The process of putting a set of backup files from the MySQL Enterprise Backup product in place for use by
MySQL. This operation can be performed to fix a corrupted database, to return to some earlier point in time, or
(in a replication context) to set up a new replica. In the MySQL Enterprise Backup product, this operation is
performed by the copy-back option of the mysqlbackup command.
See Also hot backup, MySQL Enterprise Backup, mysqlbackup command, prepared backup, replica, replication.

rollback
 A SQL statement that ends a transaction, undoing any changes made by the transaction. It is the opposite of
commit, which makes permanent any changes made in the transaction.

By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL
statement. You must change this setting before you can use the rollback technique.
See Also ACID, autocommit, commit, SQL, transaction.

rollback segment
 The storage area containing the undo logs. Rollback segments have traditionally resided in the system
tablespace. As of MySQL 5.6, rollback segments can reside in undo tablespaces. As of MySQL 5.7, rollback
segments are also allocated to the global temporary tablespace.
See Also system tablespace, undo log, undo tablespace.

row
 The logical data structure defined by a set of columns. A set of rows makes up a table. Within InnoDB data
files, each page can contain one or more rows.

Although InnoDB uses the term row format for consistency with MySQL syntax, the row format is a property of
each table and applies to all rows in that table.
See Also column, data files, page, row format, table.

row format
 The disk storage format for rows of an InnoDB table. As InnoDB gains new capabilities such as compression,
new row formats are introduced to support the resulting improvements in storage efficiency and performance.

The row format of an InnoDB table is specified by the ROW_FORMAT option or by the
innodb_default_row_format configuration option (introduced in MySQL 5.7.9). Row formats include
REDUNDANT, COMPACT, COMPRESSED, and DYNAMIC. To view the row format of an InnoDB table, issue the SHOW
TABLE STATUS statement or query InnoDB table metadata in the INFORMATION_SCHEMA.
See Also compact row format, compressed row format, compression, dynamic row format, redundant row format,
row, table.

row lock
 A lock that prevents a row from being accessed in an incompatible way by another transaction. Other rows in
the same table can be freely written to by other transactions. This is the type of locking done by DML operations
on InnoDB tables.

Contrast with table locks used by MyISAM, or during DDL operations on InnoDB tables that cannot be done with
online DDL; those locks block concurrent access to the table.
See Also DDL, DML, InnoDB, lock, locking, online DDL, table lock, transaction.

row-based replication
 A form of replication where events are propagated from the source specifying how to change individual rows on
the replica. It is safe to use for all settings of the innodb_autoinc_lock_mode option.
See Also auto-increment locking, innodb_autoinc_lock_mode, replica, replication, source, statement-based
replication.

4251

https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_default_row_format

row-level locking
 The locking mechanism used for InnoDB tables, relying on row locks rather than table locks. Multiple
transactions can modify the same table concurrently. Only if two transactions try to modify the same row does
one of the transactions wait for the other to complete (and release its row locks).
See Also InnoDB, locking, row lock, table lock, transaction.

Ruby
 A programming language that emphasizes dynamic typing and object-oriented programming. Some syntax is
familiar to Perl developers.
See Also API, Perl, Ruby API.

Ruby API
 mysql2, based based on the libmysqlclient API library, is available for Ruby programmers developing MySQL
applications. For more information, see Section 23.11, “MySQL Ruby APIs”.
See Also libmysql, Ruby.

rw-lock
 The low-level object that InnoDB uses to represent and enforce shared-access locks to internal in-memory data
structures following certain rules. Contrast with mutexes, which InnoDB uses to represent and enforce exclusive
access to internal in-memory data structures. Mutexes and rw-locks are known collectively as latches.

rw-lock types include s-locks (shared locks), x-locks (exclusive locks), and sx-locks (shared-exclusive
locks).

• An s-lock provides read access to a common resource.

• An x-lock provides write access to a common resource while not permitting inconsistent reads by other
threads.

• An sx-lock provides write access to a common resource while permitting inconsistent reads by other threads.
sx-locks were introduced in MySQL 5.7 to optimize concurrency and improve scalability for read-write
workloads.

The following matrix summarizes rw-lock type compatibility.

S SX X

S Compatible Compatible Conflict

SX Compatible Conflict Conflict

X Conflict Conflict Conflict

See Also latch, lock, mutex, Performance Schema.

S
savepoint

 Savepoints help to implement nested transactions. They can be used to provide scope to operations on tables
that are part of a larger transaction. For example, scheduling a trip in a reservation system might involve booking
several different flights; if a desired flight is unavailable, you might roll back the changes involved in booking that
one leg, without rolling back the earlier flights that were successfully booked.
See Also rollback, transaction.

scalability
 The ability to add more work and issue more simultaneous requests to a system, without a sudden drop in
performance due to exceeding the limits of system capacity. Software architecture, hardware configuration,

4252

application coding, and type of workload all play a part in scalability. When the system reaches its maximum
capacity, popular techniques for increasing scalability are scale up (increasing the capacity of existing hardware
or software) and scale out (adding new servers and more instances of MySQL). Often paired with availability as
critical aspects of a large-scale deployment.
See Also availability, scale out, scale up.

scale out
 A technique for increasing scalability by adding new servers and more instances of MySQL. For example,
setting up replication, NDB Cluster, connection pooling, or other features that spread work across a group of
servers. Contrast with scale up.
See Also scalability, scale up.

scale up
 A technique for increasing scalability by increasing the capacity of existing hardware or software.
For example, increasing the memory on a server and adjusting memory-related parameters such as
innodb_buffer_pool_size and innodb_buffer_pool_instances. Contrast with scale out.
See Also scalability, scale out.

schema
 Conceptually, a schema is a set of interrelated database objects, such as tables, table columns, data types
of the columns, indexes, foreign keys, and so on. These objects are connected through SQL syntax, because
the columns make up the tables, the foreign keys refer to tables and columns, and so on. Ideally, they are also
connected logically, working together as part of a unified application or flexible framework. For example, the
INFORMATION_SCHEMA and performance_schema databases use “schema” in their names to emphasize the
close relationships between the tables and columns they contain.

In MySQL, physically, a schema is synonymous with a database. You can substitute the keyword SCHEMA
instead of DATABASE in MySQL SQL syntax, for example using CREATE SCHEMA instead of CREATE DATABASE.

Some other database products draw a distinction. For example, in the Oracle Database product, a schema
represents only a part of a database: the tables and other objects owned by a single user.
See Also database, INFORMATION_SCHEMA, Performance Schema.

search index
 In MySQL, full-text search queries use a special kind of index, the FULLTEXT index. In MySQL 5.6.4 and up,
InnoDB and MyISAM tables both support FULLTEXT indexes; formerly, these indexes were only available for
MyISAM tables.
See Also full-text search, FULLTEXT index.

secondary index
 A type of InnoDB index that represents a subset of table columns. An InnoDB table can have zero, one, or
many secondary indexes. (Contrast with the clustered index, which is required for each InnoDB table, and
stores the data for all the table columns.)

A secondary index can be used to satisfy queries that only require values from the indexed columns. For more
complex queries, it can be used to identify the relevant rows in the table, which are then retrieved through lookups
using the clustered index.

Creating and dropping secondary indexes has traditionally involved significant overhead from copying all the data
in the InnoDB table. The fast index creation feature makes both CREATE INDEX and DROP INDEX statements
much faster for InnoDB secondary indexes.
See Also clustered index, Fast Index Creation, index.

segment
 A division within an InnoDB tablespace. If a tablespace is analogous to a directory, the segments are analogous
to files within that directory. A segment can grow. New segments can be created.

4253

For example, within a file-per-table tablespace, table data is in one segment and each associated index is in
its own segment. The system tablespace contains many different segments, because it can hold many tables
and their associated indexes. Prior to MySQL 8.0, the system tablespace also includes one or more rollback
segments used for undo logs.

Segments grow and shrink as data is inserted and deleted. When a segment needs more room, it is extended by
one extent (1 megabyte) at a time. Similarly, a segment releases one extent's worth of space when all the data in
that extent is no longer needed.
See Also extent, file-per-table, rollback segment, system tablespace, tablespace, undo log.

selectivity
 A property of data distribution, the number of distinct values in a column (its cardinality) divided by the number
of records in the table. High selectivity means that the column values are relatively unique, and can retrieved
efficiently through an index. If you (or the query optimizer) can predict that a test in a WHERE clause only matches
a small number (or proportion) of rows in a table, the overall query tends to be efficient if it evaluates that test
first, using an index.
See Also cardinality, query.

semi-consistent read
 A type of read operation used for UPDATE statements, that is a combination of READ COMMITTED and
consistent read. When an UPDATE statement examines a row that is already locked, InnoDB returns the latest
committed version to MySQL so that MySQL can determine whether the row matches the WHERE condition of
the UPDATE. If the row matches (must be updated), MySQL reads the row again, and this time InnoDB either
locks it or waits for a lock on it. This type of read operation can only happen when the transaction has the
READ COMMITTED isolation level, or when the innodb_locks_unsafe_for_binlog option is enabled.
innodb_locks_unsafe_for_binlog was removed in MySQL 8.0.
See Also consistent read, isolation level, READ COMMITTED.

SERIALIZABLE
 The isolation level that uses the most conservative locking strategy, to prevent any other transactions from
inserting or changing data that was read by this transaction, until it is finished. This way, the same query can be
run over and over within a transaction, and be certain to retrieve the same set of results each time. Any attempt
to change data that was committed by another transaction since the start of the current transaction, cause the
current transaction to wait.

This is the default isolation level specified by the SQL standard. In practice, this degree of strictness is rarely
needed, so the default isolation level for InnoDB is the next most strict, REPEATABLE READ.
See Also ACID, consistent read, isolation level, locking, REPEATABLE READ, transaction.

server
 A type of program that runs continuously, waiting to receive and act upon requests from another program (the
client). Because often an entire computer is dedicated to running one or more server programs (such as a
database server, a web server, an application server, or some combination of these), the term server can also
refer to the computer that runs the server software.
See Also client, mysqld.

server-side prepared statement
 A prepared statement managed by the MySQL server. Historically, issues with server-side prepared statements
led Connector/J and Connector/PHP developers to sometimes use client-side prepared statements instead.
With modern MySQL server versions, server-side prepared statements are recommended for performance,
scalability, and memory efficiency.
See Also client-side prepared statement, Connector/J, Connector/PHP, prepared statement.

servlet

4254

See Also Connector/J.

shared lock
 A kind of lock that allows other transactions to read the locked object, and to also acquire other shared locks on
it, but not to write to it. The opposite of exclusive lock.
See Also exclusive lock, lock, transaction.

shared tablespace
 Another way of referring to the system tablespace or a general tablespace. General tablespaces were
introduced in MySQL 5.7. More than one table can reside in a shared tablespace. Only a single table can reside
in a file-per-table tablespace.
See Also general tablespace, system tablespace.

sharp checkpoint
 The process of flushing to disk all dirty buffer pool pages whose redo entries are contained in certain portion
of the redo log. Occurs before InnoDB reuses a portion of a log file; the log files are used in a circular fashion.
Typically occurs with write-intensive workloads.
See Also dirty page, flush, redo log, workload.

shutdown
 The process of stopping the MySQL server. By default, this process cleans up operations for InnoDB tables, so
InnoDB can be slow to shut down, but fast to start up later. If you skip the cleanup operations, it is fast to shut
down but the cleanup must be performed during the next restart.

The shutdown mode for InnoDB is controlled by the innodb_fast_shutdown option.
See Also fast shutdown, InnoDB, slow shutdown, startup.

slave
See replica.

slow query log
 A type of log used for performance tuning of SQL statements processed by the MySQL server. The log
information is stored in a file. You must enable this feature to use it. You control which categories of “slow” SQL
statements are logged. For more information, see Section 5.4.5, “The Slow Query Log”.
See Also general query log, log.

slow shutdown
 A type of shutdown that does additional InnoDB flushing operations before completing. Also known as a
clean shutdown. Specified by the configuration parameter innodb_fast_shutdown=0 or the command SET
GLOBAL innodb_fast_shutdown=0;. Although the shutdown itself can take longer, that time should be saved
on the subsequent startup.
See Also clean shutdown, fast shutdown, shutdown.

snapshot
 A representation of data at a particular time, which remains the same even as changes are committed by other
transactions. Used by certain isolation levels to allow consistent reads.
See Also commit, consistent read, isolation level, transaction.

sort buffer
 The buffer used for sorting data during creation of an InnoDB index. Sort buffer size is configured using the
innodb_sort_buffer_size configuration option.

source
 A database server machine in a replication scenario that processes the initial insert, update, and delete
requests for data. These changes are propagated to, and repeated on, other servers known as replicas.
See Also replica, replication.

4255

space ID
 An identifier used to uniquely identify an InnoDB tablespace within a MySQL instance. The space ID for the
system tablespace is always zero; this same ID applies to all tables within the system tablespace or within a
general tablespace. Each file-per-table tablespace and general tablespace has its own space ID.

Prior to MySQL 5.6, this hardcoded value presented difficulties in moving InnoDB tablespace files between
MySQL instances. Starting in MySQL 5.6, you can copy tablespace files between instances by using the
transportable tablespace feature involving the statements FLUSH TABLES ... FOR EXPORT, ALTER
TABLE ... DISCARD TABLESPACE, and ALTER TABLE ... IMPORT TABLESPACE. The information
needed to adjust the space ID is conveyed in the .cfg file which you copy along with the tablespace. See
Section 14.6.1.3, “Importing InnoDB Tables” for details.
See Also .cfg file, file-per-table, general tablespace, .ibd file, system tablespace, tablespace, transportable
tablespace.

sparse file
 A type of file that uses file system space more efficiently by writing metadata representing empty blocks to disk
instead of writing the actual empty space. The InnoDB transparent page compression feature relies on sparse
file support. For more information, see InnoDB Page Compression.
See Also hole punching, transparent page compression.

spin
 A type of wait operation that continuously tests whether a resource becomes available. This technique is used
for resources that are typically held only for brief periods, where it is more efficient to wait in a “busy loop” than
to put the thread to sleep and perform a context switch. If the resource does not become available within a short
time, the spin loop ceases and another wait technique is used.
See Also latch, lock, mutex, wait.

Spring
 A Java-based application framework designed for assisting in application design by providing a way to configure
components.
See Also J2EE.

SQL
 The Structured Query Language that is standard for performing database operations. Often divided into the
categories DDL, DML, and queries. MySQL includes some additional statement categories such as replication.
See Chapter 9, Language Structure for the building blocks of SQL syntax, Chapter 11, Data Types for the data
types to use for MySQL table columns, Chapter 13, SQL Statements for details about SQL statements and their
associated categories, and Chapter 12, Functions and Operators for standard and MySQL-specific functions to
use in queries.
See Also DDL, DML, query, replication.

SQLState
 An error code defined by the JDBC standard, for exception handling by applications using Connector/J.
See Also Connector/J, JDBC.

SSD
 Acronym for “solid-state drive”. A type of storage device with different performance characteristics than a
traditional hard disk drive (HDD): smaller storage capacity, faster for random reads, no moving parts, and with
a number of considerations affecting write performance. Its performance characteristics can influence the
throughput of a disk-bound workload.
See Also disk-bound, HDD.

SSL
 Acronym for “secure sockets layer”. Provides the encryption layer for network communication between an
application and a MySQL database server.

4256

https://dev.mysql.com/doc/refman/5.7/en/innodb-page-compression.html

See Also keystore, truststore.

startup
 The process of starting the MySQL server. Typically done by one of the programs listed in Section 4.3, “Server
and Server-Startup Programs”. The opposite of shutdown.
See Also shutdown.

statement interceptor
 A type of interceptor for tracing, debugging, or augmenting SQL statements issued by a database application.
Sometimes also known as a command interceptor.

In Java applications using Connector/J, setting up this type of interceptor involves implementing the
com.mysql.jdbc.StatementInterceptorV2 interface, and adding a statementInterceptors property
to the connection string.

In Visual Studio applications using Connector/NET, setting up this type of interceptor involves defining a class
that inherits from the BaseCommandInterceptor class and specifying that class name as part of the connection
string.
See Also command interceptor, connection string, Connector/J, Connector/NET, interceptor, Java, Visual Studio.

statement-based replication
 A form of replication where SQL statements are sent from the source and replayed on the replica. It requires
some care with the setting for the innodb_autoinc_lock_mode option, to avoid potential timing problems with
auto-increment locking.
See Also auto-increment locking, innodb_autoinc_lock_mode, replica, replication, row-based replication, source.

statistics
 Estimated values relating to each InnoDB table and index, used to construct an efficient query execution
plan. The main values are the cardinality (number of distinct values) and the total number of table rows or index
entries. The statistics for the table represent the data in its primary key index. The statistics for a secondary
index represent the rows covered by that index.

The values are estimated rather than counted precisely because at any moment, different transactions can be
inserting and deleting rows from the same table. To keep the values from being recalculated frequently, you can
enable persistent statistics, where the values are stored in InnoDB system tables, and refreshed only when you
issue an ANALYZE TABLE statement.

You can control how NULL values are treated when calculating statistics through the innodb_stats_method
configuration option.

Other types of statistics are available for database objects and database activity through the
INFORMATION_SCHEMA and PERFORMANCE_SCHEMA tables.
See Also cardinality, index, INFORMATION_SCHEMA, NULL, Performance Schema, persistent statistics, primary
key, query execution plan, secondary index, table, transaction.

stemming
 The ability to search for different variations of a word based on a common root word, such as singular and plural,
or past, present, and future verb tense. This feature is currently supported in MyISAM full-text search feature but
not in FULLTEXT indexes for InnoDB tables.
See Also full-text search, FULLTEXT index.

stopword
 In a FULLTEXT index, a word that is considered common or trivial enough that it is omitted from the search
index and ignored in search queries. Different configuration settings control stopword processing for InnoDB and
MyISAM tables. See Section 12.10.4, “Full-Text Stopwords” for details.

4257

See Also FULLTEXT index, search index.

storage engine
 A component of the MySQL database that performs the low-level work of storing, updating, and querying data.
In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables, superceding MyISAM. Different
storage engines are designed with different tradeoffs between factors such as memory usage versus disk usage,
read speed versus write speed, and speed versus robustness. Each storage engine manages specific tables, so
we refer to InnoDB tables, MyISAM tables, and so on.

The MySQL Enterprise Backup product is optimized for backing up InnoDB tables. It can also back up tables
handled by MyISAM and other storage engines.
See Also InnoDB, MySQL Enterprise Backup, table type.

stored object
 A stored program or view.

stored program
 A stored routine (procedure or function), trigger, or Event Scheduler event.

stored routine
 A stored procedure or function.

strict mode
 The general name for the setting controlled by the innodb_strict_mode option. Turning on this setting causes
certain conditions that are normally treated as warnings, to be considered errors. For example, certain invalid
combinations of options related to file format and row format, that normally produce a warning and continue with
default values, now cause the CREATE TABLE operation to fail. innodb_strict_mode is enabled by default in
MySQL 5.7.

MySQL also has something called strict mode. See Section 5.1.10, “Server SQL Modes”.
See Also file format, innodb_strict_mode, row format.

sublist
 Within the list structure that represents the buffer pool, pages that are relatively old and relatively new are
represented by different portions of the list. A set of parameters control the size of these portions and the dividing
point between the new and old pages.
See Also buffer pool, eviction, list, LRU.

supremum record
 A pseudo-record in an index, representing the gap above the largest value in that index. If a transaction has
a statement such as SELECT ... FROM ... WHERE col > 10 FOR UPDATE;, and the largest value in
the column is 20, it is a lock on the supremum record that prevents other transactions from inserting even larger
values such as 50, 100, and so on.
See Also gap, infimum record, pseudo-record.

surrogate key
 Synonym name for synthetic key.
See Also synthetic key.

synthetic key
 An indexed column, typically a primary key, where the values are assigned arbitrarily. Often done using an
auto-increment column. By treating the value as completely arbitrary, you can avoid overly restrictive rules and
faulty application assumptions. For example, a numeric sequence representing employee numbers might have
a gap if an employee was approved for hiring but never actually joined. Or employee number 100 might have
a later hiring date than employee number 500, if they left the company and later rejoined. Numeric values also

4258

produce shorter values of predictable length. For example, storing numeric codes meaning “Road”, “Boulevard”,
“Expressway”, and so on is more space-efficient than repeating those strings over and over.

Also known as a surrogate key. Contrast with natural key.
See Also auto-increment, natural key, primary key, surrogate key.

system tablespace
 One or more data files (ibdata files) containing metadata for InnoDB-related objects (the InnoDB data
dictionary), and the storage areas for the change buffer, the doublewrite buffer, and possibly undo logs.
Depending on the innodb_file_per_table setting, it might also contain table and index data for InnoDB
tables. The data and metadata in the system tablespace apply to all databases in a MySQL instance.

Prior to MySQL 5.6.7, the default was to keep all InnoDB tables and indexes inside the system tablespace, often
causing this file to become very large. Because the system tablespace never shrinks, storage problems could
arise if large amounts of temporary data were loaded and then deleted. In MySQL 5.6.7 and higher, the default is
file-per-table mode, where each table and its associated indexes are stored in a separate .ibd file. This default
makes it easier to use InnoDB features that rely on the Barracuda file format, such as table compression,
efficient storage of off-page columns, and large index key prefixes (innodb_large_prefix).

Keeping all table data in the system tablespace or in separate .ibd files has implications for storage
management in general. The MySQL Enterprise Backup product might back up a small set of large files, or
many smaller files. On systems with thousands of tables, the file system operations to process thousands of .ibd
files can cause bottlenecks.

In MySQL 5.6 and higher, the innodb_undo_tablespaces defines the number of undo tablespaces for undo
logs.
See Also Barracuda, change buffer, compression, data dictionary, database, doublewrite buffer, dynamic row
format, file-per-table, general tablespace, .ibd file, ibdata file, innodb_file_per_table, instance, MySQL Enterprise
Backup, off-page column, tablespace, undo log.

T
.TRG file

 A file containing trigger parameters. Files with this extension are always included in backups produced by the
mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command, .TRN file.

.TRN file
 A file containing trigger namespace information. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command, .TRG file.

table
 Each MySQL table is associated with a particular storage engine. InnoDB tables have particular physical and
logical characteristics that affect performance, scalability, backup, administration, and application development.

In terms of file storage, an InnoDB table belongs to one of the following tablespace types:

• The shared InnoDB system tablespace, which is comprised of one or more ibdata files.

• A file-per-table tablespace, comprised of an individual .ibd file.

• A shared general tablespace, comprised of an individual .ibd file. General tablespaces were introduced in
MySQL 5.7.6.

.ibd data files contain both table and index data.

4259

InnoDB tables created in file-per-table tablespaces can use the Barracuda file format, and Barracuda
tables can use DYNAMIC or COMPRESSED row format. These row formats enable InnoDB
features such as compression, efficient storage of off-page columns, and large index key prefixes
(see innodb_large_prefix). General tablespaces support all row formats regardless of the
innodb_file_format setting.

Up to MySQL 5.7.5, InnoDB tables inside the system tablespace had to use the Antelope file format for
backward compatibility with MySQL 5.1 and earlier. The Antelope file format supports COMPACT and
REDUNDANT row format. The system tablespace supports tables that use DYNAMIC row format as of MySQL
5.7.6.

The rows of an InnoDB table are organized into an index structure known as the clustered index, with entries
sorted based on the primary key columns of the table. Data access is optimized for queries that filter and sort
on the primary key columns, and each index contains a copy of the associated primary key columns for each
entry. Modifying values for any of the primary key columns is an expensive operation. Thus an important aspect
of InnoDB table design is choosing a primary key with columns that are used in the most important queries, and
keeping the primary key short, with rarely changing values.
See Also Antelope, backup, Barracuda, clustered index, compact row format, compressed row format,
compression, dynamic row format, Fast Index Creation, file-per-table, .ibd file, index, off-page column, primary
key, redundant row format, row, system tablespace, tablespace.

table lock
 A lock that prevents any other transaction from accessing a table. InnoDB makes considerable effort to
make such locks unnecessary, by using techniques such as online DDL, row locks and consistent reads for
processing DML statements and queries. You can create such a lock through SQL using the LOCK TABLE
statement; one of the steps in migrating from other database systems or MySQL storage engines is to remove
such statements wherever practical.
See Also consistent read, DML, lock, locking, online DDL, query, row lock, table, transaction.

table scan
See full table scan.

table statistics
See statistics.

table type
 Obsolete synonym for storage engine. We refer to InnoDB tables, MyISAM tables, and so on.
See Also InnoDB, storage engine.

tablespace
 A data file that can hold data for one or more InnoDB tables and associated indexes.

The system tablespace contains the InnoDB data dictionary, and prior to MySQL 5.6 holds all other InnoDB
tables by default.

The innodb_file_per_table option, enabled by default in MySQL 5.6 and higher, allows tables to be created
in their own tablespaces. File-per-table tablespaces support features such as efficient storage of off-page
columns, table compression, and transportable tablespaces. See Section 14.6.3.2, “File-Per-Table Tablespaces”
for details.

InnoDB introduced general tablespaces in MySQL 5.7.6. General tablespaces are shared tablespaces created
using CREATE TABLESPACE syntax. They can be created outside of the MySQL data directory, are capable of
holding multiple tables, and support tables of all row formats.

MySQL NDB Cluster also groups its tables into tablespaces. See Section 18.6.11.1, “NDB Cluster Disk Data
Objects” for details.

4260

See Also compressed row format, data dictionary, data files, file-per-table, general tablespace, index,
innodb_file_per_table, system tablespace, table.

Tcl
 A programming language originating in the Unix scripting world. Sometimes extended by code written in C, C++,
or Java. For the open-source Tcl API for MySQL, see Section 23.12, “MySQL Tcl API”.
See Also API.

temporary table
 A table whose data does not need to be truly permanent. For example, temporary tables might be used as
storage areas for intermediate results in complicated calculations or transformations; this intermediate data would
not need to be recovered after a crash. Database products can take various shortcuts to improve the performance
of operations on temporary tables, by being less scrupulous about writing data to disk and other measures to
protect the data across restarts.

Sometimes, the data itself is removed automatically at a set time, such as when the transaction ends or when the
session ends. With some database products, the table itself is removed automatically too.
See Also table.

temporary tablespace
 The tablespace for non-compressed InnoDB temporary tables and related objects, introduced in MySQL
5.7. The innodb_temp_data_file_path configuration file option defines the relative path, name, size, and
attributes for temporary tablespace data files. If innodb_temp_data_file_path is not specified, the default
behavior is to create a single auto-extending 12MB data file named ibtmp1 in the data directory. The temporary
tablespace is recreated on each server start and receives a dynamically generated space ID. The temporary
tablespace cannot reside on a raw device. Startup is refused if the temporary tablespace cannot be created.

The temporary tablespace is removed on normal shutdown or on an aborted initialization. The temporary
tablespace is not removed when a crash occurs. In this case, the database administrator may remove the
temporary tablespace manually or restart the server with the same configuration, which removes and recreates
the temporary tablespace.
See Also temporary table.

text collection
 The set of columns included in a FULLTEXT index.
See Also FULLTEXT index.

thread
 A unit of processing that is typically more lightweight than a process, allowing for greater concurrency.
See Also concurrency, master thread, process, Pthreads.

Tomcat
 An open source J2EE application server, implementing the Java Servlet and JavaServer Pages programming
technologies. Consists of a web server and Java servlet container. With MySQL, typically used in conjunction with
Connector/J.
See Also J2EE.

torn page
 An error condition that can occur due to a combination of I/O device configuration and hardware failure. If data is
written out in chunks smaller than the InnoDB page size (by default, 16KB), a hardware failure while writing could
result in only part of a page being stored to disk. The InnoDB doublewrite buffer guards against this possibility.
See Also doublewrite buffer.

TPS
 Acronym for “transactions per second”, a unit of measurement sometimes used in benchmarks. Its value
depends on the workload represented by a particular benchmark test, combined with factors that you control
such as the hardware capacity and database configuration.

4261

https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_temp_data_file_path
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_temp_data_file_path

See Also transaction, workload.

transaction
 Transactions are atomic units of work that can be committed or rolled back. When a transaction makes multiple
changes to the database, either all the changes succeed when the transaction is committed, or all the changes
are undone when the transaction is rolled back.

Database transactions, as implemented by InnoDB, have properties that are collectively known by the acronym
ACID, for atomicity, consistency, isolation, and durability.
See Also ACID, commit, isolation level, lock, rollback.

transaction ID
 An internal field associated with each row. This field is physically changed by INSERT, UPDATE, and DELETE
operations to record which transaction has locked the row.
See Also implicit row lock, row, transaction.

transparent page compression
 A feature added in MySQL 5.7.8 that permits page-level compression for InnoDB tables that reside in file-per-
table tablespaces. Page compression is enabled by specifying the COMPRESSION attribute with CREATE TABLE
or ALTER TABLE. For more information, see InnoDB Page Compression.
See Also file-per-table, hole punching, sparse file.

transportable tablespace
 A feature that allows a tablespace to be moved from one instance to another. Traditionally, this has not been
possible for InnoDB tablespaces because all table data was part of the system tablespace. In MySQL 5.6 and
higher, the FLUSH TABLES ... FOR EXPORT syntax prepares an InnoDB table for copying to another server;
running ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ... IMPORT TABLESPACE on
the other server brings the copied data file into the other instance. A separate .cfg file, copied along with the
.ibd file, is used to update the table metadata (for example the space ID) as the tablespace is imported. See
Section 14.6.1.3, “Importing InnoDB Tables” for usage information.
See Also .cfg file, .ibd file, space ID, system tablespace, tablespace.

troubleshooting
 The process of determining the source of a problem. Some of the resources for troubleshooting MySQL problems
include:

• Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”

• Section 6.2.14, “Troubleshooting Problems Connecting to MySQL”

• Section B.3.3.2, “How to Reset the Root Password”

• Section B.3.2, “Common Errors When Using MySQL Programs”

• Section 14.21, “InnoDB Troubleshooting”.

truncate
 A DDL operation that removes the entire contents of a table, while leaving the table and related indexes intact.
Contrast with drop. Although conceptually it has the same result as a DELETE statement with no WHERE clause, it
operates differently behind the scenes: InnoDB creates a new empty table, drops the old table, then renames the
new table to take the place of the old one. Because this is a DDL operation, it cannot be rolled back.

If the table being truncated contains foreign keys that reference another table, the truncation operation uses a
slower method of operation, deleting one row at a time so that corresponding rows in the referenced table can be
deleted as needed by any ON DELETE CASCADE clause. (MySQL 5.5 and higher do not allow this slower form of
truncate, and return an error instead if foreign keys are involved. In this case, use a DELETE statement instead.

4262

https://dev.mysql.com/doc/refman/5.7/en/innodb-page-compression.html

See Also DDL, drop, foreign key, rollback.

truststore

See Also SSL.

tuple
 A technical term designating an ordered set of elements. It is an abstract notion, used in formal discussions of
database theory. In the database field, tuples are usually represented by the columns of a table row. They could
also be represented by the result sets of queries, for example, queries that retrieved only some columns of a
table, or columns from joined tables.
See Also cursor.

two-phase commit
 An operation that is part of a distributed transaction, under the XA specification. (Sometimes abbreviated as
2PC.) When multiple databases participate in the transaction, either all databases commit the changes, or all
databases roll back the changes.
See Also commit, rollback, transaction, XA.

U
undo

 Data that is maintained throughout the life of a transaction, recording all changes so that they can be undone
in case of a rollback operation. It is stored in undo logs either within the system tablespace (in MySQL 5.7 or
earlier) or in separate undo tablespaces. As of MySQL 8.0, undo logs reside in undo tablespaces by default.
See Also rollback, rollback segment, system tablespace, transaction, undo log, undo tablespace.

undo buffer
See undo log.

undo log
 A storage area that holds copies of data modified by active transactions. If another transaction needs to see the
original data (as part of a consistent read operation), the unmodified data is retrieved from this storage area.

In MySQL 5.6 and MySQL 5.7, you can use the innodb_undo_tablespaces variable have undo logs reside
in undo tablespaces, which can be placed on another storage device such as an SSD. In MySQL 8.0, undo
logs reside in two default undo tablespaces that are created when MySQL is initialized, and additional undo
tablespaces can be created using CREATE UNDO TABLESPACE syntax.

The undo log is split into separate portions, the insert undo buffer and the update undo buffer.
See Also consistent read, rollback segment, SSD, system tablespace, transaction, undo tablespace.

undo log segment
 A collection of undo logs. Undo log segments exists within rollback segments. An undo log segment might
contain undo logs from multiple transactions. An undo log segment can only be used by one transaction at a time
but can be reused after it is released at transaction commit or rollback. May also be referred to as an “undo
segment”.
See Also commit, rollback, rollback segment, undo log.

undo tablespace
 An undo tablespace contains undo logs. Undo logs exist within undo log segments, which are contained
within rollback segments. Rollback segments have traditionally resided in the system tablespace. As of MySQL
5.6, rollback segments can reside in undo tablespaces. In MySQL 5.6 and MySQL 5.7, the number of undo
tablespaces is controlled by the innodb_undo_tablespaces configuration option. In MySQL 8.0, two default

4263

undo tablespaces are created when the MySQL instance is initialized, and additional undo tablespaces can be
created using CREATE UNDO TABLESPACE syntax.

For more information, see Section 14.6.3.3, “Undo Tablespaces”.
See Also rollback segment, system tablespace, undo log, undo log segment.

Unicode
 A system for supporting national characters, character sets, code pages, and other internationalization aspects in
a flexible and standardized way.

Unicode support is an important aspect of the ODBC standard. Connector/ODBC 5.1 is a Unicode driver, as
opposed to Connector/ODBC 3.51, which is an ANSI driver.
See Also ANSI, Connector/ODBC, ODBC.

unique constraint
 A kind of constraint that asserts that a column cannot contain any duplicate values. In terms of relational
algebra, it is used to specify 1-to-1 relationships. For efficiency in checking whether a value can be inserted (that
is, the value does not already exist in the column), a unique constraint is supported by an underlying unique
index.
See Also constraint, relational, unique index.

unique index
 An index on a column or set of columns that have a unique constraint. Because the index is known not to
contain any duplicate values, certain kinds of lookups and count operations are more efficient than in the normal
kind of index. Most of the lookups against this type of index are simply to determine if a certain value exists or not.
The number of values in the index is the same as the number of rows in the table, or at least the number of rows
with non-null values for the associated columns.

Change buffering optimization does not apply to unique indexes. As a workaround, you can temporarily set
unique_checks=0 while doing a bulk data load into an InnoDB table.
See Also cardinality, change buffering, unique constraint, unique key.

unique key
 The set of columns (one or more) comprising a unique index. When you can define a WHERE condition that
matches exactly one row, and the query can use an associated unique index, the lookup and error handling can
be performed very efficiently.
See Also cardinality, unique constraint, unique index.

V
variable-length type

 A data type of variable length. VARCHAR, VARBINARY, and BLOB and TEXT types are variable-length types.

InnoDB treats fixed-length fields greater than or equal to 768 bytes in length as variable-length fields, which can
be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the maximum byte length of the
character set is greater than 3, as it is with utf8mb4.
See Also off-page column, overflow page.

victim
 The transaction that is automatically chosen to be rolled back when a deadlock is detected. InnoDB rolls back
the transaction that has updated the fewest rows.

Deadlock detection can be disabled using the innodb_deadlock_detect configuration option.
See Also deadlock, deadlock detection, innodb_lock_wait_timeout, transaction.

4264

https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_deadlock_detect

view
 A stored query that when invoked produces a result set. A view acts as a virtual table.

Visual Studio
 For supported versions of Visual Studio, see the following references:

• Connector/NET: Connector/NET Versions

• Connector/C++ 8.0: Platform Support and Prerequisites

See Also Connector/C++, Connector/NET.

W
wait

 When an operation, such as acquiring a lock, mutex, or latch, cannot be completed immediately, InnoDB
pauses and tries again. The mechanism for pausing is elaborate enough that this operation has its own name,
the wait. Individual threads are paused using a combination of internal InnoDB scheduling, operating system
wait() calls, and short-duration spin loops.

On systems with heavy load and many transactions, you might use the output from the SHOW INNODB STATUS
command or Performance Schema to determine whether threads are spending too much time waiting, and if so,
how you can improve concurrency.
See Also concurrency, latch, lock, mutex, Performance Schema, spin.

warm backup
 A backup taken while the database is running, but that restricts some database operations during the backup
process. For example, tables might become read-only. For busy applications and websites, you might prefer a
hot backup.
See Also backup, cold backup, hot backup.

warm up
 To run a system under a typical workload for some time after startup, so that the buffer pool and other memory
regions are filled as they would be under normal conditions. This process happens naturally over time when a
MySQL server is restarted or subjected to a new workload.

Typically, you run a workload for some time to warm up the buffer pool before running performance tests, to
ensure consistent results across multiple runs; otherwise, performance might be artificially low during the first run.

In MySQL 5.6, you can speed up the warmup process by enabling the
innodb_buffer_pool_dump_at_shutdown and innodb_buffer_pool_load_at_startup configuration
options, to bring the contents of the buffer pool back into memory after a restart. These options are enabled by
default in MySQL 5.7. See Section 14.8.3.5, “Saving and Restoring the Buffer Pool State”.
See Also buffer pool, workload.

workload
 The combination and volume of SQL and other database operations, performed by a database application
during typical or peak usage. You can subject the database to a particular workload during performance testing to
identify bottlenecks, or during capacity planning.
See Also bottleneck, CPU-bound, disk-bound, SQL.

write combining
 An optimization technique that reduces write operations when dirty pages are flushed from the InnoDB buffer
pool. If a row in a page is updated multiple times, or multiple rows on the same page are updated, all of those
changes are stored to the data files in a single write operation rather than one write for each change.

4265

https://dev.mysql.com/doc/connector-net/en/connector-net-versions.html
https://dev.mysql.com/doc/connector-cpp/8.0/en/connector-cpp-introduction.html#connector-cpp-prerequisites

See Also buffer pool, dirty page, flush.

X
XA

 A standard interface for coordinating distributed transactions, allowing multiple databases to participate in a
transaction while maintaining ACID compliance. For full details, see Section 13.3.7, “XA Transactions”.

XA Distributed Transaction support is enabled by default. If you are not using this feature, you can disable the
innodb_support_xa configuration option, avoiding the performance overhead of an extra fsync for each
transaction.

As of MySQL 5.7.10, disabling innodb_support_xa is not permitted as it makes replication unsafe and
prevents performance gains associated with binary log group commit. The innodb_support_xa configuration
option is removed in MySQL 8.0.
See Also ACID, binary log, commit, transaction, two-phase commit.

Y
young

 A characteristic of a page in the InnoDB buffer pool meaning that it has been accessed recently, and so is
moved within the buffer pool data structure, so that it is not flushed too soon by the LRU algorithm. This term is
used in some INFORMATION_SCHEMA column names of tables related to the buffer pool.
See Also buffer pool, flush, INFORMATION_SCHEMA, LRU, page.

4266

	MySQL 5.6 Reference Manual
	Table of Contents
	Preface and Legal Notices
	Chapter 1 General Information
	1.1 About This Manual
	1.2 Overview of the MySQL Database Management System
	1.2.1 What is MySQL?
	1.2.2 The Main Features of MySQL
	1.2.3 History of MySQL

	1.3 What Is New in MySQL 5.6
	1.4 Server and Status Variables and Options Added, Deprecated, or Removed in MySQL 5.6
	1.5 How to Report Bugs or Problems
	1.6 MySQL Standards Compliance
	1.6.1 MySQL Extensions to Standard SQL
	1.6.2 MySQL Differences from Standard SQL
	1.6.2.1 SELECT INTO TABLE Differences
	1.6.2.2 UPDATE Differences
	1.6.2.3 FOREIGN KEY Constraint Differences
	1.6.2.4 '--' as the Start of a Comment

	1.6.3 How MySQL Deals with Constraints
	1.6.3.1 PRIMARY KEY and UNIQUE Index Constraints
	1.6.3.2 FOREIGN KEY Constraints
	1.6.3.3 Constraints on Invalid Data
	1.6.3.4 ENUM and SET Constraints

	1.7 Credits
	1.7.1 Contributors to MySQL
	1.7.2 Documenters and translators
	1.7.3 Packages that support MySQL
	1.7.4 Tools that were used to create MySQL
	1.7.5 Supporters of MySQL

	Chapter 2 Installing and Upgrading MySQL
	2.1 General Installation Guidance
	2.1.1 Supported Platforms
	2.1.2 Which MySQL Version and Distribution to Install
	2.1.3 How to Get MySQL
	2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG
	2.1.4.1 Verifying the MD5 Checksum
	2.1.4.2 Signature Checking Using GnuPG
	2.1.4.3 Signature Checking Using Gpg4win for Windows
	2.1.4.4 Signature Checking Using RPM

	2.1.5 Installation Layouts
	2.1.6 Compiler-Specific Build Characteristics

	2.2 Installing MySQL on Unix/Linux Using Generic Binaries
	2.3 Installing MySQL on Microsoft Windows
	2.3.1 MySQL Installation Layout on Microsoft Windows
	2.3.2 Choosing an Installation Package
	2.3.3 MySQL Installer for Windows
	2.3.3.1 MySQL Installer Initial Setup
	2.3.3.2 Setting Alternative Server Paths with MySQL Installer
	2.3.3.3 Installation Workflows with MySQL Installer
	MySQL Server Configuration with MySQL Installer
	Type and Networking
	Authentication Method
	Accounts and Roles
	Windows Service
	Server File Permissions
	Logging Options
	Advanced Options
	Apply Server Configuration

	MySQL Router Configuration with MySQL Installer

	2.3.3.4 MySQL Installer Product Catalog and Dashboard
	2.3.3.5 MySQL Installer Console Reference

	2.3.4 Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive
	2.3.4.1 Extracting the Install Archive
	2.3.4.2 Creating an Option File
	2.3.4.3 Selecting a MySQL Server Type
	2.3.4.4 Starting the Server for the First Time
	2.3.4.5 Starting MySQL from the Windows Command Line
	2.3.4.6 Customizing the PATH for MySQL Tools
	2.3.4.7 Starting MySQL as a Windows Service
	2.3.4.8 Testing The MySQL Installation

	2.3.5 Troubleshooting a Microsoft Windows MySQL Server Installation
	2.3.6 Windows Postinstallation Procedures
	2.3.7 Windows Platform Restrictions

	2.4 Installing MySQL on macOS
	2.4.1 General Notes on Installing MySQL on macOS
	2.4.2 Installing MySQL on macOS Using Native Packages
	2.4.3 Installing a MySQL Launch Daemon
	2.4.4 Installing and Using the MySQL Preference Pane

	2.5 Installing MySQL on Linux
	2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository
	2.5.2 Replacing a Third-Party Distribution of MySQL Using the MySQL Yum Repository
	2.5.3 Installing MySQL on Linux Using the MySQL APT Repository
	2.5.4 Installing MySQL on Linux Using the MySQL SLES Repository
	2.5.5 Installing MySQL on Linux Using RPM Packages from Oracle
	2.5.6 Installing MySQL on Linux Using Debian Packages from Oracle
	2.5.7 Installing MySQL on Linux from the Native Software Repositories
	2.5.8 Deploying MySQL on Linux with Docker
	2.5.8.1 Basic Steps for MySQL Server Deployment with Docker
	2.5.8.2 More Topics on Deploying MySQL Server with Docker
	2.5.8.3 Deploying MySQL on Windows and Other Non-Linux Platforms with Docker

	2.5.9 Installing MySQL on Linux with Juju

	2.6 Installing MySQL Using Unbreakable Linux Network (ULN)
	2.7 Installing MySQL on Solaris
	2.7.1 Installing MySQL on Solaris Using a Solaris PKG

	2.8 Installing MySQL on FreeBSD
	2.9 Installing MySQL from Source
	2.9.1 Source Installation Methods
	2.9.2 Source Installation Prerequisites
	2.9.3 MySQL Layout for Source Installation
	2.9.4 Installing MySQL Using a Standard Source Distribution
	2.9.5 Installing MySQL Using a Development Source Tree
	2.9.6 Configuring SSL Library Support
	2.9.7 MySQL Source-Configuration Options
	2.9.8 Dealing with Problems Compiling MySQL
	2.9.9 MySQL Configuration and Third-Party Tools

	2.10 Postinstallation Setup and Testing
	2.10.1 Initializing the Data Directory
	2.10.1.1 Problems Running mysql_install_db

	2.10.2 Starting the Server
	2.10.2.1 Troubleshooting Problems Starting the MySQL Server

	2.10.3 Testing the Server
	2.10.4 Securing the Initial MySQL Accounts
	2.10.5 Starting and Stopping MySQL Automatically

	2.11 Upgrading MySQL
	2.11.1 Before You Begin
	2.11.2 Upgrade Paths
	2.11.3 Changes in MySQL 5.6
	2.11.4 Upgrading MySQL Binary or Package-based Installations on Unix/Linux
	2.11.5 Upgrading MySQL with the MySQL Yum Repository
	2.11.6 Upgrading MySQL with the MySQL APT Repository
	2.11.7 Upgrading MySQL with the MySQL SLES Repository
	2.11.8 Upgrading MySQL on Windows
	2.11.9 Upgrade Troubleshooting
	2.11.10 Rebuilding or Repairing Tables or Indexes
	2.11.11 Copying MySQL Databases to Another Machine

	2.12 Downgrading MySQL
	2.12.1 Before You Begin
	2.12.2 Downgrade Paths
	2.12.3 Downgrade Notes
	2.12.4 Downgrading Binary and Package-based Installations on Unix/Linux
	2.12.5 Downgrade Troubleshooting

	2.13 Perl Installation Notes
	2.13.1 Installing Perl on Unix
	2.13.2 Installing ActiveState Perl on Windows
	2.13.3 Problems Using the Perl DBI/DBD Interface

	Chapter 3 Tutorial
	3.1 Connecting to and Disconnecting from the Server
	3.2 Entering Queries
	3.3 Creating and Using a Database
	3.3.1 Creating and Selecting a Database
	3.3.2 Creating a Table
	3.3.3 Loading Data into a Table
	3.3.4 Retrieving Information from a Table
	3.3.4.1 Selecting All Data
	3.3.4.2 Selecting Particular Rows
	3.3.4.3 Selecting Particular Columns
	3.3.4.4 Sorting Rows
	3.3.4.5 Date Calculations
	3.3.4.6 Working with NULL Values
	3.3.4.7 Pattern Matching
	3.3.4.8 Counting Rows
	3.3.4.9 Using More Than one Table

	3.4 Getting Information About Databases and Tables
	3.5 Using mysql in Batch Mode
	3.6 Examples of Common Queries
	3.6.1 The Maximum Value for a Column
	3.6.2 The Row Holding the Maximum of a Certain Column
	3.6.3 Maximum of Column per Group
	3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column
	3.6.5 Using User-Defined Variables
	3.6.6 Using Foreign Keys
	3.6.7 Searching on Two Keys
	3.6.8 Calculating Visits Per Day
	3.6.9 Using AUTO_INCREMENT

	3.7 Using MySQL with Apache

	Chapter 4 MySQL Programs
	4.1 Overview of MySQL Programs
	4.2 Using MySQL Programs
	4.2.1 Invoking MySQL Programs
	4.2.2 Specifying Program Options
	4.2.2.1 Using Options on the Command Line
	4.2.2.2 Using Option Files
	4.2.2.3 Command-Line Options that Affect Option-File Handling
	4.2.2.4 Program Option Modifiers
	4.2.2.5 Using Options to Set Program Variables
	4.2.2.6 Option Defaults, Options Expecting Values, and the = Sign

	4.2.3 Command Options for Connecting to the Server
	4.2.4 Connecting to the MySQL Server Using Command Options
	4.2.5 Connection Transport Protocols
	4.2.6 Connection Compression Control
	4.2.7 Setting Environment Variables

	4.3 Server and Server-Startup Programs
	4.3.1 mysqld — The MySQL Server
	4.3.2 mysqld_safe — MySQL Server Startup Script
	4.3.3 mysql.server — MySQL Server Startup Script
	4.3.4 mysqld_multi — Manage Multiple MySQL Servers

	4.4 Installation-Related Programs
	4.4.1 comp_err — Compile MySQL Error Message File
	4.4.2 mysqlbug — Generate Bug Report
	4.4.3 mysql_install_db — Initialize MySQL Data Directory
	4.4.4 mysql_plugin — Configure MySQL Server Plugins
	4.4.5 mysql_secure_installation — Improve MySQL Installation Security
	4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables
	4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables

	4.5 Client Programs
	4.5.1 mysql — The MySQL Command-Line Client
	4.5.1.1 mysql Client Options
	4.5.1.2 mysql Client Commands
	4.5.1.3 mysql Client Logging
	4.5.1.4 mysql Client Server-Side Help
	4.5.1.5 Executing SQL Statements from a Text File
	4.5.1.6 mysql Client Tips

	4.5.2 mysqladmin — A MySQL Server Administration Program
	4.5.3 mysqlcheck — A Table Maintenance Program
	4.5.4 mysqldump — A Database Backup Program
	4.5.5 mysqlimport — A Data Import Program
	4.5.6 mysqlshow — Display Database, Table, and Column Information
	4.5.7 mysqlslap — A Load Emulation Client

	4.6 Administrative and Utility Programs
	4.6.1 innochecksum — Offline InnoDB File Checksum Utility
	4.6.2 myisam_ftdump — Display Full-Text Index information
	4.6.3 myisamchk — MyISAM Table-Maintenance Utility
	4.6.3.1 myisamchk General Options
	4.6.3.2 myisamchk Check Options
	4.6.3.3 myisamchk Repair Options
	4.6.3.4 Other myisamchk Options
	4.6.3.5 Obtaining Table Information with myisamchk
	4.6.3.6 myisamchk Memory Usage

	4.6.4 myisamlog — Display MyISAM Log File Contents
	4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables
	4.6.6 mysql_config_editor — MySQL Configuration Utility
	4.6.7 mysqlaccess — Client for Checking Access Privileges
	4.6.8 mysqlbinlog — Utility for Processing Binary Log Files
	4.6.8.1 mysqlbinlog Hex Dump Format
	4.6.8.2 mysqlbinlog Row Event Display
	4.6.8.3 Using mysqlbinlog to Back Up Binary Log Files
	4.6.8.4 Specifying the mysqlbinlog Server ID

	4.6.9 mysqldumpslow — Summarize Slow Query Log Files
	4.6.10 mysqlhotcopy — A Database Backup Program
	4.6.11 mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
	4.6.12 mysql_find_rows — Extract SQL Statements from Files
	4.6.13 mysql_fix_extensions — Normalize Table File Name Extensions
	4.6.14 mysql_setpermission — Interactively Set Permissions in Grant Tables
	4.6.15 mysql_waitpid — Kill Process and Wait for Its Termination
	4.6.16 mysql_zap — Kill Processes That Match a Pattern

	4.7 Program Development Utilities
	4.7.1 msql2mysql — Convert mSQL Programs for Use with MySQL
	4.7.2 mysql_config — Display Options for Compiling Clients
	4.7.3 my_print_defaults — Display Options from Option Files
	4.7.4 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

	4.8 Miscellaneous Programs
	4.8.1 perror — Display MySQL Error Message Information
	4.8.2 replace — A String-Replacement Utility
	4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa

	4.9 Environment Variables
	4.10 Unix Signal Handling in MySQL

	Chapter 5 MySQL Server Administration
	5.1 The MySQL Server
	5.1.1 Configuring the Server
	5.1.2 Server Configuration Defaults
	5.1.2.1 Changes to Server Defaults
	5.1.2.2 Using a Sample Default Server Configuration File

	5.1.3 Server Option, System Variable, and Status Variable Reference
	5.1.4 Server System Variable Reference
	5.1.5 Server Status Variable Reference
	5.1.6 Server Command Options
	5.1.7 Server System Variables
	5.1.8 Using System Variables
	5.1.8.1 System Variable Privileges
	5.1.8.2 Dynamic System Variables
	5.1.8.3 Structured System Variables

	5.1.9 Server Status Variables
	5.1.10 Server SQL Modes
	5.1.11 Connection Management
	5.1.11.1 Connection Interfaces
	5.1.11.2 DNS Lookups and the Host Cache

	5.1.12 IPv6 Support
	5.1.12.1 Verifying System Support for IPv6
	5.1.12.2 Configuring the MySQL Server to Permit IPv6 Connections
	5.1.12.3 Connecting Using the IPv6 Local Host Address
	5.1.12.4 Connecting Using IPv6 Nonlocal Host Addresses
	5.1.12.5 Obtaining an IPv6 Address from a Broker

	5.1.13 MySQL Server Time Zone Support
	5.1.14 Server-Side Help Support
	5.1.15 The Server Shutdown Process

	5.2 The MySQL Data Directory
	5.3 The mysql System Database
	5.4 MySQL Server Logs
	5.4.1 Selecting General Query Log and Slow Query Log Output Destinations
	5.4.2 The Error Log
	5.4.2.1 Error Logging on Windows
	5.4.2.2 Error Logging on Unix and Unix-Like Systems
	5.4.2.3 Error Logging to the System Log
	5.4.2.4 Error Log Filtering
	5.4.2.5 Error Log File Flushing and Renaming

	5.4.3 The General Query Log
	5.4.4 The Binary Log
	5.4.4.1 Binary Logging Formats
	5.4.4.2 Setting The Binary Log Format
	5.4.4.3 Mixed Binary Logging Format
	5.4.4.4 Logging Format for Changes to mysql Database Tables

	5.4.5 The Slow Query Log
	5.4.6 The DDL Log
	5.4.7 Server Log Maintenance

	5.5 MySQL Server Plugins
	5.5.1 Installing and Uninstalling Plugins
	5.5.2 Obtaining Server Plugin Information
	5.5.3 MySQL Enterprise Thread Pool
	5.5.3.1 Thread Pool Elements
	5.5.3.2 Thread Pool Installation
	5.5.3.3 Thread Pool Operation
	5.5.3.4 Thread Pool Tuning

	5.5.4 MySQL Plugin Services

	5.6 MySQL Server Loadable Functions
	5.6.1 Installing and Uninstalling Loadable Functions
	5.6.2 Obtaining Information About Loadable Functions

	5.7 Running Multiple MySQL Instances on One Machine
	5.7.1 Setting Up Multiple Data Directories
	5.7.2 Running Multiple MySQL Instances on Windows
	5.7.2.1 Starting Multiple MySQL Instances at the Windows Command Line
	5.7.2.2 Starting Multiple MySQL Instances as Windows Services

	5.7.3 Running Multiple MySQL Instances on Unix
	5.7.4 Using Client Programs in a Multiple-Server Environment

	5.8 Debugging MySQL
	5.8.1 Debugging a MySQL Server
	5.8.1.1 Compiling MySQL for Debugging
	5.8.1.2 Creating Trace Files
	5.8.1.3 Using WER with PDB to create a Windows crashdump
	5.8.1.4 Debugging mysqld under gdb
	5.8.1.5 Using a Stack Trace
	5.8.1.6 Using Server Logs to Find Causes of Errors in mysqld
	5.8.1.7 Making a Test Case If You Experience Table Corruption

	5.8.2 Debugging a MySQL Client
	5.8.3 The DBUG Package
	5.8.4 Tracing mysqld Using DTrace
	5.8.4.1 mysqld DTrace Probe Reference
	Connection Probes
	Command Probes
	Query Probes
	Query Parsing Probes
	Query Cache Probes
	Query Execution Probes
	Row-Level Probes
	Read Row Probes
	Index Probes
	Lock Probes
	Filesort Probes
	Statement Probes
	Network Probes
	Keycache Probes

	Chapter 6 Security
	6.1 General Security Issues
	6.1.1 Security Guidelines
	6.1.2 Keeping Passwords Secure
	6.1.2.1 End-User Guidelines for Password Security
	6.1.2.2 Administrator Guidelines for Password Security
	6.1.2.3 Passwords and Logging
	6.1.2.4 Password Hashing in MySQL
	6.1.2.5 Implications of Password Hashing Changes in MySQL 4.1 for Application Programs

	6.1.3 Making MySQL Secure Against Attackers
	6.1.4 Security-Related mysqld Options and Variables
	6.1.5 How to Run MySQL as a Normal User
	6.1.6 Security Considerations for LOAD DATA LOCAL
	6.1.7 Client Programming Security Guidelines

	6.2 Access Control and Account Management
	6.2.1 Account User Names and Passwords
	6.2.2 Privileges Provided by MySQL
	6.2.3 Grant Tables
	6.2.4 Specifying Account Names
	6.2.5 Access Control, Stage 1: Connection Verification
	6.2.6 Access Control, Stage 2: Request Verification
	6.2.7 Adding Accounts, Assigning Privileges, and Dropping Accounts
	6.2.8 When Privilege Changes Take Effect
	6.2.9 Assigning Account Passwords
	6.2.10 Server Handling of Expired Passwords
	6.2.11 Pluggable Authentication
	6.2.12 Proxy Users
	6.2.13 Setting Account Resource Limits
	6.2.14 Troubleshooting Problems Connecting to MySQL
	6.2.15 SQL-Based Account Activity Auditing

	6.3 Using Encrypted Connections
	6.3.1 Configuring MySQL to Use Encrypted Connections
	6.3.2 Encrypted Connection TLS Protocols and Ciphers
	6.3.3 Creating SSL and RSA Certificates and Keys
	6.3.3.1 Creating SSL Certificates and Keys Using openssl
	6.3.3.2 Creating RSA Keys Using openssl

	6.3.4 SSL Library-Dependent Capabilities
	6.3.5 Connecting to MySQL Remotely from Windows with SSH

	6.4 Security Plugins
	6.4.1 Authentication Plugins
	6.4.1.1 Native Pluggable Authentication
	6.4.1.2 Old Native Pluggable Authentication
	6.4.1.3 Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin
	6.4.1.4 SHA-256 Pluggable Authentication
	6.4.1.5 Client-Side Cleartext Pluggable Authentication
	6.4.1.6 PAM Pluggable Authentication
	6.4.1.7 Windows Pluggable Authentication
	6.4.1.8 Socket Peer-Credential Pluggable Authentication
	6.4.1.9 Test Pluggable Authentication

	6.4.2 The Connection-Control Plugins
	6.4.2.1 Connection-Control Plugin Installation
	6.4.2.2 Connection-Control System and Status Variables

	6.4.3 The Password Validation Plugin
	6.4.3.1 Password Validation Plugin Installation
	6.4.3.2 Password Validation Plugin Options and Variables

	6.4.4 MySQL Enterprise Audit
	6.4.4.1 Installing MySQL Enterprise Audit
	6.4.4.2 MySQL Enterprise Audit Security Considerations
	6.4.4.3 Audit Log File Formats
	6.4.4.4 Configuring Audit Logging Characteristics
	6.4.4.5 Audit Log Filtering
	6.4.4.6 Audit Log Reference
	6.4.4.7 Audit Log Restrictions

	6.4.5 MySQL Enterprise Firewall
	6.4.5.1 Elements of MySQL Enterprise Firewall
	6.4.5.2 Installing or Uninstalling MySQL Enterprise Firewall
	6.4.5.3 Using MySQL Enterprise Firewall
	6.4.5.4 MySQL Enterprise Firewall Reference

	6.5 MySQL Enterprise Encryption
	6.5.1 MySQL Enterprise Encryption Installation
	6.5.2 MySQL Enterprise Encryption Usage and Examples
	6.5.3 MySQL Enterprise Encryption Function Reference
	6.5.4 MySQL Enterprise Encryption Function Descriptions

	6.6 SELinux
	6.6.1 Check if SELinux is Enabled
	6.6.2 Changing the SELinux Mode
	6.6.3 MySQL Server SELinux Policies
	6.6.4 SELinux File Context
	6.6.5 SELinux TCP Port Context
	6.6.5.1 Setting the TCP Port Context for mysqld
	6.6.5.2 Setting the TCP Port Context for MySQL Features

	6.6.6 Troubleshooting SELinux

	Chapter 7 Backup and Recovery
	7.1 Backup and Recovery Types
	7.2 Database Backup Methods
	7.3 Example Backup and Recovery Strategy
	7.3.1 Establishing a Backup Policy
	7.3.2 Using Backups for Recovery
	7.3.3 Backup Strategy Summary

	7.4 Using mysqldump for Backups
	7.4.1 Dumping Data in SQL Format with mysqldump
	7.4.2 Reloading SQL-Format Backups
	7.4.3 Dumping Data in Delimited-Text Format with mysqldump
	7.4.4 Reloading Delimited-Text Format Backups
	7.4.5 mysqldump Tips
	7.4.5.1 Making a Copy of a Database
	7.4.5.2 Copy a Database from one Server to Another
	7.4.5.3 Dumping Stored Programs
	7.4.5.4 Dumping Table Definitions and Content Separately
	7.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities

	7.5 Point-in-Time (Incremental) Recovery Using the Binary Log
	7.5.1 Point-in-Time Recovery Using Event Times
	7.5.2 Point-in-Time Recovery Using Event Positions

	7.6 MyISAM Table Maintenance and Crash Recovery
	7.6.1 Using myisamchk for Crash Recovery
	7.6.2 How to Check MyISAM Tables for Errors
	7.6.3 How to Repair MyISAM Tables
	7.6.4 MyISAM Table Optimization
	7.6.5 Setting Up a MyISAM Table Maintenance Schedule

	Chapter 8 Optimization
	8.1 Optimization Overview
	8.2 Optimizing SQL Statements
	8.2.1 Optimizing SELECT Statements
	8.2.1.1 WHERE Clause Optimization
	8.2.1.2 Range Optimization
	8.2.1.3 Index Merge Optimization
	8.2.1.4 Engine Condition Pushdown Optimization
	8.2.1.5 Index Condition Pushdown Optimization
	8.2.1.6 Nested-Loop Join Algorithms
	8.2.1.7 Nested Join Optimization
	8.2.1.8 Outer Join Optimization
	8.2.1.9 Outer Join Simplification
	8.2.1.10 Multi-Range Read Optimization
	8.2.1.11 Block Nested-Loop and Batched Key Access Joins
	8.2.1.12 IS NULL Optimization
	8.2.1.13 ORDER BY Optimization
	8.2.1.14 GROUP BY Optimization
	8.2.1.15 DISTINCT Optimization
	8.2.1.16 LIMIT Query Optimization
	8.2.1.17 Function Call Optimization
	8.2.1.18 Row Constructor Expression Optimization
	8.2.1.19 Avoiding Full Table Scans

	8.2.2 Optimizing Subqueries and Derived Tables
	8.2.2.1 Optimizing Subqueries with Semijoin Transformations
	8.2.2.2 Optimizing Subqueries with Materialization
	8.2.2.3 Optimizing Subqueries with the EXISTS Strategy
	8.2.2.4 Optimizing Derived Tables

	8.2.3 Optimizing INFORMATION_SCHEMA Queries
	8.2.4 Optimizing Data Change Statements
	8.2.4.1 Optimizing INSERT Statements
	8.2.4.2 Optimizing UPDATE Statements
	8.2.4.3 Optimizing DELETE Statements

	8.2.5 Optimizing Database Privileges
	8.2.6 Other Optimization Tips

	8.3 Optimization and Indexes
	8.3.1 How MySQL Uses Indexes
	8.3.2 Primary Key Optimization
	8.3.3 Foreign Key Optimization
	8.3.4 Column Indexes
	8.3.5 Multiple-Column Indexes
	8.3.6 Verifying Index Usage
	8.3.7 InnoDB and MyISAM Index Statistics Collection
	8.3.8 Comparison of B-Tree and Hash Indexes
	8.3.9 Use of Index Extensions
	8.3.10 Indexed Lookups from TIMESTAMP Columns

	8.4 Optimizing Database Structure
	8.4.1 Optimizing Data Size
	8.4.2 Optimizing MySQL Data Types
	8.4.2.1 Optimizing for Numeric Data
	8.4.2.2 Optimizing for Character and String Types
	8.4.2.3 Optimizing for BLOB Types
	8.4.2.4 Using PROCEDURE ANALYSE

	8.4.3 Optimizing for Many Tables
	8.4.3.1 How MySQL Opens and Closes Tables
	8.4.3.2 Disadvantages of Creating Many Tables in the Same Database

	8.4.4 Internal Temporary Table Use in MySQL
	8.4.5 Limits on Number of Databases and Tables
	8.4.6 Limits on Table Size
	8.4.7 Limits on Table Column Count and Row Size

	8.5 Optimizing for InnoDB Tables
	8.5.1 Optimizing Storage Layout for InnoDB Tables
	8.5.2 Optimizing InnoDB Transaction Management
	8.5.3 Optimizing InnoDB Read-Only Transactions
	8.5.4 Optimizing InnoDB Redo Logging
	8.5.5 Bulk Data Loading for InnoDB Tables
	8.5.6 Optimizing InnoDB Queries
	8.5.7 Optimizing InnoDB DDL Operations
	8.5.8 Optimizing InnoDB Disk I/O
	8.5.9 Optimizing InnoDB Configuration Variables
	8.5.10 Optimizing InnoDB for Systems with Many Tables

	8.6 Optimizing for MyISAM Tables
	8.6.1 Optimizing MyISAM Queries
	8.6.2 Bulk Data Loading for MyISAM Tables
	8.6.3 Optimizing REPAIR TABLE Statements

	8.7 Optimizing for MEMORY Tables
	8.8 Understanding the Query Execution Plan
	8.8.1 Optimizing Queries with EXPLAIN
	8.8.2 EXPLAIN Output Format
	8.8.3 Extended EXPLAIN Output Format
	8.8.4 Estimating Query Performance

	8.9 Controlling the Query Optimizer
	8.9.1 Controlling Query Plan Evaluation
	8.9.2 Switchable Optimizations
	8.9.3 Index Hints

	8.10 Buffering and Caching
	8.10.1 InnoDB Buffer Pool Optimization
	8.10.2 The MyISAM Key Cache
	8.10.2.1 Shared Key Cache Access
	8.10.2.2 Multiple Key Caches
	8.10.2.3 Midpoint Insertion Strategy
	8.10.2.4 Index Preloading
	8.10.2.5 Key Cache Block Size
	8.10.2.6 Restructuring a Key Cache

	8.10.3 The MySQL Query Cache
	8.10.3.1 How the Query Cache Operates
	8.10.3.2 Query Cache SELECT Options
	8.10.3.3 Query Cache Configuration
	8.10.3.4 Query Cache Status and Maintenance

	8.10.4 Caching of Prepared Statements and Stored Programs

	8.11 Optimizing Locking Operations
	8.11.1 Internal Locking Methods
	8.11.2 Table Locking Issues
	8.11.3 Concurrent Inserts
	8.11.4 Metadata Locking
	8.11.5 External Locking

	8.12 Optimizing the MySQL Server
	8.12.1 System Factors
	8.12.2 Optimizing Disk I/O
	8.12.3 Using Symbolic Links
	8.12.3.1 Using Symbolic Links for Databases on Unix
	8.12.3.2 Using Symbolic Links for MyISAM Tables on Unix
	8.12.3.3 Using Symbolic Links for Databases on Windows

	8.12.4 Optimizing Memory Use
	8.12.4.1 How MySQL Uses Memory
	8.12.4.2 Enabling Large Page Support

	8.13 Measuring Performance (Benchmarking)
	8.13.1 Measuring the Speed of Expressions and Functions
	8.13.2 The MySQL Benchmark Suite
	8.13.3 Using Your Own Benchmarks
	8.13.4 Measuring Performance with performance_schema

	8.14 Examining Server Thread (Process) Information
	8.14.1 Accessing the Process List
	8.14.2 Thread Command Values
	8.14.3 General Thread States
	8.14.4 Delayed-Insert Thread States
	8.14.5 Query Cache Thread States
	8.14.6 Replication Source Thread States
	8.14.7 Replication Replica I/O Thread States
	8.14.8 Replication Replica SQL Thread States
	8.14.9 Replication Replica Connection Thread States
	8.14.10 NDB Cluster Thread States
	8.14.11 Event Scheduler Thread States

	Chapter 9 Language Structure
	9.1 Literal Values
	9.1.1 String Literals
	9.1.2 Numeric Literals
	9.1.3 Date and Time Literals
	9.1.4 Hexadecimal Literals
	9.1.5 Bit-Value Literals
	9.1.6 Boolean Literals
	9.1.7 NULL Values

	9.2 Schema Object Names
	9.2.1 Identifier Length Limits
	9.2.2 Identifier Qualifiers
	9.2.3 Identifier Case Sensitivity
	9.2.4 Mapping of Identifiers to File Names
	9.2.5 Function Name Parsing and Resolution

	9.3 Keywords and Reserved Words
	9.4 User-Defined Variables
	9.5 Expressions
	9.6 Comments

	Chapter 10 Character Sets, Collations, Unicode
	10.1 Character Sets and Collations in General
	10.2 Character Sets and Collations in MySQL
	10.2.1 Character Set Repertoire
	10.2.2 UTF-8 for Metadata

	10.3 Specifying Character Sets and Collations
	10.3.1 Collation Naming Conventions
	10.3.2 Server Character Set and Collation
	10.3.3 Database Character Set and Collation
	10.3.4 Table Character Set and Collation
	10.3.5 Column Character Set and Collation
	10.3.6 Character String Literal Character Set and Collation
	10.3.7 The National Character Set
	10.3.8 Character Set Introducers
	10.3.9 Examples of Character Set and Collation Assignment
	10.3.10 Compatibility with Other DBMSs

	10.4 Connection Character Sets and Collations
	10.5 Configuring Application Character Set and Collation
	10.6 Error Message Character Set
	10.7 Column Character Set Conversion
	10.8 Collation Issues
	10.8.1 Using COLLATE in SQL Statements
	10.8.2 COLLATE Clause Precedence
	10.8.3 Character Set and Collation Compatibility
	10.8.4 Collation Coercibility in Expressions
	10.8.5 The binary Collation Compared to _bin Collations
	10.8.6 Examples of the Effect of Collation
	10.8.7 Using Collation in INFORMATION_SCHEMA Searches

	10.9 Unicode Support
	10.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)
	10.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding)
	10.9.3 The utf8 Character Set (Alias for utf8mb3)
	10.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding)
	10.9.5 The utf16 Character Set (UTF-16 Unicode Encoding)
	10.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding)
	10.9.7 The utf32 Character Set (UTF-32 Unicode Encoding)
	10.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets

	10.10 Supported Character Sets and Collations
	10.10.1 Unicode Character Sets
	10.10.2 West European Character Sets
	10.10.3 Central European Character Sets
	10.10.4 South European and Middle East Character Sets
	10.10.5 Baltic Character Sets
	10.10.6 Cyrillic Character Sets
	10.10.7 Asian Character Sets
	10.10.7.1 The cp932 Character Set

	10.10.8 The Binary Character Set

	10.11 Restrictions on Character Sets
	10.12 Setting the Error Message Language
	10.13 Adding a Character Set
	10.13.1 Character Definition Arrays
	10.13.2 String Collating Support for Complex Character Sets
	10.13.3 Multi-Byte Character Support for Complex Character Sets

	10.14 Adding a Collation to a Character Set
	10.14.1 Collation Implementation Types
	10.14.2 Choosing a Collation ID
	10.14.3 Adding a Simple Collation to an 8-Bit Character Set
	10.14.4 Adding a UCA Collation to a Unicode Character Set
	10.14.4.1 Defining a UCA Collation Using LDML Syntax
	10.14.4.2 LDML Syntax Supported in MySQL
	10.14.4.3 Diagnostics During Index.xml Parsing

	10.15 Character Set Configuration
	10.16 MySQL Server Locale Support

	Chapter 11 Data Types
	11.1 Numeric Data Types
	11.1.1 Numeric Data Type Syntax
	11.1.2 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT
	11.1.3 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC
	11.1.4 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE
	11.1.5 Bit-Value Type - BIT
	11.1.6 Numeric Type Attributes
	11.1.7 Out-of-Range and Overflow Handling

	11.2 Date and Time Data Types
	11.2.1 Date and Time Data Type Syntax
	11.2.2 The DATE, DATETIME, and TIMESTAMP Types
	11.2.3 The TIME Type
	11.2.4 The YEAR Type
	11.2.5 2-Digit YEAR(2) Limitations and Migrating to 4-Digit YEAR
	11.2.6 Automatic Initialization and Updating for TIMESTAMP and DATETIME
	11.2.7 Fractional Seconds in Time Values
	11.2.8 Conversion Between Date and Time Types
	11.2.9 2-Digit Years in Dates

	11.3 String Data Types
	11.3.1 String Data Type Syntax
	11.3.2 The CHAR and VARCHAR Types
	11.3.3 The BINARY and VARBINARY Types
	11.3.4 The BLOB and TEXT Types
	11.3.5 The ENUM Type
	11.3.6 The SET Type

	11.4 Spatial Data Types
	11.4.1 Spatial Data Types
	11.4.2 The OpenGIS Geometry Model
	11.4.2.1 The Geometry Class Hierarchy
	11.4.2.2 Geometry Class
	11.4.2.3 Point Class
	11.4.2.4 Curve Class
	11.4.2.5 LineString Class
	11.4.2.6 Surface Class
	11.4.2.7 Polygon Class
	11.4.2.8 GeometryCollection Class
	11.4.2.9 MultiPoint Class
	11.4.2.10 MultiCurve Class
	11.4.2.11 MultiLineString Class
	11.4.2.12 MultiSurface Class
	11.4.2.13 MultiPolygon Class

	11.4.3 Supported Spatial Data Formats
	11.4.4 Creating Spatial Columns
	11.4.5 Populating Spatial Columns
	11.4.6 Fetching Spatial Data
	11.4.7 Optimizing Spatial Analysis
	11.4.8 Creating Spatial Indexes
	11.4.9 Using Spatial Indexes

	11.5 Data Type Default Values
	11.6 Data Type Storage Requirements
	11.7 Choosing the Right Type for a Column
	11.8 Using Data Types from Other Database Engines

	Chapter 12 Functions and Operators
	12.1 Built-In Function and Operator Reference
	12.2 Loadable Function Reference
	12.3 Type Conversion in Expression Evaluation
	12.4 Operators
	12.4.1 Operator Precedence
	12.4.2 Comparison Functions and Operators
	12.4.3 Logical Operators
	12.4.4 Assignment Operators

	12.5 Flow Control Functions
	12.6 Numeric Functions and Operators
	12.6.1 Arithmetic Operators
	12.6.2 Mathematical Functions

	12.7 Date and Time Functions
	12.8 String Functions and Operators
	12.8.1 String Comparison Functions and Operators
	12.8.2 Regular Expressions
	12.8.3 Character Set and Collation of Function Results

	12.9 What Calendar Is Used By MySQL?
	12.10 Full-Text Search Functions
	12.10.1 Natural Language Full-Text Searches
	12.10.2 Boolean Full-Text Searches
	12.10.3 Full-Text Searches with Query Expansion
	12.10.4 Full-Text Stopwords
	12.10.5 Full-Text Restrictions
	12.10.6 Fine-Tuning MySQL Full-Text Search
	12.10.7 Adding a User-Defined Collation for Full-Text Indexing

	12.11 Cast Functions and Operators
	12.12 XML Functions
	12.13 Bit Functions and Operators
	12.14 Encryption and Compression Functions
	12.15 Locking Functions
	12.16 Information Functions
	12.17 Spatial Analysis Functions
	12.17.1 Spatial Function Reference
	12.17.2 Argument Handling by Spatial Functions
	12.17.3 Functions That Create Geometry Values from WKT Values
	12.17.4 Functions That Create Geometry Values from WKB Values
	12.17.5 MySQL-Specific Functions That Create Geometry Values
	12.17.6 Geometry Format Conversion Functions
	12.17.7 Geometry Property Functions
	12.17.7.1 General Geometry Property Functions
	12.17.7.2 Point Property Functions
	12.17.7.3 LineString and MultiLineString Property Functions
	12.17.7.4 Polygon and MultiPolygon Property Functions
	12.17.7.5 GeometryCollection Property Functions

	12.17.8 Spatial Operator Functions
	12.17.9 Functions That Test Spatial Relations Between Geometry Objects
	12.17.9.1 Spatial Relation Functions That Use Object Shapes
	12.17.9.2 Spatial Relation Functions That Use Minimum Bounding Rectangles

	12.18 Functions Used with Global Transaction IDs
	12.19 Aggregate Functions
	12.19.1 Aggregate Function Descriptions
	12.19.2 GROUP BY Modifiers
	12.19.3 MySQL Handling of GROUP BY

	12.20 Miscellaneous Functions
	12.21 Precision Math
	12.21.1 Types of Numeric Values
	12.21.2 DECIMAL Data Type Characteristics
	12.21.3 Expression Handling
	12.21.4 Rounding Behavior
	12.21.5 Precision Math Examples

	Chapter 13 SQL Statements
	13.1 Data Definition Statements
	13.1.1 ALTER DATABASE Statement
	13.1.2 ALTER EVENT Statement
	13.1.3 ALTER FUNCTION Statement
	13.1.4 ALTER LOGFILE GROUP Statement
	13.1.5 ALTER PROCEDURE Statement
	13.1.6 ALTER SERVER Statement
	13.1.7 ALTER TABLE Statement
	13.1.7.1 ALTER TABLE Partition Operations
	13.1.7.2 ALTER TABLE Examples

	13.1.8 ALTER TABLESPACE Statement
	13.1.9 ALTER VIEW Statement
	13.1.10 CREATE DATABASE Statement
	13.1.11 CREATE EVENT Statement
	13.1.12 CREATE FUNCTION Statement
	13.1.13 CREATE INDEX Statement
	13.1.14 CREATE LOGFILE GROUP Statement
	13.1.15 CREATE PROCEDURE and CREATE FUNCTION Statements
	13.1.16 CREATE SERVER Statement
	13.1.17 CREATE TABLE Statement
	13.1.17.1 Files Created by CREATE TABLE
	13.1.17.2 CREATE TEMPORARY TABLE Statement
	13.1.17.3 CREATE TABLE ... LIKE Statement
	13.1.17.4 CREATE TABLE ... SELECT Statement
	13.1.17.5 FOREIGN KEY Constraints
	13.1.17.6 Silent Column Specification Changes
	13.1.17.7 Setting NDB Comment Options

	13.1.18 CREATE TABLESPACE Statement
	13.1.19 CREATE TRIGGER Statement
	13.1.20 CREATE VIEW Statement
	13.1.21 DROP DATABASE Statement
	13.1.22 DROP EVENT Statement
	13.1.23 DROP FUNCTION Statement
	13.1.24 DROP INDEX Statement
	13.1.25 DROP LOGFILE GROUP Statement
	13.1.26 DROP PROCEDURE and DROP FUNCTION Statements
	13.1.27 DROP SERVER Statement
	13.1.28 DROP TABLE Statement
	13.1.29 DROP TABLESPACE Statement
	13.1.30 DROP TRIGGER Statement
	13.1.31 DROP VIEW Statement
	13.1.32 RENAME TABLE Statement
	13.1.33 TRUNCATE TABLE Statement

	13.2 Data Manipulation Statements
	13.2.1 CALL Statement
	13.2.2 DELETE Statement
	13.2.3 DO Statement
	13.2.4 HANDLER Statement
	13.2.5 INSERT Statement
	13.2.5.1 INSERT ... SELECT Statement
	13.2.5.2 INSERT ... ON DUPLICATE KEY UPDATE Statement
	13.2.5.3 INSERT DELAYED Statement

	13.2.6 LOAD DATA Statement
	13.2.7 LOAD XML Statement
	13.2.8 REPLACE Statement
	13.2.9 SELECT Statement
	13.2.9.1 SELECT ... INTO Statement
	13.2.9.2 JOIN Clause
	13.2.9.3 UNION Clause

	13.2.10 Subqueries
	13.2.10.1 The Subquery as Scalar Operand
	13.2.10.2 Comparisons Using Subqueries
	13.2.10.3 Subqueries with ANY, IN, or SOME
	13.2.10.4 Subqueries with ALL
	13.2.10.5 Row Subqueries
	13.2.10.6 Subqueries with EXISTS or NOT EXISTS
	13.2.10.7 Correlated Subqueries
	13.2.10.8 Derived Tables
	13.2.10.9 Subquery Errors
	13.2.10.10 Optimizing Subqueries
	13.2.10.11 Rewriting Subqueries as Joins
	13.2.10.12 Restrictions on Subqueries

	13.2.11 UPDATE Statement

	13.3 Transactional and Locking Statements
	13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Statements
	13.3.2 Statements That Cannot Be Rolled Back
	13.3.3 Statements That Cause an Implicit Commit
	13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements
	13.3.5 LOCK TABLES and UNLOCK TABLES Statements
	13.3.6 SET TRANSACTION Statement
	13.3.7 XA Transactions
	13.3.7.1 XA Transaction SQL Statements
	13.3.7.2 XA Transaction States
	13.3.7.3 Restrictions on XA Transactions

	13.4 Replication Statements
	13.4.1 SQL Statements for Controlling Replication Source Servers
	13.4.1.1 PURGE BINARY LOGS Statement
	13.4.1.2 RESET MASTER Statement
	13.4.1.3 SET sql_log_bin Statement

	13.4.2 SQL Statements for Controlling Replica Servers
	13.4.2.1 CHANGE MASTER TO Statement
	13.4.2.2 MASTER_POS_WAIT() Statement
	13.4.2.3 RESET SLAVE Statement
	13.4.2.4 SET GLOBAL sql_slave_skip_counter Statement
	13.4.2.5 START SLAVE Statement
	13.4.2.6 STOP SLAVE Statement

	13.5 Prepared Statements
	13.5.1 PREPARE Statement
	13.5.2 EXECUTE Statement
	13.5.3 DEALLOCATE PREPARE Statement

	13.6 Compound Statements
	13.6.1 BEGIN ... END Compound Statement
	13.6.2 Statement Labels
	13.6.3 DECLARE Statement
	13.6.4 Variables in Stored Programs
	13.6.4.1 Local Variable DECLARE Statement
	13.6.4.2 Local Variable Scope and Resolution

	13.6.5 Flow Control Statements
	13.6.5.1 CASE Statement
	13.6.5.2 IF Statement
	13.6.5.3 ITERATE Statement
	13.6.5.4 LEAVE Statement
	13.6.5.5 LOOP Statement
	13.6.5.6 REPEAT Statement
	13.6.5.7 RETURN Statement
	13.6.5.8 WHILE Statement

	13.6.6 Cursors
	13.6.6.1 Cursor CLOSE Statement
	13.6.6.2 Cursor DECLARE Statement
	13.6.6.3 Cursor FETCH Statement
	13.6.6.4 Cursor OPEN Statement
	13.6.6.5 Restrictions on Server-Side Cursors

	13.6.7 Condition Handling
	13.6.7.1 DECLARE ... CONDITION Statement
	13.6.7.2 DECLARE ... HANDLER Statement
	13.6.7.3 GET DIAGNOSTICS Statement
	13.6.7.4 RESIGNAL Statement
	13.6.7.5 SIGNAL Statement
	13.6.7.6 Scope Rules for Handlers
	13.6.7.7 The MySQL Diagnostics Area
	13.6.7.8 Condition Handling and OUT or INOUT Parameters
	13.6.7.9 Restrictions on Condition Handling

	13.7 Database Administration Statements
	13.7.1 Account Management Statements
	13.7.1.1 ALTER USER Statement
	13.7.1.2 CREATE USER Statement
	13.7.1.3 DROP USER Statement
	13.7.1.4 GRANT Statement
	13.7.1.5 RENAME USER Statement
	13.7.1.6 REVOKE Statement
	13.7.1.7 SET PASSWORD Statement

	13.7.2 Table Maintenance Statements
	13.7.2.1 ANALYZE TABLE Statement
	13.7.2.2 CHECK TABLE Statement
	13.7.2.3 CHECKSUM TABLE Statement
	13.7.2.4 OPTIMIZE TABLE Statement
	13.7.2.5 REPAIR TABLE Statement

	13.7.3 Plugin and Loadable Function Statements
	13.7.3.1 CREATE FUNCTION Statement for Loadable Functions
	13.7.3.2 DROP FUNCTION Statement for Loadable Functions
	13.7.3.3 INSTALL PLUGIN Statement
	13.7.3.4 UNINSTALL PLUGIN Statement

	13.7.4 SET Statements
	13.7.4.1 SET Syntax for Variable Assignment
	13.7.4.2 SET CHARACTER SET Statement
	13.7.4.3 SET NAMES Statement

	13.7.5 SHOW Statements
	13.7.5.1 SHOW AUTHORS Statement
	13.7.5.2 SHOW BINARY LOGS Statement
	13.7.5.3 SHOW BINLOG EVENTS Statement
	13.7.5.4 SHOW CHARACTER SET Statement
	13.7.5.5 SHOW COLLATION Statement
	13.7.5.6 SHOW COLUMNS Statement
	13.7.5.7 SHOW CONTRIBUTORS Statement
	13.7.5.8 SHOW CREATE DATABASE Statement
	13.7.5.9 SHOW CREATE EVENT Statement
	13.7.5.10 SHOW CREATE FUNCTION Statement
	13.7.5.11 SHOW CREATE PROCEDURE Statement
	13.7.5.12 SHOW CREATE TABLE Statement
	13.7.5.13 SHOW CREATE TRIGGER Statement
	13.7.5.14 SHOW CREATE VIEW Statement
	13.7.5.15 SHOW DATABASES Statement
	13.7.5.16 SHOW ENGINE Statement
	13.7.5.17 SHOW ENGINES Statement
	13.7.5.18 SHOW ERRORS Statement
	13.7.5.19 SHOW EVENTS Statement
	13.7.5.20 SHOW FUNCTION CODE Statement
	13.7.5.21 SHOW FUNCTION STATUS Statement
	13.7.5.22 SHOW GRANTS Statement
	13.7.5.23 SHOW INDEX Statement
	13.7.5.24 SHOW MASTER STATUS Statement
	13.7.5.25 SHOW OPEN TABLES Statement
	13.7.5.26 SHOW PLUGINS Statement
	13.7.5.27 SHOW PRIVILEGES Statement
	13.7.5.28 SHOW PROCEDURE CODE Statement
	13.7.5.29 SHOW PROCEDURE STATUS Statement
	13.7.5.30 SHOW PROCESSLIST Statement
	13.7.5.31 SHOW PROFILE Statement
	13.7.5.32 SHOW PROFILES Statement
	13.7.5.33 SHOW RELAYLOG EVENTS Statement
	13.7.5.34 SHOW SLAVE HOSTS Statement
	13.7.5.35 SHOW SLAVE STATUS Statement
	13.7.5.36 SHOW STATUS Statement
	13.7.5.37 SHOW TABLE STATUS Statement
	13.7.5.38 SHOW TABLES Statement
	13.7.5.39 SHOW TRIGGERS Statement
	13.7.5.40 SHOW VARIABLES Statement
	13.7.5.41 SHOW WARNINGS Statement

	13.7.6 Other Administrative Statements
	13.7.6.1 BINLOG Statement
	13.7.6.2 CACHE INDEX Statement
	13.7.6.3 FLUSH Statement
	13.7.6.4 KILL Statement
	13.7.6.5 LOAD INDEX INTO CACHE Statement
	13.7.6.6 RESET Statement

	13.8 Utility Statements
	13.8.1 DESCRIBE Statement
	13.8.2 EXPLAIN Statement
	13.8.3 HELP Statement
	13.8.4 USE Statement

	Chapter 14 The InnoDB Storage Engine
	14.1 Introduction to InnoDB
	14.1.1 Benefits of Using InnoDB Tables
	14.1.2 Best Practices for InnoDB Tables
	14.1.3 Checking InnoDB Availability
	14.1.4 Testing and Benchmarking with InnoDB
	14.1.5 Turning Off InnoDB

	14.2 InnoDB and the ACID Model
	14.3 InnoDB Multi-Versioning
	14.4 InnoDB Architecture
	14.5 InnoDB In-Memory Structures
	14.5.1 Buffer Pool
	14.5.2 Change Buffer
	14.5.3 Adaptive Hash Index
	14.5.4 Log Buffer

	14.6 InnoDB On-Disk Structures
	14.6.1 Tables
	14.6.1.1 Creating InnoDB Tables
	14.6.1.2 Creating Tables Externally
	14.6.1.3 Importing InnoDB Tables
	14.6.1.4 Moving or Copying InnoDB Tables
	14.6.1.5 Converting Tables from MyISAM to InnoDB
	14.6.1.6 AUTO_INCREMENT Handling in InnoDB

	14.6.2 Indexes
	14.6.2.1 Clustered and Secondary Indexes
	14.6.2.2 The Physical Structure of an InnoDB Index
	14.6.2.3 InnoDB Full-Text Indexes

	14.6.3 Tablespaces
	14.6.3.1 The System Tablespace
	14.6.3.2 File-Per-Table Tablespaces
	14.6.3.3 Undo Tablespaces

	14.6.4 InnoDB Data Dictionary
	14.6.5 Doublewrite Buffer
	14.6.6 Redo Log
	14.6.7 Undo Logs

	14.7 InnoDB Locking and Transaction Model
	14.7.1 InnoDB Locking
	14.7.2 InnoDB Transaction Model
	14.7.2.1 Transaction Isolation Levels
	14.7.2.2 autocommit, Commit, and Rollback
	14.7.2.3 Consistent Nonlocking Reads
	14.7.2.4 Locking Reads

	14.7.3 Locks Set by Different SQL Statements in InnoDB
	14.7.4 Phantom Rows
	14.7.5 Deadlocks in InnoDB
	14.7.5.1 An InnoDB Deadlock Example
	14.7.5.2 Deadlock Detection
	14.7.5.3 How to Minimize and Handle Deadlocks

	14.8 InnoDB Configuration
	14.8.1 InnoDB Startup Configuration
	14.8.2 Configuring InnoDB for Read-Only Operation
	14.8.3 InnoDB Buffer Pool Configuration
	14.8.3.1 Configuring Multiple Buffer Pool Instances
	14.8.3.2 Making the Buffer Pool Scan Resistant
	14.8.3.3 Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)
	14.8.3.4 Configuring Buffer Pool Flushing
	14.8.3.5 Saving and Restoring the Buffer Pool State

	14.8.4 Configuring the Memory Allocator for InnoDB
	14.8.5 Configuring Thread Concurrency for InnoDB
	14.8.6 Configuring the Number of Background InnoDB I/O Threads
	14.8.7 Using Asynchronous I/O on Linux
	14.8.8 Configuring InnoDB I/O Capacity
	14.8.9 Configuring Spin Lock Polling
	14.8.10 Purge Configuration
	14.8.11 Configuring Optimizer Statistics for InnoDB
	14.8.11.1 Configuring Persistent Optimizer Statistics Parameters
	Configuring Automatic Statistics Calculation for Persistent Optimizer Statistics
	Configuring Optimizer Statistics Parameters for Individual Tables
	Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
	Including Delete-marked Records in Persistent Statistics Calculations
	InnoDB Persistent Statistics Tables
	InnoDB Persistent Statistics Tables Example
	Retrieving Index Size Using the innodb_index_stats Table

	14.8.11.2 Configuring Non-Persistent Optimizer Statistics Parameters
	14.8.11.3 Estimating ANALYZE TABLE Complexity for InnoDB Tables

	14.8.12 Configuring the Merge Threshold for Index Pages

	14.9 InnoDB Table Compression
	14.9.1 Overview of Table Compression
	14.9.2 Enabling Compression for a Table
	14.9.3 Tuning Compression for InnoDB Tables
	14.9.4 Monitoring InnoDB Table Compression at Runtime
	14.9.5 How Compression Works for InnoDB Tables
	14.9.6 Compression for OLTP Workloads
	14.9.7 SQL Compression Syntax Warnings and Errors

	14.10 InnoDB File-Format Management
	14.10.1 Enabling File Formats
	14.10.2 Verifying File Format Compatibility
	14.10.2.1 Compatibility Check When InnoDB Is Started
	14.10.2.2 Compatibility Check When a Table Is Opened

	14.10.3 Identifying the File Format in Use
	14.10.4 Modifying the File Format

	14.11 InnoDB Row Formats
	14.12 InnoDB Disk I/O and File Space Management
	14.12.1 InnoDB Disk I/O
	14.12.2 File Space Management
	14.12.3 InnoDB Checkpoints
	14.12.4 Defragmenting a Table
	14.12.5 Reclaiming Disk Space with TRUNCATE TABLE

	14.13 InnoDB and Online DDL
	14.13.1 Online DDL Operations
	14.13.2 Online DDL Performance and Concurrency
	14.13.3 Online DDL Space Requirements
	14.13.4 Simplifying DDL Statements with Online DDL
	14.13.5 Online DDL Failure Conditions
	14.13.6 Online DDL Limitations

	14.14 InnoDB Startup Options and System Variables
	14.15 InnoDB INFORMATION_SCHEMA Tables
	14.15.1 InnoDB INFORMATION_SCHEMA Tables about Compression
	14.15.1.1 INNODB_CMP and INNODB_CMP_RESET
	14.15.1.2 INNODB_CMPMEM and INNODB_CMPMEM_RESET
	14.15.1.3 Using the Compression Information Schema Tables

	14.15.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Information
	14.15.2.1 Using InnoDB Transaction and Locking Information
	14.15.2.2 InnoDB Lock and Lock-Wait Information
	14.15.2.3 Persistence and Consistency of InnoDB Transaction and Locking Information

	14.15.3 InnoDB INFORMATION_SCHEMA System Tables
	14.15.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables
	14.15.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables
	14.15.6 InnoDB INFORMATION_SCHEMA Metrics Table

	14.16 InnoDB Integration with MySQL Performance Schema
	14.16.1 Monitoring InnoDB Mutex Waits Using Performance Schema

	14.17 InnoDB Monitors
	14.17.1 InnoDB Monitor Types
	14.17.2 Enabling InnoDB Monitors
	14.17.3 InnoDB Standard Monitor and Lock Monitor Output
	14.17.4 InnoDB Tablespace Monitor Output
	14.17.5 InnoDB Table Monitor Output

	14.18 InnoDB Backup and Recovery
	14.18.1 InnoDB Backup
	14.18.2 InnoDB Recovery

	14.19 InnoDB and MySQL Replication
	14.20 InnoDB memcached Plugin
	14.20.1 Benefits of the InnoDB memcached Plugin
	14.20.2 InnoDB memcached Architecture
	14.20.3 Setting Up the InnoDB memcached Plugin
	14.20.4 Security Considerations for the InnoDB memcached Plugin
	14.20.5 Writing Applications for the InnoDB memcached Plugin
	14.20.5.1 Adapting an Existing MySQL Schema for the InnoDB memcached Plugin
	14.20.5.2 Adapting a memcached Application for the InnoDB memcached Plugin
	14.20.5.3 Tuning InnoDB memcached Plugin Performance
	14.20.5.4 Controlling Transactional Behavior of the InnoDB memcached Plugin
	14.20.5.5 Adapting DML Statements to memcached Operations
	14.20.5.6 Performing DML and DDL Statements on the Underlying InnoDB Table

	14.20.6 The InnoDB memcached Plugin and Replication
	14.20.7 InnoDB memcached Plugin Internals
	14.20.8 Troubleshooting the InnoDB memcached Plugin

	14.21 InnoDB Troubleshooting
	14.21.1 Troubleshooting InnoDB I/O Problems
	14.21.2 Forcing InnoDB Recovery
	14.21.3 Troubleshooting InnoDB Data Dictionary Operations
	14.21.4 InnoDB Error Handling

	14.22 InnoDB Limits
	14.23 InnoDB Restrictions and Limitations

	Chapter 15 Alternative Storage Engines
	15.1 Setting the Storage Engine
	15.2 The MyISAM Storage Engine
	15.2.1 MyISAM Startup Options
	15.2.2 Space Needed for Keys
	15.2.3 MyISAM Table Storage Formats
	15.2.3.1 Static (Fixed-Length) Table Characteristics
	15.2.3.2 Dynamic Table Characteristics
	15.2.3.3 Compressed Table Characteristics

	15.2.4 MyISAM Table Problems
	15.2.4.1 Corrupted MyISAM Tables
	15.2.4.2 Problems from Tables Not Being Closed Properly

	15.3 The MEMORY Storage Engine
	15.4 The CSV Storage Engine
	15.4.1 Repairing and Checking CSV Tables
	15.4.2 CSV Limitations

	15.5 The ARCHIVE Storage Engine
	15.6 The BLACKHOLE Storage Engine
	15.7 The MERGE Storage Engine
	15.7.1 MERGE Table Advantages and Disadvantages
	15.7.2 MERGE Table Problems

	15.8 The FEDERATED Storage Engine
	15.8.1 FEDERATED Storage Engine Overview
	15.8.2 How to Create FEDERATED Tables
	15.8.2.1 Creating a FEDERATED Table Using CONNECTION
	15.8.2.2 Creating a FEDERATED Table Using CREATE SERVER

	15.8.3 FEDERATED Storage Engine Notes and Tips
	15.8.4 FEDERATED Storage Engine Resources

	15.9 The EXAMPLE Storage Engine
	15.10 Other Storage Engines
	15.11 Overview of MySQL Storage Engine Architecture
	15.11.1 Pluggable Storage Engine Architecture
	15.11.2 The Common Database Server Layer

	Chapter 16 High Availability and Scalability
	16.1 Using ZFS Replication
	16.1.1 Using ZFS for File System Replication
	16.1.2 Configuring MySQL for ZFS Replication
	16.1.3 Handling MySQL Recovery with ZFS

	16.2 Using MySQL with memcached
	16.2.1 Installing memcached
	16.2.2 Using memcached
	16.2.2.1 memcached Command-Line Options
	16.2.2.2 memcached Deployment
	16.2.2.3 Using Namespaces
	16.2.2.4 Data Expiry
	16.2.2.5 memcached Hashing/Distribution Types
	16.2.2.6 Using memcached and DTrace
	16.2.2.7 Memory Allocation within memcached
	16.2.2.8 memcached Thread Support
	16.2.2.9 memcached Logs

	16.2.3 Developing a memcached Application
	16.2.3.1 Basic memcached Operations
	16.2.3.2 Using memcached as a MySQL Caching Layer
	16.2.3.3 Using libmemcached with C and C++
	libmemcached Base Functions
	libmemcached Server Functions
	libmemcached Set Functions
	libmemcached Get Functions
	Controlling libmemcached Behaviors
	libmemcached Command-Line Utilities

	16.2.3.4 Using MySQL and memcached with Perl
	16.2.3.5 Using MySQL and memcached with Python
	16.2.3.6 Using MySQL and memcached with PHP
	16.2.3.7 Using MySQL and memcached with Java
	16.2.3.8 Using the memcached TCP Text Protocol

	16.2.4 Getting memcached Statistics
	16.2.4.1 memcached General Statistics
	16.2.4.2 memcached Slabs Statistics
	16.2.4.3 memcached Item Statistics
	16.2.4.4 memcached Size Statistics
	16.2.4.5 memcached Detail Statistics
	16.2.4.6 Using memcached-tool

	16.2.5 memcached FAQ

	Chapter 17 Replication
	17.1 Replication Configuration
	17.1.1 How to Set Up Replication
	17.1.1.1 Setting the Replication Source Configuration
	17.1.1.2 Setting the Replica Configuration
	17.1.1.3 Creating a User for Replication
	17.1.1.4 Obtaining the Replication Source Binary Log Coordinates
	17.1.1.5 Creating a Data Snapshot Using mysqldump
	17.1.1.6 Creating a Data Snapshot Using Raw Data Files
	17.1.1.7 Setting Up Replication with New Source and Replicas
	17.1.1.8 Setting Up Replication with Existing Data
	17.1.1.9 Introducing Additional Replicas to an Existing Replication Environment
	17.1.1.10 Setting the Source Configuration on the Replica

	17.1.2 Replication Formats
	17.1.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication
	17.1.2.2 Usage of Row-Based Logging and Replication
	17.1.2.3 Determination of Safe and Unsafe Statements in Binary Logging

	17.1.3 Replication with Global Transaction Identifiers
	17.1.3.1 GTID Concepts
	17.1.3.2 Setting Up Replication Using GTIDs
	17.1.3.3 Using GTIDs for Failover and Scaleout
	17.1.3.4 Restrictions on Replication with GTIDs
	17.1.3.5 Disabling GTID Transactions

	17.1.4 Replication and Binary Logging Options and Variables
	17.1.4.1 Replication and Binary Logging Option and Variable Reference
	17.1.4.2 Replication Source Options and Variables
	17.1.4.3 Replica Server Options and Variables
	17.1.4.4 Binary Log Options and Variables
	17.1.4.5 Global Transaction ID Options and Variables

	17.1.5 Common Replication Administration Tasks
	17.1.5.1 Checking Replication Status
	17.1.5.2 Pausing Replication on the Slave

	17.2 Replication Implementation
	17.2.1 Replication Threads
	17.2.1.1 Monitoring Replication Main Threads
	17.2.1.2 Monitoring Replication Applier Worker Threads

	17.2.2 Relay Log and Replication Metadata Repositories
	17.2.2.1 The Relay Log
	17.2.2.2 Replication Metadata Repositories

	17.2.3 How Servers Evaluate Replication Filtering Rules
	17.2.3.1 Evaluation of Database-Level Replication and Binary Logging Options
	17.2.3.2 Evaluation of Table-Level Replication Options
	17.2.3.3 Interactions Between Replication Filtering Options

	17.3 Replication Solutions
	17.3.1 Using Replication for Backups
	17.3.1.1 Backing Up a Replica Using mysqldump
	17.3.1.2 Backing Up Raw Data from a Replica
	17.3.1.3 Backing Up a Source or Replica by Making It Read Only

	17.3.2 Handling an Unexpected Halt of a Replica Server
	17.3.3 Using Replication with Different Source and Replica Storage Engines
	17.3.4 Using Replication for Scale-Out
	17.3.5 Replicating Different Databases to Different Replicas
	17.3.6 Improving Replication Performance
	17.3.7 Switching Sources During Failover
	17.3.8 Setting Up Replication to Use Encrypted Connections
	17.3.9 Semisynchronous Replication
	17.3.9.1 Semisynchronous Replication Administrative Interface
	17.3.9.2 Semisynchronous Replication Installation and Configuration
	17.3.9.3 Semisynchronous Replication Monitoring

	17.3.10 Delayed Replication

	17.4 Replication Notes and Tips
	17.4.1 Replication Features and Issues
	17.4.1.1 Replication and AUTO_INCREMENT
	17.4.1.2 Replication and BLACKHOLE Tables
	17.4.1.3 Replication and Character Sets
	17.4.1.4 Replication and CHECKSUM TABLE
	17.4.1.5 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER
	17.4.1.6 Replication of CREATE ... IF NOT EXISTS Statements
	17.4.1.7 Replication of CREATE TABLE ... SELECT Statements
	17.4.1.8 Replication of CURRENT_USER()
	17.4.1.9 Replication with Differing Table Definitions on Source and Replica
	Replication with More Columns on Source or Replica
	Replication of Columns Having Different Data Types

	17.4.1.10 Replication and DIRECTORY Table Options
	17.4.1.11 Replication of DROP ... IF EXISTS Statements
	17.4.1.12 Replication and Floating-Point Values
	17.4.1.13 Replication and FLUSH
	17.4.1.14 Replication and Fractional Seconds Support
	17.4.1.15 Replication and System Functions
	17.4.1.16 Replication of Invoked Features
	17.4.1.17 Replication and LIMIT
	17.4.1.18 Replication and LOAD DATA
	17.4.1.19 Replication and max_allowed_packet
	17.4.1.20 Replication and MEMORY Tables
	17.4.1.21 Replication of the mysql System Database
	17.4.1.22 Replication and the Query Optimizer
	17.4.1.23 Replication and Partitioning
	17.4.1.24 Replication and REPAIR TABLE
	17.4.1.25 Replication and Reserved Words
	17.4.1.26 Replication and Source or Replica Shutdowns
	17.4.1.27 Replica Errors During Replication
	17.4.1.28 Replication and Server SQL Mode
	17.4.1.29 Replication and Temporary Tables
	17.4.1.30 Replication Retries and Timeouts
	17.4.1.31 Replication and Time Zones
	17.4.1.32 Replication and Transactions
	17.4.1.33 Replication and Triggers
	17.4.1.34 Replication and TRUNCATE TABLE
	17.4.1.35 Replication and Variables
	17.4.1.36 Replication and Views

	17.4.2 Replication Compatibility Between MySQL Versions
	17.4.3 Upgrading a Replication Setup
	17.4.4 Troubleshooting Replication
	17.4.5 How to Report Replication Bugs or Problems

	Chapter 18 MySQL NDB Cluster 7.3 and NDB Cluster 7.4
	18.1 General Information
	18.2 NDB Cluster Overview
	18.2.1 NDB Cluster Core Concepts
	18.2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions
	18.2.3 NDB Cluster Hardware, Software, and Networking Requirements
	18.2.4 What is New in MySQL NDB Cluster
	18.2.4.1 What is New in NDB Cluster 7.3
	18.2.4.2 What is New in NDB Cluster 7.4

	18.2.5 NDB: Added, Deprecated, and Removed Options, Variables, and Parameters
	18.2.5.1 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.3
	18.2.5.2 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.4

	18.2.6 MySQL Server Using InnoDB Compared with NDB Cluster
	18.2.6.1 Differences Between the NDB and InnoDB Storage Engines
	18.2.6.2 NDB and InnoDB Workloads
	18.2.6.3 NDB and InnoDB Feature Usage Summary

	18.2.7 Known Limitations of NDB Cluster
	18.2.7.1 Noncompliance with SQL Syntax in NDB Cluster
	18.2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limits
	18.2.7.3 Limits Relating to Transaction Handling in NDB Cluster
	18.2.7.4 NDB Cluster Error Handling
	18.2.7.5 Limits Associated with Database Objects in NDB Cluster
	18.2.7.6 Unsupported or Missing Features in NDB Cluster
	18.2.7.7 Limitations Relating to Performance in NDB Cluster
	18.2.7.8 Issues Exclusive to NDB Cluster
	18.2.7.9 Limitations Relating to NDB Cluster Disk Data Storage
	18.2.7.10 Limitations Relating to Multiple NDB Cluster Nodes
	18.2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 7.3

	18.3 NDB Cluster Installation
	18.3.1 Installation of NDB Cluster on Linux
	18.3.1.1 Installing an NDB Cluster Binary Release on Linux
	18.3.1.2 Installing NDB Cluster from RPM
	18.3.1.3 Installing NDB Cluster Using .deb Files
	18.3.1.4 Building NDB Cluster from Source on Linux

	18.3.2 Installing NDB Cluster on Windows
	18.3.2.1 Installing NDB Cluster on Windows from a Binary Release
	18.3.2.2 Compiling and Installing NDB Cluster from Source on Windows
	18.3.2.3 Initial Startup of NDB Cluster on Windows
	18.3.2.4 Installing NDB Cluster Processes as Windows Services

	18.3.3 Initial Configuration of NDB Cluster
	18.3.4 Initial Startup of NDB Cluster
	18.3.5 NDB Cluster Example with Tables and Data
	18.3.6 Safe Shutdown and Restart of NDB Cluster
	18.3.7 Upgrading and Downgrading NDB Cluster
	18.3.8 The NDB Cluster Auto-Installer (NO LONGER SUPPORTED)

	18.4 Configuration of NDB Cluster
	18.4.1 Quick Test Setup of NDB Cluster
	18.4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables
	18.4.2.1 NDB Cluster Data Node Configuration Parameters
	18.4.2.2 NDB Cluster Management Node Configuration Parameters
	18.4.2.3 NDB Cluster SQL Node and API Node Configuration Parameters
	18.4.2.4 Other NDB Cluster Configuration Parameters
	18.4.2.5 NDB Cluster mysqld Option and Variable Reference

	18.4.3 NDB Cluster Configuration Files
	18.4.3.1 NDB Cluster Configuration: Basic Example
	18.4.3.2 Recommended Starting Configuration for NDB Cluster
	18.4.3.3 NDB Cluster Connection Strings
	18.4.3.4 Defining Computers in an NDB Cluster
	18.4.3.5 Defining an NDB Cluster Management Server
	18.4.3.6 Defining NDB Cluster Data Nodes
	18.4.3.7 Defining SQL and Other API Nodes in an NDB Cluster
	18.4.3.8 MySQL Server Options and Variables for NDB Cluster
	MySQL Server Options for NDB Cluster
	NDB Cluster System Variables
	NDB Cluster Status Variables

	18.4.3.9 NDB Cluster TCP/IP Connections
	18.4.3.10 NDB Cluster TCP/IP Connections Using Direct Connections
	18.4.3.11 NDB Cluster Shared-Memory Connections
	18.4.3.12 Configuring NDB Cluster Send Buffer Parameters

	18.4.4 Using High-Speed Interconnects with NDB Cluster

	18.5 NDB Cluster Programs
	18.5.1 ndbd — The NDB Cluster Data Node Daemon
	18.5.2 ndbinfo_select_all — Select From ndbinfo Tables
	18.5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)
	18.5.4 ndb_mgmd — The NDB Cluster Management Server Daemon
	18.5.5 ndb_mgm — The NDB Cluster Management Client
	18.5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables
	18.5.7 ndb_config — Extract NDB Cluster Configuration Information
	18.5.8 ndb_cpcd — Automate Testing for NDB Development
	18.5.9 ndb_delete_all — Delete All Rows from an NDB Table
	18.5.10 ndb_desc — Describe NDB Tables
	18.5.11 ndb_drop_index — Drop Index from an NDB Table
	18.5.12 ndb_drop_table — Drop an NDB Table
	18.5.13 ndb_error_reporter — NDB Error-Reporting Utility
	18.5.14 ndb_index_stat — NDB Index Statistics Utility
	18.5.15 ndb_move_data — NDB Data Copy Utility
	18.5.16 ndb_print_backup_file — Print NDB Backup File Contents
	18.5.17 ndb_print_file — Print NDB Disk Data File Contents
	18.5.18 ndb_print_frag_file — Print NDB Fragment List File Contents
	18.5.19 ndb_print_schema_file — Print NDB Schema File Contents
	18.5.20 ndb_print_sys_file — Print NDB System File Contents
	18.5.21 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log
	18.5.22 ndb_restore — Restore an NDB Cluster Backup
	18.5.22.1 Restoring an NDB Backup to a Different Version of NDB Cluster
	Restoring an NDB backup to a previous version of NDB Cluster
	Restoring an NDB backup to a later version of NDB Cluster

	18.5.22.2 Restoring to a different number of data nodes
	Restoring to Fewer Nodes Than the Original
	Restoring to More Nodes Than the Original

	18.5.23 ndb_select_all — Print Rows from an NDB Table
	18.5.24 ndb_select_count — Print Row Counts for NDB Tables
	18.5.25 ndb_show_tables — Display List of NDB Tables
	18.5.26 ndb_size.pl — NDBCLUSTER Size Requirement Estimator
	18.5.27 ndb_waiter — Wait for NDB Cluster to Reach a Given Status

	18.6 Management of NDB Cluster
	18.6.1 Commands in the NDB Cluster Management Client
	18.6.2 NDB Cluster Log Messages
	18.6.2.1 NDB Cluster: Messages in the Cluster Log
	18.6.2.2 NDB Cluster Log Startup Messages
	18.6.2.3 NDB Cluster: NDB Transporter Errors

	18.6.3 Event Reports Generated in NDB Cluster
	18.6.3.1 NDB Cluster Logging Management Commands
	18.6.3.2 NDB Cluster Log Events
	18.6.3.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client

	18.6.4 Summary of NDB Cluster Start Phases
	18.6.5 Performing a Rolling Restart of an NDB Cluster
	18.6.6 NDB Cluster Single User Mode
	18.6.7 Adding NDB Cluster Data Nodes Online
	18.6.7.1 Adding NDB Cluster Data Nodes Online: General Issues
	18.6.7.2 Adding NDB Cluster Data Nodes Online: Basic procedure
	18.6.7.3 Adding NDB Cluster Data Nodes Online: Detailed Example

	18.6.8 Online Backup of NDB Cluster
	18.6.8.1 NDB Cluster Backup Concepts
	18.6.8.2 Using The NDB Cluster Management Client to Create a Backup
	18.6.8.3 Configuration for NDB Cluster Backups
	18.6.8.4 NDB Cluster Backup Troubleshooting

	18.6.9 Importing Data Into MySQL Cluster
	18.6.10 MySQL Server Usage for NDB Cluster
	18.6.11 NDB Cluster Disk Data Tables
	18.6.11.1 NDB Cluster Disk Data Objects
	18.6.11.2 Using Symbolic Links with Disk Data Objects
	18.6.11.3 NDB Cluster Disk Data Storage Requirements

	18.6.12 Online Operations with ALTER TABLE in NDB Cluster
	18.6.13 Distributed Privileges Using Shared Grant Tables
	18.6.14 NDB API Statistics Counters and Variables
	18.6.15 ndbinfo: The NDB Cluster Information Database
	18.6.15.1 The ndbinfo arbitrator_validity_detail Table
	18.6.15.2 The ndbinfo arbitrator_validity_summary Table
	18.6.15.3 The ndbinfo blocks Table
	18.6.15.4 The ndbinfo cluster_operations Table
	18.6.15.5 The ndbinfo cluster_transactions Table
	18.6.15.6 The ndbinfo config_params Table
	18.6.15.7 The ndbinfo counters Table
	18.6.15.8 The ndbinfo dict_obj_types Table
	18.6.15.9 The ndbinfo disk_write_speed_base Table
	18.6.15.10 The ndbinfo disk_write_speed_aggregate Table
	18.6.15.11 The ndbinfo disk_write_speed_aggregate_node Table
	18.6.15.12 The ndbinfo diskpagebuffer Table
	18.6.15.13 The ndbinfo logbuffers Table
	18.6.15.14 The ndbinfo logspaces Table
	18.6.15.15 The ndbinfo membership Table
	18.6.15.16 The ndbinfo memoryusage Table
	18.6.15.17 The ndbinfo memory_per_fragment Table
	18.6.15.18 The ndbinfo nodes Table
	18.6.15.19 The ndbinfo operations_per_fragment Table
	18.6.15.20 The ndbinfo resources Table
	18.6.15.21 The ndbinfo restart_info Table
	18.6.15.22 The ndbinfo server_operations Table
	18.6.15.23 The ndbinfo server_transactions Table
	18.6.15.24 The ndbinfo tc_time_track_stats Table
	18.6.15.25 The ndbinfo threadblocks Table
	18.6.15.26 The ndbinfo threadstat Table
	18.6.15.27 The ndbinfo transporters Table

	18.6.16 Quick Reference: NDB Cluster SQL Statements
	18.6.17 NDB Cluster Security Issues
	18.6.17.1 NDB Cluster Security and Networking Issues
	18.6.17.2 NDB Cluster and MySQL Privileges
	18.6.17.3 NDB Cluster and MySQL Security Procedures

	18.7 NDB Cluster Replication
	18.7.1 NDB Cluster Replication: Abbreviations and Symbols
	18.7.2 General Requirements for NDB Cluster Replication
	18.7.3 Known Issues in NDB Cluster Replication
	18.7.4 NDB Cluster Replication Schema and Tables
	18.7.5 Preparing the NDB Cluster for Replication
	18.7.6 Starting NDB Cluster Replication (Single Replication Channel)
	18.7.7 Using Two Replication Channels for NDB Cluster Replication
	18.7.8 Implementing Failover with NDB Cluster Replication
	18.7.9 NDB Cluster Backups With NDB Cluster Replication
	18.7.9.1 NDB Cluster Replication: Automating Synchronization of the Replica to the Source Binary Log
	18.7.9.2 Point-In-Time Recovery Using NDB Cluster Replication

	18.7.10 NDB Cluster Replication: Bidirectional and Circular Replication
	18.7.11 NDB Cluster Replication Conflict Resolution

	18.8 NDB Cluster Release Notes

	Chapter 19 Partitioning
	19.1 Overview of Partitioning in MySQL
	19.2 Partitioning Types
	19.2.1 RANGE Partitioning
	19.2.2 LIST Partitioning
	19.2.3 COLUMNS Partitioning
	19.2.3.1 RANGE COLUMNS partitioning
	19.2.3.2 LIST COLUMNS partitioning

	19.2.4 HASH Partitioning
	19.2.4.1 LINEAR HASH Partitioning

	19.2.5 KEY Partitioning
	19.2.6 Subpartitioning
	19.2.7 How MySQL Partitioning Handles NULL

	19.3 Partition Management
	19.3.1 Management of RANGE and LIST Partitions
	19.3.2 Management of HASH and KEY Partitions
	19.3.3 Exchanging Partitions and Subpartitions with Tables
	19.3.4 Maintenance of Partitions
	19.3.5 Obtaining Information About Partitions

	19.4 Partition Pruning
	19.5 Partition Selection
	19.6 Restrictions and Limitations on Partitioning
	19.6.1 Partitioning Keys, Primary Keys, and Unique Keys
	19.6.2 Partitioning Limitations Relating to Storage Engines
	19.6.3 Partitioning Limitations Relating to Functions
	19.6.4 Partitioning and Locking

	Chapter 20 Stored Objects
	20.1 Defining Stored Programs
	20.2 Using Stored Routines
	20.2.1 Stored Routine Syntax
	20.2.2 Stored Routines and MySQL Privileges
	20.2.3 Stored Routine Metadata
	20.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

	20.3 Using Triggers
	20.3.1 Trigger Syntax and Examples
	20.3.2 Trigger Metadata

	20.4 Using the Event Scheduler
	20.4.1 Event Scheduler Overview
	20.4.2 Event Scheduler Configuration
	20.4.3 Event Syntax
	20.4.4 Event Metadata
	20.4.5 Event Scheduler Status
	20.4.6 The Event Scheduler and MySQL Privileges

	20.5 Using Views
	20.5.1 View Syntax
	20.5.2 View Processing Algorithms
	20.5.3 Updatable and Insertable Views
	20.5.4 The View WITH CHECK OPTION Clause
	20.5.5 View Metadata

	20.6 Stored Object Access Control
	20.7 Stored Program Binary Logging
	20.8 Restrictions on Stored Programs
	20.9 Restrictions on Views

	Chapter 21 INFORMATION_SCHEMA Tables
	21.1 Introduction
	21.2 INFORMATION_SCHEMA Table Reference
	21.3 INFORMATION_SCHEMA General Tables
	21.3.1 INFORMATION_SCHEMA General Table Reference
	21.3.2 The INFORMATION_SCHEMA CHARACTER_SETS Table
	21.3.3 The INFORMATION_SCHEMA COLLATIONS Table
	21.3.4 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
	21.3.5 The INFORMATION_SCHEMA COLUMNS Table
	21.3.6 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
	21.3.7 The INFORMATION_SCHEMA ENGINES Table
	21.3.8 The INFORMATION_SCHEMA EVENTS Table
	21.3.9 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables
	21.3.10 The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables
	21.3.11 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
	21.3.12 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table
	21.3.13 The INFORMATION_SCHEMA PARAMETERS Table
	21.3.14 The INFORMATION_SCHEMA PARTITIONS Table
	21.3.15 The INFORMATION_SCHEMA PLUGINS Table
	21.3.16 The INFORMATION_SCHEMA PROCESSLIST Table
	21.3.17 The INFORMATION_SCHEMA PROFILING Table
	21.3.18 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table
	21.3.19 The INFORMATION_SCHEMA ROUTINES Table
	21.3.20 The INFORMATION_SCHEMA SCHEMATA Table
	21.3.21 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
	21.3.22 The INFORMATION_SCHEMA STATISTICS Table
	21.3.23 The INFORMATION_SCHEMA TABLES Table
	21.3.24 The INFORMATION_SCHEMA TABLESPACES Table
	21.3.25 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
	21.3.26 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
	21.3.27 The INFORMATION_SCHEMA TRIGGERS Table
	21.3.28 The INFORMATION_SCHEMA USER_PRIVILEGES Table
	21.3.29 The INFORMATION_SCHEMA VIEWS Table

	21.4 INFORMATION_SCHEMA InnoDB Tables
	21.4.1 INFORMATION_SCHEMA InnoDB Table Reference
	21.4.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table
	21.4.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table
	21.4.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table
	21.4.5 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables
	21.4.6 The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables
	21.4.7 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables
	21.4.8 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table
	21.4.9 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table
	21.4.10 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table
	21.4.11 The INFORMATION_SCHEMA INNODB_FT_DELETED Table
	21.4.12 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table
	21.4.13 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table
	21.4.14 The INFORMATION_SCHEMA INNODB_LOCKS Table
	21.4.15 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table
	21.4.16 The INFORMATION_SCHEMA INNODB_METRICS Table
	21.4.17 The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table
	21.4.18 The INFORMATION_SCHEMA INNODB_SYS_DATAFILES Table
	21.4.19 The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table
	21.4.20 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table
	21.4.21 The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table
	21.4.22 The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table
	21.4.23 The INFORMATION_SCHEMA INNODB_SYS_TABLES Table
	21.4.24 The INFORMATION_SCHEMA INNODB_SYS_TABLESPACES Table
	21.4.25 The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View
	21.4.26 The INFORMATION_SCHEMA INNODB_TRX Table

	21.5 INFORMATION_SCHEMA NDB Cluster Tables
	21.5.1 The INFORMATION_SCHEMA FILES Table
	21.5.2 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table

	21.6 INFORMATION_SCHEMA Thread Pool Tables
	21.6.1 INFORMATION_SCHEMA Thread Pool Table Reference
	21.6.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table
	21.6.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table
	21.6.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table

	21.7 INFORMATION_SCHEMA Connection-Control Tables
	21.7.1 INFORMATION_SCHEMA Connection-Control Table Reference
	21.7.2 The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table

	21.8 INFORMATION_SCHEMA MySQL Enterprise Firewall Tables
	21.8.1 INFORMATION_SCHEMA Firewall Table Reference
	21.8.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table
	21.8.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table

	21.9 Extensions to SHOW Statements

	Chapter 22 MySQL Performance Schema
	22.1 Performance Schema Quick Start
	22.2 Performance Schema Build Configuration
	22.3 Performance Schema Startup Configuration
	22.4 Performance Schema Runtime Configuration
	22.4.1 Performance Schema Event Timing
	22.4.2 Performance Schema Event Filtering
	22.4.3 Event Pre-Filtering
	22.4.4 Pre-Filtering by Instrument
	22.4.5 Pre-Filtering by Object
	22.4.6 Pre-Filtering by Thread
	22.4.7 Pre-Filtering by Consumer
	22.4.8 Example Consumer Configurations
	22.4.9 Naming Instruments or Consumers for Filtering Operations
	22.4.10 Determining What Is Instrumented

	22.5 Performance Schema Queries
	22.6 Performance Schema Instrument Naming Conventions
	22.7 Performance Schema Status Monitoring
	22.8 Performance Schema Atom and Molecule Events
	22.9 Performance Schema Tables for Current and Historical Events
	22.10 Performance Schema Statement Digests
	22.11 Performance Schema General Table Characteristics
	22.12 Performance Schema Table Descriptions
	22.12.1 Performance Schema Table Reference
	22.12.2 Performance Schema Setup Tables
	22.12.2.1 The setup_actors Table
	22.12.2.2 The setup_consumers Table
	22.12.2.3 The setup_instruments Table
	22.12.2.4 The setup_objects Table
	22.12.2.5 The setup_timers Table

	22.12.3 Performance Schema Instance Tables
	22.12.3.1 The cond_instances Table
	22.12.3.2 The file_instances Table
	22.12.3.3 The mutex_instances Table
	22.12.3.4 The rwlock_instances Table
	22.12.3.5 The socket_instances Table

	22.12.4 Performance Schema Wait Event Tables
	22.12.4.1 The events_waits_current Table
	22.12.4.2 The events_waits_history Table
	22.12.4.3 The events_waits_history_long Table

	22.12.5 Performance Schema Stage Event Tables
	22.12.5.1 The events_stages_current Table
	22.12.5.2 The events_stages_history Table
	22.12.5.3 The events_stages_history_long Table

	22.12.6 Performance Schema Statement Event Tables
	22.12.6.1 The events_statements_current Table
	22.12.6.2 The events_statements_history Table
	22.12.6.3 The events_statements_history_long Table

	22.12.7 Performance Schema Connection Tables
	22.12.7.1 The accounts Table
	22.12.7.2 The hosts Table
	22.12.7.3 The users Table

	22.12.8 Performance Schema Connection Attribute Tables
	22.12.8.1 The session_account_connect_attrs Table
	22.12.8.2 The session_connect_attrs Table

	22.12.9 Performance Schema Summary Tables
	22.12.9.1 Wait Event Summary Tables
	22.12.9.2 Stage Summary Tables
	22.12.9.3 Statement Summary Tables
	22.12.9.4 Object Wait Summary Table
	22.12.9.5 File I/O Summary Tables
	22.12.9.6 Table I/O and Lock Wait Summary Tables
	The table_io_waits_summary_by_table Table
	The table_io_waits_summary_by_index_usage Table
	The table_lock_waits_summary_by_table Table

	22.12.9.7 Socket Summary Tables

	22.12.10 Performance Schema Miscellaneous Tables
	22.12.10.1 The host_cache Table
	22.12.10.2 The performance_timers Table
	22.12.10.3 The threads Table

	22.13 Performance Schema Option and Variable Reference
	22.14 Performance Schema Command Options
	22.15 Performance Schema System Variables
	22.16 Performance Schema Status Variables
	22.17 Performance Schema and Plugins
	22.18 Using the Performance Schema to Diagnose Problems
	22.18.1 Query Profiling Using Performance Schema

	22.19 Restrictions on Performance Schema

	Chapter 23 Connectors and APIs
	23.1 MySQL Connector/C++
	23.2 MySQL Connector/J
	23.3 MySQL Connector/NET
	23.4 MySQL Connector/ODBC
	23.5 MySQL Connector/Python
	23.6 libmysqld, the Embedded MySQL Server Library
	23.6.1 Compiling Programs with libmysqld
	23.6.2 Restrictions When Using the Embedded MySQL Server
	23.6.3 Options with the Embedded Server
	23.6.4 Embedded Server Examples

	23.7 MySQL C API
	23.8 MySQL PHP API
	23.9 MySQL Perl API
	23.10 MySQL Python API
	23.11 MySQL Ruby APIs
	23.11.1 The MySQL/Ruby API
	23.11.2 The Ruby/MySQL API

	23.12 MySQL Tcl API
	23.13 MySQL Eiffel Wrapper

	Chapter 24 MySQL Enterprise Edition
	24.1 MySQL Enterprise Monitor Overview
	24.2 MySQL Enterprise Backup Overview
	24.3 MySQL Enterprise Security Overview
	24.4 MySQL Enterprise Encryption Overview
	24.5 MySQL Enterprise Audit Overview
	24.6 MySQL Enterprise Firewall Overview
	24.7 MySQL Enterprise Thread Pool Overview
	24.8 MySQL Enterprise Data Masking and De-Identification Overview

	Chapter 25 MySQL Workbench
	Appendix A MySQL 5.6 Frequently Asked Questions
	A.1 MySQL 5.6 FAQ: General
	A.2 MySQL 5.6 FAQ: Storage Engines
	A.3 MySQL 5.6 FAQ: Server SQL Mode
	A.4 MySQL 5.6 FAQ: Stored Procedures and Functions
	A.5 MySQL 5.6 FAQ: Triggers
	A.6 MySQL 5.6 FAQ: Views
	A.7 MySQL 5.6 FAQ: INFORMATION_SCHEMA
	A.8 MySQL 5.6 FAQ: Migration
	A.9 MySQL 5.6 FAQ: Security
	A.10 MySQL 5.6 FAQ: NDB Cluster
	A.11 MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
	A.12 MySQL 5.6 FAQ: Connectors & APIs
	A.13 MySQL 5.6 FAQ: C API, libmysql
	A.14 MySQL 5.6 FAQ: Replication
	A.15 MySQL 5.6 FAQ: MySQL Enterprise Thread Pool
	A.16 MySQL 5.6 FAQ: InnoDB Change Buffer
	A.17 MySQL 5.6 FAQ: Virtualization Support

	Appendix B Error Messages and Common Problems
	B.1 Error Message Sources and Elements
	B.2 Error Information Interfaces
	B.3 Problems and Common Errors
	B.3.1 How to Determine What Is Causing a Problem
	B.3.2 Common Errors When Using MySQL Programs
	B.3.2.1 Access denied
	B.3.2.2 Can't connect to [local] MySQL server
	Connection to MySQL Server Failing on Windows

	B.3.2.3 Lost connection to MySQL server
	B.3.2.4 Client does not support authentication protocol
	B.3.2.5 Password Fails When Entered Interactively
	B.3.2.6 Too many connections
	B.3.2.7 Out of memory
	B.3.2.8 MySQL server has gone away
	B.3.2.9 Packet Too Large
	B.3.2.10 Communication Errors and Aborted Connections
	B.3.2.11 The table is full
	B.3.2.12 Can't create/write to file
	B.3.2.13 Commands out of sync
	B.3.2.14 Ignoring user
	B.3.2.15 Table 'tbl_name' doesn't exist
	B.3.2.16 Can't initialize character set
	B.3.2.17 File Not Found and Similar Errors
	B.3.2.18 Table-Corruption Issues

	B.3.3 Administration-Related Issues
	B.3.3.1 Problems with File Permissions
	B.3.3.2 How to Reset the Root Password
	Resetting the Root Password: Windows Systems
	Resetting the Root Password: Unix and Unix-Like Systems
	Resetting the Root Password: Generic Instructions

	B.3.3.3 What to Do If MySQL Keeps Crashing
	B.3.3.4 How MySQL Handles a Full Disk
	B.3.3.5 Where MySQL Stores Temporary Files
	B.3.3.6 How to Protect or Change the MySQL Unix Socket File
	B.3.3.7 Time Zone Problems

	B.3.4 Query-Related Issues
	B.3.4.1 Case Sensitivity in String Searches
	B.3.4.2 Problems Using DATE Columns
	B.3.4.3 Problems with NULL Values
	B.3.4.4 Problems with Column Aliases
	B.3.4.5 Rollback Failure for Nontransactional Tables
	B.3.4.6 Deleting Rows from Related Tables
	B.3.4.7 Solving Problems with No Matching Rows
	B.3.4.8 Problems with Floating-Point Values

	B.3.5 Optimizer-Related Issues
	B.3.6 Table Definition-Related Issues
	B.3.6.1 Problems with ALTER TABLE
	B.3.6.2 TEMPORARY Table Problems

	B.3.7 Known Issues in MySQL

	Appendix C Indexes
	General Index
	C Function Index
	Command Index
	Function Index
	INFORMATION_SCHEMA Index
	Join Types Index
	Operator Index
	Option Index
	Privileges Index
	SQL Modes Index
	Statement/Syntax Index
	Status Variable Index
	System Variable Index
	Transaction Isolation Level Index

	MySQL Glossary

